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ABSTRACT 

Output images fiom the sensors more likely are not optimal results for display or further 

processing mainly because of noise, bliimness and poor contrast. In order to prevent these 

problems, image processors typically accompany the image sensors as a part of the whole 

camera system. Typically, two separated chips for sensing and processing are integrated ont0 

the same printed circuit board connected by printed wires. The integration of image sensors 

and processing circuits on a single monolithic chip, called smart sensing, is done to obtain 

better performance fiom sensors and make the sensing and processing system more compact. 

It has become a popular idea. The integration of image acquisition and processing on the 

same focal plane has potential advantages through low fabrication cost, low power, compact 

size, and fast processing frequency. Noise and cross-ta& can also be reduced through 

monolithic connections instead of off-chip wires, which are the only tramfer medium 

between two separated chips. 

In this thesis, we propose system-level architectures and design methodology for integrating 

image processing with CMOS active pixel sensors on a single chip. Conventional approaches 

to the integration categorized by circuit density of processing elements are not sufficient to 

achieve optimal design with power, speed, cost, and processing fiequency. This thesis 

observes the nature of image processing algorithms and categorizes them in order to find out 

adequate design architecture for real tirne smart sensing. The algorithms can be divided in 

terms of signal type, operational domain, and regions of operation. We narrow these d o m  

into analog/low bit digital operation in spatial domain, and then subdivide the algorithms into 

point, local, and global operational regions. For each region of operation, we look at 

examples of processing algorithms and then subdivide them again according to on-chip 

implementation methodology. Here, we propose systern-level architecture and on-chip design 

methodology for these categorized aigorithms. 

Four prototype chips, in this thesis, were designed and fabncated for the demonstration of 

smart sensing: One is a multi-camera system which is the inspiration for the smart sensing 

research, and the other three are demonstration imagers for each region of operation: point, 

local and global. These prototype chips are 64x64 photodiode arrays with on-chip image 

processing fabricated in standard 0.35 pm CMOS technology with 3.3V power supply. Each 



chip contains diffeieat hctional processing and operates at different performances. We have 

successfully tested the chips with different testing performances and characteristics. 

This thesis reports implementation architectures and design methodologies of on-chip 

processing with image semors, its analysis along with operational performance and 

experimental radts. These implementations demonstrate the advantages of the single chip 

solution and contribute as a milestone so designers and researchers can have a better 

understanding of smart sensing. 
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Chapter I 

1. Introduction 

There are many kinds of electronic camera available on today's market with various 

applications such as document and film scanning, video imaging, still-image capture, 

machine vision, i n h e d  and x-ray imaging, astronomy and microscopy. Despite the wide 

variety of applications, al1 digital cameras have the same basic functional components, which 

consist of optical collection of photons (e.g. a lens), wavelength discriminbation of photons 

(e.g. filters), detector (e.g. solid state sensors), timing, control and drive electronics for the 

sensors, signal processing electronics for correlated double sampling, colour processing, 

analog-to-digital conversion and interface electronics [ 1 1. 

A core component of an electronic camera is the solid-state image sensor that converts light 

into electrical form and, M e r  may process and convert it into an appropnate signal (e-g. 

digital signal). For many years, silicon based image sensors have been extensively 

investigated since silicon has a good light absorption characteristics over the visible spectnun 

and has a mature technology in its processes and VLSI circuits. Over the visible spectral 

range, there are two main silicon-based image sensor technologies, Charge Coupled Devices 

(CCDs) and CMOS Image Sensors (CISs). Although these technologies use the same silicon 

as substrate, they are quite distinct in their photo-characteristics and fùnctional operation. 

CCDs have been the dominant technology for electronic image sensors for several decades 

due to their low dark current, high photosensitivity, low fixed pattern noise, small pixel size 

and structure. However, in the last decade, CMOS image sensors have gained attention fiom 



many researchers and industries due to their low power, low fabncation cost, compatibility 

with VLSI integration, and radiation haniness. Many researchers are attracted by its low 

power, low weight and radiation hardness for deep-space applications. Custom markets are 

interested in CISs for their low fabncation cost and the compatibility of VLSI circuits with 

image sensors. 

This thesis focuses on the VLSI compatibility of CISs and more particularly, on uitegration 

of image processing algorithms on the same focal plane with CISs, so called smart sensors or 

vision chips. This thesis discusses why the integration of the smart sensors is advantageous 

and what should exist on the smart sensors, and how to ïntegrate image processing 

algorithms with CISs (i.e. how to implement the smart sensors). The thesis includes 

recommendations on system-level architectures, applications and limitations of the 

implementation of smart sensors, which are categorized by the nature of image processing 

algorithms. 

The main contnÎutions and objectives of this thesis are summarized as follows: (i) to give 

milestones of designs for integration of image processors with CMOS image semors, where 

designers and engineers can start their initial implementations, and to give a better 

understanding of the integration to give designers and researchers guidance to improve the 

implementation techniques for smart sensors, (ii) to determine the feasibility of the 

integration of image processors with image sensors in standard CMOS 0.35 jm technology, 

(iii) to demonstrate scalability of design with technology, (iv) to forecast possible design and 

implementation issues of the integration in advance, and lady (v) to suggest fiiture research 

directions, for smart sensor implementations. 

In Chapter 2, a bnef description and applications of solid-state image sensor is outlined and 

the history of developments in CCD and CIS is reported. The advantages and disadvantages 

in fimctional operation and processes of CCD and CIS are compared. Then, the basic 

operation of CIS is discussed dong with their basic functional components and structural 

layout. The friture expectations and applications of CIS are also included. 

In Chapter 3, a concept of MOSAIC (Matrix of Semi-Autonomous Imaging Cameras) is 

proposed for large field of view. The dennition and applications of the MOSAIC system are 

also discussed in this chapter. A simple MOSAIC chip with CIS array and bus interface was 



designed and fabncated for a demonstration of the multi-camera concept. The detailed 

designs of the MOSNC chip and its test resuits are explained. The conclusions and 

suggestions for the MOSAIC concept are also discussed at the end of the chapter. 

Based on the conclusions of the MOSAIC chapter, the main focus of the rest of the research 

is on effective integration architectures for image processing algorithms with CIS. In Chapter 

4, the background of image processuig integration with CIS is outlined, including why, what 

and how to employ smart sensors with CIS. This includes previous implementations of 

processing integration with CIS and their relations to this thesis. It explains the sequence of 

image processing analysis and its relation with smart sensors by discussing the structural 

implementation of focal plane integration with CIS. For effective integration architectures, 

we categorize the types of image processing algorithms in terms of signals, domains and 

spatial regions of operation. 

In Chapter 5, the advantages and disadvantages of integration architecture of image 

processing algorithms for point operations are investigated. The definition of a point 

operation is discussed along with examples of this operation. The merits and drawbacks of 

point operation in different implementation structures of pixel, column, chip and frame 

memory processing are compared. The optimal architectures for the integration are also 

proposeci according to general characteristics of sensor applications. A CIS chip with in-pixel 

contrast stretching, also known as an intensity mapping fùnction, was designed and 

fabncated as a demonstration of point operation at the pixel level. This chapter includcs the 

detailed design and fabrication of the chip and its test results. 

Chapter 6 investigates the architecture of image processing integration for local operation. 

The definitions of local operation are discussed along with advantages and disadvantages of 

this technique. Local operational image processing algorithms are divided into 3x3, and 

larger spatial mask implementations according to size of the local mask. Local operation in 

pixel, column, chip and frame memory processing are compared for implementing smart 

sensors, leading to the optimal system-level architectures according to the sue  of the local 

mask. A CIS chip with on-chip binary image processing was designed and fabncated as a 

demonstration of 3x3 local operation at the column level. The detailed designs of the local 

operation chip and its test results are also included. 



In Chapter 7, the architecture of image processing integration for global operations is 

investigated in terms of operational domain, namely fiequency and spatial domaias. A 

definition of global operation is discussed with examples of such operatiom. In this chapter, 

global operation at pixel, chip and fiame memory processing levels are compared listing their 

merits and drawbacks and, thereby, possible implementations are proposed according to the 

operational domain. A CIS chip with an object positioning system was designeci and 

fabncated as a dernonstration of global operation. The detailed designs of this chip and its 

test results are included, dong with the discussion of its optimization. 

Chapter 8 summarizes the work of the research and presents the conclusions derived fiom 

this research dong with directions for further work. 

Appendix A contains design and test results of a chip with inverted logarithmic pixel sensors. 

An inverted logarithmic pixel sensor is a modified pixel structure that has advantages of low 

pattem noise and continuous current readout over conventional logarithmic sensors. This 

chapter also discusses the potential advantages and disadvantages of current mode operations, 

and their applications. The detailed concept and design of the pixel sensor are discussed and 

sample images of the sensor array are demonstrated with their advantages and disadvantages. 

Appendix B discusses the basic procedure for image acquisition in the image sensor test. It 

describes how to test the image acquisition of the image sensor chip for the b t  tirne. 

Appendix C explains image sensor characteristics in the image sensor test. It discusses basic 

measmernent methods, calculations of optical characteristics and makes cornparisons with 

commercial sensors. 



Chapter II 

2. Basic Operation and Structure of CMOS 

Image Sensors 

2.1. Solid-State Image Sensors 

Solid-state image sensors are integrated circuits (usually silicon-based) that contain a number 

of photosensitive sensors in typically a 2-dimensional or I -dimensional array for the purpose 

of converting an optical image projected ont0 the device to an electrical output (usually a 

voltage or current). Compared to conventional camera films, the solid-state image sensors are 

cornputer fiiendly where films need a scanner in order to input images to cornputers. In 

addition, solid-state image sensors can Save time because they do not require developing tirne 

that film inevitably requires, which makes real time operation possible. 

As seen in Figure 2.1, there are many kinds of solid-state image sensors (not only silicon- 

based devices) with very different characteristics over a wide spectral range. Devices 

Y 
X U.V. - 

vidbk f r i n h d  ---nt ndb-.. 

Figure 2.1. Solid-state image semors over a wide spectral range [86]. 



may have sensitivity to wavelengths ûom the y-ray spectnrm to radio fiequency spectnmi. 

Yet, a great interest of commercial electronic image sensors resides in the visible spectral 

range sirnply because most of applications are for the visille spectnim. This thesis focuses on 

visible imaging. 

2.2. History of image Sensors at Visible Spectrum 

For visible spectral range, charge-coupled devices (CCDs) and complementary metal oxide 

semiconductor (CMOS) active pixel sensors (APSs) are currenùy dominant technologies for 

image sensors. A brief history of the solid-state image sensors for CCDs and CISs (Figure 

2.2) is well described by Fossum [l] and cm be summarized as follows. 

At the beginning stage of solid-state image sensor developrnent, there was a fom of MOS 

image sensors before CMOS APS and before CCD. In the 1960's there were numerous 

groups working on solid-state image sensors with varying degrees of success using NMOS, 

PMOS, and bipola. processes. In 1963, Momson reported a structure of computational 

sensor that allowed determination of a light spot's position usuig the photoconductivity effect 

1%7 

Photon flux integration 

mode by Weckler 

1992 

Low noise APS 

1985 by JPL 

Scanistor by CCD invented Hitachi CMOS image 
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Figure 2.2. History of MOS, CCD and CMOS image sensors. 



[2]. In 1964, IBM reporteci the scanistor that used an array of n-p-n junctions addressed 

through a resistive network to produce an output pulse proportional to the local incident Iight 

intensity [3]. In 1966, Westinghouse reported a 50x50 element monolithic array of 

phototransistors [4]. Since none of these sensors performed any intentional integration of the 

optical signal, their sensitivity wes low and thereby, often they required some form of signal 

amplification. In 1967, Weckler from Fairchild suggested operatïng p-n junctions in a photon 

flux-integrating mode [SI. A 1 OOx 1 O0 element array of photodiodes was reported in 1968 [6]. 

Weckler later called the device a reticon and formed Reticon to commercialize the sensor. In 

1968, Noble reported the f k t  MOS active pixel sensor [7]. Noble discussed a charge 

integration amplifier for readout, similar to that used later by others. Here, the first use of a 

MOS source-follower transistor in the pixel for readout buffering was reported. 

in 1970, when the CCD was first reported 181, its relatively low Fixed Pattern Noise (FPN: 

pattern noise in dark room) was one of the major reasons for its adoption over the many other 

forms of solid-state image sensors. The smaller pixel size afforded by the sirnplicity of the 

CCD pixel also contributed to its embrace by industry and it continued until MOS image 

sensors were resmected in the late 1980s. While a large effort was made for the 

development of the CCD in the 1970s and 1980s, MOS image sensors were only periodically 

investigated and compared unfavorably to CCDs with respect to the above performance 

criteria [9]. 

In the late 1970s and early 1980s Hitachi and Matsushita continued the development of MOS 

image sensors [ 1 O], [ 1 1 ] for camcorder-type applications where high-speed operation with 

relatively low resolutions were focused on. In 1982, NHK successfùlly integrated timing 

control with passive pixel sensors. Temporal noise in MOS sensors started to lag behind the 

noise achieved in CCDs. By 1985, Hitachi combined the MOS sensor with a CCD horizontal 

shift register [12]. However, perhaps due to raidual temporal noise, especiaily important in 

low light conditions, Hitachi later abandoned its MOS approach to sensors. 

In the early 19903, the University of Edinburgh (later foming VLSI Vision Ltd.) created 

highly fûnctional single-chip imaging systems where low cost was the main factor. In 1990, 

the VVL reported an integrated Passive Pixel Sensor (PPS) array [ 131. However, due to large 

capacitive column bus loads, the use of PPS was lirnited to small to medium array sizes and 



slow to medium readout speed. By cornparison with CCDs, noise and mismatch effects 

limited the quality. However, low power operation and integration demonstrated viability of 

single chip cameras and integrated sensor-processors. Although, in 1968, Noble 

demonstrated the first MOS buffer amplifier in a pixel, relatively littie active pixel sensor 

(APS) research was carried out for another 10 years, and it took 20 years for major interest to 

be renewed when NASA JPL group began research on low noise APS in 1992 [14]. CMOS 

based image sensors offer the potential to uitegrate a signifiant amount of VLSI electronics 

on-chip and reduce component and packaging cost. Around 1995, after a successful 

demonstration of low noise CMOS APS, CMOS image sensors took off due to their easy 

integration with VLSI circuits, low power consumption, low fabrication cost, and radiation 

hardness. Recently, commercial products using CMOS image sensors have become available 

and increasingly popular, including PC camera, cellular phone cameras, PDA, toys, etc. 

2.3. CCD and CIS for Smart Sensors 

Through the 1970s and 1980s, CCD technology was strong and it still sunives in digital 

camera and camcorder markets, simply because it outperfonns any other soiid-state image 

sensors in the visible spectrurn. The good image quality of CCD is based mainly on low 

noise and low dark current. CCD has low noise level, typically less than 50 noise electrons. 

FPN (Fixed Pattern Noise) of the CCD is less than 1% Vpp of its saturation level with a good 

PRNU (Photo-Response Non-Unifonnity) of 1 - 10% Vpp. In addition, very low dark 

current, typically less than 10 is achieved by this technology. The CCD process 

itself is optimized for optical detection and therefore, the optical absorption and quantum 

efficiency outperforms CIS. Since CCDs can share the sarne area for opticai detection and 

charge tram fer, it does not require any special transistors to tram fer photon-generated 

charges, resulting in a high fil1 factor. However, due to detection and transfer mechanism, 

CCD is limited to serial scanning with complicated driving and interfacing. CCD is also a 

specialized technology that is relatively expensive and therefore, many companies cannot 

afford their own fabrication laboratory. Besides, because CCD is not easily compatible with 

logic, so on-chip ADC and other on-chip processing circuitry seldom exist on a focal plane 

with image sensors, but rather exist in separate chips. 



For the main theme of this thesis (integration of smart sensors), integration feasibility of 

technologies is of interest. Here, focushg on smart sensors, CCD and CIS are compared. 

With aspects of smart sensor implementations, the comparisons of CCD and CIS are very 

well describeci and mmmarized in "Vision Chips" [15] b y  Alireza Moini. The following 

comparisons are adapted fiom this reference, ernphasizing CMOS compatibility for smart 

sensors. Although CCD bas good image quality, CCD is rarely used for smart sensors, 

mainly due to VLSI incompatibility with logic and memory. Other major drawbacks of CCD 

with respect to CMOS are as the follows: 

Input Conbol Clock: A large number of docks are required in order to trigger al1 

pixels in imager array. At least hHo clock phases (or more) are required to read out al1 

the pixels. 

n S 1  integration: CCD is optimized for charge trmsfer (deep diffusions, thick gate 

oxide, etc) and it is therefore difficult to develop logic and memory with the 

technology. CCD is hard to integrate CMOS. The Table 1 shows major differences in 

their processes. From the table, it is quite obvious why these two technologies are 

rarely integrated together. Even if they were to be integrated, the integration cost 

would be very high. 

1 Parameters I CCD CMOS 1 

Gate Oxide Thïckness 
Well depth 

Channel Stop Depth 
Channel Depth 

SourcdDrain Im~lants 

Table 1. Major d~rerences in process between CCDs and CISs. 

800 A 

* 

Operathg Voltage 
Poly 

O Fabrication cost: Since CCD technology requires a specialized process, its 

50 A 
P-well depth > 2.5 pm 

fabrication cost is very hi& compared to v e y  standardized CMOS tefhnology. 

Well depth - 0.5 p m  

1 

2 10V 1 13.3 V 

O Power consumption: CCD typically requires high voltage supply to clock the large 

LI 1 pm 
- 0.8 p m  

1 - 0.1 fim 

Several poly-Si and inter- 
pol y dielectrics needed 

capacitive gates of CCD array. Therefore, CCD consumes a large power. 

Digital process has 1 poly, 
analog has 2 polys 



There have been attempts to integrate CCD and CMOS logic [21]. However, due to 

incompatibility of the two technologies, these attempts were not generally successful. Even if 

these two technologies are successfûlly integrated, they never achieve both CCD-like image 

qualiîy and CMOS-like flexible logic. In fact, the optïmïzation for one degrades the 

performance of the other. Besides, the integration of CCD and CMOS often requires over 30 

masks, which is not cost effective. 

In order to effectively implement processing components with the image seosors, designers 

need a technology beyond CCD, in order to increase functionalities of the smart sensor even 

if this means sacrificing image quality of the image sensors. Although CMOS technology has 

been and remains the dominant technology in almost al1 VLSI design areas, CMOS image 

sensors did not take off in imaging device fields until the mid 1990s. After a demonstration 

of the active pixel sensors of CMOS image sensors, they gained attention fkom researchers 

and industries because the CMOS technology offers the following advantages [ 1 51. 

Mature technology: CMOS pmcesses have been available for long period of t h e .  

CMOS processes are well developed and well established. Many engïneers and 

researchers have characterized and optimized the technology. 

Design resources: Many design libraries for circuit and logic are supported by 

various research groups and industries. A large number of circuits and layouts are 

already built in. Designers c m  Save time and effort in simulation and custom layouts. 

Accessibüity: There are many fabrication facilities around the world, which are 

willing to fabricate prototype designs at low prices. Engineers and researchers are 

now able to fabricate their designs without having their own fabrication. 

Fabrication cost: Because CMOS process is standardized, the fabrication of CMOS 

designs is very cheap, compared to other process technologies. 

Power consumption: As CMOS technology scales dom, the downscaling of the 

power supply follows a similar trend, resulting in lower power consumption. In fact, 

CMOS technology is optimized for low power. 

Compatibility with VLSI circuits: Since CMOS technology is already optimized for 

logic and memory, it is easy to integrate VLSI circuits with CMOS image sensors. 
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Radiation hardness: CMOS image sensor technology is more hardened against the 

radiation defects than CCD technology. Therefore, the CMOS technology is ofkm 

used for aerospace applications. 

For srnart sensors, CMOS becomes a good candidate for the image sensing and inteption of 

processing logic. However, there are a number of disadvantages when CMOS technology is 

implemented, particularly for CMOS active pixel sensors. Acwrding to [15], the major 

disadvantages for implementing smart sensors are as follows: 

Analog circuit: CMOS technology is typically developed for digital logic and 

memory. They are not well characterized and not optimized for analog circuits. 

However, some leading edge technology like RF CMOS brings people's attention to 

this analog characterization. 

Photodetectors: Because image-sensing field is relatively a new era for CMOS 

standard process technology, the photodetector structures are not well characterized. 

Even in recent years, although many companies optimized their fabrication 

processing or sometimes modiQ the processes from the standard ones for CMOS 

image sensors, still characteristics of photodetectors need to be assured by the 

designers. It is the designers' responsibility to assure that the photodetectors fünction 

as desired. 

Second order effects: In CMOS process technology, especially for logic and memory, 

some second order device characteristics, such as subtbreshold operation, are usually 

ignored or paid less attention. However, sometimes these second order effects play 

critical roles such as conversion gain, pattern noise, etc, in image sensing designs. 

Therefore, CMOS technology is sometimes difficult to optimize these image sensing 

behaviours. 

Vt and Lithographic Mismatches: Mismatch in CMOS devices is relatively high, 

which jeopardizes the image quality in CMOS active pixel sensors. Mismatch in 

CMOS devices often leads a poor quality of spatial noise or pattern noise in CMOS 

active pixel sensors, which becomes one of main challenges in CMOS image sensor 

amay design. 
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CIS suf5ers fiom relatively poor image quality compared to CCD. However, as the CMOS 

technology becomes mature, as well as its optical characteristics in specialized process, its 

attraction and quality expectation get higher. For smart sensoa, where proper balance 

between image quality and processing circuitry is important, CMOS will be the most suitable 

technology in the futme. As the image qudity of the CMOS active pixel sensors improve, it 

will be exciting to see what smart sensors (beyond only image sensors) become in the next 

few decades. 

2.4. Fundamentals of CMOS Image Sensors 

2.4.1. Optical Absorption and Photu-Generaîion 

Photon detection happens through the excitation of a bound electron to an unbound state. The 

energy of a photon can be transferred to an electron in the valence band of a semiconductor. 

Then, if the photon energy is larger than the bandgap energy E, the electron in the valence 

band is brought to the conduction band. This is how the photon is absorbed in a 

semiconductor material and how an electron-hole pair is generated. Photons with energy 

smaller than E, however, cannot be absorbed and thus, the semiconductor is transparent for 

light with wavelengths longer than = hc&, (where is cutsff fiequency, h is Planck's 

constant and co is the velocity of light in vacuum). For example, for Si, E, = 1.12 eV and Ac 

is 1.1 1 pn whereas for Ge E, = 0.66 eV and the correspondhg As = 1.87 p. 

Absorption coefficient (cm-') Penetration depth (pm) 

.- --- 

0.4 O S  0.6 0.7 0.8 0.9 
Wavelength (pm) 

Figure 2.3. Absorption coeflcient and peneîmîion deprh of silicon 
at d@erent wavelength of incidental light. 



The optical absorption coefficient a plays an important role in photodetectors. The 

absorption coefficient, a, indicates what fiaction of light a given material absorbs at a given 

wavelength. Therefore, the absorption of photons in a photodetector, to produce electron-hole 

pairs and thus a photocurrent, depends on the absorption coefficient a for the given 

wavelength of the light in the semiconductor. The absorption coefficient also determines the 

penetration depth (Va) of the light in the semiconductor material according to Larnbert- 

Beer's law: 

Here, Io is the light intensity at the surface and y is the depth under the surface. The 

penetration depth of the light is at the location where the light intensity becomes I/e (63%) of 

the surface light intensity, Io, whose relation with the absorption coefficient is shown in 

Figure 2.3. Absorption coefficients strongly depend on the wavelength of the light The slope 

of the onset of absorption depends on the type of band-band transition. Therefore, this slope 

is large for direct band-band transition as found in GaAs, InP, Ge and h ~ ~ ~ G a o . u A s  because 

these materials have higher probability for electrons to transfer fiom valence band to 

conduction band with less energy, compareci to indirect transition materials 1851. For Si, Ge 

and wide bandgap material 6H-Sic with indirect band-band transition, the dope of the onset 

of absorption is relatively small. However, silicon detectors are appropnate for the visible 

and near infiared spectral range. The absorption coefficient of Si is one to two orders of 

magnitude lower than that of the direct semiconductors in the visible spectral range. 

Therefore, a much thicker absorption zone is needed than for the direct semiconductors. This 

is a reason why amorphous silicon can have much thinner films for sensing than silicon 

materials. However, silicon is econornically the most important semiconductor and thus 

silicon-based imaging devices and integrated circuits are popular in spite of the non-optimum 

optical absorption. 

2.4.2. Photon Coüection (Quantum Emciency) 

We have seen how the photons penetrate through materials and how these materials absorb 

the incoming photons according to its bandgap energy. Here we will look how these 

penetrated and absorbed photons are collected and transfmed in the silicon-based materials. 



AU carriers that are photo-generated (generated by absorbed photons) in drift regions (also 

called depletion regions or space-charge regions) contribute to the photocment. In other 

words, al1 electron-hole pairs generated in depletion regions are collected by its intemal 

electrïc field (recombination can be neglected due to the fast drift speed). Al1 the carriers 

photogenerated outside of the depletion region are collected by diffision rather than the drift 

mechanism. In the highly doped region (1) of Figure 2.4 and Figure 2.5, the carrier lifetime is 

reduced significantly due to the high doping density, resuiting in a high recombination rate. 

This considerably reduca the ratio of collected electrons to incident photons, also known as 

quantum efficiency (QE), for short wavelengths, because a large portion of the short 

wavelength light is absorbed in region (1). 

Light with long wavelengths penetrates deep into the silicon and diffuses in al1 directions, not 

only towards the depletion region; overall QE is reduced due to this lower collection 

efficiency. Since minority carrier diffision in conventional serniwnductor materials is much 

slower than the carrier drift, collection of photogenerated carriers in region (2) is much 

slower than that in the depletion region. Therefore, the recombination of photogenerated 

carriers in N+ (region 1) and P (region 2), due to the relative slow diffusion speed, reduces 

the quanhun efficiency. In the high dynamic case, carriers being photogenerated in region ( 1 ) 

and especially in region (2) may not have enough time to diffuse to the depletion or drift 

Junc tio 
Depletion 
Region 

O 
Figure 2.4. Photo-generation and collection of photon-generated electron-hole pairs 
in an n p  photodiode. 
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Figure 2.5. Dr@ and rninority dtmion in collection ofphotogenerated charge. 



region before the light intensity is reduced again. The dynamical quanhnn efficiency, 

therefore, depends on the fiequency or data rate. The higher both of these are, the smaller the 

dynamical quantum efficiency becornes [85]. 

In addition, the recombination of photogenerated carriers in region (2) can still reduce the 

quantum efficiency. The recombination of photogenerated carriers in region (l), however, is 

not so important for long wavelengths due to the large penetration depth and the relatively 

srnail portion of photogenerated carriers absorbed in region (1). 

2.4.3. CMOS Photoîietectors 

Based on the fundamental mechanisms in the absorption and collection of photogenerated 

electron-hole pairs, we continue our investigation on different forms of CMOS 

photodetectors. The detailed descriptions and cornparisons of major CMOS photodetectors 

are well arrangeâ in Fossum's paper [ I l .  The following comparisons are adapted fkom the 

Fossum's paper, with the addition of another significant photodetector structure, the pinned 

photodiode. Figure 2.6 shows main photodetector types of CMOS image sensors. These can 

be divided mainly into two types: passive pixel sensors (PPS) a d  active pixel sensors (APS). 

The PPS consisîs of a photodiode and a select transistor. A charge integration amplifier 

(CIA) readout circuit is located at the bottom of the column bus to keep the voltage on the 

column bus constant. With a given pixel size, it has the highest design fill factor because it 

has only one transistor for the readout QE (quantum efficiency) cm be quite high due to the 

large fill factor and absence of an overlying layer of polysilicon as found in CCDs. The 

passive pixel structure has the major problems of their readout speed and noise level due to 

large capacitive load. Since the large bus is directly connected to each pixel while it is read 

out, the RC t h e  constant is very high and therefore, the readout speed is slow. In addition, 

due to the large capacitive load, a passive pixel's readout noise is typically high, with the 

order of 250 electrons rms, compared to commercial CCDs with less than 10 electrons nns of 

read noise. Therefore, the passive pixel does not scale well to larger array sizes or faster pixel 

readout rates. 

When the passive pixel sensor was întroduced by Weckler in 1967 (51, the problems of the 

passive pixel were quickly realized and a sensor with an active amplifier within each pixel, 

called an active pixel sensor, was proposed. The CMOS APS trades pixel fil1 factor for 
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CMOS Passive Pixel Sensor (PPS) 
Maximized fil1 factor 
Smder pixel size as technology scales 
I transistor, 2 lines 
Hi& yield due to its simplicity 
High QE due to few overlaying device 
Slow readout and high noise due to high bus 
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Photodiode CMOS APS 
Pixel consists of a floating reverse biased p-n 
j d o n  
3 transistors, 4 lines per pixel 
Sense node and integration node are same 
Noise and full-well trade against each other 
Moderately high Quantum Efficiency (QE) 

Photogate CMOS APS 
Pixel consists of a MOS capacitor coupled to a 
floating reverse biased p-n junction 
5 transistors, 6 lines per pixel 
Sense node and integration node are separate 
Low noise, small Ml-well 
Low QE 
Difficult to implernent in advanced sub-micron 
process 

Pinned Photodiode CMOS APS 
Pixel consists of pimed diode @'-n-p) 
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Sense node and integration node are separate 
Low noise, very mal1 full-well 
QE lower than that of PD 
Difficult to implement in advanced sub-micron 
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Figure 2.6. CMOS photodetectors. 



improved performance compareci to passive pixels by using the voltage buffer (source 

follower) within a pixel. Typically, the pixels have a fill factor of 20-30% [l]. Due to the 

loss in filI factor, the photon-generated signal is reduced. However, the reduced capacitance 

in each pixel leads to lower read noise level of the array, and therefore the dynamic range and 

SNR increases. Main types of the active pixel sensors can be subdivided furtber into 

photodiode, photogate and pinned photodiode (see Figure 2.6). 

Photodiode APS: Pixel array has on-chip timing, control, correlated double sampling and 

fixed pattern noise (FPN) suppression circuitry. It has three transistors in each pixel with a 

typical pixel pitch of 15x minimum size of the technology [l]. The photodiode APS has 

higher QE than the photogate pixels (Figure 2.6) because there is no overlying polysilicon 

which is required for photogate. The output photodiode signal is supposedly independent of 

detector size because a decrease in detector size is compensated by an increase in conversion 

gain with less pixel capacitance. However, peripheral capacitances fiom the perimeters of the 

detector increase the total capacitance of the sensing node and thus, decrease the conversion 

gain. Despite of the reduction of the capacitance in the pixels, read noise is limited by the 

reset noise on the photodiode since correlated double sampling is not t d y  correlated without 

fiame memory. As the pixel size scales down, photosensitivity decreases and the reset noise 

scales as CI> where C is the photodiode capacitance. Therefore, the tradeoff can be made in 

designing pixel fill factor (photodiode area), dynamic range, Signal-to-Noise Ratio (SNR) 

and conversion gain (pVIe1. 

Photogate APS: The basic idea of photogate pixel cornes fiom CCD. While photon- 

generated charge is integrated under a photogate with high potential well, the output floating 

node is reset and the corresponding voltage is read out to one of S/H in CDS. When the 

integration is done, the charge is transfmed to the output floating node by pulsing signal on 

the photogate. Then the correspondïng voltage fiom the integrated charge is read by the 

source follower to the second SM of the CDS. The CDS outputs the difference between the 

reset voltage level and the photo-voltage level. The correlated double sampling can suppress 

reset noise, l/f noise, and FPN due to V, and lithographie variations in the array. Therefore, 

the main noise of the photogate is photon shot noise that cannot be suppressed by any means. 

The photogate has a pixel pitch typically equal to 20x the minimum size of the technology 

due to five transistors in each pixel. The floating diffusion capacitance is typically made with 



a small capacitance of the order of 10 fF yielding a conversion gain of 10-20 pWe' and 2 e- 

m e t  noise. However, due to the overlaying polysilicon, there is a reduction in quantum 

efficiency, particularly in the blue. However, the reduction of noise level increases the total 

dynarnic range and SNR. 

Pinned photodiode APS: The pixel consists of pinned diode (pf-n-p), where photon 

collection area is dragged away from the siaface in order to reduce surface defect noise such 

as dark cment. Photon-generated charge is uitegrated under a pinned diode and transferred 

to the output floating d i m o n  for the readout. Similar to the photogate, sense node and 

integration node are separated so as to optimize the noise. However, the main difference fkom 

the photogate is that the potential well for the charge collection is generated by burieci 

intrinsic layer (or n type layer) instead of pulsed gate voltage in the photogate. Each pixel has 

four transistors and five control lines, resulting in fil1 factor, which is higher than photogate, 

but lower than photodiode. In addition, due to a small photon collection area of pinned diode, 

it has a very mal1 full well for photon-generated charge collection with lower QE, compared 

to the photodiode. 

2. 4.4. A&e Buffer in &I 

A definite difference between active pixel sensors and passive pixel sensors is the inclusion 

of an active buffer into the pixel. The passive pixel sensors s u f k  from low data rate and high 

1 Column 

Active 1 - - - - 1 - q  
Buffer , 

Figure 2.7. Active pixel sensor with photodiode and active hffer. 



CHAPTER 2 

Vin + 
Vout 

Vbias -( 
Vin 

Vout 

Figure 2.8. Active buflers in CMOS APS wifh photodiode: (a) NMOS source 
follower (b) Uniîy gain amplijier. 

readout noise due to the large capacitive loads that are directly comected to photodetection 

area. In each active pixel, an active b a e r  is placed, comecting it to the column bus h e ,  as 

seen in Figure 2.7. By adding the buffer, the charge integration area of the pixel is isolated 

nom the column bus, and instead comected to the gate of the active buffer, whose 

capacitance is much srnaller than that of the bus line. The smaller capacitance of the 

integration and conversion node of the pixel allows a faster data rate and a lower readout 

noise. Types of active buffers are source follower, unity gain amplifier and others, as show 

in Figure 2.8. 

Source Followec Source follower, typically a NMOS source follower, is a common choice 

for APS arrays because of its simplicity and small number of transistors. Source followers, 

however, sufTer fiom lithographical mismatches and V, deviations, resulting in significant 

pattern noise in the image sensor array. 

Unity Gain AmpWitr (UGA): It has a feedback between input and output, remaining at a 

steady gain of 1 despite of the lithographical and V, mismatches. However, due to 

complexity of circuits and a relatively large number of transistors for the OPAMP, the UGA 

cannot find a practical fit in a pixel. Instead, the UGA is located per column where the 

implementation area is flexible in the vertical direction. Photon Vision Systems Inc. 

produced a clever way to implement UGA per column with CMOS image sensors, so called 

Active Column Sensor (ACS), claiming reduced FPN of less than 0.1 % [16]. 



Others: There are many different kinds of active bufTers implemented with CMOS image 

sensors, such as adaptive pixel sensors, pixels with feedback for low FPN and pixels with 

current amplifier. These pixels are for special uses with various applications, different from 

those of standard voltage buffers. in addition, the complexity of the circuit and the number of 

transistors are often sa large that they cannot be easily implemented in pixels for practical 

applications. 

2A5. Operation of Ache &el Sensor w'1h Photodiode 

We have corne to understand basic structures of active pixel sensors and their operation. Here, 

a more detailed mathematical analysis of these operations, particularly for the photodiode, is 

illustrated. There are three stages of the operation in photodiode with integration mode: (1) 

photocurrent generation, (2) photocurrent integration and conversion and (3) photo-voltage 

readout [87]. The mathematical analysis is based on these stages of the operation. 

First, photocurrent generation in a vertical n-p photodiode consists of drift current and 

d i h i o n  cment. This is written in Equation 2.4.2. 

Jtot = Jdrirt + Jdin Equation 2.4.2 

Under the assurnptions that the n-layer (Figure 2.9) is thin enough to cause negligible 

absorption and that thermal generation (dark current) can be ignored and al1 the incoming 

light is absorbed (q=l, 100% of quanhm efficiency), optical generation rate can be written 

as 

G (x) = Ioaexp (iicx) Equation 2.4.3 

here 4 is the light intensity at the surface and a is the absorption coefficient. The drift current 

is therefore, 

here W is the width of the depletion layer and x is the depth fiom the surface. For x > W in 

the p-type, a d i m i o n  equation can be written as 
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Figure 2.9. Cross secfional view of the photodiode. 

here D,, is the diffusion coefficient for electrons, rn is the minority c d  lifetime, and pno is 

the equilibrium minority carrier concentration. With the boundary conditions for the above 

equation of 

Pn= Pno @ X = O O  

P n = P n o @ ~ = o  

equation 2.4.5 can be solved as 

Equation 2.6.6 

where 

and 



Therefore, the current density of diffusion is given by Equatàon 2. 4.8 

and so the total current density of the photocment is 

Therefore, the total current density of photocurrent is linearly proportional to incident light 

density, as shown in equation 2.4.9. 

The second stage of the APS photodiode is the charge integration mode. Afkr the photodiode 

is reset, the capacitor (Figure 2.10) is discharged by the photocurrent. Therefore, the output 

voltage of the photodiode is a fùnction of time after the photodiode has been reset. Since the 

photodiode is isolat& the current in the capacitor must be equal and opposite to the 

photocment (ignoring lealcage currents). Hence, the photocurrent can be expressed as 

For an nCp photodiode, the capacitance is 

where A is the diode area, hi is dielectric constant of silicon and Na is the acceptor 

concentration in the substrate. 

When equations 2.4.10 and 2.4.1 1 are solved, we find 
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Figure 2.10. Schematic view ofphotodiode pixel sensor with associated capacitance. 

where Vo is the diode built in voltage, and V,, is the reset reverse bias. 

Equation 2.4.13 

Interestingly, this expression includes a term of A, the photodiode area. However, this is 

cancelled out because ifioto a IoA where Io is the incident flux of photons. Therefore, the 

collected voltage is independent of the diode area for a given photon flux. In reality, due to 

the peripheral capacitance of the photodiode and other sources of capacitance not 

proportional to area, the diode area does have some degree of impact on the total capacitance 

and thus the output voltage. If we calculate V(t) as a b c t i o n  of time with practical 

parameters, the voltage drop is almost linear for short times, which is the linearity we want. 

The last stage of the APS photodiode is the integrated voltage readout through the active 

buffer. Provided that V,, > Vbk - VTL, L (Figure 2.1 1) is in saturation and c m  be idealized 

by a current source, 1. Then the source follower in the active buffer can be restructured. For 

transistor M, 

2 1 = K WS - VTM] = KWdiode - Vout - VTM] 2 Equation 2.4.14 

where K = I/2pCOx(W/L). 



Vdiode < M 

Vout 

Vdiode 

Vout 

Figure 2.11. Configuration of a source follower as a gate bufir and current source. 

Rearranging gives 

Equation 2.4.15 

Where 1 is the current through the current source. The maximum possible VOld = VdPde - VTM 

or including the reset voltage, 

Vout < VDD - (VTM + VTR) Equation 2- 4. 16 

Therefore, the maximum practicd output swing is 

Vbiu - V n  < Vaut < VDD - (VTM + Vm) Equation â4.Z 7 

In addition to active pixel structure, another essential component of CMOS APS array is the 

readout control circuits, controlling the image readout sequence of the array. Two main 

structures of the readout control circuit are a decoder and a shifi register (SR). The decoder 

c m  be used for true random access readout controls because the sequence of the outputs can 

be selected by the input of the decoders. With RAM, the sequence of the inputs (therefore, 

outputs) c m  be programmed in advance. 

In contrast, shift registers cannot be programmed for random access readouts because the 

shifi registers produce only sequential outputs fiom the first element to the 1s t  one. Shift 

registers (SRs) are relatively easier to implement and use fewer transistors than decoders, and 

SR is easier to expand. This thesis uses two designs of SR: flip-flop structure (FF SR) and 

two-inverter structure (INV SR). The flip-flop shifi register consists of flipflops (FFs) in 



series ~0mieCted fiom a flip-flops output to the input of the next one (Figure 2.12). The FF 

SR transfers its content to the next one by input clock pulse. Since the layout of various FFs 

can be found easily in design libraries of design packages, the design and imp1ementation of 

the FF SR is relatively simple. However, because the pre-built FFs have fixed dimensions (- 

23 pm in our case), it becomes harder to fit the design into a narrower column width, as the 

pixel size gets smaller. Therefore, a custom design of an FF is required eventually. Another 

SR structure consists of two inverters in each processing element (Figure 2-13), which holds 

the input pulse and transfers through control clocks. The INV SR needs two control clocks 

and thus, its input control becomes harder than for the FF SR. However, due to this mal1 

number of transistors, this i N V  SR can fit into a column width easily. With 0.35 Fm CMOS 

technology, we were able to design an INV SR with a 7 p pitch. 

Figure 2.12. Ship regtster. usingflip-flops. 

Clock 2 

Figirre 2.13. Shi# regkter with two inverters in each processing element. 



2.4.6 Sampfe and HOU (m 
At some point, unless the array outputs the data in parallel with a same number of channels 

as columns, an imager array transfers its images to a serial output. Typically whole rows are 

dumped into storage buffers and then transferred one by one in series to the output. Hence, 

the array needs storage for the analog image data until aii the data of one row are transmitted 

out. The storage is refmed to as a sample and hold ( S M ) .  A standard S/H is shown in Figure 

2.14. S/H for CMOS APS typically uses a PMOS source follower (PMOS SF) (as shown in 

Figure 2.15), as an active buffer because the PMOS SF can compensate for the Vt drop fiom 

the NMOS SF in CMOS APS. 

Although Vt of NMOS is different f?om that of PMOS, PMOS SF does the level shifhg, 

positionhg output voltage to approximately the same voltage as the photon-sensing node. 

Figure 2.14. Typical samp le and hold circuit. 

Sample I Vb iaa  

Vin 

Figure 2.15. Sample and hoid with PMOS source foifower. used in a 
typical CMOS APS array. 
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Figure 2- 16. An advanced sarnple and hold. 

An advanced SM is illustrated here in Figure 2.16, with an anti-feedthrough dummy switch 

and unity gain amplifier. Capacitive feedthrough of the clock happens due to the presence of 

a capacitive voltage divider between the gate-drain (source) and the load capacitance when 

the original switch is off. By placing a dummy switch afier the switch, half the channel 

charge is injected toward the dummy switch, matching with charge that would be in 

capacitive voltage divider. However, it is signifiant only when a capacitor in S/H is 

relatively small and becomes comparable to the gate-drain oxide parasitic capacitance. In 

addition to a dummy switch, a unïty gain amplifier can be used. The UGA does not do level 

shifting like the PMOS SF. With a constant unity gain, it can reduce column pattern noise 

caused by Vt and lithographical mismatches in the column circuits. 

2.4.7. Basic Structure of CIS APS array 

We have seen basic components of the CMOS APS. In order to constxuct a complete CMOS 

APS array, we need to put them in proper order and in their proper locations. Here, a simple 

photodiode APS of integration mode is taken as an example (Figure 2.17). Each pixel 

consists of a photodiode, a reset transistor, a row select transistor and a source follower 

without bias transistor. The rest of the circuits are located in colwnn. Since the reset 

transistor and the row select transistor use a N ' O S  switch, an active high shift register is 

used for reset and row readout controller. Since PMOS switch is used for a buffer in Sm, an 

active low shift register is used for column readout controller. 

First, the sense4integration (or floating diffusion) node is reset to VDD-VT and afier an 

integration time (upto one frame readout tirne), the row select is tumed on, dumping the 
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Figure 2.17. Schematic of CMOS APS. including photodiode, active buffer, SH 
und output buffer. 

image voltage to the S/H. Since the row select is turned on while the reset for the pixel is 

turned off and the reset for another pixel may be tumed on, two separate SRs should run 

concurrently with different input pulsed, but the same clocks. Once the S M  stores concurrent 

row images, the column select is tumed on one by one until al1 the colurnns are read out, as 

shown in the simplified timing control of Figure 2.18. The sample switch is typically needed 

because while the column images are read out, row select is still on, dumping image voltages 

to the SM continuously. 

Therefore, because of the readout t h e  difference between the first column and the last one, 

the column images will not be concurrent values, potentially causing artifacts. In order to 

prevent this artifact, the sample switch is activated after the row select is on. Once one row is 

read out, the next row follows the same procedure and this procedure is repeated until al1 the 

values of the array are read out. in order to use the operational t h e  effectively, the reset 

switch is typically turned on for a short period of time right after the row select is tumed off. 

By doing so, the photodiodes in the row are in integration mode, discharging the floathg 

diffusion by photocurrent while the lest of the rows in the array are read out. Figure 2.19 

shows the core structure of CMOS APS array. The reset and row select shift registers are 

located in both sides of the sensor array. The colurnn select shift register is located at the 
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Figure 2.18. A sirnpIzjled timing control of the photodiode amay wifh integration 
operationaï mode. 
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Figure 2.19. Overail structure of CMOS APS array. 



bottom of the array, cotmected to the output buffers in the SM. The bias transistors are 

placed away from the pixels for high fiii factor, in the columns, so this bias transistor bank is 

located right below the sensor array and the S M  with output buffer is placed beiow. The 

timing and control can be on the sarne focal plane with the sensor array or off the chip. 

2.5. Future Research Focuses of CMOS Image Sensor 

Using standard CMOS technology, various image sensor arrays have already been 

dernonstrated by numerous research groups including NASA's Jet Propulsion Laboratory, 

Lucent techwlogy, MEC, VLSI vision Ltd., IBM, Hyundai and many other companies, as 

shown in Table 2. 

xzE+zq- 10 bits 

10 bits 

40 FPS 8 bits 

500 FPS 8 bits 

30 FPS 50 pAlcmZ 

25 F PS 2 nAlan2 10 bits 

60 FPS 8 bits 

3 nAlanZ 9 bits 

0.25 nA/cm* 

I 10 bits 

Table 2. Present stutus of CMOS image sensors from several companies [86]. 



The next generation of CMOS imaging technology is expected to develop in two directions. 

The first effort is for highly miniaturized, low-power, high quality imaging systems. Such 

irnaging systems are driven by mormance, not cost This effort is led by the U.S. Jet 

Propulsion Laboratory (PL) for next-generation deepspace exploration. CMOS image 

sensor is a suitable technology because of its relative radiation hardness for space 

applications. In addition, because CMOS consumes low power, the weight of the battery can 

be drastically reduced. However, since CMOS APS still suffers fiom high dark current and 

noise, leading to relatively poor image quality, this high perfomance research typically 

focuses on low noise, high image quality, low power, high speed and high resolution. 

The second effort is to create highly functional single-chip Ünaging systems where low cost, 

and not performance is the dnving factor. AIthough CCD technology is highly optimïzed for 

image sensing applications, its cost will probably not be significantly reduced in the future 

and applications will require multiple chip systems. For many researchers, the advantage in 

developing CMOS imaging technology is the complete integration of image sensor with low 

cost, analog-to-digital converters, driving and control circuitry, and sophisticated interfaces - 
al1 convenient to addressing the technical challenges posed by digital imaging applications. 

In addition, the integration of image processors with CMOS image sensoa remains as an 

attractive opportunity, with recent great successes in various applications, such as digital still 

carnera, video cellphones surveillance, medicine and dentistry, aerospace, machine vision 

and automobile industry. 

In CMOS image sensor technology, these two research directions are not win-or-lose 

situations, rather they are two distinct firture research fields. Despite the aggressive 

developments of CMOS image sensor performance, there are debates whether CCDs will 

defend their position as the dominant image sensor technology in the fùture and never give 

up its mainstream market to the CMOS counterpart. However, CMOS image sensors will 

find their places for imaging systems and applications, for example, for space applications 

and for portable devices like videophone and PDA. In the long term, the ability to integrate 

complete CMOS imaging systems on a single chip will be one of the driving focuses in 

developing the next generation of multimedia imaging systems. 



Chapter III 

3. MOSAIC Multi-Camera Imager System with 

CMOS Image Sensors 

3.1. Introduction 

As a part of the fbture expectations of CMOS image sensors, a method of achieving high 

resolution over a wide fieId of view is investigated. An integrated smart sensor, MOSAIC 

(Matrix of  Semi-Autonomous Imaging Cameras), for large field of view is proposed in this 

thesis. 

A MOSAIC imager design is described for a distributeci sensor consisting of 102 - 1o3 

identical detection modules linked by a serial bus to a central controller, seen in Figure 3.1. 

Since smaller single chips are used in the MOSAIC imager, relatively high yield, 

MOSAIC camera 

Figure 3.1. MOSAIC multi-carnera system with a central contdler. 
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high resolution and low cost can be achieved. The MOSAIC concept can be applied to 

various applications such as airborne remote sensing, the filling of the focal plane of a large 

telescope, monitoring of the sky for meteors, monitoring of ships at sea, inter-satellite data 

sharing, and perimeter surveillance. 

One of the focuses of the present MOSAIC system is the devefopment of an efficient 

communication mechanism, achieved by ïntegrating the CMOS image sensor and bus 

interface module on the same chip. The integrated bus interface module increases 

performance of the bus connections by a zero-wait state design that does not require 

operation time for address over-head. MOSAIC imagers increase the field of view and 

fabrication cost effectively, by comecting single-chip cameras in a coordinated manner 

equivalent to a large anay of senson. Components that would have conventionally been in 

separate chips c m  be integrated on the same focal plane by using CMOS image sensors. Here, 

a MOSMC imaging system is constructed ushg CIS comected through a bus line (called the 

image-bus) which shares common input controls and output(s), and enables additional 

cameras to be inserted with little system modification. The MOSAIC system consumes 

relatively low power by employing intelligent power control techniques. However, the 

bandwidth of the bus is still expected to limit the number of camera modules that can be 

connected in the MOSAIC array. Hence, signal-processing components, such as data 

reduction and encoding, will be needed on-chip in order to achieve high readout speeds 

(these will be addressed in Chapters 5, 6, 7). Basic modules for a single-chip camera are 

proposed for efficient data transfer and power control in MOSAIC imager. 

In this thesis, the MOSAIC smart image chip, corresponding to the scheme described above, 

is implemented using a CMOS 0.35 p m  double poly technology with 3.3 V power supply. 

The irnplementation demonstrates the advantages of the single chip solution for the MOSNC 

imager in terms of area, power, speed, and fabrication cost. The thesis describes the design 

and performance results of the chip, dong with their background algorithms. In addition, the 

design of the intelligent bus interface and the architecture of the system are addressed. 

3.2. Single Chip verse Muiti-chip Systems 

Large-fonnat and MOSAIC imagers for astronomical, surveillance and other applications 

require high spatial resolution, coverage of a large area, effective cost and efficient image 



update rate. One solution for large format applications is a single monolithic chip, made with 

either a large array of pixels or an array of large-sized pixels. A large pixel (optical) area, 

Figure 3.2 (a), leads to low resolution that is ofien not desirable, while increasing the number 

of pixels in the array, Figure 3.2 (b), leads to a hi& complexity of circuits and consequently 

a high noise floor. In addition, large single chips have relatively Low yield, resulting in a high 

fabrication cost. Another solution for the large-format image sensor applications is a 

MOSAIC system containing many individual sensor chips, as show in Figure 3.2 (c). 

33. Previous MOSAIC Implementaüons 

There have been several atternpts to implement the MOSAIC concept into image acquisition 

applications. This thesis takes three examples where the MOSAIC concept has been applied: 

machine vision [17], astronomical telescope [i 81 and medical tele-pathology [19]. 

There are several previous designs for machine vision such as the DRIFT bus and Improved 

Integrated Smart Sensor ( I ~ s ~ )  bus [ 1 71. These are efficient, high performance bus structures 

in machine vision. The buses are used for communication between image processors and 

memory modules or other peripheral modules, not as direct connections between image 

sensor modules. These bus structures focus more on communications between image sensors 

and peripheral devices, cornpared to our MOSAIC system where communication among 

image sensor chips is emphasized. Also, because the bus comection and its handling 

modules are separately located fiorn the image acquisition modules, the system fabrication 

cost will be relatively high. 

(a) Away of large- (b) AW of large (è) Array of Chipxels 
srted pixels number ofpkels (UOSAIC) 

Figure 3.2 Single chip and rnulti-ch@ system for MOSAIC system. 



Secondly, &ere is an example of MOSAIC concepts used in astronomy telescope, called 

NOAO Mosaic Data Handling System [lS]. The system takes data h m  a mosaic of CCDs 

and dewdes, records, archives, displays, and processes the data. The NANO Mosaic CCD 

Camera consists of 8 CCDs producing an 8K x 8K format Unlike CMOS cameras, CCD 

cameras do not contain significant combinational logic, hence communication between the 

components is handled through a software intensive facility, cdled a message bus. Also, the 

use of multiple CCDs requires that data be read out simultaneously fiom al1 CCDs, hence the 

raw data is interleaved as it arrives fiom the detector and must be '2inscrambled" before 

being written to disk or displayed. Therefore, a powerfbl computer system and efficient 

software are required to be able to handle such large formats in the data handling system. 

Telemedicine and tele-pathology delivering medical diagnoses and heaith care to distant 

patients is another MOSAIC concept implementation [19]. This tecbnology covers the entire 

view of the patient site with several &mes of images, and automatically composes a wide 

field of view and hi&-resolution image of patient h m  these fiames by using the computer 

techniques for generating digital image mosaics. The patient image capturing equipment 

consists of several high-resolution video cameras, and their connections are made through 

ISDN network or communication satellites. Therefore, the system may require a higher 

communication cost because of the greater amount of transmitted information, 

communication network and computer power. It also emphasizes image interpolation in 

software, rather than an efficient data transfer mechanism in hardware. 

The previous implementations of the MOSAIC concept are shown above to be rather 

complicated and require intensive integration of expensive software. Often, pst-processing 

mechanisms are required to produce a suitable image quality. These works also need several 

different functional modules in physicaiiy separated forms: carnera, processing components, 

interface modules and bus connections. Therefore, the manufacturing cost is relatively high. 

In addition, the previous systerns focus on problems of software-based image alignment 

rather than implernentation of connection in their image acquisition system because the 

cameras are not pdectly aligned and have gaps between the carneras, requiring interpolation, 

image combination and dithering. 



A simple and cost effective implementation is suggested in this thesis. A single chip solution 

of MOSAIC system integrated with low-level hardware pre-processing units is proposed to 

improve its communication, cost, speed and computing power. The suggested 

implementation of integrated bus interface, called a "'chipxel (chip + pixel)", is more focused 

on the low-level hardware design with effective fabrication cost and simple systematic 

connections. Consequently, the chipxel emphasizes the method of comecting the multi- 

cameras efficiently, rather than how to interpolate the images nom the ordinary cameras in 

software. The chipxel is unique, compared to the previous works, irnplernenting MOSAiC 

concept as a single chip solution. Since the optimization of image sensor connections is 

emphasized in the single bus line, the integrated image camera with processing and bus 

intedace units is proposed here for MOSAIC applications, with considerations for speed, 

fabrication cost and complexity of the design. 

3.4. Design of MOSAIC 

3.4.1. Integrated Bus Interface with CMOS Iniage Sensor 

The systematic connections of MOSAIC imager systems can be divided into three different 

categones as shown in Figure 3.3: multiple inputs tu the controller with one output fiom each 

camera, one input to the controller through a hub connecting multiple cameras, and one input 

to the controkr comecting multiple cameras through a bus line. In a controller with the 

multiple inputs, Figure 3.3 (a), the output of each camera is connecteci to a controller and the 

controller arbiîrates the incoming outputs of the cameras and multiplexes/encodes into one 

data Stream. This connection potentially suffers fiom high fabrication cost and slow frame 

rate because the controller needs multiplexerlencoder to combine the multiple streams of data 

into one Stream for fiirther processing. In addition, as the number of carneras in the system 

increases, the complexity of the controller will increase. When more cameras are added into 

the system, the controller has to be redesigned to create more channels for the additional 

cameras and the multiplexer/encoder should be implemented with the new channels. 

Therefore, the system is less flexible to the inclusion of additional cameras. 

In the second architecture, Figure 3.3 (b), the multiplexer/encoder which exists in the 

controller of the first system is now separated h m  the controller and replaced with a hub, 

comecting multiple cameras and stre-g one output to the mntroiler. However, 
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Figure 3.3. Systematic connection of mosaic imager can be categorized into (a) 
multiple outputs fîvm cameras to controller, (b) multiple oulputs fiom cameras and 
single input through hub to the controller and (c) single input to the coniroller with 
integrated bus interface in cameras. 

because there are a limited number of channels fiom cameras that a hub can take, the 

fabrication cost and complexity are again relatively high. Whenever additional cameras are 

connected to the system, extra hubs are required. Now, intelligent cameras of chipxel, each 

unit with an integrated bus interface, are proposed here. The multiplexer/encoder is taken 

away fiorn the controller and integrated into each camera. The output data from the 

distributed carneras are streamed ioto the controller by the integrated bus interface through a 

comrnon bus line, as shown in Figure 3.3 (c). Therefore, it is easy to integrate additional 

cameras into the system with linle modification to the central controller or to the connections. 

In addition, when the MOSAX system needs independent processing such as event detection, 

a bus interface is a complementary component in each camera because each camera should 

be capable of indicating when it detects events and when it needs the bus he. The integrated 

bus interface therefore significantly increases the flexibility of the system; it requires neither 

many communication lines nor an expensive hub. In addition, because the signal does not go 

through many units, the noise level is relatively low and the communication speed is 

relatively high. In summary, the integrated bus interface in each camera has the advantages 

of low fabrication cost and high fiexibility over the other systems. 



3.4.2. Circuits and layouts 

A standard CMOS image sensor array was implemented with the chipxel to demonstrate 

continuous data transfer in the MOSAIC imager system. A MOSAIC chipxel, whose photo is 

shown in Figure 3.4, was designed and fabricated with 0.35 pm double poly technology with 

3.3 V power supply. The structure in Figure 3.5 includes an image sensor array with pixel 

readout circuitry, shift registers, sarnplehold and bus interface. Al1 the components except 

for the bus interface are used widely in CMOS image sensor designs. Here, a bus interface 

was integrated with CMOS image sensor array for the MOSAIC imager connections. 

Figure 3.4. Chip photo of MOSAIC chip. 
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Figure 3.5- Array strzrccure of ideal MOSAlC image sensor with an integrated bus 
interface. 

Each pixel in the CMOS image sensor array consists of a photodetector and readout circuitry, 

seen in Figure 3.6. The photodetector uses an n+p photodiode, one of the simplest sensor 

structures in CMOS image sensor technology. A simple source-follower is used for the 

readout circuitry of the pixel, which blocks capacitor loading nom column line of the array. 

The maximum output voltage of the array, due to the voltage &op of the source follower, is 

Vt lower than the achial photo-generated voltage, unless M e r  processing occurs (where Vt 

is the threshold voltage of the source-follower transistor). The second part of the system is 

for the generation of input control signals. The generation of readout input signals in general 

can be performed by a shifi register, taking less area with a simple design structure, for reset, 

row and column readout controls in this design. In addition, because the size of shifi register 
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can easily be aligned with each column of the anay, the shift register is more suitable for 

column structure based implementation than the decoder (see Figure 2.4.6). The shift register 

in the chipxel uses two inverters and two swïtches with two control clock signds, shown in 

Figure 3.8. 

The sampleniold (SRI) is a storage place for image to be transferred to the outside. Since Vt 

is lost by the source follower in the pixel readout, the samplehold uses a PMOS source 

follower, shown in Figure 3.7, so that the lost Vt voltage can be recovered by Vt rise of the 

PMOS. Because the source follower in the samplehold is the off-chip driver, where a large 

loading exists, the sample/hold shouid use a large MOSEFT in its source follower. As the 

size of the driver increases, the dnving power of the driver increases, thus speeding up the 

signal readout on the large extemal loading. However, the large size also causes larger power 

consumption. Therefore, an appropriate size of the driver is determined in a given design 

specification for both speed and power consumption such that the product of the speed and 

power is at minimum. 

There are two mainstream bus interface schemes available for the chipxel chip: independent 

request and grant (RG) and daisy chain methods. The independent RG sends a bus request 

signal to the controller whenever it needs to transfer data using its own designated control 

lines, which is similar to the star configuration in network theory. Therefore, it needs many 

control lines and the complexity of the design will be hi&. In contrast, the daisy chah 

method enables the chip to send its image to the controller whenever it receives the bus gant 

signal through the daisy chain comection. Hence, the daisy-chah method is relatively slow, 

but the design is simple and the overall fabrication cost is low. 

1 Buffer 
- - 

Figure 3.6. Active Pixel Sensor with 
photodiode and active buffer in 
integration mode. 

Sample 
I 

Figure 3.7. Schematic of S/H. A 
simple S/H is intplemented with 
PMOS source follower for the 
analog buier. 
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Figure 3.8. Shgt register is implemented for readout circuitty, using two 
inverters and switches. 

Figure 3.9. Readout circuitry is integrated with switches enabled by Bus Grant 
signal- The integruted bllr interface passes the gront signal, gated by AND 
finction to the sample-and hold switches. 

In addition, the daisy chah does not use any time for address and over-header, which we cal1 

the "zero-wait state", because the images captured by each carnera are displayed in sequence. 

Therefore, the daisy-chah method is chosen for the prototype of the MOSAIC chip. 

Whenever the Bus Grant (BG) signal cornes to a chip, the chip holds the BG signal, enabling 

the column shift registers and sending out the image, like Figure 3.9. M e r  the chip transfers 

its frame of image, the BG signal is released to the next chip. The BG signal is once 

generated by the controller and circulated through the daisy chah until al1 the images of the 

system are transferred. 

3.4.3. Demonstration and Tesis 

The first test was to capture an image of the best quality possibly with the chip, verimg test 

board connections, control input patterns, image display software setup and, most 

irnportantly, the design of the chip. The basic procedures of the test for capturing images are 
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discussed in Appendix B. Figure 3.10 shows the testing setup for the single chip; the testing 

board contains the chip, lens, lem mount, wire connections for power supplies and biases, 

and ribbon cables for control input patterns. The input patterns are generated by a software 

called "GageBit" fiom Gage Applied Inc. Pulse waveforms are manually drawn in the 

software and with a appropriate clock rate, it outputs sequence of control patterns. Also, a 

digital oscilloscope, called "CompuScope" fiom the same Company is used for the data 

acquisition and image display. With Labview interface, the CompuScope can be 

prognimmed to display the image signal into an intensity graph where the signals are 

displayed as pictures in real t he .  

Figure 3.10. Test board with MOSAIC ch@ and lens rnounted. Power supplies and 
bias voltage lines are shown in the lefi side of the board. The ribbon cable for control 
input patterns are connected to the right side of the board 
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Figure 3.11. Above: A raw image 
of Audrey Hepburn. captured by a 
single image-bus chip. Right: 
Characteristics of single i m g e  
sensor. 

Tee hnology 
VDD 
Chip size 
Amy size 
Pixel size 
Fil1 factor 
Max. Frame rate 
Nominal power 
Photosensitivity 

FPN 
Saturation 
Dark signal 
Conversion 
Efficiency 

0.35 pm CMOS, double poly 
3.3 v 
1.91 mmx 1.91 mm 
64 x 64 
t O p m x 1 0 p  
46 % 
24 hnedsec.  
1.46 m W  at 5 k e s / s e c .  
0.57547 V/luxfsec 
(with 1 w/m2 - 70 lux) 
3 3 m ~ / ( ~ w / c r n ~ )  
16 mV rms (1.3 % of sat.) 
1.2 v 
0.3 V/sec 
1 .O5 pV/e' 

The characteristics of the single chip, including image sensoa, are summarized in Figure 

3.1 1, dong with an example of an individual raw image. The characteristics of the chip can 

be measured and calculated, based on the rneasurements. According to these measurements, 

the technology for this chip was not optimal for image sensors. Commercially available CIS 

chips typically achieve 5-10 pV/e- for their conversion efficiency. However, our chip has as 

estimated conversion efficiency of 1 .OS pV/e-, which is a relatively low result. This estimated 

conversion gain is calculated fiom the measurements of the image sensor chip. The detailed 

calcuiations and measurements are discussed in the Appendk C. Such a low photosensitivity 

leads to long integration times and high dark signal, thus degrading image quality. Since the 

technology is optimized for logic and memory, but not for image sensors, the chip is not 

expected to display a high performance. 

To briefly tallc about the tests for characterization of the chip, there are three essential 

rneasurements: (1) Measure and Save image files at a h e d  wavelength and at a fixed fiame 

rate (sampling rate) while changing the illumination (light power or intensity) nom O to until 

the output voltage is satunited or an equivalent test by changing the integration t h e .  In 

addition, the wavelength and fnune rate can be varied. This measurement can be dùectiy 

used for extraction of photosensitivity, PRNU and saturation level. Also, it can be used for 
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Photosensitivity (Sampling Rate = 50 KHz) 

Light Power (uwlcm2) 

Figure 3-12. Photosensirivity of single chip of MOSAIC. Saturation level of 1.2 
V is shown in rhis diagram ut 50 KHz (1 2 fiames/sec). 
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Figure 3.13. Dark curreni measurement in single ch@ of MOSAIC. 



calculation of conversion efficiency. Figure 3.12 shows the photosensitivity of the MOSAIC 

chip. From the slope of the graph, the photosensitivity is calculated to be about 0.57547 

VAwc*second which is slightly lower than commercial CIS chips. (2) Measure and Save 

image files at k e d  illumination (light power) and a flxed h e  rate as changing wavelength 

of the incident light. The iIlurnination and &une rate can be varied. This measurement can be 

used for spectral response. (3) Measure and Save image files in a dark room while changing 

inteption time (sampling rate). This measurement can be used directiy for FPN and dark 

current. Figure 3.1 3 shows the dark current measurement of the MOSAIC chip. With this 

chip, there are tbree variables controlled by users: Vbiasp, Vbiasn (see Figure 2.17) and 

sampling rate (control patterns' clock rate). Vbiasp and Vbiasn are bias voltages that do not 

have direct effects on the output images, but only shift saturation level of output voltages. 

However, when Vbiasp and Vbiasn are out of operational range, the top level of the 

saturation range hits the VDD of 3.3V, and then the output images are degradeà. Figure 3.14 

and Figure 3.15 illustrate this phenornenon. The output image of Audrey Hepbuni is not 

affected much between Vbiasn = 0.4 V and 0.6 V. However, when Vbaisn becomes around 

0.65 V in Figure 3.14, the output image shows some degradation. Similarly Figure 3.15 also 

shows no effects on the images between Vbiasp = 2.45 V and 2.70 V. However, when 

Vbiasp becomes 2.75 V, some degradation appears on the image. 

The sampling rate or data rate is directly related to input control patterns' clock rate and to 

the sensor integration time. It is also related to power consumption and output voltage swing 

of the chip. Due to the direct relation between sampling rate and integration tirne, sarnpling 

rate affects the quality of the output images. As sampling rate incteases, the integration time 

decreases because the faster sampling rate reduces readout time of one image frame 

(typically, the maximum integration time of the image sensors is the readout time of one 

image h e ) ,  and thus photon integrating time of the image sensors gets smaller. As seen in 

Figure 3.16, as sampling rate gets higher, some degradation appears on the output image. 

When the sampling rate is over 100 KHz, the output image is hardly recognizable. The main 

limitation of such a low sampling rate is due to the poor photosensitivity of the image 

sensoa; longer integration time is needed to produce a good image quality with a poor 

pho tosensitivi ty. 



Vbiasn = 0.4 V Vbiasn = 0.45 V Vbiasn = 0.5 V 

Vbiasn = 0.55 V Vbiasn = 0.6 V Vbiasn = 0.65 V 

Figure 3.14. Images with dtrerent Ybiasn: They should be same unless if 
reaches its saîuration b e l .  mese sample images are captured under same 
setups of Vbiasp = 2.55 V and Sampling rate = 20 KHz, but ut d#irent 
Vbiasn. 



Vbiasp = 2.45 V Vbiasp = 2.50 V Vbiasp = 2.55 V 

Vbiasp = 2.60 V Vbiasp = 2.65 V Vbiasp = 2.70 V 

Vbiasp = 2.75 V Vbiasp = 2.77 V 

Figure 3.15. Images with drerera? S/H Vbiasp: ïïtey should be sume unless it 
reaches its saîuration levei. These sanrple images are captured under sarne 
setups of Vbiasn = 0.5 V and SampIing rate = 20 KHi, but ut dtrerent 
Vbiasp. 



Sarnpling Rate = 20 KHz Sampling Rate = 50 KHz 

Sampling Rate = LOO KHz Sampling Rate = 200 KHz 

Figure 3.16. Images with d~rerent sampiing rate. These sample images are 
captured under same setups of Vbiasp = 2.55 Vand Ybiasn = 0.5 Y.  but at 
diment sampling rate or data rate. 



Figure 3.17. Tesîing setup for three MOSAK chips' connection. The three 
independent cameras are connected together through a common bus Zine. 

For demonstrating multiple image capture, three independent cameras are connected together 

through a common bus line, as illustrated in Figure 3.17. Each canera captures its input 

image and transfers its image signals to the controller in sequence through the daisy chah  

After the signals are transmitted to the controller, the fiame grabber and display module are 

programmeci to capture and display three different images into one panorama, as shown in 

Figure 3.18. The integrated bus interface operates successfully for multiple images in real 

time mode. 

As the number of chips in the system increases (up to four cameras in our experiments), 

power consumption and t h e  delay are carefdly measured. The power is measured in the 

dark, rather than under illumination because the power consumption can be affected by the 

images that the chips capture. For the single chip operation, the chip consumes 1 mW 

norninaily. Interestingly, as the nurnber of chips in the system increases, the power 

consumption does not incrernent by the power consumed by the single chip. Rather, for each 

additional chip, the power increases by about 20% of the single chip power, as shown in 

Figure 3.19(a). When a chip does not have the bus gant signal, its bus interface disables the 

shift registers, preventing curent from flowing through the PMOS transistors in the S M .  

Since a large portion of the power is consumed by the PMOS transistors in the S M ,  about 

70-80% of the total power [20], the disabling mechanism saves power of the system as a 

power contra1 method. The overall power consumption of the system can be saved by such 

power control methods, especially when a large number of chips are connected. 



Figure 3.18. Panorama images coptwed by the MOSAK system. Three single chip 
cameras of the mosuic imager are linked together through a cornmon bus line. This is 
a still image, a part of vîdeo images captured in real tîme mode. These sensors do not 
inchde pattern noise correction. 



(a) Nominal C u m t  
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0) Relative Time Delay 

O 1 2 3 4 5 

Number of camera ch@s 

Figure 3.19. Test results of mosaic imager. As the number of chips increases in the 
mosaic system. the power and tirne delay are measured. 

In order to measure the relative time delays with different numbers of chips, the minimum 

charging/discharging time of a fixeci pixel is consistently measured with the same 

background image. As the number of chips on the bus line increases, the minimum time 

delay of charging/discharging also increases, as shown in Figure 3.19 (b). Similar to the 

power consumption, the RC time delays for the additional chips do not increase by the time 

delay of the single chip systern. When the time delay of the single chip system is nomialized, 

an additional chip to the system experiences ody about 7.5% inmement- Since the loading of 

the bus line is mainly caused by the bus line, probe contacts and external comections, the 

extra loading of the additiond chips is relatively small. However, it is evident that as the 

number of chips to the MOSAIC systern increases, the output loading to the systern increases, 

thus slowing down the image transfer speed. Especially for a large field of view, when a 

large number of chips are comected, the inevitable heavy loading to the MOSAIC imager 

will be a primary implementation issue. 

In order to enhance the h e  update rate in the MOSAIC system, six different methods can 

be proposeci. Firstly, multiple output channels will increase the fiame update rate. Instead of 

one output channel, the output data can be transmitted through several different channels in 

parallel. One shift register (or decoder) can be placed per output channel, dividing the anay 

into blocks by column. Secondly, large drivers increase the fiame update rate. The output 

driving power in our CMOS photodiode array is generated fkom the source follower in the 

SM, where a PMOS source follower is used. The larger the transistor size of the driver is, the 

more cment (driving power) the driver has. Thirdly, a shorter RC charging/discharging 



range w d d  be used for output transmission similar to that used in random access memory. 

Since the voltage swing is small, the time for charging/discharging is reduced, allowing a 

faster update rate. However, such a srnall voltage swing potentiaily M e r s  fiom high noise, 

especially fiom off-chip connections. Therefore, digital signal transmission is proposed for 

noise immunity. Even with small voltage swing, the digital transmission of output is 

relatively immune to noise compared to its analog counterpart. The digital transmission does 

not necessarily increase the fiame update rate, instead it protects the output transmission 

from noise sources. In addition, efficient bus arbitration aigorithm (bus interface that 

arbitrates the bus ownership so that at a given time, only one module which is comected to 

the bus has the control of the bus) can enhance the h e  update rate. There are many 

different bus arbitration methods, each suitable for particular applications and systems, so 

choosing a proper bus arbitration can increase the speed. Lady, data reduction strategies are 

of great importance for high speed. Since large volumes of output data slow down the fkame 

rate, a reduction of the data transmitted fkom on-chip to off-chip will increase the frame 

speed. The data or image could be compressed a b  the acquisition of the image. 

Alternatively, objects or events of interest in the image c m  be extracted and encoded. Either 

data compression or data extraction will reduce the amount of output data, thus increasing 

h e  update rate. 

3.5. Conclusions for MOSAIC: Single Chip Camera Modules 

The integrated bus interface module increases the performance of the bus comections by 

providing proper structure and arbitration methods. In this b i s ,  the integrated bus interface 

dernonstrates its effectiveness in terms of fabrication cost and flexibility of operation. Since a 

common bus line is used for an image transfer to the controtler, the number of comection 

lines is reduced. Also the bus arbitration is managed in each camera, so the system is very 

flexible for additional cameras. Moreover, by an intelligent power control method of the 

system, low power operation c m  be achieved. However, even with efficient on-chip bus 

interface, large data flow and slow h e  update rates are d l  potential design issues for 

systems with large numbem of camera modules, due to the output loading to the bus h e .  

Therefore, it is concluded that the implementation of the high h e  update rate is necessary 

for further implementations of MOSAIC system. A smart sensor with on-chip processing is 

of great importance as an additional technique to increase the h e  rate of the MOSAIC. 



Chapter IV 

4. Spatial lmage Processing lntegrated with 

CMOS lmage Sensor 

4.1. Introduction 

Solid-state image sensor technology is based on the inherent photoconversion properties of 

semiconductors with the advanced silicon processing technology driven by the VLSI industry 

to achieve high performance and reasonable cost. As mentioned previously, the focus of 

funue CMOS image sensor technology is expected to be in two research eras: cost and 

performance. The performance refers to the good image quality produced by image sensors 

with low temporai and spatial noises, low dark current and hi& dynarnic range. The cost 

rather refers to processing component integration with image sensors for automated controls 

and enhanced fùnctionality. The integration of processing cùcuits on the same focal plane 

with CMOS image sensors will reduce overall fabrication cost, rnainly saving wafer area for 

pads and power supplies. The cost can also be saved fiom packages, circuit boards, wire 

connections and assembly. 

The main reason for high integration of CMOS image sensors is its compatibility of 

processes between circuits and image sensors. While CMOS technology requires relatively 

thin gate oxide thickness, shallow well depths and low power supplies, CCD requires 

relatively thick gate oxide thickness, deep well, deep channel depth, and high power supplies. 

Obviously, it is difficult to integrate the two technologies due to these significant diffeiences 

in their process steps. Essentially, a full-featured combination would require almost al1 the 



stages nom both processes, which means probably over 30 masks processing steps. 

There have been some efforts to combine good image quality of CCD and logic of CMOS 

technology. n i e  reduced yield and inmased cos& has not made a combined CMOSKCD 

process viable. The combined process is neither standard CMOS nor standard CCD, and so 

requires high development expense, and the fiequent result is that neither part will work 

particularly well. Several processes have been reported which clah to preserve the quaiity of 

each technology [2 1 1 [9 1 1 [92]. However, despite the demonstrateci feasibility of CMOSKCD 

hybrids, the idea has not yet taken off possibly because few places have access to bot. sets of 

fabrication facilities and the design experience [ 11. 

CMOS image sensors use the same technology of CMOS logic/mernory processes, and 

therefore, expensive extra process steps are not needed. Also, the process for CMOS image 

sensors can be enhanced, mainly by increasing the depth of the epitaxial layer, which is 

predetennined wafer selection rather than process steps. Therefore, the fabrication of CMOS 

image sensors with processing circuits such as on-chip ADC, logic, memory, and even 

processing elements is relatively simple and cheap, without much loss in optical pdormance. 

In this thesis, the interest in integrating image processing with a CMOS image sensor was 

initiated by the MOSAIC systern for large field of view, particularly with reference to data 

reduction mechanisms. Therefore, the remainder of the thesis is based on system-level 

architecture and design methodology issues, trying to answer the following questions: 

Why we want to integrate vision algonthms (image processïng algorithms) with 

image sensors (CMOS image sensors in this thesis)? 

What algorithrns and processing components should we put with the sensors? 

O How we will integrate these procasing algorithms? 

What structures are the best for what image processing algorithms? 

The first two questions are answered in this chapter and the last two questions are answered 

in next few chapters, leading to the basis of the main concept of the thesis. 



4.2. Smart Sensors (Vision Chips): Wby Smart Sensors? 

Here, we are trying to answer why we want to integrate image processing (vision) algorithms 

with image sensors, or to implement smart sensors. Cornparisons between smart sensors and 

camera plus processors are investigated to detennine th& advantages and disadvantages- 

The integration of image sensors and processing circuits on a single chip, for obtaining better 

performance nom sensors and processors, or for making the sensing and processing system 

more compact, is not a new idea. There are various reports on on-chip signai processing 

elements with CMOS image sensors, such as correlateci double sampling (CDS), delta- 

difference sampling (DDS), programmable amplification, multiresolution imaging, dynamic 

range enhancement, and on-chip clock generation. These processing circuits are signal 

processing to improve the performance of the CMOS image sensors, but not to increase 

functionality of the imager chip. 

A smart sensor is well defined in "Vision Chips " by Moini [15]. Moini quotes that "the smart 

sensors refer to those devices in which the sensors and circuits CO-exist, and their relationship 

with each other and with higher-level processing layers goes beyond the meaning of 

transmission. Smart sensors are uiformation sensors, not transducers and signal processing 

elements". in this thesis, the meaning of smart sensor is f.urther nanowed d o m  to the devices 

in which image sensors and image processing circuits (beyond signal processing) CO-exist, 

and they interact with each other in order to increase functiondity of the imager chip. 

Traditional photodetectors often require fiirther signal and image processing a h  the image 

acquisition to increase quality of imaging in terms of noise, resolution and speed. In contrast, 

in srnart sensors the main interest is the functionality of processing or quality of processing. 

The important qualities of processing in the smart sensors are the contents of outputs fiom 

the srnart sensors, algorithms htegrated with the senson, and applications the smart senson 

are targeted for. Sometimes, some imaging characteristics, such as resolution, fiame rate and 

power, could be sacrificed to enhance the fûnctionality of processing. 

When compared to a vision processing system consisting of a camera and a digitaymaiog 

processor, a smart sensor provides many advantages. Although the main advantages are to 

reduce bandwidth and subsequent stages of computations, there are many other advantages, 



well described in [LS]. These are the major reasons why smart sensors are betta than a 

combination of a camera and a processor in separate chips. 

Processing speed: The processing speed of smart sensors is faster than that of 

combination of image sensor and processor. In the image sensor and processor 

combination, the information transfer occurs in a series between the image sensors 

and the processors, while in smart sensor data between different layers of processing 

can be processed and tramferred in parallel. 

Singie chip integration: A single chip irnplementation of smart sensors contains 

image acquisition, low and high-level analog/digital image processing circuits on a 

same focal plane. For example, a tiny sized chip can do the eqWvalent work as a 

camera-processor system. 

Adaptation: In many smart sensors, photocircuits can be located up fiont with the 

photodetectors for local and global adaptation capabilities that fUrther enhance their 

dynamic range. Conventional cameras at best have global automatic gain control with 

offset at the end of the output data channe1 in the chip. 

Power dissipation: Srnart sensors ofkm use analog circuits that operate in sub- 

threshold region. in addition, a large portion of the total power spent in image sensors 

is due to output drivas to heavy output loadings of bonding wires, pads at high 

fiequency and off-chip interconnections. By placing image sensors and processors 

without a separate packaging, the design of the large drivers is avoidable, which 

reduce the power consumption in operation. 

Size and Cost: Single chip implernentation of image sensors and a processor c m  

reduce a system size dramatically, mainly saving wafei area for pads and power 

supplies. The compact size of the chip is directly related to the fabrication cost. 

Therefore, the integration of processing circuits on the same focal plane with the 

image sensors wili reduce overall fabrication cost. 

Aithough designing single-chip smart sensors is an attractive idea, it faces several limitations 

and disadvantaes: 



O Processing rellability: Processing circuits of smart sensors ofien use unconventional 

analog circuits which are not well characthed and understood in many technologies. 

Therefore, the processing circuits have low precision on theü operation, which is 

affecteci by many uncontrollable factors. As a result, if the smart sensor does not 

account for these inaccuracies, the processing reliability is severely affecteci. 

Custom designs: Unconventional analog circuits are often used in implementation of 

smart sensors. Therefore, cucuits from design libraries carmot be used, but many new 

analog circuits have to be developed fiom a scratch. Therefore, smart sensors are 

always full custom designed, which is hown to be t h e  consrrmuig and error-prone. 

O Programmability: Many smart sensors are not general-purpose devices, and are 

typically not programmable to perform different vision tasks. They are rather 

application specific designs. This lack of programmability is undesirable especially 

during the development of a vision system when various simulations are requird. 

However, it is not necessarily a serious drawback of smart sensors because many 

applications of the smart sensors are for particular tasks with limited programmability. 

Even with these disadvantages of the integration, smart sensors are still attractive mauily 

because of its effective cost, size and speed with various on-chip fiinctionalities. Simply there 

are the benefits when a camera and a cornputer system are converteci into a thumbnail sized 

camera chip. 

4.3. On-chip Early Image Prcniessing: What on Smart Sensors? 

The basis of the smart sensor concept is that analog VLSI systems with low precision are 

sufficient for implementing many low-level vision (image processing) algorithms, ofien for 

application-specific tasks. Conventionally, smart sensors are not general-purpose devices, but 

everything in a smart sensor is specifically designed for the application targeted. Yet, in this 

thesis, we do not wish to lirnit implementations to application-specific tasks, but to allow for 

general-purpose applications such as DSP-like image processors with programmability. The 

idea is based on the fact that some of early level image processing in the general-purpose 

chips are commonly shared with many image processoa, which do not require 

programmability on their operation. As shown in Figure 4.1, human eyes, not associated with 

the brain, perform basic image operation in a human such as image filtering, brightness 
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Figure 4.1. Optical image system in human: low level processing such as brightness 
adaptation and imagejiltering can be done a& eye level, wwilhout much interaction with brain. 

adaptation, edge extraction and motion detection 1221. These early level image processing 

algorithms, from the point of views of on-chip implementation, are rather pre-detemiined and 

fixed where their low precision can be compensated later by back-end processing. Here, we 

will investigate what early image processing algonthms can be integrated on smart sensors as 

a part of early vision sequences and we will discuss their ments and the issues that designers 

should consider in advance. 

General image processing consists of several image analysis processing steps as s h o w  in 

Figure 4.2: image acquisition, preprocessing, segmentation, representation and description, 

and recognition and interpretation. The order of this image analysis can Vary for different 

applications, and stages of the processes can be omitted. In image processing, the image 

acquisition is used to capture raw images fiom its input scene, through the use of video 

carnera, scanners and, in the case of smart sensors, the solid-state arrays. 

Preprocessing stage is used to perform initial processing that makes the primary task of the 

image analysis easier. Preprocessing is a stage where the requirements are typically obvious 

and straightforward, such as removing artifacts fkorn images or eliminating image 



Image data feedback 

Figure 4.2. General machine visionlimage processing operational stages 
of image anaiysis. 

information unnecessary for the application. It includes basic aigebraic operation such as 

image averaging and subtraction, feature enhancements, contrast stretching? bit slicing, and 

data reduction of image infionnation. It is mainly subdivided into three different operations: 

image enhancement, image restoration and image compression. The image enhancement 

processes an image so that the resdt is more suitable for a specific application. For example, 

image smoothing and sharpening filters improve image quality of input raw images. Image 

restoration is a process that attempts to reconstnict or recover a degraded image with a prior 

knowledge of the degradation phenomenon. Image restoration is quite similar to image 

enhancement, but one big difference is the prior knowledge of the degradation. Due to the 

prior knowledge of the degradation, the recovery of damaged images is relatively easier. 

Lady, image compression is another fonn of data reduction between raw input images and 

encoded output images. Image compression is a highly recommended preprocessing 

operation, particularly for hi@ volume communications like multimedia applications. 

At the third stage of the image processing, image segmentation is important in many 

cornputer vision and image processing applications. The goal of image segmentation is to 

find regions that represent objects or meanin- parts of objects. The segmentation 

subdivides an image into its constituent parts or objects. It should stop when the objects of 



interest in an application have been isolated [74]. Image segmentation generally foLiows two 

methods of detection: detection of discontinuity and detection of similarity. In the first 

category, the approach is to partition an image by abrupt changes in gray level. The p ~ c i p a l  

areas of interest within this category are the detection of isolated points and the detection of 

lines and edges in an image. The approaches in the second category, which is detection of 

similady, are based on thresholding, region growing, and region splitting and merging. 

At the next level of the processing, the resultant data of segmented pixels usually are 

represented and described in a fom suitable for M e r  cornputer processing. Representation 

and description is an image processing operation that follows the image segmentation. 

Basically, representing a region involves two choices: representation of regions in texms of 

its external characteristics (its boundary), and representation in terms of its intemal 

characteristics (the pixels comprking the region). Therefore, this stage of the processing 

refines images or image information more adequate for high-level image processing. 

At the last stage of image processing, recognition and interpretation is a process of the 

understanding patterns. This is a stage where understanding patterns that are related to the 

image processing takes a place. Therefore, it requires large computational power as well as 

large memory. 

We have seen general process stages of image processing and image analysis, popularly used 

in machine vision. These stages are not necessary operation for al1 the image analysis. It is 

rather dependent on the applications that it is used for. The order of the stages can be 

changed and some of the stages can be omitted for particular applications. For instance, edge 

detection with CMOS image sensor uses images captureci by CMOS image sensor and 

perfoms image segmentation on the image, skipping Mage enhancement or filtering. 

Based on the processing stages of the image analysis, on-chip image processing with CMOS 

image sensors is focused on here. Ideally, on-chip image processing contains al1 the 

processing stages of image analysis. However, it is not possible or necessary to design and 

integrate al1 the processing circuits of the operation on a single chip. In order to understand 

clearly what image processing operation are needed and how much image processing task is 

necessary for the smart sensors, understanding and classification of these image analysis 

stages are highly recommended. Afier d l ,  choosing an appropnate algorithm for less power, 



less area and faster speed is essentially important for the integration of the CMOS image 

SeIl!3Of. 

Although few, if any, of the vision chips are generai-purpose [93] and many vision chips are 

not programmable to perfonn different vision tasks, there are primary image processing tasks 

needed for many applications. For example, image processing beyond image enhancement 

and some of segmentations require large computationai power and memory to store the data. 

Also they are applications oriented processing. However, image enhancement and filtering 

are essential for many other image processing operation. Therefore, image enhancement and 

filtering implementation shuuld be included in the early level image processing commonly 

shared by general-purpose image processors. 

In summary, on-chip image processing with CMOS image sensors is expected to follow in 

these two implementation directions: application specific operation, and primary tasks for 

general-purpose processing such as image enhancement and filtering. Image enhancement, 

filtering, and sometimes image segmentation, can also be applied to performance 

improvements of image sensors, which are commonly shared by generai-purpose image 

processors. However, application-specific on-chip image processing is likely to be the 

dominant use for CMOS image sensors, because of the wide variety of applications and the 

large number of different design choices for the integration. 

4.4. Architectures for On-chip Processing Integration: How to Implement Smart 

Sensors? 

Now, we will investigate efficient architectures for implementing on-chip image processing 

with CMOS image sensors. In the next few sections, we will first look into the structures 

available for any signal processing integration on a single chip with image sensors. Then, we 

explore the nature of image processing algorithms in tems of image signais, processing 

domain and operational region. 

We have seen vision algorithms of on-chip image processing with CMOS image sensors such 

as image enhancement, segmentation, feature extraction and pattern classification. These 

algorithms are frequently used in software-based operation, where structural implementation 

in hardware is not considered. Here, the main research interest focuses on how to integrate 

image processing (vision) algorithms with CIS or how to implement smart sensors in 



hardware, in terms of its system-level architectures and design methodologies. Here, we will 

first look at previous designs and implementations, focusing on their design structures and 

methodologies. 

4.4.1. PIeviOus Work 

There have been many reports involving the sensing and image processing on a single silicon 

chip, such as smoothing, edge detection, stereo processing, contrast enhancement, motion 

detection, video compression, discrete cosine transform and neural networks. These works 

are great efforts and fine works, some of which include revolutionary ideas. Because these 

works are application-specific designs, the architectural and circuit level designs are often 

application orienteci, and they do not have general applicability. 

Some researchers report papers on the implementation of image processing and image 

sensors. The fmt successfÙI attempt to perform a low-level image algorithm, convolution by 

Gaussian filter, on a chip was carried out at Lincoln Laboxatory in 1984, based on the control 

of the charge t r a n s f d g  mechanism [24]. Soon after this, updated and more powerful 

versions of this algorithm and circuit were presented [25] [26]. AAer the initial attempts, the 

detailed design and implementation of a CCD-based image processor, performhg two- 

dimensional filtering operation with programmable 8-bit digital spatial filters, occured [27]. 

This system represents a hybrïd analog-digital architecture. Derived fiom the original 

implementations, a more effective parallel-pipelined architecture of on-chip processing is 

describeci in 1991 [28]. it was implemented for an edge detection algorithm and a boundary- 

preserving image filter. A radial geometry, called log retina, was introduced in early 1980s. 

This retina, based on the logarithrnic mapping between the retina and cortex in marnmals, 

consists of concentric circles with each àrcle having image sensors, with the pixel sue of the 

imager increasing linearly with eccentricity. The central part of the imager has a constant 

resolution. Such imager architechue has a number of advantages, such as emphasizing the 

central part of the image and certain invariance for pattern recognition and motion processing. 

Other examples of image processing demonstrateci in CMOS image sensors include motion 

detection, spatial local filters, multiraolution, video compression, and neuronM0SFETs. 

These on-chip image processing implementations are systematically designed for specific 

applications, but do not provide an oveniew description of their limitations and 



implementation boundaries. The ovewiew article by Fossum in 1989 [29] provides a 

comprehensive treatment of solid-state imagers using analog CCD circuitry. Low, medium, 

and high density detector arrays are discussed in terms of their implementation architectures, 

and a pipeline-vector-pixel processor is describeci. Also, the potential of on-chip readlwnte 

analog fhme memory for image transformation and h e - t o - h e  processing is addressed. 

However, the architectural implementation by circuit density (number of transistors per unit 

area for a processing element) is not suffiCient to provide the detailed and general partition 

because the circuit density is not the only design specification the designers should account 

for. 

Here, in this thesis, more generalized partitions for architectural implementation of on-chip 

image processing with CMOS image sensors are proposed. The partition includes not only 

the circuit density, but also the nature of image processing algonthms and the applications 

for its focal plane integration with the sensors. We will look into the existing architectures of 

focal plane integrations and its feasibility with CMOS image sensors. We will also explore 

the nature of image processing algonthms, including operation of the algorithms and their 

feasibility with imager focal plane implementation. 

4.4.2. Types of Hardware ImpIementation 

General architectures for signal processing, not necessarily image processing, on a single 

chip with the image sensoa are examined. It should be noted that this is a general 

implementation structure of any signal processing for image sensoa, such as on-chip ADC, 

CDS and amplification. The basic components of CMOS imager array, such as photodiodes, 

shift registers, S/H and output buffers, are assumed to be independent of implementation 

structures. Architectures of focal plane integration are mainiy divided into four different 

processing structura: pixel, column, chip and memory h e  processing. Location of the 

signai-processing unit, as known as a Processing Elernent (PE), becomes the dividing factor 

of these implementation structures, as shown in Figure 4.3. 

The pixel processing consists of one processing elernent (PE) per image sensor pixel, shown 

in Figure 4.3 (a). Each pixel typically consists of a photodetector, an active buffer and a 

signal-processing element. The pixel-level processing promises many significant advantages, 

including high S M ,  low power, as well as the ability to adapt image capture and processing 



to different environments with processing during light integration. However, the popular use 

of the design has been blocked by the severe limitations on pixel sue, low fïll factor and 

restricted number of transistors in PE. 

In the column-level processing, shown in Figure 4.3 (b), a PE is located at every column of 

the imager array. Since images of the array are read row by row, the whole row is dumped 

into S/H concurrently and then transfmed to the output in series pixel by pixel. With this 

typical readout mechanism of CMOS image sensor array, the column processing offers 

advantages of parallel processing that permits low nequency processing and thus low power 

consumption. Compared to pixel processing, the pixel suffers less from low fi11 factor 

because the PE is taken out to the column, which increases the photosensitivity of the sensor. 

Although there is restriction on implementation area, particularly column width, the 

implementation is relatively flexible because of the fieedom in vertical direction of the 

colurnns. Still, due to the narrow colurnn width, particularly as the pixel size shnnks, 

designers cannot have full flexibility of processing circuits area. 

The chip-level processing is one of the obvious integration methods due to its conceptuai 

sirnplicity and flexibility of design area. Each PE is located at the serial output channel at the 

end of the chip, shown in Figure 4.3 (c). There are fewer restrictions on the impiementaion 

area of the PE, leading to a hi& fi11 factor of the pixel and a more flexible design. However, 

the bottleneck of the processing speed of the chip becornes the operational speed of the PE, 

and therefore, a fast PE is essentially required. The fast speed of the PE results potentially in 

high complexity of design and the high power consumption of the chip. Therefore, many 

designers try to avoid using this structure unless the chip requires hi& complexity of design. 

Another structure of the implementation is fiame memory processing. As shown in Figure 

4.3 (d), a memory array with the same number of elements as the sensor is located below the 

imager array. Typically, the image memory is analog hune memory that requires less 

complexity of design, area, and processing tirne [30]. However, this structure consumes a 

large area, large power and high fabrication cost. In addition, the processed images have 

latency of a fi=ame to the output. Structures other than frame memory face difficulty in 

implementing temporal storage. The frame memory is the most adequate structure that 

pemiits iterative operation and frame operation, critical for some image processing 
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(c) Chip Processing 

(d) Frame Memoly Processing 

Figure 4.3. Structures of focal plane implemenîations with image sensors: pUrel, 
column, chip and fiame memory processing. 



Pie1 Processing 

Column Processing 

Chip Processing 

Frame Memory 
Processing 

Advantages 

Parallel processing 

Processing durhg 
integration 

High SNR 

Slow processing, thus low 
power 

Low processing fkquency 

Easy implementation of 
global and local adaptation 

Minimized parasitic effects 

Flexible implementation in 
vertical directions 

Semi-parallei processing 

Low processing frequency 
thus low power 

High fill factor 

Less non-unifonnit- than 
pixel level implementation 

Small chip area 

No limitations on PE design 
area 

High fill factor 

High unifonnity 

Flexible operation 

High fill factor 

Image storage 

Disadvantages 

Low fil1 factor 

Restricted size of PE 

Limited number of transistors 
in PE 

Limited prografnmability and 
precision 

Poor uniformity of PE 

Dark current and cross-tak 

Restricted area of column width 

Lirnited size of mask (3x3) 

Higher mismatch than chip 
structure 

Higher power than pixel 
structure 

Low uniformity of PE's in 
columns 

Fast PE (High speed) is 
reqwed 

High complexity of PE 

High power 

No parallel processing 

Chip speed dependency 

Large chip area 

Latency of a fiame 

Medium power 

High fabrication cost 

Signal degradation in memory 

Table 3. General descriptom and cornparisons on hardware implementation sbucrirres. 
with their advantages and disudvantages. 
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algorithms. As a su~nmary, Table 3 illustrates the general descriptions and cornparisons of 

the hardware on-chip implementations with their advantages and disadvantages. 

4.4.3. Design Issues of Hardware ImpIemenfation 

A particular implementation structure cannot be optimal for every implementation, but 

instead will be application-dependent, where there is one optimal structure for a given 

application and specification. Here, we suggest specifications and design issues that should 

be accounted for when we approach a decision of on-chip hardware irnplementation structure 

for a given image processing application. These design issues include fi11 factor, processing 

time, power, design area, speed, W9nnity, dark current and cross-talk. 

Fil1 Factor: Since, in the column, chip and f k n e  memory level structures, 

processing elements are separated h m  pixels in the array, circuit density is not a 

limiting factor. However, circuit density plays an important role in pixel level 

structures because it is inversely proportional to the fül factor that is closely related to 

the photosensitivity of the image sensoa. Therefore, it is Unportant to choose a 

simple processing element with reasonable precision in the pixel processing structures. 

However, as technology scales down, the number of transistors that can be 

implemented in a pixel increases rapidly, according to the estimation of Figure 4.4. 

Transistors per pixel vs. Technology 

0.35 0.25 0.18 0.15 0.1 3 0.1 0.07 0.05 

Technology (um) 

Figure 4.4. Number of îransistors per phel ar a firnction of process technology. These 
estîmaîes are based on [33J riris figwe plots the estirnoted nuntber of transistors per 
pkel with minimum transistor sire (iypically for digital) as technology scales, assuming 
a 5 pixel with a constant fll  factor of 30%. 
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Fill Factor vs Number of Transistors 

Figure 4.5. Fill factor for dzrerent number of transistors in a pirel with dzreren~ 
process technologies. The plot is estirnatedfrorn Figure 4.4 

Figure 4.5 shows the relation between the fil1 factor and the number of transistors in a 

pixel, which predicts the nurnber of transistors with a reasonable fil1 factor for a given 

process technology. As technology scales down, there is more space available for 

processing circuitry in a pixel, which encourages the pixel level implementation. 

Processiog Time: Each irnplementation structure has a different processing time 

requirement for processing element, fiom integration time to data sampling rate. The 

processing time is directly related to the power consumption of the components and 

typically associated with the design complexity. As longer processing time is allowed 

for a processing element, the compiexity of the element decreases because the circuit 

has looser speed requirement. When MxN array is operating at S fiamedsecond, each 

structure has different maximum processing tirne allowed. With chip level structures, 

the processing element should run at or less than the sampling (data) rate, which here 

is equal to l/(S*M*N) seconds. In the column level structures, the maximum 

processing time is equal to 1/(Sf M) seconds that is N times longer than the chip level 

structure. Meanwhile, the pixel level structures have l/S seconds of the maximum 

processing time. The frame memory level structures can have the same 
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Max. Processing 
Time (second) 

Memory 1 [33 ml 1 p x l d  c2] 1 [h<108 c2] 

C hip-based 

Co lumn- based 

Pixel and Frame 

Table 4. Numerical cornparisons of harhuc~re implementation shzrctures for UxN array 
with Sfiames/second [] are values. bused on a IOOOxlOOO array operating at 30 
fFames/second and a! is assumed to be 2fÔr the worst case. 

Power Consumption 
per Processing 
Element (W) 

Array Size 

Total Power 
Consurnption (W) 

l/(S*M*N) 

133 q] 

1 /(S * M) 

[33 p] 

1 /S 

Figure 4.6. Mmimum processing tirne avui2abIe for the processing element for dzgerent 
sizes of arruy, usuming 30fiarnes/secondfiame rate for the image sensor arrays. 
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maximum processing time as pixel level processing, yet with a necessary latency of 

one image m e .  An example of the comparisons for MxN array with S 

fiamedsecond is shown in Table 4. Aiso, Figure 4.6 shows maximum processing time 

of a processing element for different sizes of array. As the size of the array increases, 

the diffeience in the processing tirne for different processing levels are clearly 

illustrated in the Figure 4.6; the maximum processing time for pixel level and fiame 

memory implementation rernains constant, but those for column and chip level 

structures decrease rapidly. No matter what size the array format has, the pixel level 

implementation always give a constant and relatively long processing tune while the 

time requirements for the column and chip levels get tighter with the increase of the 

array sue. 

Power: The power consumption of the processing elements is directly related to the 

maximum processing frequency. Unlike their digital cousins where typical power 

consumption is linearly proportional to its opemting fiequency, analog circuits 

follow: 

Power a (Capa~itance*freqaency)~ 

Where a is around 1.5 - 2 

With chip level structures, the power consumption for each processing element is 

proportional to (c*s*M*N)~. With column level structures, it is proportional to 

(c*s*M)=. (c*s)= is for pixel level and the frame memory level structures. With 

counts of the number of the processing elements in the chip, the total power 

consumption will be a product of the power at each element and the total number of 

the elernents in the chip. Therefore, the total power consumption of the pixel level 

and the frame memory structure is proportional to (c*s)~*M*N. It should be noted 

that the caiculation is based only on the processing element, not Uicluding image 

acquisition. Typically the power consumption of image acquisition is proportional to 

the product of (number of pixels)a and (number of col~rnns)~, as shown in Figure 4.7. 

Therefore, as the array size increases the total power consumption of the chip 

increases drastically due to the processing elements and image acquisition. The power 

of the column level processing structure is (c*s*IM)=*N. The chip level 
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Power Consumption of Image Acquisition 

500 1000 2000 

Format (k-pixels) 

Figure 4.7. Power consumption (exciuding processing element) of the dzflerent array 
size. This power consumptiÜn is on& for image acquisihon. 

Pixel Level 8 Frame Col Level 
Memory 

Chip Level 

Processing Level 

Figure 4.8. Power consumption (excluding image acquisition) of the dlrerent array sire 
for dgerent processing levels, assuming 30 fiomes/second fiome rate for the image 
sensor arrays. 



structure has the same total power as that of one processuig element because it has 

only one processing element in the chip. Figure 4.8 shows the total power of the 

system (not including image aquisition) with the different sizes of the array, for the 

different processing levels. As the size of the array increases, the total power 

consumption increases drasticaily because of the non-linear relationship with the 

array size. It is clear that the pixel and column level implernentations Save power 

consumption as the array size increases, compared to the chip level implementation. 

Design Area: Total design area of the chip becomes an important issue because it is 

closely related to the fabrication cost. The fiame memory consumes the largest design 

area because of the separated storage for a h m e  of image in the chip, where the chip 

level structure typically consumes the least area by one relatively big and complex 

processing element. Below the imager array, the column level structure has the same 

number of long narrow processing elements per column of the array, with only a 

slight increase on the chip size. The pixel level structure, under the assumption that 

same size of processing element is used for ail other structures, has the second largest 

area comumption following the h e  memory structure. Yet, because the processing 

elements in the pixel level structure are relatively small due to the long processing 

time, and unless the element is small, the photosensitive area of the pixel is 

drastically reduced. The typicai size of the processing element in the pixel level 

structure is small, resulting in relatively mal1 increase in the chip size. 

Speed dependeacy: The speed of the imager chip is determined by the slowest 

component in the data path (bottleneck of the output channel). In most cases, the 

output amplifiers are the bottieneck in the output data path because of the heavy 

output loads. Because, in the pixel, column and h e  memory level structures, the 

processing elements have relatively a longer processing time than the data output rate, 

the output amplifiers are more likely to be the bottieneck of the chip speed. In 

contrast, because the processing elernent in the chip level structure should have the 

sarne processing speed as the output data rate, the output amplifier rnight not be the 

bottleneck of the chip speed. Instead, the processing element becomes the bottleneck. 

Therefore, a design of high-speed processing elements with reasonable power 

consumption becornes critical in the chip level structures. 



a Uniformity: As processing elements are spread al1 over the image sensor array, 

unifonnity of the processing elements becomes important design issue, especially for 

pixel level and h e  memory implementations. As FPN is a critical design factor for 

the regular image sensor arrays, the unifomiity will be an important factor for smart 

sensors. Even for column level implementations, the unifomïty cannot be neglected 

because of the non-unifomiity through the columns. However, chip level structure 

will not suffer fiom the non-unifonnity of processing elements. As technology scales 

down, uniformity is expected to increase due to the reduction of body effect 

coefficient (y) [86]. 

a Dark Current and Crosstak: Similar to the uniformity, dark current and crosstalk 

will be greater for pixel and fiame memory than column and chip leve1 

implementations. However, these can be reduced by carefùl circuit designs such as 

guard ring and separate power supplies, and advanced process technology with low 

dark current. 

4.4.4. Types of Image processing Algorithms 

Conventionai approaches to hardware implementation of on-chip image processing are 

accomplished by the density of the circuit [29]. in addition to circuit density, designers 

should consider the nature of the image processing (vision) algorithms for the on-chip 

implementations. OAen, for on-chip image processing (smart sensors), the nature of the 

vision (image processing) a lgor ihs  is overwhelmed by the circuit density, mainly due to 

the reduction of fil1 factor and reduction of photosensitivity and resolution. However, it is 

sometimes necessary and reasonable to sacrifice fil1 factor to gain operational performance 

for aven vision algorithms. After dl, both the circuit density and the nature of the processing 

algorithm shodd be considered for integrating smart sensors. Here, we will investigate and 

discuss the nature of image processing (vision) algorithms which can be integrated on the 

smart sensors. The nature of image processing algorithms can be categorized in ternis of 

signal type, processing domain and operational regions. 

A. Signal Types: Analog us. Di'iai Processing Eiements 

Broadly, any signals can be divided into analog and digital, including the image signals. The 

smart sensors focus on analog VLSI implementations even though hardware implementation 
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Progmmmabiiity (Fiexibüity): The analog circuits are designed to perform very 

specific tasks, unWre digital computers (and DSPs) that can be prograrnmed to 

perform any logical or numerical operation. On the other hand, for many applications 

where only specific tasks are of interest, the excessive and expensive digital 

computers (and DSPs) with good programmability are not needed. Even for high- 

level processing, a combination of a miart sensor without high programmability, and 

DSP is recommended because the smart sensors can reduce many stages of (tirne and 

power-consuming) computations in the algorithm processing, which would have 

otherwise been computed by the digitai cornputers. Besides, digital computers and 

DSPs are preferable for developing and evaluating new image processing (vision) 

algorithms. 

Preeision: Analog circuits ofhm suffer fiom fabrication inhomogeneties, offset 

currents, lithographie mismatches and 0 t h  factors that lower the precision. 

Therefore, the analog smart sensors will have lower precision than the digital cousins. 

Typically analog circuits have only 7 - 8 bits precision where digital counterparts are 

12 - 16 bit. However, biological systems such as human vision system, only process 

data with at most 100 levels of gray level, which can be covered with less than 7 bits. 

Yet with such low accuracy, human can obtain amazing performance. 

B. Operational Donruin: Frequency vs. Spatial Domain 

Otten, image processing algorithms transfer the processing domain of the input image fiom 

spatial to fkquency for easier manipulation and calculations. The foundation of fiequency 

domain techniques is the convolution theorem. Many image processing algorithms, 

especially localized image processing operation, use convolution in the spatial domain, and 

are later transfmed to multiplication in the fkequency domain by Fourier transfomi, where 

the multiplication is relatively easier to manipulate and implement than convolution. 

Operations in the fiequency domain are more effective and easier to understand. However, 

image processing in the fiequency domain definitely requires Fourier transform elernents that 

are typically complex circuit designs. Particularly, on-chip image processing in fkequency 

domain should contain ADC, Fourier transfomi and digital processor with CMOS image 

sensors, resulting in a large area and hi& complexity of designs. It is one of the reasons why 



general-purpose on-chip digital image processing chip plus image sensors rarely exist yet. 

Rather, the processing domain of on-chip image processing is restricted to the spatial domain 

because of its relative ease of implementation and no use of expensive Fourier transfom. In 

this thesis, therefore the focus of the implementation rests on analog on-chip image 

processing in the spatial domain. 

C. Operational Region: Point, Local and Global Operation 

Now, the image processing algorithms are separated in ternis of neighboring pixels' 

interconnectivity. The interconnectivity (regions of operation) in the spatial domain plays an 

important role for implementation of on-chip image processiag because the connection 

routing to the neighboring pixels is sometimes more crucial than the circuit density of the 

processing element. Therefore, the implementation of smart sensors should consider the 

neighbors ' connec tivîty . 

The type of image processing techniques, by connectivity to the neighboring pixels, can 

again be separated into point operation, local operation and global operation, as shown in 

Figure 4.9. Point operation is an image processing method that is based only on the intensity 

of single pixels. It modifies the gray level of a pixel independently of the nature of its 

neighbors; each pixel is modified according to a particular equation that is not dependent on 

other pixel values. In local operation, each pixel is modified according to the values of the 

pixel's neighbors (typically using convolution masks). Spatial filten typically use local 

operation of convolution masks. Global operation is a type of image processing where al1 the 

pixel values in the image are taken into consideration for the detemination of the final value. 

Spatial domain processing methods include al1 three types, but al1 the fiequency domain 

operations, by nature of the fiequency (and sequence) transfomis, are global operations. Of 

course, fiequency domain operation can bewme local operation, based only on a local 

neighborhood, by performing transfomi on small image blocks instead of the entire image. 

However, this is a special case since the fiequency domain operation needs Fourier transfomi 

that is already considered as global operation. 

In the following chapters, the natures of the image processing algorithms are investigated in 

terms of their interconnectivity to neighboring pixels, and comesponding structures for 

irnplementing the algorithms are proposed. Effeçtive architectures of on-chip image 



(a) Point operation 

I 

fi) Local operation (c) Global operation 

Figure 4.9. Image operation divided by regions of operation: point operation. 
local operation and global operation. 

processing with CMOS image sensors will be studied, particularly analog image processing 

in spatial domain. Furthmore, the nature of on-chip image processing and architectural 

imp1ementations will be investigated in ternis of the operational regions (interconnectivity) 

described above. The vision algorithms under the same interconnectivity are subdivided by 

irnplernentation design and fiuictional operation. Thus, an effective architecture is proposed 

for each subdivided aigorithm. Now, the characteristics of image processing operation and 

their adequate architechiral implementations for the image processing integration will be 

investigated in detail into in terms of interconnectivity. 



Chapter V 

5. Point Operation 

5.1. Introduction 

Arnong the simplest of al1 image enhancement techniques some fairly straightforward, yet 

powefil, processing approaches can be formulated with light intensity (gray level) 

transformations alone. Because enhancement at any point in an image depends only on the 

gray level at that point, the techniques in this category are often refmed to as point 

operations. The final output value is spatially independent of other pixel values, but only 

dependent on that pixel value, typically the gray level, at that point. 

In aspects of on-chip integration with image sensors, point operations can give a number of 

advantages, such as parallel processing during integration, real tirne operation, slow 

processing elements, low power consurnption, simplicity of design, and small silicon area. In 

addition, because the point operation is feasible for pixel-level implementations, high SNR, 

low power and concurrent adaptive processing can be easily achieved with the pixel level 

implementation. However, there is a limitation on the number of transistors inside the pixel 

due to a restricted size of pixel with a reasonable fil1 factor (see Figure 4.5). Point operations 

are still low-level image processing, and thus it is assumed that M e r  signal and image 

processing stages can acquire the image output and process it. 

In order to understand the nature of the point operation and to find relationship between 

algorithrns and systern-level architecture, we will look into major algoritbms of point 

operation and divide these operations by similarity of the functional processing. These point 

operations are categorized by their operational nature into three major groups: concurrent 



pixel processing (intensity transformation), histogram processing, and inter-fiame 

processing. Examples of the point operation algorithms will be described shortly. These 

examples include major algorithms for each operation, but do not contain al1 the possible 

algorithms in the category. 

A. Concurre~t Pixel Processing 

Concurrent processing is an image-processing algorithm, which operates on only a particdar 

pixel value, independent of any other pixels. Not only is it spatially independent of other 

pixel values, it is also temporally independent of its own pixel value, which means the 

present value of a pixel is not affected by the previous or the future values of the pixel. 

Because d l  the processing in these o p t i o n s  modifiedtransfers light intensity of the input 

image, keeping a constant relationship between inputs and outputs for the whole array, this 

process is also called intensity transformation. The output value of a pixel is determineci by 

the input value of the pixel, according to the intensity transfer (response) hct ion,  S = T (y). 

The operation may be processed concurrently durhg its light integration. Examples of the 

point operation algorithm, well described in [74][75], include: 

Image negatives: The technique is to reverse the order of light intensity values so that the 

intensity of the output image increases as the intensity of the input decreasa, shown in 

Figure 5.1. 

Input Pixel 

+ 
Value 

(a) Intensiîy Transfer (a) original image (c) Image negatives, 
(response) Function simulated with LviewPro 

Figure 5.1. Image processing of image negative is to reverse the orderfrom black to 
white. Intensiîy response and sofhvare (Lview Pro) simulated sample images ore 
ilïwtrated. 



Contrast Stretching: Poor illumination environment and setthgs often cause low contrast 

images. The resulting narrowly distributed pixel values of low-contrast images can be 

expanded into wide intensity distribution, increasing the dynamic range and thus the contrast 

of the images. One example of typical contrast stretching transformation is shown in Figure 

5.2. By increasing the slope of the intensity transfer fûnction, where a large portion of the 

pixel value distribution is located, the contnist of the input image can be increased. 

(a) Intensity Transfer (b) Original image (c) Contrast stretching, 
(response) Furaction simulated with LviewPro 

Figure 5.2. Contrast stretching technique stretches intewity response line so that 
the slope of respome line in region of interest gets steeper and appearance of 
interest in an image is emphasired with a higher contrat. 

Compression of dynamic range: With a given range of output pixel values, a transfer 

fimction can increase range of input pixel values, thus increasing the dynamic range of the 

light intensity. An effective way to compress the dynamic range of pixel values is to 

(a) Intensiw Transfer (b) Original image (c) Image compression, 
(response) Function simulated with LviewPro 

Figure 5.3. With n given range of ou@utpixel values, oulpul values can have wider 
range of input pixel values by compression of the pixel values. 



perform the logarithmic intensity transformation with the following transfer hction: 

S = c log (1+ Irl), 

where c is a scaling constant. 

Gray level slicing: This is ofien used to highlight a spesfic range of light intensity in an 

image. One technique is to put a high value for al1 gray levels in the range of interest and a 

low value or unity value for al1 0th- gray levels, as shown in Figure 5.4. 

Figure 5.4. Gray level slicing is a technique highlighting a spec~jic range of gray 
levds in an image by displaying high values for region of interest and low values for 
all other gray Zevels. 

Bit-plane siicing: Instead of highlighting intensity ranges, the highlighting specific bits 

might be desired in order to discriminate contribution of individual bits to total image 

appearance. In 8 bit images, only the five highest order bits contain visually significant data. 

The other bit planes contribute to more subtle detaüs in the image [74]. Depending on what 

data is emphasized, the individual bit c m  be selected and highlighted with bit-plane slicing. 

B. Histogram Processing 

The second type of point operation is histogram processing. Histogram processing techniques 

are based on modimg the output images by modifying the histograrn of its gray Levels 

through the transformation bction.  The gray-level histogram of an image is the distribution 

of the gray levels in an image. In general, a histogram with a small spread has low contrast, 

and a histogram with a wide spread has high contrast, whereas an image with its histogram 

clustered at the low end of the range is dark, while a histogram with values clustered at the 

high end of the range corresponds to a bnght Mage [75]. Histogram processing can Vary 



h m  simple mapping functions, which can stretch, sbrink (cornpress), or slide the histogram, 

to more complicated algorithms that require detailed analysis of its probability density 

functions such as histogram equalization and histogram specification. 

Histogram equalization (linearization): Histogram equalization is a popular technique for 

improving the appearance of a poor image. It is similar to a histogram stretch but it generates 

more effective outputs of an input image. This technique is bas4  on obtaining a uniform 

histogram where the histogram of the resuitant image is as flat as possible. The theoretical 

basis for histogram equalization involves probability theory, where the histogram is treated 

as the probability distribution of the gray levels [74]. 

Histogram specification: Since histogram equalization is capable of generating oniy one 

result (an approximation to a uniform histogram), it is not an interactive image enhancement 

application. The histogram specification is to specie particular histogram shapes, 

highlighting certain gray-level ranges in an image. Because it has a flexibility of selecting a 

certain gray-level ranges, it can generate more visually appealing appearance of an image and 

become superior to histogram equalization. 

C. Inter-Crame Processing 

The third type of point operation is inter-fiame processing where the intensity level of a pixel 

is modified independently in space, but not in tirne. In order to calculate the final values of 

the pixels, the processing needs multiple fiames of images, with at least two h e s  of input 

images, containing time dependency. The examples of the processing include: 

Image subtraction: The difference between two images is computed as the difference 

between ail pairs of corresponding pixels fiom the two images. This image subtractiolz is 

often used in motion detection, radiography, feature extraction and background subtraction. 

Image averaging (multi-image averaging): Under assumptions that the noise is 

uncorrelated and has zero average value, averaging multiple images reduces the noise of the 

image, by sqart(N), where N is number of frames. By storing pixel values of previous images 

in a frame mernory, the average values of several images can be computed with lower noise 

Ievel. 



53. Cornparisons between On-ehip Implementations for Point Operation 

We have divided point operations into three different types in terms of their processing 

characteristics: concurrent pixel processing (intensity transformation), histogram processing 

and i n t e r - h e  processing. When these point operations are integrated with CMOS image 

sensors on a single chip, these characteristics of the processing should be taken into 

consideration for system-level architecture and circuit designs of on-chip processing 

integration. Here, we study on-chip implementations of the point operation. The three types 

of point operation are investigated at different irnplementation levels of on-chip processing: 

pixel, column, chip and frame memory. General system-level architectures are discussed and 

different integration methodologies for each type are cornpared. 

Concurrent Pixel Processing; 

Concurrent processing (intensity transfomation) can comprise an intensity transfomer 

(linearhon-linear amplifier) with controllability in pixel, column, chip and frame memory 

processing. The concurrent processing, compared to histogram processing and inter-fiame 

processing, has a wide choice of implementations. Although the concept of the design seems 

to be simple, the actual design of an amplifier with good controllability, or programmability 

is no t straightforward. 

Concurrent processing, integrated at pixel level, provides a number of advantages: parallel 

processing, processing during integration, high SNR, low frequency processing, low power, 

and adaptation of image signals and processing. Its main attraction is parallel processing 

during integration. Parallel processing during integration gives great flexibility of operation 

as well as local and global adaptation. Parallel processing permits more time for processing 

because typically integration time for input image (light) is much longer than the processing 

time. This slow processing frequency results in low power consumption, particularly for 

analog-intensive designs, because the power in analog processing is typically proportional to 

capacitance and the operational frequency squared. However, because a pixel requires a 

reasonable fil1 factor for good photosensitivity, only a small portion of the pixel area is 

preserved for processing circuits. Therefore, hnplementations at pixel level have severe 

limitations on pixel size and the number of transistors that can be practically used in a pixel. 



Concurrent processing at the column level has more fiedom on design area than at pixel 

level. Still, mlumn level implementations have restrictions on column width, but typically 

not in the vertical direction. Therefore, more flexible circuit designs can be implemented and 

more programmability can be added. Column level implementation maintain parailel 

processing, thus resulting in low processing fiequency and low power consumption (but 

higher than pixel level implementations). 

Concurrent processing at the chip level, where an intensity transformer is located at the final 

serial output channel, consumes the smallest area and has the highest flexibility in circuit 

design and control. However, this requires a fast processing speed with a high bandwidth, 

and often results in high power consumption. 

Concwrent processing with m e  memory (typically analog memory) locates al1 the 

processing circuits apart fiom the image sensor array (to below the image sensor array) and 

results in higher fil1 factor. However, because the concurrent processing is independent of 

spatial and temporal differences in the pixels (e.g. it does not need multiple f.'rames of 

images), analog memory becomes an unpractical implementation, often causing large power, 

large area, and hi& fabrication cost. Therefore, analog memory implementation for 

concurrent processing is not recommended unless special applications are needed. 

From the above comparisons, pixel and column level implementations are recommended for 

system-level architectures and circuit designs in concurrent processing. Particularly because 

the point operation does not have any interconnections to the neighboring pixels, pixel level 

implementation is strongly recommended if a small number of transistors can embrace the 

necessary operation. Pixel and column level implementations, with the benefit of parallel 

processing, can save power and have flexible designs in processing circuits. 

The implemmtation of histogram processing consists of a histogram generator at chip level 

and intensity transformers with pixel, column, chip or analog memory implementations. 

Because the intensity transfer fimction of histogram processing is generated according to the 

histograms of input images, the histogram generator bewmes an important component, 

located at a common output chamel to collect al1 the pixel values. Therefore, histogram 

generation is perhaps strictly a global operation, but closely related to point operation. The 



histogram generator in the histogram processing constitutes a major difference fkom simple 

concurrent processing where intensity is transformeci in concurrent processing, 

predetermined or manuaily programmeci. Histogram processing uses a &ta-derived 

prograrnmed intensity transformer from a histogram generator. Histogram processing has 

many similarities to concurrent processing due to its intensity transformer that can be 

implemented at pixel, column, chip or fnune mernory levels. Therefore, histogram processing 

has the same architectural design benefits and drawbacks as concurrent processing. 

The last type of point operation, inter-fhme processing, needs present pixel values and the 

pixel values of the previous h e  at the same t h e .  This processing has independency in 

area, but not in t h e .  The inter-fiame processing, by the nature of the operation, has 

correlations with pixel values in tirne. Therefore, it requires storage (typically analog storage) 

of pixel values for at least one h e  interval. During the integration of a fiame of image, the 

previous h e  of image shodd be stored until the present image is captureci and necessary 

operation are completed on these fiames of the images. Because design of fiame memory at 

column and chip level faces severe difficulty in its implementation, pixel level and analog 

h e  memory structures are recommended for the inter-fiame processing. However, for 

pixel processing, the storage (typically capacitance for analog memory) easily takes a large 

portion of the pixel area, reducing its fil1 factor and thus, the photodetector photosensitivity. 

Analog memory structure has a large storage area without affecting the fil1 factor of the 

photosensitive pixels. However, this structure may have high power consumption, high 

fabrication cost and more Iikely bigh complexity of design. Therefore, the choice for the 

implementation for inter-frarne processing depends on the applications and user-defined 

specifications. If the specifications focus is on low power and low fabrication cost, the pixel 

level implementation is recommended. If functionality and programmability of the chip is to 

be more emphasized, the analog mernory structure is proposed for the basis of the 

irnplementations. As a summary, the general descriptions and cornparisons of point operation 

implementations are summarized in Table 5. 



Column Processing 

Chip Processing 

- - 

Frame Memory 

Concurrent 
Operation 

Good performance 
(high S m  low 
power, adaptation, 
etc), but limited by 
pixel size 

Slow processing 

Low power 

Flexible design in 
vertical directions, 
but still limited by 
column width 

High flexibility on 
design area and 
fiuictionality of PE, 
but high speed 
requirement, high 
power. No parallel 
processing 

Operation 

Iterative operation, 
but sacrificed with 
area, power, speed 

Since information is 
extracted fiom al1 
pixels, each pixel 
passes through a 
global processing 
element unît 
eventuall y 

Inter-fkame 
Operation 

Each pixel should 
have its own 
mexnory in pixel, 
thus limited by pixel 
size 

Not feasible because 
each pixel should be 
allocated with its 
own memory 
(storage) area 

Because of 
concurrent image 
capture, a fiame is 
stord outside, not 
limited by pixel size 

Table 5. General descriptions and conparisons ofpoint operation implementations. for 
diffePent types of the point operation. 

53. Design of In-pixel Coabast Stretching 

S3.L Introduction 

Low-conhast images can result fiom poor illumination, lack of dynamic range in the imaging 

sensors, or even the wrong setting of a lens aperture during image acquisition. Since contrast 



plays a critical role in overali quality of images, it is necessary to assure that the output image 

contains the appropriate contrast. In this thesis, as a part of image enhancement methods, 

especially for portable devices such as vidm ceilphones, PDA and toys, a simple, but 

effective design of image contrast enhancement is investigated and designed. Since this smart 

sensor is intended to be embedded with portable devices, low power and low weight battery 

operation are focused as well as the effective operation of contrast enhancement. 

The idea behind contrast enhancement is to increase the dynamic range of the gray levels in 

the image being processed and to obtain widely spread distribution of image histogram. The 

contrast enhancement techniques have a wide variety of processing methods b m  a simple 

contrast stretching to cornplex histogram equalization. Contrast stretching is a simple, yet 

powerfùl contrast enhancement technique, which will be dealt with in this thesis. This 

technique is used to produce an image of higher contrast than the original with a transfei 

function like one in Figure 5.5. The output ranges of r below an input of m, shown in Figure 

5.5, are compressed, making this output range smaller than the original. The output ranges 

around rn are stretched, which makes the output ranges larger than the original. The output 

ranges above m are compressed like the ranges below m. Interestingly, in an extrerne case of 

contrast stretching, the transformation fiinction produces a two-level (binary) image. 

Input Image (r) 

Figure 5.5. Gray-Ievel intensiîy tmnsformation jùnction for contrast 
enhancement. 



Histogram equalization is a more complex and powerhil contrast enhancement technique 

than the contrast stretching. The histogram equalization modifies the histogram of an image 

to make the histograrn as flat as possible, by multiplying al1 the pixels with the probability 

density fiuiction of the image. In ternis of contrast enhancement, this technique increases the 

dynamic range of the image, which has a considerable e f k t  in the appearance of the image. 

The histogram equalization needs two main computations: cumulative density calculation 

and transformation fuoction generation. 

A common component of these contrast enhancement techniques is the transfer fünction. 

Indeed, the transformation fùnction is a common processing component in almost every point 

operation. The transformation fiinction, also called the gray-level mapping fiuiction, is 

typically linear (nonlinear equations can be modeled by piecewise linear models) and maps 

the original gray-levei values to other specified values. Now, we will study how we c m  use 

this intensity mapping fùnctions for contrast enhancement operation. 

5.3.2. Intensiw Transformation Function 

In the previous section, we have briefly discussed the operation of intensity tninsfer fùnctions. 

The detailed operation of the fimction will be discussed in this section. Image processing 

fiuictions in the spatial domain may be expressed as 

where f(x, y) is the input image, g (x, y) is the processed image, and T is an operation on f. In 

the intensity computation, the transformation fuoction takes the simplest form of 

s = T (r) Equation 5.3.2 

where, for simplicity in notation, r and s are variables denoting the gray level of f(x, y) and 

g(x, y) at any point (x, y). This simple transformation fiincrion becomes a basis of point 

operation in image processing. The mapping h c t i o n  represents not only the relation 

between input and output images, but also has a considerable effect in the appearance of an 

image by three main operations: contrast adjustment, brightness adjustment and gamma 

adjustment. Here, the operation of the intensity transformer dong with its simulations on 

appearance of images will be discussed. 



The contrast of an image is adjusted by changing the dope of the mapping hct ion.  Figure 

5.7 illustrates how the slope of the mapping fiinction affécts the appearance of an image as 

well as its histogram. The original image has a linear relation of unity between the input 

intensity and output intensity, as shown in Figure 5.6. As the slope of the mapping fiinction 

gets steeper, the contnist of the image gets higher as shown in Figure 5.7. AAer dl, when the 

slope becomes significantly hi& the appearance of the image becomes more like a binary 

image, shown in Figure 5.7 (c). As the slope gets steeper, the histogram of the image gains 

more spread in its distribution, which indicates higher contrast. It is a global description that 

the histogram with a narrow shape indicates little dynamic range and thus corresponds to an 

image having low contrast. The histogram with a significant spread corresponds to an image 

with high contrast. 

The brightness of an image can also be adjusted by the minimum or maximum value of the 

output intensity in the transformation fiinction. For example, in Figure 5.8, the minimum 

value of the outputs in the mapping fünction increases, the appearance of the image gets 

brighter, becoming an almost white image in Figure 5.8 (c). The obvious observation from 

this histognim is that the minimum value of the histogram distniution increases as the 

minimum value of mapping fiuiction increases. 

The last operation of the mapping b c t i o n  is to adjust the gamma fwiction of an image, 

shown in Figure 5.9. The gamma adjusmient is for non-linear behavior of many of its 

elements in the image-transmission chain. The relationship of the gamma correction can be 

Figure 5.6. Original image for Matlab simulations on intensiîy transformer 
showing hisrogram and intensity trartsfonnation finetion. 



(a) Contrast 1 

(b) Contrast 2 

(c) Contrast 3 

Figure 5.7. Matlab simulations on intensity transformer (mappingfinction) 
showing contrust stretching technique. As the siope of the liner line gets steeper, 
dishibuton of the histogram spreuh out, gaining higher contrast. 



(a) Contrast 3 and Vrefl 

(b) Contrast 3 and Vref2 

(c) Contrast3 and Vref3 

Figure 5.8. Matlab simulations on intensity transformer (mapping firnction) 
showing brightness a@ustrnent technique. As the minimum values of the 
transformation respome. the minimum value of the histogram increases. gaining 
h igher brightness. 



expressed in the fonn: 

s = c r a  in s = T(r), Equmïn 5.3.3 

where c and a are constants and the exponent a (refmed to the gamma of the device) takes a 

value between 0.5 and 3. To make sure that the perceived gray scale in the displayed images 

is correct (to compensate non-hearity of the components in processing), it is usuaily 

necessary to insert a gamma correction. nie figure obtained by multiplying al1 the device 

garnmas fiom the camera through to the display (but not including the eye) is known as the 

system gamma. If the conditions of viewiog at the scene and at the dispiay are the same (they 

ofien are not), the system gamma needs to be unity. 

The design of an intensity transformer with contrast, brightness and gamma adjustment, 

requires a good programmability and a reasonable precision. Particularly, for contrast 

enhancement applications, because the dynamic range plays an important role in contrast, a 

design of the intensity transfonner with high dynamic range is an essential design 

requirement. Also, it requires a high precision design that is fiequently a drawback of analog 

circuits. 

O h ,  the intensity transformer can be easily reaiized with a global gain amplifier with an 

offset, of which circuit designs are already well established. However, these designs are 

typically manipulated for high precision and hi& speed with large size. Therefore, these are 

not suitable for low power operation in the portable devices. 

Therefore, this thesis proposes the implementation of an intensity transformer at pixel level, 

typically consuming lower power. Yet, for the pixel level implementations, the designs of 

processing elernents require high fil1 factor for its photosensitive area, and thus they need to 

have a mal1 number of transistors, which is one of the main design challenges in this thesis. 

In addition, good programmability is often important for the design of an intensity 

transformer, whkh is very difficult to achieve with in-pixel implementation. Therefore, in 

this thesis, the design focuses on an in-pixel intensity mapping function with a srnail number 

of transistors, and with reasonable programmability, and with low power for portable devices 

of interest here. 



(a) Gamma = 0.5 

(b) Gamma = 1 

Figure 5.9. Mutlob simulations on intensity transfomet (ntappingfùnction) 
showing gamma correction technique. 



Many researchers are attracted by potentially outstanding performance of in-pixel processing 

operation. The general performance and applications of pixel level processing are describeci 

with structural implementations of ADC on CMOS image sensors, in [3 11 focusing on pixel- 

level and in 1321 column-level. Another relevant work concems the size limitation of the 

pixel: how d l  the pixel should be in image sensors [33]. 

One of the well known works on pixel level processing is a floating point pixel-level ADC 

implemented by the Stanford ISL group [34]. Using the same design concept and circuit 

designs, the work also demonstrates a new way to increase dynarnic range of the image 

sensors. Another research project on pixel processing is on-sensor image compression [35]. 

This proposes a novel integration of image compression and sensing on the same focal plane. 

The proposed image compression technique uses a conditional replenishment, which detects 

and encodes only moving areas. While the overall architecture and circuit designs are not 

directly related to pixel processing designs, the conditional replenishment implementation in 

analog at the pixel-level is interesting research. Other examples of pixel-level processing 

dernonstrated include motion detection [36], individual pixel reset [37], pattern matching 

13 81, and f i n g e r p ~ t  detection [4 1 j. Continuous improvement in pixel processing 

performance and fiuictionality is expected. However, these are application-specific designs. 

An interesting in-pixel processing for generai-purpose applications can be found in [93]. 

Here, we will investigate generalized systern-level architecture and design methods for point 

operation, by demonstrating design and manipulation of on-chip light intensity transfomer. 

5.3.4. Designs of CMOS Active Pixel Sensor with In-pixel lntensity Transformer 

We have designed and fabricated a prototype chip comprising a 64 x 64 array of in-pixel 

intensity transformer circuits with photodiode pixels, in standard 0.35 jun CMOS technology 

with 3.3V power supply. A die photograph is shown in Figure 5.10. Each pixel is 30 p 

square including the in-pixel light intensity transformation circuit and it has a fil1 factor of 

66%. The main objectives of this chip are (i) to demonstrate the feasibility of point operation 

with CMOS image sensors, (ii) to demonstrate the scalability of in-pixel processing 

integration with 0.35 pm technology, (iii) to achieve in-pixel processing with low power and 

real-time operation, and (iv) to address limitations and fbture directions of in-pixel 



Figure 5. IO. Die photograph of the prototype contrait stretching chip. The total 
aren is 16 mm2. 



Vref 
Figure 5.11. Schemutic of cornmon source follower consisting of 
a transformer with enhanced-mode AMOS active foud. 

processing with CMOS image sensors. The main challenges of this chip are to design a 

simple circuit with a small number of transistors in restricted pixel area, and to achieve 

reasonable precision of the circuit. 

The main component of the chip is the pixel based intensity transformer, whose circuit 

schematic is shown in Figure 5.1 1. The basis of the circuit is a CMOS common-source 

amplifier with the source connectai to input control voltage instead of ground, and an active 

load instead of a passive load. The transfer fûnction of the common source amplifier is 

shown in Figure 5.12. The transfer characteristic displays three well-defined regions. In 

region 1 of Figure 5.12, the driving transistor M 1 is off, since Vin c Vref + Vt. Nevertheless, 

M2 is in the saturation region and is conducting a negligible current, thus the voltage across 

M2 is equal to Va, and hence the output voltage is VDD - VQ. In region II, Ml is conducting 

and is operating in saturation, and the transfer curve in region II is linear, which is usefbl for 

the amplifier operation. Finally, in region III, M l  leaves the saturation region and enters the 

triode region and the curve flattens out. 

The analytical derivation of equation describing the transfer curve wiii be shown below. The 

derivation is done under the assumption that both devices (Ml and M2) have infinite output 

resistance (that is, horizontal characteristic Iines) in saturation. Furthemiore, the two devices 

will be assumed to have equal threshold voltages, Vt, but diffaent values of K (KI and K2). 

When Ml  is in saturation we have 
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Input Voltage 

Figure 5.12. Voltage response of a common source amplifier 
with enhanced mode NMOS active load. 

Vref 

Transformer 

Vout at 

Figure 5-13. Response of a common source amplijer with voltage 
output of photodiode as ifs input. 



= ~*WiW - va2 
Since ID = ID* = ID2 and VGSl = Vin - Vd, this equation can be rewritten 

IDl = IlWh - v&f- v# 
The operation of M2 is desm'bed by 

Io, = R = =  - va2 
Since VGsZ = VDD - VoUb the equation can be rewritten 

ID* =&Pin*- VI.- Kif 

100 

Equution 5.3.4 

Equation 5.3.5 

Equation 5.3.6 

Equation 5.3.7 

Combining Eqs. (5.3.5) and (5.3.7) and with some simple manipulation we obtain 

Equation 5.3.8 

which is a linear equation between Vaut and Vh. This is the equation of the straight-line 

portion of the transfer characteristic (region II) of Figure 5.12. This particular design of in- 

pixel intensiîy transformer has controllability on two operations: contrast and brightness. 

Gamma adjustment cannot be achieved with this design without making the design of the 

transformer more complex, taking too much area in pixel. In addition, because gamma 

correction is typically located at the end of processing stages in order to compensate the non- 

linearity of the components, it loses its value if it is placed at the fiont stage of image capture. 

In Figure 5.13, the relationship between the photodiode input and the transformer is shown. 

The floating diffusion of the photodiode is placed at the input to the transformer. After a reset 

the ,  Tmm, when a pixel is reset to Voo - Vt, the voltage at the floating diffusion 

(photodiode node) decrements due to the photo-generated leakage current, and the 

transfomer is off until the photodiode voltage becomes comparable to Vref + Vt (VFD = Vref 

+ Vt). When the photodiode voltage becomes larger than Vref + Vt, the transfomer is in the 

linear region with a gain of sqrt(KlIK2) until the àriving transistor gets into triode region 

around VDD. In this analysis, the dope of the response h c t i o n  that is equivalent to the 



contrast of the image can be changed by the resistance of the active load. Also, the minimum 

voltage value that is quivalent to the brightness can be changed by Vref (control voltage 

connectai to the source). With this given property of the common source amplifier, we are 

able to design a simple intensity transformer with a small number of transistors. 

In this particular design of intensity transformer at the pixel level, shown in Figure 5.14, a 

PMOS active load is used instead of an enhanced mode active load for programmability and 

output swing. For contrast adjustment, the slope of the transformer should be controllable by 

an input signal. The enhancement mode NMOS load cannot be prograrnmed, always having a 

fixed slope determined by the physical dimensions of the transistors. Using a PMOS active 

load with its gate controlled by input bias voltage allows different slopes accordhg to the 

bias voltages. In addition, the enhancement mode load has an output voltage range fiom Vref 

to VDD -Vt because VGS should be p a t e r  than Vt in order for the transistor, M2, to stay on. 

The PMOS active load has an output range fiom Vref to VDD, gaining Vt fiom that of the 

NMOS load. HSPICE simulations on the transfomer with PMOS load are shown in Figure 

5.1 S. The simulation results demonstrate good behaviorai performance and good 

controllability: Vbias for contrast adjustment and Vref for brightness adjustment. 

A standard source follower is placed right beside the transformer for normal mode image 

capturing (see Figure 5.1 7), so the prototype chip has three different outputs; normal, contrast 

stretched and binary mode. Thus, the array has three different sets of S/H's for each output 

Stretched 
Binary 

Col. Select 

Figure 5.14. Schematic of intensiîy transformer implemented in design of the chip. 
The transformer consists of a cornmn source amplifier with PMOS active load. 
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Figure 5. I5. HSPICE simulations on an intensity tnwqfoonner with a PMOS active load 
with (a) d~rerent biasing voltages (Vbiasp) and (b) d~yerent reference voltages (Yrefl. 



channels, shown in the overall structure of the array in Figure 5.16. This structure is similar 

to the standard structure of CMOS image sensor m y :  image sensors, shift registers, bias 

bank and SM'S. Figure S. 16 shows 64x64 image sensors, reset and row shift registers, 

readout components for normal, contrast and binary mode at the bottom of the array. 

Schematics of the major components are shown in Figure 5.17. CMOS image sensoa use a 

photodiode with n diffusion structure for its simplicity in layout. For image capture in 

normal mode, a standard active buffer with source follower is used in every pixel. S/Hs for 

the normal mode also use double p l y  capacitors with PMOS output buffers for the level 

shifting, as explained in Chapter 2. Different fkom standard CMOS image sensor techniques, 

contrast stretched mode and binary mode use common source amplifier structure for the 

intensity transfer function. In addition, S/Hs for these modes use NMOS output drivers 

instead of PMOS, because the intensity transformer does not have any voltage drops, unlike 

Vt drop in the source follower of normal mode, and therefore, the output driver does not need 

to compensate for any voltage drops. The output swing range of the transformer is fiom Vref 

to VoD, and when PMOS output buffers are used, the output of the driver goes fiom Vref + 
Vt to VDD with a range of VDD - Vref -Vt When NMOS output buffers are used, the output 

goes fiom Vref -Vt to VDo - Vt with a range of VDD - Vref. Therefore, the NMOS output 

drivers have an output range larger, by Vt, compared to the PMOS drivers. However, the use 

of NMOS and PMOS drivers does not matter in binary mode because of Vt loss in both 

drivers. Therefore, the reset and row selects are generated by active high shifi registers with 

two inverters. The column selects are generated by active low shift registers. 

5.3.5. Tests and Performances 

The testing the prototype chip consists both of individual pixel test structures and the whole 

image sensor array. The tests on the individual pixel test structure are to ver@ performance 

of the intensity transformer with photodiodes, and the tests on the image sensor array are to 

dernonstrate the effects of the transformer on the appearance of images. 

Signal Responses of Individual Intensi~ Transformer 

The first test is based on the signal response of individual pixel test structures with 

photodiodes. There are three variables affecting the response of the transformer: light 

intensity, biasing voltage (Vbiasp) and reference voltage (Vref). The light intensity is the 
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Figure 5.16. Overall stmchrre of the chip, consisting of CMOS image sensors 
array and readout control circuits. Zhe chip has three dzrerent ouput modes: 
normal, contrast and binary mode. 
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Figure 5.1 7. Schernatics of main components in intensiîy transformer chip. It 
contains readout buffrs and S/H% for three output modes. 



actual input to the transformer. The diffeient light intensities affect the slope of the 

decrement at the photodiode node, and thus change the dope of the linear region of the 

transformer as well as the intercept of the off region and linear region. Figure 5.18 (a)-II 

shows the output of the binary mode (output of the inverter) and Figure 5.18 (a)-[ shows the 

output response of the contrast stretched mode. As the Iight intensity increases at a fixecl 

Vbiasp and Vref, the slope of the contrast mode response, Figure 5.18 (a)-1, gets steeper. The 

intercept of the off region and linear region also starts earlier. The early starting of the linear 

region with faster slope switches binary response faster- The highest intensity has the fastest 

switch-to-hi& shown in Figure 5.1 8 (a)-II. 

With different Vbiasp, we observe the changes in the slope of the linear region; the more 

current (the smaller Vbiasp) goes through the PMOS transistor, the steeper the slope becomes, 

shown in Figure 5.18 (b)-1. A s  discussed in the HSPICE simulations of the previous section, 

the Vbiasp changes the slope of the transformer, thus changing the contrast appearance of an 

image. The steeper slope of the linear region (the faster response) typically generates an 

image with a higher contrast, which will be demonstrated in the next sections. The steeper 

slope of the response also leads to the faster switching of the outputs of the binary mode, 

shown in Figure 5.1 8 (b)-II. 

As Vref increases, the minimum output voltage of the response increases, shown in Figure 

5.18 (c)-1, because the minimum value is theoretically equal to the Vref. The changes of the 

minimum voltage directly affect the brightness of the image. Since the higher Vref tums the 

driving transistor to the linear region faster, the output of the binary mode switches faster 

with the higher Vref in Figure 5.1 8 (c)-II. 

The variations in the photoresponse of an individual pixel with light intensity, biasing 

voltages, and reference voltages have been tested and well demonstrated for circuit operation. 

These test results demonstrate that the response of the pixel to different light intensities and 

control voltages allows good control of intensity transformation. The tests on the individual 

pixel test structures verie operational performance for individual intensity transfomers with 

a photoreceptor, which are analytically understood with the HSPICE simuIations. These tests 

are well matched to the simulations and encourage M e r  tests of their effects on images. 
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Figure 5.18. Photoresponse fiom the "stretch " output (top row) und inverter output 
(bottom row) of a ptrel with in-pixel contrmt stretch at various light intensities, bias 
voltages and reference vohges. 



Image Capture in Normal Modo wi'th CharacteWcs of Image Sensors 

The fïrst and the most important test of the image sensor array is to capture an image in real 

time mode. Here, we are able to demonstrate operation of image capture successfully. Some 

sample images are illustrated in Figure 5.19. As expected, the quality of images captured by 

the chip is not high, due to the fact that the chip process technology we used is not optimized 

for image sensors, but instead for logic and memory. However, the subtraction of a white 

background image enhanca the quality of the captured images by reducing fixed pattern 

noise. Figure 5.20 (a) is a raw image and Figure 5.20 (b) is a fked pattern noise subtracted 

image. There are some noticeable differences in their image quality; the processed image is 

cleaner and has a higher contrast. 

The characteristics of the single chip, including image sensors, are summarized in Table 6. 

The conversion efficiency of the chip is only 0.1 pV/e- (refer to Appendix C), which is very 

small, compared to commercially available CIS chips (typically 5-10 pV/e for their 

conversion efficiency). Some of this unexpectedly poor performance may be because of the 

cross-talk between normal mode operation and contrasübinary mode operation, and the 

increased capacitance of the photodiode node. The global photoresponse of the prototype 

array in each of the three modes is presented in Figure 5.21 (a) for uniform illumination at 

wavelength of 540 m. In a uniform dark room, the dark curent is measured with varying 

integration time (sampling rate), as shown in Figure 5.21 (b). The characteristics of the chip 

are measured and cakulated, based on the measurements and many other tests. The 

characteristics chart of the chips shows photoresponses including photosensitivity, spatial 

pattern noise, temporal noise, S M  and dark curent. The physical parameters, including 

pixel size, fiIl factors and chip size are also included. 

The chip consumes power of 14.85 mW, (typical power consumption of commercial CMOS 

image sensors is around 50 - 100 mW for VGA format). It includes concurrent operation of 

normal, contrast stretched and binary mode in real t h e  operation at 24 heslsecond. When 

contrast and binary modes are tumed off and power with only normal mode on is measured, 

the power consumption is around 6 mW, 



Figure 5-19. Sample images captured in real time by the ch@ in normal mode. 

(a) Raw image (b) Pracessed image 

Figure 5.20. Pattern noise can be reduced by subtracting white background 
image form the raw image. 



Quantity 1 Normal 1 Contrast Stretching 1 Binary 

- - 

Chip Size 
pixel Size 
Format of Array 
Fil1 Factor 
Vdd . -- 

m u t  format 

0.35 Hm CMOS technology with double poly and 3 metal layers 

2 andog out~uts and 1 dimtal ou t~u t  

Power 

Light Lux 

Conversion 
Efficiency 
Saturation Range 
Fixed Pattem 
Noise 
Temporal Noise 
(N) 
Signai to Noise 
Ratio 
Dark Signal 

3 . 3 ~  1 -84 =6.072 
mW at 24 fiame 
rate 

O. 1 UV le- 

3.3 x (4.5 - 1.84)=8.778 mW 

1.38 V 
50 mV (3.6% of 
saturation level) 

1 5 0 - 2 0 0 1 ~ ~  

0.03 Vlsec 

1 1.34 1 mV 1 (uWlcmL) 
for ran e of 5 to 6.5 5 uW/m 
5.42 
(Avcontrast~Avnod) in 
the ran e of 5 to 6.5 f u w / m  

Table 6. Single ch@ characteristics in normal mode and contrust mode. 



(a) Photoresponses of Three modes 

I 

Lig ht Power (uw/crn2) - Normal - Contrast -8inary 

(b) Dark Signal 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Integration Time (Second) 

Figure 5.21. Characterrrtcs of single chip. (a) photoresponse of three output modes 
and (b) dark signal measurements. 



Normal Mode Contrast Stretched Mode Binary Mode 

Figure 5.22. Sample images and histograms of three output modes. 



which leads to the calcuiation that power consumption in contrast and binary modes is about 

8 mW. This higher power is due to the large capacitance loads of PMOS, connecteci to the 

column lines. However, by extracthg the active load transistors out of the array md inserthg 

row transistors between, the processing power could be reduced because the CS amplifier is 

only on when the pixels are read out. 

Intensity Transformer rir Contrust Sttetched Mode and Binav Mode 

Images captured by the prototype sensor in the three operational modes are compared in 

Figure 5.22, dong with calculated histograms showing the distribution of pixel values in the 

image. A normai mode image with poor contrast is shown with its narrowly distributed 

histogram. With an appropnate values for Vbiasp and Vref, the contrast stretched mode 

shows enhancement of the contrast by spreading out the histogram distribution. The binary 

mode converts the grayscde image to one bit binary image and therefore the histograrn 

contains only two values of black and white. Two sets of three output modes are shown in 

Figure 5.23. O+iginal images captured in n o m i  mode with dif/erent illumination 
(approximately, (a) is under 1 70 lux and (b) under 130 Zwc. The imuge of (a) is caphtred 
under a brighter illumination fhan the image of 0, showing o v e d  distribution of the 
histogram shifis to the right (brighter groyscale). 



Figure 5.22. The first set of images has a better contrast in terms of histogram distribution 

than the second set. With different combinations of Vbiasp and Vref applied to each of the 

images, the contrast stretched modes of these images have approximately the same histognun 

distributions, and thus same contrast. The b i n q  modes of the images always have the two 

vaIues of grayscale, with different number of black and white pixels. 

The contrast stretched mode enables the modulation of the contrast of the image. As shown 

in Figure 5.24, biasing voltage (Vbiasp) changes the distribution of the histogram of the 

original image in Figure 5.23, re*iining the original maximum and minimum values of the 

histogram. As Vbiasp decreases, the distribution of the histogram is spread flat. 

The decrernent of Vbiasp to the PMOS transistor allows more current to flow through the 

driving transistor of the transformer and thus, the slope of the linear region response becomes 

steeper. However, because the original image of Figure 5.23 has a wide spread dishiiution of 

the histogram, the effects of Vbiasp on the appearance of the image are not well 

dernonstrated. ïnstead, observations on the distribution of the histogram give a good 

illustration on the effects of the biasing voltage to the contrast of the image. The contrast 

stretched mode enables modulation of not only the contrast of the image, but also its 

brightness. The Vbiasp changes the distribution of the histogram, retaining the original 

maximum and minimum values of the histogram. In contrast, Vref does not change the basic 

distribution of the histogram, but modulates the minimum value, thereby changing the 

brightness. Figure 5.25 shows different image captured with different reference voltages. As 

the Vref increases, the minimum pixel value of the array increases, and thus the minimum 

value in the distribution of the histogram increases. The noticeable changes in the brightness 

of the image are shown, dong with different Vref. In addition, the increment of the minimum 

value of the histognun is observed with the brighter images with a higher Vref. 

One of the reasons for the degraded appearance in the contrast stretched mode and binary 

mode is the Vt and lithographical mismatch in the transistors of the transformer. Under the 

same input voltages of Vbiasp and Vref, the physical sizes of the transistors determine the 

output voltage of the transformer. Particularly, when the driving transistor in the intensity 

transformer is in linear region, the mismatch affects the output most, due to different gains of 



Vbiasp = 3.054 V 

Vbiasp = 2.900 V 

Vbiasp = 2.751 V 

Vbiasp = 3.007 V Vbiasp = 2.952 V 

Vbiasp = 2.847 V Vbiasp = 2.800 V 

Figure5.24. Effects of biasing voltage (Vbiasp). 
Ybiap increases the contrast of images: while 
maximum und minimum of the histogram mains 
saine, the distribution spreads out. 



Vref = 135 V 

Vref = 1.50 V 

Vref = 1.40 V 

Vref = 1.55 V 

Vref = 1.45 V 

Vref = 1.60 V 
c- 

FigureS-25. Effects of refrence voltage (Yrefi Vref increuses the brighmess of image; 
while distribution of histogram remuins sume, the minimum value increuses as Vref 
increases- 



the transformer in the linear region. The pattern noise, due to the mismatch, is amplified by 

the gain with which the image signals are ampiified. Figure 5.26 shows the tested 

meaSuTements of the image sensors array in the prototype chip. 

As light power (light intensity) increases, the pattem noise of outputs in the normal mode 

increases slightly. Different fiom the normal mode, the pattern noises of contrast stretched 

mode and binary mode remain at roughly constant values until the light power becomes 

around S ~ W I ~ ~ ~ ,  where the driving transistor of the transformer goes into sahiration region. 

in the linear region of the transformer, due to the gain, the mismatch (pattern noise) gets 

higher. As the light power increases, Vgs of the driving transistor increases, hence the gain 

inmeases dong with the pattern noise. 

When the light power becornes around 6 p ~ / c m 2 ,  the pattern noises of contrast stretched 

mode and binary mode reach their peak values of 0.93V and 1.508 V respectively. This is 

when the driving transistor goes into its triode region. As Vgs increases M e r ,  the transistor 

O L 1 1 
I 1 

O 2 4 6 8 10 

Light Power (uW/crn2) 

+Normal + Contrast + Binary 

Figure 5.26. Mismatches in three ouput modes. Due to the lithographical mismatches. 
appearances of images in contrast stretched mode and binary mode are agected by 
pattern noise. 



goes deeper into the triode region, and the amplification gets smaiier. The pattern noise 

decreases with the decreased amplification. Thus, it is concluded that the effects of V, and 

lithographic mismatches on contrast-stretched and binary mode images become more 

significant than for normal mode operation. 

5-3-6 Summary und Conclusions 

In summary, this chapter desmies the design of an in-pixel intensity transformer and its 

analysis, along with operational perfomuioce and experimental results. A simple intensity 

transfomer is designed with controllability (programmability) of contrast and brightness. 

Each pixel for the in-pixel mapping fiinction is designed with 3 transistors and demonstrated 

successfilly. The intensity transformer, with cornmon source amplifier structure, is so simple 

that pixel-level processing implernentation is possible and feasible for on-chip integration 

with CMOS image sensors. Also, the design with a small number of transistors encourages 

the in-pixel integration. 

Full dynamic range of the allowed voltage swing between VDD and ground is still not used in 

the transformer, due to the necessary Vt difference for switching the driving transistor. 

During testing, we experienced some degradation of images in normal mode when al1 the 

three output modes (normal, contrast and binary mode) are tumeci on concurrently. This is 

attributed to cross-talk due to the short physical distance between the source follower and the 

transformer in the same pixel. In addition, switching in binary mode causes spikes in the 

contrast stretched mode for a short period of time. However, the effects on the appearance of 

the image are rarely noticed. Also, the effects of V, and lithographic mismatches become 

important, especially for contrast stretched and binary mode images. Thus, it becomes 

necessary to have an on-chip pattern noise reduction mechanism (e-g. using a feedback 

system). Also the precision of ou.  analog intensity transformer is questionable. There should 

be much more effort to improve the precision of this analog implementation (or to design a 

new implementation of higher precision) in order to use it practically. 

Although the intensity transformer has reasonable controllability by altering the biasing 

voltage and the reference voltage, it does not have DSP-like full prognunmability for contrast 

and brightness adjustments. However, with tradeoffs in programmability and precision, the 

in-pixel intensity transformer is able to achieve low power and real time operation with pixel 



processing, which is perfectly suitable for portable and wearable devices. Therefore, this 

design of the intensity transformer is for low-level image processing applications where low 

power and pixel level programmability, for m e r  automated contrast optimization, are 

emphasized . 
With design and fabrication of the in-pixel intensity transformer chip, the main purposes of 

this study, to explore the feasibility of on-chip in-pixel integration, and to gain a better 

understanding of the design issues needed for hi& quality contrast enhancement and 

automated contrast optimization, are successfully acbieved. The main issues of designing in- 

pixel processing with CMOS APS are circuit density of processing elements (that easily 

erodes photosensitive area and thus reduces fil1 factor) and massive interconnections between 

neighboring pixels. in point operation where the massive interconnections are not required, 

and in-pixel processing is the best design methodology as long as the circuit density of the 

processing element does not take too much space in the pixel. In this particular design of in- 

pixel light intensity transformer with 0.35 pm technology, the performance of the chip was 

not optimal, due to poor photosensitivity and low precision of the processing circuit. As the 

technology scales down, retaining the same minimum size of pixel (4-5 pm), the space of in- 

pixel processing circuit will get higher (see Figure 4.5) and thus higher precision of the 

circuit will be achievable. Therefore, point operation in pixel processing is a promising 

research area for the near fiiture. 



Chapter VI 

6. Local Operation 

6.1. Introduction 

Local operation is also called mask operation where each pixel is modified according to the 

values of the pixel's neighbors (typically using convolution masks). Local operation is 

spatially dependent on 0 t h  pixels around the processed pixel: the final value of the 

processed pixel is affected by its n e i g h b o ~ g  pixels in the finite sized masks. The basic 

approach of the operation, convolution, is to sum products of the mask coefficients and the 

intensities of the pixels under the mask, at a specific location in the image. Denoting the gray 

Levels of pixels under the mask (3 x 3 mask in this example) at any location by ZI, 22, . . . ,z9, 

the response of a linear mask is 

The gray level of the pixel located at (x, y) is replaced by R if the center of the mask is at 

location (x, y)  in the image. This computation is repeated as the rnask is moved to the next 

pixel location in the image until al1 the pixels in the array are covered. Linear spatial filters 

are defined such that the final pixel value, R, can be computed as a weighted s u m  of 

convolution mask (non-linear filters cannot be implernented in this way). In the above case, 

3x3 local mask was taken as an example for the convolution mask. However, the size of 



convolution mask is not restricted to 3x3, but can be expanded to 5x5, 7x7, 9x9, and larger, 

depending on what precision the h a 1  value is required to have. 

in aspects of on-chip integration with image sensors, local operations provide advantages of 

real thne operation in image acquisition and processing, such as implementations of many 

practical linear spatial image filters and image enhancement algorithms. In addition, because 

the local operation is feasible for column structure implementations, low fiequency 

processing is enabled and thus low power consurnption is expected. However, since the local 

operations are basai on a technique where local memory stores pixel values of the 

neighbours and processes thern concurrently, implementation of the operation must contain 

some type of storage, potentially requiring a large design area. Applications of local 

operation typically use an iterative technique for advanced image enhancement algorithms, 

which cannot practically be implemented on-chip. Nevertheless, in the case of column 

structure implementations, local operation still bas a limitation on design area because of the 

restricted column width, even with flexible design area in the vertical direction. Therefore, 

in order to overcome these limitations, careful designs and system plans are requird for the 

on-chip implementations. 

In order to understand the nature of local operation and to find a relationship between 

aigorithms and architectural on-chip implernentations, we will look into the main local 

operation algorithms, grouped according to simïlarity of functional processing. With many 

different local operations in Mage processing algorithms, these local operations are 

categorized into three major groups: smoothing filters, sharpening filters and edge detection 

filters. Examples of the local operation algorithrns are descnbed in [74], [75], [76], and 

summarized as follows. 

6 1.1. Smoothing Fifters 

Smoothing filters (Figure 6.1) are used for blurring and noise reduction. Bluing removes 

smail details nom an image and bridges mal1 gaps and holes in lines or curves, often used in 

preprocessing stages pnor to object extraction and segmentation. In addition, blurring can 

reduce spatial noise by smearing pattern noise in an image. Noise reduction can be 

accomplished by blurring with a linear filter and also by nonlinear filtering. Smoothing filters 

consist of four main types, namely order filters, mean filters, ordedmean filters and adaptive 



(a) Original h g e  fi) Average (Arithmetic Mëan) Filter 

(c) Median Filfer (ci) Adaptive Filter 

Figure 6.1. Matlob simuIations on smoothingfilrers. me image of theflower is 
added and degraded with Guassian noise. The size of local mask is 3 x 3. 

filters. Each type of filter has its own characteristics and applications. The detailed 

description of each filter is ornitted since it is out of this thesis' scope. 

The second type of local operation is sharpening filter. Image sharpening deals with 

enhancing detail infornation in an image, as shown in Figure 6.2. Because the high spatial 

fiequency fomponents of the image typically contain the detail idormation of the image, the 

sharpening filters should have some form of high-pass filtering. The detail information 

includes edges and boundaries of objects, which co~esponds to image features that are 

spatially small. This information is visually important because it outlines object and feature, 

thus increasing the contrast of the image. The sharpening filters are again subdivided into 

two groups: high pass and high boost filters. 



A highpass (sharpening) spatial filta contains positive coefficients near its centered pixel, 

and negative coefficients in the outer peripheral pixels of the local mask. However, because 

negative coefficients in the mask remains strongly in the final image output, this high-pass 

filtering for image enhancement typically requires an extra step of pst-processing, such as 

histograrn equalization, to display an acceptable image. High boost filters are more advanced 

than the highpass filten. With the highpass filtering, edges and high spatial frequency 

variances in the image will get enhanced, but a large portion of the visual information of the 

image is lost because the filter attenuates low spatial frequency components even though they 

are important for the appearance of the final image. The high boost filter solves this problem 

by adding low fiequency offset to the filter function. 

(a) Onginal image 
before the sharpening 

(b) Shapened image 

(c) Spatial coeficients 
response 

(id) Frequency response 

Figure 6.2. Matlub simulations on sharpenngfilters. The size of local mask ir 
3 x 3. 



îL 1.3. Derbath Fiitem (edge detectroon) 

Opposite to inteption that is analogous to averaging or smoothing, differentiation can be 

expected to sharpen an image extremely, leaving only boundary lines and edges of the 

objects. This is an extrerne case of hi@ pass filters. The most common methods of 

differentiation in image processing applications are k t  difference, gradient and laplacian 

operator whose Matlab software simulated images are shown in Figure 6.3. The difference 

filter is the simplest fonn of the differentiation with subtracting adjacent pixels nom the 

centered pixel in different directions. The gradient filters represent the gradients of the 

neighboring pixels (image differentiation) in foms of matrices. Such gradient approaches 

and their mask implementations are represented with various methods: Roberts, Previtî, 

Sobel, Kirsch and Robinson. Laplacian is another differentiation method for edge detection. 

The Laplacian of an image is a second-order derivative of 2D fiinction, which enhances 

abrupt changes and edges in the image. 

62.  Proposed Structure for L w d  Operation 

In the previous section, local operations are categorized by processing characteristic, into 

three different types: smoothing filters, sharpening filters and edge detection filters. The 

operation of these processes is baseci on a local (typically convolution) mask. The difference 

between these local filters is the different coefficient values used for the mask and the 

different sizes of the mask. Depending on the coefficients of the convolution mask, the 

operation can be smoothing filters, sharpening filters or even edge detection filtas. Therefore, 

in tems of on-chip implementation architecture, it is convenient to divide the local operation 

by the size of the local masks: 3x3 local mask (the smallest mask size and the simplest for 

on-chip implementation) and bigger than 3x3 mask. 

First, it is better to have a good understanding of the types of local mask in terms of size and 

comectivity. The local masks can have different sizes such as 3x3, 5x5, 7x7 and so on, of 

which the center pixel is the processed pixel being affected by the neighbors in the mask. 

Because the processed pixel is at the center of the mask, the size of the mask goes with odd 

numbers. The masks do not have to be square, but they are typically squares because of the 

simplicity of the design and the operation. Figure 6.4 shows different sizes of the local mask 

with shaded pixel at the center. Typically, as the size of the mask inmeases, the effect of the 



(a) Original image 

(b) Roberts (c) Sobel 

(4 Pravitt (e) Laplacian 

Figure 6.3. Matlab simulatio~~~ on edge detection filfers. m e  d~gerent edge 
detection algorithm vectors produce dtrerent effects on appearance of an image. 
The size of local mark is 3x3. 



(a) 8-connectiviîy 

Figure 6.4. Local mash with drerent skes. 

(b) ~connectivity in cross (c) Cconnectiviîy in diagonal 

Figure 6.5. Local markr with d~rerent connectivity. 



processing on the image is more apparent. As a matter of fact, the image quality becomes 

better with the larger masks under a given operation. However, due to the limited design area, 

long processing tirne and complexity of the design, the implementation of the large masks is 

o h  irnpractical. 

Comectivity of the local mask refers to the way in which the central pixel is comected to its 

neighboring pixels. The centered pixel, in a 3x3 mask, has eight possible neighbors: two 

horizontal neighbors, two vertical neighbors, and four diagonal neighbors. As shown in 

Figure 6.5, we can define three diffaent connectivity: (1) 8 connectivity, (2) 4 comectivity- 

cross and (3) 4-comectivity-diagonal. Similar to the size of the mask, as the connectivity in 

the mask increases, the effect of the processing becomes more apparent and the image quality 

becomes improved. 

When these local operations are integrated with CMOS image sensors on a single chip, these 

characteristics of the processing mask (size of the mask and interconnectivity) should be 

taken into consideration for systern-level architecture and circuit designs because these 

characteristics are directly related to design complexity and chip area. Here, we study on- 

chip implementations for the local operation. The implementations of different sized local 

masks (3x3 masks and larger masks) are investigated at different implementation levels of 

on-chip processing: pixel, column, chip and fhne mernory levels. General structural 

implementations are discussed and different architectural integrations for each operational 

type are compared with its merits and drawbacks. 

d2œlœ Implementations of 3x3 Local Mmk Filters 

The implementation of 3x3 local masks can be perforrned at the pixel, column, chip and 

fiame mernory levels. Because 3x3 local operations are the smallest possible rnasks, their 

implementation is relatively easy and there is a relatively large choice of architectural 

itnplementatiom. However, due to interconnections between neighboring pixels and to 

complexity of processing elernents, there are many challenges and difficulties in design and 

implementation of even such a simple mask. Here, it is assumed that these local masks have 

full comectivity to every neighboring pixel, giving û-connectivity in a 3x3 mask. 



Image Sensor Anay 

Figure 6.6. Pire1 processing for 3x3 local mask operation. 

First, implementation of a 3x3 local mask with in-pixel processing structures is an attractive 

design where each pixel has a photodetector and a processing element, C O M ~ & X ~  to its 

neighboring pixels in the array, shown in Figure 6.6. The connections to the neighboring 

pixels are defined by the local mask. In a case of 8 comected neighbors, a photodetector has 

eight outputs to the processing elements of its neighboring pixels. In addition, a processing 

element of a pixel has eight inputs from photodetectors of its neighboring pixels. Therefore, 

an obvious disadvantage of pixel level implementation of local mask is the heavy 

connections among pixels and processing elements. Due to the interconnections, the pixel 

loses its fill factor. Not only the interconnections, but also the processing element and the 

storage take area in a pixel, thus the photosensitive area is m e r  reduced (but microlens cm 

overcome loss of fill factor). In cases when the storage is an analog memory, the leakage 

(charge retention time) of the memory should be considered carefiilly to assure that there is 

not much voltage &op in the memory. The larger memory (e-g. capacitor) is the longer the 

holding t h e  is. However, large memory typically reduces the fill factor. Also, there should 

be shield for the storage to block any incident light Another disadvantage comes from the 

readout mechanism. Due to the concurrent processing on neighboring pixels, progressive 

scanning techniques of conventional CIS arrays will not work, unless each pixel has its own 

memory, which would increase pixel size significantly. Therefore, a new design of peripherai 

readout component may be required in the pixel processing implementation. 

If intelligent connections arnong pixels and simple processing elements are developed, the 

pixel level implementation is very attractive due to parallel processing, of which advantages 
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Figure 6.7. Column processing for 3x3 local mask operution. 

include low frequency processing, low power consumption and adaptation to the local 

environment. However, since the pixel level implementation still faces severe limitations on 

pixel size, the feasibility for given applications should be carefully examined and planned. 

The second method of 3x3 local mask implementation is based on column level processing 

structures with local memory. At the bottom of the imager array, three sets of Iinear arrays 

with Zocd storage and processing elements are placed with the sarne number of the columns 

in the image array, as shown in Figure 6.7. Since the processing elements are separated from 

the pixels, a progressive scanning technique of conventional CIS array can be used here. In 

the progressive scanning method, when pixel values of the image sensor array are read out 

row by row, pixel values of one row are dumped into the fist row of the processing array and 

stored until next image data come. When the next pixel values come, the previous values of 

the processing element array are shifted to the second row and then the third row. This 

repeats until al1 the rows of the image go through the processing array. Each t h e  a new row 

is dumped, the operation of the local mask shouid be done before the tnuisfer to the next row. 

The column structure implementation of local operation offers a number of advantages such 

as column-parallel processing, flexibility of implementation in vertical direction, low 

frequency processing and low power consumption. Because the column level processing 



Image Sensor Array Proœssing 
Element 

Figure 6.8. Chi!  processing for 3x3 local mask operation. 

structure has added space for its design of processing elements in the vertical direction, the 

restrictions on design area and the nurnber of transistors are relaxe& compared to the pixel 

level processing implementations. However, there are still limitations on the column width 

and thus, a carefùl design and irnplementation of processing elements is recommended. 

Among the choices of the i~nplementations~ the simplest method of structural irnplementation 

is chip level irnplementation where a processing element is located at the end of the output 

channel in the image sensor array, as shown in Figure 6.8. Because this method does not 

have any limitations of pixel sUe nor column width, it has fkeeûom of design area and 

therefore, it is feasible to use circuits of high complexity and fbnctionality. Even with 

complex design of processing elements, the chip processing implementation is expected to 

have the smallest design area. However, it requires a very fast processing fiequency, equal to 

the image data rate of the imager array (-10-1 00 MHz). High-speed readout typically causes 

high power consumption that is not desired in many applications, and increases the design 

complexity of the processing element to protect it fiom noise and crosstak. Similar to pixel 

level implementations, a new scanning method other than progressive or interleaved 

technique is desired for the chip level irnplementation because of the concurrent readout and 

processing operation on neighboring pixels. Also this must be non-destructive because we 

need to reuse the pixel values. 
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Processing 
Element 

3 Linear arrays of local storage 

Figure 6.9. Hybrd rnethod (colunin + chip processing) for 3x3 local 
mask operation. 

A modified structure of chip level implementation is shown in Figure 6.9. Using a 

progressive scanning method of the column level structure, when the three rows of the local 

storage axray contains valid image data fiom the image sensor array, image data of al1 three 

rows of the storages are shifted in series to the processing element. As the image data corne 

fkom the local storage array, the processing element operates on the image at very high speed 

(same as the data output rate or output sarnpling rate). Still, the method operates at very high 

speed with high power consurnption, but a simple progressive scanning method can be used 

with a trade-off on a larger area of local storage array. 

The last option for on-chip irnplementation is &me memory level structure, shown in Figure 

6.10. Al1 the pixel values of the image sensor array are shified to the h e  memory once 

photodetectors integrate incoming light and capture an image. Each pixel of the frame 

memory consists of storage and a processing element, very similar to the pixel processing 

implementation except that there are no photodetectors in the frame memory. Therefore, the 

pixels of image sensor array do not lose any fil1 factor for the processing elements and 

storages. With the gain of fil1 factor in the photodetector pixel, the overall chip s u e  increases 
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Figure 6.10. Frame memory processing for 3x3 local mask operation. 

with fiame memory and intwface circuits, thus increasing fabrication cost. Because images 

captured by the image sensor array always go to the fiame memory for the local processing, 

the output images of the chip experience latency of one image fiame: the present output of 

the chip is captured one h e  before. Also, because the sensor array is not centered in the 

package, it needs a special care to align the lem with the package. Despite the high 

fabrication cost and complexity of memory design, the implementation with the h e  

memory has the potential advantages of parallel processing, low processing power 

consurnption and flexibility of processing circuit design. 

We have seen different architectural implementations for local operation with 3x3 local 

masks. Each type of implementation has its own advantages and disadvantages. A b  careful 

investigation of these implementations, we recommend the column level structure for the 

implementation method for 3x3 local mask operation because of column-parallel processing, 

low power consumption, and feasibility of implementation. Currently pixel-level 

irnplementation is less feasible, fkom a practical point of view, due to its extensive 

interconnections and severe increase of pixel size by the processing element and storage. 

However, when the CMOS technology scales down m e r ,  in-pixel processing may become 

a practical implementation in the near future. Chip level processing and frame memory 



irnplementations lose their interest in design due to their probable high power consurnption 

and complexity of circuit design. 

62.2. Impfementatr'on of Bigger Mmks than 3 d  

The on-chip Mplementation of masks bigger than 3x3 such as 5x5 (24 interconnects), 7x7 

(48 interconnects), 9x9 (80 uiterconnects) and even larger, is very difficult Simply because 

of the mask size and the large number of routings, the implementation of these masks 

requires extreme caution on interconnection routings between neighboring pixels. Pixel, 

column and h e  memory implementations, where, in some ways, limitations on the design 

area exist, are not suitable for these masks. Even chip processing irnplementation is not a 

good choice because of its complicated scanning method. Therefore, there should be some 

modifications on these implementation methods in order to accomplish the design of the 

larger masks . 
One possible design for the larger masks is a hybrid method, combining column and chip 

level implementations, introduced in the previous chapter (see Figure 6.9). Because a 

processing elernent is located at chip level (one processing element per chip), there are no 

limitations on design space for the processing elements. in addition, because the three or 

more lhear arrays of local storages (the number of linear arrays is equal to the mask size) are 

use& a conventional progressive scanning technique can be applied for the readout, reducing 

design complexity of penpheral readout circuits. However, since the processing of operation 

is done at chip level, high processing speed (equivalent to the pixel rate) at the processing 

element is still required. This processhg speed evenhially determines the data output rate. 

The hi& processing speed aiso consumes high power, which is the main trade-off of the chip 

processing implementation. 

Another implementation method for the larger masks is a pipelined structure. The pipelined 

structure is based on a concept that some 2 dimensional matrices (N x N) can be represented 

as products of two linear arrays (product of a linear (N x 1) and a linear array (1 x N)) if the 

matrix is separable, as shown in Figure 6.1 1. The computation of the product on linear arrays 

is relatively easier than that of the 2 dimensional arrays (Figure 6.12) where a 1x3 linear 

array computation is done with pipelined structure. This computation method may seem to be 

trivial, but when the mask size gets bigger than 5x5, this method will be highly effective. 



Figure 6. I I .  Concept of pipelined local musking. A 2-dimemional mat& con be 
realized by the producr of two 1-dimensional (Iinear) arruys. 

From the image sensor array 

4 4 4  4 4 4  4 4 . 1  4 4 4  

Final Output Storage 

Local storage + 
Processing Element O Local storage 

Figure 6.12. Basic stnrcture ofpipeiined implemeniation for large local m&. 



With the pipelined computation, column level implementation is possible for the larger 

masks, hence allowing a slow processing fiequency and low power consumption. 

Because a whole row of the array is computed at a same time, N different Iinear arrays are 

needed to compute the product of one linear anay, shown in Figure 6.12. AAer this operation, 

another similar computation should be done for a horizontal linear array in order to complete 

the 2 dimensional matrices. Therefore, the circuit design for the computations gets complex 

and consumes a large area. In addition, the coefficients of the product matrices of two linear 

arrays are correlated, and thus any changes on a coefficient of the product matrix may affect 

the other coefficients in the matrix. Because the coefficients of the local masks should be not 

correlated, but independent form each other, the pipelined structure has limitations on 

contents of the coefficients. Therefore, matrix must be separable for this pipelined structure. 

Although the pipelined structure can take advantage of column processing implementation, 

providing column parallel processing and low power, its complexity of computations, 

difficulty in input controls, and large design area Iimit the use for practical designs. Therefore, 

for the design of the large convolution masks (larger than 3x3 mask), the hybnd design with 

column and chip level implementation is highly recommended for its relatively simple design 

and easy operational control, at the price of hi& power. However, these designs do not have 

flexibility on the mask size; the mask size is predetermined and pre-fixed before the chip 

fabrication. Also, iterative operations cannot be implemented on chip, thus limiting its 

applications to low level preprocessing. The general description and cornparison of local 

operation are summarized in Table 7. 

63. Spatial On-Chip Binary Image Processing 

6 3.1. Fundamental Operation rir Binaty image Processhg 

Binary image processing is of special interest, since an image in binary format can be 

processed with very fast logical (Boolean) operators. Each gray level is represented by 

several bits. In a binary image, only one bit is assigneci to each pixel (B = l), implying two 

possible gray-level values, O and 1. These values might indicate the absence or presence of 

some image property in an associated gray-level image, where 1 indicates the presence of the 

property at that coordinate in the image, and O otherwise. This image property commonly 

includes the brightness at the pixel. However, more abstract properties such as presence or 



Pixel Processing 

Column Processing 

Chip Processing 

Frame Memory 

3x3 Masks 

Large number of neighbor 
connections and processing 
element area sacrifice fill 
factor and pixel size 

- 

High flexibility of 
implementation with low 
pow= 

High speed and power 

Combined structure of 
column row storage and 
chip level PE with local 
storage or Chip level PE 
with a special image 
scanning method 

High fl l  factor because 
neighbor connections and 
local storage are at outside 
of sensor array, but too 
much degradation on area, 
power and speed 

- -- 

Larger than 3x3 Masks 

lmpractical to implernent, due 
to a large number of 
interconnections to 
neighboring pixels 

Complex implementation due 
to large numtber of 
connections. If implemented, 
special architecture like 
pipelined structure is desired 

High speed and power 

Combined structure of column 
row storage and chip level PE 
with local storage or Chip 
level PE with a special image 
scanning rnethod 

High fill factor because 
neighbor connections and local 
storage are at outside of sensor 
array, but difficulty rernains in 
interconnections between 
pixels 

Table 7 . G e n d  descriptions and com@sons of local operation irnplementations. for 
dzfferent sizes of local masks. 



absence of certain objects might be indicated. Often, a binary image has been obtained by 

extracting information fiom a gray-level image, such as object location, object boundaries, 

the presence of some image property. Here, in this thesis, we restrict the binary image 

processing obtained by an image property of the brightness (light intensity at a pixel) for 

M e r  operations. 

A much broader and more powerfül class of binary image processing operation is binary 

image morphology, also called morphologid image processing. Morphology relates to the 

structure for forms of objects. Morphological filtering simplifies a binary image to assist the 

search for objects of interest. This is done by smoothing out object outlines, filling small 

holes, eliminating mal1 projections, and using 0 t h  similar techniques. Even though ou. 

focus of morphological image processing is for binary images, the extension of the concepts 

can be applied to gray-level images [42-521. 

The two principal morphological operations are dilation and erosion. Dilation expands 

objects, thus potentially filling in small holes and comecting disjoint objects. Erosion shrinks 

objects by etching away (eroding) their boundaries. These operations can be varied for an 

application by the proper selection of the stnicturing element, which defines the neighbors in 

the operations, and thus determines exactly how the objects will be dilated or eroded. The 

neighborhood for a dilation or erosion operation can be of arbitrary shape and size (it can be 

4-comected or 8-connected, or even with different sizes of the structuring elements of 3x3, 

5x5 or larger). A structuring element is a matrix consisting of only 0's and 1's. The center 

pixel in the structuriag element represents the pixel of interest, while the elements in the 

matrix that are on (= 1) define the neighborhood. 

The dilation and erosion processes are performed by laying the stmcturing elernent on the 

image and sliding it acmss the image in a manner similar to convolution. The diffaence 

between dilation and erosion is the operation perfiomed. The algorithms of these processes 

are as follows. 

For dilation, if the center of the strucîuring element coincides with a ' 1 ' in the image, 

or if any pixel in the input pixel's neighborhood (defined by '1' in the stnicturiag 

element) is on (' 1 '), the output pixel is on. Otherwise, the output pixel is off ('0'). 



For erosion, if the center of the stnicturing element coincides with a ' 1 ' in the image 

and if ali pixels in the input pixel's neighborhood are on (' 1 '), the output pixel is on. 

Othecwise, the output pixel is off ('0'). 

With a dilation operation, dl the '1' pixels in the original image will be retained, any 

boundaries will be expanded, and small hoes will be filled. The erosion process is similar to 

dilation, but it turns pixels to 'O,, not ' 1 '. Al1 the boundaries of the objects are etched away, 

and some small objects disappear fiom the original image. A sirnulated example is shown in 

Figure 6.13. A b  an original gray-levei image of stars (Figure 6.13 (a)) is extracted to a 

binary image (Figure 6.13 (b)), erosion and dilation operations are applied to the binary 

image. In Figure 6.13 (c), the erosion makes white spots of the stars smaller and even 

relatively very mal1 stars to disappear fiom the original image of Figure 6.13 (a). Meanwile, 

the dilation of Figure 6.13 (d) makes al1 the stars larger than the original size. 

There are many other types of morphological operation in addition to dilation and erosion. 

However, many of these operations are just modified forms of dilation or erosion, or 

combinations of dilation and erosion. The most useful operations for morphological filtering 

are called opening and closing. Opening consists of an erosion operation followed by dilation 

with the same stnicturing element. It can be used to eliminate al1 pixels in regions that are too 

small to contain the structuring element while keeping large objects the same sizes, shown in 

Figure 6.13 (e). A related operation, closing, is the reverse of the opening, consisting of 

dilation followed by erosion. It can be used to fil1 in holes and mal1 gaps. 

Another interesthg and useful operation is to determine the perimeter pixels of the objects in 

a binary image. This perimeter detection is quite similar to edge detection in gray-level 

images, but with simpler computations. A similar processing as dilation or erosion is 

perfomed on the perimeter detection: we lay the sbucturing element on the image and slide 

it a m s s  the image. The difference is in the operation with the structuring element. As shown 

in Figure 6.13 (0, a pixel is considered a perimeter pixel if it satisfies both of these criteris: 

It is an on (=1) pixel 

One (or more) of the pixels in its neighborhood is off (=O) 



(c) Erosion (d) Dilation 

Figure 6.13. Bïnury Image Processing with various firnctionalities of erosion, 
dilution. opening and perimeter detection. 



At k t  glance, perimeter detection may seem M a l ,  suice the perixneter points can be simply 

dehed  as the transition h m  1 to O (and vice versa). However, perïmeter detection is quite 

usefbl and powemil, particularly for image segmentation and pattern recognition. 

Because of Boolean operators and the dp l i c i ty  of their circuit design, on-chip 

implementation of binary image processing is relatively sûaightfonuard. Here, we try to 

implement on-chip binary image processing with CIS as a demonstration of on-chip local 

operation. Although binary image processing is different nom gray-level image processing, it 

has many similarities in operation, but with much less complicated operational computations. 

As a column processing implementation was proposed for local operation in the previous 

chapter, a column processing structure is implemented for the binary image processing. In 

addition to parallel processing and low power in the column processing implernentations, the 

binary processing offers a number of other advantages. 

The processing element is relatively simple compared to other analog processing 

circuits that need high-levels of wmplexity in their design. 

The algorithm is powerful enough to be applicable to many low-level processing 

applications. 

There is no need for hi& accuracy ADC 

The local storage is relatively simple. 

Here, we designed and implemented on-chip binary image processing with CIS to investigate 

the feasibility of the column structure implementation for local operation and its performance. 

63.2. Revious Works on Binury Image Processr'ng 

The morphological analysis of black-and-white images was initiated by George Matheron in 

the late 1960s. His early work is described in the publication in 1975 of "Random Sets and 

Integral Geometry"[4 1 1. Since 1 975, the use of the fùndarnental morphological operation, 

absent of any significant statistical interpretation, has found a fast-growing field of 

applications. The developments of binary and morphological image processing algorithms 

were accelerated. These algorithms include noise reduction [48] [49], image sharpening 1471, 

edge detection [44], image compression [57] and many other morphological filters 



[QI [43 3 [45] [46] 1501 [5 1 1. Large numbers of image processing software packages and 

hardware peripherals that include morphologicai operation such as diiation and erosion. 

Hardware impkmentations of morphologica1 processors include not only basic operation of 

dilation and emsion, but also more complicated image processing on binary images [52-571. 

In addition to the binary image processors, there have been attempts to integrate binary 

image processing with image sensors, airning for reai-tirne operation of image capturing and 

processing. The on-chip binary image processing has variety of applications such as motion 

detection and analysis [59] [61], fingerprïnt sensing [60], and skeletonization [62]. On-chip 

binary processors with CMOS image sensors were also implemented for high 

programmability and flexibility of operation [58][63]. These on-chip binary processors are 

based on pixel processing implementations, which contain a photodetector and a binary 

processing element in the same pixel. Therefore, due to the high density of processing 

circuits in the pixel, only small sizes of arrays, less than 32x32, were implemented and 

therefore, the applications are restricted to low resolutions. 

Because binary image processing uses a structuring element, which indicates relations 

between the center pixel and its neighboring pixels, the column processing structure is a good 

fit to the impiementation of the binary image processing. Some previous studies have focused 

on the implementation of image processing, not only binary image processing but also 

general image signal processing, in column processing structures 164-701. Also, the basic 

concepts of hybrid methods are also discussed: pipelined structure [71] as well as the 

combined structure of column and chip processing [72]. However, these are not for on-chip 

binary image processing. 

Here, we designed and fabricated on-chip binary image processing with CMOS APS in 

column processing implementation. 

63.3. Design of CMUS Active h l  Sensor wirh On-Ch@ Binaty linage Piocessing 

We have designed and fabricated a prototype chip comprishg a 64 x 64 array in standard 

0.35 pm CMOS technology with 3.3 V power supply. A die photograph is shown in Figure 

6.14. Each pixel is 30 pn square with nfp photodiode, and it has a fil1 factor of 82%. The 

main objectives of this chip are (i) to explore the feasibility of local operation integrated with 

CMOS image sensors, (ii) to demonstrate the scalability of column processing 



Figure 6.14. Die photograplr of the protolype binary image processirtg chip. The 
total area is 3.2x3.2 mm2. 



implementation with 0.35 pm technology, where processing elements are fit to the column 

pitch of the image sensor, (iii) to demonstrate on-chip binary image processing in real time 

mode, with low power consumption, (iv) to demonstrate feasibility of high resolution 

implementation, and (iv) to address the benefits and fuhve research direction of on-chip local 

processing with CMOS APS. 

The chip has one analog output and four different 1 bit digital outputs. The analog output is 

for raw images captured in the normal mode operation, without any signal modifications. The 

four 1 bit digital signais consist of: Binary image, erosion, opening and perimeter. The 

overall operational structure of the chip is shown in Figure 6.15. Since the binary image 

processing is perfonned by column-based processing components, the compact design of the 

processing circuits is easily found at the bottom of the chip (see the dark portion at the 

bottom of Figure 6.14). The chip consists of two main basic portions: one for normal mode 

operation at the top of the photodiode array, and the other for binary image processing at the 

bottom of the array. The normal mode of the chip follows the standard operation of CIS: the 

image is captured by photodiode with integration mode and the image data is transfmed in 

parallel through source followers to the S/H's by row select shift registers, and then 

transxnitted out in series by output buffers. Since basic operation and designs of photodiodes, 

shift registers and SIH's are discussed in the Chapter 2, the description of these components 

are omitted here. 

In contrast, the binary image processing whose overall schematic is shown in Figure 6.16 

consists of voltage comparators, local latches, processing elements, column storage and 

column readout circuits (shifi registers). More detailed structure of the chip is shown in 

Figure 6.17. Once the image is captured by the sarne photodiode as used for the normal mode, 

it is buffered and stored in the SM for the voltage compamtors, the schematic of which is 

show in Figure 6.18. The voltage comparator compares the image with the reference voltage 

to generate 1 bit binary signals (O or 1). which are stored in the local latches and shified row 

by row. Since the CIS array reads out the image data row by row, the shifting rate of the 

local latches should be the same as the clock rate of the row shift register for the CMOS 

imager array. This also means that al1 the necessary processing should be done within one 

cycle of this clock. In this particular design of binary image processing, 3x3 stmchiruig 

element (local mask) is used to define the comectivity of neighboring pixels. 
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Figure 6.15. OveraIi Operational Stmcture of Binary Image Processing. 



Figure 6.16. Schematic of major components in on-chip binary image processing. 
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Figure 6.17. Detailed structure of On-chip Binary Image Processor with CMOS 
image sensor array. 



Figure 6. iû. Schematic of Voltage Compara for [88]. 

After the voltage comparator, there are three linear arrays of the local latches with the same 

number of columns as the imager array, followed by an array of processing elements. The 

circuit design of the processing element depends on which operation is implemented, such as 

erosion, dilation and perimeter detection. Since the operation of opening is based on the 

dilation after the erosion, there is another set of local latches and processing elements after 

the h t  erosion processing array which takes input images nom the erosion and cornputes 

dilation operation on the eroded image, as shown in Figure 6.17. 

Each output of the binary operation of binarization, erosion, perimeter detection and opening, 

needs its own output readout storage (column storage in Figure 6.17) for the senal data-out 

because different binary operations transmit the outputs independently through physically 

separate channels. Therefore, there are five different column storage elements in the chip, 

including the normal mode operation. in the chip, despite the different column storages, only 

two column readout contmls (column shift registers) are used: one for the normal mode and 

the other for binary operation. 

The algorithms of erosion, dilation and perimeter detection are implemented with logic 

(Boolean) gates. The algorithm of erosion is implemented with AND logic gate, shown in 

Figure 6.19 (a). Due to the neighborhood selection of the structuring element, the processing 

logic should be able to discriminate output value of the processing element. In a case where 

no processing elements are selected by the structunng element, the default values of the 



(a) Logic gates for erosion 

@) Switch for erosion 
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Figure 6.19. Logic design and schematics of the switches: (a) Logic gates for erosion. 
(b) Switch for erosion and perimeter detection, (c) Logif gates for perimeter deîection. 
(d) Switch for perirneîer detection. (e) Logic gates for dilution, a) Switch for dilation. 



inputs to the AND gate should be ' 1 ', thus lesding to a special design of the switch, shown in 

Figure 6.19 (b). The switch selects the incoming processing element if the corresponding 

coefficient of the structuring element is high at a trigger of the PEClk. Otherwise, the output 

retains its default value of ' 1 '. The design of the perimeter detection is similar to the erosion. 

The difference is in the logic gate for the neighboring pixels: for the erosion, AND gate is 

used and for the perimeter detection, NAND gate is used for the selection of the neighboring 

pixels, shown in Figure 6.19 (c). A h ,  since the default value of the switch is the same as 

that of the erosion, the same design of the switch is used for the perimeter detection. 

The operation of the dilation is significantly different fkom the erosion and perimeter 

detection due to the OR logic operation. With a similar structural design, but different logic 

gates, the dilation consists of two OR gates and 8 difierent switches, shown in Figure 6.19 

(d). Due to the different default value of the switch, the switch for the dilation is redesigned 

with some modifications fiom that of the erosion and perimeter detection, shown in Figure 

6.19 (e). 

63.4. Te- and Performance 

Since the tests on the imager characteristics were dealt with fiequently in the previous 

chapter, the detailed descriptions of the optical characteristics of this chip are not repeated. 

Only basic performance tests such as power consumption, h e  rate and physical parameters 

are discussed here. Rather, the test focuses on the performance of binary operation and their 

effects on the appearance of the images. 

Single Ch@ Charaeîerisîics and Normal Mode Operation 

Here, we are able to ven@ operation successfülly on image capture with some sample 

images, illustrated in Figure 6.20. As expected, the quality of the images captured by the chip 

is not high, partially due to the fact that the chip process technology is not optimized for 

image sensors, but instead for logic and mernory. However, the subtraction of the white 

background image at the same illumination when the images are captured (see Figure 6.20 

(c)) enhances the quality of the captured images by reducing pattern noise. Figure 6.20 (a) is 

a raw image and Figure 6.20 (b) is a pattern noise subtracted image. There are some 

noticeable differences in their image quality: the processed image is cleaner and has a higher 



(a) A raw image (b) Processed image (C) Wïtite background 

Figure 6.20. Real time images caprirred by the chip in nonnul mode operation. (a) 
Raw image. fi) Processed image afer the subtraction of white backgroundfi.om the 
raw image, (c) White background image. 

Technology 
VDD Power Supply 
Output 
Package 
Chip size 
Pixel sue 
Format of array 
Fil1 factor 
Maximum Fame rate 
Power 

Light lux 

0.35 um CMOS 
3.3 v 
L anaiog output and four 1 bit digital outputs 
68 PGA 
3204.5~3204.5 pn2 
30.8x30.8 
64x64 
82.65% 
100 Khz (24 h e s / s )  
3.05mAx3.3 V =  10.065 mWat 50Khz 
sampling rate 
Room light (150 - 200 lux) 

Table 8. Characteristics of single chip. 



contrast. The chanrcteristics of a single chip are sumrnarized in Table 8, including basic 

characteristics of the chip. 

The power consumption of the chip is about 10 rnW at a h e  rate of 12 h e s / s e c .  This 

includes both the normal operation and binary image processing with 4 different outputs. The 

pixel size is 30.8 x 30.8 jun2 which is relatively large. This is due to the interconnections and 

the processing elements in the columns. Since pre-built digital components such as flipflops 

and logic gates are used from a standard Iibrary, the minimum size of the design area (- 20 

pm) cannot be changed. Custom layouts for these components will, however, optimize the 

colurnn width and thus reduce the pixel size. In addition, the large pixel size with the large 

fil1 factor of the chip is necessary to increase the photosensitivity of the photodetectors, 

already degraded by the poor optical charactexistics of the process technology. 

This poor photosensitivity also affefts the ûame rate of the chip. As shown in Figure 6.2 1, as 

the k e  rate inmeases, the quality of the images capturai degrades rapidly. When the fiame 

rate reaches around 100 KHz of data rate, it is noticeable that the image has become 

degraded with pattern noise and poor contrast. Therefore, the binary image processing 

typically operates at around 20 KHz and 50 KHz, which is relatively low compared to 

commercial high performance chip with a data rate around 20 - 40 MHz. 

In normal mode, there is a defect on the image sensor array. Even under unifom illumination, 

the image displays a white half circle at the top of the image, shown in Figure 6.22 (a). Also, 

this white half circle appears on the binary image which have been filtered with a threshold. 

Figure 6.22 (b) shows an image of edges in the binary image, illustrating half-circle 

boundaries at its top of the image. This seems to be due to the cross talk and noise, which are 

generated by the nomial mode readout circuits located at the top. It can be verified by 

observing a binary image in edge detection mode while the normal mode is turned off. When 

the normal mode is tumed off, the dges (boundaries) of the half-circle cannot be found, 

shown in Figure 6.23. It is concluded that the readout peripheral circuits of the normal at the 

top of the array generate the unwanted defects on the normal operation. The optimization of 

the cross-talk @y putting a ground Nig between the array and the readout circuits) is 

expected to eliminate this defect. 



(a) 1 O KHz 

(c) 50 KHz ('d) 100 KHz 

Figure 6.21. Effects offiame rate in n o m l  mode operation. 



(a) Nonnal Mode (b) Edge detection mode 
of a binary image 

Figure 6.22. When both normal mode and binary operation are on, n defect of white 
spot can be found at the top of the image in both images. 

(a) Normal Mode (b) Edge detection mode 
of a binary image 

Figure 6.23. In processing on& mode, the defect in Figure 6.2.3 disappears 
regardles of Vref: 



Operaîlon of On-Ch@ Binary Image Processing 

On-chip binary image processing consists of four different operatioas; thresholding 

(binhtion),  erosion, dilation (later combined with erosion, it becomes an operation of 

opening), and perimeter detection. Figure 6.24 shows sample images of these binary 

processing, captwed by the chip in real tirne operation mode. Because the outputs could not 

be displayed at the same time with our testing equipment (we have only two probes), some of 

the images have tirne differences, although the chip outputs al1 images in parallel. 

A good demonstration of the binary processing is also shown in Figure 6.25. After capturing 

the image, the raw image of Figure 6.25 (a) is sent to the voltage comparator to generate the 

binary image, Figure 6.25 (c). Through the first set of linear arrays for the local storage and 

processing elements, operation of erosion and perimeter detection are perfoxmed on the 

binary images. Through the operation of erosion, boundaries of objects are etched away and 

disappea.. Large white spots are etched away, bewming smaller and some small spots 

disappear from the image, show in Figure 6.25 (d). Another operation with the same local 

latches is the perimeter detection. In this particular design of my chip, the perimeter detection 

is applied to the binary images (see Figure 6.25 (e)), not on the images afier the msion. The 

last operation of the binary image processing is the opening that eliminates al1 pixels in 

regions that are too mal1 to contain the stnicturing elernent. As shown in Figure 6.25 (f), the 

small white spots of the binary image, Figure 6.25 (c), were disappeared after the opening, 

but the original shapes are maintained for large spots. This process can be used in object 

discrimination and spatial noise reduction. 

The performance of the binary image processing integrated on the chip should be 

independent of shape of the objects in the input image. Figure 6.26 shows the operation of 

the chip on different shapes of the input objects; circle, triangle and rectangle, demonstrating 

that the chip operates independent of the shape of the objects. 

Interestingly, and perhaps obviously, the binary image processing is very dependent on the 

conversion from a raw image to a binary image. The conversion is accomplished by the 

voltage comparator; when the input voltage is lower than the reference voltage (bnght image), 

the output is ' 1 ', otherwise, the output is 'Oy. As noted, choosing a proper reference voltage is 



(a) Raw image (b) Processed image 

I 

(c) Binary image (d) Erosion 

(e) Perimeters (6 opening 

Figure 6.24. ample images of CMOS Active pixel sensor with on-chip binav image 
processing. 



(a) Raw image (b) Processed image 

(c) Binary image (d) Erosion 

Figure 6.25. Demonsirations of binary image processing. Al1 the images are 
cap~red by the protovpe ch@ in real time mode. 



(b) Perimeters 

(c) Binary image 

(d) Erosion 

Figure 6.26. Independent operaiion of binary image processingfiom the shape of 
the objects. 



quite an important process for the binary image processing. This processïng is also called 

'thresholdinf in the image processing field. Although there have been many studies and 

dernonstrations 1731 [74] [75] [94], thresholding is uot an obvious and straightforward 

subject Figure 6.27 illustrates the effects of the different reference voltages to the 

comparator on the binary operation. It demonstrates the importance of the reference voltage 

to the binary image processing. For example, the reference voltage of 1.56 V gives the best 

results on binary images and their operation, at this particular input image and under a 

particular illumination (environment). However, this reference voltage does not give the best 

results al1 the time, rather the most appropnate voltage should be chosen carefûlly for 

diffkrent environment and input images. When the reference voltage is low compared to the 

average pixel values of the input image, the output image mainly consists of 'Oy, 

correspondhg to a black image, where objects cannot be recognized and boundaries of the 

objects are meaningless, as shown in Figure 6.27 (b). In contrast, as the reference voltage 

increases, the gray levels of more pixels becorne over the reference voltage, producing ' 1 ' as 

their outputs in the binary image outputs. The acnial shape of the face becomes more 

recognizable and the boundaries of the object become more reasonable. When the reference 

voltage gets too high, most of the gray levels are over the reference voltage, generating an 

almost white image (see Figure 6.27 (h)) for its binary output images. Also, the boundaries of 

the object become meaningless once again. 

Another interesthg test is based on the stmcturing element that defines the effect of the 

neighboring pixels on the final output value of the pixel. With the 3x3 struchiruig elment in 

this chip, the coefficients ('O' or '1') of the structuring element are controllable extemally, 

which means that the connectivity of the neighboring pixels can be selected. Here, several 

diffkrent connectivities (structuring elernents) are explored. Figure 6.28 shows a 

dernonstration of the different struchiring element with different connectivities on the binary 

operation. A stnicturing elernent of 3x3 local mask (see Figure 6.28 (b)) is applied to an 

original image of a triangle, Figure 6.28 (a). With different stmcturing element of different 

comectivity, each operation of buiary image processing (perimeter detection, binary, erosion 

and opening) is applied to the original triangle image. Their output images of the binary 

operation are shown in Figure 6.28. 



Raw image 

(b) Vref = 1.20 V 

Binary Image 

(c) Vref = 1.30 V 

Processed image 

Erosion 

(d) Vref = 1.40 V 
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(e) Vref = 1.50 V 

(f) Vref = 1.56 V 

(g) Vref = 1.60 V 

(h) Vref = 1.70 V 

Figure 6.2 7. The effects of reference voltage 
(As changing Vref; a? Vc = 0.55 V optimal voltage for best image quali~). 



(a) Original input Image 
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Figure 6.28. Connectivity: eflects of dtfirent neighboring pkels of shuchring 
element on  bina^ image processing operation. 



Interestingiy, even with 8-comected and 4-connected neighboring pixels in the stnicturing 

elements, the images of the buiary operation are not greatly afTected. This is because the size 

of the structuring element is too small to generate significant impact on the output images. 

Therefore, the size of the structuring element will affect the output binary images 

considerably. Since the 3x3 structuring element in this chip is relatively small, the changes in 

its coefficients are negligibie. M e n  the size of the structuring element becomes larger to 5x5, 

7x7 or larger ones, the selection of the coefficients will influence the appearance of the 

output image. 

63.5. Summary and Conclusions 

In this section, we have describeci a design for CMOS active pixel sensor with on-chip binary 

image processing and its analysis, dong with operational perfomance and experimental 

resuits. We have explored the feasibility of local operation integrated with CMOS image 

sensors, concluding that column processing architecture is the best fit provided the 

interconnections to neighboruig pixels are not excessive. As a demonstration, the operations 

of binary image processing (global thresholding, erosion, dilation and penmeter detection) 

are integrated on a single chip with CMOS image sensor array. The on-chip real-tirne 

operation allows image capturing and image processing in parailel, thus pennitting low 

fkequency processing circuits and reducing power consumption. The binary operation, with 

each PE implernented per colurnn (also called column processing structure), is designeci with 

digital storage and logic gates, and demonstrated successfilly for its real-time operation with 

low power consumption. 

In this particular design of on-chip binary image processing, each processing element is fitted 

into a 30 pm column width which is larger than that of the average image sensor (< 10 p). 

However, custom layout of digital latches and logic will reduce area and optimize the 

processing power consumption. In addition, as the technology scales down, the size of 

processing element can shrink and more metal layers cm help reduce the area of the pixel 

interconnections. 

Due to a design mistake in the image sensor array, some defects are observed in the image in 

the normal mode operation. This is attributed to cross-talk between the image sensor array 

and the readout circuits, which can be eliminated by putting guard ring around the sensors. In 



addition, the layouts are not particularly optunized for the spatial or temporal noise. Layout 

optimization will help in the noise reduction of the images. It will also enhance the 

degradation seen in the image when both the normal mode and the binary processing mode 

are on. 

The design of the prototype chip is a good demonstration of one possible Mplementation 

structure for on-chip image processuig. However, it does have limitations in terms of 

programmability. Many operations of programmable binary image processing require 

repeated or iterative processing on the images at various stages of the processing. For best 

results, the images have to be fed back to the same operation over and over again, or to 

different operations. In contrast, our on-chip binary processing takes the input image straight 

fiom the image sensor array, and thus it is not able to do repeated operations on the input 

image. For repeated computations, a number of the processing components need to be 

designed on the data path, each independently operating its fûnction each time. However, the 

design of the repeated operation is a trade-off between the complexity of the design, power 

and area. 

The design of on-chip binary image processing, therefore, is for low level processing 

applications where low power consumption and design cost are emphasized. This 

demonstration of the chip is intended to prove firnctionality and feasibility, and to as a guide 

to the fbture research direction. Primary obstacles for on-chip local processing 

implementations are due to the design complexity of processing elements and the large 

number of interconnections between neighbo~g pixels. With the 0.35 pn technology, it is 

not impossible, but very difficult to implement local masks larger than 3x3. As the 

technology scales down and more metal layers are available, this restriction on the mask size 

will be loosened and 5x5 local masks will be easily feasible in the future. In order to get 

effective results h m  some of the local operations, at least 5x5 local masks (or larger) should 

be applied even with the tradeoff of area, power and design complexity. However, instead of 

voltage operation in these elements, current mode operations are expected to reduce the 

design complexity. Also, current mode operation can reduce the required processing time by 

elirninating the phenomenon of charging and discharging on the capacitive nodes [93]. Low 

power operation is achievable with this current mode because the dynamic range of the 

output is due to current, not voltage, which is less affected by the low voltage supplies, 



expected in more advanced CMOS technologies. A more detailed example of cment mode 

processing is illustrated in Appendix A, where a modified pixel structure of an inverteci 

logarithmic pixel sensor is introduced. 



Chapter VI1 

7. Global Operation 

7.1. Introduction 

Approaches to image processing fall into two broad categones in ternis of operational 

domain: the spatial and fiequency domains. The spatial domain refers to the image plane 

itself. Approaches in this category are based on direct manipulation of pixels in an image. 

Frequency domain processing techniques are based on modifjring the spatial Fourier 

transforrn of an image. An image in spatial domain is converted into fkquency domain by 

the Fourier transfom. Since computation of convolution in spatial domain is equivalent to 

multiplication in fiequency domain, manipulation of a linear system on the image becomes 

multiplication of the image by a filter transfer function in the frequency domain. The 

resultant image in the fiequency domain is converted to the spatial domain by taking the 

inverse transform. Many basic ideas of mioothing, sharpeniag or edge detection filters arise 

fiom concepts directly related to the Fourier transform because these filters attenuate or 

intensim only portions of fiequency components [74] [753. 

Frequency domain operations, by the very nature of the fiequency transforms, are global 

operations, where al1 the pixel values in the image are taken into consideration at once. Of 

course, fiequency domain operation can become a local (or mask) operation, based on a local 

neighborhood, by performing the transform on small image blocks instead of the entire image. 

In contrast, spatial domain processing methods include al1 the three types of point, local and 

global operation. Global operation in the spatiai domain leads to very difficult 



(a) Ideal Low Pass (b) Fxponentid Low (c) Gaussian Low Pass 
Filter Pass Filter Filter 

Figure 7.1. Transfer firnction of dzrerent types of low passfiZtersS H (u, v) is the 
transferfinction and D(u. v) is the distancefiom the origin. 

design issues and implernentation methods, due to the connections required to al1 the pixels 

in the image. Therefore, global implementations are implemented more like local operation 

methods by restricting theü neighborhood to the localized area. For global operation, 

fkequency domain methods are prefmed to spatial domain methods because manipulation in 

the frequency domain is relatively easier and more powerful, at least in software 

implementations. There are plenty of examples for the fiequency domain processing, which 

are well established and well documented [74] [75]. 

In the fiequency domain, there are generally three types of image enhancement filters: 

smoothing filters, sharpening filters and homomorphic filters. The smoothing filters in 

fiequency domain are similar to the smoothing filters in spatial domain. In fact, the basic idea 

of their operation is identical: Edges and sharp transitions of an image, which contribute 

significantly to the high-fiequency content of the transform, are smoothed/blurred out by 

attenuating a specified range of high-fiequency components in the transform of a given 

image. 

An obvious smoothing filter is the ideal low pass filter (see Figure 7.1 (a)), which attenuates 

or eluninates the high-frequency content of an image. The ideal low pass filter is 



theoretically desirable, but in practice there are no filters that match with the ideal operation 

in hardware. The practical împlementations of the low pass filters include exponentid low 

pass filter (see Figure 7.1 (b)) and Gaussian low pass Mter (see Figure 7. L (c)). 

In contrast, sharpening operates in the opposite way to smoothïng. Because edges and abrupt 

transitions in an image are associated with hi&-fiequency components of the transform, 

sharpening is achieved by attenuating or eliminating the low-frequency components without 

disturbing high-fiequency components of the transform. Sharpening filters are subdivided 

into hi& p a s  filters and high fiequency emphasis filters. The high pass filter is exactly 

opposite to the low pass filter, which is also expressed as (1 - low pass filter). Its tramfer 

function is shown in Figure 7.2. The high fiequency emphasis filters, also known as 

Homomorphic filters, use this characteristic that the illumination component of an image is 

typically associated with slow spatial changes, while the reflectance is with abrupt transitions, 

relating the high-fkequency components of the Fourier transfonn of the logarithm of an 

image [74]. This control requires specification of a filter b c t i o n  H (u, v) that affects the 

low- and hi&-fiequency components of the Fourier transform in different ways, as shown in 

Figure 7.3. Examples of the high fiequency emphasis filters include generalized unsharp 

masking, inverse blur model, difference of Gaussian (DOG), Laplacian of Gaussian (LOG) 

and modulated Gaussian (Gabor) filters [74] [75]. 

Figure 7.2. Tramfer fUnctim of ideal high p a s  
filter, which is used us a sharpeningfiter. 



(a) Dzrerence of (b) Laplacian of 
Guassians Gaussians 

(c) Modulated Gaussian 
(Gabor) filter 

Figure 7.3. Transfer ficnctiom of h igh fiequency emphasir filters. 

in practice, small spatial masks are used considerably more fiequently than the Fourier 

transfonn because of their sirnplicity of implementation and speed of operation. From the 

aspects of on-chip implementations, the spatial masks are often more of interest than the 

frequency operations. In the spatial domain, global operations can be divided into two 

categones: One is a global operation of which the output is an image deîïned from the input 

image, the other is where the output of the operation is the information extracted fiom the 

input image. A resistive Gaussian filter [78] is an example of a global operation with an 

image output in the spatial domain. Aithough the strong influence of the neighborhood is 

limited to 5 or 6 pixels, depending on the resistive values, the resistive network connects al1 

the pixels into a system, and a pixel value is affectai by al1 other pixels. An example of 

information-extracted global operation includes histogram operation. In order to generate the 

histogram of the input image, the operation needs al1 the pixel values of the array, but does 

not modify them and does not generate a new output image; the output is information about 

the input image. This output can be used to modify the output image as discussed in Ch.5. 

Practically, the on-chip implementation of the spatial global operation with image output is 

not possible due to the heavy interconnections, unless each pixel is interactive Iike the 

network of the Gaussian filter, where one pixel stores other pixel values and this propagates 



through the entire array. However, even the resistive Gauassian fxlter does not give a 

practicai realization. In contrast, the global operation with information output is relatively 

easier to implement because information of al1 the pixels c m  be collected through a common 

data channel. 

7.2. Structure of GIobal Processing 

When it cornes to the implementation of on-chip image processing, particularly for global 

operation, the systern level architecture becomes an important step of the design process. 

Since we have considered global operation in terms of the fiequency and spatial domains, we 

start by examining structural implementation by looking at the possible methods for these 

domains. In the fiequency domain, one of the most essential cornponents would be a Fourier 

transformer that converts from the spatial domain to the frequency domain. As before, it can 

be integrated at pixel, column or chip levels. The design of the transformer, however, takes a 

significant number oftransistors, which is not appealing for a pixel level implementation. It 

is more reasonable to implement the transformer at every column of the array or at the output 

channel(s) of the chip. A f k  the Fourier transformation, the image in the fiequency domain 

wouid be manipulated by image processing algorithms. The manipulation is based, by the 

nature of the global operation, on the contents of al1 the pixel values in the array. One 

possible (the most adequate) method is to use an analog memory to hold and process the 

contents of al1 the pixel values. The analog memory implementation often requires high 

complexity of design and precision. Also, the design area, which is roughly proportional to 

the fabrication cost and power, becomes large. Therefore, it is difficult to integrate image 

sensors, Fourier transformer and image processing elements on a single chip, even with low- 

level image processing. 

In the spatial domain, implementation of global operation is relatively easier than in the 

fiequency domain, simply because of the absence of need for a Fourier transformer. Spatial 

domain processing for image output can be implemented with pixel level integration and 

analog memory processing. Because it is practically impossible to have one pixel connected 

to al1 other pixels with one designated channel between the pixels, the connection should 

have a characteristic of propagation similar to a resistor network. So, pixels which are not 

directly connecteci together may affect each other indirectly, because of the propagation 



effwts of the grid connections. in pixel processhg integration, therefore, each pixel should 

have a characteristic of this holding and propagating, where, after the pixel captures an image 

signal with its photodetector, global processing occurs over ali pixels of the array in parallel. 

The pixel still holds its own image signal, and processes and propagates al1 other pixel values. 

The main advantage of this implementation is parallel processing where low power 

consumption cm easily be achieved. However, this implementation will suffer h m  severe 

reduction of fiU factor in the pixel. Because of the nature of hold/propagate, the complexity 

of the circuit design is hi&, typically involving a large nurnber of transistors, and sometimes, 

the use of passive elements such as capacitors. 

In order to avoid the severe reduction of fill factor, analog memory implementation may be 

applied for global operation. By placing processing elements out of the photodetector pixels, 

the entire area of the pixel can be occupied with a photodetector and a readout buffer. As 

trade-offs for this gain in fill factor, the chip area, power and speed will be sacrificed. Also, 

there is always a t h e  latency of one image frame because, afier the image capture, the image 

h e  is stored and processed in the analog memory, instead of being output duectly. Similar 

to pixel processing integration, the global connections between pixels should be doue using 

the method of propagation. Otherwise, it is practically difficult to implement, especially for 

large format mays. 

Global operation with infonnation output cm be implemented with chip processing, where 

the processing element is located at the end of common output channel, collecting 

information from the pixels and generating final output. In order to collect information h m  

al1 the pixels, the pixel data should go through a common processing element. Therefore, the 

processing element requires hi&-speed operation, at least quivalent to the pixel rate, 

causing high design complexity, high power and a potentially high digital noise level. 

The general description and cornparisons are summarized in Table 9, in ternis of their 

operation domains. However, there are no easy ways to integrate global operation with image 

sensors on the same focal plane. The general implementation methods for global operation 

are neither practicai nor feasible due to the heavy intercomections between pixels, and due to 

the circuit complexity. Instead, the implementations for global operations should be rather 

application specific and algorithm dependent. 



Pixel 
Processing 

Column 
Processing 

Chip 
Processing 

- - -- 

Frame 
Memory 
Processing 

Spatial Domain 

Image output 

Global 
interconnections 
reduce feasiïbility of 
irnplementation 
except for special 
designs such as 
Guassian resistive 
networks 
(hold/propagate) 

Concurrent readout 
of al1 pixels is not 
feasible 

Concurrent readout 
of al1 pixels is not 
feasible 

Global 
interconnections 
reduce feasibility of 
practical designs. 
High fil1 factor but 
degradations on 
chip area, power 
and speed 

idormation output 

impractical design due 
to presence of a 
cornmon data channel 

Impractical design due 
to presence of a 
common data channel 

Most suitable 
structure, but modified 
structures combined 
with pixel and column 
processing are more 
practical 

Impractical design due 
to presence of a 
common data channe1 

Frequency Domain 

Fourier transformer at 
column or chip level, and 
global interconnections are 
done at pixel level and 
analog fiame memory 
structure. Typically, the 
implementation of on-chip 
Fourier transformer is 
complex 

Table 9. General descriptions and cornparisons of global operation. for dcyerent 
operation domain 



Here, as a demonstrattion of global operation, we report a 2-D object positioning system with 

partially global connections, dong with its implementation and performance. This 

implementation is a semi-global operation with information output. This is used to examine 

the feasibility of on-chip global implementation with idonnation output and the design 

issues involved in the implementation, and its suitability for different applications such as 

motion analysis and object extraction. 

7.3.2-D Object Positionhg System (OPS) 

The 2-D OPS encodes 2-D information into two sets of 1-D information. Figure 7.4 

illustrates the basic operation of the OPS; whenever objects are detected, the pixels 

containing signals above a threshold send flags to the column and row simultaneously. In the 

OPS array, each pixel has a photo-detector and an in-pixel voltage comparator. Whenever the 

input light level is higher than the threshold, the in-pixel comparator flags up to its 

corresponding row and column. Each row and column has an NAND gate fiinction, 

generating '1' when all pixels in its row/column are over the threshold, as shown in Figure 

7.5. Hence, dark objects are detected fiom a lighter background by presence of a 'O' in row 

or colimui. For example, as shown in Figure 7.4, pixels corresponding to a circle send flags 

to their corresponding columns and rows, and thus the final image captured becomes a square. 

Although some information is lost, the systern enables straightforward determination of the 

presence or absence of an object, as well as its size andlor orientation. Multiple objects can 

also be characterized. Moreover, simple combinational logic on the latches can be used to 

apply an object size threshold, which is othenvise difficult to achieve. 

The OPS does not require scanning readout but provides a tme simultaneous readout, making 

the frame rate independent of the scanning time of each pixel. Conventionally the fiame rate 

of the array, especially large arrays, depends on scanning tirne of individual pixels because 

image signal fiom each pixel has to be transmitted one by one. By the nature of fast k e  

rate in the OPS, it can be used in motion detection as well as many other dynamic image 

acquisition applications. 

In addition to the fast readout time, the OPS reduces the image data nom hJ2 to 2N, where N 

represents the number of rows and columns. A dual channel is used for the output, vertical 

and horizontal outputs, increasing the total output rate. With the fast readout tirne, data 



Deco&d output image 

Figure 7.4. Structure of 2-D Object Positioning System and its basic operation. Wirh 
on& two input controls signais (Reset and Select), simultaneous outputs converted in 
two sets of linear data fiom the 2-D array plane. Two 2-D data can befirther 
processed and displayed inîo 2-D plane. A circle in the original plane is interpreted 
as rectangle in the display. 
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Figure 7.5. Structure of global connections. 



reduction and dual output channels the high h e  update rate is a focus of the OPS. In 

addition, the OPS uses digital signal transmission, and thus it is relatively immune to noise 

during transmission. Applications of such a threshold-based system include industrial web 

inspection, earth observation fiom space, robotic vision, and other applications where object 

detection with high speed is the primary goal. 

The main objectives of this prototype chip are (i) to explore the feasibility of global operation 

integrated with CMOS APS, (ii) to demonstrate high-speed operation of the OPS and (iii) to 

address limitations and fiiture research directions of the global operation. 

l.3- f Chip Design 

The structure of the OPS is quite similar to that of a standard CMOS image sensor may. The 

chip whose die photo is shown in Figure 7.7, consists of photodiode pixels, in-pkel 

comparators, vertical and horizontal latches and shift registers. The overall structure of the 

Row 
outputs 

I 
Global 

1 Column Shift Register 1 
Figure 7.6. Overa Il stmcture of C I '  array with object positioning system. 
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Figure 7.7. Die photo of Object Positioning Chip. 
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Figure 7.8. Schemutic of a pirel for 2-D Object Positioning System It consists of 
photodiode and in-pixel comparator. me in-pixel comparator is composed of a 
common source amplifier and an inverter. The bias h*ansistor and inverter are 
locuted outside the pixel. 

OPS is shown in Figure 7.6. It has dual output channel where each channel transmits the data 

fiom each of the vertical and horizontal lines. The pixel has the same p n  junction photodiode, 

but it uses an in-pixel comparator instead of a source follower buffer for the pixel readout. 

An in-pixel comparator should be a simple structure using the fewest transistors possible in 

order to maintain a high fil1 factor. The in-pixel comparator uses a common source (CS) 

amplifier with an inverter at the end of data line to enhance switching activity, as shown in 

Figure 7.8. Because the inverter and bias transistor can be located outside of the pixel, only 

two transistors are needed in a pixel. Vref and Vbiasp affect the speed and threshold voltage 

of the switching. Because the output of the pixel is read out vertically as well as horizontally 

to the line latches, each pixel has in-pixel comparators for each line. When the pixel detects 

an over-threshold signal, it sen& a flag to both lines simultaneously. Since every pixel in the 

same line (column or row) is connected together, the values are read out to the lines 

simultaneously fkom every pixel in the same output line. If, during the tirne when the output 

value of the in-pixel comparator is sent to the outside, the light intensity is higher than the 

threshold, an output of ' 1' is transrnitted, otherwise, 'OY. Hence, whenever the pixel detects 

that the light intensity is over the threshold, the in-pixel comparator triggers the flag to the 

output line. Initially, the output of the data line is set to ground. When the light intensity is 

high enough, making the photodiode voltage lower than Vt of M transistor, the M transistor 
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Figure 7.9. Schematics of a pixel and ewnt detection Zatch in 2-D Object 
Position ing System. 

is switched off and the PMOS bias transistor lets the output node charge up to VDD. Since dl 

the pixels in the same data line are linked together, if any comparator along the line is 

switched on, the line rernains switched on. It is an AND logic function (refer to Figure 7.5). 

At the bottom of each data line, there is a skewed inverter before the latch. The inverter 

enhances the switching sharpness and speed. In the cornmon source amplifier, Vref 

determines the lowest voltage level of the output voltage on the data Iùie. Vref should be 

recognized as '0' for the inverîer even when it is over Vdd/2. A skewed inverter was 

carefully simulated and the optimal size ratio of the transistors, by increasing the size of the 

PMOS in the inverter was decided. By adding an inverter, the overail logic fünction 

becomes NAND gate; the output is 'O' only when al1 the pixels along the line have high light 

intensity. Otherwise, the output is '1'. Hence, this system detects dark objects on a white 

background. 



In order to read out data fkom the array to the serial output, the data is multiplexed out aAer 

king stored in the latches in vertical and horizontal lines. Shift registers send enable signals 

to the latch multiplexer and transmit the data one by one to the serial output channel. The 

latch uses a simple digital component, either a flip-flop or an inverter based design. In our 

design, a flip-flop design is used for simplicity. 

Z3.2. Demonstrution and Tests 

The OPS chip was fabricated in 0.35 p CMOS technology with 3.3 V power supply, and 

has been demonstrateci successfully. Imager characteristics of the chip are shown in Table 10. 

When a circle is shown to the sensor array, the in-pixel comparators f h t  digitize the shape. 

The outputs of all the in-pixel comparaton in the line are then NAND gated into one output 

per line. Therefore, the shape of the object becomes a square as shown in Figure 7.10. Al1 the 

shapes of the objects are encoded into squares or rectangles by the array NAND gates. This 

rnechanism hides some of information that otiginally exists in the objects. However, some of 

the critical information, such as position and size of objects, are preserved and encoded into a 

smaller amount of data at relativeiy high speed. By the nature of the operation, when more 

than NO objects exit in the field of view, false objects are created in the overlapping area of 

the objects. When two different circles exist in the white background, the output image 

contains two original squares and two extra squares which are falsely created in the 

Chip (Die) Size 
Amy Format 
Pixel Size 
Fil1 Factor 
Technology 
Frame Rate 
VDD Power Supply 
Nominal Cwrent 

Power Consumption 

Output 
Package 

-- - -- 

C haracteristics of Chip 

2880.5 x 2880.5 pm2 
64 H x 64 V (4096) pixels 
23.8 pm x 23.8 pm 
72% 
0.35 um CMOS 
24 frames/second at 290 lux 
3.3 v 
20 mA - 8 mA (conversion chip) = 12 mW at 24 
~ e s / s e c  
66 mW - 26.4 mW (conversion chip) = 39.6 mW at 24 
~ e s / s e c  
1 bit Digital output 
68 PGA 

Table IO. Characteristics of ch@ tests. 



(a) OrigrgrnaI Images presented to sensor 

(5) Encoded Images of the objects reconstructedfiom senror output 

Figure 7.10. Sample images fiom the 2D object positioning chip. Input shapes 
are encoded into squares or rectangles in the final output images. 

(a) Original Images 

(b) Reconstructed Image of the Slupes 

Figure7.11. When multiple objects exist in the input image, there are defects 
(countepart objects) in the output image. 



fa) Array Vout (%) vs Light Powr 

I 

m t 

O 10 20 30 40 

Light Pomr (u W/cm2) 

(b) Vbaisp vsunifonnity 

35 1 1 

L i g h t  power when aii pixels are whit 
Light power when ali pixels are black 

Figure 7.12. Test resu fts of 2 4  OPS imager- (a) With dzfferent Vbiasp, the responses 
of outputs are d r m .  (ô) Non-unifonnity of OPS imager can be measured. 

overlapping area of the original ones, shown in Figure 7.1 1. 

Figure 7.12 illustrates the relationship between Vbiasp and array uniformity. Here, no pattern 

noise reduction was implemented Figure 7.12 (a) indicates that not al1 pixels switch at the 

same scene illumination intensity, due to a combination of pattern noise in the sensor and 

non-unifonnity in the cornparators. In Figure 7.12 (b), the upper line represents the light 

power at which al1 the pixels are high and the Iowa line is verse versa. in the light power gap 

between the two lines, the white and black spots CO-exist due to the non-uniformity response 

of the pixels as well as the in-pixel comparators. The gap between the two lines represents 

how much light power difference should exist for the objects to be recognized correctly. The 

minimum difference in light power is consistent at different biasing voltages. Therefore, it is 

necessary to remove this non-uniformity before image processing for segmentation, object 

recognition, mode1 fitting, etc. 

7.3.3. S u m m a ~  and Conciusions 

Here, we have seen an example of on-chip hplementations for spatial global operation 

integrated with a CMOS image sensor. The 2-D Object Positioning System extracts the 

coordinates of objects of interest by detecting a property of the image (in this particular case, 



the property is the light intensity). The 2-D OPS encodes 2-D information into two sets of 1- 

D information. The basic operation of the OPS is as foliows; whenever objects are detected, 

the pixels containhg signals above a threshold send flags to the column and row 

simultaneously. For example, pixels corresponding to a circle (or any other objects) send 

flags to their corresponding columns and rows, and thus the final image captured becomes a 

square (or a rectangle). By encoding 2-D information, the OPS enhances the speed of the VO 

interface, which is o h  a bottleneck of the processing speed, especially for vision 

applications. In a case of NxN pixels array, the reduction ratio will be NxN / 2N = N 1 2, 

which is significant when the array is large. In addition, the OPS chip operates in reai time 

mode that is advantageous in its operation and applications. 

However, the operational speed of these prototype sensors was not as high as was originally 

expected. This is mainly due to poor photosensitivity of the photodetectors. Although the rest 

of this chip, 0th- than the photodetectors, cm nin at high speed, the photodetecton need a 

long integration tirne, which becomes the bottleneck of system speed. With optimization in 

optical performance and in noise level, the positionhg system can achieve a high speed 

operation. 

In the particular case of motion detection, the concept of the Object Positioning can be useful 

due to its high speed and data reduction, even though some of information for the object of 

interest are lost during the processing and some artifacts occur when multiple objects are 

located in the same field of view. The main concern in the on-chip implementation of the 

concept is that the in-pixel comparators suffer fiom operational mismatch due to Vt and 

lithographie variations. A better design of the comparator can be achieved with the sacrifice 

of circuit complexity and design area, where photosensitivity of the pixel would be reduced. 

As the technology scales down, the scalability of the in-pixel comparator is high. 

In conclusion, the implementation of bue global operation in the spatial domain is not an 

easy task, mainly because of its requirements for extensive inteicomections. large 

computational power and high design complexity. Rather than a general irnplementation of 

the operation, the approach should be application specific and operational algorithm 

dependent. Unless the application requues the global interconnections (or partially global), 

the on-chip implementation of the global operation in spatial domain is not recommended. 



Chapter Vlll 

8. Summary and Conclusions 

Raw output images fiom CMOS sensors are not likely to be optimal for display or m e r  

processing mainly because of noise, bliariness and poor contrast. In order to minimize these 

degradations, image enhancement and processing mechanîsms (meaning circuit level designs 

apart nom device level modifications on photoreceptors) are necessary because the device 

level modifications often meet baseline limitations of the standard process technology. 

When real tirne image acquisition and processing are desired, the integration of image 

processing (vision) algorithms with image sensors has many advantages. In this thesis, 

integration of image processing and image sensors is presented with a concept of smart 

sensors. The integration of vision algorithms and image senson is an attractive research field, 

which can provide low fabrication cost, low power consumption and fast processing for 

various applications. In addition, analoglmixed signal image processing achieves additional 

advantages of compact size and fast continuous mode to the integration benefits of smart 

sensors. 

This thesis discussed two main concepts: MOSAiC imager and smart sensors. MOSAIC 

concept was proposed to achieve a large field of view and a high scene update rate. The 

MOSAIC may is describeci for a distributed sensor consisting of 102 - 1o3 identical 

detection modules linked by a serial bus to a centrai controller. Main challenges of the 

MOSAIC irnagers are large data flow and slow kame rate. The design of the MOSAIC 

system focuses on enhancement of frame rate, by a single chip solution (i.e. integrating 

CMOS image sensors and bus intexface modules on a same focal plane). Custom bus 



intdace modules increased performance of the bus connections by an efficient design of 

zero-wait state, at effective cost. Therefore a MOSAIC imager comprishg many single-chip 

modules is capable of covering a larger field of view ( l d  to l d  or more) than the 

conventional single chip camera system, with the enhanceci data update rate. Also, a smart 

sensor with critical information extraction was proposed here as an alternative solution of the 

MOSAiC imagers. The on-chip processing of the smart sensors extracts the information at 

the f?ont end of the imagers, reducing data 80w and thus, increasing the field of view andlor 

update rate. 

in the second part of this thesis, integration architectures and design methodologies were 

investigated for application to anaiog VLSI implementations for smart sensors. The basic 

concept of the integration architecture comes from an idea that, for the integration of image 

processing with CMOS image sensors, vision algoritbms and application specifications 

should be considered, in addition to the selection of appropriate processing circuit. 

Conventionally, the integration methodology focuses on reducing circuit density of 

processing element integrated with image sensors. This thesis argues that not only the circuit 

density is important, but also the algorithms of processuig are sometimes more crucial. 

Hence, various vision (image processing) algorithms were investigated systernatically 

according to interconnectivity with neighboring pixels (the region of operation). The vision 

algonthms were partitioned into three major groups: point, local and global operation. These 

algonthms were once again sub-divided by functionaiity, size of local masks and operational 

domain. For each sub- partitioaed algorithm, di fferent implementation architectures were 

proposed and compared in ternis of design area, speed, processing time, power and pixel fil1 

factor. 

The proposed general guideline is summarized in Table 1 1, where system level architectural 

designers and circuit engineers can start their milestone implementations for smart sensors 

according to algorithms they try to implement. However, designers should consider their 

applications and design specifications cautiously, and should make proper modifications on 

individual design components, in order to make less error prone implementations. 
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Table Il. Summary of or-chip implementation methodology for image processing algorithm. 



Prototype chips for each major group in the vision algorihms were designed and fabricated 

with 0.35 pn CMOS technology, for the demonstration of on-chip implementation of 

algorithms. Three prototype chips were irnplemented: in-pixel intensity transfomer for point 

operation, on-chip binary image processing for local operation, and object positioning system 

for global operation. These prototype chips were tested and demonstrated successfblly. 

It is concluded in this thesis that on-chip image processing with image sensors will offer 

benefits of low fabrication cost, low power consumption, fast processing fkequency and 

parallei processing. Since each vision algorithrn has its own applications and design 

specifications, it is dangerous to predetermine optimal design architecture for every vision 

algorithm. However, in general, the pixel and column structures appea. to be the best choice 

for typical image processing algorithms such as point operation and local operation. 

The implementation of global operation is not recommended in spatial domain because of the 

heavy intercomections and computational power requirernents. Typically, the 

implementations of the global operation in the spatial domain should be modified and 

adapted for application-specific environments. 

Since CMOS image sensors use a standard process technology, modifications of the image 

sensing process cannot be achieved easily and optimization of the image sensing properties 

will not be as gmd as CCD. Although many microelectronic process companies such as 

TSMC, UMC and Tower Serniconductor offer the specialized processes for CMOS image 

sensors, CCD is still superior to CIS in terms of image quality. Typically in order for CIS to 

obtain equivalent image quality as CCD, special processes are needed, which require 

modifications on the standard process. The specialized process means expensive fabrication, 

which is contrary to the low cost concept of CIS. Therefore, even for the image quality 

enhancement of CIS, circuit level improvements such as image processing circuits are 

prefemed to the process level improvements in the CIS technology. The circuit level 

improvements are not beneficial only for the image quality, but dso for low cost VLSI 

integration. Sometimes, the VLSI integration of CIS is more emphasized than the image 

quality enhancernent for such applications as portable image devices, machine vision, 

surveillance and industrial inspections. Therefore, in the füture CMOS image sensors wiil 



find th& own applications where low cost and high functional image sensing is the driving 

force even with relatively low image quality. 



Appendix A: lnverted Logarithmic Pixel 

Sensors with Current Readout 

A.1. Introduction 

Current readout active pixel sensors are inherently advantagrnus in terms of readout speed 

because the fixeci output line voltage at input of transresistance amplifier prevents charge- 

discharge phenornena [79]. Another benefit of cment readout is current mode processing 

which is relatively compact in sue and simple in its operation [go]. One drawback of the 

active pixel sensors with current mode is lack of design resources. Because the current mode 

processing circuitry has not been well studieâ relatively, most of implementations will have 

to be custom designs. 

This appendix reports a CMOS active pixel sensor structure for a logarithmic pixel with 

continuous current readout. Because the design is distinct fiom the main theme of the thesis, 

it is located in this appendix. Here the arrangement of the photodiode and load found in a 

conventional logarithmic pixel is reversed. The inverted logarithmic pixel sensor reduces 

fixed pattern noise and e l m a t e s  the dependence of the output voltage swing on the column 

load, simpli-g both of its operation and structural design. We include a detailed design of 

the inverted logarithmic pixel sensor and its analysis, dong with operational performance 

and experimental results. 

A.2. Inverted Logarithmic Pixel Sensors 

We report a continuous curent readout logaxithmic active pixel in which the conventional 

arrangement of the photodiode and load are reversed. As show in Fig.A. l(a), a conventional 

logarithmic pixel employs a photodiode to generate a photocurrent and one or more 

MOSFETs operating in subthreshold to act as a load. The voltage dropped across the load is 

dependent on h(iphoto) due to this subthreshold operation. Such a configuration has 

advantages of continuous operation, thereby enabling temporal as well as spatial random 

access, and wide dynamic range (-6 orders of magnitude of illumination). 
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Figure A. I .  Stmctures of logarithmic pixel sensors: (a) conventional log pixel, (b) 
current readout with PMOS buffer, (c) inverted log phel- 

Disadvantages include hi& fixed pattern noise, low contrast due to a small voltage swing 

(typically 200mV for the entire 6 order range of illumination), and relatively poor response at 

low illumination [8I] [82]. The complement of current readout technique of this pixel 

structure is also possible, where the load and photodiode positions are the same as the 

conventional logarithmic pixel, but a PMOS buffer transistor is used (see Fig.A. l(b)). The 

voltage generated across the load by the photocurrent appears as V, of PMOS buffer 

transistor (MI in Fig.A. l(b)). As the light intensity increases, the V, of the PMOS transistor 

increases, generating output cmrent which is equal to K(V, - VT)~ .  However, PMOS 

transistors are known to have higher lithographical mismatch than NMOS [89] 1901, so this 

structure is expected to display higher h e d  pattern noise. However, as technology is 

developed and more attentions are brought to every level of process, misrnatch of PMOS 

transistors is not necessarily worse than that of NMOS transistors any more. Therefore, it is 

process dependent. 

Another contribution to the low voltage swing for the conventional logarithmic pixel is a 

trade off in the choice of column bias; to maximise VOW, a low V ~ U U  is required, but a high 

VOW reduces Vpr for M l .  In our design, (see Fig.A. I(c)) the positions of the photodiode and 

load are reversed, so the voltage generated across the load appears duecîiy as VP. Now the 

PMOS transistors consume more area than NMOS because of the implementation of wells, 

the use of PMOS transistors is ofien avoided. 

Moreover, the response of the pixel is now dependent on local, as opposed to global, 

matching of MOSFET charactenstics. A larger than average local W/L (caused by 



Figure A. 2. Simulated effect of lithographic devia tion on a regular logmithmic pixel 
sensor. As varying w with a B e d  1 = 0.35 p. the output m e n t  of the driving 
transistor, Mi.  changes signifcanrly. At Iph = IO PA, variation of w leads to 
approximateZy 30 pl (- 130 % of output swing) of output m e n t ,  while the output 
swing between Iph = O to 30pA. is only 23 +UA. 

Figure A.3. Sirndated effect of Zithographic deviation on an inverted Zogarithmic 
pixel sensor. A partiaZZy Zittle variation of output current is caused by the 
Zithographical deviation of W/L: about 20 % of output swing. 
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lithographic deviation) means that, while the photocurrent generates less voltage across the 

load, b for Ml will be increased in partial compensation. in contrast, a higher than average 

W/L in the conventional pixel logarithmic (see FigA.l(a)) leads to a increase of the Ml Y, 

which is compounded by the increased W/L of M l  itself. Simulations of the effects of the 

lithographic deviation, shown in Fig.A.2 and A.3, illustrate fixed pattern noise suppression of 

the inverted logarithmic pixel sensoa. Variations of W/L of transistors in the conventional 

logarithmic pixel sensor produce a large variation of output current, about 142% variation of 

output swing (fkom Iph = O and 30 PA), while generating only 18% in the inverted 

logarithmic pixel sensor. Hence, this inverted logarithrnic pixel is expected to display 

reduced pattern noise and larger output swing than conventional logarithmic pixels, while 

maintainhg continuous readout and wide optical dynamic range. 

Figure A.4. Schematic view of the sensor structure. The output current is 
converted to a voltage by an externd transresistance amplzjier. The use of a single 
conversion circuit improves uniformity, and can be integrated on-chip- 



p-epitaxial 
p substrate 

p-epitaxial 
p substrate 

Vdd 

ii 
i c  

(a) Single junction photodiode with (b) Double junction photodiode with 
fToating difficsion ut n-me side floating dz#ksion at p-type side 

Figure A S .  Stmchrres ofphotodiode used for the inverted logarihmic 
pixel sensors. 

A.3. Testing and Measurements 

Here, this pixel structure has been implemented with a curent-mode readout (Fig.A.41, 

where the column load is replaced by an off-chip transresistance amplifier. Since location of 

photodiode and loads is reversed, the layout of photodiode (shown in Fig.A.S(b)) is different 

fiom the normal one (Fig.A.S(a)). Current readout has well-known advantages of reduced 

column charging/discha.ging, low noise, and ease of analog signal processing. However, it is 

not normally implemented in integrating pixels owing to the difficulty of on-chip pattern 

noise correction; this is of lesser concern here because continuous pixels typically requïre 

off-chip pattern noise correction. In our case, reading out iour also serves to decornpress the 

logarithmic dependence of Vour on i p h t ~ ,  since now La a (v,)~ a [ h ( i p h o r o ) ~ ~ .  In normal 

operation K e f =  OV. 

Photorespouse characteristics for single pixels with various numbers of load transistors are 

shown in Fig.A.6. A consequence of the structure shown in Fig-A. l(c) is that Ml operates in 

sub-threshold at low light intensitia. Now ioui a evp and Ys, a h(iphoro), giving a region 

where im qiphoto. At higher illumination, the [~n(i~hom)]~ variation is observed. Fig. A.7(a) 
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Figure A.6. Variation of the photorespome of the inverted Iogorithmic pire2 with 
number of load ?rumistors. 

shows a sample unprocessed image captured on a 64 x 64 array of 30pm pixels with 3 load 

transistors, implemented in a standard 0.35pm CMOS process (see also Fig.A.8), whose chip 

testing is summarized in Table A. 1. While the image can clearly be seen (in contrast to many 

conventional logarithmic pixel sensoa), pattern noise is still significant Some of this is due 

to the fabrication process, which gives a high fixed pattem noise even for integrating mode 

sensors (-1.3% of saturation). An image corrected by subüaction of a background reference 

is shown in Fig.A.7(b). To obtain best results, this reference image is a white image captured 

at the same average illumination as the original, indicating the presence of photo-response 

non-uniformity (PRNU). The PRNU for the sensor is plotted in Fig.A.9; this is to be 

compared with conventional logarithmic pixels where PRNU is typically -50% of the mean. 

To illustrate the advantages of current-mode readout for low voltage operation, the suppl y 

voltage has been reduced fiom its standard value of 3.3V (Fig.A.lO); the sensor works well 

down to Voo = 2SV, but degrades rapidly thereafler. Variation of images with VRr is shown 



(a) Unprocessed image (b) White Background 
Pattern Noise 

(c) Pattern Noise 
Subtraction 

(a)Unprocessed 
Image 

(b) Illumination Pattern 
Noise 

(c) Pattern noise 
subtracted image 

Figure A. 7. (a) Raw image captured under room light of approximately 200 lux, (5) 
White background image. (c) Image corrected by subtraction of a white image. 



Figure A.8. Photograph of the image sensor die. Total die 
area is 16 mm2. 



Chip size 
Pixel size 
Format of array 
Fill factor 
Maximum &me rate 
Power consumption 

Background illumination 
Technology 
VDD Power Supply 
Output 
Package 

3204.5~3204.5 pn2 
30.8x30.8 pm2 
64x64 
8 1.63% 
200 Khz (Sampling Rate) 
3.30 mA x 3.3 V = 10.89 mW at 50 Khz 
sampling rate 
180 lwc 
0.35 um CMOS 
3.3 v 
analog output 
68 PGA 

Table A. 1. EIectrttrtcal and Optical characteristics of the Inverted Logarithrnic 
Sensor chip. 

Figure A.9. Variation of nns pattern noise with illumination. In the absence of n 
well-defined saîuration signal, pattern noise is expressed as a percentage of the 
rnean output voltage at each point. 



(a) Vdd = 3.3 V 

(b) Vdd = 2.5 V 

Figure A. IO. Eflect of image sensor VDD on image quolity. VDD is nominally 3.3 V 
for this technology. 



(b) vin = 0.2 v 

(c) Vin = 0.3 V 



(d) Vin = 0.4 V 

(e) Vin = 0.5 V 

(t) vin = 0.7 v 

Figure A.11. Effect of transresistance ampl@er reference voltage on image 
qua Iity. 



(a) Sampling 
Rate = 10 KHz 

(c) Sampling 
Rate = 50 KHz 



(d) Sampling 
Rate = 100 KHz 

(e) Sampling 
Rate = 200 KHz 

Fi'e A. 12. Eflect of &ta sampling rate on image quality Because current 
readout does not have chu~ing/discha~ingphenomena. it can achieve high 
fiame rate. 



in Fig.A.11, illustrating the relative independence of the pixel operation to column voltage, 

and hence insensitivity to the input resistance of any subsequent image processing stages. 

There are no charging/discharging phenornena in cment readout mode, eliminating RC tirne 

constant. Thus, the inverted log pixel sensor with current readout cm have high hime rate, 

Maximum data rates (directly related to &me rates) of active pixel sensors in integration 

mode typicaiiy depend on RC time constant in S/H and its output drivers. In contrast, the 

inverted log pixel sensor does not have any S/H's and output drivers, experiencing no time 

delay in data readouts. However, due to slow time response of logarithmic transistors in 

subthreshold region, there are degradations on images at high data rate. Fig.A.12 shows 

difierent images captured at different data sampling rates. With a particular processing 

technology, typical maximum data rate of APSs in integration mode is around 50 KHz, while 

the inverted log pixel does not experience any degradations on images at 100 KHz, 

generating higher &une rate. 

A.4. Conciusions 

The reverseci arrangement of the photodiode and load causes the voltage generated across the 

load by the photocurrent to appear directly as the gate-source voltage of the in-pixel b&er 

transistor. This configuration eliminates the dependence of the voltage swing on the colurnn 

load. Pattern noise is also reduced over conventional logarithmic pixels because global 

variations of threshold voltage are less signifiant. In addition, a readout technique of the 

pixel sensor demonstrates reduced signal compression, improved output swing and increased 

frame rate. However, the independence of the load is not as effective as expected: images are 

degraded when Ver is higher than 0.7 V. Although pattern noise is expectedly reduced, there 

are still noticeable degradations by the pattern noise and thus M e r  processing on the 

images is required. 



Appendix B: Basic Procedures for Image 

Capture Test 

The very h t  step in the CMOS image sensor test is to capture an image of the best quality 

with the chip, verifjing test board connections, control input patterns, image display software 

setup and, most importantly, the design of the chip. Here is the procedure of the image- 

capturing test. 

1. Wiggling Test 

Without a lens, as a light source is hinieci on and off (or a light source is swirled in fiont of 

the image sensor chip) in a dark room, the output voltage of the chip should go up and down 

and the images in the display should become bright and dark, indicating the chip is capable 

of sensing the incident light. Generally, the wiggling test verifies the input control patterns, 

the image display system and the test board connections. It does not give a full verification of 

the setup, but gives a basic setup to start the test with. 

2. Flash Light Circle Test 

With an approximate setup of a lens (focal length adjustments and alignrnents to the chip), as 

a light source (e.g. a flash light) is tumed on in fiont of the image chip in a dark room, the 

output image should contain a white circle. If any circles cannot be captured, the bias 

voltages can be changed until an appropriate shape of the circle is captured. If any circles 

cannot be obtained with many different bias voltages, check the input patterns, the image 

display system and the test board connections. This step helps to find the appropriate bias 

voltages for the chip. 

3. Final Image Capture 

With the sanie setups (input patterns, display system, b i s  voltages and test board), a 

stationary object is placed in fiont of the chip with an appropriate illumination. As the focal 

distance and the alignment of the lem to the chip are changed, the chip should capture the 

stationary object nie fïrst image might be blurred, but an appropnate adjustment of the lens 

will sharpen the image and give an image of the best quality with the chip. 



Appendix C: Image Sensor Characteristics 

C.1. Basic Measurements 

O Measure the fiame rate (sampling rate) at which best image quality for a same image 

is obtained. 

O Measure the power consumption (nominal current flowing fiom Vdd) for various 

images at the fiame rate. 

O Measure and Save image files at a fïxed wavelength and at a fixed hune rate while 

changing the illumination (light power or intensity, but lux is preferred) nom O to 

until the output voltage is saturated. In addition, the wavelength and fiame rate c m  be 

varied for another test, This measurement c m  be directly used for photosensitivity, 

PRNU, saturation level. Mso, it can be used for calculation of conversion efficiency. 

O The above measurement is under an assrmiption that there is enough settling time 

between the different illuminations (due to light temperature). AAer changing the 

light intensity of the light source, the light intensity fluctuates until it settles down at a 

constant value. Sometimes it is difficult to avoid the light temperature effects. Instead 

of changing the light intensity, the integration time is changed here. Measure and Save 

image files (> 100 files at each Tint) at a fixed light illumination and at a fixed 

wavelength (typically at 540 nm of green light) as changing the integration time. For 

each image file, the mean and variance is calculated. 

Measure and Save image files at fixed illumination (light power, w/m2, is preferred) 

and a fixed fiame rate as changing wavelength of the incorning ray using a 

monochrometer. The illumination and fiame rate can be varied for another 

measurement. This measwernent c m  be used for spectral response. 

O Measure and Save image £iles in dark room as changing integration time (sampling 

rate). This measwement can be used directly for FPN and dark current. If you want to 

measure temporal noise Save enough image files (NO0 files) under a carefbl 

environment setup because the temporal noise is very sensitive to any environment 

change 



C.2. Imager Characteristics Extraction and Calculation 

FW factor [% 1 
Photo-sensitive area 1 total pixel area 

Frame rate [fkamesfsecondl 
The maximum frame rate (sampling rate) 

Power [mw 
Measure power (current nom Vdd node of the power supply) when the imager captwes 
normal image (background of the lab) and in the dark room 

Photosensitivity ~/(Iux*sec)] & Linearity 
(1)  As different light intensity (lux is prefmed to light power, w/m2) shines on the sensor 
array, meanire the output voltage at a given fiame rate (sampling rate) 

Slope = photosensitivity* Tint 

Fluctuation of slope = linearity 

b 

(2) As the integration time changes, measure the mean value of the output voltage at a fixed 
illumination 

Output 
Voltage 0 

Slope = photosensitivity * light intensity 

Tint (Integration T h e )  

Quantum Efiiciency 
With the previous measurements of saturation level, conversion gain, the QE can be 
calcuiated as foIlows 

QE = Saturation Level /(light powePEffective photodiode areaereflection loss*Tint*&) 
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Conversion Effïciency 
(1) Mer measuring the output voltage (or delta V) at a given light intensity (light power) 
when the output voltage is saturated, calculate the total number of electrons generated by the 
light intensity with assumed QE, optical reflection, £il1 factor and photodiode capacitance. 
Then the conversion efficiency is the saturation level divided by the total number of the 
photon-generated electrons. 

Total # of photon-generated electrons (ne) = (P x Aeff x QE x R x Tint) I Ephoton 

Where 
P = light power pet unit area 
Aeff = photo-sensitive ara  (approltimately pixel area x fil1 factor) 
QE = Quantum efficiency (about 40Y&600/0) 
R = Optical reflection (about 60 - 70%) 
Tint = integration time 
Ephoton = Energy per photon (Eph = hf = 1.24 1 wavelength in nm) 
Conversion Efficiency = Saturation level / ne 

(2) Calculate the mean and the variance of the images captured at a fixed Tint. The 
conversion efficiency is simply 

g, = variance / mean 

This calcuiation is repeated for different Tint. The same resultant value sbould be obtained 
for the different Tint. 

Spectral Response 
Measure output voltage (or delta V = Vout in dark - Vout at Light) at different wavelengths 
(different wavelength filters in the monochrometer) at a fixed light illumination 

Wavelaigth (400-700 & v i d  Light specmmi) 

Saturation Level 
( 1 )  It is the maximum output voltage swing. As the light power increases at a given h e  
rate (sampling rate), the maximum delta V will saturate to a minimum voltage value. The 
saturation level = Highest output voltage - Lowest output voltage. 



Voltage (V) t 

Light intensity (light power) 

(2) As Tint changes, plot the mean output values of the images dong with the integration 
t h e .  

Voltage (V) 
Ou"" t 

Saturation 
Level (V) 

Tint (Integration Time) 

Dark Current 
Measure and Save the whole fiame (whole image) in the dark room as chmging integration 
time (sampliug rate). 

Average value 
of whole image 4 

Integration Time (sampling rate) 

Fixed Pattern Noise (FPN) 
Measure and Save the whole fiame (whole image) in the dark room and calculate the 
variancelstandard deviation of the image file in Vpp or Vrms or % (Vnns 1 saturation level) 

PRNU (Photo-Response Non-Unifor mie) 
(1) Measure and Save the whole fhme (whole image) at different light power (intensity) and 
at a fixed h e  rate and at a fixed wavelength. Then calculate the variancelstandard 
deviation of the image file in Vrms or Vp/p or % (Vrms lmean) 



(2) Measure and save the image files at different Tint and at a fixed Light illumination and at 
a fixed wavelength. Then calculate the varïance/standard deviation of the image files in Vpp, 
Vrms and %. 

Temporai Noise 
Measure the consecutive samples of the output voltage for one pixel in the array with 
different Tint (typically the value measured in the dark rwm is used for SMt and DR). The 
number of samples should be large (> 100) and carefùl environment is required because the 
temporal noise measwement is very sensitive to the environment. 

Signai to Noise Ratio (SN or SNR) 
Calculated as Saturation level / output temporal noise in the dark 

Dynamic Range 
Calculated as Saturation intensity 1 Temporal noise equivalent intensity. It should be same or 
nearly same as SN if the photoresponsitivity is linear (Output voltage difference is 
proportional to input light intensity) 

Photon Shot Noise, KTC noise 
They either cannot or difficult to be rneasured separately. They are included in part of 
temporal noise or readout noise. 

Effective Capacitance 
Measured fiom test structure of photodiode. 
Mea~u~ed  h m  calculation with light power, QE, photosensitive area (fil1 faftor), optical 
refection and output voltage. The total # of photons generated by the light intensity is 
calculated and then degradation by QE, photosensitive area and optical reflection is applied 
to the total # of photons. Then the effective capacitance = charge of photon-generated 
electrons / output voltage (delta V) 
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C3. Image Sensor Characteristics 

Quantity Unit How to obtain Range for 
cornmerciai devices 

Technology 

Vdd 

Analog or 
digi ta1 

Output format 

Chio Size mm x mm 1 Phvsical measure 

Pixel Size p m  x.pm 1 Physical measure 

Format of Array 1 Phvsical measure 

Fi11 Factor YO 1 Phvsical measure 

Max. Pixel rate 40 Mhz 
(megapixeldsec) 
(analog) 
1 00 Mhz (digital) 

> 30 fiamedsec 

Pixeldsec 

Or 

MHz 

Frame Rate 

- 

Single serial port 

From the Grame time 
(e.g. 33 milliseconds) 
to less than one row 
read time (e.g. a few 
microseconds) 

30 - 100 mW for 
VGA format (640 x 
480) 

150-250 lux for room 
light 

Framedsec 
or ms 

Second 

Power 

Fastest fiame rate with 
reasonable image quality 

Power at the nominal fiame 
rate 

Illumination 

Lux or Flux 

lux or w/m2 1 Illumination in environment 

1 w/m2 = 701x (visible white 
light) to 180lx (visible + 
NIR) 

V / (lx*Sec) 

Or 

output voltage p / s ]  vs. 
Input Light power ~ / m 2 ]  

(V/s)/(W'm2) 
output voltage p / s ]  vs. 
Input Light lux b] 
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Conversion 
Efficiency 

Saturation Range 
(Level) 

PRNU (Photo 
Response Non 
Uniformity) 

Fixed Pattern 
Noise (FPN) 

Temporal Noise (NJ 
Signal to Noise 
Ratio (S/N, SNR) 

Dark Signal 

Vnns or Vpp 
or % 

Vrms or Vpp 
or % 

Vpp or Vrms 
or % 

Average output current (or 
QE) in unit area, at 
wavelenghs under a light 
power w/m2], OR 

Ratio between photo current 
and light power for a given 
wavelength. 

Output voltage per unit of 
input signal charge 

Variance 1 Mean of output 

Max output voltage in dark - 
Min output voltage in bright 

Vrms at a given wavelength 
and illumination 

% = Vnns 1 mean level 

or Vpp 1 mean level 

Staîïc spread of (dark) 
voltages of ail pixels of amay 

Vpp 1 saturation level 

RMS of consecutive sarnples 
of the output voltage for one 
pixel 

Output signal voltage range / 
output signal noise in the 
dark 

Saturation intensity 1 Noise 
equivalent intensity 

If input light is linear with 
output signal, SNR = DR 

Signal voltage drop in the 
dark, due to dark current 

(Output voltage in dark - 
output voltage) 1 Integration 
time 

3 - 35 pV/e- (output 
referred) 

500 mV (Vdd = 3.3 
V)-2V(Vdd=SV) 

1-10 % Vpp or 

0.8-2 % Vnns 

of mean level 

1 mV - 50 mV Vrms 

1 mV - 30 mV rms 

< 1 %Vpp 

< 200 UV nns 

0.1 - 1.6 Vlsec 



Quantum 
Efficiency 

Effective 
Capacitance 

Pixel Current 

Input refend 
Read Noise 

(Apparent) photodiode 
current in the dark per pixel, 
or normalized per unit area 

# of generated electrons / # 
of "impinging photons" 

Or 

QE=SRxhv /q  

Photo charge / Output 
voltage 

Al1 the noise measured and 
input referred 

20Y0 (photogate) - 
40% (photodiode) 

15 e- (photogate) - 50 
e- (photodiode) 
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