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Abstract 
 
       The structure and dynamics of the smectic-A liquid crystal 8CB (4 cyano-4 

octylbiphenyl) when sheared and confined to mesoscale gaps (with crossed cylindrical 

geometry and mica confining surfaces) were studied using a Surface Forces Apparatus 

(SFA).  Triangular shear patterns with frequencies of 0.01, 0.1, 1.0 and 10 Hz, and 

amplitudes of 62.5 nm, 625 nm and 6.25 m were applied to samples at gap sizes of 0.5 

and 5.0 m.  The study was performed at room temperature (20.5C) and at two higher 

temperatures (22C and 27C).   In order to minimize the thermal fluctuations within the 

test chamber and hence to allow for the rapid re-initialization of test runs, the SFA was 

modified to allow for quick, precise and remote control of the confining surfaces.  The 

procedure maximized the number of tests that could be undertaken with a single pair of 

surfaces so that a single gap geometry could be maintained for the duration of the test 

run.  In order to run the SFA remotely, scripts written with a commercial software 

package, LabVIEW, were used to control of the SFA components, its FECO-monitoring 

camera and all its peripheral electronic equipment as well.  Samples were agitated to 

disrupt any shear-induced liquid crystal domain alignment from previous testing 

following each shear test, and methodologies were developed to ascertain the extent of 

confinement quickly and remotely following agitation.  Separate methods were 

developed for gap sizes at each extreme of the mesoscale regime, where the transition 

from bulklike structure and dynamics to nano-confinement occurs (between 1 and 10 

microns for smectic-A 8CB). 
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     The results revealed that the greater amplitude-gap aspect ratio and surface-to-domain 

contact associated with smaller gaps facilitated reorientation of the domains in the shear 

direction.  Evidence was also presented of domains at the higher end or outside of the 

mesoscale regime that, while straining and accreting, were unable to reorient and thereby 

led to an overall increase of viscoelastic response.  The effective viscosity was found to 

obey a simple power law with respect to shear rate,   1


n
K   , and the flow behaviour 

indices, n, slightly in excess of unity indicate shear thickening occurs with large enough 

shear amplitude, and that the viscosity reached a plateau near unity over shear rates of 

0.005 to 500 s
-1

 within the mesoscale regime.  Different K and n values were observed 

depending on the shear amplitude used. 

  

     Unlike bulk smectic 8CB, whose domains do not align well in the shear direction with 

large shear-strain amplitude, at mesoscale levels of confinement large amplitude shearing 

(up to 12.5 shear strain amplitude) was found to be very effective at aligning domains.   

In general domain reorientation is found to be much more rapid within the mesoscale 

regime than has been reported in bulk.  Aggressive shearing was found to result in a 

complete drop in viscoelastic response within seconds, while gentler shearing is found to 

produce a very gradual increase that persists for more than six hours, with individual 

shear periods exhibiting frequent and significant deviations from the expected smooth 

shear path that may be a product of discrete domain reorientations.    

 

     From these findings, certain traits of the smectic 8CB domain structures under 

mesoscale confinement were deduced, including how they respond to shear depending on 
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the level of confinement, and how their reorientation due to shear varies not only with 

shear rate but also independently with shear amplitude.  An equation describing the 

viscosity change as a function of both shear rate and shear amplitude is proposed.  The 

shear amplitude dependence introduces the notion of shearing beyond the proposed 

smectic 8CB “viscoelastic limit”, which was shown to exhibit behaviour in accordance 

with Large Amplitude Oscillatory Shear (LAOS) techniques developed for Fourier 

Transform rheology.  The findings provided an understanding of the behavioural changes 

that occur as one reduces the level of confinement of smectic materials from bulk to 

nanoconfinement.  
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Introduction 

 
     This thesis will examine the structure and dynamics of sheared smectic-A 8CB under 

mesoscale confinement, which for this material occurs in gap sizes of approximately 1-10 

m.  It follows experiments involving similar shear parameters and performed using an 

X-ray Confinement Cell (XCC), the results of which indicate that domain reorientation 

occurs discretely over the course of several hundred or thousands of seconds when 

sheared using small shear amplitudes and frequencies at the lower end of the mesoscale 

(0.5 m gap size).  All three oscillatory shear parameters, including gap size, shear 

frequency and amplitude, are varied.  Two gap sizes representing the extremes of the 

mesoscale regime, 0.5 m and 5.0 m, were selected, corresponding to the two values 

used in the XCC experiments so that direct comparisons could be made.  Shear tests were 

performed over all combinations of three shear amplitudes (62.5 nm, 625 nm and 6.25 

m) and four shear frequencies (0.01, 0.1, 1.0 and 10 Hz) as well, so that shear rates of 

from 0.0005 to 500 s
-1

 and shear-strain amplitudes of from 0.0125 to 12.5 were 

examined.  Triangular shear profiles were used to provide a constant strain rate. 

 

     Because variations in the confining volume geometry can lead to measurable 

differences in response, it is desirable to use a single pair of confining surfaces for the 

duration of a test run.  In an effort to minimize the thermal settling time within the test 

room and thereby maximize the life of the delicate confining surfaces, the SFA was 

modified to allow for quick, precise and remote control of the confining surfaces.  

Specifically, a remotely controlled DC stepper motor was affixed to the differential 
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micrometer via a custom-built coupler to enable the user to reach gap sizes in the 

mesoscale range within a few seconds.  Also, the standard spring connecting the fine 

micrometer to the pivot stage was replaced by a stiffer spring to allow for more rapid fine 

adjustments in the mesoscale regime.  Finally, two equations given by Israelachvili 

determining gap size at each end of the mesoscale were adopted in the gap size 

acquisition process in such a way that by aligning specific fringes to pre-assigned 

markers overlaid on the camera output feed, the exact gap size could be determined 

within a few seconds.   

 

     The strain gauge response to shearing is demonstrated to be proportional to the 

effective viscosity of the material under shear, and the observed drop in this viscosity 

during aggressive shearing is attributed to the annealing of smectic 8CB domains and 

their reorientation in the direction of shear.  The SFA mesoscale results are compared to 

bulk results reported by other groups, and the influence of gap size on domain 

realignment is evidenced by how much faster asymptotic viscosity is reached while 

shearing within the mesoscale regime.  The characteristic turbidity indicative of randomly 

oriented domains reported for bulk smectic 8CB undergoing large amplitude oscillatory 

shearing (strain amplitude of 5 or more) is not observed in the mesoscale, which may 

indicate domains are more constrained by confining walls as the gap size approaches the 

length scale of the smectic domains. 

 

     For the gentlest shearing conditions (for all combinations of smaller amplitudes and 

lower frequencies, and for both gap sizes tested), very slight time-dependent thickening is 
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observed, suggesting that domains within the sample are becoming less ordered.  This is 

contrasted with earlier tests under similar conditions and performed using an X-Ray 

Confinement Cell (XCC) in which domains were observed to align and anneal, smoothly 

nearer the higher end of the mesoscale regime and in discrete jumps nearer the lower end.  

It is argued that because the XCC results are restricted to the vicinity of tightest 

confinement while the SFA results consider the entire sample, that the bulklike domains 

are being strained and are annealing but do not have sufficient energy imparted to them to 

fully realign in the shear direction and hence will tend to increase the overall effective 

viscosity.  Thus, while domains within the mesoscale tend to reorient slowly, this 

contribution does not outweigh the bulklike contribution which tends to increase with 

time. 

 

     The effective viscosity is observed to undergo shear thinning only at smaller shear 

amplitudes (62.5 nm for the results presented here), while slight shear thickening is 

observed for shear amplitudes on the order of the length scale of the smectic 8CB 

domains.  This amplitude-dependent effect is attributed to the stiffening of the material 

once it has been drawn beyond its viscoelastic limit, the point at which the material 

ceases to exhibit viscoelastic behaviour and begins to flow freely.  This limit has been 

associated with a characteristic kink only becomes apparent when shearing at larger 

amplitudes (625 nm and 6.25 m), which marks the switchover from viscoelastic 

response to purely viscous response.  The onset of the kink varies depending on the shear 

parameters used, and tends to be sharper with gentler shearing and broader with more 

aggressive shearing.   
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     The response data is fitted with the Burgers Model, a viscoelastic model consisting of 

Kelvin-Voigt and Maxwell element in series with one another.  The fits indicate a post-

viscoelastic limit viscosity that drops significantly during aggressive shearing but rises 

very slightly during gentler shearing.  The kink, described primarily by the Kelvin-Voigt 

term, tends to soften over time regardless of the aggressiveness of shearing, indicating 

that a spectrum of viscoelastic limits are being exceeded as shearing proceeds, as might 

be expected in a geometry in which the gap size varies throughout the sample volume.  

The softening of the kinks with time indicates that the viscoelastic limit of domains 

further out radially from the crossed cylindrical center are being exceeded, which may be 

a direct result of domain reorientation progressing into the bulklike regime.   

 

     One drawback to the Burgers model is its assumption that pure viscous behaviour 

(associated here with sliding behaviour) begins immediately upon reversal of the shear 

direction.  For this reason, a second model is proposed, the Split Model, in which early 

behaviour within the half-cycle is described using a Kelvin-Voigt Model and later, purely 

viscous behaviour is essentially linear (with weakly-weighted higher order terms 

handling fluctuations in the signal due to noise) beginning at a predetermined ‘kink time’ 

within the half-cycle.    

 

     The influence of shear amplitude also appears in the evolution of effective viscosity 

over time.  Viscosity vs. time curves for the various shear parameters are fitted to two 

exponential fits, and the smaller time constant is plotted vs. shear rate, revealing similar 
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but distinct log-log relationships for different shear amplitudes.  By extracting the fit 

parameters from the latter, an equation demonstrating the shear amplitude dependence of 

effective viscosity over time is developed, reinforcing the idea that shear amplitude plays 

a quantifiable role in the evolution of smectic-A 8CB viscosity. 

 

     The large shear amplitude results are Fourier Transformed to compare them with 

results obtained using FT rheology, in which sinusoidal shear profiles produce responses 

with odd-harmonics containing information on the material undergoing shear.  Deviations 

from the fundamental higher harmonic amplitudes of the SFA response data are seen to 

increase with shear amplitude at all shear frequencies and for both gap sizes.  This 

indicates that the techniques being developed within FT rheology are likely applicable to 

SFA results.  Further, by Fourier Transforming data during testing methodologies may be 

developed to determine the amplitude at which the viscoelastic limit is exceeded and the 

onset of LAOS occurs. 
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Chapter 1 

 

A History of the Study of Confined Liquid Crystals 

 
     The history of scientific study of liquid crystals (LCs), while relatively brief (spanning 

only one and one-quarter centuries), is nonetheless a complex and interesting one that 

involves several key figures from diverse scientific and cultural backgrounds.  Only a 

general overview is provided here, including those topics most germane to our current 

understanding of the liquid crystal 4-cyano-4’-octylbiphenyl (8CB) as a smectic under 

various levels of confinement, from nano-confinement, where only a few layers of 

material are present and the confining walls play a significant role in the molecular 

behaviour, out to bulklike confinement.  Included as well is the as yet not fully 

understood regime known as mesoscale (or mesoscopic) confinement, encompassing a 

gap size of approximately 1 to 10 m, where the transition from bulklike to extreme 

confinement structure and dynamics occurs.  This dissertation hopes to shed light on this 

latter confinement regime via an analysis of shear tests upon 8CB under various levels of 

confinement using a Surface Forces Apparatus (SFA).  

 

     The early history of the scientific investigation of liquid crystals by Reinitzer
1
, 

Friedel
2
, Lehmann

3
, Mauguin

4, 5
 and Grandjean

6, 7
, including their attempts at orienting 

them is given in Sections 1.1 and 1.2.1-1.2.3.  A brief discussion of the most common 

varieties of liquid crystals is also given here, along with Fréedericksz and Zolina’s
8
 

pioneering work on the competition of surface and magnetic forces on nematic materials 

and, hence, the varieties of motion available to them.  Zöcher
9, 10

, Oseen
11

, Tsvetkov
12

 



 7 

and Frank’s
13

 treatments of the elastic theory of liquid crystals is detailed in Section 

1.2.3, and ELP Theory is outlined in Section 1.2.4.  The work done by Tsvetkov 

Tsvetkov, 1942 #324}, Maier
14, 15

, Saupe
16, 17

, Lippmann
18

 and de Gennes
19-25

 on 

characterizing liquid crystals in terms of an Order parameter is described in Sections 

1.2.5-1.2.6.  The experimental work of Dreyer
26

, Sheng
27, 28

, Jérôme
29-32

 and Pieranski
33

 

and others on liquid crystal ordering near surfaces is discussed in Section 1.2.7.  This 

leads naturally to the research done on liquid crystals under confinement, beginning with 

the fundamental work of Mięsowicz
34-36

 (Section 1.3.1), which in turn leads to the more 

modern work on cyanobiphenyls by Israelachvili
37-40

, Horn
41, 42

, Klein
43-46

 and others 

using the Surface Forces Apparatus (Section 1.3.3), a device that has also been used 

extensively in the research presented in this dissertation.  Other methods of exploring the 

role surfaces have on liquid crystal behaviour are also described (Sections 1.3.4 to 

1.3.10). 

 

     The structure and dynamics of layered systems (such as smectic liquid crystals) is next 

discussed, beginning with de Gennes’
19, 20

 landmark treatment using energy and entropy 

(Sections 1.4.1-1.4.2), leading to the concept of layer distortions and undulations, first 

seen experimentally by Clark
47, 48

 and developed into testable experimental parameters by 

Helfrich (Section 1.4.3)
49-51

.  These parameters were used to test cyanobiphenyls and 

other smectic materials by several groups, both experimentally and theoretically 

(Sections 1.4.4-1.4.6).  Finally, Section 1.5 is dedicated to the research performed on the 

material more specific to the dissertation, smectic 8CB, while under confinement, using 

the SFA and XSFA (also used for the present research).  Safinya
52, 53

 demonstrated the 
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presence of fluctuational forces using x-ray scattering (Section 1.5.1), while Idziak
54

 

demonstrated using x-ray patterns from the X-ray Surface Forces Apparatus (XSFA) that 

under mesoscale confinement, sheared 8CB domains exhibited the three Mięsowicz 

orientations (Section 1.5.2).  Of the two gap sizes sheared (0.5 m and 5 m), only the 

smaller, if sheared gently enough, tended to re-orient in the shear direction in a step-like 

fashion, and showed a periodic tilting of the mosaic at the same frequency as the shear 

rate.  This was attributed to discrete domain reorientation.  The current study investigates 

this level of confinement and hence this shearing phenomenon directly (via strain gauge 

response) using the Surface Forces Apparatus. 
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1.1  Confined Liquid Crystals: An Introduction and Early History 
 
     The history of liquid crystal studies begins with Austrian botanist Friedrich Reinitzer 

who, while researching the chemical properties of cholesterol derivatives in carrot roots 

in 1888, found one (cholesteryl benzoate) that exhibited two distinct melting 

temperatures: one, at 145.5ºC, was a cloudy material, while another, at 178.5ºC, was 

clear
1, 55

.  Both transitions were preceded by a colour change, from cloudy (145.5ºC) or 

clear (178.5ºC) to violet-blue, which disappeared after the transition was complete.  

Although the results were presented at a meeting of the Vienna Chemical Society that 

year, the field did not advance significantly until decades later when, in 1922, French 

crystallographer Georges Friedel published his seminal treatise, The Mesomorphic States 

of Matter, cementing the notion that what was being studied and discussed was a new 

phase of matter, the liquid crystal phase
2, 56

.  During this tumultuous early period, much 

of the publicity for these novel materials was undertaken by crystallographer Otto 

Lehmann, who despite his young age had recently taken over as department head for 

Heinrich Hertz at the University of Karlsruhe.  Reinitzer sought Lehmann’s advice in 

March and April of 1888, with the hope that the latter’s polarizing microscope might 

shed some light on the mystery he had uncovered.  Lehmann in turn performed several 

experiments over the next few decades, characterizing the growing number of similarly-

behaving materials, of which thirty-five had been documented by 1906; in addition, he 

founded the first liquid crystal summer school in 1912, through which he directly 

influenced many of the luminaries that would follow him (such as Grandjean, Mauguin 

and Friedel), and openly espoused his Haeckelian belief that liquid crystals were the 
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origin of many life processes.  Ultimately, though, he died a few months short of seeing 

the publication of Friedel’s widely influential treatise
56

. 

 

     Thanks in part to this pioneering work it is now known that liquid crystals come in a 

variety of types, distinguishable by the position and orientation of their constituent 

molecules.  In the nematic phase (Figure 1a), for example, they are devoid of positional 

order but have long-range orientational order.  That is, while the center of mass 

distribution follows no specific pattern, the molecules tend to align in a specific direction, 

represented by the dimensionless unit vector, n


, known as the director.  Smectics, 

meanwhile, have both orientational order and one-dimensional positional order, a result 

of the molecules’ tendency to arrange themselves in parallel layers while maintaining 

isotropy within each layer.  These layers, or lamina, are often able to slide easily with 

respect to one another, making smectics a frequent candidate for lubricants.  There are 

several types of smectics, the two most common of which are smectic-A and smectic-C.  

With the former, molecules are aligned with their lengths perpendicular to the smectic 

layer (Figure 1b), while the latter have their molecules tilted some angle with respect to 

the layer (Figure 1c)
55

.  Maurice de Broglie (the less famous brother of physicist Louis de 

Broglie) and Edmond Friedel (son of the aforementioned Georges Friedel) in 1923 

demonstrated the existence of smectic layering by performing the first liquid crystal x-ray 

experiments, in their case on a sodium oleate-water mixture
56-58

 with a stack of layers 

they determined to be equally 43 Å thick
57

.  Over the next half century many more 

varieties of smectics were discovered, and the smectic notational convention, largely 
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developed by Sackmann and Demus
59

, lists the materials alphabetically (Smectic-A, 

Smectic-B, etc.) based on their order of discovery
60

. 

 

 
Figure 1.1: Common types of liquid crystals. 
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     The chiral phase describes an arrangement wherein the molecules are positioned about 

a chiral center (Figure 1e); the director in this case rotates helically about the center, and 

if it does so sinusoidally the material may also be called a cholesteric.  The full length of 

the sinusoid is known as the pitch (the half-pitch p/2 is shown in the figure).  The pitch 

often falls within the range of visible wavelengths, and since it is also very temperature-

sensitive, chiral materials generally display vibrant reflective colours that themselves 

vary with temperature, a property which makes them useful to the electro-optical 

industry.  Both smectics and nematics can be chiral 
55

, and those phases which exhibit a 

chiral structure have traditionally been labeled with an asterisk (e.g. Smectic-C*) to 

differentiate them from non-chiral phases
60

.  The first studies on molecular chirality were 

performed in 1848 by Louis Pasteur in his doctoral work describing the chiral separation 

of tartaric and pantartaric acids in the sediments of fermenting wine, although it wasn’t 

until 1893 that Lord Kelvin first defined a chiral body as an object ‘that cannot be 

superimposed on its mirror image’
61

. 

 

     A more recent discovery in the field of liquid crystals is that of the columnar phase, 

first studied by Sivaramakrishna Chandrasekhar in 1977
62

.  Often referred to early on as 

the discotic phase, this term has in recent years fallen into disfavour following the 

discovery of several columnar systems not made up of discoid components
19, 63-65

.  In 

such systems, the liquid-like direction is to be found along the column (as represented in 

Figure 1d by randomly-spaced discs within each column), while orientational ordering 

(along the stack) and two-dimensional positional ordering (due to the hexagonal 

placement of the columns in the plane perpendicular to the director) is present. 
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1.2 Methods of Orienting Liquid Crystals  

1.2.1  Early Experiments in Orientation 

     While the first seventy-five years of the history of liquid crystals remained relatively 

uneventful, the discovery by Richard Williams in 1963 that such materials often exhibit 

interesting electro-optical properties led to a resurgence of interest in the field
66

, 

ultimately culminating in the development of the now-ubiquitous Liquid Crystal Display 

(LCD).  Attempts at manipulating liquid crystals in order to orient them began much 

earlier than this, however.  In 1911 French mineralogist Charles-Victor Mauguin 

published results commenting on his findings using a petrographic microscope equipped 

with a stage temperature-controlled by a high current (5-10 amps), with the samples 

(azoxyanisole and azoxyphenetole) sandwiched between two glass slides
4
.  In addition to 

noting that liquid crystals had birefringences in excess of those found in liquids in electric 

and magnetic fields (the Kerr and Cotton-Mouton effects, respectively), he found that the 

cleanliness of the glass alone could change the optical properties of the samples 

considerably.  Furthermore, he reported that by adjusting the size of the gap and training 

monochromatic convergent light on the sample, he could change the number of 

interference fringes observed from two (with 10 m sample thickness) to twelve (with 

150 m sample thickness).  Finally, he described an experiment wherein the cover slide 

was rotated with respect to the sample slide and noted that the visible domains were 

relatively insensitive to the motion of the slide, providing a rudimentary example of a 

shear experiment involving liquid crystals
4
.   
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     In a paper later in the year, he presented his findings on the orientation of 

azoxyanisole in the presence of a magnetic field
5
 and in a similar setup as before save for 

the addition of a small electromagnet pierced so that the microscope would have an 

aperture to observe the sample.  The magnet was positioned such that the lines of 

magnetic force would be perpendicular to the glass slides.  He found that without the 

magnetic field gap sizes exceeding 0.2 mm would never yield material of uniform optical 

alignment, while with a field of 2500 Gauss applied alignment was rapid and uniform, 

resulting in an optical axis parallel to the lines of force.  Similar results were found with a 

magnetic field of similar magnitude placed parallel to the glass slides, and in both 

orientations strong birefringence was detected using the microscope; this birefringence 

increased as the field was increased to 5000 Gauss, at which point it stopped increasing.  

He finished his paper by mentioning an experiment wherein a magnetic field was applied 

to a thin film containing ‘residual crystallites’ adhering to the surface which, unlike the 

rest of the film, resist reorientation by the applied field, a topic taken up five years later 

by French mineralogist and geologist François Grandjean. 

 

     In 1916 Grandjean presented a survey of five liquid crystals and the surface effects 

observed when they were deposited on nine different minerals, each with a cleavage 

plane exposed.  During this series of experiments he made the discovery of what he 

called the terrace phenomenon (made up of what are known today as Grandjean 

terraces)
56

: a series of plateaus laid one on top of another, with each successive layer 

smaller in surface area.  The layers were always of constant thickness, flat-topped, and all 

had well-defined contours
6
.   
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Figure 1.2: Grandjean terraces (recreation of the original figure in Grandjean
6
) 

 

This series of experiments was the first to identify smectics as a distinct type of liquid 

crystal (given this name in 1922 by Grandjean’s collaborator, Friedel
2
), and at the same 

time showed the significant effect surface forces have on orienting such materials.  It is 

also interesting to note that Grandjean published a very early discussion of an order 

parameter in liquid crystals
7
, a quarter-century before Russian physicist Viktor 

Tsvetkov’s important work (discussed in Section 1.2.5), but the treatment seems to have 

been either forgotten or dismissed by his contemporaries
56

.  

 

1.2.2  The Fréedericksz Transition and Frank Constants 

     In 1929 Russian physicist Vsevolod Fréedericksz presented his landmark paper 

quantifying the competition between confinement and electromagnetic force in liquid 

Cleavage Plane

Vertical cut

Horizontal

cut

Cleavage Plane

Vertical cut

Horizontal

cut



 16 

crystals
8
 at the 55

th
 annual meeting of the American Electrochemical Society in Toronto.  

Fréedericksz and Zolina had developed an experiment wherein three materials (p-

acetoxybenzaline, p-asoxyphenetole and anisaldazine) were confined between a flat glass 

plate and a convex glass lens, and a magnetic field was applied perpendicular to the 

plane.  In this way a well-defined transition radius could be determined for each material 

to test the role surface forces play in orienting the liquid crystal.  The Fréedericksz 

transition can be thought of as the product of two competing forces: surface forces that 

tend to keep the director aligned parallel to the confining surfaces and magnetic field 

forces that tend to re-align the director perpendicular to the surfaces.  A derivation 

following Jones’ treatment of a confined nematic in a magnetic field follows
67

.  The free 

energy per unit volume of a single domain oriented in the z-direction would consist of the 

two aforementioned competing energy terms: 
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where a splay elastic modulus term, Ksplay, and a slight shift to the director in the z-

direction,   zzn  , have been introduced to describe the director’s re-orientation 

elastically.  The field,   nEnD
a

  , oriented in the z-direction as well, can be 

substituted into the above by letting Enx    so that EdnEndEdndx   , 

giving: 

 













 xdx

z

zn
KF

asplay






4

1

2

1
2

 

 
 

2

2

82

1
En

z

zn
K

a

splay
















 




 



 17 

And since n


  and E


 are parallel to one another: 
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One must decide on an appropriate distortion shape for  zn  to proceed further.  

Considering the boundary conditions of     00  dnn  (where d is the thickness of the 

sample) and the assumption that the greatest field effect occurs at the center (i.e. furthest 

from both surfaces and hence least affected by them), a sinusoid fits the requirements 

well.  That is,    dznzn  sin  and the total free energy can be obtained by 

integrating the above over the film: 
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When the competing forces are balanced, 0
tot

E , so the critical field Ecrit can now be 

solved: 

a

splay

crit

K

d
E



2
                                                                                                           (1) 

It should be noted that the more complicated situation of a twisted nematic system 

follows the same derivation, and yields results usable for the development of liquid 

crystal display technology (although generally alternating electric fields are used instead, 

as they have a greater effect on liquid crystal orientation; the principles for both, 

however, are the same
56

).  The critical field is given by: 
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where two new elastic constants must be introduced to represent the additional motions 

possible in a twisted nematic, the twist and bend
67

, shown in Figure 1.3: 

  

 

Figure 1.3: The three types of motion in nematic liquid crystals: Splay, Twist and Bend. 

 

     The concept of treating liquid crystals as elastic materials was first proposed at the 

1933 Faraday Symposium in London
56

.  Both German chemist Hans Zöcher and Swedish 

physicist Carl Oseen presented papers (the former in person and the latter in absentia) 

that considered the molecules from a mechanical point of view
10, 11

.  This mechanical 

theory ultimately replaced the only widely-accepted theory of liquid crystals that existed 

at that time, and one that was a central focus at the 1933 Symposium: Swarm Theory. 

The now largely-abandoned theory, in which large-scale order comes about by dipole-

dipole interactions between molecules, leading to approximately micron-sized, relatively 

stable, randomly assorted regions, each with a constant director
56, 68

, was first proposed 

by Emil Bose in a series of papers published between 1907 and 1909
69-71

, and first 
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established as a viable quantitative theory by Max Born in 1916
68, 72

.  Despite Zöcher and 

Oseen’s introduction of this novel way of considering the problem, Swarm Theory 

persisted for many years with many scientists in the field falling into one camp or the 

other, and it remained a topic of discussion even into the 1970s, as evidenced by de 

Gennes’ (albeit disdainful) treatment of it in his seminal 1973 work, The Physics of 

Liquid Crystals, in which he refers to it as “the so-called Swarm Theory which has 

plagued the field of nematic liquid crystals for thirty years.” 
19, 68

  

 

     Russian polymer physicist Viktor Tsvetkov
12

 made some preliminary measurements 

of liquid crystal elastic constants in p-azoxyanisole in the early 1940’s, but the notion of 

an elastic theory of liquid crystals only truly took root after a treatment in 1958 by the 

British physicist Frederick (Charles) Frank
13

.  Frank used the above elastic moduli 

explicitly in his revision and reformulation of Oseen’s theory of nematics, smectics and 

cholesterics, and gave them their current nomenclature as splay, twist and bend 

coefficients, and as a result today they are known as Frank constants
55

.  He proposed that 

for small changes (relative to molecule size) to the director’s orientation, the free energy 

density can be represented entirely by elastic terms
13, 55, 67

: 

     
222

2

1

2

1

2

1
nnKnnKnKF

bendtwistsplaytot


                                        (3) 

Often, the splay, twist and bend subscripts are replaced by the numbers 1, 2 and 3 (using 

Zöcher’s notation) or 11, 22 and 33 (after Frank’s original tensor notation).  Frank’s 

derivation did not preclude the existence of what he called a saddle-splay term (K24), but 

he noted that in bulk nematic materials its effect would be negligible
13

.  In 1991 and 1992 

deuteron NMR experiments on nematic 5CB performed by Crawford, Allender and 
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Doane
73

 demonstrated that the K24 term could, in fact, be measured under weak anchoring 

conditions within high-curvature (submicron diameter) cylindrical cavities, and that the 

director pattern is dependent on K24 under such conditions
74

.  Oseen’s derivation had one 

further term, K12, which he assumed in all simple cases could be approximated to zero
11

, 

and this assumption has been used as well by Frank.  In the event that larger changes to 

the director occur, the above treatment can be modified to allow higher-order terms of 

n than are shown
67

. 

 

1.2.3  Surface-Induced Order: Early Experimental Work 

     It is often stated that, aside from the two notable contributions of Tsvetkov
12

 and 

Mięsowicz
34-36

 (discussed later in separate sections), very little progress was made in 

liquid crystal science over the quarter century period of 1933-1958
56, 68

.  During the 

Second World War, however, French mineralogist and crystallographer Pierre Chatelain 

performed important experiments in epitaxial ordering of azoxyanisole due to the rubbing 

of substrates.  While he was not the first to develop this technique
9, 10

, his results 

represent the first published systematic attempt at quantifying the relationship between 

experimental preparation parameters and the resultant orientation.  The amount of 

rubbing and the rubbing agent, the method of cleaning, the type of substrate, the type and 

age of liquid crystal used were all varied and the results recorded
75

, and the reasons for 

varying results were discussed
7
, giving future scientists techniques for preparation that 

are still in use today
56

.  By 1962, with the publication of Gray’s text on liquid crystals, it 

was well established that the substrate on which a liquid crystal is placed and the means 
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of preparing it could markedly affect its behaviour and structure several microns out from 

the surface
76

.   

 

1.2.4  Ericksen, Leslie-Ericksen and ELP Theory 

     The problem of fluid flow has been a topic of interest to scientists and engineers for 

centuries, garnering the interest of no less than Sir Isaac Newton, who posited that the 

stress, F, and rate of strain, 
dy

d 
, in liquids are linearly proportional to one another: 

dy

d
F


                                                                                                                           (4) 

where  is the viscosity of the fluid.  Fluids that obey the above relation are known as 

Newtonian Fluids, but there are several fluids that do not follow this simple model, liquid 

crystals being one example.  Apart from an early and only partially successful attempt in 

1933 by Oseen’s student, Adolf Anzelius
77

, it wouldn’t be until 1960 that the problem of 

how to describe the motion of nematics (see Section 1.1 for details on this liquid crystal 

phase) undergoing shear would be tackled by American physicist Jerald Ericksen
78, 79

.  

He began by assuming the nematic consisted of an ensemble of rigid, rod-like molecules, 

and then further assumed an infinitesimal perturbation (that is, a force much smaller than 

the interaction forces between molecules in the ensemble) on this volume, V, of rods with 

surface area S, could be described by the Work-Energy Theorem.  By assuming that 

nematics are incompressible and rigid, and with considerable mathematical perspicacity, 

he was able to express his solution in a remarkably succinct form, similar to Oseen’s and 

Anzelius’ solution
77

: 
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V V S

dSsdVgGdV
dt

nd

dt

d
                                                                                (5) 

where n  is the director, G  and s  are the perturbative body and surface forces causing 

the flow, and g  is the intrinsic director body force
60, 68

 which arises from the interaction 

of the director with external (for example, gravitational and electromagnetic) fields
80

.  

This equation, combined with the conservation of energy, mass, linear momentum and 

angular momentum equations
81

, allows one to write a set of four differential equations, 

which, when thermal equilibrium is assumed, reduces to: 

n

W
ng




                                                                                                                      (6) 

where W is the work done on the system and  is a proportionality constant
68

. 

 

     Ericksen’s theory assumes the rods generally lie in the same direction, however, and 

do not take into consideration surface influences which will lead to distortions in the 

nematic.  This more generalized case, where Ericksen’s flow equations would be coupled 

with Frank’s elastic constants, was derived by Scottish physicist and mathematician 

Frank Leslie and first published in 1966
82

.  By assuming the material properties of the 

system were single-valued and indifferent to the frame of reference, and by assuming the 

system was incompressible and isothermal, Leslie was led to the following constitutive 

equation, expressed by Larson in terms of tensors
55

: 

nnDDnnDNnnNDnnnnó 
654321

:                                            (7) 

where  is the viscous stress tensor, n is the director field, N is the rotation rate of n, D is 

the symmetric part of the velocity gradient tensor, and the i terms are what are known as 

the Leslie viscosities, a mostly independent set of terms that describe the possible 
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viscosities affecting the splay, twist and bend motions given by Frank during nematic 

flow.  Although the original theory predicted six terms, Parodi later showed that only five 

are independent, leading to a simplified Ericksen-Leslie-Parodi (ELP) theory
83

.   If the 

director field is not uniform, Frank distortional stresses arise, leading to (after assuming 

the angular momentum of the system is conserved): 

     0NDnnnDnhnnh 
2356

:                                                    (8) 

where h represents what is referred to as the molecular field, made up of the three Frank 

components
19

: 
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                                                                            (9) 

where  nn A  and  nnB  . It should be noted that in the special case of 

0h  , Leslie-Ericksen theory reduces to Ericksen theory
55

.  If a magnetic field strong 

enough to keep the director in place were applied as was done in Mięsowicz’s original 

experiments (see Section 1.3.1 for more details), the i viscosities reduce to Mięsowicz 

viscosities in the following way
84

: 

222

5426434















cba

        (10) 

If the director is not held in place by an external electric or magnetic field, of course, the 

overall stresses in the system are not necessarily proportional to the shear rate, and in fact 

the Leslie-Ericksen equations anticipate the possibility of shear thinning because they 

contain nonlinear terms that are functions of the gradient of the director field, n
55

.   
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     Leslie-Ericksen theory has been used with considerable success to describe nematics 

under shear since its development in the 1960’s and 1970’s
85-101

.  Despite the relative 

simplicity of the five-fold viscosity, Leslie-Ericksen theory does also allow for the 

possibility of many types of interesting behaviours in nematics.  While the topic is far too 

vast to be discussed here, one commonly occurring resultant phenomenon, director 

tumbling, has been studied in some detail, with thorough discussions having been 

published by Burghardt and Fuller 
102, 103

.   

 

1.2.5  The Order Parameter 

     In practice, liquid crystals will not be perfectly ordered, and it is useful to introduce a 

long-range order parameter, S, to describe how well oriented a sample is, ranging from 0 

for a perfectly isotropic material to 1 for a perfectly ordered material.  Values in between 

are described using the second Legendre Polynomial, first proposed by Russian polymer 

physicist Viktor Tsvetkov
12

: 

 
2

1cos3
cos

2

2





PS                                                                                      (11) 

where  is the angle between the director and the long molecular axis in the region being 

studied.  The polynomial chosen is second order since, were the first order chosen (

cos
1
P ), the cosine term would average to zero since the director n and its negative are 

equivalent to one another (that is, liquid crystals are symmetric about their preferred 

axis).  The order parameter has been related to various experimentally verifiable values, 

from early studies of birefringence by Chatelain
56

 and diamagnetism via linear dichroism 
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by Saupe and Maier
104

, to more recent experiments using Raman scattering
105

, as well as 

EPR
106, 107

 and NMR
108

 spectroscopy.  

 

     German physicist Wilhelm Maier and his doctoral student, Alfred Saupe
12, 14

, worked 

with Tsvetkov’s order parameter definition in an attempt to relate it to the free energy of 

the system by making the assumption that the interaction energy between any two 

molecules and the order parameter are quadratically related while the entropy can be 

obtained from the standard Boltzmann treatment, integrating over all space, so that a 

transition from isotropy to anisotropy would lead to a change in free energy of
67

: 

      dffTk
uS

F
B

 4ln
2

2

                                                                          (12) 

where u is a molecular coupling term—larger values of u represent increasingly 

favourable interactions between molecules—and  f is a function representing the 

fraction of molecules in solid angle ; note that for a completely isotropic system the 

number of molecules in any given volume will be constant and so    41
iso

f .  Also 

note that the above equation provides justification for a material to convert from a higher 

to a lower entropy state, through its favourable energy interaction term leading to a 

potentially overall lower free energy.  After some calculations in which values of  f  

are determined that will minimize free energy for a given fixed S, one can determine the 

relationship between the free energy per molecule and the order parameter, and from it 

characteristics of the isotropic-nematic transition may be determined.  The above is 

known as Maier-Saupe Theory, and was first used in 1958 to make sense of experimental 

data on the phase transition of p-azoxyanisole collected by Tsvetkov in 1937
14, 67

. 
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     A more generalized order parameter was later developed for nematics
16, 109

, wherein 

each molecule is represented by a tensor S  with elements Sij given by its molecule-fixed 

Euler coordinates.  French physicist and Nobel Laureate Pierre-Gilles de Gennes took a 

similar approach, generalizing Tsvetkov’s order parameter so that: 
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where iöand jö  are orthonormal vectors describing the orientation of the molecule, while 

 and  are indices representing the laboratory frame.  By introducing what he refers to 

as the Order Parameter Tensor for magnetic susceptibility: 




3

1
Q  

and using it to perform a Landau Expansion of the free energy per unit volume: 
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where H is the external magnetic field, F can be minimized with respect to the order 

parameter to obtain the birefringence of a given anisotropic medium.  In a similar 

fashion, by assuming an order parameter that varies gently over space so that elastic 

components of F may be added, one can derive expressions for the anisotropic scattering 

intensities 


I  and 
||

I
22

. 

 

1.2.6  Orientation through Spinning 

     German physicist Hans Lippmann
18

 performed some of the first tests on the 

orientation of liquid crystals by spinning the sample, during his experiments involving 
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the NMR of nematics in 1958.  He showed that there exists a critical speed above which 

orientation due to a magnetic field disappears.  The potential energy per unit volume, EP, 

of a nematic in a magnetic field, H, can be expressed easily combining Saupe’s equation 

with the first-order Zeeman dipole-dipole interaction energy term for two rigid rods of 

identical spin: 
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where  is the anisotropy of the magnetic susceptibility and  is the angle between the 

nematic director and the main magnetic field.  The potential gives rise to a torque given 

by Courtieu as
110

: 

 2sin
2

1 2
H

m
                                                                                                         (15) 

The realignment of the rods will not be instantaneous; rather, it will take a finite, 

measurable time due to viscous effects, described by Leslie
82, 111

 in terms of viscous 

torque, v: 


1


v

                                                                                                                         (16) 

where 1 is a viscosity coefficient and  is the rate of change of direction of the director.  

Equating the two torques gives: 





 2sin

2
1

2
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                                                                                                            (17) 

With this equation one can determine the rate at which a sample must spin in order to 

counteract the torque exerted by a magnetic field, and hence one can orient a bulk sample 

to be studied by NMR.  With confidence buoyed by conversations with Saupe and 

Englert
112

, Diehl and Khetrapal undertook NMR experiments on nematics with 



 28 

Lippmann’s derivation in mind, and were able to show experimentally via NMR that the 

order parameter, S, of anisole azophenyl-n-capronate depends both on temperature and on 

concentration, as well as spinning speed.
113

.  They later demonstrated that an electric field 

could effectively reorient a nematic director despite the presence of the main magnetic 

field, providing an alternative to Lippmann’s method
114

.  The first experimental success 

of homogenously orienting a nematic at any angle with respect to an external NMR 

magnetic field was performed by Courtieu in 1982, using nematic p-pentylphenyl 2-

chloro-4-(p-pentylbenzoyloxyl)benzoate
110

.   

 

1.2.7  Surface-Induced Order: Working Towards a Theoretical Model 

     Dreyer
26, 115

 reported in 1971 that even simulated rubbed surfaces can sometimes 

induce orientation in nematics, suggesting that the cause of surface-induced alignment is 

geometrical in nature rather than chemical or intermolecular.  Berreman assumed a 

sinusoidally-ridged surface roughness and a nematic material approximately equal Frank 

constants in order to derive an expression for energy density, 


u , and total energy per 

unit area, 



116

.  Taking typical experimental parameters (quartz glass of roughness 

amplitude 1 nm, a rub-induced sinusoidal roughness wavelength of 20 nm and all elastic 

constants equally 10
-6

 (cgs units), typical for p-azoxydianisole
13

), he calculated an energy 

density discrepancy of 510
5
 erg/cm

2
 and a total energy per unit area of 0.08 erg/cm

2
 at 

the surface ( 0z ).   That is, it would take 0.08 erg/cm
2
 more energy to align across the 

ridges than parallel to them, corresponding to an aligning electric field of 610
8
 N/C or 

magnetic field of 700 T, both much higher than would be used in typical experiments.  

Hence, he concluded, with the simple assumptions he has made one can expect a strong 
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surface-induced ordering of nematic materials.  He stressed that both 


  and temperature 

will affect nematic surface orientation, and presented his own data where, for p-

azoxydianisole on rubbed glass, the surface molecules aligned parallel to the rub 

direction at 134C and vertically at 136C
116

. 

 

     Sheng
27

 published early results on the effect that substrates have upon phase 

transitions in nematics.  Working from Landau-de Gennes theory
19, 21, 22

, he was able to 

show that there is a critical thickness above which the phase transition exhibits critical 

behaviour (one example of which, a divergent specific heat capacity, is discussed in 

Section 1.3.6 within Iannacchione et al’s results) and below which the phase transition is 

continuous.  Sheng calculated as an example, the critical thickness of nematic MBBA, 

which he found to be 100 nm
27

.   This property of nematics was extended to curved 

substrates by Kralj
117

.  Sheng later demonstrated that the nematic-smectic phase transition 

temperature will shift downwards with the presence of impurities and elastic strains, and 

will shift upwards due to surface-induced ordering in the nematic within a range of 

substrate potentials that are dependent on the substrate properties
28

. 

 

     Experiments on nematic domain orientation via crystalline substrates (generally alkali 

halides) continued in static systems with Tikhomirova et al
118, 119

 and Frolova
120

, who 

showed that anisotropic surfaces play a major role in the orientation of nematics.  

Dynamic domain reorientation studies of n-4’-methoxybenzylidene-n-butylanilin 

(MBBA) and 5CB were performed by Blinov and Sonin
121

 by placing a single drop (0.1-

1.0 mm diameter) on a muscovite mica substrate and observing the reorientation into 
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domains using optical microscopy, a process that generally took only a few seconds.  It 

was observed that the mica divided the drops into six domain sectors, and similar 

experiments with NaCl revealed four domain sectors.  The group also performed 

experiments confining the nematics between two aligned NaCl surfaces and applying an 

electric field to trigger a Fréedericksz transition to test the field needed to reorient the 

material from one preferred domain direction to another.  Finally, they tested local 

Fréedericksz transitions by depositing Langmuir-Blodgett staircases of stearic acid (on 

which the nematics would adopt a parallel alignment, due to short-range steric forces) on 

a mica substrate (which, due to van der Waals interactions, aligns the nematics 

homeotropically) followed by a drop of the nematics (MBBA and 5CB) to find at what 

thickness of acid the liquid crystal switched from planar to hometropic orientation, and 

hence the range at which the dispersive forces from the mica substrate were screened.  

The phenomenon, first proposed by Dubois-Violette and de Gennes
122

, was shown to 

follow the relation WAr
C

2 , where rC is the range of the dispersive force, A is the 

Hamaker constant of the mica/nematic interaction, and W is the anchoring energy of the 

nematic with the stearic acid
121

.  The principle that 5CB (and, as it turns out, other 

cyanobiphenyls) tends to adopt either a planar or homeotropic orientation on mica has 

often been used by liquid crystal experimentalists, particularly those using the surface 

forces apparatus (SFA) and surface forces balance (SFB)
123-130

, discussed in Section 1.5. 

 

     Jérôme and Pieranski
31

 studied the interaction of nematics with two types of mica 

(muscovite and phlogopite), and stressed that the substrate must be considered from a 

three-dimensional point of view.  Noting that the mica cleavage plane is along the K
+
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layer, beneath which lies an SiO4 tetrahedral hexagon substrate with octahedral cavities 

containing either three Mg
2+

 (for muscovite) or two Al
3+

 (for phlogopite) ions, they 

considered the symmetries involved in each case and concluded that the surface is 

effectively hexagonal C6V (also known as hexagonal pyramid) symmetry for phlogopite 

mica and CS (also known as reflective) symmetry for muscovite.  In the former, the 

sublayer is considered since it is nearer to the surface (5 Å beneath the top layer) while in 

the latter it is ignored since it is further away from the surface (13.9 Å beneath the top 

layer).  The symmetries lead ultimately to four possible anchoring positions in muscovite, 

two of them stable and two quasi-stable, and one tristable anchoring position in 

phlogopite. They also performed microscopy experiments of nematics on various 

substrates and demonstrated the dependence of anchoring on relative humidity
131

, noting 

that at a critical humidity point the liquid crystal orientation may jump from one 

anchoring position to another.  The behaviour is explained by deriving a formula for the 

grand potential of the system dependent on the chemical potential, temperature and 

azimuthal angle, and then using Landau-Ginzburg theory to develop a second-order 

anchoring transition
131

.  A later study by Jérôme, Pieranski and Bechhoefer using second-

harmonic generation techniques revealed that for cyanobiphenyls (5CB and 5OCB were 

used) on muscovite, bulk samples maintained a single orientation 30 from the  axis, 

while monolayers of the material oriented in several possible directions, as discussed 

above.  Non-mesogenic impurities were found to align when present in the 

aforementioned liquid crystals
132

.  Lejcek, Bechhoefer and Oswald calculated a critical 

volume for smectic drops deposited on substrates below which the layers lie parallel to 

one another, creating facets and surface steps, and above which angular matching can 
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occur at the surface, creating a smooth, drop-like shape.  Edge dislocations can occur 

within the volume at intermediate volumes as well
133

. 

 

     Barberi et al
134

 performed experiments on the wetting and surface-induced premelting 

(that is, material diffusion that occurs in a solid due to interactions with the substrate) 

properties of both smectic-A and solid 8CB on three surface types (glass coated with 

silver, SiOx and silicon wafer).  Small drops of 8CB were deposited on each surface and 

their thicknesses and radii were observed using optical microscopy and ellipsometry over 

time at various temperatures.  In general, the radii were found to vary with time as 



R  Dt  where t is the time and D is the diffusion constant; D was found to increase 

with temperature.  The solid phase was found to spread out as well in a precursor film in 

accordance with premelting behaviour predicted by Xue et al
135

.   

 

 

 

 

 

 

 

Figure 1.4: a) Solid 8CB near the solid-smectic-A phase transition premelting on a solid 

substrate at three different times following deposition.  Reproduced from Barberi
134

. b) 

Smectic 8CB prewetting on a silicon wafer after three days of spreading.  Symbols
m

 and 

bic
  refer to the thickness of a monolayer and bilayer (together forming a trilayer) 

respectively.  Reproduced from Bardon
136

. 

 

 

(a)(a)(a)
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In their paper, Xue et al
135

 predicted that the 8CB –CN end group would be absorbed by 

the polar surface and subsequently covered by a homeotropic interdigitated bilayer of 

8CB, creating a thin fluid layer surrounding the solid.  Bardon et al
136

 studied prewetting 

phenomena of smectic 8CB microdrops on silicon wafers using ellipsometry and x-ray 

reflectivity.  The gradual but continuous increase in thickness at the edges of the structure 

was attributed to an increase in density or tilt in the material.  The outer plateau thickness 

corresponds to a monolayer of material tilted 63  6, while the middle plateau 

corresponds to the thickness of a bilayer atop the bottommost monolayer, together 

effectively forming a trilayer
136

. 

 

     Alkhairalla et al investigated the role the surface field has in anchoring monolayers of 

liquid crystals by using evanescent wave ellipsometry
137

, following earlier experiments 

performed on 5CB and 8CB by Evans et al
138

.  The field, h1, was modified by varying the 

chemical composition of the substrate, isotropic and nematic nCB (with 95 n ) were 

used and an evanescent wave ellipsometric technique developed by the group were used 

to measure the Brewster-angle as a function of temperature.  In all cases, the Brewster 

angle changed sharply at the isotropic-nematic transition, and the group was able to 

construct a phase diagram with temperature, n and h1 for the axes.  Notably, the 

anchoring transition from planar to homeotropic alignment as the surface became more 

hydrophobic was observed in the nematic phase and was mapped out.  For a given 

temperature, this anchoring transition occurs upon less hydrophobic surfaces as n 

increases
137

. 
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     Olenik et al
139

 studied the evaporation of thin layers of 8CB on polymeric (poly(vinyl 

cinnamate), or PVCN) and glass substrates using Brewster-angle reflection ellipsometry.  

They found that the first layer deposition is dominated by adsorption onto polar sites on 

the surface, with the 8CB head groups pointed toward the surface.  When the polar sites 

are saturated, areas in between them are then filled with pairs of molecules, one pointed 

away from the surface and the other towards it
139

. 
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1.3 Liquid Crystals under Confinement 

1.3.1  Early work and Mięsowicz Orientations 

     Within a decade of Reinitzer’s discovery, experiments were already underway to 

understand why the properties of liquid crystals seemed to change when proximal to 

surfaces.  Otto Lehmann, in 1904, successfully suspended tiny (submicron diameter) 

droplets of nematic liquid crystal droplets within a viscous material and presented the 

results in his Flüssige Kristalle (Liquid Crystals)
3
.  He differentiated between several 

phases as a result of these and other experiments, such as ‘Fliessende Kristalle’ (flowing 

crystals, spherical and rod-shaped molecules corresponding to smectics and cholesterics, 

respectively), ‘Kristalline Flüssigkeit’ (crystalline liquids) and ‘Tropfbar flüssige 

Kristalle’ (droplet-forming liquid crystals, corresponding to nematics) differentiating 

them by the shapes he could see under his microscope
58

.  He also documented for the first 

time what is now known as the Memory Effect, where properties of the liquid crystal 

under confinement (in Lehmann’s case, light extinction through the microscope slides) 

reappear after having been removed by heating and subsequently cooled to the original 

temperature.  While he attributed this effect to residual crystals adhering to the surfaces, 

it is now known that the surfaces themselves order the liquid crystal near to them
56

, a 

phenomenon that will be discussed in this section. 

 

     Marian Mięsowicz’s work on magnetic-field-affected liquid crystals under 

confinement during the period 1934-1935 produced a trio of papers that laid the basis for 

understanding viscosity in such systems.  The first, published in a Polish journal, received 

little attention, but was followed up with an article in Nature
34, 35

; both described the 
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method and equipment Mięsowicz used to conduct his experiments.  A 48 mm  24 mm 

glass plate was immersed in a temperature-controlled bath of the sample liquid and 

allowed to oscillate with a period of five seconds at amplitudes of up to 0.5 cm, creating a 

shear measured by analytical balance.  The sample vessel was straddled by the two poles 

of an electromagnet
56

.  The preliminary results showed a field of 2400 Gauss caused the 

viscosity of p-azoxyanisol to increase by a factor of 3.5, but it is with the third paper 

containing his follow-up results, written roughly in 1938 but with publication delayed 

until after WWII, that the concept of orientation-dependent viscosity began
36

.  Three 

possible director orientations for the layered material were given: one in the direction of 

shear flow; one in the direction of the velocity gradient; and one perpendicular to both 

shear flow and velocity gradient.  The three possible orientations are shown in Figure 1.5, 

for both nematic and smectic systems.  The lavender dividers in the smectic diagrams 

represent lamellar layers. 
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Figure 1.5: The three possible confined liquid crystal orientations, using the modern a-b-

c nomenclature for (top) Nematics and (bottom) Smectics. Here, ‘v’ is the shear 

(velocity) direction and ‘n’ is the director. 

 

The three orientations are now known as Mięsowicz orientations and the three resulting 

viscosities, a, b and c as Mięsowicz viscosities in his honour.  Anisotropic dielectric 

permittivities originating from these three orientations, '

a
 , '

b
  and '

c
  are also of 

scientific relevance
140

.  While he remained interested in the field up until his death in 

1992 (he attended conferences on liquid crystals in Bordeaux in 1978 and Bangalore in 

1982), the destruction of his lab by invading German forces during the Second World 

War led to Mięsowicz changing fields entirely and he became a professor of nuclear 

physics in Kraków after the war
56

.  Section 1.4 contains more information on the theories 

behind the phenomena observed with smectics undergoing shear, as developed by de 

Gennes
19

 and others. 
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1.3.2  Liquid Crystal Technology and Williams Domains 

     Richard Williams
66

, during his time at RCA laboratories, in 1963 published the 

advancements he had made in the study of the influence electric fields (both ac and dc) 

have on confined liquid crystals.  He used p-azoxyanisole confined between glass plates 

with a spacing varying from 10 to 200 m, and an electric potential of 10 V (the ac 

frequency used was 1 kHz as, he mentions, it produced more stable patterns).  At fields 

above 1000 V/cm, he found that within about 2 milliseconds patterns formed in the 

nematic, readily apparent due to their distinct optical properties: Sections outside the field 

appeared dark, but sections immediately adjacent to it and inside the field transmitted 

light.  Upon removing the field the patterns disappeared within about 20 milliseconds.  

He named the sections domains (now sometimes also referred to as Williams Domains), 

and stressed that because of the rapidity of the transformation the phenomenon is not the 

result of multiple phases; rather, it is the result of molecular reorientation.  He added that 

the reorientation cannot be due solely to a shift in the Boltzmann factor, B, since, using 

the experimental parameters he provides: 
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which implies that only one in   55001081.1
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 molecules has been aligned by the 

field, far fewer than what one might expect would be necessary to create a macroscopic 

effect.  He postulated that the effect is due to a torque exerted by the field on the net 

dipole moment per unit volume in the area that was, before the field was applied, aligned 

parallel to the confining wall.  Since areas adjacent to that exposed to the field have no 
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torque upon them, they do not reorient, and this sharp divide between the two sections 

leads directly to domain formation.   

 

   

 

Figure 1.6: Confined nematic in a magnetic field; the field B  and magnetic dipole M

produce a torque which aligns the molecules with the field. 

 

 
Williams also proposed a reason for nematic ‘threads’, which appear as sharp but 

irregular disclination lines that often result during the transition from the isotropic to 

nematic state and at low shear rates.  He hypothesized that growing neighbouring 

domains whose boundaries abut will minimize their collective surface energy, and to do 

so they must align their directors either parallel or perpendicular to one another, which 

will lead to the densest packing of boundary molecules.  Parallel alignment would lead to 

a coalescence of the domains, and perpendicular alignment would lead to a nematic 

thread or similar structure
66

.  With the help of Williams’ pioneering work in liquid crystal 

display technology, RCA was able to produce a prototype of the world’s first working 

liquid crystal display in 1968. 
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1.3.3  Modern Methods of Studying Confinement:  The Surface Forces Apparatus 

     Horn and Israelachvili performed experiments with the SFA on both an isotropic 

liquid
129

 (octamethylcyclotetrasiloxane, or OMCTS) and a nematic liquid crystal
41

 (4’-n-

pentyl 4-cyanobiphenyl, or 5CB), to study the nature of structural forces (also known as 

solvation forces).  The samples were confined to several monolayers by mica surfaces 

glued to cylindrical lenses.  The top lens was mounted on a piezoelectric tube which, with 

a pair of micrometers, could control the separation between the surfaces to sub-Angstrom 

levels.  The bottom surface was mounted on a spring mount with known stiffness, k, and 

by adjusting the lower disc by a specific amount (using either the micrometers or the 

piezoelectric tube) and recording the actual displacement (determined optically from the 

FECO fringes produced by white light passing through the sample and confining 

surfaces—see Chapter 2 for more details), the difference between the two measurements 

multiplied by k gave the normal force exerted by the sample via Hooke’s law.  By 

decreasing the gap size and recording the resulting force, the group was able to observe 

the solvation forces as a function of separation.  In particular, oscillatory behaviour was 

recorded below a certain separation (which varies depending on the material being 

tested), representing the ejection of individual layers.  As a layer is being ejected, it will 

exert a repulsive force, but once the layer is ejected there will be a jump inwards to the 

next stable layer. 
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Figure 1.7: Force-measurement for nematic 5CB.  Inset shows the amplitude of the 

oscillations as a function of separation.  Reproduced from Horn et al
41

. 

 

 
     The amplitude increase that occurs as the separation is reduced was attributed to the 

increased ordering at each successive layer.  The pattern is analogous to the radial 

distribution function about any point in the immediate vicinity of a molecule in a 

liquid
141-143

.   Horn, Israelachvili and Perez’s aforementioned experiments represent the 

first to study thermotropic liquid crystals using an SFA
144

.  Similar experiments have 

been performed since then on 5CB and 8CB by Ruths et al, using mica as a substrate
125

 

and gold
145

, and both show similar behaviour.  Presmectic ordering was first observed 

using the force-measurement technique in 1994 by Moreau, Richetti and Barois
146

 using a 

mixture of water and caesium perfluorooctanoate (CsPFO) as the sample confined by two 

identical mica surfaces and later by one bare mica and one coated (by homeotropy-

inducing poly-l-lysine) mica surface
147

.  According to Frink and van Swol
148

, oscillatory 
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solvation forces have been detected in several liquid materials since then, including 

water
149

, ethanol
150

, cyclohexane and n-pentane
151

 and tetradecane and hexadecane
152

.  

Frink and van Swol treated the problem theoretically, using a grand canonical Monte 

Carlo simulation of a rough but patterned walled system interacting with a fluid obeying 

a Lennard-Jones potential, and found solvation oscillations that decreased proportionally 

to the degree of roughness of the surfaces
148

. 

 

     Janik, Tadmor and Klein
123, 124

 reported on shear experiments performed on nematic 

4-cyano-4’hexylbiphenyl (6CB) under crossed cylindrical confinement between mica 

sheets, studied with a surface forces balance (SFB), a device similar in design and 

performance to the SFA.  Both planar and homeotropic orientations were studied (the 

former using mica with minimal exposure to air and the latter using mica exposed for 

more than three hours); two types of planar orientation were used, simple (with the mica 

sheets parallel to one another) and twisted (with the mica sheets perpendicular to one 

another), as shown in Figure 1.8: 

   

Figure 1.8: The three orientations of nematics on mica: Planar, Planar Twisted and 

Homeotropic.  Adapted from Janik, Tadmor and Klein
123

. 
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The different orientations were readily identifiable by the FECO patterns they create and 

the force profile they produce:  Planar orientations create FECO whose doublets are 

closely spaced resulting from the two distinct refractive indices (the ordinary and 

extraordinary) arising from the sample geometry; planar twisted and homeotropic 

orientations both produce widely spaced doublets, but while the former exhibits 

monotonic repulsion roughly below 30 nm gap size, the latter exhibits an attractive well 

when the gap size reduces to roughly the dimer length.   

 

     The group reported that the orientation of the sample, as determined by their 

characteristic FECO pattern, can reorient over time due to exposure to air; Pieranski and 

Jérȏ me had demonstrated previously that water can penetrate nematic films and reach 

dry mica substrates over time, and ultimately nucleate oriented nematic domains above 

them
33

.  Janik et al showed that this effect can be achieved from atmospheric water over 

the course of days.  Initially homeotropically-oriented 6CB, for example, would begin to 

shift to a planar orientation, although only the onset of the effect could be detected after 

three days.  The reorientation would generally occur on a timescale shorter than this, 

typically one to three days.  Similar phenomena were also observed with 8CB and the 

non-polar nematic 4-hexyl-4-ethylazoxybenzene
123

.  Lateral shear behaviour of confined 

6CB was later reported by the group as well (with gap size typically below about 30 

nm)
124

.  They found that there was a measurable anisotropy in the friction across the 

nematic, believed to be a product of the Mięsowicz viscosities; they reported a 20-30% 

variation in response depending on the direction of shear relative to orientation.  The 

shear response was found to vary roughly linearly with the normal load placed on the 
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sample, suggesting a solidlike system which would imply pinning of the molecules near 

to the surface. Shear tests were also performed in which, after the surfaces were brought 

together under a large load and sheared in one direction, they were separated and sheared 

in a direction perpendicular to the first.  The anisotropy persisted during the latter shear, 

indicating that at the levels of confinement tested (smaller than 10 nm) the shear (of 

frequency 1 Hz and amplitude 560 nm) was unable to reorient the sample in the original 

direction
124

. 

 

     Ruths and Granick
126

 reported results on the effect surface alignment has on the static 

and dynamic behaviour of nematic 4’-n-pentyl-4-cyanobiphenyl (5CB) under shear while 

confined to a few molecular layers.  The mica layers were rotated relative to one another 

an angle, , and this angle was measured according to McGuiggan and Israelachvili’s 

relationship
153

: 

0

,,

cos














                                                                                                        (18) 

where 



,

 and 



,

 are the wavelengths of doublet fringes  and  when the mica sheets 

are oriented at an angle  to one another, and 
0




  is the maximum separation of  and 

.  Force-measurement experiments revealed oscillatory forces similar in quality to those 

described by Horn and Israelachvili
41

 were present, but with oscillatory amplitudes 

dependent on twist angle : 
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Figure 1.9: Oscillation amplitude of planar 5CB as a function of distance for various 

twist angles.  Solid circles: 22  ; squares: 119  ; diamonds: 5.02.40  ; 

triangles: 3.04.60  ; inverse triangles: 1.06.72  .  The dotted line represents an 

exponential decay with decay constant of 10 Å.  Reproduced from Ruths and Granick
126

.  

 

The oscillation amplitude for twist angles below 10 decays exponentially with gap size.  

The variance of load force with twist angle reinforces Jérȏ me and Shen’s conclusions 

that above the bottommost monolayer several orientations may be present
32

.   

 

     Oscillatory shear experiments were performed as well, at two film thicknesses (10 ± 1 

and 15 ± 1 Å, corresponding to two and three layers, respectively), with shear amplitudes 

of a few Angstroms and in the frequency range 0.13 to 130 Hz.  The effective storage and 

loss moduli are large (indicating a rubbery material) and stay relatively constant over the 

range of shear rates save for high twist angles and low frequencies in the two layer 

system, where the viscous response dominates over the elastic, indicating liquid-like 

behaviour is present; the moduli also generally decrease with increasing twist angle.  In 

experiments where frequency is kept constant (2.6 Hz) and the amplitude is varied over 
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the range of 0.2 to 1900 Å, however, both of the above film thicknesses exhibited 

nonlinear viscoelastic behaviour
126

: 

 

Figure 1.10: Viscous and elastic moduli for 5CB films of 10±1 Å (top) and 15±1 Å 

(bottom) thickness.  Solid symbols represent the elastic moduli and open symbols the 

viscous moduli.  Circles: 22  ; squares: 119  ; diamonds: 5.02.40  ; 

triangles: 3.04.60  ; inverse triangles: 1.06.72  .  Reproduced from Ruths and 

Granick
126

. 

 

By comparing the shear moduli and asymptotic shear stress for the two films and finding 

them to be lower in general for the thicker film than the thinner one, and by noting that 

larger limiting strains occur for the thicker film, they concluded that the molecules one 

layer further out from the surface are noticeably less strongly confined.  In addition, the 

shear response profiles for the three-layer film showed smooth sliding while that of the 

two-layer film showed stick-slip, indicating once again that the third layer is less strongly 

confined
126

. 
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     Kitaev and Kumacheva
144

 performed SFB experiments on mesoscopically confined 

5CB and 6CB (gap sizes of 200 to 1200 nm) to investigate their optical properties for the 

orientations described by Janik, Tadmor and Klein
123

.  They measured the birefringence 

as a function of film thickness for a twist angle of 27 between the liquid crystal and the 

fully aligned mica.  The results were in agreement with birefringence predictions 

calculated by the group for an anisotropic, uniform material.  The results were, however, 

less satisfactory for mica surfaces oriented 15 with respect to one another, with a 10% 

disagreement between theory and experiment, and the group attributed this to the 

formation of surface-oriented domains.  Deviations between theory and experiment 

(specifically, for gap sizes below 60 nm where the experimental FECO fringes become 

singlets while the theory predicts doublets, and above 1450 nm where the experimental 

birefringence values begin to fall while theory predicts they should continue increasing) 

for the case where the mica sheets were aligned perpendicular to one another were 

attributed once again to the presence of domains and to equipment limitations
144

.  

Following Janik et al’s conclusions
123

, Kitaev and Kumacheva
144

 monitored the 

birefringence of 6CB and observed that while, in a crossed mica setup exposed to 

ambient air, the birefringence decreases but remains a doublet (indicating a planar 

molecular orientation), if the same system is exposed to saturated air the nematic shifts 

from a doublet to a singlet, and hence from a planar orientation to a homeotropic one. 

 

     Cho and Granick
154, 155

 combined a home-built SFA with an impedance analyzer in 

order to study the dielectric spectra of both static and sheared nematic 5CB
156

.  In 
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addition to comparing planar and homeotropic monolayer dielectric spectra and finding 

the homeotropic peak to be three orders of magnitude slower than the 10 Hz planar peak 

(attributed to dielectric anisotropy), they reported that shear has little effect on the 

dielectric profile for homeotropic monolayers of 5CB, with the only difference (a 15% 

shift) between the shear and no shear profiles occurring where the dielectric frequency 

and shear frequency correspond, in their case, approximately 10
6
 sec

-1
.  Tests at other 

shear frequencies never resulted in shifts larger than the 15% seen at 10
6
 sec

-1  156
. 

 

     Zappone, Richetti and Barberi et al
157

 performed experiments on nematic 5CB and 4’-

n-pentylphenyl-4-methoxybenzoate (ME10.5/ZLI-0245) confined between mica surfaces 

separated by up to 250 nm.  Both planar and homeotropic orientations (the latter from a 

cetyl-trimethyl-ammonium-bromide (CTAB) coating) were studied.  By considering the 

anchoring geometry of the system and developing Barbero and Barberi’s model for 

confinement-induced anchoring transitions
158

 (itself a product of Frank-Oseen theory
13

) , 

they were able to re-develop the theory for a curved surface as occurs in the SFA system 

and found the vertical force in such a system to be given by: 
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where K is the Frank elastic constant (which assumes 
BendTwistSplay

KKKK  ) and 

RD2  where D is the separation and R is the surface radius.  The first term on the 

right is the anchoring contribution and the second is the curvature contribution, and 

together they lead to a possibly attractive or repulsive force depending on .  The 

observed strong attraction at separations below 10 nm could not, however, be explained 
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by the theory as it predicts a repulsive force at that length scale, nor could it be explained 

by van der Waals interactions, since the range is too short.  A theory was proposed in 

which a confinement-induced structural transition to a thin biaxial layer system may have 

occurred leading to the attractive force, but a full solution to the mystery has not yet been 

put forth
157

. 

 

     Mizukami et al
159

 reported results on a study of nematic 6CB confined between mica 

surfaces within the SFA using shear resonance.  By laterally moving one of the surfaces 

with respect to the other by a piezoelectric element using a sinusoidal shear pattern and 

measuring the deflection of the other surface, they obtained the resonance response for 

both 6CB and, for comparison, the liquid octamethylcyclotetrasiloxane (OCMTS).  

Differences in resonance patterns between the two materials at various levels of 

confinement (from 104 nm down to 3.9 nm gap size) indicated that the sample-mica and 

intermolecular interactions differed between the two materials.  In the confinement range 

of 5.7 to 7.9 nm coupling between the surfaces was observed for 6CB, resulting in the 

resonance peak’s disappearance; the peak reappeared and increased in amplitude as the 

gap size was decreased below 5.7 nm, indicating the sample was becoming more 

structured. 

 

1.3.4  X-ray studies 

     In order to study liquid crystals with x-ray scattering it is necessary to understand the 

scattering cross-section associated with it.  Following the treatment by Als-Nielson et 
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al
160, 161

 and others
162, 163

 of Caillé’s derivation
164

, one may begin with the general 

formula for the Fourier Transform of the structure factor,  rS : 

 
    0

0
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                                                                                                        (20) 

where    0uru   is an undulation representing a Helfrich deformation (described in 

Sections 1.4.2 and 1.4.3) shifting the position from 0 to r, and q0 is the displacement in 

reciprocal space.  Assuming u(r) is randomly distributed one can apply a Gaussian 

distribution to get: 
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where  qI  is the scattering intensity.  Making use of the Equipartition Theorem, 

Tku
Bq

2

12
 , with equation (21) and assuming no magnetic field ( 0H ), the 

scattering intensity can be written as: 
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Integrating over reciprocal space, the scattering intensity becomes: 

 
 

  
  














max

min

2

0 0

||422

||

||

3

2

0
cos1

2

q

q

B
dqddq

qq

qzq

B

Tqk
qI









 

where  is the angle between 


q  and the density function,  .  Using 
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Applying Bessel relationship     
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coscos dxxJ , the intensity becomes: 
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And by substituting the series expansion of the Bessel function, 
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where the integration bounds have been replaced by 0 and q0 to represent the layer 

dimensions over which the scattering occurs.  The integral must be performed term by 

term.  With the help of the exponential function   
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 , and, by way of an expansion of the Bessel 

function, the structure factor can now be written as: 
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where 



B

Tkq
B

8

2

0
 .  In the asymptotic limit as z   and z   (that is, very 

large and very small penetration depths relative to the smectic layer dimensions), the 

structure factor reduces to: 
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In the above z   corresponds to the longitudinal limit and z   corresponds 

to the transverse limit.  This asymptotic behaviour results in structural factor singularities 

about qm (where m is any integer), resulting in: 

  


2

0||
qqS                                                                                                            (24a) 

for the longitudinal mode (with 0


q ), and 

24 


 qS                                                                                                                      (24b) 

for the transverse mode (with )0
||0
 qq .  These singularities will show up as wings in 

the scattering profile
160-164

.  In this way one can study smectics by way of their 

perturbative Helfrich undulations, as discussed in section 1.4.4. 

 

     Different types of liquid crystals will produce different scattering profiles as shown in 

Figure 1.11.  Here, the double ring indicates scattering from two length scales: the outer, 

from the width of the molecule and the inner from the length.  Hence, even in the 

isotropic phase (Figure 1.11a) one expects to see the concentric scatter rings unless the 

constituent molecules are spherical.   
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Figure 1.11: X-ray scattering profiles for: a) an isotropic liquid; b) a nematic; c) a 

smectic-A and; d) a smectic-C.  Reproduced from Chaiken and Lubensky
165

. 

 

 

In the nematic phase (Figure 1.11b) the preferred direction of the molecules restricts 

scattering so that a diffuse arc segment will be all that remains of the inner ring at the 

position of the director, n , while the outer ring will be devoid of intensity in that 

direction (since the majority of molecular widths will be aligned perpendicularly to the 

director and hence won’t scatter in that direction).  The smectic-A (Figure 1.11c) will 

resemble the nematic except the inner scattering peak will be better-aligned and hence 

appear as a spot, while the smectic-C (Figure 1.11d) will have a tilt angle between the 

inner spot representing the director and the outer ring section’s center, given by N and 

representing the molecular alignment relative to the director
165

.  
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     Als-Nielsen and Safinya
160, 161

 performed x-ray scattering experiments on magnetic 

field-aligned octyloxycyanobenzylidene (8OCB) in the smectic-A mesophase, 

demonstrating that it was a suitable example of a Landau-Peierls system in that its Bragg 

line peaks, particularly near to the smectic-nematic transition temperature, exhibited 

wings describable by the structure factors given above in equation (1).  Similar results 

were found with N-p-cyanobenzylidene-p-octyloxyanilene (CBOOA)
166

.  Later studies 

with 4-n-pentyl-phenylthiol-4’-octyloxybenzoate ( 58 S ) near the second order smectic-C 

to smectic-A transition once again demonstrated the presence of the Helfrich undulations,  

and revealed both planar spacings and molecular tilt in the sample.  The ratio of spacings 

in the two states was found to remain constant through the transition
167

.  Still later, 

experiments with smectic-A and smectic-C heptylphenyl nitrobenzoloxybenzoate 

(DB7NO2) reveal regions of period-varying translational symmetry 

(incommensurability)
168

 while tests of the multilayer membrane system consisting of 

sodium dodecyl sulfate (SDS), pentanol, water and dodecane showed the characteristic 

Landau-Peirels structure factor power-law dependence, indicating Helfrich fluctuations 

dominate the intermembrane interactions
169

.   

 

     A study of homeotropically-oriented smectic-A 8CB and ferroelectric smectic-

A/smectic-C* materials ZLI-3041 and CBC confined to 25 m diameter glass pores by 

Mang, Sakamoto and Kumar
170

 demonstrated that while the smectic-C* layers are formed 

parallel to the confining walls, the 8CB molecules form a chevron-shaped layer structure; 

the size of the layers themselves, furthermore, are dependent on temperature. 
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     Clark and Bellini et al
171

 performed x-ray experiments on 8CB confined to low-

density silica Aerogel (with a volume fraction, or fraction of 8CB volume to total 

volume, of 0.79) while undergoing the nematic to smectic-A phase transition.  The 

experiments followed light scattering and calorimetry experiments (discussed in Section 

1.3.6), and showed an evolving scattering peak as the temperature is decreased through 

the isotropic-nematic transition, as well as coexistence of smectic and crystalline 8CB 

during the smectic-A-crystalline transition.  In the former phase change, smectic-A 

domains increased in size with decreasing temperature, but were found to be restricted by 

the surfaces to 4 nm correlation lengths, well below the pore size of 17.5 nm, and this 

restriction persists even well below the transition point.  Conversely, in the latter phase 

change, the length scales are on the order of the pore size, indicating an individual pore is 

either occupied by smectic-A or crystalline material, but not both simultaneously. 

 

     Panizza et al
172

 performed x-ray scattering experiments on smectic 8CB within a 

Couette cell geometry, which will give a constant shear rate Dv , where v is the rotor 

velocity and D is the gap size.  Here the gap size was 500 m and the shear rate was 

varied from approximately 3 sec
-1

 to 1150 sec
-1

.  It was noted that upon lowering the 

temperature from the smectic-nematic transition point that the ‘a’ Mięsowicz orientation 

evolves to a mix of the ‘a’ and ‘c’ orientations, and that if the shear rate is increased to a 

critical point (700 sec
-1

), this ‘a’ and ‘c’ mix of orientations reverts to a purely ‘a’ 

orientation.  The shear stress, , vs. shear rate curves for these bulk samples showed 

nonlinear behaviour at low shear rates (below 700 sec
-1

) where 21
  , while at high 

shear rates (700 to 1150 sec
-1

),   ,  indicating that the sample phase is Newtonian.  
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Similar results were found by Negita and Uchino using a viscometer and 8CB confined to 

a 1 mm gap a few years later
173

. 

 

     Martinez-Miranda
174

 performed grazing-incidence x-ray scattering (GIXS) 

experiments on the smectic-C* mixture mx5112 deposited on a glass substrate with 9 m 

period gratings of 1.6 m depth and 6.0 m width, and with this technique found that two 

regions of confinement were observable.  The first, from one to five microns in thickness, 

was associated with the geometry of the grooves, while the other, from five to twenty 

microns in thickness, was associated with the cooperative alignment of the grooves as a 

whole.  This behaviour was attributed to the density of the grating channels and to the 

thermal history of the sample
175

. 

 

     Leheny et al
176

 studied nematic and smectic 8CB-aerosil dispersions with varying 

densities using x-ray scattering, and found in all cases (with densities varying from 0.025 

g silica/cm
3
 8CB to 0.341 g silica/cm

3
 8CB) that the correlations remained short-range, 

indicating that the dispersion had disrupted order within the system and thereby 

dramatically altered the nematic to smectic transition.  

 

     A theoretical treatment of nematic 8CB under small amplitude shear was undertaken 

by de Andrade Lima and Rey
86

 to characterize the temperature dependence and to 

understand the shear alignment transition.  They used ELP theory (discussed earlier in the 

Ericksen and Leslie-Ericksen Theory section) to describe the oscillatory Poiseuille flow 

observed, and found that 8CB is flow-aligning above a temperature of 38.36 K and non-
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aligning below that temperature, obtained by finding the point at which the loss angle 



  tan
1

G ' ' G '  (where G’ and G’’ are the storage and loss moduli, respectively) is 

invariant with respect to frequency.  The storage and loss moduli were found to be 

characteristic of a viscoelastic material with a single relaxation time
86

.  A similar 

approach was developed earlier by Rey to describe cholesterics under small amplitude 

shear
177, 178

. 

 

     Hamley, Castelletto and Parras
88

 used x-ray scattering to study 8CB confined to a 

home-built capillary flow device.  By lowering the temperature to the nematic tumbling 

transition temperature of 38.36 K, calculated by de Andrade Lima (where the Leslie 

viscosity coefficient 3 changes sign
86

, they were able to observe the transition from the 

‘b’ Mięsowicz orientation to the ‘c’ Mięsowicz orientation at a flow rate of 0.1 ml/min, 

and a similar transition at a lower temperature with a flow rate of 6.0 ml/min
88

. 

 

1.3.5  NMR studies 

     Nuclear magnetic resonance offers the possibility of studying in situ samples non-

invasively, since it gives information about molecular structure and dynamics solely by 

the monitoring of spin properties while in a large (usually 0.1-20 T) magnetic field.  The 

prime difference between the NMR of liquids and the NMR of liquid crystals is that, 

while in the former, motional averaging of the interactions between spins averages the 

local magnetic field vector to zero
179-181

, in the latter the partially oriented molecules, and 

hence non-zero local field, become a major factor in determining the NMR spectrum
182

, 

similar to solid samples.  NMR can be used not only to obtain information on the director 
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field, but the density of singular point defects, on the strength of surface anchoring, and 

on the surface elastic constants
183

.  The history of NMR and liquid crystals begins with 

Spence, Moses and Jain who, in 1953, collected a proton spectrum of nematic p-

azoxyanisole and published a brief article of it, interpreting the triple peak they had found 

as a product of rotational hindrance of methyl groups
184

.  A paper later that year by the 

same group corrected their misinterpretation and indicated that because the triple peak 

was field-independent it arose from ordering in the material
112, 185

.  The field of liquid 

crystal NMR did not take off until 1963, however, when Saupe and Englert
16

 published 

their landmark paper proposing that liquid crystals might be used as solvents for studying 

small molecules. 

 

     In 1989 the NMR study of liquid crystals under confinement was improved by the 

implementation of controlled pore glass (CPG), originally developed for use in 

chromatography experiments in 1965 by Haller
186, 187

.  CPG consists of small (usually 

borosilicate) glass beads; borates of well-defined size are leached from the silicates either 

by heat or acid treatment, leaving cylindrical cavities of narrow pore size distribution.  

Commercially available CPG comes in a wide variety of diameters and hence surface to 

volume ratios, making it a very useful tool in understanding surface physics via NMR.   



 59 

 

Figure 1.12: Schematic representation of a nematic liquid crystal confined to CPG.  

Reproduced from Vilfan et al
188

. 

 

Variations of CPG include Aerogel, Nuclepore and Anopore membranes.  Alternatively, 

a polymer dispersion can be prepared in which the liquid crystal is combined with a 

polymeric network (4,4’-bis-acryloylbiphenyl, or BAB, for example) of fibres to act as a 

surface which tends to align the liquid crystal in which it is immersed.  In general, in such 

systems the amount of surface-induced ordering will be proportional to the amount of 

polymer dispersed in the sample
183

. 

 

     A brief description of the basic equations of liquid crystal NMR follows, focusing on 

applications to samples under confinement using frequency- and time-domain NMR.  

Traditionally two nuclei have been used as probes in the NMR study of liquid crystals:  

Protons (spin ½) and deuterons (spin 1).  The Zeeman splitting of isolated protons and 

deuterons in rigid molecules, , is given by Vilfan
183

: 

 








 1cos3
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2

3 2
C                                                                                            (25) 
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where  is the angle between the interproton vector (for protons) or the electric field 

gradient tensor symmetry axis (for deuterons) and the magnetic field, and C is a 

proportionality constant equal to 
3

2

r
C

P




  for protons and 

h

qQe
C

D

2

  for deuterons.  

Here,  is the proton gyromagnetic ratio, r is the interproton distance, and CD is the static 

quadrupole coupling constant.  In a nematic, however, the term in braces is averaged for 

molecular motions faster than the angular splitting frequency  
1

2


  .  The uniaxiality 

of the system leads to a more complicated equation given by Doane
189

: 
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where S is the order parameter,  is the angle between the director and the magnetic field, 

 and  are the azimuthal and polar angles of the interproton vector (for protons) or of the 

electric field gradient tensor symmetry axis (for deuterons) and the long molecular axis, 

and
yyxx

SS  describes the deviation of the molecular shape from perfect cylindrical 

symmetry.  Because this last value is generally an order of magnitude smaller than S, the 

latter term can usually be disregarded.  In practice, because of non-equivalent proton 

pairs in most systems, proton NMR spectra often result in broad backgrounds that can 

obscure peak details, and so deuteron NMR experiments are usually preferred, if 

possible.  Equation (26) indicates that the order (via the order parameter) and the director 

angle are both a function of Zeeman splitting and so both can be monitored via standard 

NMR techniques.  

 

     Vilfan
183

 gives the modification to line splitting of a nematic under constraint: 
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 1cos3
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                                                                         (27) 

where  is given by equation (26) with 1S and 0 , replaced by the local order 

parameter  rS  and director angle  r  to accommodate reorientations due to surface 

effects or other perturbations.  Examples of line splitting for various nematic director 

fields are given by Crawford
190

: 
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Figure 1.13:  Deuteron NMR line splitting characteristics for various nematic cylindrical 

and spherical confinement scenarios.  B  refers to the external magnetic field.  a) Parallel-

axial structure in a cylindrical cavity; b) Radial distribution in a spherical cavity; c) 

Planar-polar structure in a cylindrical cavity, director perpendicular to B ; d) Cylindrical 

cavity, director parallel to B ; e) Escaped-radial structure in a cylindrical cavity; f) 

Isotropic phase in a cylindrical cavity.  Reproduced from Crawford
190, 191

. 

 

It should be noted that the external magnetic field may distort surface effects according to 

the magnetic coherence length: 

2
B

K

B





                                                                                                                (28) 
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where K is the relevant liquid crystal elastic constant,  is the anisotropy of the 

magnetic susceptibility, and B is the magnetic field strength.  The above equation 

indicates that line distortion will occur in pores with diameters larger than B or at 

distances larger than B from the surface, and Crawford cites 5CB in a 1T field as having 

a magnetic coherence length of 8 m
191

. 

 

     The three most common measurements obtained from time-based NMR are the spin-

spin relaxation times, T2, spin-lattice relaxation times, T1, and spin-lattice relaxation 

times in the rotating frame, T1.  The first represents the decay of magnetization 

transverse to the external magnetic field due to energy exchange between spins, the 

second represents the decay of magnetization due to energy exchange with the 

environment (i.e. the lattice) and the third represents the decay of magnetization while it 

is spin-locked to the rf magnetic field
179, 192

.  Together, they yield information on local 

magnetic fields within a sample since any local inhomogeneities present will either 

facilitate or retard relaxation compared to that which takes place within the rest of the 

sample, thereby affecting the overall relaxation.  In a sample that contains bound 

molecules (close to a surface, for example), the exchange of bound and free molecules 

will lead to two (ideally) distinct relaxation rates so that the overall rate, T2, will be a 

weighted average of the two constituent rates
183

: 

freebound
TTT

 


11

2

                                                                                                         (29) 

where  represents the fraction of bound molecules in the sample.  Similar relations may 

be made for T1 and T1.  From equation (29) a simple relaxation experiment can give 
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information on the strength and extent of molecular binding in a known geometry.  The 

technique is useful not only for confinement experiments, but for transition experiments 

as well; Martin et al observed a temperature-dependent increase of T2  when decreasing 

the temperature to within 5 K of the bulk p-methoxybenzylidene-p-n-butylaniline 

(MBBA) nematic-isotropic transition, for example, and attributed the shift to nematic 

fluctuations in the isotropic phase
193

. 

 

     Crawford et al
194

 performed experiments comparing the spin-spin relaxation behaviour 

of parallel and perpendicularly-oriented 8CB-d2 confined within cylindrical glass pores 

(note that the -d2 suffix here refers to the first, or ‘’, hydrocarbon chain position 

having been deuterated).  They found that in the isotropic phase, the two orientations 

differed significantly in behaviour, in that while the parallel-anchored molecules were 

relatively temperature-invariant, the perpendicularly-oriented molecules varied 

considerably
195

.   
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Figure 1.14: 8CB-d2 confined to 100 nm radius nanopores.  Reproduced from Vilfan et 

al
195

. 

 

This phenomenon was not seen in nematic 8CB-d2, and indicates a diminished surface-

8CB interaction for the latter case, likely due to the (CH2)15COOH coating on the pore 

walls being used to achieve the perpendicular orientation.  For 5CB-d2, it was found 

that both proton and deuteron T1’s were generally the same for bulk and dispersion 

samples, while the T2 and T1 values were higher in dispersion than in bulk.  This 

indicates one or more dynamical relaxation processes were occurring in the dispersion.  A 

relaxation time of 4  1 sec was calculated for the isotropic phase, likely related to the 

average lifetime of a surface molecule, and the surface order parameter was found to be 

approximately 0.1 and did not fluctuate near the isotropic-nematic transition
195

.  A later 

study of 8CB by Vilfan et al
188

 within 15 nm diameter CPG pores revealed spin-lattice 

relaxation values an order of magnitude larger than that found in bulk, a property 
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attributed to molecular reorientations that are mediated by translational displacement of 

the molecules.  While the group was unable to conclude anything with certainty on long 

range diffusion, they were able to determine that the local translational diffusion of 

molecules, despite the confined environment, was just as high as that observed in the bulk 

state.  

 

     Cramer et al
196

 performed 
13

C and proton NMR as well as broadband dielectric 

spectroscopy on 5CB confined to 2.5, 5.0 and 10 nm diameter CPG to study its transition 

temperature suppression and found that even within the smallest pores nematic dynamics 

similar to that found in bulk was still detectable; the dielectric spectra indicate that the 

system is best described as being of two states, one of which is bulklike and the other 

surface-influenced, whose relaxation rate is slowed down 30-100-fold from that of the 

bulklike material.  The transition to the crystalline phase occurred at no higher a 

temperature than 220 K. 

 

     Kralj et al
197

 reported on deuteron NMR on 5CB and 8CB confined to CPG of various 

pore sizes.   They concluded that in pore sizes of radius smaller than 25 nm the isotropic-

nematic transition is retarded by an amount roughly inversely proportional to radius, 

1
 RT

NI
, which they attributed to an increase in the order parameter, S.  Tests were 

done on 8CB treated with silane, which promotes homeotropic orientation, and it was 

determined that the degree of smectic ordering was much more suppressed by the 

confining surfaces while in the planar orientation than when in the homeotropic 

orientation
197

.  These results are in agreement with those obtained on 8CB within 100 nm 
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radius Anopores using calorimetry by Iannacchione and Finotello
198

.  A later joint NMR 

and SAXS study on parallel-aligned 8CB confined to CPG with a much larger diameter 

(400 nm) by Kralj’s group revealed that the average smectic order parameter and layer 

spacing under such confinement is very similar to that found in bulk, while 

homeotropically-aligned 8CB in the same system showed a smectic ordering that 

increased with increasing temperature
199

. 

 

     Ogaki et al
200

 performed NMR measurements on deuterated smectic 8CB confined 

between two glass slides separated by 96.0 m and fitted with electrodes to produce an 

alternating electric field between the plates.  The electrode field, placed at 45° to the main 

magnetic field, creates a well-defined director orientation in the sample, which is weakly 

coupled with the untreated electrode surface.  They performed an experiment which 

started with the electrode field off so that the director aligned with the main field.  The 

electrode field was then turned on and the sample left for a time varying from zero to two 

days, after which a free-induction decay was performed.  By measuring the change in 

quadrupolar splitting of the phenyl and backbone groups, they were able to determine that 

the smectic exponential relaxation time constant within a main field of 7.05 T and ac 

electrode field of 100 VRMS at 10 kHz was approximately one million times larger than 

that found with equivalent experiments on nematic 8CB
201

, on the order of 1100 seconds 

at 30°C and 2000 seconds at 25°C.  The phenomenon was attributed to the introduction 

of long range translational order introduced at the nematic-smectic phase transition
200

. 
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1.3.6  Calorimetry 

     The principles behind the calorimetric study of smectic-A phase transitions 

(particularly second order) in pores began in 1971
202

 and 1972
23

 with de Gennes’ and 

McMillan’s analogy of their behaviour to that of superconductors.  In his brief 

communication, De Gennes drew a parallel between the phase behaviour of the two 

materials while near phase transitions (both can be described in terms of one-dimensional 

mass-density waves with complex phase, so that



i

e ; for smectics, the wave vector 

is in the direction of the director, and the period represents the layer spacing), and by 

performing a Landau-Ginzburg expansion of the free energy of the liquid crystal about 

the nematic-smectic transition point he was able to derive relations between specific heat, 

CP, and temperature, T, summarized by Johnson
203

: 
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where the transition temperature range is bounded by
C

T  and TC, the fitting parameters 

below 
C

T   are A  , B  and   and above TC are A, B and  (with critical exponents  and 

  approximately zero),  TC
0

 is a background parameter that is well-behaved (fitted by 

 
22100

TaTaaTC  , where a0, a1 and a2 are fitting parameters) and spans the 

transition zone, and t is a reduced temperature parameter defined by  
CC

TTTt  .   

 

     Johnson et al performed early liquid crystal calorimetry experiments on 

octyloxycyanobiphenyl (8OCB).  The technique they used had been used many times 

previously on other materials, and was developed by Sullivan and Seidel
204

.  It works on 
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the principle that the sample, kept in thermal contact with a heater, thermometer and bath, 

if given small enough oscillatory doses of heat by the former (typically a few mK at 

most), will have a constant specific heat capacity which allows a steady state solution to 

be written.  The solution contains two terms, one that depends on the bath’s thermal 

conductance, and the other an oscillatory term inversely proportional to the specific heat 

capacity of the sample
204

.  With this technique, Johnson et al were able to confirm that 

the nematic-smectic transition generally follows de Gennes’ superfluid description, and is 

weakly first-order in nature; inconsistencies with de Gennes’ predictions were attributed 

to the transition being of 1
st
 order and to impurities in the sample. 

 

     Bellini and Clark et al
205

 reported on both the light scattering and calorimetric 

properties of 8CB confined to silica aerogel over the temperature range 68º C to 7º C.  By 

comparing the plots of specific heat capacity for confined 8CB to those of bulk and 

finding them qualitatively similar but with the confined isotropic-nematic and nematic-

smectic-A transition peaks suppressed to 59% of the bulk peak amplitude, they were able 

to conclude that 41% of the material had been ‘pinned’ in some way to the surface and 

hence could not undergo the transitions.  The transition peaks were found to be 

continuous rather than divergent, as one sees in the bulk state, and a slight ‘smearing’ of 

the nematic-smectic peak (compared to the bulk peak) was attributed to local smectic 

ordering occurring within the pores.  It was also reported that crystallization of the 

sample, which would normally occur at about 21ºC in bulk, was suppressed to below 0ºC 

while confined to the silica aerogel.  From Puglielli and Ford
206

 the turbidity obtained 

from light scattering could be converted to a correlation length, and this was found to 
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vary continuously from 3 nm at the isotropic-nematic transition to 18 nm at the nematic 

smectic transition.  This latter value did not greatly exceed the pore size, 17.5 nm, 

indicating the sample is multi-domain with domains limited to the dimensions of the 

pores
205

.  The Bellini model was used by Olenik et al to explain the glassy reorientation 

observed in a nematic 5CB aerogel system within an alternating electric field
207

. 

 

     Finotello and Iannacchione
208

 performed a series of experiments looking at phase 

transitions within the nCB group under various degrees of confinement with axial and 

homeotropic anchoring, primarily using AC calorimetry.  Their first publication looked at 

confinement in 200 nm aluminum oxide Anopores, and the general trends reported 

include, for the isotropic-nematic transition in 5CB, 7CB and 8CB: a non-divergent 

specific heat capacity at the transition point (an effect predicted earlier by Sheng
27

); a 

rounder, shorter peak for radially-oriented than for axially-oriented material; peaks from 

axial orientations exhibit a sharp post-transitional drop, indicating the material remains 

bulklike, while those from radial orientations are shorter and symmetric, indicating 

continuous nematic ordering; the peaks also exhibit a pre-transitional increase, larger for 

radial orientation than for axial orientation, indicating pre-transitional nematic ordering is 

occurring (likely near the surface) and that it extends deeper into the pore in the radial 

orientation; the transition temperature is suppressed for materials under confinement, 

more so for radial orientation than axial orientation, attributed to surface-oriented 

molecules forcing more central nematic molecules to arrange themselves to minimize 

elastic energy (an effect proposed a decade earlier by Kuzma and Labes for nematic p-

cyano-p’-n-nonylbiphenyl (K27) and p-cyano-p’-n-pentylbiphenyl (K15) within 
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cylindrical pores studied using optical microscopy)
209

; and the larger the molecule, the 

broader the transition. 

 

Figure 1.15: Specific heat capacity as a function of (a) temperature and (b) reduced 

temperature,  
CC

TTTt  , for radially-, axially-oriented and bulk 8CB in 200 nm 

Anopores, about the (a) isotropic-nematic transition and (b) nematic-smectic-A transition.  

The inset shows the same data (bulk data removed in (b)) as a function of the reduced 

temperature.  Reproduced from Iannacchione
208

.   

 

The peak suppression is attributed to the ‘pinning’ of molecules due to inhomogeneous 

surfaces which, as a result, fail to undergo transition with the rest of the material.  The 

nematic-Smectic A transition results are shown for 8CB, and demonstrate behaviour 

similar to the previous transition.  The peak suppression was found to be considerable, 

from which they concluded the transition to smectic ordering may only have been 

occurring near the surface, while molecules closer to the center remained nematic.  They 

attributed this to the high energy cost of transitioning to the smectic state as the 

molecules attempt, unsuccessfully, to form a single layer spanning the pore diameter
210

.  

The transition from isotropic to smectic-A in 10CB and 12CB was also studied; results 

showed only weak surface effects (as evidenced by the slight peak broadening), with no 
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peak or transition temperature suppression
208

.  Similar behaviour was found for 8CB 

confined to CPG with diameters ranging from 20 nm to 400 nm using calorimetry
211

.   

 

     A later study using AC and differential scanning calorimetry (ACC and DSC, 

respectively) as well as small angle neutron scattering (SANS) involved 8CB confined to 

Vycor glass containing 70 Å cylindrical pores
212

.  The AC calorimetry work showed that, 

despite crossing both the bulk isotropic-nematic and nematic-smectic-A transition points, 

no signs of a phase transition were apparent (a result similar to that obtained with 5CB 

and 7CB previously
213

), indicating a continuous increase of ordering is occurring with 

decreasing temperature.  The DSC results show a broad hump below the bulk isotropic-

nematic transition, likely further evidence of this continuous evolution.  SANS 

measurements were made slightly above and below the bulk smectic-A-crystalline 

transition and showed no evidence of smectic ordering being present
212

.  Finally, an ACC 

and SANS study of 9CB liquid crystals confined to cellulose acetate Millipore filters of 

300 nm cylindrical diameter was published.  The calorimetry data showed a prominent 

peak at the nematic-smectic-A transition, differing from the aforementioned results of 

8CB in 200 nm Anopores
208

.  The difference was ascribed to the different substrates: 

while the aluminum oxide Anopore membranes provided a solid substrate which 

introduced considerable elastic constraints, thereby constraining the smectic order, the 

fibrous Millipore substrate allowed the smectic layer to form relatively unhindered.  The 

SANS results confirmed the presence of smectic ordering in the system
214

.  A later study 

of 8CB and 9CB confined to Millipore filters of various diameters tracked this nematic-

smectic-A transition temperature as function of pore size, from bulk (306.95 K and 
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321.21 K, respectively) down to 25 nm diameter (306.18 K and 320.81 K, 

respectively)
215, 216

.  

 

     A combined calorimetry and small-angle x-ray scattering (SAXS) study of 8CB 

confined to CPG was performed by Kralj et al
199

.  From the calorimetry results they 

concluded that the nematic-smectic transition is strongly suppressed for 8CB within pore 

diameters smaller than 24 nm; the isotropic-nematic transition is similarly affected below 

diameters of 11.5 nm, but the effect disappears below diameters of 7.5 nm.  From the 

SAXS results they concluded that the order parameter obeys similar confinement-related 

temperature behaviour below diameters of 24 nm; the order parameter-transition 

behaviour relation obtained here is similar to those results obtained by Kralj et al using 

NMR (discussed in the NMR section)
197, 199

. 

 

1.3.7  Polarization and Atomic Force Microscopy 

     Kočevar, Blinc and Muševič
217

 used Atomic Force Microscopy (AFM) to study 

presmectic layering of isotropic 8CB on a glass substrate coated with homeotropy-

inducing N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP).  

By using the AFM in force sensor mode with a DMOAP-coated glass tip and measuring 

F/R (where R is the tip radius) as a function of tip-surface separation (similar to what has 

been described before for SFA force-measurement tests), they were able to determine that 

the 8CB layer closest to the confining surface exhibited a stiffness two orders of 

magnitude larger than the layer above it, with a compressibility modulus, B, of 10
7
 N/m

2
, 

typical of smectic 8CB.  From the second layer upward, regular oscillatory forces with a 
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period of the molecular long axis indicated that the system was ordered well away from 

the substrate, despite the bulk portion of the sample being in the isotropic phase.  The 

results were later corroborated by the group using ellipsometry
218

.  Carbone et al
143, 143, 219

 

later performed this same experiment with an improved AFM system, measuring the 

presmectic force by cantilever deflection and applying the Derjaguin approximation.  In 

addition to the presmectic force, the smectic correlation length and smectic order 

parameter were also measured as a function of temperature
220

.  A similar test was also 

performed on isotropic 5CB by Kočevar and Muševič
221, 222

, and the temperature 

dependence of the amplitude and range of an observed prenematic force were reported. 

 

     Bračič et al
223

 studied capillary condensation (the phenomenon wherein a phase 

change occurs solely as a result of confinement) in 5CB and 8CB using AFM on a 

DMOAP-coated glass substrate coated.  The capillary condensation was induced by 

periodically increasing the confinement, and the transition was detected using the AFM 

in force sensor mode via deflection of the cantilever.  By keeping the temperature a 

constant temperature above the isotropic-nematic transition they were able to reduce the 

gap size until they found a sudden jump in attractive force, which they interpret as being 

due to a structural change within the system, detectable even at separations above one 

micron.  From these force curves the surface charge density, surface potential and Debye 

screening length were all determined by fitting to a superposition of the approximate 

Poisson-Boltzmann solutions for constant surface charge density and surface potential, 

respectively
223

.   
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     Pfohl et al
224

 reported on two techniques they had developed, microcontact printing 

and polyelectrolyte adsorption, to confine and align biological materials and liquid 

crystals on microstructured surfaces.  To demonstrate the effectiveness of the method, 

they deposited nematic and smectic 8CB in channels 3 m and 20 m wide and 2 m 

deep on a silicon substrate coated with poly(ethylene imine) (PEI) to promote 

homeotropic alignment with the surface and studied the structures present within the 

channels using polarization microscopy. 

 

Figure 1.16: Polarization microscopy images of 8CB confined within 3 m by 2 m 

channels on a silicon substrate coated with PEI.  The nematic structure is pictured on the 

left, and the smectic on the right.  Reproduced from Pfhol
224

. 

 

While the smectic 8CB deposited on the unmodified silicon substrate formed the well-

known structures known as focal conics (see Figure 1.17 below for an example), and 

within the 20 m channels formed fairly uniform-sized toroidal and spherulite-like 

(onionlike) defects (the latter being relatively rare in smectic-A materials), within the 3 

m channels the layers were found to align parallel to the bottom of the channels with the 

long molecular axis perpendicular to the channel bottom.  Spherulite-like and toroidal 
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defects occasionally interrupted this alignment, and were found to be very uniform in 

size
224

. 

 

     Choi et al
225

 confined smectic-A 8CB to silicon wafer microchannels etched by 

photolithography and studied the resultant defect domains using polarized microscopy 

and atomic force microscopy.  Three channel widths (5, 10 and 20 m) and two depths (5 

and 10 m) were used, and the walls were coated with polyethyleneimine (PEI) to orient 

the 8CB homeotropically.  Three images taken using polarized light microscopy, clearly 

revealing focal conics, are shown in Figure 1.17. 

 

Figure 1.17: Polarized light microscopy images of 8CB confined to silicon wafer 

microchannels, illustrating the focal conic structures that form along the confining 

surfaces.  Reproduced from Choi et al
225

. 

 

     The defect domains were studied using tapping mode AFM, and were shown to be 

funnel-shaped toroids, in contrast to the lens-shaped defect structures that were observed 

by AFM in a droplet of 8CB atop a PEI-coated flat silica surface. 
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Figure 1.18: AFM images of a defect in smectic 8CB a) confined to a 20 m wide, 10 

m deep silica microchannel; and b) on a flat silica surface.  The AFM scans numbered 

in these images is shown in c) and d).  A schematic of the toroidal structure is shown in e) 

with the green symbols representing the molecular orientation.  Reproduced from Choi et 

al
225

. 

 

     These toroidal structures must have stored energy and so would be stiffer than a 

similar volume of bulk 8CB
225

.  Guo et al
226

 have reported a simple and effective method 

of reliably generating focal conics using silicon substrates upon which a thin gold film 

has been evaporated, partially masked to create arbitrary regions of gold (which promotes 

homeotropic alignment) and bare substrate.  When smectic layer covered by an air 

interface (which also promotes homeotropic alignment) is applied to the substrate, focal 

conics occur where the air and underlying interfaces promote different alignments (i.e. 

the bare substrate). 
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1.3.8  Broadband Dielectric Spectroscopy 

     Aliev, Nazario and Sinha
227

 studied isotropic, nematic and smectic 8CB confined to 

200 nm diameter cylindrical Anopores using broadband dielectric spectroscopy.  Tests 

were first performed on nematic 8CB in a random porous structure, and a peak not found 

in bulk dielectric spectra was detected, corresponding to a slower relaxation process than 

that found in bulk material.  It was attributed to rotation of 8CB near to the surface, 

slowed down due to an increased viscosity in the region.  A second peak not found in 

bulk was attributed to polarization relaxation within the interfacial 8CB layer. Tests were 

also performed on lecithin-treated pores, as the coating promotes homeotropic alignment 

of the molecules.  By placing the Anopore filter with pore axis either parallel or 

perpendicular to the electric field, one can thus obtain molecular alignment either 

perpendicular or parallel to the field, respectively.  Spectra of the two orientations 

showed peaks higher in frequency than those found in bulk, with the radial orientation 

exhibiting peaks of such high frequency that they could only be attributed to the 

librational (tumbling) mode.  This librational mode was also monitored as the sample was 

cooled from the isotropic phase down to below the bulk smectic-A phase lower 

temperature limit.  The observed decrease in relaxation time throughout the nematic 

phase was interpreted as being due to an increase in order that facilitates the relaxation 

process, while the observed increase in the supercooled state was attributed to the 

increasing viscosity of the system, which would inhibit relaxation.  Maier and Meier
15

 

provide a relationship between order parameter and dielectric strength, 

2
1  TkS

B
 (where  is the dipole moment parallel to the long molecular axis), so 

that by monitoring T one can gauge changes in order parameter due to temperature.  
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Aliev et al
227

 showed that the order parameter decreased gently throughout the smectic 

phase and most of the nematic phase, but dropped rapidly as the nematic-isotropic 

transition point was approached.   

 

     Aliev and Basu
228

 performed dynamic light scattering experiments on the same system 

and found the autocorrelation functions for confined nematic 8CB followed a double 

stretched exponential decay curve, as opposed to bulk 8CB which followed a single 

exponential decay curve, and concluded that the longer relaxation of approximately one 

second was due to fluctuations of the director due to interactions between the liquid 

crystal and the pore surface.  The stretch of the decay curve would then have been due to 

a distribution of liquid crystal to wall distances producing a distribution of relaxation 

rates, and the greater amplitude of the slower relaxation component for radial orientation 

( 4.0A ) than axial orientation ( )18.0A  indicates that the 8CB-wall interaction is 

stronger for the former orientation than the latter orientation.  Similar tests on 5CB within 

an aerosol network produced similar results.  Lowering the temperature from 306.7 K to 

305.5 K only slightly changed the relatively flat, smectic-like results for the axially-

oriented sample, but for the radially-oriented sample the relaxation dropped considerably 

with this temperature shift.  As this early relaxation is characteristic of nematics, Basu 

and Aliev conclude that smectization of 8CB in a radial orientation transition from the 

nematic to smectic phase at a lower temperature than those in an axial orientation do.  By 

varying the 8CB concentration (and hence the ratio of surface-affected to centrally-

located 8CB) and finding an increase in the ratio of amplitudes of the slow to fast 
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relaxation rate, they were able to conclude that the slower rate must be associated with 

the surface
229

.   

 

     Negita, Inoue and Kondo
140, 230

 confined nematic and smectic 8CB to a 1 mm gap 

within the concentric cylinders of a viscometer and performed dielectric spectroscopic 

experiments upon them to understand the relationship between shear and structural 

changes in both phases.  By comparing the temperature dependences of the viscosities 

and dielectric permittivities at a shear rate of 329.5 sec
-1

 they were able to assign various 

regimes of shear-induced orientations around the smectic-nematic transition temperature, 

as shown in Figure 1.19: 

 

Figure 1.19: Dielectric permittivity, ’, and viscosity, , as a function of temperature for 

confined 8CB (1 mm gap).  State a-b refers to the coexistent Mięsowicz nematic ‘a’ and 

‘b’ orientations and '''' ca   refers to the smectic Mięsowicz smectic ‘a’ and ‘c’ 

orientations, while a(b), ac, as and am refer to various shear-induced structures discussed 

by Safinya et al
52

.  Reproduced from Negita, Inoue and Kondo
140

. 
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The transition from the ‘a-c’ to ‘a’ orientation within the smectic state, reported by 

Panizza et al
172

 and Negita et al
173

 and mentioned within the review of x-ray studies 

above, was attributed to undulation instability
140

. 

 

     Dielectric spectroscopy tests also performed by Ewiss, Moawia and Stoll
231

 on 

isotropic, nematic and smectic-A 8CB containing 5% (by weight) nanoparticles of SiO2 

while within a 50 Hz alternating electric field.  They found that a stronger field was 

necessary to align the material in the smectic-A phase (1.6 V/m) than was needed for 

the nematic phase (0.2 V/m). 

 

1.3.9  Infrared and Raman Spectroscopy 

     Soga, Dhinojwala and Granick
232

 reported on results obtained with sheared nematic 

5CB under mesoscale confinement (9.5 m) by three types of molecularly flat  smooth 

surfaces (silicon, germanium and zinc selenide), all of which minimally attenuate infrared 

light, so that IR spectroscopy can be performed.  The sample, oriented normal to the 

surface by the application of a DC voltage, was sheared sinusoidally with an amplitude of 

240 nm and frequencies in the range of 25 to 400 Hz using a home-built device, and 

observed using FTIR.  They concluded from their observations that so long as the 

frequency of oscillation exceeded the relaxation rate of the molecules in the sample, the 

shear response amplitude would be proportional to the shear amplitude, not the shear rate.  

A later experiment on the same setup showed that the 5CB aligned only slightly without 

the DC voltage compared to when the sample was homeotropically aligned prior to 

shear
233

.   
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     Boinovich and Emelyanenko
234

 performed infrared spectroscopy experiments on 

nematic 5CB confined between fluorite (CaF2) plates, using a confinement device built 

by them that allowed a range of gap sizes from tens of nanometers to tens of microns.  

Their results, analyzed using a two-fraction model that accounted for preferential 

orientation both on the inclination angle and on the direction in the film plane, showed 

that a more complete description of order within a nematic system should include not 

only the order parameter, S, but also information on the degree of ordering of various 

molecular fragments of the mesogen as well
235, 236

. 

 

     Fehr et al
237

 studied the polymorphism of solid 8CB confined to silica aerogel pores 

(of 10, 17 and 20 nm diameter) using Raman spectroscopy, and found that even at a 

temperature of 100 K, quenched from the isotropic phase, evidence of a possible smectic-

like phase could be observed.  Two distinct smectic mesophases were observed, one 

which they named KS, and the other (occurring in pore sizes of 10 nm or less) they named 

KS’.  They argued that this is due to the sudden increase in viscosity associated with the 

quench preventing the director from relaxing to an equilibrium crystalline position, 

thereby freezing it in a metastable phase.  A later report by Fehr et al using 
13

C on 

nematic 5CB confined to silica aerogels (with pore sizes of from 10 to 50 nm diameter) 

indicates that the order parameter decreases with increasing confinement due to 

topological defects and to a larger number of distortions in the nematic ordering due to 

strong anchoring at the walls
238
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1.3.10  Other Methods of Studying Confinement 

     Several experimental methods have been developed to study liquid crystals in bulk 

and under confinement to understand their static and dynamic properties.  While a 

complete discussion of each here is not given for the sake of space, a brief overview of 

some of the more successful and fruitful results obtained has been provided here. 

 

     Hsiung, Rasing and Shen
239

 performed evanescent wave ellipsometry experiments on 

5CB confined to silane-coated glass surfaces with a gap size of 130 m, slightly above 

the isotropic-nematic transition.  A weak nematic layer was found as the transition point 

was approached, with the correlation length defining the thickness of the layer varying 

with temperature as    
21

1



C

TTT , where T is the temperature and TC is the 

transition temperature, in nearly exact agreement with Mauger et al’s prediction 

regarding isotropic liquid crystals close to the nematic-isotropic transition
240, 241

 as 

developed from Landau-de Gennes theory
19, 21, 22

,  itself developed by de Gennes from 

Ginzburg-Landau theory
242

. 

 

     Börzsönyi et al
243

 studied homeotropically-aligned nematic 4-n-pentyl-4’-

cyanobiphenyl (K15) confined between two parallel plates while undergoing oscillatory 

rectilinear Couette flow (resulting in displacements varying sinusoidally with time) using 

frequencies from 0.01 to 10 Hz and gap sizes of 10 to 130 m.  The sample was 

monitored by passing parallel beams of light through it and measuring the transmitted 

light intensity with a semiconductor one-dimensional detector, while the receiver plate 

was monitored by a set of three accelerometers to measure acceleration in all directions.  
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The observed response was found to compare favourably with theoretical predictions 

from Kozhevnikov
244

, that instabilities in the system would occur above amplitudes of 



A
c
 d  

d


v , where d is the director relaxation time, v is the viscous damping 

time, d is the gap size and  is the angular frequency of oscillation.  In this instability 

regime spatially periodic rolls perpendicular to the shear velocity were observed with a 

period size on the order of the gap size
243

.  By performing similar experiments with 

oscillatory elliptical Couette flow (obtained by oscillating both top and bottom 

sinusoidally and perpendicularly to each other) they were able to observe a slow 

precession of the director
245

. 

 

     Guégan et al
246

 performed neutron scattering experiments on smectic-A 8CB within 

aligned nanochannels of porous silicon films; the channels were approximately 30 nm in 

diameter and 30 m in length, and had disordered surfaces with roughness on the order of 

1 nm.  They were able to track the correlation length associated with short-range smectic 

ordering from above the bulk isotropic phase transition temperature of 306.7 K (310 K) 

to more than 50 K below the bulk nematic-smectic-A transition (255 K).  Incoherent 

quasielastic neutron scattering tests on a similar system showed that there is a strong 

reduction in molecular mobility due to the confining surfaces, which consistently 

increases with decreasing temperature
247

.  Neutron and x-ray diffraction as well as small-

angle neutron scattering (SANS) and DSC experiments were also performed on 8CB 

confined to porous aluminum and silicon with 30 nm nanochannels
248

.  Fehr’s KS and KS’ 

mesophases
237

 were both observed (the KS’ only in silicon channels), in addition to two 

crystalline phases, K and K’ and the smectic-A phase
249

. 
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1.4  Layered Systems under Shear 

1.4.1 Energy and Entropy of Layered Systems 

     Layered systems under shear have been a focus of research since at least the early 

1970’s
47, 48, 50, 51, 250, 251

, but the topic gained considerable popularity in the 1990’s with 

studies of a wide variety of systems using a wide variety of techniques being published
42, 

52, 172, 252-270
, a trend that continues to this day

271, 272
.  With their layers’ ability to slide 

easily with respect to one another while undergoing shear, smectics have found 

considerable use as lubricants
273-277

.  While the response to shear can vary depending on 

the material being studied, one common trend that emerges is that for many systems, low 

shear rates tend to orient the layers parallel to the confining walls while at higher shear 

rates the layers tend to either orient perpendicular to the walls or reorient into 

multilamellar vesicles, reminiscent of onions in the way the layers are organized
278

.  Leist 

et al have reported that these reorientation effects are a function of shear rate, 

DA  4  (where A is the shear amplitude, D is the gap size and  is the shear 

frequency) rather than shear frequency
257

.   

 

     Using a similar approach to that which Ericksen used to describe the flow of nematics 

under shear (see Section 1.2.4), de Gennes presented a derivation of the dynamical 

equations for smectics and other lamellar materials under shear
19

.  Beginning with 

conservation equations for mass, momentum and energy and assuming local equilibrium, 

while making use of entropy treatments applicable to simple fluids
250

, he was able to 

express the entropy in terms of dissipative fluxes: 
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ddud
huJ

T

T
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dS
T
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                                                           (31) 

where T is the temperature, t is the time, S is the entropy density, 


J  is the energy flux, d
 

is the energy density,  is the stress tensor (with dummy variable  and  representing 

elements of the tensor),  is the velocity tensor (and hence


  is the velocity gradient 

tensor), h is a measure of the flux in rotational order, 


u is the rate of change of the layer 

displacement and   is the rate of change of rotation of the system.  The first term of the 

right-hand side represents the dissipation due to heat transport, the second due to friction, 

the third due to permeation (that is, the motion of fluid crossing the layers via 

imperfections and interstitials in the lamellae, described by Helfrich
50

 and developed in 

Section 1.4.2 below) and the fourth due to rotational motion
19

.  By assuming negligible 

external fields, the above entropy equation gives way to four relationships: 


 

d
                                                                                                          (32a) 






 gEKJ

d

                                                                                                 (32b) 


 gEu

d
                                                                                                    (32c) 


 h

d
                                                                                                                  (32d) 

where   is the viscosity tensor containing the six components (five of them 

independent, as demonstrated by Parodi for a nematic system
83

 and discussed in Section 

1.2.4), K is the thermal conductivity tensor,  is the thermodiffusion tensor, 
1


  is 

the generalized twist viscosity tensor and  is the permeation tensor, while E, g and 
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h are the force tensor equivalents of the fluxes introduced earlier, 
d

J



, d

u


 and d


 , 

respectively.  For a smectic-A system, the stress tensor equation simplifies to: 

   
zzzzzzzz

zzzz
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...

                    (33) 

where i are the Leslie coefficients and Axy is the symmetric velocity gradient tensor 

 
xyyxxy

A  
2

1
.  The five independent Leslie viscosities further reduce to three 

using the assumption that the fluid is incompressible, leaving one with the three 

Mięsowicz viscosities discussed in Section 1.3.1
81

. 

 

1.4.2  Distortion and Undulations 

     One smectic property that has received continued interest in modern research is that of 

distortion, first discussed in theory by de Gennes in 1969
20

, and demonstrated 

experimentally by Clark et al in 1973
47, 48

 by observing characteristic light scattering 

effects in gently distorted smectic systems (in their case, p-butoxybenzyl-p-(-

methylbutyl) aniline, or BBMBA).  Two types of distortions are allowable in smectic-A 

systems: Splaying of the director (equivalent to bending of the layers), and compression 

of the layers
55

.  From de Gennes, the energy distortion penalty is given by
19

: 
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                                                          (34) 

where B is a compression modulus, u is the lamellar displacement relative to the original 

unperturbed position along the z-axis, and z is the position coordinate parallel to n  but 
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assumed to be perpendicular to the layer plane.  By minimizing  dVE
sd

using the 

calculus of variations, an Euler-Lagrange solution yields
61

: 
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Combining the above solution with Equation (34) yields: 
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which has a simple analytical solution of kxeu
zk

cos
2


 , where k2  is the period of 

undulation, and BK
Splay

  is the length scale known today as the permeation length, 

first developed by de Gennes
23

 and later by Martin et al
250

.  This value is usually on the 

order of the layer thickness, and its significance lies in the fact that it defines the length 

scale at which the two competing forces, compression and splay, are equal to one another 

in the event that a macroscopic distortion has been introduced into the smectic system; 

that is, a bending of the layers will result in compression or dilation of the layers if the 

bend radius falls below , or in splaying of the layers if the radius stays above 55
.  From 

the same solution’s exponential decay constant one can define the penetration depth as 

well, 
2

1 k
p

 , which describes the length scale over which an undulation extends 

from a surface before dying away
61

.  The characteristic distortions observed in nematics 

(represented by KBend and KTwist), conspicuously absent here, aren’t permitted in smectics 

if one assumes the layers remain parallel
55

.  A distortion of the layers in the form of a 

thickness change of the smectic stack greater than 2 leads to undulational instability
55

, 

studied by Helfrich and discussed below
51

.  This effect is independent of the stack 

thickness, as shown by Delaye et al
251

 and Clark and Meyer
48

 in 1973, when the former 
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demonstrated experimentally that observable distortions could be created in p-cyano-

benzilidene-p-octyl-oxy-aniline (CBOOA) in stacks above 50 m thick with thickness 

changes of only 22 ± 0.3 Å, and so will potentially have significant influence on smectic 

dynamics.   

1.4.3  Short and Long Range Order in Layered Liquid Crystals 

     One interesting property of multilayer membrane systems such as smectics is their 

inherent sensitivity to external conditions, leading to the aforementioned undulational 

instabilities.  In addition to their dependence on dilatation, long-range van der Waals 

interactions and short-range repulsive hydration and screened electrostatic forces between 

the layers can lead to perturbations in long-range homogeneity in the layers and can cause 

instabilities as well
279, 280

.  Upon joining RCA Laboratories in 1967 after a postdoctoral 

fellowship at the National Research Council (NRC) in Ottawa from 1964 to 1966
56

, 

Wolfgang Helfrich tackled the problem of liquid crystals and membranes, and, spurred on 

by ideas from de Gennes
20

, proposed in 1973 that lamellar materials with diamagnetic 

anisotropy exposed to an electromagnetic field will lead to undulations now known as 

Helfrich undulations or Helfrich deformations
51

.  This notion of an oscillatory 

mechanism for turbulence within confined liquid crystals arose from communications 

with his colleague at RCA, George H. Heilmeier in 1969
49

 who, with Helfrich, had 

observed the effect using light scattering with confined nematics perturbed by an ac 

signal
281, 282

.  If one considers these fluctuations as one-dimensional waves either along 

the director (aligned with the z-axis) as would occur with smectic-A materials, or at some 

angle  to it as one would see with smectic-C materials, the overall perturbation can be 

broken down into a longitudinal mode and transverse mode: 
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Figure 1.20: Longitudinal and transverse modes in layered liquid crystals 

 

     It should be noted that for a particular layer, the longitudinal mode experiences a net 

undulation,  qu , where q  is the displacement from equilibrium along the z-direction, 

while the overall amplitude in the transverse mode case averages to zero to second order.  

The overall energy contribution for the longitudinal mode is that of a simple spring 

oscillating about equilibrium: 

 quBqE
long

22

||

2

1
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where B is the compressibility of the layer and 
||

q is the displacement in the longitudinal 

direction.  To find the energy contribution from the transverse mode one must probe the 

free energy of the system (since, to first order, the layer fluctuation amplitude is zero), 

which yields the second-order term: 

 quKqE
trans

24

2

1


  

where K is the nematic splay elastic constant.  It is interesting to note that K is identical 

for nematics and smectics near the SmAN transition
19

.  An external magnetic field,

zHH  , will interact with the aforementioned lamellar volume diamagnetic 

susceptibility anisotropy (represented by a) that arises from the nematic ordering so that 

the interaction energy is: 

 quqHE
amag

222

2

1


   

Note that both of the coefficients B and aH
2
 have dimensions of energy per unit length, 

so that one can imagine the smectic phase as having a characteristic length associated 

with it.  The total free energy will then be: 

magtranslong
EEEF   

   quKqqHBq
a

24222

||

2

1


                                                                              (36) 

and the characteristic lengths associated with smectic-A materials are: 

i) The Sample Dimension, L 

ii) The Density Wavelength, d (represented in Fourier space by dq 2
0
 ) 

iii) The Penetration Depth BK  (as mentioned in Section 1.4.2) 
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iv) The Magnetic Coherence Length 2
HK

am
   

 

It has been demonstrated that  determines the decay of an undulation distortion, while a 

determines the long-wavelength cutoff of diverging fluctuations in u
19

. 

 

     Equation (36) represents the Hamiltonian of a smectic system, and with it one can 

estimate long-range positional order.  Assuming a negligible compressibility ( 0B ): 

   quKqqHF
a

2422

2

1


                                                                                     (37) 

The Equipartition Theorem reveals that the mean value of each quadratic term in the 

above equation must be Tk
B

2

1
.  That is: 

  quKqqHTkF
aB

2422

2

1

2

1


                                                                   (38) 

One can now solve for the average of the squared undulation size to estimate the 

positional order of the smectic: 
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Integration at this point leads to two possible answers, depending on the magnitude of a: 
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where qmax is the cut-off wavevector, above which the initial assumption of the layers 

behaving elastically no longer realistically holds.  From the above one can see that the 

mean squared displacement diverges logarithmically with length scales L and m.  That is, 

they fall away slowly over large translations, and consequently, it may be concluded that 

there is no true long-range positional ordering within smectic systems in the absence of 

an external magnetic field.  This conclusion is known as the Landau-Peierls instability
19, 

283, 284
.  It should be noted that similar calculations for crystalline and columnar systems 

yield results of: 

 
max

2 ~
Tqqu                                                                                                               (40) 

for crystals and: 

 


max2 ~ q
Tqu                                                                                                          (41) 

for columnar liquid crystals.  That is, within both systems the mean squared displacement 

stays finite for larger length scales and so is controlled by short-range forces
19

, exempt 

from the Landau-Peierls instability.  Sirota et al have measured the undulation amplitude 

directly in multimembrane systems via x-ray scattering for freestanding films of 

dymyristoylphosphotidylcholine (DMPC) and the ternary system of sodium dodecyl 

sulfate (SDS), pentanol and water
285

. 

 

1.4.4  Experiments with Smectics under Shear 
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     Since the establishment of de Gennes’ theories
20

 and Clark, Martin, Delaye and 

Helfrich et al’s early work on smectics under shear, several studies have built on their 

ideas
47, 48, 51, 250, 251

.  Some of the more relevant experiments and extensions of the theory 

follow. 

 

     In 1978 Horn and Kléman
42

 presented rheometry results showing large amplitude 

oscillatory shear tends to remove defects and align bulk smectic layers.  Using two 

different geometries (simple planar as well as cone and plate) and homeotropically 

oriented (by lecithin) smectic-A 8CB as a sample, they found that while with perfectly 

smooth surfaces no structural changes were observed up to shear rates up to 60 sec
-1

, 

even small surface defects produced ‘textures’ in the material that were visible at shear 

rates as low as 0.1 sec
-1

.  These textures resembled undulational modes resulting from 

dilatation.  The nucleation of this texture (which was found to be rectangular in shape), 

however, differed from that arising from dilatations, in that it occurred locally rather than 

globally, as observed in optical micrographs taken of the sample
42

.  These local seeds 

were found not to grow beyond a certain point, but rather to migrate, overlap and mesh 

together as shearing progressed; this inability to grow meant that the structures as a whole 

could be erased simply by shearing in the opposite direction.  Finite yield stresses 

observed from the rheometry results demonstrated that in samples at rest shear must 

overcome immobilization forces (likely resulting from defects and impurities in the 

sample).  In Horn and Kléman’s experiments, this immobilization force was attributed to 

focal conics on the order of a micron in diameter which they observed in the 8CB
42

.  
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     In 1980 Cagnon and Durand
286

 presented results on the shear response of 

homeotropically-aligned smectic-A and smectic-B butyloxy-benzylidene-octylanine 

(4O.8) confined between glass plates for frequencies between 1 Hz and 10 kHz.  The 

stress strain relationship was established for both, and the former phase was found to 

behave viscously and the latter elastically, as determined from the observed shear 

modulus. 

 

     In 1982 Oswald and Ben-Abraham
287, 288

 reported that shear forces on smectics that lie 

in the flow direction increase the dilatation threshold that leads to undulations.  They 

started from the Navier-Stokes equation for an incompressible fluid as it applies to a 

lamellar system with molecules oriented homeotropically to the surface (and hence with 

layers parallel to shear flow): 

GPv
dt

vd 



2

                                                                                                 (42) 

where , and P are the mass density, viscosity (assuming that all Mięsowicz viscosities 

are identical) and pressure, respectively, while v


 and G


 are the velocity field and 

volume force density arising from elasticity of the layers, respectively.  By assuming 

slow variations in functions perpendicular to the wall and negligible permeation, they 

were able to demonstrate that while in a static confinement case undulations may occur in 

any direction parallel to the surface (since all directions parallel to the surface are 

equivalent), under shear conditions this symmetry is broken and undulations will occur in 

a preferred direction, specifically, in the direction transverse to the shear.  In the shear 

case where an additional dilation allows for two-dimensional undulations, the secondary 

undulation must be in the direction of shear as the undulations must be perpendicular to 
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one another
287, 288

.  This effect was demonstrated by Oswald et al in the same year
289

.  It 

should be noted that if permeation were allowed in the above treatment, then there would 

exist a critical velocity of shear dependent on the permeation depth above which 

dislocations would be unable to follow the shear flow, potentially leading to undulational 

instability
288

. 

 

     In 1984 Ramaswamy
290

 showed that, at low frequencies, four of the five Leslie 

viscosities diverge for smectic systems such that for a small velocity gradient: 

 



i

ii

b


0        for 5,4,2,1i                                                                               (43) 

where bi is a coupling constant between the velocity field and the layer displacement 

field,   is the shear rate and 0

i
  is the i

th
 Leslie viscosity with no flow.  Since  

i
 

this implies: 

 
ii

b 
0

                                                                                                      (44) 

which indicates that, unlike a fluid-like system, smectics require a certain minimum yield 

stress bi in order to flow in the layers.  The effect was presaged by Kim
291

 et al and 

Bhattacharya
292

, who found in capillary flow experiments that after an initial applied 

pressure was removed, the residual pressure in the system was non-zero in size
290

.  The 

phenomenon of a minimum yield stress was not new to the scientific community at this 

time—Bingham had reported on viscoplastic materials, which exhibit solidlike behaviour 

at low stresses but liquidlike behaviour above a critical stress value as early as 1916
293

—

but Ramaswamy’s results indicated that the source of this behaviour may be the 

breakdown of hydrodynamics within the system rather than a solidlike resistance to 
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flow
61

.  Ramaswamy also showed that shear promotes stability in smectic systems by 

rotating wave fronts from undulations, thereby shortening their wavelength and leading to 

a reduced undulation lifetime
290

.  While the notion of shear-induced fluctuation 

suppression was first proposed in this context by de Gennes
24

, the phenomenon has its 

origins with James Clerk Maxwell’s experiments on refractive properties of sheared 

viscous materials, begun while he was an undergraduate student at the University of 

Edinburgh, and for this reason has been named the Maxwell Effect
294

.   

 

     Ramaswamy
252

 later, using Helfrich’s theory of elasticity while considering the effects 

of steric repulsion from the confining surfaces, calculated that the undulation suppression 

regime has an upper shear limit such that
32

33

dK

Tk

Bend

B


  , where T is the temperature, kB is 

the Boltzmann constant,  is the viscosity and d is the layer spacing, above which point 

the layers compress and collapse.  The phenomenon was later confirmed by Al kahwaji 

and Kellay using dynamic light scattering on a mix of the ionic surfactant bis-ethyl hexyl 

sulfosuccinate (AOT) and brine, creating a lamellar compound, confined to a Couette cell 

geometry
295

.  Marlow and Olmsted demonstrated that shear in lyotropic smectic materials 

results in fluctuation reduction due to a combination of interlayer friction, convection and 

bilayer collisions which lead to an effective anisotropic surface tension.  The exact 

consequence of shearing was found to depend on the level of permeability of the 

material
296

.  They later demonstrated that strong shear flow can give rise to other effects 

in lamellar systems via couplings between the system parameters
297

. 
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     The frequency-dependent shear modulus of 8CB confined by aerosil gel (spherical 7 

nm diameter hydrophilic SiO2 particles sonicated with acetone to create the gel) was 

reported by Bandyopadhyay
298

, using a temperature- and stress-controlled rheometer in 

the cone and plate geometry. 

 

 

 

 

 

 

 

 

 

Figure 1.21:  Storage and loss moduli for 8CB confined by aerosil gel.  a) Storage 

modulus, G’, as a function of shear amplitude 0 for a shear rate of 1 rad/sec, below (solid 

circles) and above (crosses) the nematic-smectic transition temperature of 306.97 K.  b) 

Storage modulus, G’, and c) loss modulus, G’’, as a function of frequency for various 

temperatures.  The solid circles in c) represent the difference between the spectra and are 

fitted with a power law function.  Taken from Bandyopadhyay
298

. 

 

 

At low temperatures the storage modulus was found to be more than three orders of 

magnitude larger than those moduli reported in bulk 8CB.  It also possessed a power law 

component with an exponent that diminished with increasing gel density but not 

temperature, characteristic of the ‘soft glassy rheology’ found in foams, emulsions and 

suspensions.  While the nematic and isotropic 8CB exhibited predominantly elastic 

behaviour, the smectic 8CB at low temperatures was found to be elastic but dominated by 

(a)

(b)

(c)

(a)

(b)

(c)
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structural defects as determined by the amplitude, temperature- and gel density-variance 

of G’
298

. 

 

     In 1993 Diat, Roux and Nallet
261

 published a broad series of experiments on the 

influence of shear on bulklike lyotropic lamellar materials confined to concentric 

cylindrical shear cells (with gap sizes varying from 100 m to a few millimeters), using 

light and neutron scattering, rheometry and microscopic techniques to observe their 

results.  They were able to conclude that the prime difference between low and high shear 

(which are themselves defined relative to the concentration of the lyotropic) is the 

resultant orientation of the material: for low shears, domain orientation was found along 

not only the direction of flow but also the rotation axis as well, while with high shear the 

orientation is almost exclusively at a fixed angle from the ‘c’ orientation of Mięsowicz.  

An isotropic orientation was observed between the two extremes, with the notable 

presence of spherulites whose size was a function of the shear rate. 

 

 

1.4.5  Smectics under Shear: Theoretical work 

     Building on previous work that demonstrated shear flow affected phase transition 

characteristics
95, 299-301

, in 1992 Bruinsma and Rabin
302

 stressed that Ericksen-Leslie 

Parodi theory (ELP) is incomplete in that the flow distortion of the structure factor leads 

to a torque on the director that cannot be explained solely with the Leslie viscosities.  

They redeveloped the theory near the nematic-smectic A transition by considering the 

observed phenomena geometrically, and by assuming constant relaxation times and a 

simple flow field unperturbed by fluctuations.  With this ELP modification they showed 
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that fluctuations in lamellar systems under shear flow undergo a gradual shape change, 

from elliptical under very slow shear (that is, with shear rates much smaller than the 

longest characteristic relaxation rate of the shear system) to a very anisotropic one-

dimensional shape at rapid shearing rates (greatly exceeding the relaxation rate of the 

system) by analyzing the structure factor,  qS , as a function of the Deborah Number, D 

( D , where  is the relaxation rate).  They also demonstrated that the shear-induced 

suppression of fluctuations, occurring at shear rates above a critical value of 

323

25

dK

T

Bend


   (with temperature T, viscosity  and layer spacing d), leads to an 

increased nematic-smectic transition temperature which will be dependent as well on the 

orientation of the layers.  They indicated that because, at equilibrium, fluctuations change 

the layer spacing (as discussed by Ramaswamy
290

), they will necessarily increase KBend 

and KTwist as well.  Furthermore, because shearing tends to tilt layers in the ‘b’ orientation 

in the presence of fluctuations, it will also necessarily increase 3.  While under shear, 

however, KBend and KTwist tend to decrease, and under the condition 1~
0
 q  (where 

dq 2
0
  with d being the layer spacing and  being the anisotropic correlation length), 

where the onset of distortion occurs, 3 is reduced, an indication that shear thinning may 

be occurring and may lead to a mix of ‘a’ and ‘b’ orientations in the range of 1~
0
 q  to 

1~  
303

.   

 

     A later study by Bruinsma and Rabin
302

 compared the Maxwell Effect (as developed 

in Section 1.4.4) to an opposing phenomenon, the Reynolds Effect, named for and first 

described by one of the pioneers of fluid dynamics, Osborne Reynolds
304

.  The Reynolds 
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Effect (as it applies to lyotropic liquid crystals, or to any two component system with 

internal degrees of freedom) refers to the generation of instabilities due to shear and is 

due to the generation of viscous stresses, of order  , in which fluctuations in flow arise 

due to fluctuations in concentration, which themselves arise from variable interlayer 

spacings, a topic first considered by Helfrich
305

.  By combining Helfrich’s free energy 

density with concepts developed by Martin, Parodi and Pershan
250

 (and simplified by 

Nallet, Roux and Prost
306

) and integrating a concentration dependence, they demonstrated 

the Reynolds Effect for a two-component lyotropic system.  From these findings they 

further demonstrated that shear-induced fluctuation suppression within thermotropic 

liquid crystals leads to their transforming to an orthorhombic solid state, while shear flow 

enhances short-wavelength concentration fluctuations within the lamellar, or L, 

lyotropic liquid crystals
302

, in agreement with experimental results published by Nallet et 

al
306

. 

 

     Auernhammer, Brand and Pleiner
278

, following on the work described above
47, 48, 251, 

288, 290, 302, 303, 307
, reiterated that de Gennes’ derivation for smectic hydrodynamics does 

not on its own adequately explain the reorientation of smectic layers that had been 

observed, and cited the reason as being de Gennes’ assumption that each layer can be 

represented by a two-dimensional fluid.  They reconsidered the sheared smectic problem 

from the point of view of irreversible thermodynamics under the condition that the layers 

remain of constant thickness and quantity, and stay parallel to the confining walls.  By 

following Martin’s
250

 standard derivation and incorporating the Gibbs and Gibbs-Duhem 

relations involving both nematic order and smectic order to develop a dissipation 
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function, they were able to show that shear flow tends to reorient the director such that it 

tilts slightly in the direction of flow (x direction): 

2

1

1

1
 


B

n
x

                                                                                                             (45) 

where B1 is a coupling constant between the director and layer normal,   is the shear 

rate, 1 is the rotational viscosity and  is the flow alignment parameter.  The director 

component perpendicular to shear flow and parallel to the confining layer, ny, is nil, and 

that perpendicular to both must be 22

2

1
11

xxz
nnn  .   

 

Figure 1.22: Shear in the x-direction causes a tilt to occur between the director, n , and 

the layer normal, p , leading to an effective dilatation of approximate size 2
2

x
n  which is 

prevented by the confining walls.  Adapted from Auernhammer
278

. 

 

The tilt to the director is equivalent to a dilatation of the layers, since nz is less than unity, 

but the dilatation is prevented by the fixed confining layer boundary condition.  The 

result is a critical tilt, nx,c, and shear flow, 
c

 , which would induce undulations, 
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 , where B is the smectic 

compression modulus and d is the gap size.  The undulations are perpendicular to the 

shear direction while the director is tilted in the direction of flow, prohibiting coupling 

between the flow and fluctuation waves
278, 308

.   

 

     Noirez
269

 reported on shear experiments (using shear rates from 0.1 to 50 sec
-1

) 

performed on a smectic side-chain liquid crystalline polymer system (PMA-OC4H9) 

confined within a shear cell to mesoscopic scale gap sizes (the exact gap size is not 

mentioned), studied using neutron scattering with a setup which allows observation of the 

flow and layer normal directions, and observed a slight reduction in layer spacing (a 

decrease of 2% of the initial layer spacing) compatible with Auernhammer et al’s results.  

In studies of sheared lamellar lyotropic systems by Müller et al
264

 using polarizing 

microscopy, viscometry, small-angle light scattering and deuteron NMR spectroscopy, 

and by Zipfel et al
309

 using rheology and small-angle neutron and light scattering, both 

groups found that the transition from parallel alignment to vesicle exhibited an 

intermediate state containing flow-oriented cylindrical structures that resemble the 

undulations described by Auernhammer
308

. 

 

     In a later analysis of the same system, but considering couplings between the velocity 

field and orientational and positional order terms, Auernhammer et al
308, 310

 found the 

order parameter is most affected by undulations near to the confining surfaces.  They also 

found that by uncoupling the director field from the velocity field, certain anisotropic 
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viscosity conditions could lower the undulation instability threshold.  Laurer et al
256

 

studied bulk lamellar diblock copolymer poly(styrene-b-isoprene) undergoing large 

amplitude shear (shear rate of 1 sec
-1

 and strain amplitude of 98%) using transmission 

electron microscopy (TEM) and small-angle x-ray scattering (SAXS) and found a 

uniform parallel-oriented lamellar structure extending 2 m beyond the confining 

surfaces, consistent with Auernhammer et al’s conclusions in that the order parameter 

peaked near to the surfaces.  Soddeman and Auernhammer et al
311

 reported on their 

investigations of smectics under shear using both molecular dynamics simulations and 

macroscopic hydrodynamic theory, and found that while they behave as predicted by 

Auernhammer et al’s
278, 308, 310

 analytical solution at low shear rates, both methods lead to 

shear-induced instabilities in the layers above a critical value, indicating that the director 

can have dynamics independent of the layer normal.   

 

1.4.6  Static Smectics re-visited: A new analysis with some old ideas 

     Stewart
312

 presented results on the equilibrium state of a smectic system where the 

layer normal does not coincide with the director.  This layer normal-director orientation 

discrepancy, arising from Oseen’s constraint that 



  a  0  (where a is the layer normal 

vector) in the absence of layer defects
11

, cannot usually be handled by standard 

treatments, and so Stewart achieved this, taking a different approach from de Gennes’ 

formulation
19

, by considering the energy density of the smectic system.  He presented 

results for three different configurations: A simple planar homeotropic orientation; a 

planar orientation away from the walls with a fixed orientation at the wall referred to as a 

‘fixed bookshelf’ configuration; and a similar setup to the last but with the smectic layer 
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allowed to be incoincident with the wall, known as a ‘variable bookshelf’ 

configuration
312

.  Sketches of the three orientations are given in Figure 1.23: 

 

Figure 1.23:  The three configurations considered by Stewart: (left) homeotropic; 

(middle) fixed bookshelf, and; (right) variable bookshelf, with  the angle between the 

long axis and the wall and - the angle between the long axis and the layer normal.  

Reproduced from Stewart
312

. 

 

He found that in most cases the penetration depth as it pertains to the director (i.e. the 

distance from the surface at which the director has changed direction from the surface-

induced tilt to being oriented with the layer normal) was on the order of the thickness of a 

smectic layer (with dimensionless penetration depth 



  B
0

B
1

, where B1 is the 

coupling constant between layer normal and director and B0 is the layer compression 

constant), in agreement with experimental results
313

.  For the third case, however, with a 

strongly anchored director tilt, he was able to show that two boundary effects, each at 

different length scales, may exist:  The first is the reorientation of the layer normal and 

director to coincide with one another, occurring at a penetration depth of roughly five or 

ten layer spacings following the 



  B
0

B
1

 relation, and the second is a reorientation of 

the layer normal and director to the bookshelf alignment, much further out from the 
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surface at a penetration depth of on the order of 200 layer spacings, typically 

corresponding to approximately 0.4 m. 

 

 

Figure 1.24:  Director angle, , and layer normal, , as a function of number of layer 

spacings, 



z , for various stiffnesses, k, and ratios, 



B  B
1

B
0
 for a strongly anchored 

smectic system in which the layer normal and director are allowed not to coincide.  

Reproduced from Stewart
312

. 

 

This analysis has as of yet only been applied to the strong anchoring case, but may also 

yield realistic results for the weak anchoring condition as well
312

. 
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1.5  Confined 8CB Studies with the SFA and XSFA 

 
1.5.1  Early X-Ray Work with Sheared 8CB Under Confinement 

     Safinya, Sirota and Plano
52, 53

 performed synchrotron x-ray experiments on sheared 

8CB (4-cyano-4’-octylbiphenyl) near the nematic to smectic-A transition.  This system 

was considered an ideal candidate for a study of structural changes, since it was known 

that for values of  greater than unity, where   is the shear rate and  is the fluid’s 

fluctuation relaxation time, the material should experience distortions in structure, and for 

larger molecules  should be large enough for this to be accomplished with reasonably 

small shear rates.  Furthermore, nematics near the smectic-A transition had been shown 

previously to have exhibited expanded correlation lengths,  
314

, and that 23
 

315
.  A 

Couette cell geometry was chosen with gap sizes of 0.5, 1.0 and 1.5 mm; the inner 

cylinder had a 10 mm radius and was fixed, with the outer cylinder rotating at shear rates 

of 50 to 300 sec
-1  52, 53

.  The group wished to study previously seen
316

 pretransitional 

flow-induced fluctuational forces, and reported that steady state regimes occurring due to 

the combination of these forces with viscous frictional forces could be observed via x-ray 

scattering.   

 

1.5.2  XSFA Investigations of Smectic 8CB Under Mesoscale Confinement 

     Idziak et al
54

 performed several synchrotron x-ray experiments with 8CB under 

‘mesoscale’ confinement (that is, with gap sizes in the range of roughly 0.1 to 10 m) 

using an x-ray Surface Forces Apparatus (XSFA).  The mesoscale range is distinguished 

by its spanning the gap between distinctly bulk-like behaviour and distinctly well-
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confined behaviour.  The XSFA allows scattering studies to be done at precise 

separations ( 1 Å) over several orders of magnitude (from a few Angstroms up to 10 

m), and in the first tests two crossed 2-mm diameter cylindrical capillary tubes with 10 

m thick back-silvered mica sheets glued to them were used as surfaces between which 

the sample was placed.  The cylinders were placed 45 to the shear direction, and the gap 

of 0.4 m
317

 was obtained by monitoring the Newton’s Rings pattern created by passing 

sodium light through the cylinders.  The triangular shear profile was generated by a 

piezoelectric bimorph lateral sliding device, and four shear rates were reported (0, 0.17, 

10 and 30 sec
-1

).  Three orientation directions were seen in each case, one with the 

smectic director pointed towards the top surface, one towards the bottom, and one in the 

direction of shear corresponding to the ‘b’ orientation given by Mięsowicz (see Section 

1.3.1).  The latter had not been seen previously in large gap shear studies due to the large 

energy penalty associated with it
318

, and was found to be made up not of a single well-

defined orientation, but rather a mosaic of discrete domains centered about the expected 

peak.  The ‘b’ orientation observed at zero shear, it was hypothesized, originated from the 

orienting inherent with the loading of the sample
317

. 

 

     Koltover and Idziak et al
127, 319

 used a similar device for the next study of confined 

8CB (this time not under shear), but two new types of surfaces were used in addition to 

the aforementioned capillary tubes:  Both resembled the standard cylindrical lenses used 

in SFA studies (20 mm diameter), but were made of aluminum and had a small (1 mm 

diameter) hole drilled through the center (perpendicular to the back plane), through which 

x-rays could pass.  The hole in one was covered with a glued back-silvered thin (5-6 m 
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thick) mica sheet, acting as a soft surface, while the other was first covered by a thin (4-8 

m thick) glued quartz sheet, which was covered in turn with a 3-5 m thick glued mica 

sheet, acting together as a hard surface: 

 

Figure 1.25: Diagram of the XSFA sample setup. Adapted from Idziak
317

. 

 

With the soft surfaces the 8CB alignment was continuous from gap sizes of 1 mm down 

to 3-4 m, but broke up into multiple domains below this separation; this transition, it 

was reported, is reversible.  With the hard surfaces, however, no transition was seen at 

any point.  The reason for the difference, they proposed, is that while the hard surfaces 

can easily squeeze the 8CB out, the soft surfaces distort upon attempting to break up the 

3 m domains, in turn breaking them up into smaller and less oriented ones.  Soft 

surfaces were also seen to have considerably smaller mosaicities (2, as compared to 3.5 

for hard surfaces), a result, they postulated, of soft surfaces being able to adjust to 

accommodate domain re-orientation, which in turn allows the domains to coalesce and 

orient themselves optimally. 
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     Idziak et al
127

 provided shear results on the same setup as above, with shear rates of 

500 sec
-1

 and mesoscale gap sizes of 0.4 m.  Equally strong shear-induced ordering and 

alignment were found for both hard and soft surfaces, indicating flow-induced forces 

dominate over surface forces at the shear rate used.  The study reinforced the notion that 

confinement-induced and flow-induced structures are distinct from one another, in that 

the former are static while the latter are not at equilibrium. 

 

     Koltover et al
320

 presented further results of 8CB confined by atomically smooth 

surfaces with the XSFA.  They compared force-measurements (that is, measurements of 

F/R as a function of gap size, where F is the normal force and R is the radius of the 

confining cylinders, based on experiments pioneered by Horn and Israelachvili
41, 129

) of 

the smectic and nematic states.  In the nematic below gap sizes of 6 nm, the force was 

oscillatory with periodicity of 9-10 Å, the approximate diameter of an 8CB dimer
321

.  The 

oscillations increased with decreasing gap size, indicating the molecules were 

positionally ordered as layers within 20-30 Å of the surface
143

, and the last two layers 

(corresponding to 17 Å thickness) could not be removed.  The smectic measurements 

were more difficult to obtain due to the high viscosity of the material causing a long-

range force that obscured any squeeze-out forces above 35 Å, but faint kinks with similar 

periodicity to the nematic could be seen down to 25 Å, below which flattening of the 

surfaces due to their slight elasticity obscured the results.   

 

     X-ray results of smectic 8CB in bulk-like confinement (between two crossed 

cylinders) and confined to a 4 m gap showed significantly different peaks; in bulk, the 
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peaks were broad, indicating the domains were only slightly oriented with the cylinders 

(possibly due to flow during loading), while the confined material showed sharp peaks, 

indicating the material was well-aligned with the cylinder walls.  X-ray results were also 

shown of 8CB confined to a 1 m gap, comparing stationary diffraction patterns to those 

obtained under 150 sec
-1

 shear rates.  The stationary mosaicity was found to be 30, 

while four minutes of shear produced a mosaicity of less than 2, a state which lasted for 

hours after the shear was complete. 

 

     Idziak
317

 built on the previous studies by developing the X-ray Confinement Cell 

(XCC)
322

, which uses capacitor feedback translation stages and high-precision optical 

encoders to gauge gap sizes between two crossed cylinders identical to those used with 

the XSFA.  X-ray experiments were performed at two gap sizes, 0.5 m and 5 m, at 

various shear rates.  The shear amplitude used for the former gap was 0.125 m, and for 

the latter was 7.5 m.  For the larger confinement, at the higher shear rate (50 sec
-1

) 

reorientation towards the ‘a’ orientation was rapid and a high degree of alignment was 

obtained, as indicated by the peak position, amplitude and mosaicity; within 5-7 minutes, 

all three had reached asymptotic values.  For the lower shear rate (0.06 sec
-1

) 

reorientation was much slower, and an asymptote is not reached by any of the measured 

parameters after 1200 seconds. 
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Figure 1.26: Peak Position and Mosaic for confined 8CB as a function of time for 5 µm 

gap size at various shear rates (shown in legend).  Reproduced from Idziak
317

   

 

Within the smaller gap size, reorientation was relatively slow at the higher shear rate 

(24.8 sec
-1

), with an asymptote reached in peak position after roughly 1000 seconds, 

while for the lower shear rate (0.01 sec
-1

) the asymptote did not appear to have occurred 

even after 6000 seconds.   

 

Figure 1.27: Peak Position and Mosaic for confined 8CB as a function of time for 0.5 

µm gap size at various shear rates (shown in legend).  Reproduced from Idziak
317
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For both shear rates, interestingly, the reorientation occurred in discrete steps rather than 

smoothly, as it had with the larger gap size, and it was theorized that these steps are due 

to domain reorientation.  Furthermore, at the smaller gap size and at low shear, the 

diffraction peak amplitude oscillated from positive to negative with periodicity identical 

to the shear period.   

 

Figure 1.28: Diffraction peak amplitude as a function of time for sheared 8CB for 0.5 

m gap size and 0.01 sec
-1

 shear rate.  Reproduced from Nieman and Idziak
323

. 

 

 

This, they theorized, indicated that the scattering plane was oscillating as well, which 

demonstrated that the domain were being gently ‘massaged’ back and forth due to shear.  

This behaviour was also responsible for the fluctuating intensities observed with the 

larger gap at low shear, but which was weaker due to the greater number of differently-

oriented domains present in the x-ray beam radius.  The effect was not seen at higher 
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shear rates because it would have been averaged out over the long (50 second) exposure 

times
323

.   

 

1.5.3  Later Shear Experiments with the SFA 

     Ruths, Steinberg and Israelachvili
125

 performed experiments that examined both 

normal and frictional forces as well as the viscosity of nematic and smectic 8CB while 

highly confined by two mica surfaces in the SFA.  Surface roughness and hydrophobicity 

were modified in order to study their effects on the resultant 8CB epitaxial ordering.  

Both parallel and perpendicular alignments (with respect to the confining surfaces) were 

studied, the former by using untreated surfaces, and the latter by using 

dihexadecyldimethyl ammonium acetate (DHDAA) and cadmium arachidate.  It was 

known that DHDAA forms a loosely-packed monolayer on mica surfaces, while 

cadmium arachidate forms tightly packed monolayers.  The group observed that ordering 

occurs even without previously shearing or bringing the surfaces into contact, as 

evidenced by FECO discontinuities near to the point of closest approach.  By bringing the 

surfaces into contact or shearing the 8CB with large amplitudes (above 5000 nm), the 

discontinuities gradually diminish and disappear, and this domain uniformity remains 

even after the external stimulus is removed, until the surfaces are separated enough (on 

the order of microns) to allow randomly oriented domains to flow to the point of closest 

approach
125

. 

 

     Force-measurements were performed on the samples of both orientations and both 

nematic and smectic mesophases, building on Koltover’s
320

 work.  In all cases periodic 
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oscillations of amplitude near to the dimer length or width (depending on orientation) 

were seen extending from the surface:  For parallel orientation, the nematic and smectic 

penetration depths were similar to those given by Koltover, while for the perpendicular 

orientation, the DHDAA monolayer resulted in penetration depths of 25 nm for the 

nematic and considerably further for the smectic (an exact value is not given).  The 

cadmium arachidate monolayer led to penetration depths of at least 45 nm in the nematic 

and at least as far again in the smectic.  Furthermore, the innermost layer of 8CB was 

reduced in size from the approximately 31 Å (or one dimer length) to 22-25 Å, 

attributable to the DHDAA’s loosely packed monolayer allowing for interdigitation of 

the anchored layer of 8CB.  This trait was not seen in experiments performed with the 

tightly packed cadmium arachidate
125

. 

 

     The group also found that the parallel-oriented 8CB exhibits peculiar anisotropic 

optical properties: the wavelength of the ordinary component of the FECO fringe doublet, 

“” varies with gap size as would an isotropic material, while the extraordinary 

component, “” shifts to longer wavelength more quickly than for an isotropic material.  

The crossing period (that is, the range over which  shifts to the same relative position 

with respect to n as it had been to n+1) of this doublet splitting was found to occur over 

a separation change of approximately 1.6 m.  This differs with perpendicularly-oriented 

8CB, which behaves as would an isotropic material in that the - doublet splitting 

decreases as the gap size is increased
125

. 

 



 116 

     Experiments were performed wherein one surface was vertically oscillated and the 

response of the other was measured, in order to gauge the radial viscosity.  The parallel 

orientation in this type of experiment gives rise to some combination of the ‘a’ and ‘b’ 

Mięsowicz viscosities, while the perpendicular orientation leads to the ‘c’ Mięsowicz 

viscosity.  Israelachvili previously derived an equation describing the viscosity, , 

measured in such an experiment
38

: 
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where k is the stiffness of the surface mount, D is the average gap size, R is the 

hydrodynamic radius,  and A0 are the applied frequency and amplitude of oscillations, 

and A is the amplitude of the response.  Hence, by plotting 
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versus D one will obtain -1
 from the slope.  Ruths et al presented such plots for various 

shear rates and found in each case that above a separation of approximately 300 nm the 

relation was linear, while below that point the curve exhibits continuously changing 

positive curvature.  It was also noted that the linear portion of the responses had 

increasing slopes for increasing shear rates.  Both situations indicate that viscosity  

increases with  and D, and hence both are evidence of shear thinning
125

.   

    

     The group
172

 noted that the smectic form generally exhibited a viscosity an order of 

magnitude larger than the nematic form, unlike what is typically seen in bulk, where 

smectics and nematics have similar viscosities.  They ascribed this to increased coupling 

of the surfaces, a result of the response being dependent on the bulk layer permeation 
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modulus in the smectic mesophase, a phenomenon reported also by Okano and 

Yamamoto
324, 325

.  The modulus reduces the amount of permeation that occurs between 

layers, leading to stronger coupling between the surfaces in the smectic than in the 

nematic, and, they asserted, the long-range force reported in smectics by Koltover
320

. 

 

 

 

 

 

 

 

 

Figure 1.29: Viscosity curves for nematic and smectic parallel-oriented 8CB for various 

shear rates (Nematic: 1
sec05.0


  [closed circles]; 1

sec1.0


 [open circles]; 
1

sec2.0


 [filled diamonds].  Smectic: 1
sec1.0


 [open squares]; 1

sec2.0




[closed squares]).  Reproduced from Ruths et al
125

. 

 

 

     Lateral friction experiments were also performed by Ruths et al
125

.  These experiments 

were performed on parallel-oriented two monolayer thick nematic and smectic 8CB 

systems at various speeds and loads, and it was found that the friction force measured in 

the smectic system was invariably much smaller than in the nematic (

24.021.0 
nematic

 , while 09.008.0 
smectic

 ), a result of the smectic’s increased 

ordering leading directly to a more fluid system.  The force decreased with shear speed, 

which they attributed to the molecules not having enough time to relax to an entangled 
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state during the shear.  Significant friction forces were also observed even with no load 

applied, as seen below in Figure 1.30:   

 

Figure 1.30: Friction force as a function of load for perpendicularly-oriented smectic 

8CB confined to 2.2 nm, sheared at 60 nm/sec.  Reproduced from Ruths et al
125

. 

 

Experiments performed on thin layers (22-30 Å thick) of perpendicularly-oriented 8CB 

revealed that such an orientation leads to deformation of the surfaces if oriented with 

DHDAA ( 6.0 ), and stick-slip motion if oriented with cadmium arachidate ( 1.0 ). 

 

     Herke, Clark and Handschy
326, 327

 performed dynamic surface force measurements on 

homeotropically-aligned smectic-A 8CB to study its response to layer-normal stress using 

a surface forces apparatus modified to include capacitance micrometry and electronic 

detection to improve on normal force measurements
328

.  Compressive and dilatory force-

measurements were performed in increments of 1 to 8 nm at initial separations of 4 m 

and 1.4 m, respectively, and an incremental response was observed, indicating the 8CB 

stiffness was at least an order of magnitude larger than the spring mount used.  By 
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calculating the effective spring constant of the sample, 



K
eff

 2RB ln 1 

max

2

2 RD
0









, where 

B is the average bulk compressibility of the 8CB, max is the effective radius, R is the 

radius of the cylindrical surfaces and D0 is the jump-in distance, they were able to 

estimate the effective radius as being on the order of 50 m in order to generate such a 

large spring constant
326, 327

. 

 

     Herke et al
326, 327

 also studied the phenomenon of plastic flow in the normal direction 

where, when the force on the sample exceeded a certain point, it momentarily stopped 

resisting to its full extent and fell to a new level of resistive force.  The response here was 

sigmoidal with respect to time, and was often preceded by what the authors called a 

‘foreshock’ event: a small perturbation in the resistive force a few seconds previous to the 

drop, which, while it did not seem to be the cause of the drop, immediately preceded it.  

The drops were usually found to be equivalent to the thickness of a single monolayer of 

8CB (although several multilayer events were seen as well, especially at smaller gap 

sizes), indicating it is analogous to the squeeze-out effects first documented at much 

smaller separations by Horn and Israelachvili in 1981
129

, and the force needed to cause 

the plastic flow was similarly found to increase with decreasing gap size as well
326, 327

.  

Simulations of the various possible defects evolving with stress were performed, and the 

Glaberson-Clem-Oswald-Kléman helical instability of screw dislocations model was 

found to be in best agreement with the data obtained.  The model, first proposed in 1974 

by Glaberson in describing flow in superfluid vortex lines in liquid Helium II and later in 

1977 by Clem in describing vortex flux lines in type II superconductors
329, 330

, was 

applied to smectic-A systems in 1984 by Oswald and Kléman
331

.  It had been shown 
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previously that a screw dislocation evolves into a helical structure with the addition of a 

compression or dilatation force in order to remove or add layers of material, a unique 

property of layered systems where the energy cost in doing so is low
332

. 

 

     Artsyukhovich et al
130

 performed shear experiments on thinner layers of nematic 8CB 

at 23ºC, compressing the mica surfaces as much as reasonably possible and finding only a 

single monolayer (10.2 Å thick) of material remaining between them (determined 

optically via FECO) before applying the constant velocity shear (with shear rate 

approximately 300 sec
-1

 and period of 10 sec) at both high and low loads (controlled by a 

homogeneous magnetic field combined with a magnet affixed to double cantilever 

springs beneath the lower surface, a setup designed by Christenson and Salmeron et al
333, 

334
).  For all loads, the response behaved linearly up to a critical deflection at which point 

under low loads (1-1.5 MPa) a single small decrease in frictional force followed by 

continuous slipping was observed, while at higher loads (1.5-2.7 MPa) repeated stick-slip 

behaviour occurred until transitioning into continuous slip behaviour.   
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Figure 1.31: Monolayer 8CB SFA shear response data. (Left) Low load response as a 

function of time.  Fst and Fsl refer to static and sliding friction, respectively.  (Right) High 

load response as a function of receiver bimorph displacement, showing the various 

observed behaviours.  ‘Transition’ refers to the transition period between the stick-slip 

regime and continuous slip regime.  Reproduced from Artsyukhovich
130

. 

 

Differences between these low load results and those obtained under similar conditions 

by Ruths et al
125

 were explained as being due to differences in sample preparation and 

maintenance of the sample during experimentation.  Specifically, despite Ruths’ purging 

of the SFA with dry nitrogen to absorb residual water vapour, Artsyukhovich claimed the 

method would not keep the sample completely dry, leading to their observed liquidlike 

response. Artsyukhovich’s group kept the SFA in a drybox and the sample over a 

molecular sieve, and so, they claim, observed a distinctly non-liquidlike response
130

.   

 

     Artsyukhovich
130

 also found that while the first cycle exhibited viscous traits, 

subsequent cycles exhibited more solidlike traits.  Shear experiments performed parallel 

to the molecular axis were found to have different critical shear stress levels (0.28 MPa at 

low load and 0.6 MPa at high load) than those performed perpendicular to the molecular 

axis (0.42 MPa at low load and 1.2 MPa at high load), demonstrating the anisotropy of 

frictional properties.  It was suggested that the increasing critical shear stress observed 
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with increasing load may have been due to an increasing pressure-induced dissociation of 

the 8CB dimer, leading to chemisorption of the 8CB with the mica surface and hence a 

different surface-8CB interaction
130

. 
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Chapter 2   
 

The Surface Forces Apparatus 

 
     The majority of results presented in this thesis were performed on the Surface Forces 

Apparatus (SFA).  For this reason it is worth understanding the device in some detail, and 

the following chapter breaks the device down into its components to discuss each part 

individually.  The SFA chamber and base are discussed first (Section 2.1.1), followed by 

the optics stand, which guides the light to the spectrometer (Section 2.1.2), the various 

micrometers, with which the level of confinement can be obtained (Section 2.1.3), the 

Force-measuring spring and piezo mount, which allow vertical forces to be determined 

precisely (Section 2.1.4), the bimorphs, which direct the bottom surface in various ways 

(Section 2.1.5), and the Friction Device, which allows horizontal forces to be measured 

precisely (Section 2.1.6). 

 

     Most SFA’s are controlled via a control panel supplied by the manufacturer, which is 

connected to the SFA and its electronic equipment via several cables.  Such a setup is 

impractical for tests that require long-term thermal stability, since the operator must, from 

time to time, be in the room with the SFA in order to run experiments.  Because the 

confining surfaces are very delicate and typically only last a few weeks at most before 

degrading to the point where they are unusable, it is desirable to maximize the amount of 

time they can be used for testing and hence minimize the amount of user interference, 

which inevitably result in large thermal fluctuations that take hours to stabilize.  For this 

reason the SFA has been fully automated and hence can be sealed off for weeks or 
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months at a time while being controlled outside the room via a desktop PC fitted with a 

National Instrument data acquisition card.  Section 2.2 and Sections 2.4.1-2.4.5 discuss 

the electrical connections that were necessary to create such an automated system.  

Section 2.3 develops the equations that were used to calculate the gap sizes using the 

three-film interference relations that describe the optical path within the gap. 

 

     A calculation of the gap size can typically take several minutes, as fringes of equal 

chromatic order (FECO) must be counted and their wavelengths measured.  This can be 

disadvantageous for experiments in which one must begin as quickly as possible after 

setting the positions of the confining surfaces.  For the results presented here, following 

each shear test the sample was agitated to remove any prior shear-induced domain 

ordering.  To begin each subsequent shear test with a consistent degree of post-agitation 

ordering, a method of calculating the gap size semi-automatically following the surface 

positioning was developed.  Section 2.4.6 describes the methodology behind this novel 

preparation technique. 
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2.1  Overview 

 
     The Surface Forces Apparatus (SFA), developed by D. Tabor, R. Winterton and J. 

Israelachvili, has been used to investigate molecular, surface-surface and surface-medium 

interactions since its creation in 1972
335

.  It distinguishes itself from other nanoscale 

measurement instruments, the Atomic Force Microscope (AFM) for example, by its 

ability to measure, over several orders of magnitude of distance (from Angstrom level up 

to tens or hundred of microns), the forces between two surfaces rather than between 

surface and tip.   

 

Figure 2.1: The SFA in its standard configuration 
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This complex instrument (a picture of which is shown above in Figure 2.1 and a diagram 

of which follows below in Figure 2.2) is made up of several components, each of which 

warrants a separate discussion, following below. 

 

 

 

Figure 2.2: A diagram of the SFA and the light path from source to spectrometer 

 

2.1.1  The SFA Chamber, Base and Legs 

     SFA experiments take place within the Main Chamber, a roughly cuboidal space 

3310 cm in size centered within the SFA body proper.  The front of the chamber is 
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accessible by a front plate that screws into the rest of the SFA, creating a liquid-tight seal.  

There are several entry and exit ports providing access to the SFA chamber even while 

the front plate is in place:  A Vapour Pressure Port, within which a plug recessed to 

contain a vapour bath can be inserted; an electric port through which various wires (most 

commonly those associated with the bimorph mounts) may be inserted; an air hole 

positioned near the surfaces through which screwdrivers and other tools may be passed to 

manipulate the surfaces and mounts; and a liquid port used to fill the chamber or to purge 

it with inert gas (typically dry nitrogen).  A small circular window in the bottom of the 

chamber directly beneath the surfaces allows white light to pass into the chamber, and a 

large port at the top allows the top mount to be secured to the SFA and the light to exit 

the chamber.  Two holes at the top allow the micrometers to be secured to the SFA as 

well.  Two cylindrical holes running beneath and parallel to (but separate from) the 

length of the chamber allow for the insertion of two snugly-fitting heaters to alter and 

maintain the temperature within the chamber.  The SFA body can be attached to a solid 

plate (the Base) which in turn can be attached to three adjustable legs that can set the 

height of the SFA so that the exit prism is at the same height as the spectrometer. 

 

2.1.2  Optics Stand 

     The optics stand’s primary purpose is to focus and direct the FECO interference 

pattern from the SFA and towards the spectrometer.  It does this by the use of an optics 

tube which sits recessed into either the friction device or piezo mount (whichever is used 

to hold the upper surface) so that the objective lens can be close to the surfaces but still 

independent from it and adjustable in all directions.  At the top of the tube sits a prism 
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which redirects the interference pattern from the vertical to horizontal direction (i.e. along 

the spectrometer’s diffraction plane); the prism stand has a tilt- and swivel-table, giving 

the prism two more degrees of freedom to improve the precision of the light path.  The 

table is connected to a stepper motor, as is the vertical fine adjustment of the optics arm, 

so they can be used remotely using the control box or by computer (both can also easily 

be adjusted manually as well).  The entire optics tube, tilt- and swivel-table and motor 

casing is connected to the stand via a rotation clamp, allowing the entire arm to be 

swiveled away from the SFA to allow for easier access to inspect the surfaces (in order, 

for example, to locate Newton’s Rings and, hence, the point of closest approach of the 

confining surfaces) and to load the upper mount.  The entire stand is clamped firmly to 

the floating table surface to ensure that the prism remains motionless to avoid blurring of 

the FECO pattern. 

 

2.1.3  Differential and Fine Micrometers 

     The SFA is usually equipped with three micrometers, with each having its own range 

and turn/deflection ratios.  In the standard set-up, the differential micrometer is manually-

controlled and is comprised of the coarse and medium micrometers, the former with a 

positioning accuracy of 200 nm and the latter with a positioning accuracy of 50 nm.  The 

deflection is obtained by the shaft pushing on the lower mount’s pivot stage (to which is 

affixed a sapphire disk to protect both the mount and the micrometer).  By pushing the 

pivot stage downward and creating an angle, , between its original and new position 

(with the pivot point as the center of the traced-out circle—see Figure 2.3), the lower 
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mount will deflect in the normal direction an amount L, where L is the length between 

the pivot point and the surfaces.   

 

 

Figure 2.3: Bending and buckling modes implemented by the differential and fine 

micrometers, respectively.  The lower mount depicted is the Force-measuring Spring 

mount, described in the section below, although the bending and buckling principles 

apply equally well to the Bimorph mounts.  Here 2D and L refer to the deflection in the 

lower mount.  Adapted from Israelachvili
336

. 

 

     The fine micrometer, conversely, is motor-controlled, pushing against a pivot stage 

closer to the pivot point of the lower mount.  Unlike the differential micrometer, then, the 

deflection caused by the fine micrometer occurs as a result of buckling of the cantilever 

spring on the stage while the rear pivot stage remains in contact with the differential 

micrometer, leading to a deflection, D, that translates to a roughly 2D deflection in the 
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surfaces.  The fine micrometer has a spring in place between the pivot stage and the 

micrometer shaft, and so the ratio of turns/deflection can be adjusted for it by swapping 

one spring for one of different stiffness.  By this method the surfaces can be deflected 

with a positioning accuracy of approximately 2 Å over a range of 5 mm
337

. 

 

     The fine micrometer stepper motor allows the user to control the amount of surface 

deflection by way of the Control Box, resulting in the considerable accuracy mentioned 

above.  To protect both the micrometer and the lower mount, limit switches are added to 

the stepper motor preventing the micrometer from turning beyond limits imposed by the 

user. The limit switches, each made up of a small strip of metal, are triggered by a single 

prong that sits between the minimum and maximum range points.  The strips slide on a 

track along the length of the micrometer casing so that they can be set by the user, and if 

the strips are pressed beyond a critical point by the prong during operation they trigger, 

interrupting the stepper motor circuit and thereby stopping the micrometer from moving 

any further.  The Friction Device described below has a similar stepper motor system, 

complete with limit switches, to those that have been described here. 

 

     In the experiments presented in this thesis, the traditional micrometer and DC motor 

setup has been altered in order to be able to perform experiments remotely for extended 

periods.  The first and most noteworthy adjustment entails removing the stepper motor 

from the Friction Device and affixing it to the differential micrometer.  The reason for 

this is to provide the user with as much variability in deflecting the bottom surface (and 

hence adjusting the gap size) as possible.  To accomplish this, two couplers were 
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designed and manufactured in-house, to connect the stepper motor’s flex coupler to either 

the head of the coarse micrometer (a stainless steel cylindrical cap approximately 2 mm 

in height and 10 mm in diameter) or to the fluted handle of the medium micrometer 

(which has no cap to it, as it sits at the bottom of the differential micrometer).  The 

stepper motor sits above the differential micrometer in both configurations, connected by 

the coupler, and is attached to the floating table as well via a clamped retort stand in order 

to provide a fixed reference point by which it can turn.  Both connectors were made from 

aluminum, with one end connected to the flex coupler by way of the latter’s set screw, 

and with the other end connected to the differential micrometer by a set screw within the 

coupler itself.  A schematic of the modified SFA setup is given below in Figure 2.4: 
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Figure 2.4: Schematic of the Differential Micrometer couplers and stepper motor limit 

switches. 
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     With the differential micrometer only providing either medium or large deflections of 

the lower surface, the problem arises as to how to fine-tune the gap size quickly and 

relatively accurately at the separations used in the set of experiments presented.  In the 

standard setup the fine micrometer can only adjust separations fairly slowly and with 

more accuracy than is needed at 500 or 5000 nm separations, and so a stiffer spring was 

inserted to give a more rapid determination of separation over a larger total range, at the 

expense of a slight decrease in accuracy (which would not likely be noticed at the 

separations used).  A sketch of this change is presented in Figure 2.5: 

 

 

Figure 2.5: Conversion from the standard SFA setup to the remote operation setup. 
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calibration in Section 3.1.1), will deflect normal loads exerted by the top surface and 

hence (since the stiffness of the mount is known) will give the normal force transferred 

through the sample. 

 

Figure 2.6: Force-measuring Spring and Piezo Mount performing a normal force test. 
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beryllium composition.  The Piezo Mount, holding the upper surface, is typically used in 

conjunction with the Force-measuring Spring to perform normal force measurements.  It 

consists of a PZT-5A piezoelectric tube that is clamped by a butterfly ring to the top 

aperture of the SFA, allowing the tube itself lateral adjustment and rotation to align the 

surfaces as desired.  The mount consists of two parts:  The top cylindrical stainless steel 

chamber, which holds the piezo controls, and the bottom (separated from the top by a 

watertight Teflon bellows), another stainless steel piece which extends into the SFA 

Chamber and holds the surface disk in place.  The Piezo Mount has a positioning 

Confined

Fluid

D’
Surfaces

D

Cantilever Spring

(Stiffness k)

)'( DDkF
N



Piezo

Mount

Fixed to SFA

5

10

Fixed

to SFA

Pivot Stage

Confined

Fluid

D’
Surfaces

D

Cantilever Spring

(Stiffness k)

)'( DDkF
N



Piezo

Mount

Fixed to SFA

5

10

5

10

Fixed

to SFA

Pivot Stage



 135 

accuracy of less than one Angstrom, making it more accurate than the aforementioned 

micrometers
337

.  A typical force-measurement experiment involves adjusting the 

separation by a known amount, D, using the calibrated piezoelectric crystal, and then 

measuring the amount the separation between the surfaces has changed, D’, by noting the 

FECO positions before and after the shift.  Since the stiffness of the cantilever spring is 

known, the change in force between the initial and final positions, FN, can be determined 

using Hooke’s Law:  'DDkF
N


338

. 

 

2.1.5  Bimorph Components 

     There are two bimorph mounts typically used with an SFA:  The Bimorph Slider and 

the Bimorph Vibrator.  While the Bimorph Slider was used exclusively for the 

experiments presented in this thesis, both devices will be discussed here.  The 

piezoelectric bimorphs used with the Slider consist of two thin, parallel sectored sheets 

set up in a double cantilever geometry; the bimorphs were obtained from Morgan 

Technical Ceramics (formerly Morgan Matroc).  The sheets consist of two flexible 

piezoelectric ceramic elements glued to a central metal (or similarly conducting material) 

sheet, or vane, with each element glued with reverse polarization to the other, so that 

should an electric field be present, one of the sheets will expand and the other will 

contract.  Since they are fixed together, this collective action will result in a net lateral 

displacement, AB, as shown in Figure 2.7. 
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Figure 2.7: Schematic of the Bimorph Slider (Top View).  Adapted from Luengo et al
339

. 

 

The outer portion of the bimorph is covered in a protective conducting coating which will 

provide a surface to which electrical connections can be attached.  On its own, an applied 

voltage will create a pure bending motion in a bimorph coupler as described above.  

Sectoring the bimorphs—by scraping a small strip of the coating in the middle of the 

bimorph pair and reversing the wiring on the inner and outer sheets, thereby splitting the 

voltage between the two sectors—causes the two sectors to bend in opposite directions, 

creating a nearly linear (lateral) displacement.  The field is provided by a voltage applied 

via wires at the back of the device, and can be either a dc offset or a more complex 

driving pattern chosen by the user when connected to a function generator.  Surforce 
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Corporation, the maker of the SFA used in these experiments, recommends the bimorph 

move with constant speed for best results, which is equivalent to a triangular voltage 

profile.  Triangular voltage profiles were used for all shear experiments presented in this 

thesis.  The resonant frequency of the bimorphs, while it will vary depending on the 

number and length of the sheets used, is typically on the order of 250 Hz, and so periodic 

functions up to that frequency can be used to drive the Slider (Surforce Corporation 

recommends no higher than 200 Hz be used
337

).  For potentials below 100 V the bending 

of the bimorphs is linear with voltage, and the maximum lateral displacement allowable 

is 1 mm
339

.   

 

     The stiffness of the bimorph varies proportionally to the inverse cube of its active 

length (that is, the length between the clamps fixing the sheets in place) and to the square 

of the maximum lateral displacement of the surface.  The stiffness of the cantilever spring 

holding the surface mount was reinforced in-house using a 3 mm thick stainless steel 

block screwed into the frame in order to increase the overall stiffness and thereby reduce 

possible vibrations in the experiments described in this dissertation.  The piezoelectric 

effect can also work in reverse, so that a deflection to the bimorph (generated, for 

example, by a mechanical stress) will produce a voltage across the electrodes which can 

be measured; hence, the Bimorph Slider can also work as a force sensor, although for the 

experiments described in this thesis this particular application was not used. 

 

     The Bimorph Vibrator performs a function similar to the Bimorph Slider in that it 

provides a dynamic motion for the bottom surface, but while the Slider moves laterally, 
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the Vibrator moves exclusively in the vertical direction.  As a result, while the sample 

experiences a shear flow with the Slider, it will experience a squeeze flow with the 

Vibrator.  Despite this difference, both systems will give rise to similar equations of 

motion
337

.   

 

Figure 2.8: Schematic of the Bimorph Vibrator.  Adapted from Israelachvili
336

. 

 

Bimorph Vibrators are generally used to perform oscillatory experiments, and the 

response is usually measured either by monitoring the FECO response with a camera
40, 340

 

or by using a lock-in amplifier to measure the amplitude and phase of the input signal 

with respect to the output signal
337

.  The Bimorph Vibrator was not used for any of the 

experiments discussed in this dissertation. 

 

2.1.6  Friction Device 

     The Friction Device, usually used in tandem with the either the Force-measuring 

Spring mount or the Bimorph Slider during oscillatory shear experiments, consists of top 

and bottom sections, the former consisting of the electronics protected by a cylindrical 
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stainless steel housing, and the latter consisting of an interchangeable friction barrel, to 

which friction springs are attached.  The friction springs in turn hold the disk mount plate 

to which the top disk is affixed.   

 

 

Figure 2.9:  Schematic of the Friction Device, with the Optics Tube of the Optics Stand 

in place.  Adapted from Ishraelachvili
336

. 

 

 

The friction springs contain strain gauges, which can be of two different types:  Resistive, 

which are less sensitive but sturdy (obtained from Vishay Measurement Group), and 

semiconductor, which are more sensitive but also more fragile than their resistive 

counterparts (obtained from Micron Instruments).  The strain gauges are set up in a 

Wheatstone bridge configuration to improve their sensitivity.  Strain gauge materials vary 

in resistance as strain is applied to them, resulting in a bridge imbalance represented by 

the strain sensitivity formula
341
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R

RR
S


                                                                                                                    (1) 

where R is the resistance of the unstrained material, R   is the resistance of the material 

undergoing strain,  is the strain on the gauge and S, the strain sensitivity factor (also 

known as the Gauge Factor), is a dimensionless quantity representing the material’s 

response to applied strain. A deflection of the friction springs will result in a small bridge 

voltage imbalance that is produced as an output voltage, V, given by (for the Wheatstone 

bridge configuration)
341

: 

4

B
VS

V


                                                                                                                   (2) 

where VB is the bridge voltage supplied by the signal conditioning amplifier.  The 

resultant signal is read and amplified by the signal conditioning amplifier, and then 

passed either directly to the connector block (and hence the DAQ card in the computer) 

or to the lock-in amplifier, where the signal is further processed.  In this way the Friction 

Device can be used as a receiver for shearing motions generated, say, by the Bimorph 

Slider, as shown in Figure 2.10: 
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Figure 2.10: Bimorph Slider working in conjunction with the Friction Device.  Adapted 

from Israelachvili
336

. 

 

Alternatively the Friction Device can be used to generate shear motion which can be 

monitored using, for example, the Bimorph Slider (see Section 2.1.5 for details on how 

the slider can be used as a receiver).  It achieves this by the addition of a DC motor 

system with encoder similar to the one described above (see Section 2.1.3) which, by 

inputting the appropriate signal, can generate custom oscillatory shear patterns via the 

micrometer attached to the motor, which presses against the translation stage contained 

within the top section.   

 

     Equations of motion can be developed for the Bimorph Slider and Friction Device 

system by assuming an effective mass, m, and stiffness, K, for both components (where a 
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the damping coefficient of the sample, as well as a damping force on each component.  

The bimorph will provide an external force F, so that the equations of motion for the 

bimorph and strain gauge components, coupled by the sample connecting them, will 

be
339

: 

  FxxxxKxm
SGBBBBBBB

                                                                             (3) 

and 

  0
SGSGSGSGSGSGSGSG

xxxxKxm                                                                    (4) 

 

Figure 2.11: Schematic of the Friction Device (with Strain Gauge) and Bimorph Slider 

showing the various parameters used to set up the equations of motion for the system.  

Adapted from Luengo et al
339

. 

 

In most cases both the mass terms and component damping terms are negligible when 

compared to the other terms (although they may become a factor if oscillations are near 

to the resonant frequency of the Slider or Friction Device).  Furthermore, since both the 

right-hand term and the spring-like term in Equation (3) are much greater than the liquid 

damping term in general, Equations (3) and (4) reduce to
339
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and 
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                                                                                                             (6) 

where, in the rightmost term of (5) one assumes an oscillatory driving force with 

frequency  2f  and amplitude F0, providing a bimorph deflection amplitude of 

BB
KFA

0
 .  This demonstrates that the shear created by the Bimorph Slider manifests 

itself on the Friction Device by way of the friction force of the fluid, leading to deflection 

in the friction springs.  Substituting Equation (5) into Equation (6) in turn leads to (with 

some further derivation)
339
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1
tan .  The above treatment has assumed a simple fluid, but quite 

often a sample may exhibit viscoelastic properties which will alter Equations (3) and (4) 

by the addition of an elastic component (assuming linear viscoelasticity), which will give 

rise to a complex viscoelasticity,   i , and complex shear modulus, GiGG 

, with components: 
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where  is a generalized surface geometry parameter and A is the ratio of amplitudes for 

Bimorph and Friction Device, 
SGB

AAA   The real viscosity component represents the 

viscosity which is in phase with the rate of strain while the complex component 

represents that which is 90 phase lagged to the rate of strain.  The real component of 

shear modulus represents the energy stored elastically in the sample while the complex 

component represents the energy lost per cycle due to viscous dissipation
339

. 
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2.2  SFA Control and Automation 

2.2.1  Control Panel 

     Several of the components of the SFA can be controlled by a control panel provided 

by Surforce Corporation: 

i) Both the prism swivel table and the optics arm can be controlled by the panel, 

the latter up and down to allow the objective lens to focus on the surfaces; 

ii) The heaters mentioned in Section 2.1.1 can be controlled via a knob on the 

control panel; 

iii) Both stepper motors (traditionally for the Friction Device and the Fine 

Micrometer) can be controlled separately by the panel.  The micrometer shaft 

can be moved in or out at a rate adjustable by an analogue controller on the 

panel; 

iv) The Piezo Mount can be set to a DC offset position or set to an AC oscillatory 

pattern and controlled externally; 

v) The Bimorph Slider and Vibrator can  both be controlled both by the control 

panel and externally via AC oscillatory patterns; 

vi) Lights on the panel can also be turned on and off by a switch on the panel to 

illuminate it during experiments under poorly lit conditions (e.g. while 

optimizing FECO). 

 

2.2.2  Electrical Connections 

     Because many of the cables leading to the control panel are only long enough to have 

it a few feet away from the SFA, most of the cables were extended to allow for more 
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mobility.  Because the controls don’t offer the flexibility needed to perform the 

experiments presented in this thesis (which require the ability to control the SFA whilst 

outside the SFA room, so that the thermal equilibrium is not disturbed), the panel was 

bypassed by developing software to emulate it on a desktop computer with the 

appropriate encoder and LabVIEW cards installed.  The S&D 096 control box (described 

below in Section 2.4) was also designed to allow the user to switch between the control 

panel and the computer for any or all of the controls described above.  The overall setup 

showing the flow of information to the SFA is given in Figure 2.12, while the setup 

showing the flow of information from the SFA is given in Figure 2.13: 
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Figure 2.12: Schematic of the SFA setup showing information flow to the SFA. 
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Figure 2.13: Schematic of the SFA setup showing information flow from the SFA.
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2.3  Calculation of Gap Size and Optical Properties Using the SFA 
 

2.3.1  A Simple Solution to the Three-Layer Symmetric Interferometer Using FECO 

     Very accurate calculations of a sample’s index of refraction and of its thickness at the 

point of closest approach can be made in situ with the SFA by using the principles of 

interferometry, specifically, the interference pattern known as Fringes of Equal 

Chromatic Order, or FECO.  With identically thick and flat mica sheets on either side of a 

sample, and each mica sheet coated with a thin reflective layer of silver (55 nm thickness 

is considered optimal, corresponding to approximately 95% reflectivity
335

), the system 

may be considered a three-film interferometer, as shown in Figure 2.14.   

 

 

Figure 2.14:  Diagram of the lens and sample configuration within the SFA 

 

A derivation of the interference equation follows, using the method developed by Horn 

and Smith
342

 who follow Israelachvili’s earlier derivation
335

. 
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     A schematic for a three-layer system is given below, with central (sample) layer of 

thickness D (in the case of crossed cylindrical geometry this would represent the point of 

closest approach between the cylinders) and index of refraction S, and outer layers 

(mica) of equal thickness 
21

YYY   and index of refraction m.   

 

 

Figure 2.15: Schematic of the three-layer interferometer typically used in the SFA setup. 

 

A thin transparent epoxy layer holds the mica to the disk substrate, with index d.  Using 

the matching rules for electric fields at optical interfaces, the three layer system (mica-

sample-mica) yields the following set of equations for normal incident light: 
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Where subscripts am and ms represent the air-mica and mica-sample interfaces on the 

entrance side of the system, and the reverse subscripts represent the same interfaces on 

the exit side of the system. as given in the above schematic.  Variables r and t are the 

coefficients of reflection and transmission; specifically,
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. Subscripts relating to the indices of refraction, 

m1 and m2, represent the mica sheet on the entrance and exit side, respectively, while 

s

m
M




1

1
  and 

s

m
M




2

2
 .  Variables A, C, D, F, G, M, N and W represent the wave 

amplitudes at various stages in the system as shown in the above diagram, and k is the 

medium’s wavenumber (with the medium identified by ’s subscript).   
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     Solving the above seven equations for the eight unknown coefficients yields the 

following
335, 342, 344

: 


2

M

tttt

A

W
mssmmaam

                                                                                                         (11) 

where:  
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The above equation can be simplified somewhat (Horn solves the general case
342

, while 

Hunter et al and Israelachvili provide the simplified version
335, 344

) by the assumption that 

the mica surfaces are the same thickness and index of refraction (so that 
21

YYY   and 

21 mmm
  , which leads to the additional simplification of 

smms
rrr  , 

smms
ttt   and 

21
MMM  ) along with the assumption that the silver surface is 

100% reflective (so that 1
maam

rr  and 0
maam

tt ) which means  reduces to: 

              22

1
2exp2exp2exp1exp2exp YikrDikYikrDikYik

msmsama
 

 

Provisions are made during the surface preparation stage to ensure that the above 

conditions are satisfied (see Section 3.2 for more information).  It should be noted that 

the transmitted amplitude, W, can only be finite for the silvered surface case (

1
maam

rr  and 0
maam

tt  as assumed above) when 0  (in which case the 

approximately zero values for the numerator and denominator of Equation (11) balance 

one another), which corresponds to the constructive interference condition.  Since this is 

only true when ’s braced term is zero, we have: 
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which, after taking the square root of both sides, simplifies to: 
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And with some further rearrangement: 

 
 

 Yikr

Yikr
Dik

m

m

s






2exp

2exp1
exp
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Before continuing, it is wise to simplify the complex term on the right by multiplying it 

by the complex conjugate of the denominator to isolate complex components to the 

numerator: 

    
   

   

    

    



































YkiYkr

YkiYkr

YkiYkr

YkiYkr
DkiDk

mm

mm

mm

mm

ss










2sin2cos

2sin2cos1

2sin2cos

2sin2cos
sincos

 

    

       

  2

22

2cos21

2sin2cos2sin2cos2

sincos

rYkr

YkiYkYkirYkrr

DkiDk

m

mmmm

ss














  

By taking the imaginary and real components of both sides of the above, one obtains the 

following two equations: 
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Dividing the imaginary component by the real component simplifies the relation 

somewhat: 
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One can render the above equation more useful from an experimental point of view by 

converting the mica thickness (which often isn’t known beforehand) to FECO 

wavelengths by noting that when the gap size, D (and hence the left hand side of 

Equation (13)), is zero, the sine term on the right hand side must also be zero also (note 

that 1
2
r  generally) and therefore: 

 nYk
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2                                                                                                                  (14) 

where k0 is angular wavelength of transmitted light at contact ( 0

0
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n
k  ).  Hence: 
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If the mica surfaces are separated to a gap size of T, so that 2k , the new 

interference condition must then be: 
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Recalling that Equation (15) represents the angle in the trigonometric functions of 

Equation (13) and noting that      sin1sin
1


n

n  while      cos1cos
n

n   
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for positive integer values of n, Equation (13) can then be simplified using the four 

possible simplifications (i.e. odd and even values of n for each equation): 
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Or, multiplying the right hand side of the above equation by 11  : 
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Recalling the definition of r, 
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terms of indices of refraction: 
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By multiplying the right hand side by    
22

11    and noting that 

     411
22

 ,      1211
222

   and     12112
2
  , 

the above equation reduces to: 
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     The two solutions manifest themselves physically in the form of FECO doublets 

representing the ordinary and extraordinary indices of refraction.  An example of this 

FECO pattern is shown in Figure 2.16: 
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Figure 2.16: Example of Fringes of Equal Chromatic Order (FECO) 

 

In the above figure, the doublet is not well defined, but can be discerned somewhat above 

the crests of each of the two pictured fringes, which represent the point of closest 

approach between the confining surfaces.  In the above picture, the vertical direction 

represents the lateral distance from this point and the horizontal direction represents the 

wavelength of light passing through the surfaces.  A diagram of FECO, showing them 

both with some separation between the surfaces and when the surfaces make contact with 

one another, is shown in Figure 2.17 (here the doublets are omitted for simplification): 
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Figure 2.17:  A Diagram of FECO for (left) surfaces that are out of contact and (right) 

surfaces that are in contact. 

 

     As can be seen in the diagram on the right, the FECO shift upward in wavelength 

(manifesting as a leftward shift on spectrometric output) and ultimately flatten upon 

coming into contact with one another.  This latter effect is understandable since the 

surfaces are flattening at the point of closest approach, resulting in an expanding area 

within which all three-film interferometer parameters are identical and thereby produce 

identical interference patterns.  

 

2.3 2 Calculation of Separation and Refractive Index Using the Three-Film 

Interferometry Equation 

 

     From the interferometry equation given by Israelachvili
335

, first derived by Hunter and 

Nabarro
344

 and re-derived in the previous section, the size of separation and index of 

refraction at the point of closest approach between two surfaces varies with FECO fringe 

position in the following way: 
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where D is the size of separation between the surfaces, 
s

m




   is the ratio of indices of 

refraction of mica, μm, and the sample at distance D, μs, and  is the FECO wavelength all 

measured at the point of closest approach.  Wavelength subscripts refer to the order of the 

measured fringe (note that the n and n-1 implies that two neighbouring fringes must be 

tracked to obtain a value of D and μs), while superscripts 0 and D refer to wavelength 

measurements with surfaces in contact and at the desired separation, respectively. 

 

     For small separations ( 30D nm) the small angle approximation (   tansin  

and 1cos  ) may be applied, reducing the above equation to: 
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Note that non-subscript n in the above equation comes about due to the N possible integer 

solutions to the sine in the numerator, corresponding to the N FECO fringes in the 

interference pattern.  Here n represents one of the integer solutions, and hence the nth 

fringe.  With some factoring, the equation becomes: 
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Introducing the ratio: 
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one can rewrite the above as: 
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so that D becomes: 
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And so, for n odd (that is, when ± is negative): 
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while for n even (when ± is positive): 
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So that, knowing the index of refraction of the mica being used and by measuring two 

adjacent fringe positions at contact and at the desired surface separation, one can make an 

accurate determination of the separation.  For the most accurate results and for very small 

spacings, measuring the mica index of refraction directly (via Abbé Refractometer, say) 

is recommended, but in general mica will fall into one of two categories
337

: Reddish or 

brownish mica, with refractive indices of: 
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25

25

1076.45794.1

1076.45846.1













 

and greenish mica, with refractive indices of: 

25

25

1076.45907.1

1076.45953.1













 

All wavelengths here are measured in Angstroms.  The  and  subscripts refer to the 

slow and fast components for light transmission within mica, which is birefringent.  The 

mean values for reddish or brownish and greenish mica are 
25

1076.45820.1 


  

and 
25

1076.45930.1 


 , respectively. 

 

     The index of refraction of the sample can be calculated using Equations (23) and (24) 

by using two neighbouring fringes of order n and n-1, so that, while Equation (23) 

remains n
th

 order, Equation (24) shifts by one and so becomes 
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 .  Equating the distances for Equations (23) and (24) gives: 
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It should be noted that since 
0

1

0

2

0

2

1










nn

n

n
F




, it is necessary for three neighbouring 

fringe wavelengths (n, n-1 and n-2) to be measured with surfaces in contact, along with 
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two fringe wavelengths (n and n-1) with surfaces separated, for a calculation of index of 

refraction to be done. 

 

 

2.3.3  Phase Changes and Dispersion in the Three-Layer Interferometer 

     While Equation (18) is an adequate approximation of a three-layer system in theory, in 

practice it does not account for dispersion and phase changes upon reflection at the 

interfaces.     Israelachvili provides a method of determining gap separation by using the 

inherent dispersive quality of mica along with the phase change upon reflection of light at 

the mica-silver interface
335

.  Together, the two will produce a shift in the fringe 

wavelengths that is indistinguishable from that produced by the gap separation, so that 

the interference condition given by the left hand side of Equation (14) must be re-written: 
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where d represents an effective distance made up of the total thickness of both mica 

sheets, D, added to the artificial distance due to the wavelength shift upon reflection, Φ: 

 Dd  

while subscripts n and n+1 reinforce the notion that both μ and d are dispersive quantities 

depending on wavelength, the latter due solely to the dispersive nature of the phase 

change itself
335, 337

. 
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     One can handle the three experimental parameters’ dispersive effects by constructing 

equations incorporating their respective shifts.  For example, the indices of refraction are 

related in the following way: 
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where
nn

 
1

 is the shift in index of refraction due to dispersion.  A similar 

derivation for the effective thickness gives: 
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while for wavelength: 
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Substituting Equations (28) through (30) into Equation (27), the interference condition 

may be written as: 
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which, assuming 1
st
 and 2

nd
 order terms dominate over others, approximates to: 
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and, substituting (19), simplifies to: 
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Making a further approximation that the index of refraction and effective thickness shifts 

are small and due solely to dispersion gives: 
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The factor F (introduced previously as an arbitrary fringe shift) can here be inserted to 

more quantitatively define the dispersive nature of the interference pattern: 
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where: 
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Bailey and Kay
345

 and Eisner
346

 give values for dispersive quantities 







 and 



 d
, 

respectively, so that for the n
th

 fringe at a wavelength of 5500 Å, Fn will be 

approximately
335

: 

nF
n

1024.1                                                                                                                (32) 
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Combining the above estimation for Fn with the original definition from Equation (21): 
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allows one, with a measurement of adjacent contact fringes 0

1n
  and 0

n
  , to determine 

the fringe order, n
335, 337

.   

 

     Comparing Equations (15) and (31) shows that in order to incorporate phase changes 

and dispersion effects (embodied in the corrective term, Fn), one need only multiply 

n
  by Fn.  With this in mind, Equation (18) can be easily modified to account for 

these factors, leading to: 
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, the above 

equation becomes: 
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which is identical to Equation (19), noting that D

nn
  .  From Equation (34) various 

relatively simple methods of determining the gap size, D, and the sample’s index of 

refraction, s, may be derived, as explained in the previous section. 
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2.4  Automation of the Surface Forces Apparatus 

 
     Because of the considerable sensitivity of the strain gauge and surface position to 

temperature changes, it is desirable to have a well-configured PID temperature controller 

within the SFA room to ensure long-term stability.  Such a system usually does little to 

control temperature on short time scales, however, and so for those tests which require a 

quick start after setup, even the brief presence of an experimenter in the SFA chamber 

can greatly compromise experimental results.  Ultimately the simplest way to avoid 

thermal fluctuations of this sort is to avoid entering the SFA room altogether during 

testing, but to do this a fully automated system must be in place to control all instruments 

within the room by a computer located outside the room. Because of the relative 

sophistication of the Surface Forces Apparatus, this can be a daunting task.  The 

following chapter details the equipment and software developed to automate the tests 

presented in this thesis. 

 

2.4.1  The Electronics Relay Box 

     The standard SFA package provided by Surforce Corporation consists of several parts 

that are to be controlled electronically.  Two stepper motors, one attached to the fine 

micrometer and one to the Friction Device, have as outputs five pin LEMO connectors, 

along with separate encoder outputs.  Both the prism swivel motion and the focusing lens 

position are controlled via similar connections.  Two electric heaters (not used in the 

present tests) each have a one pin connector.  These devices are all to be controlled by a 

single unit, the SFA2000 control panel, supplied by Surforce Corporation.  Because of 
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the shortness of the cables, the panel must stay near the SFA, making remote control of 

the machine impossible.  It is therefore desirable for tests in which temperature must be 

maintained even at short times that a remote system be developed. 

 

     The S&D-096 relay box has been designed to accommodate all of the standard inputs 

and outputs to the SFA unit.  A feed-through box with identical connectors on both sides 

passes cables through the insulation box to minimize the effect of the room’s air currents 

on the SFA unit.  There are three types of outputs from the relay box:  

i) A 25-pin D-connector, links the S&D-096 to the National Instruments BNC-

2110 connector block, which in turn links it to the remote computer via a 

National Instruments 6036E Data Acquisition card, and handles all digital 

controls; 

ii) Two BNC analog controls also connect to the BNC-2110 and manage the 

speeds of the two stepper motors; 

iii) Various other connectors link the S&D-096 to the SFA2000 control panel and 

act as a feed-through should the user wish to control the SFA manually.  A 

toggle on the S&D-096 allows the user to switch easily from manual to 

automatic operation. 

 

The remote computer also controls the acquisition of data.  The strain gauge output can 

be obtained either directly from the Signal Conditioning Amplifier, or from the Lock-in 

Amplifier.  In both cases the output is fed into the BNC-2110 connector block; with the 

former setup, a single coaxial cable is used, and with the latter, two are used, one for the 
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amplitude channel and one for the phase channel.  To obtain the phase information 

directly with the former setup, a cable splitter splits the driving signal both to the SFA 

(via the appropriate Trek Amplifier, if necessary) and to the BNC-2110 connector block 

so that it can be compared directly to the response. 

 

2.4.2  Miscellaneous Equipment 

     There will usually be supplementary equipment present during an SFA experiment as 

well:   

i) Often a thermistor is placed near to the surfaces to measure temperature there, 

and so a thermistor line will frequently be present.  Automation can easily be 

done by using a thermistor controller connected to the thermocouple line, with 

output readings sent directly to the BNC-2110 connector block via coaxial 

cable. 

ii) If a camera is being used, it too can be automated to provide video or 

snapshots of the FECO at whatever rate is desired.  In the present setup, a 

Retiga Exi QImaging Fast 1394 camera with FireWire output has been used; it 

is connected to the remote computer via a single Sewell SW-1101 FireWire 

Active Extension cable.  It should be noted that while IEEE 1394 

specifications demand FireWire cables be less 4.5 meters in length, they are 

nevertheless still very reliable up to 18 meters when chained together. 

iii) A lock-in amplifier is often of considerable use in experiments where 

viscoelastic properties of sheared materials are being studied, in order to 

extract phase information from the shear response.  The lock-in amplifier is 
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capable of extracting periodic signals as low as a few nanovolts from noisy 

input signals so long as the frequency of the signal is well-known
347

.  It does 

this by use of the technique of phase-sensitive detection (PSD), which 

involves multiplying two signals (in the SFA’s case, the amplified strain 

gauge output and the function generator’s sync output, which contains the 

exact phase and frequency of the input signal) and filtering the resultant AC 

signal with a low-pass filter.  The resultant filtered signal will be a DC signal 

output representing the amplitude occurring specifically at the sync frequency.  

A second PSD allows for the extraction of the phase between the two signals 

as well, and so the dual-phase lock-in amplifier can output both the shear 

response amplitude and phase.  One significant drawback to this technique is 

that an accurate output is only possible after a full cycle has elapsed (since the 

PSD output is averaged over a full cycle), and so for low frequency tests like 

those presented in this thesis, in which intra-period phenomena may occur, 

especially early on, vital information from early on in the shearing process 

may be lost.  As a result, the Stanford Research Systems SR830 lock-in 

amplifier programmed to run with the SFA was not used to collect the data 

presented in this thesis. 

iv) An oscilloscope can also be used to collect shear data outputted from the 

Signal Conditioning Amplifier, and is particularly useful for higher frequency 

experiments (10-200 Hz), where the data rate needed to give detail to a single 

cycle may be greater than that capable by a standard data acquisition card.  

Large amounts of high frequency shear data can be collected by the 
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oscilloscope and outputted to the computer by GPIB.  For the current setup, an 

Agilent 54621A was available, which has two million data points per channel 

available in memory.   Because the highest shear frequency used with the tests 

presented here was 10 Hz and the DAQ card data rate was 500 points/second, 

yielding a satisfactory 50 points per cycle at the highest shear frequency 

tested, the oscilloscope was not needed and hence was not used. 

v) Finally, the two encoders located in the stepper motors can also be automated 

and controlled directly by remote computer.  This can be achieved by 

installing a US Digital PCI-4E PCI Interface card in the remote computer and 

reading the encoder output directly.  It may be necessary to use cable drivers 

to synchronize the encoders with the card. 

 

     The Signal Conditioning Amplifier’s Wheatstone bridge tends to drift over time from 

its perfectly balanced state, and so periodic re-balancing is recommended to optimize its 

sensitivity.  The amplifier can be balanced manually by toggling the AMP BAL switch 

(note that the SFA must be connected to the Signal Conditioning Amplifier and the 

desired Excitation must be selected during the balancing), but the switch cannot be 

accessed remotely.  Another balancing method does exist, however:  Intertechnology Inc. 

manufactures an Option Y Relay Kit that can be installed in the Signal Conditioning 

Amplifier.  The kit will allow not only the Bridge Balance to be reset, but will also allow 

the Excitation to be toggled off and on, and will adjust the shunt calibration if necessary.  

It should be noted that the Excitation toggle allows the user to check the amplifier 
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balance without entering the SFA room, since by switching it off one can see how well-

zeroed the response is by checking via LabVIEW. 

 

     The Option Y Relay Kit requires a 5 Vdc (10 mA for Balance and Shunt Calibration, 

and 25 mA for Excitation) trigger.  The RESET line (which governs the Balance switch) 

must be triggered for a minimum of 50 milliseconds, after which the Auto Balance will 

commence.  A box has been designed which will trigger any of the three switches via the 

BNC-2110 connector block digital output. 

 

2.4.3  Control Software 

     LabVIEW software has been developed to control each of the above components, each 

with its own asynchronous loop cycling every 200 ms (or faster, if needed).  Five digital 

controls (5V TTL) are used to control the fine focusing control micrometer and prism 

turntable motors on the Optics Stand, as well as the fine micrometer and friction device 

motors (the latter of which has been converted to be used with the differential 

micrometer).  Control of this equipment is achieved by passing the digital controls to the 

aforementioned S&D-096 unit via the BNC-2110 connector block, and then on to the 

various SFA components themselves.  The table of correspondences between digital 

signals and device triggers is shown below, with Motor1 and Motor2 here referring to the 

stepper motors controlling the two micrometers and hence controlling the gap size: 
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Table 2.1: Digital settings for the SFA Focus, Prism and Motor controls 

D1 D2 D3 D4 Focus 

Up 

Focus 

Down 

Prism 

Left 

Prism 

Right 

Motor 

1 In 

Motor 

1 Out 

Motor 

2 In 

Motor 

2 Out 

0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 0 0 0 0 
1 0 1 0 0 0 1 0 0 0 0 0 
1 0 1 1 0 0 0 1 0 0 0 0 
1 1 0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 0 0 0 0 1 

 

 

2.4.4  Automated Calculation of Fringes 

     The first step of the automation process involves a While Loop stepping through 

values of n that compares equations (32) and (33) and terminates when the i
th

 iteration 

difference between equations is larger than that of the previous iteration, thereby finding 

the order of the fringes that are on screen.  Once these are determined and the further 

experimental values 0

2n
 , 

n
  and 

1n
  are collected (the latter two by moving the surfaces 

to their non-contact positions), the separation and index of refraction may be calculated 

using equations (23) and (24).  The calculation of the wavelengths from their on-screen 

position is easily achieved by first calibrating the camera’s pixel to wavelength ratio, Cp, 

using a light source with a well-defined doublet, such as sodium’s 5895.932 Å and 

5889.963 Å doublet
348, 349

 (see Section 3.1.2 for details).  One must then compare the 

light source to a fixed point on the spectrometer to determine the offset, , between them.  

One can then, by recording the pixel positions of each fringe, Np, find its wavelength by 

referencing it to the calibration wavelength: 
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pp

NC                                                                                                            (28) 

 

2.4.5  LabVIEW Control of the SFA and its Peripherals 

     The SFA has several components and peripherals that are controllable remotely by a 

computer fitted with an encoder board (to monitor the stepper motors) and a connector 

block (to send and receive digital and analog signals).  Software (entitled SFA Control 

Panel, with various suffixes to represent its stages of development) has been written to 

control the bimorph and piezo mounts (via a function generator), stepper motors, camera 

and lock-in amplifier, as well as to monitor the strain gauges (via the signal conditioning 

amplifier), camera, lock-in amplifier, thermistor and optical encoders for the stepper 

motors.  The code was broken into four asymmetric control loops, one for the camera, 

one for the encoders, one for reading data from the equipment and one for the both the 

function generator and the various controls discussed in the table of correspondences 

above (Table 2.1).  Each will be discussed briefly below. 

 

     Because each SFA trigger requires a unique digital signal, only one component can be 

used at any one time, and so the first step of the SFA controls loop is to construct a 

Boolean array made up of buttons from the front panel representing the various 

components.  After a check to ensure only a single button has been pressed (if there are 

more than one, all digital signals are reset to zero, thereby stopping all digitally-

controlled SFA components), the appropriate digital signal is sent to the S&D 096 unit 

via the connector block.  An analog input for the stepper motor amplitude is also read in 

if the digital signature indicates either motor has been triggered, with a maximum voltage 
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of 10 V being allowed.  A safety button can also be found on the front panel which will 

override all other controls and switch off all digital signals, setting all analog inputs to 0 

V.  The function generator controls also execute each time the loop cycles, if they are 

triggered by the user using controls available on the front panel.  The user must input a 

waveform from a dropdown menu with eleven possible choices, the most popular being 

DC offset, sine wave, triangular wave and square wave.  The user must also input a 

frequency, amplitude and offset if they are applicable to the waveform selected.  To 

protect the SFA and its peripheral equipment, if the sum of the amplitude and the 

absolute value of the voltage offset selected is greater than that allowable for a given 

component (often needed for the Bimorph Slider, for example, which has a maximum 

applied voltage of 50 V
337

) a popup window will appear warning the user while the 

amplitude is reset to 0 V.  A setting on the front panel allows the user to select what 

component they are using (e.g. Bimorph, Piezo Mount) so that the program knows which 

voltage limit to apply.  The same provisions have been made for the input frequency, as 

some components have limits on this parameter (e.g. the Bimorph Slider, which has an 

effective upper limit of 200 Hz).  All signals are sent to the function generator by GPIB 

cable and connectors. 

 

     The data-reading loop runs every 0.2 seconds by default, but this value is adjustable 

by the user using a control on the front panel.  The thermistor, signal conditioning 

amplifier output (containing the amplified shear response), lock-in amplifier outputs R 

and , and the function generator output are all monitored and, if the user clicks a button 

on the front panel, records all input data to a text file in a folder selected by the user.  
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Alternate versions of the SFA Control Panel software allow the user to collect either the 

thermistor data or the strain gauge data using a Keithley multimeter (the data of which is 

sent to the computer via GPIB), which allows for some flexibility in the experimental 

setup.  A toggle on the front panel allows the user to convert the incoming shear response 

data from voltage to deflection and, if the lock-in amplifier is being used, from the  

value outputted as a voltage to a value in degrees. 

 

     The camera control loop cycles by default every 0.2 seconds while the Camera 

Control button is switched off.  When it is triggered the camera is initiated, with the 

exposure time, the number of bits (8-bit or 16-bit) and the binning set by the user from 

the front panel, and switches to a non-time delayed loop (to capture video in real time, if 

desired) after creating an image buffer.  The camera settings can be changed at any time 

while it is running, and the user can take snapshots of the onscreen image showing on the 

front panel, which are saved to a location chosen by the user.  The files are saved in 

Portable Network Graphics (png) format, which provides lossless data compression of the 

image, although other formats are available if desired. 

 

     The encoder control loop cycles every 0.2 seconds by default, but can be altered on 

the front panel.  Once the encoders are activated by a button on the front panel, they are 

first either reset or left at their last-used value (chosen by the user via a button).  The 

encoders are then prompted for their count position (out of a possible 30 000 counts) 

using software developed by the author.  With the stepper motors attached to the fine and 

differential micrometers (the configuration used to collect the data used in this 
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dissertation as discussed in Section 2.1.3), the count values are converted to separation 

values (see Figure 2.18) and the two micrometer encoder-read separation values are 

added together to give the total separation, updated every cycle.   

 

Figure 2.18: Plot of Separation as a Function of Encoder Count for the Encoders used in 

the SFA 

 

 

The encoders can be reset at any time during operation, and the separation is updated on a 

graph displayed on the front panel and can be saved to a location provided by the user at 

any time.  

 

2.4.6  Agitation and Test Software 

     Two programs were written, borrowing liberally from the SFA Control Panel program 

written by the author (discussed in the previous section), to agitate the liquid crystal 

sample so that any orientation that may have occurred due to shear during the previous 

run will be destroyed, and to set up the shear test discussed in the Experimental 
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Parameters and Procedure section.  The first program, named Sample Agitation, 

contained three asynchronous loops.  The first loop is an algorithm comprised of three 

sequences.  The first sequence triggers the differential micrometer motor so that it 

separates the surfaces out to a point set by the user.  The second reverses the motor and 

executes an in-out motion for the surfaces N times (N set by the user, typically 10 times 

for the experiments discussed here) with a preset amplitude.  The third brings the surfaces 

back to 100 nm separation, the distance chosen as it was found to be close to surface-

surface contact (where all test runs must necessarily begin, in order to establish a contact 

reference position) but far enough apart that if a malfunction was to occur the user would 

have enough time to stop the program before damage of the surface or equipment should 

occur.  The second loop is identical to the encoder loop discussed in the Section 2.4.5, 

which cycles every 0.2 seconds and determines the separation of the surfaces, which is 

then compared to the set motor reversal point in the first loop so that it may determine the 

point at which to switch directions.  The third loop is simply the camera loop also 

discussed in the previous section, with both loops triggered automatically at the onset of 

the program.  The camera is used to observe the region between the surfaces.  In general 

at the separations used throughout agitation (once the initial separation occurs) no FECO 

fringes should be visible due to the relative opacity of the sample.  This provides an early 

warning sign of malfunctioning equipment or software so that if, during the agitation, 

FECO come into view the user should immediately click the Agitation Stop button to 

avoid having the surfaces come into contact and potentially damaging the micrometer 

shaft, the surfaces or the mounts themselves.  In future versions of the software, fast 
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FECO detection software should be written so that any chance of operator error can be 

removed from the process altogether. 

 

     The second program performs the shear test discussed in Section 3.3.2 (Experimental 

Parameters and Procedures).  It is intended that the program be started immediately after 

the desired gap size (as determined via one of the two techniques developed and 

described in Section 3.3.1) is established.  The algorithm begins with a command sent to 

the function generator initiating the shear profile, the parameters of which have been 

entered on the front panel by the user.  The program then moves immediately to four 

asynchronous loops.  The first is the primary data collection loop, which cycles as at a 

rate set by the operator, typically once per 100 milliseconds; this rate should be 

maximized to provide as much intra-period data as possible.  While in its current version 

it collects only data from the function generator and strain gauge output to minimize the 

output file size, it can easily be expanded to collect up to eight different signals from the 

BNC connector block if the analog input ports are available.  A lock-in amplifier control 

section, running within its own control loop, can be found on the front panel in case that 

equipment is needed during testing, with the output saved to a separate file from the shear 

response file.  A third loop, typically cycling more slowly than the previous two (once 

per second for the experiments described here), monitors the output voltage from the 

thermistor probe, converting it to a temperature value within the loop and saving this 

output in a third text file chosen by the user.  A fourth loop controls the QCam camera, 

taking a snapshot at a rate chosen by the user and saving it to a folder chosen by the user, 

adding the time in seconds at which the snapshot was taken to the end of the filename.  
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The duration of the experiment is entered before the test begins by the user, and all loops 

in this stage of the program will terminate once the LabVIEW Stopwatch function timing 

the experiment exceeds this value.  Once the loops have terminated, a command is sent to 

the function generator to switch the output from a shear profile to a DC offset of 0 V, 

stopping the shearing, and the program then terminates. 
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Chapter 3 
 

Experimental Details 

 
     The Surface Forces Apparatus is a complex piece of machinery, and as such requires 

extensive preparation in order to be used effectively.  This chapter discusses the setup 

and calibration process in detail, starting with a general overview of the SFA setup 

(Section 3.1 introduction), continuing with the calibration of the SFA components such as 

the bimorphs and strain gauges (Section 3.1.1), and finishing with the calibration of the 

spectrometer and camera (Section 3.1.2).  Section 3.2 details the delicate and involved 

process of preparing the confining surfaces, including cleaving, silvering and gluing the 

mica (Sections 3.2.1-3.2.3).   

 

     Section 3.3 discusses the necessary steps to preparing the SFA chamber for a test, 

from loading the sample to readying the optical and electronic components.  Section 3.3.1 

discusses in more detail the method by which the gap size can be calculated quickly and 

automatically for both the smaller and larger gaps within the mesoscale regime (each has 

its own distinct process).  Section 3.3.2 details the specific test parameters, such as shear 

frequency and amplitude, gap size, response gain and filter characteristics, sampling rate 

and test duration that were chosen for this set of experiments.  
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3.1  SFA Overview 

 
     Experiments were performed on a model SFA2000 Surface Forces Apparatus (SFA), 

purchased from Surforce Corporation.  The description of the SFA experimental set-up 

and procedure is true of all tests included in this dissertation, unless otherwise noted. 

 

     All test runs were performed in a small (805050 cm) enclosure with ventilation 

sealed off to minimize air currents and thermal drift within the test chamber.  The room 

was climate-controlled by use of a thermostat, and the test chamber was enclosed within 

a frame (0.5 m
3
 volume) with panels of 0.5 cm thick insulated foam to further ensure 

thermal stability.  The temperature within the SFA chamber was monitored with a YSI 

44004 Precision thermistor placed less than one-half centimeter from the surfaces 

(typically 1-2 mm away), and temperatures for all tests were obtained via this thermistor  

at a rate of once per second.  The door to the room containing the SFA remained 

unopened for the entirety of the test run to minimize thermal fluctuations and mechanical 

vibrations during and between the experiments. 

 

     The SFA, light sources (white light and monochromatic sodium light) and 

spectrometer were all located on a Melles Griot floating table to minimize vibrations 

(using 50 PSI pressure on average).  The SFA and both shelves containing the electrical 

equipment used to control it were electrically grounded via a common wall receptacle to 

avoid ground loops.  The output from the SFA, containing the interferometric information 

from the lens-sample system, was directed via a pair of prisms to a spectrometer grating, 

which diffracted it into its component wavelengths.  The resulting FECO spectrum was 
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then directed to a QImaging Retiga digital camera, where the image was recorded and 

stored on a computer.  A discussion of FECO and the equations associated with them is 

given in Section 2.3. 

 

3.1.1  Calibration of the SFA 

     Several parts of the system must be calibrated and aligned before an experiment can 

be performed.  Both the resistive and semiconductor strain gauge must have their 

stiffnesses measured.  To accomplish this, a calibration stage was built to allow the entire 

Friction Device, upper disc mount included, to be affixed to an L brace and suspended 

vertically, as shown here above.   

 

Figure 3.1: Picture of the Friction Device undergoing calibration, affixed to the 

calibration stage with a digital camera directly behind it. 

 

The Friction Device was attached using the same adjustable level clamp that was used to 

secure it within the SFA, and the four pin strain gauge output cable was connected as 
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well.  A high resolution camera, calibrated by graded reticule so that the distance per 

pixel at the focal length is known, was mounted in such a way that it was focused on the 

disc mount.  Weights were then suspended from the disc mount and the disc mount 

deflection was measured by camera, so that the applied force mgF   could be correlated 

to the deflection, x, to find the stiffness via Hooke’s Law, kxF  .  During this 

calibration, the disc mount’s deviation from one-dimensional motion could also be 

ascertained by tracking its deflection in the y-direction (i.e., perpendicular to the hanging 

mass).  The disc mount’s lateral deflection was found to be negligible for the standard 

range of motion.  Plots of the calibration data for each of the two strain gauges are 

provided in Figure 3.2, and show that the stiffnesses for the resistive and semiconductor 

gauges are 0.0034   2.910
-5

 N/m and 0.0107  1.710
-4

 N/m, respectively. 

 

 

Figure 3.2: Plot of load vs. deflection for the resistive strain gauge 
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Figure 3.3:  Plot of load vs. deflection for the semiconductor strain gauge 

 

     The Friction Device must also have its deflection response calibrated (that is, the 

voltage response registering on the strain gauges for a given deflection of the disc 

mount).  This can and should be performed while the stiffness is being calibrated.  With 

the strain gauge output cable connected, voltage readings were made (once the system 

had stabilized) with the addition of each suspended weight.  Special note should be made 

of the Signal Conditioning Amplifier’s Excitation setting, as the output signal is linearly 

proportional to the Excitation Voltage.  As the output voltage is linearly proportional to 

the mount deflection, a plot of the former versus the latter will yield a slope equal to the 

deflection response.  Plots of this calibration data for both strain gauges are given in 

Figures 3.4 and 3.5 below, and give values of 0.0426  0.001 V/m and 1.452  0.04 

V/m (using a gain of 10 000 and an excitation of 1 V for both calibrations) for the 

resistive and semiconductor strain gauges, respectively. 
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Figure 3.4: Plot of average measured voltage vs. deflection for the resistive strain gauge 

 

 

Figure 3.5: Plot of average measured voltage vs. deflection for the semiconductor strain 

gauge 
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Factoring out the gain and excitation from this measurement, then, will give non-

amplified calibration factors of 4.26  0.1 V/m and 145.2  4.0 V/m for the resistive and 

semiconductor strain gauges, respectively. 

 

     The Bimorph Slider’s stiffness and deflection response must be measured as well.  

This was accomplished in a manner similar to that used with the Friction Device, with the 

Bimorph Slider attached while on its side via calibration stage to an L brace, and 

connected to a function generator with the supplied LEMO adaptor cable.  Weights could 

then be suspended and the resulting deflections measured by camera to obtain the 

stiffness as for the Friction Device.  Passing a DC voltage to the bimorphs with the 

function generator and measuring the deflections will similarly give the deflection 

response, and this method was used to calibrate the Slider.  Alternatively, the latter can be 

obtained with the bimorph slider in place within the SFA, so long as the Friction Device 

has been calibrated.  By connecting the upper and lower discs with a very stiff substance 

(glue or modeling clay, for example), and by passing a DC or AC voltage to the bimorph, 

one can monitor the displacement amplitude occurring in the Friction Device (which, due 

to the resilient medium connecting it to the lower mount, should have the same amplitude 

as its mate), thereby relating a given voltage to a resulting deflection and hence 

producing a deflection response factor.  Calibration plots for the bimorph slider are given 

in Figures 3.6 and 3.7, showing stiffness and voltage calibration factors of 1551  14 N/V 

and 9897  140 V/m, respectively. 



 186 

 

Figure 3.6: Plot of load vs. deflection for the bimorph slider 

 

 

Figure 3.7: Plot of average measured voltage vs. deflection for the bimorph slider 
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     The force-measuring spring stiffness (which measures forces perpendicular to the 

surface plane) can be calibrated in the same way as is given for the bimorph slider and for 

the Friction Device.  It should be noted that the glue layers of the discs are not infinitely 

stiff in practice, and so it is better to consider the effective stiffness, keff, as being a result 

of the force-measuring spring in series with the glue, so that 
gluespringeff

kkk

111
  .  An 

estimation of kglue can be obtained by measuring the force required to separate two 

surfaces from adhesive contact while the force-measuring piece is fully secured and when 

it is loosely in place with respect to the SFA chamber.  In the latter case, only the contact 

adhesion should resist the separation, so that kspring is negligible and kglue can be 

approximated.  In this way a more exact value of keff can be determined.  Since only 

lateral shear measurements were performed for the results discussed here, no calibration 

was necessary for the Force-measuring springs. 

 

     Both DC motors must be calibrated in terms of distance versus encoder reading.  It 

should be noted that the SFA2000 has been modified so that one of the motors (originally 

intended as a fixture for the Friction Device) can be fitted to the differential micrometer 

with one of two couplers, one for the coarse control and one for the medium control as 

discussed in Section 2.1.3.  In this way one of the two micrometers can be motorized at 

any given time.  The second motor controls the fine control, as intended by the 

manufacturer.  Because both motors control micrometers which themselves control the 

bottom disc mount, and because the top disk remains fixed, the distance calibration for 

each motor represents a separation of the disc pair (note that a separate calibration must 
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be done for each of the differential micrometer setups).  As a result, calibration can be 

easily done by setting up a FECO pattern with two fresh disks and adjusting the disk 

separation via each motor-controlled micrometer, monitoring the FECO position (which 

yields the separation as discussed in Sections 2.3.2 and 2.3.3) and the corresponding 

encoder position, and plotting one versus the other to obtain the conversion ratio between 

the two.  This procedure was followed to obtain the conversion ratio for (and hence 

calibrate) each micrometer.  A plot of the surface separation as a function of the encoder 

count is given in Figure 2.16. 

 

     With the calibration values given above one can easily convert from the voltage output 

of the signal conditioning amplifier to a shear response force, R: 

EG

VCk
R

DV






  

where G and E are the Gain and Excitation settings of the signal conditioning amplifier, k 

is the stiffness of the strain gauge, 
DV

C


 is the voltage to deflection calibration factor 

and V is the output (in Volts) of the signal conditioning amplifier.  Sample calculations 

follow for semiconductor and resistive strain gauge responses, RSC and RRes, respectively.  

Recall that in the tests presented here, gain and excitation values of 10 000 and 1V, 

respectively, were used. 
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for the semiconductor strain gauge response, and: 
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for the resistive strain gauge response.  The uncertainty in a given measurement of 

response for each strain gauge (using the calibration uncertainties mentioned above) will 

then be: 

 

V

V

R
k

k

C

C
R

SC

DV

DV

SC
















 


















 














 








47

8.1473
0107.0

107.1

2.145

4
2

42

22

 

for the semiconductor strain gauge, and: 

 

V

V

R
k

k

C

C
R

s

DV

DV

s
















 


















 














 








400

15962
0034.0

109.2

26.4

1.0
2

52

Re

22

Re

 

for the resistive strain gauge. 

 

3.1.2  Calibration of the Spectrometer and Camera 

     The accurate measurement of sample thicknesses requires that the interference pattern 

wavelengths be measured precisely, and so calibration of the spectrometer is essential.  

This is accomplished by using a monochromatic light source, and for the results 

presented here, a sodium source was used, positioned as shown in Figure 3.4 so that the 

sodium light will pass through the SFA chamber and strike the spectrometer grating 



 190 

normally.  The resulting diffraction pattern passes to a cooled Retiga Exi QImaging Fast 

1394 camera, which has 1392  1040 pixels, pixel dimensions of 6.45 m  6.45 m  and 

12 bit digital output; images are saved to a computer via an extended FireWire cable and 

can be displayed there in real time.  The sodium source has a doublet with wavelengths at 

5895.932 Å and 5889.963 Å, and so by tracking these bands across the screen one can 

determine not only the offset of the spectrometer reading from the sodium position for a 

given position on the screen, but also the wavelength to pixel ratio.  A plot determining 

the latter is shown in Figure 3.8, showing the wavelength to pixel ratio is 0.0316 nm/pixel 

Note that the negative value indicates the ‘direction sense’ of the band, in that the pixels 

move left along the screen for an increase of wavelength. 

 

Figure 3.8: Calibration plot of spectrometer position vs. band pixel position for the 

sodium doublet, with uncertainty in spectrometer position of  0.2. 
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3.2  Preparation of the Surfaces 

     The preparation of high quality mica-covered surfaces for SFA use has been a topic of 

some debate in recent years, with several groups developing and refining their techniques 

with various levels of success
335, 337, 350-361

.  The techniques used in these experiments and 

described here generally follow those laid down by Israelachvili
337

, although the method 

of obtaining mica sheets more closely follows the simple procedure described by Perkin 

et al, as explained below.  An overview of the mica preparation process is shown in 

Figure 3.2:   
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Figure 3.9: The various steps leading to the creation of a disk used with the SFA. 
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The surfaces themselves, obtained from Esco Products, are fused silica plano-convex 

(PCX) circular discs; the base is 9.9 mm in diameter, while the radius of curvature of the 

cylindrical surface is 2 cm.  It is crucial that a disc of proper body thickness (i.e. not 

counting thickness from the raised cylindrical top) be used, as the lower mount should be 

as close to parallel with the top mount for ease of surface alignment.  For the mounts used 

in the experiments presented (the Friction Device and Bimorph Slider) a body thickness 

of 3.5 mm was used, but surfaces of 4.5 mm body thickness are available and have been 

found to be more appropriate for use with the Piezo Mount. 

 

3.2.1  Cleaving the Mica 

     The thickness of the mica sheets used on SFA surfaces have several criteria that they 

must adhere to in order to be suitable for experiments.  First and foremost, they must be 

molecularly smooth, and so must be free of steps, spots and other impurities (for 

example, dust, oils and, if possible, an excess of atmospheric water).  For this reason it is 

necessary to perform as much of the surface preparation as possible in an environment 

shielded as well as possible from contamination, and for the experiments described here 

the mica sheets were processed in a Labconco Horizontal Cleaning Bench, a laminar flow 

hood which consists of a stainless steel workspace with sides, back and top shielded.  The 

entire back wall is made up of a filtered fan that blows air towards the front of the 

enclosure at a rate chosen by the user in order to remove dust and other particulates from 

the environment.  A mask must be worn whenever mica or disks are handled as well to 

avoid airborne contaminants from breathing, and whenever possible gloves should be 



 194 

worn to minimize the chances of leaving fingerprints on the mica being cleaved.  Several 

standard tools should always be present during the processing:  

 Scissors for cutting thick sheets of mica.  These should be replaced or 

sharpened fairly frequently as they can wear down quickly;  

 Biological-grade tweezers of various types and tip sizes, including 

standard tweezers, spatular flat-tipped tweezers, curved-tip tweezers and 

tweezers that have rounded flat tips large enough to grip the 9.9 mm diameter 

disks firmly;  

 Scalpels, both flat-edged and curve-edged, to cut the mica during the 

gluing stage, with the former used for small, precision cuts and the latter rolled 

over larger silvered sections to be cut in order to minimize flaking of silver and 

mica;  

 A spray bottle of ethyl alcohol to wipe down all surfaces and equipment to 

remove contaminants;  

 Lint-free swabs, pipe cleaners and lens paper, to clean tools and surfaces 

quickly, used in conjunction with the ethyl alcohol;  

 One or more covered carrying trays for the disks, preferably with a 

secured inset that contains disc-sized recesses containing set screws that hold the 

discs in place so they don’t slide or flip over, and; 

 A selection of pins or other pointed tools with various tip sizes, to cleave 

mica of various thicknesses and to apply epoxy to the surfaces smoothly.   

 



 195 

A wire is normally strung from one side wall to the other near to the top of the flow hood, 

with small clips strung along the length of it in order to hold sheets of mica while the user 

is occupied with other tasks.  To keep the bench surface clean and dust-free, a transparent 

plastic sheet is affixed to the front of the bench with Velcro covering the open space 

completely while the bench is not in use.  The entire working area should be wiped down 

with alcohol before and after every use. 

 

     The surface preparation process begins with cleaving the mica, which generally comes 

from the retailer (Grade IV ruby red muscovite obtained from S&J Trading Inc. was used 

in the experiments discussed here) in the form of 1-2 millimeter thick blocks 500-1000 

cm
2
 in area.  Before cleaving, a smaller block (100-200 cm

2
 in area) should be cut from 

the original section, since the cleaving process involves pulling two sheets apart and that 

action tends to cause steps and tears in the sheets if they are of a larger area than this.  

Gloves may or may not be used at this stage; while any section of mica touched by an 

ungloved hand will always be unusable, so long as only the corners are touched most of 

the mica will still remain uncontaminated.  The use of gloves is actually often counter-

productive at this stage, as gloves tend to accumulate fragments of mica very quickly 

during the cleaving stage so that mica touched with them, while they will be oil-free, will 

still have particulate contamination on them.  The electrostatic buildup on the sheets 

prevents these fragments from being removed easily, and having gloves may give a false 

sense of security to the cleaver in addition to reducing their manual dexterity, resulting in 

a lower yield of usable mica with the gloves than without them.  Protective glasses and a 

facemask should be used at all times during the cleaving process, however, as inhalation 
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of fine mica particles is a health hazard
337

, and introduction of mica shards to the eye can 

lead to eye damage such as corneal abrasion. 

 

     The cleaving itself should begin with a thicker, less pointed pin in order to split the 

thicker sheets apart (Figure 3.2a).  A typical cleave is initiated by holding the sheet firmly 

at a corner with one hand while thrusting the pin into the mica along the plane of the 

sheet with the other.  Often with thinner sheets this can be difficult to do, and to assist in 

the penetration it is advisable to abrade the edge to be cleaved using the side of the pin, 

scuffing or ‘fozzing’ it (cf. the Scottish term fozy, an adjective meaning spongy and 

loose-textured, which describes the mica edge if done properly when the process is 

complete) in the process.  By doing this, the softened edge will be thicker, giving it a 

larger cross-section to penetrate, and softer, making it easier to penetrate gently with the 

pin.  Care should be taken while fozzing the edge to keep the worked edge down, so that 

mica particles fall away from the surfaces and do not contaminate them, and towards the 

cleaver, so that the airflow from the hood will blow mica shards away from the surface.  

Cleaves should generally be close to the center of the layer if possible to avoid splitting 

one side too thin, as cleaving a thin sheet from a much thicker sheet often produces tears 

in the thinner slice, making them too small in area to be used easily.   

 

     Unused halves should be either suspended from the clips above the user (as described 

earlier) or placed carefully against one of the flow hood walls at an angle so that neither 

side touches any surface that may be contaminated (nevertheless, any area where mica is 

temporarily stored should be wiped down frequently).  Due to the asymmetric molecular 
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ordering in planes of mica, cleavage in one direction (that which is parallel to the step 

lines) will usually be easier than cleavage orthogonal to that direction.  This is evident 

immediately after the mica block splits: If the cleave goes against the plane the increased 

resistance to the split is perceptible, and if the sheets are pulled apart too quickly one may 

even see a small electrostatic discharge.  Since cleaving against the step lines generally 

creates sheets with more step lines, it is recommended that all cleaving be done with the 

step lines to maximize the production of step-free surfaces
337

. 

 

     The cleaving should be repeated as described above until the sheets are too thin 

(roughly 0.3 to 0.5 mm thick) to be cleaved easily with the thicker pin, at which point a 

thinner, smaller-tipped pin should be used to reduce the thickness to less than 10 m.  

This thickness of mica is characterized by a considerable loss of rigidity; a simple test to 

verify this is to hold the mica from one corner, making sure not to bend the sheet to 

artificially bolster its resilience, with the sheet parallel to the ground.  If the mica sags or 

bends significantly due to gravity, it is likely in the range of thicknesses that are usable 

for SFA surfaces.  Another indication of thinness is a change of colour; mica is strongly 

pleochroic when in thin sections, meaning it changes colour depending on the angle at 

which it is viewed
362, 363

.  As the mica sheet loses its rigidity it also takes on a few 

characteristic colours.  For ruby muscovite, the dull brown colour characteristic of thick 

sections is replaced by vibrant forest and emerald green, sapphire blue and ruby red 

colours, with the exact colour dependent on the thickness of the sheet; forest green pieces 

are thickest (as judged by the rigidity test mentioned above) while the sapphire blue 

pieces are so thin as to crumple during cleaving, rendering them useless.  The range of 
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mica thicknesses typically used with SFA surfaces are 1-5 m, with pleochroism 

occurring around 2-3 m and considerable loss of rigidity around 1-2 m
337

.  As FECO 

fringe spacing is inversely proportional to the mica thickness, it is desirable to have as 

thin a piece as possible, although the extreme delicateness of thin mica sheets generally 

prevents the use of sections less than one micron in thickness in practice.   

 

     Once one obtains a mica sheet thin enough be used, one must detach it from the 

surrounding mica that likely contains steps and contamination.  A few techniques have 

been developed to liberate the desired mica.  Israelachvili pioneered the platinum wire 

technique which entails using a 3D translation stage to which is attached a mount holding 

a seven millimeter long piece of 0.2 mm diameter platinum wire which can be electrified 

to heat it
335

.  With enough current the wire can grow hot enough to melt mica, and so the 

wire can be used to cut rectangular sections large enough to cover SFA disks.  The mica 

must be placed between mounting blocks (without touching the section to be removed, of 

course) at the height of the platinum wire and pulled taut to facilitate the cutting 

process
337

.  Once the sections are cut (remembering to clasp one corner with a pair of 

tweezers, since the breeze from the laminar flow hood can unexpectedly detach the piece 

near the end of the cutting), the sections should be placed on a pre-prepared, freshly 

cleaved substrate of thicker (~0.5 mm) mica so that it can be later mounted for silvering.  

To minimize birefringence effects in the FECO fringes, it is important to keep the mica 

planes parallel to one another for all pieces obtained.  This is achieved by cutting an 

equal number of rectangles with their long axes perpendicular to one another, with one of 

the sets flipped over before placed on the backing sheet; this will allow the surfaces to, 
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when they are glued to the SFA disks, be in crystallographic register with one another
337

.  

An accurate, dated sketch of the backing sheet and mica pieces should be made in a lab 

manual, making note of any wrinkles, steps, blemishes or contaminated areas, along with 

the overall quality and colour of each usable section, so that the appropriate sections of 

mica can be easily found later after silvering and problem areas can be avoided.  The 

mica pieces should be placed as centrally as possible on the backing sheet (which, in the 

current setup, should not exceed 1010 cm in size, so that it can properly fit on the 

evaporation chimney, described in Section 3.2.2) so that shadow effects from the 

chimney wall and QCM can be avoided during the evaporation process (again, see 

Section 3.2.2). 

 

     While the platinum wire technique is effective in producing mica pieces of regular 

size and shape, problems with the method have been reported in recent years
354, 358, 364

, 

leading to other techniques being developed
359, 365

.  In practice, the heat required to melt 

mica makes the platinum fragile, often making the cutting process difficult.  Frequently 

the wire can break during the cutting, particularly if the wire hits a section that is thicker 

than 5 m, and often damaging the mica in the process.  Of more concern to 

experimentalists, particularly those using the SFA with very small gap sizes, is the 

frequent presence of particles 20-150 nm in diameter and 2-3 nm high that can be found 

on the mica surfaces following a platinum wire cut.  While the particles were originally 

thought to be solidified pieces of mica that had melted during the cut
364

, it has recently 

been confirmed that they are in fact globules of platinum that accumulate on the surface, 

a result of the platinum evaporating at temperatures lower than the melting point of mica 
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).  One alternate method for 

obtaining mica, originated by Frantz and Salmeron
355

, involves cleaving mica to a 

thickness of between 4 and 8 microns, silvering and gluing it in the traditional way 

(described in section 3.2.3) and then, immediately before using the surfaces in the SFA, 

placing a small piece of adhesive tape on each surface and removing the top layer of mica 

to produce a very fresh, clean surface.  The disadvantage of this method is that there is no 

guarantee that the remaining mica layers are of the same thickness, so that recalibration 

of the system must be performed with each new pair of surfaces.  This method of mica 

preparation was attempted prior to the results presented in this thesis with only moderate 

success and so the technique was eventually abandoned.   

 

     A very simple and effective method of mica preparation, developed by the author in 

2005 and identical to a method first published by Perkin et al in 2006
359

, involves placing 

the sheet containing the desired section of mica between two mounting blocks in the 

same fashion as the platinum-cutting method or holding the body of the mica by a sturdy 

pair of tweezers, and then carefully tearing away the desired piece whole with tweezers 

rather than cutting it with a wire.  One disadvantage to this method is that, unlike the 

platinum-cutting method, which leaves the mica edges partially melted and thick and 

thereby making them easier to pick up after silvering, the tearing method leaves the mica 

edges extremely thin and nearly impossible to pick up without tearing the mica.  Simple 

solutions to this problem, all tried successfully by the author, are:  

 to either place one edge of the desired mica hanging over an edge of the 

substrate where it is easily retrieved;  
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 to place it with one edge upon a step on the backing sheet (either 

naturally-occurring or deposited by the cleaver) which provides a lip under 

which tweezers can reach to retrieve the mica, or; 

 to tear the piece such that a thicker section remains attached, which can be 

used to remove the entire piece once silvering is complete (as discussed in the 

paragraph below) as shown in Figure 3.2b;  

 

Disk-sized sections of the mica can be obtained by cutting them with a scalpel after the 

silvering process is complete.  Perkin et al report that results obtained via this method of 

mica preparation are not observably different from those obtained using the other 

techniques
359

, and this is the method used for the experiments presented in this thesis.  

One minor difference between the two methods is that while Perkin et al removes only 

the desired mica section and adds a substrate to provide a lip, the author removes not only 

the desired section but also an adjacent, stepped section which, due to its increased 

thickness and possible wrinkles, is easily discernable from the thin section and does not 

usually stick as well to the backing sheet.  For these reasons the adjacent piece can act as 

a tab which can be handled by tweezers to peel off the thin sections, and makes the mica 

easier to handle during the gluing process as well. 

 

3.2.2  Silvering the Mica Sheet 

     Immediately after cleaving the mica and placing it on a substrate as shown in Figure 

3.2c, the latter is placed in a covered Petri dish (to protect the former from airborne 

contaminants), which is in turn placed in a desiccating jar.  The jar is evacuated right 
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away by a twin diaphragm vacuum pump obtained from Neuberger, Inc., and left under 

vacuum until it can be placed in the evaporation unit’s bell jar; the pump is oil-free and 

the desiccating jars are grease-free to prevent contamination of the samples.  The 

evaporation unit, a sketch of which is shown in Figure 3.2d, has been built in-house and 

is made up of a roughing and turbo pump unit connected to an evaporation chamber that 

is covered by the bell jar.  The chamber consists of a platform, below which two 

electrodes are set, connected by a tungsten wire evaporation boat in which two or three 

99.999% pure silver pellets are placed.  The electrodes are attached to a Variac power 

supply outside the chamber so that the current through the boat, and hence the heat 

emitted by it, can be controlled.  Above the melting point of the evaporated metal, the 

Variac setting varies roughly linearly with the evaporation rate of the metal.  The 

platform has a central hole approximately 10 cm in diameter through which evaporated 

metals can pass to deposit on the mica surface.  The hole can be quickly covered by a 

shutter attached to a lever outside the chamber, so that the substrate can be protected from 

spattering materials while the boat and evaporating material heat up.  The boat and 

platform are only about 20 cm apart, and Israelachvili reports that the mica should be 

kept at least 30 cm from the boat since exposure to high heat for prolonged periods can 

discolour the mica, which can in turn adversely affect the optical properties of the mica.  

For this reason, a removable 10 cm long metal chimney with the same diameter as the 

hole has been added directly above the hole to increase the distance to 30 cm; the mica 

substrate is placed atop the chimney with the thin mica pieces placed as centrally as 

possibly to minimize shadowing from the passage walls and QCM crystal (discussed 

below).  Cut into the side of the bottom of the chimney is an aperture, through which an 
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exposed 10 MHz Quartz Crystal Microbalance (QCM) crystal disk protrudes.  The crystal 

is connected to a small controller box which is wired to a 200 MHz electronic counter, so 

that the frequency change in the QCM crystal can be monitored.  According to the 

Sauerbrey equation (first derived by Günter Sauerbrey in 1959
367

) the frequency shift in a 

thin piezoelectric crystal is proportional to the change in mass of material deposited on it, 

and if the density of that material is known, to the thickness of the deposited surface as 

well
367, 368

: 
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where f is the frequency shift, f0 is the resonant frequency of the crystal, A is the 

exposed area of the crystal, q and q are the density and shear modulus of quartz, and 

m is the change in mass of the deposition layer.  The area of the QCM used in the setup 

is circular so that the deposition layer will be cylindrical, and since the mass of a cylinder 

is dAm
Ag

  , where Ag is the density of silver and d is the change in cylinder 

height (i.e. the thickness of the layer): 
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As a result, by monitoring the change in frequency one can determine the thickness of the 

deposition layer on the QCM and hence the mica itself.   

 

     Calibration of the QCM involves placing a glass slide on the chimney and performing 

an evaporation on it while measuring the frequency shift, f.  The thickness on the slide 

can be measured easily using an AFM, and so by performing several glass slide 
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evaporations while varying f, one can create a plot of f vs. d, from which one may 

determine the required frequency change for a desired deposition thickness with the 

evaporator.  A calibration plot demonstrating the linear relationship between d and f is 

given in Figure 3.3: 

 

Figure 3.10:  Plot of silver thickness (as deposited using the home-built evaporator) vs. 

QCM crystal frequency change.  The desired 55 nm silver thickness that will give 

optimal FECO fringe sharpness has been denoted on the graph as occurring with a 

frequency change of approximately 9 kHz. 

 

     As some of the QCM circuitry is exposed to the evaporation, a small plank covering 

all parts of the QCM except for the crystal itself (a small hole was drilled in the plank to 

accomplish this) has been added beneath the unit to avoid forming a conductive layer on 

the QCM and ruining the electronics.  Since changing the alignment between the QCM 

and plank will alter A in equation (1) and hence the calibration using equation (2), it is 
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imperative that the QCM/plank alignment be moved as little as possible in between 

evaporations.  Any time a significant change to the bell jar setup occurs (including, of 

course, a change of the material to be evaporated), a new calibration must be performed.  

Generally, despite the presence of the masking plank, the QCM will stop functioning due 

to the gradually increasing presence of a silver conducting layer (the plank only delays 

this inevitable effect) which will ultimately short circuit the exposed electronics near the 

crystal, a phenomenon that usually occurs around a silver thickness of 1.2 m, 

corresponding to a total frequency shift (from start of life of the crystal) of approximately 

200 kHz.  Since both sides of the QCM used work equally well and the crystal can be 

detached easily from the electronics box into which it is plugged, its lifetime can be 

nearly doubled by flipping it around to expose the second side before the conducting 

layer fully forms on the first side used. 

 

     The pressure within the chamber was monitored by an ionization pressure gauge 

obtained from Veeco.  While Israelachvili recommends a pressure of ~10
-6

 torr, the 

lowest pressure typically attainable in this lab is 1.810
-6

 torr, after pumping and 

degassing for 6-12 hours (or 24-36 hours if the bell jar is not kept under vacuum while 

not in use).  The ionization element (purchased from Scientific Instruments, Inc.) was 

usually degassed at least twice during the pumping down of the bell jar to improve the 

gauge’s pressure measurement.  The pumping system consisted of a rotary pump working 

in tandem with a turbo pump controlled by a Turbotronik NT 20 pump controller.  The 

standard deposition layer thickness used for SFA studies is 55 nm, corresponding to 

approximately 98% reflectivity
335, 337

, and so this was the thickness adhered to as closely 
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as possible for the results presented in this thesis.  Below this thickness the FECO fringes 

can blur significantly, making an accurate determination of gap size difficult, and above 

this thickness the reflectivity is often too high to be able to detect FECO at all.  The 

Premion silver pellets used were obtained from Alfa Aesar and were rated to 99.999% 

purity.  The recommended evaporation rate
337

 of 1 Å/sec was also followed for the 

surfaces used, so that the approximate total evaporation time was usually 10 minutes.  All 

thicknesses were determined using the QCM procedure mentioned above.  The jar was 

left evacuated for at least 30 minutes following the evaporation before bleeding in 

pressurized nitrogen via a needle valve to allow the silver to cool, which in turn 

minimized the reaction between the silver and nitrogen.  All silvered mica sheets were 

returned to their original covered Petri dishes and immediately placed into a desiccating 

jar which was evacuated by the twin diaphragm pump mentioned above until they were 

ready to be glued, to avoid a reaction between the silver and the atmosphere.  Reactions 

between the silver layer and water and oily vapours have been reported to reduced 

adherence between the mica and disks by Israelachvili
337

. 

 

3.2.3  Gluing of the Mica to the Cylindrical Discs 

     Gluing took place on a Corning Hot Plate, always within the laminar flow hood and 

always with a mask and powder-free gloves to eliminate particulate contamination.  

Several epoxies were provided by Surforce Corporation, and prior to the first gluing 

attempts, a few grains of each epoxy were fractured by applying pressure to them via 

spatula scoop, and the fractured pieces were then heated on the stage (with two glass 

slides beneath them to simulate an SFA disk) to determine their material and optical 
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properties.  A table of the various epoxies, their melting onset temperatures and wetting 

temperatures (as determined by eye) as well as their characteristics during the melting 

process is provided below: 

 

 

Table 3.1: Common epoxies used with the SFA and their mechanical and optical 

properties 

 

Epoxy Type Solid 

Characteristics 

Melting Onset 

Temperature 

(15 C) 

Wetting Onset 

Temperature 

(15 C) 

Characteristics 

during Melting 

EPON 1004F 

Whitish, semi-

transparent 

granules that 

fracture easily 

105.2 155.0 

Bubbles form 

as the epoxy 

begins wetting; 

clear and 

bubbly 

EPON 1007 

Yellowish 

granules that 

fracture easily 

115.5 140.7 

Never becomes 

fully wettable 

below 241 C; 

clear with no 

bubbles 

EPON 1009 

Shiny, silvery 

white and 

difficult to 

fracture 

131.4 182.3 
Clear with 

bubbles 

Sym-DPC 
Off-white 

powder 
182.3 214.4 

Red popping 

bubbles form 

upon melting; 

clear yellow 

liquid 

White Sugar 
Small white 

granules 
229.2 241.0 

Dark yellow at 

first, becomes 

bright yellow; 

no bubbles 

 

     All temperatures were determined by a thermistor placed slightly off-center on the hot 

plate, and due to the large temperature variation across the surface, may under-represent 

the temperature of the grains themselves.  Fourteen temperatures were tested (with an 

average increase of 10-15C per test, giving the uncertainty in temperature), with the 
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heater allowed to sit at each temperature for approximately five minutes to allow slower 

melting processes to occur.  A plot of hot plate setting vs. temperature (as measured by a 

thermistor resting on the hot plate) is given in Figure 3.4, showing the ratio between the 

two to be 0.014: 

 

Figure 3.11: Calibration plot of hot plate setting vs. temperature, showing the melting 

points of the tested epoxies candidates. 

 

     In general, smaller granules were observed to melt more quickly than larger granules 

of the same substance.  Granules that fractured easily were found to break into small, 

relatively equal-sized pieces, while those that fractured poorly allowed only a few small 

pieces to be chipped away while the bulk of the grain remained intact, or tend to squash 

flat upon applying pressure.  Sym-diphenylcarbazide (sym-DPC), a powder at room 

temperature, was found to be already of sufficient size for melting in amounts needed for 

gluing.  The ideal epoxy should have a low melting point (to protect the mica from 
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discoloration) and a relatively high wetting temperature as well, so that there is a wide 

range of temperatures over which the gluer can form the epoxy layer easily, without 

much leaking over the sides of the disk (too much epoxy leakage can prevent the disk 

from fitting in the SFA mounts).  It should also be bubble-free if possible, since bubbles 

may create local rough spots if they become trapped under the mica sheet, and, since it 

satisfied all of the criteria mentioned above, EPON 1007 was chosen as the ideal 

candidate for gluing the silvered mica to the glass disks. 

 

     The gluing process begins with placing several disks flat side down near the center of 

the hot plate.  The plate should be turned to the desired setting for gluing and left for a 

few minutes to allow the temperature to equilibrate.  During this time the surfaces should 

be checked for blemishes and, if any are found, they should be cleaned or removed for 

future cleaning.  A cleared surface on the laminar flow surface should be cleaned 

thoroughly so that one or two pieces of epoxy can be placed on it and broken by a blunt 

tool (one either dedicated for the task, or a thoroughly cleaned tweezers handle, for 

example).  When the pieces are small enough to be used (roughly 0.5-1.0 mm
3
 or less) 

they can be deposited directly on one of the surfaces (preferably with the spatular flat-

tipped tweezers, as they can collect the epoxy dust as well), which should be nudged to 

the center of the plate to get the target heat and to give the gluer space to work with the 

disk.  If the temperature is high enough, the grains should melt to a semi-wettable, 

moldable state within about thirty seconds.  At this point the user should clasp the disk 

firmly with the rounded-tip tweezers, being careful not to leave the tweezers exposed to 

the epoxy so that the disk does not bond with the tweezers.  With the other hand, the 
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gluer should, in one slow, fluid motion, sweep across the disk surface either with curved 

tweezers (if available) or with a thick, straight pin or similar tool, making sure to 

maintain a constant pressure so as to distribute the epoxy evenly across the surface; if 

curved tweezers are used, the smoothing motion should be along the length of the 

cylinder, whereas if a pin is used the length of the pin should be aligned as closely as 

possible to the length of the cylinder, as any deviation will likely lead to an uneven 

distribution.  The gluer should inspect at the surface at an angle (so that the sheen of the 

glue can be seen), checking for thin or thick patches, or bubbles, and if any are seen, the 

surface should be re-smoothed as many times as is necessary to create a smooth, evenly 

layered glue layer; if any contamination is seen, the disk should not be used.  If the right 

amount of epoxy is used, the amount that is pushed over the side of the disk should be 

minimal.  As the fingers and thumbs come close to touching the hot plate during this 

procedure, the latex gloves mentioned above serve a double purpose as they partially 

shield the gluer’s fingers from the heat.  Wearing a facemask is also essential at this stage 

to avoid contaminating the surfaces and the mica. 

 

     At an opportune moment (usually either while the disks are heating or while the epoxy 

is melting) the mica backing sheet should be removed from the desiccating jar and Petri 

dish and placed on a recently cleaned area of the laminar flow hood.  If it hasn’t been 

done already during the cleaving stage (see the Section 3.2.1 for details on the various 

mica preparation methods) the desired section of mica should be cut into sheets the right 

size (roughly 10.7 cm) as shown in Figure 3.2e, making sure if possible to cut an equal 

number of pieces with the long rectangular axis in each of two chosen directions 
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perpendicular to one another.  The cut should be made with a round-edged scalpel, 

starting at one corner of the rectangle and rolling the blade over the section to be cut, not 

dragging it across, as a dragging motion may tear the mica or break off silver shards that 

could contaminate the surface.  It should be noted that macroscopic silver shards do not 

stick to the surface and so can be removed fairly easily by flipping the mica piece over 

and allowing them to drop off.  A firm rolling motion should be enough to cut through 

the desired mica piece.  Rolling too hard or repeatedly over the same cut could cut 

through the backing sheet, making removal of the desired section difficult or impossible, 

so this should be avoided if possible.  The tip of a flat-edged scalpel is best used to free 

corners or any other stubborn sections, but should be used sparingly as it can easily 

penetrate the backing sheet.  If the ‘lip method’ (described in the Section 3.2.1) is used, 

cutting should be around the lip leaving it attached so that the desired section can be 

easily raised from the backing sheet.  Before continuing, it should be made certain that 

every side of the rectangle is completely free from the rest of the sheet, as any snags 

during the lifting process may tear the piece. A corner or edge of the mica should be 

slightly and very gently raised from the backing sheet using needle nose tweezers; as the 

mica is extremely fragile it may be a good idea to continue raising the piece by blunter 

tweezers (possibly even the spatular tweezers) to increase the surface contact between the 

two and minimize the chance of tearing the mica.  All contact, of course, should be along 

the extreme edge or corners to avoid contaminating the central section of the piece. 

 

     The first mica piece removed should be gently placed centrally and silver-side down 

on the disk as shown in Figure 3.2f, with the long axis of the rectangle along the 
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cylindrical axis.  The second piece of mica should be rotated 90 (unless this has already 

been done in the cleaving process using Israelachvili’s method) and then flipped over to 

be placed silver-side down on the second disk.  This is done to minimize mica 

birefringence by aligning them crystallographically.  To avoid mounting the disks with 

the mica 180 with respect to one another, a small mark can be placed on the side of each 

disk with a felt-tipped pen if possible to keep track of their alignment during the 

mounting process.  The gluer should place the mica gently on the disk center first, letting 

the glue draw the rest of the piece onto it by capillary action, and under no circumstances 

should the mica be dragged into place once it has contacted the disk, as this will cause the 

glue to redistribute unevenly and cause stress on the system.  Once the mica is set in 

place, the corners of the mica may need to be tamped down at the corners and edges 

gently so that the mica fully takes the form of the cylinder, and this can be done very 

carefully using the tweezers tip.  Tamping should not be done nearer the center of the 

mica, as this will likely contaminate it; if the mica center does not conform to the 

cylindrical surface well, it should be discarded altogether.   

 

     The disks should next be removed from the hot plate as soon as possible, as excess 

heating of the mica can discolour and hence damage it, and be placed in a covered 

container immediately.  The surface should be checked for bubbles or wrinkles, 

particularly any that stick up from the rest of the surface and especially along the topmost 

part of the cylindrical axis, as this will be the section in closest contact with the other 

surface.  If any aberrations are observed, the disk should not be used and a replacement 

disk should be prepared with the same mica sheet so that it matches with the other disk.  



 213 

Any fleck of mica that is found to be sticking up from the surface that looks like it could 

be removed without compromising the disk should only be detached after the glue has 

fully set (several minutes after removing from the hot plate), to avoid pulling the entire 

sheet along the disk and ruining the surface. 

 

     Once the disks are done being used, the mica can be removed by leaving them in a 

sealed vessel containing either chloroform or acetone for at least twelve hours to dissolve 

the glue.  Once the mica has been removed the disks should be rinsed thoroughly in 

distilled water.  If pure water is not used there is a strong likelihood the glass will develop 

water deposits which can be very difficult to remove.  Once the disks are clean they can 

be dried by blowing them with pressurized nitrogen or air until all water beads are 

removed.  Repeated immersions in solvent may be necessary to remove all glue from the 

surfaces. 
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3.3  Pre-experimental SFA setup   

     Samples of 8CB are loaded using a syringe which, after a single small drop of the 

liquid crystal (approximately three to five cubic millimeters in volume, estimated by eye) 

has been collected on the tip, is swept across the bottom lens in the SFA while taking care 

to touch the surface with the sample only.  The surfaces are then brought near to contact 

(within a few microns), to allow the sample to coat both surfaces.  This must be done 

rapidly to avoid dust contamination on the surfaces, and during the loading process a 

surgical mask must be worn for the same reason.   

 

     The point of contact between the surfaces is found by directing monochromatic light 

normally through the surfaces and observing (with an objective lens) the Newton’s Rings 

pattern that result from the close proximity of the surfaces.  A clear, well-defined, round 

series of concentric circles will result if the surfaces are near or exactly perpendicular to 

one another well away from any local surface defects, and if the tilt between the surfaces 

is minimized; the latter is accomplished by varying the tightness of the four set screws 

securing the adjustable level clamp to the Friction Device.  A Teflon O-ring recessed in 

the SFA separates the Friction Device from the SFA’s top, facilitating tilt variations due 

to its slight flexibility; a bellowed O-ring can also be used for more flexibility if 

necessary.  The monochromatic light is usually generated by using a monochromatic 

source (a sodium lamp as pictured in Figure 3.4, for example).  Alternatively, a white 

light source can be used in combination with a monochromatic filter placed above the 

surfaces and before the objective in the optical path.  The filter allows the operator to see 
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only a single wavelength (or very narrow range of wavelengths) and hence observe the 

Newton’s Rings phenomenon. 

 

Figure 3.12: White light and sodium light source setup. 

 

     Once the surfaces are properly set in place and secured, the optics stand, mounted with 

a prism, can be set in place and fine adjustments to lateral position, focus and tilt of the 

latter can be performed.  Optimal positioning occurs when the prism’s exit beam 

(comprised of white light from a standard halogen source that has passed normally 

through the surfaces, the focusing lens and the prism) strikes the spectrometer slit 

normally and is centered both vertically and horizontally on the slit.  Further adjustments 

to the optical path are often necessary so that light emerging from the point of contact 
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strikes normal to and centered on the spectrometer slit.  The resultant interference pattern, 

comprised of Fringes of Equal Chromatic Order (FECO), should appear sharp and well-

defined (this is more important for small separations).  They should also move 

horizontally across the screen (i.e., the wavelength axis; see Section 3.1.2 for more 

details) when the surface separation is varied, and if they do not, the camera must be 

rotated in its sleeve until they do. 

 

     Once the optical path has been properly aligned and a circular set of Newton’s Rings 

has been found, the following preparations should be done before actual testing begins: 

 

1) The  thermistor tip should be carefully placed as close as possible to the surfaces 

without touching or disturbing the mounts or the surfaces.  In the experiments 

presented here, the thermistor-surface distance was approximately 1-2 

millimeters, after the wire was fed through the vapour pressure port. 

2) All ports to the SFA must be sealed in order to minimize air currents near the 

surfaces.  In the experiments presented here, the vapour pressure port was closed, 

but not fully screwed in to avoid damaging the thermistor wire. 

3) The front panel to the SFA outer chamber must be put in place to minimize air 

currents around the SFA. 

4) The floating table’s resistance to vibrations should be checked by pushing down 

gently on each corner and gauging the response; if the table doesn’t cushion the 

disturbance adequately, air pressure to the table should be increased or decreased 

as appropriate. 
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5) All extraneous electrical equipment should be turned off to minimize the 

generation of heat and vibrations within the room. 

6) All electrical equipment should be checked to make sure that it is functioning 

properly and is running optimally.  All remote controls that are to be used, in 

particular, should be checked to make sure they respond properly.  

7) The Signal Conditioning Amplifier Balance should be checked by turning the 

Excitation switch off while the gain is set to X100 and then checking the output 

lamps.  The amplifier is balanced if the lights are extinguished.  If the lamps are 

even slightly lit, the AMP BAL adjustment should be turned (using a small 

flathead screwdriver) until they are fully extinguished.  The Excitation must be 

turned back on and the Gain set to the desired level when this procedure is 

complete.   

8) The Signal Conditioning Amplifier Bridge should be balanced, if necessary, by 

using the Auto Balance Reset knob (for large adjustments) and/or the Trim knob 

(for small adjustments) until the lamps are extinguished.  Once the balancing is 

finished, the amplifier should be monitored for an hour afterward, while keeping 

temperature in the room as stable as possible, to see if it drifts significantly.  If it 

does (that is, if one of the lamps becomes a solid or semi-solid red), this step 

should be repeated until the amplifier remains relatively stable over the 

monitoring period. 

9) Ensure that the Signal Conditioning Amplifier filter is set to as low a filter level 

as possible without adversely affecting the experiments that will follow (typically 

at least five times the anticipated maximum shearing frequency to be used, so that 
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higher harmonics remain unfiltered as well), to maximize the output’s signal to 

noise ratio.  The filter used here is a two-pole Butterworth filter and the 

experiments involve frequencies up to 10 Hz, and so a filter setting of 100 Hz has 

been used with the data presented. 

10) Any limit switches to be used must be set to ensure the safety of the SFA.  This is 

achieved by gently bringing the surfaces near to contact using the coarse control 

(preferably using the motor while set to a very slow setting) while the medium 

control is near its upper position.  Then bring the surfaces slightly out of contact 

using the coarse control (again, this is best achieved using the coarse motor on a 

very slow setting), and once the surfaces are near to but not in contact, bring them 

back into gentle contact with the medium control.  Both micrometers should 

ultimately sit near the center of their operating range in case further adjustments 

need to be made later.  Once the micrometers and surfaces are both positioned 

optimally, the limit switches should gently be brought as near to triggering as 

possible.  This will ensure that the surfaces will press no further beyond contact 

during testing than has been allowed by the final medium control adjustment in 

the event of motor or software failure.  It should be noted that any adjustment to 

the fine micrometer will offset the limit position of the coarse micrometer, and so 

the former should be used sparingly during testing and returned to its original 

position whenever convenient to avoid cumulative error in the limit position.  

Generally, though, the fine micrometer correction should not make much 

difference overall because of its miniscule range, and so is not a major concern.  

The limit switches should be tested several times with the coarse control on a 
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slow setting to ensure it is functioning properly and returning to the same point 

with each approach.  If it is not, the limit switches should be adjusted to maximize 

their sensitivity to the triggering mechanism. 

11)  The methods of determining the gap size discussed in the following section both 

require a foreknowledge of the index of refraction, , and so a run tracking the 

index of refraction as a function of gap size using traditional optical methods 

discussed in Section 2.3 should be performed.  Because both the extraordinary 

and ordinary fringes must necessarily yield the same separation either can be used 

(as per Israelachvili
335, 337

), and in the experiments discussed here the ordinary 

fringe was used.  Because the refractive index was not found to vary substantially 

over the range of separations tested (specifically, / was found to be 3%, 

smaller than the 10% estimated accuracy for the methods described below), a 

single value for  of 1.56 was used, obtained with the spectrometer centered at 

5850 Å. 

12)  Because the testing should begin as soon after the sample agitation is complete as 

possible, and because an accurate calculation of gap size can be time-consuming, 

a rapid method of separation determination has been developed for both gap sizes.  

Since it requires precise knowledge of the final FECO fringe placement or 

separation (depending on which gap size, 0.5 μm or 5 μm, is desired), markers 

must be placed on the LabVIEW camera image so that both can be determined 

very quickly by eye.  This technique and the markers that are used with it are 

described in more detail in the following section. 
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3.3.1  Calculation of Surface Separations for Remote Experiments 

     Israelachvili et al and other groups have developed several techniques for the 

determination of gap separation using the principles of three-layer thin film 

interferometry, as described in Section 2.3
335, 337, 342, 369

.  Many of these methods, 

however, involve the tracking of fringes by spectrometer and recording their respective 

changes in wavelength, which is not possible when the SFA is being used remotely, as 

the spectrometer used in the current experiments cannot be operated remotely.  

Furthermore, because the experiments are to be begun as quickly as possible after the 

sample is agitated and specific gap sizes are required, it is necessary to have a quick 

method of determining the surface separation without sacrificing its accuracy.  

Consequently, the aforementioned conventional methods have been adjusted and 

LabVIEW software has been developed that will accomplish this.  

 

     The basic equation to be used is given by Israelachvili
337

: 
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                                                                  (3) 

where D is the gap size, p and p-1 are two adjacent fringe wavelengths that lie between 

two previously measured adjacent contact fringe wavelengths 0

n
  and 0

1n
 , μ is the 

sample index of refraction, and Tp and Tp-1 are hypothetical distances representing a 

wavelength shift of 0

n
  and 0

1n
  to p and p-1.  This equation is exact and is ideal for 

measuring separations remotely, as the ideal fringe wavelengths, p and p-1, can be 

calculated beforehand using a pre-measured value of  and the automated LabVIEW 

script developed (as described in Sections 2.4.4 through 2.4.6).  The appropriate 
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positions, with the required fringe separation considered, can then be overlaid on the 

camera image for rapid gap separation determination during testing.  To obtain the 

desired gap size, then, the operator need only adjust the coarse micrometer to approach 

the right separation, and then fine tune the separation using the fine micrometer setting 

until p and p-1 match the markers on the screen.  This method is ideal for remote 

determination of large separations such as the 5 m gap size studied in the experiments 

presented in this thesis.   

 

Figure 3.13: Sketch of the fast determination of the 5.0 m separation.  The process 

starts on the left, with surfaces in contact, where n-1  and n are recorded.  It ends on the 

right, when two fringes spaced exactly p-1 - p apart lie between the former n-1  and n  

positions.  The p-1 - p spacing is defined such that D = 5.0 m in Equation (3). 

 

The speed at which one can obtain the desired gap size will vary, but if the user has a 

general idea of how long it takes for the surfaces to separate at maximum stepper motor 

speed, the proper separation can often be found within about twenty seconds and the 

shearing can begin shortly thereafter. 
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     For smaller separations (like the 0.5 m gap size also studied in the experiments 

presented here) the above method is not sufficiently accurate, as the change in adjacent 

fringe separation is not large enough over such a range.  One can, however, use the 

simple but effective approximation described by Israelachvili
337

 in which one counts the 

fringes passing by a contact point fringe, 0

n
 , upon separating the surfaces, as each one 

represents a separation of  2
0

nfringe
D  .  Therefore, by working backward from this 

equation with a gap size, D, (which, for the present experiments, is 0.5 μm), and pre-

measured values of μ for various separations, one can determine the number of fringes 

and where the final fringe must be positioned for the desired separation D: 

0

2

n

fringe

D
N




                                                                                                               (4) 

where the whole portion of Nfringe represents the number of fringes passing the 0

n
  position 

and the fractional portion represents the fraction of one fringe separation the final fringe 

comes to reaching the 0

1n
  position.  As with the previously mentioned larger separation 

method, the necessary fringe positions to attain the desired gap size can be overlaid on 

the camera image in order to determine the separation quickly.   
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Figure 3.14: Sketch of the fast determination of the 0.5 m separation.  The process 

starts on the left, with surfaces in contact, and ends on the right, when a set number of 

fringes have passed the contact position (here, m+1) and the last fringe has reached a 

predetermined point representing the 0.5 m separation. 

 

One notable limitation on this method is that the surfaces must be moved apart slowly 

enough that the fringes can be counted precisely before the final fringe position is sought.  

By advancing too quickly, the fringes temporarily blur making tracking them difficult.  

Nevertheless, with due care and some practice before the test run begins, a methodology 

can be adopted whereby the surfaces can be separated from contact and in place within 

about fifteen seconds. 

 

3.3.2  Experimental Parameters and Procedure 

     Once the surfaces are in place, the optical path has been optimized and the final SFA, 

electronics and room preparations have been completed as outlined above, the door to the 

room can be closed and the testing can begin.  Experiments were performed on smectic 

8CB for two separations (0.5 m and 5 m), the former nearer to the calculated de 

Gennes penetration depth
312

 and the latter further into the mesoscopic regime; the gap 
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sizes approximately correspond to those used by Koltover and Idziak in their series of 

experiments
54, 127, 128, 317, 319, 320, 370

 so a comparison can be made between the results as 

well.  The Bimorph Slider was used as the lower mount, in order to create a shear 

constant velocity oscillatory shear pattern (with velocity reversing direction at the 

extremes), and the Friction Device was used as the upper mount in order to gauge the 

shear response.  For each gap size, experiments were performed at three different shear 

amplitudes (62.5, 625 and 6250 nm) and four different shear frequencies (0.01, 0.1, 1 and 

10 Hz).  Many of the tests were performed at three different temperatures (approximately 

20.5C, 22C and 27C), although the focus of the analysis was on those results obtained 

at 20.5C, as the shear response was largest and best-defined at that temperature due to 

the greater stiffness of the material.  The experiments were performed in the following 

general order: 

 

Table 3.2:  List of experiments grouped by experimental parameters 

Group # Experiments 

1 1
st
 round of 20.5C tests (62.5 and 625 nm amplitudes, all frequencies 

and both gap sizes) 

2 All 22C tests (62.5 and 625 nm amplitudes, 0.01 and 0.1 Hz 

frequencies, and both gap sizes) 

3 All 27C tests (62.5 and 625 nm amplitudes, 0.01 and 1.0 Hz 

frequencies, and both gap sizes) 

4 2
nd

 round of 20.5C tests (62.5 and 625 nm amplitudes, 0.01 and 0.1 Hz 

and both gap sizes) 

5 3
rd

 round of 20.5C tests, after the semiconductor strain gauge mount is 

switched to the resistive strain gauge mount (6.25 m amplitude, all 

frequencies and both gap sizes) 

 

     As indicated in the table above, for the smaller two amplitudes the semiconductor 

strain gauge mount was used within the Friction Device, as it is the more sensitive of the 
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two possible mounts.  For the largest amplitude the resistive strain gauge mount was 

used, as it is more robust and so can handle larger deflections with less risk of breaking it.  

The bridge voltages used for the semiconductor and resistive strain gauge experiments 

were 5 V and 10 V, respectively (a lower semiconductor strain gauge bridge voltage was 

used to avoid damaging the gauge under high strain conditions, as per instructions given 

by the manufacturer).  During each series of tests performed shown in Table 3.2, the only 

time the SFA room was entered was to either change the room temperature or to switch 

the mounts, so that the temperature fluctuations during each test run were kept to a 

minimum throughout.  The same pair of surfaces was used for all tests. 

 

     Before each test, any shear-related ordering in the sample from the previous test was 

removed by bringing the surfaces far out of contact (approximately 1 mm) and oscillating 

the sample in the normal direction repeatedly with a large amplitude (0.5 mm); this 

technique has been found to remove ordering in previous studies by Ruths et al
125

.  The 

process has been LabVIEW-automated and is discussed in Section 2.4.6.  Immediately 

following the agitation of the sample, the surfaces were brought into contact, where an 

image was captured via the main LabVIEW SFA-controlling software.  The contact point 

was ascertained optically, by decreasing the separation until the normally-rounded FECO 

fringes flattened, indicating that the surfaces were on the verge of being deformed.  

Previous experiments have shown that the last one or two monolayers of 8CB remain 

even after considerable normal pressure has been applied
125

, so that a perfect mica-mica 

contact point would not likely have occurred, but the difference from contact is expected 
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to have been negligible, especially considering the large separations used in the 

experiments performed. 

 

     Once brought into contact, the surfaces were separated to one of the two gap sizes 

being studied using the methods discussed above, as quickly as possible (generally within 

twenty seconds).  The FECO was monitored using the SFA Control Panel software, upon 

whose QCam image both the necessary 0.5 m and 5 m lines were overlaid so that the 

appropriate gap sizes could be determined as quickly as possible.  Immediately after 

ascertaining the gap size, the shear experiments were begun.  As mentioned above, the 

Bimorph Slider provided a constant velocity shear (except at the path extremes, where the 

velocity was abruptly reversed) and the shear response was measured by the Friction 

Device as a voltage.  The response voltage was sent via a shielded cable to the Signal 

Conditioning Amplifier (SCA), where the signal was amplified 11 000-fold and then 

filtered using a 2-pole 10 Hz low-pass Butterworth filter.  The SCA output signal was 

sent directly to the BNC 2110 shielded connector block, which was in turn read by the 

data acquisition card using LabVIEW software.  Because the experiments were 

performed with frequencies orders of magnitude different from one another and tests 

were to be performed for as long as possible, different data collection rates were used 

depending on the frequency, with a targeted total number of points per experiment of 

roughly 10
6
.  The data rates used were: 
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Table 3.3: List of data rates used for the various shear frequencies tested 

Shear Frequency 

(Hz) 

Experiment 

Duration (sec) 

Data Collection 

Rate 

(points/sec) 

Total Points 

Collected 

Points per 

Shear Cycle 

0.01 25 200 50 1.2610
6
 5000 

0.1 10 800 50 5.410
5
 500 

1 10 800 100 1.0810
6
 100 

10 1800-3600 500 910
5
-1.810

6
 50 

 

It should be noted that because of the many processes running on the computer during 

any given experiment, collecting at data rates higher than 500 points per second runs the 

risk of overloading the system and so this number was used as an upper limit for tests 

running longer than a few minutes with the LabVIEW automation software, despite the 

data acquisition card’s limit being 1000 points per second.  The air temperature 1-2 mm 

from the surfaces was measured by a thermistor and the temperature data was collected 

every second.  An image of the FECO fringes was collected by the QCam camera 

attached to the spectrometer, and an image was saved every 60 seconds.  The entire 

process, including control of all components used before and during the experiment, was 

controlled by LabVIEW programs coded by the author, described in Section 2.4. 
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Chapter 4   
 

Results 

 
     Results for the tests described in Chapter 3 are presented below, beginning with 

preliminary data collected using a rheometer to compare its shear response profile of 

smectic 8CB with that obtained from the SFA (Section 4.1); a characteristic non-linear 

behaviour for both is observed and reported.  A survey of the various response 

characteristics observed for different shear parameters is then provided, with attention 

paid to a kink that is present both during moderate and aggressive shearing (Section 4.2).  

A discussion of the reproducibility of the results follows, along with the dependence of 

the response amplitude on temperature and shear rate (Sections 4.2.2-4.2.3).  Of 

particular interest is the observed transition from shear-induced thickening to thinning 

behaviour that occurs with increasingly aggressive shearing, for which a schematic 

summarizing the phenomenon and plots showing the amplitude-shear rate relationship for 

large amplitude shear are provided.  The response amplitude is found to decay according 

to a two-exponential curve, and the time constants of the resultant fits are plotted as a 

function of shear rate, shown alongside x-ray results of smectic 8CB sheared under 

similar conditions from Nieman et al
323

.  A discussion is also given of the method used to 

eliminate noise from the collected data via high-pass post-acquisition filtration and 

extraction of the first harmonic values to allow for easier fitting of the results (Section 

4.2.4), followed by a corresponding plot of two-exponential time constant vs. shear rate, 

this time using the filtered data.  Both shear-induced time thickening and thinning time 
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constants were found to fall on the same lines, indicating a single direct cause for both 

phenomena. 

 

      A comparison is then made between the measured shear responses at the two gap 

sizes, 0.5 m and 5.0 m (Section 4.2.5).  The ratios of these response amplitudes are 

themselves compared to those predicted by a simple approximation given by Newton’s 

Theory integrated over the crossed-cylindrical geometry of the SFA confinement volume, 

and it is shown that while the theory and measured values agree fairly well at asymptotic 

times, early on the measured value can greatly exceed the theoretical ratio.  This is 

followed by a discussion of the shape of the shear response curve itself and the various 

possible models that could potentially represent it (Section 4.2.6).  Ultimately two models 

are selected: A Burgers Model, which has historically been used to describe viscoelastic 

materials undergoing shear, and a Split Model, made up of two steps, a Kelvin-Voigt 

curve for points preceding the observed kink occurring mid-period, and a simple cubic 

for post-kink data.  The latter model originates from the theory that the aforementioned 

kink represents the point at which the viscoelastic limit has been reached, beyond which 

essentially viscous flow is occurring.  Various other observed intra-period features are 

also discussed, the most important of which are frequent jumps in response that exceed 

that measured from noise contributions (Section 4.2.8).  It is proposed that these jumps 

are a direct result of domain reorientations.  The frequency of jumps is found to decrease 

slightly with higher frequency shearing, but persist to the end of the test for all tested 

shear parameters. 
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     The topic of Large Amplitude Oscillatory Shear (LAOS) is introduced next (Section 

4.2.8).  Storage and loss moduli G and G obtained from rheology tests are shown as a 

function of percent strain in an effort to understand the shear dynamics of confined 

smectic 8CB, and the harmonic ratio (AN/A1, with A being the transformed response 

amplitude) of the Fourier Transformed SFA shear data are compared to those expected 

from a perfectly triangular response, the difference in theoretical and measured values 

giving evidence that the viscoelastic limit has, in fact, been exceeded for the larger 

amplitude shear cases.  This ratio is shown to increase for a short period following the 

onset of shear only in the tightly confined condition. 
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4.1  Rheology Results 

     Preliminary experiments were performed on smectic 8CB using a rheometer obtained 

from Rheometric Scientific Ltd.  Both dynamic tests and tests of steady vs. oscillatory 

shear were performed, the former over a frequency range of from 0.1 to 100 rad/sec and 

strain amplitude range of 0.01% to 100%, and the latter from 0.011 sec
-1

 to 237 sec
-1

.  All 

tests were performed using a cone-and-plate geometry with a 56 m gap, a cone diameter 

of 25 mm and a cone angle of 0.0988 radians.  The data was collected at three 

temperatures: 20.5°C, 22°C and 27°C.  The time domain shear response shows a slight 

elbow (or kink) that is most prominent for larger strains, as demonstrated below for a 

strain of approximately 10%: 

 

Figure 4.1: Overlay of the applied shear stress and resultant torque for 8CB confined to a 

56 m gap (for the rheometer) and 5 m gap (for the SFA), sheared with (for the 

rheometer sample) 10% and (for the SFA) 12.5% strain. 

 

As can be seen in the figure above, a similar elbow can be observed with smectic 8CB 

sheared using the SFA under similar conditions.  The SFA has an advantage over most 



 232 

rheometers in that it can easily explore smaller gap sizes and percent strains with 

customizable shear patterns and thereby provide a fuller picture of the transition from 

microscopic to bulk smectic 8CB dynamics.  It should be noted that because the shear 

profiles for the rheometry and SFA measurements are slightly different (sinusoidal for the 

former and triangular for the latter) one should not expect an exact match in the overall 

shape of the response.  The elbow does persist with both shear profiles, however, and the 

overall shear sweep can be thought of as being made up of two sections, an early steep 

part and a later shallow part.  This feature will be discussed in the sections that follow. 

 

 

 

 

 

 

 

 

 

 

 

 



 233 

4.2  SFA Shear Experiment Results 

     The shear responses that were obtained differed markedly in appearance depending on 

the shear parameters used.  A schematic showing the distribution of the observed 

response shapes is given below: 

 

Figure 4.2: Summary of the various shear response effects observed for smectic 8CB 

under mesoscale confinement using the SFA. 

 

Each square colour in the diagram above represents a response qualitatively different 

from other coloured squares in some way, while the pictographs within the squares 

represent the shape of the response corresponding to that colour, as described in the table 

below: 
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Table 4.1: Shear Response Characteristics 

Square Colour Shear Response Characteristics 

Lime Green Very noisy with no obvious response trends observed 

Light Blue 
Very noisy response, with a vaguely oscillatory response that is 

susceptible to thermal and electronic drift 

Forest Green 
Very noisy response, with a triangular response that is somewhat 

susceptible to thermal and electronic drift 

Dark Blue 
Slightly noisy triangular response that sometimes contain a small 

elbow early on in the shear sweep 

Cyan 
Well-defined triangular response that clearly exhibits a small elbow 

early on in the shear sweep 

Purple 
Well-defined largely triangular response with a smoothly changing 

slope throughout 

Orange Noise-free vaguely oscillatory response 

Red 
Very well-defined triangular response with slight blunting at the 

peaks 

 

 

All plots related to these shear experiments, showing the response for the first five 

periods, are presented in Appendix 1.   

 

     It should be noted that response curves to the right of the yellow line (labeled the ’10 

Hz filter line’), corresponding to the orange- and red-coloured squares in Figure 4.2, have 

been significantly altered by the presence of a 10 Hz low-pass post-amplification filter 

within the signal conditioning amplifier.  The filter was necessary to remove signals 

observed beforehand at 37-38 Hz due to vibrations from an air conditioning fan within 

the test room (which, in turn, was necessary to maintain a near-constant temperature 

within the test chamber, to minimize voltage drift in the strain gauge’s Wheatstone 

bridge).  The filter attenuation graph provided by the manufacturer indicates that the first 

harmonic of a 10 Hz triangular response will be attenuated by approximately 40%, while 

higher harmonics will be attenuated by 90% (for the second harmonic) or more (96% for 
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the third harmonic, 98% for the fourth harmonic, etc.).  Since the Fourier series of a 

triangular wave consists of a series of sine waves of decreasing amplitude, such an 

attenuation profile will lead to a blunted triangular response, matching the pattern 

observed for the 10 Hz shear responses.  The shapes of the 10 Hz curves, therefore, do 

not accurately describe physical phenomena and cannot be interpreted as being the result 

of a shear-related dynamic or structural shift in the 8CB.  A reconstruction of the 

response curve is possible by inverting the transfer function of the post-amplifier filter 

and applying it to the measured response, but because it may be inaccurate due to the 

small post-filter signals it has been omitted.  The amplitudes of the 10 Hz curves, 

however, can be easily reconstructed since the fine details of the response curve will not 

contribute greatly to its overall amplitude, and so have been used in the analysis that 

follows.  All 10 Hz response amplitudes have been increased by a factor of 35 , 

corresponding to the aforementioned first harmonic attenuation factor, which should 

reestablish the magnitude obtained before filtering. 

 

4.2.1  Reproducibility of Results 

     The SFA surfaces tend to deteriorate over time as shear is applied (a process that can 

be monitored by observing the concomitant deterioration of the quality of the FECO 

fringes from which the gap size is determined), making the optimization of the number 

and length of experiments critical.  One unfortunate byproduct of this property is that it is 

often difficult to perform multiple identical experiments to ensure the results are 

reproducible without sacrificing experiments that may yield more valuable results.  

Because of the inherently qualitative nature of the results and the overall sensitivity of 
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these results to varying experimental parameters, reproducing the experiment with a new 

pair of surfaces can also be unreliable and hence undesirable.  Even with great care, 

changes in surface quality, surface alignment, the amount of material being tested, and 

the strain gauge bridge balance will occur, all of which can alter the overall output data 

from experiment to experiment.  For this reason, it is essential to perform the entire set of 

experiments using a single pair of surfaces in order to minimize the variation between 

tests.  Nevertheless, duplicate experiments were performed following the initial series of 

tests in an attempt to reproduce the original results for the set of 625 nm shear amplitude 

tests.  A fresh set of surfaces were used, and the resistive strain gauge was used in place 

of the semiconductor strain gauge that had been used with the original tests.  The results 

were found to be quite similar in both shape and amplitude, and two examples are 

presented below in Figure 4.3:   

 

Figure 4.3: Overlay of shear responses from the original set of experiments (in blue) and 

experiments performed later (in red), showing the similarity between the two, for shear 

frequencies of (Left) 0.1 Hz and (Right) 1 Hz.  A driving amplitude of 625 nm was used 

in both cases.  

 

Note that the data from the second set of experiments (in red) is visibly noisier than that 

obtained from the later experiments (in blue), particularly for the 1 Hz results.  This is a 

consequence of the 10 Hz low-pass post-amplifier filter mentioned earlier, which was 
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used for the original tests but not for the subsequent tests, and of having used the less 

sensitive resistive strain gauge for the subsequent tests. 

 

4.2.2  Temperature Dependence of the Response 

     The shear experiments were performed at three separate temperatures:  Most were 

performed at 20.5°C, and the results in the sections that follow were taken at this 

temperature. Subsequent tests were performed at 22°C and 27°C, and all temperature 

readings had an uncertainty of ±0.1°C.  All tests were performed with the same pair of 

surfaces and setup, and the test room was allowed to adjust to each temperature over a 

period of ten to twelve hours.  The responses obtained at the two higher temperatures 

were generally weaker than those obtained at 20.5°, indicating, as expected, that the 

viscosity has decreased with increasing temperature.  An example of this response 

deterioration is shown below in Figure 4.4: 
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Figure 4.4: Initial shear response obtained at three different ambient temperatures, for 

8CB confined to a 500 nm gap, sheared at a frequency of 0.01 Hz and with an amplitude 

of 625 nm.  The shear profile is shown in red. 

 

The rapid drop in viscosity with temperature underscores the importance of maintaining a 

low, stable temperature within the SFA, so that the response will be large enough to keep 

the signal to noise ratio high.  

 

4.2.3  Shear Rate Dependence of the Shear Response Amplitude  

     The amplitudes of each shear response cycle were obtained by calculating the 

difference between the data extremes and converting it from voltage to shear force using 

the Friction Device calibration data (sample calculations for which have been provided in 

Equations (1) and (2) in Chapter 3).  For the gentle shear tests only slight changes in 

amplitude were observed, while under more aggressive shearing, particularly with large 

shear amplitudes, the amplitude change was much more apparent.  In the latter case, the 
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amplitude was found to decrease over time, indicating that the viscosity of the system 

was decreasing and hence that shear-induced time thinning was occurring.  An example 

of this behaviour is shown in Figure 4.5: 

 

Figure 4.5: Plot of shear response as a function of time for 8CB sheared at various 

frequencies (blue 0.01 Hz, red 0.1 Hz, green 1 Hz and violet 10 Hz) using a shear 

amplitude of 6.25 m and a gap size of 500 nm. 

 

Both upward and downward shifts in response (the latter corresponding to shear-induced 

time thickening) were observed, as summarized in Figure 4.6 below: 
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Figure 4.6: Summary of the changes in shear response amplitude for various shearing 

parameters.  The square colours represent the shape of the shear response, as given in 

Table 4.1.  Upward pointing arrows represent an observed increase in amplitude with 

time, while downward pointing arrows represent a decrease in amplitude with time and 

flat lines represent responses that were indeterminate due to the low signal to noise ratio. 

 

 

The extent of thinning and thickening was generally found to be more pronounced in tests 

using a 0.5 m gap size than for those using a 5 m gap size, particularly during large 

amplitude shearing.  A plot of the shear response amplitude as a function of shear rate for 

both gap sizes, both shortly after the onset of shear and at asymptotic times (from one 

hour for 10 Hz shear tests to eight hours for 0.01 Hz shear tests), is shown below: 

 

Increasing Shear Rate

Increasing

% Strain

0.0005 0.005 0.05 0.5 (s-1)
.

5 50 500

0.0125

0.125

0.125

1.25

1.25

12.5

Strain

Amplitude

Increasing Shear Rate

Increasing

% Strain

10 Hz line

5 m gap

0.5 m gap

Increasing Shear Rate

Increasing

% Strain

0.0005 0.005 0.05 0.5 (s-1)
.

5 50 500

0.0125

0.125

0.125

1.25

1.25

12.5

Strain

Amplitude

Increasing Shear Rate

Increasing

% Strain

10 Hz line

5 m gap

0.5 m gap



 241 

 

    
 

Figure 4.7: Log-log plots of shear response amplitude as a function of shear rate for gap 

sizes of (Top) 5 m and (Bottom) 0.5 m.  Empty symbols represent the response during 

the first few (one to five) shear cycles and have solid error bars, while solid symbols 

represent the response at asymptotic times and have dotted error bars.  Responses are 

normalized by shear amplitude for direct comparison. 
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The shear response uncertainty values shown in the figures above were estimated by 

assuming that over short time intervals (approximately five shearing periods) at 

asymptotic times (after hundreds or thousands of shearing periods, by which point 

changes in response amplitude were found to be minimal) the test conditions had changed 

only minimally, so that the variance in shear response can be accounted for only by 

uncertainty in the fitting, not in changes to the structure or dynamics of the sheared 

sample.    

 

     The change in shear response amplitude, A, as a function of time can also be modeled 

for the various test parameters.  The following models were attempted:  

i) A single exponential fit, 
0

ACeA
t


   (where A is the shear amplitude, C is a 

proportionality constant, A0 is the asymptotic response amplitude, t is time and 

 is the time constant), indicating a single response time is sufficient to 

characterize the shear response, was found to be acceptable (that is, having a 

coefficient of determination, R
2
, consistently above 0.9) for some test cases, 

but failed frequently both at early and asymptotic times for other test cases;  

ii) A stretched polynomial with offset fit,  
0

exp AtCA 


  (where  is a 

stretching exponent, ranging from 0 for a line, to 1 for an ideal exponential), 

representing a smooth distribution of shear responses (the response time 

envelope of which is characterized by ), was attempted next.  It produced 

reasonable results, but also produced fitting parameters that showed no 

sustainable trends and consistently failed to reproduce the sharp curvature 

observed at early times for large amplitude shear tests, examples of which can 
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be seen in the purple and, to a lesser extent, the green curves in Figure 4.5.  

And;  

iii) A two exponential fit,
021

21 AeCeCA
tt


  , representing two distinct shear 

responses each with its own response time (themselves represented by time 

constants 1 and 2), was attempted and was found to be acceptable in all cases 

where amplitude shifts were observed.   

 

A sample two exponential fit is given below: 

 

Figure 4.8: Shear response amplitude as a function of time for smectic 8CB sheared at 

0.1 Hz frequency, 6.25 m amplitude and gap size 0.5 m, with an overlay of the two 

exponential fit reconstruction line shown in red. 

 

A plot of the two exponential time constants as a function of shear rate for the two gap 

sizes is given below for the largest shear amplitude: 
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Figure 4.9: Plot of relaxation time constant vs. shear rate for shear amplitudes of 6.25 

m.  Small and large gaps refer to 0.5 m and 5 m gaps, respectively.  ‘t1’ and ‘t2’ refer 

to the 1
st
 and 2

nd
 time constants in the fitting equation 

021

21 AeCeCA
tt


  , 

respectively. 
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and the time constant, upper , was then recorded.  The process was then repeated for time 

constants below the best fit value, lower , and the difference between the two was used as 

a rough estimate of time constant uncertainty.  Before a more rigorous analysis can be 

done, though, further processing of the noisier data sets is necessary, the method of which 

will be discussed in the following section. 

 

4.2.4  Data Reproduction in Frequency Space 

          For smaller shear amplitudes, noise accompanying the response often makes the 

determination of amplitude difficult, and so further data processing is necessary to assist 

in the analysis.  In order to improve the signal to noise ratio, Discrete Fourier Transforms 

(DFTs) and Power Spectra were generated for each data set using software written in 

LabVIEW by the author.  Spectra were generated for one, two, five and ten cycle bins of 

data and the results were compared to ensure that no extraneous peaks were created due 

to the data processing.  No such peaks were found even for the single cycle transforms; 

furthermore, only the single cycle transforms properly maintained the rapidly changing 

changes to the curve that sometimes occurred early on in the more aggressive shearing 

process.  A sample overlay of the Fourier Transform reconstructions for the bin sizes 

tested is given in Figure 4.10:   
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Figure 4.10: Overlay plot of shear response as a function of time for smectic 8CB 

sheared at 1 Hz frequency, 625 nm amplitude and gap size 5 m. 

 

A simple low-pass filtration of the signals at a cutoff frequency of 10f0 (where f0 is the 

fundamental frequency of the triangular driving force) reduced the noise considerably, as 

shown in Figure 4.9 (leftmost plot).  As a result, any fast and non-periodic events that 

may occur as a result of shearing must necessarily be filtered out.  By assuming the 

responses are roughly triangular (visually ascertainable from the shear response in most 

cases) like the driving force, a further filtration was performed wherein all non-harmonic 

frequencies in addition to all frequencies above the 10
th

 harmonic within the DFTs were 

removed, and an inverse DFT was then performed to recreate the original responses, 

including only their ten lowest harmonics.  The noise in the resultant response was 

largely suppressed, and in some cases the characteristic ‘elbow’ observed in large (6.25 
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amplitude shear responses as well.  An example of this filtered signal is shown in Figure 

4.11 (rightmost plot). 

 

Figure 4.11: Plot of (left) an overlay of unfiltered data and data with a 10f0 low-pass 

filter, and (right) an overlay of unfiltered data and data with the harmonic filter used. 
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2
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the overall signal well and should be more easily discernable than the unprocessed data as 

most of the noise across the frequency spectrum will have been removed.  An example of 

this is shown in Figure 4.12, where the response and the first harmonic are overlaid to 

show their similarity. 
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Figure 4.12: Overlay of a typical peak-peak amplitude vs. time curve and its 

corresponding first harmonic vs. time curve.  On the left, an exact overlay is shown to 

demonstrate the similarity of the curves for a relatively noise-free response, while on the 

right the original data (in green) and the first harmonic data (in red) have been vertically 

offset by 10 N from one another to more clearly illustrate the difference in signals at 

early times for a noisier response. 

 

The magnitude of the first harmonic-determined amplitude was determined by finding the 

average peak-peak amplitude of the unfiltered data and the average amplitude of the first 

harmonic magnitude, then multiplying the latter by the ratio of amplitudes.  As can be 

seen from the examples in Figure 4.12, the shape of the amplitude curve is well-preserved 

in the first harmonic curve both for the well-defined and noisier results, but with periodic 

artifacts removed, giving a slightly smoother curve that can be more easily fitted and 

interpreted. 

   

     The one-cycle DFT first harmonic responses exhibited a measurable change in 
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change, which is likely due to the exceptionally low signal to noise ratios masking the 

response for those tests.  These harmonics can be fitted to a double exponential curve, 

 
0211

21 AeCeCA
tt


 

 , as was discussed in Section 4.2.3 for the raw shear 

response; a sample overlay plot of data and fit is given in Figure 4.8.  Overlay plots of 

shear response and fitted curve for all tested shear parameters are presented in Appendix 

A1, Section 5.  By plotting the smaller time constant, 1, as a function of shear rate on a 

log-log plot, the relationship between the two becomes clearer: 

 

Figure 4.13: Plot of shear response time constants as a function of shear rate for 0.5 m 

gap shear experiments for various shear amplitudes.  Responses involving shear-induced 

time thinning responses have been marked; all others involve shear-induced time 

thickening.  Also included are the peak shift time constants from similar experiments 

using an XCC
323

. 
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Figure 4.14: Plot of shear response time constants as a function of shear rate for 5.0 m 

gap shear experiments for various shear amplitudes.  Responses involving shear-induced 

time thinning responses have been marked; all others involve shear-induced time 

thickening.  Also included are the peak shift time constants from similar experiments 

using an XCC
323

. 

 

The time constant uncertainties shown in the above two plots were estimated as they were 

with the data presented in Figure 4.9, by refitting the curves with increasingly deviating 

time constant values until either the constant of determination, R
2
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best fit value or the fit failed to converge altogether, and by using the resultant total 

variation in time constant as the uncertainty. 
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many cases contribute little enough to the fit that the response effectively follows a single 

exponential curve,   1

11




t
eCA


 .  Because the secondary time constants are often on 

the order of several thousand seconds and as such are comparable in time to measurable 

temperature changes within the SFA chamber (<0.25C), it is likely the 2 values 

correspond to a combination of thermal signal drift and long-term electronic instability 

rather than a shear effect.  Time constants obtained by fitting the peak position data from 

x-ray data obtained previously
323

 have been included in Figures 4.13 and 4.14 to show 

that the crystallographic observables follow similar time dependent behaviour. 

 

4.2.5  Comparison of Shear Responses for Large and Small Gap Sizes 

     Figure A5.10, presented in Appendix 5, shows the magnitude of shear response 

generated by a crossed cylindrical geometry of chosen gap size, relative to a response due 

to a fixed parallel-plane geometry of fixed gap size (0.005 m).  This theoretical value 

has been calculated by integrating the response predicted by Newton’s Theory of 

Viscosity over the crossed cylindrical surfaces and assuming a perfectly cylindrical 

sample (with ends distorted due to the crossed cylindrical confining surfaces) of constant 

volume and constant, single-valued viscosity, with fluid motion occurring entirely in the 

shear plane.  Since all response lines are calculated relative to the same fixed planar shear 

conditions (including gap size), any two lines can be compared to one another easily by 

simply dividing the normalized geometric constants, g0.005CCC/gx, for the gap sizes gx, 

using an experimentally-determined sample radius, following the relationship established 

by equation (12) in Appendix 5.  For the gap sizes used in the present study, 0.5 m and 

5.0 m, the ratio of shear responses has been calculated to be approximately 1.57.  That 
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is, for a sample of constant volume being sheared with a set frequency and magnitude, by 

adjusting the gap size from 5.0 m to 0.5 m the theory predicts the shear response will 

increase by a factor of 1.57, assuming the viscosity of the sample remains constant.  

Figure 4.16 shows this ratio for the three shear amplitudes tested as a function of time, 

with 0t  corresponding to the onset of shear. 
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Figure 4.15: Plots of Shear Response Ratio F0.5/F5.0 as a function of time for shear 

amplitudes of (Top) 62.5 nm, (Middle) 625 nm and (Bottom) 6.25 m for various shear 

frequencies. 
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Figure 4.15 shows that while the average response ratios for both the 62.5 nm and 625 

nm shear amplitude all tend to begin between 1.0 and 1.6, those for the 6.25 m shear 

amplitude begin noticeably higher, ranging from 1.82 for the 10 Hz shear test to 4.3 for 

the 0.1 Hz shear test, before settling to values below 2.0.  An interpretation of this 

behaviour is presented in the Discussion chapter. 

 

4.2.6  Intra-period Fitting Results 

     With each experiment, the response from thousands of shear cycles was collected, 

with each period consisting of a half period of shear in one direction and a half period of 

shear in the other direction.  Each half-period was fitted to several different model 

equations using LabVIEW-programmed fitting tools with varying degrees of success, 

with an acceptable fit considered to be one in which the coefficient of determination, R
2
, 

frequently exceeds 0.9.  All nonlinear models were fitted using a Levenberg-Marquardt 

algorithm.  The following models, similar to those used during the inter-period fitting, 

were attempted during the fitting process: 

i) Polynomial fits of up to third order (i.e. 




n

k

k

k
tC

1

0
  where n is 1, 2 and 

3 for the linear, quadratic and cubic fits, respectively; 
i

 represents the intra-

period shear response) were attempted and were found to be inadequate for all 

reasonably well-defined shear responses, both at early and asymptotic times.  

Polynomials above third order were not attempted as there was no obvious 

physical interpretation for such a model.  An example of a linear fit is given in 

the left-hand graph of Figure 4.16. 
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ii) Both single and stretched single exponentials (
0





 t
Ce  and

 
0

exp 

 tC ) were also attempted, but yielded poor fits, particularly 

for those responses that contained a sharp elbow at either early or late times 

within the shear period.  A sample exponential fit is given as the right-hand 

graph of Figure 4.16.  

iii) A two exponential model, 
021

21 



 tt

eCeC , generally fit the data 

well, including those data sets containing elbows, with R
2
 values typically 

exceeding 0.90, but it was unclear what the physical mechanism would be that 

could be described by such a model.  A sample two exponential fit is given as 

the left-hand graph of Figure 4.17. 

iv) The data was then fitted to a more physically realizable model, the Burgers 

Model (derived in Appendix 2): 

 











221

11

211






tk
e

k

t

k
                                                                    (1) 

where  is the deformation of the system (here representing the deflection of 

the bridge as measured by the strain gauges of the SFA’s Friction Device), k1 

and k2 are the elastic components of the system, 1 and 2 are the viscous 

components and t is time after the strain is first applied.  A sample Burgers 

Model fit is given as the right-hand graph of Figure 4.17, and shear 

response/Burgers Model fit overlay plots for all tested parameters are 

presented in Appendix 1, Section 2. 

v) To accommodate the elbow at time te that is believed to represent the smectic 

8CB’s transition from viscoelastic medium to plastic flow (as discussed in 
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Sections 5.4 through 5.6), data sets involving shear amplitudes of 6.25 m 

have been modeled with a two-step equation, with points before the elbow 

fitted to a Kelvin-Voigt model and the points following the elbow fitted to a 

simple cubic: 

   

   
02

23

01
1














tCtCtCtt

e
k

tt

LQCe

kt

e

 

where CC, CQ and CL are cubic fitting coefficients and 01 and 02 are offset 

values.  The te  initial value was determined by eye for each data set and was 

allowed to float during fitting by 10%.  Fits were performed at each 

prospective te value, and the final te value was determined by which set of pre- 

and post-elbow fits produced the highest summed R
2
 values.  A sample Split 

Model fit is given in Figure 4.18, and shear response/Split Model fit overlay 

plots for all tested parameters are presented in Appendix 1, Section 6. 

 

 

Figure 4.16:  Overlay plot of shear response and (Left) a linear best fit curve and (Right) 

a single exponential best fit curve using a variable offset.  The raw data is presented in 

red while the best fit curves are presented in blue and green.  The difference between 

each overlain set of points is shown on the lower portion of the graph in light blue and 

teal, labeled as Mean Error on the right axis. 
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Figure 4.17:  Overlay plot of shear response and (Left) a two exponential best fit curve 

using a variable offset and (Right) a Burgers Model best fit curve.  The raw data is 

presented in red while the best fit curves are presented in blue and green.  The difference 

between each overlain set of points is shown on the lower portion of the graph in light 

blue and teal, labeled as Mean Error on the right axis. 

 

 

 

Figure 4.18:  Overlay plot of shear response and a Split Model best fit curve using a 

variable offset.  The raw data is presented in red while the best fit curves are presented in 

blue and green.  The difference between each overlain set of points is shown on the lower 

portion of the graph in light blue and teal, labeled as Mean Error on the right axis. 

 

A physical interpretation of the two exponential and Burgers Model fit is proposed in 

Section 5.3.  Plots of the Burgers Model and Split Model fitting parameters as a function 

of time are given in Appendix 1, Sections 3 and 7, respectively.  
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4.2.7  Intra-period Features 

     One notable phenomenon that was observed for gentle shearing conditions was the 

‘jump’: a frequent, spontaneous, brief deviation from the typical response path that 

sometimes occurred more than once in any given period.  The deviations, typically 3-5 

N in size and sometimes larger, were often considerably larger than the 1-2 N 

fluctuations attributed to noise (as determined by recording responses while the system 

was not undergoing shear), and had a large range of durations (typically 30% to 80% of 

the half-period) that lasted longer than fluctuations typical of system noise (up to 0.1 

seconds) and much shorter than that observed due to electrical and thermal drift (typically 

several minutes or longer).  An example of this behaviour is given below: 

 

Figure 4.19: An example of the ‘jump’ behaviour observed under gentler shearing 

conditions.  Here, the sample is being sheared with an amplitude of 62.5 nm, a frequency 

of 1 second, and a gap size of 0.5 m. 

 

-8

-6

-4

-2

0

2

4

6

8

0 1 2 3 4

Time (sec)

S
h

e
a

r 
R

e
s

p
o

n
s

e
 (


N
)

'Response Jumps'



 259 

     The results of Nieman et al demonstrated a fundamental difference in behaviour 

between sheared 8CB samples confined to 0.5 m and those confined to 5.0 m
323

.  

While at the larger gap shifts in peak amplitude and mosaic were seen to be smooth, 

when confined to the smaller gap, and particularly when the shear frequency is low, shifts 

in peak amplitude and mosaic were found to occur discretely.  Assuming changes in 

domain reorientation will slightly alter the local viscosity, which may in turn alter the 

shear response, it is possible that this behaviour will also manifest itself in the SFA data 

in the form of these sudden jumps and drops in amplitude.   

 

     By selecting an appropriate cutoff level for cycle to cycle changes in shear response, 

one can filter out those amplitudes that are conspicuously above the expected noise level, 

and which are therefore candidates for evidence of punctuated domain reorientation.  The 

level is defined as being the response shift at which only a small number of outlying 

points (eight to fifteen) remains unfiltered over the entire data set.  To avoid jumps due to 

random noise within a single cycle or a small number of cycles, rather than choosing a 

single outlying point, groups of ten averaged together have been chosen for comparison 

instead to demonstrate a sustained change in response.   
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Figure 4.20: Diagram of how jump criteria are implemented.  A window of fixed width 

(10 data points) sweeps each section.  If the difference between a data point and its 

Burgers fit point exceeds a set value for ten consecutive points, the block is counted as a 

‘jump’.  No further blocks can be counted until at least one data point passes to the 

opposite side of the Burgers curve to avoid double-counting. 

 

This ‘jump’ criterion tends to be higher for smaller periods and for larger shear 

amplitudes, suggesting that in higher shear rate experiments any jumps due to domain 

reorientation are masked by larger random jumps due to the aggressive shearing and not 

necessarily to domain reorientation.  To determine whether there is indeed a decreasing 

frequency of response shifts, the number of these occurrences has been counted and 

binned in 1800 second windows, as shown in the figure below: 
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Figure 4.21: Plots of the number of jumps as a function of time for 8CB confined to a 

(Left) 5000 nm gap and a (Right) 500 nm gap, with shear amplitudes of (Top) 62.5 nm, 

(Middle) 625 nm and (Bottom) 6.25 m and shear frequencies from 0.01 Hz to 10 Hz. 

 

It is important to note that the data sets for 10 Hz shear data ran only for 3600 seconds, 

and so only the first two time bins in that row of Figure 4.17 contain relevant data.  

Similarly, the 0.1 and 1.0 Hz data sets ran for 10 800 seconds, so that only the first three 
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time bins are relevant.  Only the 0.01 Hz data sets run for the full 23 400 seconds and 

hence use all the time bins. 

 

     For 8CB sheared at higher shear frequency (1 Hz and 10 Hz) the number of jumps 

generally tends to fall fairly rapidly, although for experiments performed with 625 nm 

shear amplitude the number of jumps actually increased slightly with time.  Conversely, 

for 8CB sheared at lower frequency (0.01 Hz and 0.1 Hz) the number of jumps tends to 

stay fairly constant throughout the shear process.  This may be an indication that for 

faster shearing, the entire domain reorientation process (which manifests itself as these 

‘jumps’ in the shear response) is occurring rapidly while for slower shearing domain 

reorientation it is still occurring even after several hours.  In general, though, the low 

sample size making up the statistics and the overall lack of strong trends in the graphs 

above make it difficult to draw firm conclusions as to whether the domain reorientation 

occurs smoothly or in discrete events.  It is also important to recall that, because the 10 

Hz data was filtered, its intra-period behaviour may not be truly representative of the 

number of jumps actually occurring.  Groups that have studied bulk smectic 8CB under 

shear have noted the presence of defects that persist for many hours during aggressive 

large amplitude oscillatory shearing (LAOS, with 0.1 and 1
sec10


 )

371
.  Recalling 

Horn and Kléman’s report of a correlation between the removal of defects and domain 

reordering
42

 (albeit during LAOS), and that Choi et al have demonstrated a greater 

stiffness and stored energy associated with these defects
225

, which would necessarily be 

released by their removal, their presence and persistence further suggest a link between 

them and the response jumps observed in the present study which, while slightly 
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diminished over time, are present throughout the tests regardless of the shear parameters 

used.  

 

 

4.2.8  Large Amplitude Oscillatory Shear 

     A proper analysis of the results must consider the relative length scales of the shear 

amplitudes and the material being sheared: While the 8CB dimer is 3.17 nm in length
327, 

372
 and may form domain structures bounded in length by the gap sizes of 0.5 m and 5.0 

m, the total shearing distance varies from 2  62.5 = 125 nm  to 2  6.25 = 12.5 m.  

Because the shear amplitudes often exceed the maximum domain lengths, simple 

oscillatory shear theory may no longer apply, and the system is more accurately described 

using the techniques developed in the field of Fourier-Transform rheology, which have 

had success in dealing with large-amplitude oscillatory shear phenomena
373-375

.  This 

method of shearing materials at amplitudes far beyond their fundamental length scales is 

often abbreviated to LAOS (Large Amplitude Oscillatory Shear). 

 

  

     One technique developed by Wilhelm et al involves studying the behaviour of storage 

and loss moduli, 'G  and ''G , as they vary with strain during LAOS
376

.  The smectic 8CB 

moduli were calculated from the dynamic rheology tests presented in Section 4.1 and are 

presented below as a function of percent strain: 
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Figure 4.22: Storage and loss moduli, 'G  and ''G , for 8CB under 56 m confinement 

and various shear frequencies. 

 

These results will be discussed in Section 5.5.   

 

     Another technique developed by Wilhelm involves examining the deviation of shear 

response from its sinusoidal shape while the material undergoes LAOS.  In an effort to 

extend this technique to triangular shear tests as were used with the SFA, plots of the 

ratio of higher harmonics to the fundamental are thus presented for each of the three 

tested shear amplitudes in Figures 4.23 to 4.25.  The values were obtained by performing 

a Discrete Fourier Transform on the raw SFA shear response data, the details of which 
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are presented in Section 4.2.4, extracting the harmonic components, and calculating the 

relevant ratios from them. 

 

 

Figure 4.23: Plots of the ratio of harmonic amplitude to the fundamental amplitude 

1
AA

N
 as a function of harmonic number, for 62.5 nm amplitude shear.  Solid symbols 

indicate tests performed using a 0.5 m gap size and open symbols indicate tests 

performed using a 5.0 m gap size.  The expected values for a perfectly triangular 

response are shown as dotted lines on each graph. 
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Figure 4.24: Plots of the ratio of harmonic amplitude to the fundamental amplitude 

1
AA

N
 as a function of harmonic number, for 625 nm amplitude shear.  Solid symbols 

indicate tests performed using a 0.5 m gap size and open symbols indicate tests 

performed using a 5.0 m gap size.  The expected values for a perfectly triangular 

response are shown as dotted lines on each graph. 
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Figure 4.25: Plots of the ratio of harmonic amplitude to the fundamental amplitude 

1
AA

N
 as a function of harmonic number, for 6.25 m amplitude shear.  Solid symbols 

indicate tests performed using a 0.5 m gap size and open symbols indicate tests 

performed using a 5.0 m gap size.  The expected values for a perfectly triangular 

response are shown as dotted lines on each graph. 

 

     It is interesting to note that, while under gentler test conditions, the ratio 
1
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N

 

remains relatively constant over time (as exemplified by
13

AA , which provides the 

clearest values since the first harmonic, A3, is larger than all other higher harmonic 

intensities), in some tests, particularly those involving more aggressive shearing at large 

amplitudes and the smaller gap size, a slight increase in the value was noted early into the 

shearing process.  The most pronounced example of this effect was observed in tests 

using the largest shear rate (shear frequency of 10 Hz, shear amplitude of 6.25 m and 

gap size of 0.5 m).  Results for this shear amplitude at the shearing frequencies tested 

are shown for gap sizes of 0.5 m and 5 m in Figure 4.26, and a direct comparison of 
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the 10 Hz results is given in Figure 4.27, showing the marked difference in behaviour 

shortly after the onset of shear.  The ratios displayed in these plots have been offset from 

one another so that they may be more easily compared with one another.   

 

 

Figure 4.26: Ratio of amplitudes,
13

AA , as a function of shearing time for shear 

parameters μm25.6A , (Top) μm5D and (Bottom) μm5.0D , and various shear 

frequencies. 
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Figure 4.27: Ratio of amplitudes,
13

AA , as a function of shearing time for shear 

amplitude μm25.6A  and shear frequency 10 Hz for 0.5 m and 5 m gap sizes. 
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Chapter 5 

Discussion 

 
           The following chapter will discuss how the results presented in Chapter 4 compare 

to the current body of knowledge, and what new conclusions can be obtained from them.  

It begins with a brief review of the recent findings particular to smectic 8CB under shear, 

and introduces the idea that domains may be spanning the 0.5 m gap but not the 5.0 m 

gap (Section 5.1).  It stresses as well that SFA results include contributions from the 

entire sample volume, not just a small region as with the XSFA, a fact that must be 

considered when comparing the two sets of data.  The viscoelastic response is found to 

follow a simple power law viscoelastic model that varies somewhat with the shear 

amplitude applied (Section 5.2).  Contrary to results obtained in bulk, shear thinning is 

only observed for small amplitudes (as indicated by the 62.5 nm amplitude mesoscale 

results), while larger amplitudes (625 nm amplitude and higher) result in slight shear 

thickening.  The yield stress characteristic of smectic materials under shear is also 

reported here for smectic 8CB, a property that has been associated with defects within the 

material. 

 

     The dependence of viscosity change on gap size is explored next, and the shear-

induced thickening over time that occurs with smaller shear amplitudes and lower shear 

rates is discussed, in particular for the smaller gap (Section 5.3).  When considered in 

combination with prior x-ray results that show an increase in mosaic near the area of 

tightest confinement, it is concluded that while the sample in this region undergoes 
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considerable domain reorientation (discretely), the majority of material under shear, 

which is more bulklike due to the crossed cylindrical geometry, contains domains that are 

unable to reorient but which are strained and deformed enough to stiffen the material 

overall.  It is also noted that, while undergoing LAOS, smectic 8CB confined to the 

smaller gap fully reorients the sample domains more quickly than the larger gap.  It is 

proposed that this may be due to single domains spanning the smaller gap (but not the 

larger gap) in the vicinity of tightest confinement, thereby hastening the process of 

domain reorientation due to the sample being stiffer in this region.  The process is also 

hastened due to the smaller viscoelastic limit associated with a smaller gap size, and this 

suggests shearing the sample beyond this point is more effective in realigning domains 

confined to mesoscale gaps than in shearing with smaller amplitudes. 

 

     The role of shear amplitude on viscosity change is discussed next, and a model is 

developed to equate the two (Section 5.4).  It is proposed that the influence of shear 

amplitude is due to the sample having been sheared beyond its viscoelastic limit, forcibly 

dislodging the domains from their neighbours and thereby facilitating their reorientation 

in the shear direction.  The type of LAOS behaviour exhibited by smectic 8CB is then 

determined via rheological results, and the increase of harmonic ratio with time during 

large amplitude shearing shown in Figures 4.26 and 4.27 is linked to observations by 

Wilhelm, who attributes the behaviour to domain reordering
376

 due to LAOS in similar 

smectic materials.   
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     The shear dynamics of smectic 8CB under mesoscale confinement are then compared 

to those of bulk smectic 8CB (Section 5.6).  The storage and loss moduli are found to 

vary similarly with shear frequency for the two levels of confinement, while the large 

amplitude behaviour that is reported by Larson to destroy alignment in bulk
371

 is found to 

promote alignment in the mesoscale regime.  Time constants associated with sheared 

bulk smectic 8CB are found to greatly exceed those observed at mesoscale levels of 

confinement, reinforcing the importance of gap size in determining its shear-related 

behaviour.  Reports of defects persisting even within aggressively sheared smectic 

materials are ascribed to smectic 8CB as well, and for this reason are linked to the 

intermittent jumps in response discussed in Section 4.2.7. 

 

     A discussion of the observed intra-period features follows (Section 5.7).  The 

discussion includes: 

 The fitting of the shear response profile to a Burgers Viscoelastic Model, whose 

fitting parameters are found to vary exponentially with time;  

 The intra-period elbow occurring roughly at 1.2  0.3 m that, it is theorized, is a 

result of the transition from viscoelastic behaviour to purely viscous behaviour as the 

viscoelastic limit is exceeded;   

 The frequent jumps in response, which are attributed to defects within the sample 

and domain reorientation due to the shearing process.   

 

     A discussion of the parameters’ behaviour over time follows (Section 5.8).  

Specifically, the observed decreasing effective viscosity terms coupled with an 
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increasing Kelvin-Voigt viscosity term indicate that the smectic 8CB is overall becoming 

less resistant to flow due to aggressive shearing during LAOS (6.25 m shear amplitude), 

despite its post-viscoelastic limit state tending to stiffen over time.  In addition, an 

observed drop in the Kelvin-Voigt time constant is attributed to a softening of the 

viscoelastic limit itself.  For shear tests with smaller amplitudes (625 nm and less), a 

slight rise in the Burgers’ viscosity parameters are noted, along with a softening of the 

viscoelastic limit, similar to but less prominent than that observed during LAOS.  A 

discussion of the Split Model fits used for LAOS follows; the model represents a system 

which obeys simple Kelvin-Voigt behaviour up to a transition point and beyond which 

plastic flow occurs, indicating the 8CB has exceeded its viscoelastic limit under this 

aggressive shearing.  These findings are then summarized and discussed (Section 5.9), 

and finally topics for future work in this area are suggested (Section 5.10). 
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5.1  Comparison to Earlier Work with Confined 8CB Under Shear 

     The results presented in the previous chapter when taken together indicate that a 

complex assortment of behaviours is occurring over the range of shear conditions tested.  

The work of Safinya et al
52, 53

, Idziak et al
54, 127, 128, 317

 and Ruths et al
125

 have laid the 

groundwork for understanding the structure and dynamics for sheared 8CB under 

confinement, as discussed in Section 1.5.  A brief review of the conclusions relevant to 

the present study is summarized below. 

 

     With the X-ray Confinement Cell (XCC), Idziak et al demonstrated that while under 

mesoscale confinement (corresponding to gap sizes of from 0.1 to 10 m) by mica 

surfaces, sheared smectic 8CB takes on the three possible orientations
317

 previously 

defined by Mięsowicz
34-36

, shown pictorially in Figure 5.1: 

 

Figure 5.1: The three possible confined liquid crystal orientations as defined by 

Mięsowicz, using the modern a-b-c nomenclature for smectic liquid crystals. Here, ‘v’ is 

the shear (velocity) direction and ‘n’ is the director of the smectic layer. 

 

  The ‘b’ orientation, in which the smectic’s director aligns with the direction of shear 

flow, was believed to have arisen due to the loading of the sample into the confinement 

space.  The degree of 8CB alignment was found to increase down to a gap size of 3.4 m 
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when soft surfaces were used, below which it fell off considerably.  With hard surfaces 

similar to those used in the tests presented here, however, this effect was not observed, 

and the ordering of the 8CB decreased only slightly from 7 m down to the smallest gap 

size tested (below 0.5 m).  These results indicate that the surfaces have a significant 

influence on the ordering of 8CB at this level of confinement, even without the added 

influence of shearing.  The peak in ordering at 3.4 m indicates that, given the 

opportunity to re-order, 8CB domains have the capacity to span confinement gaps of this 

approximate size, and so it is reasonable to conclude that this is the case for the smaller of 

the two gap sizes tested in the present study (0.5 m), but may not necessarily be the case 

for the larger of the two gap sizes tested (5.0 m).  Ruths et al report domains of size 2-5 

m are observed in smectic 8CB confined to gaps in the vicinity of the mesoscale regime, 

confirming this hypothesis
125

. 

 

     Because their test conditions are very similar, it is worthwhile comparing the results of 

the present experiments with those performed by Nieman et al using the XCC
323

.  Both 

experiments focused on 8CB confined to two gap sizes, 0.5 m and 5.0 m, and both 

included a wide range of shear amplitudes (62.5 nm to 6.25 m for the SFA, and 62.5 nm 

and 3.75 m for the XCC) and shear frequencies (from 0.01 Hz to 10 Hz for both 

devices).  One critical difference between the two experiments is that with the XCC one 

probes a sheared sample’s structural properties via x-ray diffraction, while with the SFA 

one measures the same sample’s physical properties mechanically via strain gauges.  This 

difference leads to an important distinction in the sample size being tested:  While the 

XCC’s sample size is defined by the beam size (in Nieman et al’s case, 50 m
2
), the SFA 
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measures the shear response generated by the sample as a whole.  It is assumed that 

contributions from the most constrained sample (i.e. nearest the point of closest approach 

of the confining surfaces) dominate the response, but in practice some contribution from 

the more bulklike sample will likely also be present.   

 

     Figure 5.2 provides a rough guide as to the cumulative shear response contribution as 

a function of the distance from the point of closest approach for a sample volume of 4 

mm
3
 (similar to the sample volume, as judged by eye), assuming the sample behaves 

similarly at all levels of confinement.  For the tested gap size of 0.5 m, for example, a 

contact circle of 0.65 mm radius (representing 4.7% of the total contact area covered by 

the sample) makes up approximately 50% of the total shear response contribution.   

 

Figure 5.2: Sketch of the contact area (in red) representing 4.7% of the total sample 

contact area between the surfaces and approximately 50% of the shear response 

contribution as predicted in Appendix 5 for a sample volume of 4 mm
3
.  The area 

encompasses all gap sizes from 0.5 m to 11.1 m, spanning the entire mesoscale 

regime. 
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This contact circle represents the ring over which the gap size has increased to 11.1 m, 

according to Equation (5) from Appendix 5, beyond what is generally considered the 

mesoscale regime (0.1 to 10 m).  Consequently, on the order of 50% of the response 

may be due contributions from the bulklike portion of the sample.  While the numbers 

here may vary considerably depending on how the 8CB dynamics depend on 

confinement, the rough estimates above indicate that the bulklike response contribution 

should not be disregarded outright.  
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5.2  Shear Rate Dependence of Viscosity 

     Figure 4.7 shows the viscosity (represented by shear response) as a function of shear 

rate for the three shear amplitudes and two gap sizes tested.  The straight lines on these 

log-log graphs demonstrates that each data set on its own follows a simple power law 

viscoelastic model (also referred to as the Ostwald-de Waele power law)
377

: 

  1


n
K                                                                                                                   (1) 

where K is known as the flow consistency index (or consistency) and n is the flow 

behaviour index (or power law index)
378

.  Interestingly, while the shear tests at the two 

gap sizes have fairly similar K and n values for a given shear amplitude, the shear 

amplitudes themselves actually produce distinct power law relationships.  As power 

index values greater than unity indicate a shear thickening material, and less than unity 

indicate a shear thinning material, of even more interest is that 625 nm and 6.25 m 

amplitude shear tests result in fundamentally different behaviour, with their gentle but 

positive slopes ( 1n ) indicating shear thickening may be occurring, unlike the 62.5 m 

amplitude tests, whose negative slopes indicate slight shear thinning is occurring.  Ruths 

et al report that the viscosity of sheared, highly confined (1.6-1.7 nm gap size) smectic 

8CB decreases with increasing shear frequency
125

.  This discrepancy may be due to the 

mix of mesoscale and bulk material being sheared; while 8CB domains near the point of 

closest approach align in the shear direction, the large amplitude shearing may have an 

opposite, disruptive effect on bulk 8CB, an effect reported by Larson
371

 and discussed in 

Section 5.6, which may in turn increase the overall viscosity due to domain entanglement 

in this regime.  The table below gives the complete set of K and n values for all tests, 

both at the onset of shear (subscript ‘0’) and at asymptotic times (subscript ‘’): 
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Table 5.1: Power Law parameters for smectic 8CB 

Shear 

Amplitude 

(nm) 

0.5 m Gap 5.0 m Gap 

K0 

(Ns
n
) 

K 

(Ns
n
) 

n0 

[0.05] 

n 

[0.05] 

K0 

(Ns
n
) 

K 

(Ns
n
) 

n0 

[0.05] 

n 

[0.05] 

62.5 11.6 

2 

13.4 

2 

0.96 0.97 8.46 

4 

9.43 

4 

0.95 0.94 

625 4.91 

0.5 

4.97 

0.5 

1.20 1.20 5.47 

0.5 

6.79 

0.5 

1.16 1.18 

6250 8.04 

0.1 

4.59 

0.1 

1.06 1.09 3.36 

0.2 

3.51 

0.2 

1.22 1.16 

 

Interestingly, previous shear results on bulk smectic 8CB (under cone-and-plate geometry 

with gap spacing of 48 m) at 25C show a stronger dependence of viscosity on shear 

rate for a wide range of shear rates, from about 0.005 sec
-1

 to 100 sec
-1

, with 0n below 

0.1 sec
-1

, 54.0n between 10 sec
-1

 and 100 sec
-1

, and a plateau ( 1n ) in the region of 5 

sec
-1  379

.  The present results, being consistently in the vicinity of 1n , indicate that this 

plateau widens considerably in the vicinity of mesoscale confinement.  Panizza et al 

report that the viscosity of bulk smectic 8CB varies with temperature and shear rate as 

  2121 
  TT

C
 for temperatures down to 30.8C, with TC being a critical point 

lying near the nematic-smectic-A transition point ( C83.31 
C

T  and C)33
/


NA

T
172

.  

The relative invariance of viscosity with shear rate at the temperatures used for the results 

presented ( CT  5.20 ) may indicate that they were performed in the vicinity of a second 

critical point, this one near the smectic-crystalline transition point ( CT
SmCr

 5.19
/

, as 

measured by DSC and discussed in Appendix 4). 

 

     Figure 4.7 and the widely varying flow consistency values, K, of Table 5.1 

demonstrate that the viscosity of smectic 8CB is not only shear rate dependent, but, for a 
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fixed shear rate, is shear amplitude dependent as well.  This is further indication of a 

behavioral change that occurs between shear amplitudes of 62.5 nm and 625 nm for both 

gap sizes tested, as the 8CB switches from being a shear thinning to shear thickening 

material.  Smectic A 8CB has been observed previously to undergo shear thinning at gap 

sizes of 0.1 mm
380, 381

, 0.15 mm
382

 and 1.0 mm
172

 for lower shear rates, but the present 

large amplitude shear thickening results that take place within the mesoscale regime have 

not, to the author’s knowledge, been observed previously.  As they coincide with an 

increase of the shear amplitude well beyond the length scale of the 8CB dimer, it is 

proposed that this behavioral change is a product of the material being brought beyond its 

viscoelastic limit and not necessarily a characteristic specific to the mesoscale range 

being tested.  One possible interpretation of this effect is that the act of bringing the 

sample beyond its viscoelastic limit tends to strain and deform the 8CB domains, thereby 

reducing their mobility and thereby producing an extra drag that results in the apparent 

‘stiffness’ of the sample as measured by the strain gauge.  Also evident from Figure 4.7 

are the non-zero stresses at zero shear rates for both gaps and all shear amplitudes that 

result from an extrapolation to the point of zero shear rate.  This yield stress is 

characteristic of a Bingham plastic
383

, and has been observed for smectic 8CB 

previously
172, 382

.  The yield stress has been attributed to defects in the smectic layers that 

exist even at low shear rates
42

, and its variance with shear amplitude is likely due to the 

increase in domain stiffness that occurs beyond the viscoelastic limit mentioned earlier.  
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5.3  Gap Size Dependence of Viscosity Change 

     To provide a more comprehensive picture of the response amplitude changes over 

time, the change in response data can be presented as a three-dimensional column graph 

with the amplitudes represented by columns and the other two axes representing the shear 

frequency and amplitude.  Snapshots of the relative response amplitudes for all shear 

amplitudes and periods at a given number of oscillations can then be compared.  The 

columnar plots in Figures 5.3 and 5.4 show the evolution of the response amplitudes for 

both gap sizes: 
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Figure 5.3: Column graphs of the shear response amplitude (relative to the initial, or 0
th

 

shear cycle amplitude) as a function of both shear frequency and amplitude, with the 0.5 

m gap size results on the left and 5.0 m gap size results on the right, a set number of 

cycles into the test: (a) 0
th

 cycle; (b) 2
nd

 cycle; (c) 5
th

 cycle. 
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Figure 5.4: Column graphs of the shear response amplitude (relative to the initial, or 0
th

 

shear cycle amplitude) as a function of both shear frequency and amplitude, with the 0.5 

m gap size results on the left and 5.0 m gap size results on the right, a set number of 

cycles into the test: (d) 40
th

 cycle; (e) 99
th

 cycle; (f) 193
rd

 cycle. 
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Columns representing aggressive shear tests show a definite negative trend over time.  

This shear-induced time-dependent change in viscoelastic response has been noted 

previously for high molecular weight polymers in solution, and instabilities in viscosity 

similar to those discussed in Section 4.2.7 were also observed in these systems as well
371

.  

The drop represents a reorientation of domains in the shear direction.  The instabilities 

were found to be transient phenomena lasting several minutes and were attributed to the 

formation and destruction of domain-like aggregates within the solution.  Interestingly, at 

both levels of confinement under gentle shearing conditions, for samples sheared at the 

lower rates tested (0.05 sec
-1

 and 0.5 sec
-1

 for both gaps) and the smallest shear amplitude 

(62.5 nm), as represented by the two rightmost columns in Figures 5.3 and 5.4, the 

response actually increases slightly over time, indicating that thickening may be 

occurring with these specific test conditions.  The extent of thickening is more prominent 

for the smaller gap than the larger gap, and its onset has the time dependence that shear 

thinning does, as indicated in Figures 4.13 and 4.14.  The former fact indicates that the 

increase in viscosity is due at least in part to the level of confinement, and the latter 

suggests that the effects are related processes that share a common cause, specifically, the 

shearing of the material. 

 

     Tests performed by Nieman et al
323

 under conditions similar to those of the present 

study (i.e. within the mesoscale regime) showed discrete, stepped decreases in mosaic, a 

property that is correlated to the uniformity in domain orientation, spaced by roughly 

1000 to 2000 seconds. It is proposed that the ‘gentle shear’ effect observed with the SFA 

is a result of the shear not imparting sufficient energy to domains away from the tightest 
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level of confinement to allow them to shift and fully reorient to minimize their interfacial 

energy, but providing enough to grow, elastically deform and entangle, leading in turn to 

a stiffer state that increases the local viscosity and, therefore, the overall shear response.  

Domains in the region of the point of closest surface approach, conversely, to which the 

x-ray beam is localized (50 m square) will have enough energy imparted to them to 

gradually realign to the shear direction, albeit discretely, leading to the mosaic increase 

reported by Nieman
323

.  Sporadic reorientation of these stressed and deformed domains 

lead to the intra-period viscosity jumps discussed in Section 4.2.7.  The gently-sheared 

sample as a whole, then, consists largely of a mix of confined, reoriented domains near 

the region of tightest confinement and more bulklike, disordered domains away from this 

region, which results in the slight overall increase in shear response observed with the 

SFA and the observed step-like increase in mosaic observed by Nieman under the same 

shear conditions.  A schematic of this process is shown in Figure 5.5:  
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Figure 5.5: Schematic of the 8CB reorientation process during gentle shearing.  Domains 

begin (Top) disordered, with epitaxial ordering of molecules near the confining surfaces.  

At the onset of gentle shear (Middle) they tend to grow and deform generally and align 

sporadically in the shear direction near the point of closest approach.  After some time 

(Bottom) the domains near the point of closest approach are largely reoriented in the 

shear direction, while away from this point the deformed domains are unable to reorient 

easily, leading to an increase in viscosity. Gaps and domain sizes are not drawn to scale. 
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The x-ray results, then, show one aspect of a broader phenomenon:  While near the point 

of closest approach of the surfaces the domains slowly and discretely become larger and 

better-oriented in time, in the more bulklike regime away from the point of closest 

approach the slow, periodic reordering of individual randomly-oriented domains results 

in larger strained domains that are being weakly jostled and distended with each sweep, 

but not fully reoriented in the shear direction.  A similar phenomenon is reported by 

Ruths et al using vertical oscillations on bulklike (gap size greater than 0.5 mm) smectic 

8CB, with uniform orientation in the vicinity of the point of closest approach and 

numerous disclination lines and domain boundaries observed outside of this region
125

.  

The effect was repeated using lateral shear both on bulklike smectic 8CB (again, with a 

gap size in excess of 0.5 mm) and on tightly confined smectic 8CB (1.6-1.8 nm gap size, 

with sliding velocity 0.2 m/sec), demonstrating that a mix of confined, ordered domains 

and bulklike, disordered domains can result from shear with smectic 8CB regardless of 

gap size. 

 

     It is also apparent from Figures 5.3(c) and 5.4(f) that, for large amplitude shearing 

(6.25 m), the sample confined to the smaller gap exhibits a viscosity change that is 

relatively period-independent while the viscosity change of the more loosely-confined 

sample decreases markedly with increasing period.  One interpretation of this 

phenomenon is that it is a result of the domain reorientation having been completed for 

the smaller gap tests, but remaining incomplete for the larger gap tests, based on the 

assumption that, regardless of shear frequency, the domains will ultimately reorient to the 

same extent given enough time.  Since more aggressive shearing is necessarily involved 
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with the smaller gap tests, the domains all fully reorient in the shear direction, leading to 

a roughly equal total change in viscoelastic response for all periods.  Conversely, for the 

larger gap tests, the less aggressive shearing leads to only partial domain reorientation by 

the 193
rd

 sweep (the last shown in Figure 5.4), with faster (and hence more aggressive) 

shear tests leading to greater overall reorientation than slower shear tests.  This further 

demonstrates that when the tightest gap is nearer to the upper limit of the mesoscale 

regime, the domain reorientation in this region can be complete while away from the 

region it can remain incomplete even after several aggressive shear sweeps. 

 

     This behavioral distinction may be due to more than just the difference in gap size 

alone; it may also be an indication that single domains are spanning the confining 

surfaces for the smaller gap, but not for the larger gap as discussed in Section 5.1.  This 

spanning effect may facilitate domain reorientation, as the domains, in direct contact with 

the relatively inflexible surfaces, are more forcefully reoriented than if they were nudged 

more indirectly via other relatively flexible domains, leading to the considerable 

differences observed for the two gap sizes tested.  It should be noted that the smaller 

amplitude tests result in viscosity changes too small to be able to make definite 

conclusions, suggesting that the bulk viscosity contribution is a significant component of 

the overall viscosity, and remains largely unaffected by the shearing process. 

 

     Figure 4.15 shows a considerable drop in the ratio of small gap to large gap shear 

response amplitudes for samples sheared at 6.25 m amplitude, dropping from as much 

as 4.5 at the onset of shear to roughly 1.3-1.6 asymptotically, more in line with the 
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modified Newton’s theory developed in Appendix 5, which predicts a value of 1.57 for a 

Newtonian fluid undergoing simple shear in a crossed cylindrical geometry.  For samples 

sheared at 625 nm amplitude, the drop is much less pronounced (typically from 1.4-1.6 to 

1.0-1.2), and for samples sheared at 62.5 nm amplitude the responses are noisy enough 

that it is not clear whether a change in ratio occurs at all (although the ratio itself seems to 

be about 1.2-1.6).  The effect cannot be explained entirely by the tenfold ratio of percent 

strain values for the two gap sizes, since the maximum strain amplitude does not change 

with time.  It can, however, be understood by considering the structure near the point of 

closest approach of the confining surfaces.  Within the smaller gap size in the absence of 

shear, the epitaxial smectic layers extend far enough from these surfaces to form a dual-

oriented span (that is, with epitaxially-ordered molecules extending from the top and 

bottom surfaces forming domains oriented differently from one another due to 

misalignment of the top and bottom mica substrates) connecting them, as introduced in 

Section 5.1.  Within the larger gap, these epitaxial layers may not fully connect, or if they 

do, the connection will necessarily be more tenuous than it must be for the smaller gap.  

At the onset of shear, those domains bridging or nearly bridging the larger gap will have 

a significant amount of flexibility compared to those making up the smaller gap.  The 

initial stiffness of the latter will increase the overall resistance to the applied shear, an 

effect which will be largely absent for the larger gap, thereby boosting the F0.5/F5.0 value 

early on in the shearing process.  The drop in F0.5/F5.0  over time, therefore, is due to the 

domain reorientation, which will be more significant for the smaller gap than the larger 

gap (again, due to direct manipulation of the small-gap bridge by the confining walls), 
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thereby leading to the larger drop in F0.5 than F5.0.  A diagram of this phenomenon is 

show below: 

 

 

Figure 5.6:  Illustration of the shearing of domains (shown in orange) for (Top) large and 

(Bottom) small gaps.  A single pair of domains is highlighted in violet in each diagram 

showing how domains spanning larger gaps can better accommodate shearing due to their 

greater flexibility.  Gaps and domain sizes are not drawn to scale. 

  

The higher percent strain ratio of the smaller gap system, when considered alongside the 

possibility that the domain stiffness is greater for small gaps than for larger gaps in the 

vicinity of the mesoscale regime, introduces the notion that the viscoelastic limit for the 

smaller gap will be much smaller than that of the larger gap.  It is proposed that the 
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resultant increase of rigidity associated with the tighter confinement produces the 

observed time-dependent shift in response ratios. 
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5.4  Viscosity Change as a Function of Shear Amplitude 

     Recalling that shear response F and viscosity  are, to a first approximation, related 

by Equation (6) (or, by assuming a simplified sphere-plane geometry, by Equation (7)) 

from Appendix 5, a cursory study of the various shear response plots presented in 

Appendix 1.4 reveals that the 8CB viscosity evolves with time from the onset of shear 

until it reaches an asymptotic level that can vary considerably depending on the 

aggressiveness of the shearing, with higher shear frequencies requiring less time to reach 

an asymptote.  This effect has been reported previously by Ruths et al on molecularly thin 

(1.6-1.7 nm gap size) planar-oriented smectic 8CB
125

.  The evolution can be described 

using a simple two exponential model (as reported in Section 4.2.3), with one term 

largely dominant for most of the viscosity change, and the other only becoming 

somewhat significant after several hundred shear oscillations have occurred.  This is 

evident from the large difference in time constants, which is typically two or more orders 

of magnitude.  The larger time constant is subtle enough that it can often be omitted 

without seriously affecting the quality of fitting, and it is proposed that the behaviour it is 

describing it simply the drift in response curve due to environmental effects.  Ultimately, 

then, the viscosity changes exponentially with time, and it is worth exploring the 

relationship these fitting parameters have with one another. 

 

     Figures 4.13 and 4.14 demonstrate clearly that the rate of change of shear response 

(and hence rate of viscosity change) depends not only on shear rate, but also on shear 

amplitude, independently of shear rate, as well.  The logarithmic relationship between the 

time constant and shear rate indicates that the following general relation can be written: 
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C
A                                                                                                                           (2) 

where  and   are the time constant and shear rate, respectively, while A and C are 

parameters dependent on the shear amplitude and gap size, extracted from the intercept 

and slope of the log-log plots in Figures 4.13 and 4.14, respectively.  A semi-log plot of A 

as a function of shear amplitude (shown in Figure 5.7) demonstrates that the time 

constant intercept varies semi-logarithmically with shear amplitude, that is: 

0
log   SA

S
  

where 0 is a theoretical time constant for a system undergoing shear at 1 nm amplitude, 

and S is a variable describing the extent to which the shear amplitude affects the rate of 

change of viscosity.  Figure 5.7 may also suggest that these two variables are a function 

of the level of confinement of the lamellar system when larger shear amplitudes are 

applied, but not necessarily when smaller shear amplitudes are applied.  More 

experimentation is needed to confirm this observation, however. 

 

Figure 5.7: (Left) Time constant intercept, A, and (Right) Slope, C, as function of Shear 

Amplitude (SA) for 8CB, using data from Figures 4.13 and 4.14.  ‘Large Gap’ and ‘Small 

Gap’ refer to 5.0 m and 0.5 m gap sizes, respectively. 
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In practice, the model presumably breaks down before 0 is reached, but this value cannot 

be determined due to the limits of the experimental equipment and because of long-term 

fluctuations in temperature and strain gauge balance.  For the small gap experiments 0 

and s were found to be 7700 and -830 seconds, respectively, while for large gap 

experiments they were 8500 and -900 seconds, respectively, with an estimated 

uncertainty of 1000 and 30 seconds for both.  A plot of C versus shear amplitude 

shows no obvious trend for either gap size, but in all cases it appears the slope tends to lie 

between -0.5 and -1.2 (or roughly -0.85  0.35), so that the shear rate dependence will be, 

in very general terms, 35.085.0 
 , and the time constant can then be expressed in terms of 

experimental parameters as: 

35.085.0

0
log













S
S                                                                                                           (3) 

Specifically, for small gaps the time constant will be: 

   
35.085.0

sec7700logsec830











S

gapsmall
                                                                      (3a) 

And for large gaps the time constant will be: 

   
35.085.0arg

sec8500logsec900











S

gapel
                                                                      (3b) 

Overlaying the time constants predicted by equations (3a) and (3b), using the mean value 

of 0.85 for the shear rate exponential, with the time constants presented in Figures 4.13 

and 4.14, one obtains the following predictive curves to align with the data: 
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Figure 5.8: Plot of shear response time constants as a function of shear rate for 0.5 m 

gap shear experiments for various shear amplitudes, with time constant predictions from 

Equation (3a) shown as dotted lines.  Responses involving shear-induced time thinning 

responses have been marked; all others involve shear-induced time thickening.  Also 

included are the peak shift time constants from similar experiments using an XCC
323

. 
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Figure 5.9: Plot of shear response time constants as a function of shear rate for 5.0 m 

gap shear experiments for various shear amplitudes, with time constant predictions from 

Equation (3b) shown as dotted lines.  Responses involving shear-induced time thinning 

responses have been marked; all others involve shear-induced time thickening.  Also 

included are the peak shift time constants from similar experiments using an XCC
323

. 
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     Recalling that the two exponential fitting equation is given by 

021

21 



 tt

eCeC , the rate at which the viscosity of the sample evolves, then, is 

found by taking its time derivative, 1

1

1 



 t
e

C

dt

d 
 (for large 2), and so for early times (

t , with  in this analysis representing 1) the viscosity will be: 

  St
S

logexp
~

0

35.085.0
 


                                                                                   (4) 

while the rate of change of viscosity will be:  

  St
Sdt

d

S

S

logexp
log

~
0

35.085.0

0

35.085.0

















                                                          (5) 

Though it is difficult to draw firm conclusions because of the sparseness of data points, it 

is interesting to note that in addition to varying roughly linearly with shear rate, as one 

might expect (analogously to the power law relationship discussed in Section 5.2), it 

further depends inversely on the shear amplitude as well, independently of the shear rate.  

In physical terms, one interpretation of this behaviour is that the 8CB domains are more 

strongly influenced by larger-amplitude shearing, beyond the expected scaling factor that 

is incorporated into the shear rate.  This may be a result of domain structures being 

brought beyond their viscoelastic limit, thereby forcibly dislodging them from one 

another and allowing them to reorient and align more quickly than they would while in a 

continuous state of interconnectedness.  A sketch of this is shown in Figure 5.10: 
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Figure 5.10:  A sketch of 8CB being brought beyond its elastic limit.  In the leftmost 

diagram, shearing has not yet begun and no domain reorientation has yet occurred.  In the 

middle diagrams, shearing initiated by the bottom surface has caused the topmost 

domains to reorient, with (top) topmost and bottommost domains remaining in contact 

with one another and (bottom) topmost and bottommost domains disjoined.  In the 

rightmost diagrams, the surfaces have returned to equilibrium, with (top) topmost 

domains returning largely to their original orientation and (bottom) topmost domains 

largely reoriented in the shear direction.  Gaps and domain sizes are not drawn to scale. 

 

     Extracting the time constants and slopes for large and small gap shear from Nieman et 

al’s x-ray experiments, one finds 0 values of 185 seconds and -0.27, respectively, for the 

large gap (3750 nm shear amplitude) and 850 seconds and -0.34 for the small gap (62.5 

nm shear amplitude)
323

.  Both pairs of values fall an order of magnitude below what is 

predicted by the above graphs, a discrepancy that may be explained by differences in 

temperature, surface texture and in the volume of 8CB being sheared.   More importantly, 

though, these values represent the reorientation in the immediate vicinity of the point of 

closest approach of the confining surfaces, which may well occur much more quickly 

than in the mesoscale and bulk regimes as a whole.  The qualitative similarity in shear 

rate dependence between the two experiments, nevertheless, demonstrates conclusively 
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that the shifts in mosaic, peak position and amplitude observed using x-ray and the 

viscosity changes observed using the SFA are very likely products of the same physical 

changes occurring in the system, specifically, a shear-induced reorientation of the 

domains.   
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5.5  Testing the Viscoelastic Limit via Large Amplitude 

Oscillatory Shear (LAOS) 

          The notion that large shear amplitudes may lead to complex rheological behaviour 

arises naturally from the premise that viscosity may vary with shear rate.  In Wilhelm’s 

treatment
376

 of the problem, for which he assumes small sinusoidal shear rates and 

demonstrates a power law dependence of viscosity on shear rate, he concludes that the 

associated viscous-force response, F, will be: 

...5cos3coscos
111
 tCtBtAF                                                                     (5) 

where A, B, C… are proportionality constants, 1 is the fundamental shear frequency and 

t is the time.  That is, odd harmonics are created from a shear-dependent viscosity, and 

the phenomenon manifests itself experimentally in such a way that, while applying a 

sinusoidal driving shear to a material, the shear response tends to take on a non-

sinusoidal shape, at odds with the conventional assumption of a sinusoidal output
373, 375

.  

This technique was first demonstrated successfully by Reiter et al using an SFA for self-

assembled monolayers of octadecyltriethoxysilane (OTE) and the lubricant squalane 

(C30H62), both of which were confined to gaps of up to 10 nm thickness
384

.  In Appendix 

3 a similar derivation by the author for small triangular shear patterns (which, it will be 

recalled, are equivalent to an infinite series of diminishing sinusoidal waves according to 

Fourier Theory) has been provided.   

      

     A technique for classifying the types of LAOS behaviour using both the storage and 

loss moduli as well as the shear response’s Fourier signature was developed by Hyun et 
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al
373, 374

, and four distinct types were discussed with examples presented using various 

viscoelastic materials
373, 374

: 

i) Type I: Strain thinning ( 'G  and ''G  decrease with increasing strain); 

ii) Type II: Strain hardening ( 'G  and ''G  increase with increasing strain); 

iii) Type III: Weak strain overshoot, ( 'G  decreases while ''G increases initially 

and later decreases with increasing strain); and 

iv) Type IV: Strong strain overshoot, ( 'G  and ''G  both increase initially and later 

decrease with increasing strain). 

 

     The results presented in Figure 4.22 indicate that, since both G’ and G’’ decrease, 

smectic 8CB by the above definition is best classified as a Type I (strain thinning) 

viscoelastic material under the conditions tested.  The slight increase in G’ at 0.1% strain 

and G’’ at 1% strain may indicate the system is undergoing a strong strain overshoot, and 

thus would be better characterized as a Type IV viscoelastic material; more extensive 

testing to better define the G’ and G’’ curves would be needed before firm conclusions 

can be made, however.  The latter relatively rare category has previously been associated 

with polymer solutions, with the behaviour attributed to micellar network-forming 

microstructures within the material, and possibly with the relaxation rate of the 

constituent molecules themselves
373, 385

.   Similar behaviour is likely occurring within 

sheared smectic 8CB, with domain formation and reorientation representing the 

microstructure formation within this medium.  Further rheological research is needed, 

however, to confirm this hypothesis. 
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     Although the Fourier Transform technique is not directly applicable to the work 

presented here, since Wilhelm
376

, Collyer
375

 and Hyun’s
373

 work involves demonstrating 

the appearance of odd-harmonic response overtones arising from a simple (single 

frequency) sinusoidal input shear profile and analyzing their relative amplitudes, the 

technique can nevertheless prove to be useful in determining whether one is shearing 

with what one may consider to be large amplitude even while shearing with a triangular 

profile (as was used with the SFA).  The SFA shear response, being the product of a 

triangular shear profile, is expected to contain harmonic overtones (at 3f0, 5f0, etc.) 

descending in harmonic ratios as per the coefficients of the triangular Fourier expansion 

series given by Equation (1) of Appendix 3 (1/9 at 3f0, 1/25 at 5f0, etc.) if the system is 

undergoing small-amplitude oscillatory shear (SAOS).  That is, under ideal Newtonian 

conditions the shape of the response should be identical to that of the shear profile.  In the 

case of non-Newtonian systems undergoing LAOS, however, the viscosity dependence 

on shear rate will also naturally give rise to signals at the harmonic overtone 

frequencies
376

, and so by observing the divergence of harmonic ratios from the pure 

triangular ratios, one can assess the extent to which the system is being brought from 

ideal oscillatory conditions.  Plots (a) and (b) of Figure 4.21, corresponding to shear 

amplitudes of 62.5 and 625 nm, show only a slight divergence from ‘triangularity’ (as 

defined by their triangular Fourier components, represented by the dotted line in each 

plot), while plot (c) (6.25 m shear amplitude) shows a considerable divergence, 

particularly with its higher harmonic ratios, typically by a factor of from two to five.  

This discrepancy reinforces the notion that the LAOS phenomenon can be extended to 
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layered systems like smectic 8CB, and may be useful in determining the amplitude limits 

of oscillatory shear tests in future studies.   

 

     The increase of 
13

AA shown in Figure 4.26 and highlighted in Figure 4.27 represents, 

equivalently, an increasing non-linearity of the response signal with time.  Furthermore, 

the increase is exponential with a time constant approximately the same rate as that of the 

response signals, A1, found in Figures 4.13 and 4.14.  It should be noted that, for most of 

the tests, the size of A3 is small enough that the error of 
13

AA is too large to determine 

overall trends over time, and so this effect may be present to lesser extents generally, 

particularly for slower shearing frequencies where the amplitude changes occur over 

much longer times, as mentioned previously.  A similar time-dependent effect was 

observed by Wilhelm
376

 (in which 
13

AA decreased with time) while shearing a 

polystyrene/polyisoprene diblock copolymer at 0.1 Hz with a shear-strain amplitude of 

2.0.  It was attributed to the reordering of disordered copolymer material into a 

homogeneously-ordered domain several centimeters in size due to shear; the time of the 

reordering varied depending on the shear parameters, ranging from minutes to hours.  

The change in mobility of the copolymers during shear was proposed as the mechanism 

by which the 
13

AA shift occurs.  Analogously, in the case of 8CB, this 
13

AA shift is 

likely due to growth and reorientation of domains, leading to their being less mobile and 

hence more susceptible to non-Newtonian, non-linear behaviour, ultimately giving rise to 

the increase in harmonic ratio.  This novel technique represents a potentially valuable and 

as yet rarely-used method of determining the dynamics of domain reorientation 

mechanically using the SFA.  
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5.6  Comparison with Bulk Smectic 8CB Under Shear 

     It is worthwhile comparing the rheology results here with those obtained for bulk 

smectic 8CB.  Larson et al reports that even with small shear-strain amplitudes of 0.01, 

non-linear responses are observable, similar to the results shown in Figure 4.1, for 

smectic 8CB at 27.5C sheared using a cone-and-plate geometry (with a cone diameter 

and angle of 50 mm and 0.0988 radians, respectively)
371

.  The exact level of confinement 

for these tests is not given, but tests for other materials presented in the same paper 

indicate a shear gap of 0.94 mm, well into the bulk regime; it should be recalled that the 

rheology results presented in Section 4.1 used a cone-and-plate geometry with a 

minimum gap of 56 m, considerably closer to (although not within) the mesoscale 

regime, whose upper limit is generally given as approximately 10 m.  Plots of storage 

and loss moduli G and G vs. shear frequency for the two configurations (Larson’s bulk 

results followed by mesoscale results from the present study) are given in the figures 

below: 
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Figure 5.11: Plots of G (solid symbols) and G (open symbols) vs. shear frequency for 

bulk smectic 8CB sheared at 27.5C with shear-strain amplitudes, 0, of (Left) 0.01 and 

(Right) 0.1.  MD refers to samples quenched from the isotropic phase before shearing 

(and hence molecularly disordered), and MO refers to samples sheared using LAOS 

before shearing (and hence molecularly ordered in the shear direction).  Reproduced from 

Larson et al
371

. 

 

 

Figure 5.12: Plots of G (solid symbols) and G (open symbols) vs. shear frequency for 

smectic 8CB at nearly mesoscale confinement sheared with shear-strain amplitudes, 0, of 

from 0.0001 to 1.0. 
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It is important to note that the absolute numbers between the two experiments cannot be 

reliably compared, since the temperatures and level of confinement used were different.  

What is interesting, though, is the qualitative similarity between the two, in the change of 

behaviour of G and G as the shear-strain amplitude increases from 0.01 to 0.1.  For both 

bulk and confined samples, G  exceeds G  (for frequencies roughly below 50-100 sec
-1

) 

when 01.0
0
  and transitions to a situation where G   exceeds G  for all tested 

frequencies when 1.0
0
 , with the difference between the two parameters increasing 

with increasing frequency.  In this regard the bulk shear response behaviour is very 

similar to that of the sample confined more closely to the mesoscale regime (56 m at the 

point of closest approach).   

 

     Larson’s group also found that bulk samples required a shear-strain amplitude of unity 

to effectively shear-align the sample
371

; that is, it was necessary to shear the sample with 

an amplitude equal to the gap size at 1
sec10


  in order to shift from the MD to MO 

curve presented in Figure 5.11.  This tends to agree with the present findings, in which 

the largest drops in viscosity (which, presumably, accompanies a shift in domain 

alignment) occur with the larger shear-strain amplitudes, while little to no viscosity 

changes were visible for the smaller shear-strain amplitudes, regardless of the shear 

frequency.  More interesting, however, is Larson’s comment that the use of shear-strain 

amplitudes of 0.5
0
  “massively disrupts alignment, so that the sample becomes 

visibly turbid.” 
371

  In the present study, no obvious qualitative differences in shear 

response have been observed with the two large amplitude shear cases, with shear 

amplitude 6.25 m for the 0.5 m and 5.0 m gap sizes (and hence amplitudes of 
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5.12
0
 and 25.1

0
 , respectively).  Since it is unlikely that the effectiveness of 

domain alignment resumes once again above the 0.5
0
  parameter tested by Larson et 

al, or that the domain misalignment under these conditions results in a significant 

lowering of the viscosity as observed, this may be an indicator that, at this tighter level of 

confinement, LAOS tends not to disrupt domain alignment but rather to reinforce it even 

at shear-strain amplitudes of 12.5. 

 

     Larson et al report that, due to similarities in moduli characteristics between 8CB and 

other, longer molecule-chain smectics they studied (specifically, that they follow a 

power-law with shear frequency that tails off at low frequency), that their similar moduli 

must be determined by this smectic structure common to them
371

.  This conclusion can 

likewise be extended to smectic 8CB restricted to mesoscale confinement, as evidenced 

by the similar moduli characteristics shown in Figures 5.11 and 5.12.  They further note 

that changes in magnitude to low frequency moduli were observed even after seven hours 

of LAOS at 10 sec
-1

 shear frequency.  If one is to assume that both moduli and viscosity 

changes are due to shifts in domain alignment, this result differs somewhat from what has 

been observed in the present study.  For the tests involving shear frequencies 

  1
sec28.6122


 Hzf   and amplitudes of 6.25 m at 0.5 m and 5.0 m, the 

viscosity reached an asymptotic level at about 800 and 1200 seconds, respectively (see 

Figures A1.5c and A1.5f).  This difference is presumably due to the increased 

confinement associated with the current set of tests, and demonstrates the importance of 

gap size on the achieving domain alignment. 
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     Other studies of bulk smectic 8CB under oscillatory shear give time constants of 

moduli G and G that are considerably larger than those observed nearer to the 

mesoscale regime.  For example, using rheology with a cone-and-plate geometry, Larson 

et al found an asymptotic drop in complex modulus GiGG 
*

 of roughly 6000 

seconds by applying a shear force with shear-strain amplitude and frequency of 0.1  

and 1
sec10


 , respectively

371
.  Using a combined rheology and x-ray scattering 

technique with a plate-plate geometry (gap size 8 mm), Struth et al found an asymptotic 

drop in both G and G of at least 3600 seconds (and it is not clear from their plot that a 

true asymptote has been obtained) by applying a shear with shear-strain amplitude and 

frequency of 0.1  and 1
sec3.6


 , respectively

386
.  This compares to time constants 

typically on the order of 10 to 100 seconds for LAOS shear parameters at both gap sizes 

and higher shear frequencies (1 or 10 Hz) using the SFA (see Figures 4.13 and 4.14).  

Three possible reasons for this are that the moduli and response do not decay at the same 

rate, that the reorientation of domains is more efficient at lower temperatures, and that the 

viscoelastic parameters of smectic 8CB are strongly gap-size dependent beyond the 

mesoscale regime.  The latter seems more likely since shearing with a smaller gap size 

(and hence more aggressively) will likely align domains more efficiently and hence more 

quickly, but further cross-experimentation with the rheometer and SFA will be necessary 

to better understand this phenomenon. 

 

     Finally, Larson reports that, unlike with the block copolymer smectics they tested, the 

smaller-molecule smectic 8CB exhibited strong strain-amplitude-dependent moduli, 

which they interpreted as being indicative of the presence of defects that are not easily 
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removed through shearing
371

.  Tests in which smectic 8CB confined between two glass 

sheets underwent steady-shear LAOS were also undertaken by the group, and light-

scattering patterns indicative of defects were observed in these bulk samples
371

.  The 

presence of yield stresses in smectics was a property first predicted by Ramaswamy
290

, 

while defects were observed by Horn and Kléman to give rise to yield stresses in smectic 

8CB
42

, an effect observed in various other smectic materials as well
379, 387-390

.  As yield 

stresses have been observed for smectic 8CB in the present study (discussed in Section 

5.2), this indicates that defects are likely present during tests performed at mesoscale 

confinement as well.  One possible product of these persistent domain defects, the intra-

period jumps observed in the small amplitude SFA shear response data, is discussed in 

the following section.  
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5.7  Intra-period Fitting and Features 

      The shear response of smectic 8CB under mesoscale confinement exhibits a variety of 

features that can occur depending on the shear parameters used.  At lower shear levels, 

for example, intra-period jumps that indicate discontinuities in the relative motion of the 

shearing surfaces have been observed (discussed in Section 4.2.7), which may be a result 

of smaller events occurring within the liquid crystal structure.  The frequency of these 

events does not decrease even after hours of shearing has occurred, indicating that this is 

a regularly occurring phenomenon that is either a direct result of domain reorientation or 

a process that is contributing to the onset of domain reorientations at early shear times.  

The XSFA work of Nieman et al indicates that smectic normals tilt periodically with the 

shear frequency during gentle, low amplitude shearing within the mesoscale regime
323

, 

and so one possible interpretation of the discontinuities is that it is a direct result of this 

sudden and regular tilting effect (but due to larger amplitude shearing).  Another possible 

related source for the jumps is the reorientation of domain clusters.  As domains reorient 

and coalesce in the direction of shearing, the sudden change in alignment may cause a 

slight disturbance in the response.  Alternatively, these jumps may be due to the reduction 

of defects during the domain reorientation process.  Larson reports the presence of 

domain defects within bulk smectic 8CB that persist during oscillatory shearing
371

.  As 

indicated in Section 4.2.7, these jumps (while diminishing somewhat in frequency) also 

persist for the entirety of the shear process, suggesting there may be a link between them.  

Horn and Kléman, in their research involving LAOS of bulk smectic 8CB, note that 

defects tend to be removed as domains reorient
42

.  Choi et al report that domain defects 

have stored energy associated with them due to their greater stiffness
225

; it is possible that 
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the jumps observed are a result of the sudden release of this stored energy as adjacent 

domains forming defects reorganize and aggregate with their neighbours during the 

reorientation process.  Tests to confirm the long term falloff of these jumps in moderately 

sheared smectic 8CB is warranted to confirm these hypotheses, however. 

 

     Under gentle shear conditions, particularly those that are due to small shear 

amplitudes, the response was found to be approximately linear.  That is, a triangular shear 

pattern resulted in a triangular response.  It should be noted, however, that for these 

conditions the signal to noise ratio was often low enough that any but the most 

conspicuous details of the pattern (such as the jumps in response discussed in Sections 

4.2.7 and 5.3), were lost.  By contrast, more aggressive shearing generally resulted in a 

distinctly non-linear response, with the most prominent feature being an elbow occurring 

at a fairly consistent point (for a given set of shear parameters) within each sweep.  The 

onset, definition, and angularity of this elbow depends on the shear characteristics, and 

was found to fit best using a Burgers Model (as introduced in Section 4.2.6 and derived in 

Appendix 2), which has been used previously with success to model a wide variety of 

viscoelastic systems under shear
391-396

.  The model assumes that the response consists of a 

Kelvin-Voigt (solidlike) component and a Maxwell (liquidlike) component acting in 

series.  The elastic components of both contributors primarily describe instantaneous and 

early behaviour and the Maxwell viscosity component dominates at asymptotic times, 

while the transitional regime is best described by an approximately exponential decay 

curve composed of a combination of the Maxwell and Kelvin-Voigt terms.  The fits for 

each shear experiment are given in Appendix 1.   
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     The most prominent intra-period feature observed, as mentioned earlier, is the ‘elbow’ 

or kink that appears with varying degrees of prominence in tests using moderate to large 

shear rates.  The pre- and post-elbow sections of response are typically either linear or 

exhibit modest curvature, and it is the kinked section that often displays considerable 

curvature depending on the shear parameters used.  The kink represents a clear change in 

the mechanical properties of the 8CB, and it is proposed that this point corresponds to the 

viscoelastic limit discussed in previous sections.  Before the limit is reached, the liquid 

crystal exhibits both viscous and elastic components, but beyond the limit it is dominated 

by purely viscous behaviour, corresponding to the Burgers Model’s 1 component (as 

introduced in Section 4.2.6 and derived in Appendix 2).  The kink is absent during gentler 

shearing, typically involving a shear amplitude of 62.5 nm, because the viscoelastic limit 

has not yet been reached.  With the 6.25 m shear amplitude tests the kink is shallower 

and wider and occurs early on in the shear sweep, while with the 625 nm shear amplitude 

tests the kink generally occurs beyond the midway point in the shear sweep.  This 

indicates that the viscoelastic limit is reached after several hundred nanometers, so that 

one sees the entire change in behaviour with the former shear profile, but only begins to 

see the change in behaviour at the end of the shear period for the latter shear profile.  

Using data sets where the elbow is more sharply defined as a reference, this viscoelastic 

limit has been determined by eye to occur roughly at 1.2  0.3 m; the broad uncertainty 

associated with this value is a result not only of variance in the limit from sweep to 

sweep, but also that the limit itself is dependent on the shear parameters being used.  The 
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effect this viscoelastic limit has on the smectic 8CB model will be discussed in the 

following section. 

 

     Figures 4.2 and 4.6 show a marked similarity to one another; with few exceptions, 

those experiments in which an elbow has been observed a short distance into each shear 

direction (typically associated with more aggressive shearing) also exhibit drops in 

viscosity over time.  Conversely, those systems undergoing gentler shearing typically 

show a more linear shear response and occasionally undergo a slight increase in viscosity 

(or, more commonly, no discernable change in viscosity at all—the small signal to noise 

ratio coupled with long-term signal drift makes the determination of these slight changes 

of viscosity difficult).  There is not a sharp delineation between the two regions, however, 

and across the phase diagram there exist some responses wherein the two phenomena 

sometimes tend to overlap.  This fact, combined with what has been discussed earlier 

about the role of large amplitude shearing and domain reorientation, suggests that the act 

of drawing the sample beyond its viscoelastic limit plays a vital role in reorienting those 

domains within the mesoscale regime and beyond; Larson reports for bulk 8CB that only 

strain-shear amplitudes of near unity tend to produce domain reorientation, reinforcing 

this idea
371

.  Gentle shearing, then, tends only to reorient domains in the immediate 

vicinity of the point of closest approach of the confining surfaces (as observed by Nieman 

et al
323

), leading to local ordering in the shear direction and thinning of the sample.  The 

bulk of the sample, however, remains largely disoriented, leading to an overall thickening 

of the sample over time, as evidenced by the response increase measured via strain gauge. 
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     With the response amplitude known to vary as a function of time, particularly for 

more aggressive shearing, it is natural to inquire how the Burgers Model parameters vary 

with time, in an effort to connect the intra-period features to the inter-period properties.  

While the parameters associated with tests involving shear amplitudes of 62.5 nm and 

625 nm fluctuated too much with time to be able to be able to determine a definite long-

term time dependence, the parameters arising from the 6.25 m shear amplitude were 

found to fit well to exponential decay functions, like the inter-period response functions 

themselves, not surprisingly since it is the variance of one or more of these parameters 

that must lead to the variation in response.  The corresponding decay constants of these 

Burgers Model parameters, which have been rewritten for convenience, are as follows:  

        Dttk
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                                 (6) 

This decay constant may be plotted as a function of shear rate, as shown below: 
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Figure 5.13: Intra-period Burgers Model fitting parameter decay constants as a function 

of shear rate for 8CB sheared at 6.25 m amplitude, various frequencies and both gap 

sizes.  Here the large gap refers to 5.0 m, and the small gap refers to 0.5 m. 

 

 

Note that the constant A, being an offset and hence coupled with other experimental 

parameters such as electrical and thermal drift, is potentially misleading and so has been 

omitted.  Also note that because this data has not had the benefit of a filter, the data to be 

fitted is noisier and so only the more trustworthy large amplitude fitting data have been 

presented.  As can be seen in Figure 5.13, the decay constants vary in the same way with 

shear rate that the shear responses shown in Figures 4.9, 5.8 and 5.9 do.  That is,

DB
t

DBDB
e 







 , where 

DB 
  are the three Burgers Model parameters, B, C and D, 

while 
DB 

  and B-D are the corresponding proportionality constants and time constants 

for each parameter, respectively.  A table of decay constants for the Burgers fitting results 

alongside the shear response decay constants from Figures 5.8 and 5.9 is presented 

below. 
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Table 5.2: Decay time constants for smectic 8CB with various shearing parameters  

Large Gap 

(5.0 m) 
  

Burgers Variable Decay 

Constants 

Viscosity 

Decay 

Constants 

Period 

(sec) 

Amplitude 

(m) 

Shear Rate 

(sec
-1

) 
B 

(sec) 

C 

(sec) 

D 

(sec) 
 

(sec) 

100 6.25 0.05 25920 

 5500 

345 

 72 

1695 

 350 

1141 

 150 

10 6.25 0.5 334.7 

 37 

43.35 

 5.5 

39.60 

 5.0 

194.4 

 15 

1 6.25 5 98.81 

 5.2 

4.888 

 0.22 

142.6 

 6.3 

8.857 

 0.7 

       

Small Gap 

(0.5 m) 
  

Burgers Variable Decay 

Constants 

Viscosity 

Decay 

Constants 

Period 

(sec) 

Amplitude 

(m) 

Shear Rate 

(sec
-1

) 
B 

(sec) 

C 

(sec) 

D 

(sec) 
 

(sec) 

100 6.25 0.5 3536 

 360 

148.7 

 33 

420.0 

 93 

499.8 

 60 

10 6.25 5.0 420.2 

 36 

124.7 

 20 

54.35 

 9.0 

166.6 

 15 

1 6.25 50 121.8 

 5.0 

6.150 

 0.33 

3.911 

 0.21 

27.55 

 2.0 

 

The evolution of these parameters with time and their physical interpretations will be 

discussed in the following section. 
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5.8  Physical Interpretation of Intra-period and Inter-period 

Phenomena 

     The Burgers model represents a system in which both viscous and elastic components 

are both prominent at the beginning of each half-period (that is, when the shear direction 

is reversed).  If one considers a system undergoing large amplitude shearing, that is, 

where the shear amplitude is much larger than the molecular length scale (which, for the 

8CB dimer, is 3.17 nm), it is also worth considering a model wherein a viscoelastic 

component describes the response from the point when the shear reverses direction up 

until the viscoelastic limit is reached at time, tk (when, as described in the previous 

section, the ‘kink’ of the curve is reached), while a purely viscous, essentially linear 

component describes the response beyond this limit.  A sketch of the two regions is 

shown in Figure 5.14: 
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Figure 5.14: Sketch of shear response versus time for a shear amplitude of 625 nm, 

showing (in green) the viscoelastic regime and (in blue) the purely viscous regime. 

 

The model is bolstered by the observation that at times following tk the shear response 

tends to be fairly linear, which one would expect for an oscillatory system that has been 

drawn beyond its viscoelastic limit into a purely viscous, near-Newtonian regime.  In 

such a model, the pre-limit data can be represented as a simple Kelvin-Voigt material 

following the result derived in Appendix 2 (The Burgers Model): 
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where  is a constant stress while k2 and 2 are the elastic and viscous components of the 

material being studied.  The post-limit data can be represented by a line or, to 

accommodate thermal and strain gauge fluctuations following the crossing of the 

viscoelastic limit, a simple cubic function.  These fits are presented in Appendix 1 for 
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shear amplitudes of 6.25 m; since the elbow occurs late enough with the 625 nm data 

and is fairly broad, the fitting was not felt to be necessary for the 625 nm data sets and the 

Burgers model alone was deemed sufficient.   

 

     In most tests involving gentler shear (those with 62.5 nm and 625 nm shear 

amplitudes, particularly at low shear frequencies and larger gap sizes) the uncertainty 

associated with all fitting parameters largely prevented estimations of short- and long-

term trends from being determined.  Tests with 6.25 m shear amplitude (and 625 nm 

shear amplitude with higher shear frequencies) were more telling.  Figure 5.13 gives the 

most notable examples, shown as a function of shear rate, but a complete set of plots of 

Burgers parameters as a function of time are given in Appendix 1.1.  A sample plot of the 

Burgers parameters for this shear amplitude is given below:   

 

Figure 5.15: Smectic 8CB Burgers Model fit parameters as a function of time for shear 

amplitude 6.25 m, shear frequency 0.1 Hz and gap 0.5 m.  Blue and green symbols 

represent k1 and k2 in equation (6), respectively, while red and purple symbols represent 

1 and 2, respectively. 
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The Burgers intercept term,  
1

10 k , because it represents the extremes of the shear 

cycle, will be proportional to the amplitude of response (although more susceptible to 

drift in the response than a straight peak to peak amplitude measurement), and so 

indicates the effective viscosity.  It should be mentioned that the k1 values presented are 

absolute values of negative raw data, and so show the opposite trend of their physical 

representation.  The effective viscosity can therefore be seen to fall sharply early on in 

the shear process, indicating that the material is becoming more flexible from the 

shearing, a result of domain alignment in the shear direction.  During this same period the 

viscosity parameter 1 increases, offsetting this decrease in stiffness of the sample.  The 

increasing viscosity term indicates that the sample, while stressed beyond the viscoelastic 

limit (where the 1 term dominates), is actually becoming less viscous over time.   

 

     It is worth noting that the Kelvin-Voigt time constant k2/2 drops during this first 

minute, since k2 rises only slightly while 2 rises sharply. The coincidence of this drop 

with the drop in viscosity and rise in 1 indicates they are likely all caused by the same 

physical phenomenon, specifically, the growth and reorientation of 8CB domain 

structures. Because the exponential Burgers term is most prominent at the transition from 

viscoelastic to plastic behaviour, this dropping time constant is likely due to a blurring of 

the viscoelastic limit that may be a precursor to the drop in response observed later on 

during shearing.  It is interesting to note that Ruths et al observed a similar initial period 

of non-equilibrium in shear response (18-60 sec) while shearing ultrathin (1.6-1.7 nm) 

planar-oriented layers of smectic 8CB at 0.1-0.2 m/sec, attributing this behaviour to a 

‘greater fluidity’ of the system
125

.  This agrees with the aforementioned observation that, 
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at mesoscale confinement and aggressive enough shear levels, the viscosity tends to 

decrease, resulting in a ‘more fluid’ smectic 8CB.  Beyond this early shift, the time 

constant remains unchanged and does not account for the overall 8CB shift in 

viscoelasticity with time. 

 

     While the weaker shear tests were too noisy to allow for the extraction of trends from 

the fitting parameters, some tests with moderate levels of shearing (in which the 

viscoelastic limit was either barely exceeded or not exceeded at all) yielded information 

about the dynamics at early times for cases in which the sample thickened as shear 

progressed.  Figures 5.16 and 5.17 show the Burgers parameters for the larger gap, with 

625 nm shear amplitude and 1 Hz shear frequency: 

 

 

 

Figure 5.16: Smectic 8CB Burgers Model fit elasticity parameters as a function of time 

for shear amplitude 625 nm, shear frequency 1 Hz and gap 5 m.  Blue and green 

symbols represent k1 and k2 in equation (6), respectively. 
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Figure 5.17: Smectic 8CB Burgers Model fit viscosity parameters as a function of time 

for shear amplitude 625 nm, shear frequency 1 Hz and gap 5 m.  Red and purple 

symbols represent 1 and 2, respectively. 

 

The Maxwell and Kelvin-Voigt elasticity components for these moderate shear tests 

(shown in Figure 5.16) clearly have the opposite trends established for the more 

aggressive shearing case shown in Figure 5.15, indicating a stiffening of the liquidlike 

component and a loosening of the solidlike component, respectively.  The increase in k1 

indicates that the effective viscosity given by  
1

10 k  increases slightly during the 

shear.  The viscosity components, meanwhile, both decrease only slightly over the same 

time frame, indicating the extent of viscous flow of the 8CB remains more or less 

constant throughout the shearing process.  This differs from the behaviour observed 

during aggressive shearing, wherein the viscous components tended to increase, and 
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shear response observed for gently and moderately sheared samples, and may be 

characteristic of the condition discussed in Section 5.3, in which gentle shearing leads to 

a sample oriented in the area of tightest confinement but remaining disordered elsewhere.  

The drop in k2 is furthermore indicative of a softening of the intra-period curvature and 

hence a slight shift towards response linearity.  If, as Wilhelm suggests, the non-linearity 

is a product of the process of domain aggregation
376

, it suggests the early shearing has, to 

a very limited extent (perhaps only in the region of tightest confinement) completed this 

domain reorientation process. 

 

     As mentioned earlier, all 10 Hz shear tests were excluded from the intra-period fitting 

and the resultant analysis, as higher order parameters of the shear response were filtered 

away (as discussed in Section 4.2), in turn removing the features being studied here.   

 

     The large amplitude Split Model fitting shows a similar effect (see Figure A1.7b), 

with its Kelvin-Voigt time constant remaining relatively invariant, save for a sharp 

decrease in the first hundred seconds or so.  This effect further demonstrates that changes 

to the dynamics of the system are occurring early on following the reversal of the shear 

direction, while the fairly linear component representing the post-elbow plastic flow 

tends to decrease steadily for the duration of shearing, indicating an overall thinning of 

the material, the product of significant domain reorientation.   
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5.9  Conclusions:  An Overall Picture of Smectic 8CB at 

Mesoscale Confinement Under Shear 

     The results and discussion above describe a system in which smectic 8CB domains 

under confinement are induced to reorient by oscillatory shear stresses.  The complex and 

varied behaviour observed depends considerably on the shear parameters applied.  A 

table of the observed phenomena and their proposed physical interpretations and causes is 

given below: 

 

Table 5.3: Shear properties and their proposed physical interpretations and causes 

Condition Phenomenon Proposed Physical Interpretation/Cause 

Gentle shear 

with small 

gap 

Roughly linear but 

noisy response; 

frequent jumps in 

response 

 

Jumps may indicate a discrete domain 

reorientation in the shear direction
323

 

Slight increase in 

response over time 

Response increase may be due to domains that 

have grown and been stretched by the shearing 

process, but which have not fully reoriented, 

resulting in an overall increase in viscosity 

over time 

Shear thinning at low 

shear amplitudes 

Shear thinning has been observed previously
380, 

381
 in bulk smectic 8CB 

Gentle shear 

with large 

gap 

Frequent jumps in 

response 

Jumps may represent a discrete domain 

reorientation in the shear direction 

Shear thinning at low 

shear amplitudes 

Shear thinning has been observed previously in 

bulk smectic 8CB
380, 381

 

Moderate 

shear  

Variously slight 

increases or decreases 

in response over time 

Shear response will depend on the extent of 

domain reorientation, which in turn will 

depend on the specific shear parameters used 

Drop in Maxwell 

viscosity component 

Response becomes more linear, suggesting 

domains have aggregated and reoriented
376

 

Slight kink in the shear 

period 

Kink is caused by the material being brought 

beyond its viscoelastic limit, with post-kink 
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Condition Phenomenon Proposed Physical Interpretation/Cause 

regime representing plastic flow 

Aggressive 

shear with 

small gap 

Shear thickening at 

large shear amplitudes 

Shear thickening is a product of the 8CB being 

brought beyond its viscoelastic limit 

Sharp kink shortly after 

reversal of shear 

direction 

Viscoelastic limit is exceeded after small shear 

distance because of the relatively large percent 

strain due to the smaller gap 

Sharp decrease in 

elasticity Burgers 

component, slight 

increase in viscosity 

Burgers components 

Repeatedly exceeding the viscoelastic limit 

quickly reorients the domains into the shearing 

direction, lowering the energy dissipation in 

the shearing process; rapid decrease in 

effective viscosity 

Long-term change in 

response is period-

independent during 

LAOS 

All domains have been reoriented in the shear 

direction due to the more aggressive shear 

effect created by gap-spanning domains within 

the smaller gap 

Aggressive 

shear with 

large gap 

Shear thickening at 

large shear amplitudes 

Shear thickening is a product of the 8CB being 

brought beyond its viscoelastic limit 

Broad and gentle kink Relatively small percent strain allows the 8CB 

to deform over a larger deformation distance 

before the viscoelastic limit is reached 

Sharp decrease in 

elasticity Burgers 

component, slight 

increase in viscosity 

Burgers components 

Repeatedly exceeding the viscoelastic limit 

quickly reorients the domains into the shearing 

direction, lowering the energy dissipation in 

the shearing process; effective viscosity 

decreases 

Long-term change in 

response diminishes 

with increasing period 

during LAOS 

This may be an indication that domains have 

not fully reordered for the larger period tests.  

Possible evidence that the domains are not 

fully spanning the larger gap and are thereby 

being reoriented less aggressively during 

shearing. 

  

     From the above table an overall picture of the system can be established, in which 

subtle differences can be seen between the shear response behaviour at the extremes of 

the mesoscale regime.  Comparisons of the response amplitudes for the two extremes 

show that at the onset of shear, the material is stiffer within the 0.5 m gap than the 5.0 

m, but drops in effective viscosity after several cycles, indicating the reorientation 

process is more efficient at the lower end of the mesoscale than at the higher end.  This is 
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attributed to the former gap being on the order of the length scale of the domains, so that 

the hard confining surfaces contribute more directly to the domain reorientation than they 

would within the latter gap, in which many domains are reoriented by their more flexible 

domain neighbours and only indirectly affected by the hard confining surfaces.  It also 

underscores the importance of the gap size in determining the viscoelastic limit; a smaller 

gap will have a smaller viscoelastic limit than a larger gap because the shear-strain 

amplitude will be proportionally larger.  The inherently stiffer material within the smaller 

gap intensifies this effect by further reducing the viscoelastic limit within the smaller gap. 

 

     Dynamical and structural differences are also apparent between samples sheared while 

confined to mesoscale gaps and those sheared while in bulk.  Turbidity indicative of 

disoriented domains due to particularly large shear-strain amplitude shearing (for shear-

strain amplitudes of 5 or more), is observed within bulk smectic 8CB
371

.  Within the 

mesoscale, however, rapid domain orientation is observed at both ends of the mesoscale 

regime (0.5 m and 5.0 m gap sizes), as evidenced by the sharp drop in shear response 

for each.  This effect may be the result of the gap approaching the length scale of the 

domains, leading to hindered motion of the domains by the confining surfaces.  Complete 

domain reorientation and aggregation during LAOS (with more moderate shear-strain 

amplitude) also occurs much more quickly at mesoscale confinement (within seconds or 

minutes) than it does for bulk samples (remaining incomplete even after several hours). 

  

     The differing intra-period fitting results for gentle and aggressive shearing indicates 

that different mechanisms are behind the observed behaviour: During gentle shearing, 
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slight increases in the Burgers viscosity components, likely the result of domains being 

unable to fully reorient into the shear direction (except near the point of tightest 

confinement, where ordering has previously been observed to increase in a stepwise 

manner), drive the increase in response during gentle shearing.  Under more aggressive 

shearing the domain reorientation is much more rapid and thorough, leading to a drop in 

effective viscosity that is the result of an overall decrease in the Burgers elastic 

components accompanied by a moderate decrease in Burgers viscosity components.  The 

drop in Maxwell viscosity indicates that the material is sliding with less resistance once 

the viscoelastic limit is exceeded, a direct result of the reorientation of domains over 

time. 

 

     Similarly, differences in behaviour can be seen between 8CB sheared with smaller and 

greater amplitudes relative to the viscoelastic limits of the material.  Different shear 

amplitudes, for example, produce unique Ostwald-de Waele power law curves, such that 

at the lowest tested amplitude the expected shear thinning behaviour was observed, while 

at higher amplitudes slight shear thickening behaviour was observed, a result of the 

sample being brought beyond its viscoelastic limit.  The viscosity evolution over time, in 

fact, was found to depend not only on shear rate, but also in part on shear amplitude as 

well.  This is further indication that large amplitude shearing is more efficient at 

reorienting the domain structures.  The sample is being brought beyond its viscoelastic 

limit, which forcibly separates neighbouring domains from one another and thereby 

provides them with more opportunity to reorient than if shearing had been kept to within 

this limit, where flexibility of the domains mitigates the effect of shearing.  The viscosity 
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vs. time curves, when fitted to a two exponential model, yield a smaller time constant that 

varies logarithmically with shear rate.  Furthermore, varying shear amplitude yields 

similar but distinct logarithmic relationships that, when their respective fitting parameters 

are plotted vs. shear amplitude, provide an equation describing the evolution of effective 

viscosity with time as a function not only of shear rate, but also independently of shear 

amplitude as well. 

 

     A method to determine the extent to which the viscoelastic limit has been exceeded, 

by way of calculating the harmonic ratios of the response, AN/A1, and determining the 

point at which (and the extent to which) they diverge from the expected triangular 

harmonic ratios.  This divergence has, in prior research on other materials, yielded 

information on the construction and destruction of structures due to the large amplitude 

shearing.  Changes in the second harmonic ratio over time has, in prior tests on lamellar 

materials, been demonstrated to be correlate to mobility changes in network structures 

due to their aggregation and reorientation
376

 and so establishes a basis for similar studies 

using the SFA.  A rise in third harmonic ratio during aggressive shearing of smectic 8CB 

indicates, similarly, that domains are annealing in the sample early on in the shearing 

process. 

 

     While the results presented require further testing to fully understand the phenomena 

presented here, they nevertheless provide tantalizing evidence of the unique behaviour 

characteristic of smectic dynamics at mesoscale confinement. 
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5.10  Future Work 

     Shear studies with the SFA require a great deal of patience due to the delicate and 

short-lived nature of the surfaces.  As a result, the number and extent of test runs is 

necessarily limited and this, combined with the complex behaviour of smectic 8CB under 

shear leaves several areas where more extensive data gathering would be useful.  Listed 

below are specific areas where further investigation would be warranted, and 

improvements to the test procedure could be made: 

 Longer tests (over multiple days) at very low shear rates in order to ensure 

asymptotic viscosities have occurred, and compare the number of response 

discontinuities (discussed in Section 4.2.7) early and later in the shearing process. 

 Further investigation into the transition zone seen in Figures 4.2 and 4.6, and 

discussed in Section 5.4, in which the shear-induced time-dependent viscosity change 

switches from clear thickening to weak thickening behaviour. 

 Further investigation into the viscosity power law dependence to establish the 

nature of amplitude dependence of consistency, K, and power law index, n, particularly 

at different levels of confinement, both within and outside the mesoscale window, to 

determine whether confinement has an added influence to these parameters. 

 Reduction or removal of noise between 10 Hz and 100 Hz so that high pass 

filtering of the strain gauge data is not necessary and, consequently, so that more 

accurate high frequency measurements can be made without the loss of intra-period 

features. 
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 Improvement of the temperature control within the SFA room and SFA chamber 

to minimize long-term thermal drift, which in turn would assist in the establishment of 

asymptotic shear response. 

 Improvements to the sensitivity of the measurement of shear response can be 

made, for example, by replacing the semiconductor strain gauge system currently in 

place with a piezoelectric tube (PZT) measurement device, such as that developed by 

Klein and Kumacheva, which has a quoted lateral measurement resolution of 0.1 N
43, 

397
. 

 Investigation of the viscoelastic limit’s dependence on intra-period shear 

parameters.  By varying shear amplitude, frequency and gap size and monitoring the 

point within the shear period at which the aforementioned response kink occurs, 

information can be obtained on the length scales within the system. 

 The installation and implementation of an improved data acquisition card capable 

of acquiring at a faster rate, allowing for better definition of the observed kink and 

potentially allowing for accurate measurement of the response phase shift. 
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Appendix 1 

Plots of Shear Response, Amplitude, First Harmonic, Fit Curves 

and Fit Parameters as a Function of Time 

 

     The plots below represent the collected data and analysis of the primary 24 

experiments discussed in the Results and Conclusions chapters.  The plots are organized 

in the following way: Each page contains four plots of data from test conditions of 

identical percent strain, more specifically, with constant gap size and shear amplitude.  

Shear frequency (and hence shear rate) will vary over the four plots, from 0.01 Hz to 10 

Hz.  With three distinct shear amplitudes and two gap sizes, then, each section will make 

up six pages of data. 

 

     There are seven sections presented in this appendix: 

i) Plots of shear response (first five periods only) as a function of time to show 

the general shape of the response curves. 

ii) Overlays of response and Burgers Model fits (first five periods only) as a 

function of time 

iii) Plots of the Burgers Model fitting parameters obtained from the fits presented 

in section (ii) as a function of time 

iv) Plots of noise-reduced amplitude (as obtained from the first harmonic) as a 

function of time, overlain with the response amplitude 

v) Overlays of noise-reduced amplitude and two exponential fits to the response 

curve 
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vi) Overlays of response and Split Model fits (first five periods only) as a 

function of time 

vii) Plots of the Split Model fitting parameters obtained from the fits presented in 

section (vi) as a function of time 

 

Response data was converted from the raw data values (measured in Volts) to their 

corresponding force values, and the bridge balance offset removed so that the response 

will lie about the zero line to aid the eye.  Note that because the qualitative features of the 

response curve were removed by the post-acquisition filter (as discussed in the Results 

section), Burgers Model and Split Model fits were not performed on the 10 Hz data and 

so those plots are not provided.  Also, the graphs of those smaller shear rate tests that 

were too noisy to yield a reasonable fit have been omitted as well. 
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Appendix 2 

 
The Burgers Model 

 
 
    Often viscoelastic materials under shear exhibit prominent elastic and viscous 

components in their dynamic response.  One common way of representing this 

characteristic behaviour is by using the Burgers Model
394

, introduced by Johannes 

Martinus Burgers in 1935
395

.  The model consists of a combination of Kelvin-Voigt and 

Maxwell Models in series as shown in Figure A2.1:  

 

 

 

 

 

 

Figure A2.1:  The Burgers Model, consisting of a Kelvin-Voigt component (with a 

spring and dashpot in parallel, comprising the central portion with stretch 2), in series 

with a Maxwell component (with a spring and dashpot in series, comprising the left and 

right portions with combined stretch
31

  ). 

 

The above system is made up of two springs, both of which follow Hooke’s Law kF  , 

where F is the force, k is the spring stiffness and  is the extension, and two dashpots, 

both of which resist force proportionally to their velocity.  That is,  F , where  is the 

viscosity and   is the rate of change of extension. It should be noted that while the 

relationships above consider an applied force and the resultant extension in a system, the 
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same reasoning can be extended to a simple stress-strain relationship, with the equivalent 

Hooke’s Law being  k , with   as an applied stress and  now as the resultant strain.  

The leftmost spring and rightmost dashpot, together as they are in series, make up a 

Maxwell component, and the central portion of spring and dashpot in parallel constitute a 

Kelvin-Voigt component.  The latter system, being in parallel, would yield an overall 

stress of  k  .  Each of the three sections may undergo a unique strain of i, but 

together they must sum to a total strain of 




3

1i

i
 ; each component, furthermore, can 

be assumed to be unstretched initially, and so       0000
321

  .  Because the 

springs and dashpots are all massless, the shear stress, , will be the same throughout the 

chain, and this leads to a relationship between the components of: 

31222211
   kk                                                                                       (1) 

From equation (1) three separate equations may be formed: 
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From (1c) we may find 3: 

.

dt
1

1

1

3

const
t


 










 

and since   00
3

 , 



 382 

1

3






t
                                                                                                                       (1d) 

Together, equations (1a) and (1d) give the solution to the Maxwell component, a plot for 

which is provided below given a constant shear stress: 

 

Figure A2.2: Strain as a function of time for a Maxwell component undergoing constant 

shear stress.  Note that the yield stress here, indicated by the intercept 1/k1, is zero, but in 

general it does not have to be. 

 

Note that the Maxwell component alone is not able to describe a viscoelastic material 

sufficiently since it does not take creep into consideration (as indicated by the linear 

strain vs. time). 

 

     From (1b), similarly, we may determine 2.  It is best solved using the standard 

solution for linear first order equations.  That is, for    xQyxP
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which is the standard result for the Kelvin-Voigt model, applicable to some simple 

viscoelastic materials.  A plot is given below showing the solution to the Kelvin-Voigt 

model for a constant stress: 

 

Figure A2.3: Strain as a function of time for a Kelvin-Voigt component undergoing 

constant shear stress.   
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     Taking equations (1a), (1d) and (1e) and summing them, an analytical solution for the 

overall extension   can be obtained: 
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The above equation represents the Burgers Model, describing the time-dependent change 

of strain under constant stress.  The leftmost term on the right hand side represents the 

instantaneous strain that occurs as a result of stressing the system, the rightmost term 

represents the viscoelastic behaviour that follows shortly after, and the central term 

represents the viscous flow that occurs after the material has been stressed beyond its 

elastic limit.  A plot of the Burgers Model solution for a system under constant stress is 

given below: 

 

Figure A2.4: Strain as a function of time for the Burgers Model for a system undergoing 

constant shear stress.  Note that the yield stress here, indicated by the intercept 1/k1, is 

zero, but in general it does not have to be 
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and solidlike (Kelvin-Voigt) behaviour.  This model has been applied to the smectic 8CB 

shear response data presented in the Results section, describing the material as it is 

sheared beyond its viscoelastic limit.  
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Appendix 3  

 

Demonstration of the Odd-Harmonic Nature of a Non-Newtonian 

Response to a Triangular Shear Profile 

 

     Following Wilhelm’s derivation of a non-Newtonian response to a sinusoidal shear 

profile
376

, an extension can be made to the slightly more complicated case of a triangular 

shear profile to demonstrate that it too yields a response made up purely of odd-harmonic 

components, due in part to the triangular input (which is made up entirely of odd-

harmonic components) and in part to the non-Newtonian nature of the viscosity 

dependence on shear rate.  One begins by assuming the material’s viscosity depends on 

shear rate alone and is independent of direction (a fact not necessarily true for layered 

systems, as demonstrated by Mięsowicz
36

, but applicable here assuming the shearing 

direction remains parallel to a single Mięsowicz viscosity) so that    , and the 

shear rate is small enough that the viscosity can be approximated as a Carreau Model 

polynomial series: 
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210
   cc  

where cn are proportionality constants.  The triangular shear pattern can be expanded in a 

Fourier series so that the strain it exerts is: 
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where A is the strain amplitude, 1 is the fundamental shearing frequency and t being 

time.  The strain rate will then be: 
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This being a triangular wave (with the periodicity doubled from the previous expression 

due to the absolute value signs), it can be expanded in a Fourier series expansion of a 

triangular wave, so that it can be written as: 

  

 



































 



1

2

1

12

1

2

1

2

1

1

12

122cos4

2
...

5

10cos

3

6cos

1

2cos4

2 n n

tn
A

ttt
A















 

which simplifies, in general terms, to: 
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etc.).  The viscosity-related force can now be easily calculated by substituting the 

relations derived above into the viscosity-strain rate equation: 
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where Cn are the proportionality constants defined by the lengthy coefficients shown in 

the previous line. 

     As can be seen from the lower order terms, in general the viscosity, being composed 

of even cosine terms (plus the offset zero shear-rate term), when multiplied by the shear 

rate, being composed entirely of odd cosine terms, must necessarily result in a function 

composed entirely of odd cosine terms.  Consequently, the response due to a triangular 

shear wave will be composed entirely of odd-harmonic terms. 
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Appendix 4 
 

 

Demonstration of the Crystallization Point of 8CB via Differential 

Scanning Calorimetry 

 

     To maximize the shear response the sample should be as viscous as possible, which is 

easily obtained by lowering the temperature of the sample near to the smectic-crystalline 

bulk transition point, which is reported by various groups to be approximately 20.5C to 

21.5C
125, 130, 321, 398, 399

.  In order to approach the transition point without crossing it, it is 

necessary to know the exact transition point for the sample being used, and so a DSC test 

was performed on the sample with temperature steps of 0.1°/min from 60°C to -10°C, 

holding there for 30 minutes and then raising the temperature back to 60°C in 0.1°/min 

increments.  The results of the test are shown below: 

 

Figure A4.1: Heat flow as a function of temperature for 8CB as obtained by DSC. 
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The heat flow spike spanning 18°C to 20°C and peaking at 19.5°C clearly shows the 

crystalline to smectic-A transition, along with the nematic-smectic-A transition at 38.2°C 

to 38.4°C.  For this reason, the SFA sample temperature was chosen to be 20.5°C to 

ensure that the sample would be in the smectic-A state but with as high a viscosity as 

possible (and hence as high a shear response signal to noise ratio as possible) within that 

phase. 
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Appendix 5 
 

The Relation of Shear Response to Viscosity in the Surface Forces 

Apparatus 
 

 

     Viscosity is commonly defined as the measure of resistance of a fluid to deformations 

such as (but not limited to) shear and stress.  For a fluid between two flat surfaces moving 

relative to one another, this resistance is known specifically as shear viscosity, and can, 

with most simple fluids and for low velocities, be described reasonably using Newton’s 

Theory, that the applied shear stress will be proportional to the velocity gradient 

perpendicular to the surfaces.  This gives rise to the constitutive equation: 

z

v




   

where  is the shear stress, zv  is the velocity gradient between the surfaces (with z, 

therefore, being the direction perpendicular to the plates) and  is the viscosity of the 

fluid.  If the force generating the shear stress is F and the surfaces have area A, the shear 

stress may be expressed as AF .  Likewise, the velocity gradient in this simple 

scenario can be simplified to zvzv  , with z as the distance between the surfaces, 

leading to an equivalent equation to the one above: 

z

v

A

F
                                                                                                                             (1) 

 A schematic of this simple situation is shown below: 
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Figure A5.1: A fluid being deformed by two plates moving relative to one another, 

giving rise to a velocity gradient within the fluid which, in simple scenarios, is 

proportional to the shear stress with proportionality constant , the shear viscosity.  

 

     The configuration is somewhat more complicated within a Surface Forces Apparatus, 

since the fluid is confined not by two flat surfaces but typically by two crossed cylinders.  

The shear stress equation given above will apply only for infinitesimal points across from 

one another on the crossed cylinder geometry, since only for two infinitesimals will the 

surfaces be effectively ‘flat’ relative to one another, but by integrating this equation over 

the sheared area one can obtain an approximate relation between shear stress and 

viscosity (again, of a Newtonian fluid), albeit a more complicated one.  These 

infinitesimals can be integrated over the surface of contact to give the total shear force.  

Starting with Equation (1) and, again, assuming flow is primarily directed parallel to the 

surfaces, Newton’s Theory is re-written: 
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Assuming a uniform viscosity throughout the fluid and a steady driving relative velocity 

between the surfaces, the above becomes: 



A
z

dA
vF   

Once the sample has been deposited between the cylinders, it typically takes on a 

columnar shape with the ends conforming to the confining cylinders’ geometry (defined 

by its radius, R).  For this reason, converting the above integration to cylindrical polar 

coordinates is useful to continue the derivation, with the radius coordinate corresponding 

to the radius of the sample column and the axis passing perpendicularly through the point 

of closest approach of the crossed cylinders.  In converting to this system, it is worth 

noting that flow will likely be chiefly in the plane of contact as pictured in Figure A5.1, 

so that 0dz  to first approximation and the differential area in cylindrical coordinates 

reduces to that of an infinitesimally thin annular ring rdrddA  .  The shear equation 

then becomes: 



A

drd
z

r
vF                                                                                                              (2) 

It is now a matter of defining the surface to surface distance in terms of cylindrical 

coordinates so that the crossed cylinder shear equation can be determined.  This will be 

discussed in the following paragraph. 

 

     When the surfaces are in contact, the distance between surface points, z, will be a 

function of the radial distance from this point (that is, the distance between the axial 

center, or origin, and the projection of the surface on the contact plane).  A schematic of 

the geometry is given below: 
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Figure A5.2: A schematic of the geometry for a single cylinder, from which the distance 

between the cylinder surface and the plane of contact, h, can be calculated as a function 

of r, R and . 

 

The distance between this point and the nearest point on the plane of contact, h, will be: 
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22
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In a similar way, the value of h can be calculated for the second cylinder.  Since it is 

aligned perpendicularly to the first cylinder, the equation will be shifted by exactly 90, 

and the distance between crossed cylindrical surfaces in contact at the point of closest 

approach, at an arbitrary radial distance from center, r, will be: 
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And hence, for cylinders with a gap size g, the total distance between cylinders at a radial 

distance r from the point of closest approach will then be: 

ghz
tot

                                                                                                                         (4) 

Alternatively, an approximation to the above can be made by assuming the geometry of 

the system consists of a plane and sphere of radius R separated at the point of closest 

approach by a distance g; this geometry approximates the crossed-cylindrical geometry to 

second order and, because of the symmetry of the sphere, greatly simplifies the angular 

integration term in Equation (2).  The distance between a point on the sphere a radial 

distance r from the point of closest approach and its projection on the plane is given by: 

 g
R

r
z

planesphere




2

2

                                                                                                       (5) 

 

     The distance relation from Equation (3) can be incorporated into equation (2) to 

simplify the treatment of the shear equation: 
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By noting that the bounds of integration for  and r will be 
400

 and {0, r} (the radial upper 

limit remains undefined to accommodate different sizes of the drop of sample between 

the cylinders) the following relation emerges after some minor rearrangement: 
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                      (6) 

And, for the sphere-plane approximation, since Equation (5) has no angular dependence, 

the differential annular ring becomes rdrrdrddA  2 and so Equation (2) becomes: 
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                                                                             (7) 

Equation (7) provides a quick way to estimate the force contribution at a given distance 

from the point of closest approach (which coincides with the axis of the cylindrical 

coordinate system shown in Figure A5.2).  Expressed as a fraction of the total force (i.e. 

the force at radial point rs, the sample radius), this relation will be: 
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For the present study, the sample radius was estimated by eye to be approximately 3 mm 

while the surfaces were near contact.  A figure showing the cumulative force as a 

function of distance from the origin (i.e. the point of closest approach between the 

surfaces) is given below for this sample size: 

 

Figure A5.3: Fraction of total shear force as a function of radial distance from the origin 

with a sample radius of 3 mm. 

 

The above plot assumes that force contributions at all distances from the origin are of 

equal magnitude.  This is likely a considerable simplification of actual complex fluid 

systems under varying levels of confinement, in which more tightly-confined domains 

may behave differently from domains that are located further from the point of closest 

approach and are hence less tightly-confined.  Nevertheless, the plot provides a rough 

estimate of the extent to which radial distances should be assumed to contribute to the 

overall shear response for a given gap size.  
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     Regardless of the values of R and g, Equations (6) and (7) will, of course, only make 

physical sense while Rr  .  Note that, in the limiting case where the cylinders are of 

infinite size, so that R , one would expect these equations to reproduce the planar 

case described by Newton’s Theory (Equation (1)).  Similarly, in the limiting case where 

0r , the planar case should again be reproduced since r has reduced to a point and 

therefore lost its curvature.  Since the integration is in cylindrical coordinates, one can 

divide equations (6) and (7) by the area of a radial planar projection of the cylinder,

2
rA  , to give, for the sphere-plane approximation: 
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And for the crossed cylindrical geometry: 
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That is, in the limiting case of two cylinders of infinite radius, an equivalent geometry to 

two flat planes, Equation (1) is reproduced as it should, with the gap size at the point of 

closest approach becoming equivalent to the gap size, z, of the planar case.   

 

     In general, though, the right hand side of Equation (6) has no simple analytic solution, 

but it can be related to the planar case easily in its present form.  Since the integration is 

in cylindrical coordinates with the radial direction along the confining surfaces (see 

Figure A5.2), the equivalent planar force must have a circular area so that 
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 , and Equation (6) becomes: 
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where CCC is the crossed cylinder geometric constant: 
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and subscripts P, CC and (used later) SP refer to the planar, crossed cylindrical, and 

sphere-plane geometry, respectively.  Note that since the relative velocity of the surfaces, 

v, will be identical regardless of the surfaces’ shape, these terms for the crossed 

cylindrical and planar geometries will cancel.  For the sphere-plane approximation, this 

relationship simplifies to: 
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with: 
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The constant, CCC, then, represents the fractional reduction in shear force for a given 

radius of sample size in a crossed cylindrical geometry (with cylinders of radius R) 

compared to an equivalent planar configuration with the same projected cross-sectional 

area, A, and a planar gap size, z, equal to the crossed cylinder point of closest approach, 

g.  Since the velocity and gap size are fixed for a given set of test parameters, CCC 

manifests itself, according to the left hand side of Equation (6), in terms of the apparent 

viscosity of the sample as measured by the shear response.  CSP represents a simpler, 
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analytical equation that can give very accurate predictions of the fractional reduction 

under certain shear conditions, as will be discussed later. 

 

     Constant CCC can be evaluated numerically via Maple software, using typical 

experimental parameters for constants R and g.  Plots of both CCC and CSP as a function 

of sample radius with various g values and constant R (2 cm) are given below: 
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Figure A5.4: Geometric constant, C, as a function of sample radius, r, for various gap 

sizes, g, and constant cylinder radius R (2 cm), for (Top) larger sample radii and (Bottom) 

a more detailed view with smaller sample radii.  CCC is presented as a solid line while CSP 

is presented as a dotted line.  Recall that gap sizes of 0.5 m and 5.0 m, corresponding 

to the red and violet curves, were used to obtain the results presented in this thesis. 
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The trend featured above makes physical sense, in that as the gap size increases the 

curvature of the cylinders impacts the overall shear response less (that is, the relative 

drop-off in gap size due to curvature is less drastic when the point of closest approach is 

increased) and so it behaves more similarly to the planar shear configuration, indicated by 

the approach of C to unity for larger values of r.  Even for small gap sizes, the small 

sample radii values of C remain close to unity, as one would expect since, as one 

approaches an infinitesimal sample radius, one also approaches an approximate planar 

configuration; for a point radius, curvature is negligible and Newton’s Theory is obtained 

regardless of gap size, with 1C  and 
PSPCC

FFF  .  In general, though, for a given 

sample size, 1C  since, for a given gap size, flat planes with 2
rA  will always 

produce a shear force larger than will two crossed cylinders with a similar projected area 

between the surfaces due to their curvature.  Note that in Figure A6.4 the dotted lines are 

indistinguishable from the solid lines for all but the largest gap sizes and sample radii, 

indicating that Equation (11) gives a very good approximation for small gap sizes, so 

long as one takes care to minimize the amount of sample inserted into the SFA and 

thereby reduce the sample radius.  A plot of the percent difference between predictions of 

C for crossed cylinder and sphere-plane geometry is given below: 
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Figure A5.5: Plot of the percent difference in calculated geometric constant values, C, 

for crossed cylinder and sphere-plane geometries as a function of sample radius, r. 

 

As can be seen from the above graph, the sphere-plane approximation is an accurate one 

for all sample radii associated with the SFA, as the discs used with them normally do not 

exceed 5 mm radius, for which the geometric constants differ by less than about 0.3%.  

For the estimated 4 mm sample radius observed for the results presented in this thesis, the 

0.5 m and 5.0 m gap sizes would yield geometric constants that differ by 0.111% and 

0.155%, respectively. 

 

     Plots of the geometric constant for various cylinder radii and the two gap sizes used 

with the reported results (0.5 m and 5.0 m) are shown below: 



 406 

 

Figure A5.6: Geometric constant, CCC, as a function of sample radius, r, for various 

cylinder radii, R, and the two constant gap sizes, g, of (Top) 5.0 m and (Bottom) 0.5 

m, that were used in the results presented in this thesis.  CCC is presented as a solid line 

while CSP is presented as a dotted line.   
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Once again, as expected, the geometric constant converges to unity as the sample radius 

drops to zero, due to the point particles’ inherent lack of curvature and consequent 

similarity to the planar configuration.  Also, as the cylinder size increases, the 

configuration increasingly approximates a planar configuration, thereby leading to values 

of CCC approaching unity for larger sample radii.  As with the results shown in Figure 

A5.4, the dotted and solid lines overlap well enough to be virtually indistinguishable 

from one another, regardless of the cylinder radius.  The one exception is for very large 

cylinder radius (2m) and small sample radius (<3mm), as for these test conditions 

Equation (9) predicts a complex C while Equation (11) predicts a real C.  For this reason, 

only the calculated results from the latter are shown in the plot. 

 

     Figure A5.4 is limited in its use, since each CCC line represents a ratio of the shear 

force between crossed cylinders of gap size g and that between planes of the same area 

and gap size, shown schematically in Figure A5.7:   
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Figure A5.7: Schematic of the crossed cylindrical geometry and how its shear force, FCC, 

relates to the planar shear force of Newton’s Theory, FP. 

 

 

Any two lines in Figure A5.6 cannot be directly compared because they are measured 

relative to different planar conditions.  The CCC curves for 0.5 m and 5.0 m gap sizes, 

for example, are calculated relative to planar shear configurations with gap sizes of 0.5 

m and 5.0 m, respectively.  This is easily remedied by assuming the relative velocity 

and viscosity are identical for the two configurations (the latter assumption is, of course, 

not necessarily true, and will be discussed later in the derivation) and noting that 

according to Newton’s Theory, shear stress is inversely proportional to gap size.  Hence, 

by dividing each CCC line by its gap size, all planar conditions will be identical and any 
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two lines will become comparable.  That is, geometric constants with gap sizes g1 and g2, 

their ratio gives: 
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And therefore, by dividing both sides by the ratio of gap sizes gives: 
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                                                                                                       (12) 

Hence, a comparison can be made between shear responses at different gap sizes, FCC, by 

comparing their 
xCC

gC  values, and deviations from the ratio given by (12) can indicate 

relative viscosity changes.  Figure A5.8 shows these ‘normalized’ lines using g0.005 as a 

baseline (that is, multiplying Equation (12) by m005.0g  to recover the same curve as 

was presented in Figure A5.4): 
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Figure A5.8: Plot of g0.005CCC/gx as a function of sample radius, r, for various gap sizes, 

g, and constant cylinder radius R (2 cm), for (Top) larger sample radii and (Bottom) a 

more detailed view with smaller sample radii.  CCC is presented as a solid line while CSP 

is presented as a dotted line.   
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     It is readily apparent from the intercepts of the above plots that while the point particle 

( 0r ) case, equivalent to a planar configuration as discussed previously, will produce 

viscosities that are exactly inversely proportional to the gap size as Newton’s Theory 

predicts (since they are exact decade-multiples of the g0.005 case), this proportionality fails 

even at relatively small r, particularly for smaller values of g.  Changing the gap size by a 

factor of 10 from 5 m to 0.5 m, for example, will yield a shear force that is only a 

factor of 1.6 larger, according to the plot.  Once again, the sphere-plane approximation 

yields results that are close enough to the crossed-cylinder geometry that the pairs of lines 

in Figure A5.8 are virtually indistinguishable for all g and r presented. 

 

     One must still be careful with making direct comparisons between r-values on the 

line, however, since a direct comparison of gap sizes with identical r-values implies that 

the column of sample spanning the gap retains its radius despite a potentially large 

change in gap size, which in turn implies, incorrectly, that the sample volume has 

changed.  For that reason, one further adjustment must be made to the curves in Figure 

A5.8: Specifically, lines of constant volume must be overlain on the plot so that 

comparisons between different gap sizes can be made while assuming a constant volume 

of sample, not a constant radius. 

 

     To construct the constant volume lines, one must first determine the sample volume as 

a function of the sample radius, cylinder radius and gap size.  This is easily done by 

noting that the volume can be approximated as a cylinder with ends shaped according to 

the confining cylinders, and so the total volume, V, can be broken down into two parts: 
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gapends
VVV   

where Vgap is the volume of the sample’s columnar portion and Vends is the volume 

contained beyond the column’s imaginary end points.  While formulating Vgap is trivial (it 

being a cylinder), Vends requires some integration.  For a radial distance r the distance 

between crossed cylinders (with gap size zero, since this portion is accounted for by Vgap) 

is given simply by Equation (3) as before, integrated over an area defined in terms of 

cylindrical polar coordinates rdrddA  , so that: 
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To create lines of constant volume for a given gap size, one must solve for g: 
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The sphere-plane approximation leads to a simpler gap size-volume relationship.  Starting 

from Equation (5) and proceeding in the same way as for the crossed-cylinder case: 
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And so, solving for g: 

R

r

r

V
g

SP

4

2

2



                                                                                                             (15) 

Equation (14) can be solved numerically to model the gap size as a function of sample 

radius for various sample volumes.  Examples of these curves are shown in Figure A5.9: 
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Figure A5.9: Plot of gap size as a function of sample radius for various sample volumes 

presented as (Top) a linear plot and (Bottom) a semi-logarithmic plot.  The cylinder 

radius, R, was kept constant at 2 cm.  Gap size gCC is presented as a solid line while gSP is 

presented as a dotted line.   
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     The top plot shows that the gap size falls off nearly with the inverse square of the 

sample radius as one would expect for a cylinder (that is, 2
rVg  ) but with a well-

defined lower limit determined not by an asymptotic sample radius but by the radius of 

the confining surfaces, as the rightmost term in Equation (11) dominates the leftmost 

term.  Again, the sphere-plane approximation matches closely with the crossed cylinder 

geometry, only diverging slightly for the larger sample volumes presented when the gap 

size has diminished nearly to zero. 

 

     By plotting the curves semi-logarithmically, as is shown in the bottom plot, one can 

observe the behaviour for small gap sizes that were used in the present study.  The sharp 

downward turn that occurs for the volumes plotted in Figure A5.8 indicates that, below a 

gap size of roughly 10 m and above a sample volume of 0.1 mm
3
, the sample radius is 

determined unambiguously by the sample volume and not the gap size.  Using this plot, 

then, one can quickly and easily determine the sample volume by noting the point at 

which, as the surfaces are brought closer together, the period of rapid radial expansion 

ceases, and making a measurement or estimate of the radius.  This value can then be read 

off the plot above and the volume determined.  For the present study, the sample radius 

near contact was estimated to be roughly 3 mm, for example, corresponding to a sample 

volume of about 4 mm
3
. 
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     The volume curves above can now be overlain on the plots of Figure A6.8 so that a 

realistic comparison can be made between the geometric coefficients of different gap 

sizes.  An overlay plot is shown in Figure A5.10: 

 

 

 
Figure A5.10: Plot of g0.005C/gx as a function of sample radius, r, for various gap sizes, g, 

and constant cylinder radius R (2 cm), with overlays of constant volume lines to show 

how the radius of a sample will change as the gap size is varied.  Two geometries are 

given:  CCC is presented as a solid line () and CSP is presented as a dashed line (-----), 

while the lines of constant volume are represented as dotted lines ().   

 

 

     The plot above shows that the sample radius increases very little while the gap size 

falls from 5 m to 0.5 m, by only about 26 to 39 m depending on the exact sample 

volume.  From Figure A5.9 and by direct observation, the sample volume was found to 

be approximately 4 mm
3
, so that when comparing the solid red and violet g0.005CCC/gx 

lines representing the normalized geometric factors for 0.5 m and 5.0 m gap sizes, 
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respectively, the ratio of values should fall between the navy and pink dotted lines, 

representing the volumes 1 mm
3
 and 5 mm

3
.  The ratios of geometric factors for these 

volumes are 1.652 and 1.547, respectively, and since 4 mm
3
 falls three-quarters of the 

way from 1 mm
3
 and 5 mm

3
, the best estimate for the normalized geometric ratio 

between gap sizes of 0.5 m and 5.0 m with a cylinder radius of 2 cm and sample 

volume of 4 mm
3
 is   5732.1547.1652.125.0547.1  .  Hence, assuming a similar 

sample viscosity, one should expect the shear response using a gap size of 0.5 m to be 

only a factor of 1.57 larger than that using a gap size of 5.0 m, rather than the tenfold 

factor predicted by Newton’s Theory.  And, as mentioned previously, a deviation from 

this ratio may be an indication that the viscosity ratio appearing in Equation (12) is no 

longer unity and hence that the viscosity has changed with gap size.  The equivalent ratio 

for the sphere-plane geometry is   5728.1546.1653.125.0546.1  , differing only by 

0.025% from the crossed cylinder result, and so demonstrating that this approximation is 

extremely accurate for the surface radius and sample volume used. 

 

     The above derivation relies on several assumptions, any of which could lead to 

potentially significant deviations from the predicted behaviour.  Examples include: 

i) Shear-induced flow occurs only in the radial direction.  Dissipation of energy 

along the axial direction will produce extra terms in Equation (2) and hence 

extra terms in Equation (9). 

ii) Viscosity of the sample is uniform.  This is particularly relevant for smectic 

liquid crystals, since they have the property of viscous anisotropy (the 

Mięsowicz viscosities, discussed in Section 1.3.1). 
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iii) The crossed cylinders are perfectly perpendicularly aligned.  Any skew from 

perpendicularity will also skew Equation (3) and complicate the derivation 

considerably.  Similarly, perfect axial alignment is also assumed and any tilt 

from this geometry will also affect the results. 

iv) The surfaces are perfectly smooth.  As with the planar shear case, 

imperfections in the surface or the accretion of sample at the surface will lead 

to deviations in Equation (3), complicating the derivation of Equation (9). 

v) The sample fills the gap between the crossed cylinders in a perfectly 

cylindrical column.  Menisci formed due to sample-surface interaction, or to 

domain structures near the surface within smectic liquid crystals (see 

Grandjean terracing in Section 1.2.1), may well have an effect on the central 

sample column joining the surfaces, skewing Equations (13) and (14) and 

thereby shifting the ‘equal volume’ lines in Figure A5.10 and hence altering 

the normalized geometric ratio.   

 

In performing experiments involving lateral shear with the SFA it is important to 

minimize the effects of above sources of error wherever possible. 

 


