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The h g  discovery patadigrn has changed in two important ways. The human genorne project is 
giving us many more new bio1ogical targets for dmg discovery. Hundreds of unknown disease genes 
are expected to turn up in the next few years. Combinatorid chemistry and the availability of 
commercial compounds have made millions of compounds avaiiable for dmg screening. It is no 
longer possible to test al1 available cornpounds for every new target of potential biological 
importance. 

In this thesis novel statistical methods for design and analysis of large chemical databases are 
described. The design problem is to choose a representative set of thousands of chemical compounds 
from a library that rnay have hundreds of thousands to millions of compounds, for assay against a 
biological target (screening). The analysis problem is to frnd regions of a high dimensional space 
where active compounds reside. These methods improve the efficiency and effectiveness of the dmg 
discovery process for reducing drug screening costs and tirne. 

KEY WORDS: Space-filling design, Exchange algorithm, High dimensional space, Multiple 
mechanisrns, Recursive partitioning, Cell-based analysis. 
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Chapter 1 

Statistics and Drug R&D Process 

1.1 Introduction 

The process of dmg research and development (R&D) is high risk and requires a long term 
engagement and investment. It costs more than US$5OO million and takes approximately 12 years to 
develop one new dmg and get it approved for sale (Levy, 2000). Many R&D projects are initiated but 
only a small number succeed. To discover a new dmg, hundreds of thousands of compounds rnight be 
initially screened and thousands of modified compounds will typically be synthesized. Even after the 
discovery of active compounds, there is great attrition as the compounds are tested in animals and 
humans. So the odds of any specific compound becorning a new drug is quite srnall. And of those 
molecules that becorne dmgs, only one-third lead to a positive r e m  on investment. Dmg patents 
normally nin for 20 years, leaving only a few years to recoup the R&D cost. Once a dmg patent 
expires in a particular country, other companies are free to manufacture generic copies of the cimg 
(see 'An overview of the dmg discovery and developrnent pmcess', 2001). For example, sale of 
GlaxoSmithKline's ulcer medication Zantaç, the world best-selling dmg in the early 90s, dropped 
from over US$5 million a day to thousands a day after the drug lost its patent protection (Ghangurde, 
1997 and Appleby, 1999). Thus, the very survival of dmg companies depends on improving those 
odds and reducing the R&D tirne. 

This thesis studies modern statistical design and analysis methods that can enhance the efficiency 
and effectiveness of the dmg discovery process, thus reducing dmg screening costs and time. In 
particular, this thesis focuses on the dnig selection stage of the drug R&D process. Current methods 
as well as novel rnettiods developed during my Ph.D. research are described. Manuscripts for the 
novel design and analysis methods have been submitted for publication in statistical joumals. In 
addition, the design method has won the American Statistical Association 2000 Statistics in 
Chemistry Award (AMSTAT News, December 2000). in this chapter, 1 will describe the current dnig 
R&D process, recent changes in drug discovery, the thesis research problerns, and give an outline of 
the thesis. 

1.2 Motivation 

Although the search for new dmgs requires intellectual and technological contributions from many 
scientific disciplines (e.g., chernists, biologists, pharmacokinetists, engineers, etc.), it temains a 
highly empiricd process. The tow success rate is due to our imperfect knowledge of biological 
processes, to our ever-increasing medical objectives (e.g., dmgs for oral contraceptives, impotency, 
and smoking cessation), and to the fact that new dmgs have to be better than existing dmgs. 

The drug discovery paradigm has changed in two important ways. The human genome project is 
giving us many more new biological targets for h g  discovery. There are currently only about 500 
dmg targets ('Discovering New Dmgs', 1999 and 'The Promise of Biotechnology and Genetic 
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Research', 2000). The human genome project is expected to increase the number of targets to about 
10,000. Combinatorial chemistry and the availability of commercial compounds have made millions 
of compounds available for dmg screening. It is no longer possible to test al1 available compounds 
for every new target of potential biological importance. Applications of modern statistical rnethods to 
enhance the efficiency and effectiveness of the h g  discovery process for reducing dnig screening 
costs and time are needed. Recent advances in computer technology have enabled development of 
novei statistical methods for design and analysis of large chernical databases. Design of experiments 
is an efficient rnethod for choosing a representative sarnpie of compounds for screening; statistical 
analysis is useful to link chemical features to biological activities of the compounds. An ideal 
approach is to carefully select a relatively srna11 subset of compounds for screening and to statistically 
model the molecular features important for biological activity. The statistical model can then be used 
to guide the selection of m e r  compounds for screening. Design and analysis cm increase the 
success rate in identifying lead compounds, thus leading to discovery of more innovative dmgs in less 
time and with a much smaller number of compounds tested. 

The relationship between chemicai descriptors and biological activity is extremely complex for high 
throughput dmg screening data. The challenges in design and statistical modeling of data of this sort 
will be discussed later in this chapter. 

1.3 Statistics and Drug R& D 

Consider a patient who has been suffering severe stornach pains in the past three months. After 
several visits to his doctor and afier several tests, the doctor concludes that he has a duodenal ulcer. 
The doctor tells him to change his diet and take a week off work. The doctor then writes a 
prescription for an ulcer dmg. This prescription is taken to a tocal drugstore and a 4-week supply of 
tablets is purchased from the pharmacist. Afier a few weeks, his ulcer is healed and he is back to his 
normal way of life. Those little tablets represent an enormous amount of effort and expense by the 
pharmaceutical Company that discovered the dmg. The tablets were developed over rnany years and 
began when a chernist first synthesized the chernical molecule that led to the medication that heaied 
the ulcer. 

Statistics plays an important role in dmg R&D. Some of the statistical application areas are (1) 
screening of new chemical molecules, (2) development of pharrnaceutical formulations, (3) 
evaluation of toxicology, absorption, distribution, metabolisrn, and excretion of dnigs, (4) design and 
analysis of clinical studies, and (5) quality control of manufactureci dnig products. Statisticai design 
and analysis are essential tools for the pharmaceutical industry to discover and properly develop - 
dmgs that will be judged approvable by regulatory agencies. 

1.4 Current Drug R&D Pro cess 

Discovering and bringing a new dmg to patients can take up to 15 years of R&D and cost hundreds of 
million dollars. The current R&D process can be divided into target selection, dmg selection, pfe- 
dinical research, clinical trials, and review and approval. 



1 -4.1 Target Selection 

This stage involves choosing a disease to mat, understanding the biochemical pathways of the 
disease, and developing a model for the disease. This gives a biologicai target, usually a protein 
critical for a biological function. This stage cakes approximately 1.5 yeacs. 

Discovery of new dmgs can be full of surprises. Here is an interesting example illustrating how a 
dnig aimed at a particular molecuiar target fortuitously improved a human health problem. In the 
early 1990s, researchers at Pfizer were searching for a drug that would d u c e  the chest pain due to 
angina. Since an increase in blood and oxygen supply should result in less angina, they looked for a 
dmg that would dilate coronary artenes. They found a substance in the blood, cGMP, that caused 
arteries to dilate and identified an enzyme, PDES, that broke it down. With PDES around, cGMP was 
destroyed and arteries shrank thin and became blood-poor; without PDES the arteries opened up. 
They discovered a molecule that PDES could securely lock onto, thus stopping binding with cGMP. 
It took approximately 4 years to find a molecule that allowed PDE5 to lock on but that the enzyme 
could not destroy. However, while conducting clinical tests on the dnig effective against the chest 
pain of angina, doctors often reported pills rnissing. The dmg is now known as Viagra and is 
prescribed for impotence (Discovering New Dmgs, 1999). 

1.4.2 Drug Selection 

Thousands and thousands of compounds are screened in the hope of finding different classes of dmgs 
that work within the model system. Once a biological target has been identified, the next step in the 
drug discovery process is to find new lead compounds (e-g., compounds that bind to the protein). 
New leads are chernical compounds that produce biological activities thought to represent therapeutic 
potential. The purpose of biological screening is to identify those compounds that possess the desired 
biological activity (e.g., good receptor binding). Those cornpounds identified are called 'hits' or 
'active* compounds. The initial hits are unlikely to be the final drugs. Complex evaluations are 
necessary, and typicaily the initial hit is modified atom-by-atom to improve important characteristics 
of the molecule. 

When a lead cornpound has k e n  identified, its molecular structure is varied to increase the level of 
desirable biotogical activity, reduce the level of undesirable activity, or  otherwise improve its 
pharmacologie profile. Lead optimization is the process of finding a compound that has some 
advantage over a related lead. This process can result in a better understanding of the physical- 
chemicai detenninants of the newly discovered activity, the reduction of undesirable side effects, 
experirnental verifkation of the positional requirernents of drug-receptor binding, modification of an 
absorption or metabolic rate, or an increase in the binding coefficient. Underlying the process is the 
common statistical purpose of characterizhg and optimizing a response function. Suitable 
formulations of optimized compounds are then devdoped and tested in clinical trials. Because there 
is no guarantee that a potent compound will become a marketable dmg, a large number of new leads 
are needed to feed into the drug development process. It is desirable to find lead compounds in 
stnicturally diverse chemical classes. If multiple chernical classes can be found, they provide optional 
starting points for lead optimization of ac tivity, ph ysical properties, tissue distribution, plasma ha1 F- 
life, toxicity, etc. 
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Typicalïy, hundreds to several thousand compounds are synthesized in the lead optimization phase 
of dmg discovery. The dmg optimization stage takes one to three years. 

1.4.3 Preclinical Research 

Tens of molecules might show sufficient promise to proceed to detailed safety and effectiveness 
studies. This stage involves in vitro (in the laboratory) and in vivo (in animals and hurnan volunteers) 
studies to show biological activity of the molecule against the targeted disease. This stage takes 
approximately 2 to 3 years. 

1.4.4 Clinical Trials 

NO amount of pre-clinical testing can predict with absolute certainty how humans will handle and 
tolerate a new dmg. Clinical trials are designed to determine scientifically the safety and efficacy of 
various treatment regimens. This stage takes approximately five to seven years. There are three 
phases to complete before a cornpound becomes an approved dmg: 

Phase 1: About five molecules move on to safety and dosage range studies. Each rnolecule is 
tested on small groups of heaithy volunteers to determine dosage limits, the disposition of the 
molecule in the human body and its side effects or toxicity. 

Phase 2: About four molecules move on to early safety and efficacy studies. Hundreds of patients 
with the targeted disease or condition are recruited, on a voluntary basis, to participate in clinical 
triais to assess the effectiveness of the dmg (i.e., evaluate the drug's efficacy on patients s u f f e ~ g  
from the illness that the drug is intended to treat). 

Phase 3: About two molecules move on to large scale comparative studies. Only one of the many 
molecules screened and synthesized may prove its worth as an innovative therapy. National and 
international studies are conducted in clinics, research establishments and hospitals, where physicians 
monitor patients with the disease closely to confirm the effectiveness of the product and identify 
possible adverse effects. 

1.4.5 Review and Approval 

Al1 the information gathered by the company, including chernical structure and properties, production 
details, pre-clinical and clinical studies are evaluated by regulatoty agencies. If the studies 
demonstrate that the new drug is safe and effective, the company receives a notice of cornpliance 
dlowing this new dnig to be marketed. The new dnig is then made available to the public, generally 
by prescription. This stage takes approximately two years. 

Post-marketing surveillance studies and further comparative dnig studies may need to be conducted 
for several years after the dmg is rnarketed. 



1.5 Changes in Drug Disc overy 

Major changes are taking place in the dmg R&D process, especiaüy in drug discovery, as new 
technologies advance and become available. Medical genetics lads to many more disease targets. 
Combinatorial synthesis rnakes millions of compounds available. The use of robotics and 
miniaturization is now allowing researchers to quickly screen thousands of compounds per week. 
These al1 will make a major impact in the dmg discovery process. 

High b u g h p u t  Screening (HTS) technology, which is an automation of biologicai assays of 
compounds, can investigate thousands of compounds against biologicai targets per week. The 
availability of large numbers of cloned receptors and enzymes has providecl a vast array of biological 
target systems for drug discovery screening (Cumrnins et al., 19%). Important dnig therapies rnay 
result h m  inhibition of these receptor systems, and extensive effort is currently king directed 
toward development of large libraries of compounds for screening. HTS programs are routinely used 
today for the identification of lead molecules in pharmaceutical discovery programs. The molecules 
are often selected from large chernical inventories maintained by research pharmaceutical 
corporations. 

Combinatorial chemistry provides the logistics of mass production of compounds and a wide range 
of molecular diversity for drug discovery. Using combinatorial chernistry techniques large numbers 
of compounds can be simultaneousIy synthesized. For exarnple, there are over 10,000 carboxylic 
acids (i.e., organic acids) and over 4,000 amines (i.e. organic compounds containing nitrogen) in the 
Available Chetnicals Directory, 1995. Using a simple chemistry reaction coupling carboxylic acids 
with amines (Le. A+B + C), there are over 40 million possible products. 

With the advance in the hurnan genome project, hundreds to thousands of new potential molecular 
targets for new medicines will be identifid through the use of genetics in the upcoming years. Given 
the size of today's chemical libraries and the additional millions of new compounds made available 
by combinatorial chemistry, it is no longer possible to test al1 available compounds for every new 
target of potential biological importance. In this thesis applications of modem statistical methods to 
enhance the efficiency and effectiveness of the dmg discovery process are proposed. 

1.6 Chemical Data Sets and Descriptors 

Methods to be described here can be applied to both continuous and discrete responses. For 
illustration, a data set with continuous activity outcome (Core98) and a data set with binary activity 
outcome (NCI) are included. 

1 -6.1 Chemical Descriptors 

The first step in the process of determining features of compounds that are important for biological 
activity is describing the molecules in a manner that is both capable of king analyzed and relevant to 
the biological activity. A dmg-like rnolecule is a small three dimensional object that is often 
represented by a two dimensional drawing. This two dimensional graph is subject to mathematical 
analysis and can give nse to numerical descriptors to characterize the molecule. Moleculas weight is 



one such descriptor. There are many more. Ideally, the descriptors will contain relevant information 
and be few in number so that the subsequent analysis will not be too cornplex. To exernplify our 
rnethods we use a system of BCUT descriptors given by Pearlman and Smith (1998), which are 
derived from a method of Burden (1989). These descriptors are eigenvalues from connectivity 
matrices derived from the molecular graph- For each heavy (non-hydrogen) atom, a property is placed 
dong the diagonal of a square matrix. The atornic property can be size, atomic number, charge, etc. 
Off-diagonal elements masure the degree of connectivity between two heavy atoms. Since 
eigenvalues are matrïx invariants, they measure properties of the molecular graph. Being functions of 
d l  the heavy atoms in the molecule, the eigenvalues are thought to represent the properties of the 
molecule as a whole. There are 67 BCUT descriptors described by Pearlman and Smith (1998). These 
67 BCUT numbers are highly correlated and computational chemists often use a subset of six BCUT 
numbers. A reason for the high correlations is that scientists often devise descriptors that measure the 
same gened property of a compound. 1 will typically follow the lead of the computational chernists 
and use six BCUT numbers. For illustration, both sets of 6 and 67 BCUT descriptors are considered 
in the analysis described in Chapter 4. 

1 -6.2 Core98 Molecular Data ( Continuous Response) 

Biological activity scores were obtained on a chernical data set, Core98, comprising 23,056 
cornpounds. Core98 is a chemical data set frorn the GlaxoSmithKline collection. Activity was 
measwed as % Inhibition and theoretically should range from O to 100 with more potent compounds 
having higher scores. Biological and assay variations cm give nse to observations outside the 0-100 
range. Typically, only about 0.5% to 2% of screened compounds are rated as potent. The compounds 
are descnbed by 67 BCUT numbers. 

1 -6.3 NCI Molecular Data (Bin ary Response) 

An AIDS antivird screen chemical database can be obtained from the National Cancer Institute (NCI) 
web site htt~://dt~.nci.nih.eov/docs/aids/aids - data.htm1. It provides screening results and chernical 
structural data on compounds. When we downloaded the database in May 1999, there were about 
32,000 compounds. GIaxoSrnithKline computational chemists generated BCUT numerical molecular 
descriptors for these compounds. However, due to poor structural representation and sarnples that 
contain unusual chernical substances that would normally not be considered dmg candidates, sorne 
BCUT descriptors could not be computed for some compounds. These compounds were removed, 
leaving about 30,000 compounds with computed descriptors. 

In theory, every compound does have a unique BCUT value. In reality, however, some compounds 
do fail the calculation for the following reasons. First, the available structural representation of a 
compound may fail to convert from its 2-0 representation to a 3-D structure. The BCUT calculation 
is a two-step process that inçludes a 2-D to 3-D conversion via a software program called 
CONCORD. If CONCORD fails to generate a 3-D structure, then most of the BCUT values cm not 
be calculated. Second, the compound may contain features that cannot be pararneterized for the 
BCUT calculation. Some of the features (atoms, substmctures, etc.) contained in a molecule may not 
have parameters assigned to them. For example, the charge of certain atoms such as selenium rnay 



not be available in the BCUT calculations. Thus, an error would occur and calculation would fail. 
But, from a practical aspect, this is ideal- Medicinal chemists have little interest in, for example, 
compounds with highly strained ruig fusions (which would cause CONCORD to fail) or compounds 
containing selenium (which would cause the BCUT calculations to fail). Because CONCORD and 
the BCUT calculations are parameterized for medicinally relevant compounds only, these steps 
becorne filters to eliminate undesirable compounds. 

Like the Core98 data, the same set of sixty-seven BCUT descriptors were computed for the NCI 
data. However, unlike the Con298 data where the response is continuous, the NCI compounds are 
classified as moderately active, c o n f i d  active, or inactive. The first two classifications are 
combined as 'active', as there are very few active compounds (only 2% for both combined). 

1.7 Design of Expriment s of Screening Sets of Compounds 

Various molecular descriptors (explanatory variables) cm be readily computed to describe the 
chernicd properties of every molecule in the database (e.g., the BCUT descriptors). The numerical 
descriptors form a high dimensionai chemical space where both active and inactive compounds 
reside. The design problem is to use the chemical descriptors to choose a set of compounds for assay. 

Chemists and biologists wish to explore the relationship between biological responses and the 
descriptors. They are usually unable to state the functional form of the relationship. However, from 
their experience the functions will be more spiky than smooth (McFarland and Gans, 1986). They 
reqWre, therefore, a large set of design points to cover the descriptor space. The design points are to 
be selected from an existing collection of molecules. Some of the problems related to conventional 
design of experiments are as follows: 

Biological activity may be present via several mechanism. Activity due to a particular 
mechanism m i e t  be restncted to a small sub-region of the descriptor space, and different sets of 
descriptors might be critical for the different mechanism. Compound screening, as stated earlier, 
aims to identify active compounds of several different structurai classes. Therefore, a good 
design should select a sample of compounds that leads to identification of active compounds in 
multiple regions in a high dimensional chemical space. These regions are referred to as 'active' 
regions. Ideally, the sample should include a few compounds from each of the active regions. 
However, the locations of the active regions are not known before screening and ofien in practice, 
almost every available compound is screened (this is going to be changed though, as it becornes 
impossible to screen every compound for every new target). 

The model is vague. The model relating the biological response to molecular properties is usually 
unclear beyond the assertion that sirnilar objects are more likely to respond similady. Two 
molecules must have fairly close values of al1 critical descriptors for similar biological activity 
(McFarland and Gans, 1986). Thus, the chosen subset, or experirnental design, should "Fill" or 
"cover" the numerical space in some sense. Ideally, selected molecules should be as dissimilar as 
possible and any candidate molecule not selected should be near a selected molecule- 

There is more than one response. A number of biological screens will be in operation within the 
research division of a pharmaceutical Company at any given tirne. Each screen may use different 
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Eceptors or enzymes, aimuig to detect a different specific biological activity. It is hoped that the 
collective output of these screens will provide enough leads to contribute to the discovery process 
in a meaningfid way. For the Core98 data set described earlier, 15 biological responses were 
generated. 

There is a highdimensional, discrete sarnpling space. The compounds to be chosen fiom are 
ofien a collection of resmcted sarnpling points and not al1 combinations of the descnptor values 
are feasible. It is not possible to place a compound at certain positions in the space. You are 
restricted to the compounds you have or can make. Therefore, a standard experimental design 
procedure assuming a continuous o r  regular factorial space will not work. In addition, chemical 
compounds, including those in Core98, are g e n e d y  made for a purpose; once a good compound 
is found, similar additional compounds are made, Therefore, candidate compounds are unevenly 
distributed in the space. 

The number of candidate points (Nc) and the number of design points (nd) are large. The number 
of possible combinations of the samples to be chosen from is so large that it becomes 
computationally impossible to consider every possible combination in the experimental design 
(Higgs et al., 1997) - it may take days or weeks or even months to compare every combination. 
In theory, to identify the optimal design, one needs to examine al1 possible subsets of size nd from 
the Nc candidate points, thus performing N,chose-nd subset evaluations. In practice, the 
magnitudes of N, and nd prohibit a full-scale optimization. For exarnple, to choose a relatively 
small design of 500 points from a candidate set of 10,000 rnolecules, there are 2.5% 1 0 ~  possible 
subsets. For moderate o r  large data sets, exhaustive search is not attempted, and heuristic 
algorithm are usually applied to find a very good design. 

The number of descriptors can be very large. Tens to hundreds to thousands of molecule 
descriptors are possible (Cumrnins et al., 1996, Higgs et al., 1997, and Hawkins et al., 1997). 
This implies a high dimensional problem. 

When there is no prier mode1 relating biologicai response to molecular properties, the generally 
accepted procedure is to screen a diverse subset of the overall database, and then examine the 
compounds that are structurally sirnilar to any promising leads that are found (Dixon and Villar, 
1998). Measures of "diversity" and "similarity" are based on numerical molecular descriptors. Space 
filling designs (described in Chapter 2) are commonly used for selection of compounds for screening. 

1.8 Analysis Problem 

The set of possible compounds that could be made is usually huge and it is not practical (too 
expensive and time consurning) to screen every possible compound. Thus. statistical analysis of the 

. data from the initiai screen aims to uncover the relationship between the numerical descriptors and 
biological activity, to focus m e r  screening on the most promising compounds. The relationship 
between descriptors and activity is extremely complex for high throughput screening (HTS) data and 
there are severai challenges in statistical modeling of data of this sort. 



The potent compounds of different chemical classes can be acting in different ways. Different 
sets of descriptors rnight be critical for the different mechanisrns. Activity may be high for only 
very localized regions. A single mathematical mode1 is unlikely to work well for al1 mechanisrns. 

The scarcity of active compounds makes identifying these small regions dificult. Even though a 
design o r  screen rnay include thousands or tens of  thousands of compounds, it will usually have 
relatively few active compounds. For example, the National Cancer Institute data set described 
earlier has only about 2% active compounds. 

There are many descriptors (i.e., curse of dimensionality). One can always € i d  something 
interesting in a high-dimensional space. Whether it is real o r  not is another story. 

Chernical descriptors are often highly correlated (e-g., the BCUT descripton). as scientists often 
devise descriptors that masu re  the same generai property of a compound. 

HTS data can be subject to very large systematic and random rneasurement errors in assay results. 
However, there is no rneasurement error in the computer-generated numerical molecular 
descriptors. 

Getting a good predictor of activity for unscreened compounds is difficult as biological actinty 
scores are often nonlinear responses of compound properties involving thresholds and 
interactions. 

Common statistical analysis methods such as linear regression models, generalized additive models, 
and neural nets are ineffective in hamlling these analysis problems (Young and Hawkins, 1998) and 
tend to give low accuracy in classifying molecules as active. 

1.9 Outline of Thesis 

This thesis discusses statistical methods for design and analysis of large chemical databases for high 
throughput dmg screening. The design problem is to choose a representative set of thousands of 
chemical compounds from a large collection of compounds. Conventional experimental design 
methods are not developed for such large data sets. Here we introduce a more efficient and effective 
design method for these data sets. Our method can run hundreds to thousands of tirnes faster and find 
a better (coverage) design than other design rnethods. The analysis problem is to find regions of a 
high dimensional space where active compounds reside. Here we introduce a new analysis method 
that gives better prediction of active compounds than existing methods. This research area is rather 
large and cornplex. To avoid cornputer memory and space issues due to a large volume of data, the 
methods are studied and developed using tens of thousands of compounds instead of millions but the 
algorithms should work on Iarger data sets. 

Chapter 2 describes existing design and analysis methods for compound selection. Other design 
and analysis issues (e.g., dense coverage of space, outlying compounds, multiple testing, etc.) not yet 
covered will be discussed. Chapter 3 describes a novel design method developed to address the 
design issues. The new design method is a useful tool for selection of a subset representing a large set 
in a chemical descriptor space. Chapter 4 describes a novel analysis method developed to address the 
analysis issues. The new analysis method is capable of finding multiple, active regions and finding 



more hits up front (i.e., find a high proportion of hits fkom a small number of compounds screened). 
Chapter 5 gives a summary of the results and discusses some related areas for future research. 

Throughout the thesis, the terms molecule, compound and structure are used interchangeably. 
Technically, a compound is a chemical substance with two or more elements. A molecule is the 
simplest structural unit that displays the characteristic physical and chemical properties of a 
compound. A structure is the graphical presentation of the bonds and atorns of a compound. In drug 
discovery, a compound is considered a chemical substance not yet defined while a molecule is a 
defmed compound. Graphically, a molecule is referred to as a chernicd structure. 



Chapter 2 

Design and Analysis Methods for Compound Selection 

2.1 Introduction 

Design of experiments and statistical anaiysis of designed experiments, when used properly, can 
increase the effectiveness in identifying active regions (where active compounds reside) and reduce 
the number of compounds screened. A sound approach is to carefully select, using design of  
experiments, a relatively srnall subset of compounds for screening and to determine, through 
statistical andysis, the molecular features important for biologicai activity. Rules developed fiom the 
analysis can then be used in further scteening to focus attention on compounds most iikely to be 
active. Such a sequential strategy is expected t o  be more efficient than screening al1 the compounds 
in a large collection (Jones-Hertzog et  al, 2000). 

Commonly used statistical methods for design and analysis of chemical databases and the problems 
related to these methods are described in this chapter. 

2.1 .1 Notation 

In general, denote the k continuous descriptors by xi, xa ..., xk. Within the full k-dirnensionai 
descriptor space, a p-dimensional @-D) subspace is defined by p of the k descriptors (1 I p I k). For 
convenience, Xi will denote the 1-D subspace involving only xi. Similady, Xij, Xijl, etc. will 
represent 2-D, 3-D and higherdimensional subspaces. For example, X1 is a 1-D subspace defined by 
XI, and X12 is a 2-D subspace formed by xt  and XZ. A subspace, then, is simply a subset of the 
descriptor variables, ignoring the remaining descriptors. 

2.2 Design 

The design objective is to choose a representative subset of compounds from a large collection of  
compounds for screening. Our problem differs somewhat from conventional design of experiments. 
First, the candidate set of possible explanatory variable combinations is discrete, and the set of 
discrete points can be large and highly irregular. Second, the model relating the biological response 
to molecular descriptors is not known, and the response fbnction is likely to be highly non-linear. 
Third, the design set (the subset) and the candidate set (the collection) are usually large (e.g., choose 
hundreds to thousands of compounds from thousands to millions of compounds). In contrast, many 
existing design cnteria and optimization algorithms are airned at choosing a small sample from a 
continuous or  regular (e.g., factorial) sampling space, with a specific model in mind. 

In reviewing the rnany classes of designs available and the difficulties in using them for HTS data, 
we can distinguish between model-based and space-filling (model-free) designs. Model-based 
designs tend to be more popular for lead optimization, while space-filling designs are widely used to 
select subsets of molecules fiom large chemical databases for lead generation. 
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Most work in classicai design of experiments has a class of (regression) models in rnind, at les t  
implicitly. Given a model, design points can be chosen so that pararneters in the model are effkiently 
estimated or a predictor has low variance, etc. 

in the context of HTS, once a lead compound is identified, compounds near the lead are exarnined to 
find better leads. Compounds within a small neighbourhood of the lead compound usually belong to 
the same chemical class, so a simple model (e.g., linear regression) is more likely to work adequately. 
The predictor variables are the chemical descriptors. The fitted model cm be used to chwse 
compounds (s ynthesized or not yet s ynthesized) in the neighbourhood with the highest predicted 
activiîy. 

There are many model-based design criteria; most are concerixd with efficient estimation of the 
pararneters in the model or efficient prediction of the response (see, for example, Cox and Reid, 2000, 
Chapter 7). For instance, the D-optimality criterion chooses a desipl to rninirnize the determinant of 
the variance-covariance matrix of the parameter estimators, nence giving efficient parameter 
estimation, whereas a G-optirnal design minimizes the maximum variance of prediction over the 
experimentai domain. D-optimality is the most common criterion for computer-generated optimal 
designs, as it is rnathematically and computationally convenient and is invariant to linear 
reparameterization of the model. 

To searcfi for an optimal model-based design, an algorithm is applied to optimize the chosen 
criterion. A sequential search algorithm (Dykstra, 197 1) starts with an empty design and adds 
successive design points once at a time so that the chosen criterion is optimized at each step. Such a 
sequential search is the fastest but Least reliable method, A simple exchange method (Wynn, 1972 
and Mitchell and Miller, 1970), starting with an initial random design, improves it by adding a 
candidate point and then deleting one of the design points until the design criterion cannot be 
improved further. This simple exchange method is the next fastest aigorithm and is more reliable 
than sequentiai search. The most reliable but cornputer-intensive algorithm is the Fedorov exc hange 
algorithm (Fedorov 1972). This rnethod searches over al1 possible pairs of candidate and design 
points for each exchange and thus mns much siower. There are many other algorithm for optirnizing 
a design criterion and most are variants on the basic idea of an exchange; see Cook and Nachtsheim 
(1980) and Tobias (1995, pp. 657-728) for reviews. 

if the model is linear in the descriptors, compounds on the edge of the space are selected. Even if 
quadratic or higher-order terrns are present, these designs tend not to represent the divetsity of a 
chemical collection. Model-based designs are seldom used for lead generation, and hence will not be 
discussed any further. 

Space-filling designs are useful in situations where the expetimenter cannot specify the functional 
form of the response function. The most common space-filling designs for selecting a representative 
set of molecules are randorn designs, distance-based designs, and cell-based binning designs. 



Random designs 

The simplest designs are based on random sampling. In fact, most new leads have been discovered 
through random screening, in which large numbers of compounds are tested for a specific biological 
activity, and the active compounds are then selected for optimization. Young et al. (1996) used a 
constant radius hypersphere around each randornly selected compound to rneasure the coverage of the 
descriptor space. Because two compounds must have very similar values of al1 critical descriptors to 
have similar properties, each hypersphere extends only a srnall distance in each dimension and covers 
only a tiny region of a high dimensional space. If the sample size is relatively srnall (e.g., hundreds of 
compounds), these hyperspheres will not give a sufficient coverage of the high dimensional space, 
regardfess of the type of designs used for the selection. Young et ai- (1996) conduded that, unless a 
very large number of compounds are used to fil1 space, randody selected compounds will cover as 
much space as carefully selected compounds. On the other hand, if the important dimensions for a 
particdar problem are identified, and if a focused set of compounds is desired, then rationai selection 
should be more effective than random designs. 

Random designs are popular for the foilowing reasons. F i t ,  it is very convenient to generate a 
large random design. No computation of distances among compounds and no optimization of a 
design criterion are required, Second, a large random sarnple tends to have a distribution in the space 
that is sirnilar to that of the candidate compounds, Third, based on my experience with several data 
sets, random designs tend to give better coverage in low dimensionai projections than conventional 
(distance-based and cell-based) designs focusing on coverage of a high dimensional space. 

There are some problems with random designs, however. Random selection generaily does not give 
a good representation of al1 compounds in the database. It tends to over-select compounds in the 
dense regions and to under-select compounds in the scarce regions. As the volume of the space 
increases exponentiaily with the number of desctiptors, getting a good coverage of a high dimensional 
space is almost impossible. A random design does not guarantee a good coverage in any dimensions 
of interest. 

The coverage of designs generated from both simple random sampling and stratified random 
sarnpling will be shown in Table 3-1. 

Distance ûesigns 

There are two main types of distance-based designs for selecting molecules from chernicai databases: 
"Spread" and "Coverage" designs, also known as maximin and minirnax distance designs. These 
rnethods fust define a descriptor distance metric ( e g ,  Euclidean or Manhattan distance) to masure 
the sirnilarities or dissimilarities of the molecules, and then find those molecules that 'fill' the space 
based on some distance criterion. Spread designs (Kennard and Stone, 1969) identify a subset of 
molecules that are rnaximally dissirnilar with respect to each other- The spread criterion seeks to 
maximize the distances between design points. Coverage designs select a subset of molecules that are 
sirnilar to the candidate set of molecules. Zemroch (1986) achieved this by clustering the candidate 
points and choosing a representative rnember of each cluster, whereas Johnson et al. (1990) sought a 
design to minimize the maximum distance h m  any candidate point to a point in the design. Finding 



a coverage design is usually much more computer-intensive than finding a spread design. The spread 
criterion depends only on the distances between design points, whereas the coverage criterion 
depends on the distances between al1 pairs of candidate points. The coverage criterion usually leads 
to a design with better representation of al1 compounds in the database, however. Higgs et al. (1997)- 
Johnson et al. (1990), and Tobias (1995) give more detailed descriptions of these designs- 

Because of the large numbers of candidate and design points, it is not possible to find the ' k t '  
design by evaluating every possible subsets of compounds. Optimization algorithms such as 
sequential search and the exchange aigorithm described earlier can be adapted to search for an 
optimal spread or coverage design (Higgs et ai. 1997 and Marengo and Todeschini 1992). However, 
the existing exchange algorithms were not intended (Le., are too computationally intensive) for design 
problerns of the magnitude considered hem. Altematively, Higgs et al. (1997) and Zemroch (1986) 
apply clustering algorithm to approximate a coverage design. A price for using the clustering 
approach is that it can generate many srnail clusters with only one compound and few large clusters 
with hundreds to thousands of compounds, In addition, the number of clusters c m  be much larger or 
smaller than the number of design points required. 

Even if the computational issues of finding an optimal design can be resolved, there are several 
problerns with distance-based design criteria. Fk t ,  two molecules with fairly close values of al1 
cntical descriptors are likely to have similar biological activity, but beyond some (unknown) 
threshold, there may be little relationship between distance and similarity of activity. Second, 
descriptors that are unrelated to target activity can have a significant impact on the distances between 
molecules in the space, and can make the 'optimality" of a design irrelevant. Irrelevant variables can 
create a 'large' distance between two similar molecules. Without proper selection of descriptors, these 
optimal designs are not expected to improve the quality of rational sampling over that of random 
sampling. In general, these distance rnethods try to fmd a subset with optimal coverage of the entire 
descriptor space but pay little attention to the coverage in lower dimensional subspaces. The low 
dimensional coverage (i.e., 1-D, 2-D and 3-D) can be quite poor which can cause problems in 
estimating local, low-dimensional effects. Moms et al. (1993) and Morris and Mitchell (1995) 
addressed this issue by incorporating 1-D coverage into their spread designs. If the effects of the 
descriptors can be adequately modeled by main effects and lower order interactions, then good 
coverage in lower dimensions is more important than good higher dimensional coverage properties. 
Third, the presence of relatively few outlying observations leads to large, dominating inter-point 
distances. Very often this requires removal of many molecules to generate a sensible design. 

To measure the "coverage" of a descriptor space, the space is divided into cells. A good experimental 
design will ideally have at least one molecule in every cell. If so, we Say the space is covered. 

In the conventional cell-based method, the range for each of the k numerical descriptors is 
subdivided into rn bins of equal size, yielding mk cells or hypercubes, and the experimental design 
chooses at least one molecule from every cell. This method is attractive because it is easy to divide 
the descriptor space into cells and allocating even a very large dataset to these cells is straightforward. 
Missing diversity (Le., empty cells) can easily be identified, Cummins et al. (1996) and Menard et al. 



(1998) used cell-based binning methods to compare the relative diversity of molecular databases and 
to select diverse subsets of molecules. 

A problem with many existing ce11 based binning methods is that they may generate too many 
cells. For a highdimensional space, the number of cells can exceed the number of candidate 
molecules and thus the number of design points. For exarnple, if k=6 and m=10, then this lads to a 
million cells. Most will be empty, even with respect to the candidates, and it is not possible to cover 
the cells with any design. Even if only 10% of the cells are nonempty, we would need 100,000 
design points to cover these cells. 

To reduce the number of cells, a cornmon approach is to generate fewer, wider bins, but these bins 
rnay include rather dissimilar compounds. For example, Cummins et al. (1996) and Menard et al. 
(1998) lirnited the number of descriptors and the number of bins per descriptor. They also excluded 
hundreds to thousands of outlying candidate points (as outliers lead to an artificially large space). 
Cummins et al. used factor analysis to reduce the dirnensionality of the descriptor space to four; in 
addition, they removed molecules in low density cells containing seven or fewer molecules (as a way 
of removing outlying molecules), excluding a total of 6,986 molecules. Menard et al. restncted the 
number of descriptors to 3-6 and the number of bins per descriptor to 4-7 and excluded a large 
number of candidate points by treating them as outlying observations. Even with these restrictions, 
there c m  be a large number of empty cells. For example, Menard et al. treated 10% of the 628,000 
compounds as outliers and still reported over 80% of the 66 cells empty. Even with al1 these 
compromises, Cummins et al. and Menard et al. reported a large proportion of empty cells, many 
compounds densely clustered in a few cells, and many cells king singleton. Obviously, sorne of the 
excluded molecules cm be potential leads. This indicates that the existing cell-based binning 
approaches are not adequate. Indeed, a very low ce11 occupancy is expected by Menard et al. - they 
recommended a targeted occupancy of 12-158. With such a large proportion of cells king empty, it 
is not meaningful to measure coverage of the space. 

In a high dimensional space, it is practically impossible or very difficult to densely fi11 the entire 
space with hundreds to thousands of design points. Since two molecules rnust have faidy close values 
of al1 critical descriptors for similar biological activity (McFarland and Gans, 1986). m should be 
relatively large. But this will generate too many cells even with a smaller number of descriptors, 
rnaking it impossible to find design points that give good coverage with so many cells. On the other 
hand, if one knew, in advance, the few cntical descriptors responsible for the particular biological 
activity, then one could have selected design points that gave good coverage over those relevant 
subspaces. In Chapter 3 uniform coverage designs aimed at addressing this issue are introduced. 
This design method keeps the number of cells low, allows the inclusion of al1 molecules and 
generates a high percentage of occupieâ cells. 

Other Space-filling ûesigns 

Two popular space-filling designs, cumntly only applied to more regular sampling spaces, are Latin 
hypercube designs (McKay et al., 1979) and uniform shell designs (Doehlert, 1970). Latin 
hypercubes have excellent 1-D coverage and are very popular in experiments with computer models. 
The main problem in applying these methods to compound selection is that for chernical compounds 



only certain combinations of descriptor values exist. You cannot place a point anywhere you want to. 
The candidate points come from a collection of chemical compounds. Even if al1 1-D cells are not 
empty, the Latin Hypercube design can still pick compounds that d o  not exist (e-g., in an empty 2-D 
cell). The same problem applies to uniforni shell designs. On the other hand, our proposed design 
always selects from th= existing candidate points. 

2.3 Statistical Analysis 

In dmg discovery, the search for lead compounds for a biologicai target usuaily involves screening a 
large number of compounds. The screened compounds form large structure-activity data sets 
containing information about the chemical structure or features of the each compound (quantified by 
descriptor variables) and the corresponding biological activity. Analysis of the structure-activity 
relationship enables development of prediction rules that guide the selection of prornising compounds 
for screening, thus reducing the overall screening time and the total number of compounds screened. 
For HTS data sets, the analysis objective is to find active regions in a high dimensionai space where 
active compounds reside and to develop prediction d e s  based on these active regions. 

There are several difficulties with analysis of HTS data that make many conventional statistical 
methods ineffective or inadequate (Hawkins et al., 1997 and Young and Hawkins, 1998). The 
relationship between descriptors and activity is extremely complex for H T S  data. Compounds might 
act in any of severai different ways to elicit a biological response. Some compounds rnight bind at 
one site and others at another (alosteric) site. The chemical features important for one mechanism are 
unlikely to be important for another. Activity may be high for only very localized regions and cm be 
highly nonlinear. Threshold effects rnay be present, where some chemical feature must be present at 
some threshold level for activity to occur but activity is constant above this level. Interaction effects, 
requiring the simultaneous presence of two chemical features, are also plausible. Therefore, statistical 
modeling needs to be able to accommodate multiple mechanisms, thresholds, interactions between 
descnptors, and nonlinearities. 

In addition, generally only a small proportion (about 1%) of compounds screened are active. Most 
methods, however, are driven by criteria aimed at good overall prediction accuracy, criteria that are 
dorninated by the overwhelming majority of inactive compounds. The imbalance of active and 
inactive compounds makes identifying active regions difficult. 

There is also the general issue of curse of dimensionality (Hastie and Tibshirani 1990 and Scott and 
Wand 1991). For instance, the number of possible parameters in a polynomial regression model of 
degree 3 including interaction terrns of 2 and 3 descriptors increases quickly. For k descriptors, there 

are (1 3, parameten in total. There are, for erarnple, 84 parameters for 6 descators and 14,740 

parameters for 67 descriptors. In high dimensional space, nearly al1 data sets are sparse and show 
multicollinearity, making the' fitted model highly unstable. Matching compounds with similar 
chemical features (descriptor values) becornes impractical in high dimensions, since virtuaily every 
compound is distinct in some dimensions. Classicai statisticai methods such as regression analysis 



were designed to work for low dirnensional data and can quickly become extrernely unreliable in high 
dimensions due to the curse of dirnensionality. 

Illustrations of some existing statisticai analysis methods for HTS data and their related problems 
are given next. 

2.3.1 Linear Regression Mode ls 

Most of the modeling issues described above apply to iinear regression analysis. For illustration, 
stepwise regression is applied to the Core98 data (continuous response) with six descriptors. To  
allow for interactions and nonlinearities, polynornial regression models of degree 3 including 
interaction ternis of 2 and 3 descriptors were fitted to the Core98 data using the stepwise-selection 
methocl. The 'best' mode1 had R~ = 0.01 and poor prediction accuracy in identifying compounds as 
active. This example illustrates that linear regression models are  not reliable for HTS data. Linear 
regression models assume chat activity varies linearly with descriptor values, which is an 
inappropriate assumption for HTS data. These models aim to minimize the rnean sum of squares, a 
criterion that is dorninated by the overwhelrning rnajority of inactive compounds. Linear regression 
models cannot handle multiple mechanisms and the other analysis issues mentioned earlier. 

For the NCI data (binary response), logistic regression models were also investigated. Overall, low 
prediction accuracy in classifying compounds as active and high prediction accuracy in classifying 
compounds as inactive were found. As only about 2% of compounds are active, any rnethods 
clairning al1 compounds as inactive will give an overall accuracy o f  98%. The real challenge is to find 
a high proportion of active compounds. Logistic regression is not effective in handling the modeling 
issues (e-g., multiple mechanisrns, thresholds, interactions, etc.) described above. 

2.3.2 Cluster Significance An alysis 

Cluster significance analysis (CSA) (McFarland and Gans 1986) aims to find embedded regions of 
activity in a high dirnensional chernical space. Suppose that active compounds have a molecular 
weight between 400 and 500 and a melting point between 160 and 205 degrees C. If compounds that 
range in molecular weight from 250 to 750 and melting point from 120 to 270 degrees C are tested, 
then simple statistical anaIysis methods, linear regression, can miss finding the relationship. A simple 
plot of the data shows the cluster of active compounds (squares in Figure 4-la). CSA cornputes the 
average Euclidean distance between active compounds in a subspace of the high dimensional space 
and compares that distance to the average distance of an equal number of randomly selected (active or  
inactive) compounds. If the actives are clustered more tightly, then that is evidence that the 
dimensions where the actives are clustered are the descriptors that are important for activity. Suppose 
that the descriptors are compareci, two at a tirne and the active compounds are clustered closely 
together only in the subspace of molecular weight and melting point. That would imply that these two 
descriptors are important. 

CSA tacitly assumes, however, that there is only one class of active compounds. If there are two 
widel y separated clusters of active compounds in a low-dimensional projection, possibl y from two 
mechanisms, the distances between compounds in different clusters will be large. The CSA criterion 



of average distance between active compounds might not be significant for this important projection. 
Even worse, activity from two or more mechanisms may be due to different subsets of descriptors. 
One might see no clusters when looking at the active compounds in the molecular weight and melting 
point projection example discussed above. Active cornpounds From other rnechanisms due to 
different sets of descriptors might be spread throughout the molecular weight and melting point 
projection. These problerns are discussed in more detail in Chapter 4. 

2.3.3 Recursive Partitioning An alysis 

The analysis of multi-mechanism data is difficult, and many statistical methods are not expected to be 
successful, Rezursive partitioning (RP) is one exception where good results have ken obtained 
(Hawkins et al. 1997, Young and Hawkins 1998, and Rusinko et al. 1999). 

RP encompasses tree-based models, which date back at least to Morgan and Sonquist (1963). 
Well-known implementations include Formal Inference-based Recursive Modeling (Hawkins, 1999) 
and Classification And Regression Trees (Breiman et ai, 1984). Venables and Ripley (1999, Chapter 
10) give a good account of how the CART methods may be executed in S-Plus. 

RP recursively splits a data set into progressively smaller and more homogeneous, disjoint subsets, 
The disjoint subsets are called nodes. The fmt node containhg the entire data set is called the root 
node. Thus, each node is potentially the parent of two or more daughter nodes (but most 
commercially available tree software allows only binary splits). To choose an optimal partition for a 
node, al1 possible cut-points (ordered variables) or divisions of categories (unordered categorical 
variables) are exarnined. Each daughter node is split in turn until the nodes are judged homogeneous 
or sorne minimum sample size is reached. This separation of the data into smaller data sets can 
separate the components of a mixture into separate groups where only a single mechanism operates. 
An example of a RF analysis on the NCI data set is shown in Figure 2-1. The terminal nodes are used 
for prediction. By following the paxtitioning rules, a new, untested compound is assigned to one of 
the terminal nodes; it is given a score based on the activities of the tested compounds in that node. 
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Figure 2-1. A Tree for the NCI Data. 

Rules are used to split the NCI data set into progressively srnaller subsets. All the data is present 
at the top of the splitting diagram. Classes O and 1 represent inactive and active compounds, 
respectively. The feature that best sepatates more active frorn less active compounds is used to 
split the data set. For exampie, at  Node 1 x4 with a cut-point of 1.467 is used to spIit the data into 
Node 2 and Node 3. Each compound ends up in one terminal node and the niles chat lead to the 
node define the features important for that class of compounds. To get a better view of the splits, 
a small tree (of size 6) is chosen for illustration; this may not be optimal. 

Depending on the type of response variable, classification trees are used for modeling a categorïcal 
response whereas regression trees are for modeling a continuous response. In both cases, however, 
the mathematical concepts behind building a tree are very similar. In general, there are two types of 
construction algorithm. One approach is to use a node splitting critenon (e.g., misclassification rate 
o r  deviance) to grow a large tree and then a cost-cornplexity criterion to prune back the tree to a 
srnaller size. The other approach is, at each potential split, to per fom a significance test (e.g., a t- 
test), adjusted for multiplicity, to  determine whether to rnake a split o r  not. The latter usually runs 
much faster and can handle larger data sets but could miss some potential splits further down the tree. 

As successful as RP has b e n  for the analysis of HTS data sets (Jones-Hertzog et al. 2000), there 
are a number of possible problems. First, this approach selects one descriptor at a time to split the 
data set. But a single descriptor may not provide adequate s o m a t i o n  for the splitting process. In 
addition, when the descriptors are highly correlated, selecting one descnptor will likely lead to not 
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selecting several others. The second problem relates to multiple mechanisms when some of the active 
regions are near or overlapping each other, This wiU be illustrated in Chapter 4. The third problem 
relates to the number of splits. Binary splits are ofien used in recursive partitioning. Problems can 
result if the activity pattern is inactive-active-inactive as, however the single cut point is chosen, 
actives will be combined with inactives. It is important to keep the following observation in mind: 
two compounds must have fairly close values of al1 critical descriptors for similar biological activity 
(McFarland and Gans, 1986) when there is a single mechanism. This means that partitions have to be 
narrow, and in several dimensions sirnultaneously, if al1 molecules frorn a partition are to have similar 
activity. 

Performance comparisons between tree-based rnethods and a novel cell-based analysis method 
using the Core98 and NCI data sets are described in Chapter 4. 

2.3.4 Other Analysis Methods 

Methods such as generalized additive models and neural nets can handle nonlinear responses but are 
not effective in dealing with interactions and multiple mechanisms (Young and Hawkins, 1998 and 
Hawkins et al., 1997). 

2.4 Summary 

Our design problem is somewhat special, The candidate set of possible explanatory variable 
combinations is discrete and the set of discrete points can be large and highly irregular. Figure 3-1 
shows the univariate and painvise plots of the six descriptors for the 29,812 NCI molecules. It is 
clear that much of the space is empty. Either the collection is missing chemicals or it is not possible 
to make compounds with certain combinations of descriptors. In more than two dimensions this 
probiem wili be even worse. It is believed that two compounds must have very similar values of al1 
critical descriptors to have sirnilar properties. Thus, the design needs to cover the space densely. It is 
clearly impossible to achieve dense coverage in high dimensional space without an extraordinarily 
large design. The most common designs for selecting a representative set of molecules are random 
designs, distance designs, and cell-based binning designs. Unfortunately, these designs try to select a 
set of diverse molecules that give a good coverage of al1 candidate molecules in a high dimensionai 
space. A special type of space filling design aimed for uniform coverage in al1 1-D, 2-D, and 3-D 
projections is introduced in Chapter 3. 

Of existing data-rnining methods, classification and regression trees (recursive partitioning) have 
had the most success for H T S  data (e.g., Hawkins et al., 1997 and Jones-Hertzog et al., 2000). 
Although these methods are generally well suited to modeling of local behaviour, they otherwise pay 
little attention to the complexities of HTS data- For HTS data, the analysis goal is to identify the 
most promising compounds for screening and thus the ptediction accuracy is focused on classifying 
compounds as active. Most rnethods are driven by critena aimed at good overail prediction accuracy, 
criteria that are dominated by the overwhelming majority of inactive compounds. Adjusting these 
methods to aim for high hit rates for the relatively few compounds chosen for furthet scteening wouid 
bring them closer to the real goal. A new statistical analysis method calleci cell-based analysis is 



introduced in Chapter 4, This methoci cm handle multiple mechanisms, thresholds, interactions, 
nonlinearities, and imbalance of activdinactive compounds. Some of  the critena developed for this 
new method can be tramferreci to other rnethods such as classification and tegression trees. 



Chapter 3 

Uniform Coverage ûesigns 

3.1 Introduction 

The use of robotics and miniaturization is now allowing researchers to quickty screen thousands of 
chemical compounds (molecules) for biologicai activity. Combinatorial chemistry provides the 
logistics of mass production of compounds and a wide range of molecular diversity for drug 
discovery. The automation of biological assays, High Throughput Screening (HTS), allows for 
investigation of thousands of chernical compounds against biological targets per week. While this 
brute-force approach to lead generation certainiy has its place in the field of drug discovery, it is not 
practical, given the size of today's chemical libraries (e-g., hundreds of thousands to millions of 
compounds), to test every available compound for every new target of potential importance. 

Various molecular descriptors (explanatory variables) can be readily computed to describe the 
chemical properties of every motecule in the database- When there is no prior mode1 relating 
biological response to these descriptors, the generally accepted procedure is to screen (test) a diverse 
subset of the overall database to find active compounds of several structurally different chernical 
classes, and then examine further compounds that are svucturally similar to any promising leads. If 
multiple chemicd classes can be found, they provide optionai starting points for further optimization 
of activity, physical properties, tissue distribution, plasma half-life, toxicity, etc. Ideaily, selected 
objects should be as dissimilar as possible and any candidate not selected should be near a molecule 
in the experimental design. Measures of "diversity" and "similarity" are based on the numerical 
descriptors. The assumption here is that similar chernicai objects are more likely to have similar 
biological responses. Thus, if an initial subset is to be selected, the subset should Till" or "cover*' the 
numerical space. In high dimensional space, nearly al1 data sets are sparse, and it is not possible to 
densely cover a high-dimensional space with thousands of design points. Therefore, we focus on 
filling or covering low-dimensional projections of the space instead. 

To measure the "coverage" of a descriptor space, we will be dividing the space into cells. In a 
conventionai cell-based method, each of k numerical descnptors is subdivided into m bins of equal 
size, yielding mk cells or hypercubes, and the experimental design chooses at least one molecule from 
every ceIl. A good experimental design will idmlly have at least one molecule in every cell. If so, 
we Say the space is covered. Cummins et al. (1996) and Menard et al. (1998) used cell-based 
methods to compare the relative diversity of molecular databases and to select diverse subsets of 
molecules. 

Such cell-based methods are attractive for severai reasons. It is easy to divide the descriptor space 
into cells, and allocating even a very large dataset to these cells is straightforward. Choosing a design 
by random sarnpling is also easy. Missing diversity (i.e. empty cells) can easily be identified. 

Ttie key problem with the conventional cell-based method is that a highdimensionai space will 
have too many cells to be covered by a modest number of compounds (design points). As two 
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molecules must have fairly close values of al1 critical descriptors for sirnilar biological activity 
(McFarland and Gms I986), the number of bins, m, should be relatively large. If k=6 and m=lO, Say, 
we have one million ceHs, which cannot be covered by only thousands of design points. This is just 
the curse of dimensionality- 

To reduce the number of cells, a conunon approach is to use fewer, wider bins in each dimension, 
even though these bins may include rather dissimilar compounds. For example, Cumrnins et al. 
(1996) and Menard et al. (1998) restricted the number of descriptors and the number of bins per 
descriptor. They also excluded hundreds to thousands of oudying candidate points (as outliers lead to 
an artificially large space). Even with these compromises, they reported a large proportion of empty 
cells, many compounds densely clustered in a few cells, and many cells k i n g  singleton. Indeed, a 
very low cell occupancy (Le., at  least one compound) rate is expected by Menard et al. (1998) - they 
recommended a target occupancy of 12-15%. If most cells are empty and hence most of the space is 
ignoreci, however, the utility of covering the remaining space is questionable, calling for new methods 
of binning and creating cells. 

If only a few descriptors are responsible for the particular biologîcal activity, however, it is 
possible to densely cover their low-dimensional subspace with just thousands of design points. A 
subspace is simply a subset of the descriptor variables, i g n o ~ g  the rernaining descriptors. Different 
sets of criticai descriptors rnay be relevant to structurally different chemical classes, but hopefulIy 
only a few variables are involved at a time. If we knew, in advance, that certain subsets of descriptors 
were critical we could choose design points to give good coverage of the relevant subspaces. At the 
outset, we will probably not know which descriptors are critical, and we therefore aim for uniform 
coverage in every low-dimensional projection. With m=10 bins per descriptor, for example, it is 
theoretically feasible to cover al1 ld cells in any three-dimensional subspace with about 1000 points. 
This is analogous to a fractional-factorial design projecting down to a full factorial in a few criticai 
variables. 

Thus, because of the practicd difficulty of covering the numerical space of al1 descriptors, and the 
belief that probably relatively few descriptors are active for any given mechanisrn, we will 
concentrate on low-dimensional subspaces throughout this article, typically involving one, two, or 
three descriptors. 

Designs with good coverage of low-dimensional subspaces have been suggested in many other 
contexts. For example, Dalal and Mallows (1998) proposed plans for testing software such that for 
any f input factors, al1 combinations of their levels occur at least once. Typically, f is 2, 3, o r  4. 
Thus, these designs exhaustively cover the input-factor space when projected down ont0 f- 
dimensional subspaces. Although the objectives are similar, these plans cannot be directly applied to 
molecule selection. Suppose we grouped each descriptor's values into a moderate number of bins to 
generate "levels". For an experimental run, the Dalal and Mallows (1998) designs can choose any 
combination of levels (bins) over al1 factors (descriptors). Unfortunately, a set of candidate 
molecules will typically have some bin combinations that are empty. We start with a candidate set of 
molecules, and we cannot necessarily select an arbitrary combination of descriptor values and place a 
design point there. The haphazard combinations of descriptor values similarly rule out plans based on 
Latin hypercubes and orthogonal arrays with good projective properties (Owen 1992 and Tang 1993) 



thaî have been proposed for computer experiments. The sarne difficulty arises with rnany other 
designs aiming for uniform space-filling propetties, for exarnple, the uniforrn shell designs of 
Doehlert (1970) or number-theoretic methods for generating representative points motivated by 
discrepancy measures (e.g., Fang et al. 1994)- 

Algorithmic, rather than combinatorid, methods can generate space-filling designs from any given 
set of candidate points. They typicaily optimize some fwiction of the inter-point distances. Johnson 
et al. (1990) proposed two classes of designs, based on either minirnax or maximin distance criteria. 
Maximin designs maxirnize the minimum distance between design points. By making the design 
points rnaximally dissimilar they spread throughout the space; the algorithm of Kennard and Stone 
( 1969) has this underlying objective. Alternative1 y, minimax distance designs minimize the 
maximum distance between candidate points and the design points. This criterion tries to find a 
design such that every candidate is close to a design point and hence the design covers the candidate 
space. Sirnilarly, Zemroch (1986) clustered the candidate points and chose a member of each cluster 
to cover or represent the entire set. Thus, distance-based algorithrns appear to be useful for molecule 
selection and have been applied in this context (Higgs et al. 1997) and are readily available in SAS 
(Tobias 1995, pp. 657-728). 

There are several difficulties, however, with distance-based design criteria. Al1 of the methods 
mentioned above are basecl on distance meuics calculated from al1 descriptors. As we have already 
noted, it is not possible to densely cover a high-dimensionai space with only thousands of points. 
Low-dirnensional coverage, which is more relevant if few descriptors are critical, is not directly 
considered and could be quite uneven (sorne results will be presented in Section 3.6.4). Moreover, 
the definition of an appropriate metric is problematic for molecular descriptors. Two molecules with 
fairly close values of al1 critical descriptors are likely to have similar biological activity (McFarland 
and Gans 1986), but beyond some (unknown) threshold, there may be little relationship between 
distance and similarity of activity. Finally, the presence of relatively few outlying observations leads 
to large, dominating inter-point distances. Very often this requires removal of many molecules to 
generate a sensible design. 

The simplest designs are based on random sampling. In fact, most new leads have been discovered 
through random screening, in which large numbers of compounds are tested for a specific biological 
activity, and the active compounds are then selected for optimization. Young et al. (1996) used a 
constant radius hypersphere around each randomly selected compound to masure the coverage of the 
descriptor space. They concluded that, unless a very large number of compounds are used to fiIl 
space, randomly selected compounds will cover as much space as carefully selected compounds. 
Again, however, if relatively few descriptors are important, then a rational selection should be more 
effective than a random design. In Section 3.6.2 we examine the coverage of designs generated by 
simple random sampling and stratified random sampling. 

The approach proposed in this chapter is to divide al1 lowdimensional subspaces into smdl cells 
and attempt to find a design that has one point in every ce11 of every subspace, so covering every low- 
dimensional subspace. In Section 3.2 we describe a National Cancer Institute (NCI) database that we 
will use to motivate and illustrate our rnethodology and notation for the general case. Section 3.3 
discusses a data-adaptive descriptor binning rnethod that leads to two- and threedirnensional cells 



such that only a small proportion are empty with respect to the candidates. To guide the choice of the 
design points from the candidates, we develop a uniform cell coverage (UCC) criterion in Section 3.4, 
and Section 3.5 describes a fast exchange algorithm to implement it. In Section 3.6 we apply the 
UCC criterion to the NCI data and compare computational tirne and quality of coverage relative to 
other methods. Finally, Section 3.7 provides some conclusions and discussion of further work. 

3.2 Chernical Databases and Descriptors 

3.2.1 The NCI Candidate Set 

W e  illustrate our methods with the NCI AIDS antiviral screen database (Section 1.6-3). because it is a 
large database in the public domain and represents a problem of practical importance. There are 
29,8 12 NCI compounds, of which 608 compounds (roughly 2%) are active. 

We use six continuous BCUT variables as descriptors. They are based on the work by Bwden 
(1989), who found that structurally sirnilar compounds have sirnilar BCUT values. They tend to 
characterize molecular bonding patterns and atomic properties such as surface ma, charge, 
hydrogen-bond donor and acceptor ability. 

Figure 3-1 shows the univariate distributions of the six descriptors for the NCI candidate 
molecules. The distributions exhibit rnultimoddity and outlying values. The pairwise plots in Figure 
3-2 show that the two-dimensional projections are complex, with much empty space. Either the 
collection is missing chernicals or it is not possible to rnake compounds with certain combinations of 
descriptors. In more than two dimensions this problem will be even worse. 

Figure 3-1. Univariate Distributions of the Descriptors in the NCI Data. 

The "[" and "1" symbols denote a descriptor's range. 



Figure 3-2. Paimise Ploîs of the Descriptor Values in the NCI Data. 

3.2.2 Notation 

In general, denote the k continuous descriptors by xl, xa ..., xk and [et X, be a candidate set of 
compounds with N points. The objective is to choose a representative set of n design points, Xd, to 
cover the descriptor space occupied by the candidate set. 

Within the hl1 k-dimensional descriptor space, a p-dimensional @-D) subspace is defined by p of 
the k descriptors (1 I p I k). For convenience, Xi will denote the 1 -D subspace involving only xi. 
Similady, Xij, Xijl. etc. will represent 2-D, 3-D and higher-dimensional subspaces. For example, X1 
is a 1-D subspace defined by xl, and XI2 is a 2-D subspace formed by xl and xz. A subspace, then, is 
simply a subset of the descriptor variables, ignoring the remaining descriptors- 

3.3 Cell-Based Approach 

We use a number of techniques to keep the cells small, yet lirnit their number, and to enswe that 
relatively few cells are ernpty in the candidate set. First, when we bin each descriptor, we adopt a 
datadriven hybrid binning rnethod that makes bins larger towards the extremes. This avoids ernpty 
bins towards the limits of a descriptor's range, where molecules tend to be sparse. Second, we focus 
attention on low-dimensional subspaces, typically al1 1-D, 2-D, and 3-D subspaces. By considering 
no more than three variables at a tirne, fewer cells are required to  represent a subspace. Selecting a 
design with good coverage of al1 lowdimensionai subspaces is analogous to a two-level fractional 
factorial design of Resolution IV. Such a design is a complete factorial for any subset of three or 
fewer variables (Box, Hunter, and Hunter 1978, p. 388) and can estirnate al1 interaction effects if only 



three factors are found to be important. Third, every subspace considered has the same number of 
cells, avoiding the exponential increase with dimension. 

3.3.1 Data-Driven Binning 

For each descriptor, we first divide its range into mutually exclusive and exhaustive sub-ranges or 
bins (e-g., we use 729 bins in Section 3.6 for the NCI data). The bins for descriptor xi immediately 
become the cells for the 1-D subspace Xi. For subspaces of higher dimension, ceUs will be formed 
from the bins of the descriptors forming the subspace (Section 3.3.2). 

To constmct bins, we use a hybrid of two simple-to-implernent methods: q u a 1  width (EW) and 
equal frequency (EF). The EW method simply divides a descriptor's range into equal-width intervals. 
Altematively, EF bins have their cut-points chosen to make the frequency of candidate molecules 
approximatel y equal in each bin. 

In regions where there is a reasonable density of descriptor values, EW bins are compelling. When 
a molecule is chosen to represent a bin (and hence a cell), it is the size of the bin that determines the 
quality of coverage in the descriptor space, not the number of molecules in a bin. Another way of 
looking at this is that EF bins are very small where there is a high density of  candidate molecules. 
Such regions will be over-represented in an experimental design, to the detriment of coverage in 
regions where candidates are sparse and bins are wide. 

On the other hand, outlying or extreme descriptor values may inflate a descriptor's range, making 
rnany EW bins empty towards the extremes. This problem is cornpounded when we form cells in 
multiple dimensions (Section 3.3.2). To avoid empty bins, extreme candidates are sometimes 
removed from consideration (Cummins et al. 1996 and Menard et al. 1998). By definition, the EF 
rnethod has candidate points in every bin and hence none are empty. Empty cells in 2-D or 3-D 
subspaces can still arise, but EF bins will tend to have fewer ernpty celis. 

To combine the best features of EW and EF bins, we use a data-driven, hybrid rnethod. EF bins are 
constructed for the extreme values. For example, the first percent of a descriptor's values can be 
placed in one bin, with a similar bin for the 1 s t  one percent. EW bins are then used between these 
extreme bins. Thus, EW bins predorninate, while the EF method for the extreme values avoids empty 
bins. 

Figure 3-3 illustrates the advantage of this hybrid binning strategy, applying it to XI from the K I  
data. Here, to keep the demonstration of binning and ceIl construction simple, we use 64 bins. 
(When we apply these methods to a redistic sized design in Section 3.6 we will use 729 bins.) With 
EW bins the frequencies shown in Figure 3-3(a) are very uneven: Of the 64 bins, 32 in the long tail 
to the left are empty. In contrast, al1 of the 64 hybrid bins shown in Figure 3-3(b) are occupied. The 
62 equal-width bins in between the two 1% end bins are much narrower on the original xl scale. 
Compounds within these narrower b h s  are more likely to have similar activity. 
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Figure 3-3. Candidate-Point Bin Frequenaes for Descriptor XI in the NCI Data (64 Bins). 

After binning, we make no further use of the raw xi values; our uniformcoverage algorithm only 
uses the hybrid-bin index to characterize a molecule according to xi- The data-adaptive binning 
procedure is repeated for each descriptor. 

3.3.2 Forrning Cells 

TO form cells for, Say, a 2-D subspace, we combine the 1-D bins for each of its two descriptors. W e  
keep the number of cells constant over subspaces, however. and hence avoid the curse of 
dimensionality. This is achieved by amalgamating 1-D bins when working in a higherdirnensional 
subspace. For exarnple, if we have used 64 bins for each 1-D subspace, as in Figure 3-3(b), we divide 
the 2-D subspace XI2 for descriptors xi and xz into 8 x 8 = 64 cells. as illustrated in Figure 3 4 .  The 
first cell, in the lower left corner, for instance, is f o m d  from the first eight 1-D bins for X1 and the 
first eight 1-D bins for X2. This gives the 64 2-D cells shown. Similarly, we form 3-D subspaces of 
4 x 4 x 4 = 64 cells by arnalgamating 1 -D bins 16 at a tirne for each descriptor. 



Figure 3-4. Construction of 64 2-D Ceib from Descriptors with 64 Bins. 

In general, suppose we consider 1-D, 2-D, and 3-D subspaces and want m cells per subspace. For 
2-D subspaces. analogously to Figure 3-4, cells are formed in an mm x ntfR array, and for 3-D 
subspaces there is an m" xrnrB x mm array of cells. Thus, convenient values of rn have integer 
square roots and cube mots: 2'")=64, o r  3==729, or 4U=4096, etc. With k descriptors, there are 

1-D, 2-D, and 3-D subspaces in total. When k=3, for example, there are 7 subspaces: XI, X2, X3, 
X12, X13, X23 and X123. When k=6, there are 4 t subspaces and when k=10, there are 175 subspaces. 
For larger k, it might be necessary for computational reasons to reduce the number of subspaces by 
focusing on only 1-D and 2-D subspaces. 

Including subspaces of 4-D and higher will usually not be practical. Chernists believe that two 
molecules must have fairly close values of al1 critical descriptors for sirnilar biologicai activity 
(McFarland and Gans 1986). This means that bins have to be small if one molecule from a bin is to 
represent the rest. Yet, even with 10 bins per dimension, which is probably too few, there are 10,000 
cells per 4-D subspace. Clearly, we would need to choose at  least this rnany molecules if the 
experimentd design is to cover every cell. Thus, it is not possible to give dense coverage of a 4-D 
subspace with a modest subset of molecules. For analysis, this implies that interaction effects are 
hopefully limited to no more than three factors. 

How big should m be? Even with the datadriven binning method in Section 3.3.1, there will be 
some multidirnensiond cells with no molecules. The proportion of empty cells, which varies from 
subspace to subspace, will tend to increase with m. Ln addition, if n design points are to be selected, 



we would like n nonempty cells per subspace, so the space-füling design can cover distinct nonempty 
cells. These two considerations suggest that m should be approximately equal to n or a little larger. 

3.4 Criteria for Evaluating Coverage 

In a conventional cell-based design (Section 3. l), there is one set of cells based on al1 k descriptors. 
Simply picking a point fiom each occupied ceIl would guarantee a good coverage design. As already 
noted, however, this approach often generates many more cells than the number of design points, 
making good coverage impossible. in Section 3.3.2 we defined cells based on low-dimensional 
subspaces to overcome this problem. With more than one subspace, it is no longer straightforward to 
select a set of candidate points to give good coverage simultaneously in rnany subspaces. If, Say, one 
point is chosen from each ce11 in a particular subspace, these points may be unevenly distributed in 
other subspaces. We now describe two measures of the quality of coverage; the second will be used 
in Section 3.5 as an optirnization criterion to drive the numerical search for a good experimental 
design. 

We first need some defrnitions and notation. Let X denote a set of points (molecules) in the 
descriptor space; X will typically be the entire set of candidate points, X,, or a mal experimental 
design, Xd. The set X is said to cover ceIl i in subspace s if at least one of the points falls in that cell. 
Mathematically, we set up indicator variables c,,fX) taking the value 1 if cell i in subspace s is 
covered and O otherwise. 

3.4.1 Average Percentage of Cells Covered 

The first experimental design critenon simply cornputes the percentage of cells that are covered by a 
design, averaged over al1 subspaces. Sorne cells are not covered by the candidate set, Xc. and so 
cannot be covered by any choice of design; these celis are eliminated from consideration when 
computing the criterion. 

h subspace s, the percentage of cells covered by a design Xd is defmed to be 

where the summation is over al1 cells in the subspace (Le., i=l, ... , m). We can then define the 
average percentage coverage over, say, al1 1-D subspaces as 

where SI is the set of al1 1-D subspaces and IS, 1 is the number of such subspaces. For 2-D subspaces 
we define anaiogously, and so on. 

We can then obtain the average percentage coverage, P. For example, if 1-D, 2-D, and 3-D 
subspaces are king considered, we have 
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The average could also be weighted, for exarnple giving more weight to 1-D subspaces. 

One deficiency of this criterion is that it ignores the distribution of design points in the covered 
cells. For instance, consider two very dfierent designs: one has two points in each of 50 cells and the 
other has 1 point in each of 49 of these cells and 5 1 points in the remaining cell. With respect to these 
50 cells, the coverage is 100% for both designs, yet we would prefer the fust as the distribution of 
points is more uniform. Thus we report the criterion P in Section 3.6, but the selection of a design is 
a based on a modification that takes the unifonnity of coverage into consideration. 

3.4.2 Unifonn Cell Coverage (UCC) 

Suppose design Xd places n,dXd) points in cell i of subspace S. If the candidate set X, does not cover 
this cell, Le., cs,{Xc) = O, then nsl{Xd ) also has to be O. For cells that are covered b y X,, i.e., csi(Xc) = 1, 
we want the n , & )  counts to be approximately 1. Thus, ideally, n,,{Xd) = csiXc) for every cell. In 
subspace s, then, a measure of lack of uniformity is 

Again, we can average these quantities over subspaces. The total lack of uniformity for 1 -D 
subspaces, for exarnple, is 

and analogously for &-D, etc. Averaging 
we have the uniform ceIl coverage (UCC) 

with weights across, Say, the 1-D, 2-D, and 3-D subspaces, 
criterion: 

where wl, w2, and w3 are user-supplied weights. A user might want to give more weight to 1-D 
coverage and least to 3-D coverage, for example. In al1 of the examples in Section 3.6 we use equai 
weights. 

Minimizing U in (3) discourages uncovered cells in the design and tends to avoid having more than 
one design point per cell. This is the criterion used by the optimization algorithms of the next section. 

The indicator variables cs,{Xc) in (2)  provide the target numbers of points per cell in the UCC 
criterion. With a simple modification to these targets, a pneralized UCC is obtained. For exarnple, 
suppose that the number of design points allows about two design points in each cell. We c m  set the 
target for a ce11 to O, 1, or 2 if there are no candidate points, one point, or at least two points, 
respectively. In the examples of this chapter, we use (2) without modification. 



3.5 Fast Exchange Algorit hm 

3.5.1 Basic Exchange Algorith m 

An optirnization aigorithm is needed to implement the rninimization of the W C  criterion in (3). In 
other contexts, primarily efficient experirnents for fitting regression models, there are many 
aigorithms for optimizing a design criterion; see Cook and Nachtsheim (1980) and Tobias (1995, pp- 
657-728) for reviews. Most of these algonthms are variants on the basic idea of an exchange. 
Starting with n points in a trial design, they exchange a point in the design for one in the candidate set 
to improve the design critenon and iterate until the criterion cannot be improved furthet. However, 
these methods were not intended for problems of the magnitude considered here (Le., select thousands 
of points from hundreds of thousands) and would be fat too slow. 

To derive a computationally efficient algorithm for large designs, we could modify any one of 
several implementations of this idea. We choose to start with the Wynn (1972) aigorithm, which we 
cal1 the basic exchange algorithm below, because it is fast relative to other rnethods (Tobias 1995, pp. 
657-728) and its simplicity facilitates adaptation. The modifications greatly reduce the computational 
effort, especially when dealing with very large candidate sets. 

The basic exchange aigorithm starts with a random subset of n points (an initial design) from the N 
candidates. The optirnization critenon is then sequentially improved by a series o f  exchanges. (Wynn 
worked with the D optimality cnterion, but we will use UCC.) In each exchange, a point in the 
candidate set replaces a point in the current design. An exchange is broken down into two steps- 
First, a point in the candidate list is found to add to the current design. The point added from the 
candidate list is the one with the best value of the design cnterion for the modified design of n + 1 
points. Second, a point in the new design of n + 1 points is removed; this point is chosen to give the 
best criterion value for the new design of n points amongst those that are subsets of the n + 1 points 
available. These exchanges continue until the criterion cannot be improved. We now describe the 
adaptations to this exchange concept. 

3.5.2 ldentifying Good Candidates for Exchange 

The basic exchange concept is computationally inefficient for large candidate lists. In pnnciple, we 
have to loop through the whole candidate k t ,  X,, to find only one candidate to add. Moreover, many 
of the initial n points will have to be replaced, requinng many loops if n is moderately large. The 
adaptations we first describe are aimed at obtainïng many exchanges per X, bop, thereby reducing the 
number of X, loops required. Every time a candidate is visited, we note the improvement in the 
criterion if it were added to the design. Hence, an approximation to the distribution of improvements 
can also be maintaineci. As we pass through the candidates, whenever a candidate's change is in the 
upper tail of this distribution, it is deemed "good" and considered for an exchange. (A similar process 
will be described in Section 3.5.3 to search for a design point to delete and complete the exchange.) 
Thus, each X, loop rnight identify many "good" candidates and camy out several exchanges. 



Specifically, let 6 denote the improvernent (Le., reduction) in the UCC criterion U in (3) if 
candidate j were added to the current n design points to give n + 1 points. The algorithm for 
identifying good candidates, with some explmation in parentheses, is as follows: 

1. initialize the 6 distribution. Randomly select 100 candidate points. Compute theu 6 values, and 
denote the sorted values by S(,, è -. . 2 8 .  Set k n / n  and 6* = S(q,, where q = max( 1, 100h). 
(In Step 2, if candidate j has 6j 2 S*, it will be considered for an exchange. This mle will ~IY 
approximately n of the N candidates during the first X, bop, because ail n initial design points 
may have to be replaced.) 

2. Loop through the candidates. For j=l,. . ,, N do the following steps: 
Compute Sj and note the value for later use in updating ô*. 
If Sj 2 S*, then: 

Try exchanging candidate j with one of the current design points (see Section 3.5.3). 
If candidate j was exchanged, then 
Set &= -100. (As candidate j is now in the design, introducing it again is undesirable.) 

else 
Replace 6" by S* + 10h. (A failed exchange suggests that S* is allowing poor candidates 
to be considered, i.e., S* is too srnall.) 

3. If there was no improvement in the criterion in the last Xc loop, then stop. 

4. Update ô* for the next Xc loop. Sort the 8, values from the last X, loop and denote them by 6,,, 2 
. . . 2 S(N). Set h to half the previous value and 6* = S(,, where q = max(l0, hrh). Go to Step 2. 
(Decreasing h reduces the number of exchanges considered, because fewer exchanges are likely 
to improve the criterion with successive passes through the list- We always want to consider at 
least 10 promising candidates in the next Xc loop, however, to be conservative about termination.) 

Note that when a good candidate is found in Step 2, we do not re-start the Xc loop at the beginning. 
Rather we continue with the next candidate. These "floating" loops allow many exchanges in one X, 
loop. 

3.5.3 Iâentifying ûesign Points for Exchange 

Whenever a "good" candidate for inclusion in the design is identified by the rules in Section 3.5.2, a 
design point must also be removed if an exchange is to take place. We evaluate the design points and 
identify a "bad" point, i.e., one that should be removed, using similar niles. 

Specifically, for a fixed candidate j under consideration for inclusion, let Ai denote the overail 
improvement in the UCC criterion in Equation (3) if design point i of the n current design points is 
replaced by candidate j. Thus, Ai includes the 6,- contribution from adding candidate j. A distribution 
of Ai values is maintained, and we implernent an exchange as soon as a "good" Ai value is found, 
rather than search ail n design points. The details are as follows: 

1. Initialization of the A distribution. If this is the first search of the design list, then: 
Randomly select 100 design points, compute their Ai values, and denote the sorted values by 

41) 2 2 A (100). 



Set A* = max(0.01, A where q = max(1. IOOL), using the k value in effect for searching the 
candidate List (Exchanges with Ai 2 A* wiil be implemented.) 

Set i= 1. (S tart at the top of the design-point list.) 

2. Compute Ai and note the value for later use in updating A*. 

3. LfAi 2 A*,then 
Implement the exchange of design point i with candidate j. 

else if ail design points have been tried, then 
Let A b e  the maximum A vdue over ail the design points. If A,, 2 0, then 

Implement the exchange of the design point giving A- with candidate j. 

Update A*. Sort the Ai values from the last Xd l o ~ p  and denote them by A ,,, 2 . . - 2  A ,,,. Set 
A* = max(0.01, A ,), where q = max(1, nA) , using the h value in effect for searching the 
candidate list. 

Set i=l; 
else 

Set i t o i + l .  

5. if an exchange occurred in step 3 or al1 design points had been tried in step 3, then 
Retum to searching for the next "good" candidate to add. The next search for a "bad" design 

point to remove will start at Step 2 with the current value of i. 
else 

Go to Step 2. 

Note that in Step 3, an exchange can occur with & = O, i.e., it does not change the criterion. 
Allowing "neutral" exchanges of this type may be usehil to break away from a design that is only 
locally optimal. 

3.5.4 Updating the UCC criterion 

Finally, we describe how the criterion can be efficientiy updated when only one point is changed, 
either when adding a candidate or when removing a design point. 

When a point is added to or removed from the design, it will affect only one of the rn cells in each 
subspace. Let zs be the numbet of design points in the affected cell in subspace S. If we are adding a 
point, then z, becomes zs + 1, and the change to Us in (2) is 

Note that csIfXc) in (2) must equal 1, as a ceIl must be covered by at least one candidate if a point is 
to be added (or removed). Sirnilarly, when a design point is removed, the change to Us in (2) is 



We now apply our data-driven binning method and our fast design algorithm to select 729 molecules 
from the 29,812 NCI rnolecules. One hundred unifom ce11 coverage (UCC) designs are derived, 
stadng from 100 dflerent initial designs based on simple random sarnpling. 

3.6.1 Forrning Cells 

The distributions of the NCI molecules in 1-D and 2-D projections for d l  six descriptors are shown in 
Figure 3-1 and Figure 3-2. To apply the hybrid binning method described in Section 3.3.1, the first 
and last percentiles are assigned to EF bïns, with EW bins between. There are six 1-D, 15 2-Dl and 
20 3-D subspaces, and each of these 41 subspaces is divided into 729 cells. Over the 41 subspaces, 
on average there are 8 1.4% nonempty cells in the candidate set of rnolecules; the worst subspace is 
X246 with 63.0% nonempty celIs. Figure 3-5 shows the bin (l-D cell) counts for the I-D subspaces. 
The plot for x4 shows that adding a few extra EF bins in sparse regions could further increase the 
proportion of nonempty bins, but we do not pursue this as the proportion of nonempty bins is already 
high (588 bins out of 729 are occupied by at least one candidate). For 2-D subspaces, bins are 
amalgamated 27 at a time to generate 27 x 27 = 729 cells. Figure 3-6 depicts cells with at least one 
candidate point with a filled-in square. It is seen that the 2-D cells are fairly well covered by the 
candidates. Similady, the 3-D subspaces (not shown) have 9 x 9 x 9 cells formed by arnalgarnating 
8 1 bins at a time in each dimension and are fairly well covered by the candidates. 

Figure 3-5. CandidatePoint Bin Frequencies for the NCI Data (729 Hybrid Bins). 
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Figure 3-6. CandidatePoint 2-D Coverage for the NCI Data (729 Ceiis). 

A filled-in square in a ce11 denotes at least one candidate point. 

3.6.2 UCC Optimization Algorithm Versus Random Designs 

The aigorithm in Section 3.5 to minimile the UCC criterion in (3) gives, on average, a U value of 
585. For compatison, we also generate 100 designs based on simple random sampling (SRS) of  729 
points from the 29,812 candidates and compute their values of the UCC criterion. Figure 3-7 shows 
that the distribution of  the U values given by the UCC optimization algorithm compares very 
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favorably with the distribution of values under SRS. Because of the small range of the U values 
under UCC, the density looks like a straight line and is better displayed in Figure 3-8 where the U 
values are expanded around the small range. As a further comparison, we use stratified simple 
random sampling (StratRS) to choose another 100 designs, Following conventional cell-based 
approaches, the entire 6-D space is divided into 36 = 729 cells, one design point is randomly selected 
fiom each nonempty cell, and then further points are randomly chosen to reach 729 points. The 
distribution of U values under StratRS also depicted in Figure 3-7 indicates that StratRS is preferable 
to SRS according to the UCC criterion, but the UCC optirnization algorithm still perfonns 
considerably better. The SRS and StratRS distributions demonstrate that the simple strategy of 
randomly sampling many designs and choosing the best according to the UCC criterion is a poor 
substitute for the optimization algorithm. That is, even if we generate many random designs, 
spending the sarne compter time as required for generating a UCC design, the best random design is 
not expected to be cornpetitive with respect to the UCC criterion. 

O 1000 2000 3000 
UCC criterion, U 

Figure 3-7. Distribution of UCC Values for 100 UCC Designs, 100 Simple Random Samples 
(SRS) and 100 Stratif~eà Random Samples (StratRS). 
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Figure 3-8. Distributions O€ UCC Velues for 100 UCC M g n s  (Fast Exchange) and the 
Value Obtained by the Basic Exchange Algorithm (+). 

Table 3-1 gives some numerical s u d e s  of these comparisons. For UCC (fast exchange), SRS 
and StratRS, the numbers given are means across the 100 designs. We report the UCC criterion U in 
(3). the percent coverage criterion P in (2), and the 1-D, 2-D, and 3-D contributions to these two 
criteria. Note that U and its components are smaller the better masures, whereas P and its 
components are larger the better. In al1 cases, the designs produced by the UCC optimization 
algorithm perform best. For example, P is 75% on average for the designs from Our algorithm versus 
5396 on average under StratRS. Note also that u3-D is the largest contnbutor to U, probably because 
there are slighdy more empty cells in the 3-D subspaces. 



Table 3-1. Coverage Criteria and Run Times for Various Designs 

Design 

UCC (Fast exchange algorithm) 0:34 
(mean over 100 designs) 1 (4571 z81691) 

UCC Criterion, U 
(ul-D 1 U~-D 1 USD ) 

UCC (Basic exchange algorithm) " T 12:s 1 (48916151714) (73.8174.2175.5) 

Average Percent 
Coverage, P 

(PI-D 1 P2-D P ~ - D )  

Simple Random Sampling 
(mean over 100 designs) 

Stratified Random Sampling 
(mean over 100 designs) 

SAS PROC OPTEX 2:32 
Spread Design (Sequential) 

Time 
(hh:mrn) 

Uniform Coverage Design (Sequentiaï) 1 (2259 3 1 O7/ 5306) 1 (50.41 45.11 40.8) 1 

3188 
(20351 29371 4592) 

2 193 
(19791 2050/ 255 1) 

For completeness, we also evaluate the high-dimensional (6-D) coverage for these designs. As 
these designs are assoçiated with dflerent design measures (e-g., 'average distance from each 
candidate to the nearest design point" versus "average distance from each design point to the nearest 
other design point"), a particular measure may favor one design relative to the others. For simplicity 
and consistency, the evaluation is done by dividing the entire 6-D space into 729 cells (as for the 
stratified simple random sampling) and rneasuring the corresponding 6-D percent coverage and 
uniform coverage for the various designs. Following the uniforrnity rneasure of equation (2). a 
measure of lack of uniformity for the entue space is then 

where n,{Xd) is the number of design points in ce11 i and c,{Xc) = 1 or O if the candidate set X, does or 
does not cover this cell. Table 3-2 gives some numerical surnmarïes of these comparisons. By 
definition, the designs produced by StratRS have 100% coverage. The designs produced by UCC 
(fast exchange) have the next best percent coverage and the best uniform coverage arnong al1 designs. 
This suggests that although the UCC critenon focuses on low-dimensional coverage, it can generate 
designs with both good low-dimensional coverage and good high-dimensional coverage. 

45.5 
(49.91 44.8/ 4 1 -9) 

53 -4 
(53.41 52.51 54.4) 

- -  - 

0:O 1 

0:02 



Table 3-2. Hi@-Dimeasionai Coverage for Various Designs 

Design 

UCC (Fast exchange algorithm) 
(mean over 100 designs) 

Uniform Coverage, 
( / a ~  

Percent 
Coverage 

1 stratifieci Randorn Sampling 1 1687 1 100.0 1 

Simple Random Sampling 
(mean over 100 designs) 

1 (mean over 100 designs) 1 1 1 
5416 1 40*8 l 

1 ucc (Basic exchange algorithm) 1 1478 1 69.9 1 
SAS PROC OPTEX 
Spread Design (Sequential) 

Figure 3-9 compares the UCC design with the first StratRS design in t e m  of ceIl frequencies in 1- 
D projections. Descriptor xi's candidates are fairly well behaved after hybrid binning; in contrast x4.s 
distribution is more difficult to handle. In both cases the UCC design is seen to have a much more 
uniform distribution of design points. For al1 descriptors, the UCC design has one or two design 
points in most cells. Some analogous 2-D projections of the design points are shown in Figure 3-10, 
where a filled-in square is plotted in a ce11 if there is at least one design point. It is clear that the UCC 
design has superior coverage of 2-D cells. in contrast, the cells tbat have at least one candidate but no 
design point are shown in Figure 3-1 1. Obviously, the UCC design has much less uncovered ceUs. 
The uncovered cells cm be further reduced by adding more design points. Similar plots for the 3-D 
projections show the same pattern. 

2494 l 
SAS PROC O P E X  
Uniforrn Coverage Design (Sequential) 5303 1 



(a) UCC design 

1 x l  bin index 729 

1 x4 bin index 729 

(b) Stratified random sampling 

1 x l  bin index 729 

1 x4 bin index 729 

Figure 3-9. Design-Point Bin Frequencies for the NCI Data (729 Points in 729 Hybrid Bins). 



(a) UCC design (b) Stratified random sampling 

1 x1 cell index 27 1 xl  cell index 27 

i XI cell index 27 1 x l  cell index 27 

Figure 3-10. Desigu-Point 2-D Coverage for the NCI Data (729 Cells). 

A filled-in square in a ce11 denotes ai least one design point. 



(a) UCC design (b) Stratified random sampling 
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1 x l  cell index 27 

1 XI cell index 27 

1 x l  cell index 27 

Figure 3-11. CelIs Not Covered by a Design Point. 

A filled-in square denotes cells with at least one candidate point but no point was chosen by the 

design. 

In Table 3-3, the 100 designs are compared two at a time and the number of common compounds is 

reported. For 100 designs, there are possible pairwise comparisons. On average, there are 

356 common cornpounds between two-ucc designs whereas there are only 18 common compounds 
between two random designs based on simple random sampling. The rnany common compounds 
suggest that the UCC optimization algorithm led to similar unifonn coverage designs even with very 
different starting designs. 



Table 3-3. Number of Common Compounds Out of 729 When Two Designs Are Compared 
(4,950 Pairwise Cornparisons Between 100 Designs) 

100 random samples of 729 compounds fiom 29,812 candidates are chosen. These random 
samples serve as the initial starting points for the uniform ceil coverage (UCC) designs. The 
number of identical compounds appear in two designs is summarized. 

I 1 Number of Common Compounds Out of 729 

I 1 Random Selection 1 UCC Designs 

1 Minimum I 7 I 298 

3.6.3 Cornparison With Basic Exchange 

Figure 3-8 shows that the distribution of U values given by the fast exchange UCC algorithm 
compares very favorably with the CI value under the basic exchange algorithm. Compared with the 
basic exchange algorithm, our algorithm makes about 2.5 times, on average, as many exchanges 
(1800 versus 754). It achieves this even though the number of passes through the candidate points is 
reduced by a factor of about 4û (19.8 passes versus 754). see Table 3-4. The reduction in iterations 
through the candidates leads to a nin tirne of 34 minutes on average, whereas the basic exchange 
algorithm takes more than 12 hours (with the fast UCC update describeci in Section 3.5.4). These 
times relate to implementations in SAS PROC IML on a Pentium III 550MHz computer with 256MB 
RAM. S o m  prelirninary runs with a C++ implementation indicate that the modified algorithm mns 
in less than a minute for problems of this magnitude. 

Table 3-4. Number of Loops Required by UCC Optimization Algorithm (100 Tries From 
100 Random Starting Designs) 

1 Mean 1 Median 1 SD 1 Minimum 1 ~ a x i m u m  1 



In Table 3-1 we see that our fast exchange algonthm produces slightly better values of P and U 
here than does the basic exchange rnethod. The increase in number of exchanges, including neutral 
exchanges, improves the ability to escape fiom local minima Similar results were obtained with 
another database from GlaxoSmithKline. 

Our fast exchange algorithm makes most of the improvement in the fmt few passes through the 
candidates. After only 10 passes through the candidate list, ail LOO designs had already achieved 
better U values than that of the final design fiom the basic exchange algorithm. The percentage of 
total improvement in CJ value afier 5, 10, 15, 20, 25 and 30 passes through the candidate list for the 
100 UCC designs is surnmarized in Table 3-5- 

Table 3-5. Percentage of Total Improvement Achieved After 5,10,15,20,25 and 30 Loops 
(100 Tries From 100 Random Starting Designs) 

The fast exchange algorithm allows hundreds of exchanges for each p a s  through the candidate 
list (one Ioop). This enables large improvement in coverage within several loops. 

I Percentage of Total Improvement 

3.6.4 Comparison With SAS P ROC OPTEX 

C 

Loop 

5 

10 

15 

20 

25 

30 

We ais0 make cornparisons with PROC OPTEX in SAS. There are two difficulties. First, our criteria 
focus on lowdimensionai coverage whereas PROC OFTEX computes spread and coverage masures 
using al1 descnptors. Therefore, the U and P values reported in Table 3-1 for PROC OPTEX are 
unfavorable. Secondly, problems of this magnitude (729 points selected from 29,812) require 
substantial computing time. Even when design points are optimized one at a time in the sequentid 
option, PROC OFTEX with the uniform coverage criterion requires over five days. 

Mean 

98.8 1 

99.87 

99.97 

99.99 

100.00 

100.00 

Median 

99.28 

99.90 

99.99 

100.00 

100.00 

100.00 

S D  

1 -688 

0.104 

0.035 

0.015 

0.003 

0.000 

Minimum 

88.43 

99.24 

99.87 

99.92 

99.98 

100.00 

Maximum 

99.74 

99.98 

100.00 

100.00 

100.00 

100.00 



3.7 Conclusions and Disc ussion 

Our design problem is sornewhat special for t!!e following reasons. Design points cannot be piaced 
anywhere, because only certain compounds are available or can be made. Moreover, the set of 
discrete points can be large and highly irregular ( s e ,  for example, Figure 3-2). To have sirnilar 
properties, it is believed that two compounds must have very similar values of al1 critical descriptors. 
Thus, the design needs to cover the space densely. It is clearly impossible to achieve dense coverage 
in more than three dimensions at a tirne without an extraordinarily large design. Hence, we have 
proposed designs that aim for uniform coverage in al1 1-D, 2-D, and 3-D projections. 

The aim of such experirnental designs is not just to discover highly active compounds but to fmd 
several stnicturally different chernical classes. These provide options for fi.uther optimization of 
activity, physical properties, distribution, half-tife, toxicity, etc. By covering the descriptor space 
uniformly, there is more chance of discovering multiple classes. 

The design aigorithm proposed here can efficiently deal with tens of thousands of compounds in 
the candidate set. Much larger sets of compounds will be of interest as technology advances. We are 
currently working to implement the algorithm with multiple processors, for exarnple. 

An open question is how to analyze the data resulting fiom very large designs. Current practice 
often simply ranks the compounds by potency and selects the few top-ranking compounds for further 
developrnent. One challenge in statistical rnodeling is that the potent molecules are likely to be acting 
in several different ways: Different descriptors rnight be critical for the various mechanism. A single 
mathematicai mode1 is unlikely to work well for al1 mechmisrns. There has k e n  some success using 
partitioning methods on these problerns (e-g., Hawkins et al. 1997, King et al. 1992, and KIopman 
1984). in a multi-stage design strategy, the initial design should cover the descriptor space as 
uniformly as possible. Analysis of the resulting data would be used to directing subsequent designs 
to subregions of high activity in critical descriptor projections. 



Chapter 4 

Cell-Based Analysis 

4.1 Introduction 

In screening for dmg discovery, thousands to hundreds of thousands of chemical compounds are 
screened in the hope of discovering bioiogically active compounds. The evaluation of a single 
compound can cost from a few cents to  several dollars depending upon the complexity of the assay. 
At the next stage of drug development, the active compounds or  "hits" found by screening are 
typically modified atom-by-atom to improve activity and other important characteristics, such as 
tissue distribution, plasma half-life, toxicity, etc. The aim of the initial screen, then, is to find active 
compounds of several struchirally different chemical classes, to provide a variety of starting points for 
subsequent optirnization. 

In addition to finding active compounds among those screened, it would be very useful to know 
how to find additional active compounds without having to screen each compound individuaily. We 
might initially screen part of a collection and use these data to predict which compounds in the 
temainder of the collection are likely to  be active. Several cycles of screening are expected to be 
more efficient than screening ail the compounds in a large collection (Jones-Hertzog et al. 2000). To 
do  this we need to analyze the initial high throughput screening (HTS) data to find association rules 
linking biologicai activity (response variable) to specific values of the compound descriptors 
(explanatory variables). 

The first step in the process of deterrnining features of compounds that are important for biological 
activity is describing the molecutes in a relevant, quantitative manner. A drug-like molecule is a 
smdl  threedimensional object that is often drawn as a two-dimensional structure. This two 
dimensional graph is subject to mathematical analysis and can give rise to  numerical descriptors to 
characterize the molecule. Molecular weight is one such descriptor. There are many more. Ideally, the 
descriptors will contain relevant information and be few in number so that the subsequent analysis 
will not be too complex. To exemplify Our methods we use a system of 67 BCUT descriptors (Section 
1.6.1). 

The relationship between descriptors and activity is extrernely complex for HTS screening data, 
and there are several challenges in statistical modeling. First, the potent compounds of different 
chemical classes rnay be acting in different ways. Different mechanisms might require different sets 
of descriptors within particular regions (of the descriptor space) to operate, and a single mathematical 
mode1 is unlikely to work well for al1 mechanisms. Also, activity rnay be high for only very localized 
regions. Second, even though a design o r  screen may include thousands of compounds. it will usually 
have relatively few active compounds. The scarcity of active compounds makes identifying these 
small regions difficult. Third, there are many descriptors (i.e., curse of dimensionality) and they are 
often highly correlated. This is the case for BCUT numbers. Fowth, many HTS data sets have 
substantial measurement error. Because of sorne or al1 of these complexities, common statistical 



analysis methods such as Iinear regression models, generalized additive models, and neural nets are 
ineffective in handling these analysis problems (Young and Hawkins, 1998) and tend to give low 
accuracy in classifying molecules as active. 

The rest of the chapter is organized as follows. In Section 4.2 we describe two motivating data 
sets. Section 4.3 expands on the dwtculties that current methods face with complex structure-activity 
relationships. In Section 4.4 we present a cell-based analysis method that overcomes these problerns. 
It divides a high-dimensional (descriptor) space into many small, low-dimensional cells, scores cells 
according to the activities of their compounds, and uses the scores to pnoritize further compounds for 
screening. This anaiysis method is highly related to the miforrn cell coverage approach described by 
Lam et al. (2001) for selecting molecules for screening. Thus, the earlier work and the current article 
together provide an overall strategy for design and analysis of HTS data. In Section 4.5 we evaluate 
our analysis approach on the two data sets and show that it can improve prediction accuracy 
compared with recursive partitioning (trees), one of the few successful methods for HTS structure- 
activity data. Finally, Section 4.6 rnakes some conclusions and discusses further work. 

4.2 Motivating Application s 

The new rnethod described here cari be applied to both continuous and discrete responses, For 
illustration, a data set with continuous activity outcome (Core98) and a data set with binary activity 
outcome (NCI) are included. 

4.2.1 Co- Molecular Data (Continuous Response) 

Core98 is a chemical data set from the GlaxoSrnithKiine collection (Section 1.6.2). Activity is 
available for 23,056 compounds. The response is 96 Inhibition for a given biological target and 
theoretically should range from O to 100%. with more potent compounds having higher scores. 
Biological and assay variations can give rise to observations outside the 0-100% range. Typicaily, 
only about 0.5% to 2% of screened compounds are rated as potent- 

4.2.2 NC1 Molecular Data (Bin ary Response) 

NCI is a chemicai data set from the National Cancer institute AIDS antiviral screen database (Section 
1.6.3). Unlike the Core98 data where the response is continuous, the NCI compounds are classified 
as moderately active, confirmed active, or inactive. We combine the first two categones into a single 
active class to give binary response data, as there are only 6û8 (roughly 2% of 29,812 compounds) 
active compounds. 

4.2.3 Descriptor Variables 

For both data sets we use BCUT descriptors based on the work of Burden (1989) to describe the 
compounds. The BCUT descriptors are eigenvalues from connectivity matrices derived from the 
molecular graph. The square connectivity matrix for a compound has a diagonal element for each 
heavy (non-hydrogen) atom. The diagonal values are atomic properties such as size, atomic number, 



charge, etc. Off diagonal elements masure the degree of connectivity between two heavy atoms. 
Since eigenvalues are rnatnx invariants, these numbers measwe properties of the molecular graph and 
hence the molecule. 

When we first started this research, only six BCUT descnptots were available to us. They were 
used in development of a uniform coverage design method (Lam et al., 2001). Subsequently, 
GlaxoSmithKline computationd chemists also provided a larger set of 67 descriptors for the 
motivating applications. The larger set was suggested by Pearlman and Smith (1998). We found that 
the 67 BCUT descriptors are highly correlated in the two data sets. A reason for the high correlations 
is that scientists often devise descriptors that rneasure the same general property of a compound. 

While our software for the ceIl-based analysis method can handle 67 descriptors, the computational 
time is much larger. For exarnple, it takes roughly 100 hours versus 5 minutes for 67 versus 6 
descriptors. Thus, we primarily use the smaller set in this chapter. The current software (written in 
SAS code) was airned at testing the new methods and did not focus on efficiency in dealing with large 
data sets with many variables. We plan to irnplernent the cell-based analysis algorithm using C++ 
code, which should run hundreds of times faster than the current software. Whether the larger set of 
descriptors has substantially more predictive power is a question of some interest to the 
computational chemists, however, and we make some comparisons in Section 4.5. 

4.2.4 Dividing Data into Training and Validation Sets 

For the purpose of demonstrating the validity of the new methods, we divide each of the original data 
sets into training and validation sets. We use the training data (treated as screened compounds) to 
build models (i.e., find active regions) and the validation data (treated as unscreened compounds) to 
evaluate prediction accuracy (Le. venfy if the activity in these regions remains high). The validation 
set gives a more unbiased evaluation of the statistical method than the training set. In real 
applications we wouid use al1 the assayed compounds to find active regions, as more data increases 
the prediction power. 

There are 608 active compounds (roughly 2%) in the NCI data set. This population or random hit 
rate of 2% gives us a benchmark for the performance of our analysis method. If an analysis method 
gives hit rates (proportion of active compounds amongst those selected) in the validation set many 
times higher than the random hit rate, then it perforrns well 

For the Core98 compounds, the activity response variable is on a continuous scale. The mean, 
standard deviation, and median of the measwed activities are 7.8, 8.9, and 5.9%- respectively. We 
refer to the mean activity as the population or random activity value. As well as analyzing the data 
on this scale we can also classify the compounds with the top 1% of measured activities as active. 
This 1% random hit rate corresponds to 34.8% inhibition on the continuous scale. The population 
rnean activity of 7.8% inhibition (continuous response) or the population active hit rate of 1% (binary 
response) again provide benchmarks for the anal ysis methodology . 

We will use relatively srnall training sets, as one of our goals is to predict from a small screening 
design. The training molecules will be selected either using the Lam et al. (2001) uniform-coverage 
design algorithm or at random. With a 1-296 hit rate, a sample size of 4096 compounds gives 



roughly 40-80 active compounds, which should be sufficient to build a sound prediction model. (A 
sarnple size of 4096 is a convenient number for the design algorithm.) Table 4-1 shows the expected 
division of active compounds between the training and validation sets for the NCI data and for the 
Core98 data (binary response). 

Table 4-1. Expected Distribution of Active Compounds Between a Training Set of 4096 
C o m p o d  and a Validation Set O€ the Remaining Compounds For Random Designs 

1 AH data 1 Training set 1 Validation set 

Data set 1 X actives I # compounds 1 # actives / # cornpounds 1 # actives I # compounds 

4.3 Existing Methods 

Here we describe two statistical analysis methods commonly used for analyzing chemical data sets. 

4.3.1 Cluster Signif icance An alysis 

Cluster significance analysis (CSA), introduced by McFarland and Gans (1986), aims to find 
embedded regions of activity in a high dimensional chemical space. CSA considers every subspace 
that can be formed by the predictors, from al1 one-dimensional subspaces up to the space of al1 
predictors. A subspace is simply a subset of the descriptor variables, ignoring the rest. For each 
subspace, CSA cornputes the average distance between the active compounds and compares the 
average to the distribution of average distance for an equal number of compounds randomiy selected 
from al1 compounds (active or inactive), if the actives are clustered tightly, as rneasured by a 
randomization significance test, this is evidence that the descriptors forming the subspace and the 
regions where the actives are clustered are important for activity. 

A synthetic data set is instructive of the method and the potential probtems. CSA tacitly assumes 
that there is only one class of active compounds forming one cluster in one or more subspaces. 
Suppose, however, that there are two mechanisms operating. (In practice, we would not necessarily 
know which mechanism is causing activity, nor even how many there are.) Mechanism M l  active 
compounds require that the descriptor molecular weight is between 400 and 500 and that the melting 
point is between 160 and 205 degrees C. These active compounds are denoted by squares in Figure 
4-l(a). Mechanism M2 active compounds require that the descriptor LogP (the octanol and water 
partition coefficient) is in the range 3.0-4.0; they are s h o w  by circles in Figure 4-l(a). Dots 
represent inactive compounds. Because molecular weight and melting point are unimportant for 



mechanisrn M2, the circles are spread throughout the subspace, making it difficult to detect clustering 
of the actives. Similarly, if we look at a subspace that includes LogP, as in Figure 4-l(b), the M l  
actives are spread across the LogP dimension. Even in this somewhat simple situation, the CSA 
algorithm could have trouble. Similarly, if there are two or more active regions in a single subspace, 
in principle, a single measure of clustering might not detect them. 

120 140 160 180 200 220 240 260 280 - 2 - 1 0 1 2 3 4 5 6 7  
Melting Point L0gp 

Figure 4-1. Distributions of Active Compounds from Two Mechanisms. 

Squares and circles represent compounds active via Mechanisms 1 and 2, respectively, while dots are 
inactive compounds. Active regions corresponding to these mechanisms are shown by dashed lines: 
(a) locations of compounds in the subspace formed by Molecular Weight and Melting Point, and (b) 
locations of compounds in the subspace formed by Molecular Weight and LogP. 

4.3.2 Recursive Partitioning Approach 

The analysis of multi-mechanism data is dificult, and many statistical methods are not expected to be 
successfhl. Recursive partitioning (RP), Hawkins and Kass (1982) and Breiman et ai. (1984), is one 
method that has been successhil with multiple mechanisms arising in drug-screening data (Hawkins et 
al. 1997, Young and Hawkins 1998, Rusinko et al. 1999, and Jones-Hertzog et al. 2000). RP selects a 
descriptor to partition the data into two or more groups or nodes that are more homogeneous. Each 
daughter node is partitioned in turn until the nodes are judged homogeneous or some minimum 
sample size is reached. This separation of the data into s d l e r  groups can, at least in principle, isolate 
the active cornpounds due to a single mechanism. 
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As successful as RP has been for the analysis of HTS data sets, there are a number of possible 
problems. These problerns are at least partiaüy due to particular implementations of RP in existing 
software products, rather than the overall concept. First, RP selects one descriptor at a time to split 
the data set, but a single descriptor rnay not provide adequate information for the splitting process. In 
addition, when the descriptors are highly comlated, selecting one will likely lead to never selecting 
several others. It is important to keep the following observation in rnind: two compounds must have 
fairly close values of al1 critical descriptors for similar biological activity (McFarland and Gans, 
1986) when there is a single mechanism- This means that partitions have to be narrow, and in severai 
dimensions simultaneously, if aü molecules h m  a partition are to have sirnilar activity. The second 
problem relates to multiple mechanisms when active compounds from these mechanisrns cannot be 
easily separated. The two-rnechanism &ta s h o w  in Figure 4-1 illustrate the problem. Figwe 4-2(a) 
gives a tree, generated by recursive partitioning. Because logP is never chosen as a partitioning 
variable, the logP subintervai containing the Mechanism 2 active compounds is not identified. The 
tree partitions are dispiayed in Figure 4-2(b); RP incorrectly splits the subspace formed by Molecular 
Weight and Melting Point into six tegions. Here, partitioning one variable at a time is ineffective in 
deaiïng with multiple mechanisms. The third problem relates to the use of binary splits in many 
implementations. Problems can result if the activity pattern is inactive-active-inactive for a descriptor 
variable, With a single cut point, actives will be combined with inactives, possibly leading to the 
variable not k i n g  selected. 



Figure 4-2, Recursive Partitioning of Two-Mechanism Data, 

Recursive partitioning (S-Plus uee with default settings, e.g., minimum node size of 5) is used to split 
the data illustrated in Figure 4-1. (a) Nodes in the tree are classified as active and inactive and are 
labeled by 1 and 0, respectively. Terminal nodes are represented by rectangles. Under each node, the 
hit rate is printed. (b) The corresponding partitions are displayed. 

4.4 Cell-Based Analysis 

For convenience, we refer to a small region of a d-dimensional (sub)space as a ddimensional cell. 
For example, a 2-D ce11 is a region of a 2-D space. 

We introduce a cell-based analysis rnethod that first identifies small regions (cells) with several 
active compounds in low-dimensional subspaces (projections) of a high-dimensional descriptor space 
and then uses the information on these cells to score new compounds and prioritize them for testing. 
The cell-based analysis algorithm involves five stages. 

1. Divide the highdimensional space into many tiny cells (Section 4.4.1). 

2. Make a prelirninary identification of good cells: those cells with several active compounds 
(Section 4.4.2). Cells with too few active compounds are removed as there is not enough 
evidence to achieve statistical significance. 

3. Derive ranking scores for the g d  cells (Section 4.4.3). 



4. Determine which of these cells have activity that is statistically significant (Section 4.4.4). 
Note that a ce11 might have some active cornpounds by chance and, because there are very 
many cells, multiplicity issue arises. We propose a permutation test to overcome this issue. 

5. Score and prioritize untested compounds based on the good cells identified (Section 4.4.5). 
New compounds appearing fiequently amongst the good cells are promising candidates for 
testing. 

4.4.1 Forming Subspaces and Cells 

We use the datadriven binning method described by Lam et al. (2001) to divide a space into cells. 
Then we shift these cells in the various dimensions to allow for forming active regions of different 
shapes. 

Binning the Descriptor Space into 1-D,2-0, and 3-0 cells 

The advantage of dividing a space into cells is that a number of methods can be developed to identify 
good cells, Le., those with a high proportion of active compounds. It is also inherently local, allowing 
for the isolation of srnall active regions. We now review some rnethods for dividing a high- 
dimensional space into many srnall, lowdirnensional cells. 

In a conventional cell-based method, the range for each of the descriptors is subdivided into m bins 
of equal size. With the 67 BCUT descriptors, we would have d7 cells. Even with m=2, there are 267 
(or 1 . 5 ~ 1 0 ~ ~  cells generated, most of which are empty even for the largest everexisting chernical 
database. There wouid be more cells than data points. in addition, most compounds will be densely 
clustered in relatively few cells, rnaking it difficult or impossible to separate active and inactive 
regions. 

Foilowing Lam et al. (2001), we focus our attention on lowdimensional subspaces, typically al1 1- 
D, 243, and 3-D subspaces. This strategy is motivated by Pearlrnan and Smith's (1999) "receptor- 
relevant subspace" concept. They argued that often only two or three BCUT descriptor variables are 
important for activity against a particular biological receptor and that activity is highly localized 
within the relevant subspace. Secondly, we keep the number of celis constant over each subspace, 
avoiding the exponential increase in the number of cells with dimension. Consequently, the (average) 
number of compounds per ce11 does not decrease with dimension, maintaining statistical power for 
separating active and inactive regions (cells). Furthemore, if only a few descriptors are relevant for 
a particular mechanism, some lowdimensional cells containing only important variables are likely to 
be identified, facilitating understanding. In contmt, higherdimensional celb would include 
unimportant variables. To keep the number of cells constant, higher-dirnensional cells would dso 
have to be larger in the subspace of important variables, possibly too large to isolate a localized active 
region. Lastly, to avoid empty cells caused by the scarcity of molecules towards the limits of a 
descriptor's range, we adopt a datadriven hybrid binning rnethod that makes bins larger towards the 
extremes. 

Briefly, cells are created as follows. Initially, we divide each descriptor into m bins. For each 
descriptor, these bins are irnmediately the cells for its 1-D subspace. To form the cells for a given 2- 
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D subspace, 
mlR x mlR 

amalgamate the m I D  bins into i n l n  larger bins for each of its dimensions. There are 
= m 2-D cells fiom combining these larger bins. Similady, to form 3-D cells, we 
each dimension's 1-D bins into ml" bins; these are combined to give ml" x m'" x ml" = 

m 3-D cells. Thus, al1 subspaces, whether 1-D, 2-D, o r  3-D, have the same number of cells. To 
generate integer numbers of bins. it is convenient if rn is an integer raiseci to the power of 6, e-g., 26 
=64 or  46 =4096. We give hinher guidance below on choosing m. For more details in binning a high 
dimensional space into low-dimensional cells see the sections 'Forrning Cells' and 'Data-Driven 
Binning' in Lam et  al. (2001). 

With k descriptors, there are [:)+(:)+[:) =;k + i k 3  

1-D, 2-D, and 3-D subspaces in total. For every subspace, a molecule is in one and only one cell. 
The goal is to find a set of cells in which there are many active compounds and a high proportion of 
active compounds. 

How large shoulci the bin size be? Cells fonned from large bins rnay contain more than one class 
of compounds. Moreover, if only part of the ce11 is good, active compounds will be diluted by 
inactive compounds and the ce11 may be deemed inactive. (Two compounds must have faitly close 
values of a11 critical descriptors for similar biological activity.) On the other hand, a cell forrned by 
very fine bins may not contain al1 the compounds in the same class. Furthemore, very small cells 
will tend to have very few compounds and there will be little information to assess the quality of the 
cell. We make the bins fine, but not too fine, given N, the number of assayed compounds. For 
d i a b l e  assessment of each cell's hit rate, we would like at least 10 compounds per cell. This 
suggests that the nurnber of cells per subspace should be no more than N/10. 

Intra-subspace cells (not including the shifted cells described below) within a subspace are 
mutually exclusive and cover different sets of compounds. On  the other hand, inter-subspace cells, 
cells from different subspaces, can cover the same set of compounds. The compound-selection 
method described in Section 4.4.5 takes advantage of the collective strength of inter-subspace cells 
and makes use of the srnaIl arnount of extra infonnation available when further highly correlatecl 
descriptors are added. 

Shifted Cells 

The datadriven binning method generates non-overlapping cells within a subspace. We cal1 these the 
original, unshifted cells. Because the location and the shape of an active region are unknown, it is not 
possible to define the exact boundaries of a ce11 that perfectly fit an entire active region. The ce11 
boundaries are f ixeû prior to anal ysis. For exarnple, an active 2-D region with four active compounds 
can be sliced, by chance, into four 2-D cells with one active compound in each cell. In this case, none 
of the four 2-D cells will be identified as good celis and thus the active region will not be found. 

To  allow for the fact that the original binning may not be optimal, we also shift the original cells in 
the various dimensions to create overlapping cells (shifted cells). For exarnple, Figure 4-3 shows the 
locations of 10 active compounds in the subspace formed by two descriptors, xl and xz. To form 2-D 
cells, the range of each descriptor is divided into five bins here. We genetate four sets of cells: one 
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set of original, unshifted cells, two sets of cells with only one dimension shifted by half a bin, and one 
set of cells with both dimensions shifted half a bin. These four sets of ceUs are shown in Figure 4-3 
(a)-(d), respectively. The good cells identified in analysis are then used to  fonn active regions. If a 
good ce11 has to have at least three active compounds (as in Section 4.4.2). there is one active ce11 in 
each of Figure 4-3(a) and Figure 4-3(b) and there are two active cells in each of Figure 4-3(c) and 
Figure 4-3(d). The region formed by these overlapping active cells is shown in Figure 4-4. The 
counts are the number of times each active compound fdls  in an active cell. The dashed Iines show 
how the active region could be adjusted to exclude sub-regions with no actives. Note that parts of the 
active region missed by the original binning are found. 

Figure 4-3. Shifted Bins (Five per Descriptor) and Overlapping CeUs for 10 Active Compounds 
in a 2-D Subspace Formed by x l  and x2. 

(a) original, unshifted cells; (b) only the x, bins are shifted by half a bin; (c) only the xz bins are 
shifted by half a bin; and (d) both the xl and the xî bins are shifted by half a bin. 



Figure 4-4. Ovedapping Shifted Cells to Fonn an Active Region. 

The box denotes the active region. The counts are the number of times each active compound is 
selected by active cells (those with at least thee active compounds). The dashed Iines show how the 
active region could be adjusted to exclude sub-regions with no actives. 

The shified cells provide an effective means of handling different shapes of active regions, at the 
price of looking at more cells. The number of cells created for a d-dimensionai subspace is increased 
by a factor of 2d and the number of bin cut-off points for each dimension is doubled. For example, if 
a 3-D subspace is divided into 4x4~4  = 64 cells, shifiing will lead to a total of 8x64 cells, which is as 
rnany as an 8 x 8 ~ 8  anangement. Therefore, this method allows us to use larger bins for the andysis, 
with more compounds per cell, and hence higher power for detecting activity. 

We also investigated several methods for determining the shape and the size of an active region. 
However, we found that growing and shnnking a ce11 around an original, active ce11 to cover adjacent 
active cells was more complex and not as effective and efficient as shifting cells. 

4.4.2 Preliminary ldentificatio n of Good Cells 

We make a preliminary reduction of the huge number of cells that can be generated, particularly when 
there are many descriptors. We search every ceIl and note the ones with several (say three) active 
compounds. These are preliminary good cells. Then we adjust the boundaries of the preliminary 
good cells to exclude sub-regions with no active compounds. In later stages of the analysis, the hit 
rate and other related statistics will be computed for each of the re-sized cells. Those cens with a low 
proportion of active compounds will be rernoved. Active regions will be created by combining the 
remaining good cells. 



Preliminary Good Cells 

Afier the (original and shifted) cells are constructeci, the next step is to search for prelirninary good 
cells: those with at least a certain number of active compounds. The requked number of active 
compounds will depend on the total number of active compounds found in the data set. if only a few 
active cornpounds are available (e.g., less than 20), then al1 cells with two or  more active compounds 
might be of interest. Oti the other hand, if there are hundreds of active compounds, then it is more 
efficient to pay attention to only those cells with, Say, at least five active compounds. Of course one 
can examine every single ce11 with one active compound but this will generate rnany prelirninary 
good cells by chance, For the examples described in Section 4.5, there are about 80 active 
compounds in the NCI training data set and about 40 active cornpounds in the Core98 training data 
set. In these examples, requiring two active compounds gives sirnilar results to requiring three, but 
the latter generates fewer prelirninary good cells. 

The search for the preliminary good cells is straigh$orward. In principle, we just need to count the 
number of active compounds in every ce11 in every subspace. Because active compounds are usually 
rare in the data set, the search c m  be made computationally efficient by tracking them to the 
relatively few cells that they occupy. Subsequent stages of analysis are made much faster by working 
with the much-reduced list of preliminary good cells. 

Re-sizing Cells 

As the ce11 boundaries are fixed prior to analysis, a ce11 may cover both active and inactive regions 
and hence the observed hit rate of a cell can be misleading (active compounds rnay be diluted by 
inactive compounds, yielding a very low hit rate). To get a more foçused region, we re-size each cell 
by trirnming off the borders with no active compounds. Then, in each trimrned cell, we use the 
compounds remaining to determine the hit rate and other related statistics. These tcimmed cells will 
be used later on to form active regions and to score and prioritize untested compounds for screening. 

4.4.3 Ranking Cells 

The next stage is to tank the re-sized cells (original and shifted). These rankings will be used in the 
later stage to score new compounds. Al1 the ranking criteria are based on measures for individual 
cells. 

With active/inactive binary-response data, a natural first choice for the identification of active cells 
is to compute the proportion of al1 the compounds in the ce11 that are active (the observed hit rate) and 
then tank the cells by these proportions. The main problem with this method is that it favors cells that 
happen to have a small number of compounds. Consider two ceUs with 2/2 and 19/20 active 
compounds, respectively. The first has a hit rate of 100%, but this is based on two compounds, a very 
srnail sarnple. The 95% hit rate for the second ce11 is based on 20 compounds and is much more 
reliable. Thus, in addition to the raw hit rate (H), we describe below two further criteria that take into 
account the statistical variability from sarnpling: p-value (P) and the binomial hit rate lower 
confidence limit (b). 



With a numerical assay value Y (e.g., percentage inhibition) for activity, we will sirnilady describe 
the raw rnean activity score ( y )  and two criteria penaluing a srnall sample sire: the lower confidence 
interval for the mean Y (Y, ) and the hit rate lower confidence lirnit based on a normal distribution 

for Y (H:,). Quantitative data of this type may also be converted to activehactive classes by 

defming "Active" as Y > c for some cut-off c, ailowing ail critena to be used. 

Let N be the total number of compounds in a data set (e.g., 4096 compounds in the Core98 training 
set), and let Na be the number of active compounds in the data set (e.g., 41 active compounds). 
Consider a given ceIl in a given subspace, which has n compounds, of which a are active, 

Suppose the Na active compounds are distributed such that they fa11 in o r  outside the given ce11 at  
random. Under this statistical nul1 hypothesis, the probability of observing a actives out of n 
compounds is given by the hypergeometric distribution: 

The p-value is the probability of having at  least a active compounds out of n: 

pvalue = Prob(A 2 a 1 n compounds) 

If the p-value is small, there is little chance of seeing a o r  more active compounds out of n. 
Thetefore, small P-values provide the most evidence against the nuli hypothesis of random allocation 
of actives idoutside the ceIl (and hence most evidence that the number of actives in the cell is better 
than chance). The P-value is computed for al1 cells and the ce11 with the smallest P-value is the top- 
ranked cell, etc. 

The pvalue approach tends to pick cells with large numbers of compounds even if they have fairly 
low hit rates. Suppose there are 40 active compounds in a data set of 4,000 compounds. Then 8 
actives out of 80 (hit ratd.lO) gives p=8.24~10-' but 3 out of  3 (hit rate=1.00) gives p=9.3~10-'. 
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The statistical evidence is stronger in the first case because of the larger sample size, even though the 
hit rate is much lowet. This illustrates the major drawback of the P criterion: it tests whether the hit 
rate is significantly larger than random, not whether the hit rate is large. 

Hit Rate (H) 

In the above notation, the hit rate for a ce11 is d n .  It ignores the increased reliability from a larger 
sample size. For exarnple, 111 gives a 100% hit rate but 9/10 gives a 90% hit rate, yet the ce11 with 
9/10 seems more promising. Although commonly used, it is not a sensitive criterion for ranking 
active cells (regions). The next criterion introduced considers both the hit rate and its variability. 

Binomial Hit Rate Lower Confidence Limit (H-) 

One can obtain an exact lower confidence limit on the hit rate for new compounds based on the 
binomial distribution. For the rnany possible cornpounds that would faIl in a given ceil, suppose that 
a proportion h are active, i.e., h is the hit rate. Assuming that the n compounds in the ce11 that have 
been assayed are a random sample of al1 the cell's possible compounds, the number of actives, A, is a 
random variable following a binomial distribution with n trials and probability h. The smallest value 
of h such that Prob(A2a 1 h, n) = 0.05 is the 95% binomial hit rate lower confidence lirnit (HUS). It 
considers both the hit rate and its variability. Some examples of ce11 rankings using the He5 rnethod 
are given in Table 4-2. 

Table 4-2. Illustrative Ceii Rankings Using IIL9* 

a / n (Hit Rate) 

- - 

Mean Activity Score ( r) 
#en a numerical assay value, Y, is available, the mean over al1 compounds in a ce11 gives the mean 
activity score (Y). Because it is easier by chance to obtain a high rnean from fewer compounds than 
from more cornpounds, Y tends to pick cells with few compounds and high activity values. 
Although commonly used, it is not a sensitive criterion for ranking active cells (regions). The next 
critenon introduced considers both the observed mean and its variability. 



Lower Confidence iimit for Mean Y (L) 
Analogous to HL9% with a numerical assay value, Y, one can use the lower confidence limit for the 
mean of the distribution giving the Y values, based on an assumption of sampling from a normal 
distribution. This criterion, &, considers both the observed mean and the variability and is defined 

as 

where, based on n-1 degrees of freedom, â is the sample standard deviation within the ce11 and 
c(n- 1, 0.95) denotes the 95% quantile of the t distribution. 

Normal Hit Rate Lower Confidence Limit ( H : ~ ~ )  

With a numerical measure of activity, Y, and a cut-off for activity, c, one c m  derive a lower 
confidence limit for the hit rate, Le., the probability Prob(Y>c), based on the assumption tfiat the 
observed activities in a cell are randomly sampled h m  a n o d  distribution. This criterion is called 

HL95 

if the Y values are randomly sampled from a normal distribution with mean and variance d, then 
by definition, H:, is 

where Q, is the standard normal cumulative distribution function. 

Suppose a is known or  a good estimate is available (the pooled estirnate described below will 
usually have many degrees of freedom). Then we can estimate @ by 

F-c 6 = a(_), where Y is the average Y value for the rz cornpounds in the ceil. 

Let Z=- Y - c  , which we estirnate by 2 =- . W e  have E(z)== and 
0 0 d 

a2 1 1 
va&)= -, - - - . Therefore, 

where 2-95 is the 95% quantile of the standard normal disiribution. 

Rearrangernent of the inequality gives 
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' -' is (z,, -) and the corresponding 95% CI A 95% lower confidence interval (CI) for - 
0 

f 0 r f y ) i . s  (a(&), 1) since 0 is a monotonic increasing hinction. Therefore, If:,, can be 

estimated by @&)=@(y-?)- 
We use a common estimate of a for al1 cells within a subspace. For a given subspace, it is 

computed by pooling the sample variances over al1 cells: 

where s: is the sample variance for ce11 i. and ce11 i has ni compounds. 

Relationships ûetween the criteria 

If a numerical measure of activity is available, al1 six criteria can be used. The cut-point c for acti vit] 
(a hit) is used as follows. For P, H and Hm, c is used to conven the data to  "Active" / "Inactive" 
before they are computed. Both and cg, ignore c. For H & ~  . the Y distribution is modeled and c 

is used at the end to detennine H:,, . 

4.4.4 Assesrring the Impact of Multiple Testing 

With 67 descnptors, there are a total o f  50,183 1-D, 2-D, and 3-D subspaces. If each subspace is 
divided into 64 cells and the cells are shifted in the various dimensions (see Section 4.4.1), there are 
25,101,952 (shifted and unshifted) cells. With so many cells, it is possible that by chance alone we 
will see cells with moderate activity. 

Consider the p-value critenon. T o  adjust it for the total number of cells examined, C, we simply 
multiply each pva lue  by C. This is the Bonferroni correction (Miller 1981). In the training data, a 
ceU is said to be a good ce11 by the p-value criterion if the Bonferroni adjusted P is small (say ~0.05). 

The Bonferroni correction tends to over-correct, but we can impose a minimum number of active 
compounds to define the cells relevant for correction. In the NCI exarnple with 67 BCUTs and 
25,101,952 cells, for example, only 5,587,591 cells have at least two active compounds, a smaller 
adjustment factor. 

Robably the best way of addressing the multiple testing problem is to define the cut-off between 
active and inactive cells using a random permutation of the assay values. The Active/Inactive 
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indicators or  Y values in the training data are randomly reordered, i.e., randomly assigned to the 
descriptor combinations in the data set. If pvalue is the criterion for ranking cells, one can set the 
cut-off as a small pvalue in the lower tail of the distribution induced by randornization. Under 
random permutation of the data, no cells should be identified as good cells and the smallest pvalue is 
just due to chance. For the actual data (without permutation) one can then use al1 cells with pvalue 
smaller than this cut-off point. 

Ideally, to estimate the pvalue corresponding to a tme significance level of Say 5% we would like 
to perfonn rnany random permutations. The sets o f  pvalues from these randomizations wouid be 
cornbined into an empirical distribution, and the 5% point frorn this distribution is a multiplicity- 
adjusted critical value. This is too computationaüy expensive, however. Fortunately, for the cell- 
based analysis, one permutation provides rnany p-values (e-g., 25,101,952 cells and hence pvalues). 
Thus, we take the 5% point from one permutation as the cut-off to determine whether there are any 
real active cells (versus false alarms). This procedure can be applied to any of the cell-tanking 
ci ter ia  in Section 4.4.3. 

Cells with ranking scores in the actual data that beat the random-permutation cut-off are used to 
score and select new compounds. The subspaces and descriptor ranges associated with these cells 
indicate descriptors that are likely relevant to activity and subregions of activity, respectively. New 
compounds appearing in the most highly ranked cells or  frequently arnongst the good cells are 
prornising candidates for testing, as described next. 

4.4.5 Selection of New Compo u nds 

W e  present three selection rnethods for choosing untested compounds for biological screening: 'Top 
Cells Selection', 'Frequency Selection* and 'Weighted Score Selection.' Al1 the methods f i s t  rank 
cells according to one of the criteria in Section 4.4.3 and apply the random-permutation rnethod of 
Section 4.4.4 to generate a Iist of good cells. 

Top Cells Selection 

In a database of new, unassayed compounds, top-cells selection chooses al1 the compounds falling in 
the best cell, then al1 those in the second best cell, and so on until the desired number of cornpounds 
to be tested is reached or until there are no good cells remaining. This approach does not combine 
s a n g t h  from several good cells when scoting a compound. The next method takes advantages of the 
collective strength of the good cells, thus increasing the prediction power. 

Frequency Selection 

Frequency selection scores a new compound by the number of times it appears in the list of highly 
ranked cells. The f m t  compound selected for screening is the one occumng with the maximum 
frequency, the second compound selecced has the second largest frequency, and so on. 

Frequency selection scores a compound based on many good cells and possibl y rnany descriptors. 
A single ce11 belongs to a subspace involving only one, two or  three variables, and cells are scored 



individually. in contrast, under fkquency selection, if a new compound appears in several good cells 
in dierent subspaces, information is combined from the union of al1 the subspaces* descriptors. 
Thus, frequency selection can potentidly make use of the small amount of extra information available 
when M e r  highly correlated descriptors are added (see the cornparison of 6 and 67 descriptors in 
Section 4.5.3). 

Frequency selection provides a powerful way to rank new compounds for screening, often leading 
to a very high hit rate for the top ranked compounds. The next method introduced m e r  improves 
the compound ranking by incorporating information on the order of the cells in the list. 

Weighted Score Selection 

Instead of just counting the frequency of occurrence in the list of good cells, we cm give each ce11 in 
the list a weight and score a new compound based on the total weight over the cells in which it 
resides. 

The cell-ranking criteria described earlier can be adapted as weight functions. We could use the 
Hm value or -log(p-value) as weights, for example. The weight function should have several 
desirable properties: (1) If the list of good cells is extended, the relative weights of the cells in the 
original list should not change; (2) the weight function should be a smooth monotonic decreasing 
function of the cell's rank; and (3) the same weight should be assigned to cells rated equally by the 
ceU ranking criterion. 

For the numerical evaluations in Section 4.5, we use weighted score selection with HUS (NCI 
binary-response data) or Y, (Core98 continuous-response data) values as weights. These are the 

criteria used for ce11 tanking to generate the list of good cells. 

4.5 Performance Evaluatio n 

W e  evaluate the performance of Our cell-based analysis method using the 23056 Core98 compounds 
and-the 29812 NCI compounds. The objective of this evaluation is (1) to determine if the new 
methods lead to higher hit rates than random selection, (2) to assess the effect of the six ce11 selection 
criteria on hit rate, and (3) to determine whether our ce11 selection method can find real active cells or 
false alarrns. 

In addition, we compare the cell-based analysis method with recursive partitioning (the tree 
function in S-Plus, Clark and Pregibon 1992) in terrns of identifying active compounds. Often, V- 
fold cross-validation is used to control tree size, but here this tends to result in a very small tree, 
sornetimes with only a root node. This problem seems to mise because active compounds are rare in 
the training data, and the smaller hold-out sarnples have t w  few active compounds to compare 
différent tree sizes. For simplicity, then, we use the default S-Plus tree (from default fitting options, 
e-g., minimum 5 observations per node) and do not attempt to prune this me. (Som preliminary 
work by graduate student Marcia Wang also suggests that tree pruning is ineffective anyway.) 



4.5.1 Evaluation Plan 

To evaluate the cell-based analysis rnethod for the two data sets, we carry out the following steps. 

Divide the data into Training and Validation sets. Samples of 4096 compounds are selected to 
form the training data set; the rest of the compounds form the validation data set. Samples are 
chosen randomly or using uniform coverage designs (Lam et al. 2001). 

Apply the data-driven hybrid binning method to bin al1 subspaces, and create 64 cells per 
subspace, This gives 64 compounds per ce11 on average. Create shifted cells fiom the original 
bins (Section 4.4.1). 

Training set: Search for preliminary good cells with two or more active compounds (Section 
4.4.2). 

Training set: Compute summary statistics for the preliminary good cells: for the NCI binary- 
response data or Y,, for the Core98 continuous-response data (Section 4.4.3). Perform a 

permutation test (Section 4.4.4) to frnd the cut-off point to separate good cells from false a l a m .  
This generates a List of good cells (considered as 'real'). 

Validation set: Score and select new compounds fiom the validation set based on the good cells 
identified from the training set. Here we can rank the validation-set compounds using weighted 
score selection (Section 4.4.5). 

Validation set: As compounds are successively selected, evaluate the hit rate (binary response) or 
mean activity value (continuous response) as performance rneasures. 

We first look in detail at the multiplicity correction in Step 4, then present the final hit rate and 
mean ac tivity performance results. 

4.5.2 Good Cells Versus False Alarms 

Bonferroni Correction 

To test whether our cell-based method would give false-positive results, the activity values are 
randomly re-assigned to the compounds. The cell-based analysis is carried out on the permuted data. 
Using the pvalue correction methoci described in Section 4.4.4, few cells are declared good. On the 
other hand, many good cells are found using the real activity values. This approach addresses the 
false positive problem, but is probably quite conservative. 

Permutation Test 

To illustrate how the permutation test in Step 4 works, we examine a random sample of 4096 
compounds from the NCI data set with 67 descriptors. For this sample, we generate 25,101,952 cells 
(see Section 4.4.4) and analyze these cells twice, once with the original activity values and once with 
randomly re-arranged activity values. Under random permutation, the best cell had 7 out of 7 active 
compounds, with ~=2.29x10*'~ and HLg5=û.6518, as shown in Table 4-3. With the real data, Table 



4-3 also shows there are 5,256 cells with a srnaller pvalue and 449 cells with a larger Hm5 value, 
suggesting that these cells are indeed good active regions and that the descriptors are relevant to the 
activity. 

Table 4-3. P and Hm Values for Different Cut-Off Points and the Correspondhg Nuniber 
of C e k  with a Better Value. 

Under Random Permutation 

Criterion value (#actives/#compounds) 

1 1 1 I 

The 5% point 1 1.04E-4 (6/35) 1 0.2236 (Z2) 1 782,864 1 493,962 

Real Data 

#tells with better value 

Best value 

For defining the list of good cells and hence selecting new compounds for screening, we use a less 
conservative cut-off: the 5% point of the distribution under randomization. Using the 5% point, many 
more cells are found with better values. Collectively, these cells enhance the prediction power of the 
compound selection methods. Scoring new cells using weighted frequency of occurrence in the list of 
good cells (Section 4.4.5) is insensitive to adding some possibly spurious cells to the bottom of the 
Iist: these ceils have low weights. 

In this example, two practical issues are also revealed. As rnentioned earlier, the raw hit rate H is 
not a sensitive cell-ranking criterion, and the permutation test based on H often leads to a hit rate cut- 
off at IO%, making identification of good cells difficult. Also, one has to be carelùl in the 
implementation of the P criterion as the p-values for good cells can be extremely srnall. In addition, 
P tends to pick cells with large numbers of compounds (Section 4.4.3). hence our use of H L ~ S  as the 
primary ranking criterion for data with binary response. Similar comments apply to the Core98 
continuous-response data and our preference for the Y,, criterion. 

2.29E- 12 (717) 

4.5.3 Validation Hit Rates 

A total of 80 training sets were generated, 40 from each of the NCI and Core98 data sets. Half of the 
training sets were generated using random selection and the other hdf were generated using uniform 
coverage designs (Lam et al., 2001). For cornparisons between the cell-based (CB) analysis method 
and recursive partitioning (RP), the S-Plus classification and regression tree method with default 
settings is used (Venables and Ripley, 1999). Except where we specifically compare 6 and 67 
descriptors, al1 analyses are performed using the original 6 descriptors to reduce the burden of 
computational effort. 

0.65 18 (7f7) 

Cell-Based Analysis Versus Recursive Partitioning 

1 

5,256 1 449 

Twenty training sets of 4096 compounds were randomly generated from each of the NCI and Core98 
compounds. These training sets were analyzed using both CB and RP analysis methods. The mean 



hit rates and mean activity results based on the validation sets are shown in Figure 4-5. For the NCI 
compounds, the CB analysis clearly dominates the RP analysis. Both methods generate hit rates 
many times higher than the random hit rate. For the Core98 compounds, the CB analysis outperforms 
the RP analysis for the f m t  50 compounds selected; thereafier the two methods are comparable. 
Again, both methods perform rnuch better than the random-activity baseline. The Core98 activity 
values have much larger rneasurement error than the NCI activity; in addition, the Core98 compounds 
have fewer hits. Both of these facts make predicting active compounds difficult. 

(a) NCI data (b) Core98 data 

Figure 4-5. Average Performance of CeU-Based Analysis (Solid Line) and Recursive 
Partitio~ng (Dashed Line) for 20 Random Smples When the 2ûû Validation-Set Compounds 
With the Highest Scores Are Selected. 

(a) Mean Hit Rate for the NCI Binary Data and (b) Mean Activity for the Core98 Continuous- 
Response Data. The horizontal line near the bottom shows the expected performance under random 
selection of new compounds. 

Impact of Design on CelCBased Analysis: Unifom Coverage Designs Venus Random 

Selection 

Here we investigate the impact of different designs for the training data on the performance of the CB 
analysis. Two types of designs are compared: simple random sampling (as in the CB versus RP 
cornparison) and unifonn coverage designs (Lam e t  al., 2001). By keeping the sarnple size within 
each cell fairly constant, the unifom coverage designs should provide good power across al1 cells. 
Twenty training sets of 4096 compounds are generated, using the two methods, from each of the NCI 



and Core98 data sets. These training sets are analyzed using the CB analysis methosi, The rnean hit 
rate and activity results are shown in Figure 4-6. Using the uniform coverage designs, additional 
improvement in hit rate or mean activity is found for the first 100 compounds selected. The bumps in 
Figure M a )  when only 1-25 compounds are selected are likely due to the discreteness of the binary 
response: a few extra hits wiil make a big impact on the hit rate. 

(a) NCI data (b) Core98 data 

Figure 4-6. Average Performance of 20 Random Designs ( M d  Line) and 20 Uniform 
Coverage Designs (Dashed Line) When the 2ûû Validation-Set Compounds With the Highest 
Scores are Selecteà By Ceii-Bad Analysis. 

(a) Mean Hit Rate for the NCI Binary Data and (b) Mean Activity for the Core98 Continuous- 
Response Data. The horizontal line near the bottom shows the expected performance under random 
selection of new compounds. 

Six Versus 67 Descriptors 

Because of high computational cost, only two samples from the 20 random training sets for the NCI 
compounds are chosen to evaluate the information gain from using more BCUT descriptors. The two 
samples have the highest and lowest validation hit rates at the 100' compound selected in the six- 
descriptor cell-based analysis: 74/100 hits and 47/100 hits. respectively. Re-analysis of the sarne two 
sarnples using the 67 descriptors gives the hit rate results shown in Figure 4-7. in  both sarnples, the 
67 descriptors lead to higher hit rates for the CB analysis. The CB analysis gains predictive power 
despite the strong correlations arnong the descriptors. This is not so for the RP analysis. The hit rate 
results at 100 compounds selected are summarized in Table 44. 

Figure 4-7 also indicates that CB analysis is fairly robust to variability due to random sampling. 
Designs generated by different random sarnples will lead to training data with little overlap. 
Therefore. CB analysis will probably be working with rather dif5erent sets of preliminary good cells. 



ceU scores, and compound scores. Nonetheless, as  Figure 4-7 shows, the hit-rate performance is 
similar, especially if 67 descnptors are used. The differences between the hit-rate profiles for the two 
samples are small here relative to the dierences between CB analysis and tecursive partitioning. In 
general, CB analysis is not likely to be sensitive to small changes in the data (e-g., adding or 
removing a few compounds), because such changes will only affect a few cells and the methoci is 
inherently local. 

Table 4-4. Eit rates, at the 100" Compound Selected, by Düperent Analysis 
Methods and by DiiTerent Sets of Descriptors. 

I 1 Cell-Based Analysis 1 Recursive Partitioning I 



(a) Cell-Based Analysis, Sarnple 1 (b) Cell-Based Analysis, Sample 2 

(c) Recursive Partitioning, Sample 1 (d) Recursive Partitioning, Sample 2 

Figure 4-7. Hit Rates for Two Random Samples from the NCI Data Using Either 6 Dgfriptors 
(Solid Line) or 67 Descriptors (Dashed Line). 

The figure also compares CB and RP analyses. 

4.6 Conclusions and Disc ussion 

These results confirm that (1) the cell-based analysis method is usehl  in identifying good cells, (2) 
many good cells are found. not false alam. and (3) the BCUT descripton are informative. Our cell- 
based analysis method leads to hit rates many times higher than the random hit rate. It consistently 
leads to very high hit rates for the top tanked compounds. To get a sense of the possible increases in 
efficiency, consider the following. Using random screening, one would expect to screen 1.000 NCI 
compounds to find 20 active compounds; however, using the CB prediction one can identify 20 active 
compounds by screening just 20 compounds: see the curves for 67 descriptors in Figure 4-7(a) and 
Figure 4-7(b). The CB prediction method compares favorably with RP here. 



In principle, because it is inherently local, a cell-based analysis should be able to handle nonlinear, 
threshold, and interaction effects as well as multiple activity mechanisms. By combining scores from 
many cells (lowdimensional projections) it should also be able to extract M e r  information from 
highly correlated descriptors. 

On the other hand, linear regression mode1s are not effective in handling these modeling issues. 
For illustration, polynomial regression models of degree 3 including interaction tenns of 2 and 3 
descriptors were fitted to the Core98 data using the stepwise-selectioa rnethod. The 'best' model had 
R~ = 0.01 and poor prediction accuracy in identifying compounds as active. For the NCI data, logistic 
regression models were also investigated. Overall, low prediction accuracy in classifying compounds 
as active and high prediction accuracy in classifj4ng compounds as inactive were found. As only 
about 2% of compounds are active, any methods clairning al1 compounds as inactive will give an 
overall accuracy of 98%. The real challenge is to find a high proportion of active compounds, 

Our goal is to find a set of regions (cells) in which there is a high proportion of active compounds. 
It is much easier to divide and cover low-dimensional subspaces and to identify low-dimensional 
active cells. Whereas RP evaluates one descriptor at a time, CB analysis evaluates 1-D, 2-D and 3-D 
cells (Le., evaluates one, two and three descriptors at a time) and combines these cells when scoring 
to form high-dimensional active regions. Furthemore, the low-dimensional cells are forrned from al1 
combinations of different subsets of descriptors, so al1 descriptors can be effectively evaluated and the 
impact of irrelevant variables on anaiysis is reduced or eliminated. Therefore, focusing on low- 
dimensional subspaces is effective in finding active and inactive regions (cells). 

Shifted cells provide an efficient and effective method for handling different shapes of active 
regions. In combination with re-sizing of celis, the boundaries of active regions can be better aligned. 
In compound selection, a compound appearing in more than one ce11 within the same subspace will be 
counted only once to avoid over-counting from the shified cells. This is analogous to (1) fonning an 
active region within a subspace, and (2) ranking the new compounds based on their (weighted) 
frequency in al1 active regions across al1 subspaces. 

Designed experiments (e.g., uniforrn coverage designs) can enhance the predictive power of cell- 
based analysis. The actual improvement in prediction cm be much greater and can be beaer 
evaiuated if a reai test set (instead of a hold-out set for validation) is available, as compounds in the 
hold-out set are not always available in every ce11 identified from the training set. Uniform coverage 
designs tend to select roughly the same number of compounds from both crowded and sparse regions 
and might not leave compounds in the sparse regions for validation. 

A good prediction method should obtain more hits for the highest ranked compounds. Because the 
total number of hits is a constant, the hit rate or the activity value typicalIy decreases as the number of 
tested compounds increases, al1 the way down to the random rate when al1 cornpounds are tested. The 
CB analysis method is particularly effective in finding hits when few compounds are selected. 

We primarily used Hus for binary response data and Y,, for continuous response data. These 

criteria take account of uncertainty from the sample size and have fewer assumptions. 

CB analysis is a multi-stage automated analysis process, which requires extensive computing 
power. There are many opportunities to rnake the algorithm more efficient as well as to further 
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enhance the prediction accuracy. We are currently investigating these opportunities. One can use a 
combination of different ranking criteria (e-g., the P and HLgS values) to define a 'common' cut-off or 
even to select multiple sets of good cells (different criteria rnay select different types of active cells). 
For a very large data set (e.g., millions of compounds with many descriptors), a fast algorithm to store 
and evaluate billions of cells is needed. Tuning parameters such as the minimum number of active 
compounds required for a preliminary good cell, choosing cut-offs for the good cells, and more 
sensitive weighting fwictions for scoring cells and hence compounds, will be studied. The curent 
ce11 re-sizhg method (Section 44.2) re-sizes each cefl by trimming off the borders with no active 
compounds. This is done by setting the new boundaries of a ce11 to the descriptor ranges of the active 
compounds. The more active compounds available in the cell, the better the boundaries can be 
located. Using this simple re-sizing method done, without the shifted cells method, rnay leave holes 
within an active region. The shifted and unshifted cells overlap each other, thus reducing or 
minimizing possible holes in an active region. Other ce11 re-sizing methods will be investigated. 



Chapter 5 

Conclusions and Discussion 

5.1 Conclusions 

The design and analysis problerns for HTS data are quite different from those arising with 
conventional small data sets. Molecular databases can have thousands to millions of compounds, and 
there are many potential descriptors to characterize compounds. The complexities of the retationship 
between descriptors and activity for HTS data (e-g., multiple mechanisms, thresholds, interactions, 
nonlinearities, etc.) and the general issue of curse of dimensionality in high dimensions make many 
standard design and analysis methods inappropriate. 

The novel design and analysis methods proposed here can overcome these difficulties. The uniforrn 
coverage design rnethod first divides a high dimensional space into many low dimensional cells and 
then uses a fast exchange algorithm to optimize the uniforrn coverage of these cells. Uniform 
coverage designs are useful for finding diverse lead compounds for drug optimization. The cell-based 
analysis method first identifies cells with a high proportion o f  active compounds and then uses the 
information on these cells to score new compounds and prioritize them for screening. Cell-based 
analysis uses the collective strength of multiple cells to enhance the prediction power and is very 
effective in finding a high proportion of active compounds from a relatively small set of compounds 
selected. 

Severai cycles of screening are expected to be more efficient than screening al1 the compounds in a 
large collection (Jones-Hertzog e t  al. 2000). in a multi-stage design strategy, the initial design should 
cover the descriptor space as uniformly as possible. Analysis o f  the resulting data can then be used to 
direct subsequent designs to sub-regions of hi@ activity in critical descriptor projections. An ideal 
approach is to use uniform coverage designs to select a small initial screening sample and then use 
cell-based analysis to develop prediction rules to guide the selection of further compounds for 
screening. This approach can find more leads in less time and with a much smaller number of 
compounds tested. 

This thesis research explores the area of design and analysis of large data sets in pharmaceutical 
drug discovery. The proposed design and analysis algorithms can eficiently deal with hundreds of 
thousands of compounds. Further research is needed to enhance these algorithms to deal with even 
larger data sets andor  a larger number of descriptors. Computational and other potential areas for 
improvement and research are discussed next. 

5.2 Further Research 

One of the major difficulties of dealing with large data sets is speed or how fast a methoci can 
generate the intended outcomes, in terms of minutes, hours, days or  even weeks. Many conventional 
design and analysis methods were originaily developed for smalt data sets and not intended for 



problems of the magnitude considered here. For large data sets, many existing methods would be far 
too slow (e.g., could take weeks or even longer to run) o r  might not even work at ail. 

Our design and anaiysis algorithm can efficiently deal with hundreds of thousands of compounds 
with severai descriptors. For example, our new design software took approximately 15 minutes to 
select 729 compounds fiom a data set with 100,000 compounds and 20 descriptors. It would have 
taken weeks to months to generate a uniform coverage design frorn the sarne data set using SAS Proc 
OFTEX. 

However, as the number of compounds and the nurnber of descriptors increase, even our rnethods 
can becorne too computationally intensive to run on any single computer. There are several ideas 
currently under investigation to reduce the burden of computational effort and to improve the 
performance of the design (better coverage) and the analysis (better prediction). Sorne of these 
developments are relevant to both design and analysis, while others relate to one of the areas, and it is 
convenient to describe them under such headings. 

5.2.1 Design and Analysk 

Number of Su bspaces 

It is much easier to divide and cover low dimensional subspaces and to identify low dimensional 
active regions. Other advantages of focusing on low dimensional projections of a high dimensional 
space, instead of the entue space, are discussed in Chapters 3 and 4. A price for considering ail 1-D, 
2-Dl and 3-D subspaces is that the total number of subspaces increases quickly. With 6, 10, 20, and 
67 descriptors there are 41, 175, 1,350, and 50,183 subspaces. respectively. (The thesis presented 
examples with 6 or 67 descriptors.) In terms of computer space and speed, the 67 descriptors will 
take roughly 1,200 times (50,183141) more computer space than the six descriptors. Potentially, 
rnany more descriptors could be included. There are at least two ways to reduce the total number of 
subspaces considered. 

1. Use dimension reduction methods such as principal component analysis (PCA). There are two 
ways to apply PCA to the 67 BCUT descriptors. One simple way is to perform PCA directly to 
al1 67 BCUTs; the other is to first group the BCUTs using chernical knowledge and then perforrn 
subgroup PCA. Principal components within subgroups are probably preferable here, as they are 
more interpretable. PreIiminary analysis results indicate that subgroup PCA can be usehl  in 
reducing dimension. 

2. Focus on only 1 -D and 2-D subspaces. The 3-D subspaces generate by far the majority of cells, 
and ignoring them reduces computation considerably for both the design and analysis rnethods. 

Running the UCC optimization algorithm with only 1-D and 2-D coverage can also improve 
the 3-D coverage. For example, we started with a random selection that had U (Ul-D 1 U2-D 1 
I/3,D) and P (PI,D 1 1 PSD) equal to 3 170 (19291294814634) and 45.9 (50.7145.0/41.9), 
respectively; the optimization algorithm with only 1-D and 2-D coverage led to a design not 
only with better 1-D and 2-D coverage but also with better 3-D coverage. The corresponding 
values are 682 (3W602IlO9 1) and 73.6 (79.5174.0167.2), respectively. 
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Cell-based (CB) analysis with or without 3-D cells was performed on the NCI and Core98 
data sets. CB anaiysis without 3-D cells seerns to have better prediction results than the tree 
method (described in Chapter 4) but not as good as CB analysis with 3-D cells. 

Multiple Processors 

We are currently working to implernent the aigorithm on multiple ptocessors. At GlaxoSrnithKline, 
hundreds of PCs can be linked together to solve research problems. 

One beauty of the CB analysis algorithm is that it can be easily implemented on multiple 
processors, and 1 have tried running eight computers at a time. The uniform design algorithm 
requires more work to run on multiple processors. Using multiple processors to search for multiple 
exchanges simultaneously and other ideas are under consideration. 

5.2.2 Design 

Program Algorithm in C 

The original design software (written in SAS Proc IML) was aimed to test the new rnethods and did 
not focus on efficiency in dealing with large data sets with many descriptors. We have worked with a 
computational chemist and a computer science student to develop fast C code for the design 
algorithm. The new software mns much faster. For example, the original software took 
approximately 25 minutes to select 729 from 30,000 compounds while the new software took less 
than 30 seconds. For a large data set with many descriptors, an efficient computer aigorithm to store 
millions of cells is needed. For example, selection of 4,096 compounds to densely cover al1 
subspaces up to 3-D formed by 67 descriptors generates 50,183 subspaces and over 200 million cells, 
given that each subspace is divided into 4,096 tiny cells to get as dense coverage as possible. 

Early Termination 

Our design optimization algorithm makes most of the improvement in the first few loops through the 
candidates. From several data sets and many simulations (using different initial samples) we 
evaluated, over 99.52 improvement comes from the first 10 loops. indeed. the majority of the 
exchanges occur in the first 10 loops. Stopping after 10 loops greatly reduces the cun time for very 
large data sets, with only a small compromise in finding a very good coverage design. 

Negative Exchange 

The design optimization algorithm ailows neutral exchanges (i.e.. exchanges that do not change the 
design criterion) to break away from a design that is only locally optimal. An extension to this is to 
allow exchanges with a small negative improvement to the design criterion. Prelirninary evaluation 
of this idea has been performed; this approach often fin& a slightly better design (with less than O. 1% 
improvement) but requires many more loops. 



Optimality of Design 

There is no theorem to show that the UCC design optirnization algorithm leads to the optimal design. 
However, extensive testing of the design optirnization algorithm suggests that the designs generated 
should be in close proxirnity to the optimal design, Even the most d i a b l e  but computer-intensive 
Fedorov algorithm (Fedorov 1972) is not expected to find an additional improvement of 0.1% or 
more in C/ but is likely to take thousands of times longer to mn. Alternatively (a more efficient 
approach), if time petmitted, one can use out optimization algorithm to generate several or tens of 
designs (starting with different random samples) and then re-apply the algorithm to the new candidate 
set formed by the several designs. This should result in a design with the best coverage among ail 
generated. 

Additional Points From Large Bins 

R e d 1  that we bin each dimension using equal-frequency bins at the extremes and equal-width bins in 
between. Let us cd1 these the outer and inner bins, respectively. The proposed design gives good 
coverage of the inner bins (where the majority of compounds reside) but pays less attention to the 
outer bins. The outer bins tend to be very wide and it is not possible to get good coverage. Many 
investigators (e.g., Cummins et al., 1996, Higgs et al., 1997 and Menard et al., 1998) would just 
ignore the outlying compounds. The proposed design selects a smail number of design points from 
the outer bins. 

One way to get a better coverage of the outer bins is simply to add more design points there but 
keep the number of design points in the inner bins unchanged. Under random selection, the number 
of compounds in an outer bin is roughly proportional to its number of candidate compounds. 
Alternatively, one can make the first and last bin percentages depend on the number of bins (or the 
number of compounds required for the design). Therefore, with n bins one could have first l/n 
proportion of candidate compounds in the first bin, and similarly the last bin. If n is so large that l /n  
does not get al1 the outliers, one needs several lln bins to catch them. This approach will increase the 
number of design points in the outer bins relative to the inner bins, giving the two types of bins a 
share of the design points proportional to the number of candidate compounds. 

Including subspaces of 4-D and higher will usually not be practical. Chemists believe that two 
molecules must have fairly close values of al1 critical descriptors for similar biological activity 
(McFarland and Gans 1986). This means that bins have to be small if one molecule from a bin is to 
represent the rest. Yet, even with 10 bins per dimension, which is probably too few, there are 10,000 
cells per 4-D subspace. Clearly, we would need to choose at least this many molecules if the 
experimental design is to cover every cell. Another problem related to 4-D and higher subspaces is 
that there c m  be t w  many subspaces to consider. On the other hand, if the important dimensions are 
identified (from initial screening), and if focused regions are desired, then subsequent designs 
focusing on high dimensions c m  be effective. 



hstead of using low-dimensional subspaces forrned by descriptors, one can consider using low- 
dimensionai subspaces formed by linear combinations of the descriptors (e-g., principal components). 

To ded with a large nurnber of subspaces, one can consider random selection of subspaces as a 
compromise. One should repeat the random selection seved times and then choose the design that 
gives good coverage on al1 the randorn selections. 

Weighting of Subspaces 

In practice, the molecular features and their interactions (and hence the corresponding subspaces) 
important for biological activity are not known at initial screening. Al1 subspaces are assigned equal 
weights in the measure of lack of uniformity (ü) in Section 3.4.2. However, if some subspaces are 
known to be important, then U can be easily modifieci to incorporate different weights (i.e., weighted 
Ur) - 

Adjusting for Number of Empty Cells 

The indicator variables cSi(XC) in Equation (2) in Section 3.4.2 provide the target numbers of points 
per ce11 in the UCC criterion. These targets can be modified to adjust for the number of empty cells 
in a subspace. For example, suppose that 0% and 50% of cells in Subspaces A and B, respectively, 
are empty. We can set the target for a ce11 in Subspace A to 1 (expecting one design point per cell) 
and in Subspace B to O, 1 or 2 if there are no candidate points, one point, or at least two points, 
respectively. 

The CB analysis is a newly developed statisticai methocl. It is a five-stage autornated process that 
requires extensive computing power. There are many opportunities to make the CB analysis 
algorithm more efficient as well as to fùrther enhance the prediction accuracy. We are currently 
investigating these opportunities. 

Program Aigorithm in C 

The analysis software (wrinen in SAS code) was aimed to test the new rnethods and did not focus on 
efficiency in dealing with large data sets with many descriptors. We plan to implernent the CB 
analysis algorithm using C code which should run hundreds of tirnes faster than the current software. 
For a very large data set (e.g., millions of compounds with many descriptors), a fast algorithm to store 
and evaluate billions of cells is needed. 

Re-sizing Cells 

The current cell re-sizing method re-sizes each ce11 by trirnrning off the borders with no active 
compounds. This is done by setting the new ce11 boundaries to the range of the descriptor values of 
the active compounds in the cell. The more active compounds available in the cell, the better the 



boundaries can be located, Using this simple re-sizing method alone, without the shifted cells 
method, may leave holes within an active region. The shifted and unshifted cells overlap each other, 
thus reducing or minimizing possible holes in an active region. m e r  ce11 re-sizing methods will be 
investigated. One simple way of avoiding holes would be to resize only if some inactive compounds 
can be cut away. 

Multiple Ranking Criteria 

One can use a combination of different ranking criteria (e-g., the P and HN5 values) to define a 
'cornmon' cut-off or even to select multiple sets of good cells (different criteria may select different 
types of active cells). 

Tuning Parameters 

Tuning parameters such as the number of cells per subspace, the minimum number of active 
compounds required for a preliminary good cell, choosing the cut-off for the good cells, and more 
sensitive weighting functions for scoring cells and hence compounds, wiU be studied. The number of 
tells per mbspace and the minimum number of active compounds required for a preiiminary good 
ce11 can be evaluated and seif-adjusted during the preliminary identification of good cells using the 
training data. 

Of existing data-mining methods, classification and regression trees (recunive partitioning) have had 
the most success (e.g., Hawkins et al., 1997, Jones-Hertzog et al. 2000). Although these methods are 
generaily well suited to modeling of local behavior, they otherwise pay little attention to the 
complexities of dmg discovery data. For example, most are driven by criteria aimed at good overall 
prediction accuracy, criteria that are dorninated by the overwhelming majority of inactive compounds. 
Adjusting these methods to aim for high hit rates for the relatively few compounds chosen for further 
screening would bring them closer to the real goal. Some of the methods (e.g., the ranking criteria) 
developed in this thesis seem tramferable to these existing methods. 

Multiple Trees 

Using multiple trees (e-g., bootstrap the data) and combining their predictions (bagging) can result in 
better prediction than using a single tree. On the other hand, the CB analysis is not sensitive to small 
changes in the data and hence multiple CB models are not expected to get significant improvemnt in 
prediction. The performance of multiple trees versus that of the CB analysis will be studied. 

Diverse Compound Selection 

The proposed compound selection methods focus on finding the most promising compounds that 
have high probability king active. They pay little attention to the divenity of the compounds 
selected. As the goal is aimed to find different classes of active compounds, new methods should 
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incorporate diversity into the selection criterion (e-g., favor cornpounds appeared in different groups 
of cells). 

Cluster Significance Aaaiysis (CSA) and Ciustering Analysis 

CSA assumes that there is only one class of active cornpounds and is not designed for multiple 
mechanisms (Section 4.3.1). CSA could be improved by clustering the active compounds first and 
then computing distances within active clusters. 

Size of Training set 

Ideally, one would use al1 available data to derive the prediction mode1 and collect new data to 
validate the results. Often additional data are not collected and different methods are evduated by 
dividing the original data set into training and validation sets. The relative performances of different 
methods may Vary with different training data sample sizes. Our experience tells us that RP needs 
2,500 to 5,000 compounds to work and performs best for very large data sets. Impact of the size of 
training set on CB analysis and RP analysis will be studied. 

Impact of Design on Recursive Partitioning 

To evaluate the impact of different designs on analysis (or the performance of an analysis), the 
original data set is divided into training and validation sets (see Section 4.2.4). However, use of 
uniform coverage designs or random designs for the training data wiU result in different validation 
sets. Uniform coverage designs tend to select roughly the same number of compounds from both 
crowded and sparse regions and might not l ave  compounds in the sparse regions for validation. One 
strategy is to first split the data into training and validation sets and then take a sample (uniform 
coverage design or random design) from the training set for modeling. Therefore. the same validation 
set will be used for evaluation and some compounds from the training set wiU not be used. The main 
problern is that a bigger data set is needed to get a ceasonable number of actives at al1 stages. We are 
currently searching for data sets with more than 200,000 compounds with both numerical descriptors 
and assay results. 

The impact of uniform coverage designs and simple random designs on the performance of RP was 
investigated. The original data set was divided into training and validation sets using one of the two 
designs for the training data. Preliminary research results indicate that uniform coverage designs led 
to higher hit rate for the top ranked compounds but lower hit rate when the number of compounds 
select4 was large. The uniform coverage designs might select too few active compounds for some 
active regions, making these regions difficult for RP to detect. Further investigation on the impact of 
ushg unifom coverage designs for the training data on the performance of the RP analysis will be 
c k e d  out. 
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