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Abstract

This thesis studies three topics in quantum computation and information: (1) The
approximability of “inherently quantum” problems, (2) quantum proof systems, and (3)
non-classical correlations in quantum systems. Our results in each area are summarized as
follows.

Our first area of study concerns the approximability of computational problems which
are complete for quantum complexity classes. In the classical setting, the study of approx-
imation algorithms and hardness of approximation is one of the main research areas of
theoretical computer science. Yet, little is known regarding approximability in the setting
of quantum computational complexity. Our first result (joint work with Julia Kempe) is
a polynomial-time approximation algorithm for dense instances of the canonical QMA-
complete quantum constraint satisfaction problem, the local Hamiltonian problem. Our
second result (joint work with Julia Kempe) goes in the opposite direction by first in-
troducing a quantum generalization of the polynomial-time hierarchy. We then introduce
problems which are not only complete for the second level of this hierarchy, but are in fact
hard to approximate.

Our second area of study concerns quantum proof systems. Here, an interesting ques-
tion which remains open despite much effort is whether a proof system with multiple
unentangled quantum provers is equal in expressive power to a proof system with a single
quantum prover (i.e. is QMA(poly) equal to QMA?). Our results here (joint work with
Jamie Sikora and Sarvagya Upadhyay) study variants of this question. We first show that
if each unentangled prover has logarithmic size proofs, then this is equivalent to having
a single quantum prover which sends a classical proof. We then show that a variant of
the class BellQMA (poly) collapses to QMA. Finally, we give an alternate proof of the fact
[Harrow and Montanaro, FOCS, p. 633-642 (2010)] that the class SepQMA(m) (which is
equivalent to QMA (m)) admits perfect parallel repetition. Our alternate proof is novel in
that it is based on cone programming duality.

Our final area of study concerns non-classical correlations in quantum systems. Specif-
ically, in recent years it has come to light that there appear to be genuinely quantum
correlations in mixed quantum states beyond entanglement which may nevertheless prove
useful from a computing and information theoretic perspective. Our first result in this area
(joint work with Animesh Datta) motivates the study of such correlations by exploring pos-
sible connections to the quantum task of locking of classical correlations [DiVincenzo et al.,
PRL 92, 067902 (2004)] and the DQC1 model of mixed-state quantum computing [Knill
and Laflamme, PRL 81, 5672 (1998)]. Our second result in this area introduces a novel
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scheme for quantifying non-classical correlations based on the use of local unitary opera-
tions. Our third result (joint work with Marco Piani, Gerardo Adesso, John Calsamiglia,
Pawel Horodecki, and Andreas Winter) introduces and studies a protocol through which
non-classical correlations in a starting system can be “activated” into distillable entangle-
ment with an ancilla system. Surprisingly, we find that, according to the non-classicality
measures derived from our protocol, mixed entangled states can be “more non-classical”
than pure entangled states. Finally, our last result (joint work with Marco Piani, Ger-
ardo Adesso, John Calsamiglia and Pawel Horodecki) continues the study of the activation
protocol above by determining when the entanglement generated with the ancilla can be
mapped back onto the starting state via entanglement swapping.
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Chapter 1

Introduction

The “paradox” is only a conflict between reality and your feeling of what reality
“ought to be.” — Richard Feynman, 1964 [95].

From its earliest days, the theory of quantum mechanics puzzled its inventors. In 1935,
for example, Einstein, Podolsky, and Rosen published their now famous paper rejecting
quantum mechanics as a complete physical theory [89]. The problem? The mathematical
theory of quantum mechanics predicts certain physical phenomena which are completely
at odds with our everyday understanding of the world around us. To put this into ev-
eryday language, in 1935 Schrodinger proposed [221] a thought experiment now known as
Schrodinger’s cat, in which under certain circumstances, a cat in a closed box is predicted
by quantum mechanics to be both alive and dead, at the same time. What could this
mean? And how much did it trouble the discoverers of quantum mechanics, if it led them
to ask questions such as:

I recall that during one walk Einstein suddenly stopped, turned to me and asked
whether I really believed that the moon exists only when I look at it.

— Abraham Pais [5].

Clearly, quantum mechanics was not an easy pill to swallow, even for the fathers of the
theory, many of whom rejected their beautiful child at the time.

Fast forwarding to the end of the 20th century, however, physicists and computer
scientists came to a startling realization: As strange as quantum mechanics may seem,
if its peculiarities could somehow be computationally harnessed, then the possibility of



outperforming classical computers with so-called quantum computers may indeed exist.
In 1982, for example, physicist Richard Feynman proposed [96] the notion of building a
quantum computer in order to simulate physical quantum systems faster then apparently
possible with a classical computer (see also Benioff [13, 41, 415]). On the computer science
side, in 1985 David Deutsch demonstrated a quantum algorithm which outperformed the
best possible classical deterministic algorithms for what is now referred to as Deutsch’s
problem [31]. Thus, the roots of the field of quantum computation were sown. Two and a
half decades later, we now have a number of good reasons for seriously devoting research
effort to the field of quantum computing, which we now discuss.

Relevance. We now state three reasons which, in our opinion, justify the study of quan-
tum computation and information. The first is from an engineering-oriented perspective.
Up until 2005, the speed of microprocessors increased rapidly, primarily through the brute
force approach of increasing the number of transistors able to fit on a single microchip.
Indeed, Intel’s original Pentium P5 processor, released in 1993, had a clock speed of 60
MHz, and consisted of 3.1 million transistors [1]. By 2005, Intel’s Pentium 4E Prescott
processor was up to 3.8 GHz, and packed in a whopping 169 million transistors. Yet, in
2005, something curious happened: Intel introduced its first dual-core chip, the Pentium
D Smithfield, which clocked in not at 3.8 GHz, but at a slower 3.2 Ghz. What happened?
It turns out that the brute force approach to building faster processors has a number of
seemingly fundamental problems, such as excess heat production and energy loss [3]; how-
ever, the primary problem of interest in this thesis is that at the scale current microchip
components are approaching, the pertinent laws of physics are no longer those of classical
mechanics, but rather those of quantum mechanics [2]. This raises the natural question:
Why not just build a computer which works based on the laws of quantum mechanics to
begin with, i.e. a quantum computer?

The second motivation for studying quantum computing, and perhaps the most com-
monly cited one, came with a startling discovery: Peter Shor’s quantum factoring algorithm
of 1994 [2241]. As whether the question of whether factoring large integers can be done effi-
ciently on a classical computer has long been open, Shor’s algorithm is in itself arguably a
strong indication that the quantum computational model is indeed one deserving of study.
Further, since the algorithm’s inception, a number of other instances of quantum speedup
have been uncovered, from Grover’s algorithm for unstructured search [122] (which yields
a square root speedup for NP-complete problems over the brute force approach) to the
evaluation of NAND trees [92, 24, (0] to estimating quantities related to solving systems
of linear equations [129], among others.

The reasons stated thus far, however, are rather “selfish”, aiming to exploit quantum



mechanics to serve the purpose of the computer science community. There is another view
regarding the study of quantum computing which follows the converse mantra: Ask not
what quantum mechanics can do for you, but what you can do for quantum mechanics.
Indeed, as computation is inherently physical, it follows that understanding the limits of
quantum computation yields new tools for studying the properties of quantum mechanics
itself. A primary example of this, discussed further in Section 1.5.4, is that via quantum
complexity theory, one can give a rigorous proof that a significant problem in quantum
mechanics, that of estimating the ground state energy of a given local Hamiltonian, cannot
be solved efficiently (modulo standard complexity theoretic conjectures). Thus, the third
reason for studying quantum computation is that it not only allows us to learn about the
limits of computing, but also of physics itself. Moreover, there has even been a pedagogical
benefit to physics from quantum computing; apparently, there is a growing movement
to replace the teaching of introductory quantum mechanics using, say, the model of the
hydrogen atom, with the simpler model of quantum bits and quantum computation [27]
(see Chapter Notes and History for Chapter 10 therein).

In closing, we have provided three motivations for studying quantum computing from
engineering, computer science, and physics standpoints. In practice, however, it is of course
not until a thorough study of quantum computing is undertaken that we will know the pre-
cise extent to which the field will prove relevant, particularly from a practical technological
perspective. Such uncertainty lies unfortunately (or fortunately, for the adventurous type)
at the very heart of the nature of our work as researchers. In the words of one of our
greats:

If we knew what it was we were doing, it wouldn’t be called ‘research’, would it?
— Albert Einstein [5].

Focus of this thesis. The field of quantum computation and information nowadays cov-
ers a broad expanse of topics, with research areas ranging from computer-science-motivated
topics such as quantum algorithms and quantum proof systems, to engineering or exper-
imental physics-oriented topics such as how to actually build a quantum computer in a
lab, to theoretical-physics-motivated topics such as the limits of physical theories and the
correlations between systems they allow. In this thesis, we focus on three particular areas
of interest: Approximation of quantum problems, quantum proof systems, and quantum
correlations. We briefly describe each area below. As each (research) chapter is intended
to be as self-contained as possible, we defer more in-depth introductions to the beginning
of each relevant chapter.



Our first area of interest is that of approximating quantum problems. Here, by a
quantum problem, we are referring to a computational problem which is in some sense
intrinsically related to physical quantum systems in nature. From a complexity theoretic
perspective, we define such problems as those which are complete for quantum complexity
classes. (Relevant quantum complexity classes are defined in Section 1.5.) In particular,
the canonical quantum problem generalizing classical constraint satisfaction which we are
interested in here is called the local Hamiltonian problem, and it is complete for a quantum
generalization of NP. (This problem is important from both a quantum complexity theo-
retic and physics point of view, and as such is given a thorough treatment in Section 1.6.)
The primary aim of our research in this area is to ask how well such problems can be ap-
proximated rigorously, in the well-studied classical sense of approzimation algorithms and
hardness of approxrimation [2306]. In the quantum complexity theoretic setting, this ap-
proach to approximating physically relevant quantum problems is very much in its infancy,
and it complements decades of effort by the physics community on similar problems using
different tools involving heuristics (see e.g. [204] for a brief survey). Based on joint work
with Julia Kempe, Chapters 2 and 3 discuss our results in this area, the first of which is
a positive result regarding approximation algorithms for the local Hamiltonian problem,
and the second of which is a negative result involving hardness of approximation for a new
quantum complexity class generalizing the second level of the well-known polynomial-time
hierarchy, >%.

Our second area of interest deals with quantum proof systems. In the classical setting,
proof systems are one of the cornerstones of complexity theory, with wide-ranging impact
from the theory of NP-completeness [72, 179] to the stunning PCP theorem [30, 29] of the
early 1990’s. It is thus natural to consider studying quantum proof systems, beginning with
a quantum generalization of NP called Quantum Merlin Arthur (QMA). However, just as
quantum mechanics offers new quantum phenomena to be harnessed for the purpose of
computation, such phenomena now play intriguing roles in quantum proof systems. In
particular, their presence can turn trivial questions in the classical setting into highly non-
trivial questions in the quantum setting. For example, in the classical setting, modifying
NP to allow multiple provers is straightforwardly equivalent in expressive power to the
original definition of NP, since a single prover can straightforwardly simulate multiple
provers. However, the question of whether QMA with multiple provers is equal to QMA
is very challenging, due to the possible presence of strong correlations between quantum
systems known as quantum entanglement. In joint work with Jamie Sikora and Sarvagya
Upadhyay, Chapter 4 studies variants of this stubbornly open question.

Our final area of interest is the study of quantum correlations. As mentioned when
discussing quantum proof systems above, a pair of quantum systems can display very



strong correlations known as entanglement, which is a purely quantum phenomenon; such
correlations are not possible in the classical setting. As a testament to the mysterious
nature of quantum mechanics, however, after nearly a century of study, it has only been
in recent years that a new type of purely quantum correlation has been identified, known
simply as non-classical correlations. Some of the biggest questions in this area are how to
quantify and provide operational interpretations for such correlations, as well as to under-
stand whether and how they may be exploited for computational gain. In joint work with
Animesh Datta, Chapter 5 studies the role of such correlations in quantum computation.
Chapter 6 then proposes and studies a novel approach for quantifying such non-classical
correlations. Finally, Chapters 7 (joint work with Marco Piani, Gerardo Adesso, John
Calsamiglia, Pawel Horodecki, and Andreas Winter) and 8 (joint work with Marco Piani,
Gerardo Adesso, John Calsamiglia, and Pawel Horodecki) introduce and study a new proto-
col which provides an operational interpretation for non-classical correlations by activating
them into entanglement.

1.1 Organization

This thesis is organized as follows. In the remainder of this section, we provide background
on the basics of quantum computation and information (Section 1.4), and follow with brief
technical expositions of the various topics studied in this thesis: Quantum computational
complexity theory (Section 1.5) and quantum entanglement and non-classical correlations
(Section 1.6).

The remaining chapters are focused as follows. Chapters 2 and 3 study the approxima-
bility of quantum complexity theoretic problems, such as the local Hamiltonian problem
and its variants. Specifically, Chapter 2 presents our approximation algorithm for the lo-
cal Hamiltonian problem. Chapter 3 then introduces our quantum generalization of %,
and shows completeness and hardness of approximation for it with respect to new local
Hamiltonian-like quantum covering problems we define.

Chapter 4 discusses our results regarding multi-prover quantum proof systems, showing
that in a certain setting, multiple quantum provers are no more powerful than a single
prover.

Chapters 5, 6, 7, 8 discuss non-classical correlations in quantum systems beyond entan-
glement. Specifically, Chapter 5 first motivates this direction of work by studying models
of quantum computing and communication where entanglement does not seem to explain
the advantage gained in the quantum setting over classical computation. Chapter 6 then



presents a novel approach for quantifying non-classical correlations in quantum systems
based on local unitary operations. Chapter 7 gives an operational interpretation to such
non-classical correlations by demonstrating an explicit protocol through which such corre-
lations can be “activated” into entanglement. Chapter 8 further studies and attempts to
extend the framework of the activation protocol of Chapter 7.

We now begin in Section 1.2 by collecting common notation used throughout this thesis.

1.2 Notation

The following notation is assumed throughout this thesis. The symbols C, R, Z, and
N denote the sets of complex, real, integer, and natural numbers, respectively. For m a
positive integer, the notation [m| indicates the set {1,...,m}. The terms L(X), H(X),
Pos (X), and D(X) denote the sets of linear, Hermitian, positive semidefinite, and density
operators acting on complex Euclidean space X, respectively. The projector onto space X
is denoted I1y. We sometimes use the shorthand B := C2. The notation A > B means
operator A — B is positive semidefinite. The smallest (largest) eigenvalue of A € H(X)
is given by Amin(A) (Amax(A)). The trace, Frobenius, and spectral (or operator) norms of
A € L(X) are defined as

| All, =T (VATA), Al = VT(ATA),  [|Afl = max Az,

lzyex S.t. ||z |l,=1
(1.1)

respectively, where := denotes a definition. The (m,n)th entry of matrix A is given by
A(m,n). We define the encoding or description of a matrix A as a classical descrip-
tion of the entries of A. Specifically, let (A) denote the number of bits used to encode
A € C to some desired precision. Then, we define the length of the encoding of A by
(Ay =5 (A(m,n)). We extend this straightforwardly to sums of matrices; for exam-
ple, (3, A = Y. (A;). The notation v denotes a vector. Unless otherwise noted, all
logarithms are taken to base two. We sometimes use the shorthand poly(n) to mean p(n)
for some fixed polynomial p.

1.3 Linear algebra

We now briefly review basic concepts from linear algebra crucial to the content of this
thesis. Parts of this section follow the course notes of Watrous [216, |; the reader is



also referred to the text of Horn and Johnson [143] for further details. Those familiar with
basic linear algebra can safely skim over this section or refer to it as needed.

Complex Euclidean spaces. The setting in which all the excitement takes place is
that of a complex Euclidean space X, defined as follows. Let X be a finite, non-empty set.
Consider the set of all functions from ¥ to the complex numbers C, denoted C*. Then,
define for any u,v € C* and a € C the addition and scalar multiplication operations in
the standard way: The addition u+ v € C*¥ obeys (u+ v)(i) = u(i) + v(i) for all i € ¥,
and scalar multiplication cu € C* obeys (cu)(i) = au(i) for all i € ¥. Then, the set C*
along with these operations is known as a complex Euclidean space, which we denote as X.
The dimension of X is given by |X|, the cardinality of 3. For concreteness, we henceforth
assume X = [d] for [d] := {1,2,...,d}, and use the simplified notation C* = C.

We think of (column) vectors v € X as d-tuples, i.e.
V= : (1.2)

for v(i) € C. In quantum computation, v is commonly denoted using |v). Here, |-) is called
Dirac notation, also sometimes affectionately known as “dog-houses” for vectors [243]. A
remark about vector notation: Generally, our choice of notation v or |v) will be dictated
by context. For example, when a vector is to be interpreted as a quantum state, we shall
use Dirac notation |v); otherwise, we typically revert to the notation v. An exception
to this rule, even in purely linearly algebraic contexts, is when it is more convenient to
use Dirac notation, such as when vectors are to be labeled by complicated expressions.
In much of the introductory discussion on linear algebra that follows, we assume v = |v)
holds for the pedagogic purpose of familiarizing the reader with Dirac notation. However,
in general this equality is not assumed to hold; for example, the zero vector 0 is not equal
to [0) = (1,0)”. We hope the distinction will be clear from context.

Continuing, the conjugate transpose of v is denoted v', or (v| in Dirac notation, and

is the row vector - L
vi= (] = (0(1),0(2), . ,v(d)) , (1.3)

for @ the complex conjugate of a € C.



Vector norms. For any two vectors v,w € X', we define their inner product as
d
(v,w) =viw = (v|w) = Z (1.4)

Then, we measure the length of v € C? via the Fuclidean norm, defined as || v ||, = v/{v, v).
The Euclidean norm is just one of an entire class of norms known as p-norms, defined for
p € [1,00) such that

v, : (2]@ >1, (1.5)

and for p = 0o as || v ||, := (max;eiq [v(i)]) . Note that setting p = 2 yields the Euclidean
norm. The p-norms have the following properties:

1. (Positive scalability) || av ||, = |a[[[ v]], for a € C.
2. (Triangle inequality) For any v,w € X, [v+w |, < |[[v|, + [ w],

3. Forve X, if || v] =0, then v = 0, where 0 denotes the zero vector whose entries
are all zero.

From the first two properties, we conclude that for all v € X, |[v ||, > 0, since

O=lofffol, =lo-of, =lol, =lv=vl, <[vl,+I=vl, <2lv],.  (1.6)

A useful inequality regarding inner products is the Holder inequality, which states that

for any v,w € X,
(v, w)l < [Iv I, Twl, (1.7)
for }D + é = 1. (For p =1, ¢ = 00.) When p = ¢ = 2, we recover the Cauchy-Schwarz

inequality. As a testament to the applicability of the latter, we show that || v ||, < Vd | v|,,
a frequently useful inequality. Let j be the d-dimensional all-ones vector and |v| the entry-
wise absolute value of v. Then:

Folly = G v <0G VDI < 13l vl = Vvl (1.8)

It also holds that || v ||, < V/d| V|, and conversely that | v |, > ||V, > [ V]



Orthonormal bases. A set of vectors {v;} C X is orthogonal if for all i # j, (v;,w;) =
0, and orthonormal if (v;,w;) = d;;. Here, 0;; is the Kroenecker delta, whose value is
1 if ¢ = 7 and 0 otherwise. Every complex Euclidean space X of dimension d has an
orthonormal basis consisting of d elements, where a basis is a set of vectors {v;} C X such
that any w € X can be expressed as

d
w = Z%‘Vz‘ (1.9)
i=1

for some {a;} C C. A common basis for X is the computational or standard basis {e;},
defined such that e;(j) = d;;. In Dirac notation, we frequently denote this basis simply as

{1}

Linear operators and matrices. Given two complex Euclidean spaces X and ), a
linear operator or linear map from X to ) is a map ® : X — Y with the property that

d <Z aivi) = Z a; d(v;), (1.10)

where {v;} C &X. The set of all such linear maps from X to ) is denoted £(X',)), which
when coupled with operations for addition and scalar multiplication in the standard way,
yields a vector space of dimension dim(X)dim()). Here, dim(X) is the dimension of X.
For brevity, we use the shorthand £(X’) to mean L(X, X).

A convenient way to represent and study linear maps is via their matrix representation.
Here, an m x n matriz A is a two-dimensional array of complex numbers whose (i, 7)th
entry is denoted A(7, j) € C for i € [m|, j € [n]. To represent a linear map ¢ : C"* — C™
as an m X n matrix Ag, recall that the action of a map is completely specified by its action
on a basis. Specifically, the ith column of Ag is given by ®(e;) for {e;} the standard basis
for C", or

Aq;. = [ (I>(e1),<D(e2), . ,<I>(em) } . (111)

Recovering ® from Ag thus also follows immediately from this view. When we henceforth
discuss A € L(X), we are implicitly referring to the matrix representation of map A.

The product AB of two d x d matrices A and B is defined such that

AB(i,j) = (¥, c5) (1.12)

(2R



for r# the ith row of A and Cf the jth column of B. In general, it is not true that
AB = BA. The difference AB — BA is called the commutator [A, B] of A and B, and the
anti-commutator is {A, B} = AB + BA.

The rank of A € L(X,Y) is the dimension of its image, where the latter is defined as
Im(A) :={y € Y |y = Ax for some x € X'}. The rank satisfies

rank(AB) < min {rank(A), rank(B)}. (1.13)

Defining the null space or kernel of A € L(X) as Ker(A) := {v e X | Av = 0}, it holds
that dim(Ker(A)) + dim(Im(A)) = d.

Eigenvalues and eigenvectors. Forany A € L(X'), we say v is an eigenvector of A with
eigenvalue X if v # 0 and Av = MA. The multiset of eigenvalues of A (with multiplicity) is
known as its spectrum. The eigenvalues of A arise as the roots of the degree-d characteristic
polynomial of A, pa, defined such that

pa(z) :=det(zl — A), (1.14)
where I(i,7) := d;; is the Identity matrix and det is the determinant. One way to define

the latter, known as the Laplace expansion, is via the recursive definition

det(A 1) A(i, §) det(Ay). (1.15)

IIM&

Here, A;; is the matrix obtained from A by deleting row ¢ and column j, and we define the
base case of this recursion (i.e. a 1 x 1 matrix [c]) as det([c]) = ¢. This equation holds for
any 7 € [d].

Matrix operations. A number of operations on matrices A € X arise repeatedly in
quantum computing. First, the complex conjugate, transpose and adjoint operations are
respectively defined via

Ai ) =G0  ATGj)=AG) A=A (1.16)

These operations apply to vectors as well so that (v|, defined in Equation (1.3), is simply
o).

The trace of A is a linear function defined as Tr(A) := Z?Zl A(i, i) = Zle Ai(A),
where {\;(4)} C C are the eigenvalues of A. Henceforth, when clear from context, we
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simply write \; for the latter. The trace has the useful property of being cyclic, i.e.
Tr(ABC) = Tr(CAB). With the trace in hand, we can define an inner product on L(X)
as (A, B) = Tr(A'B).

The tensor product is an important operation through which joint quantum systems
can be described. Specifically, for complex Fuclidean spaces X and ), their tensor product
is ¥ ® Y = C%>d_ For vectors u € X and y € Y, we define for all i € [d,] and j € [d,]

(W@ V)i, §) == u(i)v(j). (1.17)

For linear operators A € L(X), B € L()), A® B yields a complex matrix whose index
sets are given by ([d,] x [dy], [d.] % [dy]), such that

(A® B)((i1,41), (i2, j2)) := Alir,i2) B(j1, j2) (1.18)

for all i1,y € [d,] and ji,j2 € [d,]. The tensor product has the following properties for
any A,C e X, B,De)Y, ceC:

(A+C)®B = A®B+C®B
A®(B+D) = AQB+A®D
c(A®B) = (cA)® B=A® (cB)
(A® B(C®D) = AC®BD
Tr(A® B) = Tr(A)Tr(B)
(Ao B)! = At B

These properties hold analogously in the vector setting.

Given the composition of two spaces X and ) via the tensor product, we also require an
operation in the reverse direction for removing one of these spaces. For this, we define the
linear partial trace map. Specifically, for A B € L(X®)), the partial trace Try (A® B) €
Y is defined as

Try(A® B) := Tr(A)B. (1.25)

Alternatively, for any orthonormal basis {Vl-}f:1 for X, we can write for A € L(X ® ))

Tra(A) =3 (ﬂ@]) Av;®T). (1.26)

i=1
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Special classes of operators. A few classes of linear operators play important roles in
quantum computing. The first of these is the class of Hermitian operators H(X) C L(X),
defined as the set of A € L(X) satisfying AT = A. As the set of Hermitian operators is
closed under addition and real scalar multiplication, and since (A, B) € R for all A, B €
H(X), it follows that H(X') forms a real inner product space of dimension d?.

The eigenvalues of Hermitian operators are real. If the eigenvalues of Hermitian A are
in {0,1}, then equivalently A? = A, and A is called an (orthogonal) projection. (Non-
Hermitian A satisfying A% = A are called oblique projections, and are not used here.)

More generally, a Hermitian matrix A € H(X) whose eigenvalues are all non-negative
is called positive semidefinite, denoted A > 0 (more generally, the notation A = B means
A — B = 0). Positive semidefinite matrices A € H(X) can equivalently be characterized
as follows:

o xtAx >0 for all x € X.

e A= B'B for some B € L(X).

The set of positive semidefinite operators acting on X" is denoted Pos (X).

Next, a unitary operator U € U(X) is defined as satisfying UUT = UTU = I. The
eigenvalues of U are complex numbers of modulus 1. All unitary operators preserve the
length of any vector v, i.e. (Uv,Uv) = (v,v). More generally, any U € L(X,)) with
UTU = Iy is called an isometry.

Hermitian, positive semidefinite, and unitary matrices are in fact all special cases of
normal matrices A, defined such that AA" = ATA. Normal matrices are important due to
the Spectral Decomposition theorem, which we discuss next.

Matrix decompositions. An extremely useful property of normal matrices A acting on
X is that they can be written in terms of their spectral decomposition, i.e.

d
A=Y "N\ (N =UDUT, (1.27)

=1

where recall \; are the eigenvalues of A, the set {|\;) }le is a corresponding orthonormal set
of eigenvectors of A, D = diag({\;}) is a diagonal operator with entries D(i,i) = );, and
U is a unitary matrix whose ith column is |)\;). Here we have switched to Dirac notation
to highlight, in our opinion, one of its strengths — the ability to label vectors easily by
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complicated expressions. Note that if \; # A, for all 4, j, then the set of eigenvectors above
is unique.

A common problem in quantum mechanics is to analyze the spectrum of a sum of two
matrices A, B € L(X). In general, this is a difficult problem. However, if the matrices are
normal and they commute, i.e. [A, B] = 0, then this task is made easier by the fact that A
and B must simultaneously diagonalize. In other words for normal A and B, [A, B] =0 if
and only if there exists an orthonormal basis {|b;)} C X such that

d d

A= Xi(A)[bi) (bil, B = X(B)b:)(bi]. (1.28)

i=1 =1

While the spectral decomposition holds only for normal matrices, a more general decom-
position known as the singular value decomposition exists even for non-square matrices.
The latter says that for any d, x d, matrix A € £(X,)), we have

A=UDVT (1.29)

for d, x d, unitary U, d, X d, unitary V, and d, x d, diagonal matrix D whose entries
D(i,1) are non-negative real numbers called the singular values of A.

Operator functions. With the spectral decomposition in hand, we can now apply func-
tions f : C — C to normal operators A € X as follows. Let A have spectral decomposition
A=3"% N|A) (A, Then, assuming {)\;} is a subset of the domain of f,

d

FOA) = FODIN) (- (1.30)

=1

Three common functions f encountered in this thesis are f(z) = e*, f(x) = logx, and
f(x) = \/z, the operator functions of which are denoted as e, log A, and VA, respectively.
Here, the logarithm is taken to base two.

Operator norms. Similar to the p-norms we defined for vectors, a useful class of norms
for measuring the “length” or “magnitude” of a matrix are the Schatten p-norms. Their
definition is simple: For any p € [1,00], let 0(A) denote the vector of singular values of
A€ X. Then,

1AL, = la(A) i (1.31)

p*
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A particularly nice aspect of this definition is that for Hermitian operators, o;(A) = |\;(A4)].
Moreover, properties of the vector p-norms carry over straightforwardly to the Schatten
p-norms, such as the Holder inequality, positive scalability, and the triangle inequality.

Some further important properties of the p-norms for any A € L(X) are:
L [Af, = | A Hp = || AT ||p, from which also || A ||, = | Af Hp.

2. (Invariance under isometries) || UAVT Hp = [|A[|, for any isometries U and V' for
which UAVT is well-defined.

3. | ABC |, < [ Al 1 B, 1€l

4. (Submultiplicativity) || AB ||, < || A|[, | B|[,- This follows from Property 3.

There are three specific values of p of interest here: p = 1, p = 2, and p = oo. They
correspond to the trace, Frobenius, and spectral (or operator) norms, respectively, and can
alternatively be defined as

| All, =T (VATA), || Alp = VT(ATA), |4l = max  [[A2)],.

lz)ex S.b. ||z |l,=1
(1.32)

The trace norm has two further properties of interest: First, it is non-increasing under the
partial trace, meaning that for A € L(X ® V), || Try(A) ||, < || AJ],,- Second, for unit
vectors u,v € X we have

I uu’ — vv' Htr =2\/1 - [0, V) <2[|u—v],. (1.33)

The second inequality follows by expanding the definition of the Euclidean norm and
applying the identity 1 — z? < 2(1 — z). The first equality follows [246] by noting that
A = uu' —vv' is Hermitian, and so its trace norm is a function of the absolute values of its
eigenvalues, which we now analyze. Since rank(A) < 2 and Tr(A) = 0, its spectrum must
be {\, =), 0,...,0} for some A € R. Thus, Tr(A?) = 2)\?. However, a direct evaluation of
Tr(A?) from the definition of A also reveals Tr(A?) = 2 — 2|(u, v)|*. Combining these two
expressions for Tr(A?), the claim follows.

Linear super-operators. We have discussed (linear) operators ® : X — X and & : Y —
Y. Moving a step up the ladder, we can also discuss linear operators ® : L(X) — L()).
Such maps are called linear super-operators. Bestowed with the standard definitions of
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addition and scalar multiplication, the set of super-operators, denoted 7'(X,)), forms a
linear space. The tensor product operation applies analogously to super-operators as it did
to operators.

The adjoint of super-operator ® € T(X,)), ®* € T(), X), is uniquely defined by the
equation

(A, @(B)) = (2*(4), B), (1.34)
which holds for all Be X and A € ).

Special classes of super-operators. From a quantum computing perspective, we are
most interested in super-operators which are trace-preserving and completely positive
(TPCP). A trace-preserving super-operator & € T'(X,)) is defined as satisfying

Tr(A) = Tr(D(A)) (1.35)

for any A € L(X). To define a completely positive map, we first define a positive map
® € T(X,)) as satistfying $(A) = 0 for any A € L(X) such that A > 0. Then, a map
¢ € T(X,Y) is called completely positive if Irxyy ® ® is a positive map. Intuitively, a
completely positive map ® sends positive semidefinite operators to positive semidefinite
operators, even if ® acts on only part of a larger composite system.

Matrix representations of super-operators. Just as we discussed a matrix represen-
tation for linear operators, there are a number of useful matrix representations for linear
super-operators. (See the notes of Watrous [217] for an excellent exposition.) Here, we
discuss two particular representations used in this thesis, known as the Stinespring and
Kraus representations.

The Strinespring representation lends a nice interpretation to admissible quantum maps
later. Specifically, it says that the action of any TPCP map ® € T(X,)) on arbitrary
X € L(X) can be written as

O(X) = Trz(AX AT, (1.36)

for some complex Euclidean space Z and some linear isometry A € L(X,Y® Z). Moreover,
dim(Z) can be taken as dim(Z) < dim(X’) dim()). In the context of quantum computa-
tion, it will be particularly useful to note that this is equivalent [21] to saying ®(X) can
be written as, for Y = ) = Vs,

O(X) = Tragy, [U(Xx ®]0)(0y, 3, U], (1.37)
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for some unitary U € U(X @ V) ® V).

We now define the Kraus representation, which is sometimes also known as the operator-
sum representation [200]. The Kraus representation says that any TPCP map ® € T(X,)))
can be expressed in terms of a set of Kraus operators {Ki}le C L(X,)) such that

k
O(X) =) KXK], (1.38)
=1

where 32 KIK; = Iy and k < dim(X) dim()).

1.4 Basics of quantum computation

We now introduce the basics of quantum computation. For further details, the interested
reader is referred to the texts of Nielsen and Chuang [200], Kitaev, Shen, and Vyalyi [171],
and Kaye, Laflamme, and Mosca [162]. From a computer scientist’s perspective, note that
the primary background required is not quantum physics, but rather linear algebra [1413].
This is because, just as with any (say) sports game, in order to play the game, you simply
have to learn the rules of the game. Quantum mechanics, in particular, has four simple
rules, and they are all based on linear algebra. These rules govern the following four
intuitively logical concepts: How a quantum state is described, how does one “read” or
measure a quantum state, what operations can be performed on a quantum state, and
finally, how does one describe multiple quantum systems jointly.

1.4.1 Describing quantum states

Let X denote a complex Euclidean space. Then, in a nutshell, any p € Pos(X) with
trace 1 describes a valid quantum state. Let us now provide some intuition as to how this
statement comes about.

In classical computing, the basic unit of information is a bit, which takes on values in the
set {0,1}. One can equivalently encode a bit using the set {|0),]1)}, where {|0),[1)} C C?
is the standard basis for C?, i.e. |0) = (1,0)7 and [1) = (0,1)T. The key difference between
classical bits and qubits is that in the quantum world, one can interpolate between the two
discrete values |0) and [1) by taking a superposition, i.c. the vector

) = |0) + 3[1) (1.39)
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describes a valid quantum state if |a|* +|8]*> = 1. In other words, any unit vector in C2
describes a quantum bit, or qubit.

More generally, assume & has dimension d. Then, any unit vector |¢)) € X describes
a d-dimensional quantum state, sometimes dubbed a qudit. Such vectors are called pure
states, and do not yet capture the set of all possible d-dimensional quantum states. To
complete the picture, we simply allow probabilistic mixtures of such pure states, more
generally referred to as mized states. Such probabilistic mixtures are described in the
following straightforward manner, known as the density matriz formalism.

Associated with any probabilistic mixture is an ensemble,
{{pd s Aoy |, (1.40)

where {pi}le forms a probability distribution and {|¢;)} C X is a set of unit vectors. The
corresponding mixed quantum state p is thus:

!
p= Zpi|1/1z‘><¢z’|- (1.41)

Here, p is called the density matriz describing the underlying quantum state. We denote
the set of density operators acting on X as D(X).

Let us now tie this back into the statement made at the beginning of this subsection.
Note that since in Equation (1.41), p is a non-negative sum of positive semidefinite opera-
tors, we must have p > 0. Moreover, by applying the cyclic property of the trace, we have
Tr(p) = 1, as claimed. Indeed, based on the exposition above, we can now intuitively see
why any p € X with p = 0 and Tr(p) = 1 describes a valid quantum state — simply take

the spectral decomposition of p to recover an ensemble {{pi}le, {|¢z>(¢l|}f:1}

We remark that although here we have attempted to present a simple exposition of
how quantum states are classically described, in reality the precise interpretation of what
such a classical description means is highly non-trivial and continues to be debated after
decades of research.

1.4.2 Measuring quantum states

Now that we have a mathematical description of quantum states, we require a formalism
for modeling how a quantum state is “observed”, or measured. For this, let p € D(X)
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be a density matrix. Then, a quantum measurement is formalized by a set of operators
IT .= {M;} C L(X) satisfying
> MM =1, (1.42)

where the latter is called the completeness relation. The act of measuring p with II is in
general an inherently probabilistic process, even if p corresponds to a pure state (unlike
in the classical case of bits). Specifically, when measuring p with respect to II, we obtain
outcome ¢ with probability given by

Pr(outcome i|p) = Tr(M;pM)). (1.43)

Once a particular outcome 7 is observed, the state p “collapses” to a new state p’ consistent

with this outcome, i.e.

r_ MiIOMiT
Pr(outcome i|p)

p (1.44)

Note that the denominator above serves the role of renormalizing p’ so that Tr(p’) = 1.

We have thus far described general measurements. Often, we are interested in the
special case when each M; is an orthogonal projection operator (not necessarily of rank
one), such that M;M; = ;; M;. Such measurements are called projective or von Neumann
measurements. A common way to represent a projective measurement is via an observable
M € H(X). Via the spectral decomposition, we can write M = > . N, II;, where \; # A,
for i # j and each II; is a projection operator (of rank possibly greater than one). Then,
each eigenvalue \; corresponds to a distinct label for a measurement outcome, and the
measurement operators are M; = II;. An advantage of using observables is that the
expected value of the measurement, denoted E,;, takes a very simple form:

En(p) = Z i Pr(outcome i|p) = Z A Tr(ILpIT!) = Z N Tr(ILp) = Te(Mp).  (1.45)

Finally, note that the framework above for general measurements II = {M;} allows
one to determine both the probability of outcome i, as well as the output state of the
measurement, process once ¢ is read. If we only care about the former, as is the case
in situations where the quantum system is only to be measured once and subsequently
discarded, then this formalism is often simplified by defining positive semidefinite F; :=
MJMZ- with ) . E; = I. We hence have:

Pr(outcome i|p) = Tr(M;pM]) = Tr(M; M;p) = Tr(E;p). (1.46)
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The set {E;} is called a Positive Operator-Valued Measure (POVM). An advantage of
using POVMs, for example, is that since the POVM elements E; are positive semidefinite,
optimizations over the set of all POVMs can be handled via semidefinite programming
techniques.

1.4.3 Evolution of quantum states

We now know how to describe a quantum state p € D(X), as well how to model a mea-
surement or observation of p. The next question we ask is: What kind of operations can
we perform on p? For example, to a classical bit, we can apply a NOT gate to flip its
value. What can we do to a qubit?

In the quantum setting, the set of valid operations on a closed (defined shortly) quantum
system with state p € D(X) is the set of unitary operators U € U(X). Specifically, U maps
p to

p = UpU". (1.47)

For example, for p € D(C?), i.e. a single qubit, a frequently used set of unitary operators
are the Pauli operators (where i := /—1 € C)

X:((l)(l)) Y:(?‘J) Z:((l)_ol). (1.48)

Note, for example, that the Pauli X plays the role of a quantum NOT gate, i.e. X|0) = |1)
and X|1) = |0).

We said that unitary operations describe the evolution of closed quantum systems above
— let us elaborate on this further. A closed quantum system is one which does not interact
with its environment. Conversely, if a system is not closed, it is called open. In this latter
case, the set of allowed operations strictly contains U (X'), and is in fact the set of TPCP
maps, which we henceforth refer to as admissible maps or operations. Despite this, there is
a sense in which discussing unitary operations is without loss of generality — this is implied
by the Stinespring representation of super-operators and specifically Equation (1.37), which
states that any valid TPCP operation on a quantum system A can be simulated by moving
to a larger joint system AB, evolving AB via a unitary operator, and subsequently tracing
out part of AB. (We discuss joint systems AB further in Section 1.4.4.)

For example, let us consider the process of performing a measurement on A. In order to
measure or observe a quantum state in A, one introduces a measurement apparatus, which
we think of as system B. To complete the actual measurement, B must interact with A,
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implying A is an open system. Thus, if we look at A alone, the action of the measurement
on A is not described by a unitary operator, but by a TPCP map. However, if we instead
look at AB as a whole, this joint system is now closed, and hence its evolution is described
by a unitary operator.

Hamiltonians, and the connection to unitary operations. We said above that the
evolution of a (closed) quantum system is described by a unitary operator. Although this
is a great abstract description for mathematicians and computer scientists to work with,
one should ask the question: Why unitary operations? The answer lies, not surprisingly,
in physics. Here we define the notion of a Hamiltonian, which will play an important role
in later chapters such as those involving Hamiltonian complexity.

First, note that any unitary U € U(X) can be written as U = exp(iH) for some
H € H(X). This is easily seen by taking the spectral decomposition U = _; i) (],
and observing that defining

H =3 0;[;) (v (1.49)

yields U = e (see the discussion on operator functions in Section 1.3). The operator H
is called a Hamiltonian.

Thus, corresponding to each U € U(X), there exists an H € H(X). Where does H
then come from? It turns out that the time evolution of a closed quantum system [¢)
according to H is given by the famous Schrodinger equation,

d

th = H|y), (1.50)
dt

where i denotes Planck’s constant (whose value is not of interest here). For a quantum

system evolving from time ¢; to ¢, the solution to this equation is given by

12}

o)) = ex (252 ) lote), (151

from which we now see the connection to unitary operators directly.

For this reason, Hamiltonians have been the object of intense study, and there is nowa-
days an entire field devoted to Hamiltonian complexity (see Section 1.5). The eigenstates
{|\)} of a Hamiltonian are referred to as its energy eigenstates, and the eigenvalue A cor-
responding to |A) is the energy of state |A). The smallest eigenvalue A\, of H is called
the ground state energy, and |A\nm) the ground state of H. Determining the ground state
energy of a given H is in general a very difficult problem, as we shall soon see in Section 1.5.
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Before closing, we make two final remarks. First, there is another interpretation of the
Hamiltonian versus unitary pictures of time evolution presented here which is of interest.
The application of any fixed unitary U can be thought of as a discrete-time evolution, since
by Equation (1.51) it corresponds to evolution by some fixed time ¢. In the Hamiltonian
picture, however, for any fixed Hamiltonian H, one can in principle vary the time of
evolution t as desired, resulting in a notion of continuous-time evolution.

Finally, in our discussion here we have focused on time-independent Hamiltonians.
More generally, one can also consider evolution under time-dependent Hamiltonians which
are allowed to change with time.

1.4.4 Composite quantum systems

Thus far, we have discussed the basics of how to mathematically discuss single quantum
systems. Suppose now we have two quantum systems A and B — how do we describe their
joint state AB? It turns out that if A and B correspond to complex Euclidean spaces X
and ), then the joint system AB corresponds to the space X ® ). In other words, if, for
example, X = Y = C?, then any p € D(X ® ) defines a valid two-qubit quantum system.

The simplest examples of two-party systems AB are given by product states, which for
any given ps € D(X) and pg € D(Y), are given by pa ® pp. Such states are uncorrelated
between systems A and B. For example, two classical bits in state 00 can be embedded
in such a two-qubit quantum state as |0) ® |0). For brevity, when discussing pure states,
we simply denote this state as |0)|0) or |00). More generally, one can also consider joint
states |¢) € C* ® C? such as

7)) = (1.52)

1
|00) + |11).
f V2
This state is referred to as a Bell state, and possesses a strong degree of quantum correla-

tions between systems A and B known as quantum entanglement, as discussed further in
Section 1.6.

Given a description p of the state of a joint system AB, we now require a method for
describing the marginal state on A (or B) alone. Specifically, given a composite system
p € D(X ®Y), the reduced state py on A (analogously, pg on B) is given by the partial
trace operation described in Section 1.3. In other words,

pa = Trg(p). (1.53)
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For example, Trp(pa ® pp) is simply pa, and Trp(|¢7)(¢"|) = I/2. The partial trace
is employed here as it is the unique function which correctly produces the measurement
statistics for arbitrary observables M measured on A alone.

We close by remarking that our description of two-party composite systems straightfor-
wardly extends to multiple parties: For systems A; through A, corresponding to complex
Euclidean spaces X; through &,,, the corresponding joint space is given by @, X;.

1.4.5 Quirks of quantum mechanics

Marking a drastic departure from the classical setting, a fundamental result in quantum
mechanics is that an unknown quantum state |¢)) € X cannot be copied or cloned. This
is called the No-Cloning Theorem [50, |. To give a brief flavor of why this holds, we
demonstrate a simple proof from Nielsen and Chuang [200] (Box 12.1) for the case regarding
the non-existence of a unitary U € U(X ® X') achieving the mapping

W})X ® |S>X = |¢>X ® W’);& (1.54)

where |s) is some fixed starting state. For sake of contradiction, suppose such a U does
exist. Then for vectors [i1),|1s), let

61) = Ul @1s)) = [) @ |¢hy) (1.55)
|62) = Ulltha) @1s)) = [2) @ |1ha). (1.56)

Then, (¢1]¢2) = (¥1]1he) = ((1|th2))?. But the equation x = z? only has solutions 0 and
1, implying that for general [¢)1) and |1)s), such a U cannot exist. We remark that using
the Stinespring representation, this proof is easily adapted to show that even TPCP maps
cannot clone non-orthogonal states [261].

1.5 Quantum computational complexity

With the basics of linear algebra and quantum computing under our belts, we can now begin
discussing the first central area this thesis studies: Computational complexity theory. This
field aims to rigorously classify computational problems based on the inherent difficulty of
solving them. Specifically, the central idea here is to ask:

Given a set of resources S, such as a certain amount of space or time in which a
computation is to run, what is the class of computational problems which can be solved?
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This approach has led to an entire zoo of such complexity classes (literally, a zoo [12]),
including the ubiquitous classes P and NP. In this section, we review the extension of some
of these concepts to the quantum setting. This includes defining the standard quantum
circuit model our work is based on, introducing relevant quantum complexity classes, and
presenting an exposition of the quantum version of the Cook-Levin theorem [72, ]. The
content of this section is based partly on the excellent surveys of Aharonov and Naveh [22]
and Watrous [215], as well as the text of Nielsen and Chuang [200]. We assume background
knowledge of basic (classical) computational complexity; the interested reader is referred
to the text of Arora and Barak for an introduction [27].

Notation and definitions specific to this section. Throughout our discussion, we
encode all computational problems over the binary alphabet ¥ := {0, 1}. We say a function
f X% ¥* is polynomial-time computable if there exists a polynomial time deterministic
Turing machine which, given any input = € X*, outputs f(z). A function f : N — N is
called polynomially-bounded if there exists a polynomial-time deterministic Turing machine
which, on any input « € N, outputs 1/®. A language is a partitioning ¥* = Ayes U Ao
such that Ayes N Ay, = 0, for () the empty set. If, more generally, Aye U Ao C X%, then we
have a promise problem. In a promise problem, one assumes the input x satisfies z € Ay
or x € Ayo; if an algorithm solving this promise problem is given input ¢ Ayes U Ay,
we adopt the convention that the algorithm is allowed to err. We remark that promise
problems are particularly natural in the quantum setting, as quantum computations are
inherently probabilistic processes, and as such, some “margin of error” appears to be needed
separating Ayes from A,,. This is clarified further when introducing our relevant quantum
complexity classes.

1.5.1 Quantum circuit model

In Section 1.4.3, we discussed the general types of admissible operations on quantum
systems. In the context of complexity theory, however, we require a formal model for
specifying and analyzing such operations, for which we employ the standard quantum
circuit model. To begin, suppose we have a quantum system consisting of n qubits, whose
associated complex Euclidean space is X = (C?)®". A quantum circuit can be thought of
as a directed acyclic graph with n input nodes of in-degree zero and out-degree one (i.e. n
sources), n output nodes of in-degree one and out-degree zero (i.e. n sinks), and a set of
“intermediate” nodes or gates, each of which has matching in- and out-degree ¢ for some
¢ € O(1) (where each gate can have a different value of ¢). Intuitively, the input (output)
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nodes are the n input (output) qubits to the circuit, and the intermediate notes are unitary
gates acting on ©(1) qubits. The edges of the graph correspond to wires in the circuit, the
direction of which are indicative of the direction of data flow.

For example, three common single-qubit unitary gates mentioned in Section 1.4.3 are
the Pauli X, Y, and Z operators, which are specified in the circuit model as:

|b) b 1) (1.57)
|b) (=1l 1) (1.58)
|0) (=1)°[b) (1.59)

Here, we assume b € {0, 1}; the action of each gate is extended to all single qubit states
by linearity. The notation & denotes the XOR operation (i.e. addition modulo 2). On the
left of each gate is the input qubit, and on the right is the output qubit.

Two other single-qubit gates, whose importance is discussed shortly, are the Hadamard
and T (also referred to as m/8) gates, defined below.

()

1 0
T = (0 ei7r/4>

A ubiquitous two-qubit gate is the Controlled-NOT gate, shown below.

[b) 25(10) + (=1)*|1))  (1.60)
) ¢ [b)

(1.61)

1 0 00
ovor=| 0 oo} - b)) —e— |by) (1.62)
0010 |be) —B— by @ by)

Finally, a measurement (in the computational basis) in this model is specified by the
following.
(1.63)

Universal gate sets. When it comes to quantifying the cost of a circuit, it seems a
priori that we are in a bind: How do we quantify the cost of an arbitrary gate if there
is a continuum of unitary gates to choose from? It would be preferable to have a fixed
finite set of gates, each of which is assigned unit cost, and with which we could simulate
all other gates. This would yield a rigorous framework in which to quantify the cost of
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a circuit. Such a set of unitaries is called a universal set, and indeed exists: The set
S = {H,T,CNOTY} is universal. To show this (see, e.g., [200]), one first demonstrates
that the C NOT coupled with the set of all one-qubit unitaries is universal in an exact sense
— any unitary U € U(X) can be represented ezactly using CNOT and single-qubit gates.
One then applies the Solovay-Kitaev theorem [173], which yields that for any U € U(C?)
and any € > 0, there exists a V' € U(C?) consisting of the composition of O(log®(1/¢))
gates from {H,T'} such that ||U — V|| < € (here, c € O(1)).

What does such a bound on the spectral norm buy us? Suppose we can substitute
the original unitaries U = U,,---U; in a circuit with unitaries V' = V,,,---V; with the
promise that || U; — V|| < e for all ¢ € [m] and for € to be chosen as needed. Since we are
typically interested in running U on some input [¢)), followed by a measurement according
to some POVM, we would like the probability of obtaining any measurement outcome to
deviate by at most 0 when substituting V for U, where 6 > 0 can be chosen as desired. In
other words, for all POVM elements M, pure states [¢)), and error parameters § > 0, we
would like that setting e small enough yields that the probability of obtaining outcome M
when measuring U |y) versus V[¢) differs by at most §. Indeed, this is achieved by setting
¢ = 9/(2m) and combining the facts that

[ Te(MU) (U = Te(MV]) (V] < 2| U = V|, (1.64)
and .
1 U Ut = Vi Vil £ QN0 = Vi - (1.65)
j=1
We refer the reader to [200] for further details.

We close this section by remarking that here we have assumed that quantum circuits
are unitary and act on pure state inputs [¢)) € X; recall from Section 1.4.3 that by the
Stinespring representation and Equation (1.37), this is without loss of generality. We refer
the reader to the work of Aharonov, Kitaev, and Nisan [21] for a more general model of
quantum circuits which directly operates on mixed states, and which explicitly harnesses
this connection with the Stinespring representation.

Oracles. A commonly used construct in the setting of quantum circuits is that of an
oracle. An oracle @,, (where we more precisely deal with a family of oracles {@Q,,}) can be
thought of as a black-box unitary operation encoding some predicate f : X" +— Y. In the
quantum circuit model, this is formalized via the action

Qnlz)ly) = lx)ly © f(2)), (1.66)
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for x € X" and y € ¥. Each such application of @), is called a query to the oracle, and we
typically think of each query as having unit cost.

Suppose now that we wish to compute some property P of the predicate f; the number of
queries to @, required to do so is called the query complexity of P (relative to Q,,). Perhaps
the most well-known example of this in the quantum setting is Grover’s algorithm [113],
which shows how to compute the OR function \/>-, f(i) with high probability using O(v/2")
queries to (),, a quadratic improvement over the classical setting. Although the query
model may a prior: seem restricted, the model is nevertheless important; Shor conceived
his factoring algorithm [224], for example, by studying Simon’s algorithm [225, | from
the quantum query model.

1.5.2 Standard quantum complexity classes: BQP and QMA

Recall that in complexity theory, we classify computational problems into complezity
classes depending on the resources capable of solving them. The classes P and NP are two
such classes, forming two cornerstones of classical complexity theory. We now discuss the
natural quantum analogues of these classes, BQP and QMA. (More precisely, BQP and
QMA are generalizations of BPP and MA.) For completeness, we recall the definitions of
P and NP below.

Definition 1.1 (P). A promise problem A = (Ayes, Ano) is in P if and only if there exists
a deterministic polynomial-time Turing machine M which on input x € Ay, accepts, and
on input x € Ay, TEjECES.

Definition 1.2 (NP). A promise problem A = (Ayes, Ano) is in NP if and only if there
exists a deterministic polynomial-time Turing machine M and a polynomial p, such that
on input xr € X*:

o [fx € Ay, then there exists a proof y € SPUD) such that M accepts (x,y).

o Ifx € Ay, then for all proofs y € XPU=) M rejects (z,y).

Now, since we have defined our complexity theoretic model for quantum computing
based on the quantum circuit model, we next require the notion of a polynomial-time
uniform family of quantum circuits. Specifically, since the length of input z € ¥* to a
computational problem is allowed to vary, whereas the input size to a given circuit is fixed,
we require a method for “scaling” our circuits up to match the length of arbitrary input
x e X"
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Definition 1.3 (Polynomial-time uniform family of quantum circuits). A set of quantum
circuits {Qn} is polynomial-time uniform if there exists a polynomial-time deterministic
Turing machine, which on input 1", outputs a description of Q.

We now define BQP [16], which stands for Bounded-Error Quantum Polynomial Time,
and which is intuitively the set of promise problems which can be efficiently solved with
high probability on a quantum computer. For both BQP and QMA, we henceforth say a
quantum circuit () accepts input = (where x can be either a classical string or quantum
state) if running ) on input x and subsequently measuring a designated output qubit of
@ in the computational basis yields outcome 1.

Definition 1.4 (BQP). A promise problem A = (Ayes, Ano) is in BQP if and only if there
exists a polynomial q and a polynomial-time uniform family of quantum circuits {Q},
where Q) takes as input a string x € ¥* with |x| = n, and q(n) ancilla qubits in state
10)24) | such that:

o (Completeness) If v € Ayes, then @, accepts input x with probability at least 2/3.

o (Soundness) If x € Ay, then Q, accepts input x with probability at most 1/3.

Note that if we replace the uniform quantum circuit family above with a uniform
classical circuit family which takes as input both z and a polynomial-size string y cho-
sen uniformly at random, then we are reduced to BPP. Like BPP, the completeness and
soundness parameters 2/3 and 1/3 above can straightforwardly be amplified to values ex-
ponentially close to 1 and 0 simply by running the verification procedure ) independently
polynomially many times in parallel, accepting if and only if the majority of runs accepted,
and applying the Chernoff bound. We remark that BPP C BQP follows since probabilistic
classical computations can be simulated with quantum circuits (see, e.g. [248]). The deci-
sion versions of the factoring and discrete logarithm problems are, for example, not known
to be in BPP, but are in BQP due to Shor’s algorithm [224].

We next define QMA, or Quantum Merlin Arthur, a quantum generalization of NP.

Definition 1.5 (QMA). A promise problem A = (Ayes, Ano) is in QMA if and only if there
exist polynomials p, q and a polynomial-time uniform family of quantum circuits {Q,},
where Q,, takes as input a string ¥ € X* with |x| = n, a quantum proof |y) € (C*)®P™),
and q(n) ancilla qubits in state |0Y9"™ | such that:

o (Completeness) If & € Ay, then there exists a proof ly) € (C2)®PM such that Q,
accepts (x, |y)) with probability at least 2/3.
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o (Soundness) If v € Ay, then for all proofs |y) € (C?)®PM)  Q, accepts (z,|y)) with
probability at most 1/3.

It is often helpful to think of |y) above as a proof sent by an all-powerful but untrustworthy
prover Merlin, who claims © € Ay, and to correspondingly interpret {@),} as an honest
but computationally bounded verifier Arthur, whose job it is to verify the correctness of
Merlin’s proof. We are not overly fond of the names Merlin and Arthur, and as such,
prefer to simply refer to both parties in this interpretation as being the prover and verifier,
respectively. As an aside, we remark that QMA was originally known as Bounded Error

Quantum NP (BQNP) [171].

Note now that if we instead ask in the definition of QMA that y € ¥P(#) then the
corresponding complexity class is known as quantum-classical Merlin-Arthur (QCMA) [22,
, 6, 11, 39, 18, ]. (QCMA is also known by the name Merlin-Quantum-Arthur
(MQA), as suggested by Watrous [218].) Finally, if y is classical and we replace {Q,}

with a classical circuit family of the type used in defining BPP, then the class we obtain is
Merlin-Arthur (MA) [33].

Error reduction for QMA. Like BQP, the completeness and soundness parameters in
the definition of QMA can be amplified to values exponentially close to 1 and 0, respectively.
However, the arguments employed here are not as straightforward as in the case of BQP.
For QMA, there are two approaches for achieving error reduction, which we refer to as
weak and strong error reduction, and which we now discuss.

Weak or standard error reduction runs analogously to the case of BQP, i.e. by running
the verification protocol some number of times m in parallel and taking a majority vote.
However, since from Section 1.4.5, we know that unknown quantum states cannot be
cloned, the verifier must ask the prover for multiple copies of the proof |y), one for each
of the m parallel runs of the protocol. If the verifier is honest, the proof sent for the new
protocol is a product state |y) = |y)*™ € (C?)@U=)™ in which case the m runs of the
verification protocol are independently and identically distributed Bernoulli trials, and the
Chernoff bound can be applied. However, if we have a NO-instance, i.e. x € A,,, then in
a desperate attempt to trick the verifier into thinking x € Ay, the prover may elect to
cheat by sending a proof |y’) which deviates from this product state structure. Can we
still apply the Chernoff bound argument here?

It turns out the answer is yes, the intuition for which we now sketch. (A detailed proof
can be found in [22].) Specifically, let V' denote the original verification protocol. Then,
given any |y/) € (C?)®P(Z)'™ e adopt the following view: On the first p(|z|) proof qubits,
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we run the first copy of V', measure and read the output qubit, and subsequently discard
these p(|x|) qubits. Note that the reduced state of |y/) on these first p(|z|) qubits before
running V' is simply a convex mixture of proofs |y) € (C2)®PU=D: thus, by the soundness
property of the QMA protocol, the probability of acceptance in this first run is at most
1/3. We can iterate this argument over each of the remaining m — 1 copies of V| each
time obtaining a probability of accepting of at most 1/3. It follows that a majority vote,
coupled with the Chernoff bound, yields the desired error reduction.

Finally, although weak error reduction is simple, its disadvantage is that it requires
an increase in the proof size, since the prover must send multiple copies of the original
proof. Is it possible to reduce the error without increasing the proof length? Remarkably,
Marriot and Watrous have shown [191] that the answer is yes. The rough idea here is best
illustrated in the case of a zero-error verifier V', i.e. where the completeness and soundness
parameters are 1 and 0, respectively. Specifically, let V' be a zero-error verifier V', and |y)
the prover’s proof for some instance x € Ayes. Then, if we run V on (z, |y)) and measure the
output qubit, we will see outcome 1 with certainty. Thus, the measurement does not alter
the output state of V. Further, if we now run V' in reverse and measure the ancillary qubits
of V', they should read all zeroes with certainty, implying this second measurement also
does not alter the state being measured. In fact, we can repeat this back and forth process
as many times as we like, each time obtaining the same “good” measurement outcomes.

What happens now if we do not have a zero-error QMA verifier V', and have a NO
instance © € A,,? In this case, the output qubit of V|z) ® |y) must yield outcome 1
with probability at most 1/3 — in other words, measuring this qubit now disturbs the
state V|z) ® |y). Moreover, when we next apply VT and measure the ancilla qubits, since
V' is unitary, the outcome cannot be the all-zeroes string with non-negligible probability,
again disturbing the state. Intuitively, by repeating this back-and-forth procedure, we thus
quickly amplify the likelihood of obtaining “bad” measurement outcomes in this process.
In our opinion, the entire process can be thought of as analogous to a spinning top — if
the top wobbles badly enough to begin with (if x € A,,), the spinning motion (the back
and forth measurement process) quickly sends the top out of control.

1.5.3 BQP and QMA in further depth

As QMA plays an important role in this thesis, we now further discuss its properties,
variants, and complete problems. Along the way, we also mention some further properties
of BQP.
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First, we have
NP € MA C QCMA C QMA C PP. (1.67)

Here, PP is defined analogously to BPP, except that when input = € Ay, then the verifier
accepts with probability strictly larger then 1/2; if © € A,,, the verifier accepts with
probability at most 1/2. The second of the containments above follows since a QCMA
verifier can choose to act classically. The third containment holds since a QMA verifier
can force a given quantum proof to encode a classical string by preceding the verification
procedure with a measurement in the computational basis. Finally, the fourth containment
has an elegant proof via the strong error reduction technique of Marriott and Watrous [191],
and was originally proven by Kitaev and Watrous [172].

Regarding BQP, we have that
BPP C BQP C QMA, (1.68)

where the second containment follows since the verifier can simple flush the prover’s proof
down the toilet and run the BQP circuit instead. Combining Equations (1.67) and (1.68)
yields BQP C PP; we remark that this containment was directly proven by Adleman,
DeMarrais, and Huang [11] and Fortnow and Rogers [100]. Marriott and Watrous have
shown that BQP = QMA,,, [191], where QMA,,, is QMA with a logarithmic size proof.
The classical version of this equality might be written P = NPy, i.e. NP with logarithmic
size proofs is contained in P. Finally, it is well-known that in the classical setting, BPP C
¥ [227, ], for X8 the second level of the polynomial hierarchy PH. Whether BQP C PH,
however, remains a major open question [3, 93, 9].

One-sided error. Next, we discuss the one-sided error versions of MA, QCMA, and
QMA. Specifically, let MA;, QCMA,, and QMA, be defined as MA, QCMA, and QMA,
respectively, except with completeness 1 in each case. In other words, if € Ay, the
verifier for the new classes accepts with certainty. Zachos and Furer have shown that MA =
MA; [262] (see also Goldreich and Zuckerman [116]), and more recently, Jordan, Kobayashi,
Nagaj, and Nishimura have proven that QCMA; = QCMA [159]. Whether QMA, = QMA,
however, remains an interesting open question, particularly since both QCMA and QIP(3)
in the chain QCMA C QMA C QIP(3) allow one-sided error [172]. Here, QIP(k) is the
class of promise problems having Quantum Interactive Proofs with k rounds, meaning it
is a generalized version of QMA in which £ quantum messages are passed back and forth
between prover and verifier. For example, BQP = QIP(0), QMA = QIP(1), and QIP(3)
consists of a message from prover to verifier, followed by a message from verifier to prover,
and a final message back from the prover to the verifier. Aaronson has demonstrated a
quantum oracle relative to which QCMA; € QCMA and QMA; € QMA [7].

30



Complete problems. We now move to arguably one of the most important questions for
any complexity class: What problems characterize, or are complete for QMA? In general,
the set of QMA-complete problems is not yet nearly as rich as that for its classical cousin,
NP. The historically first QMA-complete problem was the local Hamiltonian problem (first
presented by Kitaev at [170], and later written up in [171]), which is a natural generalization
of the NP-complete problem of classical constraint satisfaction, and relevant from a physics
perspective. In fact, we devote Section 1.5.4 entirely to this problem and its variants, and
thus do not discuss it further here.

Perhaps the second-most studied and natural QMA-complete problem is the Consis-
tency problem for local density matrices of Liu [182]. In this problem, one is given a
classical description of a set of density matrices pg, each acting on a subset S C [n] qubits
for |S| = k and k € ©(1). The question is whether there exists a globally consistent n-qubit
state p such that Trp,ps(p) = ps for all S. The proof of QMA-hardness for k£ = 2 follows
via a polynomial-time Turing or Cook reduction involving convex programming from the
2-local Hamiltonian problem [182]; the reduction in the reverse direction was later given
by Liu in [183], and goes via a strong theorem of alternatives in semidefinite programming.
Other physically motivated variants of the Consistency problem have also been shown to be
QMA-complete: The variant involving fermions, known as the N-representability problem,
was shown QMA-complete by Liu, Christandl, and Verstraete [131], as well as its bosonic
counterpart by Wei, Mosca, and Nayak [253].

What other QMA-complete problems are known? Given a classical description of
a quantum circuit, the problem of determining whether it is “close” to the identity,
known as the Identity Check problem, was shown QMA-complete by Janzing, Wocjan,
and Beth [157]. Rosgen [215] has shown that a similar problem where one is asked whether
a given quantum circuit is close to a linear isometry is QMA-complete. Finally, Beigi and
Shor [10] have proposed a QMA-complete quantum generalization of the Clique problem,
which asks: Given an (entanglement-breaking) channel ®, do there exist k£ quantum states
p which are distinguishable without error after passing through the channel?

Multiple provers. QMA is a proof system with a single prover and verifier. A curiosity
emerges when we ask the question: What happens to the power of the proof system if
we introduce a second prover? In other words, what if there are two provers, P, and
Py, who send a joint proof of the form |¢p) ® |1)g) to the verifier? Interestingly, unlike
the classical setting where having two provers is trivially equivalent to having a single
prover, in the quantum setting, the possibility of entanglement between the two proofs
(entanglement is introduced in Section 1.6) makes this a non-trivial question. This class
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is called QMA(2) [175]. Why should it be of any interest? Perhaps surprisingly, Blier
and Tapp [18] have shown that all languages in NP have very short proofs in this model;
specifically, it suffices for P; and P to send proofs [¢p ) and |1)p,), respectively, consisting
of just O(logn) qubits each. The reader is referred to Chapter 4 for formal definitions and
details regarding this model, where it is studied in further depth.

1.5.4 Local Hamiltonian complexity: An overview

In Section 1.5.3, we initiated our discussion of QMA-complete problems, and stated that
the first known such problem was the local Hamiltonian problem. As this problem features
heavily in Chapters 2 and 3, we now discuss it in further depth. We begin by defining
the problem, and follow by demonstrating how it generalizes the canonical NP-complete
problem MAX-SAT. We then discuss some of its variants and its history with respect to the
field of complexity theory. Later in Section 1.5.5, we give Kitaev’s proof that the 5-local
Hamiltonian problem is QMA-complete.

Beginning with definitions, the local Hamiltonian problem (LH) was introduced by
Alexei Kitaev [170, |, and can intuitively be thought of as follows: Given a “succint”
representation of a “large” Hamiltonian H, what is H’s smallest eigenvalue? Of course,
the obvious approach to answering this question is to diagonalize H — however, the catch
is that while H is a 2" x 2"-dimensional matrix, the succinct encoding we are given of
H consists of poly(n) bits. In other words, a simple diagonalization approach would take
time exponential in the input size.

Let us now define LH more formally. To do so, we first define the term k-local Hamyl-

tonian.

Definition 1.6. An operator H € H(B®") is called a k-local Hamiltonian if it can be
written

H=> H (1.69)
j=1

where {H;},_, C H(B®*) is a collection of local Hamiltonian terms, such that each H; acts
non-trivially on some subset S; C [n] of at most k qubits and satisfies 0 < H; < I. Note:
In Equation (1.69), we adopt the convention that each H; acts as the identity on all qubits
in the set [n]\\S;.

Note that although we define H as acting on qubits above, the definition extends straight-
forwardly to the case of higher-dimensional local systems. Intuitively, the definition above
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says that a k-local Hamiltonian H can be expressed as a sum of “smaller” Hermitian
operators H;, each of which is restricted to act non-trivially on at most k out of n qubits.

We now phrase the k-LH problem. We remark that later, in Chapter 2, we shall
formulate k-LH in a slightly different manner; the definition below is, however, arguably
more natural and thus better suited to an introductory section.

Problem 1.7 (k-Local Hamiltonian (k-LH) [I71]). Given as input:

1. A k-local Hamiltonian H acting on n qubits, specified as a collection of local Hamilto-
nian terms {H;};_, C H(B®*) (i.e. as a collection of (2% x 2%)-dimensional matrices
H;) where k € O(1),

2. Threshold parameters a,b € R, such that 0 < a <b and (b—a) > 1,

decide, with respect to the complexity measure (H) + (a) + (b):

1. If Amin(H) < a, output YES.
2. If Apin(H) > b, output NO.

Note that often k-LH is phrased with (b — a) > 1/p(n) for some polynomial p; such
an inverse polynomial gap can straightforwardly be boosted to the constant 1 above by
defining H to have p(n) many copies of each local term H; [215].

Although it may not be a priori obvious, k-LH generalizes the canonical NP-complete
problem MAX-k-CSP, where CSP stands for Constraint Satisfaction Problem (of which a
special case is the more familiar problem MAX-k-SAT). To see this, recall that in MAX-
k-CSP, one is given a set of Boolean functions, ¢; : {0,1}" — {0,1} (note the ¢; are not
restricted to be of any particular form such as conjunctive normal form), where each ¢;
acts on k out of n possible bits. We then ask: What is the largest number of clauses ¢; we
can satisfy with a Boolean assignment to the n bits? To embed this problem into k-LH, we
design a k-local Hamiltonian H acting on n qubits as follows. For each clause ¢;, define a
2F x 2%_dimensional diagonal matrix H,, € H(B®*) such that H. (m,m) = 0 if the binary
representation of m is a satisfying assignment for clause ¢;; otherwise, H.,(m,m) = 1. In
other words, for 2 € {0,1}*, Tr(H,, |z)(z|) = 0 if = satisfies ¢;, and Tr(H,,|z)(z|) = 1
otherwise, i.e. failing assignments are given an energy penalty. To now see that the optimal
value of our MAX-k-CSP instance corresponds to the smallest eigenvalue of H =) H.,,
we use the fact that since all the H,, are diagonal, they commute and thus simultaneously
diagonalize. Hence, H has integer eigenvalues. Moreover, since the H,, are simultaneously
diagonal in the computational basis, the smallest eigenvalue of H equals the minimum
number of unsatisfied clauses over all n-qubit computational basis states. It follows that
k-LH generalizes MAX-k-CSP, and thus k-LH is NP-hard. This raises the natural question:
Could k-LH be a canonical QMA-complete quantum constraint satisfaction problem?
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Variants of k-LH and a brief history. It turns out that k-LH is indeed QMA-complete;
Kitaev [170, 171] showed the problem to be in QMA for k£ > 1 and QMA-hard for k£ > 5.
The proof of QMA-hardness was inspired by earlier ideas of Feynman [171, 97], and can
be thought of as exploiting Feynman’s ideas to adapt the classical Cook-Levin theorem in
a non-trivial fashion to the quantum setting. The fact that 3-LH is also QMA-complete
was shown subsequently by Kempe and Regev [161] (an alternate proof was later also
given by Nagaj and Mozes [199]). Finally, Kempe, Kitaev, and Regev showed [163] that
even 2-LH is QMA-complete. Note that 1-LH is in P, since one can simply optimize for
each 1-local term independently. Although these results are interesting from a complexity
theoretic perspective, a more natural question from a physics perspective is whether such
QMA-hardness results can be shown even if the QMA-hard classes of local Hamiltonians
arising in the reductions employed correspond to physical quantum systems in nature [202,
, , |. Along these lines, Oliveira and Terhal next showed [202] that 2-LH with
the Hamiltonians restricted to nearest-neighbor interactions on a 2D grid is still QMA-
complete. Furthermore, in stark contrast to the classical case of MAX-2-CSP on the line
(which is in P), Aharanov, Gottesman, Irani and Kempe [20] showed that 2-LH with
nearest-neighbor interactions on the line is also QMA-complete if the local systems have
dimension at least 12 (Nagaj later improved this to 11 states per particle [193]).

Although this thesis focuses on the general local Hamiltonian problem as defined in
Definition 1.7, for completeness, we now mention a few interesting variants of LH which
have also been studied. First, Bravyi and Vyalyi showed that the variant of 2-LH (with
local systems of arbitrary, but constant, dimension) in which all local Hamiltonian terms
H; pairwise commute is in NP. This result was extended to the case of 3-LH on qubits by
Aharonov and Eldar [19]. Bravyi [55] introduced a variant of k-LH known as Quantum k-
SAT, in which each local Hamiltonian term H; is a projector, and in which the threshold a
is set to 0. We remark that in the YES case of such a setup, the local Hamiltonian is referred
to as frustration-free, since the optimal assignment lies in the null space of every interaction
term. Bravyi then showed that, like classical 2-SAT, Quantum 2-SAT is in P (whereas
recall 2-LH is QMA-complete) [55]. In contrast, Quantum 4-SAT is QMA ;-complete (recall
QMA, is the one-sided error analog of QMA) [55]. Whether Quantum 3-SAT on qubits
is QMA -complete remains an intriguing open question (see Reference [199]). Next, there
has been a line of work on so-called stoquastic local Hamiltonians [56, 58, 59, , ].
Specifically, the Stoquastic k-SAT problem, defined the same as Quantum Ak-SAT except
that all local projectors have real non-negative matrix elements when expressed in the
computational basis, was shown to be in MA for k£ > 1, and MA-complete for k& > 6 [56, 59].
(Incidentally, this was the first non-trivial example of an MA-complete promise problem.)
The problem Stoquastic LH-MIN, defined as k-LH except where each local Hamiltonian
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constraint H; has real non-positive off-diagonal matrix elements in the computational basis,
was shown complete for the class StogMA [56] for k& > 2. Here, StogMA is a variant of
QMA in which the verifier is restricted to preparing qubits in the states |[0) and |4),
performing classical reversible gates, and measuring in the Hadamard (i.e. |[+),|—)) basis.
Note that MA C StogMA C QMA. Finally, variations of LH with symmetry constraints
have been studied from a complexity theoretic perspective in, for example, [117, ].

Connection to physics. Although we have primarily discussed LH from a complexity
theoretic viewpoint involving quantum constraint satisfaction, the initial motivation for
studying LH comes of course from physics. Indeed, the study of the local Hamiltonian
problem is part of the more general field of Hamiltonian Complexity, whose aim is to
understand how difficult it is to simulate physical systems. In particular, LH can be
phrased as a special case of the more general Simulation Problem [204], which roughly asks
the following: Given a description of a Hamiltonian H, an initial state p, an observable
M, and a time t € C, estimate the expectation

(i)t peiHt
Tr ((eiH1)i peifit)
The local Hamiltonian problem is recovered by choosing H as a local Hamiltonian, setting

M = H, p=1/Tr(I), and considering ¢t =i for § € R and  — oo. We refer the reader
to the survey of Osborne for further details [20].

Tr | M

(1.70)

1.5.5 Kitaev’s quantum Cook-Levin theorem

In Section 1.5.4, we discussed the local Hamiltonian problem (LH) and its variants. As
Chapter 3 heavily exploits the structure and details of Kitaev’'s quantum version of the
Cook-Levin theorem, i.e. his proof that 5-LH is QMA-complete, we present the latter here.
This requires two steps: One first shows that k-LH € QMA for £ > 1. One then shows
that k-LH is QMA-hard for k£ > 5. Our discussion is based on a project completed by the
present author for a graduate course on quantum complexity theory at the University of
Waterloo [104], and follows the text of Kitaev, Shen, and Vyalyi [171] closely. The reader
is referred to the survey of Aharonov and Naveh for an alternate exposition [22].

Local Hamiltonian is in QMA

We begin by showing that k-LH € QMA for any constant k. Specifically, for any YES-
instance (H,a,b) of k-LH with k-local Hamiltonian H = >7"_| H; € L(B*"), we show that
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there exists a poly-size quantum proof |1)) and a poly-size quantum verification circuit V/,
such that a single-qubit measurement on V'|¢) yields 1 with high probability.

First, the quantum proof is constructed as |[¢)) € C" ® B¥" @ B as:

< Z\J > ® |n) @ |0), (1.71)

for {|5)};—, an orthonormal basis for C", and |) an eigenvector corresponding to some
elgenvalue A of H. We call the first register of [¢)) the index register, the second the proof
register, and the last the answer register.

To define the verification procedure V', recall that H = ZJ | Hj, where each H;
acts on the set of qubits denoted by S;. Suppose H; has spectral decomposition H; =

> s As|As)(As|. Then, define unitary W; acting on the proof and answer registers, i.e.
W; e U(B™ ® B), such that

W, (|As) ® |0)) <\/_\o V1T A 11) (1.72)

Observe that one can implement this operation as follows. First, run phase estimation on
exp(iH;) to extract s to some ancilla register. Despite the fact that simulating exp(iH,)
can in general be costly, in our case, since |S;| is constant, the simulation can be done
efficiently. Conditioned on the value of the ancilla, we then rotate the answer register
to obtain the desired superposition, and finally uncompute \s in the ancilla. Define now
unitary V=77 [7)(j]| @ W;.

Having defined |¢)) and V| the verification procedure now proceeds as follows:

1. Apply V to |[¢).

2. Measure the answer register and return the result.

Let us analyze the probability of measuring 1 in the answer register with this procedure.
If we assume the index register is implicitly measured at the end of the verification, then
we can think of Step 1 above as using the index register to choose an index j uniformly
at random, followed by applying W, to the proof register. Then, we can analyze the
probability that this procedure returns 1 as follows:

~ 1
Pr(output 1) = Z — Pr(output 1 | W; is applied), (1.73)
r

j=1
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where one has
Pr(output 1 | W; is applied) = Tr [([3®n ® (1) (1)) W; () (n| ® |O>(0|)WT] (1.74)
= ((nl @ ()W) (Igen @ [1){1)W;(In) @ |0)). (1.75)

The projector |1)(1| above acts on the answer register. To simplify this, rewrite |n) in the
eigenbasis of Hj, i.e. [n) = > a,|);), and observe that

(Igen @ (1)Wj(|n) @10)) = (Ien @ (1)W; (Zas!M@IO)) (1.76)

Zas|)\ <\/A_S\o>+ﬂ|1>)]
= Yo, (ﬂ) A (1.77)

S

— [B@n 1|

Substituting this into Equation (1.75), we obtain:

Pr(output 1| W;) = (;af (ﬂ) <>\t|> <Zas (ﬂ) !As>>

= Z(l = As) |O‘S|2 (1.78)
= 1= Alayf (1.79)
- lH ), (1.80)

where we have used the fact that 3 |a,|* = 1. Substituting this into Equation (1.73)
finally yields:

Pr(output 1) = - Ly =1-2 77| (ZH) ) =1- —<77|H|17> (1.81)

J=1 J=1
Recalling that we chose n to be an eigenvector of H with some eigenvalue A, we have that
if H corresponds to a YES instance (i.e. there exists A < a), it follows that we can choose
n such that our verification procedure returns 1 with probability 1 —r=*A > 1 —7r"1a. On
the other hand, if H corresponds to a NO instance (i.e. for all A\, we have A > b), we have
Pr(output 1) < 1 — r~1'b. Since the probabilities in the YES and NO cases differ by an

inverse polynomial in the input size, we can apply the error reduction techniques for QMA
discussed in Section 1.5.2 to conclude that LH € QMA.
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5-local Hamiltonian is hard for QMA

We next show that 5-local Hamiltonian is QMA-hard. To do so, we show a polynomial-time
many-one or Karp reduction from an arbitrary problem in QMA to 5-LH.

To begin, let P be a promise problem in QMA, and let V=V, V; ;... V] be a verifi-
cation circuit for P composed of unitaries Vj.. Without loss of generality, we assume each
Vi acts on pairs of qubits. We assume V € U(B*™ @ B®N~=™) where the m-qubit register
contains the proof V' verifies, and the remaining qubits are ancilla qubits.

Our goal is to define a 5-local Hamiltonian H that will have a small eigenvalue if and
only if there exists a proof 1)) € B®™ causing V' to accept with high probability. Kitaev’s
idea [171] was to exploit the structure of V' by forcing the minimizing eigenvector of H
to “simulate” the action of V. To do so, let H act on B¥™ @ B®N~" & CL*+!, which is
simply the initial space V' acts on, tensored with an (L + 1)-dimensional counter or clock
register. This clock register will “keep track of time” in the simulation, i.e. a value of k in
the register will correspond to having “applied” V; ... Vj. For clarity of exposition, where
necessary, we label the three registers H acts on as p for proof, a for ancilla, and ¢ for
clock, respectively.

Having defined the space H acts on, we now define H itself:
H := Hy, + Hprop + Hout, (1.82)

with the terms Hi,, Hpop, and Hoy defined as follows (intuitive explanations to follow).
Let

Hy :=1,® (I, —0...0)(0...0],) ®|0){0].. (1.83)
Note that the projector (I, —|0...0)(0...0],) is used here for simplicity of exposition; the
same analysis holds if we instead use the 1-local constraint Zfi}m(|1)<1| ;)e (where the ith

projector acts on the ith ancilla qubit) — hence, we do not violate the constraint that H
be 5-local. Next, H,y; is defined as

Hout = <|0><0| ®]B®m71)p®]a® |L><L|c (184)
Finally, define H,op, as

Hpyvop = ZHj’ where

7j=1
1 . 1 . .
Hy = —5Vi@li)i-1l.- §Vf ® |5 — 1), + (1.85)
1 N . .
J1® (1)Ul + 17 =D = 1)) (1.86)
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Each of the terms Hi,, Hou, and Hpop allow us to “force” the minimizing eigenvector
of H to “simulate” V as follows. Recall that our goal is to have (n|H|n) for some |n) €
BE™ @ BEN-™ @ CL! be small if and only if V outputs 1 with high probability on some
proof [¢)) € B®™. Suppose such a |¢) exists. Then, for Hi,, note that when one runs V' on
1), the initial state should be [¢)) @ |0)?N7m, i.e. all ancilla qubits should be set to 0, with
the purported proof in the proof register. But H;, enforces precisely this constraint for any
|n). In particular, if the clock register of |n) is in state |0)(0|, and the ancilla register is not
all zeroes, then we have (n|H,|n) > 0, i.e. |n) incurs an energy penalty. In other words,
if |n) does not simulate the initial state of the verification procedure V', H;, penalizes |n).
Next, for Hgy, note that after running V' on [¢), we expect the first qubit in the proof
register to be a 1 with high probability. Again, observe that H,, enforces exactly this
constraint on |n) — if the clock register is in state |L)(L|, and the first qubit reads 0, we
again have (n|How|n) > 0. Finally, Hy,.p follows the same idea by forcing |n) to encode in
superposition a simulation of each step of the verification procedure V. It follows that the
minimizing vector |n) is of the following form, often called a history state:

~

(V5. vile), @ [0)2V) @ 15),. (1.87)

7=0

To recap, if there exists a [¢) such that V accepts with high probability, then the history
state |n) corresponds to a small eigenvalue of H. On the other hand, if no such [¢)
exists, either |n) will be of the form in Equation (1.87) (i.e. will faithfully simulate V),
in which case we are hit with a large penalty by H,y since the answer qubit cannot be
1 with high probability, or |n) “cheats” by deviating from either the initial conditions or
the intermediate steps of the protocol, in which case the terms H;, and H,y hit |n) with
an energy penalty, respectively. Thus, the corresponding energy of |n) would be large. Of
course, it remains to show that this intuition is indeed correct!

Before we begin, we first apply the following change of basis operator to Hpyop, which
greatly simplifies the analysis (intuition to follow):

L
W=> V.. i® ). (1.88)
j=0

Thus, instead of |n) and H, we consider |) := W|n) and H := WIHW. To see what H
looks like, we analyze the action of W on each of Hi,, Hoy, and Hy,op separately. Observe
first that H;, := WTH,W = H;,, since at time 0, W implicitly applies the identity to the
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proof and ancilla registers. Second, for H,,;, we have

Hout i= WHH W = VT [([0)(0] ® Igom—), @ Io| V & |[LY(L|, = (VI @ L) Hout(V ® 1),

(1.89)
since at time L, W applies the entire circuit V. Finally, for H,,,p, considering the effect of

W on each component of H; in Equation (1.86) separately and using simple algebra, one
finds

WHW — p,a®§<u—1><j—1|—u—1><j\—u><j—1|+\j><jr>c:fp,a®1(_11 _1) -

2 1
. (1.90)
It follows that Hpop = Y ; WTH,;W is tridiagonal and of the form

i -1 0 0 0
-5 1 =5 0 0
. 0 —3 1 —3 0

Hypop =L@ L©| 0 0 -1 1 -} = 1,®1,® E, (1.91)
o 0 0 —3

where we have let £ denote the tridiagonal matrix acting on the clock register for later
reference. Intuitively, one can think of the change of basis W as “flushing out” the com-
putation V', so that it is pushed to the very end to time step L (hence V' only appears in
Hout). This has the effect of simplifying I—:Tpmp to a nice tridiagonal form, since it no longer
needs to keep track of the unitaries V;.

Finally, observe that since W is unitary, H and H have precisely the same set of
eigenvalues. We can thus work with H instead of H in our eigenvalue analysis. Hence, for
the remainder of this section, by |n) we shall mean |7), and by H, we mean H. We now
show that H has the correct spectral properties for both YES and NO instances of 5-LH.

YES case: H has a small eigenvalue

We have thus far set up a Hamiltonian H € H(B*™ @ B®N~™ @ CF*!) corresponding to
the verification procedure V' € U(B®™ @ B®N~™). We now show that if there exists such
a |¢) € B¥™ which causes V to output 1 with high probability, then H must have a small
eigenvalue.
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Suppose there exists |¢)) such that a measurement of the first qubit of V) yields 1
with probability at least 1 —e. To demonstrate that H has a small eigenvalue, we explicitly
construct a vector |n) € B®™ @ B¥N~™ @ CI! such that (n|H|n) is small. Let

) = 1), @ 105" " @ 1), (1.92)

where

) = > 1) (1.93)

Jj=

=]

We analyze (n|H|n) by considering Hi,, Hypop, and Hoy separately. First, observe that
(n|Hin|n) = 0, since the ancilla register of |n) is in the all zeroes state. For H,,p, we have
that

(n|Hprop|n) = (0|10 ® Eeln) = (7| E|y) =0, (1.94)

where in the last equality we have used the fact that the sum of each row and column of
E is 0, implying |v) is a 0-eigenvector of E. Note that we have not used the probability of
V answering 1 yet — this now comes in handy for H,,, where

(M Hocln) =l (V1 [(10)(0] @ Isonr), ® L] V @ [L)(LL,) In) (1.95)

1 N—m N—m
= 7 (@@ OV {10001 @ Tgem-r), ® L] [VI), @ 105
Observe, however, that this expression corresponds to the probability that we begin with
the proof [¢), & ]O}Z‘Z)N_m, apply the verification V', and then measure the first qubit and
obtain 0. By our assumption at the beginning of this section, this probability is at most e.
Hence,

HOU S
(n|Hout|n) 11

implying there must exist an eigenvalue for H of value at most €/(L +1). Thus, if we have
a YES-instance of our QMA problem P, then H has a small eigenvalue, as required.

€, (1.96)

NO case: H has no small eigenvalues

We now show that if there does not exist such a proof |¢)) which causes verification proce-
dure V' to output 1 with high probability, then H must have no small eigenvalues.

Suppose that for all proofs [¢), V' does not output 1 with probability more than e.
To lower bound the eigenvalues of H, we play a game of divide-and-conquer by letting
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H = Ay + Ay, where Ay := H;, + Hoy, and Ay := H,,op, and analyzing the eigenvalues
of A; and A, separately. The challenge arises in combining these separate eigenvalue
estimates into eigenvalue estimates for H, since unfortunately, [A;, As] # 0, implying that
A; and A, do not diagonalize in a common basis. To surmount this obstacle, Kitaev uses
the following approach [171]:

1. We first prove Kitaev’s Geometric Lemma (Lemma 1.8), which takes as input oper-
ators B and C, as well as a set of parameters S dependent on B and C', and outputs
a lower bound on the eigenvalues of B + C'.

2. We compute the parameters S relevant to our specific operators A; and As, and plug
them into Lemma 1.8 to show that H = A; + A has no small eigenvalues.

We now state and prove Kitaev’s Geometric Lemma.

Lemma 1.8 (Kitaev, Shen, Vyalyi [ 71], Geometric Lemma, Lemma 14.4). Let Ay, Ay >
0, such that the minimum non-zero eigenvalue of both operators is lower bounded by v.

Assume that the null spaces L1 and Ly of Ay and As, respectively, have trivial intersection,
i.e. LN Ly ={0}. Then

Ay + Ay = 2usin® —a(ﬁl’ £2)

I, (1.97)
where the angle a(X,)) between X and Y is defined over unit vectors |x) and |y) as
cos [Z(X, V)] := maxizex ey [ (z]y)]

Note that if X and )’ have non-trivial intersection, i.e. there exists |z) # 0 such that
|z) € X and |z) € ), then a(X,Y) is trivially 0. Also, note that demanding X NY = {0}
is not equivalent to demanding X and ) be orthogonal — for example, the spaces X =
span {|0)} and ) = span {|+)} contain elements which have non-zero overlap, but the sets
have trivial intersection.

We now tackle step 1 of Kitaev’s approach by proving Lemma 1.8.

Proof. By the definition of v, we have Ay = v(I — Ilz,) and Ay = v(I — Il.,), where
[Ty denotes the projector onto A'. Combining the latter two, it follows that it suffices to
show v(I —IIz,) +v(I —1IIz,) = 2usin®(a(Ly, £3)/2). By rearranging terms and using the
identity cos(26) = 1 — 2sin? 6, this is the equivalent of showing

e, + 1z, = [1 4+ cos(a(Ly, L2))] 1. (1.98)
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To upper bound the eigenvalues of 1z, + Il.,, suppose we have some eigenvector |()
with corresponding eigenvalue A > 0. Let |z1) € £; and |z2) € L5 be unit vectors such
that 11, [¢) = wi|z1) and I, |¢) = us|zs) for some real uy, ug > 0. Then:

A = (¢, +TIz,)IC) = ua{Clan) + up(Clwa) = i +uj. (1.99)

Further, since A|¢) = (Ilz, +11.,)|¢) = ui|z1) + ualxe), we can also derive a non-equivalent
expression for A2, i.e.

2N = [(CINAC)] = (ur (x| + ugwa]) (ur|21) +uslw2)) = uf +us + 2uyus Re(z;|as), (1.100)

where Re(z) denotes the real part of x € C. Combining Eqns. (1.99) and (1.100) by taking
the following linear combination, we have:

(14 |Re(x|z2) DA — A2 = (14 |Re(xy|z2)|)(u] + u3) — (u? + us + 2uyus Re{wi|zs))

= u? |Re(wi|zo)| + ui |Re(xy|m2)| — 2uiug Re(zy|as)  (1.101)
= |Re(z1|za)| (uf + uj £ 2uqu,) (1.102)
= |Re(xy|xs)| (ug + us)” (1.103)
> 0. (1.104)

Moving A2 to the right side of the last inequality and dividing through by \ hence gives
A < (14 |Re(z1|x2)|) <1+ cos(a(Ly, Ls)), (1.105)

where the latter inequality follows straightforwardly from the definition of a(L, £y). We
thus have that all eigenvalues of I, + 11, are upper bounded by 1+ cos(a(L1, £2)), which
by Equation (1.98) implies the desired lower bound on A; + As. ]

We now move to step 2 of Kitaev’s approach, i.e. we now use Lemma 1.8 to lower bound
the eigenvalues of H = Ay + Ay. To do so, we must determine the values of parameters
v and a(Ly, Ly) for A} and Ay used in Lemma 1.8. Recall that Lemma 1.8 also requires
L1N Ly = {0} — we handle this constraint at the end of the section (at which point it will
be obvious, given the analysis to come).

We start with v, which is the lower bound on the positive eigenvalues of both A; and A,.
Note that since Ay = H;, + Hoy is simply a sum of commuting projectors, its eigenvalues
must be non-negative integers. In particular, its smallest positive eigenvalue is at least 1.
For Ay, since Ay = Hpypop = 1,4 ® E, its eigenvalues will be determined by those of E.. The
eigenvalues of the latter are [171] \y = 1 — cos[rk/(L + 1)] for 0 < k < L. This expression
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is clearly minimized when k = 1 (note £ = 0 would yield a zero eigenvalue), implying the
smallest positive eigenvalue of Aj is at least

1 —cos(m/(L+1)) > c/L? (1.106)
for some constant c. To see why this inequality holds, use the Taylor series expansion for
cos x to show that whenever x < 1, one has

2 4 .6 -

B T x 1 Iy 5 9

Taking the minimum of our lower bounds for A; and A, thus yields that v € Q(1/L?).

We next estimate the angle a(L, £3) between the null spaces £; and L5 of A; and As,
respectively. This can be done by exploiting the structure of £; and L,. In particular, we
have that

[ B®N)p,a ® span(|1),...|L — 1))0} P
V(1) @ BN ), . |L0),] (1.108)

L= B0 " el0),]
(

where each of the three terms in this expression follow directly from the definitions of H;,
and Hgy (e.g. any state with the clock register set to 0 and all zeroes in the ancilla is a
0O-eigenvector of both H;, and Hgy). Similarly, we have

Ly = (B*N),.® 7)., (1.109)

which follows straightforwardly if we recall that Hpop = I, , ® E. and Ely) = 0, for |7v)
defined in Equation (1.93).

To exploit this structure, instead of estimating a(Ly, Ls), we estimate cos? a(Ly, L),
which can be rewritten in the form (where the maximization is over unit vectors):

cos” a(Ly, L2) = maXpuec, e, |[(@ly) | = maxjer, mec, (Wl) (@ly) = maxy)er, (y|lle, [y).
(1.110)

The last equality holds without loss of generality since the maximum for (y|Il., |y) is
achieved by projecting onto a pure state |x)(x| for some |z) € L. Let us upper bound the
rightmost term in the equation above. Observe that by Equation (1.109), any |y) € Lo has
the form |y) = [(), , ® |7), for some [() € B¥™ @ BEN~™. Since by Equation (1.108), I,
breaks down into a sum of three projections, we can bound (y|llz, |y) by determining the
contribution of each projector separately when sandwiched by |y).
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The contribution of the second projection is easiest to see — it is simply (L—1)/(L+1),
since every term in |y) except |0) and |L) contribute 1/(L + 1) to the sum.

As for the first and third projections, let K1 = B2 @ [0)*N ™™ and K, = VI|1) @ BEN 1.
Then the contribution of the first and third projections is given by:

{y|(Ix, ® [0)(0], + Ik, ® [L){L].)|y) = L;H@I(Hzcl + T, ) [€)- (1.111)

If we let (K, /Cy) denote the angle between Ky and Ks, we can straightforwardly use
Equation (1.98) to bound the quantity above by

1 1
[ < — . .
(G, + 1)) < g (14 cos (K, ) (1112)
Observe, however, that
cos® p(KC1, Ka) = maxjmex, neks, |k, (1.113)

where IC; is just the set of initial states with all-zero ancilla for the verification procedure
V', and KCy is the set of initial states for which applying V' yields a 1 in the first qubit with
certainty. Hence, the maximum overlap between vectors in Ky and K is directly tied to
the maximum probability with which we can obtain outcome 1 with an initial state with
all-zero ancilla. In particular, we have cos? p(K;, Ky) equals the maximum probability of
outputting 1. Since in this section we are dealing with the NO case, however, meaning no
proof can cause an output of 1 with probability greater than e, we have cos? p(K1, Ks) < e,
implying: X .

L—H(l—l—cosgo(lCl,/CQ)) < L—_H(l—l—\/E) (1.114)
Adding the contributions of all three projections thus yields:

cos® a(Ly, Ly) = max ez, (Y|1lz, y) < (L _ 1) + <1 i \/E) =1- - Ve (1.115)

L+1 L+1 L+1°

Using the identity sin® z +cos? x = 1, this implies sin® (£, £2) > (1 —+/€)/(L+1). Then,
since sin” £ > 1sin®x (shown using the identity sin(2z) = 2sinz cosz), we have

sin? allr, L2) > isin2 a(Ly, Ly) >

5 - Ve (1.116)

4(L+1)

Finally, we have all estimates required to use Lemma 1.8: v = A/L? for some constant
A and sin*[a(L1,£s)/2] > (1 — \/€)/[4(L + 1)]. In addition, given Equations (1.108)
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and (1.109), it is now easy to see that £; N Ly = {0} (as required by Lemma 1.8), since
any state of the tensor product form |¢) , ® |7), cannot live in £;. Plugging everything
into Lemma 1.8, we conclude that in the NO case, the minimum eigenvalue of H is of the
order Q((1 — +/€)/L?) (i.e. H has no “small” eigenvalues). As required by Definition 1.7,
note that this lower bound is inverse polynomially separated from the upper bound on the
smallest eigenvalue of H from the YES case if we first apply error reduction to V' to bring
€ inverse polynomially close to 0.

Is the Hamiltonian H 5-local?

We have so far set up a Hamiltonian H whose eigenvalues are small or large, depending
on whether we have a YES or NO instance of our QMA problem P, respectively. We now
ask: Is H 5-local?

The answer is almost. Recall that H € H(B*™ @ B®N~™ @ CL*1), where the counter
register is CLT. If we implement the counter straightforwardly using O(log L) qubits, the
resulting operations on it, such as incrementing the counter, could require updating all
O(log L) qubits, making H (log L)-local at best. In order to circumvent this, Kitaev [171]
uses a different representation for the counter for which any operation requires acting on
at most 3 qubits of the counter. Specifically, we let H act on B®™ @ B®N—™ @ B, where
the counter register is now given in unary, i.e. |j) € CL*! is represented as

11,...,1,0,...,0). (1.117)

The operator basis |i)(j| for £L(CET!) translates to this new representation as follows.
Operator |7)(j| € L(C**!') is mapped to [1)(1]; ® [0){0],, in the new space, i.e. being
in state |j) in the old encoding is equivalent to having the jth qubit set to 1 and the
(7 + 1)-th qubit set to 0 in the new encoding. Similarly, operator |j — 1)(j| is mapped to
D)1, ®0)(1]; ® [0){0],,, i.e. if we think of |j — 1){j| as moving us from state |j) to
|7 — 1), this is equivalent in the new encoding to flipping the jth bit to 0, followed by a
safety check that qubits j — 1 and 5 + 1 are 1 and 0, respectively. The remaining basis
elements are defined analogously. These operations are at most 3-local. Combined with
the fact that H is based on the verification circuit V', which itself is composed of 2-qubit
unitaries V;, we have that H is 5-local Hamiltonian, as desired.

With H being 5-local, there is one final issue to be addressed — since the counter is
now represented using a larger space, one must deal with the possibility of invalid settings
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to the counter register. To discourage such behavior, a fourth penalty term is added to H
acting only on the counter space, namely

L-1

Hyap = Lo @ > _[0)(0], @ [1)(1] ;. (1.118)

Jj=1

Hence, the new H is given by H = Hi, + Hyrop + Hout + Hgtan. Note that Hg, discourages
counter states which are not of the form in Equation (1.117), i.e. states containing the
subsequence 01 are given an energy penalty.

Does the previous analysis of the smallest eigenvalue of H still hold when Hy,, is added
to the picture? The answer is yes. The YES case is easy to see, since all valid counter
states are in the null space of Hg.;,. Thus, an honest proof receives no energy penalty from
Hg.1, as desired.

For the NO case, let § = B®™ @ BN~ @ CLT! (the original space we had defined H as
acting on). Observe that Hi, + Hprop + Hout and Hgap, both act invariantly on S, meaning
they map operators in & to operators in §. Thus, we can split our analysis into two
independent cases: when H acts on S, and when H acts on the orthogonal complement
of S, denoted S*. In the former case, Hyap is just the zero operator with respect to
S; thus, the previous eigenvalue analysis goes through unscathed, yielding an eigenvalue
lower bound on H of Q((1 — /€)/L?). As for the second case when H is restricted to S+,
observe that Hg,, always administers an energy penalty, since S+ contains only invalid
counter states. Since Hg,p, is a sum of commuting projectors, its eigenvalues will be non-
negative integers — in particular, its smallest non-zero eigenvalue is at least 1. Since
Hiy + Hprop + Howe = 0, it follows that when restricted to S+, we have H > 1. Taking the
minimum of the estimates for the two cases of S and S+ yields the desired bound that the
smallest eigenvalue of H is still in Q((1 — /€)/L?), despite the new representation for the
counter. This concludes Kitaev’s proof that 5-local Hamiltonian is complete for QMA.

1.6 Quantum correlations

As mentioned earlier, the growing field of quantum computation and information has posi-
tively impacted both computer science and physics. The next area this thesis studies has in
particular benefited greatly from this cross-fertilization, and is the study of quantum corre-
lations. Here, we are interested in understanding correlations between individual quantum
subsystems of a larger composite system. Specifically, we shall introduce and discuss two
notions of quantum correlations: quantum entanglement and non-classical correlations.
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Motivation. We mention two reasons why the study of quantum correlations is impor-
tant. The first is that the existence of certain correlations predicted by quantum theory,
specifically quantum entanglement, has long troubled physicists. In a letter to Max Born
in 1947, for example, Einstein dubs entanglement as “spukhafte Fernwirkung”, or “spooky
action at a distance” [50]. This mentality was moreover the basis for the rejection of
quantum mechanics as a complete physical theory a decade earlier by the famous Einstein,
Podolsky, and Rosen (EPR) paper of 1935 [29]. Thus, a better understanding of quantum
correlations appears to be key to understanding both the nature of our world around us, as
well as our theories describing this world. The second reason is that quantum correlations
are generally believed to be required for quantum computers to outperform their classical
counterparts. It has been rigorously shown, for example, that in the pure-state setting,
the amount of entanglement present in a quantum system must grow with the problem
size if a quantum computation is to achieve an exponential speedup over classical comput-
ers [160]. Thus, a better understanding of quantum correlations may prove advantageous
for designing quantum algorithms, as well as for uncovering the boundary between classical
and quantum computing.

1.6.1 Quantum entanglement

The canonical notion of quantum correlations between quantum systems dates back to

the EPR paper of 1935 [89], and is called quantum entanglement. The name “entangle-
ment” was coined by physicist Erwin Schrodinger, who used the term “Vershrankung” in
1935 [221], which in colloquial “non-physicist” German means “folding of the arms” [(1].

Much has been discovered in the field of entanglement theory over the last two decades, from
its quantification and characterization, to its manipulation and use for quantum computa-
tional and information theoretic tasks. In particular, what was once considered “spooky
action at a distance” is now regarded as a valuable resource in quantum information (see,
e.g. [151]). In this thesis, entanglement is not a primary focus, but rather has important
connections to non-classical correlations in the results of Chapters 7 and 8. We give a brief
introduction to entanglement here; the reader is referred to the surveys of Brufl [01] and
Horodecki®* [151] for further details.

To begin, the canonical example of an entangled state is the two-qubit EPR pair,

67) = 5100) + [11). (1.119)

By observing that Tri(|¢p™)(¢™|) = Tra(|¢T)(¢T|) = 1/2, we have one of the characteristic
traits of quantum mechanics — that for quantum systems, knowledge of the whole quantum
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system does not imply knowledge of its parts. Since entangled (pure) states, such as the
EPR pair, cannot be written as a product state |1)1) ® |1h2) of single qubit states |1)1), [1)s),
a primary area of study in quantum information has been the quantification of “how far”
an entangled state is from product form. (Note that all classical states, by which we mean
bit strings, are of product form.)

The answer to this question varies greatly depending on context. For bipartite pure
states [ap) € D(C™®C™), the canonical measure of entanglement is given by the entropy
of entanglement [151],

E([ap)) = S(Trp|vap)(Yas|) = S(Traltas) (Y asl), (1.120)

where S(p) := —Tr(plog(p)) is the von Neumann entropy of p. It holds that 0 <
E(|Yap)) < log(min(m,n)), where the lower bound is achieved if and only if a state is
of product form, and the upper bound is achieved if and only if a state is mazimally
entangled, such as the EPR pair.

The definition of E(|¢)ap)) is perhaps better motivated by the fact that any bipartite
|ag) € C™ @ C™ can be written in terms of the Schmidt decomposition, such that

min(m,n)

Wag) = D ailtn) @ |¢n). (1.121)

=1

Here, the real a; > 0 are called Schmidt coefficients, and the sets {|¢;)} and {|¢;)} are
orthonormal bases for C™ and C", respectively, known as the Schmidt bases. The Schmidt
decomposition is extremely useful in quantum information; some of our results in Chapter 2,
for example, depend heavily on it. A proof of existence for the Schmidt decomposition is
straightforward, and makes use of the vec mapping (defined in the proof of Corollary 7.8
here) and singular value decomposition for operators; we refer the reader to [216] for details.
To now see the connection between F and the Schmidt decomposition, let p € R™in(mmn)
with p(i) = a?. Then, E(|¢)) = H(p), where H(p) := — >, p(i) log p(i) is the Shannon
entropy of probability distribution p. In the other words, the more “tightly concentrated”
the Schmidt coefficients of [4p) are, the less entangled |Y4p) is. Note that a state is
product if and only if it has a Schmidt coefficient o; = 1, and a state is maximally entangled
if and only if all its Schmidt coefficients are 1/v/d for d = min(m, n).

Moving to the mixed state case, the quantification of entanglement becomes much more
complex. Most generally, we say operator p € Pos (X ® )) is separable (i.e. unentangled)
if and only if it can be written [250]

p:ZAi@)Bi (1.122)
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for A; € Pos (X) and B; € Pos(Y). This definition of separability (with the added trace
one constraint) was first given by Werner [251]. We denote the set of separable operators
acting on X ® ) as Sep (X,)). Note that Sep (X,)) is a convex cone; this property is
vital to the results of Section 4.5. Here, a cone is a set S C X such that Az € S for all
x € S and all A > 0. If additionally u+v € S for u,v € S, then S is called a convez cone.
When we restrict ourselves to the set of separable density operators in Sep (X', )) (i.e. we
impose the trace one constraint), we obtain a convex set. (A set S C X is called convez if
pr+ (1—p)ye Sforal z,y €S and 0<p<1.) The set of separable density operators
has the following properties, which prove useful in Section 4.5: It is compact and contains
a ball around the maximally mixed state (which is, of course, separable) [124, ) ].

The problem of determining whether a given density operator p € D(X ® )) is in
Sep (X,)) (where one is allowed to work in time polynomial in the dimension), known as
the Quantum Separability Problem, was shown NP-hard to solve within inverse exponential
precision by Gurvits [123] (see also the work of Toannou [154]). This was later extended to
inverse polynomial precision by the present author [105], and shortly thereafter indepen-
dently by Beigi [39]. Recently, a breakthrough result of Christandl, Brandao, and Yard [53]
has shown that the problem is quasi-polynomial-time solvable for the case of constant pre-
cision; the result goes via a powerful new de Finetti-type theorem for the Frobenius (and
LOCC, where LOCC stands for local operations and classical correlations) norms.

Thus, as suggested by the NP-hardness of Quantum Separability Problem, in the mixed-
state case there is no known efficient test for separability, unlike the pure-state case. To
this end, there have been many mixed state entanglement measures proposed to date; the
reader is referred to the survey of Horodecki®* [151] for an in-depth look.

Here, we mention two entanglement detection schemes used in this thesis. The first
is the popular approach proposed by Peres [200] known as the positive partial transpose
(PPT) test, which plays a role in Chapters 7 and 8. Specifically, consider the super-operator
I ® T acting on space L(X ® )), where T denotes the transpose map. Then, given any
p € DX®Y),if (IT)(p) # 0, then p is not separable. This follows since for any
separable operator ) . A; ® B;,

(I®T) <Z A; ®B,-> => A;®T(B) = 0. (1.123)

Above, we have used the fact that the transpose map does not change the spectrum of an
operator. The PPT test is known to be necessary and sufficient for pure states of all dimen-
sions, and for mixed states of (2 x 2) and (2 x 3)-dimensional systems [206, 116]. In higher
dimensions, however, we remark that there exist mixed entangled states which nevertheless
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have a positive partial transpose; such states are called bound entangled [117, ]. Bound
entangled states have the property that they cannot be distilled, meaning roughly that in
the asymptotic limit, given many copies of a bound entangled state p, there does not exist
an LOCC (local operations and classical communication) protocol which can extract the
entanglement present in the copies of p into pure EPR pairs. The quantification of just
how much entanglement can be distilled in this sense is given by another entanglement
measure, the distillable entanglement [210]; this makes a brief appearance in Chapter 7.

Finally, there is an easy way to compute the partial transpose given a matrix represen-
tation of state p € D(C™ @ C™): Namely, partition the matrix into (m x n)-dimensional
blocks, and take the tranpose of each block individually. For example, for the EPR pair
|¢T) = (]00) + [11))/v/2, we have

100 % 1000
0000 00 1 0
+ +1) — _ )
IT)(|e W N=USD)| 4 o o o 0100 |70 (L2
300 3 000 %

The second entanglement detection scheme we define here is the relative entropy of
entanglement [238, ]. Specifically, define for p,o € D(X) the relative entropy as

S(pllo) .= —Tr(plogo) — S(p). (1.125)

Then, for p € D(X ® )), the relative entropy of entanglement is defined as

E = i S . 1.126
rlp) = _min  S(pllo) (1.126)
The following properties regarding Fr hold [238]: It takes value 0 if and only if p €

Sep(X,)), is invariant under local unitary operations, is convex, reduces to the entropy
of entanglement for pure states, and is an upper bound on the distillable entanglement
(see also [212]). It is further non-increasing under LOCC, which follows since S(p||o) >
S(®(p)||P(0)) for any TPCP map & [237]. In fact, a stronger and physically more rel-
evant statement holds — that even if we allow post-selection after performing an LOCC
measurement, the value of Er does not increase on average [238]. In other words, let {K;}
be a complete set of Kraus operators for a TPCP map, i.e. ), K:Ki = I. Then, letting
pi = Kiij, it holds that

Balp) > Y Tr(p) (Tjg;i)) . (1.127)
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We close this section by noting that the definition of separability presented here extends
straightforwardly to the multipartite setting. The structure of multipartite entanglement,
however, is markedly more daunting than in the bipartite case.

1.6.2 Non-classical correlations

Having discussed quantum entanglement, we now turn our attention to another form of
quantum correlations, called simply non-classical correlations. Such correlations have at-
tracted much attention in the last decade or so, both in terms of their characterization and
quantification, as well as with respect to their use as a resource in quantum information.
We begin by motivating the study of non-classical correlations, and follow with definitions.
We then discuss the role of such correlations in quantum information processing tasks, and
close by surveying a number of known non-classicality measures. The reader is referred to
Modi et al. [195] for a more comprehensive survey of the topic.

Motivation. As mentioned earlier, it is known that in the case of pure-state quantum
computation, entanglement is a necessary resource for exponential speedup over classical
computers [160]. What happens, however, if we instead consider mized-state quantum
computing? This is a particularly relevant question, as typically one deals with mixed
states in a laboratory setting due to noise from the environment. In 1998, Knill and
Laflamme [171] proposed a model of computing known as Deterministic Quantum Com-
puting with one clean qubit (DQC1) (see Chapter 5), wherein all but one qubit of the
computation are initialized to the maximally mixed state — in other words, the quantum
computation acts on a highly mixed state. (Note that this model is motivated experimen-
tally by nuclear-magnetic resonance (NMR) information processing, in which states are
highly mixed.) Yet, this model can perform the task of (normalized) trace estimation of
a given unitary exponentially faster than the best known classical algorithm. This raises
the question: Is entanglement also the root of the believed speedup in DQC1? (This is
a natural question since “very highly mixed” states are separable due to a ball around
the maximally mixed state in the set of separable quantum states [124, : ].) Or
are there other correlations possibly at play? Recent work has suggested that although
Erwin Schrodinger once wrote that entanglement is “not just one of many traits, but the
characteristic trait of quantum physics” [221] (as quoted in [195]), that between purely
classical correlations and entanglement, there lies another form of quantum correlations
whose nature is only now beginning to be understood. Such correlations are known simply
as non-classical correlations.
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Defining non-classical correlations. We now define what we mean by non-classical
correlations. To begin, we say that a quantum state pap € D(X ® )), henceforth denoted
as p to avoid clutter, is strictly classically correlated or classical if it can be diagonalized
in a local product basis. In other words, p is classical if there exist local orthonormal bases
{Ii)},{|¢:i) } for X and Y, respectively, such that

p= in|wi><wi| ® |65 (1, (1.128)

for {\;} the eigenvalues of p. Note that such a state is simply an embedding of a classical
bipartite distribution into the quantum formalism. Any state not satisfying this definition is
called non-classical. We remark that this definition of classicality extends straightforwardly
to the multipartite setting.

Continuing in the bipartite setting, a particularly interesting class of states which sub-
sume the classical states are the so-called classical-quantum (CQ)) states, which are only
classical in system A. Specifically, a state p € D(X ® )) is CQ if there exists a local
orthonormal basis {|i;)} for X such that

p= Zpi,l/)i><¢i| ® pi, (1.129)

for {p;} a probability distribution and for arbitrary p; € D()). Note that system A in p
simply plays the role of a classical label: Upon measuring it in basis {|¢;)} and obtaining
outcome ¢, we know the induced state p; in B. Also, observe that CQ states are separable.
An analogous definition straightforwardly yields the similar class of quantum-classical (QC)
states. As an aside, note that neither classical nor CQ states form a convex set, unlike the
set of separable quantum states.

Non-classical correlations and quantum information processing. A number of
connections are known between non-classical correlations and quantum information pro-
cessing tasks, involving for example local broadcasting [209, |, extended state merg-
ing [62], the locking of classical correlations [37, 78, , 19] (see Chapter 5), assisted
optimal state discrimination [213, 181], remote state preparation [7], entanglement distri-
bution [230, 68], and activation of non-classical correlations into entanglement [208] (see
Chapter 7, and also related work by Streltsov, Kampermann and Brufl [231]). We now
discuss two of these tasks: local broadcasting and entanglement distribution.

We begin with the task of local broadcasting. Specifically, generalizing the no-cloning
theorem of Section 1.4.5 is the following statement. Given a state p € D(X), we say
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p € DX ®X) is a broadcast state for p if

Tri(p") = Tr2(p) = p, (1.130)

where the 1 : 2 split is across the two copies of X. Now, suppose we are given a set of
density operators {p;} C D(X), and some arbitrary starting state o. Then, the statement
we are interested in is that there exists a TPCP map A € T(X ®X’) which, for all i, achieves
the mapping p; ® o — p; € D(X ® X) for p, a broadcast state for p; if and only if the p;

pairwise commute. This is called the no-broadcasting theorem [37, 36]. With respect to
non-classical correlations, a variant of this theorem is the no-local-broadcasting theorem of
Piani et al. [209, 188], which states that for any bipartite state pap € D(X ®)), there exist

local TPCP maps ©4 € T(X, X @ X) and Op € T(),Y®Y) such that ©4 @ Opg(pag) is a
broadcast state if and only if p4p is strictly classical. Thus, the classicality of correlations
in p is strongly tied to how well one can carry out the information theoretic task of local
broadcasting.

We next discuss the task of entanglement distribution. Consider a tripartite system
ABC consisting of Alice, Bob, and a carrier system C. Roughly, the goal of entanglement
distribution is for Alice and Bob to increase the entanglement between their systems A and
B by having Alice send Bob the carrier system C. More specifically, we imagine Alice holds
systems A and C to start, and Bob holds system B. Alice applies some encoding operation
jointly to A and C. She then sends C to Bob. Bob finally applies some decoding operation
to B and C. We now ask: Is the entanglement in the AC' : B cut before the protocol
was run strictly smaller than the entanglement in the A : BC cut after Bob receives the
carrier C'?7 What is perhaps most surprising about this task is that the answer to this
question can be yes even if the carrier C is not entangled with A and B throughout the
protocol [73]! Motivated by the question of whether non-classical correlations could be the
resource behind this phenomenon, Streltsov et al. [230] and Chuan et al. [68] (both works
appeared concurrently and independently) showed that (definitions to follow)

EZ(pasc) — Bq " (oanc)| < 037 (0a8c), (1.131)

where papc is the state before the protocol is run, o 4p¢ is the state once Bob receives C'
from Alice, and where we measure non-classicality by the relative entropy of discord (RED)

61’33‘0 of Equation (1.140) (to be defined shortly) across the AB : C' cut, and we measure
entanglement by the relative entropy of entanglement EﬁqB (Eé'BC) across the AC' : B
(A: BC) cut . In other words, the amount of entanglement which can be transferred from
Alice to Bob is bounded by the amount of non-classical correlations between the carrier C

and AB (after Alice has applied her encoding operation). Note thus that this upper bound
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can be non-zero even if C is unentangled with A and B throughout the protocol (and in
fact must be non-zero for the example of Cubitt et al. [73] mentioned above).

Quantifying non-classical correlations. Finally, we close this section by discussing a
number of known non-classicality measures.

The formal notion of CQ states first arose with the works of Ollivier and Zurek [203]
and Henderson and Vedral [138], where a measure of quantum correlations dubbed the
quantum discord was proposed. The aim of this measure is to quantify purely quantum
correlations in a bipartite state p. To define the discord, recall first that the (classical)
mutual information is a measure of correlation between (classical) random variables A and
B, i.e.

I(A:B)=H(A)+ H(B) — H(A, B), (1.132)

where H is the Shannon entropy defined in Section 1.6.1 and H(A,B) = —3_,, Pr(4A =
anN B ="b)logPr(A=an B =10). Using the fact that Pr(B|A) = Pr(AN B)/Pr(A), one
can straightforwardly also express the mutual information as

J(A: B) = H(B) — H(B|A), (1.133)

where H(B|A) := > Pr(A = a)H(B|A = a). Although 7 and J are equivalent in
the classical setting, their quantum counterparts no longer share the same relationship.
Specifically, the quantum mutual information can be defined as

Z(pag) = S(pa) + S(pp) — S(pan), (1.134)

where recall ps = Trg(pag). However, a quantum variant of 7 is non-trivial to define, since
it requires specifying a value for B for the conditional entropy H(A|B) — in particular,
unlike the classical setting, quantumly the choice of measurement basis is non-trivial.
To this end, for rank-one projective measurement {H]A}, one defines [203] a quantum
conditional entropy

S (PB|{HJA}> = ZPJS ((Hf ® j'B)p(H;4 ® [B)/pj) , (1.135)

where p; = Tr(II# ® I%p). Then, a quantum version of 7 for given measurement basis
{11} can be defined as

Truay(p) = Spp) =5 (pB|{H3_4}) : (1.136)
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Note that J. (i A}(p) quantifies the amount of classical correlations which can be extracted
J

from pup via a projective measurement on one party; since we are in the end interested
in purely quantum correlations, intuitively one would thus choose the optimum measure-
ment {Hf} here so as to extract all purely classical correlations, leaving only quantum
correlations behind. With this in mind, the quantum discord is now defined as

(p) :=Z(p) — ﬁ% Tuay(p) = 5(pa) = S(pap) + {nﬁ}%s <pB|{H}4}> . (1137)

The discord is [195] non-negative, non-symmetric with respect to exchange of systems A
and B, invariant under local unitaries, and most importantly for our discussion here, takes
value zero if and only if p is CQ [203, 79]. Moreover, there exist separable states, such as

the two-qubit state
1 1
51001 @ [0){0] + S [+){(+| @ [1){L], (1.138)

which have non-zero discord, thus showing that discord quantifies correlations beyond
entanglement. (Aside: The state above is studied further in Chapters 6, 7, and 8.)

The next measure of non-classical correlations we discuss is the geometric quantum
discord [75]. Let CQ C D(X ® )) denote the set of classical-quantum states. Then for
p € D(X ® ) the geometric discord is defined as

. : 2 _ : A A
dc(p) := min || p— o[z = juin | - 2 Tett (1.139)

J

2
F
where || - || is the Frobenius norm and the second equality was shown by Luo and Fu [180].
The name geometric derives from the fact that the measure attempts to quantify distance
from CQ via a metric. We have included the right-most expression in Equation (1.139)
as it offers another intuitive interpretation of non-classical correlations involving distur-
bance under measurement. Namely, recall that in the classical world, there always exists
a choice of measurement basis {HJA} (the computational basis) leaving the target state
undisturbed. In the quantum setting, however, this is in general not the case. For exam-
ple, this is an intuitive reason why CQ states are considered classical in A; there exists
a measurement basis acting invariantly on A. The second expression for dg(p) in Equa-
tion (1.139) thus attempts to understand how much p must be disturbed in a (rank one
projective) measurement, regardless of the choice of local measurement basis for A.

The next non-classicality measure we discuss is similar to the geometric discord, but
replaces the Frobenius norm with the relative entropy. We thus arrive at the relative
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entropy of discord (RED) [190],

) = S 1.140
r(p) = min S(plo). (1.140)
An analogous definition for the case of general strictly classically correlated states goes
under the name of the relative entropy of quantumness (REQ) [51, , , , 196]; this
is studied further in Chapters 7 and 8.

Interestingly, the RED turns out to be equal to (a variant of) another measure of non-
classical correlations we discuss next, the quantum deficit [115]. The latter’s definition is
motivated by work extraction from quantum systems coupled to a heat bath. Roughly, the
idea here is that a state is strictly classically correlated if and only if the same amount of
work can be drawn from the global state versus from the local subsystems after allowing a
suitably restricted subset of local operations and classical communication (LOCC) known
as closed LOCC. The variant of the deficit which is equal [115] to the RED is the one-way
deficit A7, given by (simplified from the original definition):

A7 := min S <Z HApHA> S(pap). (1.141)

HA} 2

Here, {H;‘} again denotes a rank-one projective measurement. The correspondence be-
tween RED and the deficit does not stop here, however; the two-sided analogue of the
RED, the REQ, is equal [145] to the so-called zero-way deficit A”:

0 ._ A B 174 Bl
AN {HAI?I{DHB} (Z I @ 117 pIT;* @ 115 ) S(pap). (1.142)
ij

We have discussed a number of non-classicality measures here. Later in Chapter 6, we
introduce a novel measure of non-classical correlations based on local unitary operations,
which for (2 x N)-dimensional quantum states turns out to coincide with the geometric
discord. Chapters 7 and 8 then introduce and study a protocol for “activating” non-

classical correlations into entanglement, while also providing an operational interpretation
for the REQ.
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Chapter 2

Approximation algorithms for
QMA-complete problems

This chapter is based on [105]:

S. Gharibian and J. Kempe. Approximation algorithms for QMA-complete problems. In
Proceedings of 26th IEEE Conference on Computational Complexity, pages 178-188, 2011,
DOI: 10.1109/CCC.2011.15, (© 2011 IEEE, ieeexplore.ieee.org.

Approximation algorithms for classical constraint satisfaction problems are one of the main
research areas in theoretical computer science. In this chapter, we define a natural approx-
imation version of the QMA-complete local Hamiltonian problem and initiate its study.
We present two main results. The first shows that a non-trivial approximation ratio can
be obtained in the class NP using product states. The second result (which builds on the
first one), gives a polynomial time (classical) algorithm providing a similar approximation
ratio for dense instances of the problem. The latter result is based on an adaptation of the
“exhaustive sampling method” by Arora et al. [28] to the quantum setting, and might be
of independent interest.

2.1 Introduction and results

In the last few years, the quantum analog of the class NP, the class QMA [171], has
been extensively studied, and several QMA-complete problems have been found [182, 55,

o8



, 40, , , , ]. Arguably the most important (and historically first) QMA-
complete problem is the k-local Hamiltonian problem [171, , , , 20]. Recall from
Section 1.5.4 that here, the input is a set of Hamiltonians (Hermitian matrices), each acting
on at most k-qubits each. The task is to determine the largest eigenvalue of the sum of
these Hamiltonians. This problem generalizes the central NP-hard problem MAX-k-CSP,
where we are given a set of Boolean constraints on k variables each, with the goal to
satisfy as many constraints as possible. The local Hamiltonian problem is of significant
interest to complexity theorists and to physicists studying properties of physical systems

alike (e.g. [60, 15, 58, 17, 69, 176, 222]).

Moving to the classical scenario, the theory of NP-completeness is one of the great
success stories of classical computational complexity [27]. It was soon realized that many
natural optimization problems are NP-hard, and are hence unlikely to have polynomial time
algorithms. A natural question (both in theory and in practice) is to look for polynomial
time algorithms that produce solutions that are close to optimum. More precisely, one says
that an algorithm achieves an approzimation ratio of ¢ € [0,1] for a certain maximization
problem if on all inputs, the value of the algorithm’s output is at least ¢ times that of
the optimum solution (the output value should also be at most the optimal solution).
The closer ¢ is to 1, the better the approximation. The investigation of approximation
algorithms is, after decades of heavy research, still a very active area (e.g., [I11, 230]).
For many central NP-hard problems, tight polynomial time approximation algorithms are
known.

In the context of QMA-complete problems, it is thus natural to search for approxima-
tion algorithms for these problems, and in particular for the local Hamiltonian problem.
The question we address here is: How well can one efficiently approximate the k-local
Hamiltonian problem?

It should be noted that a large host of heuristics has been developed in the physics
community to approximate properties of local Hamiltonian systems (see, e.g., [69] for a
survey) and this area is extremely important in the study of physical systems. However,
the systematic complexity theoretic study of approximation algorithms for QMA-complete
problems is still very much in its infancy, and our work is one of the first steps in this
research direction. We note that there has been a lot of interest in recent years [17, (] in
establishing a so-called quantum PCP theorem [30, 29], which amounts to showing that for
some constant ¢ < 1 close enough to 1, approximating the k-local Hamiltonian (or related
problems) to within ¢ is QMA-hard. Our results can also be seen as a natural continuation
of that investigation.

29



Our results: Let us start by precisely defining the optimization version of the local
Hamiltonian problem, which is parameterized by two integers k£ and d, which we always
think of as constants. Note that the definition below differs slightly from that given in
Section 1.5.4, Definition 1.7; we discuss the differences after stating the definition.

Definition 2.1 (MAX-k-local Hamiltonian problem on d-level systems (qudits)). An in-
stance of the problem consists of a collection of (Z) Hermatian matrices, one for each subset
of k qudits. The matriz H;, _; corresponding to some 1 < i3 < --- <y < n is assumed
to act on those qudits (terms acting on less than k qudits can be incorporated by tensoring
them with the identity), to be positive semidefinite, and to have operator norm at most 1.
We call any pure or mized state p on n qudits an assignment and define its value to be
Tr(Hp) where H =%, . Hi, . The goal is to find the largest eigenvalue of H (de-

B yeenyl k*
noted OPT ), or equivalently, the mazimum value obtained by an assignment. We say that
an algorithm provides an approximation ratio of ¢ € [0, 1] if for all instances, it outputs a

value that is between ¢ - OPT and OPT.

This definition, we believe, is the natural quantum analog of the MAX-£-CSP problem.
We note that it differs slightly from the usual definition of the k-local Hamiltonian problem.
Namely, we consider maximization (as opposed to minimization), and also restrict the
terms of H to be positive semidefinite, and have norm at most 1 (the latter two contraints
are also common to Definition 1.7; more generally, the local terms of H can be arbitrary
Hermitian operators). As long as one considers the ezact problem, these assumptions are
without loss of generality, and do not affect the definition, as seen by simply scaling the
Hamiltonians and adding multiples of identity as necessary. However, when dealing with
the approximation version, these assumptions are important for the problem to make sense;
for instance, one cannot meaningfully talk about approximation ratios if the optimum
can take both negative and positive values. That is why we require the terms to be
positive semidefinite. The requirement that the terms have operator norm at most 1
does not affect the problem and later allows us to conveniently define dense instances.
Finally, changing the maximization to a minimization would lead to an entirely different
approximation problem: the quantum analogue of MIN-CSP (e.g. [167]). Minimization
problems are, generally speaking, harder than maximization problems, and we leave this
research direction for future work.

Before stating our results, we state a trivial way to get a d~*-approximation for MAX-
k-local Hamiltonian. Observe that the maximally mixed state has at least d~* overlap with
the reduced density matrix of the optimal assignment on any k particles. A similar property
holds classically, where a random assignment gives (in expectation) a d~* approximation
of MAX-k-CSP. We now describe our two main results.
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Approximation by product states. One inherently quantum property of the local
Hamiltonian problem is the fact that the optimal state might in general be highly entangled
(and hence not efficiently describable in polynomial time or space). This is why we do not
require outputting the assignment itself in the above definition. If, however, the optimal
assignment (or some other good assignment) was guaranteed to be a product state, then
we could describe it efficiently. The following theorem shows just that.

Theorem 2.2. For an instance of MAX-k-local Hamiltonian with optimal value OPT,
there is a (pure) product state assignment that has value at least OPT /d*~!,

This result is tight for product states in the case of 2-local Hamiltonians (we remark
that 2-local Hamiltonians are often the most relevant case from a physics perspective). For
example, consider the Hamiltonian on 2-qubits that projects onto the EPR state \%(|OO) +
[11)). It is easy to see that no product state achieves value more than 1/2. For general
d and k, we can only show that product states cannot achieve an approximation ratio
greater than 1/d*/2) (see Section 2.2, where better bounds in more specific cases are also
discussed).

If we could efficiently find the best product state assignment, we would obtain an
algorithm achieving a non-trivial d=*+! approximation ratio. Unfortunately, this problem
is NP-complete, since it would allow one to solve (e.g.) the special case of MAX-k-SAT
(as discussed in Section 1.5.4, for each clause C acting on variables {iy,...,7;} in an
instance of MAX-£-SAT, define the corresponding Hamiltonian term H;, _;, diagonal in the
computational basis and projecting onto the satisfying assignments for C. Then, without
loss of generality, the optimal product state assignment can be taken to be a computational
basis state), implying such an algorithm cannot exist unless P = NP. Still, the theorem
has the following interesting implication: It shows that unless NP = QMA, approximating
the local Hamiltonian problem to within a factor less than d=**! is not QMA-hard. This
follows simply because product states have polynomial size classical descriptions. (More
accurately, since one uses a polynomial number of classical bits to approximately specify a
product state in NP, the ratio in the implication above is d=**! — f(m) for some function
f which scales inverse exponentially in the input size m.)

A polynomial time approximation algorithm for dense instances. Our second
result gives a classical polynomial time approximation algorithm for dense instances of the
local Hamiltonian problem. This result is perhaps our technically most challenging one,
and we hope the techniques we develop might turn out useful elsewhere.
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Dense instances of classical constraint satisfaction problems have been studied in depth
[81, , , 28, 82,23, 38, 83]. Our result is inspired by work of Arora et al. [28]
who provide a polynomial time approximation scheme, or PTAS (i.e., an efficient 1 —
e approximation algorithm for any fixed ¢ > 0), for several types of dense constraint
satisfaction problems. In the classical case, dense (for 2-local constraints) simply means
that the average degree in the constraint graph is Q(n), or equivalently, that the optimum
is Q(n?). In analogy, we define an instance of MAX-k-local Hamiltonian to be dense if
OPT = Q(n*), or equivalently, if Tr(H £ ) = Q(n*) (the equivalence follows from the fact
that the mixed state assignment I/d" has value between OPT and OPT/d").

It is not hard to see that the (exact) dense local Hamiltonian problem remains QMA-
hard (see Section 2.3.3). We hope the dense case might be of practical interest to physicists
who study systems of particles by incorporating all possible interactions between them. Our
second main result is the following:

Theorem 2.3. For all € > 0 there is a polynomial time (1/d*~ — ¢)-approzimation algo-
rithm for the dense MAX-k-local Hamiltonian problem over qudits.

Theorem 2.3 follows immediately by combining Theorem 2.2 with the following theorem,
which gives an approximation scheme for the problem of optimizing over the set of product
states.

Theorem 2.4. Let OPTp denote the value of the optimal product state assignment for an
instance of MAX-k-local Hamiltonian H. Then, for all € > 0, there is a polynomial time
algorithm which outputs a product state assignment attaining value at least OPTp — en®.
For all e > 0, this yields an efficient (1 — €)-approzimation algorithm for computing OPTp

for dense MAX-k-local Hamiltonian.

We remark that the algorithm of Theorem 2.4 also applies in the minimization setting,
in which one is interested in computing the smallest eigenvalue of k-local Hamiltonian H.
Here, our algorithm outputs a value at most OPTp + enF.

Proof ideas and new tools: The proofs of Theorem 2.2 and Theorem 2.4 are indepen-
dent and employ different techniques. To show the product state approximation guarantee,
we show a slightly stronger statement: For any assignment |¥), there is a way to construct
a product assignment of at least d~*! its value. The proof is constructive (given |¥)): we
use a type of recursive Schmidt decomposition of |¥) to obtain a mixture of product states
whose value is off by at most the desired approximation factor (see Section 2.2).
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Our second result is technically more challenging and introduces a few new ideas to
this problem, inspired by work of Arora et al. [28] in the classical setting. We illustrate
the main ideas for MAX-2-local Hamiltonian on n qubits. Recall that our goal is to find
a PTAS for the local Hamiltonian problem owver product states. The value of the optimal
product state assignment, OPTp, can be written

OPTp = max Z Z Tr(H; j(pi ® pj)) st. p; = 0and Tr(p;) =1 forl<i<mn,
i=1 jEN(i)

(2.1)
where N () is the set of indices j for which a local Hamiltonian term H; ; is present. We
might call this a quadratic semidefinite program, as the maximization is quadratic in the
pi (and as such not efficiently solvable in general). Note, however, that if the terms in the
maximization were linear, then we would obtain a semidefinite program (SDP), which is

efficiently solvable [121]. To “linearize” our optimization, we use the “exhaustive sampling
method” developed by Arora et al. [28] (a method which was later key in many devel-
opments in property testing, e.g. [115]). We write each Hamiltonian term in a basis that

separates its two qubits, for instance the Pauli basis {0¢, 01, 02,03}, H; j = Zilzg a%aké@al.
Fori=1,...,nand £k =0,1,2,3, define

= Z ZazTr(alpj). (2.2)

JEN(G) 1=0

If we knew the values of ¢, for the optimal p;, then solving the SDP below would yield the
optimal p;:

n 3
max ZZC};Tr(crkpi) st. pi=0and Tr(p;) =1 for 1 <i<n, (2.3)
i=1 k=0

3
Z Za%Tr(alpj) = cz forl<i<nand 0<Ek<3.
JEN(i) 1=0

Of course, this reasoning is circular, as in order to obtain the ¢} we need the optimal p;.
The crucial idea is now to use sampling to estimate the ci. More precisely, assume for a
second that we could sample O(logn) of the p; randomly from the optimal assignment.
Then, by standard sampling bounds, with high probability over the choice of the sampled
qubits we can estimate all the ¢ to within an additive error +en for some e. If we had
these estimates af, for the ¢}, we could solve the SDP above with the slight modification
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that the last constraint should be aj —en < 37y >0 a?Tr(oyp;) < al + en. With
high probability over the sampled qubits, this SDP will give a solution that is within an
additive en? of the optimal one (more subtle technicalities and all calculations can be found
in Section 2.3). Moreover, it is possible to derandomize the sampling procedure to obtain
a deterministic algorithm (Section 2.3.3).

Of course, we are still in the realm of wishful thinking, because in order to sample
from the optimal solution, we would need to know it, which is precisely what we set out
to do. However, the number of qubits we wish to sample is only logarithmic in the input
size. Thus, to simulate the sampling procedure, we can pick a random subset of O(logn)
qubits, and simply iterate through all possible assignments on them (with an appropriate
d-net over the density matrices, which incurs a small additional error) in polynomial time!
Our algorithm then runs the SDP for each iteration, and we are guaranteed that at least
one iteration will return a solution within en? of the optimal one. Because the denseness
assumption guarantees that OPTp is Q(n?), our additive approximation turns into a factor
(1—e)-approximation, as desired. All details, the runtime of the algorithm and error bounds
for the general k-local case on qudits are given in Section 2.3. We remark that the approach
above works analogously in the setting where the objective function involves minimization
instead of maximization.

Previous and related work: We note that many heuristics have been developed in
the physics community to approximate properties of local Hamiltonian systems and this
area is extremely important in the study of physical systems (e.g. [255, , , , ,

, 09, 204]). Our focus here is, however, on rigorous bounds (unlike a heuristic) on the
approximation guarantee of algorithms for the general problem (we allow interactions of
arbitrary types occurring on arbitrary graphs, in contrast to the more common approach
of studying specific local Hamiltonian models with certain classes of allowed interactions).
In this area, to our knowledge, few results are known. In the setting of relative-error
approximation, as studied here, the first and only previous result we are aware of is that of
Bansal, Bravyi and Terhal [35], who give a PTAS for a special case of the local Hamiltonian
problem, so called quantum Ising spin glasses, for the case where the instance is on a planar
graph and of bounded degree. Roughly, this PTAS is obtained by dividing the graph into
constant size chunks, which can be solved directly, and ignoring the constraints between
chunks (this incurs an error proportional to the number of such constraints, which is
small because the graph is planar). In the setting of absolute-error approximation, in 1D
models, rigorous results such as Hasting’s 1D area law are known for gapped systems [133]
(where it is also shown that the ground state is well-approximated by a Matrix Product
State [2410]), and rigorous approximation methods are known for 1D [16, 222] and for 2-local
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Hamiltonians on qubits where the two-qubit interaction strengths are weak [57]. Finally,
we remark that the use of a product state ansatz is closely related to the mean-field
approximation or Hartree-Fock method in physics (see, e.g. [90]).

Discussion and open questions: Our two results give approximations to the local
Hamiltonian problem. Although at first glance, our approximation ratio of 1/d*~! may
appear an incremental improvement over the trivial random assignment strategy, there are
three important notes that should be kept in mind: The first is that many classical NP-hard
problems, such as MAX-3-SAT (a special case of MAX-k-CSP where each constraint is the
disjunction (“OR”) of k variables or their negation), are approzimation resistant (e.g. [132,

]), meaning that unless P=NP, there do not even exist non-trivial approximation ratios
beyond the random assignment strategy. For example, for MAX-3-SAT it is NP-hard
to do better than the approximation ratio of 7/8 achieved by random assignment [131].
Thus, showing the existence of a non-trivial approximation ratio is typically a big step
in the classical setting. Moreover, it could have been conceivable that for MAX-k-local
Hamiltonian, analogously to MAX-3-SAT, outperforming the random assignment strategy
would have been QMA-hard. Yet our results show that unless NP=QMA, this is not the
case. The second important note that should be kept in mind is that our work considers
the local Hamiltonian problem in its full generality by allowing arbitrary constraints on
an arbitrary interaction graph. It could be (and is the case, for example, in [35]) that
for more restricted classes of local Hamiltonian models, better approximation ratios are
achievable. Third, the currently best approximation algorithm for MAX-k-CSP gives an
approximation ratio of only about 0.44k/2* for k > 2 [63] (for k = 2, one can achieve
0.874 [180]. See also the work of Raghavendra [211]) and this is, moreover, essentially the
best possible under a plausible complexity theoretic conjecture (namely, the Unique Games
Conjecture [168]) [234, 130, 218, 32]. This is to be contrasted with our 2/2*-approximation
ratio for the case of d = 2 (i.e. qubit systems), which we show can be achieved by product
state assignments for arbitrary (i.e. even non-dense) MAX-k-local Hamiltonian instances
(in the non-dense case, however, we do not show how to efficiently find a product state
achieving this ratio). This raises the important open question: Is our approximation ratio
tight?

Our product state approximation shows that approximating the local Hamiltonian prob-
lem to within d~**! is in NP. It would be interesting to know if this approximation ratio
could also be achieved in polynomial time. If not, it might lead to an intriguing state of
affairs where for low approximation ratios the problem is efficiently solvable, for medium
ratios it is in NP but not efficiently solvable, and for high ratios it is QMA-hard (assuming
a quantum PCP theorem exists). Further, as mentioned earlier, our work can be viewed as
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negative progress towards a quantum PCP theorem in that, by Theorem 2.2, a quantum
PCP theorem with hardness ratio ¢ < d~**! cannot exist unless NP=QMA.

To obtain our results for the case of dense local Hamiltonians, we have introduced the
exhaustive sampling technique of Arora et al. [28] to the setting of low-degree semidefinite
programs. We linearize such programs using exhaustive sampling in combination with a
careful analysis of the error coming from working with J-nets on density matrices. We
remark that it seems we cannot simply apply the results of [28] for smooth Polynomial
Integer Programs as a black-box to our setting. This is due to our aforementioned need
for a d-net, as well as the requirement that our assignment be a positive semidefinite
operator. We address the latter issue by extending the techniques of [28] to the realm of
positive semidefinite programs by introducing the notion of “degree-k inner products” over
Hermitian operators to generalize the concept of degree-k polynomials over real numbers,
and performing the more complex analysis that ensues. We hope that this technique will
be of much wider applicability, particularly considering the growing use of semidefinite
programs in numerous areas of quantum computing and information (e.g. [3%, , 178]).

Another open question is whether similar ideas can be used to approximate other QMA-
complete problems, such as the Consistency problem [182]. Moreover, can we obtain poly-
nomial time algorithms without the denseness assumption? And are there special cases of
the local Hamiltonian problem for which there is a PTAS (other than for planar Ising spin
glasses [35])7 Of course, we do not expect a PTAS for all instances of the local Hamiltonian
problem, as this would contradict known hardness results for special classical cases of the
problem. However, perhaps there exist other classes of physically relevant instances of the
problem for which a PTAS does exist. Finally, can our scheme be extended to work with
more general classes of quantum assignments than product states, such as Matrix Product
States [210]?

Organization of this chapter: In Section 2.2, we prove our result on product state
approximations (Theorem 2.9 and the ensuing proof of Theorem 2.2), show its tightness in
the 2-local case and provide the upper bound of d~#/2 for the best possible approximation
by product states. Section 2.3 gives our polynomial time approximation algorithm and
develops the general sampling and SDP-based technique we use. It also shows that the
dense local Hamiltonian problem remains QMA-complete. As some of the proofs and
notation of Section 2.3 are rather technical, we have deferred the full proofs of this section
to Section 2.4 in order to facilitate reading.
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2.2 Product states yield a 1/d* !-approximation for
qudits

We now show that product state assignments achieve a non-trivial approximation ratio for
MAX-k-local Hamiltonian, i.e. Theorem 2.2. To do so, we first define the recursive Schmidt
decomposition (RSD, Definition 2.5) of a state |¢)) € (C?)®", and for ease of exposition,
the corresponding notion of a Schmidt cut (Definition 2.6). We then state and prove the
key to our approach, the Mizing Lemma (Lemma 2.7), which shows how to use the RSD
to eliminate the entanglement across a particular Schmidt cut of [¢)) while maintaining
the desired approximation ratio. Lemma 2.8 and Theorem 2.9 then expand on this by
showing how to apply the Mixing Lemma to multiple Schmidt cuts. From Theorem 2.9,
a proof of Theorem 2.2 easily follows. We close with a discussion of the tightness of the
approximation ratio given by Theorem 2.2.

We first define the terms Recursive Schmidt Decomposition and Schmidt cut.

Definition 2.5 (Recursive Schmidt Decomposition (RSD)). Given a state |1)) € (C?)®",
we define its recursive Schmidt decomposition as the expression obtained by recursively
applying the Schmidt decomposition on each qudit from 1 to n—1 inclusive. More formally,

we define the RSD of |¢) as follows:

e (Base case) If n = 1, then RSD(|¢))) = [¢).

e (Recursive case) If n > 1, then RSD([¢)) = 320, ;[0 ) @RSD(|¢hs)), where ;) € C,
¢s) € (CHE=1 S a2 =1, {|1h;)} is an orthonormal basis for the first qudit of
|1), and {|¢;)} is a set of orthonormal vectors for the remaining n — 1 qudits of |¢).

(This definition is relative to some fixed ordering of the qudits. The specific choice of
ordering is unimportant in our scenario, as any decomposition output by such a process
suffices to prove Theorem 2.2.) For example, the RSD for 3-qubit [¢) is

[v) = ailar) ® (Bi]bi)|cr) 4 Ba|ba)|ea)) + anlaz) @ (B1]0'1) | 1) + Bolb'2)|c'2)), (2.4)

for a3+ a3 = B2+ B3 = B+ 8’5 = 1, {|a;)}, an orthonormal basis for qubit 1, {|b;)}, and
{|t/;)}, orthonormal bases for qubit 2, and {|c;)}, and {|c;)}, orthonormal bases for qubit
3.

Definition 2.6 (Schmidt cut). For any [¢)) € (C%)®" with Schmidt decomposition [¢) =
Zle a;|w;)v;), where o € R with >°.a? = 1, |w;) € C? and |v;) € (C)*"~!, and for
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any |p) € (CH)®™ we refer to the expansion |¢) ® (Zle ai|wi>|vi>) as the Schmidt cut at

qudit m 4+ 1. We say that a projector II crosses this Schmidt cut if II acts on qudit m + 1
and at least one qudit i € {m +2,...,m +n}.

The heart of our approach is the following Mixing Lemma, which provides, for any as-
signment [¢)) € (C%)®", an explicit construction through which the entanglement across the
first Schmidt cut of |¢) can be eliminated, while maintaining at least a (1/d)-approximation
ratio relative to the value |¢)) achieves against any local Hamiltonian H € H((C4)®").

Lemma 2.7 (Mixing Lemma). Given state |¢)) on n qudits with Schmidt cut on qu-
dit 1 given by [¢) = S ailwy)|v;), where a; € R with 3,02 = 1, |w;) € C* and
|v;) € (CH®"=L define p := Zf’:l a?|w; ) (w;| @ |v;){v;|. Then, given projector 11 acting on
some subset S of the qudits, if I crosses the Schmidt cut, then Tr(Ilp) > STr(IT|y)(]).
Otherwise, Tr(I1p) = Tr(I1]y) (W]).

Proof. Case 2 follows easily by noting that the given Schmidt decomposition of |¢) implies

Tri(p) = Tri(|¥)(¢|) and Try ,(p) = Tra. .(|¥)(¥|). To prove case 1, we observe by
straightforward expansion that

Te(Hy) () = Te(Ip) + Y ey (wil(valTTjwy) vg) + iy (wy | (o5 Wlwi) o). (2.5)
i<j
Then, by defining for each ¢ vector |a;) := a;I1|w;)|v;), we have
> aia (wil (il T w;)vs) + coy (ws| (s Tw)|vr) =Y {ailag) + (aslas), (2.6)
i<j i<j

since T1% = I1. Applying the fact that (a|b) + (bla) < |||a) |13 + || |b) ||5 for |a), |b) € (C4)®"
thus implies

> Aailag)+aglas) <> " [las) 5+ a) 115 = (d=1) > af (w;|(vi|T|w;)|v;) = (d—1)Tr(IIp),
i<j i<j i

(2.7)
from which the claim follows. O

The following simple extension of Lemma 2.7 simplifies our proof of Theorem 2.9.

Corollary 2.8. Define |¢') := |¢) @ |¢), where |¢) € (CHE™ for m > 0 and |) is defined
as in Lemma 2.7, and let p € D(CH®" be obtained from |v) as in Lemma 2.7. Then, for
any projector I acting on a subset S of the qudits, if T crosses the Schmidt cut of 1))
at qudit m + 1, we have Tr(Il|¢) (| @ p) > STe(I1|¢")(¢'|). Otherwise, Tr(I|¢)(d| ® p) =
TH(ITh ) )
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Proof. Immediate by applying the proof of Lemma 2.7 with the following modifications:
(1) Define |a;) := a;II|p)|w;)|v;), and (2) it S C{1,....,m}U{m+2,...,m+n} (i.e. this
is one of two ways for I not to cross the cut — the other way is for S C {1,...,m + 1}),
observe that by the same arguments as in Lemma 2.7 for case 2 and the product structure

between [¢) and [¢) in [¢') that Try1(|9){(¢] ® p) = Trymga ([¢97) (W']). 0

Lemma 2.7 shows that the state p obtained by mizing the d Schmidt vectors of |¢)), as
opposed to taking their superposition, suffices to achieve a (1/d)-approximation across the
first Schmidt cut. By iterating this argument over all n—1 Schmidt cuts, we now prove that

a mixture of all (product) states appearing in the RSD of |¢)) achieves an approximation
ratio of 1/d"1.

Theorem 2.9. For any n-qudit assignment |¢) with RSD [i) = Zf:; /Dil®i), where
> pi = 1 and {|¢:)}, is a set of orthonormal product vectors in (CT)®", define p :=

ZZ . pl|¢z)<¢>,| Then, for any projector I1 acting on some subset S C {1,...,n} of qudits
with |S| = k, we have Tr(Ilp) > Z=Tr(IT|¢) (]).

Proof. Let II be a projector with |S| = k, and define ¢ € {0,1}""" such that c(j) = 1
iff II crosses the Schmidt cut at qudit j. For example, if IT acts on qudits {1,2}, then

= (1,0,...,0). Note that in general || c||, = k¥ — 1. Let [¢;) denote the expression
obtained by taking the RSD of [¢)) up to the kth level of recursion for 1 <k <n —1, i.e.

|tx) can be written
dk

[r) =D i}y @ @ [0F) @ [6), (2.8)

=1
where ’1/15 ) € C? and |¢;) € (CH)®F. (We assume n > 2, as otherwise the claim is

vacuously true.) Corresponding to |y ), define

dk

p® ="l (Wl @ - @ [0F)(UF| © i) (. (2.9)

=1

Define ¢, := Zf 1 ¢(@). To prove our claim, we show by induction that for all 1 <k < n—1,
it holds that
Te(IT]) (]) < d Te(Tp). (2.10)

Note that the case k = n — 1 is in particular the case we are interested in.
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For the base case, let k& = 1. Consider first the Schmidt cut of |¢) at qudit 1, i.e.
) = S, arfg)|e), for [¥) € CF and |¢;) € (C)®L. Then, recalling that o) =
S a2[eh) ()] @ [¢:) (@], we have by Lemma 2.7 that

Te(ITe) (v]) < d*DTe(I1pD), (2.11)

as desired.

For the inductive step, assume the inductive hypothesis holds for some 1 < k <n — 2.
We prove the claim holds for £+ 1. Note that by Equation (2.10), which holds due to the
induction hypothesis for our specific value of k, it suffices to show that

Tr(p®)) < det+DTy(TTp¢*+0), (2.12)

since dsTeF+1) = g1 To show this holds, consider the ith term in Equation (2.9),
W (Wl @ -+ @ [0F)(F| @ |¢i) (¢, for arbitrary 1 < i < d*. Observe this term satisfies
the preconditions for Corollary 2.8 with m = k. Hence, via Corollary 2.8 there exists a
state o; acting on qudits {k + 1,...,n} such that

Te(T ) (i | @ - @ [0F)(0f]| @ |¢a)(@al) < dHDTe(TT|ob ) (0 | @ -+~ @ |5 ) (oF | @ o).

(2.13)
Moreover, since o; in Corollary 2.8 is obtained via the Mixing Lemma (Lemma 2.7), by
linearity we can express p(k“) as

dk
P =3 adlul) (il @ ® [Uf) (UF] @ o (2.14)
i=1
We conclude by linearity that Equation (2.12) holds, completing the proof. O

With Theorem 2.9 in hand, we can now show Theorem 2.2, i.e. that product states
achieve approximation ratio 1/d*~1.

Proof. (Theorem 2.2) Simply apply Theorem 2.9 to each projector in the spectral de-
compositions of each (positive semidefinite) H; in our MAX-k-local Hamiltonian instance
H =%, H;, and let |¢)) denote the optimal assignment for H. It is important to note
that we can exploit Theorem 2.9 in this fashion due to the fact that the p constructed by
Theorem 2.9 is independent of the projector II — i.e. for any fixed |¢)) and k, the state
p provides the same approximation ratio against any k-local projector II encountered in
the spectral decompositions of the H;. Finally, note that one can find a pure product
state achieving this approximation guarantee since p is a convex mixture of pure product
states. [

70



Upper bound of d-13) for product state approximations. Is the result of Theo-
rem 2.2 tight? In the case of MAX-2-local Hamiltonian on qudits, yes — consider a single
clause projecting onto the maximally entangled state \/Lg >, i), for which a product state
achieves value at most 1/d. On the other hand, for MAX-3-local Hamiltonian on qubits,
the worst case clause for a 3-qubit product state assignment is the projector onto the state
W) = \%(\001) +010) 4 |[100)) [233]. But here product states achieve value 4/9 [252],

implying the bound of 1/4 from Theorem 2.2 is not tight.

An upper bound on the true optimal ratio of 8&%/(2%) is implied by Theorem 2 of [120)]
for the case where d = 2 and k > 11. For general d and k, a simple construction shows
that the optimal ratio is upper bounded by d-L3). To see this, consider a single clause
which is the tensor product of maximally entangled bipartite states (for odd k, we assume
the odd qudit out projects onto the identity). For example, for n = 4, consider the clause
o) (o7 @ |pT) (T, where [pT) = \%(|OO> + |11)). The maximum value a product state
can attain is 1/4, as claimed. In the qubit setting (d = 2), one can further improve this
construction for odd k by replacing the term |¢p)(¢"| ® I on the last three qubits with
|W)(W|. For example, for k = 5, setting our instance to be the clause |¢T){(¢1| @ |[W)(W|
yields an upper bound of (1/2)(4/9) = 2/9 < 1/4 = d~'2} (where we again use the value
4/9 for |W) from the previous paragraph). For general odd k& > 1, this improved bound
generalizes to 272 /9.

2.3 Optimizing over the set of separable states

Section 2.2 showed that there always exists a product state assignment achieving a certain
non-trivial approximation ratio. In this section, we show how to efficiently find such a
product state. Our main theorem of this section is the following (Theorem 2.10), from
which Theorem 2.4 follows easily (see discussion at end of Section 2.3.3). As the proofs
and full notation of this section are rather dense, we first discuss our results below using
simplified notation and without proofs. Full proofs and technical details are deferred to
Section 2.4.

Theorem 2.10. Let H be an instance of MAX-k-local Hamiltonian acting on n qudits,
and let OPTp denote the optimum value of Tr(Hp) over all product states p € D((C?)®").
Then, for any fized € > 0, there exists a polynomial time (deterministic) algorithm which
outputs py @ - -+ ® p, € D((CH®") such that Tr(Hp @ -+ ® p,) > OPTp — en”.

We first outline our approach by generalizing the discussion in Section 2.1, introducing
tools and notation we will require along the way. The optimal value OPTp over prod-
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uct state assignments for any MAX-k-local Hamiltonian instance can be expressed as the
following program, denoted P;:

OPTp = max Z Te(Hiy ipi @ - ®@pi) st pi =0 and Tr(p;) =1 for 1 <i <mn.

(2.15)

As done in Equation (2.3), we now recursively decompose our objective function as a
sequence of nested sums. Let {O’i};il be a Hermitian orthogonal basis for the set of Her-
mitian operators acting on C¢, such that Tr(c;0;) = 26;; (for §;; the Kroenecker delta).
(See, e.g. [169], or Equations (6.5), (6.6), and (6.7) for an explicit construction of such
basis elements. We remark that there is nothing special about the normalization factor of
2 in the term 20;; above; this value is simply consistent with the specific basis construction
we have chosen to employ, which generalizes the Pauli basis for a qubit system.) Then, by
rewriting each H;, _; in terms of {ai}?il, our objective function becomes

iTr

ik""yil

d2
( > réiztiizé’;ajk@---@aﬁ) P ® - ® pyy| =

Jks--J1=1

> T (Zréizizizﬁaﬁ) p)” ,
i J1

(2.16)

Z Tr(ajkpik) Z Tr(ajk_lpik_l) [ ..

Uk, Jk U—1,Jk—1

where each rit--# € R%. We henceforth think of the objective function above as a “degree-
k inner product”, i.e. as a sequence of k nested sums involving inner products, in analogy
to the degree-k polynomials of Reference [28]. In this sense, a degree-1 inner product
would refer to only the innermost sums over i; and j;, and a degree-k inner product would
denote the entire expression in Equation (2.16). More formally, we denote a degree-b inner
product for 1 < b < k using map #, : H(C?)*" — R, defined such that

to(p1y .-y pn) == Z Tr(oj,pi,) [ - Z Tr ((Z r;i:::'_:é-’zajl) pi1> ” . (2.17)

5,7
Note that t, implicitly depends on parameters i1, ...,4% and jpi1,..., k- (See the be-
ginning of Section 2.4 for more elaborate notation used in the proofs of the claims of
Section 2.3.)

Our approach is to “linearize” the objective function of P; using exhaustive sampling
and recursion to estimate its degree-(k — 1) inner products. To do so, we require the
Sampling Lemma.
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Lemma 2.11 (Sampling Lemma [28]). Let (a;) be a sequence of n real numbers with
la;| < M foralli, and let f,g > 0. If we choose a multiset of s = glogn of the a; at random

(with replacement), then their sum q satisfies ), a; — nM\/g <gx <y at nM\/%
with probability at least 1 —n~7.

The proof of Lemma 2.11 follows from a simple application of the Hoffding bound [1412].
To use the Sampling Lemma in conjunction with exhaustive sampling, we discretize the
space of 1-qudit density operators using a é-net G C H(C?), such that for all p € D(C?),
there exists o € G such that || p — o || < . We now show how to construct G.

To obtain G, we instead construct a d-net for a subset of H(C¢%) which contains D(C?),
namely the set A(C?) := {A € H(C?) | max;;|A(i,j)| < 1}. (Note: A net over A(C?)
may allow non-positive assignments for a qudit. See Section 2.3.3 for why this is of no
consequence.) Creating a d-net over A(CY) is simple: we cast a (§/d)-net over the unit
disk for each of the complex d(d —1)/2 matrix entries above the diagonal, and likewise over
[—1,1] for the entries on the diagonal. Letting m and n denote the minimum number of
points required to create such (§/d)-nets for each of the diagonal and off-diagonal entries,
respectively, we have that |G| = m™ 5 nd. For example, simple nets of size m ~ d/J
and n =~ d?/6* can be obtained by placing a 1D and 2D grid over [—1,1] and the length
2 square in the complex plane centered at (0,0), respectively, implying |G| € O(1) when
d € O(1). To show that G is indeed a d-net, we now bound the Frobenius distance between
arbitrary p € D(C?) and the closest p € G. (We use the Frobenius norm as it allows a
simple analysis. Below, one could also consider the [, norm bound || A||_ < §/d, where
in this context || A|| = max;; |A(4, j)|). Specifically, let A := p — p. Then:

|Alle = VEAA = [S1AGIE < [0/ =50 =6 (@1

Finally, we remark that our dense assumption on MAX-k-local Hamiltonian instances
is only necessary to convert the absolute error of Theorem 2.10 to a relative one (this
conversion is detailed in Section 2.3.3). A dense assumption is not needed to apply the
Sampling Lemma: Specifically, observe that Lemma 2.11 assumes there are n terms in
the sum to be estimated, and that we are able to determine s of them. Looking back
at Equation (2.1) and considering, say, qudit ¢, if we wish to use the Sampling Lemma
to estimate the inner sum over neighbours N(i) of i, we might run into a problem if i
does not have O(n) neighbours. To circumvent this [25], observe that Lemma 2.11 only
gives us an estimate to within f+en. Thus, if N(i) < en/10 (say), then we do not use
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the Sampling Lemma, but rather let our estimate be simply 0, which is guaranteed to fall
within the desired error bounds (observe an estimate of 0 does not necessarily work, on
the other hand, if N(7) is large (say N(i) = n — 1), since typically f/g < 1). Throughout
the remainder of our discussion, we assume this cutoff principle is implicitly present when
employing Lemma 2.11.

The remaining sections of this chapter are organized as follows: In Section 2.3.1, we
show how to recursively estimate degree-b inner products using the Sampling Lemma. We
then use this estimation technique in Section 2.3.2 to linearize our optimization problem
Py,. Section 2.3.3 brings everything together by presenting and analyzing the complete
approximation algorithm. All technical proofs are found in Section 2.4.

2.3.1 Estimating degree-b inner products via sampling

Our recursive procedure, EVAL, for estimating a degree-b inner product using the Sampling
Lemma is stated as Algorithm 2.12. There are two sources of error we must analyze: the
Sampling Lemma, and our d-net over C?. We claim that EVAL estimates the degree-b
inner product t,(p1, ..., pn) to within additive error 4e,n® where ¢, is defined as follows.

Set A :=+/2d(1 + 6), for § from our d-net. Then,

6 = d> ( §+5> (AAb__11>. (2.19)

The following lemma formalizes this claim. We adopt the convention of [28] and let € y£z
denote x € [y — 2,y + z]. Algorithm 2.12 is our operator analogue of the algorithm Ewval
in Section 3.3 of [28].

Lemma 2.13. Let tj, : H(C*)*" — R be defined using set {Hy, i} C H(CH®*) (as
in Equation (2.16)). Let S C {1,...,n} such that |S| = glogn have its elements chosen
uniformly at random with replacement. Let py,...,p, € D(C?) be some assignment on
all n qudits, and {p; :i € S} a set of elements in our 6-net such that || p; — pillp < 9
for all i € S. Then, for 1 < b < k, with probability at least 1 — d**n*=f, we have
EVAL(ty, S, {pi : i € S}) € ty(p1, ..., pu) T n®, where €, is defined as in Equation (2.19).

2.3.2 Linearizing our optimization problem

Our procedure, LINEARIZE, for “linearizing” the objective function of P; using EVAL
from Section 2.3.1 is stated as Algorithm 2.14. Algorithm 2.14 takes as input P, and
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Algorithm 2.12. EVAL(¢t,, S, {p;: i€ S}).

e Input: (1) A degree-b inner product t, : H(C4)*" — R for 1 <b< k
(2) A subset S C {1,...,n} of size |[S| = O(logn)
(3) Sample points {p; : ¢ € S} such that || p; — pi||p <0 forallie S

e Output: z € R such that z € t,(p1, ..., pn) T en® (for €, defined in Equation (2.19)).

1. (Base Case) If b = 1, return 5 D ies I ((Zle rﬁ::::’é‘;q& pi1>. (Note this return
value depends on 19, ..., 1, J2, - - ., jr, Which are assumed to have a fixed value in the
current recursive call to EVALL.)

2. (Recurse) Foralli € Sandj=1...d>% set e;; = EVAL(ty |, S, {pi :i € S}), where
t7 | is the term to the right of Tr(o;,p;,) in Equation (2.17).

n a? N
3. Return K ZieS ijl Tr(ojpi)e,-j].

a set of sample points {p;}, and outputs a semidefinite program (SDP) which we shall
henceforth refer to as P,. We remark that LINEARIZE is our version of the procedure
Linearize in Section 3.4 of [28], extended to the setting of operators and a more complex
error structure. Although LINEARIZE is presented as linearizing an objective function
here, the same techniques straightforwardly apply in linearizing constraints involving high-
degree inner products.

We remark that the linear constraints output on each recursive call on line 3(b) of
Algorithm 2.14 ensure the approximate consistency with our estimates from EVAL for any
solution to P, as well as play a crucial role in bounding how good of an approximation P,
yields to P;.

To prove correctness of our final approximation algorithm, we require the following two
important lemmas regarding P,. The first shows that any feasible solution (pi,..., ps)
for P, consistent with the sample set {p; : i € S} fed into LINEARIZE is also a feasible
solution for P, with high probability.

Lemma 2.15. Let t;,, assignment (p1,...,pn), S, and {p; : i € S} be defined as in Lemma
2.13. Then, for any f,g > 0, calling LINEARIZE with parameters t, {p; :i € S}, and
€ = e (for e defined in Equation (2.19)) yields an SDP P, for which the assignment
{p1,...,pn} is feasible with probability at least 1 — d*n*=/.
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Algorithm 2.14. LINEARIZE( ¢, , N, S, {p; :i € S}, ¢, U, L).

e Input: (1) A degree-b inner product ¢, : H(C4)*" — R for 1 < b < k.

2) A set of linear constraints N (e.g. “p; = 07).

3) A subset S C {1,...,n} of size |S| = O(logn).

4) Sample points {p;:i € S} consistent with some feasible solution
(p1,...,pn) for Py such that || p; — p;i ||p < dforallie S.

(5) An error parameter € > 0.

(6) (Optional) upper and lower bounds U, L € R. If U and L are not provided,
we assume U, L = 0.

(
(
(
(

e Output: (1) (Optional) A linear objective function f : (£L(C?%))*" — R.
(2) An updated set of linear constraints, N

1. (Base case) If b = 1, then
(a) (Trivial: Initial objective function was linear) If U = L = oo, return [t, NJ.
(b) (Reached bottom of recursion) Else, return [N U {“L < ty(p1,...,pn) < U”}.
2. (Recursive case) Fori=1...nand j =1...d* do
(a) Set e;; := EVAL(t; |, S,{p;i : i € S}).
(b) Set ¢ :=¢— d2 <\/§+ (5) APt for A defined in Equation (2.19).
(c) Set l;; :==e;; — e'nb*} and u;; := e;; + en® L.
(d) Call LINEARIZE(tY |\ N, S, {p; : i € S}, €, uij, i)
3. (a) (Entire computation done) If U = L = oo, return [Zw Tr(ajpz-)eij,/\/'].
(b) (Recursive call done) Else, return
[./\/'U {“L —ddPn® <3 Tr(opi)e; < U+ e’dznb”H.

The second lemma is a bound on how far the optimal solution of P, is from the optimal
solution for P;. We adopt the convention of [28] and write [z,y| £ 2z to denote interval
[z — 2,y + 2]

Lemma 2.16. Let OPTp be the optimal value for Py, obtained by assignment p°FTr =
(P, ..., pPY).  Let assignment {p;}i_, = {pz’pt}?zl, S, and {p; :i € S} be defined as
in Lemma 2.13. Let Py denote the SDP obtained by calling LINEARIZE with S, and
denote by €, for 1 < m < k the error parameter passed with map t,, into a (possibly

recursive) call to LINEARIZE. Then, letting OPTy denote the optimal value of Py, we
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Algorithm 2.17. APPROXIMATE( H , € ).

e Input: (1) A k-local Hamiltonian H =},
(2) An error parameter € > 0.

e Output: A product assignment p; ® - -+ ® p, that with probability at least 1/2, has
value at least OPTp — en®, for OPTp the optimal value for H over all
product state assignments.

1. Set eqqp := €/10.

2. Define h : R — R such that for any error parameter € input to LINEARIZE, h(e)n*
is the absolute value of the bound on additive error given by Lemma 2.16. Then,
define € implicitly so that h(€') + £gp = € holds.

3. Define constant f such that 1 — d**n*~/ > 1/2.

4. Define constants g and ¢ implicitly so that € = d2 <\/§ + 5) (%), for A defined
in Equation (2.19).

5. Choose glogn indices S C {1,...,n} independently and uniformly at random.

6. For each possible assignment ¢ from our d-net to the qudits in S:

(a) Call LINEARIZE(t, {P\’s constraints}, S, 1, ¢') to obtain SDP Pj.
(b) Let a; denote the value of P; obtained by substituting in the optimal solution
of Pj.

7. Return the assignment corresponding to the maximum over all ;.

have with probability at least 1 — d**n*=f (for parameters set as in Lemma 2.15) that
OPT, € OPTp £ d(d + v/2) [Zﬁ;ll(\/ﬁd)k*kmem] 0k,

2.3.3 The final algorithm

We finally present our approximation algorithm, APPROXIMATE (Algorithm 2.17), in its
entirety, which exploits our ability to linearize P; using LINEARIZE (Algorithm 2.14). This
proves Theorem 2.10, which in turn implies Theorem 2.4. We first clarify a few points about
APPROXIMATE, then analyze its runtime, and follow with further discussion, including
the algorithm’s derandomization and a proof that dense MAX-k-local Hamiltonian remains
QMA-hard.
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We begin by explaining the rationale behind the constants in Algorithm 2.17. The
constant ey, is the additive error incurred when solving an SDP [121]. We choose € so
that after running LINEARIZE and solving Py, the total additive error is at most ¢, as
desired. We choose f to ensure the probability of success is at least 1/2. Finally, we set g
large enough and § (for our d-net) small enough to ensure that ¢’ matches the error bounds
for EVAL in Lemma 2.13.

We now analyze the runtime of Algorithm 2.17. Let |G| denote the size of our d-net
G for a qudit. Then, for each of the |G|?'*®" iterations of line 6, we first take O(n*1)
time to run LINEARIZE, outputting O(n*~!) new linear constraints (seen via a simple
inductive argument). We then solve SDP Pj, which can be done in time polynomial in
n and log(1/esqp) using the ellipsoid method [121] (see, e.g., [219]). Let r(n,esp) denote
the maximum runtime required to solve any of the P;. Then, the overall runtime for
Algorithm 2.17 is O(n9el¢(n*=1 4 r(n,eup))), which is polynomial in n for €,d,k €
O(1) (recall from Section 2.3 that |G| € O((%)?), and that 0 and g are constant in our
setting). Note that, due to the implicit dependence of g on €, this runtime scales at least
exponentially with varying e.

Before moving to further discussion, we make two remarks. First, one can efficiently
convert the output of Algorithm 2.17 to a pure state with the same guarantee by adapting
the standard classical method of conditional expectations [236]. To demonstrate, suppose
{pi} is output by Algorithm 2.17. Then, set p} to be the eigenvector |¢;)(¢;| of p; for
which the assignment [1);) (1| ® po @ - - ® p,, performs best for P;. (If the spectrum of p; is
degenerate, begin by fixing an arbitrary choice of spectral decomposition for p;.) Let our
new assignment be p] ® ps ® - - - ® p,. Now repeat for each p; for 2 < i < n. The final state
Py ® - ® pl, is pure, and by convexity is guaranteed to perform as well as p; ® - -+ ® p,.

Second, recall from Section 2.3 that we constructed a d-net over a space larger than
D(C?), allowing possibly non-positive assignments for a qudit. We now see that this is of
no consequence, since regardless of which samples (positive or not) we use to derive our
estimates with the Sampling Lemma, any feasible solution to Pi in Algorithm 2.17 is a
valid assignment for P;. Moreover, we know that for each optimal p; for P;, there must
be some operator (positive or not) within distance 0 in our net, ensuring our estimates
obtained using the Sampling Lemma are within our error bounds.

Converting the absolute error of Algorithm 2.17 into relative error. To convert
the absolute error +en* of Algorithm 2.17 into a relative error of 1 — € for any €, define
constant ¢ such that en” is the value obtained for a MAX-k-local Hamiltonian instance
by choosing the maximally mixed assignment [/d" (analogous to a classical random as-
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signment). Since I/d" can be written as a mixture of computational basis states, we have
OPTp > cnk. Tt follows that by setting € = ce’, Algorithm 2.17 returns an assignment with
value at least OPTp — cen* > OPTp — €OPTp > OPTp(1 — ), as desired.

Derandomizing Algorithm 2.17. The source of randomness in our algorithm is Lemma
2.11. By a standard argument in [28] (see also [12, 41]), this randomness can be eliminated
with only polynomial overhead. Specifically, we replace the random selection of glogn
indices in the Sampling Lemma with the set of indices encountered on a random walk of
length O(glogn) along a constant degree expander [113]. Since the expander has constant
degree, we can efficiently deterministically iterate through all n© such walks, and since
such a walk works with probability 1/n°%), at least one walk will work for all poly(n)
sampling experiments we wish to run.

QMA-hardness of dense MAX-k-local Hamiltonian. It is easy to see that (exact)
MAX-2-local Hamiltonian remains QMA-hard for dense instances (a similar statement
holds for MAX-2-SAT [28]). For any MAX-2-local Hamiltonian instance with optimal value
OPT, we simply add n qudits, between any two of which we place the constraint |[00)(00|
(no constraints are necessary between old and new qudits). Then, the new Hamiltonian
has optimal value OPT + (Z), making it dense, and the ability to solve this new instance
implies the ability to solve the original one. The argument extends straightforwardly to
MAX-k-local Hamiltonian for k > 2.

2.4 Further technical details and proofs

We now prove our claims in Section 2.3. For this, we first require expanding on the notation
we have set thus far.

Expanded Notation. We now expand on our previous notation for analyzing Equa-
tion (2.16) in order to facilitate proofs of the claims in Section 2.3. First, to recursively
analyze a clause H;, ;. C H((CH®), let H, € H((C?)*?) for any 1 < b < k denote the
action of H;, , restricted to the first b of its k target qudits, i.e.

ik

d2
- — il?"'vik )
Hb T Z 74]‘1,...,j;ga-jb K& O3y - (220)
jb""7j1:1

79



For example, H; = Ele rﬁ::::?’;oﬁ and Hy, = H;, ;. Note that H}, implicitly depends on
variables i1, ..., %k, Joa1, - - -, Ji- Lo reduce clutter, however, our notation does not explicitly
denote this dependence unless necessary. Next, to recursively analyze a degree-a inner
product, we define t,; : H(C?)*" — R for any 0 < a < k and 1 < b < k such that

n

tap(p1, -y pn) = Z Tr (Hzl""’ik/)ib Q- ® Pz’1) (2.21)

fay.i1=1

(where setting @ = 0 eliminates the sum over indices 7). For example, t;; is our full
“degree-k” objective function in Equation (2.15), and more generally, t,, is the degree-b
inner product in Equation (2.16). Allowing different values for a and b greatly eases our
technical analysis. We use the shorthand ¢, to denote ¢, and again only explicitly denote
the dependence of ¢,; on parameters i441,...,% and jy+1,...,Jr when necessary.

We now state and prove a technical lemma required for the remainder of our proofs
here.

Lemma 2.18. Let {p;}I_, C H(C?). For {H,, ..} € H(CY) any MAX-k-local Hamilto-
nian instance with decomposition for the H;, . ;. as giwen in Equation (2.16), we have for
any 0 <a <k and1l <b<kthat |tap(p1,-..,pn)| < (maxib,_,m I i, Ig = |l pia ||F) dsne.

Proof. By the triangle inequality and the Hélder inequality for Schatten p-norms (see
Section 1.3), we have

n n

tasl = | D Tr(Hps, @ @p) < D> [ Hlplpy®--pi |l (2.22)
Gayenil=1 Gayenir=1
< (max ol lonlle) 3 18l

fayir =1
where we have used the fact that | A® By = || Allg|| Bl for all A, B € £L(C?). If we
can now show that || H, || < || Hg ||p for all 1 < b < k, then we would be done since we
would have > || Hyllp < || Hy [[pn® < d2n®, where || Hy e < d? since || Hy, |l < 1by
definition. Indeed, we claim that for any fixed 1 < b < k, we have || Hy || < 23" || H, e

To see this, note by straightforward expansion of the Frobenius norm and the fact that
TI'(OiO'j) = 251] that

|l =/ Te() = 28 [ 37 (rie)? < 28 [t | = 25 (28 || aniv )

Jbse-sJke

(2.23)

80



where rit % is the coordinate vector of H;, ., from Equation (2.16). Note, however, then
for b = k, the inequality in the chain above is an equality, and so || Hy ||p = 22 || x5 ||,
Substituting this into the chain above completes the proof of our claim. O

We now prove our claims of Section 2.3.

Proof of Lemma 2.13. We first derive the error bound of ¢,, and subsequently prove
the probability bound. We follow [28], and proceed by induction on b. For the base case
b= 1, EVAL(H,, S,{p; : i € S}) attempts to estimate

ti(pry s pn) = Z [Z ok Tr(ajlpil>] (2.24)

1 J1

using our flawed sample points {p; : © € S}. To analyze the error of its output, assume
first that our sample points are exact, i.e. p; = p; for all ¢ € S. Then, by setting “a;” in
Lemma 2.11 to g for i = iy, and by using Lemma 2.18 with parameters a = 0 and b = 1

to obtain upper bound M = dg, we have by the Sampling Lemma that (with probability
at least 1 —n~7)

Z [Z “’ ’lkTr(Ujlpm)] Etl(pl,.--,pn)idg\/gn‘ (2.25)

11 es

(Recall that the notation x € y + 2 means here = € [y — z,y + z|.) This bound holds if we
sum over exact sample points. If we instead sum over flawed sample points {p; : i € S},
the additional error is bounded by -3 7S] times

Z [Z’f’“’ ’ZkTr Ujl le 1521))]‘ S Z fo’“’ 7ZkTI' 0]1 Pll ,521)) (226)
i1ES nes | g
- k
< > lpn =i llpd) (2.27)
11ES

where the second inequality uses Lemma 2.18 with parameters a = 0 and b = 1 and the
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promise of our d-net. We conclude for the base case that, as desired,

~ . n T -
EVAL(Hy, S, {p; i€ 8S}) = @Z[Z% ,,,,, jkTr(Ujlpil)] (2.29)
i1€S

€ tilpr,....pp) £d2 <\/§+5> n. (2.30)

Assume now that the inductive hypothesis holds for 1 < m < b—1. We prove the claim
for m = b. To do so, suppose first that the recursive calls on line 1(b) of Algorithm 2.12
return the ezact values of t;! ,(p1,...,p,), and that we have exact samples {p; : i € S}.

Then, since by calling Lemma 2.18 with a = b — 1 we have ‘Z] Tr(ojp)ty L (p1s .-y pn)| <

+ dg Znb,
g

(2.31)
To first adjust for using flawed samples, observe that an analogous calculation to Equa-
tion (2.28) yields ‘|S| Y ics [Z Tr(o;(pi — pi)) ‘ < d26nb, where we have called Lemma 2.18
with @ = b — 1. Thus, using flawed samples, the output of Algorithm 2.12 satisfies

Z > Tr(oipit 1] EZ ZTr o)t | +d? <\/§+6> n. (2.32)

1€S 7
To next drop the assumption that our estimates e;; on line 1(b) are exact, apply the
induction hypothesis to conclude that e;; € t,7 (p1,. .., pn) £ 610", Then,

’ Z ZTI“ (0pi) e”] € |—g| Z ZTr(ajﬁ,-j) (tzj_l + €b_1nb_1)

dgnbfl, it follows by the Sampling Lemma that

EDY

€S

ZTI" 0;pPi tb 1 pla s 7pn)] € Z ZTY<O—jpi)téj_1<pla s 7pn>

J =1Ly

€S J €S L J
n €b 1”
O ITH IS wibeto]
1€S €S Lj=1

ZTr 0Pt ieb,lx/id(1+5)nb, (2.33)

N
Sk
'M
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where the last statement follows since

d? d? d? d?
ST E S O D S )| B SUNEVIEENETIRR)
j=1 j=1 m=1 m=1

(2.34)
where T denotes the coordinate vector of p; with respect to basis {o,,}, and we have used
the facts that Tr(o,0;) = 28;;, that || x|, < Vd| x|, for x € C%, that || p; ||z = V2| T |,
for any p; € H(C?), and that || p; ||z < 1+ (which follows from our d-net and the triangle
inequality). Thus, recalling that A = v/2d(1 + ) and substituting Equation (2.32) into

Equation (2.33), we have that
dz <\/z+ 5) LA
g

n
5 2=
We hence have the recurrence relation ¢, < ds (\/g + 5> + €14, which when unrolled

€S
yields
o [ f ! ay Ab -1
a<ds (=40 A" =ds (L 46 ( ) 2.36
b ( g )% < 9 ) A-1 (239

as desired. This concludes the proof of the error bound.

n?. (2.35)

Z Tr(Ujﬁi)eij] € ty(pry---,pn) £

J

To prove the probability bound, we show a stronger bound of 1 — (an;lo d>"n™)n=/ by
induction on b. The base case b = 1 follows directly from our application of the Sampling
Lemma in Equation (2.25). For the inductive step, define for brevity of notation v := d?n,
and apply the induction hypothesis to line 1(b) of Algorithm 2.12 to conclude that each
of the ~ calls to EVAL fails will probability at most (an;zo 4™n~/. Then, by the union
bound, the probability that at least one call fails is at most (an;ll v™n~/. Similarly, since
our application of the Sampling Lemma in line 2 of Algorithm 2.12 fails with probability at

most n~/, we arrive at our claimed stronger bound of 1 — (an;lo fym> n~/, as desired. O

Proof of Lemma 2.15. We begin by observing that if one sets € = ¢, then the value of
¢’ in line 2(b) of Algorithm 2.14 is precisely €;_;, and more generally, the € passed into the
recursive call of line 2(e) on ¢, for any 1 < b < k is ¢,. Now, focus on some recursive call on
tp for b > 1 (the case of b = 1 is straightforward by Lemma 2.13). If the estimates e;; in line
2(a) succeed, then by Lemma 2.13, we know that e;; € t7 (p1, ..., pn) £ 1!, implying
tZJ_ L(p1s- -, pn) € [lij, uij]. Now, l;; and u;; are only incorporated into linear constraints in
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recursive calls on t;f_ 1, yielding constraints of the form

Livjy = €p—2d™n"™ < T, piy )€y iy S Uiy + €0—2d’n" (2.37)
Tp—1,Jb—1
But {p1, ..., pn} must now satisfy this constraint, since recall
tb*l(pla cee 7pn) = Z TI'(O'Jb 1pzb 1)tlb 16— 1(p1, . ,pn), (238)
Tp—1,Jb—1

and there are d?n terms e;, ;,_, in Equation (2.37) each yielding an additional error of at

b—2 ip— 1]b 1

most €,_on’~? (assuming EVAL succeeded on ¢, in line 2(a)) above and beyond the

bounds (o1, ..., pn) € [lij, uij] we established above.

We conclude that if, for all b, i, and j, EVAL succeeds in producing estimates e;/ 9 then
{p1,.-.,pn} is a feasible solution for P,, as desired. The probability of this happemng
is, by the proof of Lemma 2.13, at least 1 — d**n*~/, since EVAL recursively estimates
precisely the same terms during its execution®. O

Proof of Lemma 2.16. We begin by proving that for any recursive call to LINEARIZE
on t, with valid upper and lower bounds U and L (i.e. U, L # o0), respectively, we have
for any feasible solution (p1, ..., p,) to Py that

b—1
ty(p1s- -, pn) € [L, U] £ d(d + V2) [Z(x/id)b—l—mem] n’. (2.39)

We prove this by induction on b, following [28]. For base case b = 1, the claim is trivial
by line 1(b) of the algorithm. Now, assume by induction hypothesis that

b—2
7 (p1y s pn) € [l wiy) £ d(d+ V/2) [Z (V2d)b=2"me ]nb_l. (2.40)
m=1

By substituting the values of /;; and u;; from line 2(c), we have

b—2

t 1 (p1, -, pn) € €3 £ (d(d +V?2) [Z(ﬁd)b_Q_mﬁm

m=1

+ eb_1> n®=t, (2.41)

IThis holds even though on line 1 of Algorithm 2.12, we only estimate d? | S| of the terms e;; (i.e. EVAL
does not actually estimate all terms in the recursive decomposition of ¢, as it does not need to) — this is
because in our analysis of the probability bound for Algorithm 2.12, we actually produced a looser bound
by assuming all n terms e;; are estimated.
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We conclude that

th(pr, ..., pn) = Z Tr(ajpi)ty 1 (p1y- - pn) (2.42)
C ZTr(o—jpi)eij + (2.43)
(d(d+ V2) [bz_j(\/id)“mem + ebl) ZTr(ajpi)] n’l (2.44)
c X e
ﬂd( d(d +V/2) gx/_demem +ey 1) b (2.45)
C [[L,U] £ ep_1d*n®] +\/§d< d(d+V?2) S (V2d)" e, | + 6 1>

m=1

C [L,U] +d(d+V?2)

Zfd“m ]nb, (2.46)

m=1

where the third statement follows from a calculation similar to Equation (2.34), and the
fourth statement from line 3(b) of Algorithm 2.14. This proves the claim of Equation (2.39).

To complete the proof of Lemma 2.16, observe that by Lemma 2.15, the assignment p°P*
is feasible for P, with probability at least 1 — d?*n*=/. Thus, plugging p°P* into each of the
d?n linear constraints produced by the recursive calls to LINEARIZE on each tk 1» we have
by Equations (2.39) and (2.45) that (with probability 1 — d®*n*=7/) for OPTp = t,,(p°?"),

t(p™) = ZTr (0302 14 (") (247)

> Tr(op™ ey T k- 1)
i

k—
C OPT,+d(d+ v?2) Zfd’“m ]nk (2.48)

k—2

\/_<d+\/_[ (V2d) =",

N

m=1

where the last statement follows since p°P* is not necessarily the optimal solution to P,. [
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Chapter 3

Hardness of approximation for
quantum problems

This chapter is based on [109]:

S. Gharibian and J. Kempe. Hardness of approximation for quantum problems. In Proceed-
ings of 39th International Colloquium on Automata, Languages and Programming, pages
387-398, 2012, DOI: 10.1007/978-3-642-31594-7, (©) 2012 Springer, www.springerlink.com.

The polynomial hierarchy plays a central role in classical complexity theory. In this chapter,
we define a quantum generalization of the polynomial hierarchy, and initiate its study. We
show that not only are there natural complete problems for the second level of this quantum
hierarchy, but that these problems are in fact hard to approximate. Using these techniques,
we also obtain hardness of approximation for the class QCMA. Our approach is based on
the use of dispersers, and is inspired by the classical results of Umans regarding hardness
of approximation for the second level of the classical polynomial hierarchy [235]. We close
the chapter by showing that two variants of the local Hamiltonian problem with hybrid
classical-quantum ground states are complete and hard to approximate for the second level
of our quantum hierarchy, respectively.

3.1 Introduction and results

Over the last decades, the Polynomial Hierarchy (PH) [193], a natural generalization of
the class NP, has been the focus of much study in classical computational complexity. Of
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particular interest is the second level of PH, denoted Y5. Here, we say a problem is in 3
if it has an efficient verifier with the property that for any YES instance z € {0,1}" of
the problem, there exists a polynomial length proof y such that for all polynomial length
proofs z, the verifier accepts z, y and z. Note that the alternation from an existential
quantifier over y to a for-all quantifier over z is crucial here — keeping only the existential
quantifier reduces us to NP.

It turns out that introducing such alternating quantifiers makes X5 a powerful class
believed to be beyond NP. For example, there exist natural and important problems known
to be in X5 but not in NP. Such problems range from “does the optimal assignment to
a 3SAT instance satisfy exactly k clauses?” to practically relevant problems related to
circuit minimization, such as “given a boolean formula C' in Disjunctive Normal Form
(DNF), what is the smallest DNF formula C’ equivalent to C?” (see, e.g. [235]). The
study of 3% has also led to a host of other fundamental theoretical results, such as the
Karp-Lipton theorem, which states that NP & P,y unless PH collapses to 5. % has
even been used to prove that SAT cannot be solved simultaneously in linear time and
logarithmic space [98, 99]. For these reasons, Y5 and more generally PH have occupied a
central role in classical complexity theoretic research.

Moving to the quantum setting, the study of quantum proof systems and a natural
quantum generalization of NP, the class Quantum Merlin Arthur (QMA) [171], has been a
very active area of research over the last decade. Recall from Section 1.5.2 that a problem
is in QMA if for any YES instance of the problem, there exists a polynomial size quantum
proof convincing a quantum verifier of this fact with high probability. With the notion of
quantum proofs in mind, we thus ask the natural question: Can a quantum generalization
of X8 be defined, and what types of problems might it contain and characterize? Perhaps
surprisingly, to date there are almost no known results in this direction.

Our results: In this chapter, we introduce a quantum generalization of 3%, which we call
cq-2g, and initiate its study. Our results include cq-Yo-completeness and cq-Yo-hardness
of approximation for a number of new problems we define. Our techniques also yield hard-
ness of approximation for the complexity class known as QCMA. We now describe these
results in further detail.

Hardness of approximation for cq-Ys. To begin, we informally define cq-Y, (see
Section 3.2 for formal definitions).
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Definition 3.1 (cq-X, (informal)). A problem II is in cq-Yo if there exists an efficient
quantum verifier satisfying the following property for any input z € {0,1}":

o [fx is a YES instance of 11, then there exists a classical proofy € {0, l}pOIY(") such
that for all quantum proofs |z) € B®PY™ the verifier accepts x, y and |z) with high
probability.

e Ifx is a NO instance of 11, then for all classical proofs y € {0, 1}p01y("), there exists
a quantum proof |z) € B®PY(M) sych that the verifier rejects x, y and |z) with high
probability.

(Recall here that B := C2.) We believe this is a natural quantum generalization of 5.
Here, the prefix cq in cq-2, follows since the existential proof is classical, while the for-
all proof is quantum. One can also consider variations of this scheme such as qq-3,,
qc-3y, or cc-3y (with a quantum verifier), defined analogously. In this chapter, however,
our focus is on cq-29, as it is the natural setting for the computational problems for
which we wish to prove hardness of approximation. Note also that unlike for X5, the
definition of cq-Xs is bounded error — this is due to the use of a quantum verifier for
cq-2o. This implies, for instance, that the quantum analogue of the classically non-trivial
result BPP C X8 [227, |, i.e. BQP C cq-X,, holds trivially. Finally, one can extend the
definition of cq-Y5 to an entire hierarchy of quantum classes analogous to PH by adding
further levels of alternating quantifiers, attaining presumably different classes depending
on whether the quantifier at any particular level runs over classical or quantum proofs.

To next discuss hardness of approximation for cq-X,, we recall two classical problems
crucial to our work here. First, in the NP-complete problem SET COVER, one is given a
set of subsets {.S;} whose union covers a ground set U, and we are asked for the smallest
number of the S; whose union still covers U. If, however, the S; are represented succinctly
as the on-set! of a 3-DNF formula ¢;, we obtain a more difficult problem known as SUC-
CINCT SET COVER (SSC). SSC, along with a related problem IRREDUNDANT (IRR),
are not just NP-hard, but are YX5-complete (indeed, they are even 35-hard to approxi-
mate [235]). SSC and IRR are defined as:

Definition 3.2 (SUCCINCT SET COVER (SSC) [235]). Given a set S = {¢;} of 3-DNF
formulae such that \/,.4 ¢; is a tautology, what is the size of the smallest S' C S such that

Vies @i a tautology?

1By on-set, we mean the set of assignments which cause ¢; to be true.
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Definition 3.3 (IRREDUNDANT (IRR) [235]). Given a DNF formula ¢ = t,VtaV---Vt,,
what is the size of the smallest S C {t;};_, such that p = \/,c4t;?

Our work introduces and studies quantum generalizations of SSC and IRR. In par-
ticular, analogous to the classically important task of circuit minimization, the quantum
generalizations we define are arguably natural and related to what one might call “Hamilto-
nian minimization” — given a sum of Hermitian operators H = > . H;, what is the smallest
subset of terms { H;} whose sum approximately preserves certain spectral properties of H?
We hope that such questions may be useful to physicists in a lab who wish to simulate
the simplest Hamiltonian possible while retaining the desired characteristics of a complex
Hamiltonian involving many interactions. We remark that at a high level, the connection to
cq-2s for the task of Hamiltonian minimization is as follows: The classical existential proof
encodes the subset of terms {H;}, while the quantum for-all proof encodes complex unit
vectors which achieve certain energies against H. The problem QUANTUM SUCCINCT
SET COVER is now defined as follows.

Definition 3.4. QUANTUM SUCCINCT SET COVER (QSSC) (informal) Given a set
of local Hamiltonians {H,;} such that ), H; has smallest eigenvalue at least o, what is the
size of the smallest subset S of the H; such that ZHieS H; has smallest eigenvalue at least
a? Any subset satisfying this property is called a cover.

As defined in Section 1.5.4, a local Hamiltonian is a sum of Hermitian operators, each
of which acts non-trivially on at most & € O(1) qubits. Intuitively, the goal in QSSC is
to cover the entire Hilbert space using as few interaction terms H; as possible. Hence,
we associate the notion of a “cover” with obtaining large eigenvalues, as opposed to small
ones, making QSSC a direct quantum analogue of SSC. We remark that since SSC is a
classical constraint satisfaction problem, we believe the language of quantum constraint
satisfaction, i.e. Hamiltonian constraints, is a natural avenue for defining QSSC. Our first
result concerns QSSC, and is as follows.

Theorem 3.5. QSSC is cq-Ya-complete, and moreover is cq-Yo-hard to approrimate within
N=¢ for all € > 0, where N is the encoding size of the QSSC instance.

By hard to approximate, we mean that any problem in cq->5 can be reduced to an instance
of QSSC via a polynomial time mapping or Karp reduction such that the gap between the
sizes of the optimal cover in the YES and NO cases scales as N!~¢. In other words, it is
cq-29-hard to determine whether the smallest cover size of an arbitrary instance of QSSC
is at most g or at least ¢’ for ¢’/g € Q(N'7¢) (where ¢’ > g). We next define the problem
QUANTUM IRREDUNDANT (QIRR).
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Definition 3.6. QUANTUM IRREDUNDANT (QIRR) (informal) Given a set of suc-
cinctly described orthogonal projection operators {H;} acting on N qubits, and {c; > 0} C
R, define H := ). c;H;. Then, what is the size of the smallest subset S C {H;} such that
for H = ZHies c;H;, vectors achieving high and low energies against H continue to obtain
high and low energies against H', respectively?

Here, by a succinctly described projector, we mean a possibly non-local operator which
is the tensor product of k-local projectors for some k € O(1). This non-local structure
naturally generalizes IRR, where the DNF formula is allowed to be non-local. Our next
result is the following.

Theorem 3.7. QIRR is cq-YXo-hard to approximate within Nz—¢ for all e > 0, where N s
the encoding size of the QIRR instance.

Hardness of approximation for QCMA. The techniques from above can also be
used to show hardness of approximation for QCMA. Here, the class QCMA [22] is de-
fined as cq-Yp with the second (quantum) proof omitted, and can hence be thought of as
the first level of our “cg-hierarchy”. By defining the problem QUANTUM MONOTONE
MINIMUM SATISFYING ASSIGNMENT (QMSA) (see Section 3.5), we show:

Theorem 3.8. QMSA is QCMA-complete, and moreover is QCMA-hard to approximate
within N'7¢ for all € > 0, where N is the encoding size of the QMSA instance.

A canonical cg-Ys-complete problem. Our last results the canonical Y5-complete

problem ¥;SAT and its generalization to the quantum setting. Specifically, given a boolean
formula ¢, 3;SAT asks whether:

IxVxo3x3 - - - Vx; such that ¢(xy,x2,X3,...,%;) = 1. (3.1)

Here, we have assumed 7 is even; for odd i, the last quantifier is a 3. The terms x; are
vectors of boolean variables. For ¢ = 2, one can define a natural quantum generalization of
this problem, denoted cq->,LLH and defined in Section 3.6, using local Hamiltonians whose
ground states are tensor products of a classical string and a quantum state. We show:

Theorem 3.9. cq-2;LH is cq-Xo-complete.
Moreover, by defining an appropriate variant of cq->sLH, denoted cq->,LH-HW and also

defined in Section 3.6, where the goal is to minimize the Hamming weight of the classical
portion of the ground states mentioned above, we obtain the following result.
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Theorem 3.10. cq-2,LH-HW s cq-Yo-complete, and moreover is cq->o-hard to approxi-
mate within N*=¢ for any € > 0, for N the encoding size of the cq-XoLH-HW instance.

Proof ideas: Our proofs are inspired by the classical work of Umans [235, 219], and are
achieved in a few steps. First, we show a gap-introducing reduction from an arbitrary cq-,
problem to a problem we call QUANTUM MONOTONE MINIMUM WEIGHT WORD
(QMW) using dispersers (see e.g., [228, 232]). We then show the following gap-preserving
reductions, where <x denotes a mapping or Karp reduction:

QMW < QSSC <k QIRR . (3.2)

This yields hardness ratios of N for some € > 0. To obtain the stronger results claimed in
Section 3.1, we finally apply the gap amplification of Umans [235] and improved disperser
construction of Ta-Shma, Umans, and Zuckerman [232].

In the classical setting, Umans [235, ] used dispersers to attain hardness of approx-
imation results relative to 3% for the classical problems MMWW (the classical version of
QMW), SSC and IRR. To extend his techniques to the quantum setting, the most involved
aspects of our work are the gap-preserving reductions from QMW to QSSC to QIRR. Here,
an intricate balancing act involving carefully defined local Hamiltonian terms is needed to
construct operators with the spectral properties required for our reductions. To analyze
the resulting sums of non-commuting Hamiltonians, we require heavier machinery, such
as the specific structure of Kitaev’s local Hamiltonian construction [171], the Projection
Lemma of Kempe, Kitaev, and Regev [163], and the Geometric Lemma of Kitaev [171].

Finally, to show cq-Ys-completeness of cq-X5LH, we study the interplay between proofs
of a classical-quantum structure and Kempe and Regev’s [161] 3-local Hamiltonian con-
struction. Specifically, a careful analysis reveals that any cq-> verification circuit can be
modified in such a way that fixing the value ¢ of its classical proof register leads to an
effective Hamiltonian H.. We then study the spectrum of H, to achieve the desired result.
Moving on to cq-X,LH-HW, hardness of approximation is now attained by combining our
reduction for cq-2sLH with the result that QMW is hard to approximate.

Previous and related work: In terms of hardness of approximation, the related ques-
tion of whether a quantum PCP theorem holds is currently one of the biggest open problems
in quantum complexity theory (see, e.g., [0, 17, 206, ]). Regarding quantum generaliza-
tions of PH, the only previous work we are aware of is that of Yamakami [260]. However,
the results of Yamakami are largely unrelated to ours (for example, complete problems are
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not studied), and the proposed definition of Reference [200] differs from ours in a num-
ber of ways: It is based on quantum Turing machines (whereas we work with quantum
circuits), allows quantum inputs (whereas here, like QMA, the input to a problem is a clas-
sical string), and considers quantum quantifiers at each level of the hierarchy (whereas in
its full generality our scheme allows alternating between classical and quantum quantifiers
between levels as desired).

Significance and open questions: The classical polynomial hierarchy plays an impor-
tant role in classical complexity theory, both as a generalization of NP and as a proof
tool in itself. It is hoped that the scheme we propose here for generalizing PH to the
quantum setting will find similar applications in quantum complexity theory. Second, the
problems we show to be cq-Ys-complete here are arguably natural, and in embodying a
generalization of classical circuit minimization or optimization, may hopefully be related to
practical scenarios in a lab. Further, although the alternation between classical and quan-
tum quantifiers in cq-¥o may a priori seem odd, the notion of relating a classical proof
to, say, subsets of local Hamiltonian terms, and the quantum proof to quantum states
achieving certain energies is in itself quite natural, and in our opinion justifies the study of
such a combination of quantifiers. Third, with respect to hardness of approximation, since
whether a quantum PCP theorem holds remains a challenging open question, it is all the
more interesting that one is able to prove hardness of approximation in a quantum setting
here using an entirely different tool, namely that of dispersers. We remark that dispersers
and their two-sided analogues, extractors, have been used classically to amplify existing
PCP inapproximability results [228, ]. However, as far as we are aware, neither are
known to directly yield PCP constructions.

We leave a number of questions open: What other natural problems are complete for
cq-2g or higher levels? Can we say anything non-trivial about the relationship between
¥ and cq-22?7 How do the different classes cq-3a, qc-a, qq-22, and cc-Y, relate to
each other? Where do the quantum hierarchies obtained by extending cq->, to higher
levels sit relative to known complexity classes? We hope the answers to such questions
will help establish classes like cq-Ys as fundamental concepts in the setting of quantum
computational complexity.

Organization of this chapter: We begin in Section 3.2 by formally defining the classes
and problems studied in this chapter. In Section 3.3, we prove that QSSC and QIRR are
hard to approximate for cq->o within N¢; this is further improved in Section 3.4. Section 3.5
presents hardness of approximation results for QCMA. We close in Section 3.6 by showing
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cq-Xo-completeness of cq->sLH and cq-Ys-hardness of approximation for c¢q-X,LH-HW.

3.2 Definitions

We now define relevant classes and problems, and state lemmas which prove useful in our

analysis. Throughout our discussion, recall that B := C?, and for a set S of matrices over
C, let HS = ZHZES HZ

We begin with a formal definition of c¢q-¥5. Recall that a promise problem is a pair
A = (Ayes, Ano) such that Ay, Ao € {0,1}" and Ayes N Apo = 0.

Definition 3.11 (cq-X3). Let A = (Ayes, Ano) be a promise problem. We say that A €
cq-2g if there exist polynomially bounded functions t,c,q : N — N, and a deterministic
Turing machine M acting as follows. For every n-bit input x, M outputs in time t(n) a
description of a quantum circuit Vy, such that V,, takes in a c(n)-bit proof |c), a q(n)-qubit
proof |q), and outputs a single qubit. We say V, accepts |c)|q) if measuring its output qubit
in the computational basis yields 1. Then:

o Completeness: If v € Ayes, then 3 |c) such thatV |q), V accepts |c)|q) with probability
> 2/3.

e Soundness: If x € Ay, then ¥ |c), 3 |q) such that V, rejects |c)|q) with probability
> 2/3.

Note that the completeness and soundness parameters can be amplified to values exponen-
tially close to 1. Specifically, we use the standard approach of repeating V, polynomially
many times in parallel (see “Error reduction for QMA” in Section 1.5.2), except that we
only need one copy of the classical register C for all parallel runs. For any value ¢ placed
in C, we think of it as being “hardwired” into V., thus obtaining a quantum verification
circuit V; ., which we now apply in parallel to the many copies of the quantum proof. The
standard weak error reduction analysis for QMA now applies (see, e.g. [22]). Throughout
this chapter, we refer to this as error reduction.

We next define the terms cQMA circuit, monotone set, QMW, QSSC, and QIRR.

Definition 3.12 (cQMA circuit). Let n,m € Nt. A cQMA circuit V' is a quantum circuit
receiving n bits in an INPUT register and m qubits in a CHOICE register, and outputting
a single qubit |a). We say:
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e V accepts x € {0,1}" in INPUT if for all |y) € B®™ in CHOICE, measuring |a) in
the computational basis yields 1 with probability at least 2/3.

o V rejects x € {0,1}" in INPUT if there exists a |y) € B®™ in CHOICE such that
measuring |a) in the computational basis yields 0 with probability at least 2/3.

Definition 3.13 (Monotone set). A set S C {0,1}" is called monotone if for any x € S,
any string obtained from x by flipping one or more zeroes in x to one is also in S.

Definition 3.14 (QUANTUM MONOTONE MINIMUM WEIGHT WORD (QMW)).
Given a cCQMA circuit V' accepting ezactly a non-empty monotone set S C {0,1}", and
integer thresholds 0 < g < ¢’ < n, output:

o YES if there exists an x € {0,1}" of Hamming weight at most g accepted by V.

e NO if all x € {0,1}" of Hamming weight at most g’ are rejected by V.

Note that clearly QMW € cq-X,.

Definition 3.15 (QUANTUM SUCCINCT SET COVER (QSSC)). Let S := {H;} be a
set of b-local Hamiltonians H; acting on N qubits such that ZHies H; = ol fora > 0.
Then, given 8 € R such that o — 3 > 1 and integer thresholds 0 < g < ¢, output:

o YES if there exists 8" C S of cardinality at most g such that ZHZ_GS, H; > al.

e NO if for all S’ C S of size at most ¢, ZHieS, H; has an eigenvalue at most 3.
Any S’ satisfying the YES case is called a cover.

Note that requiring @ — € Q(1) above is without loss of generality, as any instance
of QSSC with gap 1/p(N) for p a polynomially bounded function can be modified to
obtain an equivalent instance with constant gap by multiplying each H; by p(N) [215] (see
Section 1.5.4).

Definition 3.16 (QUANTUM IRREDUNDANT (QIRR)). Given S := {c¢;H;}, where
each H; acts on N qubits and is a tensor product of 5-local orthogonal projection operators
and ¢; > 0 are real. Then, given o, € R such that o — > 1, and integer thresholds
0<g<¢, output:

o YES if there exists S' C S of cardinality at most g such that for all [¢) € B®N:
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— If Te(Hg|Y)(¥]) > a, then Tr(Hg|)(¢]) > a, and
— If Te(Hs|v)(¥]) < B, then Tr(Hg[¢)(¢]) < 5.

o NO if for all 8" C S of cardinality at most ', there exists a state |1) € BN with
Tr(Hs|p)(¥]) = a and Tr(Hg |)(0]) < 6.

Roughly, QSSC asks how many local interaction terms in a local Hamiltonian one can
discard while maintaining the value of the worst assignment. This is intended to mimic
the idea of maintaining a tautology for a 3-DNF formula in SSC classically. Analogous to
the relationship between SSC and IRR, QIRR allows possibly non-local Hamiltonian terms
so long as they have a succinct description (this generalizes the use of superconstant arity in
IRR) and are projectors up to scalar multiplication (this generalizes the requirement that
each term ¢; in IRR is an AND of variables). QIRR then asks how many interaction terms
can be discarded in a sum of such Hamiltonian terms while ensuring that any assignment
|1) achieves approximately the same value on both the original and modified Hamiltonians.

Next, the key tool enabling the creation of a gap in our reductions is a disperser (see
e.g. [228, 232]).

Definition 3.17 (Disperser). Let G = (L, R, E) be a bipartite graph with |L| = 2", |R| =
2™ and left-degree 2¢. Then, G is called a (k,€)-disperser if, for any subset L' C L of size
|L'| > 2%, L' has at least (1 — €)|R| neighbors in R. Moreover, if for any pair (v,i) for
v € L, one can compute the ith neighbor of v in time polynomaial in n, then the disperser
15 called explicit.

Finally, in this chapter we use the following useful known facts from local Hamiltonian
complexity theory. To begin, we have two lemmas used to bound the eigenvalues of a pair
of non-commuting operators. The first of these is the Geometric Lemma of Kitaev, which
we stated as Lemma 1.8 in Section 1.5.5. The second is the Projection Lemma, stated
below.

Lemma 3.18 (Kempe, Kitaev, Regev [163], Projection Lemma). Let Y =Y; + Y5 act on
Hilbert space H = S + S+ for Hamiltonians Y; and Ys. Denote the zero eigenspace of Y
as S, and assume the Yy eigenvectors in St have eigenvalue at least J > 2| Y1 ||,. Then,
for X(Y') the smallest eigenvalue of Y and Y|s := lsY g,

AW — — Ml vy <A (3.3)

=20,
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We next briefly review the elements of Kitaev’s circuit-to-Hamiltonian construction [171]
which play an important role in this chapter (see in Section 1.5.5 for an in-depth treat-
ment). Given a cq-Yq verification circuit V' = V7, ---Vj (where without loss of generality,
each V; is a one- or two-qubit unitary) acting on n proof bits (register A), m proof qubits
(register B), and p ancilla qubits (register '), recall that this construction outputs a 5-
local Hamiltonian H acting on A® B ® C' ® D, where D is a clock register consisting of L
qubits. We then have H := Hi, + Hout + Hprop + Hstab, for penalty terms as defined below:

Hin = Iap® (Z |1><1|ci) ®10){0l, (3.4)

=1
Huy = Ta®|0){0|5 @ Ioc®|L){L|p (3.5)
L
Hywop = »_ Hj, where H; is defined as (3.6)
j=1
1 N 1o+ | AU .
—Vi@ NG —1p =5V @i = 1{lp + 5L @ (Gl + 17 = 1 =)o (3.7)
L—1
Hywy = Iapc® Y [01)01]p 5 . (3.8)
=1

Above, the notation A; refers to the ith qubit of register A (similarly for B, C', D). For
any prospective proof |¢) in Tr(H|v¢)(¢|), each penalty term has the following effect on
the structure of |¢): Hj, ensures that at time zero, the ancilla register is set to zero as it
should be for V. H,y ensures that at time step L of V', measuring the output qubit causes
acceptance with high probability. Hp., forces all steps of V' appear in superposition in
|Y) with equal weights. Finally, note that for Hi,, Houw, and Hpyop above, time ¢ in clock
register D is implicitly encoded in unary as ‘1t0L’t> (for Hgap above, register D is already
explicitly written in unary); Hg,p, is thus needed to prevent invalid encodings of time steps
from appearing in D.

We use two important properties of this construction. First, the null space of Hj, +
Hrop + Hgtab 1s the space of history states, which for arbitrary |1)) ,  are defined as

[¥) Vi) 45 ©10)0 @ i) p. (3.9)

hist *— \/ﬁ Z

For cq-X circuits V, it is convenient to define for ¢ € {0,1}" and |¢) € B®™ the shorthand
1€, Drist = V)1 TOr [¥0) = |c)]q). The second important property of H we use is that its
spectrum is related to V as follows.
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Lemma 3.19 (Kitaev [171]). The construction above maps V to (H,a,b) satisfying:

o [f there exists a proof |¢) accepted by V' with probability at least 1 — €, then |1)
achieves Tr(H|Y)(Y,) < a fora:=¢€/(L+1).

hist

o [fV rejects all proofs |1), then H = bl for b € Q (1—L\3/€>

3.3 Hardness of approximation for cq-X

We now show hardness of approximation for cq-3y for the problems QMW, QSSC, and
QIRR. We begin with a gap-introducing reduction from an arbitary problem in cq-3s to
QMW. We remind the reader that the hardness ratios obtained here are further strength-
ened in Section 3.4.

Theorem 3.20. There exists a polynomial time reduction which, given an instance of an
arbitrary cq-Xo problem, outputs an instance of QMW with thresholds g and g’ satisfying
g'/g € O(N€) for some € > 0, where N is the encoding size of the QMW instance.

Proof. The reduction follows Theorem 1 of Umans [235] closely; the points where we devi-
ate from [235] are explicitly noted. Let IT be an instance of an arbitrary promise problem
A = (Ayes, Ano) In cq-3y with encoding size n, and whose verification circuit V' has a
c(n)-bit existential proof register and a g(n)-qubit for-all proof register. We wish to map
IT to a cQMA circuit W for QMW such that W accepts strings of small or large Hamming
weight depending on whether IT € Ay or II € A,,, respectively. To do so, we follow [237]
and construct an explicit (k, 1/2)-disperser G' = (L, R, E) with left-degree 2¢ using Refer-
ence [228], where |L| = 2¢W+1|R| = 2k+4-0(M) "and k := yloge(n) for v € O(1) to be set
as needed. Note that the value of d depends on the specific disperser construction used
— for the construction of [22%], we have d = 4k + O(logn). Roughly, the idea of Umans
is now to have L correspond to assignments for the ¢(n)-bit classical register of V', and
R to assignments for the classical register of W (in the setting of [235], note that W is a
classical circuit). We then encode assignments from L by instead choosing neighbor sets in
R. By exploiting the properties of dispersers, one can ensure that the sizes of the neighbor
sets in R chosen vary widely between YES and NO cases for 1I.

Specifically, imagine the vertices in L are arranged into a complete binary tree whose
2¢(") Jeaves denote the 2" possible assignments to Vs classical register. For convenience,
we henceforth use L to mean this tree. Now, let = € {0, 1}C(n) denote a leaf of L. Then, a
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Figure 3.1: Here, the string 11110 - - 0 in R encodes the string 000 in L. (Note: This graph
is not a disperser, but nevertheless illustrates the encoding scheme.)

subset of vertices R’ C R is said to encode x if it contains the union of the neighbor sets of
all vertices in the unique path from the root of L to z. Figure 3.1 illustrates this encoding
scheme. How do the vertices of R then relate to W7 Each vertex r € R corresponds to an
input bit of W — setting this rth bit to one means we “choose” vertex r.

With the encoding scheme defined, we now construct the cQMA circuit W. Given y
and |z) to its INPUT and CHOICE registers, respectively, W acts as follows: (a) If y
corresponds to a subset R, C R such that |R,| > |R| /2, then W sets its output qubit
to one. (b) If |R,| < |R|/2, then W first decodes R, to obtain the set of leaves L, C L.
Roughly, it then outputs one if there exists x € L, causing II's verification circuit V' to
output one when fed the proofs x and |z). These last two steps require further clarification,
which we now provide.

First, given R, C R, decoding it to obtain the set of leaves L, C L might a prior: require
exponential time, as recall |L| = 2¢+1, This, however, is precisely where dispersers play
their part: Since we set € = 1/2 in constructing our disperser, we know that for any S C R
with |S| < |R| /2, there are at most 2¥ = ¢(n)? vertices in L whose neighbor sets are
completely contained in S. Thus, by starting at the root of L and performing a breadth-
first-search down the tree (where we prune any branches along which we encounter a vertex
whose neighbor set is not contained in R,, as by definition such vertices cannot encode any
leaf ), we can efficiently decode R, to obtain L, while visiting only polynomially vertices
in L. It remains to specify how W checks whether there exists an « € L, causing V to
accept, and here we must deviate from Umans’ construction.

First, if |L,| = 1, our task is straightforward — simply run V' as a black box on proofs
r € L, and |z), and output the result. Then, W outputs one with probability at least
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2/3 on input y for all quantum proofs |z) if and only if V' also does so on proofs z and
|z). If , however, |L,| > 1, a more involved construction of W is necessary. Here, W takes
three inputs: a classical description of V', an | R|-bit string y to denote subsets in R, and a
28q(n)-qubit proof |z). Then, for the ith candidate string x; € L,, W feeds z; and the ith
block of g(n) proof qubits of |z) into V. (If |L,| < 2¥, we simply re-use values of z € L, in
the leftover parallel runs of V.) W then coherently computes the OR of the output qubits
of all parallel runs of V' and outputs this qubit as its answer.

Let us briefly justify why this works. For simplicity, assume the quantum proof to W
can be written |z) = |21) ® - - - ® |z9x); entangled proofs can be shown not to pose a problem
via the same proof technique used in standard error reduction [22]. Now, if there exists
an z; € L, causing V to accept for all quantum proofs, then in the ¢th parallel run of V'
in W corresponding to x;, V outputs 1 with probability at least 2/3 on any |z;), implying
W outputs 1 with probability at least 2/3. Conversely, if for all z; € L,, there exists a
quantum proof |z;) rejected by V', then by standard error reduction for V' and the union
bound, the state |z) = |z1) ® -+ ® |z9%) causes W to output 1 with probabil