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Abstract

This thesis is motivated by problems studied as part of the Diavik Waste Rock Pile
Project. Located at the Diavik Diamond Mine in the Northwest Territories, with academic
support from the University of Waterloo, the University of Alberta, and the University of
British Columbia, this project focuses on constructing mine waste rock piles and studying
their physical and chemical properties and the transport processes within them. One of
the main reasons for this investigation is to determine the effect of environmental factors
on acid mine drainage (AMD) due to sulfide oxidation and the potential environmental
impact of AMD. This research is concerned with modeling pressure driven flow through
waste rock piles. Unfortunately, because of the irregular shape of the piles, very little
data for fluid flow about such an obstacle exists, and the numerical techniques available
to work with this domain are limited. Since this restricts the study of the mathematics
behind the flow, this thesis focuses on a cylindrical domain, since flow past a solid cylinder
has been subjected to many years of study. The cylindrical domain also facilitates the
implementation of a pseudo-spectral method.

This thesis examines a pressure driven flow through a cylinder of variable permeability
subject to turbulent forcing. An equation for the steady flow of an incompressible fluid
through a variable permeability porous medium is derived based on Darcy’s law, and a
pseudo-spectral model is designed to solve the problem. An unsteady time-dependent
model for a slightly compressible fluid is then presented, and the unsteady flow through a
constant permeability cylinder is examined. The steady results are compared with a finite
element model on a trapezoidal domain, which provides a better depiction of a waste rock
pile cross section.
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(h) K̃ = 0.1 + 0.9e−100(ỹ−0.65)2 . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 The first three Bessel functions, J0(z) (solid line), J1(z) (dashed line), J2(z)
(dot-dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The n = 1 mode (solid line) and n = 5 mode (dashed line) for the time-
dependent solution for pressure in Fourier space as they tend to steady-state
over time. The dimensionless time values for the plots are found above each
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Logarithmic plot between the difference in the time-dependent solution and
the steady-state solution in Fourier space over time. The circles indicate
the n = 1 mode component, while the squares indicate the n = 5 mode
component. The higher mode component is shown to tend to the steady-
state solution faster than the lower mode component. . . . . . . . . . . . 72

4.4 Pressure profiles and velocity fields for time-dependent flow through a con-
stant permeability cylinder with D = 2.28. The dimensionless time values
at which each profile was plotted are found above each graph. Additional
profiles at later times are presented in Figure 4.5. . . . . . . . . . . . . . . 74

4.5 Additional pressure profiles and velocity fields for time-dependent flow through
a constant permeability cylinder with D = 2.28. The dimensionless time
values at which each profile was plotted are found above each graph. . . . . 75

5.1 Pressure distribution and velocity field through a pile with permeability
K̃ (x̃, ỹ) = 10
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Chapter 1

Introduction

1.1 Mine Site and Waste Rock Chemistry

The Diavik Diamond Mine is located nearly 300 km northeast of Yellowknife on a 20
km2 island in Lac de Gras at 64.511389◦N, 110.289722◦W (Figure 1.1). Two large open
pits are used to mine three separate bodies of diamond ore called kimberlite pipes, as
presented in Figure 1.2. Currently a transition is being made at the site from open-pit
mining to underground mining only [13]. The former involves the extraction of minerals
from open pits or quarries in the ground, while the latter involves the digging of tunnels
to access underground materials. The rock removed from the mines is called waste rock,
and generally has a mineral content so low that recovery is economically unfeasible. This
rock is stored on site in large stockpiles, sometimes referred to in the literature as heaps.

At the Diavik Mine, there are three piles of varying rock types being used for research
purposes, indicated by TI, TIII, and TC in Figure 1.3. Each pile is about 15 m high with
20 m × 50 m upper surfaces, and angles of repose of approximately 37.5◦ for piles TI and
TIII, and 18.4◦ for pile TC. The schematics for pile TIII can be found in Figure 1.4 [10].

The presence of sulfide minerals in waste rock can lead to acid mine drainage (AMD),
a process through which acidic water run-off may be produced from the rock due to sulfide
oxidation [10]. For the oxidation of pyrite, the sulfide mineral commonly found in waste
rock, the overall chemical reaction is given as

2FeS2 + 7O2 + 2H2O → 2Fe2+ + 4SO2−
4 + 4H+. (1.1)

This reaction is highly exothermic, and for every mole of pyrite oxidized produces 1409 kJ
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Figure 1.1: Map of the area surrounding the Diavik Diamond Mine [13].
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Figure 1.2: Conceptual diagram of the open pit mines, underground mines, and the kim-
berlite pipes. The red colouring indicates ore that has already been mined, while the purple
colouring indicates the remaining ore [13].
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Figure 1.3: Aerial shot of the Diavik waste rock test piles [10].
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Figure 1.4: Schematic of the test pile geometry. The black dots indicate pressure measure-
ment sampling points. A) The top-down view of the pile. B) The cross-section along the
line of sampling points indicated in A [10].
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of heat [16]. In general, the rate of reaction is defined by the expression

ξ̇ =
∂ξ

∂t
≡ 1

νi

∂ni
∂t

(1.2)

where ξ is the extent of the reaction, νi is the stoichiometric coefficient of a given substance
Xi in the reaction, and ni is the amount of Xi in the system, often given in units of moles
or concentration. The extent of reaction is defined relative to some arbitrary initial point
as

ni = (ni)0 + νiξ, (1.3)

and is independent of the choice of Xi. ξ̇ is always taken to be positive, therefore the
standard convention is to set νi to be negative for reactants, and positive for products, as
the amount of reactant and product for the forward reaction are increasing and decreasing,
respectively [7]. For sulfide oxidation, the rate can be defined as

ξ̇ = −1

2

∂nFeS2

∂t
= −1

7

∂nO2

∂t
= −1

2

∂nH2O

∂t
=

1

2

∂nFe2+

∂t
=

1

4

∂nSO2−
4

∂t
=

1

4

∂nH+

∂t
. (1.4)

Reaction rate is also often defined in terms of an empirical rate expression. For a reaction
taking place in a single step, this is given as

ξ̇ = k[X1]α1 [X2]α2 · · · [Xn]αn , (1.5)

where k is the empirically determined rate constant and the αi are derived experimentally.

In general, there are several factors that influence reaction rate. Increases in concen-
tration and pressure result in an increase in the amount of reactants present in a given
volume of space, increasing the likelihood of the collisions between particles required for
the reaction. Higher temperatures imply more kinetic energy in the system, also increasing
collision probability. The dependence of reaction rate on temperature is demonstrated by
the Arrhenius equation,

k = Ae−Ea/RT . (1.6)

This is an empirical relationship, where k is the rate constant of the reaction, A is an
experimentally determined pre-exponential factor dependent on the reaction, T is the tem-
perature, R is the ideal gas constant, and Ea is the reaction’s energy of activation [7].
Activation energy is the energy that a reaction must overcome in order to take place, and
is therefore generally positive, except in certain barrierless reactions. For sulfide oxida-
tion, Ea has been observed to vary from 34 kJ/mol to 121.1 kJ/mol across a range of
temperatures and pH levels [22].
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Figure 1.5: Surface temperature for the Diavik Diamond Mine from October 2006 to April
2011 (solid line). The dashed line represents the average temperature over this period.

In waste rock piles, sulfide oxidation is further dependent on a number of other different
processes. Gas transport is responsible for supplying the oxygen required for the reaction.
Water flow supplies one of the main reactants for sulfide oxidation, and is responsible for
reaction product transport. Thermal transport determines the phase of water in piles, and
because of the subzero temperatures prevalent in the Northwest Territories, reduces its
availability for reaction due to freezing. This may be an important limiting step in AMD,
as it both limits the amount of reactant available and prevents flow for the transport of
acid [10]. Figure 1.5 presents the surface temperature profile for the Diavik Mine site from
October 2006 to April 2011. For most of the year, the temperature of the site is below
0◦C. Geochemistry determines the amount of substance available for reaction and acid
production. Waste rock at the Diavik site in particular is classified into three different
groups of varying sulfur content and acid generating potential [10].

Due to its geographical location, Northern Canada experiences several interesting cli-
matic phenomena [14]. Because of the axial tilt of the Earth and the high northern latitude
of the region, the area experiences extremely extended summer daylight hours. Some areas
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north of 65.5◦N experience periods of 24 hours of daylight centred around June 21, while
communities located further to the South, like Fort Smith experience up to 18.9 hours of
daylight per day. Regions above 67.5◦N will experience extended periods of zero daylight.
For example, in Fort Smith the sun will set around November 15, and not rise again un-
til around January 26. The hours of daylight (when the sun is still above the horizon),
twilight, or, as it is called in Figure 1.6, skylight (the point at which the sun is below the
horizon but still gives light), and total illumination for Fort Smith, NWT (60◦N), Sachs
Harbour, NWT (72◦N), and Dawson, Yukon (64◦N) are presented in Figure 1.6. In the
absence of cold air intrusions, these longer periods of daylight in June and July tend to
result in relatively high temperatures into the evening and night. The resulting high tem-
peratures can lead to thundershowers in the late evening or after midnight. The region’s
bodies of water are also subjected to earlier freeze-up times and later break-up times than
most of the country. From 1988-1998, the Back Bay area of Great Slave Lake near Yel-
lowknife experienced early, median and late freeze-up dates of October 18, October 28,
and November 18, respectively. It also experienced early, median and late break-up dates
of May 28, June 1, and June 5, respectively. The upper atmospheric flow in this region is
controlled by two key factors. The first is the Aleutian Low/Pacific High. The second is
a low pressure region that, on average, is located near the centre of the Alaskan Islands
in the summer, and becomes more intense and moves closer to Foxe Basin in the winter.
During the winter, the mean flow tends to be significantly stronger than in the summer,
and originates from a more northwesterly direction, while during the summer, the flow
tends to originate more from the west. Mean flow patterns for the summer and winter are
displayed in Figures 1.7 and 1.8, respectively [14].

1.2 Flow in Porous Media

1.2.1 Darcy’s Law

At the core of the study of porous media flow is Darcy’s law, the constitutive equation
proposed by Henry Darcy in 1856. Based on his experiments in unidirectional steady-state
flow through a uniform porous medium, he observed a proportionality relationship between
rate of flow, u, and applied pressure gradient [20]. The one-dimensional equation is given
by

u = −K
µ

∂p

∂x
, (1.7)
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Figure 1.6: Periods of daylight (thick line), skylight (thin line), and total illumination
(dashed line) for Fort Smith, Sachs Harbour and Dawson [14].
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Figure 1.7: The mean upper winds across Canada during the summer at a height of
approximately 18000 feet [14].
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Figure 1.8: The mean upper winds across Canada during the winter at a height of approx-
imately 18000 feet [14].
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where p is the applied pressure, and µ is the fluid’s dynamic viscosity. K is the specific
permeability, a value dependent on the geometry of the porous medium with units of
length squared. In an isotropic medium, that is, a material with identical properties in all
directions, the generalization of Darcy’s law to three dimensions is

u = −K
µ
∇p, (1.8)

which is generally valid for a slowly moving, viscous fluid. It is also common for a buoyancy
term to be included on the right side of this equation. Other common forms of (1.8)
include the addition of a quadratic drag term in cases of non-negligible inertial forces
(Forchheimer’s equation), and the addition of another viscous term similar to the Laplacian
term appearing in the Navier-Stokes equation (Brinkman’s equation), which is important
for situations involving shear stress [20].

It is important to understand the domain on which Darcy’s law remains valid. As in
Figure 1.9, L is defined as the characteristic length scale for the macroscopic domain of
interest, while l is the length scale characteristic of the fluid filled pores. Porosity φ is a
dimensionless quantity defined as the fraction by volume of a porous medium occupied by
empty space. The fraction of solid material occupying the total volume of a porous medium
is therefore given by 1− φ. This definition of porosity is made under the assumption that
this void space is completely saturated by the fluid, and that there is complete intercon-
nectedness for both the solid and fluid components. When permeability is constant, for
scales on the order of L, it can be assumed that the medium is homogeneous, and that
Darcy’s law holds on these scales. For length scales on the order of l, the medium will not
be homogeneous, and the domain will be almost entirely solid or fluid material. In these
regions, Darcy’s law will not be applicable. If these small scale regions are fluid-filled,
the Navier-Stokes equation, albeit possibly on a very complicated domain, would be more
applicable. In real porous media, permeability is rarely constant. In natural material,
particulate matter can vary in size by several orders of magnitude. In waste rock, length
scales tend to range from millimetres to metres. For example, in the Diavik waste rock
test piles, using digital image processing, permeability was found to range between 10−11

m2 to 10−7 m2 and 10−12 m2 to 10−8 m2 depending on the empirical formula used [10].
Variable permeability distributions can have a significant effect on fluid flow. Therefore,
it would be beneficial to develop a model that can simulate a wide range of permeabilities
with specific geometric distributions.
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Figure 1.9: Diagram of a sample of porous material, where L represents the macroscopic
length scale characteristic of the entire domain, and l represents the much smaller charac-
teristic length scale of the fluid-filled voids [24].
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1.2.2 A Brief Review of Previous Models

Although low permeability covers have been shown to significantly reduce oxygen levels
and reduce pyrite oxidation rates in waste rock piles [12], pile cover construction can
be expensive and time consuming process. Alternatively, it may be possible to obtain
satisfactory results by building piles in such a way that oxygen flow is limited using various
types of waste rock already on site. Thus, the development of a model to determine
ideal pile construction is important to ensure cost-effectiveness and an appropriate use of
resources.

In waste rock piles, heat transport, oxygen supply and oxygen reaction form a feedback
loop. Because of the exothermic nature of the oxidation reaction, more heat is produced
in the pile, raising the pile’s temperature and encouraging convection, which supplies more
oxygen for the reaction. Similarly, the consumption of oxygen by the reaction removes oxy-
gen from the pile and causes a gradient in oxygen concentration, resulting in more oxygen
being supplied by diffusion. A thorough qualitative discussion of the relative influences
of external and internal conditions on mass, fluid, and heat transfer processes in the pile
can be found in [16]. By examining temperature and oxygen profiles for different piles,
Lefebvre et al. were able to infer the processes that control gas transport in each pile
[16]. However, this paper simplifies Darcy’s law to be dependent on a buoyancy term only,
and removes the pressure gradient term. The assumption is justified by arguing that the
infiltrating water is at atmospheric pressure, and thus there is no pressure gradient.

TOUGH AMD is a numerical computation program designed to model the multi-physics
problem of acid mine drainage. The model accounts for numerous physical properties,
including multiphase flow, heat transfer, gaseous diffusion, pyrite oxidation kinetics, and
dissolved mass transport. It discretizes in space by using a so-called integral finite difference
scheme, and the Newton-Raphson technique for iteratively solving a system of non-linear
coupled equations [17]. As mentioned above, however, the model does make the assumption
that water infiltrating the pile is at atmospheric pressure, and thus Darcy’s law depends
only on the buoyancy term and not the pressure gradient [16]. In the second of two 2001
papers, Lefebvre et al. used TOUGH AMD to model transport in two well-characterized
waste rock piles of differing physical properties. Additionally, methods to reduce acid mine
drainage (AMD) from the piles were also investigated numerically.

Anne and Pantelis [1] attempted to couple a computational fluid dynamics (CFD)
model of flow and pressure distribution around a pile with a heat and mass transfer model
in a heap of oxidizable material in order to simulate wind-driven porous media flow. Their
code computed “the steady-state, incompressible, turbulent flow around the heap” using
a k-ε model to use as boundary conditions. This type of model is called a two-equation
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model, which solves transport equations for two different turbulence variables (in this
case, turbulent kinetic energy, k, and turbulent dissipation, ε). Using typical physical
parameters, flow through a constant permeability trapezoidal heap was computed. Flow
was modeled both in a static atmosphere with oxidation and heat generation in the heap,
and under the influence of a prevailing wind without oxidation or heat generation. The k-ε
model is an example of a Reynolds averaged model, or RANS, and thus cannot model the
detailed turbulent processes around the pile. Moreover, the k-ε model generally requires
additional considerations in the boundary layer, and thus this does not seem like an ideal
manner in which to pursue the problem of flow over a pile.

Another numerical model used in simulation of waste rock piles is FIDHELM, which
is a finite difference model developed by the Australian Nuclear Science and Technology
Organization (ANSTO) for modeling heap leaching. It is similar to TOUGH AMD in that
in a two-dimensional domain simulating a porous pile of oxidizable material, it couples
the physics of gas, heat and water flow. Bennett et al. used this model to simulate flow
through a waste rock pile at the Heath Steele Mine in New Brunswick, using measurements
from the site as input data for the model [5]. The computational domain in this study was
a truncated cone in cylindrical coordinates. The model did not permit any heterogeneity
in the pile’s physical and material properties, which means that the permeability was held
constant. Boundary conditions were independent of space and time. These efforts were
unsuccessful in reproducing the measured oxygen contours in the pile.

In his 2010 Master’s thesis [10], Chi focused on characterizing gas transport through the
Diavik test waste rock piles. Pressure was measured at various points throughout a pile’s
interior and on its surface. Wind speed and direction across the mine site were recorded.
A linear relationship between surface and internal pressure measurements was observed,
which suggested the flow through the waste pile obeyed Darcy’s law. Dominant wind
periods were shown to range from 1 to 50 days using spectral analysis. Wind vectors were
measured and broken down into their component north, south, east, and west vectors.
Calculation of the correlation between each of the component vectors and the surface
pressure measurements of the piles showed the that the highest correlation was obtained
by the north component of the wind (mildly to strongly correlated), followed by the south
component (mildly to strongly correlated), then the west and east components (weakly
correlated). Correlations between pressure measurements in the pile’s interior and the
wind vectors were generally found to be weaker than the correlations between wind vectors
and the surface pressure measurements.

The presence of certain bacteria in waste rock piles may also catalyze pyrite oxidation,
however this is outside the scope of this thesis.
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As previously mentioned, the freezing of water in the subzero temperatures of the Diavik
Mine site may play an important role in the oxidation of sulfides. It is entirely possible
that the water in the waste rock piles remains frozen for most, if not all of the year, and
that the heat produced by the exothermic oxidation reaction is unimportant in driving gas
transport. If this is the case, pressure and wind driven flow may become the main factors in
driving gas transport, which would require further examination. In this thesis, the purely
pressure driven flow of air through a porous cylinder with varying permeability obeying
Darcy’s law is examined. The mathematical concepts and techniques used in developing
the model are presented, as well as the basics of pseudo-spectral numerical modeling for
partial differential equations. Steady-state simulations of incompressible flow and unsteady
simulations of slightly compressible flow are presented and discussed. These steady results
are compared to a finite element method model that simulates pressure driven flow on a
domain more representative of the waste rock piles. The work is not meant to “compete”
with the more complete engineering type models, such as TOUGH AMD [16][17] and
FIDHELM [5], but is instead intended as the simplest rational model available for wind
driven process in the presence of turbulence. Moreover, the pseudo-spectral techniques
used can serve as the “gold standard” for future simulations.
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Chapter 2

Methodology

In this thesis, several numerical and analytical techniques are applied to study the modeling
of porous media flow. These mathematical concepts and techniques are presented and
discussed in this chapter.

2.1 Fourier Series

This discussion of Fourier series follows the description of Fourier series in Haberman’s
Applied Partial Differential Equations [11]. For the function f (x) on the interval −L ≤
x ≤ L, its Fourier series is the infinite sum of sines and cosines,

a0 +
∞∑
n=1

an cos
(nπx
L

)
+
∞∑
n=1

bn sin
(nπx
L

)
, (2.1)

where the coefficients a0, an, and bn are given by

a0 =
1

2L

∫ L

−L
f (x) dx, (2.2)

an =
1

L

∫ L

−L
f (x) cos

(nπx
L

)
dx, (2.3)

bn =
1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx. (2.4)
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(2.1) represents f (x) as a series of oscillating functions of different frequencies, or wave
numbers in space. The existence of a Fourier series requires the existence of a0, or that∣∣∣∫ L−L f (x) dx

∣∣∣ < ∞. The existence of a0, however, does not guarantee the convergence of

the infinite series. When (2.1) converges to the function f (x), the notation

f (x) ∼ a0 +
∞∑
n=1

an cos
(nπx
L

)
+

infty∑
n=1

bn sin
(nπx
L

)
(2.5)

is used. Whether a Fourier series will converge to a given function or not is determined by
Fourier’s theorem:

Theorem 2.1.1. (Fourier’s Theorem) If a function f (x) is piecewise smooth on the in-
terval −L ≤ x ≤ L, then its Fourier series converges to the periodic extension of f (x).

When computing the Fourier coefficients of a function f (x), the procedure can be
simplified based on the nature of the function. If f (x) is even, bn will be zero, since
the integrand in (2.4) will be odd, and the integral of an odd function over a symmetric
interval is zero. Similarly, if f (x) is odd, then both a0 and an will be zero. Therefore, the
Fourier series of even and odd functions will be given by the infinite series of even and odd
functions

f (x) ∼ a0 +
∞∑
n=1

an cos
(nπx
L

)
, (2.6)

and

f (x) ∼
∞∑
n=1

bn sin
(nπx
L

)
, (2.7)

respectively. From this, the even and odd extensions of a general function can be defined.
If f (x) is some function defined on 0 ≤ x ≤ L that is not necessarily even or odd, it can
be extended as an even or odd function on −L ≤ x ≤ L. The even extension of f (x) is
composed only of cosines, and is given by

fE (x) ∼
∞∑
n=0

An cos
(nπx
L

)
, −L ≤ x ≤ L, (2.8)

where

A0 =
1

L

∫ L

−L
f (x) dx, (2.9)
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An =
2

L

∫ L

−L
f (x) cos

(nπx
L

)
dx. (2.10)

The odd extension of f (x) is composed only of sines, and is given by

fO (x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, −L ≤ x ≤ L, (2.11)

where

Bn =
2

L

∫ L

0

f (x) sin
(nπx
L

)
dx. (2.12)

In practice, it is often useful to approximate complicated functions using finite Fourier
series. Even and odd functions are also useful when designing functions with desired
properties. One can build a function composed of various other functions on a smaller
domain (e.g., trigonometric functions, polynomials), then extend the function to be even
or odd on a larger domain. This application of Fourier series is implemented later in this
thesis.

2.2 Fourier Transforms

This discussion on the Fourier transform and the Chebyshev method follow from Tre-
fethen’s book Spectral Methods in Matlab [25]. The Fourier transform of a function in
terms of the physical variable x to the Fourier variable or wave number, k, is given by the
formula

û (k) = F {u (x)} =

∫ ∞
−∞

e−ikxu (x) dx, k ∈ R, (2.13)

where û (k) can be considered the amplitude density in terms of k. By applying the Fourier
transform to a function, the function is decomposed into each of its component waves. The
inverse Fourier transform,

u (x) =
1

2π

∫ ∞
−∞

eikxû (k) dk, x ∈ R, (2.14)

transforms the function from Fourier space back to physical space, and facilitates the
description of the derivatives of u in terms of its Fourier transform. For the νth derivative
of u with respect to x, the inverse Fourier transform is given by

u(ν) (x) =
1

2π

∫ ∞
−∞

(ik)ν eikxû (k) dk. (2.15)
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This means that the Fourier transform of u(ν) (x) is given simply by multiplying the Fourier
transform of u(x) by (ik)ν .

Fourier transforms have numerous applications in a variety of subjects, such as Fourier
transform infrared (FTIR) spectroscopy [3] and digital signal processing [18]. In this thesis,
however, special attention is paid to their ability to convert partial differential equations
into ordinary differential equations, and their use in spectral and pseudo-spectral methods
for numerical computation. In particular, the fact that the Fourier transform of a periodic
function reduces to a Fourier series motivates the consideration of the discrete Fourier
transform.

2.2.1 Numerical Differentiation with Fourier Transforms

When dealing with numerical computation, instead of the infinite continuous domain R,
x needs to be considered over a finite discrete grid. As per [25], during this discussion,
the number of grid points on the periodic grid, N , will be kept even, and the domain
will be restricted to [0, 2π], although the scaling and transformation to other domains is
straightforward. The grid spacing is given by ∆x = 2π/N . For vj = u (xj), where xj is the
grid point in [0, 2π] such that xj = j∆x = 2π

N
, the discrete Fourier transform (DFT) takes

the form

v̂k = ∆x
N∑
j=1

e−ikxjvj, k = −N
2

+ 1, . . . ,
N

2
. (2.16)

The inverse discrete Fourier transform is

vj =
1

2π

N/2∑
k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (2.17)

When applying spectral differentiation to a function u, one approach is to interpolate
the grid function v using a continuous function p that is readily differentiable such that
p (xj) = vj. One way is to determine the band-limited interpolant, that is, the interpolant
with compact support limited to a given interval, of the periodic Kronecker delta function,

δj =

{
1, j ≡ 0 (modN) ,
0, j 6≡ 0 (modN) ,

and express the grid function as a linear combination of these functions,

vj =
N∑
m=1

vmδj−m. (2.18)
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As per [25], the band-limited interpolant of δj is determined to be the periodic sinc function

SN (x) =
sin (πx/∆x)

(2π/∆x) tan (x/2)
. (2.19)

The continuous differentiable interpolant of the grid function is then given by

p (x) =
N∑
m=1

vmSN (x− xm) . (2.20)

The derivatives of v are computed by differentiating p (x), so that the νth derivative of v
is

p(ν) (x) =
N∑
m=1

vmS
(ν)
N (x− xm) . (2.21)

The discrete derivative of the grid function is then denoted by w, where p′ (xj) = wj.
Since the grid function and its derivative are evaluated on a discrete set of points, their
relationship can be expressed through matrix-vector multiplication,

w = DNv, (2.22)

where v = (v1, v2, . . . , vN)T and w = (w1, w2, . . . , wN)T . DN is the N × N differentiation
matrix, where the elements of the Nth column are defined by

S ′N (xj) =

{
0, j ≡ 0 (modN) ,
1
2

(−1)j cot (j∆x/2) , j 6≡ 0 (modN) .

When computing the second derivative of v, the elements of the Nth column of D
(2)
N are

given by

S ′′N (xj) =


−

π2

3∆x2
−

1

6
, j ≡ 0 (modN) ,

−
(−1)j

2 sin2 (j∆x/2)
, j 6≡ 0 (modN) .

The development of the Fast Fourier Transform (FFT) algorithm in 1963 [25] led to
the more widespread adoption of an alternative to interpolation. Prior to the discovery
of the FFT, this method was generally considered too computationally expensive when
compared to other numerical schemes. The first step to this scheme is to perform a DFT
on the grid function, v̂ = FD {v}. As per (2.15), the components of the derivative of v in
Fourier space are given by ŵk = ikv̂k. The derivative of v in physical space, w, is then
returned by performing an inverse FFT on ŵ, w = F−1

D {ŵ}.
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(a) (b)

Figure 2.1: Polynomial interpolation of u (x) = 1/ (1 + 16x2) using (a) equispaced points
and (b) Chebyshev points [25].

2.3 Chebyshev Method

While trigonometric polynomial interpolation schemes such as Fourier spectral methods are
very well suited to problems on periodic domains (such as the azimuthal direction in cylin-
drical coordinates), their applicability generally does not extend to non-periodic functions.
While the periodic extension of some functions is possible, this is not true in general, since
even though a function may be smooth on the domain of interest, its periodic extension
will introduce discontinuities if its boundary values differ. The presence of these discon-
tinuities results in global contamination when Fourier spectral methods are applied. This
source of error is similar to the Gibbs phenomenon. To avoid Gibbs-like phenomenon on a
non-periodic grid, algebraic polynomial interpolation is often used instead of trigonometric
polynomial interpolation [25]. When used on a grid of equally spaced points, however,
algebraic polynomials can yield even poorer results than trigonometric polynomials due
to the Runge phenomenon, as illustrated in Figure 2.1. As per [25], Figure 2.1 displays
an attempt to use degree N polynomial interpolation of u (x) = 1/ (1 + 16x2) with N + 1
points on an equispaced grid and on a Chebyshev grid (described below), where N = 16.
The exponential error increase with increasing N in the equispaced case is the Runge phe-
nomenon. There is an exponential decrease in error with increasing N in the case of the
Chebyshev grid [25]. The solution is therefore to use algebraic interpolation on an unevenly
spaced grid, specifically one where the grid points are concentrated near the boundaries.
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Figure 2.2: The projection of points equispaced along a semi-circle onto the x-axis to create
the Chebyshev grid [25].

There are several different grids that are well-suited to this, all of which have the grid point
distribution density per unit length of

density ∼ N

π
√

1− x2
(2.23)

as N →∞. The simplest grid satisfying this density condition is the Chebyshev grid,

xj = cos (jπ/N) , j = 0, 1 . . . N, (2.24)

where N + 1 is the total number of grid points, and N is some positive integer. Geometri-
cally, this is the projection of equally spaced points along the upper half of the unit circle
onto the x-axis from −1 to 1. For a grid function v, the discrete derivative w is found
through interpolation on the Chebyshev grid by first determining the unique polynomial
p with degree less than or equal to N such that p (xj) = vj, 0 ≤ j ≤ N , and differenti-
ating the polynomial so that wj = p′ (xj). This is a linear operation, and as such can be
expressed as multiplication by an N + 1×N + 1 matrix, DN ,

w = DNv, (2.25)

where v = (v0, v1, v2, . . . , vN)T and w = (w0, w1, w2, . . . , wN)T . With the indices of the
rows and columns running from 0 to N , the elements of this differentiation matrix are
given by the formulas

(DN)00 =
2N2 + 1

6
, (2.26)

(DN)NN = −2N2 + 1

6
, (2.27)
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(DN)jj =
−xj

2 (1− xj)
, j = 0, 1 . . . N, (2.28)

(DN)jj =
ci
cj

(−1)i+j

(xi − xj)
, i 6= j i, j = 0, 1 . . . N − 1, (2.29)

where

ci =

{
2, i = 0 or N,
1, otherwise.

Both the Chebyshev grid and differentiation matrix used in this thesis have been generated
using the cheb.m Matlab function written by Trefethen [25]. For higher order derivatives,
the differentiation matrix needs only to be raised to the power equal to the order of the
derivative (e.g., D2

N ≡ ∂2

∂x2
).

2.4 Separation of Variables

The separation of variables technique is a common and straightforward approach to solving
linear PDEs. This discussion follows from the introduction to the separation of variables
technique presented in reference [11]. An operator L is said to be linear if for any two
arbitrary functions, u1 and u2,

L{c1u1 + c2u2} = c1L{u1}+ c2L{u2} , (2.30)

for constants c1 and c2. A linear equation in terms of u is therefore an equation that takes
the form

L{u} = f. (2.31)

When f = 0, (2.31) is referred to as a homogeneous linear equation. For example, for a
function u = u (x, t), the one-dimensional linear diffusion equation

∂u

∂t
= k

∂2u

∂x2
, (2.32)

where k is a constant, is a homogeneous linear differential equation. In this case,

L =
∂

∂t
− k ∂

2

∂x2
(2.33)

is the linear operator. The separation of variables technique assumes that the solution u
takes the product form

u (x, t) = φ (x)G (t) , (2.34)
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where φ and G are functions of x and t only, respectively. By assuming a product solution,
a homogeneous PDE can be converted into a pair of ODEs. It should be noted that this
assumption can be extended for equations of several variables, e.g., u (x1, x2, . . . , xn) =
φ1 (x1)φ2 (x2) · · ·φn (xn). Under the assumption of a product solution, each of the partial
derivatives in the linear diffusion equation become

∂u

∂t
= φ (x)

dG

dt
, (2.35)

∂2u

∂x2
=
d2φ

dx2
G (t) . (2.36)

With these new expressions for the partial derivatives, (2.33) can be rewritten as

φ (x)
dG

dt
= k

d2φ

dx2
G (t) . (2.37)

Grouping the functions in terms of x on one side and the functions in terms of t on the
other yields

1

kG

dG

dt
=

1

φ

d2φ

dx2
. (2.38)

Since the left hand side of (2.38) is a function of t only and the right hand side is a function
of x only, the only way equation (2.38) can hold is if both sides are equal to a constant,

1

kG

dG

dt
=

1

φ

d2φ

dx2
= −λ. (2.39)

In (2.39), λ is called the separation constant, and is completely arbitrary. The introduction
of the minus sign is standard procedure and is simply a matter of convenience. The ODEs
resulting from equation (2.39) are

d2φ

dx2
= −λφ (2.40)

and
dG

dt
= −λkG. (2.41)

When the boundary conditions of the problem are coupled together with equation (2.40),
an ordinary differential boundary value problem (BVP) is obtained. Equations of this
type are further discussed in the subsequent section. Coupling equation (2.41) with the
initial conditions (ICs) of the problem yields an ordinary differential initial value problem
(IVP). Existence and uniqueness of a solution to this IVP are guaranteed by the standard
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existence and uniqueness theorem studied in most undergraduate courses on ODEs [8]. In
simple cases such as (2.41), the exact solution is given by

G (t) = Ce−λkt, (2.42)

where C is some constant dependent on the ICs.

2.5 Sturm-Liouville Theory

Equation (2.40), the ordinary differential boundary value problem presented in the previous
section, belongs to the class of ODEs known as Sturm-Liouville differential equations. A
number of important theorems have been proven for this set of equations [11]. A regular
Sturm-Liouville eigenvalue problem is given by the equation

d

dx

(
p (x)

dφ

dx

)
+ q (x)φ+ λσ (x)φ = 0, a < x < b, (2.43)

for which p (x), q (x), and σ (x) are real and continuous, and p > 0 and σ > 0 everywhere
on [a, b]. The boundary conditions must be in the form

β1φ (a) + β2
dφ

dx
(a) = 0, (2.44)

β3φ (b) + β4
dφ

dx
(b) = 0, (2.45)

where βi, i = 1, 2, 3, 4 are real-valued constants. For example, in the case of equation
(2.40), p (x) = 1, q (x) = 0, and σ (x) = 1. Several theorems regarding Sturm-Liouville
problems of particular relevance to this thesis are listed below:

Theorem 2.5.1. The eigenvalues λ are all real.

Theorem 2.5.2. There exists infinitely many eigenvalues such that:

• there is a smallest eigenvalue, λ1,

• λ1 < λ2 < . . . < λn < λn+1 < . . .,

• there is no largest eigenvalue,

• as n→∞, λn →∞.
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Theorem 2.5.3. There is a unique eigenfunction φ (x) corresponding to each eigenvalue
λn that was exactly n− 1 zeros on (a, b).

Theorem 2.5.4. Relative to the weight function σ (x), eigenfunctions corresponding to
different eigenvalues are orthogonal.

For cases in which the Sturm-Liouville problem is not regular, some of these theorems
may still hold. An example of such problem for which p = σ = 0 somewhere on the domain
is examined in Chapter 4.

2.6 Finite Element Methods

This section presents a short discussion on finite element methods. The important details of
this discussion can be found in Haberman’s Applied Partial Differential Equations [11] and
Matlab’s Partial Differential Equation Toolbox User’s Guide [19], which contain good brief
introductions to the topic. A more thorough theoretical discussion is presented in Finite
Element Solution of Boundary Value Problems: Theory and Computation by Axelsson
and Barker [2]. The strength of finite element methods is that they allow problems to be
solved on irregular geometries that other methods cannot handle or that cannot be obtained
using mapped coordinates. The basic idea is to approximate the domain, Ω, using simple
geometric elements, generally triangles, and approximate the solution across the domain
using a linear combination of basis functions, called test functions. The collection of
elements over the domain is called the mesh, while the points at which the corners of
these elements meet are called the nodes. A sample finite element mesh is presented in
Figure 2.3. When triangular elements are being used, it should be noted that a mesh
should not have any hanging nodes, such as in Figure 2.4, where the centre node occupies
the side of one of the triangles [6]. Theories with so-called non-conforming elements have
been developed, however, but are beyond the scope of the present discussion.

The general procedure for FEMs will be demonstrated in the Cartesian plane using the
elliptic problem

−∇ · (c∇u) + qu = f, (2.46)

where c, q and f are functions of x and y, and u is the scalar function for which the problem
is being solved. As described in the next chapter, for a steady-state incompressible flow in
a porous medium, c = K̃, q = f = 0, and u = P . For the sake of this discussion, q is set
to zero.
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Figure 2.3: A valid computational finite element mesh. The nodes along the boundary are
indicated by the circles while the internal nodes are indicated by the black dots [6].

Figure 2.4: An “invalid” finite element mesh with a hanging node [6].
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A numerical solution to the PDE is determined by examining an approximation to the
solution U (x, y), where U is a linear combination of the test functions vj (x, y) is

U (x, y) =
n∑
j=1

Ujvj (x, y) . (2.47)

Since U is merely an approximation to the solution of (2.46), it is not expected to satisfy
that equation exactly. The idea is then to determine the n values of Uj so that (2.47)
satisfies the weak form of the PDE. It is assumed that when equation (2.46) with q = 0 is
multiplied by a test function vi and integrated over the domain, that the equation∫∫

Ω

(−∇ · (c∇u)− f) vidA = 0, (2.48)

where dA = dxdy, still holds. Applying integration by parts to the first term of equation
(2.48) yields ∫∫

Ω

((c∇u) · ∇vi) dA−
∮
∂Ω

(c∇u) vi · n̂ds =

∫∫
Ω

fvidA. (2.49)

Boundary conditions for this problem are defined in two ways. For Dirichlet conditions
where the value of u on the boundary ∂Ω is known, the vj are required to be 0. These are
called essential boundary conditions, since they must be imposed explicitly by the user.
From a theoretical point of view, the approximation space to which vi belongs is restricted
[2]. In practice, these conditions are imposed by modifying the stiffness matrix and the
load vector (described below). If Neumann boundary conditions are defined such that
(c∇u) · n̂ = g, where g is a function of x and y, then equation (2.49) becomes∫∫

Ω

((c∇u) · ∇vi) dA =

∫∫
Ω

fvidA+

∮
∂ΩN

gvids, (2.50)

where ∂ΩN is the section of the boundary for which Neumann conditions are defined. It
should be noted that the vi are zero on the portion of the boundary ∂Ω− ∂ΩN . Replacing
u with the approximation U gives

n∑
j=1

Uj

∫∫
Ω

((c∇vj) · ∇vi) dA

 =

∫∫
Ω

fvidA+

∮
∂ΩN

gvids. (2.51)
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This results in a system of n equations for n unknowns Uj,

n∑
j=1

KijUj = Fi +Gi, (2.52)

such that

Kij = Kji =

∫∫
Ω

(c∇vj) · ∇vidA, (2.53)

Fi =

∫∫
Ω

fvidA, (2.54)

and

Gi =

∮
∂ΩN

gvids. (2.55)

The Neumann boundary terms will only be added to those elements of the vector repre-
senting the boundary nodes. This can be represented in the matrix form

KU = F + G, (2.56)

where K is called the stiffness matrix and U is the vector of the values of Uj. F is called
the load vector and G corresponds to the boundary values g in the Neumann conditions.
For the Dirichlet conditions, the appropriate rows are set to zero, except for the diagonal
entry, which is set to 1, while the corresponding entry of the load vector is set to the value
of the boundary condition.

The test functions vi can be chosen in a number of different ways, with the standard
being to fit a polynomial to several different nodes. The easiest such function is to use
linear “tent” functions, vi, chosen to be 1 at the ith node, and zero at all other nodes. On
a two-dimension mesh, the linear basis functions at the ith node are defined such that

vi (xj) =

{
1, j = i,
0, j 6= i.

In practice, these basis functions are defined on the standard triangle with vertices and
then mapped via a linear mapping to any triangle in the mesh.

In the case where the PDE exhibits time dependence, such as

d
∂u

∂t
−∇ · (c∇u) + qu = f, (2.57)
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Figure 2.5: Linear basis function vi equal to 1 at the ith node, and 0 at all other nodes on
a mesh of triangular elements [6].

where d, q, a, and f are functions of x, y and t, the problem is solved by making the Uj
functions of t such that

U (x, y, t) =
n∑
j=1

Uj (t) vj (x, y) . (2.58)

Determining the solution through this approach is called the method of lines.

2.7 The Numerical Scheme

The numerical pressure solver used in this thesis to solve for flow of an incompressible
fluid governed by Darcy’s law inside a porous disc uses the discrete Fourier transform (or
equivalently the Fourier series) to transform the dependence along the angular domain
into the Fourier domain. As will be discussed in more detail in Chapter 3, in an isotropic
medium with a permeability given as a function of r̃, the nondimensionalized form of
Darcy’s law combined with incompressibility yields the diffusion equation

0 =

(
∂K̃

∂r̃
+
K̃

r̃

)
∂P

∂r̃
+ K̃

∂2P

∂r̃2
+
K̃

r̃2

∂2P

∂θ2
. (2.59)
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Taking the Fast Fourier Transform of this equation, where P̂ (r̃, k) = F {P (r̃, θ)}, and k
is the wave number results in

0 =

(
∂K̃

∂r̃
+
K̃

r̃

)
∂P̂

∂r̃
+ K̃

∂2P̂

∂r̃2
− k2 K̃

r̃2
P̂ . (2.60)

Once converted to this form, an ordinary differential equation for each of the individual
wave numbers can be solved in terms of r̃. These ODEs are solved numerically using the
aforementioned Chebyshev scheme before an IFFT is performed to transform the angular
component back into physical space. In order to accommodate the discontinuity that arises
in (2.60) at r̃ = 0, the radial domain is defined as −1 ≤ r̃ ≤ 1 and an even number of grid
points are used. On this domain, the even number of grid points guarantees r̃ = 0 will be
skipped at the cost of solving for pressure over the entire disc twice [25].

The pseudo-spectral method requires some care to implement boundary conditions
properly. Consider the model problem

uxx = f(x)

with the corresponding discretized form

D2
Nu = f

where vectors are the functions evaluated on a Chebyshev grid with N + 1 points, and DN

is the previously described Chebyshev differentiation matrix. For homogeneous Dirichlet
conditions, the first and last rows and columns from the D2

N matrix can simply be removed
and replaced the first and last entry of f with zero. In the case of inhomogeneous boundary
conditions, for example u(−1) = a and u(1) = b, the first and last rows and columns of
D2
N are kept, but are set to zero, with the (1, 1) element and the (N + 1, N + 1) element

replaced by 1. The first and last elements of f are therefore set to a and b, respectively. For
Neumann boundary conditions, the row of D2

N corresponding to the Neumann boundary
is replaced by the corresponding row of DN , with the corresponding element in f set equal
to the value of the derivative.

The following subsection contains a brief description of the important sections of the
Matlab code.

2.7.1 The Code

The selection of code below presents the key portion of the solver used to compute incom-
pressible flow through a porous disc. Once the vector of Nt wave numbers, lsvec, and the
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Dirichlet boundary conditions are transformed into Fourier space (i.e., the vector myvals,
has been defined), the ODEs in r̃ for each wave number can be solved in the following
manner.

for ii=1:Nt

l2=lsvec(ii)^2;

% this is the 1D problem we want to solve

myop=diag(kfunc(r))*D2+diag(kfunc(r)./r + kpfunc(r))*D-l2*diag(kfunc(r)./(r.*r));

% redefine for the Dirichlet BCs

myop(1,:)=0;

myop(end,:)=0;

myop(1,1)=1;

myop(end,end)=1;

myrh=zeros(N+1,1);

myrh(1)=myvals(ii);

myrh(end)=myvals(ii);

% solve

mysol=myop\myrh;

% store the solution in the appropriate column of mypb

mypb(:,ii)=mysol;

% store the theta derivative

myptb(:,ii)=sqrt(-1)*lsvec(ii)*mysol;

% store the r derivative

myprb(:,ii)=D*mysol;

end

The discrete operator corresponding to

L =

(
∂K̃

∂r̃
+
K̃

r̃

)
∂

∂r̃
+ K̃

∂2

∂r̃2
− k2 K̃

r̃2
(2.61)
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is given by myop, where kfunc and kpfunc are the functions representing the permeability
as a function of the radial variable and the derivative of the permeability, respectively. r

is the vector of the radial Chebyshev grid points, where r(1)=1, r(end)=-1, and D and D2

are the first and second order derivatives in the radial direction defined on the Chebyshev
grid by Trefethen’s function cheb.m [25]. The first and last rows of myop are defined to
accommodate the inhomogeneous Dirichlet boundary conditions, as described above. myrh
corresponds to the zero side of equation (2.59), with the first and last elements of the
vector being replaced by the boundary condition corresponding to the iith wave number
in Fourier space. Using Matlab’s direct solver (backslash), mysol, the solution in Fourier
space corresponding to the iith wave number, is computed using myop and myrh, and
stored in the appropriate column of mypb. The angular derivative of the iith component
pressure in Fourier space is computed by multiplying mysol by sqrt(-1)*lsvec(ii), as
described in the section on Fourier methods. The radial derivative in Fourier space is
determined by applying D to mysol. The pressure and its azimuthal and radial derivatives
are computed once this loop has ended by taking the real component of the inverse FFT
of mypb, myptb, and myprb, respectively.
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Chapter 3

Steady Results

The trapezoidal shape of the Diavik waste rock piles dominates the selection of an appro-
priate numerical model. While finite difference methods (FDMs) have been used in the
Earth science and engineering literature, these often have low orders of accuracy. Finite
element methods (FEMs) are readily applied to this type of geometry, though they do not
appear to have been considered in detail in the literature pertaining to this topic. Finite
volume methods, especially modern variants with the cut-cell methodology also appear
well suited to this situation, though again the literature does not describe any such mod-
els. Using low order models may be satisfactory for gaining an idea of how flow behaves
qualitatively (this will be discussed later), especially when using ad hoc models such as
TOUGH AMD. However this is somewhat unsatisfying when studying the mathematics
behind the flow, and in particular when using the simplest possible rational models as is
the aim of this research. The pile geometry is also somewhat uncommon in terms of the
flow over the pile, and has not been well examined during past studies of fluid flow either
experimentally or using well-tested numerical models. Of course, a pile with a sharp corner
can be expected to yield significant fluid separation. It is therefore desirable to examine an
obstacle or domain that has been well-characterized over many decades of fluid dynamics
research, namely, the cylinder. This chapter presents a discussion of the steady-state re-
sults using Darcy’s law for a variety of permeability profiles through a porous cylinder and
under conditions of turbulent forcing. This then motivates an examination of flow through
a porous trapezoidal domain using a finite element method.
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3.1 Incompressible Flow

Darcy’s law is a constitutive equation derived by Henry Darcy based on experiments in
hydrology and steady-state flow through a uniform porous medium in a single direction
[20]. The law is a proportionality relationship between gradient of the applied pressure p
and the fluid velocity through the medium u,

u = −K
µ
∇p, (3.1)

where µ is the fluid viscosity (assumed constant) and K is the permeability. In this chapter,
properties of incompressible fluid flow are examined, where the incompressibility condition
is

∇ · u =
1

r

∂ (rur)

∂r
+

1

r

∂uθ
∂θ

= 0, (3.2)

where ∇· is the divergence operator in cylindrical coordinates, and the velocity vector
u = (ur, uθ) for the radial velocity ur and the angular velocity uθ. In this thesis, a two-
dimensional flow of air through a porous circular cylinder with radius R is examined, so
using a tilde to denote dimensionless values, the variables

u = ũU, r = r̃R, K = K̃KRef, ∇ =
∇̃
R
, ∇2 =

∇̃2

R2
,

are defined, where U , R and KRef are characteristic scales for velocity, length, and perme-
ability, respectively. A nondimensional variable for pressure, P , is introduced as

P =
p− p∞

1
2
ρU2

, (3.3)

where p∞ is constant reference pressure far from the porous object and ρ is the density
of the fluid, which is assumed constant in this chapter. This nondimensionalization is
known as the pressure coefficient and is often used in fluid dynamics [15]. It represents the
nondimensional difference relative to a given reference pressure. The nondimensional form
of Darcy’s law can be expressed as

ũ = −cK̃∇̃P, (3.4)

where

c =
1
2
ρUKRef

µL
. (3.5)
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Applying the incompressibility condition in its dimensionless form

∇̃ · ũ = 0, (3.6)

to Darcy’s law yields

0 = ∇̃ ·
(
K̃∇̃P

)
= ∇̃K̃ · ∇̃P + K̃ · ∇̃2P. (3.7)

The boundary conditions for this problem are given by either the Dirichlet conditions for
which P is specified, or the Neumann conditions ∇P · n̂ for which the flow across the
boundary is specified (because of Darcy’s law). In the case where K̃ is constant, (3.7)
becomes

0 = ∇̃2P =
∂2P

∂r̃2
+

1

r̃

∂P

∂r̃
+

1

r̃2

∂2P

∂θ2
. (3.8)

Based on the maximal principle for linear elliptic equations, it is known that the solution
to this equation will take its maximum on the boundary [23]. If K̃ is a function of r̃ only,
the equation is the only moderately more complex

0 =

(
∂K̃

∂r̃
+
K̃

r̃

)
∂P

∂r̃
+ K̃

∂2P

∂r̃2
+
K̃

r̃2

∂2P

∂θ2
. (3.9)

This equation is an example of a Sturm-Liouville problem, however it is singular, not
regular.

3.1.1 Constant Permeability Solution

A classical problem for steady-state flow around an obstacle is to assume a one-dimensional
flow far from the obstacle, with constant velocity moving parallel to the x-axis, where x
and y are the horizontal and vertical components, respectively, in the standard Cartesian
coordinate system. In this case, it is reasonable to assume that for an obstacle that is
symmetric across the x-axis, such as a cylinder, the flow properties will be symmetric
across the x-axis, as well. Mathematically, in Cartesian coordinates, the flow far from the
obstacle as x → ±∞ is defined as u = (−U, 0), that is, moving with constant speed U
in the negative x-direction. This implies that boundary conditions that are even in terms
of θ can be applied to the surface of the cylinder. With enough terms, any set of even
boundary conditions can be reasonably approximated by a cosine series,

P (1, θ) =
N∑
n=0

an cos (nθ) . (3.10)
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While we will mostly consider a cosine series representing a fit to experimental data of
turbulent flow over a cylinder, for comparison purposes the solution to the simplest flow
past a circular cylinder will be considered. This simplest situation is the well-known case of
inviscid flow, with no circulation about a cylinder. It should be noted that this is a purely
theoretical flow that is not physically realizable. As given by [15], the pressure in the case
of inviscid, irrotational flow described above about a solid cylinder is given exactly by

P (1, θ) = 1− 4 sin2 (θ) = 2 cos (2θ)− 1. (3.11)

By applying separation of variables to equation (3.8), it can be shown that for the cosine
series boundary conditions, the pressure through a porous cylinder with constant perme-
ability is given by

P (r̃, θ) =
N∑
n=0

anr̃
n cos (nθ) . (3.12)

Setting the pressure about a solid cylinder for an inviscid flow as the boundary conditions
for flow through a porous cylinder, this implies that the pressure in the cylinder’s interior
is

P (r̃, θ) = 2r̃2 cos (2θ)− 1. (3.13)

Taking the dimensionless form of Darcy’s law,

ũ = −cK̃∇̃P, (3.14)

and setting cK̃ = 1, this implies that the velocity vector inside the cylinder is given by

ũ = (ũr̃, ũθ) = (−4r̃ cos (2θ) , 4r̃ sin (2θ)) , (3.15)

where ũr̃ and ũθ are the dimensionless radial and angular components of velocity, respec-
tively. Figure 3.2 compares this analytical solution to the numerical solution obtained with
spectral code, which shows very good agreement. The maximum relative error in the nu-
merical solution is 1.35× 10−10, indicating that the spectral method used in this problem
yields satisfying results that approach machine precision. Since the solution in this case
contains only a single mode, however, it is possible that higher mode solutions, such as for
the turbulent flow boundary conditions described below, may yield higher relative errors.
As a note, in the pressure profiles in this thesis, the colouration represents different pressure
levels as indicated by the colour bars, and the vectors indicate relative fluid velocity.

The pressure about a solid cylinder for a constant velocity fluid flow where the Reynolds
number Re = 7× 105 is presented in Figure 3.1. The nearly constant region from roughly
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135◦ to 180◦ indicates the region of the turbulent wake. Since this pressure data was
unavailable, it was approximated using a function constructed on the domain 0 to π that
includes the important features of the data,

P (1, θ) =1.0488

(
1

2
− arctan(8θ − 16)

π

)(
1− 3.5 e−2

(
θ−π

2

)2)
(3.16)

− 0.10488

(
1

2
+

arctan(8θ − 16)

π

)(
1 + 22 e−14

(
θ− 197

100

)2)
. (3.17)

The even extension of this function was determined to obtain boundary conditions that
were symmetric across the x-axis, and was approximated using the first fifteen terms of a
cosine series. The numerically determined pressure profile and velocity field are presented
in Figure 3.3.

The key feature of the constant permeability inviscid case is the symmetry of the flow.
Since the boundary conditions (3.11) are symmetric across the x- and y-axes, the flow
through the cylinder is symmetric across both of the axes, as well. Since the turbulent flow
boundary conditions are even across the x-axis only, the resulting flow through the disc is
symmetric across the x-axis only. The flows through both distributions exhibit the same
behaviour, as the fluid moves from the regions of high pressure near θ = 0 and θ = π to the
regions of low pressure near θ = π/2 and θ = 3π/2. In the turbulent case, however, the flow
through the left half of the cylinder is less significant than the flow through the right half,
since the left half of the cylinder is comprised mostly of the low pressure turbulent region,
resulting in a smaller pressure gradient. Figure 3.4 plots the radial velocities through the
boundaries for both cases. The velocity plot for the turbulent BCs takes the same overall
shape as the plot for the inviscid BCs, but with several small scale features. The turbulent
BCs also result in greater maximum radial velocities near θ = π/2 and θ = 3π/2, suggesting
greater pressure gradients in those regions for the turbulent BCs.

3.2 Modeling Different Permeabilities

Code was developed in Matlab to solve the porous media Laplace equation for pressure
for a given permeability distribution and set of boundary conditions on a disc, using the
transformation into Fourier space for the azimuthal variable. The code uses a radial domain
of −1 ≤ r̃ ≤ 1 and an angular domain of 0 ≤ θ ≤ 2π, so each point in the disc is covered
twice. The change of the angular variables into wave numbers allows for an efficient
separation of variables, in that it solves an ODE in terms of the radial coordinate on a
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Figure 3.1: Dimensionless pressure distributions with respect to the forward stagnation
point for fluid flow about a solid cylinder. The dotted line represents the analytical dis-
tribution for an inviscid, irrotational flow, while the solid lines indicate distributions for
subcritical (Re = 2 × 105) and supercritical (Re = 7 × 105) Reynolds number flows [15].
At the critical Reynolds number, ReCr ∼ 3 × 105, the laminar boundary develops insta-
bilities and transitions into a turbulent boundary layer. The near constant regions in the
subcritical and supercritical distributions indicate turbulent wakes.
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(a) (b)

Figure 3.2: Pressure distributions of the exact (a) and numerical (b) solutions for inviscid
flow through a porous cylinder with constant permeability.

Figure 3.3: Pressure profile and velocity field through a porous cylinder with constant
permeability and turbulent boundary conditions.
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Figure 3.4: Radial velocity through the boundary of a constant permeability cylinder for
the turbulent BCs (solid line) and the inviscid BCs (dashed line).

Chebyshev grid for each value of the Fourier variable. In particular, this conversion of the
2D problem to several tens of 1D problems allowed the use of 402 Chebyshev grid points
in the radial direction. This grid size is somewhat larger than what a typical Chebyshev
method would use. 100 grid points were used in the angular direction.

Several permeability distributions as functions of r̃ were designed to simulate different
porous medium distributions. In order to accommodate the trick of using the −1 ≤ r̃ ≤ 1
radial domain, the permeability equations must be even in r̃. Special care also needs to be
taken to use enough grid points in the radial direction to sufficiently resolve the different
features of the permeabilities (this explains the large number of grid points in the radial
direction). It should be noted that the length of the velocity vectors is determined relative
to the smallest velocity in a given plot, so velocity magnitudes cannot be directly compared
between different pressure profiles.

3.2.1 Slowly decreasing permeability

The first distribution,

K̃(r̃) =
1

1 + c
(cos (πr̃) + c) , (3.18)

represents a permeability that slowly decreases moving from the centre of the cylinder (the
pile) out to its exterior. The constant coefficient guarantees that the maximum perme-
ability at the centre will be 1, while the choice of c determines the minimum permeability.
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Figure 3.5 presents the pressure profiles, velocity fields, and scaled radial velocities normal
to the surface of the cylinder for the cases in which c = 5/3, c = 3 and c = 7. The values
of c represent minimum permeabilities of K̃ = 0.25, K̃ = 0.5, and K̃ = 0.75 at the edge
of the cylinder, respectively. In these simulations, and the remaining simulations for flow
through a cylinder in this chapter, the turbulent boundary conditions were used.

There are very few, if any, noticeable differences in each of these simulations. As the
value of c increases, and thus the permeability near the boundary increases, the velocity
of the fluid near the centre of the cylinder appears to decrease relative to the velocity
throughout the rest of the cylinder. This makes sense, as the lower minimum boundary
permeability cases would be expected to have lower velocities further from the centre of
the cylinder. The velocity in the centre will therefore be higher relative to these velocities.
There also appears to be slightly more yellow colouration in the centre as c increases,
implying higher pressure and thus deeper penetration by the fluid. This also makes sense,
as the more permeable cylinders should allow greater fluid flow.

3.2.2 Slowly increasing permeability

The second distribution,

K̃(r̃) =
1

1 + c
(c− cos (πr̃)) , (3.19)

represents a permeability that slowly increases moving from the centre of the pile to its
exterior. As before, the constant coefficient guarantees that the maximum permeability
will be 1, while the choice of c determines the minimum permeability. Figure 3.6 presents
the cases in which c = 5/3, c = 3 and c = 7, which represent minimum permeabilities of
K̃ = 0.25, K̃ = 0.5, and K̃ = 0.75, respectively. As with the previous permeability case,
differences between each simulation are difficult to discern. As the value of c increases, and
thus the permeability near the centre increases, there appears to be a very minor relative
increase in velocity near the centre. Although it is difficult to notice, at also appears that
the pressure near the centre appears to be greater for larger values of c, which can be
explained as these distributions having greater average permeabilities as c increases.

The slowly decreasing and slowly increasing permeability cases show very similar be-
haviour. As in the constant permeability case, the direction of flow is from the high pressure
regions in the left and right parts of the cylinder to the low pressure regions at the top
and bottom. Since the pressure is much higher near the right hand side than near the left
hand side, the relative flow is greater there. In both the increasing and decreasing per-
meability cases, higher values of c result in higher average permeabilities, and thus deeper
fluid penetration and higher pressures near the centre.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.5: Pressure and velocity fields of fluid flow through a permeable disc ((a)-(c)),
where the permeability is defined by equation (3.18), and the scaled radial velocity normal
to the surface of the cylinder, ũr̃/Umax, where Umax = max |ũr̃|, as a function of θ ((d)-(f)).
The solid line is the case of turbulent flow about a cylinder with permeability defined by
(3.18), while the dotted line is the inviscid flow about a cylinder of constant permeability.
For each plot, the values of c are (a),(d), c = 5/3; (b),(e) c = 3; (c),(f), c = 7.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.6: Pressure and velocity fields of fluid flow through a permeable disc ((a)-(c)),
where the permeability is defined by equation (3.19), and the scaled radial velocity normal
to the surface of the cylinder, ũr̃/Umax, where Umax = max |ũr̃|, as a function of θ ((d)-(f)).
The solid line is the case of turbulent flow about a cylinder with permeability defined by
(3.19), while the dotted line is the inviscid flow about a cylinder of constant permeability.
For each plot, the values of c are (a),(d), c = 5/3; (b),(e) c = 3; and (c),(f), c = 7.
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3.2.3 Near constant permeability with a narrow hole

The third distribution,

K̃(r̃) = d
(
e−b(r̃−a)2 + e−b(r̃+a)2 + c

)
, (3.20)

where

d =
1

e−4ba2 + c+ 1
, (3.21)

simulates a densely packed material of low permeability with a narrow region of significantly
higher permeability (due to larger rocks, for example), which is labeled somewhat loosely
as a hole. In this equation, a is a constant that determines the location of the centre of the
hole, b is a constant that defines the width of the hole, c is a small positive constant that
ensures the permeability is large enough to permit noticeable flow (i.e., ensures nonzero
permeability), and d is a constant that normalizes the maximum of the permeability to 1.
Setting c = 0.01, several experiments were performed using various values of a and b, as
shown in Figure 3.7. In each case, the high permeability region of the disc has the highest
relative rate of flow, with fluid moving from the high pressure boundary region to the low
pressure boundary region, traveling mostly through the annulus defined by the hole. These
regions of high flow are wider in the b = 100 cases, which is to be expected, as the high
permeability peaks occupy a larger portion of the domain in these cases. At the interior
of the annulus of high flow where the permeability is near zero and near constant, there
appears to be a region of zero flow. Physically this can be explained as the fluid taking the
path of least resistance along the hole to reach the low pressure boundary. This suggests
that flow can be guided along high permeability channels or voids, and that this may be
a useful method to force flow in a particular direction. The problem is, however, that in
the simulations in Figure 3.7, the minimum permeability is about 1% of the maximum
permeability, so determining the difference between minimum and maximum permeability
resulting in noticeable guided flow is important. Most of the domain in these simulations is
near impermeable, anyway, which implies that very minimal flow is observed. As the hole
was moved closer to the exterior of the disc, the fluid velocity at the boundary appeared
to increase. Also in each case, the fluid appeared to move fastest along the hole, with the
fluid velocity decreasing from the centre of the hole into the disc’s interior where it was
near zero. It appeared that the region of near zero velocity was between the centre of the
cylinder and the beginning of the hole. This makes sense as it will be easier for the fluid
to move through the region with the most open space, so more fluid will move through the
high permeability region, leaving less to flow through the low permeability interior of the
disc, reducing the fluid velocity (via conservation of mass). The scaled velocity profiles in
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(a) (b)

(c) (d)

Figure 3.7: Pressure and velocity fields of fluid flow through a permeable disc, where the
permeability is defined by equation (3.20). In each case, c = 0.01, and the remaining
constants are (a) a = 0.5, b = 100; (b) a = 0.5, b = 200; (c) a = 0.75, b = 100; (d)
a = 0.75, b = 200.
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Figure 3.9 all possess the same general shape, but in the cases where a = 0.75, the small
scale features are smoothed out considerably.

3.2.4 Near constant permeability with a narrow blockage

The fourth distribution,

K̃(r̃) = c− d
(
e−b(r̃−a)2 + e−b(r̃+a)2

)
, (3.22)

represents the opposite case to the first, where the permeability is constant and relatively
high throughout most of the domain, with a negative Gaussian distribution providing a
steep and symmetric decrease to much lower permeability to simulate a low permeability
blockage in the porous material (a region in which fine grained material is mixed into the
pile). In this equation, a, b, c and d are constants defining the centre of the blockage,
the width of the blockage, the constant high permeability throughout most of the domain,
and the minimum value of the permeability, respectively. Setting c = 1 and d = 0.99,
experiments were performed by varying the value of a and b, shown in Figure 3.10. In each
case the flow tends to follow a path along the annular region for a < r̃ < 1 from the high
pressure boundary to the low pressure boundary. Almost every pressure distribution also
shows a region of near zero flow for r̃ < a. There is an exception, however, in the a = 0.5,
b = 500 case in the r̃ < a region, where there is flow from the higher pressure areas near
θ = 0 and θ = π in toward the centre of the disc, and flow leaving the centre of the cylinder
toward the low pressure regions near θ = π/2 and θ = 3π/2. In the scaled velocity profiles
in Figure 3.12, the small scale features are more pronounced in the a = 0.75 cases than
in the a = 0.5 cases. Also, Figure 3.12 (c) is unique among the cylindrical simulations
presented in this chapter, as it is the only case that has a largest radial velocity normal to
the surface of the cylinder that is negative.

3.2.5 General Results

As expected based on Darcy’s law, areas of low permeability experience relatively less flow
than areas of high permeability. The simulations involving narrow regions of high per-
meability in a nearly impermeable cylinder indicate that high permeability paths through
piles may be able to direct flow along a desired route. One would need to ensure that the
endpoint of such a path is near the low pressure boundary, as fluid may leach through the
low permeability areas of the pile if the low pressure boundary is elsewhere. This is shown

48



(a) (b)

(c) (d)

Figure 3.8: Permeability profiles as a function of r̃ as defined by equation (3.20). In each
case, c = 0.01, and the remaining constants are (a) a = 0.5, b = 100; (b) a = 0.5, b = 200;
(c) a = 0.75, b = 100; (d) a = 0.75, b = 200.
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(a) (b)

(c) (d)

Figure 3.9: The scaled radial velocity normal to the surface of the cylinder, ũr̃/Umax, where
Umax = max |ũr̃|, as a function of θ. The solid line is the case of turbulent flow about a
cylinder with permeability defined by equation (3.20), while the dotted line is the inviscid
flow about a cylinder of constant permeability. In each case, c = 0.01, and the remaining
constants are (a) a = 0.5, b = 100; (b) a = 0.5, b = 200; (c) a = 0.75, b = 100; (d) a = 0.75,
b = 200.
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(a) (b)

(c) (d)

Figure 3.10: Pressure and velocity fields of fluid flow through a permeable disc, where
the permeability is defined by equation (3.22). In each case, c = 1, d = 0.99, and the
remaining constants are (a) a = 0.5, b = 100; (b) a = 0.5, b = 500; (c) a = 0.75, b = 100;
(d) a = 0.75, b = 500.
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(a) (b)

(c) (d)

Figure 3.11: Permeability profiles as a function of r̃ as defined by equation (3.22). In each
case, c = 1, d = 0.99, and the remaining constants are (a) a = 0.5, b = 100; (b) a = 0.5,
b = 500; (c) a = 0.75, b = 100; (d) a = 0.75, b = 500.
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(a) (b)

(c) (d)

Figure 3.12: The scaled velocity normal to the surface of the cylinder, ũr̃/Umax, where
Umax = max |ũr̃|, as a function of θ. The solid line is the case of turbulent flow about a
cylinder with permeability defined by equation (3.22), while the dotted line is the inviscid
flow about a cylinder of constant permeability. In each case, c = 1, d = 0.99, and the
remaining constants are (a) a = 0.5, b = 100; (b) a = 0.5, b = 500; (c) a = 0.75, b = 100;
(d) a = 0.75, b = 500.
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in Figure 3.7, where near θ = π/2 and θ = 3π/2 the fluid travels from the high perme-
ability hole out to the low pressure boundary. The simulations involving narrow regions of
low permeability show that even a thin layer of low permeability material can effectively
prevent flow inside the pile. This suggests that this may be an acceptable method for
controlling flow. This could be achieved by adding a layer of finely crushed material only
along the region where fluid flow needs to be prevented, and not over the entire pile. Al-
though these results were obtained using high order numerical methods and provide some
interesting conceptual information, it would be beneficial to observe the effect of these
permeability distributions on flow in a domain more representative of an actual waste rock
pile. This can be achieved through the use of finite element methods.

3.3 Modeling with Finite Element Methods

While the accuracy of the previously discussed spectral methods is very high, they cannot
model a domain that reflects an arbitrary pile shape. Note, however, that a trapezoidal pile
could be handled via mapped coordinates. The use of mapped coordinates with spectral
methods was briefly investigated, however they were determined to be too inefficient when
trying to resolve the permeabilities of interest. As discussed in the Introduction, the three
Diavik waste rock test piles are trapezoidal in shape, and are 15 m high with 20 m× 50 m
upper surfaces, and angles of repose of approximately 37.5◦ for two of the piles, and 18.4◦

for the third pile. This type of geometry is easily handled by the finite element method, and
indeed can be solved with many standard, off-the-shelf engineering packages since these
often contain a CAD-like domain sketching environment. In the spirit of using models that
are as transparent and rational as possible, the Matlab PDE toolbox [19] has been chosen
to solve the steady state problem in the pile geometry.

The finite element method simulations are performed in Cartesian coordinates, so the
the dimensionless pressure equation should be quickly recast in terms of these variables.
The dimensionless horizontal and vertical position variables in Cartesian coordinates are
defined as x̃ = x/L and ỹ = y/L, respectively, where L is some characteristic length scale.
The length scale is assumed to be the same in both directions as the height and width of
the waste rock piles are on the same order of magnitude. In Cartesian coordinates, for a
variable permeability K̃ = K̃ (x̃, ỹ), equation (3.7) becomes

0 =
∂K̃

∂x̃

∂P

∂x̃
+
∂K̃

∂ỹ

∂P

∂ỹ
+ K̃

(
∂2P

∂x̃2
+
∂2P

∂ỹ2

)
. (3.23)

The domain was designed to represent a cross-section of the piles TI and TIII described in
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Figure 3.13: Hypothetical flow past a trapezoidal pile.

the introduction. The proportions are not identical, however, as the height of the domain
is slightly too low. The problem is defined in the same way as the flow about the cylinder,
that far from the pile the fluid is moving with a constant speed in the negative x-direction,
and that the Reynolds number is high enough so that turbulence develops around the
pile. Unfortunately, pressure distributions about a trapezoidal obstacle are not as widely
studied, and hence they are not as readily available as pressure distributions about circular
cylinders, so some estimation and modeling had to be carried out. The boundary conditions
were designed to be similar to the conditions around a cylinder described above. A sketch
of the hypothetical streamlines and turbulent region for flow past a trapezoidal pile is
presented in Figure 3.13. As in the cylindrical case, pressure is assumed to decrease as
one moves up the obstacle. In the turbulent region, pressure is assumed constant. Along
the right face of the pile (which occupies the line ỹ = −13

10
x̃ + 26

5
), pressure is assumed to

linearly decay from 1 at the base of the pile down to 0 at the upper right corner of the
pile. Thus along this face, pressure is equal to 1 − 10

13
ỹ. Along the surface at ỹ = 1.3,

the BCs were assumed to be P (x̃, 1.3) = 1
4

(
e4(x̃−3) − 1

)
, which is intended to simulate

decay from a higher pressure of 0 down to a small negative constant pressure of −1/4
in the turbulent region part way across the upper surface of the pile. This is based on
the idea that viscous flow across a flat plate will be laminar at first, but will undergo
an instability and breakdown into turbulence as distance from the beginning of the plate
increases [15]. The left face of the pile (which occupies the line ỹ = 13

10
x̃) is assumed to

reside completely within the turbulent region, so P is set equal to −1/4. Since the base of
the pile is in contact with the ground, which is assumed to be solid, the flux through the
base should be zero, and thus the boundary conditions along x̃ = 0 are ∇̃P = 0. Eight
different permeabilities similar to those described for flow through a cylinder were used in
examining flow through the pile. There is an added benefit to using the FEM since the
permeability functions need not be even as in the spectral code. These simulations are
presented in Figures 3.14, 3.15, 3.16 and 3.17. In computing these solutions, linear test
functions are used by Matlab’s PDE toolbox.
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Figure 3.14 presents a constant permeability case (a) where K̃ = 1, and a nearly
constant permeability case with a narrow blockage running vertically through the centre
of the pile (b). The latter is defined by the equation

K̃ (x̃, ỹ) = 1− 0.9e−100(x̃−2)2 . (3.24)

In both cases the fluid enters through the right face of the pile and appears to exit mostly
through the right half of the top face of the pile. The constant permeability case shows
the fluid moving to the left and up, with the largest velocity vectors occurring near the
bottom and top right corners. The higher vertically in the pile, the more the velocity
vectors steepen and point upwards. For x̃ < 2 the vectors are significantly smaller, and
the pressure gradient seems much less significant, as the pressure inside the pile seems very
close to the small negative constant boundary pressure in the turbulent region. The case
with the vertical blockage is very similar, except it appears that near x̃ = 2 the pressure is
higher and the velocity vectors are steeper than in the constant permeability case. There
is also a noticeable line in the latter case at x̃ = 2 where pressure goes from small and
positive to near zero or even negative. It appears that the velocity along this line is very
close to zero.

The permeabilities presented in Figure 3.15 are both linear functions of x̃. In (c),
K̃ increases as x̃ increases, and is given by K̃ (x̃, ỹ) = 1

4
x̃. In (d), K̃ decreases as x̃

increases, and is given by K̃ (x̃, ỹ) = 1 − 1
4
x̃. In each case K̃ ranges from 0 to 1. The

increasing permeability case shows noticeably deeper fluid penetration on the right hand
side of the pile than the decreasing case, which is easily explained by the fact that the
permeability is significantly higher there in (c) than in (d). While there appears to be a
slight pressure gradient in the left half of (c), the velocity vectors there are all near zero,
since the permeability is smaller there and the pressure near those boundaries is small and
constant.

The permeabilities presented in Figure 3.16 are similar to those Figures 3.15 in that
they are increasing and decreasing linear functions of ỹ. K̃ is given by K̃ (x̃, ỹ) = 10

13
ỹ

in (e) and K̃ (x̃, ỹ) = 1 − 10
13
ỹ in (f). As permeability increases with ỹ in (e), there is

noticeably less fluid penetration than in (f), where permeability decreases with ỹ. These
are similar to the cases presented in (c) and (d), as (d) and (e) have lower permeabilities
in the region near the high pressure boundary in the bottom right corner, while (c) and
(f) have much higher permeabilities in that region. This suggests that flow through the
pile can be prevented or reduced if low permeability material is used in construction near
high pressure boundaries.

In Figure 3.17, case (g) presents the effects of a narrow horizontal region of low perme-
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(a)

(b)

Figure 3.14: Pressure distributions for various permeabilities in a trapezoidal pile using a
FEM. The permeabilities are given as (a) K̃ = 1 and (b) K̃ = 1− 0.9e−100(x̃−2)2 .
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(c)

(d)

Figure 3.15: Pressure distributions for various permeabilities in a trapezoidal pile using a
FEM. The permeabilities are given as (c) K̃ = 1

4
x̃ and (d) K̃ = 1− 1

4
x̃.
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(e)

(f)

Figure 3.16: Pressure distributions for various permeabilities in a trapezoidal pile using a
FEM. The permeabilities are given as (e) K̃ = 10

13
ỹ and (f) K̃ = 1− 10

13
ỹ.
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ability while the rest of the domain has near-constant permeability defined by

K̃ (x̃, ỹ) = 1− 0.9e−100(ỹ−0.65)2 . (3.25)

Case (h) presents a low near-constant permeability with a narrow horizontal region of high
permeability defined by

K̃ (x̃, ỹ) = 0.1 + 0.9e−100(ỹ−0.65)2 . (3.26)

Case (g) shows fluid entering from the high pressure boundary in the bottom right corner
and moving up and to the left until it reaches a region of no or small vertical flow along the
blockage. The low permeability region has reduced the pressure near the boundary around
ỹ = 0.65. Above the blockage, the fluid enters from the right face and exits through the
low pressure boundary along the top face. In case (h), although there is some some fluid
penetration into the pile, the bulk of the flow travels along the high permeability strip
from the right face to the left face. This is similar to the cylindrical cases with the high
permeability annulus, except the fluid is actually able to travel along the path defined by
the hole from a high pressure region to a low pressure region.

Several observations were made in the FEM pile simulations that were also made in the
porous cylinder simulations. In general, relative velocity will be higher in regions of high
permeability than in regions of low permeability, as predicted by Darcy’s law. Fluid will
travel through the domain from a high pressure boundary to a low pressure boundary. Fluid
will also take the path of least resistance flow along regions of high permeability as opposed
to low permeability. Finally, the appropriate placement of a narrow low permeability layer
appears to be able to prevent flow completely.
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(g)

(h)

Figure 3.17: Pressure distributions for various permeabilities in a trapezoidal pile using a
FEM. The permeabilities are given as (g) K̃ = 1 − 0.9e−100(ỹ−0.65)2 , and (h) K̃ = 0.1 +
0.9e−100(ỹ−0.65)2 .
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Chapter 4

Unsteady Results

In the case of incompressible fluid flow with steady boundary conditions described in the
previous chapter, the flow has zero dependence on time. In this chapter, a time-dependent
model for slightly compressible fluid flow through a porous medium is developed, following
reference [26]. An analytical solution for the constant permeability case and its tendency to-
wards steady-state are examined. This model is built from the mass conservation equations
for fluid and solid material in a porous medium, and assumes a functional relationship be-
tween fluid density and pressure in order to obtain a time-dependent equation. This differs
somewhat from other studies, such as [9], which uses a two-layer model of incompressible
fluid on top of a porous medium. In the fluid layer in that paper, time dependence is
obtained through use of the Navier-Stokes equation and the heat conservation equation,
while in the porous layer, the only time dependence occurs in the conservation of heat
equation. This is coupled to Darcy’s law with a buoyancy term by assuming fluid density
to be temperature dependent.

4.1 A Time-Dependent Equation for Porous Media

Flow

In this section, a time-dependent relationship for flow through a porous medium is derived
through the method used by Verruijt [26] for the more general theory of consolidation.
Instead of simply applying Darcy’s law, the derivation begins with the mass balance equa-
tions for the fluid

∂ (φρf )

∂t
+∇ · (φρfu) = 0, (4.1)
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and the solid medium,

∂ ((1− φ) ρs)

∂t
+∇ · ((1− φ) ρsw) = 0, (4.2)

where ρf and ρs are the fluid and solid densities, respectively, u and w are the fluid and
solid velocities, respectively, t is time, and φ is the porosity. It will be assumed later that
the solid matter is rigid. Assuming the density of the porous material to be constant, this
yields

− ∂φ

∂t
+∇ · ((1− φ)w) = 0. (4.3)

When the Mach number (the ratio between the rate of flow and the speed of sound) is less
than 0.3, as in the current case, flow is generally assumed to be incompressible. However,
for the sake of deriving a time-dependent equation for flow through a porous medium, a
functional relationship between the fluid density and pressure, p is assumed,

ρf = ρ0e
β(p−p0), (4.4)

where β is the compressibility of the fluid, with units of length times time squared per
mass, and ρ0 and p0 are reference values. Since β (p− p0) is generally very small, eβ(p−p0)

is expected to be very close to 1, and thus the fluid density should only deviate slightly from
the reference density. As such the fluid flow is expected to be only slightly compressible.
This functional relationship gives the differential relationship

dρf = βρfdp. (4.5)

From a thermodynamics point of view, this form of pressure dependence is somewhat
unusual (for example, the ideal gas law gives a linear relationship between pressure and
density), but as shown below, it gives a relatively simple method of incorporating com-
pressibility effects in a pressure driven flow. Expanding equation (4.1), then applying this
relationship and dividing by ρf yields

∂φ

∂t
+ φβ

∂p

∂t
+∇ · (φu) + β (∇p) · (φu) = 0. (4.6)

By ignoring the second order nonlinear term β (∇p) · (φu) (since the flow is expected to
be rather weak), this equation is reduced to

∂φ

∂t
+ φβ

∂p

∂t
+∇ · (φu) = 0. (4.7)
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Adding equations (4.3) and (4.7) results in

φβ
∂p

∂t
+∇ · [φ (u−w)] +∇ ·w = 0. (4.8)

Assuming the porous medium is stationary implies w = 0. Therefore, for slightly com-
pressible fluid flow through a stationary porous medium with constant porosity, pressure
is related to the fluid velocity, u, through the equation

0 = β
∂p

∂t
+∇ · u. (4.9)

Taking the divergence of Darcy’s law and substituting it into (4.9) yields an equation with
pressure as the only unknown,

β
∂p

∂t
= ∇ ·

(
K

µ
∇p
)
. (4.10)

Rearranging equation (4.10) gives,

∂p

∂t
=

1

βµ
∇ · (K∇p) . (4.11)

Using the dimensionless variables described in the previous chapter, and introducing the
dimensionless time variable t̃ = ωt, where ω is the characteristic frequency scale, (4.10)
can be nondimensionalized to give

∂P

∂t̃
= D∇̃ ·

(
K̃∇̃P

)
, (4.12)

where

D =
KRef

R2ωβµ
. (4.13)

4.2 Constant Permeability Solution

For the constant permeability case, the time-dependent equation becomes

∂P

∂t̃
= D∇̃2P, (4.14)

where the dimensional permeability K = KRef and D is defined as above. The solution
to this equation can be expressed as the sum of a steady-state solution, PSS(r̃, θ), as
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determined in the previous chapter, and the time-dependent particular solution, P̄
(
(r̃, θ, t̃

)
.

Expanding the right-hand side of the time-dependent pressure equation in polar coordinates
yields

∂P

∂t̃
= D

(
∂2P

∂r̃2
+

1

r̃

∂P

∂r̃
+

1

r̃2

∂2P

∂θ2

)
. (4.15)

Since the steady-state solution is independent of time and solves the equation

∇̃2PSS = 0 (4.16)

exactly, only the particular solution to the equation

∂P̄

∂t̃
= D∇̃2P̄ = D

(
∂2P̄

∂r̃2
+

1

r̃

∂P̄

∂r̃
+

1

r̃2

∂2P̄

∂θ2

)
(4.17)

is sought. The particular solution can be expressed as the difference between the complete
solution and the steady-state solution,

P̄
(
r̃, θ, t̃

)
= P

(
r̃, θ, t̃

)
− PSS(r̃, θ). (4.18)

The boundary conditions for the particular solution are therefore

P̄
(
1, θ, t̃

)
= P

(
1, θ, t̃

)
− PSS(1, θ). (4.19)

As in the previous section, the boundary conditions for the steady-state problem describing
a turbulent flow about a cylinder are taken to be an even function defined by a cosine series

PSS(1, θ) =
N∑
n=0

an cos (nθ) . (4.20)

In the long-time limit of the time-dependent problem, the steady-state solution is therefore

PSS(r̃, θ) =
N∑
n=0

anr̃
n cos (nθ) . (4.21)

For the time-dependent problem, it is assumed that the initial pressure distribution at
t̃ = 0 is 0 everywhere in the cylinder. The steady-state boundary conditions are used as
forcing, and are assumed to switch on instantaneously at t̃ = 0. Mathematically, this is
given as

P
(
1, θ, t̃

)
= H

(
t̃
)
PSS(1, θ), (4.22)
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where H
(
t̃
)

is the Heaviside function, which is slightly modified from its usual description,
such that

H
(
t̃
)

=

{
0 t̃ ≤ 0,
1 t̃ > 0.

Using these initial and boundary conditions for the full time-dependent problem, for P̄ ,
the initial conditions are

P̄ (r̃, θ, 0) = −PSS(r̃, θ), (4.23)

while the boundary conditions are

P̄
(
1, θ, t̃

)
= 0 (4.24)

for t̃ > 0. Both Özışık [21] and Haberman [11] apply the separation of variables technique
to solve this diffusion problem. In this case, it is assumed that the particular solution
is separable in terms of r̃, θ, and t̃, i.e., P̄

(
r̃, θ, t̃

)
= f(r̃)g(θ)h

(
t̃
)
. Entering this into

equation (4.17) and dividing by P̄ results in

1

D

h′

h
=
f ′′

f
+

1

r̃

f ′

f
+

1

r̃2

g′′

g
. (4.25)

Since f ,g, and h are all functions of a different variable, in order to solve (4.25), it must
be true that

1

D

h′

h
= −α2, (4.26)

and
g′′

g
= −ζ2, (4.27)

where α and ζ are separation constants, and the minus sign and the power of two have
been chosen for convenience. These constants also yield a differential equation for f ,

0 = f ′′ +
1

r̃
f ′ +

(
α2 − ζ2

r̃2

)
f. (4.28)

Solving the first two differential equations yields

h
(
t̃
)

= c1e
−α2Dt̃, (4.29)

and
g(θ) = c2 cos(ζθ) + c3 sin(ζθ), (4.30)
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where c1, c2, and c3 are constants dependent on the initial and boundary conditions. Since
the flow past the cylinder is identical to the flow described in the previous chapter, the
boundary conditions will be even across the x-axis. This implies that g is dependent on
the even function cosine only,

g(θ) = c2 cos(ζθ). (4.31)

Applying periodicity to this problem implies P̄
(
r̃, 0, t̃

)
= P̄

(
r̃, 2π, t̃

)
, or g(0) = g(2π).

This suggests that ζ = n, where n = 0, 1, 2, . . ..

The differential equation in terms of f is the well-known Bessel’s equation, the solution
of which is expressed as the sum of the Bessel function of the first kind,

Jζ(αr̃) =
∞∑
k=0

(−1)k (αr̃/2)2k+ζ

k! (k + ζ)!
(4.32)

and the Bessel function of the second kind, using the commonly used z for its argument
and m for the order of the function,

Ym(z) =
2

π

[(
log

z

2
+ γ

)
Jm(z)− 1

2

m−1∑
k=0

(m− k − 1)!
(
z/2
)2k−m

k!
(4.33)

+
1

2

∞∑
k=0

(−1)k+1[ϕ(k) + ϕ(k +m)]

(
z/2
)2k+m

k!(k +m)!

]
, (4.34)

that is,
f(r̃) = c4Jζ(αr̃) + c5Yζ(αr̃), (4.35)

where c4 and c5 are constants to be determined based on the boundary conditions. Note
that in the Bessel function of the second kind,

ϕ(k) =
k∑
j=1

1

j
, (4.36)

ϕ(0) = 0, and γ is Euler’s constant [11]. Since Yζ(αr) tends to negative infinity as r
tends to zero, the Bessel function of the second kind should be dropped in order to give a
physically realistic solution. Using this and the fact that ζ = n,

f(r̃) = c4Jn(αr̃). (4.37)

Based on the boundary conditions for P̄
(
1, θ, t̃

)
= f(1)g(θ)h

(
t̃
)

= 0, in order to obtain a
non-trivial solution, f (1) must be 0. From this the eigenvalue α can be discerned. Since

0 = Jn(α), (4.38)
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it can be inferred that the values of α are the zeros of the Bessel function, znm, such that m
is the mth root of Jn(z). This results in the general form of the particular solution being

P̄
(
r̃, θ, t̃

)
= −

∞∑
m=1

N∑
n=0

cnmJn(znmr̃) cos(nθ)e−z
2
nmDt̃, (4.39)

where cnm is some constant that can be determined based on the initial conditions. Un-
fortunately, due to the nature of the Bessel function, determining the constant through
comparison with the steady-state solution is rather difficult, and is unnecessary for the
remainder of the discussion. It is important to note that for each n, the Bessel function
has an infinite number of increasing roots such that zn0 < zn1 < . . . < znm < znm+1 < . . ..
Similarly, for fixed m, as n increases, so does znm, e.g., the first root of J1 is greater than
the first root of J0, the sixth root of J4 is greater than the sixth root of J3, etc. These facts
are demonstrated in Figure 4.1, which plots the the first several roots of the first three
Bessel functions of the first kind. Since z2

nmD determines the rate of decay in the particular
solution, this fact implies that the higher mode components to the solution will tend to
the steady-state solution faster than the lower mode components. This is demonstrated
in Figure 4.2. The n = 1 and the n = 5 modes of the solution of equation (4.12) are
numerically computed in Fourier space using the method described in Chapter 3 for the
spatial component (without transforming back into the angular coordinate), and the fully
implicit backwards Euler scheme for the time component. Note that 82 Chebyshev grid
points have been used in the radial direction in this case. In this simulation, ∆t̃ = 0.1 and
D has been set to 10−3. This choice of D is not based on any physical parameters, but has
been selected to illustrate the behaviour of each of the components of the solution. Addi-
tionally, constant boundary conditions are used for the sake of this discussion, as opposed
to the conditions dependent on θ used in deriving the above solution. In Figure 4.2, the
n = 5 mode appears to remain constant and reach the steady-state very quickly, while the
n = 1 mode is still decaying. This may be better illustrated in Figure 4.3, which plots the
difference between the time-dependent solution in Fourier space and the the steady-state
solution in Fourier space for the n = 1 and n = 5 modes over time. Within 200 dimension-
less time units, the difference between the n = 5 components has decreased to O (10−6),
while the difference in the n = 1 components is O (1).

Bessel’s equation can also be expressed in the form of a Sturm-Liouville problem by
multiplying equation (4.28) by r̃,

0 =
∂

∂r̃

(
r̃
∂f

∂r̃

)
− ζ2

r̃
f + α2r̃f. (4.40)
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Figure 4.1: The first three Bessel functions, J0(z) (solid line), J1(z) (dashed line), J2(z)
(dot-dashed line).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: The n = 1 mode (solid line) and n = 5 mode (dashed line) for the time-
dependent solution for pressure in Fourier space as they tend to steady-state over time.
The dimensionless time values for the plots are found above each graph.
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Figure 4.3: Logarithmic plot between the difference in the time-dependent solution and
the steady-state solution in Fourier space over time. The circles indicate the n = 1 mode
component, while the squares indicate the n = 5 mode component. The higher mode com-
ponent is shown to tend to the steady-state solution faster than the lower mode component.

72



When compared to the Sturm-Liouville problem described in the Methodology section,
p = r̃, q = − ζ2

r̃
, σ = r̃ and λ = α2. This is not, however, a regular Sturm-Liouville problem

since r̃ = 0 is within the domain of the cylinder, and thus p and σ are non-positive on
the domain, and q is discontinuous as it tends to −∞ as r̃ tends to 0. Additionally, the
boundary condition is not defined in the appropriate way for a Sturm-Liouville problem at
r̃. This is, in fact, a singular Sturm-Liouville problem. In spite of this, some theorems for
regular Sturm-Liouville problems still hold for this equation, such as the theorem stating
that there exists an infinite number of eigenvalues [11]. Also, for fixed n, orthogonality
with respect to the weight function r̃ between the Jn(znmr̃) for different values of m is
maintained [11].

Figures 4.4 and 4.5 display the time evolution of air flow through a constant per-
meability porous disc with zero initial conditions on the interior, and turbulent forcing
boundary conditions as described earlier in the chapter (P (r̃, θ, 0) = 0 and P

(
1, θ, t̃

)
=

H
(
t̃
)
PSS(1, θ)). As described for the time evolution of the individual modes, the time-

dependent code treats the spatial component in the same way as the steady-state code,
with a Chebyshev spectral method in the radial direction, and a Fourier spectral method
in the azimuthal direction. The time component is computed using a fully implicit back-
wards Euler scheme. The resulting system is solved with Matlab’s direct solver (backslash).
For the current simulation, the physical parameters were set to R = 15 m, the height of
the test piles at the Diavik site, KRef = 10−12 m2, the lower bound of permeability values
computed for the Diavik test piles [10], and µ = 1.71 × 10−5 kg/m s, the dynamic viscos-
ity for dry air at 0◦C [15]. For an ideal gas, isothermal compressibility β is equal to 1/p
[7]. Whether it is consistent to keep β constant may be an issue when examining future
work, as in the derivation of the time-dependent problem, β was assumed to be constant.
For the sake of parameterization, a constant reference pressure will be chosen, specifically
the standard atmospheric pressure of 1 atm = 101.325 kPa = 101325 kg/m s2, therefore,
β = 1 m s2/101325 kg. This assumption should be valid as the pressure inside the pile is
not expected to experience particularly large deviations from the external pressure. A 162
point Chebyshev grid has been used in the radial direction, and 80 grid points have been
used in the azimuthal direction. As a note, all values in these profiles are dimensionless.

Initially, on small dimensionless time scales, such as ∆t̃ = 0.001, which corresponds to
1.44 minutes in dimensional time, noticeable changes in the pressure profile are observed,
although these changes become much less pronounced as time increases. The simulation
begins by decreasing to the large negative pressure near the boundaries around θ = π/2
and θ = 3π/2 and increasing to the large positive pressure near the boundary around
θ = 0. The pressure then continues to decrease throughout most of the cylinder’s interior
except near the large positive pressure boundary until it reaches the steady-state. Between
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(a) (b)

(c) (d)

Figure 4.4: Pressure profiles and velocity fields for time-dependent flow through a constant
permeability cylinder with D = 2.28. The dimensionless time values at which each profile
was plotted are found above each graph. Additional profiles at later times are presented
in Figure 4.5.
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(e) (f)

(g) (h)

Figure 4.5: Additional pressure profiles and velocity fields for time-dependent flow through
a constant permeability cylinder with D = 2.28. The dimensionless time values at which
each profile was plotted are found above each graph.
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t̃ = 0.1 and t̃ = 0.5, the changes on small time scales become difficult to perceive, and only
changes on larger time scales are noticeable. It is within this range that the solution has
decayed very close to the steady-state solution, though some small fluctuations may still
be visible.

The sensitivity to time dependence of the unsteady model also requires further critical
examination. Depending on the physical parameters of the situation being modeled, the
particular solution of the constant permeability slightly compressible fluid problem may be
completely negligible. It may be satisfactory to model the problem with the steady-state
equation only through a parametric dependence on time dependent boundary conditions.
Using the above parameters R, µ and β, the coefficient D in equation (4.12) may range
from 2.6335×10−5/ω to 2.6335/ω for KRef = 10−12m2 to KRef = 10−7m2, that is, the range
of permeabilities determined for the Diavik test piles [10]. The only remaining factor is to
determine the length of the characteristic time scales. The larger the time scale, the greater
the constant D, and the less time dependence is exhibited. According to [10] the dominant
wind events occur on a scale of 1 to 50 days. This implies that for the lowest time scale of
1 day, D = 2.28, and as shown in the above simulation, after about half a day the changes
in flow appear to be insignificant. For longer time scales, the time-dependent effects will
only decay faster, so for time scales on the order of days, time dependence is expected to
become negligible very quickly. This suggests that for the long term operational periods
for the mine, steady-state modeling may be sufficient.

76



Chapter 5

Discussion and Conclusions

While some of the conclusions were mentioned as a part of the discussion of the results,
they are repeated in this section for the reader’s convenience. A pressure driven flow has
been modeled through a porous pile using spectral and finite element methods, with an
emphasis on the former. Because the field situation is expected to yield a high Reynolds
number for flow outside the pile, care was taken to represent the turbulent aspect of the
forcing. Since detailed data for the actual shape of the waste rock piles was not available,
the well-studied case of a cylinder, for which well-validated turbulent pressure distributions
can be found, was the focus of this research. In the separation region, pressure about a
cylinder is nearly constant, and since Darcy’s law is a linear equation, in this thesis the
pressure in this region was set to near zero. As a result, the pressure gradient in the
turbulent situation is much smaller than in the classical case of potential flow about the
cylinder, and thus, there is less flow in the porous region. To discourage flow in waste
rock piles, and therefore oxygen transport and AMD, it is thus prudent for construction
to ensure that separation occurs as close as possible to the forward stagnation point. In
general, once the critical Reynolds number for a cylinder, ReCr ∼ 3× 105 [15], is reached,
as Reynolds number increases, the angle at which separation occurs increases. This would
suggest that by controlling the Reynolds number of the flow, one should be able to control
the region of separation. Unfortunately, controlling the Reynolds number would mean
either changing the wind speed or kinematic viscosity, which is impossible since they are
dictated by natural processes, or controlling the characteristic length scale of the pile,
which may not be feasible, due to the amount of rock that may need to be stored. The
solution is to therefore modify the pile geometry or build some sort of obstacle, such as
a fence, so that as much separation occurs over the pile as possible. The pile geometry
should also be aligned with the dominant wind speeds, and this may not be possible in all
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Figure 5.1: Pressure distribution and velocity field through a pile with permeability
K̃ (x̃, ỹ) = 10

13
ỹ where turbulence is induced at the top right corner of the pile.

field situations.

Through the simulations in this thesis, several factors were shown to affect pressure
distributions and flow profiles through porous domains. Narrow regions of low perme-
ability were shown to be able to block flow almost completely. Fluid was observed to
travel along narrow paths of high permeability surrounded by regions of low permeability
if the pressure gradient between the entrance and exit points is large enough. Low per-
meability regions near high pressure boundaries seem to be able to reduce the amount of
fluid penetration. For cases where the high pressure region is near the base of the pile,
such as the trapezoidal case examined in the Steady Results chapter, this can be used in
conjunction with early onset of turbulence to significantly reduce flow through the pile,
as demonstrated in Figure 5.1. This simulation uses a permeability that increases as a
function of ỹ, K̃ (x̃, ỹ) = 10

13
ỹ, so permeability is small near the high pressure boundary.

Along the top face, it is assumed that turbulence begins at the upper right corner, perhaps
through fence or snow wall construction, and pressure has been set to the small constant
−0.25. The remaining boundary conditions are those described in Chapter 3. This results
in practically zero flow through the domain except in the upper right corner. It should be
relatively simple and inexpensive to implement the suggested setup in practice by ensuring
that the final few loads of waste rock dumped down the upwind face is made up of finely
crushed material. Of course, the approach will require experimental and field validation to
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assess its practical effectiveness.

For time scales on the order of days, it was shown that slightly compressible flow quickly
tends to the steady-state as time dependence becomes negligible. In general, higher mode
components of the time-dependent solution were shown to decay faster than lower mode
components.

The model presented in this thesis is far from complete when accounting for all factors
that drive flow through waste rock piles. As mentioned in the Introduction, heat flow
and chemical reaction effects also play important roles in waste rock pile flow, and should
thus be included. For fluid flow through a porous medium, conservation of energy can be
defined by the equation

ρfcfp

(
∂T

∂t
+ u · ∇T

)
= kf∇2T +Q, (5.1)

where ρf is the fluid density, cfp is the specific heat constant of the fluid at constant
pressure, and kf is the thermal conductivity of the fluid [4]. Q is a function representing the
heat source, most importantly the exothermic sulfide oxidation reaction. The concentration
of oxygen in the air flowing through the pile, C, satisfies the mass balance equation

∂C

∂t
+ u · ∇C = D∇2C +R(C), (5.2)

where D is the mass diffusivity, and R(C) is a function that describes the consumption
of oxygen by the pyrite oxidation reaction. Although it will complicate matters, it may
be wise for Q and R to have some oxygen concentration and temperature dependence,
respectively, since the amount of heat produced will depend on the amount of oxygen
being consumed, and it is well-known that reaction rate depends on temperature. For the
sake of accounting for all physical effects, rewriting Darcy’s law with buoyancy yields,

µ

K
u = −∇p− ρfgk̂, (5.3)

where g is the gravitational acceleration constant and k̂ is the unit vector in the z-direction.
In the steady-state limit, Darcy’s law remains unchanged, while the heat and concentration
conservation equations become

ρfcfpu · ∇T = kf∇2T +Q (5.4)

and
u · ∇C = D∇2C +R(C), (5.5)
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respectively. Although this does remove the time dependence, the presence of the u·∇ term
in each equation still causes nonlinearity, resulting in further modeling difficulties. Further
examination of this complete model is a logical next step for this research. Implementing
time-dependent forcing may also be beneficial, as it can be used to simulate various wind
and weather effects. This may lead to a more realistic model, as weather conditions are
very rarely static.
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