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ABSTRACT 

The goals of this investigation were to identiQ the chloride-induced corrosion products that 
form fiom steel reinforcement in concrete, determine where they form, the corresponding 
corrosion rate, and relate these observations to the performance of steel-reinforced concrete 
in the field. This information is intended to be incorporated into structural service life 
models such that more accurate predictions of the remaining lifetime of a structure can be 
made. To accomplish these goals, experiments were conducted on various cementitious 
matenals that ranged frorn steel in simulated pore solution to concrete of various types. 

In situ electrochemical and Raman spectroscopy observations were performed on steel 
immersed in either a Type 10 or Type 50 white cement simulated pore solution that 
contained varying levels of chlorides up to 1 M NaCI. The composition of these pore 
solutions was developed fkom pore solutions expressed from 6 month old cement paste 
cylinders. The surface o f  the steel was either ground with 240 grit S ic  paper or lefi in the 
as-received condition with a mil1 scale predominately composed of magnetite (Fe,O,). The 
effects of the type of pore solution, surface condition of the steel, and varying chloride 
exposure on the type and distribution of corrosion products were studied. The results 
indicated that the critical chloride/hydroxide ratios at which corrosion initiates depend upon 

' the pH of the simulated pore solution, even within the narrow range of 12.9 to 13.4. 
Corrosion initiated with lower chloride levels and at lower applied potentials in the lower 
pH level of the white cernent simulated pore solution than in the relatively higher pH Type 
10 cement simulated pore solution. In addition, mil1 scale was observed to provide some 
enhanced corrosion protection by delaying the onset o f  corrosion. Once corrosion initiated, 
however, the corrosion rates of the as-received steel were similar to the ground steel 
surfaces. The corrosion products observed included magnetite, maghemitq Green Rust 1, 
and hæmatite. 

To coordinate with the aforementioned simulated pore solution-steel experiments, 
steel plates were cast into a 0.45 wlc cernent paste which had been stabilized with 10% by 
mass of silica sand (henceforth referred to as modified cement paste). As before, both 
Type 10 and white cernent pastes were studied as well as the effect of the surface finish of 
the steel, either ground or as-received. These steel-reinforced cement paste prisms were 
cured in their moulds for 3 months and then partially immersed in a their respective 
simulated pore solutions with suffkient chlorides, added as NaCI, to make a 1 M solution. 
Potential mapping in a manner similar to ASTM CS76 and linear polarization resistance 
measurements were perfonned regularly to determine the corrosion state of the prisms. 
Once corrosion was considered to be initiated, the prisms were sectioned and examined ex 
situ using chemical, macro- and microstructural techniques to determine the influence of 
cernent type, surface finish of the steel, surface cracks, and the confinement of the modified 
cernent paste cover on the formation of corrosion products. A range of corrosion products 
was observed to form primarily within shrinkage cracks: magnetite, goethite, hæmatite, and 



possibly Green Rust 1. The formation of these products could not be correlated to the 
measured corrosion rates because the area of steel actually corroding could not be 
determined non-destructively. Furthemore, some corrosion products such as magnetite, 
hiematite, and goethite were observed to f o m  within the Type 10 modified cernent paste 
cover but not within the white modified cernent paste because of the relatively more open 
pore structure in the former. 

The final experimental program involved the study of four different types of concrete: 
a low quality concrete (0.54 wkm), an industrial standard concrete (0.41 wkm), a high 
perfonnance concrete (0-27 wkm), and a high performance concrete with 10% by rnass of 
cement of silica fùme (0.25 wlcm). Concrete prisms (500 x 100 x 100 mm) had been cast 
commerciaIly fiom these four mix designs with an embedded five element corrosion probe. 
Channels had been sawn into half of the prisms to position -0.3 mm cracks subsequently 
induced by three-point bending. The prisms were exposed to simulated sea water (ASTM 
Dl 141) for up to four years. During this time, the corrosion state of the pnsms was 
regularly assessed using open circuit potential and linear polarization resistance 
measurements. AAer at least three years exposure, the average corrosion rates (Le., not 
corrected for area of steel actually corroding) indicated that the cracked low quality prisms 
had the highest corrosion rate (-0.04 A/m2) while the steel in the industrial standard and 
high performance concretes were corroding at lower rates (-0.01 A/m2). The same trends 
were noted in the uncracked specimens except that the rates were approximately one order 
of magnitude lower for only the high performance concretes (-0.002 Mm2). Those prisms 
with the highest corrosion rates were then sectioned and studied in a manner similar to the 
modified cement paste prisms with particular attention paid to the effect of concrete type 
and position of the induced crack, on the type and location of any corrosion products that 
formed. Within the industrial standard and high performance concrete with silica fume, a 
dense layer of magnetite formed at the steekoncrete interface and within the induced crack. 
Magnetite also formed in the other two concretes but additional corrosion products such as 
akaganeitq goethite, and hæmatite were also observed within the concrete cover and were 
attributed to the higher comectivity of their pore networks from a higher wkm ratio or 
microcracks The removal of the corrosion products fiom the steel pennitted the area of the 
steel that actually corroded to be estimated. Corrected corrosion rates indicated that the 
steel in the cracked high performance concretes was corroding at a rate almost an order of 
magnitude higher than the steel in either the industrial standard or low quality concretes 
with the higher electrical resistivity of the former concretes confining corrosion to a 
localized area at the root of the crack. 

Overall, al1 experiments indicated that there is not any correlation between the 
corrosion rate measurements, steel surrace finish, or chloride ion source on the types or 
location of corrosion products. Products which, in their pure state, have specific volumes 
not more than 3.5 were observed within the concrete specimens which suggests that the 
typically assurned range of 6 to 7 must be revised to reflect the service environment when 
used in theoretical service life models. 
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CHAPTER ONE 

INTRODUCTION 
Steel-reinforced concrete is an extensively used structural rnaterial because of its low cost, 

ease of construction, and durability. With the ingress of chlorides into the concrete, 

however, the embedded steel may corrode and form expansive corrosion products at the 

steelkoncrete interface which crack and spall the concrete cover. This allows more 

chlorides to ingress more easily and eventually the structure may be unable to safely 

perforrn the service for which it was designed because the load bearing capacity of the steel 

is reduced. In Ontario, the use of de-icing safts during the winter months causes the 

deterioration of an increasing number of bridges, support columns, parking garages, and 

other steel-reinforced concrete structures. 

Canada's infrastructure is estimated to have a yearly cost of $3 billion to tawpayers 

but surveys of Canadian municipalities have indicated a financial shortfall in the 

rehabilitation of their infrastructure in the order of $20 billion (Concrete Canada 1997). 

This value is increasing and will soon represent $1000 per Canadian. It is, therefore, 

important to develop more accurate estimates of the remaining service life of 

steel-reinforced concrete structures such that economically efficient financial plans can be 

implemented for new construction and rehabilitation. 

Typically. structural service life estimates are based upon empincal information 

collected from older structures that were likely composed of different concrete mix designs 

and situated within potentially dissimilar environments (i.e., the structural design affects 

the severity of seemingly similar environmental exposures). This potential for inaccuracy 

has led to increased attention towards developing theoretical models of corrosion that can 

be appropriately tailored for different materials and environments. Current theoretical 

service models represent corrosion as a two stage phenornenon: the time period prior to the 

initiation of corrosion. and the period thereafter while the damage accumulates to failure. 

Until rscently it has been assumed that once corrosion initiates, the structural service life is 
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over because the damage accumulation phase was comparatively smaller, and therefore, 

insignificant. This is now acknowledged not to be the case but modeliing the damage 

accumulation phase is complex because of a lack of important information conceming the 

variation in corrosion rates during that period and the corrosion products that form. 

It is the objective of this work to identiQ the physical and chemical characteristics, 

and spatial distribution of corrosion pmducts resulting from chlonde-induced corrosion 

based upon different types of concrete and the presence of cracks. The correlation of these 

analyses with the corrosion rate will provide insight into the volume of corrosion products 

that can be accumulated before the concrete is damaged and the consequential impact on the 

remaining Iifetime of a structure such that more accurate service life predictions may be 

calcuiated. 

This thesis is structured such that the current understanding of chloride-induced 

corrosion is presented in Chapter 2 while the research programme is detaiied in Chapter 3. 

Studies of the corrosion products that form in simulated pore solution, modified cernent 

paste, and different types of concrete are presented in Chapters 4, 5, and 6, respectively. 

The results of these Chapters are discussed in Chapter 7 and is followed by Conclusions 

and Recommendations in Chapter 8. 



CHAPTER TWO 

THEORETICAL CONSIDERATIONS 

2.1 CHARACTERIZATION OF CEMENTITEOUS SYSTEMS 

Cement, when mixed with water, forms cement paste. Mortar is composed of cement, 

sand, and water, while concrete is prepared from cement, sand, water, and coarse aggregate 

(stones). 

2.1.1 Portland Cernent 

2.1.1.1 Manzi fachrve 

Portland cernent is manufactured h m  an adaptable range of raw materials, usually 

limestone (predominantly CaCO,), and shale or clay (predominantly aluminum silicates 

with some magnesium and iron) (Taylor 1990). If a whiter cernent is desired, the 

proportion of iron minerals added to the mix is reduced. The components are mixed and 

ground in an approximate 3: 1 proportion of Ca:Si equivalents, and are fed into the top of a 

rotating kiln that is inclined to the horizontal by a few degrees. As the components move 

down the kiln, their temperature becomes progressively higher, in the range of 1400' to 

1500eC, and liquid phases are forrned that fuse the remaining solid phases together into 

balls known as clinker. After cooling, a small amount, 3 to 6% by mass, of either gypsum 

(CaS0,-2H,O) or anhydrite (CaSO,) is added to the clinker to "control" the hydration 

process of the tricalcium aluminate, described in Section 2.1.1.2. Gypsum is added to 

ordinary Portland cement clinker while anhydrite is added to white Portland cernent in 

accordance with their respective aluminate contents. The clinker is ground into a powder 

with particle sizes, ranging approximately from 2 pn to 90 pm (Taylor 1990). Table 2.1 
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lists the four major compounds and their chemical formulael, comprising Portland cernent 

powder. Minor phases consist of alkali sulphates and calcium oxides and constitute only a 

few mass percent of the cernent powder, 

Table 2.1 The major compounds and their approximate amounts in ordinary Portland 
cernent (OPC) (Taylor 1990). 

2.1.1.2 Hydration of Cernent Powder 

Cement clinker powder is hydraulic, that is, it reacts spontaneously with water. Its 

hydration reaction processes have been the subject of a considerable amount of research but 

are still not Fully understood. The complex hydration process begins immediately with the 

Major 
Compound 

r 

Tricalcium 
Silicate 

Dicalcium 
Silicate 

Tncalcium 
Aluminate 

Tetracalcium 
Aluminofemte 

1 Chemical formulae are ofien simpIilied in cernent chemistry using a notation based 
upon the surns of osides prrsent in the cernent cornpounds. The oxides are described by the first 
letter OF their cornpound where C represents C a o .  S reprssents Sior.  - A represents - AI20;, F 

represents Fs203 ,  and H represcnts H20. In the case of SO 3 and CO2. S and C are used to 
distinguish thern liom S i Q  and Cao, respectively. 

Chernical Formula 

3 Cao-SiO2 

2 Cao-SiO, 

3 Cao-Al,O, 

4 CaO*AI,O;Fe2O, 

Chemical 
Notation I 

c,s 

C,S 

C A  

C A F  

Mass 
Percentage 

in OPC 

50 - 70 

15 -30 

5 -  10 

5 - 1 5  



Chapter Two: Theoretical Considerations 

mixing of cement powder with water and continues at a decreasing rate for months or years. 

Cement paste consists of the hydrated compounds of  the cernent powder, any unhydrated 

cernent powder, and any water not consumed in the hydration reaction. This water remains 

as water-filled pores, known as capillary pores, in the solid network o f  phases and as gel 

pores or interlayer water, described below. During the first 24 hours, the anhydrous 

cernent grains in the presence of sufficient water wil1 have reacted between 30 to 50%, after 

which time hydration is significantly slower. Afier one year with suficient water present, 

typically 80 to 90% hydration of the anhydrous cernent grains has occurred to form 

hydration products (Cmmbie 1994). It is important to recognize, however, that this 

hydration reaction rarely reaches completion, and as a result, many of the properties of 

cernent-based materials constantiy improve with age, albeit at an ever decreasing rate. 

During the hydration process, the calcium silicates react to form calcium silicate 

hydrate (C-S-H), and calcium hydroxide (CH). The composition of C-S-H varies with C:S 

ratios of about 1.7 to 2.0, hence the dashes in its abbreviation (Scrivener 1989). The 

aluminates and femtes react with the added gypsum or anhydrite to initially form 
- 

metastable ettringite, C,  A S ,H,, a member of the AFt family, which often reacts fiirther 
- 

forming monosulphate, C,AS H,,, a member of the AFm family. Ettringite gradually 

converts to monosulphate depending upon the aluminate/sulphate ratio in solution. If there 

is insuffïcient gypsum, and consequently sulphate, for the hydration o f  C,A, the ettringite 

already formed decomposes to monosulphate to provide it. 

C-S-H is the most important of al1 the hydrated solid phases primarily because it 

constitutes approximately 50-60% of the volume of the cement paste and is responsible for 

the structural rigidity and inherent strength of hydrated cernent paste (Mehta 1993). It is 

predominantly a poorly crystalline product with a range of morphologies. Within this 

product there exist interlayer solution-fiiled spaces, on the order of nanometres, known as 

gel pores. These very tine pores do not limit the strength, perrneability or durability of 
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cernent and concrete materïals-these characteristics are controlled by the comparatively 

larger capillary pore network, air voids, and cracks. 

In contrast to C-S-H, calcium hydroxide (CH) is likely to contribute to the strength 

limitations of hydrating cernent paste because of its high crystallinity. Its structure 

consists of hexagonal plates which preferentially cleave along the (0001) plane. CH forms 

"through solution" in the interstices between the clinker grains which become capillary 

pores. The CH can, therefore, grow to f i l1  relatively large regions (up to 10 pm diameter) 

depending on the pore space and Ca'- ions available. CH masses also are generally isolated 

fiom each other and the total volume percentage of CH in fblly hydrated paste is only 10 to 

15% of the cernent paste or 20-25% of the ignited mass (Taylor 1990). It has been 

observed that in the early stages of hydration (especially the first few hours) Ca2- ions will 

d i f i se  over large distances (approximately 20 to 40 pm) to precipitate preferentially in 

larger pore spaces rather than those closer to the hydrating anhydrous grain (Crumbie 

1994). Therefore, it is not homogeneously distributed and prefers interfacial regions, 

discussed in greater detail in Section 2.1.2. Calcium hydroxide is the solid phase primarily 

responsible for buffering the pH of the pore solution to approximately 12.5 although both 

the carbonate (CO,>) and bicarbonate (HC03-) species, if present, would also contribute to 

the alkalinity of the pore soIution. 

The calcium ahminate phases also do not contribute significantly to the s,trength of 

cernent paste, again because oftheir high crystallinity but also because they are only minor 

cornpounds in the hydrated cernent paste. They are, however, responsible for the initial set 

of the cernent within the first few hours of the hydration process (Taylor 1990). 

2.1.1.3 Porosity 

Total porosity is the combination of the capillary and gel pores within the network of solid 

phases fomed during hydration. These pores contain a solution based on the water 
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remaining from the mixing of the cernent or fiom ingressed water fiom the environment. 

The solid phases have varying degrees of solubility and their dissolved ions transform the 

water into a highly concentrated solution predominantly composed of NaOH, KOH, and to 

a lesser extent, Ca(OH)2. Because of the small dimensions of the gel pores (about 0.5 to 3 -0 

nm) and the polar nature of water molecules, interlayer water behaves differently from both 

the water of hydration (which is bound by primary chernical bonds) and the water in the 

capillary pores (which can flow freely). Interlayer water is chemisorbed ont0 the gel and 

can be thought of as a structural component of the C-S-H. 

It is predominantly through the capillary pore network that aggressive species ingress 

into the cernent paste from the environment. T'us, it is not the total porosity that 

determines the permeability of cernent paste but the volume, size, and interconnectivity of 

capillary pores. Pore size distribution rneasurements of hardened cernent pastes have 

shown that a greater volume of capillary pores corresponds directly with increased 

permeability to water (Mehta and Manmohan 1980). Moreover, a high wlc ratio results in 

a greater pore volume and interconnectivity of the pores (Mehta and Manmohan 1980). 

Thus, it is desirable to minimize the wlc ratio to reduce the permeability of the concrete 

while still adding sufficient water to ensure that the concrete can be properly mixed and 

placed. 

2.1.1.4 Effect of Chlorides on the Microstructure of Cernent 

Chlorides in cement paste are considered to exist in three states: (i) chemically bound as 

reaction products of hydrating C,A and to a lesser extent, C,AF; (ii) adsorbed within the 

structure of C-S-H; and (iii) freely available within the pore solution. It is generally thought 

that more chlorides will be chemically bound or adsorbed if added at the time of mixing of 

the cernent than if introduced later from the environment. This is due to the rapid 

hydration of C,A and the calcium silicates within the tirst tèw days of hydration, described 
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in Section 2.1.1.2. 

Many investigations have been performed to study the chloride-binding capacity of 

C,A (Ramachandran 1976; Conjeaud 1982; Suryavanshi, Scantlebury et al. 1996). The only 

form of calcium monochloroaluminate hydrate (C ,A-Ca(& - 1 O H 2 0 )  produced in the 

environmental conditions usually existing in cementitious materiais is known as Friedel's 

salt, Equation 2- 1. 

CaCI,,,, +C3A,, + 10 H,O,, - C3A -CaCl, -10 H,O,,, (2-1) 

It has been shown that the amount of calcium monochloroaluminate hydrate increased with 

increasing C,A content and nt s ratio, and depended on the chloride cation type (Arya, 

Buenf'ld et al. 1990; Suryavanshi, Scantlebury et al. 1996). In general, calcium chloride 

prociuces a greater proportion of calcium monochloroaluminate hydrate than does sodium 

chloride. 

In addition to this product, Conjeaud observed that chlorides may be incorporated 

into ettringite to form a chloro-emingite of an unspecified composirion as well as 

incorporated into the C-S-H (Conjeaud 1982). However, chloride binding rnay still occur at 

later 3ges during the hydration of aluminofemtes within the remaining anhydrous portions 

of cement gains (Csimadia, Bal& et al. 2001). Additionally, free &!orides in pore 

solution may become incorporated into solid phases such as C-S-H to maintain the 

equilibrium between the solid phases and the pore solution (Leek 1997). 

2.1.2 Mortar, Concrete, and Steel-Reinforced Concrete 

Cernent paste alone is an impractical structural material because it shnnks as it hydrates and 

its dimensions change with the ambient temperature and humidity. Therefore, a major role 

of the aggregate in concrete is to provide uimensional stability, reducing the o\eraH 

shrinkage to less than 1%. The addition of aggregate also reduces the cost per volume of 
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material since the cernent is signifcantly more expensive than aggregate. Fine aggregate 

(sand) is typically composed of particles with diameters that range fiom 75 p m  to 5 mm, 

while coarse aggregate (stones) has particles with diameters greater than 5 mm to 

approxirnately 50 mm (Mehta 1993). Steel reinforcing bars and other reinforcing materials 

are often added to concrete to provide tensile strengtfi and toughness. 

AH these inclusions, however, introduce interfacial regions within the concrete and 

complicate the already compIex microstructure of the cement. This results primarily from 

the increased particle size range. Instead of particle sizes that range fiom 2 to 90 pm 

(mostly 5 to 20 prn) within the cernent, the upper Iirnit is expanded to approximately 50 

mm (Mehta 1993). The microstructure of the cernent paste within mortar, concrete, and 

reinforced concrete is affected in the interfacial regions by the larger particles for two main 

reasons: (a) the inefficient packing of cernent particles during casting as a result of the "wall 

effect", and (b) settlement dunng the placement and compaction of the concrete. 

The "wall effect" results fiom the inability of the cernent powder particles to pack 

eficiently against the much larger surfaces of the inclusions, schematically illustrated in 

Figure 2.1.2(a) (Johansen and Andersen 1991). Interfaces are considered to be formed 

surfaces, aggregate, and by extension, embedded steel. This packing '%a1l9* effect lowers 

the amount of anhydrous cernent within the closest 20 p m  of the interface. 

Correspondingly, this results in a signiticant higher porosity within this region of about 

20-30 Pm. 
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Cast G ~ D S  within 

Figure 2.1.2(a) Schematic illustration of the "wall effect" present at cast surfaces and 
interfacial regions (modified fkom Johansen and Andersen ( 199 1 )). 

Another mechanism which involves the casting process can also contribute to the 

significantly higher porosity in interfacial regions. The solid particles settle during 

placement and compaction and this causes pockets of air and water to form under the 

particles, a process known as bleeding, shown schematically in Figure 2.1.2(b) (Chatteqi 

and Jensen 1992). These pockets are correspondingly deficient in cernent paste and this 

influences the final microstructure of the concrete. 
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Entrapped 
Air & Water 
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Casting 
Direction 

Bleed Water on TOR Surface 

CONCRETE 

Figure 2.1.2(b) Schematic illustration of the segregation of a cementkoncrete mix during 
placement and compaction, known as bleeding (modified fiom Mehta (1 993)). 

Overall, the end result of either the "wall effect" or bleeding is the same: the lower 

amount of anhydrous cement in interfacial regions affects the development of the 

microstructure as hydration proceeds. Thus, less C-S-H forms in this region than fùrther 

away in the 'bÿlk' microstructural regions and a Iocally higher porosity results. CH and 

AFt form preferentially in these regions because of the easy migration of ions. However, 

the relative amounts of the CH and AFt hydration products are low and the higher porosity 

in the interfacial regions persists throughout hydration (Crumbie 1994). I f  this higher 

porosity results in a continuous path From one side of a cementitious pore network to the 

other, this is known as percolation. Work by Winslow and Lui (Winslow and Liu (1990) as 

reviewed by Taylor (1990)) concluded that percolation occurs in most normal quality 
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concretes and this effect accounts for the higher permeability of concrete with respect to 

comparable cement pastes. 

2-1.3 Supplementary Cementitious Materials 

Certain minerais are known to have cementing properties and are classified either as 

pouolans or latent hydraulic materials. Pozzolans are materials which when mixed with 

cement and water form C-S-H whereas latent hydraulic materials require a catalyst to 

produce C-S-H. The addition of these products to a concrete mix reduces the cement 

requirement for strength, the heat of curing during early hydration, and enhances its 

durability over time. The most prevalent additions are ground granulated blast h a c e  slag, 

fly ash, and silica fume. Ground granulated blast fumace slag and fly ash are waste 

products of steel production and coal-buming power stations, respectively, and 

incorporating them into concrete mixes reduces energy consumption by reducing the cement 

requirement of the mix as well as recycling waste. Silica fume is also a waste product of the 

silicon industry but because of the excellent benefits it offers concrete mixes, it now 

commands a price higher than that of cernent powder. Since only fly ash and silica fume 

were used in this research, these are the only products described in greater detail in the next 

paragrap hs . 

Fly ash is used both as a separate ingredient in concrete mix designs as well as a 

component of blended cernent powders. It is catagorized according to the proportion of 

C a 0  in its chemistry: Class F fly ash is more than 70% composed of Sioz, Al,O,, and 

Fe203 with only a small amount of C a 0  while Class C fly ash contains less than 70% of 

SiO?, Al@,, and Fe.0, with a correspondingly larger amount of  Cao. This higher 

proportion of calcium compounds (reported as Cao) in Class C fly ashes allows this fly 

ash to be also cementitious as well as pozzolanic. 

Both tly ashes are predominantly composed of fine, spherical particles that can range 
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from 1 pm to 1 mm. However, to be suitable for use in concrete mixes, most fly ash 

particles should pass a 45 pm sieve. The individual particles c m  be glassy or crystalline, 

solid or hollow. Higher proportions OF glassy particles result in higher pozzolanic or 

cementitious reactivity and are, therefore, more desirable. In addition, hollow spheres are 

known as cenospheres while spheres that contain smaller particles are known as 

pleurospheres. These qualities, in combination with the aforernentioned compositional 

variations affect the properties of fiesh and hardened concrete. The presence of fly ash 

reduces the heat of hydration as well as the mixing water required for a particular slump. 

The reduction of the water requirement is extremely important for achieving low w/cm 

mixes (i.e., high performance concretes). The presence of carbon in the fly ash can intetfere 

with air-entraining admixtures and detrain air. In addition, carbon retards setting and 

strength development at very early ages (Le., up to 21 days). After approximately 28 days, 

however, concrete mixes that contain fly ash c m  have strengths that are equivalent or 

exceed non-fly ash concrete mixes. This is a result of the fly ash reacting with the CH that 

may accumulate at interfaces and depositing C-S-H thus improving the interface bond and 

the bulk strength of the overall concrete. 

Similady, silica fume reacts with CH to form C-S-H at interfaces and densifies 

concrete. Silica fume is composed of predominantly silica, glassy spheres (usually 86-90% 

(Taylor 1990), approximately 100 nm in diameter (about two orders of magnitude smaller 

than cernent particles) and as such, it reacts much earlier, approximately 7 to14 days after 

mixing. Its fine surface area also reduces bleeding and the water dernand of a particular mix 

to the point finishing operations can be dificult. This effect can be offset by the use of a 

superplasticizer (described in Section 2.1.4). Overall, silica fume increases strength, reduces 

permeabi 1 ity, and can dramatical l y increase electrical resist i vi ty. 
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2.1.4 Chemicaf Admixtures 

Chemical admixtures, like the supplementary cementitious materials descnbed in Section 

2.1.3. are added to fkesh concrete mixes to improve either the constructability of the fresh 

concrete or the durability of the hardened concrete, or both. Although there are a wide 

range of admixtures used in general practice, only superplasticizers and air-entrainers were 

used in this work, and therefore, are the only admixtures described. 

Superplasticizers (also known as high-range water reducers) reduce the amount of 

water necessary for workability of the fresh concrete to produce higher strength concretes. 

This admixture is a necessary component of high performance concrete for the reasons 

described in Section 2.1.5. It is essentially an anionic addition to a linear polymer with 

regular sulphonate groups. 

Air-entraining agents add a fine dispersion of air voids, preferably 10-250 pm in 

diameter, spaced approximately 200 pm apart to allow a concrete to resist fkeezelthaw 

damage (Powers 1949). This admixture is a surfactant with long chains that have a polar 

group at one end. It increases workability in a manner similar to superplactizers but to a 

lesser extent. However, the presence of a superplasticizer can interfere with entrained air 

because of the higher fluidity of the mix. As previously mentioned, carbon in fly ash also 

detrains air. 

2.1.5 High Performance Concrete 

The development of high performance concrete (HPC) was initially aimed at providing 

significantly higher strengths and its secondary goal has been to provide greater durability 

through a reduction in the interconnected porosity of the concrete. The hypothesis has 

been that, by reducing the water/cementitious materials ratio (wk) and providing adequate 

workability, compaction, and curing by the addition of appropriate chemical admixtures 

(r-g., air-entraining agents and superplasticizers) and procedures, the interconnected 
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porosity is greatly reduced, thereby limiting the ingress of deletenous species such as 

chlorides or COZ. The addition of silica fùme to the mix has been shown to be able to 

virtually eliminate capillary porosity in a manner shown by Sellevold et al. (Sellevold, Bager 

et al. 1982). Other properties that enhance durability include: increased electricai 

resistivity, increased strength if strong aggregates are used, increased tieezelthaw resistance, 

anddecreased scaling. 

A compromise to these enhanced properties is an increase in the brittleness of HPC 

(John and Shah 1989)- This could decrease its capacity to accommodate any corrosion 

products if their formation exerts pressures which exceed the critical tensile stresses of the 

concrete. In consideration of al1 these factors, it is anticipated that only cracked concrete 

would allow the ingress of sufficient chlorides to initiate and sustain the corrosion of 

embedded reinforcing steel, as descnbed in Section 2.3.2. However, it is also thought that 

cracks can be autogenously heated by the exposure of unhydrated cement grains to water, as 

reviewed in detail by Jacobsen et al. (Jacobsen, Marchand et al. 1998). 

2.2 TECHNIQUES FORMICROSTRUCTURAL CHARACTEMZATION 

2.2.1 Scanning Electron Microscopy (SEM) Techniques 

These techniques have been extensively reviewed by Diamond as they apply to the study 

of the microstructure of cernent and concrete and he detailed the important contributions of 

various researchers such as Moranville-Regourd, Hornain, and Aïtcin (Diamond 1994). 

Electron microscopy enables the direct observation of cernent and concrete microstructures, 

and both the morphology and spatial distribution of the individual constituents to be 

addressed (Crumbic 1994). WhiIe other microstructural characterization techniques are 

more suited to bulk investigations (e-g., thermogravimetric analysis, differential scanning 

calorimetry. mercus, intrusion porosimetry, solvent exchange, etc.), electron microscopy 
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pennits local areas to be studied. 

The high vacuum used in scanning electron microscopy requires that samples must 

first be dried to remove the evaporable water. For investigations of morphology and 

chemical composition of phases, fieeze drying is presently the most suitable technique used 

to remove the water fkom the samples (Crumbie 1994). Moreover, since the dry 

cernent-based materials are non-conductive, the samples must be coated with carbon or gold 

to eliminate electron charging. Two imaging modes are utilized in scanning electron 

microscopy: backscattered electron irnaging and secondary electron imaging. 

2.2.1. I Bachcattered Elecrron lrnaging (BEI) 

Backscattered electron imaging (BEI) requires flat, polished specimens whose 

microstructures are revealed by compositional contrast. Different phases are distinguished 

by the intensity of electrons backscattered from each phase which is determined by the 

average atomic number of the phase. The contrast appears as differences in grey level. 

Anhydrous particles, hydration products, porosity, and aggregate particles c m  be 

discriminated. In addition, the spatial distribution of the phases in two dimensions can be 

assessed. Parameters such as area and the diameters of microstructural constituents can be 

measured by quantitative analysis of the images produced. 

2.2.1.2 Secondary Electron Imaging (SEI) 

Secondary electron imaging (SEI) gives topographical contrast and is, therefore, suited for 

investigating the morphology of phases which is ofien studied using surfaces exposed by 

fracture. A disadvantage of this technique is that the fracture path ofien occurs through the 

weaker phases and may not be representative of the 'bulk' microstructure. In addition, the 

resoiution of the SEM limits the observation of small phases within the cernent 

microstructure (< 1 pm). 
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2.2.1.3 Energy Dispersive X-ray Spectroscopy (EDS) 

E D S  enables the elemental composition OF components to be assessed. For quantitative 

elemental analyses, this technique requires flat, polished surfaces and standards of similar 

compounds to the materials to be analysed. It is for this reason that quantitative analyses 

must be made in conjunction with flat surfaces, such as those used for BEI. Major 

constituent elements, greater than 10% by mass, can be measured with a high degree of 

confidence but there are larger errors associated with minor analyses ( I - 10% by mass), and 

trace elemental analyses (c 1% by mass) are not possible (Goldstein 1981)- EDS is often 

used with fracture surfaces using SEI, but this is not suitable and is considered to be a 

dubious practice for quantitative analysis (Scrivener 1984). However, measurements made 

within the SEI mode on fracture surfaces can be considered qualitatively to help assess 

which elernents compose a phase. When considered with the morphology, intelligent 

deductions can be made as to the exact composition and the type of compound observed 

(Crumbie 1996). 

2.2.1.4 Environmental Scanning EIecrvon Microscopy (ESEAQ with EDS 

The ESEM is designed to permit the introduction of  a gaseous environment into the 

specimen chamber (Danilatos 199 1). This microscope, coupled with EDS, is capable of 

imaging and analyzing specimens in virtually any environment at a relatively high pressure, 

up to approximately 6.7 kPa (50 Torr). The most common environment is water vapour 

and with the control of  the pressure inside the chamber and temperature of the specimen, 

1 00% relative humidity is possible. This is very suitabie for in situ cernent and concrete 

studies as specimens do not need to be dried or coated with gold or  carbon for imaging. 

This is a significant advantage over conventional SEM studies since drying and coating can 

diston the Fragile microstructure (Jenninçs, Dalgleish et al. 198 1 ). In addition. dynamic 
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hydration studies can be performed within the ESEM as the presence of water allows the 

hydration to proceed during observations. Another advantage is that the preparation tirne 

of samples studied with the ESEM is dramatically reduced compared to that of the SEM. 

The major disadvantage is the image resolution which is slightly lower. 

2.2.2 X-ray Diffraction (XRD) Techniques 

While EDS is limited to elemental analyses, XRD assesses the organization of these 

elements and is used to identiQ the chernical compounds within cement pastes from their 

crystallographic fonns. There are limitations to the application of XRD techniques to 

cementitious materials: (i) the major phase, C-S-H, cannot be thoroughly assessed by XRD 

due to its inherent poorly crystalline structure; (ii) many constituents of cement paste have 

peaks which overlap others (Taylor 1990); or (iii) only a trace amount of the phase is 

present and is, therefore, below the resolution limit of this technique, about 5%. Analyses 

of mortar or concrete are M e r  complicated due io the presence of aggregate within the 

analysed sample. Since aggregate ofien constitutes a large proportion of the material 

(typically 3-6 times the volume of cement), XRD peaks fiom the cementitious phases are 

minimized and obscured by the aggregate peaks. These factors have been overcome, in part, 

by isolating the desired phases either through the deliberate destruction of non-desired 

phases (Gutteridge 1979), or the careful manufacture of the chosen phase in a controlled 

laboratory atmosphere (Crammond 1985; Guirado, Gali et al. 1994). In fact, there has not 

been any work to date which has used XRD as its primary tool to analyze concrete or 

mortar. It is always used in combination with other techniques such as electron 

microscopy and thermal analysis. XRD is more often used with cernent paste for preferred 

orientation work (Grandet and Ollivier 1980; Grandet and Ollivier 1980) or to confirm the 

significant presence of one phase or another (Rasheeduuafar, AI-Saadoun et al. 1990). 
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2 . 2  Porosity Measurements 

2.2.3.1 Total Porosi@ Measurements 

nie simplest of total porosity measurements is based upon the Archimedes' Pnnciple 

which states a body wholly or partially immersed in a fluid is buoyed by a force equal to 

the mass of the fluid displaced (Lide 1999). The total porosity (P) of cement-based 

matenals can then be calculated from their water saturated surface dry mass (m,), their 

mass suspended in water (m,,,,,), and their oven dry mass2 (m,,), Equation 2-2. 

These rnoisnire states are schernatically illustrated in Figure 2.2.3.1. Equation 2-2 applies 

to systems in which al1 pores within the sample are water saturated which may not be the 

case, especially if discontinuous pores are present. Unfilled pores cause the specirnen to be 

Iighter in water thus underestimating the total porosity. However, this is not a major 

problem for comparisons between samples. This technique is not suitable for early 

hydration studies within the first day because exposure to water to saturate the sample 

would alter the degree of hydration. In older cernent and concrete samples, the time taken 

to saturate the sarnples, typically 24 to 48 hours, is insignificant with regard to the state of 

h ydration. 

3 - Mass rifier drying al 105'C until al1 e\aporab!e watcr is rcmoved. 
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Figure 2.2.3.1 Schematic illustration of moisture states of  cernent-based materials (Neville 
1973)- 

2.2-3-2 Pore Size Distribution Measurements 

Mercury intrusion porosimetry (MIP) is the most commonly used method for determining 

pore size distributions because of its ability to measure an extensive range of pore sizes 

(i.e., from approx. 4 nm up to 1 mm) (Diamond 1989; Winslow 1989). The technique is 

based upon the principle that a non-wetting liquid (e.g., mercury) will not enter a porous 

solid except under pressure (Taylor 1990). A number of  researchers have reviewed this 

technique and described its limitations (Diamond 1989; Winslow 1989; Cook and Hover 

1993). The latter two studies furthcr esamined the impact of various assumptions used 
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with cernent-based materials. These assumptions include: (i) the pores are cylindrical; (ii) 

the pore network contains its coanest pores at the exterior and that finer pores aiways 

branch From larger pores; and (iii) the pore network is continuous. In reality, pores have 

varying diameters that can branch to both larger and smaller pores (bottlenecks) or end 

aitogether to make the network locally discontinuous. The presence of cracks within a 

sample complicates analyses further. The end result of these assumptions suggests that 

pore size distributions measured with MIP are best used for comparative analyses and that 

replicate samples must be analyzed. If the pores are assumed to be cylindrical and have a 

constant contact angle (q), and surface energy of the liquid (g),  the pressure required (p), to 

force the liquid in a pore of radius (r), is given by the Washburn equation, Equation 2-3. 

- 2y cos 0 
P = r 

For the mercury to intrude, however, the free water must be removed. Marsh et al. 

concluded that solvent replacement methods were preferable to oven drying since the latter 

significantl y alters and coarsens the pore structures within cementit ious materials (Marsh, 

Day et al. 1985). Although the high pressures used in the MIP technique may disnipt the 

fine pores, and the mercury may not enter discontinuous pores or the interlayer space 

present in the microstructure, MIP is the only currently available technique to date that 

encompasses the extensive pore size range within cements for relative cornparisons (Taylor 

1 990). 

2.2.4 Thermal Analysis 

Thermal analyses measure the dynamic relationship between temperature and the mass or 

enthalpy of a material. The most common techniques are thennogravimetric anaiysis (TG), 

di fferential thermal analys is (DTA), and di fferential scanning calorimetry (DSC). Since 

only TG and DTA were used in this work, they are the only two methods described 
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hereafter. 

TG is used to measure changes in the mass o f  a sample over a given temperature range 

while DTA is used to measure enthalpy changes. Both techniques can provide valuable 

information about the constituents of cementitious materials (e-g., CH, CaCO,, calcium 

monochloroaluminate hydrate). TG is a more quantitative technique than DTA and both 

provide information on the composition by measuring the onset and duration of phase 

changes such as dehydration and decomposition. For example, quantifling the amount of 

CH using TG can indicate the progress of hydration, especially if povolanic materials are a 

part of the mix. In addition, using DTA, minerals can be identified by the phase changes 

that occur over certain temperature ranges. Overall these techniques are more precise with 

simpler systems that contain only a few compounds because interpreting results with 

overlapping peaks can be difficult. Concrete samples are especially difficult to study 

because they contain a large volume of aggregate, the constituents of which also changes 

over the same temperature range as the cementitious minerals under investigation. For 

example, common aggregates include those predominantly composed of  CaCO, which 

directly interferes with carbonation studies in cement paste. Interpretations of results are 

aided by examining the derivative of the curves which heips identify any changes in slopes 

of the curves corresponding to mass or enthalpy changes, referred to as differential 

thermogravimetric analysis (DTG). 

2.3 CORROSION OF STEEL-REINFORCED CONCRETE 

2.3.1 The Passivation of Steel in Concrete 

Concrete provides more than a protective cover to guard against corrosion: it aIso offers a 

passivating environment because of the high pH of the pore solution (approximately 

12.5-1 3.8). Iron passivity results from the formation of an ultra-thin (< 10 nm), protective 

oxide or hydroxide film that slows down the rate of anodic dissolution to negligible levels 
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(Shreir, Jarman et al. 1994). The formation of a passive film begins with the dissolution of 

the metal and the corresponding oxygen reduction which uses the electrons generated by the 

metal dissolution in its reaction, represented by Equations 2-4 and 2-5, respectively. 

2 Fe,, - 2 ~e",, + 4e-  (2-4) 

0 2 . ~ )  + 2 H,Oo, + 4e- - 4OH-,, (2-5) 

The resulting ferrous ions are attracted to the cathodic portions of the steel. The closest 

cathodic site is where the iron ions combine with hydroxide ions from the cathodic reaction 

to form the solid product of ferrous hydroxide, Equation 2-6. It is a l s ~  possible that 

hydroxide ions may travel to the anodic regions. 

2 ~ e ~ - , ,  i- 4 OH-,,) - 2 Fe(OH), ., (2-6) 

Upon exposure ofthis film to oxygen, other passivating oxides may form (e.g., Fe,O,, and 

FeIO,) on the outer surface of the film. As a result, these passive films cm consist of 

layers of iron hydroxides or oxides in different states of oxidarion (Uhlig and Revie 1985). 

The work of Pourbaix defined the range of pH and electrochemical potentials where 

insoluble and thermodynamically stable films of Fe(OHjl, Fe,O,, and F-O, form in water 

(Pourbaix 1966). Figure 2.3 presents a redox potential-pH diagram that combines al1 

species calculated by Pourbaix (Le., che formation of hydroxides and oxides) with additional 

species, FeOH- and Fe02Z-, that were not considered in his original work resulting from the 

hydrolysis of the ferrous ions in solution. The one obvious drawback with the presentation 

of this thermodynamic data is that it does not consider kinetics or the effect of other 

species other than water. Although the information presented does concur with the 

observed behaviour of iron at various poteniials and pH values, kinetic considerations 

would possibly include metastable and other stable compounds and complexes that may 

result from the ionic species present within the pore solution of concrete. 

Generally, the study of these films ex siru is challenging. For example, it has been 

obsewed that the passive film formed on iron in a borate buffer solution (deaerated 0.3 M 
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&BO, + 0.075 M Na,B,O,. pH about 9.2) M e r  oxidizes and cm possibly dehydrate 

upon exposure to air (Goetz, Mitchell et al. 1987; Eldridge and Hof ian  1989). This 

suggests that al1 observations of the passive film should be performed insihr. 

Other contributing factors to the protective environment present in concrete include: 

the electrical resistivity of concrete which cm slow the corrosion rate by impeding the 

movement of ions between anodic and cathodic sites; it limits the access of oxygen to the 

steel; and the possible preferential formation of CH at the steel/concrete interface which 

provides a physical bamier to aggressive species, described in Section 2.1.2. 
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Figure 2.3 Calculated Fe-H,O redox potential-pH diagram (25°C and 10 1.3 kPa) that 
assumes the molality of iron is 1 O4 (Bale, Pelton et al. 1995). 

2.3.2 The Active Corrosion of Steel in Concrete 

The passivity of steel embedded in good quality concrete can be compromiscd in a number 

of environmental situations: aggressive ions (e-g., Cl- ions) are introduced into the concrete 

that attack the steel; the pH of the concrete is lowered (e.g., by carbonation); or insufficient 

oxygen is present at the steel to maintain the passive film. Other causes of active 

25 
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reinforcing steel corrosion include: galvanic ce11 formation fiom the contact of dissimilar 

metals (e-g., stainless steel fittings, galvanized rebar, bronze hangers for precast sections of 

concrete), and stray currents (e.g., fkom DC high-tension power Iines, impressed current 

cathodic protection systems, or electric railway Iines). Only chloride-induced corrosion is 

considered in this iiterature review. 

2.3.2.1 Chloride-hdztced Corrosion 

Chloride ions locally destroy the passive film on steel in concrete. The sources of these 

ions include: any chiorides onginally present within the cement powder, calcium chlotide 

added at the time of mixing as a set-accelerator, contaminated aggregate or mixing water, or 

those introduced over the service life of the reinforced concrete structure from marine 

exposure or the use of de-icing salts. In Ontario, the largest source of chlorides is from the 

use of de-icing salts during the winter months. 

Sunicient chlorides present in the pore solution adjacent to the steel reinforcement cm 

initiate active metal dissolution at local sites, known as pitting corrosion, provided the 

supply of oxygen and water is also high enough to ensure that the cathodic reactions can 

take place over the remaining surface of the steel. The presence of millscale typically 

observed on the surface of reinforcing steel restricts the attack of the chloride ions to those 

areas of the steel where the scale is broken. 

The exact mechanism of chloride-induced pitting in concrete is not known but it is 

thought that the overall process is that schematically illustrated in Figure 2.4. This diagram 

was developed assuming a neutral aqueous solution but a similar process can be assumed 

for steel in concrete albeit at a lower rate and without the evolution of hydrogen gas for the 

conditions typicall y encountered in concrete. In addition, the resulting corrosion pmducts 

could be different than that shown. 

Chloride-induced corrosion initiates similarly to the passivation process represented 
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by Equations 2-4 and 2-5. Chloride ions are then attracted to the metal dissolution sites to 

maintain electro-neutrality and generate soluble iron chlorides. These chloride products can 

have a range of compositions which are ofien simplified and reported as ferrous chloride, 

the thermodynarnically favoured product, Equation 2-6. 

2 ~e' - , ,  + 4Cl&, - 2 FeCl, -4  H,O,, (2-7) 

The increased localized dissolution of the metal generates pits because the surrounding 

steel remains passive and acts as a cathode. The ferrous chlonde compound fomed in the 

pits is stable at the low pH present in the pit but dimises out of the pit because of the 

locally high concentration present within the pit. At the higher pH outside of the pi!, the 

ferrous chloride compounds are no longer stable and dissociate. The chloride ions are then 

released into the pit for Further chlonde attack while the ferrous ions are attracted to the 

cathodic portions of die steel. The closrst cathodic site is at the mouth of the corrosion pit 

and here the iron ions combine with hydroxide ions frorn the cathodic reaction to form the 

solid corrosion product of ferrous hydroxide according to Equation 2-6. 

The formation of this product dunng pitting does not passivate the anodic site 

because chlorides become incorporated into the product thus reducing its electrical 

resistivity and increasing the possibility of tùrther corrosion at this site. The corrosion 

products that form during this process are descnbed in the next Section. In addition, the 

presence of chloride ions increases the conductivity of the pore solution such that the 

distance between anodic and cathodic sites c m  be larger (Uhlig and Revie 1985). This 

allows more of the catliodic surface of the steel to drive the anodic reactions occumng 

within significantly smaller corrosion pit. Consequently, these corrosion pits are 

selfkustaining and the rate of corrosion is  determined by chloride ion mobility, oxygen 

availability, and the electrical resistivity of the concrete. As the corrosion rate increases, 

the pH of the pore solution in the pit decreases, thus acceierating the. rate of iron 

dissolution and deepening the pit. 
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This presence of millscale on the surface of the steel has been studied by several 

researchers (Addleson and Rice 1995; Mammoliti, Brown et al. 1996; Li and Sagüés 2001). 

The work of Addleson and Rice concluded that mill scale contributes to this attack of the 

steel when the steel is exposed to sea water. They postulated that this mil1 scale foms a 

physical bamer but once it is penetrated, the corrosion pits can be four times deeper than 

bare steel within the first year but this effect will lessen with time (Addleson and Rice 

1995). These results were not observed by the latter researchers in alkaline solutions who 

noted that ground steel, presumably similar to the bare steel of the Addleson and Rice 

study, increased the chloride threshold for corrosion initiation over the mill scale but once 

corrosion initiated, the corrosion rates were higher for the ground steel. This discrepancy 

may result from the different types of immersion solutions (Le., sea water versus alkaline 

solutions intended to simulated pore solution) used in the research. In a similar manner, it 

is likely that the presence of a cementitious cover would affect the initiation of corrosion 

and the subsequent corrosion rate but no known research of this type has been published. 
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Figure 2.4 Schematic illustration of the chloride-induced corrosion of steel in a neutral, 
aerated solution (Wranglén 1985). 

.?. 3.2.2 Chloride-lnduced Corvos ion Prodttcts 

Herholdt et al. presented the sequence of corrosion products that forrn on steel according to 

the availability of water and oxygen present in the system, shown in Figure 2.5 (Herholdt, 

29 
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Justesen et al. 1985). The corresponding specific volume of these products related to the 

parent iron metal, shown in Figure 2.6, was estimated using crystallographic data and 

clearly shows why the formation of corrosion products within concrete is generally thought 

to cause the cracking and spalling of the concrete cover. Figure 2.5 is oversimplified, 

however, in four areas: (i) Fe0 (wüstite) is not considered stable under 843 K and ambient 

atmospheric conditions (Simmons and Leidheiser 1976); (ii) the green intermediate product 

does not specib the required presence of either chlorides or other anions such as sulphates; 

and (iii) the specified end products of magnetite (Fe,O,) and "nist" (Fe(OH);nH,O) do not 

entirely represent experimentally observed products, a range of femc oxyhydroxides (a, f3, 

y and 6-FeOOH) as well as magnetite (Fe30,), hgmatite (a-Fe203), maghemite (y-FeO,), 

and Green Rust 1 (3 Fe<~I~OH) 2-Fe(I[[{OH)finH20) (Misawa, Hashimoto et al. 1974; 

Génin, Rezel et al. 1986; Wolski 1990; Boucherit, Hugot-Le Goff et al. 199 1; Refait and 

Génin 1993). Similarly, the main limitation of Figure 2.6 is that the cornparison of the 

layered structure of iron corrosion products to bulk iron hydroxides and oxides is 

potentially questionable and must be validated (Shreir, Jarman et al. 1994). 
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Oxygen Def iciency Excess of Oxygen 

lron Ox~gen Water 

lron (II) Hydroxide Fe(OH)2 Rust Fe(OH)g.nH2O 
WHITE BROWNISH YELLOW 

m 

I 

Water lron (II) uxide Fe0 
BLACK 

_I 

Magnetite Fe304 lron (III) Hydroxide Fe(OH)3 
BLACK BROWN h 

I 
Water r 

BROWNISH YELLOW 1 
Figure 2.5 Flowchart of Product formed during the Corrosion Process depending upon the 

Availability of Water and Oxygen (Herholdt, Justesen et al. 1985). 
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O 1 2 3 4 5 6 7 
Unit Volume 

Figure 2.6 The relative volumes of iron corrosion products with al1 values from the Joint 
Committee on Powder Diffraction Standards except for Fe(OHh and Fe(OH)2 which were 

estimated from data presented in the CRC Handbook of Chemistry and Physics (Lide 
1999). 

Experimental work in aqueous solutions has observed that the corrosion products that 

Form on steel depend on the [Cl-]/[OH7 ratio in solution in addition to water and oxygen 
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availability (Misawa, Hashirnoto et al. 1974; Génh, Rezel et al. 1986; Refit  and Géain 

1993). Ginin et aL suggestd that if [CTl/[Om 5 1, then Fe(OH), would form initially but 

would later oxidue to goethite (a-Fe00H) and magnetite &O,) (Génin, Rezel et al. 

1986). Refait and Géain more recently rranalysed the influence of [Clî/[OW] ratios on the 

formation of Green Rust I (GRI) and its corresponding end products as outlined in Table 

2.3 (Refait and Génin 1993). This work was summarized as a redox potential-pH diagram, 

shown as Figure 2.7. A similar product known as Green Rust II (GR2) has a similar 

structure to GR1 but the chlonde ions are replaced with three-dimensionai ions such as 

sulphate or selenate (Legrand,  saga^ et al. 200 1 )- 

Table 2.3 Summary of the Corrosion Products Observed for Varying [Cl-]/[OH'] Ratios 
including Green Rust 1 (GRI) (Génin, Rezel et a l  1986; Refait and Genin 1993). 

Ratio of Chloride and I Initial 
1 Hydroxide lois in Solution Prodrift End Prodact(s) 

1 hydrated magnetite 
i (Fe(OH)2*2FeOOH) oxidized 

1 .O25 < [ClI/[OK] .c 1.1 1 Fe(OH), / some GRI to 
1 1 non-stoichiorneaic magnetite 
i i 
I I (Fq-xO,, x = O to 113) 

1.1 i 5 [c~-]/[oH-] 5 1.75 1 2Fe(OH), / GR1 1 I lepidocrocite (y-FeOOH) 
1 I l 
I 1 lepidocrocite (y -FeOOH) 

[Cl]/[OH] > 1.75 1 2Fe(OH)2 1 ! GRI I 
t : goethite (a-FeOOH) 
; *FeOHCl i akaganeite (p-FeOOH) 
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Figure 2.7 Experimentally derived Fe-H,O-CI' redox potential-pH diagram that assumes 
the molality of iron is 1 O4 (Génin, Refait et al. 1997). 

It is uncertain whether these chloridehydroxide ratios are accurate for concrete given the 

inhomogeneous chemistry and the physical constraints of the concrete cover (Le., species 

must diffuse through a tortuous pore network). The work reported to date on the corrosion 

products that f o m  in steel-reinforced concrete has been performed exsitu (Suda, Misra et 

al. 1993; Wang and Monteiro 1996; Leek 1997). Suda et al. identified magnetite (Fe ,O,), 

goethite (a-FeOOH), and lepidocrocite (y-FeOOH) along with unidentified amorphous 

content in their X-ray diffraction samples (Suda, Misra et al. 1993) while Wang and 

Monteiro identi fied goethite (a- FeOOH), magnetite (Fe,O,), and hsmatite (a- FeZO,) 

(Wang and Monteiro 1996). These X-ray diffraction results may be unreliable because the 

in siru compounds may have oxidized during the sample preparation process in a manner 

34 
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similar to the passive film as reported in Section 2.3.1 thus distorting the composition of 

the original corrosion products observed. The investigation by Leek did not suffer fiom 

this disadvantage as SEM and EDS were used to analyze elemental ratios and distributions 

within cementitious cover and, therefore, oxidation could be excluded fkom any analyses 

(Leek 1997). This work focussed more upon the structure of the corrosion products at the 

steeurnortar interface and within the mortar cover than on the exact composition o f  the 

products thernselves. However, the drying atmosphere of  the SEM might have dehydrated 

the observed morphologies of the corrosion products. Clearly, there is a significant need for 

in si îu observations of the corrosion products that form in concrete along with their spatial 

distribution, rate of formation, and material properties. 

In addition, the effect of the formation of corrosion products on the corrosion rate 

requires further investigation. As hworth et al. suggested that the breakdown of passivity 

followed by corrosion was stifled by the formation of corrosion products that would cover 

corrosion pits (Ashworth, Boden et al. 1970). Leek illustrated this relationship between 

corrosion rate and product formation graphically and is shown as Figure 2.8 (Leek 1997). It 

is likely that the type of corrosion products formed would affect the final corrosion rate as 

denser products such as magnetite (Fe,O,) might oEer increased resistance to further 

chloride ingress and dissolved oxygen than a product like hæmatite (a-Fe20,). 
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Time 

Figure 2.8 Idealized current versus time relationship for the chloride initiated breakdom 
of the passive film on mild steel in concrete. The work of Ashworth et al. as interpreted by 

Leek (Ashworth, Boden et al. 1970; Leek 1997). 

2.3.3 Effect of Chloride-Induced Corrosion on the Microstructure of Concrete 

Little attention has been given to microstructural charactenzation of concrete during 

chloride-induced corrosion. It is thought that the impact of chloride-induced corrosion on 

concrete is confined to cracking of the concrete due to the stresses imposed by the 

generation of expansive corrosion products at the interface. Monteiro et al. examined the 



Chapter Two: Theoretical Considerations 

steekement interface ex siîu after corrosion had initiated (Monteiro, G j m  et al. 1985). 

They concluded that the formation of dsndritic corrosion products spalled the cementitious 

interfacial products from the surface of the steel that were previously adherent. Whether 

corrosion products formed away fkom the steel interface within the cernent paste was not 

reported nor were the composition of the corrosion products and the surrounding cernent 

paste. 

In later work, Wang and Monteiro observed corrosion products forrning at the 

steelkoncrete interface and within the concrete cover (Wang and Monteiro 1996). The 

authoa suggested that corrosion products shrink and swell under drying and wetting cycles 

which causes the surrounding cernent paste to crack. This conclusion is unlikely because a 

typical drying cycle would not be able to dry the concrete to the level of the reinforcement 

(Bakker 1988). Leek observed essentially the same damage but concluded that calcium 

hydroxide dissolved to counteract the acidification of the pore solution at anodic sites. 

These formerly occupied spaces could then accommodate corrosion products. Once this 

volume is exceeded, the corrosion products would begin to exert expansive forces on the 

cementitious cover. This is the most plausible explanation for the observed behaviour and is 

consistent with the observations of Allan, described in the next Section (Allan 1995). 

More recently, Aligizaki et al. identified corrosion products away fiom the 

steelkoncrete interface and along the aggregatekoncrete interface (Aligizaki, de Rooij et al. 

2000). The researchers clearly established the presence of corrosion products with the 

interface transition zone (ITZ) surrounding the aggregate without any obsewed cracking 

using EDS but did not did not perform any compositional analysis. Thus, it is clear that 

corrosion products can form away fiom the steelkoncrete interface but what remains 

unknown is to what which corrosion products form and to what extent the ionic species 

generated by the corrosion process become incorporated into the chemistry and distribution 

of the cementitious phases. 
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2.3.4 Effect of Cracks, Microcracks, and Other Defects in Concrete on the 

Chloride-Induced Corrosion Rates of Steel in Concrete 

It is generally accepted that cracks, microcracks (of the order of micrometres), and other 

defects (millimetres) are inevitable in concrete structures. Consequently, reinforced 

concrete structures are designed with the assumption that they will crack to ensure 

structural safety (Darwin, Manning et al. 1985). There exists a considerable debate, 

however, regarding the influence of existing cracks, microcracks, and other defects both on 

the initiation and propagation of chloride-induced corrosion. The formation of corrosion 

products generates intemal stresses that eventually crack the concrete cover and accelerate 

the corrosion process, described in Section 2.2.2.2. 

There have been two approaches to this problem to attempt to elucidate the factors 

that influence the corrosion rate: examining either the cracks that intersect the surface or 

intemal cracks. Many researchers have observed the effect of surface cracks on the 

corrosion rate of steel in concrete (Dakhil, Cady et al. 1975; Nilsen and Espelid 1985; 

Okada, Kobayashi et al. 1988; Borgard, Warren et al. 1989; Rasheeduzzafar, Al-Saadoun et 

al. 1992; Hwang, Chen et al. 1994; Arya and Oforï-Darko 1996). This type of work has 

identified a complex interaction of parameters that influence the corrosion rate: the 

orientation of the crack with respect to the reinforcing steel (Le., intersecting or coincident); 

the ratio of reinforcement bar diameter to cover depth ratio; the relationship between the 

width of the crack at the surface of the concrete and its width at the level of the 

reinforcement; and the density of cracks. The general conclusion of several researchers 

(Dakhil, Cady et al. 1 975; Rasheeduzzafar, Al-Saadoun et al. 1 992; Arya and Ofori-Darko 

1996) is that increasing the cover depth reduced cracking but Rasheeduzzafar et al. hrther 

specified that the size of the reinforcing bar must be considered as well. For 

corrosion-inducrd cracks, Nilsen and Espelid observed that once cracks had formed to the 

level of the reinforcement, an increased cover depth did not affect the rate of corrosion 
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(Nilsen and Espelid 1 985). 

Fewer researchers have studied the role of intemal cracking due to corrosion products 

(Grimes, Hartt et al. 1979; Andrade and Alonso 1993; Molina, Alonso et al. 1993; Allan 

1995; Torres-Acosta and Sagüés 2000). Al1 research, with the exception of the work of 

Allan, used impressed currents to generate corrosion products that cracked the concrete 

cover. The application of an impressed current to steel generates a more uniform corrosion 

layer over the surface of the steel and, therefore, rnay not replicate the localized nature of 

chloride-inducedcorrosion. 

However, the work Torres-Acosta and Sagüés counteracted this limitation by 

applying the impressed current to only an electrically isolated portion of a steel bar. Using 

this technique they observed that the amount of corrosion required to crack the cover of the 

concrete was approximately 49 to 137 pm but unfortunately a description of the resulting 

corrosion products and the porosity of the concrete cover was not presented. The 

conclusions of other research that used hydraulic pressurization at the surface of the steel 

suggested that if voids and pores were present at the steelkoncrete interface, the onset of 

cracking was delayed (Allan 1995). Clearly research directed towards understanding the 

factors which influence the interna1 cracking of concrete is burgeoning but more work 

remains. 

2.4 CHARACTERIZATION OF CORROSION PROCESSES 

The use of electrochemical techniques to detect the corrosion of steel in concrete allows for 

extremely sensitive, fast, and non-destructive assessments. Although electrochemical 

impedance spectroscopy (EIS), electrochemical noise, and other electrochemical techniques 

are also used in laboratories and the field, the following techniques were the only ones used 

in this work. 
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2.4.1 Open Circuit Potential Measurements 

Passivation, pitting corrosion, and general corrosion have been previously described in 

Sections 2.3.1, 2.3.2.1, and 2.3.2.2, respectively. Active, low potential corrosion results 

from the absence of oxygen in the environment and leads to the electrochemical reduction of 

the passive film by Equation 2-5. In this condition, the passive film is unable to sustain 

itself leaving the bare steel to generally corrode at a slightly higher rate than during 

passivation (Hansson 1984). 

Because of its simplicity, the open circuit potential, also known as the corrosion 

potential, Eco, is the most widely used electrochemical rneasurement (Rodriguez, Ramirez 

et al. 1994). In the case of steel in concrete, this is a relative measure of the ease of electron 

charge transfer from steel to its pore solution (Hansson 1984). It is a property of the 

steelkoncrete interface and not of the steel itself. It cannot be measured absolutely and 

must be measured as a potential difierence with respect to a reference electrode (e-g., 

saturated calomel electrode, SCE). An accurate interpretation of this measurernent requires 

a knowledge of the moisture, oxygen avai lability, and the occurrence of galvanic 

macrocouples to generate accurate information about reinforced concrete structures 

(Rodriguez, Ramirez et al. 1 994). 

The information provided by the technique is the probability of whether corrosion is 

occumng but not a corrosion rate and is, therefore, limited in its use. Table 2.3 presents the 

interpretation of these probabilities associated with a given measurement (Amp 1983). 
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Table 2.4 The four States of corrosion of steel in concrete ( h p  1983). 

Open Circuit Potemtial 1 State of Corrosion of 
mV SCE ] Steel in Concrete 

+ 100 to -200 (aerated) Passive 
+2ûû to -600 (deaerated) ! 

-450 to -600 General 
- -  

< -1000 - 1 Active, Low Potential 
Corrosion 

2.4.2 Fuii Cyclic Potentiodynamic Polarbation Mersurements 

Full cyclic potentiodynamic polarization curves are reiatively non-desûuctive 

measurements that provide information, incluâing the corrosion rate, about the behaviour of 

reiaforcing steel at potentials other than the open circuit potential (Hansson 1986). This 

measurement is accomplished with a thiee electrode system where the specimen (the 

reinforcing steel) is held at gnnmd and a potential difference is applied between a cornter 

electrode and a refereoce electrode (Figure 2.9). The resulting potential differe~~ce between 

the specimen and the reference electrode is measured dong with the cunent that flow 

between the steel and the counter electmde by a potentiostat. 
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Figure 2.9 Schematic illustration of the three electrode measurement system. 

For studies of steel in concrete, the applied potential is usually swept anodically and then 

cathodically, typically at a rate of 1 mV/s or slower. To minimize the alteration of the 

steevmortar interface, the potential is kept below the oxygen evolution line but above the 

hydrogen evolution line, Figure 2.10. These potentials are indicated by the dashed Iines (b) 

and (a), respectively, in Figures 2.3 and 2.7. 
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Applied 
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mV 
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Figure 2.10 Graphical illustration of the potentials applied over time dunng fùll cyclic 
potentiodynamic polarization measurements. 

When the applied potential is plotted versus the logarithm of the measured current density, 

the corrosion rate at the open circuit potential can be calculated in the manner described in 

Section 2.4.4. The information provided by the anodic portion of the curve includes: (i) the 

ability of the steel to passivate in a certain medium; (ii) the potential region where the steel 

remains passive; and (iii) the corrosion rate in the passive region, Figure 2.1 1 (EG & G 

1980). I f  steel were to actively corrode, the magnitude of the current density and shape of 

the hysteresis loop would indicate the nature of the corrosion (Le., pitting or general 

corrosion), Figure 2.12. The cathodic portion of the curve indicates the corrosion rate of 

the bare steel and any oxygen limitation during oxygen reduction, Figure 2.1 1. In addition, 

examining the slopes of these curves can emphasize changes in the surface of the steel 

which indicate the formation or destruction of products at different potentials. Overall, a 



Chapter Two: Theoretical Considerations 

great deal of information about the electrochemical behaviour of a metal in a certain 

electrolyte can be collected using this technique. 

Applied ' 
Anodic 

Potential 

Open Circuit 
Potential 

Applied 
Cat hodic 
Potential, 

Passiv 4 
State 1 Pitting Corrosion 1 

Corrosion 

Figure 2.1 1 Graphical representation of the information provided by the anodic and 
cathodic portions of the fùll potentiodynarnic polarization curves (modified fiom 

Enevoldsen ( 1993)). 
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Figure 2.12 Interpretation of the anodic hysteresis loop of the full potentiodynamic 
polarization curve undergoing active corrosion (Mammoliti 1 995). En represents the pitt ing 

potential while E, represents the passivation potential. 

The disadvantages of  this technique include: (i) it requires hours or days to perform, and (ii) 

it is necessary to polarize the steel well away fkom the naniral corrosion potential of the 

reinforcing steel (Hansson 1986). Also, under some circumstances, the application of 

potentially a few hundred millivolts can change the local environment surrounding the steel 

for a penod of time. However, this effect is temporary and the open circuit potentials have 

been observed to drift back to their original value after a penod of time indicating the 

restoration of the original conditions (Hansson 1986). 

2.4.3 Linear Polarization Resistance Measurements 

This is the most commonly used technique for determining corrosion rates (Rodriguez, 
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Ramirez et al. 1994). It is a rapid technique which determines the instantaneous corrosion 

rate by sweeping the potential of the steel + 20 mV around the open circuit potential and 

observing the corresponding changes in the current. Similar to full potentiodynamic 

polarization measurernents, this action biases either the anodic or cathodic reactions such 

that the system is shifted away fiom the equilibriurn present at the open circuit potential 

and a net current can, therefore, be measured. 

Applied 
Potential 

q=+20mb 

Open Circuil 
Potential 

~esulting 
Current 

Equilibrium Anodic Current 

Time (seconds) 

Equilibrium Cathodic 

C 

Initial Cathodic Current 

Figure 2.13 Graphical illustration of the potentials applied over time and resulting current 
during linear polarization resistance measurements where h represents overpotential. 
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This measurement is accomplished with the same three electrode system used for full 

potentiodynamic polarkat ion measurements (Section 2.4.3). 

In the small range ofpotentials studied, the dope of the applied potential, hE, venus 

the measured current, Ai, is considered to be linear as AE approaches zero. This slope is 

related to the corrosion rate, i, by Equation 2-8, developed by Stem and Geary (Stem and 

& is known as the polarization resistance, and 0, and Oc represent the Tafel constants of 

the anodic and cathodic currents, respectively. ïhese constants can be experimentally 

determined fiom a hl1 potentiodynamic polarization curve (Figure 2.8) or a simplification is 

often made, Equation 2-9, 

where B represents a value ranging from 13 to 52 mV in most metaumedium systems (EG 

& G Research 1980). Andrade and Gonzalez concluded that B = 26 mV and B = 52 mV 

gave sufficiently representative values for steel undergoing active microcell corrosion or 

passive corrosion, respectively (Andrade and Gonzilez 1978). 

Problems arise in interpreting this value of the corrosion current because the area 

actually corroding cannot be determined non-destructively for steel cmbedded in concrete. 

if the corrosion current is divided by the entire embedded portion of the steel, the corrosion 

current density may be underestimated, for esample, where the cause of the corrosion is 

chloride-induced pitting. Chloride-iriduced p i s  rnay represent only a small portion of the 

entire surface of the steel but rnay carry almost the entire corrosion current. These 

measurements are, therefure, best suited for relative cornparisons of specimens. 
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2.4.4 Raman Spectroscopy 

Raman spectroscopy uses the vibrational signature of molecules within a sample to identiw 

its constituents. Figure 2.14 illustrates the Raman effect where monochromatic incident 

light excites a molecule and is subsequently scattered. Most of the scattered light will have 

the same frequency as the incident light, known as Rayleigh scattering, while some will be 

scattered at a different frequency. This corresponds to changes in molecular motion (i.e., 

the bonds vibrate). The difference in the frequency between the incident and scattered light 

is known as a Raman shift. Since molecules ofien have multiple bonds, multiple Raman 

shifts that are characteristic to the molecule can be detected. These characteristic shifts can 

be mathematically predicted by quantum chemists but these precise computations are 

costly and time consuming. More commonly, experimental results are compared to 

reference standards. 

This technique offers advantages over XRD in that its analyses are relatively fast (c 1 

min.), have excellent spatial resolution (as low as 1 pm), are suitable for very small samples 
3 

(e.g., 1 mm ), and c m  be performed in siîu with aqueous phases. As a result, the Raman 

spectroscopy technique is sensitive to changes in the molecule and the environment in 

which it is under investigation. This technique is typically used for structural 

determination measurements, multicomponent qualitative analysis, and quantitative 

analysis. It is, therefore, well-suited for corrosion product analyses given the instability of 

corrosion products under analysis, especially ex siîu, as described in Section 2.3.1. 
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Incident 
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Rayleigh Scatter 
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Figure 2.14 Schematic illustration of the Raman effect where h represents Planck's 
constant, and ni and n. represent the initial frequency and the scattered frequency, 

respectively. The new fiequencies are known as Raman shifts. 

Many researchers have studied the corrosion of steel (de Faria, Venâncio Silva et al. 

1997; Oblonslq and Devine 1997), including those formed in akaline solutions (Thierry, 

Persson et al. 199 1 ; Simpson and Melendres 1 W6) ,  and solutions containing chlorides 

(Raharinaivo and Génin 1986; Bouchent, Hugot-Le Goff et al. 199 1 ; Melendres, Pankuch et 

al. 1992; Raharinaivo, Guilbaud et al. 1992; Refait and Génin 1993; Guilbaud, Chahbazian 

et al. 1994). In addition, other research has focussed upon the minerals comprising cernent 

and cernent paste (Tamda, Madon et al. 1995; Kirkpatrick, Yarger et al. 1997) including 

carbonate minerals (Herman, Bogdan et al. 1987). Thus there is a considerable wealth of 

information for use in new research which combines corrosion studies and cementitious 

materiats. 
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2.5 SERVICE LIFE PREDICTIONS OF STEEL-REINFQRCED CONCRETE 

STRUCTURES 

"Service life" of steel-reinforced concrete c m  have a broad range of definitions but these can 

be organized into three categories: technological service life, usehl service life, and 

structural service life. Technological service life is the age at which a structure becomes 

obsolete because of technological improvements in the construction industry. The usefùl 

service life is the limit at which tirne a given structure is unable to accommodate the 

function for which it was designed (e-g., an overpass may be constructed to accommodate 

only a certain amount of traffic flow and over time, this flow may increase to the point 

where the overpass may be too congested for efficient travel.). Structural service life refers 

to the age where a structure is no longer able to fulfil its design criteria safely (e-g., From 

structural overload and/or deterioration caused by the service environment). For the 

purposes of this research, the structural service life is considered the time when repair or 

replacement is required as a result of chloride-induced corrosion of the steel reinforcement. 

2.5.1 Structural Service Life Estimation for Chloride-Induced Corrosion Processes 

Clifton identified five methods for estimating the service life of a structure: experience, 

deductions of performance from existing materials, accelerated testing, mathematical 

modelling based upon the chemistry and physics of degradation processes, and applications 

of reliability and stochastic concepts (Clifion 1993). Since construction materials change 

significantly over decades of construction, it is extremely difficult to deduce the future 

performance of new construction from existing materials and previous experiences. 

Furthemore, the use of accelerated testing by some researchers for chloride-induced 

corrosion is not entirely appropriate because of the localized nature of the corrosion 

process (Grimes, Hartt et al. 1979; Andrade and Alonso 1993; Molina, Alonso et al. 1993). 

Mathematical models, and reliability and stochastic concepts are often applied in an 
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attempt to overcome the aforementioned limitations (Monnaga 1988; Vesikari 1988; 

Funahashi 1990; Cady and Weyers 199 1; Fitch, Weyers et al. 1995; Bentz, Clifion et al. 

1996; Poulsen 1996; Shibata 1996). However, this type of work again relies upon data 

provided fiom existing structures whose construction materials and practices may differ 

fiom new materials and current practices (e-g., curing regimes). Fagerlund added that 

stochastic models are valid only for the environments studied and may not be reliable for 

another structure in its own unique environment (Fagerlund 1982). It then becomes 

important to determine the processes that contribute to the deterioration of reinforcing steel 

in concrete due to chloride-induced corrosion such that al1 materials, whether new or old, 

can be appropriately assessed with theoretical models rather than the ernpirical ones 

currently in use. Bazant attempted to correlate corrosion processes in marine structures 

using mathematical formulae to develop a more accurate physical/theoretical mode1 (Bazant 

1979). This work was limited by the assumptions that were used to deduce important 

numerical values of certain coeffkients because direct measurements were unavailable, and 

the types of corrosion products formed were restricted to ease the caIculations process. 

More comprehensive information conceming the chloride-induced corrosion products that 

form would drarnatically improve such models. 

2.5.2 Theoretical Models of Chloride-Induced Corrosion on Steel in Concrete 

Chlonde-induced corrosion failure of the reinforcement is most often modelled as a 

two-stage phenornenon: initiation and propagation (Tuutti 1980), schematically illustrated 

in Figure 2.15. The initiation stage is the petiod during which chlorides ingress through the 

concrete cover and ends when a sufficient concentration of chiorides reach the reinforcing 

steel and initiate corrosion. Modelling the initiation of chloride-induced corrosion is 

cornplicated by the fact that chlorides can be incorponted into the the cement paste and 
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thus, the presence of high chloride concentrations in concrete does not mean that al1 

chlorides contribute to the deterioration of the reinforcing steel. In spite of this 

complication, the initiation stage is generally estimated from chloride threshotd values, 

effective diffûsivities, and the ambient concentration of chlorides (Tuutti 1980). 

The propagation stage (Figure 2.15) is the penod during which the corrosion rate and 

the accumu1ative amount of corrosion products gradually increases until an unacceptable 

level of deterioration has occurred. "Significant deterioration" can be spalled concrete, a 

reduction in structural integrity (Browne 1986), or simply an aesthetics issue depending 

upon the specific structure and circumstances. The corrosion rate dunng this stage depends 

chiefly upon the availability of water and oxygen at the steevconcrete interface, the ability 

of the iron and hydroxide ions to migrate between the anodic and cathodic sites, the 

solubility of the corrosion products, and the ambient conditions. This stage is extremely 

dificult to mode1 because the type of corrosion products formed, and their distribution 

along the reinforcing steel and within the concrete cover determines when and where the 

concrete will crack and spall, and these factors are not understood. It is primarily for this 

reason that most service life predictions are limited to determining the time required to 

initiate corrosion (Andrade and Alonso 1993). 
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Aggressive ions at 
reinforcement 
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Time 

k-'~ifetirne or Tirne before Repair 4 
Figure 2.15 Schematic representation of the corrosion process of steel in concrete where T 

represents temperature and RH represents relative humidity (Tuutti 1980). 

This determination is a financially impractical approximation because it is generally 

understood that propagation stage of corrosion may last for several years (Le, it may take 

several years of active corrosion) before sufficient damage has occurred that merits repair or 

replacement (Browne 1 986). Theories accounting for this period are described in Section 

2.3.2.2. Thus, the necessary information for theoretical models includes the types of 

corrosion products fonned, their distribution along the reinforcing steel and within the 

concrete cover, their rate of formation, the resulting local corrosion rate of the reinforcing 

steel, and the influence of the local chemistry of the concrete adjacent to the corrosion. 

These factors have not been addressed in literature. 
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EXPERIMENTAL PROCEDURES 
To accomplish the objectives of this investigation, a range of cementitious systems was 

studied. The corrosion processes that occurred on steel in simulated pore soIution were 

compared with studies of modified cernent paste as well as concrete. The investigation is 

summarized in Figure 3.1 and Tables 4.4 (Chapter 4), 5.2 (Chapter 5),  and 6.4 (Chapter 6) 

summarize the specimens used to study the Iisted parameters. This Chapter is intended to 

describe the experimental techniques used during this research programme. 

CHAPTER 4 
CORROSION OF STEEL iN 

SIMULATED PORE SOLUTION 
- effect of pore solution composition 

- effect of surface finish of steel 
- effect of chloride concentration 1 

I 

CHAPTER 5 CHAPTER 7 
CORROSION OF STEEL IN DISCUSSION 

MODEIED CEMENT PASTE - effect of a cementitious cover 
- effect of cernent type - influence of chloride ion source 

- effect of surface finish of steel - effect of cracks 
- effect of shrinkage cracks - effect of steel surface finish 

- effect of exposure conditions 

CHAPTER 6 
CORROSION OF STEEL iN 

CONCRETE 
- effect of concrete type 
- effect of loading cracks 

- effect of silica fume 
- effect of sea water 

Figure 3.1 investigation summary. 



Chapter 3: Experimental Procedwes 

3.1.1 Cernent 

In total, three cements were used for al1 work in this experimental programme, two ordinary 

Portland cements and one white Portland cement (Le., one of the ordinary Portland cements 

and the white Portland cements were used exclusively in the laboratory while the second 

ordinary Portland cernent was used only for the field concrete specimen preparation). Two 

types of cernent were used to cast the cernent paste specimens used in Chapters 4 and 5: 

white Portland cernent similar to a sulphate resisting Type 50 and an ordinary Portland 

cement (Type 10). The white cernent was acquired from Aarlborg Portland in Denmark 

while the Type 10 cernent was produced by Lafarge Canada in Woodstock, Ontario. 

Another ordinary Portland cement was used to cast the specimens used in Chapter 6 which 

was manufactured by Tilbury Cernent Company of Delta, British Columbia. The 

composition of al1 cements is given in Table 3.1 (a). Al1 data conceming the cements was 

provided by their respective manufacturers. 

From the compositional analyses of the cement powders, the relative amounts of the 
1 

major constituents of the cements were calculated using the Bogue method and are reported 

in Table 3.l(b). The use of the white Portland cernent was considered especially important 

because of its relatively low iron content. It was thought that this cernent would simpliw 

the studies of the corrosion products. The white Portland cernent, however, added some 

complexity to the analyses as it differed chemically from the ordinary Portland cernent 

(Type 10) and was ground considerably finer than the ordinary Portland cernent (Type 10) 

(Le., Blaine 410 versus 368 m2/kg). The influence of the differing chemical composition and 

physical properties are noted in the relevant sections of Chapter 5 .  

I The  potcntial equilibrium composition of cernent is obtained from the known percentage of 
osides presrnt in the cernent using cquations drveloped by R.H. Bogue and othcrs (Neville, 1973; Bye, 1983). 



Table 3.l(a) Cernent compositions (Analyses wurtesy of Aelborg Poitland, Lafiuge 
Canada, inc., and Tilbury Cernent Company). 

1 Chap 4 &  5 Chap. 4 &  5 1 Chap. 6 
1 white Constituent 1 Odiniry Ordimy 
1 Porthnd 1 Portland Portland 

l 

Loss on Ignition 1 0.4 1 1 I 2.00 1 1.86 



Table 3.l(b) Relative amounts of important cement wnstituents determined by the Bogue 
method2 using the information provideci in Table 3.l(a) and other physical propertia 

(Courtesy of Aalborg Portiand, Lafarge Canada, Inc., and Tilbury Cernent Company). The 
balance of the cernent powder is wmposed of t k e  lime (Cao), excess MgO, cluiker 

sulphates (Le., Na, SO, , &SOI, CaSO, ), insoluble midue, and residual contributions from 
phases not included in the calculations. 

! Chip. 4 & 5 1 Chap. 4 &  S / Cbip. 6 
Corn pound White i Ordinary Ordinary 

1 Portland j Portland 1 Portland 
l 

- - - -- 

Tricalcium Silicate (G S) ! 73 1 64.9 / 60 
- - -  --- 

Dicalcium Silicate (CS) 1 17 1 10.3 1 16 

Tricalcium Aluminate (C3A) 1 4.5 1 8.7 1 7  I 

Tetracalciun Aluminoferrite (C4AF) 1 1.0 i 7.5 1 Io 

3.1.2 Supplementary Cementitiors Materials 

B b  (mz/kg) 

Some of the concrete cast for the work of Chapter 6 contained silica fume and Type F fly 

ash. The silica fume was predominately SiO, while the composition of the Type F fly ash 

(siliceous) used in Chapter 6 is listed in Table 3.2. The fly ash was acquired from 

Pozzolanic International and approximately 83% of the material piissed through a 45 jtm 

sieve. Although the fly ash complies with ASTM C 6 18, the minor presence of Fe203 

complicates any corrosion product analyses. However, it was preferred to have concrete 

mix designs that represent common practice such that any conclusions drawn from this 

rcscarch could bc directly applied to the construction induse .  

' Not known but assumed range for typical Type 10 cernent 

410 368 1 300-350- 



Table 3.2 Composition of the Type F fly ash used in Chapter 6. The baiance of the 
material is wmposed of Na20, MgO, &O, and C. 

Constituent 1 Miss Perceotage 

SiO, I 
l 49.45 

Ab4 1 23.50 

Fe@, I 6.35 

Ca0 

Moisture Content 0-05 

3.13 Aggregrite~ 

The predominantly silica sand (99.60 mass% SiO,) used in the work described in Chapter 5 

was white, hard, and rounded with a finenes of 2.65. It was desircd to have as 

homogenous a sand as possible such that it wdd be easily excluded k m  any analyses (e-g., 

microstructural, chemical) of the canent paste, steel, and any corrosion products. This 

sand conformeci with the requirements of CAN/CSA-A23.I (Canadian Standards 

Association 1990) and was only added to the cernent pastes to reduce cracks arising from 

drying and chemical shrinkage. For the concrete prisms cast for the work of Chapter 6. 

commody available sand and coarse aggrea,  largely composeà of silica, and orthoclase 

(KAiSi,O,) and albite (NaAlSi,O,), respectively, was used that also confonned with 

CANKSA-A23.1. These hard, angular ag~egates are typical of those used in Vancouver, 
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British Columbia for concrete construction and are simiiar to those used in other parts of 

Canada. 

3.1.4 Water 

Distilled water was used to prepare any simulated pore solutions (Chapters 4 and 5), and 

also to cast the modified cement paste specimens (Chapter 5). Distilled water was used 

also for al1 titrations, and any other solutions so that measurements made conceming the 

corrosion products and cement paste would be as Free as possible from extraneous ions. 

Potable water was used to cast the concrete specimens (Chapter 6). 

3.1.5 Steel 

The steel used for the work of Chapter 6 is a typical ribbed, reinforcing steel that is 

commonly used in concrete practice and conforms with CSAKAN-G30.18 (Canadian 

Standards Association 1992). For the steel used in the work of Chapters 4 and 5, it was 

desired to simulate the commercially available reinforcing steel as closely as possible 

(including mill scale) without the geometric complication of the ribs. For this reason, a 

plain carbon steel plate was selected for use in the work of Chapters 4 and 5. Its 

composition, detailed in Table 3.3, and physical properties (yield strength: 3 10-379 MPa; 

ultimate tensile strength: 497-538 MPa) confonn with the requirernents of 

CSAKAN-G3O.IS. In addition, the steel had been hot-rolled between 925 - 1 150°C and 

then air-cooled such that a black-coloured mill scale covered the exposed surface of the steel 

bar. This mill scale was intended to match as closely as possible the mil1 scale that is 

formed on typical steel reinforcement. Raman spectroscopy of the mil1 scale showed that it 

was largely composed of magnetite (Fe,O,) with a surface layer of hæmatite (a - Fe&&) 

and goethite (a - FeOOH), shown in Figure 3.1, which is generally accepted as the bulk 



composition of miii d e .  

Table 3.3 The alloying components of the steel used (Provideci by Kitchener Steel). 

I I 

Silicon ! 0.300 

Nickel 1 O. 100 

Iroa I 
1 Balance 
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m m m i  i m i m ~ . m . . I m  m . . ,  . m . ,  

rn G: Goethite (a-FeOOH) : 

200 300 400 500 600 700 800 
Raman S h ift (cm-') 

Figure 3.1.5 Composition of the bar mil1 scale as determined by Raman spectroscopy. 

3.1.6 Chemical Reagents 

Al1 chernical reagents used were analytical grade matenals. These reagents included: 

sodium chlonde (NaCl), calcium hydroxide (Ca(OH)2), sodium hydroxide (NaOH), 

potassium hydroxide (KOH), aluminum oxide (A1 203) ,  anhydrous isopropan-2-01 (C,H,O), 

hydrochloric acid (HCl), nitric acid (HNO,), sulphuric acid (HZSO,), methyl orange 

indicator, and silver nitrate (AgNO,). 
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3.2 CHARACTERIZATIONTECHNIQUES 

3.2.1 Pore Solution Expression and Analysis 

Pore solution was extracted from hardened cementitious materials under high pressures 

(about 500 MPa) using a device that was based upon the unit described by Barneyback and 

Diamond ( 198 1 ). For each pore solution analysis, a cement paste cylinder (05 1 x 102 mm) 

was dernoulded and immediately placed within the central chamber to prevent any 

evaporation of water from the cylinder. The central chamber and hardened steel plunger 

had been lubricated with a hydrophobic, dry carbon which was considered to not affect 

subsequent chemical analyses. The sample was then covered by a 6 mm thick nylon disc 

and covered by the plunger. The specimen was subsequently compressed to 150 MPa, 

followed by 345 MPa, and finally a maximum pressure of 494 MPa, holding each pressure 

for 10 min. The resulting fluid was passed through a 0.45 pm filter that had been pre-rinsed 

with about 20 mL of distilled water. 

The filtered pore solution was then diluted by mass to a 1 5  ratio2 and divided into 

two representative samples. One of the pair of samples was subsequently acidified to a pH 

less than 2 using reagent grade hydrochloric acid to stabilize it until a cation analysis could 

be conducted. The pair of samples was then analyzed at the Solutions Laboratory 

(formerly Water Quality Laboratory) at the University of Waterloo. Inductively coupled 

plasma (Thenno Jerrell Ash Iris Plasma Spectrometer) was used to identiQ the cations in 

the acidified sample while ion chromatography (Dionex Ion Chromatograph, 4400 

Integrator, AS4A IonPac Column) was used to identiQ the anions. A11 results are 

considered accurate within + 2.5% of the reported values, as detemined by the Solutions 

2 The volume of pore solution expresscd from each cylinder was typically 1-2 mL which made it 
difticult to accurately apportion the sample without dilution. In addition, the pH of the solution was too 
high without dilution for the subsequent analyses at Solutions at that time. Within the last two years, the 
analytical techniques ha\x been suffkiicnt caIibrated to permit direct analyses on undiluted samples greater 
than 4 rnL. 
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Labotatory . 

3.2.2 X-ray Diffraction (XRD) Analyses 

Chemical compounds can be identified using X-ray diffraction (XRD) which measures 

çrystallographic interplanar spacings (d) using X-rays of a known wavelength (A) over a 

range of contact angles (8) in accordance with Bragg's Law where n represents the 

interplanar spacing under consideration, Equation 3- 1 . 

The measured interplanar spacings and their corresponding intensities are unique for each 

compound. This technique is subject to the limitations described in Section 2.2.2 and was, 

therefore, used to confirm the presence of crystalline compounds in the cementitious and 

corrosion product samples. 

X-ray difiaction analyses were performed with a Siemens Kristalloflex 

DifEactometer, irradiated with a nickel-filtered Cu Ka radiation (A, = 0.15406 nm, h, = 

0.15444 nm) generated at 50 kV and 30 mA. Samples were ground in an agate mortar and 

pestle without lubrication. Al1 solids were distributed on a (51 1) silicon wafer and sealed 
aD 

by a piece of X-ray transparent polyester film (Mylar - Dupont) to prevent any changes 

in the solids from occumng dunng the analysis. The scans covered the range fiom 5" to 70" 

with steps of 0.05, and 1 second per step. 

3-23 Raman Spectroscopy 

Raman spectra, either in sirzr or e-r situ, were obtained with a Renishaw 1000 Raman 
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microscope system that consisted of an Olympus microscope, a suigle spectrograph fitted 

with holograph notch filters for spectroscopy mode, and a Peltier-cooled CCD detector. 

Excitation was achieved using the 632.8 nm line of  a Melles Griot 3 5 m W HeNe laser, This 

power level of the laser, however, was reduced to approximately 3 mW on the surface of a 

sample primarily due to the focussing of the laser light by the optics system. The optics 

system consists of about 20 mirrors which reflect the laser light, each of which reduces the 

power by approximately IO%. In addition, flaws in the focussing ability of the objective 

lens reduce the power available for analyses. Overall, this low level of light intensity was 

advantageous as it was unlikely to alter the composition of any surface films, particularly in 

situ measurements because it is an insuficient amount of energy to straddle the difference 

between the Fenni and conductance bands. This assumption was confirmed after each 

spectrum was obtained by performing a visual inspection of the sample to detect any 

surface changes (e.g., sample colour) using white light illumination. Data analysis of the 

spectra was performed using the Grams386 software developed by Galactica. Reference 

standards of magnetite (Fe,O,), hematite (a-Fe,O,), - and maghemite (y-Fe,O,) - of 99.5% 

punty or greater were obtained fkom Aldrich in powder form. These standards were run 

using the same experimental conditions as the work of Chapters 4, 5, and 6 and are 

presented as Figures 3.2(a), (b), and (c). A sample of ISOPAR M, the fluid used as a 

lubricant during sample preparation procedures, was also analyzed and is presented as 

Figure 3.2(d). 

The advantages and limitations of the technique are described in Section 2.4.4 while 

the procedures used to study the different types of samples in Chapters 4 through 6 are 

described in their respective experimental procedures sections. In general, typically five or 

more scans were performed on a given area within a particular sample such that microscopic 

variations in corrosion products could be detected, if present. The spectra presented in the 

next Chapters are considered representative of  al1 measurements taken for each aspect 
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studied. 

Intensity 

200 300 400 500 600 700 800 
Raman S hift (cm-') 

Figures 3.2(a), (b), and (c) Representative spectra of (a) hzmatite (a-Fe,O,), (b) 
maghemite(g-Fe,03), and (c) magnetite (Fe,O,). Spectra courtesy of Prof. D.E. Irish and 

his research group in the Chemistry Department, University of Waterloo. 
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Intensity 

200 400 600 800 1 O00 1 200 
Raman Shift (cm") 

Figure 3.2(d) Spectrum obtained fiom lubrication fluid, ISOPAR M. 

3.2.4 Microstructural Analyses 

Optical and environmental scanning electron microscopy sections were prepared with a 

Stmers Discoplan TS (consisting of a precision saw and a planing cup blade) using lSOPAR 

M (ExxonTM) as a coolant. This coolant is a n  isoparaffinic hydrocarbon whose long 
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molecules were unlikely to interact with cementitious materials (Le., leach ions such as 

chlorides or sulphates or leave chemical traces). Sections about 5-10 mm thick were 

produced with the precision saw. The sections were then mounted on glass slides and 

planed using a 35 pm cup blade. The flat specimens were then ground and polished to a 1 

p m  diamond finish using oil-based diamond suspensions and ISOPAR M to clean the 

samples between stages. 

Polished sections were stored in a vacuum desiccator whose air had been evacuated 

and replaced with argon. Colour-indicating soda lime pellets and a reservoir of water were 

placed inside the desiccator to remove any carbon dioxide gas and humidie the chamber, 

respectively. The intention was to avoid the desiccation, oxidation, or reduction of any of 

the corrosion products present. To prevent the humidity fiom accelerating any naturally 

occumng corrosion and the formation of artifact corrosion products, each polished section 

was covered with a thin film of ISOPAR M. En addition, polished sections were repolished 

with a 1 pm oil-based diamond suspension prior to each viewing session to remove any 

artifact corrosion products. Figure 3.3 shows an area of corrosion product that formed 

within a crack within high performance concrete observed during the work of Chapter 6. 

This area was insufficiently polished after the section was stored for two months in a 

desiccator and shows the artifact corrosion products that form over long periods. Two 

distinct regions were observed: 1) a horse stimp shaped region which was suficiently 

polished and was predominantly composed of magnetite as shown by Figure 3.4(a); and 2) 

an insufficiently polished region which contained the original magnetite as well as a 

combination of goethite (a-FeOOH), hæmatite (a-Fe,O,), and maghemite (y-FezOl), as 

shown in Figure 3.4(b). The additional compounds are a result of further oxidation of the 

corrosion products and were not fully removed during the final polish. The Raman 

spectrum shown as Figure 3.4(a) is similar to the original spectrum taken when the region 

was first polished immediately afier sectioning. 
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Combination of Goethite, 
Hæmatite, Maghemite, and Predominantl y 

Magnetite Magnetite 

CONCRETE CORROSION CONCRETE 
PRODUCTS IN 

CRACK OF 
CONCRETE 

Figure 3.3 Optical micrograph o f  corrosion products that formed within a crack in high 
performance concrete. 
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200 300 400 500 600 700 800 
Raman Shift (cm-') 

Figures 3.4(a) and (b) Raman spectra of regions indicated in Figure 3.2 showing (a) 
predominantly magnetite and (b) a combination of goethite, hzmatite, maghemite, and 

magnetite. G r Goethite (a - FeOOH), H = Hæmatite (a - Fe,O,), Mh = Maghemite(y - 
Fe,O,), Mn = Magnetite (Fe,O,) 
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3.2.5 Porosity Measurements 

For al1 measurements of the pore network presented in Chapters 4 through 6, each value 

represents the mean of at least three samples. 

3.2.5.1 Total Porosity Measurernents 

Al1 cementitious sarnples (approximately 10 x 10 x 10 mm each) were immersed in tap 

water for 24 hours prior to measunng their water-saturated surface-dry mass, and their 

mass in water. Each sample rested on a mesh stand in approximately 100 mL of water per 

sample. These conditions ensured that al1 sides of the sample were exposed to water and 

that sufficient water was present to enable complete saturation. The water-saturated 

surface-dry mass was detennined by removing each specimen fiom the water, wiping the 

excess water off with a damp towel, and immediately weighing the section. Its mass in 

water was detemined by placing the water-saturated surface dry sample in a wire basket 

which was immersed in water. The mass of the section was calculated by subtracting the 

mass of the basket in the water alone fiom the mass of the basket in the water with the 

section in it. 

After the weighing was completed, the samples were dned at 10S°C for 24 hours to 

remove al1 of the evaporable water. This time period was determined fiom monitoring the 

mass of water lost with tirne fiom ten similar samples. Reweighing these dned specimens 

provided the oven dry mass. From al1 these measurements, the total porosity was 

calculated for each specimen using Equation 2-2 (Section 2.2.3.1 ). 

3.2.5.2 Pore Size Distribution Measurernents 

Cementitious samples (about 10 x 10 x 10 mm each) were placed on a mesh stand in 200 

mL of anhydrous isopropan-2-01 (C,H,O) per sample to exchange the water in the samples 
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with the solvent. The isopropan-2-01 alcohol was replaced daily for two days. On the 

third day, the samples were placed in a vacuum desiccator for five days to evaporate the 

solvent. This procedure was developed from the behaviour of ten similar samples under 

similarconditions. 

A Micromeritics Poresizer 93 10, capable o f  a maximum pressure of 200 MPa, was 

used for the mercury intrusion porosimetry (MIP) measurements. Each sample was 

weighed, fitted into a penetrometer, reweighed, and placed into the porosimeter chamber- 

The intrusion process did not start until the pressure inside the chamber was reduced to 

0.0004 MPa. At this pressure, the penetrometer was filled with mercury and the sample 

was incrementally pressurized at steps of about 0.0075 MPa. At each increment, the 

intruded volume of rnercury was recorded. When the pressure reached O. 15 MPa, it was 

reduced to atmospheric pressure, approximately 0.101 MPa, and the entire assembly 

consisting of the specimen, penetrometer, and rnercury, was reweighed. This measurement 

was used to calculate the volume of mercury necessary to completely fil1 the penetrometer. 

The penetrometer was then put back into the porosirneter chamber and the pressure was 

incrementally increased to the maximum pressure of  200 MPa, again recording the intruded 

volume of mercury for each pressure increase. The corrected pressure along with the 

volume of mercury intruded at each pressure change was used to calculate pore size 

distribution using the Washburn equation (Eq. 2-3) and the theory described in Section 

2.2.3.2. The resuiting data was corrected for compression and thermal expansion of 

mercury, sample compression and volume changes of glass penetrometer using the 

mathematical fonnulae and deductions presented in Appendix C. After each test, the 

samples were discarded because of mercury contamination. 
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3.2.6 Chloride Analyses 

To measure the total chloride content (acid-soluble chlotides), which refers to both fiee 

chlorides and those chemically bound in the cernent paste, ASTM Standard Cl  14-89 

(Section 19) was slightly modified according to the material studied (ASTM C 1 14 1989). 

Samples of cementitious materials were cut (approximately 10 x 10 x 10 mm) with a 

precision diarnond saw with ISOPAR M used as a lubricant. Each section was dried for 24 

hours at 105°C to remove the evaporable water. Before grinding each sample, the mortar, 

pestle, and sieve were first rinsed with dilute nitric acid, followed by tap water, distilled 

water, and finally anhydrous isopropan-2-01 alcohol. The dned sample was ground using 

the mortar and pestle until the powder passed a 250 pm sieve. M e r  grinding, the powder 

was weighed to the nearest tenth of a milligram and transferred to a 250 mL beaker to which 

120 mL of dilute nitric acid ( M O  concentrated acid dilution with water by volume) were 

added. The sarnples were thoroughly dispersed with glass stimng rods. Controls were 

prepared which contained only 120 mL of dilute nitric acid and did not contain any powder, 

to measure any extraneousi sources of chloride ions. The slurries and controls were covered 

with watchglasses and heated on hotplates until they had boiled for 5 minutes. 

After the boiling process, al1 beakers were removed fiom the hotplates and the s h i e s  

were filtered through Whatman No. 4 filter paper (retains >20-25 pm) into 400 mL beakers. 

The beakers and the stirring rods were rinsed using hot distilled water at least three times 

into the filter until al1 of the residue was removed from them. The filter paper was washed 

at least 6 times with hot distilled water to remove al1 chlorides fiom the solids. The filter 

paper was removed and their exteriors were washed along with the fümels using hot 

distilled water into the beakers. 

The filtrates were cooled to approximately 23°C and 2 drops of methyl orange 

indicator were added to the beakers. The solutions were made up with distilled water to 

250 mL. This solution was acidified with a few drops of concentrated nitric acid. The 
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required number of drops was detemined by methyl orange indicator which had been 

added. When the indicator tumed deep pink or red, the solution was at or below the desired 

pH of 3.2. Approximately 45 mL of the total 250 mL available for each solution were 

titrated against a 0.06 M AgNO, solution using a Radiometer TIMSOO semi-automatic 

titrator each test. This titrator slowly added 0.1 M AgNO, in increments as srnall as 

microlitres to determine the equivalence point of the chloride solution. The equivalence 

point corresponds to the maximum change in millivolt readings occumng when the chloride 

solution is neutralized to a pH of about 7. The volume of titrant used to reach this point 

was used to calculate the concentration of chlorides present in the solution. To provide an 

interna1 standard for those samples which were anticipated to have low chloride levels, 0.4 

mL of a 1 M NaCl solution was added to each test which could then be subtracted from the 

final measurement. Furthemore, each solution was analyzed three times to get an average 

value. One of the controls was tested for every three tests perfonned to estimate the 

background level of chlorides such that they could be subtracted fiom any sample 

measurements. 

3.2.7 Thermal Analyses 

Two distinct thermal analysis techniques, thermogravimetric analysis (TGA) and 

differential thermal analysis (DTA), were performed sirnultaneously on cementitious 

samples using a TA Instruments Thermal Analyst 2 100 Systern with a SDT 2960 

Simultaneous DTA-TGA unit. The unit can be used to study mass loss and enthalpy 

changes over temperatures from ambient to 1500°C. This information corresponds to 

chernical and phase changes which occur (e.g., dehydration and decomposition of C-S-H' 

dehydroxylation and decomposition of calcium hydroxide) and can indicate the presence 

and proportion of compounds within a sample. These techniques are significantly iess 
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sensitive to crystall inity than XRD. 

Samples were ground to pass a 250 pm sieve with an agate mortar and pestle without 

lubrication just prior to performing the tests to prevent any chemical alterations of the 

sarnples (Le., addition of lubncant peaks or carbonation). Desiccated alurnina (AI,O,) was 

used as a reference materia1 for DTA. Approximately 20 mg of both the sample and the 

reference alurnina were used for each test. The test method involved equilibrating the 

sample and reference at 40°C and then increasing the temperature at 10°C/min. to 1 100°C 

in a He atrnosphere with a flowrate of 120 cm 3/min. Mass and temperature changes of the 

sample were recorded as the temperature was increased to 1 100°C. These data were then 

plotted either as mass lost or temperature changes with temperature and were interpreted 

according to the theory and previous research presented in Section 2.2.4. In addition, 

sarnples of calcite and ettringite were also analyzed as reference standards for the analysis 

of the cementitious samples. Overall, the curves presented in Chapter 5 were considered 

representative of at least three measurements. 



CHAPTER FOUR 

CORROSION PRODUCTS FORMED ON STEEL 

I N  SIMULATED PORE SOLUTIONS 

4.1 INTRODUCTION 

Considerable work has focussed upon identiQing the corrosion products that form on steel 

exposed to various alkaline electrolytes (Thierry, Persson et ai. 1991; Simpson and 

Melendres 1 996), including solutions containing chlorides (Raharinaivo and Génin 1986; 

Boucherit, Hugot-Le Goff et al. 199 1; Melendres, Pankuch et al. 1992; Raharinaivo, 

Guilbaud et al. 1992; Refait and Génin 1993; Guilbaud, Chahbazian et al. 1994). These 

have either examined the corrosion rates that are measured at different chloride levels or 

identified corrosion products, usually ex situ, but not simultaneously. This chapter 

presents work which coordinated the measured corrosion rates with in situ observations of  

steel in simulated solutions that were very similar to the pore solution of concrete. This 

was accomplished by casting cernent paste cylinders, expressing the pore solution fiom the 

cylinders, analyzing the solution, and preparing a simulated solution based upon the 

primary constituents of the expressed solution. It was the objective of this work to 

simulate the environmental conditions of steel-reinforced concrete as closely as was 

possible to provide a foundation for the work presented in later chapters. Given the 

environmental dependence of the corrosion products, in situ investigations are considerably 

more reliable than others, for the reasons described in Section 2.3.2.2- Thus, 

electrochemical polarization was performed concurrently with in situ Raman spectroscopy 

measurements of the surface of the steel and any products that formed. Both ground steel 

and as-received steel surfaces were studied in solutions designed to simulate the expressed 

pore solution of both Type I O  and white cernent with varying chloride levels. 
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4.2 EXPERIMENTAL PROGRAMME 

4.2.1 Preparation of Cernent Paste Cylinders 

To investigate the signincance of  cernent type, the same cernent paste mix was prepared for 

all specimens using either white or ordinary Portland cernent The mixture proportions are 

given in Table 4.1. 

Table 4.1 Mixture proportions for cylindrical cement paste specimens. 

Mass (kg) 

Water 

Distilled water was slowly added to the cernent powder over one minute in a W e  mixer 

(maximum capacity of about 3 L). The resutting cement paste was mixed for five minutes, 

allowed to rest for five minutes, and then rnixed for a final five niinutes. The cernent paste 

was cast into cylindncal moulds (051 x 102 mm) and compaction was aided by rodding. 

The amount of rodding necessary to achieve satisfactory compaction was determineci by 

the length of time it took for large bubbles to stop surfacing, typically 10 seconds. Each 

cylinder was covered fmt with paranlm and then its conespondhg lid. One batch of each 

cernent type was rnixed and 15 specimens were cast fmrn both batches. The cylùiders 

remained in the ambient conditions of the laboratory (about 22°C and about 50% relative 

humidity) for one day and then were stored in a wet atmosphere (about 25OC and 100% 
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relative humidity) until the pore solution was expressed. Even though the cylinders were 

considered to be sealed, they were stored in the wet atmosphere to ensure that the ambient 

conditions of the laboratory could not desiccate the cement paste. 

After 120 days of curing, the pore solution of a representative cylinder for each 

cernent type was expressed and analyzed in the manner described in Section 3.2.1. Since 

these results were consistent with the results of other cernent pastes prepared in parallel 

laboratory experiments by other University of Waterloo researchers using the same cement 

and mixture proportions, the analysis of one cylinder was considered suffrcient. The 

results of the analysis are presented in Table 4.2. The following species were not detected 

in the analysis: ahminum, arsenic, cadmium, cobalt, chromium, manganese, molybdenum, 

selenium, titanium, and vanadium. 
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Table 4.2 Composition of the expresseci pore solutions as detennined by inductively 
couplcd plasma and ion ckomatography. "<DL" reprcsents levels that wcrc bclow the 

detection limit. The pH of the solutions was not determined during this andysis. 

1 White Portluid / Ordhary Portland 
I (mmoUL) Species 1 

f l (mmorn) 

f 
0.275 Boron 1 2.690 

Calcium I 3.740 2.550 

Nickel O. 150 1 < DL 

Nitrate (NO,) 0.124 0.045 
i 

Potassium 1 49.107 1 3 19.707 

Silicon 1 0.239 1 0.456 

Sodium 1 207.9 19 1 130.928 i 

I Zinc I 0.071 0.517 

4.2.2 Steel Sample Preparation 

Approximately 100 samples (1  0 x 10 x 3 mm) were cut nom the 10 mm thick bar (Section 

3.1.5) such that there were approximately 50 samples each of the bare steel and the 

as-received surface. 1.6 mm (1116") holes were then drilled into one of the sides of the 
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samples to accommodate a comecting rod. One surface of the bare steel samples was 

ground until plane and subsequently ground on 220 grït Sic paper using water as a 

lubncant. The surfaces were subsequently cleaned with mild soap and water, and rinsed 

with isopropan-2-01. Stainless steel welding rod was press-fit into the holes. Round 

stickers (08 mm) were centred on the prepared surfaces of the steel samples and the entire 

assembly, including al1 exposed surfaces of the steel rods, was painted with epoxy to 

prevent undesired corrosion in these areas. Once the epoxy had cured, the stickers were 

lifted to expose the prepared surfaces. A schematic illustration of the entire assembly is 

shown as Figure 4.1. 

Epoxy covered 
01.6 mm stainless 
steel welding rod 

Epoxy covered 

Ir 1 O x 1 0 x 5 m m  
steel sample 

Exposed 0 8  mm of 
steel surface, either 
ground or as-received 

Figure 4.1 Schematic illustration of steel samples (NOT TO SCALE). 

79 
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Surface roughness measurements were conducted on the steel plates presented in the 

next chapter and were considered representative of these smaller steel sarnples. The mean 

roughnessl of the ground surfaces was measured to be 0.222 20.023 pm while the mean 

roughness of the as-received steel surface (mill scale) was 1.926 20.723 Pm. Figures 4.2(a) 

and (b) are stereomicrographs of representative regions of the prepared surfaces. 

Figures 4.2(a) and (b) Stereomicrographs of (a) the ground steel surface, and (b) the 
unaltered as-received surface with mill scale. 

4.2.3 In Situ Ce11 Preparation 

A 01.6 mm hole was drilled into a polystyrene Petri dish to allow the stainless steel 

welding rod to exit the Petri dish such that an electrical connection could be made, as shown 

in Figure 4.3. The samples were inserted into the Petri dish such that either the as-received 

or the bare steel surfaces were oriented upright in the dish. The clearance between the 

i The arithrnctic mean, Ra, of the dcpartures of'the profile from the mcan linc is an 
internationally recognized pâramctcr of roughness. 
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stainless steel rod and the Petri dish was sealed with 5 min, epoxy. 

Exposed Surface 

Polystyrene of Steel 

Petri Dish 

Epoxy-Coated 
Stainless Steel 

Connection) 
0 1  -6 mm Hole 

sealed with 
5 min. Epoxy NOT TO SCALE 

Figure 4.3 Schematic illustration of the in situ cell. 

4.2.4 Preparation of Simulated Pore Solutions 

Simulated pore solutions were prepared based upon the proportions of the most abundant 

constituents present in the expressed solutions (i.e., calcium, sodium, potassium, and 

sulphate). The resulting solutions prepared from NaOH, KOU, CaSO,, and an excess of 

Ca(OH)2 were anal yzed by Solutions (former1 y Water Quality Laboratory ) of the 

University of Waterloo and confirmed that the constituents of the simulated solutions were 

within * 5% of the molar quantities present in the pore solutions expressed from the 

cernent paste cylinden. Once the pH values of both the simulated Type 10 and white 
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cernent pore solutions were measured, ovendried sodium chloride (140°C for 1 hout) was 

added to samp1es of both solutions to mdce chloridehydroxide ratios of 0.70. 1.42, 2-00, 

and either 4.00 or 11.00 for the simulated Type 10 or white cernent solutions, respectively. 

The 4.00 and 11.00 ratios are the chloride levels sufncient to malce a 1 M NaCl solution in 

both of the solutions, respectively, and were intended for cornparison purposes with the 

work of the next chapter. Table 4.3 details the corresponding chlonde molarïties for each 

chlonde/hydroxicie level. Steel samples were immened in a larger polyethylene tub which 

contained these solutions for at least one hour prior to any polarkation tests, and the 

solution was continuously stirrcd during this period. AU in situ cells were immersed in 

about 500 mL of simulateci pore solution prior to testing to reduce the possibility of 

carbonetion which would influence the corrosion processes of the samples. These solutions 

were not stirred during the tests to better simulate the intenial environment of concrete. 

Table 4.3 Cornpison of the chioride ion concentrations in white and Type 10 simulated 
pore solutions with pH values of 12.9 and 13.3, respectively . 

Chioride/Hydroxiâe 
Ratio 

0.7 

White 
Chloride Ion 

Concentration 
( m 0 W  

0.07 
I 

Type 10 
Chloride Ion 

Concentration 
m o m  

O. 18 

1-42 1 

1 0.13 

1 2 0.18 

0.36 

0.50 

4 , d a  i 
1 1 .O0 

11 I 1 .OO i n/a 
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4.2.5 Eiectrochemical Testing 

The electrochemical testing was performed in two phases. The objective of the first phase 

was to determine the applied potential ranges where the corrosion behaviour of the steel 

changed (Le., fiom passivation to active corrosion) in simulated pore solutions. The 

objective of the second phase was to identiQ any corrosion products by combining the 

electrochemical methods with in situ Raman spectroscopy. 

Initially, samples were studied under two potential sweeps: a) from the open circuit 

potential up to +500 mV (SCE), down to -800 mV (SCE), and finally retming to the open 

circuit potential; and b) from the open circuit potential down to -800 mV (SCE), up to 

+500 mV (SCE), and returning to the open circuit potential similar to that shown in Figure 

2.10. These different scaming regimes were intended to replicate the effect of portions of 

the steel becoming more anodic and causing others to become more cathodic. Al1 sweeps 

were performed in duplicate at 1 mV/s with a new sample used each test. The resulting 

applied potentiaUlog current density c w e s  are presented in Appendix A and 

representative curves are presented in Section 4.3.1. These experiments are summarized in 

Table 4.4. 

The applied potential ranges where corrosion changes occurred were studied in greater 

detail using in siîu Raman spectroscopy under potentiodynamic control to snidy any 

corrosion products that might have formed during the electrochemical experiments. To aid 

cornparisons between chloride levels, the behaviour at the same applied potentials was 

studied for ail samples. The polarization experiment performed on al1 samples is presented 

as Figure 4.4. The sarnples were stored for an hour in about 500 mL of the desired 

simulated pore solution, with or without added chlorides, before they were studied with 

Raman spectroscopy. After an hour of exposure, each in situ ce11 was removed from the 

large tub which contained the simulated pore solution, and placed under the optical 

microscope of the Raman spectroscopy system for study. Saturated calomel reference and 
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sEaialess steel counter electrodes were added to the ceil at this the,  and approximately 4 

mm of solution c o v c d  the cxposcd steel surface. When the appiitd potcntials of intaest 

were reached during the expriment, some of the simulated pore solution was removed such 

that approximately 1 mm of solution covered the surface of the steel the reasm for which 

is d e s c n i  in Section 4.3.3. Raman speçtra were coilected at this tirne, as shown in Figure 

4.5. If corrosion products were observed, these were studïed in detail. Otherwix, random 

areas of the surface of the steel were studied The simulated pore solution was replaced to 

its former level over the surface of the steel when the electrochemicai potential increases of 

the steel resumed, as shown in Figure 4.4. The Raman spectra obtained for this series of 

experiments is presented in Section 4.2.2 while the comsporsding electrochernical 

measurements are presented in Section 4.2.3. This work is summa+ized in Table 4.4. 

Table 4.4 Sumrnary of Experimcnts and Samplcs Studicd 

Preliminary Full 
Cyclic 

Polarization samples (40 
tests by 2 

1 

Full Cyclic 
Erperiment Poiarhtion 

Yes 

Raman 
Spectroscopy 

& 
Potentiostatic 

Control 

(Section 4.3.1) duplicatcs) 

In situ ceil 

Visual 
Assessrnent 

during 
Expriment 

l I 

! l 
! 

i I 

Visual 
Asswsment rt 
Conclusion of 
Expriment 

Experiments 
1 d a  1 1 samples (6 tests Yes 

18steel 1 
i 

I 
(Sections 4.3.2 

i I Yes 
and 4.3.3) , , by 3 duplicates) j i 
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O 200 400 600 800 1000 1200 1400 1600 1800 
Time (s) 

Figure 4.4 Polarization experiment performed simultaneously with in situ Raman 
spectroscopy during the second series of the electrochemical experiments. 
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4.3 RESULTS 

4.3.1 Full Cyclic Polarization Curves 

Full polarization curves (Le., potential versus log current density) were obtained in the 

mariner described in Section 4.2.5 and al1 curves are presented in Appendix A. From these 

curves, the effect of various experimental conditions on the electrochemical behaviour of the 

steel was assessed. As described in Section 2.4.2 (Chapter 2), changes in the curves 

correspond to changes in the products that cover the surface of the steel as it interacts with 

the simulated pore solution (e.g., passivation, corrosion initiation). 

4.3.1. I Effec f of Ramp Direction 

A review of al1 curves presented in Appendix A indicates that the ramp direction 

affects the magnitude of the measured corrosion current density of steel samples immersed 

in chloride-fiee simulated pore solutions. Higher current densities result fiom the cathodic 

rarnp of the applied potentials over the anodic ramp within 100 mV of the open circuit 

potential. Figure 4.3.1.1 illustrates this difference between ground steel samples immersed 

in a Type 10 simulated pore solution where one steel sample was tested with an anodic 

ramping procedure and the other, a cathodic ramping procedure. Overall, higher current 

densities were expected fiom the cathodic ramping procedure because the passive film on 

the steel would be removed as the applied potential decreased to -800 mV SCE. As the 

applied potential was subsequently increased, the passive film was not restored to its 

former level and higher current densities resulted. In addition, the removal of the passive 

film during the cathodic sweep made the corrosion potential more cathodic. With the 

anodic ramp procedure, the passive film naturally present at the beginning of the 

expenment would have been enhanced as the applied potential increased to +SOO mV SCE. 
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It is reasonable to assume that the subsequent decrease of the potential would reduce the 

enhanced passive film to its former level. Thus, the surface of this steel would have 

retained its protection during the experiment. Overall, this behaviour was observed for al1 

steel samples and was independent of the type of simulated pore solution and surface 

finish. 

Applied O 
Potential 

(mV) SC€ 
-200 

1 o4 1 o - ~  1 o - ~  1 0-1 1 00 1 O' 
Corrosion Current Density ( ~ / r n ~ )  

Figure 4.3.1.1 Cornparison of applied potentiai-corrosion current density curves for 
ground steel samples exposed to a chloride-free Type 10 sirnulated pore solution. 
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This is to be expected with the inherent variability of the steel surfaces and the 

localized attack of the passive film by chlorides. Work by other researchers has also 

considered the effect of this procedural difference and concluded that greater expenmental 

consistency is achieved by biasing the potential cathodically first followed by the anodic 

portion of the experiment (Raharinaivo, Guilbaud et al. 1992). Theoretically, any passive 

film present on the steel samples would then be reduced to bare steel thus reducing one 

source of variability. Since the experiments of this thesis did not indicate any other 

measurable difference between the two procedures, the cathodic biasing procedure was 

adopted for the in siîu experiments (Sections 4.3 -2 and 4.3 -3). 

However, no such clear trends were observed for any of the steel samples exposed to 

chionde-containing simulated pore solutions. 

4.3.1.2 E&t of Chloride Exposure 

A comparison of al1 applied potential-corrosion current density curves in Appendix A 

indicates that chlondelhydroxide ratios as low as 0.7 produced a significant effect on the 

corrosion behaviour of al1 samples. At this level, large increases in the corrosion current 

density consistent with chloride-induced pitting were not observed but the open circuit 

potential was generally observed to drop fiom approx. -200 mV SCE to -400 mV SCE. In 

addition, subtle changes in the anodic portion of the curves were observed when compared 

with the curves from steel immersed in the chloride-fiee simulated pore solution. These 

changes became larger as the chloridelhydroxide levels increased. Figures 4.3.1.2 (a), (b), 

(c), and (d) present representative applied potential-current density curves for both steel 

finishes and simulated pore solutions with chloride/hydroxide levels of 0, 2, and 4 or 1 

These curves are considered representative of al1 curves presented in Appendix A and wi 

be used to illustrate the corrosion behaviour of the steel. 
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Applied 
Potential O 

(mV) SC€ 

104 10" 1 O-* 1 O-' 1 oO 1 O' 1 02 1 o3 
Corrosion Current Density (Ahn2) 

Figure 4.3.1.2(a) Cornparison of applied potential-current density curves for ground steel 
in a white simulated pore solution with chloride/hydroxide ratios of O, 2, and 1 1. 



Chapter 4: Corrosion Products within Simulated Pore Solution 

Applied O 
Potential 

(mV) SCE 
-200 

1 o4 1 1 O-* 1 O‘' 1 oO 1 O' 
Corrosion Current Density (Nm2) 

Figure 4.3.1.2(b) Cornparison of applied potential-current density c w e s  for ground steel 
in a Type 10 simulated pore solution with chloride/hydroxide ratios of 0, 2, and 4. 
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Applied 
Potential O 
(mV) SCE 

104 10" 1 o4  IO-^ 1 oO 1 o1 
Corrosion Current Density (Nm2) 

Figure 4.3.1.2(c) Cornparison of  applied potential-current density curves for as-received 
steel in a white simulated pore solution with chlonde/hydroxide ratios of O, 2, and I 1 .  
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Applied 
Potential O 
(mV) SCE 

1 O" 104 1 O" 10" 1 O-' 1 oO 10' 1 02 
Corrosion Current Density (A/m2) 

Figure 4.3.1.2(d) Comparison of applied potential-current density curves for as-received 
steel in a Type 10 simulated pore solution with chloridehydroxide ratios of 0, 2, and 4. 

Observed changes in the anodic portions of the curves included a gradua1 increase in 

the maximum average corrosion cument density From 0.0 1 Nrn2 for steel in the chloride-free 
3 

solutions to above 0.1 A/m- for steel in the chloride-containing solutions provided that 

pitting was not observed. Pitting was first observed at a chloridelhydroxide level of 1.4 for 

ground steel in a Type 10 solution. The highest corrosion current density observed was 1 
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Nm2 but 0.1 Ah' was more commonly observed such as that shown in Figure 4.3.1.2(a). 

Overall, pitting was not a consistently observed phenomenon as illustrated by Figure 

4.3.1.2(d) where charactenstic pitting behaviour was observed at a chlonde/hydroxide level 

of 2 but did not occur at the higher chloridehydroxide level of 4. This was typical for both 

steel finishes and simulated pore solutions and is discussed in greater detail in the next 

Sections. The potential at which pitting was observed to initiate was also variable but 

typically occurred within O to +200 mV SCE except for the as-received steel in the Type 10 

solution with a chloride/hydroxide ratio of 2 where it initiated at approx. +350 mV SC€, as 

shown in Figure 4.2.1.2(d). 

This variability in the corrosion behaviour is likely related to the inherent i~~egularity 

of the steel surfaces within a pool of "identical" samples in spite of any attempts to 

homogenize the steel with strict surface preparation techniques. This is supported by the 

observations of Wranglén who described extensive surface preparation techniques similar to 

the ones used in this work, but also explained that variations are inevitable (Wranglén 

1985). It is because of this that only the chlonde/hydroxide levels of 0, 2, and 4 or 11 

(depending upon the simulated pore solution) were studied in the in situ Raman 

experiments presented in Sections 4.3.2 and 4.3.3. The study of al1 levels exarnined in this 

Section was not anticipated to produce any additional information that could not be 

achieved with the aforementioned chloride/hydroxide levels. Overall, the chlorideihydroxide 

level of 2 was considered to provide an intermediate level where corrosion was likely to be 

initiated while the chlonde/hydroxide levels of 4 and 11  coincided with the 1 M 

chloride-containing simulated pore solutions used for the experiments presented in Chapter 

5. 

4.3.1.3 Effect of Pore Solzr fion Composition 

A review of the representative curves in Figures 4.3.1.2 (a) through (d) shows that 
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there is no significant effect of pore solution composition. Similar, albeit variable, corrosion 

behaviour was observed for al1 sarnples for each chloride/hydroxide level studied, including 

the different levels corresponding to a 1 M chloride solution (Le., the chlondelhydroxide 

levels of 4 and 11). Difierences in the corrosion behaviour of steel in the two solutions 

might have been discemable if the variability descnbed in the previous Section had not been 

present. In addition, full potentiodynamic polarization experiments cannot indicate other 

important differences resulting From the type of simulated pore solution such as, the types 

of corrosion products which formed. The in situ experiments of Sections 4.2.2 and 4.2.3 are 

more appropriate under these circumstances. 

4.3.1.4 Eflect of Suduce Finish 

A review of the representative curves in Figures 4.3-1.2 (a) through (d) shows that 

there is no significant effect of surface finish. According to the conclusions of Addleson 

and Rice (Addleson and Rice 1995), higher corrosion current densities were expected for the 

as-received steel surfaces once corrosion initiated. However, the highest corrosion current 

densities in the work presented here were observed on the g m n d  steel surfaces 

(approximately 1 ~ / r n ' )  and this value was attained for only two samples of the eighty 

samples studied. 

Independent of the surface finish, most current densities for pitting were 0.1 A/m2 

which is approximately two orders of magnitude higher than the passive conditions in the 

chloride-fiee simulated pore solutions which is consistent with the general understanding of 

pitting behaviour. It is possible that the formation of corrosion products on the surface of 

the relatively rougher as-received surface was more effective in reducing the activity of any 

corrosion pits than that on the relatively smooth ground steel surfaces. Clearly, an 

understanding of the corrosion products formed during simiiar experimental conditions 

would help in the analysis of the pitting behaviour. 
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43.2 Analyses of Steel Sudaces using Raman Spectroscopy 

4.3.2.1 Effect of Expotire to Simzduted Pore Solution 

A comparison of the spectra obtained with and without exposure to the simulated 

pore solutions for both the ground and as-received steel surfaces are presented in Figures 

4.3.2.1(a) and (b), respectively. As anticipated, no distinct peaks were obsewed for the 

ground steel surfaces with or without exposure to the simulated pore solution. Any 

passive film that would have fonned on the surface of the steel in the simulated pore 

solutions with one hour of  exposure would have been too thin (on the order of  10 nm) to 

detect with normal Raman spectroscopy. On the other hand, the mil1 scale on the as- 

received sample was readily identified by Raman spectroscopy but, similar to the ground 

surfaces, no changes in this scale were observed afier exposure to both pore solutions, as 

s h o w  in Figure 4.3.2.1(b). Magnetite (Fe,O,), homatite (a-Fe,O,), - and goethite 

(a-FeOOH) were detected on the original surface and after exposure to either of the 

simulated pore solutions. 
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lntensity 
. . . White 1 

200 300 400 500 600 700 800 
Raman Shift (cm-') 

Figure 4.3.2.1(a) Comparison of ground steel surfaces before exposure, and after exposure 
to both white and Type 10 simulated pore solutions. 
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lntensity 

200 300 400 500 600 700 800 
Raman Shift (cm-') 

Figure 4.3.2.1(b) Comparison of as-received steel surfaces before exposure, and after 
exposure to both white and Type 10 simulated pore solutions. 

4.3.2.2 Effecr of Chloride Eiposztre 

As anticipated, exposure to chlorides affected the surfaces of the steel by inducing 

corrosion products to fom. For the as-received steel surfaces, no evidence (i.e., visual or 

Raman analysis) of corrosion was observed until a chlonde/hydroxide ratio of 4 was reached 
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in the Type 10 simulated pore solution and the chloride/hydroxide ratio of 1 1 in the white 

cernent simulated pore solution (corresponding to the same chlonde molarity of 1). Al1 

collected spectra of the mill scale (i.e., the as-received surface) were similar to the 

unexposed mil1 scale surface shown in Figure 4.3.2.1(b) until these critical levels were 

reached. 

At a chloride/hydroxide ratio of 4 and after an hour's exposure to the choride- 

containing pore solution, the steel immersed in the Type 10 solution initially had two 

oblong areas of corrosion near the centre of the exposed surface, each approximately 1 mm 

by 3 mm. These were coloured golden red but there was no detectable difference between 

the Raman spectra collected during the cathodic polarkation of the steel (from the initial 

-400 mV to its retum to -400 mV SCE) and the original spectrum (Figure 4.3.2.1(b)). Once 

the applied potential reached -400 mV SCE, however, maghemite (y-Fe20,) and magnetite 

(Fe30,) were detected, as shown in Figures 4.2.2.2(a) and (b). The colour of the areas of 

corrosion also became darker and almost black during this time which corresponds to the 

change in the Raman spectra. Clearly, these relatively large areas of goethite and hematite 

were reduced to their more oxygen-deficient counterparts. The cathodic sweep of the 

expenment would have electrochemically reduced the oxygen in the corrosion product and 

there would have been insufficient oxygen to rebuild the product as the applied potential 

increased in the anodic direction. Magnetite (Fe,O,) and rnaghernite (y-Fe03) persisted 

until the end of the entire experiment and no new changes in the mill scale were visually 

observed or detected by Raman spectroscopy. 
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lntensity 

200 300 400 500 600 
Raman Shift (cm-') 

Figures 4.3.2.2(a) and (b) Raman spectra of the corrosion products observed on the 
surface of  the as-received steel immersed in a Type 10 cernent simulated pore solution 

while under potentiodynamic control at -400 mV SCE, (a) area 1 ,  and (b) area 2. 
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Unlike the steel immersed in the Type 10 solution, no corrosion products were 

observed on the as-received steel in the white cernent simulated pore solution until the 

applied potential reached +200 mV SCE. At this potential, three pit areas, each 
i 

approximately 1 mm-, initiated along the edge of the epoxy, likely at small flaws in the mill 

scale. These green-black coloured products grew away from the surface of the steel and 

towards the surface of the solution. They were approximately 1 mm thick at 

approximately +335 mV SCE. When the potential reached +400 mV SCE, the products 

were approximately 1 -5 mm thick, as shown in Figures 4.3.2.2(c) and (d). The red arrows 

in the figures point to the location of the product. Unfominately it is extremely dimcult to 

resolve the black product on the black-coloured mill scale. Although no changes in the 

composition of the surrounding mil1 scale were noted, the accumulated corrosion product 

was composed of magnetite (Fe304), as shown in Figure 4.3.2.2(e). 
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Figures 4.3.2.2 (c) and (d) Macrophotographs of green-black corrosion products that fonned 
on the as-received surface of steel imrnersed in a simulated white cernent simulated pore 

solution with a chloriddhydroxide ratio of 1 1. (Corrosion product is at the upper right-hand 
area of the steel surface at the interface with the epoxy.) 
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lntensity 

200 300 400 500 600 700 800 
Raman Shift (cm-') 

Figure 4.3.2.2(e) Raman spectrum obtained from the green-black corrosion product, 
identified as magnetite (Fe,04), shown in Figures 4.2.2.2(c) and (d). 

Unlike their as-received steel counterparts, changes in the surfaces of the ground steel 

specimens were identified at chlondehydroxide ratios of 2 for both types of  simulated pore 
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solution, The surfaces of  the steel sarnples in the Type 10 simulated pore solution were 

observed to turn a du11 grey colour over their entire surface and this effect lasted for the 

range of applied potentials- The composition of this product was never identified as the 

thinness of the film placed it beneath the detection lirnit of Raman spectroscopy despite 

attempts to obtain spectra for the entire monitoring period. A similar film formed on the 

steel samples in the white sirnulated pore solution but the colour of the film turned a golden 

red at the edge of the exposed steel (approx. 1 mm wide) at approx. O mV SCE, as shown in 

Figure 4.3.2.2(f). At this time, the product could not be identified using the Raman 

technique likely because the product was too thin. However, once the applied potential 

reached +400 mV SCE, this product became a brilliant crimson red/blood red in colour 

which then faded to a medium brown-red after the experiment was finished, as shown in 

Figure 4.3.2.2(g). This product was identified as magnerite (Fe,O,), and maghemite 

(y-Fe,O,) - at approximately +400 mV SCE using Raman spectroscopy, as shown in Figure 

4.3.2.20). Some calcium hydroxide (Ca(OH)2) was also noted which likely resulted fiom 

the simulated pore solution. The presence of these clearly defined corrosion products 

cannot be attributed to either the chloride/hydroxide ratio or overall chloride content 

because the ratio was similar to that in the Type 10 solution, and proportionately fewer 

chlondes were required in the relatively lower pH of the white simulated pore solution. 

This discrepancy is discussed in M e r  detail in the next Section. 
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200 300 400 500 600 700 800 

Raman Shift (cm-') 

Figure 4.3.2.2(h) Raman spectrum of btilliant red film shown in Figure 4-3.2.2(g), 
identified as magnetite (Fe,O,) and maghemite (y-Fe,O,). Some calcium hydroxide 

(Ca(OH)2) was also observed in the spectntm. 

With increasing chloridehydroxide levels, the corrosion products which formed 

became considerably more localized. For the steel exposed to the Type 10 simulated pore 

solution with a chloride/hydroxide ratio of4, a small, black area of corrosion, approximately 
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1 mm-, was visually identified at +200 mV SCE. This product could not be identified using 

the Raman technique because it was extremely dificult to focus the optical system on this 

black particle. Above +400 mV SCE, a second black area was observed, also 1 mmL, which 

was identified as Green Rust I fiom the two peaks centred on 423 and 500 cm-', presented 

as Figure 4.3.2.2(i). Upon exposure to the laboratory air at the conclusion of the 

experiment (Le., an ex situ observation), this product became magnetite and hematite, as 

shown in Figure 4.3.2.2u). The final appearance of the steel sample is presented in Figure 

4.3.2.2(k) and the characteristic colours of magnetite and hematite, black and rust red, 

respectively, were observed. However, when this product was scraped off the surface, 

Green Rust 1 was again detected when analyzed using the Raman technique. 
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lntensity 

200 300 400 500 600 700 800 
Raman Shift (cm-') 

Figures 4.3.2.2(i) and (j) Raman spectra of (i) Green Rust L (GR 1 ), and (j) magnetite (M) 
and hematite (H) which formed on the surface of ground steel in a Type 10 simulated pore 

solution containing sufficient chlorides to make a chloride/hydroxide ratio of 4. 
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Figure 43.2.2(k) Photograph of the ground steel surface at the end of the in siiu Raman 
experiment. 
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Similar localized corrosion products were noted on the surface of the steel samples in 

white simulated pore solutions with a chIoride/hydroxide ratio of 1 1. However, the 

products were first observed at approximately -100 mV SCE possibly because of the 

relatively higher chloride/hydroxide ratio of the white solution (Le., 11 versus 4 for the 

Type 10 solution). Raman analysis was again inconclusive on these products because of 

the dificulty in focussing the optical system on black products. One successful scan of the 

corrosion product at an applied potential of +200 mV SCE indicated the presence of Green 

Rust 1 and magnetite, shown in Figure 4.3.2.2(1). Other localized corrosion areas formed 

during the remainder of the experiment and the final appearance of the steel surface is 

shown in Figure 4.3.2.2(m). One area of corrosion product was observed to grow towards 

the surface of the immersion solution and its final height approached 3 mm, as shown in 

Figure 4.3.2.21n). This remarkable height suggests that the high mobility of hydroxide ions 

in the simulated pore solution migrated to the corrosion pit to react with the iron ions 

resulting fkom the anodic dissolution of the steel. Also of interest is that this formation 

would likely not have occurred if the solution had been continuously stirred. 
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l ntensity 

200 300 400 500 600 700 800 
Raman Shift (cm") 

Figure 4.3.2.2(1) Raman spectrum indicating Green Rust 1 and magnetite which formed on 
the surface of ground steel in a white simulated pore solution containing sufficient chlorides 

to make a chloridehydroxide ratio of 1 1 .  The calcium hydroxide peak resulted fiorn the 
excess present in the simulated pore solution. 
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Figure 4.3.23 (in) 
Raman expriment. 

Macrophotograph of  the ground steel surface at the end of the in situ 
The steel had been exposed to a white simulated pore solution with a 

chloridehydroxide ratio of 1 1. 

Figure 4.3.2.2(n) A side view of the ground steel surfàce shown in Figure 4.2.2.2(m) at the 
end of the in situ Raman expriment. 

112 



Chapter 4: Corrosion Products within S imulated Pore Solution 

A review of al1 corrosion products observed on the ground steel surfaces indicates that 

higher chloridehydroxide Ievels (greater than 2) permitted corrosion to initiate at locations 

other than the epoxy/steel perimeter as was the case with the intermediate 

chloride/hydroxide ratio of 2. This was not observed with the as-received steel surfaces 

where corrosion initiation was more likely governed by the imperfections in the mil1 scale as 

discussed in greater detail in Section 4.3.2.4. In addition to the location of the corrosion 

product, the higher chloridelhydroxide ratios also altered the type of product and permitted 

the formation of Green Rust 1 on ground steel surfaces in both simulated pore solutions. 

The work of Génin et al. and Refait et al. indicates that chloride/hydroxide levels of at least 

1.025 are necessary for Green Rust 1 to form (Génin, Rezel et al. 1986; Refait and Génin 

1993). It is possible that this product did form at the chloridefiydroxide ratio of 2 but in 

quantities too small to be detected. Overall, observable corrosion products formed at lower 

applied potentials in the white simulated pore solution than that in the Type IO, -100 mV 

versus +200 rnV SCE. Although the chloride/hydroxide levels are dissimiiar, the chloride 

content was the same (Le., 1 M CI solution) and this suggests that the passive films that 

formed were different. This is discussed in greater detail in the next Section. 

4.3.2.3 Eflect of the Pore Solution Composition 

As was show in the previous Section, the presence of chlorides had a significant 

effect on the type and distribution of corrosion products that formed. However, the 

correlation between the corrosion products and the chloride/hydroxide ratio was less clear. 

As described in Section 2.3.2.2 (Chapter 2), several researchers (Raharinaivo and Génin 

1986; Refait and Génin 1993; Génin, Refait et al, 1997) have concluded that certain 

corrosion products form within precise chloride/hydroxide ratio ranges. This is clearly 

contradictory to the results of the present stüdy in which corrosion products fomed (i-e., 
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magnetite, maghemite, etc.) at chloride/hydroxide ratios outside the ranges reported in the 

aforementioned published work. This discrepancy is explained by considering that the 

published work studied equilibrium mineravsolution interactions rather than the 

steel/mineral/solution steady-state (or metastable) relationships examined in this Chapter. 

Within the system studied in this Chapter, the solution pH has a strong effect on the 

corrosion behaviour of immersed steel. Table 4.3 details the concentration of chlorides in 

both types of simulated pore solution and their corresponding chloridehydroxide ratios. 

As mentioned in the previous Section, this table illustrates that identifiable corrosion 

products (Le., of sufficient thickness to be detected by the Raman technique) formed on 

the ground steel in the white simulated pore solution which contained a lower chloride ion 

concentration than the Type 10 solution. This suggests that the passive film fonned on the 

ground steel in the relatively higher pH Type 10 simulated pore solution was more 

protective than the passive film formed in the lower pH white simulated pore solution. 

This conclusion could not be confirrned for the as-received steel surfaces because no 

corrosion was detected when the chlonde/hydroxide level was 2 and the evidence would 

have been clear. It was apparent, however, that significantly larger volumes of corrosion 

products were observed on those specimens which were exposed to the white simulated 

pore solution rather than the Type 10. This likely occurred because corrosion initiated on 

the steel in the white simulated pore solution at lower potentials than in the Type 10 

solution and was, therefore, corroding for a longer period of time by the end of the 

experiment. 

Overall, it is unlikely that the interaction of other ionic species in the simulated pore 

solution produced any of tliese effects because the solutions are essentially the same with 

the exception of the mass of sodium and potassium hydroxides added. Since the formation 

of a chloride-induced corrosion pit is accompanied by a localized drop in pH, it is 

reasonable to conclude that lower pH pore solutions would facilitate this process. 
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Furthemore, other published work which studied multiple formulations of simulated pore 

solutions observed that the pH of the solution had the most significant impact on whether 

corrosion products formed and their composition upon formation (Guiibaud, Chahbazian et 

al. 1994; Mammoliti 1995). This is reinforced by a review of the iron Pourbaix diagram 

(i.e., Figure 2.3, Chapter 2) which shows a theoretical range of iron products for the pH 

range typicalIy expected in uncontaminated cementitious materials (Le., pH values fiom 

12.5 to 14). Presumably, these diffèrent products would vary in their ability to protect the 

steel. 

The conclusion that the chloride/hydroxide ratio is a poor predictive tool in 

cementitious systems is not entirely correct, however. A review of Table 2.3 (Chapter 2) 

indicates that with increasing chloride/hydroxide ratios, a certain progression of corrosion 

products is expected which satisQ the thermodynamic and kinetic interrelationships 

between the corrosion products. This pattern outlined in Table 2.3 was consistent with the 

observations of the in situ Raman experiments where the lower chloride/hydroxide levels 

pmduced magnetite, maghemite, and hematite while the higher levels produced Green Rust 

1. Thus, it appears most appropriate to conclude that chloride/hydmxide ratios should not 

be applied indiscriminately to predict corrosion products in any pore solution but rather 

must be individually determined for each particular solution. This conclusion can partly 

explain the wide variability of corrosion initiation periods and the observed products in 

field structures as within a inhomogeneous cover, the chloride and hydroxide contents are 

likely to Vary widely over the embedded rebar. This supports the use of probabilistic and 

stochastic service life models which can accommodate a range of conditions. 
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4.3.2-4 Efecr of the Surfce Finish of the Steel 

First and foremost, the presence of mil1 scale added additional complexity to the 

analysis of results because it was very dificult to visually detect corrosion products on the 

dark-coloured mil1 scale. Figure 4.3.2.2(c) demonstrates this difficulty as the green-black 

corrosion product is not readily detected on the black mil1 scale. Nonetheless, the type and 

distribution of corrosion products which formed on the mill scale seemed different fiom 

their ground steel counterparts. 

At similar chloride concentrations in the simulated pore solutions, a smaller volume of 

corrosion products was observed to form on the as-received surfaces than on the gound 

surfaces, if products forrned at all. It appears that the mill scale did provide a physical 

barrîer that resisted corrosion initiation. In addition, the areas where corrosion initiated 

appeared to be determined by existing flaws in the mill scale while corrosion on the ground 

steel ofien initiated at the edge of the epoxy. Whether the corresponding corrosion rates 

were higher once corrosion initiated in the existing flaws, as suggested by Addelson and 

Rice (Addleson and Rice 1995), cannot be ascertained fkorn observations of the corrosion 

products and must be determined fiom the analysis of the simultaneous electrochemical 

measurements. This work is presented in the next Section. 

4.3.3 In Siru Electrochemical Analyses during Raman Spectroscopy 

Dunng the in situ Raman experiments described in the previous Section, the immersed 

steel samples were under potentiodynamic control, and as such, the current required to 

achieve each appl ied potential was recorded. Figures 4.3.3(a) through (d) present the 

applied potential-current density curves for ground and as-received steel samples in either a 

white or Type 10 simulated pore solution, some of which contained chlorides. Each figure 

compares the curves for increasing chloridefiydroxide ratios: 0, 2, and I I  for the white 
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simulated pore solution, and 0,2, and 4 for the Type 10. 

Appl ied 
Potential 
SCE (mV) 

O t- 
-348 

1 o4 10" 1 O" 10-l 1 oO 10' 1 o2 
Corrosion Current Density (Nm2) 

Figure 4.33(a) A cornpanson of the applied potential/corrosion current density curves 
obtained from ground steel samples in white simulated pore solution d u h g  in situ Raman 

experiments. 
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104 10" 1 O-* 1 O-' 1 oO 10' 1 02 
Corrosion Current Density (Nm2) 

Figure 4.3.3(b) A cornparison of the applied potential/corrosion current density curves 
obtained from ground steel samples in Type 10 simulated pore solution during in s k i  

Raman experiments. 
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Figure 4.3.3(c) A cornparison of the applied potentiaVcorrosion current density curves 
obtained from as-received steel samples in white simulated pore solution during in situ 

Raman experimen ts. 
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Applied 
Potential 
SCE (mV) 

1 Corrosion 

1 O+ 1 o - ~  10" 1 O-' 1 o0 1 o1 1 o2 
Corrosion Current Density (Alrn2) 

Figure 4e3e3(d) A cornparison of the applied potentiaVcorrosion current density curves 
obtained from as-received steel samples in Type 10 simutated pore solution during in situ 

Raman experiments. 

4.3.3.1 Cornparison of Groirnd Steel Surfaces 

The cornparison shown in Figure 4.3.3(a) indicates that the presence of chlorides in 

the pore solution increased the anodic corrosion current density by approximately two 

orders of magnitude. This is observed as a general shifi of the anodic portion of the curves 
7 

frorn approximately 0.1 Aim- to 10 M m -  at approximately -200 mV which corresponds to 
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2 
average current densities that range from 0.001 ~ / m '  to almost O. 1 A/m when measured 

near the open circuit potential. In addition, the current densities of the steel immersed in 

chloride solutions Vary over a significantly larger range above -200 mV than that observed 

with the steel immersed in the chloride-fiee simulated pore solution. These variations 

suggest the formation of corrosion products which would affect the corrosion current 

density by covering active corrosion sites, Changes in the types of products formed and 

the number of active sites would also contribute to the variability. Alternatively, no clearly 

defined changes were noted in the cathodic portion of the c w e s  with the exception that the 

potentials which corresponded to the bare steel decreased with increasing chloride Ievels, 

from -348 to -536 mV (SCE). This is consistent with the change in the surface film of the 

steel due to the presence of chlorides. 

Other dramatic shifts were observed in the anodic portions of the curves which can be 

atîributed to periods of the in situ experiment where the level of the simulated pore solution 

over the steel was dropped from approximately 4-5 mm to 1 mm (Le., penods when Raman 

spectra were gathered). A severe example of this was measured for the steel immersed in 

the chloride-fiee simulated pore solution. Figure 4.3.3(e) compares this curve with a 

similarIy prepared steel sample within an identical in sihr cell which did not have the level 

of its pore solution changed over the course of the experiment. Clearly, the changing level 

of the pore solution over the surface of the steel introduced some experimental artifacts in 

the corrosion current density measurements. However, these shifts did not appear to affect 

the overall interpretation of the results because once the level of the pore solution was 

raised at the end of  the Raman collection period, the corrosion current density retumed to a 

lower, presumably steady-state level. However, similar large shifis were maintained for the 

steel samples immersed in the chloride-containing simulated pore solutions. With the 

presence of chlorides, it is likely that the increased exposure to oxygen in the simulated 

pore solution stimulated any corrosion reactions. Ovcrall, this result indicates relative 
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cornparisons of the curves are appropnate but their results cannot be directiy compared 

with other curves obtained with different experimental conditions. 

Applied 
Potenf ial 
mV SCE 

1 o4 10" 10" 1 O-' 1 o" 1 O' 
Corrosion Current Oensity (A/m2) 

Figure 4.3.3(e) A cornparison between applied potentiaI/current density curves 
demonstrating the effect of pore solution height over the steel during in situ Raman 

experiments. 

These conclusions are reinforced by the trends observed with steel samples immersed 
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in the Type 10 simulated pore solutions, as shown in Figure 4-3.3(b). Small, momentary 

shifts were observed for steel sarnples irnmersed in the chloride-free simulated pore 

so1utions and the solution with suficient chlorides to make a chloride/hydroxide ratio o f 2  

when the applied potential reached +200 mV (SCE). This, and the overall corrosion current 

density of slightly above 0.001 A h 2  suggests that no corrosion activity was O C C U ~ ~ ~  on 

these samples. Akrnatively, a large, permanent shift was observed for the steel within the 

4 [CI'J/[OH'] solution at the same potential, and the two orders of magnitude increase to 10 

Nrn2 at +200 mV SCE suggests that corrosion was occurring. This corresponded to an 

average current density of approxirnately 0.01-0.1 kl/rn2. Although stimulated by the 

increased ex~osure to oxygen during the Raman accumulation, the gradua1 increase in current 

density around +32 mV SCE indicates that corrosion initiated independently. 

This potential is considerably higher than the potential at which the steel was 

obsemed to corrode in the white chloride-containing simulated pore solutions (i.e., -200 mV 

(SCE)). Moreover, corrosion was not observed for the steel immersed in the Type 10 

solution with a chloridehydroxide ratio of 2 as it was in the equivalent white solution 

despite the much higher chloride activites/concentrations. This difference in corrosion 

behaviour of the steel samples suggests that the higher pH of the Type 10 simulated pore 

solution formed a more protective passive layer on the surface of the steel than that in the 

white, in spite of the similar chloridehydroxide ratios. 

4.3.3.2 Cornparison of As-Received Steel Szir-$aces 

The results fiom the as-received steel surfaces have similar trends to that observed for 

the ground steel surfaces, as shown in Figures 4.3.3(c) and (d). Figure 4.3.3(c) presents the 

curves obtained for as-received steel surfaces exposed to white simulated pore solutions, 

without chlorides and chlorides sufficient to make chloridehydroxide ratios of 2 and 1 1. 
7 

These curves show an overall corrosion cument density of 0.01-0.1 N m -  until +ZOO rnV 
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(SCE) is reached in the 1 1 [CI-]/[OH] solution, and current density increased almost three 

orders of magnitude to 100 A./m2. This coordinated with an estimated average corrosion 
'> 

current density of approximately 0.1 - 1 A/m-. mus,  no corrosion was observed for these 

steel samples until the applied potential reached +200 mV (SCE) in the 1 1 [cI']/[oH'] level 

solution. 

Similar steel samples in the Type 10 simulated pore solutions exhibited different 

behaviour, as shown in Figure 4.3.3(d). Each increase in the chloride level in the simulated 

pore solution caused the corrosion current density to increase approximately one order of 

magnitude with a maximum current density of 10 A/mZ for the highest chloridehydroxide 

ratio of 4. At the highest level of chlorides for the Type 10 solution, localized corrosion 

behaviour was possibly indicated by the minor variations in the anodic portion of the curve 

beginning at approximately O rnV (SCE). These variations suggest the formation of 

corrosion products which would limit the accessibility of chlorides to any active corrosion 

sites. 

Overall, the differences in behaviour of steel in similar pore solutions suggests that the 

inherently inhomogeneous as-received steel surface produced the significant variability 

observed among the steel samples. The localized pitting behaviour noted for the steel in the 

white simulated pore solution likely resulted fiom a small break in the mil1 scale as well as 

the relatively higher chloride/hydroxide level (Le., 1 1 versus 4). With a theoretically more 

uniform mil1 scale (i.e, an absence of large flaws) over the surface of the steel immersed in 

the Type 10 solution, the expected corrosion behaviour would be more general, as shown in 

Figure 4.3.3(d). It is likely that if a chloride/hydroxide ratio of I I  were studied with the 

Type 10 soiution, localized pitting at the levei noted with the white solution would be 

O bserved. 
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4.3.3.3 Cornparison of Ground versw As-Received Steel Surfoces 

A cornparison of Figures 4.3.3(a) through (d) shows that the interpretation of 

corrosion measurements derived fiom steel with varying surface finishes is dificult. In 

spitp of the duplicate sampIes and similar surface treatments, no consistent trends c m  be 

deduced except for those already noted in the previous Sections. For the steel in the white 

simulated pore solutions, the mil1 scale appeared to provide better protection corn 

corrosion until a critical level of corrosion and applied potentia1 was reached. However, 

once these levels were met, localized corrosion was observed which exceeded the corrosion 

current density measured for any other sample by approximately an order of magnitude. 

This is consistent with the work of Addleson and Rice (Addleson and Rice 1995) who 

showed that the physical barrier provided by mil1 scale can protect the steel to a certain 

level but that corrosion is more severe once it initiates, presumably at flaws in the miIl 

scale. 

4.4 DISCUSSION 

4.4.1 Effect of  Chloride Exposure 

Of al1 the factors studied in this Chapter, it is not surprising that the chlonde concentration 

of the exposure solution had the greatest significant impact on the corrosion rates, and the 

type and distribution of corrosion products which fortned. However, a precise 

quantification of this effect is difficult because of the inherent variability of the surface of 

the steei and its effects on corrosion initiation. In spite of this difficulty, consistent results 

were obtained from the first series of full potentiodynamic polarization experiments and the 

in situ Raman experiments which facilitate a better understanding of the interrelationship 

between rneasured corrosion rates and the formation of corrosion products to be developed. 
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Specifically, minor fluctuations in the anodic portion of the curves (i.e., in situations 

where pitting was not indicated) s h o w  in Figures 4.3.1.2(a) through (d) indicated that 

chlondes were attacking the surface of the steel but a signifcant pit activity had not been 

established. This activity corresponded to average corrosion current densities of 0.1-1 

A/mZ and was approxirnately only one order of magnitude larger than the current densities 

measured for steel in chloride-free simulated pore solutions (Le., passive conditions). 

Similar rates were measured for the steel during the in situ Raman experiments and no 

corrosion products, with the exception of thin films at the perimeter of the steel samples, 

were observed (Figures 4.3.2.2(f), (g) and (h)). These current densities can then be 

considered to indicate a pseudo-uniform attack on the steel where multiple corrosion pits 

are initiated but do not grow and may repassivate. This most likely occurred because the 

immersion solutions were not stirred and the lower chloride levels in the solution might 

have become exhausted locally and the any pits would not have been sustained. 

As the chloride levels increased in the simulated pore solutions, the probability of a 

sustained pit became greater. Indeed, large corrosion current density increases in the anodic 

portion of the curves consistent with the initiation and growth of one or more large pit(s) 

were observed in both experiments once chlonde/hydroxide ratios of at least 1.4 were 

reached. In these instances, the current density increases were approximately two to three 

orders of magnitude larger than those measured for steel in chloride-free solutions. 

Typically, these rates ranged from 100- 1000 A h Z  at a potential of +4OO mV SCE (average 
i 

corrosion current densities of approx. 0.01-0.1 A/m-) and dunng the in situ Raman 

expenments, localized accumulations of corrosion products were observed to grow towards 

the surface of the solution. In reality, the corrosion rates were considerably higher as the 

area of these localized accumulations was not used to revise the corrosion current densities. 

A corrected calculation suggests that average corrosion current densities of 0.5-5 ~ m '  

occurred at these localized sites (conservatively assuming that 2% of the area was 
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corroding). This magnitude of corrosion rate would prove catastrophic in a steel-reinforced 

concrete structure within a short period of time. 

It is possible, however, that a suficient volume of corrosion products could form to 

provide a physical bamer to reduce or prevent the diffusion of chlorides, water, and oxygen 

to the surface of the steel in the manner postulated by Ashworth, Boden et al. and Leek 

(Ashworth, Boden et al. 1970; Leek 1997), as described in Section 2.3.2.2. However, this 

was not observed to occur during any of the simulated pore solution experiments, and was 

unlikely to occur as the formation of corrosion products without any constraints such as a 

cementitious cover would not likely produce dense, protective products. Indeed, magnetite 

was one of the earliest corrosion products to form at lower chloride levels and is the 

predominant corrosion product comprising most mil1 scales. Mill scales are thought to 

provide a measure of corrosion protection but it is clear that the formation of magnetite did 

not reduce the corrosion activity of the immersed steel samples. At higher chloide levels, it 

was merely a precursor to other products such as rnaghemite and hæmatite. Overall, these 

products have estimated specific volumes of  approximately 2 when compared to iron, as 

shown in Figure 2.6 (Chapter 2). Whether higher specific volume products would have 

fonned with higher chloide exposures is uncertain. 

4.4.2 Effect of Pore Solution Composition 

When comparing the results of the full potentiodynamic polarization experiments with 

those from the in situ Raman experiments, there appears to be a discrepancy conceming the 

effect of the simulated pore solution composition. During the former experiments, 

differences in the pore solution composition did not appear to have an effect of the 

corrosion behaviour of the steel. This seems to contradict the results of the latter 

experiments where ground steel immersed in the white simulated pore solution was 

observed to pit at lower potentials and chlonde concentrations than those observed for the 
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Type 10 solutions. 

This difference was likely produced by variations in the experimental procedures 

between the two experiments, and the most probable cause was likely the changes in the 

solution depth over the immersed steel during the in situ Raman experiments. Such changes 

would have replenished the dissolved oxygen at the surface of the steel which would have 

enhanced the corrosion reactions occurring on the steel. 

During the analysis of the Raman experiments, it was speculated that a less protective 

passive film might have formed on the steel immersed in the relatively lower pH, white 

simulated pore solution. This is consistent with the observations of Li and Sagüés (2001) 

who noted that chloride corrosion thresholds increased with increasing pH. The reasons for 

this were not elucidated in the published work but it is possible that this result can be 

attributed to increased ionic cornpetition at the surface of the steel and the dissolved oxygen 

content of the varying solutions. Thus, the corrosion of ground steel immersed in the white 

chloride-contaminated simulated pore solution could be accelerated by increased exposure 

to dissolved oxygen relative to steel in a Type 10 solution. 

4.4.3 Effect of Surface Finish 

A cornparison of the applied potential-current density curves for as-received steel versus 

ground steel suggests that the as-received steel surface does provide some enhanced 

protection from corrosion attack. Although the measured electrochemical activity on the 

as-received surface indicated that corrosion was occumng and at rates similar to its ground 

steel counterparts for most experimental conditions, the highest average corrosion current 

densities were observed for the ground steel. The explanation for this rests upon the 

imperfections within the mil1 scale that would permit chloride ions to easily accumulate and 

initiate corrosion. However, this does not necessarily result in a growing pit because the 

corrosion products would also accumuIate within the pit and reduce the diffusion to it, thus 
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reducing the overall rate of corrosion, as s h o w  in Figure 2.8, Chapter 2. The roughness of 

the mil1 scale would constrain the corrosion products to become denser and more 

protective. 

On the relatively smoother surface of the ground steel, the formation of corrosion 

products was not observed to prevent difision to the active site, as described in greater 

detail in Section 4.4.1. This conclusion is supported by the observations of the as-received 

steel surfaces during the Raman spectroscopy experiments. Considerably smaller volumes 

of corrosion products were observed on the surface of the as-received steel when compared 

to those on the surface of the ground steel. In effect, corrosion products more easily 

blocked access to the small corrosion pits within the relatively rougher mili scale surface, 

and the active site was shifted to another site on the surface of the steel, as indicated by 

Figure 4.3.3(d). Occasionally, the surface imperfections were likely too large to be 

adequately blocked and an active pit would result such as that resulting in the rapid current 

increase at +200 mV SCE for the CVOH ratio of 1 1 in Figure 4.3.3(c). However, in contrast 

with the conclusions of Addleson and Rice (Addleson and Rice 1993, the corrosion 

behaviour under such circumstances approached that of the actively pitting ground steel 

because the resulting corrosion products could not effectiveiy occlude the pit and reduce 

diffision to the area. 

4.5 CONCLUSIONS 

1. The published assertion that certain corrosion products form within precise 

chloride/hydroxide ratio ranges is not corroborated in these experiments. However, 

the previously published work was perfonned under different expenmental 

conditions. Thus, chloride/hydroxide ratios indicating the formation of various 
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corrosion products depend upon the system under consideration. It was noted, 

however, that the transition nom one corrosion product to the next does correspond 

with increasing chlonde/hydroxide ratios and does not depend upon the experimental 

conditions. 

Pseudo-uniform corrosion activity was observed to occur for chloridelhydroxide levels 
7 

under 1.4. Corrosion current densities of 0.001-0.01 A/m- were noted which 

corresponded to the formation of thin films of products such as magnetite and 

maghemite 

Above chloride/hydroxide levels 1.4, the initiation and sustained growth of a pit was 

observed. As the ratios increased, the probabiIity of the formation of an active pit 

increased. The current densities associated with these pits ranged corn 0.5-5 A..m2. 

Localized accumulations of corrosion products such as magnetite, maghemit~ Green 

Rust 1, and hæmatite were observed to fom with estimated specific volumes of 

approximately 2. 

The formation of corrosion products over localized corrosion pits was not observed 

to reduce the measured corrosion current densities indicating that the pits were not 

being "stifled" by the corrosion products. 

The lower pH of the white simulated pore solution produced a less protective passive 

film than that on steel in the Type 10 simulated pore solution, allowing chloride 

attack at lower concentrations and this was stimulated by increased exposure to 

dissolved oxygen. 

The presence of mil1 scale can provide sorne enhanced corrosion protection through 

the formation of corrosion products within its relatively more irregular surface which 

reduces diffusion to and from the active site than that experienced by ground steel 

sutfaces. Once corrosion initiatcs, however, the corrosion rates of the as-received 

steel are similar to the ground steel surfaces. 



CHAPTER FIVE 
COMPARISON OF CORROSION PRODUCTS 

FORMED WITHIN MODIFIED CEMENT 

PASTE 

5.1 INTRODUCTION 

This Chapter investigates the influence of a cementitious cover on the formation and 

composition of corrosion products and is intended to serve as a bridge between the work of 

Chapters 4 and 6. The previous Chapter investigated the corrosion products that form in 

simulated pore solutions to which chlorides in increasing quantities were added. Although 

usefül, the conclusions drawn from this type of work are sometimes dificuit to reconcile 

with field reinforced concrete studies because the experiments cannot replicate 

environmental variation on the surface of the steel induced by the presence of a 

cementitious cover (Mammoliti, Brown et al. 1996). 

Concurrently, the work of the next Chapter studied the corrosion products that form 

in different commercially prepared concrete mixes. Within studies of concrete mixes, it can 

be difficult to clearly assess the impact of different parameters on chloride-induced 

corrosion because of the large variability in the materials, curing practices, and exposures 

that are inevitable in commercially prepared field concrete. Moreover, the component of 

the concrete that has the greatest impact on its durability, the cernent paste, represents only 

a fraction of the material and is, therefore, more challenging to isolate and study. This is 

oRen compounded by the advanced level of corrosion present in these types of samples. 

Overall, it was the intent of these experiments to simulate natural concrete conditions as 

closely as possible and remove some of the inherent variability. 

Thus, the work of this Chapter expands upon the work of Chapter 4 by introducing 
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the modified cernent cover which is anticipated to: (i) reduce the number of active 

corrosion sites on the steel relative to the steel in the simulated pore solution; and (ii) affect 

where any corrosion products will initiate and accumulate. This work also investigates the 

effect of cracks in the cementitious cover but overcomes the complicating effects of coarse 

aggregate, supplementary cementitious materials, and admixtures in the work of Chapter 6. 

Overall, this simplified design concept was not entirely successful as will be shown, 

because new complexities were introduced. 

5.2 EXPERïMENTAL PROGRAMME 

5.2.1 Steel Plate Preparation 

Twenty steel plates (76 x 76 x 10 mm) were cut fiom the same bar as that used in the work 

of Chapter 4 and its nominal composition is detailed in Table 3.2 (Chapter 3). Holes were 

then drilled and tapped into three edges of the plates to accommodate 6 mm diameter 

(0.25") threaded plain carbon steel rods. Pnor to inserting the rods into the tapped holes, 

one surface of each plate was milled to remove the existing mil1 scale (i.e., the as-received 

surface) and was subsequently ground on 220 grit Sic paper using water as a lubricant. The 

prepared surfaces were cleaned with mild soap and water, and rinsed with isopropan-2-01. 

Masking tape was then applied to both 76 x 76 mm steel surfaces. The entire assembly, 

including al1 exposed surfaces of the steel rods, was painted with epoxy to prevent 

corrosion in these areas. Once the epoxy had fùlly cured, the masking tape was lifted to 

expose the surfaces. Surface roughness measurements were conducted on the steei plates 

using a Taylor Hobson Surtronic 3+ surface roughness tester. Six measurements were 

1 Cernent pastc to which 10% by m a s  of sand is addcd to provide dimensional stability against 
drying shrinkage. 
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perfonned on each of the ground and as-received surfaces (total of twelve for each plate). 

The mean roughness of the ground surfaces was 0.222 + 0.023 pm while the mean 

roughness of the mil1 scale was 1.926 + 0.723 pm. Figures 4.2(a) and (b) (Chapter 4) are 

stereomicrographs of representative regions of the prepared surfaces. 

5.2.2 Mould Preparation 

Polymethylmethacrylate (PMMA - PlexiglasTM) moulds were assembled that produced 

modi fied cernent paste specimens with the configuration detailed in Figure 5 -2.2. Three 

epoxy coated threaded rods were used to position the steel plate correctly in the mould 

such that the cover depth of the modified cernent paste was consistently 5 mm 20.25 mm 

when measured with a vernier caliper. These rods were also used as electncal connections 

during the corrosion measurements descnbed in Section 5.2.5. 
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Figure 5.2.2 Detailed diagram of the modified cernent paste specimens (approx. 150 by 
125 by 20 mm). 

5.2.3 Modified Cernent Paste/Steel Plate Specimen Preparation 

To investigate the significance of cement type, the same modified cernent paste mix was 

prepared using either the white or Type 1 0 cernent which were described in Section 3.1.1 

(Chapter 3). The mixture proportions are piven in Table 5.1. 
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Table 51 Murture proportions for modified cernent paste spccimens. 

The cernent and sand were mixed together for one minute to msure assimilation of the 

dry materials prior to the addition of water. Distilled water was slowly added over the 

next minute to generate a water/cement ratio of 0.45. The resuiting m W e d  cernent paste 

was mixed for five minutes, allowed to rest for five minutes, and then mixeci for a final five 

minutes. The modifiai cernent paste was cast into the prcpared moulds (Section 5.2.2) and 

compaction was aided by rodding. The amount of rodding necesary to achieve satisf8çto~ 

wmpaction was detennined by the length of t h e  it took for large bubbles to stop surfacing, 

typically 10 seconds. One batch of each mix with 10 specimens per batch was cast. The 

prisms remained in their moulds for 120 days covered in peranùn in the ambïent conditions 

of the laboratory (approximately 20°C and 4045% relative humidity). Every day a small 

portion of the parafilm was lifteci off the surface of the pnsms to allow ponding with water, 

and then the specimen was resealed in the mould with the parafilm. 

5.2*4 Exposure of Specimens 

M e r  120 days of curing, the prisms were removed from their moulds, the pattern of any 

cracks, typically 0.3 mm wide, were photographeci, and half of the specimens were 
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randomly selected to have their cracks filled with epoxy resin. Small samples 

(approximately 10 g) of both types of modified cernent paste were sectioned tiom one 

corner of representative specimens for use in the analyses descnbed in Section 5.1.6. The 

prisms were then partially immersed into the simulated pore solution that was devised fiom 

the pore solution expression experiment described in Section 4.1.1 (Chapter 4), as shown in 
2- 

Figure 5.1 -4. The proportions of the prirnary constituents (Le., ~ a :  K*, SO, , cal*) were 

matched as closely as possible using NaOH, KOH, Ca(S0,)-2H,O, and excess Ca(OH),. In 

addition, sufficient chlorides were added in the forrn of NaCl to make a 1 M NaCl solution. 

The level of the solution was checked daily and adjusted as necessary to maintain the 

desired immersion level. 
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Figure 5.2.4 Orientation of steel plate/modified cernent paste specimens during exposure to 
1 M NaCl simulated pore solution. 

5.2.5 Corrosion Monitoring 

The corrosion monitoring of al1 specimens consisted of open circuit potential maps that 
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were coordinated with linear polarization resistance (LPR) measurements. The open circuit 

potential maps were conducted in a manner consistent with ASTM C 876 using a saturated 

calomel reference electrode (SCE). To ensure that the measurements were performed 

consistently on the same locations of each specimen over time, hoIes were cut in a 

transparent plastic sheet which allowed the electrode to contact the surface of the 

specimens at pre-determined locations approximately 6 mm apart, as illustrated in Figure 

5.2.5. These measurements were performed at regular intervals along with LPR to estimate 

the average corrosion rate of the specimens. The linear polarization resistance technique is 

described in Section 2.4.3 (Chapter 2) and was perfomed with an EG & G Mode1 273A 

Potentiostat/Galvanostat that was interfaced to a computer for data acquisition and storage. 

The results from the open circuit potential maps are presented in Section 5.3.1 while the 

LPR results are presented in Section 5.3.2. In addition, the surfaces of the prisms were 

examined weekly to check for the formation of corrosion products. 
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Figure 5.2.5 Detailed diagram ilhstrating open circuit potential measurement locations, 
similar to the method descnbed in ASTM C 876. 

5.2.6 Microstructural and Chemicat Analysis of Specimens 

As previously described in Section 5.2.4, small samples, approximately 10 g each, of both 

the white and Type 10 modified cernent pastes were taken prior to the immersion of the 
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pnsms such that any alterations to the modified cernent paste fiom their subsequent 

exposure to the 1 M NaCl simulated pore solution could be assessed. Total porosity, pore 

size distribution measurements as well as thermal analyses (Le., DTA/TGA) were used to 

characterize the modified cernent paste at 120 days. These techniques were described in 

Chapter 3 and were subject to the limitations listed in the corresponding sections of 

Chapter 2. 

Afier partial immersion in the 1 M NaCl simulated pore solutions for up to nine 

rnonths', the three specimens from both the sealed and cracked specimens for both cernent 

types that exhibited the highest corrosion rates were selected for fiiruier microstnictural 

analysis (Le., 12 specimens of the 20 were sectioned for fürther analysis). Each specimen 

was sectioned to provide modified cement paste samples (i.e., no steel) that were 

representative of the material above, at, or below the solution line for porosity, pore size 

distribution, chemical and thermal analyses as well as cross-sectional paste/steel slices for 

microscopy and Raman spectroscopy, as shown in Figure 5.2.6. The specimens selected 

for M e r  microstnictural analysis, along with other information, are presented in Table 

5.2. The sections were ground and diamond polished to 1 pm using the cutting lubncant, 

ISOPAR M, to clean the surfaces between each polishing stage. Details of these 

preparation techniques as well as the characterization methods are given in Chapter 3. 

2 The Type 10 modified cernent pastdsteel plate specimens were sectionsd aftcr sis rnonths of 
immersion because orange stains were observed on the surfaces of the prisms. 
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Figure 5.2.6 Detailed diagram of the specimen areas from which samples and sections were 
taken for microstructural, thermal, and c hemical analyses. 
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Tabk 5.2 Slimmary of Modifiai Cernent Pask Specimcfls 

Speeimen cracks? 1 (Days) 1 
i 
I 

Esperiment 1 Microaulysis? 
! 

260 l 11.8 Yes 

No 1 260 8 2  Yes 
1 

WhiteM 1 No 260 7.2 1 No 
White #7 Yes 260 12.1 Yes 

White #8 Yes 260 4.5 No 

160 1 4. f 1 Yes 
1 I 

Type 10 #4 Yes 1 160 4.4 Yes 

l I I 

Type 10 #6 Yes 160 4.7 Yes 

Type IO #7 No 160 4.5 Yes 

Type 10 #8 No 160 5.2 Yes 

T y ~ e 1 0 # 9  1 Y ~ s  , 160 i 4.0 NO 
I 

i 
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5.3 RESULTS 

5.3.1 Open Circuit Potential Maps 

Over the course of the monitoring period, open circuit potentials measurements were taken 

regularly to the assess the overall corrosion state of the modified cement paste specimens. 

These measurements provided an average potential for each specimen and these individual 

values were pooled with others according to their respective cernent type and whether any 

cracks had rernained untreated or sealed. Figure 5.3.l(a) presents this cornparison between 

potential measurements 60m the white and Type 10 modified cernent paste specimens, 

both cracked and sealed. 

OnIy one statistical difference (95% confidence interval) was observed over the 

monitoring period and occurred between the cracked versus sealed modified white cernent 

paste specimens for the period between 15 and 30 days exposure. It is likely that upon 

initial exposure to the simulated pore solution, the presence of open cracks allowed the 

equilibrium between the embedded steel and the simulated pore solution to be established 

more quickly than the sealed specimens. The sealed specimens would have relied on 

diffusion to balance the concentration gradient of the ionic species and eventually similar 

potentials to the cracked specimens would develop. Once this equilibriurn was established 

after approximately 30 days of immersion, al1 specimens maintained statistically similar 

potentials until the end of the monitoring period. It is also possible that the cracked 

specimens may have become partially sealed with deposits from the simulated pore 

solution and contributed to this convergence of the open circuit potential measurements. 

Although measurements were not recorded for the first 50 days of exposure for the Type 

10 specimens, similar behaviour was noted for the Type 10 specimens during the remainder 

of the monitoring period. 
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Figure 5.3.l(a) Corn parison of the open circuit potential measurements fiom the cracked 
and sealed, white and Type 10 rnodified cernent paste specimens. 

The generaI behaviour described in the preceding paragraphs was also observed in the 

more detailed open circuit potential rnaps along with some additional features not observed 

in Figure 5.3.1 (a). Figures 5.3.1 (b) thraugh (g) present representative potential maps 
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generated fiom measurements taken over the entire immersion period for both cracked and 

sealed, white modified cement paste specimens. The maps kom ail specimens are 

presented in Appendix B. The approximate crack pattern and any surface voids have been 

supenmposed over each map using line weights and tilled circles which are scaled to the 

size of the map area. Most cracks were typically 0.2-0.3 mm wide but those wider than 

0.4 mm are individually indicated on each crack pattern. In addition to the thicker Iines 

which denote the locations of cracks and voids, the thinner lines are isopotential lines. 

Within 10 days of exposure to the chloride-contaminated simulated pore solution, the 

mean difference between the most positive and most negative potentials for each specimen 

ranged between 50-80 rnV for al1 specimens and this range was maintained for the entire 

monitoring period. Of these potentials, the most negative potentials were recorded on the 

as-received steel surfaces on eight of the ten white and seven of the ten Type 10 cement 

paste specimens. This suggests that even though the mil1 scale provided a physical barrier 

over the surface of the steel, its rougher surface, 1.926 lm versus 0.222 pm for the ground 

steel, made it easier for chlorides to accumulate in localized areas and initiate an attack. 

This result is consistent with the observations of Mamrnoliti et al. (Mammoliti, Brown et 

al. 1996), Alonso et al. (Alonso, Andrade et al. 2000), and Li and Sagüés (Li and Sagüés 

200 1). 



As-Received Ground 

Ground 

Figure 53.l(c) Open circuit potentiai maps of steel (mV SCE) embedded in cracked white 
modifieci cernent paste (Specimen 3) a f k  approximately 30 days exposure to chioride 

contamuiated s i m u b d  pore solution. 
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As-Received Ground 

F o i r e  5.3.1(6) Open circuit potential maps of steel (mil SCE) embedded in cracked white 
m d e d  cernent paste (Specimen 3) a f k  approxiniately 160 days exposure to chloride 

CO- simulated pore solution. 

(nnl 

As-Received 

F i t e  SAl(e) Open circuit potentiaI maps of steel (mV SCE) embedded in sealed white 
modified cement paste (Specimen 1) afier approximately 12 days exposure to chlonde- 

COlifStQbin;Zited simuiated pore solution. Note: These maps are cololued green to hig&iight the 
more positive potentiai range, approx. 100 mV, measiaed for this specimen at this the. 
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F i i r e  5.3.l(f) Open circuit potentid maps of steel (mV SCE) embedded in seaied white 
modified cernent paste (Specimm 1) a f k  approximately 30 &YS exposuie to chloride- 

CO- sbulateà pore solution. 

As-Received 

Figure 53.10 Open circuit potential maps of steel (mV SCE) embedded in seaied white 
mdf ieà  ameut paste (Spimen 1) after approximately 160 days exposure to chioride- 

contamhted simulateci pore solution. 
148 
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When comparing the potential maps to determine the effect of cracks, minor 

differences were noted between those specimens with open cracks and those which were 

sealed with epoxy. Initially, any unsealed cracks had a clearly evident impact on the local 

potential measurements in the vicinity of the cracks-Le., the potentials in these areas were 

distinctly more negative. This effect diminished within the first 30 days of exposure, 

however, and the potential maps from the cracked specimens became more uniform and 

similar to those from the sealed crack specimens. This trend is consistent with the overall 

open circuit potential measurements shown in Figure 5.3.1 (a) where the differences 

between the sealed and cracked specimens became statistically insignificant with time. 

At the end of the monitoring period, in al1 but two or three specimens for both cernent 

types, the as-received side contained an area with the most negative potential and was, 

therefore, the most active corrosion site. In al1 cases, this area of the steel was located 

-est above the solution line. This is consistent with the higher oxygen content, partially 

saturated water content, and higher chloride content due to capillary suction and water 

evaporation. These represent the ideal conditions to sustain corrosion, because below the 

solution line, considerably less dissolved oxygen would be available for comsion reactions 

than above the solution line. In fact, the potentials were observed to become progressively 

more negative the further above the solution line the steel was positioned, as shown in 

Figures 5 . 3 4 ~ )  and (g). This behaviour is similar to that observed for steel-reinforced 

structures which are partially immersed in sea water, and the splash zone expenences the 

most aggressive attack. 

Similar trends were noted in the Type 10 modified cement paste specimens but with 

one unique difference: orange stains were noted on the surface of half of the specimens, on 

both surfaces, such as that s h o w  in Figure 5.3.l(h). The stains were first noticed afier 

only 30 days of exposure as faint orange areas which developed into more concentrated 

stains with time. Overall, the stains did not seem to coordinate with their respective 
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potential maps and some of the orange staining occurred in areas where there was no 

embedded steel. A comparison of representative potential maps fiom steel embedded in 

orange-stained versus unstained Type 10 modified cernent paste specimens, Figures 5.3.1 (i) 

and (j), respectively, did not show any distinct differences. However, the heaviest orange 

surface deposits were noted on cracked specimens and appeared to concentrate in those 

areas away &om the cracks which were below or at the immersion line. Therefore, it is 

likely that the cracks acted as the anodic sites on the surface of the steel and the remaining 

areas of steel were the cathodic sites. The stains would have precipitated in the locations of 

the cement paste cover where the Üon and hydroxide ions generated by the corrosion 

reactions met. Unsealed cracks woutd have allowed these anodic sites to be established 

more quickly than their sealed counterparts and would have resulted in more of the product 

forming over time. A detailed compositional analysis of the stains was performed using 

Raman spectroscopy and this work is presented in Section 5.3.6. 



- 
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Figure SJ.l(h) Macrophotogrephs of the orange-stained, cracked Type 10 modified cernent paste (Speclmen 8) covering the as- 
received and ground steel surfaces after apy~oximately 160 days exposure to the chloride-contaminatcd simulated pore solution. 
Note: The macrophotograph of the cernent paste covering the ground surtàce has ken m h r e d  about its vertical mis so that it 

a n  be directly compared with the corresponding open circuit potential maps in Figure 5.3.l(i). 
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(niin) 

As-Rece ived Ground 
Figure 5.3.1(i) Open circuit potential maps of steel (mV SCE) embedded in orange-stained, 

cracked Type 10 modified cernent paste (Specimen 8) after exposure to the chioride- 
contaminated simulated pore solution for approx. 160 days. 
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As-Received 
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Ground 
Figure 53.1ÿ) Open circuit potentiai maps of steel (mV SCE) embedded in unstained, 

sealed Type 10 modified cernent paste (Specimen 3) after exposure to the chloride- 
contaminated simulated pore solution for approx. 160 days. 
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5.3.2 Linear Polarization Resistance Measurements 

Figure 5.3.2 presents the mean corrosion rates for ail specimens which were measured using 

linear polarization resistance. In general, the corrosion rate of ail specimens increased with 

tirne and the white cernent paste specirnens approached 0.01 A h Z  afler 260 days of 

exposure to the chloride-contaminated simulated pore solution. Since this rate is really a 

mean value for the entire surface of the steel, the corrosion rates of localized regions on the 

surface of the steel are likely higher. In addition, the gradua1 increase in the corrosion rates 

suggests that a progressively larger area of the steel is becoming active. 

Figure 5.3.2 also shows that similarly prepared steei in Type 10 cernent paste 

specimens had corrosion rates that were lower than the white cernent paste specimens at 

similar time intervals. The difference between the two types of cernent paste can be 

possibly related to the chIoride-binding characteristics of the cernent as the Type 10 cernent 

contained almost three times the amount of C,A and C,AF as the white cement (16.2 mass 

% versus 5.5 mass %, Table 3.l(b), Chapter 3). The Type 10 cement paste specimens 

would, therefore, require a greater number of chlorides to diffuse into the specimens to 

achieve the critical level for corrosion initiation. 
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Figure 5.3.2 Comparison of the mean corrosion rates for both the cracked and sealed 
specimens. The error bars represent a 67% confidence interval. 

In addition to the effect of cernent type used to prepare the specimens, a small 

difference was noted between the mean corrosion rates for cracked versus sealed white 

modified cernent paste specimens. While the mean corrosion rate of the cracked specimens 

continued to increase until the specimens were sectioned, the sealed specimens maintained a 

constant corrosion rate of approximately 0.0065 Ah' From 175 days to the final 
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measurements before sectioning. A similar trend was not noted in the Type 10 cement 

paste prisms probably because the presence of stains on the surface of the prisms caused 

the specimens to be sectioned earlier than anticipated. 

However, a more detailed review of the data shows that there is little statistical 

difference between the cracked versus sealed, as well as the Type 10 versus white cement 

paste specimens because of the high varïability in comparable specimens. This likely 

resulted fiom the random cracking that occurred during the curing process: the cracks did 

not occur in the sarne locations on each specimen and their proximity to the simulated pore 

solution level varied. As a result, the localized areas of probable corrosion attack (Le., 

within the cracks) were different for every specimen. Although this variability complicated 

the interpretation of the corrosion rates, it is consistent with observations made for field 

structures with their inherent inhomogenei ties. 

5.3.3 Total Porosity and Pore Size Distributions 

Figure 5.3.3(a) presents the total continuous porosity measurements for al1 specimens at 

the time when the specimens were sectioned: afier 270 days of immersion for the white 

modified cernent paste and 180 days for the Type 10. This figure shows that there is no 

statistical difference between any of the specimens, either Type 10 or white cernent, 

cracked or sealed. The overall mean was 36% (* 0.44, 95% confidence interval) and is 

consistent with the work of other researchers for cernent paste, a general presentation of 

which is given by Taylor (Taylor 1990). It is unlikely that the difference in age between 

the white and Type 10 modified cement paste is significant with this type of measurement 

because the majority of the hydration reactions would have completed after 112 days of 

moist curing in the moulds followed by up to 270 days of partial immersion in simulated 

pore solutions. In addition, no supplementary cementitious materials were used in the mix 
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designs which could have caused latent refinements of the continuous pore networks. 

Total 
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95% Conf. Interval = +!- 0.44 a 

Figure 5.3.3(a) Cornparison of the total continuous porosity 95% confidence intervals for 
al1 specimen types: cracked, sealed, white and Type 10 modified cernent paste. 

This conclusion is supported by rnean cumulative intrusion volume curves measured 
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for both the white and Type IO modified cernent paste specimens afier immersion in the 

simulated pore solutions as compared to the original curves, shown as Figtire 5.3.3(b). 

Reductions in both threshold pore diameters and total pore volume reductions were noted 

as a result of the immersion period. Moreover, the Type 10 total pore volume was 

statistically larger than the white for both time intervals. This difference was small when 

the specimens had been only moist cured for 16 weeks, as shown in Figure 5.3.3(c), but 

increased with immersion in the simulated pore solution, as shown in Figure 5.3.3(b). 

Although the cement pastes were sectioned at different exposure ages, the difference in 

hydration between 180 and 270 days is likely minimal. Instead, the differences are likely 

due to the inherent differences between the cements. The white cernent contained 

significantly more C,S and was more finely ground (Table 3.l(b), Chapter 3) and would 

have produced a denser paste upon full hydration. Theoretically, this denser paste should 

provide better corrosion protection when any embedded steel is exposed to chlorides. 

A cornparison of the mean pore size distribution measurements for both the white and 

Type 10 modified cernent pastes is presented in Figures 5.3.3(d) and (e), respectively. A 

review of both plots shows that only the samples taken from above the solution line in the 

cracked white modi fied cernent paste specimens were signi ficantly different from their 

Type 10 counterparts in both the cracked and sealed specimens. This suggests that the 

cracks in the white modified cement paste increased the evaporation of any water in the 

exposed portions of the specimens and reduced the rate of cement hydration in these areas. 

Similar sensitivity was not noted in the Type 10 modified cement paste prisms possibly 

because the more open pore structure reduced the effect of cracks in these areas. 
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Figure 5.3.3@) Cornparison of the mean cumulative intrusion volumes for white and Type 
10 modified cement paste samples afier 16 weeks of curing versus up to nine months of 
immersion in a chloride-contaminated simulated pore solution. Each curve is the mean of 

either three samples (16 weeks curing) or twelve samples (up to nine months of 
immersion). 
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Figure 5.3.3(c) Cornparison of the mean cumulative intrusion volumes after moist cunng 
for 16 weeks in their moulds. Each curve is an average o f  three samples and a 805% 

confidence interval was applied. 
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Figure 533(d) A cornparison of the mean cumulative intrusion volume for white modified 
cernent samples from above, at, and below the solution line. Each curve is the mean of three 

samples, one sample h m  three different specimens. 
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Figure 53.3(e) A cornparison of the mean cumulative intrusion volume for Type 10 
modified cement samples from above, af and below the solution line. Each curve is the 

rnean of three samples, one sample fkoni three different specirnens. 

5.3.4 Chloride Content 

Figure 5.3.4 presents the mean acid-soluble chloride contents (i.e., the total chloride 

content) for al1 specimcn types according to the immersion level in the 
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chloride-contaminated simulated pore solution- A cornparison of these values indicates a 

significant level of chlorides for al1 specimens, well above any possibility of 

chloride-binding. Al1 specimens except for the Type 10 below the solution line were 

considered at risk for chloride-induced corrosion below, at, and above the immersion line in 

the simulated pore solutions. 

Overall the Type 10 modified cernent paste specimens contained more chiondes than 

the white specimens after exposure for approximately 100 fewer days in the 

chloride-contaminated simulated pore solution. This is likely a result of the larger 

chlonde-binding potential of the Type 10 cernent with its significantly higher C,A and 

C,AF content. Presumably, the equilibrium chlonde content between the solids and pore 

solution compnsing the Type 10 cernent paste would be higher than the white cement paste 

and more chlorides would diffuse to satisfy the concentration gradient. In addition, the 

higherC,S content and fineness of the white cement likely produced a denser cement paste 

than the Type 1 0 which would have reduced the rate of chloride di fïüsion. 

In addition, the mean chloride levels generally were at their lowest below the 

immersion line, and reached their maximum at the immersion line for al1 specimens. Above 

the immersion line, the chloride levels remained unchanged for the white modified cement 

paste specimens but decreased for the Type 10. This difference was likely related to the 

different pore structures of the cernent pastes that would affect the capillary absorption 

from below to above the solution line and the crack patterns, as well as the shorter 

immersion time for the Type 10 specimens. However, the high degree of variability of 

these measurements as s h o w  by the 67% confidence interval calculated for both modified 

cernent pastes does not allow any direct conclusions to be drawn. It is possible that if 

these specimens had been exposed for a longer period of time until a full equilibrium with 

the chloride-contaminated pore solution were reached, these values might have become less 

varied. However, it was the intent of this work to study the corrosion product distribution 
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as they were initiated before excessive volumes of corrosion prnducts were developed. 

Mean 
Chloride 
Content 
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cernent) 

Below At Above 
Solution Solution Solution 

Line Line Li ne 

Figure 53.4 Cornparison of the mean chloride contents for the white and Type 10 
modified cernent paste samples. The error bars represent a 67% confidence interval. 

5.3.5 Thermogravimetric Analysis 

To aid the analysis of the white and Type 10 modified cernent paste specimens, hydrated 
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reference standards of C,S, C,A intermixed with an appropriate quantity of gypsum 

(CaS0,-2H,O), and synthetic calcium monochloroaluminate (Friedel's salt - 
C3ACaCl,. 10H,O) were analyzed using thermogravimetric analysis. The first derivative of 

the mass loss with time which accentuates any changes in the onginal mass loss curves, and 

is known as differential thermogravirnetry (DTG) is presented in this Section. Using this 

procedure, changes in the hydration state (loss of moisture or structural water), phase 

changes, and the subsequent decomposition of these phases were noted for the hydration 

products of C,A/gypsum and C3S hydration: monosulphate (C,A S HJ, C-S-H, and 

calcium hydroxide (CH), as shown in Figure 5.3.5(a). The curve for Friedel's salt, shown as 

Figure 5.3.5(b), also shows dehydration and phase decomposition and is consistent with 

the experimental observations of Ramachandran (Ramachandran 1976). 
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Figure S.3.S(a) The differential thermogravimetric curve for minera1 reference standards of 
C,S and C,A intermixed with an appropriate quantity of gypsum (CaS04-2H20). 
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Figure 53.5@) The mass loss and differential thermogravimetric curves for minera1 
reference standard of  synthetic calcium monochloroaluminate (Friedel's salt - 

C,A-CaC12- 10H20). 

In a similar manner, thermogravimetric analyses were conducted on three key areas 

(detailed in Figure 5.2.6) from both white and Type 10 modified cernent paste specimens. 

These areas corresponded to portions of the specimens above, at, or below the solution line 

of the chloride-contaminated simulated pore solution. Since no statistically significant 

effect was noted for the presence of open cracks versus cracks that were sealed with epoxy 

for either cement type, the results for al1 specimens were pooled together according to the 

location from which the samples were taken. Figures 5.3.5(c) and 5.3.5(d) present these 
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results for the white or Type 10 modified cernent paste specimens, respectively. 

Figure 5.3.5(c) shows the anticipated features of a hydrated, sulphate-resisting white 

cernent with its strongest peaks corresponding to the dehydration of the C-S-H, and the 

dehydroxyiation of the calcium hydroxide. Since the white cernent contains only 4.5% C ,A 

and 1.0% C,AF, large peaks of hydrated aluminated phases were not anticipated or 

observed. Instead, peaks associated with the decomposition of calcium carbonate (CaCO,) 

were observed and largest of which was noted for samples taken fiom above the solution 

line. The size of the peaks decreased with increased proximity to the simulated pore 

solution. Carbonation would have been slowed or reduced altogether by immersion in the 

simulated pore solution. 
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Figure Sm3m5(~) The differential thermogravimetric curve for white modified cernent paste 
samples taken fkom above, at, and below the solution line. 



Chapter Five: Corrosion Products within Modified Cernent Paste 

Mean 
Derivative 

a . 

q 

Dehydroxylation 

-- Above Solution Line 
m 

+At Solution Line . 
C-S-H& . Aluminates - Below Solution Line ' 

i 
. 

~Dehydration 1 . . . 1 . . :  

O 200 400 600 800 1 O00 
Temperature (OC) 

Figure 5.3.5(d) The differential thermogravimetric curve for Type 10 modified cernent 
paste sarnples taken fkom above, at, and betow the solution line. 

In addition to the carbonation peaks, a small, broad peak with a maximum at 

approximately 3 13°C was noted which c m  be attributed to calcium monochloroaluminate 

(Friedel's salt - C,A-CaC1,-IOH,O). This profile was the same for al1 curves and suggests 

that the amount of monochloroaluminate fomed was independent of the position of the 

sample location with respect to the solution line and the corresponding variable chloride 

content. The presence of  the monochloroaluminate was confirmed by comparing the results 

of the samples exposed to the chloride-contaminated simulated pore solution with the 
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results obtained ftom unexposed samples, as shown in Figure 5.3.5(e). The amount of 

monochloroaluminate present in the samples could not be determined because no observable 

change in the original mass loss curve could be accurately measured. Thus, 

monochloroalurninate was detected but in quantities too small to be accurately measured 

with this analytical technique. 
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Figure 5.3.5(e) A cornparison of the mean di fferential thermogravimetric curves for 
samples of white modified cernent paste that were not exposed to the 

chloride-contaminated simulated pore solution (only moist-cured for 16 weeks) with those 
that had for almost one year. Each curve is the mean of six samples. 

Similar trends were noted in the Type 10 modified cernent paste with the exception 

that the higher C,A and C,AF contents in this cernent, 8.7% and 7.5%, respectively, 

produced a correspondingly higher level of hydrated aluminates in the cured and exposed 

specimens. As shown in Figure 5.3.5(£), peaks consistent with hydrated aluminates were 

noted in the samples taken frorn unexposed Type 10 modified cernent paste. Once this 
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cernent paste had been exposed to the chloride-contaminated simulated pore solution, these 

peaks were no longer evident and new peaks corresponding to calcium 

monochloroaluminate were observed. The amount of the caIcium m~n~chloroaluminate 

present was approximately 1.8% + 0.5% (95% confidence interval). This indicates a 

significantly higher chloride-binding capacity for the Type 10 cernent paste than that for 

the white cernent and suggests that more chlondes would be required to initiate and sustain 

corrosion of any embedded steel within Type 10 cernent paste. 
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Figure 5.3.yf) A comparison of the mean differential thermogravimetric c w e s  for 
samples of Type 10 modified cement paste that were not exposed to the 

chloride-contaminated simulated pore solution (only moist-cured for 16 weeks) with those 
that had for almost one year. Each curve is the mean of six samples. 

Another aspect of corrosion resistance is the buffering capacity of the pore solution 

provided by the available amount of calcium hydroxide. Figure 5.3.5(g) presents the mean 

ignited mass of calcium hydroxide which was calculated for al1 sample locations and both 

cernent types. In general, these results are consistent with the previously noted 

carbonation trends as the highest calcium hydroxide contents were noted in the samples 

taken from beIow the solution Iine where the rate of carbonation would be slowest. In 
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addition, Table 5.3.5 shows that the actual yield of calcium hybxide in the cernent paste 

approachtd the theoretical values and confirms that the cement pastes were well-hydrated 

Overall, the calcium hydroxide contents measured in the white cement paste amples 

werp larger in the une@ sarnple and al1 other locations once the paste had been exposed 

to the chloridecontaining simulateci pore solution. This suggests that the white cernent 

paste could provide better conosion resistance for any embeddeà steel with respect to 

buffiering capacity provided that the hydroxide ions can successfully diffuse through the 

pore network to where they are required. 

Table 5.3.5 Cornpuison of the theoreticai and the a d  calcium hydroxide contents &er 
16 weeks of moist curing. 

Cernent 
T y ~ e  

White 

Type 10 

Theoretical CH CH Yield 
Content (ma= %) 

26.2 

23-3 
L 

21.8 

17.7 

83.2 

75.9 
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Figure 5.3.5(g) A cornparison of the mean ignited mass of  calcium hydroxide measwed in 
samples taken fiom above, at, or below the solution line. Each measurement is the mean of 

six samples and contained an error of +OS% for a 95% confidence interval. 

5.3.6 Raman Spectroscopy 

As detailed in Figure 5.2.6(a), cross-sections of al1 sectioned modified cernent paste 

specimens were analyzed using Raman spectroscopy. Particular attention was paid to the 
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precise location of the corrosion products such that they could be coordinated with their 

respective potential maps. To aid the analysis of the spectra, some representative spectra 

of magnetite (Fe30,), maghemite (y-Fe,O,), - and haematite (a-Fe,03) were presented 

Chapter 3 as Figures 3.2.3(a), (b), and (c). A sample of the lubrication fluid, ISOPAR M, 

was also analyzed and its spectrum is s h o w  as Figure 3.2.3(d) (Chapter 3). exhibiting 

only wo peaks, centred at 560 cm-' and 1099 cm". Neither of these overlap experimentally 

observed corrosion peaks and, therefore, were not anticipated to interfere with the 

interpretation of the work of this section even if residual traces of the ISOPAR remained on 

the surface of the sections. 

A cornparison o f  the corrosion products formed within the modified cernent paste 

specimens focussed first upon the corrosion products observed with the unaided eye and 

their location within the samptes. Variations were expected with the cracks, the surface 

finish, and the position of the sample with respect to its immersion in the simulated pore 

solution. Figure 5.3.6(a) shows a representative section which contains typical crack 

locations and their proximity to the chloride-contaminated simulated pore solution. 
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Figure 5.3.6(a) Schematic illustration of a section taken h m  the modified cement paste 
specimens indicating typical crack locations. 

Immediately upon sectioning the specimens, the colour and location of any observed 

corrosion products was noted. A green coloured corrosion product which changed with 

time was observed at the steelkement paste interface in three of the white and one of the 

Type 10 sections. Its location corresponded to the portion of the steel between the 

solution line and 20 mm above the solution line where the corrosion rates would be 

anticipated to be the highest. The product was up to 0.5 mm thick and was located on the 

as-received side of the sections for two white and one Type 10 cernent paste sections. The 

presence of Green Rust could not be confimed by Raman spectroscopy as the peaks for 
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chloride-containhg Green Rust 1 are typically observed on steel in aqueous solutions with 

Raman shift values of approx. 427 and 5 18 cm-' (Trolard, Génin et al. 1997). These Raman 

peaks result h ferrous and femc hydroxide complexes (~e-OH' and F~-oH'+) which are 

likely to be highly unstable once exposed for even one minute to the ambient laboratory 

environment. In spite of this instability, this product is often observed at the steelkoncrete 

interface (AC1 Cornmittee 222-Corrosion) within the oxygen-limited conditions that are 

assumed to exist within concrete and is a precursor to magnetite during chloride-induced 

corrosion. However, the Raman spectroscopy peaks centred on 216, 278, 386, and 580 
-1  

cm were obtained which suggest the presence of hæmatite and this would be the 

anticipated corrosion product observed once the Green Rust 1 was exposed to the 

laboratory environment for a period of time and if not under potentiostatic control. 
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Figure 5.3.6(b) Representative spectrum fiom an area of a white cernent paste section 
containing a green coloured corrosion product--spectra identified as hæmatite. 

In spite of the unclear results conceming the green coloured corrosion product, other 
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corrosion products were easily identified at the steekement paste interfaces and within the 

cracks of al1 sections of both cernent types. These products were observed on bath 

surfaces of the steel simultaneously (i-e., corrosion products did not form preferentially on 

either the ground or as-received surfaces), and were observed within al1 cracks, below, at, 

and above the solution line. These products were most ofien coloured dark brown-black 

and usually only half-filled the crack (Le., the area closer to the steel was completely filled 

while the area closer to the exposed surface of the cement paste remained empty). At 

higher magnifications, the corrosion product was typically coloured dark red in locations 

closest to the surface of the specimen. This was also tme for samples in which the cracks 

had been sealed prior to immersion in the chloride-contaminated pore solution as the 

cross-section showed that the epoxy had not completely filled the cracks to the level of the 

steel. It is clear that once the chlondes had penetrated behind the sutface barrier of the 

epoxy, corrosion could proceed as if the cracks had not been sealed. 

Figures 5.3.6(c), (d), and (e) present representative spectra derived fiom a crack 

located below the solution line in white cement paste. Figure 5.3.6(c) was taken fiom an 

area close to the steekement paste interface while Figures 5.3.6(d) and (e) are taken 

progressively closer to the exposed surface of the cernent paste. Figure 5.3.6(c) shows one 

broad peak characteristic of magnetite. Approximately 2 mm fiom the steekement paste 

interface, this product became intermingled with goethite (a-FeOOH), as shown in Figwe 

5.3.6(d). Although this analysis was fiom the paste below the water line, it was close to 

the paste surface and presumably was formed because of the higher level of dissolved 

oxygen in this region. This result is consistent with the dark red colour observed at higher 

magnifications. At the outer limit of the corrosion product, the part which would be 

directly exposed to the simulated pore solution, the calcium carbonate polymorphs of 

calcite and aragonite were observed, as indicated in Figure 5.3.6(e). The corrosion products 

observed within cracks above the solution line were similar with the exception that 
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ha~matite was also observeci, as shown in Figure 5.3.6(f). This product likely formed 

because of the reduced water or increased oxygen availability above the solution line within 

the cernent paste (Le., it is a dehydrated form of goethite). 

lntensity 

200 300 400 500 600 700 800 
Raman Shift (cm-1 ) 

Figures 5.3.6(c), (d), and (e) Representative spectra of corrosion products within a crack 
located below the solution line. 
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Figures 5.3.6(f) Representative spectrum of hæmatite (H) within a crack located above the 
solution line. 

In addition to the previously described effects of surface finish, cracks, and the 

immersion level of the simulated pore solution, varying the cernent type produced one 

notable effect: the Type 10 modified cernent paste specimens fonned orange stains over 

large areas which were not observed on the white cernent paste specimens. These stains 
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were noted on the d a c e  of most of the Type 10 specimens and penetrated approximately 

1 mm of the surface, as shown in Figure 5-3.l(h). Figure 5.3.6(g) and (h) present 

representative spectra obtained from an area with concentrated stains, and an area of 

unstained cement paste, respectively. The major peaks show in Figure 5.3.6(g) indicate 

the presence of hæmatite (a-Fe,O,), - magnetite (Fe,O,), and calcite (CaCO,). With the 

exception of the magnetite, the results of this spectrum are consistent with the orange 

colour of the stain. However, it would be difficult to distinguish the anticipated dark 

brown-black colour of the magnetite from the dark grey colour of the Type 10 modified 

cement paste. The presence of calcite is reasonable for the exposure of the specimens to 

the laboratory air in spite of any precautions to counteraçt it. 
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Figures 5.3.6(g) and (h) Cornparison of Raman spectra fkom (g) an area of Type 10 
modified cernent paste with a concentrated orange stain and (h) an area of unstained cernent 

paste. 

The spectrum obtained from the unstained cernent paste, shown in Figure 5.3.6(h), 

was taken approximately 2.5 mm from the steel/cernent paste interface and contained MO 
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clearly defined peaks: a broad peak centred at 664 cm-' and a relatively sharper peak at 358 
- 1 

cm . While the sharp peak centred at 358 cm-' indicates the presence of calcium hydroxide 

(CH), the broad peak indicates the presence of magnetite and is consistent with the 

spectrum from the orange stain, Figure 5.3.6(g). It suggests that iron ions had diffised 

through the cernent paste and depending upon the dissolved oxygen content, corrosion 

products ranging nom magnetite to hæmatite formed (Le., relatively low oxygen to high 

oxygen contents). Energy dispenive X-ray spectroscopy of this area and other areas 

showed considerable amounts of elemental iron (up to 5 at. %) within the cernent paste 

which could not be directly attributed to a local accumulation of corrosion product (Le., it 

was unifomly distributed) or the anticipated hydration products of C,AF. A thorough 

literature search has not revealed any previous observations of magnetite at locations other 

than the steel/cementitious interface with the exception of the visual observations described 

in the work of Aligizaki et al. (Aligizaki, de Rooij et al. 2000). However, these authors 

obsewed the corrosion products as localized accumulations rather than the more uniform 

distribution obsewed here. The absence of the orange stains on the surface of the white 

rnodified cernent paste specimens is likely related to the differences in chemistry and pore 

size distribution between the two cements. The finer pore structure of the white cernent 

paste fiom its higher C,S content and finer cernent particle size range (Tables 3.1(a) and (b), 

Chapter 3) suggests that the diffusion of ionic species derived nom corrosion processes 

would be more difficult in a denser paste and be more confined to the open space of a crack. 

5.4 DISCUSSION 

5.4.1 Effect of Surface Finish on the Corrosion Process 

As shown by the open circuit potential maps of Section 5.3.1 and the Raman spectroscopy 
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observations of Section 5.3.6, the type of surface finish affected the location of corrosion 

initiation and the formation of a corrosion product assumed to be Green Rust 1. In most 

specimens, corrosion initiated on the as-received side of the embedded steel plates which 

indicated that the presence of an adherent layer of mil1 scale composed of magnetite 

(Fe,O,), hzmatite (a-Fe,O,), - and goethite (a-FeOOH) with a surface roughness of 1.926 + 
0.723 p m  was not more protective than the ground steel surface with a surface roughness of 

0.222 20-023 Pm. Macrophotographs of these surfaces (Figures 4.2 (a) and (b), Chapter 

4) show that the surface of the ground steel is uniformly striated tkom the grinding process 

while the surface of the as-received steel is irregular with numerous small pits which might 

expose the underlying bare steel. It is clear that these pits would make it easier for 

chlorides to locally accumulate and initiate corrosion than the more uniform surface of the 

ground steel. Corrosion did, however, initiate on a few of the ground surfaces first but this 

variability is common in corrosion studies, especially chloride-induced corrosion work, and 

reinforces the need for studies of multiple samples to ensure that valid conclusions are 

drawn. 

The location of corrosion initiation did not affect the composition or the locations of 

subsequent corrosion product formation over the remainder of the specimens, however. 

Corrosion products were observed at the steel/paste interface and within most, if not all, 

cracks, independent of the exposure condition to the simulated pore solution and surface 

finish of the steel. The areas of original corrosion initiation were, however, those areas 

where the green coloured corrosion product (assumed to be Green Rust 1) formed over 

relatively large surface areas rather than adjacent to localized corrosion pits. The formation 

of this type of product is likely related to the optimal corrosion conditions present in those 

locations as descnbed in greater detail in Section 5.4.3. It is anticipated that if the exposure 

of the specimens had continued for a few years, the greatest volume of corrosion products 

would have accumuiated in these regions. 
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5.4.2 Effct  of Cernent Type on the Corrosion Process 

It is clear that the cernent type had a significant impact on the corrosion rates and the 

corresponding distribution of the corrosion products. Higher chloride contents were 

measured in the Type 10 modified cernent paste even though this cernent paste had been 

exposed to the chloride-contaminated simulated pore solution for 100 days fewer than the 

white specimens. A greater proportion of monochloroaluminates was formed in the Type 

10 cement paste than the white cernent paste as shown by the thennogravimetric results 

(Section 5.3.5). This accounts for the reduced average corrosion rates measured at similar 

time intervals for the Type 10 specimens (Figure 5.3.2) when cornpared to the white 

specirnens. The formation of bound chlondes suc h as monochloroaluminates (Friedel's 

salt) would reduce the fiee chlorides in the pore solution able to participate in corrosion 

processes with the embedded steel. As such, the white modified cernent paste would 

theoretically provide reduced corrosion protection for embedded steel because it cannot 

form a hi& proportion of monochloroaluminates because of its significantly lower C,A and 

C,AF content in the unhydrated cement powder. 

In spite of this potential deficiency, the white modified cement paste did provide a 

degree of corrosion protection because orange stains composed of hæmatite and magnetite 

did not form fiom a uniform distribution of iron ions present within its pore solution as 

with Type 10 cernent paste. This can be attributed to the finer pore size distribution and 

overall pore volume of the white cernent paste when compared to the results for the Type 

10 (Figure 5.3.3(b)). The finer pore size distribution of the white cernent slowed the 

ingress of chlorides to the surface of the steel. In addition, the higher C,S content in the 

unhydrated white cernent powder produced significantly more calcium hydroxide upon 

hydration (Figure 5.3.5(g)) which would have improved the buffering capacity of the pore 

solution to prevent the localized drops in pH which accornpany corrosion attack. This 

accounts for the differences in the corrosion product distribution noted for the two types of 
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cernent. 

The presence of any of the aforementioned corrosion products in either the Type 10 

or white specimens was not predicted by their respective corrosion rates (Figure 5.3.2) if 

the criterion established by Alonso et al. is applied (Alonso, Andrade et al. 2000). A 
i 

theoretical ''threshold corrosion rate" of 0.0 1 A/m- suggests that corrosion had just initiated 

in the white cernent paste but had not begun in the Type 10 specimens which is entirely 

contradicted by the presence of significant corrosion products in cracks and the cement 

paste cover. This criterion acknowledges that chloride-induced corrosion rates are difficult 

to estimate because it is not possible to non-destmctively determine the anodic surface area 

of steel embedded in cementitious materials. With the relatively higher volume of corrosion 

products that formed in the Type 10 cement paste but with a relatively lower corrosion 

rate, it is clear that the concept of a "threshold corrosion rate" is not a reliable method to 

assess chloride-induced corrosion initiation of steel in cementitious materials without 

knowledge of the actual area which is corroding. 

Other concepts used to mode1 chlonde-induced corrosion (Andrade and Alonso 1993; 

Molina, Alonso et al. 1993) which may be incorrect under certain conditions are the 

assumptions that al1 corrosion products form at the steel/cementitious materials interface 

and that their specific volumes can be as large as 6 to 7 times that of steel. From the work 

presented by Aligizaki et al. (Aligizaki, de Rooij et al. 2000) and the compositional results 

of this Chapter, these assumptions are clearly not always accurate as magnetite (Fe ,O,) and 

hæmatite (a-Fe,O,) were observed within the modified cement paste cover. Moreover, 

they were not observed entirely as Iocalized accumulations but as stains which is consistent 

with field observations of steel reinforced concrete structures. These stains which 

represent a fine distribution of corrosion products embedded in the cernent paste are less 

likely to induce cracking of the cementitious cover. This possibly explains the longer than 

anticipated durability of field structures once the signs of deterioration have been observed. 
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Moreover, the compositional range of products that were observed suggests volume 

expansions of 2 to 3 times according to Table 2.6 (Chapter 2) rather than the more 

destructive 6 to 7 times which is commonly assumed. Thus, revising these two aspects of 

theoretical corrosion models should allow a more accurate estimation of the cracking 

potential of cementitious materials which contain iron corrosion products. 

5.4.3 Effect of Exposure Conditions on the Corrosion Process 

A review of the Raman spectroscopy results presented in Section 5.3.6 shows that 

corrosion products precipitated within the rnodified cement paste specimens under al1 

exposure conditions. The types of corrosion products observed, however, depended upon 

the exposure conditions fiom which they were developed. These conditions can be loosely 

defined by steel sections of the specimens which were below, at, or above the solution line. 

Corrosion was observed to initiate in most specimens above the solution line where the 

cernent paste would be only partially water saturated, contain a high level of chlorides fiom 

capillary suction (Figure 5.3.4), and have sufficient oxygen present for the cathodic 

reactions. 

These exposure conditions also affected the corrosion products which formed within 

al1 shrinkage cracks in the specimens as the water saturated environment below and at the 

solution line permitted the formation of goethite (a-FeOOH). This product was not 

observed in cracks above the solution line because of the relatively drier environment where 

any water present resulted from capillary suction tiom the immersed part of the specimen. 

Another corrosion product which appeared to depend upon the exposure conditions 

was the green corrosion product, assumed to be Green Rust 1. As suggested by the research 

perfomed by Génin and others (Génin, Rezel et al. 1986; Refait and Génin 1993; Génin, 

Refait et al. 1997), Green Rust 1 requires relatively higher chloridelhydroxide ratios to fonn 

than other products such as magnetite and goethite. The presence of Green Rust 1 at or 
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above the solution line is, therefore, consistent with the high chloride contents measured in 

these areas (Figure 5.3.4). The higher chloride levels were also consistent with the observed 

decrease in the open circuit potential measurements the M e r  an area of the steel was 

located above the solution line (Figures 5.3.1 (d) and (g)). Clearly, higher chloride 

concentrations would increase the anodic corrosion processes in an area. 

5.4.4 Effect of Shrinkage Cracks on the Corrosion Process 

The effect of shrinkage cracks on the corrosion of the embedded steel in the modified 

cernent paste specimens was first noted in the potential maps which were developed over 

the monitoring period, as s h o w  in Figures 5.3.l(b) through (g). These figures showed that 

the presence of cracks pennitted chlorides to reach the surface of the embedded steel faster 

than if the cracks had been sealed. It was also shown that this effect diminished with time 

as the chlorides penetrated the cernent paste cover and bypassed the surface bamer of 

epoxy. This diffusion-dependent process remained slower than the direct access that open 

cracks provided, as shown by the minor difference noted in the corrosion rates for the white 

cement paste specimens (Figure 5.3.2). That a similar effect in the Type 10 modified 

cement paste specimens was not noted is probably because its pore network was 

considerably more open with its relatively larger volume of pores, as shown in Figure 

5.3.3(b). Under these circumstances, the effect of cracks would become less significant. 

Altematively, the presence of cracks within a dense pore network such as that in the 

white cernent paste specimens could have larger consequences: direct chloride access to 

only a small portion of embedded steel could concentrate corrosion damage only in cracked 

areas. Corrosion rate measurements under such conditions would be undervalued as 

mentioned previously in Section 5.4.2, and evaluations of these measurements with respect 

to "threshold corrosion rates" would be incorrect without taking into account for the area of 

the steel actually corroding. 
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5.5 CONCLUSIONS 

1 A range of corrosion products was observed to form primarily within shrinkage cracks 

in the modified cement paste specimens: magnetite, goethite, hzematite, and possibly 

Green Rust 1. Magnetite and hæmatite were observed within the modified cement 

paste cover of the Type 10 specimens because of its relatively open pore structure. 

Goethite was observed only at or below the solution line in both types of paste while 

the unconfirmed Green Rust 1 was observed only at or above the solution line. 

Magnetite was observed closest to the steekement paste interface with higher oxygen 

content products (e.g., hæmatite, goethite) forming closer to the exposed surface of 

the cement paste, again in both types of paste. 

2. The presence of shnnkage cracks had a greater impact on the corrosion rate of steel in 

white cernent paste than the Type 10 specimens because of the relatively denser 

cernent paste (i.e., lower pore volume) which would reduce the rate of chloride 

diffusion. With extended exposure to chlorides, it is anticipated that the steel within 

the white cernent paste specimens would experience greater localized damage. 

3. The concept of a "threshold corrosion rate" using linear polarization resistance is 

dificult to apply to steel embedded in cracked cementitious materials because the area 

of steel actually corroding cannot be assessed non-desenictively. 

4. The observed range of corrosion products have specific volumes 2 to 3 times that of 

iron rather than the commonly assumed values of 6 to 7. 

5 .  The surface sealing of cracks did not prevent corrosion initiation fiom occwring on the 

steel under the epoxy. This suggests that cracks in field structures should be sealed to 

the level of the rein forcement to tnil y prevent corrosion. 



CHAPTER S M  

COMPARISON OF CORROSION PRODUCTS 

THAT FORM WTHIN STEEL-REINFORCED 

CONCRETE 

6.1 WTRODUCTION 

The quality of concrete is known to have a significant effect on the service life of a 

structure. Factors that primarily influence concrete quality are mixture proportions, the 

addition of supplementary cementitious matenals, proper placement and compaction, and 

adequate curing. Nonetheless, quantiQing the effect of quality into the theoretical service 

life models descnbed in Section 2.5.2 has been diEcult because of the limited amount of 

information available about the chloride-induced corrosion process once corrosion has 

initiated. Indeed, almost al1 research to date has focussed on the time required for a 

sufficient number of chlorides to penetrate the concrete cover and initiate corrosion of the 

reinforcing steel (e.g., Delagrave, Marchand et al. 1996; Liang, Wang et al. 1999). Thus, the 

work of this chapter examines the effect of different concrete mixture proportions on 

chloride-induced corrosion, focussing upon coordinating corrosion rates of embedded steel 

with the type and distribution of corrosion products that form. Since it was also the 

intention of this work to be able to predict the performance of concretes in the field, 

laboratory specimens were commercially prepared and then studied in the cracked and 

loaded condition while exposed to simulated sea water. 

In all, four different types of concretes were studied: a low quality concrete (0.54 

wkm), an industrial standard concrete (0.41 wlcm), a high performance concrete (0.27 

wkm), and a high performance concrete to which was added 10% by rnass of cement of 

silica fume (0.25 wkm). While the industrial standard concrete was based upon CSAKAN 
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A23.1, a Canadian code for marine applications, both of the HPC mix designs were 

developed in accordance with the concrete design theory described in Section 2.1.5. 

Overall, these concretes were considered to represent the full range of microstructural 

characteristics that would affect which corrosion products form and where they form. It is 

exactly this sort of information that current theoretical service life models lack. 

The "lifetime" of a structure (without any preventative maintenance) can be described 

as consisting of three periods: the first period is one soon after the structure goes into 

service in which cracks form as a result of loading or environmental stresses and then 

stabilize, as shown in Figure 6.1. During the second penod, there is no active corrosion but 

aggressive species such as chlondes or carbon dioxide penetrate the concrete cover. The 

third period begins when corrosion initiates, t,, and continues until a time, te, at which the 

damage to the concrete (andor steel) are sufficient to warrant remedial action. 

Degree 01 
damage 

Initial 
cracks 

\ 

- - 
Normal aualitv 

Onset of corrosion: 

T, RH, cover, 

+ 
Figure 6.1 Schematic representation of the usehl Iife of a concrete structure. T,., is the 
initiation time for the onset of corrosion and T,,, is the end of practical service life (based 

on concept by Tuutti (2980)). 
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The anticipated beneficial effects of HPC are shown by the dashed extensions to the 

curve. As desctibed in Section 2.1.5, the Iow porosity should reduce the diffusion of 

chlorides fiom the environment, thereby, increasing the time to corrosion initiation, and it 

should also limit oxygen diffusion such that the growth of corrosion products in the third 

penod is stifled. In addition, the high electrical resistivity of the HPC should Iimit the 

corrosion rate in the third period. One expected negative effect is the brittleness of the 

HPC which would decrease its capacity to accommodate the corrosion products. Efforts at 

evaluating HPC with respect to rebar corrosion have almost exclusively concentrated on the 

second period: the penetration of the concrete cover by chlorides (e.g., Delagrav~ 

Marchand et al. 1996). The research presented in this Chapter investigated the impact of 

the microstructural characteristics of different concretes on the rate of corrosion, and the 

type and distribution of corrosion products that form in the third period. 

6.2 EXPERIMENTALPROGRAMME 

Four concrete mixtures were studied and their proportions are outlined in Table 6.1. 

Concrete pnsms (500 x 100 x 100 mm) with an embedded tive element corrosion probe 

(deformed steel 0 15 mm), as detailed in Figure 6.2, were cast commercially in 1995 for use 

in a previous project (Weiermair 1996). The prisms were covered with plastic sheets and 

field cured for two weeks. They were then stored outdoors for approximately three 

months. The physical properties of the concrete at 28 days are detailed in Table 6.2. 

Channels were sawn into the concrete prisms to position cracks subsequently induced 

under three-point bending in half of both types of prisms. The overlapping positioning of 

the five probe elernents ensured that one of them was intersected by the crack. The induced 

cracks were held open with stainless steel wedges to give a crack opening displacement at 

the surface of-0.3 mm. The prisrns were exposed to simulated sea water (ASTM Dl 141) 
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in large plastic containers such that the crack was tùlly imrnersed. The composition of the 

sea water is given in Table 6.3 and was replaced every four months and air was 

continuously circulated through the sea water. Electrochemical measurements, including 

open circuit potentials, linear polarization resistance, and electrochemical noise, were 

performed at regular intervals for up to four years to assess the corrosion state of the 

prisms. The initial results of these measurements (Le., those collected by other researchers 

for the first year) have been reported in other work (Weiermair, Hansson et al. 1995). 

The two prisms frorn each type of concrete that exhibited the highest corrosion rates 

were selected for rnicrostmctural analysis, as detailed in Table 6.4. Two 050 mm cores 

were taken from each prism, one of which included an induced crack (with the exception of 

one core from a low quality concrete prism) and the rebar probe elements, as ilhstrated in 

Figure 6.3 (Region A), while the second \vas from an end of the prism, i.e., in an unstressed 

region (Region B). The cores were immediately photographed to document the corrosion 

state of the steel and the appearance of any corrosion products and then promptly stored in 

polyethylene bags. The cores taken nom the ends of the prisms were sectioned lengthwise 

for chloride and pore size distribution analyses using chloride titration and mercury 

intrusion porosimetry, respectively. Sectioning was performed either dry or using ISOPAR 

MfM (Exxon), a non-leaching synthetic isoparaffïnic hydrocarbon. The cores fiom the 

cracked regions were also sectioned lengthwise, perpendicular to the induced crack, as 

debiled in Figure 6.4. These regions were ground and diamond polished to 1 pm using more 

ISOPAR M to clean the surfaces between each polishing stage. These preparation 

techniques as well as the characterization methods described below are detailed in Chapter 

3. 

The concrete adjacent to the crack, the surfaces of the crack, and their corresponding 

corrosion products on the surface of the steel were analyzed using environmental scanning 

electron microscopy (ESEM) with energy dispersive X-ray spectroscopy (EDS) as we11 as 
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Raman spectroscopy. The steel samples were subsequentiy pickled using an inhiiited acidl 

to remove the corrosion products without damaging the steel m e r .  Samples of the 

corrosion products and the adjacent concrete were analyzed with X-ray diffraction over the 

20 range of 5-70" using Cu Ka radiation. 

Table 6.1 Mixture proportions of the cast concrete prisms. 

1 1 

Material i Low QuaIity i Standard BPC 1 Fume 

Cernent, kg 1 233 1 280 1 430 1 431 

Water, 1 1 160 1 143 1 137 1 140 
. . 

Air Entraining Agent 
Derwr As R e q u d  As Required As Required As Rcquued 

Water Rducer, 1 0.46 WRDA 0.45 WRDA 82 6.0 WRDA 19 6.0 WRDA 
82 I i 19 

Superplasticiser 
Daratard 17,l 0.85 1 0.85 

l 20 8 of Sb203 and 50 g of SnClz were dissolved in 1000 rnL of ragent grade HCI (designated 

as (2.3.1) in accordance with ASTM G1. Corroded steel specimens were irnmersed in this vigorously stirred 
solution at 20-25OC for 1-25 minutes. 
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Reinforcing Steel 
Corrosion Probe 
(015 x30  mm) 

Electrical lnduced Crack Su pplementary 
Connections (half of specirnens) 

Figure 6.2 Schematic illustration of a concrete pnsin with its embedded steel corrosion 
probes. 

Table 6.2 Physical properties of the cast concrete prisms at 28 days (Weiemair, Hansson 
et al. 1995). 



Table 6.3 Chernid composition of simulateci sea water (ASTM Dl Ml). The pH (after 
adjwtment with O. 1 N NaOH solution) is 8.2 end the solution contains 0.56 M of 

chlorides. 

1 Compoind 1 Concentration, JL 
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Table 6.4 Corrosion rates of embedded steel as detefmjlled for each prisrn by linear 

Low 

High 1 
I 

psdo-e ! 
Hish 

i Performance i 
1 

+ Silica Fume 1 

4 j 3 1 No 3.8x10-' 1 Yes 
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Core from Core from 

Region A Region B 

Figure 6.3 Location of cores taken for M e r  microstructural analysis. 

Section 

Core 

Cut 
Surface 

Section A 

Figure 6.4 Sectioning the cores taken from the cracked region of the concrete prisms. 

200 
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6.3.1 Corrosion Rate Measurements 

Figures 6.5(a) and (b) show the mean corrosion rates measured for each type of concrete, 

cracked and uncracked, respectively, for up to four years of exposure to the simulated sea 

water. These data assumed that corrosion was taking place uniformly over the whole 

surface area of the probe element. For rnost of the first year of exposure, the steel probes 

in the high performance concrete without silica h m e  were corroding at higher than expected 

rates that even surpassed those in similar low quality and industrial standard concrete 

prisms during the first year of exposure (Weiermair, Hansson et al. 1995). However, these 

rates gradually decreased over the first year of exposure to the simulated sea water while 

the corrosion rates of steel in the iow quality and industrial standard concretes continued to 

increase. The initially high rates for steel in HPC, both with and without silica fume, have 

been attnbuted to the higher density of microcracks with respect to normal quality concrete 

as well as differences in the pore structure that would have affected the nature and extent of 

capillary suction of moisture (Weiermair, Hansson et al. 1995). The subsequent decrease 

can be attributed to the ongoing hydration and pozzolanic reactions. These reactions would 

be slower in the high performance concretes because of the limited water available for the 

reactions to proceed unless the concrete was cracked (Marcotte and Hansson 1998). 

Another atypical result was noted in Figure 6S(a) where the range between the 

corrosion rates for both industrial standard specimens was so large that both curves had to 

be presented instead. The reason for this large range was identified when the prisms were 

sectioned and the size and orientation of the induced cracks was recorded. The specimen 

with the lower corrosion rate contained a crack perpendicular to the steel that was similar to 

al1 other sectioned concretes while the specimen with the higher corrosion rate was 

di fferent: the three-poin t bending procedure had opened up a portion of the steel/concrete 
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interface (approx. 5 mm on either side of the crack) along with the desired 4 - 3  mm crack 

perpendicular to the steel. SimuIated sea water gained easier access to the steel surface and 

a higher corrosion rate resuited. This sort of variability is typical in concrete studies and 

reinforces the need for multiple specimens. Overall, the exclusion of the higher 

measurement because of the atypical crack configuration indicates that the corrosion rate of 

steel embedded in industrial standard concrete is in a sirnilar range to that of the high 

performance concretes. This is consistent with the general expectation that this is a good 

quality concrete which provides reasonable protection against corrosion and explains why it 

is ofien specified for field structures. 
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Corrosion 
Rates 

0.0 0.5 1 .O 1.5 2.0 2.5 3.0 3.5 4.0 
Exposure Age (Years) 

Figure 6.3.) Cornparison of the mean corrosion rates of the steel probes intersected by 
the crack. Note: Bars representing the range of measurements are shom for al1 concretes 

except for the industrial standard concrete. For this concrete, both c w e s  are show 
insîead. 
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Mean 
Corrosion 

rr Industrial Standard 
HPC 

P." ..m....... HPC with Silica Fume 1 

0.0 0.5 1 .O 1 -5 2-0 2.5 3.0 3.5 4.0 
Exposure Age (Years) 

Figure 6.yb) Cornparison of the mean corrosion rates of the steel probes embedded within 
uncracked prisms. Note: Bars representing the range of measurements are show for ail 

concretes. 

Afker the €kt year for al1 concrete specimens, the presence of the induced crack 

increased the overall corrosion rate of the embedded steel by an order of magnitude in al1 

concretes over theù uncracked couterparts except the low quality concrete in which the 

diffkrences between ctacked and uncracked regions was negligible (Le., the plesence of a 

crack did not affect the corrosion rate). This suggests that the pore network of the low 
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quality concrete was suficiently voluminous and interco~ected such that the additional 

chlonde access to the reinforcing steel provided by the crack was superfluous. The other 

concretes were likely to have been suficiently dense to limit the diffusion of chlorides such 

that the crack had a significant, deleterious effect. Furthermore, when the high pefiormance 

concretes remained uncracked, the corrosion rate of embedded steel continued to decrease 

over the four year monitoring period, whereas it increased in the region of an induced crack. 

This result is entirely consistent with the anticipated behaviour of HPC and emphasizes the 

deleterious effect of cracks even if high quality concrete is used. 

Ln addition to the effect of the induced crack, another trend was observed where 

corrosion rates reached a maximum level and subsequently decreased. This occurred after 

approximately two years' exposure to the simulated sea water for the uncracked low 

quality and cracked industrial standard concretes, and after three years' exposure for the 

uncracked industrial standard concrete. These maxima suggest that carbonation, the 

precipitation of minerals fiom the sea water, or the formation of corrosion products within 

the pore network or near the surface of the steel physically barred the ingress of chlorides, 

water, or oxygen that were necessary to maintain the corrosion rate at its previous level. It 

could also indicate that any dissolved oxygen has been locally consumed and the corrosion 

reactions cannot continue at the former rate until replenished fiom the environment. This 

behaviour is consistent with the observations of Leek (Leek 1997) and possibly accounts 

for the longer than expected service Iives for deteriorating structures. Presumably, the more 

restricted pore networks of the high performance concretes would make it more dificult for 

corrosion to initiate and then would be easier to plug with corrosion products if corrosion 

were to initiate. Thus, this effect was either too small to be detected or did not occur 

within the monitoring period. 
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O 0.5 1 1.5 2 2.5 3 3.5 4 
Exposure Age (Years) 

Figure 6 . q ~ )  Compariscn of the mean corrosion rates of the steel probes intersected by 
the crack (full =ale version of Figure 6.5(a)). Note: Bars representing the range of 

meesurements are show for al1 concretes except for the industrial standard concrete. For 
this concrete, both curves are shown instead. 

6.3.2 Chloride Analyses 

Chloride content measurements are presented in Table 6.5 and shows that if the concretes 

remain uncracked, chloride diffusion is so slow that chlorides cannot be detected within the 
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first 10 mm of the surface of the steel after at least three years exposure to simulated sea 

water (detection limit of the technique of about 1 ppm by mass). The concrete cover depth 

in this region of the prism is approximately 40 mm which is approximately the minimum 
7 

specified cover depth in reinforced concrete structures- and presents the least resistance to 

this type of environmental exposure. 

Significant chloride levels were detected near the induced crack of the concrete prisms 

in the same period of time, however, which shows that cracks are a significant problem for 

the long-terrn service li fe of rein forced concrete structures. C urrent AC1 standards 

(Committee 222-Corrosion) suggest a maximum acid soluble content of 0.2% by mass 

cernent based upon field studies of bridge decks. The values presented in Table 6.5 are 

estimates of the total chlonde content (Le., acid-soluble chlondes) and are, therefore, 

intended to present the worst-case scenario for chloride exposure. 

Under these circumstances, al1 prisms exceeded the chloride limit near the induced 

crack. Chloride levels were highest for the low quality concrete, followed by the HPC, the 

industrial standard concrete, and finally the HPCISF. Overall, the HPC/SF had a chloride 

content that was almost an order of magnitude lower than the other concretes and barely 

exceeds the water-soluble and acid-soluble chloride limits even after four years exposure to 

the simulated sea water. To properly interpret these levels, however, it must be noted that 

the industrial standard and HPC prisms were sectioned after only three years exposure to 

the simulated sea water while the low quality and HPC/SF prisms were sectioned after four 

years. It is, therefore, possible that the HPC might have had the highest chloride level if it 

were exposed to the simulated sea water for an additional year which appears to be 

contrary to the anticipated characteristics of high performance concretes. 

2 CANICSA A23.1 -Mg0 (Section 1 5.1.7.1 ) specifies a minimum cover of 60 mm. It is 
acknowledged, however, that there is a 90% probability that the actual cover will be within 20 mm of  that 
specified. 
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Table 6.5 Mean ad-soluble chloride contents 0 . 0  1) within the first 10 mm of the 
SteeVmncrete interlàce the regions iadicafed in Figure 62. Values are the meau of 
triplicate samples from two prïsms with the exception of the rneasurements for the Low 

qudity pristns which are the meam oftrïplicate sampfes fiom one prism each. AI1 
measurements in Region A were perfonned on mcked specimens except for one low 

quality prism marked with an astensk (*). 

These chloride levels can be explained, however, by the differpnt pore structures for 

each concrete that resuited from the varying w/cm ratios and the presence of silica fume. 

Although a low w/cm ratio reduces the volume of pores within the mcrete, the 

correspondingly smaller pore diameters hcrease capillary suction if the pore network is 

continuous. This would allow chlondes to reach the steelkoncrete interface quickly in spite 

of the reduced number of pathways tbrough the ancrete cover to the surfhce of the steel. 

This effect can be counteracted by silica fume which has been shown to block capillary 

pores (Sellevold, Bager et al. 1982) and could ameliorate any microcracks which enhance the 

comectivity of the pore network. Thus, the low quality concrete likely had a high level of 

chlorides because it Iikely contained a large pore volume while the HPC had a relatively 

smaller volume of pores than the industrial standard concrete, but its smaller pore diameters 

1 ! 
1 

Concrete Exposure Region B . Region -4 : Region A 
i Age i (mass % T Y P ~  i 1 (ma= ~a 1 (ma= % 

1 

Low 
Quality 

(y-n) 

2.58 

3-42 

0.2 1 

ancrete) 1 ancrete) 

Not Detected 1 0.910 

Industrial 
Standard 

HPC 

HPC + SF 

cernent) 

7.30 
4 I NotDetected / 0.440* 3 .09* 

3 

3 

4 

Not Detected 1 0.448 

Not Detected O. 726 

NotDetected 1 0.050 
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enhanced capillary suction. The HPC/SF had a similar, low ~ / c m  ratio as its HPC 

counterpart but the presence of silica fume likely made its network of fine capilIary pores 

more discontinuous and blocked any microcracks. 

This hypothesis is corroborated by the cornparison of chloride contents measured 

using an acid test (Le., a bulk measurement) with those measured using EDS on cernent 

paste areas that were within 10 pm of the crack (Le., a localized measurement), presented as 

Figure 6.5. Clearly, the presence of the crack has the most impact on HPC and the least on 

the low quality concrete for the previousIy described reasons. It is also apparent that the 

continuity of the pore network is equally important for chloride difision as the chloride 

content of the HPC exceeds the HPC/SF value by an order of magnitude. Thus, the benefit 

of a low w/cm ratio to reduce the ingress of chlorides cm only be realized with the addition 

of silica fume or any other admixture that would make the pore network more 

discontinuous. 
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Figure 6.5 Cornparison of the mean chloride measurements determined fiom an acid test 
(within the first 10 mm of steevconcrete interface) versus EDS (1 10 pm) in the area 

indicated as Region A in Figure 6.2. 

6.3.3 Pore Size Distribution Measurements 

Figures 6.6(a) through (f) present the pore size distribution measurements for samples 

taken fiom each concrete at the steelkoncrete interface near the induced crack (if present) 

and the unstressed region. Overall, a cornparison of the samples within each concrete type 

shows that these regions are similar for the industrial standard and HPC prisms but there is 

a statistically significant difference between the two regions for the low quality and 

HPC/SF prisms. For the low quality prisms, Figure 6.6(b) shows that there was a large 
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statistical variability between the six samples that was independent of the whether an 

induced crack was present. Haif of the samples in this region had pore size distributions 

that were similar to those measured in the unstressed region while the other half of the 

samples did not contain pores in the 0.04-10 pm range. This is not consistent with the 

relatively continuous pore s t r u c m  that should result fkom a 0.54 w/cm ratio. Although 

the presence of fly ash in the mix could have caused the pore network to become more 

discontinuous, this effect was only observed in the low quality concrete even though ail 

mixes contained fly ash. It is more probable that these pores were blocked fkom 

carbonation in a manner described by Edvardsen (Edvardsen 1999), the precipitation of 

mineral deposits from the simulated sea water, or the formation of corrosion products. 

In contrast to the low quality prisms, the HPC/SF prisms showed a large variability in 

the six replicate samples fkom the unstressed region, shown in Figure 6.6(e). Microcracks 

about 8-10 pm in size were observed in three of the sarnples that resulted from autogenous 

shrinkage. Al1 six samples had an overall pore threshold diameter of 0.02 Pm. Near the 

induced crack, the 0.02 pm pore threshold diameter was maintained (Figure 6.6) but the 

microcracks were observed in only one of the six samples and pores in the 0.01-10 pm 

range were not detected. It is clear that the induced crack exposed the self-dessicated 

HPC/SF to sea water which rehydrated this intemal region of the concrete and allowed 

further ponolanic and hydration reactions to occur. This process was described in detail 

by Sellevold (Sellevold, Bager et al. 1982) for concretes that contain silica fume and is 

considered to be one of the potentially beneficial charactenstics of high performance 

concretes that contain silica fume. 

Cornparisons of the mean pore size distributions amongst the concrete mixes show 

that there was no difference amongst the profiles from the unstressed region for the low 

quality, and both high performance concretes, except for those already noted amongst the 

individual samples. These concretes had pore threshold diameters of in the range of 
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0.0 1-0.04 pm while the industrial standard concrete had a significantly larger pore threshold 

diameter of 0.1 Pm. While it was anticipated that the high performance concretes would 

have smaller pore threshold diameters than the industrial standard concrete because of their 

low w/cm ratios, the relatively low value for the low quality concrete can be attributed to 

the presence of carbonation or corrosion products that would have plugged the pore 

network. Overall, these differences amongst the concretes are not significant enough to 

suggest that any particular concrete type could resist chloride diffusion better than any 

other, as shown in Figure 6.6(g). However, this assessrnent changes if the concretes are 

cracked, as shown in Figure 6.6(h). The overall capillary volume and size range in the 

HPC/SF is reduced and, in general, it suggests that the inevitable cracking that occurs in 

reinforced concrete structures could be partly beneficial for this type of concrete with 

respect to a reduction in steel chloride exposure. 
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Figure 6.6(a) Cornparison of the normalized cumuIative intrusion voIumes for concrete 
samples taken fiom the unstressed region of the Iow quality concrete. 
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Figure 6.6(b) Cornparison of the normalized cumulative intrusion volume for cracked and 
uncracked concrete samples taken fiom the low quality concrete. 
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Figure 6.6(c) Cornparison of the normalized cumulative intrusion volumes for concrete 
samples taken fiom the induced crack and unstressed regions of the industrial standard 

concrete. 
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Figure 6.6(d) Cornparison of the normalized cumulative intrusion volumes for concrete 
samples taken from the induced crack and unstressed regions of the high performance 

concrete (HPC). 
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Figure 6.6(e) Cornparison of the nomalized cumulative intrusion volumes for concrete 
samples taken fiom the unstressed region of the high performance concrete with silica fume 

(HPC/SF). 
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Figure 6.6(9 Cornparison o f  the nonnalized cumulative intrusion volume for samples taken 
from the induced crack region ofthe high performance concrete with silica fume. 
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Figure 6.6(g) Comparison of  the mean normalized inmision volumes for concrete from the 
unstressed region of the concrete prisms. 



Chapter Six: Corrosion Products within Concrete 

Mean 
Normal ized 
Cumulative 

Intrusion 
Volume (%) 

0.001 0.01 0.1 1 10 1 O0 
Pore Diameter (pm) 

Figure 6.6(h) Cornparison of the mean nonnalized intrusion volumes for the cracked region 
of the concrete prisms. 



Chapter Six: Corrosion Products within Concrete 

63.4 Macro- and Microstructural Observations of the Concrete 

6.3.4.1 Mechanical Properîies 

In coring the pnsms, it was clear that the mechanical properties of the concretes were 

very different: clean, intact cores were readily obtained fiom the industrial standard and 

HPC/SF prisms and these could be easily sectioned, as shown in Fig. 6.7 (a). The low 

quality and high performance concrete cores, however, fiactured just below the rebar and, 

on attempts at fùrther sectioning, broke into a large number of pieces. Since these cores 

were observed to contain red corrosion products within the concrete cover, it is likely that 

the formation of these corrosion products induced tensile stresses which reduced the tensile 

capacity of these cores by initiating cracks that readily propagated during coring. 

Moreover, the steel ernbedded within the industrial standard and HPCISF required 

considerably more force to prise it fkom its surrounding concrete than the corresponding 

steel embedded in the either the low quality or HPC without silica fiime. One such 

hctured piece that was adjacent to the rebar is shown in Figure 6.7(b). 
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Rust cobured 
conosion 
0rOduCi 

Black conosion 
product ' 

Figure 6.7(a) Cut section of core of industrial standard concrete showing the induced crack 
and two forms of corrosion: a dense black product adjacent to the steel and a rust coloured 

product in the crack. 

Goethite 
(a-FeOOH) 

Akaganeite 
(8-FeOOH) 

Location of Rebar lnduced Crack 

Figure 6.7(b) Fractured section of the HPC adjacent to the rebar showing two types of 
corrosion product, one dark browa (goethite, a-FeOOH) and the other a "dirty" yellow 

ochre colour (akaganeite, 8-FeOOH) (Marcotte and Hansson 1998). 
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6.3.4.2 Appemance and Dishhtion of Corrosion Products 

Table 6.6 details the composition and location of the corrosion products observed in each 

type of concrete and the technique used to identify the products. AU concretes had a dense 

dark brown to black corrosion product form at the steekoncrete interface but for two of 

the concretes, the industrial standard and HPCISF, it was the only product that formed, as 

shown in Figures 6.7(a) and 6.7(c), respectively. In the industriai standard concrete, this 

dense, black band of corrosion product was approximately 2 mm thick but only about 300 

pm thick in the other concretes. The morphology of this predominantly iron and 

chlorine-based product after it was prised fiom the surface of the steel was uniform but 

appeared porous at higher rnagnifïcations (Figure 6.7(d)). A trace amount of rust coloured 

corrosion product was observed to border the induced crack in the industrial standard 

concrete while the dark brown to black product plugged the crack in the HPC/SF, as 

indicated in Figures 6.7(a) and (c). 

lnduced Crack 
filled with , 
Magnetite 

Originaliy 
Magnetite at , 

Steei/Concrete 
Interface 

Figure 6.7(c) Cut section of core of high performance concrete that contains silica fume 
showing the magnetite (Fe,04) that plugged the induced crack. 
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Figure 6.7(d) Black corrosion product observed adjacent to the rebar in the industrial 
standard concrete. 

The elemental composition of the rust-coloured product in the industrial standard 

concrete could not be determined because it was indistinguishable fiom its cementitious 

matrk at high magdications. However, goethite (a-FeOûH), akaganeite (fbFeOOH), and 

maghemite (y-Fe203) dong with the primary aggregate of the concrete (orthoclase, 

KAiSi30,, and albite, NaAlSi30,) were identified by X-ray dmction,  shown in Figure 

6.7(e). Goethite, akaganeite, and other products have been previously observed in concrete 

(Suda, Misra et al. 1993; Wang and Monteiro 1996) but not maghemite. Since maghemite is 

an oqgenated fonn of magnetite (Fe30,), this product was probably originally magnetite 

but transformed after limited exposure to the laboratory atmosphere. 
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Figure 6.7(e) XRD spectra o f  the products observed at the steekoncrete interface for (a) 
industrial standard, and (b) high performance concrete. M = Maghemite, y-Fe,O,; G = 

Goethite, a-FeOOH; K= Akaganeite, 8-FeOOH; and the main aggregate peaks (A) indicate 
orthoclase (KAISi,08) and albite (NaAISi,O,) (Marcotte and Hansson 19%). 
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This hypothesis is supported by the analysis of a similar product, identified as magnetite 

(Fe,O,) by Raman spectroscopy, observed in the induced crack region and at the 

steevconcrete interface of the HPCISF, shown in Fig. 6.7(f). Upon exposure of this 

product to the ambient conditions of the laboratory for an extended period (about 1 week), 

the magnetite at the steeüconcrete interface oxidized to hæmatite (a-Fe20,) and goethite 

(a-FeOOH), as shown in Figure 3.3 (Chapter 3). Maghemite would have been the 

transition product between the original magnetite and the end product of hæmatite which 

emphasizes the importance of in situ rather than ex situ observations of corrosion products, 

such as the in situ work presented in Chapter 4. The magnetite within the induced crack 

remained relatively unaffected by the week's exposure probably because of the lirnited 

surface area of the product within the crack. 
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Figure 6.7(f) Raman spectra of the dense, dark brown/black corrosion product observed at 
the steelkoncrete interface which also filled the induced crack of the HPC/SF. This product 

was predominantly composed of magnetite (Fe,O,). 
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High magnification elemental maps of a representative area of this induced crack 

show that the intemal width of the crack was approximately 200 pm and was densely and 

completely filled with magnetite as evidenced by the iron elemental map, presented by Fig. 

6.7(g). In addition, the surfaces of the crack were lined with a magnesiun product, 

presurnably fiom the formation of brucite (Mg(OH),) upon exposure to the simulated sea 

water and prior to the deposition of the corrosion products. No other corrosion products 

were observed in this concrete. 

Figure 6.7(g) Secondary electron micrograph (SE) and elemental maps of the induced crack 
region ofthe HPC with silica fume indicated in Figure 6.7(c). 
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Unlike the corrosion products observed in the industriai standard concrete or HPC/SF, 

those observed in the low quality and the high performance concrete did not preferentially 

accumulate at the steelkoncrete interface. Moreover, different corrosion products were 

identified both by appearance, and X-ray diffraction (Figure 6.7(e)). Within the high 

performance concrete cover these were: (a) akaganeite (f&FeOOH), which foms only in 

high chloride concentrations, was the yellow ochre product observed near the induced crack; 

and (b) goethite (a-FeOOH) was the dark brown corrosion product which formed farther 

away fiom the induced crack and was the more dense of the two products. These two 

products were also identified in the low quality concrete cover, as shown in Figures 6.7(h) 

and (i). In addition, lepidocrocite (y-FeOOH), maghemi te (y- Fg - O,), and hæmatite 

(a-Fe203) were obsewed. An ESEM micrograph of the goethite is given in Figure 6-70) 

and shows that some of the product was extremely dense and cracked with very few 

discemable features. EDS indicated that this product was predominantly iron but ais0 

contained calcium, silicon, and chlorine. A second layer of corrosion product consisted of a 

network of randomly-oriented hexagonal plates, each about 5 pm wide. The crystalline 

plates contained relatively more calcium and chlorine. The presence of calcium and silicon 

in these products suggests that the corrosion products are forming within the voids of the 

cementitious products. 
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Figure 6.7(h) Raman spectra o f  the brownlred coloured corrosion products within the low 
quality concrete cover near the induced crack. Calcite was also detected near the induced 
crack o f  this concrete. Mn = Magnetite (Fe,O,); A = Akaganeite(f3 - FeOOH); Mn = 

Goethite (a - FeOOH); L = Lepidocrocite (y - FeOOH); C = Calcite (CaCO;) 
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Figure 6.7(i) Raman spectra of the dark browdred coloured corrosion products within the 
low quality concrete cover near the induced crack. Mn E Magnetite (Fqo,); H - 

Hæmatite (a - Fe,O,) 
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Figure 6.7Q) Micrographs of goethite (a-FeOOH) observed at steekoncrete interface in 
high performance concrete without silica fume (Marcotte and Hansson 1998). 
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Akaganeite, similar to goethite, was also intimately mixed with the cernent paste to 

the extent that it was largely indistiguishable fiom the paste at higher magnifications, as 

shown in Figures 6.7(k) and (1) .  However, any other corrosion products detected in the low 

quality concrete with Raman spectroscopy could not be isolated at al1 because they were 

not as concentrated in the cover as the akaganeite. Akaganeite was more easily identified by 

its chernical composition than its morphology except for the iron-rich partictes of relatively 

pure corrosion product such as that labelled "A" in Figures 6(k) and (1). The elemental 

maps presented in Figure 6.7(m) of this region shows the presence of iron in the 

surrounding cementitious products which suggests that iron species difhsed to form 

preferentially within the void. The cracking of the ma& surrounding the üon-rich particle 

in Figure 6.70) supports the theory that the expansion of corrosion products due to m e r  

oxidation and hydration causes interna1 tensile stresses within the concrete. It is thought 

that this particle once filled the void but that the low pressure of the ESEM removed some 

water fiom the product and decreased its overall volume. This change again emphasizes the 

importance of in situ observations of corrosion products. 
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Figures 6.7(k) and (1) Akaganeite (fl-FeOOH) in high performance concrete without 
silica fume. Regions of corrosion product containing approximately 40 at.% Fe are labelled 
"A" while the surrounding material containing approximately 18 at.% Fe are labelled "B" 

(Marcotte and Hansson 1998). 
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Figure 6.7(m) Elemental map of the embedded corrosion product shown in Figure 6.7(1) 
(Marcotte and Hansson 1998). 
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Table 6.6 Summary of the corrosion products observed in each of the concretes. 
Akaganeite I fl-FeOOH; Goethite r a-FeOOH; Hzmatite r a-FGO,; 

Lepidarocite = y-FeOOH, Maghemite r g-F%O,; Magnetite Fe304 

Exposure Analysis 
Concrete Age Technique 

Trpe QeaW 

HPC 
+ Silica Fume 4 Raman 

'Maguetite oxidized goethite and haematite 

Corrosion Products 
near or within Corrosion Producta 
Induced Crack in Uastressed 

Magnetite, 

Akageneite, 
Goethite, 

Maghemfte 

Magnetite* 1 none 

lpon exposure to air for 1 week 

6.3.5 Corrosion Products on the Sudace of the Steel 

Figures 6.8(a) through (d) show representative pieces of steel that were intersected by the 

induced crack, or h m  the central region of the prism for the unmked low qiiality 

concrete. The steel retrieved h m  the low quaiity concrete, industrial standard concrete, 

aad HPC showed a relatively unSom distribution of corrosion products whüe the steel 

retrieved h m  the HPC/SF showed an accumulation of corrosion pmduct only where the 

crack intersected the steel. When these corrosion products were removed, the steel 
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retrieved from the HPC showed fairly large superficial pits, more wide (e.g., 3 x 9 mm) than 

deep (approximately 0.7 mm), shown in Figure 6.8(e). The corrosion was located 

predominantly in the region between the ribs and about 20% of the total surface of the steel 

was active. It should be noted, however, that these pits are distinct from the fine striations 

oriented along the length of the bar that were noted at higher magnifications. These 

striations resulted fkom the extrusion manufactwing method used to produce the bars. 

Similar striations were noted on other steel samples as indicated in their respective figures. 

In contrast, the ribs were no longer visible on the steel from either the low quality or 

industrial standard concretes and about 75% or 30% of the surface area was active, 

respectively, shown in Figures 6.8(f) and (h). At higher magnifications, the steel that was 

embedded in these concretes was observed to have developed smaller, deeper pits, shown in 

Fig. 6.8(g) and (i), than the steel in the WC, Figure 6.8(e). 

In further contrast, the steel retrieved fiom the HPCISF had only one region of 

damage, the area where the induced crack intersected the steel, indicated as "C" in Figure 

6.80'). This region (approximately 3 x 12 mm) represented only about 5% of the total 

surface of the steel but was much deeper (approximately 2 mm) and appeared as if the 

corrosion process was cutting this steel Iike a knife. 

These pit geometries are summarized in Table 6.7 along with an estimate of the 

cross-sectional area of the steel that has been destroyed by the corrosion process. 

According to reinforced concrete repair authorities (e.g., Emmons 1993), a loss of 25% to 

the cross-sectional area of a reinforcing steel bar requires that the bar be supplemented with 

new bars. This value does not include deep, localized corrosion pits that would not be 

resolvable with the unaided eye and, therefore may underestimate the actual loss of 

cross-section. With this criterion, the steel in the low quality concrete would require 

additional reinforcement likely because of the relatively open pore structure (wkm of 0.5) 

and corresponding low electrical resistivity of the concrete, as shown in Table 6.2. Al1 
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other cross-sectional losses are within acceptable limits which is expected for these 

commonly used commercial reinforced concrete mixes. 

However, the steel retrieved ffom the HPC/SF suffered the deepest darnage of these 

mixes, and potentially the highest degree of damage overall because the rebar might be 

severed upon continue exposure and suggests that the presence of high concrete electrical 

resistivities can also have negative consequences. Using the approximate pit dimensions 

from Table 6.7, the previously presented mean corrosion rates of steel in cracked prisms 

(Figure 6.5(c)) can be corrected for the macroscopic area of the steel actually corroding, as 

shown in Figure 6.8&). Once these corrections have been performed, the relationships 

between the corrosion rates change: where the corrosion rates of both high performance 

concretes were once the lowest, their rates now exceed the steel samples in the low quality 

and one of the industrial standard specimens by almost one order of magnitude. 

Presumably, higher electrical resistivities do not allow large distances to occur between the 

cathodes and anodes on the surface of the steel which localizes any macrocell corrosion 

attack and emphasises the role of microcell corrosion (where the anodic and cathodic half 

ce11 reactions take place at essentially the same location). Thus, cracked concrete with a 

high electrical resistivity could potentially suffer corrosion with consequences as severe as 

those for low quality concrete. Under these circumstances, the type and distribution of the 

corrosion products and whether they fil1 the cracks, in combination with the tensile strength 

of the concrete, would govem the long-tenn durability of these concretes. This type of 

result also underscores the difficulty in making valid corrosion rate measurements when the 

area of the corroding region cannot be known or even estimated non-destructively. 
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Figures 6.8(a), @), (c), and (d) Photographs of the steel retrieved h m  (a) low quality 
concrete, (b) industrial standard concrete, (c) high performance concrete, and (d) high 

penomuuice concrete with silica fume. 
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Figure 6.8(e) Macrophotograph of surface of steel fiom the induced crack region of the 
high performance concrete without silica fume after the removal of the corrosion products 

(Marcotte and Hansson 1998). 
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Figure 6.80 Macrophotograph of the surface of the steel fiom the induced crack region of 
the Low quality concrete after the removal o f  the corrosion prducts. 
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Figure 6.8(g) Higher magnification macrophotograph of the steel retrieved nom the low 
quality concrete after the removal of the corrosion products. 
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Figure 6.8(h) Macrophotograph of surface of steel nom industrial quality concrete. 
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Figure 6.8(i) ~nlarpment of area shown in Figure 6.8(h). Small perforations are labelled 
T'(Marcotte and Hansson 1998). 
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Figure 6.w) Macrophotograph of surface of steel firom high performance concrete with 
silica fume. The area of deeper corrosion damage is indicated by "C'. 

Table 6.7 Cornparison of the corrosion damage according to concrete type. 

Concrete 

* Does not include those pits unresolvable with the unaided eye. 

1 

Low 
Qualiîy 

Industrial 
Standard 

Approximate 
Pit 

Dimensions* 

75% of entire 
d a c e  

30% of entire 
surface 

Approximate 
PitDepth 

Estimate of Lost Steel 
Cross-sectionalArea 

(mm) 

1 .S* 

1 .O* 

HPC 

30% 

8% 

0.9 3x9mm 8% 

14% HPC/SF 3xl2mm 1 2.0 
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r Mean Low Quality 
I Industrial Standard #1 

I Industrial Standard #2 
Mean HPC 

+ Mean HPC with Sil'ka Fume 

0.0 0.5 1 .O 1.5 2.0 2.5 3.0 3.5 4.0 
Exposure Age (years) 

Figure 6.8(k) Cornparison of the corrected mean corrosion rates of steel probes intersected 
by the crack which were calculated using the corroded area of the steel. Note: Bars 

indicating the range of values were applied to these data but are tm s m d  to be observed in 
this figure. 
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6.4 DISCUSSION 

6.4.1 Effect of an Induced Crack on Chloride-Induced Corrosion 

In general, the presence of a crack has a deleterious effect on reinforced concrete because if 

the concrete remained unstressed (Le., without an induced crack--the only cracks present 

occurred naturally within the concrete microstructure), the corrosion rate remained 

relatively low, no corrosion products were observed at the steevconcrete interface or 

elsewhere within the cover, and chlorides were not detected. When cracked, however, 

corrosion products and critical levels of chlorides were detected along with moderate to 

severe darnage to the reinforcing steel. This impact of the crack varied according to concrete 

type and is discussed in Section 6.4.3. The effect on corrosion rates was counteracted to 

some degree by the formation of corrosion products that effectively plugged the induced 

crack and any other convenient paths to the reinforcing steel as shown by the decrease in 

the corrosion rates of the reinforcing steel in both the low quality and the industrial 

standard concretes. This effect is anticipated to be only temporary as continued corrosion 

would likely generate excessive intemal tensile stresses that would crack the concrete 

M e r .  The presence of silica fume in the HPC/SF also reduced the effect of the induced 

crack and is discussed in greater detail in Section 6.4.2. 

6.4.2 Effect of Silica Fume on Chloride-Induced Corrosion 

The reaction of silica fume had the anticipated effect on the electrical and microstructural 

characteristics of high performance concrete which was shown by its high electrical 

resistivity presented in Table 6.2 corresponding to the decrease in the size and the number 

of continuous pores, shown by Figure 6.6(h). This had a strong impact on its ability to 

resist ingressing chlondes: the concrete with silica fume near the induced crack had a 

chloride concentration only about 7% of that in the cracked region of the sample without 



Chapter Six: Corrosion Products within Concrete 

silica fume even after an extra year of exposure to the simulated sea water. Overall, the 

presence of silica fume mitigated the effect of the crack by reducing the size and number of 

continuous capillary pores in the HPC/SF once the cracked region was exposed to the 

simulated sea water. 

In spite of these enhanced properties, corrosion did initiate in the cracked region of 

concrete with silica h e .  Although the chloride content was very low in the 10 mm layer 

of concrete adjacent to the induced crack, those that were present were concentrated very 

close to the induced crack surface, as indicated in Table 6.5 and Figure 6.5. There may also 

been a reduction in the chloride threshold value by a lower pH of the pore solution due to 

reaction of the siIica fume and, at the early stages, by the limited degree of cernent 

hydration. 

The resulting corrosion products that formed in the HPC/SF were entirely different 

fiom the products that formed in the WC. In addition, the corrosion product in the 

HPC/SF was confined to the space provided by the induced crack and the steevconcrete 

interface, while corrosion products in the HPC were more uniformly spread throughout the 

concrete cover and not confined to either the steekoncrete interface or the main crack. 

Moreover, while the corrosion products that formed in the HPC cover (approximately 5 

mm from the steekoncrete interface) appeared to have cracked the concrete, as shown in 

Figure 6.7(1), there was no such cracking in the HPC/SF. This indicates that the pozzolanic 

reaction of the silica fume in the HPC/SF had two main effects: (a) it sufficiently densified 

and strengthened the concrete such that damage was reduced; and (b) the reaction occurred 

before any corrosion products could diffise into the concrete cover and any that were 

present were confined to the induced crack (i.e., the observed magnetite (Fe,O,)). The 

latter effect suggests that any corrosion products forming in the silica fume concrete would 

plug the crack, effectively barring further direct chloride and oxygen exposure to the surface 

of the steel. The fact that magnetite formed (i.e., a corrosion product which forms in 



Chapter Six: Corrosion Products within Concrete 

oxygen deprived conditions) supports this conclusion. Thus, the pozzolanic reaction of 

silica hme densified the concrete and reduced the exposure of the steel to chlondes and 

oxygen by the formation of corrosion products which resulted in the low corrosion rates 

that were observed over a four year period. 

This may have a potential drawback, however- The more uniform, superficial damage 

to the steel within the HPC without silica fume shown in Figure 6.8(e) may be preferable to 

the localized damage resulting from the presence of silica fume in the HPC/SF shown in 

Figure 6.8Q). It is possible, however, that the damage observed on the surface of the steel 

was the most that was to occur and that if the pnsms had remained uncored, the corrosion 

rate may have decreased even M e r  over time due to the plugged crack. The reduction of 

the corrosion rate in the first year of exposure as well as the M e r  decrease in the 

corrosion rate at about three years in the unstressed industrial standard concrete presented 

in Figure 6.5(b) supports this hypothesis. 

6.4.3 Effect of Concrete Type on Chloride-Induced Corrosion 

A comparison of the corrosion rates measured for each concrete type for up to four years 

(Figure 6.5(c)) suggests that the embedded steel that is corroding the fastest should 

theoretically have the greatest volume of corrosion products at the steekoncrete interface 

or within the concrete cover. This theory was confirmed by the steel embedded in the 

industrial standard concrete which had the highest corrosion rate after three year's exposure 

and generated the largest magnetite corrosion loyer of ail observed, approximately 2 mm 

thick. This product has an estimated specific volume of 2.1 (from Figure 2.6, Chapter 2). 

In addition, the ernbedded steel with the second highest corrosion rate from the low quality 

concrete contained the broadest range of corrosion products within the concrete cover with 

specific volumes ranging fiom 2.2 to 3.5. These values are considerably lower than those 

generally assumed in theoretical service life models. It is possible, however, that with 
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continued exposure to chlorides or different exposure conditions where the concrete 

undergoes wet and dry cycling that higher volume expansions might have been noted. Thus, 

the evaluation of corrosion products in a theoretical mode1 must also include a prediction of 

the service conditions. 

While corrosion products in the industrial standard and HPC/SF concrete were 

confined mainly to the steevconcrete interface and induced crack, those in the low quality 

concrete and HPC were more uniformly spread throughout the concrete cover and not 

confined to either the steevconcrete intefiace or the main crack. Two possible explanations 

for this difference include: (a) the low quality concrete and HPC contains a higher 

proportion of ""rnini-cracks" and voids (less than approximately 0.3 mm) and, therefore, the 

corrosion products can more easily diffuse away fiom the steevconcrete intefice; and (b) 

the formation of corrosion products causes any microcracks in the HPC or voids in the low 

quality concrete to open fùrther. Although these microcracks and voids filled with 

corrosion products could not be directly confirmed with the MIP measurements of Section 

6.3.3, their presence was supported by the poor cohesion of the cores that were taken from 

the induced crack region of these two concretes while the correspondhg cores taken fiom 

the ends of the prisms were intact. 

The presence of a network of cracks and voids in the HPC or low quality concrete 

would allow more oxygen to be available at the steekoncrete interface in these concretes 

rather than in the industrial standard concrete and HPC/SF. Since maghemite (y-F-O,) and 

magnetite (Fe,O,) were detected only at the steekoncrete interface of the industrial 

standard concrete (Figure 6.7(e)) and the HPClSF (Figure 6.7(f)), it is likely that corrosion 

processes occurring on the steel in these concretes were oxygen deprived. 

A cornparison of the measured corrosion current densities shows that oxygen 

deprivation is not limiting the corrosion activity of the steel in the industrial standard 

concrete, however, as its corrosion rate is at least 10-20 times higher than that of the steel in 
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both types of high performance concrete (Figure 6.S(c)). [nstead, it supports the 

hypothesis that the higher proportion of fine cracks within the HPC allowed corrosion 

products to diffise away fiom the steel/concrete interface and effectively block these paths 

of ingress fiom further chlorides and oxygen. The microcracks within the HPC/SF were 

blocked by the continued hydration and pozzolanic reastions that are described in Section 

6.4.2. This is consistent with previously published findings which showed that the steel 

within both high performance concretes initially was corroding at higher rates than the steel 

within the low quality and industrial standard concretes but eventually this relationship 

reversed (Weiermair, Hansson et al. 1995). The initially higher rates for steel in HPC and 

HPCISF were attributed the differences in microcracking, ongoing hydration reactions, and 

differences in the pore structure and pore solution pH that would have affected the nature 

and extent of capillary suction and the development of passivity. These processes may 

also have subsequently reduced the corrosion rate in a manner similar to autogenous healing. 

It remains unclear whether the formation of more corrosion products could cause any 

microcracks to open m e r  given sufficient time. The cracks emanating corn the corrosion 

particle in Figure 6.7(1) indicate this to be the case. 

6.4.4 Relationship between Concrete Quality and Service Life 

It is clear from the aforementioned descriptions and analyses of corrosion rates, corrosion 

products, and materials properties, that quantiQing the effect of concrete quality in 

theoretical service life models is cornplex. Once active corrosion has initiated, an extended 

service Iife results Erom the capabiiity of the concrete to minimize the corrosion rate, and 

withstand the damage that occurs from the formation of corrosion products. To minimize 

the corrosion rate, concretes that have high electrical resistivities and reduced chlonde and 

oxygen difisivities will theoretically perform best with time. These characteristics were 

demonstrated by the HPC/SF and it did have the lowest corrosion rate by almost N o  
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orders of magnitude over the four year monitoring period. Rovided the tensile strength of 

the concrete is sufficient, this concrete is the most durable of all. The only possible 

detrimental consequence was the increased localization of the corrosion activity. In 

practice, it, therefore, suggests that this type of concrete requires a regular maintenance 

schedule to seal any structural cracks such that the optimal properties of this concrete can 

be realized. 

A low corrosion rate is not al1 that is necessary, however, to ensure an extended 

service life as the type and distribution of the corrosion products influences the long term 

durability of the concrete. Theoretically, the formation of dense corrosion products such as 

magnetite @%O,) that cover the reinforcing steel under attack could reduce the corrosion 

rate by barring the ingress of water and chlorides to the corroding area. This type of 

corrosion product has the least volume expansion of al1 observed corrosion products, as 

shown in Figure 2.6 (Chapter 2), and would, therefore, minimize the intemal tensile stresses 

that crack the concrete. Aithough it was observed in al1 concretes, only the industrial 

standard and HPC/SF had a sufficiently restricted pore network and minimal voids to 

resists the diffusion of imn species and the subsequent formation of corrosion products 

within the concrete cover. The products formed within the concrete cover where there was 

greater access to oxygen and water and as a result, larger volumes of corrosion products 

formed that will eventually crack the concrete cover. AIthough these products can plug the 

pore network and reduce the corrosion rate, the industrial standard concrete demonstrated 

that the formation of a dense corrosion product does not guarantee a low corrosion rate. 

Overall it is ctear that the most durable structural concrete will confine the corrosion 

products thereby restricting access to water and oxygen and limiting any destructive volume 

expansion, and have a low corrosion rate. 

These characteristics are summarized in Figure 6.9, a modification of Figure 6.1, which 

shows a cornparison between the comion process that occurs in cracked industrial 
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standard concrete (normal quality) versus the relatively ideal behaviour of the HPC/SF (high 

quality). This figure details the relationship between the damage accomodated in the 

concrete up to an unacceptable level with the corresponding corrosion rate for both types 

of concrete. 

Initially, there is a measurable corrosion rate as steady-state conditions are established 

in the area of the steel where the concrete is cracked. The corrosion rate of the steel within 

the HPC/SF is relatively high for the reasons described in Section 6.3.1. However, the 

corrosion rate decreases over time as the hydration and pozzolanic reactions continue and 

the formation of dense corrosion products forms a chernical and physical bamier to f i d e r  

ingress of chlorides and oxygen. This decrease is not observed in the industrial standard 

concrete because its relatively more open pore structure allows easier chloride and oxygen 

ingress. 

DEGREE 
OF 

DAMAGE - - 
CORROSION 

RATE 

Figure 6.9 Schematic illustration of the relationship between corrosion rate of the 
embedded steel and degree of concrete damage for structural concrete. T,,, is the initiation 

time for the onset of corrosion and Td,, is the end of practical service life. 
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Over time, a critical volume of corrosion products forms that cannot be 

accommodated by the concrete cover. The corresponding tensile stresses crack the cover 

which allows chlondes and oxygen easier access to the reinforcing steel. This effect can be 

counteracted again by the formation of more corrosion products but it is unlikely that the 

former, lower corrosion rate would be restored. This was directly observed in the industrial 

standard concrete as shown in Figure 6.5(c). The concretes would eventually require repair 

as the formation of new corrosion products cannot be accommodated indefinitely and the 

formation of new cracks would accelerate the corrosion process. OveraI1, it is likely that 

the high electrical resistivity of the HPC/SF would reduce the corrosion rate for a 

significantly longer period of time and delay the need for repair. The length of this increase 

remains to be determined through the evaluation of field structures and long-term laboratory 

experiments. The conclusions of this thesis have established the relationships arnongst the 

concrete mixes and provide a basis for m e r  investigation. 

6.5 CONCLUSIONS 

1. In general, the observed behaviour of hi& performance concrete with respect to 

industrial standard concrete is not exactly as anticipated. Premature corrosion of steel 

in HPC had been observed--albeit at a low rate. These rates appeared to be less 

significant with time, however, as the corrosion rates of the industrial standard and 

low quality concrete increased. Once al1 these rates were corrected for the area of 

steel actually corroding, however, the steel in cracked specimens of both high 

performance concretes had local corrosion rates that were almost one magnitude higher 

than their presumably "lower quality" counterparts but the corrosion was confined to 

highly localized areas. Thus, corrosion occumng in cracked high performance 
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concretes is potentially more insidious and destructive because corrosion rate 

measurements will be underestimated by non-destructive techniques such as LPR. On 

the other hand, corrosion rates may be reduced if any cracks are plugged either by 

secondas. hydration reactions or stable, dense corrosion products such as magnetite 

(Fe3 0 4 ) -  

2. A range of corrosion products was observed to form with estimated specific volumes 

of 2.2 to 3.5. These values are lower than that usually assumed in theoretical service 

life models (i.e., 6-7) and these models should be altered to reflect the lower volumes 

for the expenmental conditions studied. However, if the concrete were exposed to 

different conditions (e-g., longer exposure periods, wet/dry cycling), corrosion 

products with a larger specific volumes rnight form. This possibility needs to be 

determined empirically . 
3. Despite the higher compressive strength of the HPC, its lower toughness was 

illustrated by the inability to produce an intact core and by the cracking observed 

within the cover fiom the formation of corrosion products. Concurrently, the 

presence of silica fume appears to increase the resistance to this sort damage because 

the corrosion products were only observed in the space of the induced crack and not 

elsewhere in the concrete cover. Altematively, it is also possible that a large 

accumulation of corrosion products at the steekoncrete interface would eventually 

prise the concrete cover ftom the steel. Overall it is clear that the rnost durable 

structural concrete will limit the formation of corrosion products by restricting access 

to water and oxygen and limiting any destructive volume expansion, and have a low 

corrosion rate. 

4. Overall, the net effect is an extended life for reinforced high performance concrete 

relative to normal reinforced concrete and the addition of silica fume adds fiirther 

benefit provided that any cracks are appropriately repaired as they arise. How much 
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extra service Iife this represents remains to be detemined. Quantitative information 

regarding the service life of structures designed fiom these types of concrete mixes 

must be collected fiom field structures and long-term laboratory experiments. 



CHAPTER SEVEN 

DISCUSSION 

As described in the introduction to this thesis, it was the objective of this work to identifi 

the physical and chernical characteristics. and spatial distribution of corrosion products 

resulting from chloride-inducedcorrosion of steel in concrete and the role of different types 

of cementitious materials and the presence of cracks. The following Sections integrate the 

observations and conclusions of the previous Chapters such that a more thorough 

understanding is gained into the propagation stage of the corrosion process. 

7.1 EFFECT OF A CEMENTITIOUS COVER 

7.1.1 Effect of Cernent Type 

The effect of two different types of cernent on the corrosion behaviour of steel was directly 

compared during the simulated pore solution and modified cernent paste experiments 

presented in Chapters 4 and 5, respectively. The simulated pore solution experiments 

showed that the lower pH of the white solution permitted corrosion to initiate on steel at 

lower applied potentials and chloride levels than that observed in the Type 10 solutions. 

This effect can be expected to be even more pronounced for blended cements, for exarnple. 

with silica fume, fly ash or slag which would reduce the pH of the pore solution. 

This agreed with the results of the modified cernent paste experiments which showed 

that the steel in the white cernent paste corroded at a higher rate than the steel in the Type 

10 for similar periods of chloride exposure, as shown in Figure 5.3.2. These higher 

corrosion rates were attributed to the limited chloride binding which could have occurred in 

the white cement with its relatively lower C3A and C,AF contents when compared to that 

of the Type 10 modified cernent paste, as detailed in Table 3.l(b). A 
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reduced chloride binding capacity would result in a higher chloride concentration in the pore 

solution of the white modified cement paste and would cause the observed higher corrosion 

rates. 

Although higher corrosion rates were measwed for steel in the white modified cement 

paste, orange stains composed of magnetite and hæmatite intermixed with the cernent paste 

formed within the Type 10 modified cernent paste cover, shown in Figure 5.3.l(b), which 

were not obsewed within the white specirnens. This difference was attributed to the more 

open pore structure of the Type 10 cement paste which permitted iron ions to d i f i se  more 

easily through the concrete cover. This effect is similar to that obsewed with the different 

concrete mixes of Chapter 6 which is related to their different wkm ratios. Large volumes 

of corrosion products were observed within the concrete cover for the low quality concrete 

and the HPC without silica firme. The presence of corrosion products in the low quality 

concrete was attributed to its more open pore structure while the corrosion products in the 

HPC without silica fume resulted h m  the presence of microcracks No similarities 

between their corresponding corrosion rates were noted which would have predicted this 

distribution of the products. It can then be concluded that there is not any correlation 

between the corrosion rate measwements and the types of corrosion products which f o m  

or their distribution either at the steeVcementitious material interface or within the concrete 

cover. The corrosion products clearly depend upon the characteristics of the cementitious 

cover, such as the cernent type as well as on the degree of moisture saturation (i.e., different 

products were observed above, at, and below the solution line in the cernent paste 

specimens of Chapter 5). This influence of concrete mixture proportions is described in 

more detail in the next Section. 

7.1.2 Effect of Mixture Proportions and Constituents 

An examination of al1 experiments conducted for this thesis indicates that the most 
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important influence on the types of corrosion products is the composition of the 

cementitious cover and its pore and microcracknetwork. While the simulated pore solution 

experiments of Chapter 4 and the modified cernent paste experiments of Chapter 5 showed 

some minor variations in the corrosion behaviour of any embedded steel, the range of 

corrosion conditions observed within the different concretes was relatively larger as 

described in Section 6.3.4.2 and provided considerable insight into the corrosion process 

once it is initiated. 

The presence of a relatively interconnected pore network which can be enhanced by 

microcracking, permit5 corrosion species such as chlorides and oxygen to readily diffise to 

and from active corrosion sites and results in the formation of corrosion products within the 

concrete cover. As the size of the pore network increases, a reduction in the corrosion rate 

due to the blockage of the pore network by corrosion products becomes progressively more 

diEcult because the volume of products required to accomplish this would increase 

proportionately with the size of the pore network Thus, concretes with higher w/cm 

ratios such as the low quality concrete will provide far less protection to its embedded steel 

than concretes with lower w/cm ratios. in addition, mix constituents which produce a less 

permeable concrete upon full hydration at similar w/cm ratios would reduce the corrosion 

rate of steel provided the concrete remained uncracked. If cracked, the chemistry of the 

cernent paste and associated pore solution will determine the resulting corrosion rates. This 

aspect is illustrated by the observation that less corrosion products were formed in the 

white modified cernent paste than in the Type 10, the white having a lower porosity and 

denser microsû-ucture as indicated in Chapter 5. Had the white cement paste remained 

uncracked, the corrosion rate of its embedded steel would have probably been lower than 

that in the Type 10 as demonstrated by the sealed white specimens in Figure 5.3.2. 

The distribution of products away fkom the steel/cementitious interface is generaily 

thought to be undesirable because iron is thermodynamically metastable and thus, will 
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potentially continue to oxidize and hydrate to form more expansive products which could 

lead to cracking of the cover. Volume expansions of as hi& as 7 are commonly asserted as 

the reason for the deterioration of the concrete cover. However, products which, in their 

pure state, have specific volumes of only between 2 to 3 were observed in the modified 

cernent paste specimens and not more than 3 -5 (i.e., akaganeite, fi-FeOOH) in the concretes 

of Chapter 6. These products were observed as precipitates within the concrete cover, and 

microcracks resulting fiom the corrosion product expansion were observed in isolated areas 

away fkom the surface of the steel in the HPC without silica fume (Figures 6.7(k) and (1)). 

These microcracks were assumed to be the cause of the brittle fracture of the cores during 

coring (Section 6.3.4.1) and indicates that even high performance concrete with low w/cm 

ratios are susceptible to deterioration nom the formation of corrosion products in the cover. 

However, even if corrosion products are confined to the steel interface by less 

permeable concrete, the localized corrosion attack can have considerable destructive impact 

as shown by the deep macropits which formed on the steel in the HPC/SF. Moreover, the 

localized accumulation of corrosion products at the steel interface can act as a wedge that 

prises the cementitious cover fiom the steel. 

However, it has been speculated that once sufficiently dense corrosion products form 

over the surface of the active sites, the occlusion of the site will prevent continued 

interaction and the local supply of oxygen and chlorides will be depleted (Ashworth, Boden 

et al. 1970; Leek 1997). The work of Chapter 5 and 6 showed that, provided the 

cementitious cover was suficiently impermeable, corrosion products such as magnetite 

were observed to partially fil1 the cracks. A corresponding decrease, or plateau, in the 

corrosion rates was observed for the comding steel in the HPC with silica fume but was 

not observed in the cracked white modified cernent paste specimens or the industrial 

standard concrete. It is possible that the cracks must be completely filled to reduce the 

increasing corrosion rate such as was observed with the sealed white specimens in Figure 
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5.3.2 but it is more likely that the unusually high electrkal resistivity and the reduced 

capillary porosity of the silica fume mix addition produced this effect in the HPC. 

In summary, it is well-understood that uncracked, impenneable concrete provides the 

best protection for steel in a chloride environment Should, however, this impermeable 

concrete become cracked because of structural overloading or inevitable shnnkage, the 

results of this thesis show that extra precautions must be taken to prevent the more 

localized and insidious corrosion darnage (Le., little or no rust staining in the cover that 

would signal a problem) from accumulating until a catastrophic failure occurs. Ideally, al1 

cracks should be injected to completely block the access of the chlorides to the ernbedded 

steel before corrosion is initiated. 

7.2 EFFECT OF CHLORIDE SOURCE AND EXPOSURE 

Two chloride sources, derived fiorn either NaCl for the experiments of Chapters 4 and 5 or 

from simulated sea water for the experiments of Chapter 6, were studied for the work of 

this thesis. A cornparison of the corrosion behaviour of steel and the types of products 

formed indicates that the chloride source has no effect. Although a greater range of 

corrosion products was observed (Le., lepidocrocite and akaganeite) on the steel in the 

concrete specimens of Chapter 6, this is more likely a result of the significantly older 

exposure age of these specimens (at least three years) compared to the modified cernent 

paste specimens (up to 1 year). This conclusion is supported by the similar corrosion rates 

for the first year of exposure to the chioride solutions measured for both the modified 

cement paste specimens and the concrete specimens, for the first year of exposure to the 

chlonde solutions as shown in Figures 5.3.2 and 6.5(a), respectively. It is possible that 

with continued exposure, corrosion products such as akaganeite and lepidocrocite which 

form at higher chloride levels would have been observed in the modified cernent paste 
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specimens. 

7.3 EFFECT OF CRACKS 

Similar to field observations of steel-reinforced concrete structures in chloride 

environments, cracks in the cementitious materials studied in this thesis increased the 

corrosion of embedded steel relative to uncracked specimens with the exception of the low 

quality concrete specimens. For loading cracks, this was shown by the cornparison 

between Figures 6.5(c) with Figure 6.5(b) in Section 6.3.1 where the corrosion rates were 

approximately an order of magnitude higher for the cracked specimens after at least three 

years exposure to the simulated sea water. However, it was also concluded that cracks have 

a less significant effect on concretes with relatively accessible pore networks, as previously 

described in Section 7.1.1. 

The effect of cracks was also studied with the modified cernent paste specimens 

(Chapter 5) but these cracks were generated naturally through drying shrinkage, and, 

therefore, al1 specimens contained randomly oriented cracks. The geometry of these cracks 

differed fiom the loading cracks induced in the concrete specimens of Chapter 6 in that the 

former likely stopped once they reached the surface of the steel. 

in contrast, the loading cracks in the concrete prisms were induced by three-point 

bending, may have caused some delamination between the embedded steel and the concrete 

cover. This would have increased the exposed area of the steel in the concrete specimens to 

the simulated sea water over that experienced by the modified cernent paste specimens. 

However, this did not appear to affect the type or distribution of the corrosion products 

which precipitated as magnetite was obsewed at the root of the cracks (i.e., at the surface of 

the steel) in al1 specimens. This concurs with the conclusions of Génin and others 

presented in Table 2.3. In addition, magnetite was observed to partially fil1 most cracks in 
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the modified cernent paste specimens (Section 5.3.6), the industrial standard concrete 

specimens (Figure 6.7(a), and the HPC with silica fume specimens (Figure 6.7(g)). Other 

corrosion products such as hæmatite and goethite were observed to form within the cracks 

closer to the exposed surface of the steel. 

The formation of these products was anticipated to halt the increasing corrosion rate 

of the underlying steel by reducing the diffision of ionic species to and from the corrosion 

pit. This was only observed if the concrete cover was suflïciently dense to minimize the 

diffusion of reactive species through the cementitious cover, as discussed in the previous 

Section. Under these circumstances, cracks had a more significant effect on the corrosion of 

embedded steel in cementitious materials with denser pore structures as shown by the 

difference in corrosion rates between the cracked and sealed white modified cernent paste 

specimens in Figure 5.3.2 and the concretes of Chapter 6. 

7.4 EFFECT OF STEEL SURFACE FINISH 

The effect of the surface finish of the steel was studied in Chapters 4 and 5 with the steel 

immersed in the simulated pore solutions and the steel-reinforced modified cernent paste 

specimens. As described in Section 5.3.1, corrosion was observed to initiate first on the 

as-receivedsteel surfaces for most of the modified cernent paste specimens which suggested 

that the mil1 scale provided less protection against chloride-induced corrosion. However, 

the comparison of the corrosion behaviour of the as-receivedsteel surfaces with the ground 

steel surfaces in the chloride-contaminatedsimulated pore solutions indicated that the mil1 

scale provided better protection against corrosion but with some unpredictable variability. 

It was concluded that there were suficiently large flaws within the typically porous and 

discontinuous mil1 scale which could not be easily occluded by the formation of corrosion 

products and resulted in localized attack. 
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This apparent discrepancy between the two expenments can be explained by 

comparing the area of the exposed steel for both types of specimens. The exposed 

as-receivedsteel area of the specimens used for the modified cement paste specimens was 

approximately 1 15 times larger than that used in the simulated pore solution expenments. 

Similar to the volume effect observed for glasses and ceramics where the presence of a 

catastrophic flaw becomes more probable with increasing volume, it is reasonable to 

conclude the larger surface area of the Chapter 5 specimens increased the probability that a 

critically-sized flaw would be present on the surface of the steel which would facilitate 

corrosion initiation. Altematively, it might be the case that because corrosion initiation was 

favoured above the solution line on the as-receivedsteel surface, the remaining area acted as 

a good cathodic area, thereby promoting anodic dissolution in any breaks in the mil1 scale. 

Since the steel samples used in the simulated pore solution experiments were completely 

immersed in the pore solution, al1 perforations in the mil1 scale would have had equal 

probabilities for corrosion to initiate. 

Regardless of the explanation for the observed results, once corrosion initiated, the 

corrosion products observed on both of the steel surfaces were similar as described in 

Sections 4.2.2 and 5.3.6, along with the corrosion current densities as shown in Figures 

4.2.3(a) through (d). However, it is not economically practical to remove the mil1 scale 

60m the steel prior to embedding it in concrete in spite of the advantages offered by 

delaying the initiation of corrosion. Far more effective would be to improve the quality of 

the concrete cover such that cracks are avoided for the reasons described in Section 7.1.2. 
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CONCLUSIONS & RECOMMENDATIONS 

8.1 CONCLUSIONS 

1. The corrosion products clearly depend upon the characteristics of the cementitious 

cover, such as the cement type as well as on the degree of moisture saturation, the 

presence of any cracks in the vicinity and, possibly, on the period of exposure of 

the structure to the chloride contamination. However, there is not any correlation 

between the corrosion rate measurements and the types of corrosion products 

which form or their distribution either at the steevcementitious material interface or 

within the concrete cover. 

2. Volume expansions of as high as 7 are commonly asserted as the reason for the 

cracking and spalling of the concrete cover and have been used as the basis for 

models of deterioration of reinforced concrete. However, products which, in their 

pure state, have specific volumes of only between 2 to 3 were observed in the 

modified cernent paste specimens and not more than 3.5 (i.e., akaganeitq $-FeOOH) 

in the concretes descnbed in Chapter 6. It is recommended that this revision be 

incorporated into theoretical service life models while recognising that larger volume 

expansions may occur under different environmental conditions (e-g., extended dry 

periods, wetldry cycling). 

3. Although corrosion products such as magnetite were observed to partially fil1 the 

cracks in al1 types of cementitious specimens, a corresponding decrease, or plateau, 

in the corrosion rates was not observed in any specimens except for the corroding 

steel in the HPC with silica &me. It is possible that the cracks must be completely 

filled to reduce the increasing corrosion rate but it is more likely that the unusually 

high electrkal resistivity and the reduced capillary porosity of the silica h e  mix 
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addition produced this effect in the HPC. However, these characteristics generated 

deeper, more localized pitting on the steel in the HPC/SF which is potentially the 

most devastating of al1 corrosion attacks observed. 

4. It is well-understood that uncracked, impermeable concrete provides the best 

protection for steel in a chloride environment. Should, however, this impermeable 

concrete become cracked because of structural overloading or shrinkage, extra 

precautions must be taken to prevent the more localized and insidious corrosion 

damage (Le., corrosion accompanied by little or no rust staining in the cover that 

would signai a problem) nom accumulating at the steevconcrete interface until a 

catastrophic failure occurs. 

5.  The chloride source (Le., as dissolved NaCl or as mixed chlorides in simulated sea 

water) has no effect on the corrosion behaviour of steel and the types of products 

formed. 

6. Once corrosion initiated, surface finish (either ground or with the mil1 scale intact) 

did not have any effect on the type of corrosion products obsewed or the measured 

corrosion current densities. 

7. A higher pH of the cernent paste pore solution was observed to provide better 

protection for steel against chloride-induced corrosion even within the narrow range 

of pH studied (Le., 12.9 to 13.4). Specifically, corrosion initiated at lower 

potentials and chloride levels in the lower pH synthetic pore solution mimicking 

that expressed fkom white cement paste than in the Type 10 paste. This effect can 

be expected to be even more pronounced for blended cements, for example, with 

silica fume, fly ash or slag. 
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1. To fully investigate the propagation stage of corrosion in steel-reinforced concrete 

structures, cores fiom field structures should be studied and correlated to their 

service environment. Cores fiom both deteriorated and sound concrete areas should 

be taken to represent the range of conditions. This work would permit the 

underlying interrelationships between the corrosion process and cementitious 

materials identified in this thesis to be quantified and provide empirical evidence for 

theoretical service life models and, liopefully, accurate predictions. 

2. The materials characteristics, such as specific volume, of the corrosion products that 

form within cementitious materials were assumed in this thesis to be approximately 

similar to their bulk counterparts to simplim analyses. Although there was no 

evidence to suggest that this was unrealistic, this underlying assumption requires 

further investigation. 

3. In this thesis, the role of both shrinkage and static loading cracks on chloride- 

induced corrosion was studied However, dynamic cracks are also cornmon in field 

structures (cracks in bridge decks or parking garage slabs which open and close 

under vehicle loads, etc.) and merit investigation. These cracks would be more 

difficult to repair effectively and could become increasingly destructive with time. 



APPENDIX A 

FULL POLARIZATION CURVES FROM STEEL 

IN SIMULATED PORE SOLUTIONS 

Full cyclic polarization curves (i-e., applied potential versus log current density) were 

collecteci for the work of Chapter 4 to determine the experimental conditions that cause 

changes on the surfâce of steel such as passivation or corrosion exposed to two different 

simuiated pore solutions, Type 10 and White cernent, and increasing chlonde levels to a 

maximum level @valent to a 1 M NaCl solution. Section A.1 presents the results for 

steel samples whose surfaces were ground until uniform with 240 Grit Sic pper while 

Section A.2 presents the results for those samples which were lefl in the as-received 

condition (i-e., with millscale on the surface). In addition, each figure compares the redis 

of two pairs of duplicate samples (4 samples in total) that bad undergone different 

electrochemical testing. One pair of samples was polarized nom the open circuit potential, 

ramped in the anodic direction to +500 mV SCE, down to -800 mV SCE, and reniniing to 

the open circuit potential (henceforth refened to as "Anodic Ramp"). The other pair was 

polarized fiom the open circuit potential cathodically to -800 mV SCE, up to +500 mV 

SCE, and W l y  reairning to the open cucuit potential (henceforth refened to as the 

"Cathodic Ramp7'). General theory pertaining to the interpretation of full cyclic 

polarization curves is presented in Section 2.4.2 and a discussion of these results is 

presented in Section 4.3.1. 

A specinc example of the determination of conosion rate fiom Ml polarization 

cuves is show in Figure A. In general, if active corrosion is occming and there is no 

diffusion limitation of oxygen, corrosion rates can be àetennined by extrapolating the hear 

portion of the anodic and cathodic cuves (between 50 to 200 mV above or below the open 

circuit potential) to the open circuit potential. Since many of the full polarization c w e s  
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studied in this thesis were measiired on samples which exhiiited passivity d dinusion 

limitations, oniy an approximation of the corrosion rate uui be obtained In Figure A, the 

corrosion rate is estimated fiom the intersection point of pudo-Tafel slopes. It shouid be 

noted tbat the m r s  in this methcd are no greater tban the uncertainties in corrosion rates 

t y p i d y  encountered with steel in concrete. 

O 
Applied 
~Ant ia l  

SCE '*** 

0.01 o. 1 
Corrosion Cunent Density (Altn 2, 

F i n  A The estimation of corrosion rates fiom fidl polarization curves. 



A1 GROUND SIEEL SURFACES 

A.l.l Type 10 Cernent Simubtd Pore Solution 

i O-= 1 o4 1 1 o - ~  1 O-' 1 o" 
Corrosion Current ûensity (Ah ') 

Figure Al Cornparison of the fidl pdarization curves collected for ground steel samples 
irnmerd in a Type 10 cernent simulated pore solution that did not contain chlorides. 



Appendix A: Full Cyclic Polarization C w e s  fiom Chapter 4 

Figure A.2 Commson of the full polarization curves collected for gnwmd steel samples 
immersed in a Type 10 cernent simulated pore solution that containeci sunicient chlorides 

to make a 0.7 [Cl-]/[OH-] solution. 
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1 O-= 1 o4 1 O" 1 o - ~  1 0-1 1 O* 1 o1 
Corrosion Current Density (Ami 2, 

Figure A.3 Cornparison of the full polarization curves collected for gromd steel samples 
imrnersed in a Type 10 cernent simulated pore solution that contsùied sufficient chlorides 

to make a 1.4 rl-]/PH-] solution 



Appendix A: Full Cyclic Polarkatkm Curves h m  Chapter 4 

10.~ jo4 10" 104 1 O 10' 10' 1 O* 1 o3 
Corrosion Current Density ( A h  *) 

Figure A 4  Cornparison of the Ml polarization curves wilected for ground steel sarnples 
immersed in a Type 10 cernent simulated pore solution that contained sufficient chlorides 

to make a 2.0 [Cl']/[OH'] solution. 
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1 oo5 1 o4 1 o - ~  3 O-* 1 0-1 too lol 
Corrosion Curent Demity (Alhi ') 

Figure 115 Cornparison of the NL polarizatim ciirves collected for groimd steel samples 
irnmei.sed in a Type 10 cernent simuîated pore soiution that contained sufficient chiorides 

to d e  a 4.0 [Cl-]l[Ow solution (equivdent to a 1 M NaCl solution for pH 13.3). 
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A.1.2 White Cernent Simulated Pore Solution 

1 O" 1 o4 1 0" 1 o - ~  1 O-' 1 o" 
Corrosion Current ûemity (Ah *) 

Figure A6 Cornparison of the full polarization curves collected for ground steel simples 
immersed in a White cement simulated pore solution that did not conîain chlorides. 



1 o - ~  1 o4 1 o - ~  1 O" 1 0'' 1 o" 
Corrosion Curent Density (Ahn ') 

Figure A7 Cornparison of the full polarization curves collected for g r o d  steel simples 
immersed in a White cernent simulated pore solution that comaùied sutncient chlorides to 

make a 0.7 [Cl']/[OH-] solution. 
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1 O" I o4 1 o - ~  1 o4 1 0-1 1 O* 
Corrosion Current. ûensity ( A h  7 

FiguceA.8 Cornprison of the full polarization curves wllected.for ground steel samples 
immersed in a White cernent simulated pore solution that contained suffcient chlorides to 

make a 1.4 [Cl-l/[OHH1 solution. 



Awendix: A: Full Cyciic Polarizatim Curves h m  Chpter4 

w 1 o4 1 o5 1 O-* 1 0-1 1 O* 
Conasion Cunent Oensity (Ami 2, 

Fiwre-A9 Cornparison of the full polarization curves collected for grotmd steel samples 
immersed in a White cernent simulated pare solution that contained sufncient chlorides to 

make a 2.0 [Cl-]/[OH'] solution. 



FQgureAIO Cornparison of the full polarization c w e s  collected for ground steel samples 
immersed in a White cernent simulated pore solution that contained sufficient chlorides to 

make a 1 1.0 [Cl-l/[OH-] solution (quivalent to a 1 M NaCl solution for pH 129). 
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~ . & R E C E W E D - ~  SURFACE(WITEMILL SCAtE) 

A.2.1 Type 10 Cernent Simulitcd Pore Solution 

1 O" 1 o4 1 O" 1 0" 1 O-' 1 o" 
Corrosion Cumnt ûenaty (Ami 2, 

Figure ~ 1 %  Compeinson of the full polarization curves coilected for the as-received surface 
ofthe sampla immersed in a Type 10 cernent simdated pore solution that-did notcontain 

chlorides. 



FigurmL12 Camparison of the full polanpition cwes  collected for the as-received d a c e  
ofthe sarnples immened in a Type 10 cernent sùnulated pore solution that containcd 

sufncient chlorides to make a 0.7 [Cl-]/[OH-] sotution. 



i O-' tû4 t O-? 1 a-* t O-' to" 
Corrosion Current ~ensity 4 

Figure k l 3 C o m ~ s o n  of the full polaRzatcm curves collected for the as-received sdace 
of the samples immersed in a Type 10 cernent simulated pore solution that containeci 

s\ifnicient chlorides ta make a 1.4 [Ci'l/[OH-] solution. 



Foigare-kl4 Comprnisou of the fall polarization m e s  colleckd for the as-received surface 
of the saunples immersed in a Type 10 cernent simtdated pore solution that wnaained 

d c i e n t  chlorides tu make s 2.0 [Cl-]/[OH-] solution. 
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1 o4 1 o - ~  1 u2 1 0-1 1 O* 1 O' 
Corrosion Current Density (Ami *) 

Figiire Al5 Cornparison of the full polarization Cumes collected for the as-received 
surfaces of steel sampies immersed in a Type 10 cernent simulated pore solution that 

wntaineâ sutncient chlorides to make a 4.0 [Cl-]/[OH-] solution (equivalent to a 1 M NaCl 
solution for pH 13.3). 



A2.2 White Cernent Simalated Pore Solution 

Figure A16 Camperison of the fidl polarhion curves-collected for the as-received surfke 
of the swiples immersed in a White cement simulated pore solution that did nat contain 

chlorides. 



1 o5 1 o4 1 o - ~  1 o - ~  1 O-' 1 oO 
Corrosion Curent ûensity ( A h  ') 

Figure A.17 Cornparison of the full polarization curves collected for the as-received surface 
ofthe samples immersed in a White cernent simulated pore solution that coatained 

sufEcient chlorides to make a 0.7 [CI']/[OH-] solution. 



Figure Al8 Cornparison of the fidi polarization c w e s  coilected for the as-received surface 
ofthe samples immersed in a White cernent simulated pore solution that contained 

sufncient chlorides to make a 1 -4 [Cl-]/[OHH] solution. 
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1 o4 1 o4 1 O' 1 1 O-' 1 o0 
Corrosion Current Denscty (Alhi *) 

Figure A19 Cornparison of the full polarization curves collected for the as-received surfàce 
of the samples immersed in a White cernent simulated pore solution that contained 

sufEcient chlorides to make a 2.0 [CI-]/[OH-] solution. 



1 O* 1 o4 1 o4 1 o - ~  1 O-' 1 o" 1 0' 
Corrosion Current Density ( A h  *) 

Figure A.20 Cornparison of the full polarization curves collected for the as-received 
surfaces of steel samples imrnersed in a White cernent shulated pore solution that 

contained sufncient chlorides to make a 1 1.0 [Cl-]/[OH-] solution (equivalent to a 1 M NaCl 
solution for pH 12 -9). 



APPENDM B 

OPEN CIRCUIT POTENTIAL MAPS OF STEEL IN 

B.l INTRODUCTION 

Open circuit potentid maps were coliected for the work of Chapter 5 to determine the effect of 

varying experimental conditions, shrinkage cracks, &&ce finish, and cernent type on the 

changes that occur on the siirnice of the steel whiîe exposed to simulated pore solutions 

containing mifncient chlorides to make a 1 M NaCl solution. Section B.2 presents the results for 

steel in the white modified cernent paste after 12, 30, and 160 days exposure to the chloride- 

containing simulated pore solution. This Section was M e r  subdivided between the cracked 

(Specimens 2, 3, 4, 6, and 9) and sealed (Specimens 1, 5, 7, 8, and IO) specimens in Sections 

8.2.1 and B.2.2, respectively. Shilarly, Section B.3 presents the results for steel in the Type 10 

modified cement paste. AU specimens were analyzed aiter 50 days of exposure to the chloride- 

containing simulated pore solution but only those that were sectioned were again analyzed a f k  

160 days exposure. Section B.3.1 presents the cracked specimens (Specimens 1,5,7,8, and 10) 

while B.3.2 presents results for the sealed specimens (Specimens 2,3,4,6, and 9). 

The colours w d  for the potential maps indicate the approximate range of potentials 

measured, as delineated in Table B. 1. In addition, the fine Lines of the maps are isopotenàal iines 

while the heavier iines indicate the approximate position of any shrinkage cracks over the steel 

surfaces. Theory pertaining to the interpretation of the open circuit potential maps is presented 

in Section 2.4.1 and a discussion of these results is presented in Section 5.3.1. 

Table B.1 Colours w d  in potential maps with respect to measured potential ranges. 

1 Open Circuit Poteiitial 1 Colour 1 
Range (mV SCE) - 350 to -450 Ruby Red - 

-450 to -550 Oiive Green 

-550 to -650 Rust Red 

1 -750 to -850 i Rirple - 



Appendix B: Open Circuit Potential Maps of Steel in Modified Cement Paste 

B.2 STEEL IN WHITE MODIFIED CEMENT PASTE 

As-Received 

W .  

O io M r, [m;iO so 60 m 

Ground 

Figure B02.I(a) Steel embedded in cracked white modified cernent paste (Specimen 2) after 
exponire to the chloride-containing simulateci pore solution for approx. 12 days (mV SCE). 

Cl- 

As-Received Ground 

Figure B.Z.l(b) Steel ernbedded in cracked white modified cernent paste (Specimen 2) afier 
exposure to the chloride-containing simulateci pore solution for approx. 30 days (mV SCE). 

29 1 
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As-Received Grouad 

Figure B.2.l(c) Steel embedded in cracked white modified cernent paste (Specimen 2) aAer 
exposure to the chioride-containhg simulateci pore solution for approx. 160 days (mV SCE). 

As-Receivcd Gmund 

Figure B.2.l(d) Steel embedded in cracked white modified cernent paste (Specimen 3) a h r  
exposure to the chioride-containing simdated pore solution for approx. 12 &YS (mV SCE). 



Appeadix B: Open Circuit Potential Maps of Steel in M&ed Cernent Paste 

As-Received Gmund 

Figure B.Z.l(e) Steel embedded in cracked white modined cernent paste (Specimen 3) a f k  
exposure to the chloride-containing simulateci pore solution for apptox 30 days (mV SCE). 

As-Received 

Figure B.2.l(f) Steel embedded in cracked white rnodified cernent paste (Specimen 3) a&r 
exposure to the chloride-containhg simulated pore solution for approx. 160 days (mV SCE). 
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(mm\ 

As-Received 

( n m b  

Ground 

Figure B.2.1(@ Steel embedded in cracked white modified cernent paste (Specimen 4) after 
exposure to the chloride-containing simulated pore solution for approx. 12 days (mV SCE). 

Inni1 

As-Received 

f m \  

Ground 

Figure B.2.1@) Steel embedded in cracked white modified cernent paste (Specimen 4) after 
exposure to the chioride-containing simulated pore solution for approx. 30 days (mV SCE). 
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As-Received Gmund 

Figure B.2.1(9 Steel embedded in cracked white modined cernent paste (Specirnen 4) after 
exposure to the chlonde-containhg simulateci pore solution for approx. 160 days (mV SCE). 

As-Received Ground 

Firre Bm2.1(j) Steel embedded in cracked white modified cernent paste (Specirnen 6) after 
exposure to the chloride-containing simulateci pore solution for appmx. 12 &YS (mV SCE). 



Appendac B: Open Cimiit Potential Maps of Steel in M&ed Cement Paste 

As-Received Gmuad 

Figum B3.1@) Steel embedded in cracked white modified cement paste (Specimen 6) afkr 
exPosure to the chlorideîontaining simulated pore solution for appmx. 30 &YS (mV SCE). 

(ml 

As-Received Ground 

Faim M.10 Steel embedded in cracked white modified cernent @e (Specimen 6) afkr 
exposure to the chlotideîontaining simulated pore solution for approx. 160 &YS (mV SCE). 
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Appendix B: ODen Circuit Potential Maps of Steel in Modifieci Cernent Paste 

Figure Ba2.i(m) Steel embedded in cracked white modifïed cernent paste (Specimen 9) aRer 
exposure to the chloride-contahhg simuiated pore solution for approx. 12 &YS (mV SCE). 
Note: The white area on the ground steel plot is an artifiact resulting fiom the specimen 

becoming tw dry duriag the measurement procedure. 

Figure B.2.1(n) Steel embedded in cracked white modified cernent paste (Specimen 9) after 
exposure to the chloride-containhg simulateci pore solution for approx. 30 days (mV SCE). 



Figure B.2.1(0) Steel embedded in cracked white modifïed cernent paste (Specimen 9) der  
exposure to the chloride-containing simuiated pore soIution for approx. 160 days (mV SCE). 
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tmnl 

As-Received 

"O 

Ground 

Figure Bœ23(a) Steel embedded in sealed white modified cernent paste (Specimen 1) after 
exposure to the chloride-containing simulated pore solution for approx. 12 days (mV SCE). 

As-Received Ground 

Figure B.2.2@) Steel embedded in sealed white modifieci cernent parte (Specimen 1) &er 
exposure to the chioride-containing simulated pore solution for approx. 30 days (mV SCE). 
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As-Received Ground 

Figure Bm2.2(c) Steel embedded in sealed white modified cernent paste (Specimen 1) after 
exposure to the chloride-containhg simulated pore solution for approx. 160 days (mV SCE). 

As-Received Ground 

Figure B.2.2(d) Steel embedded in sealed white modified cernent peste (Specimen 5) der 
exposure to the chloride-containïng simulated pore solution for approx. 12 &ys (mV SCE). 
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As-Received 

(ml 

Ground 

Figure B.2.2(e) Steel ernbedded in sealed white modified cernent paste (Specimen 5) after 
exposure to the chloride-contahhg simulateci pore solution for approx. 30 days (mV SCE). 

As-Received 

Figure 82.20 Steel ernbedded in d e d  white modified cernent paste (Specimen 5) after 
exposure to the chloride-containing simuiated pore solution for approx. 160 days (mV SCE). 
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W .  

o i o m j o « , s 0 6 ~ 7 0  
tmn) 

As-Received 

fmnl 

Ground 

Fi y r e  Ba2.2(g) Steel embedded in sealed white modifieci cernent paste (Specimen 7) after 
exposure to the chloride-containhg simuiated pore solution for approx. 12 days (mV SCE). 

As-Received Ground 

Figure B33(h) Steel embedded in sealed white modified cernent paste (Specimen 7) after 
exposure to the chloride-containing simulated pore solution for approx. 30 days (mV SCE). 



Appendix B: Open Circuit Potential Maps of Steel in Modifiecl Caneat Paste 

Ground 

Fiin Mai) Steel embedded in sealed white modified cernent paste (Specimen 7) a h r  
exposure to the chloride-containhg simulated pore solution for approx. 160 days (mV SCE). 

As-Received 

fi- 
*.% 

-0.57 

dIi9 

-0.m 
4 6 1  

4.62 

4.63 

-0.a 

4.65 

Y. 

O 

Ground 

Fimre B.2.2(j) Steel embedded in sealed white modified cernent paste (Specimen 8) &et 
exposure to the chloride-containing simulated pore solution for approx. 12 days (mV SCE). 
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" 
O 1 0 m 1 1 ~ ) s a 6 0 r n  

( m l  

As- Received 

Figure B.2.2(k) Steel embedded in sealed white mol 
exposure to the chloride-containhg simulated pore sl 

As-Received 

Figure B.2.2(1) Steel embedded in sealed white mod 
exposure to the chloride-containhg simulated pore SI 
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O 1 0 2 0 3 0 4 1 ~  Y) 60 m 
(ml 

As- Received 

(ml 

Ground 

Figure B.2.2(m) Steel embedded in sealed white modified cement paste (Specimen 10) after 
exposure to the chloride-containing simulated pore solution for approx. 30 days (mV SCE). 

As-Received 

4 t r  
4-39 (mm) 

-0.40 
- 

4 

Figure Ba2.2(n) Steel embedded in sealed white modified cernent paste (Specimen 1 O )  after 
exposure to the chloride-containing simulated pore solution for approx. 160 days (mV SCE). 
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B.3 STEEL IN TYPE 10 MODIFIED CEMENT PASTE 

B.3.1 Cracked Specimeas 

(mm) 

As-Received 
(mm 

Ground 

Figure B3.l(a) S tee1 embedded in cracked Type 1 0 modified cernent paste (Specimen i ) after 
exposure to the chloride-containhg simulated pore solution for approx. 50 days (mV SCE). 
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As- Received Ground 

Figure BJ.l(b) Steel embedded in cracked Type 1 O modified cernent paste (Specimen 5) afker 
exposure to the chloride-containing simulated pore solution for approx. 50 days (mV SCE). 

O 

As-Received Ground 

Figure B.3.l(c) Steel embedded in cracked Type 10 rnodified cernent paste (Specimen 5) after 
exposure to the chloride-containhg simulated pore solution for approx. 160 days (mV SCE). 
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A ~ ~ e n d i x  B: Ooen Circuit Potential Maos of Steel Ï n  Modified Cernent Paste 

As- Received Ground 

Figure BAl(d) Steel embedded in cracked Type 10 modified cernent paste (Specimen 7) after 
exposure to the chloride-containhg simulated pore solution for approx. 50 days (mV SCE). 

As-Received Ground 

Figure B.3.l(e) Steel embedded in cracked Type 10 modified cement paste (Specimen 7) after 
exposure to the chloride-containing sirnulated pore solution for approx. 160 days (mV SCE). 



Appendix B: Open Circuit Potential M a ~ s  o f  Steel in Modified Cernent Paste 

(mm) 

As-Received 

lmnl 

Ground 

Figure Bo3.1(f) Steel embedded in cracked Type 10 modifed cernent paste (Specimen 8) afier 
exposure to the chloride-containing simuiated pore solution for approx. 50 days (mV SCE). 

( m l  

As-Received Ground 

Figure BAl(g) Steel embedded in cracked Type 1 O modified cement paste (Specimen 8) afier 
exposure to the chlonde-containhg simulated pore solution for approx. 160 days (mV SCE). 
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As-Received Ground 

Figure B A  1 (h) Steel embedded in cracked Type 1 0 modified cernent paste (S pecimen 1 0) afier 
exposure to the chloride-containing simulated pore solution for approx. 50 days (mV SCE). 

B.3.2 Seaied Specimens 

As-Received 

u -  
O 10 m ni ,-y 

Ground 

Figure B.3.2(a) Steel ernbedded in sealed Type 10 modified cernent paste (Specimen 2) afier 
exposure to the chloride-containing simulated pore solution for approx. 50 days (mV SCE). 
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As- Received Ground 

Figure B.3.2(b) Steel embedded in sealed Type 10 modified cernent paste (Specimen 3) aiter 
exposure to the chloride-containing simulated pore solution for approx. 50 days (mV SCE). 

As-Rece ived Ground 

Figure B.3.2(c) Steel embedded in seaied Type 10 modified cement paste (Specimen 3 )  afier 
exposure to the chloride-containing simulated pore solution for approx. 160 days. 
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~ m n l  

As-Received 

Figure B.3.2(d) Steel embedded in sealed Type 10 mo 
exposure to the chloride-containing simulated pore so 

"O I O ~ ~ O U I Y J K I ~  
lm1 

As-Received 

Figure B.3.2(e) Steel embedded in sealed Type 10 mot 
exposure to the chloride-containing simulated pore sol) 
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~ m m l  

As-Received 

Figure B.3.2(f) Steel embedded in sealed Type 10 mc 
exposure to the chloride-containing simulated pore sc 

( m l  

As-Received 

Figure B.3.2(g) Steel embedded in sealed Type 10 mc 
exposure to the chloride-containing simuiated pore so 
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lmml 

As-Received 

" 
O 10 M 30 U1 50 60 M 

lmnl 

Ground 

Figure B.3.2(h) Steel embedded in sealed Type 10 rnodified cernent paste (Specimen 9) afier 
exposure to the chloride-containing simulated pore solution for approx. 50 days (mV SCE). 



APPENDIX C 
MERCURY INTRUSION POROSIMETRY DATA 

CORRECTION 

Corrections to experimental data that account for the compression and thermal expansion of 
mercury, sample compression and volume changes of  g las  penetrometer have been detailed 
by Ioannidis (2001). The mathematical formulae and deductions are described in the 
following sections. 

A. Mercury intrusion porosimetry without sample (Le., a blank run) 

where V b = the change in volume due to the blank run 
V ~ ~ . b  = reduction in mercury volume 
V, = reduction in penetrometer volume 

where p = isothermal cornpressibility coefficient 

where a = thermal expansion coefficient 
1 (aq a=- - 
v L d p  

Integration of (C.2) gives: 

where V,, = VHg (Pa, Ta) = penetrometer volume at ambient conditions. 



APPENDIX C: Corrections for MIP Data 

Similarly for glass, 

where Vg = Vg(Pa, Ta) = glass volume at ambient conditions. 

Substitution into of  C.3 and C.4 into C. 1 gives: 

B. Mercury intrusion porosimetry with non-porous sample of volume V, 

AveXpw = AVH&=) - AVg(P) + A V m  

where AV,(P) is the reduction in volume of the non-porous sampte 

Substituting C.6, C.7 and C.8 into CS gives: 



APPENDIX C: Corrections for MIP Data 

Algebraic combination of C. 1 and C.9 gives: 

C T 1 v r  r f J  1' 

where T(P) = 1-expi- 1flsdf' + l a , d ~ / - ~ r  -exp\-l&f~' + / % d ~  
Pu Te VP Pa Te 

Therefore, correction value at each intruded pressure for cement paste specimens is given by: 

Corrected incremental intrusion volume is given by: 

A vmcorre~~eJ ( 0 - A vcem ( Pl = A L r e c t e d  (PI 
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GLOSSARY OF TERMS 

Vanous compounds present in cernent are often abbreviated for simplicity: C represents 

Cao, S represents SiO2, A represents A1203, F represents Fe203, and H represents H20. In 
- - 

the case of SO, and CO2, S and C are used to distinguish them from Si02 and Cao, 

respectively. 

AFm, monosulphate 

AFt, ettringite 

akaganeite 

BEI 

C,S, belite 

C, S, alite 

C ,  A, aluminate 

C,AF, femte 

C-S-H 

CH 

EDS 

ESEM (SEM) 

feroxyhite 

goethite 

- 
calcium monosulphate hydrate (C, A S H ,, ), a hydration 

product of C3A 

calciumtrisulphate hydrate (C , A S , H 32 ), a hydration product of 

C3* 

f3-FeOOH 

backscatteredelectron imaging 

dicalciumsilicate, the belite phase in cernent powder 

tricalciumsilicate, the alite phase in cernent powder 

tricalcium aluminate, the aluminate phase in cement 

powder 

tetracalcium aluminoferritq the ferrite phase in cernent 

powder 

calcium silicate hydrate, the primary hydration product of 

Portland cernent 

calcium hydroxide, a hydration product of C,S and C2S 

energy dispersive X-ray spectroscopy 

environmental scanning electron microscopy 

6-FeOOH 

a-Fe00H 



hæmati te 

lepidocrocite 

LPR 

maghemite 

magnetite 

MIP 

OPC 

SEI 

SHE 

SCE 

w/c 

linear polarization resistance 

y-Fe2o3 

Fe,O,, may be non-stoichiometric with Fe,-,O, and x = O to L/3 

mercury intrusion porosimetry 

ordinary Portland cernent 

secondary electron imaging 

standard hydrogen electrode 

saturated calomel electrode (+ 242 mV SHE) 

watedcement ratio by mass 

watedcementitious materials ratio by mass (for mixes that include 

supplemeniq cementitious materials) 

X-ray difhction 




