
Novel Value Ordering Heuristics Using Non-Linear
Optimization In Boolean Satisfiability

by

Vladimir Pisanov

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2012
c© Vladimir Pisanov 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Vladimir Pisanov

ii

Abstract

Boolean Satisfiability (SAT) is a fundamental NP-complete problem of determin-
ing whether there exists an assignment of variables which makes a Boolean formula
evaluate to True. SAT is a convenient representation for many naturally occurring
optimization and decisions problems such as planning and circuit verification. SAT is
most commonly solved by a form of backtracking search which systematically explores
the space of possible variable assignments. We show that the order in which variable
polarities are assigned can have a significant impact on the performance of backtrack-
ing algorithms. We present several ways of transforming SAT instances into non-linear
objective functions and describe three value-ordering methods based on iterative opti-
mization techniques. We implement and test these heuristics in the widely-recognized
MiniSAT framework. The first approach determines polarities by applying Newton’s
Method to a sparse system of non-linear objective functions whose roots correspond
to the satisfying assignments of the propositional formula. The second approach de-
termines polarities by minimizing an objective function corresponding to the number
of clauses conflicting with each assignment. The third approach determines preferred
polarities by performing stochastic gradient descent on objective functions sampled
from a family of continuous potentials. The heuristics are evaluated on a set of stan-
dard benchmarks including random, crafted and industrial problems. We compare
our results to five existing heuristics, and show that MiniSAT equipped with our
heuristics often outperforms state-of-the-art SAT solvers.

iii

Acknowledgments

I would like to thank my supervisor, professor Peter van Beek for encouragement
and advice he has provided throughout my research. His guidance and constructive
suggestions have played a crucial role in shaping this thesis. I also wish to express
my sincere gratitude to the members of my graduate committee, associate professor
Pascal Poupart and professor Peter A. Forsyth for their insightful feedback and helpful
suggestions for improving my work.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Value Ordering in Boolean Satisfiability 1
1.2 Contributions of the Thesis . 4
1.3 Organization of the Thesis . 5

2 Background 6
2.1 Boolean Satisfiability . 6

2.1.1 Boolean Formulas . 6
2.1.2 Conjunctive Normal Form . 7
2.1.3 Problems in Satisfiability . 8

2.2 SAT Solvers . 9
2.2.1 Resolution . 9
2.2.2 DPLL . 10
2.2.3 CDCL . 11
2.2.4 Value Ordering . 13

2.3 Nonlinear Optimization . 14
2.3.1 Gradient Descent . 15
2.3.2 Newton’s Method For Systems of Equations 16

2.4 Newton’s Method for Scalar Functions 18
2.5 Summary . 20

3 Related Work 21
3.1 Simple Ordering Policies . 21
3.2 Literal Ordering . 22
3.3 Lookahead Value Ordering . 24
3.4 Local Search in SAT . 26
3.5 Discrepancy Based Search . 28
3.6 Summary . 29

v

4 Our Approach to Value Ordering 31
4.1 Real-Valued Formulation of CNF . 31
4.2 Method 1: System of Equations . 32
4.3 Method 2: Conflict Potentials . 36
4.4 Method 3: Stochastic Optimization 42
4.5 Using the Heuristics . 46
4.6 Summary . 47

5 Experimental Evaluation 48
5.1 Experimental Setup . 48
5.2 Algorithms . 49
5.3 Benchmark Selection . 51
5.4 Parameter Selection . 55
5.5 Results and Discussion . 58
5.6 Summary . 72

6 Conclusion and Future Work 74
6.1 Conclusion . 74
6.2 Summary of Results . 75
6.3 Future Work . 77

A Sample Implementation 79

Bibliography 81

vi

List of Tables

4.1 The three heuristics presented in this thesis differ in their choice of
problem representation, the optimization method used, and the parametriza-
tion of the real-valued clauses. 47

5.1 The heuristics examined in our evaluation. 50
5.2 SAT solvers used in our evaluation. With the exception of our refer-

ence solver (MiniSAT), all have scored high at SAT Competition 2011.
Although our heuristics are geared toward complete DPLL-CDCL al-
gorithms, we have also included two incomplete solvers, and one look-
ahead solver for comparison. 51

5.3 Crafted and application benchmarks used in the evaluation of our
heuristics. nmax denotes the largest number of variables and mmax

denotes the largest number of clauses in each benchmark. All bench-
marks were taken from SAT Competition 2009 and SAT Competition
2011. 54

5.4 The number of instances solved in 1200 seconds by each MiniSAT
heuristic in each benchmark. Dashes indicate that a particular bench-
mark contained too many instances which were too large to reliably
apply the heuristic (this mainly applies to matrix-based methods). . . 68

5.5 The simulated number of instances solved in 1200 seconds by using
various heuristic portfolios. In each portfolio, the heuristics run simul-
taneously, and the best result is reported. The results are simulated for
interleaved execution (single-core CPU) and parallel execution (multi-
core CPU). For interleaved execution, portfolios almost always degrade
the performance. For parallel execution, however, the number of solved
instances can be increased from 92 to 102 in the random set, from 97
to 105 in the crafted set, and from 68 to 75 in the application set. . . 72

vii

List of Figures

1.1 Three different Boolean formulas in constraint graph form (the nodes
represent variables, the edges represent binary relationships between
the variables). From left to right: a hand-crafted graph colouring prob-
lem (363 variables, 9559 clauses), a small practical scheduling problem
(226 variables, 1078 clauses), a random 3-SAT problem (360 variables,
1530 clauses). Due to their structure, different classes of problems may
require different solving techniques. These graphs were generated using
the DPvis visualization tool (http://www.carstensinz.de). 3

2.1 A simple example illustrating the backtracking DPLL algorithm. The
search begins with a CNF formula F which depends on Boolean vari-
ables v1, v2, v3. DPLL selects a variable (this decision is known as vari-
able ordering) and a polarity (this decision is known as value ordering),
and performs the splitting rule by assigning the chosen variable to the
chosen polarity. In this example, DPLL chose v1 and True. This pro-
duces a shorter formula F [v1 = True] and the process is recursively
repeated. The next decision (v2 = False) leads to a conflict, and DPLL
backtracks one level to try v2 = True. Eventually, DPLL encounters
the reduced formula F [v1 = False, v3 = True] in which all clauses are
satisfied. At this point, DPLL has found a satisfying assignment and
the search ends. 11

2.2 Comparison of gradient descent and Newton’s Method when used to
minimize the same objective function. The starting point of the search
is in the lower right corner. The darker areas of the graph correspond
to lower values of the objective function. Newton’s Method converges
in only 4 iterations, while gradient descent converges in 22 iterations
due to excessive “zig-zag” steps caused by local linearization of the
objective function. Diagram by Simon J.D. Prince [PRI12]. 18

4.1 The interior of the unit hypercube forms the domain on which we
define our optimization problems. Here, the domain for a formula with
n = 3 variables is a regular unit cube. The 2n corners of the unit
hypercube correspond to the set of all possible Boolean assignments of
the n variables. 32

viii

4.2 Three conflict potentials for the Boolean function F = v̄1 ∧ (v1 ∨ v̄2)∧
(v̄1 ∨ v2) using different parametrizations z(l). From left to right: lin-
ear parametrization, sigmoid parametrization with K = 8, sigmoid
parametrization with K = 30. The magnitude of the potentials at
the corners of the domain is the number of clauses in conflict with the
corresponding Boolean assignment. For example, the point (0, 0) does
not conflict with any of the clauses, which means (False, False) is the
model of F . The point (1, 0) corresponding to (True, False), on the
other hand, conflicts with two clauses of F (clauses 1 and 3) and is the
least optimal assignment. 38

4.3 The real-valued clauses fi can be represented as products of many
different kinds of 0-1 functions. While the linear function (left) is the
most natural choice, the sigmoid function (right) has the advantage of
being restricted to the range from 0 to 1 for all values of x which can
improve local search. 39

4.4 The stochastic heuristic represents real-valued clauses as products of
exponential curves with randomly-sampled exponents θi. This parametriza-
tion gives rise to a family of conflict potentials Rθ. On the right, two
members of this family, R(2,0.5) and R(1,4), are plotted for the CNF for-
mula F = v̄1 ∧ (v1 ∨ v̄2)∧ (v̄1 ∨ v2). All potentials in Rθ have the same
values at the corners of the unit hypercube, but different distributions
of local extrema; this useful property is exploited by the stochastic
gradient descent. 44

5.1 The cost of computing a single iteration of the three main heuristics:
NS+, HS+, and GS+ as a function of the number of variables. The
results were obtained on the random satisfiable test set r3sat. The
cost is measured in CPU time. The gradient-based GS+ is extremely
cheap and scales linearly with the number of literals. NS+ and HS+

do not scale well, as they both rely on an external sparse matrix solver
which has cubic complexity. HS+ is more efficient than NS+ as it only
requires solving the n× n Hessian matrix which is much smaller than
the m× n Jacobian. 56

5.2 Time vs. accuracy for the application satisfiable random set r3sat.
Jacobian-based NS+ based on a system-of-equations and the gradient-
based GS+ easily outperform the baseline MiniSAT branching rules.
Always branching on True and always branching on False have nearly
identical results, and enabling phase-saving has virtually no benefit. . 60

ix

5.3 The accuracy of the two most successful heuristics: NS+ (system of
equations solved with Newton’s method) and GS+ (linear conflict po-
tential solved by gradient descent) as a function of the number of op-
timization iterations. The results were obtained on the random test
set r3sat. NS+ reaches a plateau of about 83% in only 100 itera-
tions, while GS+ steadily improves from about 54% to 79% in 20,000
iterations. Notice that zero iterations (not shown on the graph) corre-
sponds to reverting to MiniSAT’s default branching behaviour, which
has accuracy of about 35% on this test set. 63

5.4 Time vs. accuracy for the crafted test set. This is the only set where
the default behaviour of MiniSAT (always branching on False with
phase-saving enabled) significantly outperforms all other heuristics.
The stochastic vote algorithm VS+ comes in second at the cost of more
pre-processing. The gradient method GS+ is slightly worse than always
branching on True, which in this set outperforms always branching on
False. The curves for the matrix-based methods are not shown be-
cause the benchmarks contained too many instances that were too large
to reliably apply the heuristics. 65

5.5 Time vs. accuracy for the application test set. The sigmoid-based
heuristic SS+ solves the most instances at the cost of more pre-processing
(and thus, worse performance on easy instances). The gradient-based
GS+ comes in second, but has better overall performance. The curves
for the matrix-based methods are not shown because the benchmarks
contained too many instances that were too large to reliably apply the
heuristics. 66

5.6 The total number of instances solved by different solvers and heuristics
in the satisfiable random benchmark (110 instances). The two incom-
plete solvers easily solve all instances. Our gradient and systems-of-
equations heuristics raise the baseline MiniSAT accuracy from 39 to
87 and 92 instances solved respectively. 69

5.7 The total number of instances solved by different solvers and heuris-
tics in the crafted benchmark (224 instances). Surprisingly, the basic
MiniSAT finishes first with 97 instances solved, followed by the stochas-
tic vote method (92), and sparrow2011 (91). The lookahead solver
march rw has the worst accuracy at only 65 instances solved. Our
heuristics end up hindering the baseline MiniSAT branching rules, but
not by much. 69

5.8 The total number of instances solved by different solvers and heuristics
in the application benchmark (142 instances). The two incomplete
solvers and the lookahead solver perform poorly, solving less than 9%
of all instances. Heuristics GS+ and SS+ modestly boost the accuracy
of MiniSAT by 2 and 5 solved instances respectively. The sigmoid
potential heuristic finishes first with 68 instances solved versus 64 for
lingeling and 63 for MiniSAT. 70

x

Chapter 1

Introduction

In this chapter, we informally introduce and motivate the problem of value ordering
in backtracking search in the context of Boolean Satisfiability. We also summarize
our contributions to this field and outline the organization of the thesis.

1.1 Value Ordering in Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) will always hold a special status in com-
puter science as it was the first problem to be shown to be NP-Complete. SAT poses
a deceptively simple question: given a Boolean formula F , is there an assignment
of variables which makes F evaluate to True? While short formulas can be easily
checked by hand or by a simple brute-force algorithm, longer formulas involving hun-
dreds or thousands of variables render such methods prohibitively expensive because
a function of n Boolean variables has 2n possible assignments. Over the past fifty
years, many innovative algorithms have been developed with the aim of solving the
Satisfiability Problem without having to check all possible assignments. Such algo-
rithms are efficiently implemented in computer programs collectively known as SAT
solvers which can be used to solve practical SAT instances.

When one considers the ubiquity and the expressive power of Boolean formulas, it
is not difficult to see why efficient SAT solvers are in demand. Boolean logic provides
an intuitive and concise way of encoding many kinds of decision problems such as
database queries and digital circuits. SAT is of tremendous importance in electronic
design automation, artificial intelligence, algorithmics, and many other branches of
computer science, engineering, and mathematics. Many real-world problems such
as circuit verification, Field Programmable Gate Array routing, and planning are
routinely tackled by SAT solvers. It is not uncommon for such problems to contain
hundreds of thousands or even millions of variables. Moreover, a direct consequence of
the Cook-Levin Theorem ([Coo71], [Lev73]) is that any problem in NP can be reduced
to an equivalent SAT instance in polynomial time and space, which makes SAT a
convenient gateway between complex problems and efficient solvers. For example,
any Constraint Satisfaction Problem (CSP) such as scheduling or graph colouring
can be encoded and solved as a SAT instance. While this may not always be the best

1

way to approach CSPs, it has been shown that such transformations can be done
efficiently ([Gen02a], [Wal00]).

SAT solvers come in two varieties: complete and incomplete. Incomplete solvers
are stochastic in nature, and search for a satisfying assignment by repeatedly refining
an initial (typically random) guess. Unlike complete solvers, incomplete solvers can-
not guarantee finding a solution, nor can they disprove a formula. Complete solvers,
on the other hand, systematically explore the space of all variable assignments and
will find a solution if one exists, given enough time. While it may seem like incom-
plete solvers are an inferior choice, they have been shown to outperform complete
solvers on many classes of problems. Incomplete solvers such as those belonging to
the WalkSAT [SKC93] family can rapidly discover solutions to huge industrial and
random problems with millions of variables. Although we focus on complete solvers
in this thesis, we make use of several techniques and concepts employed in incomplete
solvers.

Early complete SAT solvers, most notably the Davis-Putnam algorithm [DP60],
relied on a formula reduction technique known as clause resolution. Unfortunately,
this approach had an exponential storage complexity in the worst case, and was
therefore limited to very short formulas with only a handful of variables. In 1962, this
limitation was lifted with the introduction of the Davis-Putnam-Loveland-Logeman
(DPLL) procedure [DLL62] which solved SAT using a backtracking depth-first search.
At each step, the algorithm would choose a variable and assign it to either True
or False, thereby reducing the size of the formula. If the assignment falsified the
formula, the algorithm would backtrack and try the opposite polarity. This process
is repeated until either a satisfying assignment is found, or until all combinations
are exhausted, at which point the formula is determined to be unsatisfiable. Unlike
clause resolution, this search mechanism has a linear memory complexity and is only
limited by CPU time. Despite its simple nature, DPLL is still the basis of most
modern complete SAT solvers. Over the years, much effort has gone into refining
and improving the baseline DPLL algorithm. This gave rise to a successful class
of algorithms known as Conflict-Driven Clause-Learning (CDCL) algorithms. These
DPLL-based algorithms incorporate a number of additional techniques designed to
speed up the search process. Most prominently, CDCL solvers make extensive use of
encountered conflicts to guide the exploration of the search space. This thesis focuses
on DPLL-CDCL solvers.

When implementing a DPLL solver, two natural questions arise: in what order
should the variables be assigned, and which polarity should be tried first? It did
not take long for researchers to observe that these two decisions can have a dramatic
impact on the performance of backtracking search. Not surprisingly, finding the op-
timal answer to both questions is itself an NP-complete problem, which has spurred
research into so-called variable ordering and value ordering heuristics. While vari-
able ordering has received a lot of attention, value ordering heuristics tend to be less
popular despite their enormous potential (a perfect value ordering heuristic leads to a
solution of a satisfiable formula without any backtracking at all; the same cannot be
said about a perfect variable ordering heuristic). Devising a value ordering heuristic
that is both accurate and efficient has proved to be a daunting task; for this rea-

2

Figure 1.1: Three different Boolean formulas in constraint graph form (the nodes repre-
sent variables, the edges represent binary relationships between the variables). From left
to right: a hand-crafted graph colouring problem (363 variables, 9559 clauses), a small
practical scheduling problem (226 variables, 1078 clauses), a random 3-SAT problem (360
variables, 1530 clauses). Due to their structure, different classes of problems may require
different solving techniques. These graphs were generated using the DPvis visualization
tool (http://www.carstensinz.de).

son, many state-of-the-art solvers opt out of implementing a value ordering heuristic
altogether, and always try a fixed polarity first. The work presented in this thesis
attempts to further our understanding of value ordering heuristics.

SAT is arguably the most important special case of the much larger class of Con-
straint Satisfaction Problems (CSP). Interestingly, CSPs are solved by backtracking
search similar to DPLL, and many concepts such as variable and value ordering also
play a tremendous role in CSP solvers. Since the variables in CSPs can take on more
than two values, value ordering heuristics are more prominent in CSP research than
in SAT research. Unfortunately, there appears to be a growing rift between CSP and
SAT research, and discoveries in the two fields do not always benefit each other.

For a long time, the performance of SAT solvers was evaluated solely on random
formulas, as those are easy to generate and reason about. This led to the discov-
ery of many interesting properties of random formulas such as the phase-transition
phenomenon [CA93], as well as a number of promising variable and value ordering
heuristics. It soon became evident, however, that SAT solvers which excelled at ran-
dom problems did not always do well on real-world problems and vice-versa. Unlike
random formulas, real problems such as scheduling exhibit a great deal of struc-
ture which requires a different approach. For this reason, it has become customary
to evaluate SAT solvers on three separate classes of problems: randomly-generated,
hand-crafted (such as puzzles and graph colouring problems), and application (real-
world problems such as chip verification, cryptography and instruction scheduling).
Figure 1.1 shows three Boolean formulas, each belonging to a different class, in graph
form. The stark difference between the structure of each formula is apparent.

The evolution of SAT solvers is by no means over. SAT-Race1, an annual SAT
competition first held in 2002, has created an active and competitive environment for
SAT research. Each year, participants submit new and modified solvers to SAT-Race,

1http://www.satcompetition.org

3

where their performance is evaluated on a set of standard benchmarks and ranked
against each other. Researchers also contribute benchmarks and technical papers
which help further understanding of SAT algorithms. While SAT-Race primarily
focuses on the classical SAT problem, it also provides dedicated competitions for
many other flavours of Boolean Satisfiability such as Maximum Satisfiability, Minimal
Unsatisfiable Subsets, and Quantified Boolean Formulas.

1.2 Contributions of the Thesis

In this thesis, we propose three novel value ordering heuristics for DPLL-based SAT
solvers and demonstrate their effectiveness on several classes of SAT problems. The
three heuristics determine preferred polarities by first converting the Boolean formula
into a continuous optimization problem, and then applying local search techniques
to approximate the location of the solution. The benefit of this approach is that
there exist infinitely many ways of defining continous optimization problems that in
some way correspond to the SAT instance being solved, which enables us to try and
evaluate many different possible parametrizations. This approach also allows us to
tap into the existing tools of multivariate calculus and a number of well-known iter-
ative optimization techniques. Furthermore, unlike existing heuristics, our approach
computes prefered polarities for all variables at once, which means the heuristic does
not need to be evaluated at every decision node.

In order to define the optimization problems, we translate the exponentially-sized
space of all assignments {True, False}n to the continous domain [0, 1]n correspond-
ing to the unit hypercube. This transformation also offers a convenient geometric
interpretation of the inner workings of each heuristic. The three methods presented
in this thesis differ in their formulation of the optimization problem and the local
search method used.

The first heuristic models the SAT problem as a system of non-linear equations
crafted in a way such that the satisfying assignments of the Boolean formula (if they
exist) correspond to the roots of the system. We then apply Newton’s root-finding
algorithm to this system to approximate the location of the solution, and use this
estimate as the preferred polarity choice. We show that the resulting Jacobian matrix
is sparse, which facilitates an efficient implementation.

The second heuristic represents the problem as a single objective function rather
than a system of equations. This objective function, which we call a conflict potential,
measures the number of clauses conflicting with each possible assignment. If the
formula is satisfiable, there exists at least one corner of the unit hypercube where the
conflict potential is zero. We show that the gradient and the second-order Hessian
matrix of the conflict potential can be computed in closed form, which allows us to
use the quadratically-converging Newton’s Method for scalar functions. We present
two possible ways of defining and implementing the conflict potential.

The third heuristic builds on the idea of conflict potentials by adding a stochastic
element to the search. Instead of using a fixed parametrization, this heuristic samples
a fixed number of related potentials from a distribution of objective functions, and

4

then lets them vote on the best gradient descent direction. The advantage of this
approach is that randomly-sampled conflict potentials have different distributions
of local extrema, which prevents local search from getting trapped in unfavourable
regions of the search space.

We implement these heuristics in the widely-recognized MiniSAT framework [ES04],
and evaluate their performance on a set of standard benchmarks. We compare the
results against the fixed polarity policy, three well-known heuristics: MOMS [Pre96],
Jeroslow-Wang [JW90], and phase-saving [PD07a], as well as six state-of-the-art SAT
solvers. We demonstrate that our heuristics provide a dramatic boost in the accu-
racy of MiniSAT on random instances (up to 85% from 35% of instances solved),
a modest gain in accuracy on application instances (up to 48% from 44%), and a
small decrease in accuracy on crafted instances (down to as low as 39% from 43%).
Unlike many other solvers, MiniSAT equipped with our heuristics performed reliably
across all three benchmark categories. Our heuristics allowed MiniSAT to beat all six
state-of-the-art solvers on crafted and application instances, and three solvers in the
random category.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we formally state the Boolean
Satisfiability Problem, introduce DPLL and CDCL solvers, and define the problem
of value ordering in backtracking search. We also present three well-known iterative
optimization schemes used in this thesis: gradient descent, Newton’s Root-Finding
Method for systems of equations, and Newton’s Method for scalar functions.

In Chapter 3, we review literature related to the problem of value ordering in SAT,
and discuss known heuristics in DPLL, CDCL and lookahead solvers. We also review
existing local search techniques in incomplete SAT solvers, and disucss discrepancy-
based search.

In Chapter 4, we present our three value ordering heuristics based on non-linear
optimization methods.

In Chapter 5, we empirically evaluate our heuristics on random, crafted and in-
dustrial benchmarks used in recent SAT-Race competitions. We discuss the choice of
parameters, analyze the strengths and weaknesses of each approach, and compare the
results to five other value ordering heuristics as well as six state-of-the-art solvers.

In Chapter 6, we conclude our work by highlighting its contributions and sig-
nificant results. We also outline future work and potential enhancements to our
approach.

5

Chapter 2

Background

In this chapter, we provide the necessary background in Boolean Satisfiability and
non-linear optimization, and formally define the problem of value ordering as it per-
tains to DPLL and CDCL solvers. We also outline the features of our base solver
MiniSAT, and discuss viable policies a value ordering heuristic may pursue.

2.1 Boolean Satisfiability

2.1.1 Boolean Formulas

Boolean logic is an intuitive and robust mechanism for reasoning about facts which
are either True or False. Expressions which symbolically represent relationships
between Boolean variables are known as Boolean formulas. More precisely, a Boolean
formula is a mapping of the form F : {True, False}n → {True, False} which contains
Boolean variables v1, v2, ..., vn, brackets, and the operators ∧ (logical and), ∨ (logical
or), and ¬ (logical negation). Each variable can take on one of two values: True
or False. We also refer to the value of the variable as the polarity of the variable.
The polarity is positive if the variable has the value True, otherwise the polarity
is negative. Throughout the thesis, we use the common “bar-notation” to denote
negation: v̄ = ¬v. We also use the notation F [vi = True] and F [vi = False] to
denote a reduced formula; that is, the variable vi is assigned a truth value in F .

If there exists an assignment to the variables which makes the formula evaluate to
True, the formula is said to be satisfiable; otherwise, it is unsatisfiable. A satisfying
assignment is known as a model of the formula. A formula which evaluates to True
under all assignments is known as a tautology. A variable that has the same polarity
in all models of a satisfiable formula is known as a backbone variable.

Example 2.1 (Boolean Formulas). The following expressions are examples of Boolean
formulas. F1 is a satisfiable formula of three variables. F1 has a single model:
(v1, v2, v3) = (False, True, True). F2 is an unsatisfiable formula. F3 is the nega-
tion of F2, and is therefore a tautology. F1[v1 = False] is the reduced form of F1 with
the variable v1 set to False.

6

F1 = v̄1 ∧ (v1 ∨ (v2 ∧ v3))

F2 = (v1 ∨ v2) ∧ (v̄1) ∧ (v̄2)

F3 = (v̄1 ∧ v̄2) ∨ (v1) ∨ (v2)

F1[v1 = False] = (v2 ∧ v3)

2.1.2 Conjunctive Normal Form

Boolean formulas in Conjunctive Normal Form (CNF) are particularly useful for
representing SAT problems. A CNF formula is a conjunction (logical and) of some
clauses, and each clause is a disjunction (logical or) of some literals. A literal is a
variable or its negation.

F =
m∧
i=1

Ci where Ci =
∨
j

lij (2.1)

If a literal is the negation of a variable, the literal is said to be negative; otherwise,
it is positive. By convention, we require that no clause contains a literal and its
negation at the same time. We also recognize a special case in which a clause contains
no literals; this is known as an empty clause. Empty clauses always evaluate to False.
A clause containing a single literal is called a unit clause. A literal which has the same
polarity in all clauses is called a pure literal (or, monotone literal in some literature).
Throughout the thesis, we use n to denote the number of variables in a formula, and
m to denote the total number of clauses.

Example 2.2 (CNF Formulas). The following expressions are examples of Boolean
formulas in Conjunctive Normal Form. F1 and F2 each contain three clauses; F3

contains a single clause. The clause (v̄2) of F2 is a unit clause and v̄3 in F1 is a pure
negative literal.

F1 = (v1 ∨ v2) ∧ (v1 ∨ v̄2) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

F2 = (v1 ∨ v2) ∧ (v̄1 ∨ v̄2) ∧ (v̄2)

F3 = (v̄2 ∨ v̄3)

A CNF formula is satisfied if and only if all of its clauses are satisfied, which
makes CNF formulas a natural way of encoding lists of necessary conditions which
must hold in a given problem. Tseitin [Tse68] showed that any Boolean formula
can be transformed into a corresponding CNF formula in a way which preserves the
satisfiability property, while incurring at most a linear blow-up in the number of
literals. This makes CNF formulas a standard choice for automated theorem proving,
circuit analysis, and electronic design automation algorithms. When used as input
to computer programs, CNF formulas are most commonly encoded in the DIMACS file
format.

7

Example 2.3 (DIMACS File Format). CNF formula F = (v̄1)∧ (v1 ∨ v2)∧ (v̄1 ∨ v̄2)
with n = 2 variables and m = 3 clauses encoded in the DIMACS file format.

p cnf 2 3
-1 0
1 2 0
-1 -2 0

2.1.3 Problems in Satisfiability

We now define one of the most fundamental problems in Boolean logic and the main
topic of this thesis.

Definition 2.1 (Boolean Satisfiability). Given a Boolean formula F (v1, v2, ..., vn), the
Boolean Satisfiability Problem (SAT) is to find an assignment to variables v1, v2, ..., vn
such that F evaluates to True, or to determine that no such assignment exists.

Boolean Satisfiability was the first problem shown to be NP-Complete [Coo71].
The complexity of the problem is exponential in the number of variables and, unless
P=NP, a polynomial time algorithm capable of determining satisfiability of an arbi-
trary Boolean formula does not exist. It should be noted, however, that there exist
CNF formulas which can be solved in polynomial time, most notably 2-SAT (CNF
formulas with two literals in each clause), and Horn-SAT (CNF formulas with at
most one positive literal in each clause). These special forms are known as tractable
subclasses. Much research has gone into identifying such special forms as well as
finding backdoor sets—assignments to variables which reduce Boolean formulas to
tractable subclasses.

Boolean Satisfiability itself is one of the most important subclasses of a much
larger family of problems known as Constraint Satisfaction Problems (CSPs).

Definition 2.2 (Constraint Satisfaction Problem). A CSP is a triple (V,D,C) where
V is a set of n variables, D is a set of variable domains, and C is a set of m
constraints. A solution to a CSP is an assignment to v1, v2, ..., vn where vi ∈ Di

which satisfies all the constraints.

A classic example of a CSP is the game of Sudoku, which can be represented
as 81 variables with domains Di = {1, 2, .., 9} and constraints on variables in the
same rows, columns, and 3 × 3 sub-squares. It is readily seen that SAT is a CSP
where each Di = {True, False}. Both SAT and CSPs are powerful mechanisms for
representing and solving a wide range of problems in artificial intelligence, engineering
and mathematics. Since any CSP problem can be converted to an equivalent SAT
instance through methods such as the direct encoding [DK89] and the support encoding
[Gen02b], advances in SAT and CSPs can mutually benefit each other.

Although we focus on the classic SAT problem in this thesis, it should be noted
that many other types of Satisfiability problems exist. A few notable examples are
Maximum Satisfiability (MaxSAT) which seeks assignments satisfying as many clauses
as possible, Minimal Unsatisfiable Core (MUC) which is the problem of extracting
the smallest unsatisfiable subset of clauses, and Quantified Boolean Formulas (QBF)
which deal with Boolean formulas involving universal and existential quantifiers.

8

2.2 SAT Solvers

Due to the ubiquity of SAT problems in practical applications, efficient SAT solvers
are in high demand. A brute-force algorithm which iterates through all possible
variable assignments, and checks whether each assignment satisfies the formula has
runtime complexity O(2n|F |) where |F | denotes the length of the formula. Clearly,
such a technique is impractical for real-world SAT problems such as FPGA routing
which involve thousands of variables and millions of clauses. Modern SAT solvers
employ a wide range of techniques designed to avoid traversing the entire search
space. Today’s algorithms are capable of solving Boolean formulas with thousands of
variables in mere minutes.

SAT solvers can belong to one of two varieties: complete and incomplete. Incom-
plete solvers are usually stochastic in nature, and cannot guarantee finding a solution
or disproving a formula. They are, however, often used in practice because of their
high efficiency on large instances. Complete solvers, if given enough time, will find a
solution if one exists or disprove the formula. Although we focus on complete solvers
in this thesis, we make use of several concepts used in incomplete solvers.

The input to a solver is a CNF-formula, and the output is a model if the formula
is satisfiable, or UNSATISFIABLE if a model does not exist. Some SAT solvers are
specifically geared toward producing a complete proof of unsolvability known as a
certificate.

2.2.1 Resolution

The history of modern SAT solvers begins with the Davis-Putnam procedure (DPP)
[DP60] which was primarily based on the rule of resolution.

Definition 2.3 (Resolution). In the context of SAT solvers, the rule of resolution
is defined as follows. Given a CNF formula with clauses (v ∨ A) ∧ (v̄ ∨ B) where A
and B are (possibly empty) disjunctions of literals, we can resolve on variable v to
produce the resolvant clause (A ∨B).

It is easy to see why this rule holds. If v = True, the satisfiability of the formula
is determined completely by B. If v = False, the satisfiability of the formula is
determined completely by A. In either case, (A∨B) alone determines the satisfiability
of the formula, and the value of v is irrelevant. Therefore, resolution provides a
method for systematically eliminating variables from a CNF formula. The key step of
the DPP algorithm does just that: for each variable v, the solver forms the resolvants,
and then deletes the original clauses containing v and v̄. A satisfiable formula can
be completely reduced by DPP, while an unsatisfiable formula will eventually resolve
into at least one empty clause.

The downside of resolution is that forming all resolvants for each pair v and
v̄ significantly increases the length of the formula during the variable elimination
process. In other words, the formula blows up before it shrinks. The complexity of
this blowup has been studied in depth. A lower bound was given by Tseitin [Tse68],
and was later improved by Galil [Gal77], and Haken [Hak85]. All research points to

9

the unfortunate fact that in the worst case, the blowup is exponential in the number
of variables, which makes resolution completely impractical for solving large SAT
instances. Earliest implementations of DPP could only handle short formulas with a
handful of variables, especially since RAM was very expensive in those days.

While modern SAT solvers no longer use resolution in its pure form as the primary
solving technique, it still plays a prominent role in many helper algorithms such as
formula preprocessing and simplification, clause learning and local search. Some
recent work has been done to integrate resolution back into the main SAT solving
process [ZHG11].

2.2.2 DPLL

Since resolution has an exponential memory requirement, it is prohibitively expen-
sive for solving large practical formulas. This limitation was lifted by Loveland and
Logemann [DLL62] who modified DPP into what is now known as the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm. Unlike its predecessor, DPLL uses a linear
amount of memory, and is only limited by CPU time. DPLL forms the basis for the
vast majority of modern complete SAT solvers; it is also the algorithm we focus on
in this thesis.

The idea behind DPLL is based on resolution, but rather than forming the re-
solvants explicitly, the algorithm employs the so-called splitting rule. At each step,
DPLL chooses an unassigned variable and assigns it to either True or False. This
step is called branching on a decision literal. If all clauses are satisfied by the assign-
ment, the algorithm has found a model and terminates. If on the other hand, the
assignment violates at least one clause, the algorithm is said to have encountered a
conflict and backtracks one level to try the opposite polarity of the decision literal.
If DPLL exhausts all branches, the formula is determined to be unsatisfiable. DPLL
therefore treats the search space as a binary tree which is systematically explored in
a depth-first manner. Because complete resolvants are not generated, the formula al-
ways gets shorter when a decision variable is assigned; this guarantees a linear bound
on the amount of memory required. A simple illustration of the DPLL search process
is shown in Figure 2.1.

Unlike the brute force algorithm, DPLL does not wait until all variables are as-
signed before the clauses are checked for consistency; instead, each branch decision is
immediately checked against all clauses, which allows the algorithm to detect conflicts
early on. The checking step is efficiently implemented using watch lists (mappings of
variables to the clauses they appear in). The pseudocode for DPLL is given in Listing
(2.1). UnitPropagate(F, c) assigns the literal of unit clause c in a way that satisfies
c. In doing so, other clauses may become unit, and the procedure is repeated until
no more unit clauses remain. AssignPureLiteral(F, l) simplifies the formula by
assigning a pure literal l to a satisfying value and deleting all satisfied clauses from the
formula. ChooseNextLiteral(F) is responsible for choosing the next branch variable
and its polarity.

It is known that the choice of the decision variable and its polarity has a tremen-
dous impact on the efficiency of DPLL. Well-made decisions guide the algorithm

10

Figure 2.1: A simple example illustrating the backtracking DPLL algorithm. The search
begins with a CNF formula F which depends on Boolean variables v1, v2, v3. DPLL selects
a variable (this decision is known as variable ordering) and a polarity (this decision is known
as value ordering), and performs the splitting rule by assigning the chosen variable to the
chosen polarity. In this example, DPLL chose v1 and True. This produces a shorter formula
F [v1 = True] and the process is recursively repeated. The next decision (v2 = False) leads
to a conflict, and DPLL backtracks one level to try v2 = True. Eventually, DPLL encounters
the reduced formula F [v1 = False, v3 = True] in which all clauses are satisfied. At this
point, DPLL has found a satisfying assignment and the search ends.

towards promising areas of the search space early on which can lead to exponential
savings in the amount of search effort. Perhaps unsurprisingly, choosing the optimal
decision variable is NP-hard, which was shown by Liberatore [Lib00]. Similarly, the
task of choosing the optimal polarity is also in NP (otherwise, any satisfiable formula
could be solved in polynomial time by sequentially assigning each of the n variables).
For these reasons, sophisticated variable ordering and value ordering heuristics have
become central to the design of modern SAT solvers. While variable ordering heuris-
tics have attracted a considerable amount of interest, value ordering heuristics have
drawn less attention. In this thesis we focus on the value ordering process.

2.2.3 CDCL

Much research has gone into improving the performance of the basic DPLL algorithm.
One of the most successful variants of DPLL is the class of so-called Conflict-Driven
Clause-Learning (CDCL) algorithms. In CDCL, some or all of the encountered con-
flicts are analyzed and recorded in the form of new clauses. While these new clauses
are “redundant” in the sense that they are implied by original formula, their structure
may aid the solver in pruning the search space more efficiently. Furthermore, conflict
analysis allows CDCL solvers to backtrack multiple levels at once, which also sig-
nificantly speeds up the search process. This technique, known as non-chronological
backtracking or backjumping, was popularized by early efficient SAT solvers ZChaff
[MMZ+01], and berkmin [NG02]. CDCL solvers also use resolution to simplify learned
clauses, and use information collected from conflicts to drive various aspects of the

11

Algorithm 2.1: DPLL(F)

input : A CNF formula F
output: True if F is satisfiable; False otherwise.

if all clauses of F are satisfied then
return True

else if F contains an empty clause then
return False

foreach unit clause c in F do
F ← UnitPropagate(F , c)

foreach pure literal l in F do
F ← AssignPureLiteral(F , l)

l← ChooseNextLiteral(F)
return DPLL(F ∧ l) or DPLL(F ∧ l̄)

search process such as variable ordering and restarts.
We implemented and tested our heuristics in the MiniSAT 2.2 framework. Mini-

SAT1 [ES04] is a well-documented and robust open-source DPLL-CDCL solver de-
veloped by Niklas Eén and Niklas Sörensson. MiniSAT placed first in the industrial
category in SAT-Race 2005, and is widely-recognized as a solid framework for SAT re-
search. Many state-of-the-art SAT solvers such as GlueMiniSAT and CryptoMiniSAT
were derived from the MiniSAT core. We now briefly outline several of MiniSAT’s
features which are common to many modern CDCL solvers:

• Clause Learning and Subsumption: MiniSAT analyzes and stores all con-
flicts in the form of new clauses. Whenever possible, multiple learned clauses
are combined and replaced with shorter clauses through clause subsumption
based on resolution. For example, two learned clauses (a∨ b∨ c) and (a∨ b∨ c̄)
can be safely replaced with (a ∨ b) by resolving on c. Learned clauses aid the
search process, but also slow down branching because more conflicts need to
be checked at every decision node. To curb the number of recorded clauses,
MiniSAT places a limit on the maximum number of learned clauses. This limit
is raised at a user-defined rate during the search. MiniSAT also regularly purges
a fixed fraction of all learned clauses to prevent memory overflow.

• Restarts: It has been empirically shown that aggressively restarting the search
process improves solver performance on hard problems [Hua07]. Restarts are
designed to prevent the solver from getting trapped in unfavourable regions of
the search space. After restarting, a different sequence of decisions is made.
MiniSAT restarts the search after encountering a certain number of conflicts.
The conflict limit is progressively raised in a special form of the geometric
progression known as the Luby Sequence [LSZ93], which has been shown to be
effective on a wide range of problems.

1http://minisat.se

12

0: 1
1: 1 1 2
2: 1 1 2 1 1 2 4
3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
...

The Luby sequence (×100) defines restart limits in MiniSAT.

• Activity-based Variable Ordering: MiniSAT implements the popular Vari-
able State Independent, Decaying Sum (VSIDS) heuristic for choosing the
next variable to branch on. This heuristic, popularized by the solver Chaff
[MMZ+01], gives preference to variables which occur in more conflicts during
search. Whenever a conflict is encountered, variables belonging to the conflict-
ing clauses are “bumped up” in the priority heap and then gradually decay with
time. The variable with the highest activity score is then selected. The intuition
is that branching on such variables places more restrictions on the search space.

• Phase Saving: Whenever the algorithm backtracks from a conflict, the po-
larities of all variables are cached, and then re-used in future branch decisions.
The intuition is that polarities which have worked in the past may also work
in the future. This mechanism was first proposed by Ginsberg [Gin93] in the
context of CSP solvers, and was later adapted to SAT solvers by Pipatsrisawat
and Darwiche [PD07a].

• Formula Pre-Processor: As of version 2.2, MiniSAT integrates a CNF for-
mula pre-processor called SatELite. This pre-processor attempts to simplify
the input formula through subsumption, self-subsuming resolution and vari-
able elimination before passing it to the main search algorithm. SatELite has
demonstrated a greater than 50% reduction in the number of literals on many
industrial problems [EB05]. Most modern SAT solvers pre-process their inputs
in a similar manner.

2.2.4 Value Ordering

We now discuss the central topic of our work: value ordering heuristics in DPLL-
CDCL solvers.

Definition 2.4 (Value Ordering in SAT). Value ordering is the problem of deciding
which polarity of the decision variable should be tried first. The optimal choice is one
which results in the fewest number of nodes explored in the DPLL search tree.

Although we seek a heuristic which minimizes the size of the search tree, we must
recognize that if the computational cost of the decision outweighs the benefits of the
reduced search tree, a value ordering heuristic is useless in practice. Balancing the
cost and the reward of heuristics is notoriously difficult, which has led many SAT
solvers to not implement a value ordering heuristic at all (for example, MiniSAT
always branches on False). Heuristics can be static (that is, computed once before
the search begins), or dynamic (computed at all, or some decision nodes during
the search process). Ideally, we seek a heuristic that is as accurate and as efficient

13

as possible, which is a challenging task, because finding an optimal heuristic is as
difficult as solving the original SAT problem itself.

In theory, value ordering can be significantly more powerful than variable ordering:
an ideal value ordering heuristic always leads to the model of a satisfiable SAT prob-
lem without any backtracking at all; this result does not hold for variable ordering
heuristics.

When enumerating all solutions in DPLL search, the choice of polarity does not
matter because all subtrees must be explored independently. By the same argument,
the choice of polarity is irrelevant for unsatisfiable formulas. In CDCL search, how-
ever, the choice of polarity always matters, because different decisions lead to different
learned clauses which directly affect future search space exploration.

There are several objectives a value ordering heuristic may pursue:

• Promise: The heuristic may choose polarities which appear to lead to a solution
faster. This involves estimating the number of solutions in each subtree at the
decision variable. If the formula is unsatisfiable, this method may be detrimental
to the overall performance.

• Fail-First: Alternatively, the heuristic may pursue polarities which appear to
lead to a conflict as soon as possible. This allows DPLL to quickly eliminate
parts of the search space and enables CDCL to learn shorter conflict clauses
which may be beneficial in future.

• Formula Reduction: The heuristic may pursue polarities which simplify the
formula as much as possible. In doing so, the heuristic attempts to reach ei-
ther a conflict or a solution in the fewest number of decisions. This is usually
accomplished by a greedy choice (for example, the polarity which falsifies more
clauses).

• Better Learned Clauses: The heuristic may pursue polarities which end up
generating “better” learned clauses. Good learned clauses help decrease the
total number of nodes explored in the future, however defining what “good”
means is difficult, and is up to the algorithm (for example, shorter clauses or
clauses containing more active variables).

• Other Objectives: The heuristic may choose polarities which accomplish some
other objective that leads to a reduction in search effort. These may include
polarities which allow backjumping farther, identify backbone variables, or dis-
cover backdoor sets.

2.3 Nonlinear Optimization

The heuristics presented in this thesis rely heavily on iterative methods for optimiza-
tion of non-linear functions. In practice, most non-linear equations cannot be solved
analytically and one must fall back on approximate methods and iterative local search

14

schemes. We review two first-order optimization schemes: gradient descent and New-
ton’s Method for systems of equations and a second-order formulation of Newton’s
Method for scalar equations.

2.3.1 Gradient Descent

A common task in computer science and other fields is minimizing some cost function
f(x), where x = (x1, x2, ..., xn)T is a vector of n continuous variables2. Alternatively,
we may seek to maximize some reward function. In either case, our goal is to optimize
some given objective function. Without loss of generality, we focus on minimization
techniques, as any maximization problem can be turned into a minimization problem
by multiplying the objective function by −1. In a minimization problem, we seek an
optimal parameter x∗ such that,

x∗ = arg min
x

f(x)

Finding the global minimum of the objective function is usually difficult, and
one has to rely on local search methods to obtain an approximate answer. Gradient
descent (also known as steepest descent) is one of the simplest and best-known meth-
ods for local minimization on continuous and differentiable functions. This method
is based on a simple observation that at any given point x, a differentiable func-
tion increases the fastest in the direction of its gradient ∇f(x) = (∂f

∂x1
, ∂f
∂x2
, ..., ∂f

∂xn
)T .

Steepest descent begins with an initial guess x0, and iteratively refines it by going
against the gradient in order to locally minimize the objective function as much as
possible at each step. Typically, the gradient is multiplied by a small step size λ ≤ 1
to avoid “overshooting” a potential solution. The algorithm repeats until it exceeds
the maximum allowed number of iterations, or satisfies some user-defined stopping
criteria (for example, the gradient reaching a near-zero magnitude). In our heuristics,
we do not define any stopping criteria other than the maximum iteration limit. The
primary motivation behind this decision is the large computational cost associated
with computing the gradient of the objective function. As explained in Chapter 4, the
objective functions used in our approach often contain hundreds of thousands of terms
depending on the Boolean formula being solved. In our preliminary tests, we have
observed that the cost of computing a stopping condition typically outweighs its ben-
efits. For the same reason, we chose not to implement any algorithm for dynamically
adjusting the step size (such as line search).

The pseudocode for the algorithm is given in Listing 2.2.
Like all local search methods, gradient descent does not guarantee finding the

optimal assignment x∗. If the objective function is highly non-linear, or if the initial
guess x0 is chosen poorly, the search may easily get trapped in a local minimum. This
method may also “overshoot” a solution if the step size λ is too big.

The main advantages of gradient descent are that it has few parameters and
is extremely efficient when the partial derivatives ∂f

∂xi
are known in closed form. In

2In this section, we treat all vectors as column vectors to make equations more readable.

15

Algorithm 2.2: Gradient Descent(f(x),x0)

input : Objective function f(x), an initial guess x0

output : x which locally minimizes f(x)
parameters: Step size λ and the maximum number of iterations max iterations

x← x0

for iteration← 1 to max iterations do
x← x− λ∇f(x)

return x

practice, this is not always the case, and one has to approximate the partial derivatives
using techniques such as forward differencing. Fortunately, as we show in Chapter 4,
the partial derivatives used in our heuristics can be computed in closed form, which
allows us to use gradient descent in its original formulation.

2.3.2 Newton’s Method For Systems of Equations

Newton’s Method is an extension of the gradient descent method for finding roots
of a system of coupled equations f(x) = (f1(x), f2(x), ..., fm(x))T . Specifically, it
aims to find an assignment to variables x = (x1, x2, ..., xn)T such that fi(x) = 0 for
all i = 1..m by iteratively refining an initial guess x0. As with gradient descent, we
require each fi to be continuous and differentiable on the domain of local search.

To obtain the iterative scheme, we first perform a first-order Taylor series expan-
sion of f around xi:

f(xi+1) ≈ f(xi) + J(f)(xi)(xi+1 − xi)

where J(f)(xi) is the m×n Jacobian matrix of first-order partial derivatives of each
objective function in the system of equations:

J(f)(xi) =



∂f1
∂x1

(xi)
∂f1
∂x2

(xi) · · · ∂f1
∂xn

(xi)

∂f2
∂x1

(xi)
∂f2
∂x2

(xi) · · · ∂f2
∂xn

(xi)

...
...

. . .
...

∂fm
∂x1

(xi)
∂fm
∂x2

(xi) · · · ∂fm
∂xn

(xi)


(2.2)

To find the roots of the system, we set f(xi+1) = 0, where 0 is a column vector
of zeros, and solve the system for xi+1 to obtain the update step:

0 = f(xi) + J(f)(xi)(xi+1 − xi)

16

0 = [J(f)(xi)]
−1f(xi) + (xi+1 − xi)

xi+1 = xi − [J(f)(xi)]
−1

In practice, inverting the Jacobian is computationally expensive and error-prone.
It is more efficient to rewrite the above equations in terms of an optimization step
∆x ≡ xi+1 − xi as follows:

0 = f(xi) + J(f)(xi)∆x

J(f)(xi)∆x = −f(xi)

The resulting linear system of equations can be solved for ∆x using a robust algorithm
such as Gaussian elimination, LU-decomposition or QR-factorization. Once ∆x is
found, it is used to update the current estimate xi. As with gradient descent, ∆x is
usually multiplied by a small step size λ ≤ 1 to avoid overshooting a solution. The
algorithm repeats for a fixed number of iterations, gradually refining the initial guess.
Additional stopping criteria can be added to the algorithm if one wishes to avoid
executing unnecessary iterations. For example, one could stop the search if a root of
the system has been found (f(xi) = 0), or if the current estimate xi is sufficiently
close to a root of the system (the magnitude of each component of f(xi) is within
some small user-defined threshold ε). However, in the context of our heuristics, we
observed that this algorithm virtually never finds the roots on its own (unless used
on small toy instances). This observation, together with the high cost of computing
f(xi) at each iteration, led us to drop any stopping criteria (other than the limit on
the number of iterations) from our implementation. The pseudocode for the algorithm
is given in Listing 2.3.

Algorithm 2.3: Newton’s Method For Systems of Equations(f(x),x0)

input : A system of equations f(x) and an initial guess x0

output : x which locally approximates f(x) = 0
parameters: Step size λ and the maximum number of iterations max iterations

x← x0

for iteration← 1 to max iterations do
Solve J(f)(x)∆x = −f(x) for ∆x
x← x+ λ∆x

return x

Newton’s Method suffers from the same limitations as basic gradient descent: it
is sensitive to the initial guess x0 and the “smoothness” of the objective functions fi.
If the objective functions are highly non-linear, the Jacobian J may easily become
near-singular and computationally unstable, at which point the approximation to xi
quickly diverges.

17

Figure 2.2: Comparison of gradient descent and Newton’s Method when used to minimize
the same objective function. The starting point of the search is in the lower right corner.
The darker areas of the graph correspond to lower values of the objective function. Newton’s
Method converges in only 4 iterations, while gradient descent converges in 22 iterations due
to excessive “zig-zag” steps caused by local linearization of the objective function. Diagram
by Simon J.D. Prince [PRI12].

2.4 Newton’s Method for Scalar Functions

Newton’s Method can also be used to optimize scalar functions rather than systems
of equations. In this formulation (sometimes referred to as the Newton-Raphson
Method), this local search technique is similar to gradient descent, but converges
much faster in practice. Whereas gradient descent uses a first-order Taylor expansion
of the objective function, Newton’s Method uses a second-order expansion, and locally
approximates the objective function as a quadratic polynomial.

One major weakness of gradient descent is that it often ends up approaching a local
minimum in a “zig-zag” pattern (see Figure 2.2), which requires many small steps
to converge. Newton’s Method, on the other hand, uses the curvature information
of the objective function (obtained from the second-order partial derivatives) to take
a more direct route to its target. The convergence rate is provably quadratic; if the
objective function is a quadratic polynomial itself, the method converges in a single
step (assuming step size λ = 1). The tradeoff between the two methods is that
Newton’s Method is more computationally expensive per step, as it requires solving
a linear system of equations at each iteration.

We once again consider an objective function f(x), where x is the n× 1 column
vector (x1, x2, ..., xn)T . To obtain the iterative scheme, we consider the second-order
Taylor expansion of the objective function f(x) around an initial guess xi,

f(xi+1) ≈ f(xi) +∇f(xi)
T (xi+1 − xi) +

1

2
(xi+1 − xi)TH(f)(xi)(xi+1 − xi),

where ∇f(xi) is the gradient (n × 1 column vector of first-order partial derivatives
of f) evaluated at the point xi, and H(f)(xi) is the Hessian matrix of second order
partial derivatives of f evaluated at the point xi:

18

H(f)(xi) =



∂2f
∂x21

(xi)
∂2f

∂x1 ∂x2
(xi) · · · ∂2f

∂x1 ∂xn
(xi)

∂2f
∂x2 ∂x1

(xi)
∂2f
∂x22

(xi) · · · ∂2f
∂x2 ∂xn

(xi)

...
...

. . .
...

∂2f
∂xn ∂x1

(xi)
∂2f

∂xn ∂x2
(xi) · · · ∂2f

∂x2n
(xi)


(2.3)

At any local minimum of a quadratic polynomial, the gradient vanishes. To find
the local minimum of the quadratic approximation of f(x), we take the gradient with
resepect to xi+1, set it equal to 0, and solve for xi+1:

∇f(xi+1) ≈ ∇f(xi) +
1

2
H(f)(xi)(xi+1 − xi) +

1

2
H(f)(xi)

T (xi+1 − xi),

which can be simplified further since the Hessian matrix is symmetrical for any twice-
differentiable function (as is the case here):

∇f(xi+1) ≈ ∇f(xi) +H(f)(xi)(xi+1 − xi)

0 = ∇f(xi) +H(f)(xi)(xi+1 − xi)

xi+1 = xi − [H(f)(xi)]
−1∇f(xi)

Inverting the Hessian matrix is a costly process in practice. For this reason, it is
more convenient to rewrite the above equation in terms of the incremental step ∆x ≡
xi+1 − xi. This incremental step is known as the Newton direction, and is equal to

∆x = [H(f)(xi)]
−1∇f(xi)

The Newton direction can be obtained (or approximated) by solving the following
system of equations using any robust algorithm for linear systems.

H(f)(xi)∆x = ∇f(xi)

As with the other two optimization methods, the Newton direction is multiplied by
a small step size λ ≤ 1. The pseudocode for the algorithm is given in Listing 2.4.

In practice, the Hessian matrix is rarely available in closed form, and needs to
be approximated by so-called Quasi-Newton Methods such as the Davidon-Fletcher-
Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms. Fortu-
nately, as we will show in Chapter 4, the Hessian matrix used in our heuristics can
be easily computed in closed form which allows us to use Newton’s Method directly.

19

Algorithm 2.4: Newton’s Method For Scalar Functions(f(x),x0)

input : Objective function f(x) and an initial guess x0

output : x which locally minimizes f(x)
parameters: Step size λ and the maximum number of iterations max iterations

x← x0

for iteration← 1 to max iterations do
Solve H(f)(x)∆x = ∇f(x) for ∆x
x← x+ λ∆x

return x

2.5 Summary

In this chapter, we have reviewed Boolean formulas, backtracking SAT solvers, and
formally defined the problem of value ordering in DPLL-CDCL search. We have also
outlined three methods for non-linear optimization which will serve as the basis for
our value ordering heuristics. In the next chapter, we review literature related to
value ordering in DPLL, CDCL and lookahead solvers, and discuss local search and
discrepancy based search methods.

20

Chapter 3

Related Work

In this chapter, we review literature relevant to the problem of value-ordering in
Boolean Satisfiability. We discuss known static and dynamic heuristics used in DPLL
and CDCL search, explain the intuition behind them and comment on their effective-
ness. We also briefly touch on local search methods in incomplete SAT solvers, as
well as discrepancy based search.

3.1 Simple Ordering Policies

As mentioned in the previous chapter, SAT value-ordering heuristics are less widely
used than variable-ordering heuristics. The amount of research in this area has been
on a decline since the late 1990’s and it seems that no consensus has been reached
on what a “good” generic value-ordering heuristic should be. Earlier work focused
on identifying polarities which simplified the formula the most, while more recent
heuristics are based on lookahead methods, problem relaxation and learning.

Many solvers opt out of implementing a value-ordering heuristic altogether. For
example, our base framework MiniSAT and many other state-of-the-art solvers resort
to fixed branching schemes. Earlier versions of MiniSAT allowed the user to specify
one of three static branching behaviours: {False, True, Random}, however newer
versions have eliminated this option and always branch on False first. According
to MiniSAT’s developers [MVVW06], this change is due to the fact that branching
on False is empirically better on most standard benchmarks. This is likely a by-
product of the instance encoders (algorithms which translate problems into a SAT
formulation).

A slightly more advanced scheme is used in RSAT [PD07b]. This solver always
tries the last cached polarity of a variable first (initially all variables are set to False).
The intuition is that if a given polarity was successful before, it may be successful
in another part of the search space. This concept has proved to be effective on a
range of problems and was adopted by many SAT and CSP solvers (for example, the
phase-saving feature in MiniSAT).

21

3.2 Literal Ordering

In SAT, value-ordering heuristics rarely appear on their own; rather, they are bundled
into literal-ordering heuristics which pick a decision variable and a corresponding
value at the same time. Literal-ordering heuristics typically begin by computing two
scores h(v) and h(v̄) for each variable v; then, the two scores are used to rank the
polarity, and their combination H(h(v), h(v̄)) is used to rank the variable.

The best known literal selection heuristics are Jeroslow-Wang, MOMS and BOHM.
All three are based on the notion that literals which appear in shorter clauses are
preferable because branching on them is more likely (at least in the short term) to
lead to unit propagations, formula simplification and ultimately, a conflict or a solu-
tion. These heuristics have a low computational cost which allows them to be used
dynamically.

The Jeroslow-Wang heuristic [JW90] is a popular scheme that favours literals in
shorter clauses. For a literal l, the score h(l) is defined as,

h(l) =
∑
i : l∈Ci

2−|Ci|,

where |Ci| denotes the number of literals in clause Ci and the sum is over all clauses
Ci which contain the literal l. If h(l) > h(l̄), the heuristic branches on l, otherwise
it branches on l̄. The intuition is as follows: since there are 2n possible variable
assignments in the search space, a clause of length |Ci| eliminates exactly 2n−|Ci|

assignments. For example, in a three-variable formula F (a, b, c) the clause (a) elimi-
nates 4 out of 8 possible assignments, while the clause (a∨ b) only eliminates 2. The
heuristic then greedily chooses the literal with the highest sum of potential reductions
over all clauses. Jeroslow-Wang is used in the PicoSAT solver where it has demon-
strated performance gains over other value ordering heuristics [Bie08]. The idea of
scaling clauses by powers of 2 was first introduced by Johnson [Joh73] in the context
of MAX-SAT.

Several variants of Jeroslow-Wang have been studied. Hooker and Vinay [HV95]
propose the Two-Sided Jeroslow-Wang heuristic, which first selects the variable with
largest h(l)+h(l̄) and then branches on l if h(l) > h(l̄) and on l̄ otherwise. Van Gelder
and Tsuji [VGTUoC95] use the same approach in their DSJ algorithm, but select the
variable which maximizes the product h(l) ·h(l̄). These modifications are designed to
give additional preference to variables that occur frequently, and are therefore more
likely to reduce the formula in the short term.

Pretolani’s [Pre96] MOMS heuristic is an acronym for “Maximum Occurrences on
clauses of Minimum Size”. As the name suggests, MOMS selects a literal which occurs
most frequently in unsatisfied clauses that have the shortest length in the formula.
Pretolani examines MOMS on a range of random problems and concludes that the
heuristic performs best when the formula contains a high number of binary (two-
literal) clauses and when the polarity of the decision literal is chosen in a way that
falsifies as many clauses as possible (fail-first policy). This observation was reported
for both satisfiable and unsatisfiable instances.

22

The BOHM heuristic [BB92] can be thought of as a more informed version of
MOMS. BOHM also prefers literals that occur in short clauses, but takes into ac-
count clauses of all sizes rather than just the clauses of minimum length. The al-
gorithm selects variable v having the maximal vector (H1(v), H2(v), ..., Hs(v)) under
the lexicographic order, where s is the length of the longest clause, and Hi is defined
as,

Hi(v) = α max(hi(v), hi(v̄)) + β min(hi(v), hi(v̄)),

where hi(v) is the number of clauses of length i which contain v. The authors use
weights α = 1 and β = 2. Since Hi(v) = Hi(v̄), the polarity of the decision variable
is then selected as follows: v is chosen over v̄ if,∑

i

hi(v) >
∑
i

hi(v̄).

Many variations of MOMS and BOHM exist, and both have shown to be successful on
random and structured problems (for example, see the study conducted by Freeman
[Fre95]).

Two simple heuristics based on literal counting are proposed by Marques-Silva
[Ms99]. Let Cp and Cn be the number of unsatisfied clauses containing v and v̄
respectively. Dynamic Largest Combined Sum (DLCS) first selects a variable for
which Cp +Cn is maximum, and then branches on v if Cp ≥ Cn, and on v̄ otherwise.
Dynamic Largest Individual Sum (DLIS) is identical to DLCS, except that the variable
is selected based on the largest value of Cp and Cn, rather than their sum. Both
heuristics prefer literals which occur more frequently, in hope of reducing the formula
quickly. DLCS and DLIS were successfully used in the GRASP solver. The author
also presents a study of several well-known literal-ordering heuristics and notes that
heuristics like MOMS can be overly-greedy and are often outperformed by random
polarity selection.

A very different approach to literal selection is presented by Bruni and Sassano
[BS01]. Their Clause Hardness Adaptive Evaluation heuristic chooses literals in a
way that satisfies “hard” clauses first. The “hardness” of a clause Ci is defined as,

H(Ci) =
si + p× fi
|Ci|

,

where si the number of times the clause has been encountered during search, fi is the
number of times Ci failed, and p is an empirically-determined clause penalty. At each
step, the clause with highest “hardness” estimate H is chosen, and its literals are
instantiated in a way to satisfy it. Intuitively, short clauses which are visited often
and fail frequently are hard to satisfy, and thus place more restrictions on the literals
contained in them. This heuristic was specifically designed towards unsatisfiable
instances, and was successful at extracting unsatisfiable cores from the DIMACS
benchmark set and a data collecting problem.

Hsu et al. [HMBM08] achieved some success in identifying the polarity of backbone
variables (variables which have the same polarity in all solutions) by probabilistically

23

inferring the bias (tendency of a variable to be either positive or negative) from a
pool of known solutions.

Heule et al. [HvM08] also successfully exploit observed statistical bias on random
k-SAT problems. The authors examine search trees produced by several well-known
value-ordering heuristics and measure the distribution of solutions in individual sub-
trees. The observed bias is then extrapolated to new instances. The authors propose
a novel backjumping mechanism called distribution jumping (back-jumping to a sub-
tree more likely to contain a solution based on the observed bias), and implemented
it in the march ks solver. The algorithm performed well on random instances, but
showed no improvement on real-world problems.

3.3 Lookahead Value Ordering

We now examine value-ordering techniques based on lookahead. Lookahead solvers
are DPLL-based algorithms which make their branching decisions by examining the
immediate effect of setting individual variables to True or False. Specifically, for
each variable v, a lookahead solver performs two unit propagations to obtain re-
duced formulas F [v = False] and F [v = True]. The resulting formulas are then
compared to the original formula F by some difference measure Diff(F, F ′) which
aids in deciding which of the literals should be branched on. The two estimates
L ≡ Diff(F, F [v = False]) and R ≡ Diff(F, F [v = True]) are usually combined

using some mixing function MixDiff(L,R) to rank the variable. In most solvers,
MixDiff is simply the product of L and R.

Lookahead is a powerful technique because it lets the algorithm see one step ahead
of the search process. Unfortunately, examining all variables at each step is usually
too expensive. For this reason, most lookahead solvers operate on small subsets
of promising variables. The variable pre-selection step is also heuristic in nature.
Unlike CDCL algorithms, lookahead solvers do not record conflict clauses. For this
reason, lookahead heuristics typically select promising branches, rather than fail-first
branches. The main objective of lookahead heuristics is to ensure the search tree is
small and balanced.

The first lookahead solver with these features was POSIT [Fre95]. The branching
heuristics of this solver are heavily inspired by MOMS which was one of the few
known heuristics at the time. The solver branches on v if v occurs in more clauses of
minimum length than v̄, and on v̄ otherwise. The variable-ordering heuristic involves
several intricate tie-breakers, but for the most part also follows the MOMS paradigm.

Another highly successful lookahead solver based on clauses of minimum length
is SatZ by Li and Anbulagan [LA97]. In this solver, Diff(F, F ′) is defined as the
number of clauses of minimum size in F ′ but not in F , and the mixing function is,

MixDiff = 1024× LR + (L+R).

The sum L+R is used for tie-breaking, while the factor 1024 is used to give preference
to the product LR, and is otherwise arbitrary. The variable with the highest MixDiff

24

is chosen in hopes of reducing the formula quickly. The value-ordering heuristic always
branches on True.

Dequen and Dubois [DD04] describe kcnfs, a lookahead solver specifically tar-
geted for solving satisfiable random k-SAT problems. While the variable selection is
based on a rather involved Backbone Search Heuristic (BSH), the variable-ordering
heuristic simply branches on v if v occurs more often than v̄ and on v̄ otherwise.
This approach is reminiscent of literal-ordering heuristics DLCS and DLIS discussed
earlier.

Mpekas et al. [MVVW06] describe a hybrid SAT solver which combines lookahead
techniques and CDCL search in the MiniSAT framework. The branching heuristic
ranks the literals by their “reduction quality” (the literal’s potential to simplify the
formula) defined as,

RQ(l) = lq(l)lq(l̄) + lq(l) + lq(l̄),

where lq(l) is the “literal quality” of l. The Propagations Based Heuristic (PBH)
defines the literal quality as,

lq(l) = |IUP (l)|,

where IUP (l) is the set of all literals assigned during unit propagation on literal l.
The more literals are forced to assume a value as a result of l, the stronger the literal
quality. The Ternary Clauses Heuristic (TCH) defines the literal quality as,

lq(l) =
∑

xi∈IUP (l)

1 + w(xi),

where w(xi) = #occ3(x̄i) is the number of 3-literal clauses containing x̄i. By including
the weight w(xi), TCH takes into account the number of binary clauses that are
created after branching on l. Intuitively, literals which fix many literals and create
a lot of short clauses have more potential to reduce the formula. TCH can be seen
as looking one step ahead of BPH. Whereas most lookahead heuristics are promise-
based, this hybrid solver performed best with a fail-first approach which combined
PBH with branching on literals with the highest reduction quality first.

A relaxation lookahead heuristic is used by Kullmann [Kul02] in OKsolver. At the
decision variable, the heuristic prefers the polarity whose resulting formula minimizes∑

k≥2

−|Qk|ln(1− 2−k),

where Qk denotes the set of all clauses of length k. Kullman shows that this sum
is proportional to the probability that a random Boolean formula of the same size
is falsified by a random assignment. In other words, the heuristic approximates the
formula by a random formula having the same structure, and selects a value which is
more likely to satisfy it.

The solver march eq, developed by Heule et al. [HDVZVM05], is one of the most
efficient lookahead solvers inspired by SatZ. This solver chooses the variable having
the maximal product LR, and branches on v if L < R and on v̄ otherwise. The

25

difference measure Diff is defined as,

Diff(F, F [l]) = |B(l)|+
∑

Qi∈C(l)

eq(|Qi|),

where eq(k) = 5.5 × 0.85k and C(l) is the set of all equivalence clauses1 reduced
during unit propagation, eq(k) is an empirically-determined clause weighting function,
and B(l) is the set of all newly-created binary clauses after unit propagation on
l. Intuitively, march eq prefers variables which create a lot of binary clauses, and
affect a large number of equivalent literals. The choice of polarity, on the other
hand, minimizes short-term reductions in hopes of finding a solution (promise policy).
march eq performs well on random and crafted instances.

3.4 Local Search in SAT

Although we focus on complete solvers in this thesis, the heuristics presented in the
next chapter borrow several concepts from incomplete SAT solvers. Specifically, our
heuristics are based on local search, and use the number of unsatisfied clauses as the
primary objective function; both of these properties commonly appear in incomplete
SAT solvers. For this reason, we provide a brief overview of existing SAT solvers
based on local search.

As stated previously, incomplete solvers do not guarantee finding a solution, nor
can they disprove a formula. This class of solvers typically begins with a random
guess, which is gradually refined until a satisfying assignment is found, or the al-
gorithm gives up. The development of incomplete SAT solvers began in the early
1990’s, when very large instances of the famous N -Queens problem were successfully
solved using local search techniques [MJPL90]. Local search quickly garnered interest
from researchers, as it was able to solve instances which were beyond the reach of
complete solvers available at the time. Local search also attracted interest because it
could be readily adapted to tackle the closely related Maximum Satisfiability problem
(MAX-SAT).

Selman el al. [SLM92] developed the highly influential incomplete SAT solver
GSAT and showed that it outperformed many backtracking algorithms on random
and crafted graph colouring instances. GSAT is based on a simple greedy variable
“flip” (polarity switch) procedure. The algorithm begins with a random variable
assignment. If the assignment satisfies the formula, the algorithm has found a model
and terminates. Otherwise, the algorithm selects a variable which, once flipped,
causes the largest number of unsatisfied clauses to become satisfied. This process
is repeated until all clauses are satisfied, or the maximum number of iterations is
exceeded.

GSAT effectively minimizes the following objective function: each of the 2n assign-
ments is labeled with a number between 0 and m corresponding to the number of

1Equivalence clauses are of the form (li ↔ lj ↔ ...↔ lk) and represent equivalence relationships
between literals. These clauses are derived in a pre-processing step.

26

clauses the assignment is in conflict with. A satisfying assignment (if one exists) has
no conflicts, and thus has the value 0. The algorithm aims to find such an assignment,
by always making a greedy choice among the n neighbours of the current estimate
(each neighbour corresponding to a single variable flip). In this formulation, a local
minimum is an assignment whose all n neighbours conflict with more clauses than the
assignment itself. It has been observed that local search rarely gets trapped in local
minima when n is large; instead, the algorithm spends a lot of time making “sideways
moves” (variable flips which neither improve nor worsen the current estimate). These
areas of the search space have become known as “plateaus”, and the research effort
has shifted towards escaping plateaus quickly [SKC94].

Inspired by simulated annealing [KGJV83], the WalkSAT algorithm [SKC93] added
a random walk strategy to the basic GSAT framework. The new algorithm used a user-
defined noise parameter 0 ≤ p ≤ 1 to add randomized moves to the search process.
In addition, all flips were restricted to unsatisfied clauses only. These seemingly
minor tweaks have enabled WalkSAT to escape plateaus extremely quickly, and made
WalkSAT the basis for some of the most powerful incomplete solvers used today.

The pseudocode for WalkSAT is presented in listing 3.12. The algorithm’s local
update step functions as follows: let the penalty of a variable be defined as the
number of currently satisfied clauses which would become falsified if the variable is
flipped. If a penalty-free flip can be made, WalkSAT performs it. Otherwise, the
algorithm chooses an unsatisfied clause C; then, with probability p, the algorithm
flips a random variable in C, and with probability 1 − p flips a variable in C which
incurs the smallest penalty. When p = 1, the algorithm executes a pure random walk
if a penalty-free step is not available. It has been shown that a single choice of p can
work well across multiple instances from the same category of problems. For example,
Kroc et al. [KSS10] conduct an empirical study on the noise parameter.

Modern variants of the WalkSAT architecture employ a variety of tweaks and mod-
ifications designed to speed up local search. The diversity of these algorithms is
vast; we briefly highlight the Novelty family of algorithms which has been very suc-
cesful in recent SAT-Races. Novelty [MSK97] introduced a tie-breaking procedure
to WalkSAT by choosing the most recently flipped variable in case of a penalty tie.
Novelty+ [Hoo99] added a second probabilistic parameter to the algorithm which in-
dependently governs the random walk. AdaptNovelty+ [Hoo02] automatically tunes
the noise parameter p: whenever the algorithm finds itself stagnant, the noise is grad-
ually increased to help escape plateaus; eventually, the noise is lowered again. G2WSAT

[LH05] ties Novelty with the concept of Tabu search [G+89] which temporarily black-
lists variables which do not strictly decrease the objective function.

Several alternative approaches to the WalkSAT architecture have been studied,
most prominently Dynamic Local Search (DLS). In DLS, clauses are assigned non-
negative weights, and the objective function is usually defined to be the weighted sum
of the unsatisfied clauses. As the search progresses, the weights are manipulated in
such a way that the plateaus and local minima are “flooded” to reduce the chance

2Uniform(0, 1) returns a number randomly sampled from the uniform distribution between 0 to
1.

27

of getting trapped in them again. This concept gave rise to a vast diversity of algo-
rithms such as the Breakout Method [Mor93] and Scaling and Probabilistic Smoothing
(SAPS) [HTH02]. We forego the detailed discussion of these methods as they are less
relevant to our heuristics. More information and practical implementations of many
of these algorithms can be found in the multi-faceted UBCSAT solver3.

Algorithm 3.1: WalkSAT(F)

input : A CNF formula F
output : An assignment which satisfies F , or NOTFOUND
parameters: Iteration limits max tries, max flips, noise parameter p

for i← 1 to max tries do
v ← random Boolean assignment
for j ← 1 to max flips do

if F (v) = True then return v
C ← randomly-chosen unsatisfied clause of F
if some variable vd ∈ C can be flipped without a penalty then

Flip vd

else if Uniform(0, 1) < p then
// Random walk.

Flip a randomly-chosen variable ∈ C.

else
// Best local move.

Flip a variable ∈ C with the lowest penalty.

return NOTFOUND

3.5 Discrepancy Based Search

The last topic we touch on is Discrepancy Based Search. This family of techniques
is concerned not with how branching heuristics should work, but rather with how
branching heuristics should be used in backtracking search. Heuristics are generally
less informed at the top of the search tree and are more likely to make mistakes there.
Unfortunately, a few bad decisions near the root of the search tree can quickly trap
the solver in a large unfavourable region of the search space. While techniques such
as restarts and clause learning may mitigate the effects of early mistakes, discrepancy
based search is specifically designed to address this issue.

A discrepancy is a decision made against the heuristic. Depth-first search (DFS),
which serves as the basis for most complete solvers, always trusts the branching heuris-
tic to make the right decision, and goes against the heuristic only after backtracking.
This makes it extremely costly for DFS to undo mistakes made near the root of the

3http://www.satlib.org/ubcsat/algorithms/index.html

28

tree. To tackle this issue, an alternative to DFS called Discrepancy Based Search was
developed. This technique systematically explores the search tree, but in an order
different from DFS. Discrepancy search acknowledges that heuristics are imperfect,
and purposely goes against the heuristic at some nodes.

Limited Discrepancy Search (LDS) proposed by Harvey and Ginsberg [HG95] laid
the foundation for this class of algorithms. LDS explores the search tree by progres-
sively raising the limit on the number of allowed discrepancies. On the first iteration,
LDS visits the path which completely adheres to the heuristic. On the second iter-
ation, LDS visits all paths which contain at most one discrepancy (“wrong turn”).
The process is repeated until all paths have been traversed. The last path explored
is the one that goes completely against the heuristic. The authors demonstrate, both
theoretically and empirically, that LDS outperforms DFS when informed branching
heuristics are used. A conceptually identical traversal method was suggested earlier
by Basin and Walsh [BW92], albeit in a less practical formulation.

One drawback of LDS is that it ends up re-visiting many leaf nodes in the search
tree (at iteration k, LDS visits all paths with at most k discrepancies). This re-
dundancy was removed by Improved Limited Discrepancy Search (ILDS) proposed by
Korf [Kor96]. At iteration k, ILDS visits all paths with exactly k discrepancies, which
insures that no leaf node is visited twice.

While LDS and ILDS allow for discrepancies, neither algorithm specifically ad-
dresses the fact that heuristics are more likely to make mistakes at the top of the search
tree. This motivated the development of Interleaved Depth-first Search (IDFS) by
Meseguer [Mes97] and Depth-bounded Discrepancy Search (DDS) by Walsh [Wal97].
These search algorithms bias discrepancies higher up in the search tree. IDFS ef-
fectively runs multiple depth-first searches in parallel, with each search originating
from a different node near the root of the tree. DDS places a limit on the depth
below which discrepancies are not allowed, and progressively lowers this limit with
each iteration. DDS has been shown to significantly outperform DFS and ILDS on
random 3-SAT problems.

We have briefly described the most influential discrepancy search methods. It
should be noted that many variants of these techniques have been studied and inte-
grated into practical solvers. For example, Furcy and Koenig [FK05] describe Lim-
ited Discrepancy Beam Search which combines LDS with beam search techniques
and backtracking, and evaluate it on a range of CSP problems. Mijnders et al.
[MDWH+10] propose Advanced Limited Discrepancy Search (ALDS) which combines
the strengths of LDS and DDS, and successfully use it in a lookahead solver on sat-
isfiable 3-SAT instances.

3.6 Summary

In this chapter, we have reviewed existing value ordering heuristics in DPLL, CDCL,
and lookahead SAT solvers. Most of these heuristics are based on greedy decisions
which appear to lead to either shortening or falsifying the formula in the short term;
other heuristics select polarities by attempting to estimate the probability of finding

29

a solution through relaxation and counting methods. We have also touched on the
subjects of local search in SAT, and discrepancy-based search.

In the next chapter, we propose three novel value ordering heuristics. Unlike
the algorithms outlined in this chapter, our heuristics are based on local search and
non-linear optimization, and are independent of the variable ordering heuristic.

30

Chapter 4

Our Approach to Value Ordering

In this chapter, we present our three value-ordering heuristics based on non-linear
optimization techniques.

4.1 Real-Valued Formulation of CNF

The heuristics presented in this chapter are based on the same basic principle. First,
we transform the CNF formula into an unconstrained optimization problem defined
on a real-valued domain. We then apply an iterative local search method to this
problem to approximate the location of a solution. Finally, we use this approximation
to determine which polarity the DPLL decision variable should take on first. The
heuristics differ in their representation of the problem, and the optimization method
used.

In order to use iterative optimization methods such as gradient descent or New-
ton’s Method, the problem must be ported to a real-valued domain. A natural
choice is to map each Boolean variable vi ∈ {True, False} to a real-valued vari-
able xi ∈ [0, 1]. The optimization domain is therefore the interior and the boundary
of the unit hypercube D,

D = {(x1, x2, ..., xn) : xi ∈ R, 0 ≤ xi ≤ 1},

whose corners correspond to the set of all possible assignments to n Boolean variables.
For example, the assignment v = (True, False, False) of a CNF formula in three
variables corresponds to the point x = (1, 0, 0); the corresponding domain D is shown
in Figure 4.1. While we can always convert vi to xi, converting xi to vi cannot be
done directly if xi is not exactly 0 or 1. In situations like this, the simplest course
of action is to round xi to the nearest Boolean value. As with Boolean variables, we
can “negate” any xi by simply subtracting it from 1. For example, if v3 maps to x3,
v̄3 corresponds to 1− x3.

Now that we have replaced Boolean variables with real-valued ones, we need a way
to convert the Boolean formula into a real-valued optimization problem defined as a
function of x. There are infinitely many ways of accomplishing this transformation,
and the heuristics presented in this chapter demonstrate a few possible choices. The

31

Figure 4.1: The interior of the unit hypercube forms the domain on which we define our
optimization problems. Here, the domain for a formula with n = 3 variables is a regular unit
cube. The 2n corners of the unit hypercube correspond to the set of all possible Boolean
assignments of the n variables.

only restriction for defining the optimization problem is that it should be based on
functions that are continuous and differentiable on D, otherwise local search methods
will not work. Next, we examine each heuristic in detail.

4.2 Method 1: System of Equations

The first method is a direct transformation of a Boolean SAT problem to the real-
valued domain. We first replace each clause C with a real-valued function f whose
roots correspond to the satisfying assignments of C, and then use Newton’s Method
to approximate the solution of the resulting system of equations. Noting that a clause
C = (l1 ∨ l2 ∨ ...∨ lk) is satisfied whenever any of its literals evaluate to True, we can
define a matching real-valued function f as,

f(x) =
∏
l∈C

z(l), where z(l) =

{
1− xu if l = vu

xu if l = v̄u
(4.1)

Since f is a product of several linear functions, any assignment causing at least one
of its factors to become 0 is also a root of f . Notice that any such assignment has at
least one xi ∈ {0, 1} and thus corresponds to a satisfying Boolean assignment of C.
If f evaluates to 0 for a subset of the variables, the values of the remaining variables
are irrelevant and can be set to either 0 or 1.

Example 4.1. The real-valued counterpart of the clause C = (v1 ∨ v̄2 ∨ v̄3) is f =
(1−x1)x2x3. C is satisfied whenever v1 = True or at least one of v2 and v3 is False.
C is falsified only when (v1, v2, v3) = (False, True, True). Similarly, its real-valued
counterpart f evaluates to 0 whenever x1 = 1 or one of x2 and x3 is 0. f evaluates
to 1 only when (x1, x2, x3) = (0, 1, 1)1.

1On the unit hypercube, this is the only choice of x1, x2, x3 for which f evaluates to 1. Outside
the search domain, however, infinitely many such assignments exist, e.g. (x1, x2, x3) = (0, 2, 0.5).

32

A CNF formula F is satisfied if and only if each clause is satisfied. That is,
we seek an assignment v of Boolean variables such that C1(v) = True, C2(v) =
True, ..., Cm(v) = True. We now consider a system of corresponding real-valued
clauses f(x) = (f1(x), f2(x), ..., fm(x)) as defined above. Such a system is “satisfied”
if and only if each real-valued clause evaluates to 0. That is, we seek a vector x such
that f1(x) = 0, f2(x) = 0, ..., fm(x) = 0, or f(x) = 0 for short.

If such assignment x exists, the original formula F is satisfiable, and its model v
can be reconstructed from x by setting vi = True if xi = 1, vi = False if xi = 0.
If xi is neither 0 or 1, vi can be set to an arbitrary Boolean value. This situation
occurs when both polarities of variable vi appear in the model. If x does not exist,
F is unsatisfiable.

In order to find the satisfying assignment, we need to solve the non-linear system
f(x) = 0 with m equations and n variables. Not surprisingly, this is also an NP-
Complete problem [JG79]. While we cannot in general solve such a system in closed
form, we can use iterative optimization techniques to approximate the location of the
solution and then use this information to guide DPLL towards promising areas of the
search space.

The heuristic functions as follows: we first make an initial uninformed guess x0 for
each of the unassigned variables. Since we do not want to bias any variable towards
either 0 or 1, we can choose x0 = (1

2
, 1

2
, ..., 1

2
) as the starting point. Geometrically, this

corresponds to starting the search at the center of the n-dimensional unit hypercube
D. We then apply a fixed number of iterations of Newton’s Method to refine our
estimate. Finally, we round the obtained estimate for x to the nearest corner of the
unit hypercube, which corresponds to a Boolean assignment. We thus obtain a vector
of preferred polarities for all of the unassigned variables at once.

Due to the large size and non-linearity of the problem, it is unlikely that the local
search method alone will solve the system even when a solution exists2. Furthermore,
rounding x to the nearest Boolean assignment is not guaranteed to preserve or im-
prove the current estimate computed by Newton’s Method. Quite often, the rounded
value of x is much worse than the estimate obtained through local search. In practice,
however, this approach can often aid DPLL in making better polarity choices.

In order to use Newton’s Method on the resulting system of equations, we must
first compute its Jacobian matrix Jf(x) whose elements are Jij = ∂fi

∂xj
. In other

words, we need a way of differentiating a real-valued clause f with respect to any
variable xj for j = 1..n. If the variable vj does not appear in the corresponding
CNF clause C, the partial derivative ∂fi

∂xj
simply vanishes. Otherwise, vj appears in

some literal3 p ∈ C. Since f is defined as a product, we differentiate the factor of
f in which xj appears, while keeping all other factors constant. The derivative ∂z(l)

∂xj

follows directly from the definition of z(l).

2For medium and large SAT problems, Newton’s Method usually settles in a local minimum in
under ten iterations.

3Notice that there can be only one such literal, because by definition, a disjunctive clause in a
CNF formula contains each variable at most once.

33

∂f

∂xj
=
∂z(p)

∂xj

∏
l∈C
l 6=p

z(l), where
∂z(l)

∂xj
=

{
−1 if l = vj

1 if l = v̄j
(4.2)

Example 4.2 (Differentiating Real-Valued Clauses). Consider the real-valued clause
f = (1− x1)x2x3 from the previous example. Assume that the system of equations in
which it appears has four variables: x1, x2, x3, x4. The corresponding partial deriva-
tives are: ∂f

∂x1
= −x2x3, ∂f

∂x2
= (1− x1)x3, ∂f

∂x3
= (1− x1)x2 and ∂f

∂x4
= 0.

So far, we have presented this heuristic as following the promise paradigm (that
is, its primary objective is to approximate the location of the satisfying assignment),
but we can also easily modify this approach to function as a fail-first heuristic. In
the promise mode, we seek to satisfy as many clauses as possible, which corresponds
to optimizing the system f(x) = 0. In the fail-first mode, we seek to falsify as
many clauses as possible, which corresponds to optimizing the system f(x) = 1. To
accomplish this, we simply apply the optimization method to a modified system of
equations g(x) = 0 where each gi ≡ fi − 1 for all i. Note that the Jacobian of g(x)
is the same as the Jacobian of f(x), so no additional computation is needed to use it
with Newton’s Method. The fail-first version of the heuristic guides DPLL towards
regions of the search space where conflicts are more likely to occur. This may lead to
shorter learned clauses, and ultimately, a smaller search tree.

The pseudocode for the heuristic is presented in Listing 4.1. The helper function
EvalClause(Ci,x) evaluates the real-valued counterpart fi of clause Ci at point x.
Similarly, the helper function DiffClause(Ci, j,x) differentiates fi with respect to
the variable xj, and evaluates the resulting partial derivative at point x as defined in
Equation (4.2).

At first glance, it may appear that using Newton’s Method would be inefficient
in this situation, both in terms of storage and runtime. The matrix J which defines
the linear system to be solved is quite large (even for a medium SAT problem with
200 variables and 5000 clauses, J has one million elements), and solving it by con-
ventional methods would be problematic since most practical linear system solvers
have a runtime complexity of O(n3) [Atk09]. Fortunately, the matrix J is extremely
sparse. To see this, consider a 3-SAT problem where each clause depends on exactly
three variables. This implies that each row in J has at most three non-zero partial
derivatives. In general, the number of non-zero entries in J is at most |F | (the to-
tal number of literals of F), as opposed to mn. If the formula consists of relatively
short clauses, |F | is much smaller than mn. In practice, this nearly always holds, as
real-world SAT problems are usually dominated by very short clauses.

Sparse matrices can be stored efficiently and solved much more quickly than dense
matrices. For our implementation, we used the CSparse library by Timothy A. Davis4

[Dav06]. This open-source C library offers competitive performance on standard
benchmarks, and offers a number of well-known direct algorithms for solving sparse
matrices (QR, LU and Cholesky decompositions). Since the number of clauses is

4http://www.cise.ufl.edu/research/sparse/CSparse

34

Algorithm 4.1: HeuristicA(F, mode)

input : A CNF formula F with n variables and m clauses C1, C2, .., Cm
and the mode of operation (promise or fail-first)

output : A vector of preferred polarities for all variables
parameters: The maximum number of iterations max iterations, step size λ

// Begin search at the center of the unit hypercube

for i← 1 to n do
xi ← 1

2

J ← m× n sparse matrix

for iteration← 1 to max iterations do
// Apply Newton’s Method to refine the estimate

for i← 1 to m do
fi ← EvalClause(Ci,x)
if mode = fail-first then

fi ← fi − 1

for j ← 1 to n do
Jij ← DiffClause(Ci, j,x)

Solve J∆x = −f for ∆x
x← x+ λ∆x

// Round x to the nearest Boolean assignment

for i← 1 to n do
if xi >

1
2

then polarity[i]← True
else polarity[i]← False

return polarity

35

always equal to, or greater than the number of variables, the Jacobian matrix is
almost always overdetermined (has more equations than unknowns). For this reason,
we used QR decomposition as our primary solver algorithm, as this method does not
require the matrix to be square, invertible, or positive definite. In essence, the answer
obtained through QR decomposition is closely related to the linear least squares
problem; the answer fits all the equations of the Jacobian matrix as close as possible.

4.3 Method 2: Conflict Potentials

Unlike the first heuristic, the second method aims to find favourable polarities by
optimizing a single objective function rather than a system of equations. Perhaps the
most obvious way to convert a CNF formula to a single real-valued objective function
would be to rewrite it as a “product of sums”:

A(x) =
m∏
i=1

∑
l∈Ci

z(l), where z(l) =

{
xu if l = vu

1− xu if l = v̄u
(4.3)

In this formulation, A evaluates to 0 for any conflicting assignment, and to a value
greater than 0 for any satisfying assignment5. Unfortunately, A(x) is a degree-m
multivariate polynomial that is poorly suited for local search techniques. Although it
is possible to compute the partial derivatives of this function, great care is required
to avoid numerical instability. Rather than trying to optimize A(x), we focus on a
different objective function R(x) defined as a “sum of products”,

R(x) =
m∑
i=1

∏
l∈Ci

z(l), where z(l) =

{
1− xu if l = vu

xu if l = v̄u
(4.4)

or simply,

R(x) =
m∑
i=1

fi(x), (4.5)

where fi(x) is the real-valued counterpart of clause Ci as defined in Equation (4.1).
In this formulation, R(x) evaluates to zero only when each of its real-valued clauses

evaluates to zero. Since this situation corresponds to each clause Ci being satisfied,
any such point x maps to a model of F . In general, for any Boolean assignment,
all satisfied real-valued clauses evaluate to 0, and all conflicting ones evaluate to 1.
Because R(x) sums over all fi, it is therefore a measure of the number of clauses
a particular Boolean assignment conflicts with. On the interior of the domain D,
the value of this function can be thought of as an interpolation between the values
of R(x) at the corners of the unit hypercube. Intuitively, minimizing R(x) leads to
assignments closer to the solution, and maximizing it leads to conflict-rich areas of
the search space.

5To be precise, A ≥ 1 for any satisfying assignment, because the value of each “clause” is at least
1 for all such assignments (corresponding to at least one satisfied literal).

36

Functions of this form have appeared in the literature [War99]. A discrete version
of R(x) is, in fact, the standard objective function used in most incomplete SAT
solvers6 such as GSAT [SLM92] and WalkSAT [SKC93]. For convenience, we shall refer
to such functions as conflict potentials.

Example 4.3 (Conflict Potentials). The CNF formula F = v̄1 ∧ (v1 ∨ v̄2) ∧ (v̄1 ∨ v2)
has a corresponding conflict potential R(x) = x1 + (1 − x1)x2 + x1(1 − x2). The
values of this function at the corners of D are R(0, 0) = 0, R(0, 1) = R(1, 1) = 1
and R(1, 0) = 2. These values indicate that the Boolean assignment (False, False)
satisfies F , (False, True) and (True, True) conflict with one clause of F each, and
(True, False) conflicts with two clauses of F .

Apart from having an intuitive geometric interpretation, R(x) is also much easier
to differentiate than objective function A(x), which makes it a good candidate for
iterative optimization methods. Since R(x) is defined as a sum, any partial derivative
of R(x) is simply the sum of corresponding partial derivatives of fi(x). This fact leads
to an efficient and numerically-stable method for computing both the gradient∇R(x),

∇R(x) =
m∑
i=1

∇fi(x)

and the Hessian matrix H(R)(x) of the conflict potential,

H(R)(x) =
m∑
i=1

H(fi)(x).

We already have a method for finding first order partial derivatives of fi as defined in
equation (4.2). Finding second-order partial derivatives of fi is also straightforward.
Suppose a real-valued counterpart f of clause C is differentiated with respect to
variable xj followed by xk. There are three possible cases. If C does not depend
on both vj and vk, the derivative vanishes. If j = k (that is, we differentiate with
respect to the same variable twice) and vj occurs in literal p ∈ C, we differentiate the
corresponding factor of fi twice, while keeping all other factors constant:

∂2f

∂x2
j

=
∂2z(p)

∂x2
j

∏
l∈C
l 6=p

z(l) (4.6)

Lastly, if j 6= k and vj occurs in literal p ∈ C and vk occurs in literal q ∈ C,
we differentiate the corresponding factors of fi once, while keeping all other factors
constant:

∂2f

∂xj∂xk
=
∂z(p)

∂xj

∂z(q)

∂xk

∏
l∈C

l 6=p,l 6=q

z(l) (4.7)

6The discrete version of R(x) used in incomplete solvers is restricted to Boolean assignments
only, which corresponds to the corners of our search domain D.

37

Figure 4.2: Three conflict potentials for the Boolean function F = v̄1 ∧ (v1 ∨ v̄2)∧ (v̄1 ∨ v2)
using different parametrizations z(l). From left to right: linear parametrization, sigmoid
parametrization with K = 8, sigmoid parametrization with K = 30. The magnitude of
the potentials at the corners of the domain is the number of clauses in conflict with the
corresponding Boolean assignment. For example, the point (0, 0) does not conflict with any
of the clauses, which means (False, False) is the model of F . The point (1, 0) corresponding
to (True, False), on the other hand, conflicts with two clauses of F (clauses 1 and 3) and
is the least optimal assignment.

The first-order partial derivative ∂z(l)
∂xj

is given in Equation (4.2). To find the second-

order partial derivative ∂2z(l)

∂x2j
, we simply differentiate ∂z(l)

∂xj
with respect to xj one more

time. Notice that in this case, ∂2z(l)

∂x2j
always evaluates to 0. This, however, only holds

for the linear choice of z(l) as defined in Equation (4.1).

Example 4.4 (Differentiating Conflict Potentials). The gradient and the Hessian
matrix of conflict potential R(x) = x1 + (1 − x1)x2 + x1(1 − x2) from the previous
example can be easily computed by differentiating each term individually, and then
summing the results together:

∇R(x) =

(
∂R

∂x1

,
∂R

∂x2

)
= (2− 2x2, 1− 2x1)

H(R)(x) =


∂2R
∂x21

∂2R
∂x1∂x2

∂2R
∂x2∂x1

∂2R
∂x22

 =

 0 −2

−2 0


So far, we have modeled real-valued clauses fi as products of linear functions as

defined in equation (4.1). While this representation is valid, some difficulties arise
when it is used to define conflict potentials. While each fi satisfies 0 ≤ fi ≤ 1 on D,
its value becomes meaningless outside the unit hypercube. Depending on where fi
is evaluated, the value could be negative or greater than 1, which has no meaningful
interpretation when mapped back to the Boolean search space. For this reason, we
resort to “clipping” x at each optimization step to confine it to the unit hypercube.
Unfortunately, doing so often interferes with the integrity of local search, and some-

38

Figure 4.3: The real-valued clauses fi can be represented as products of many different kinds
of 0-1 functions. While the linear function (left) is the most natural choice, the sigmoid
function (right) has the advantage of being restricted to the range from 0 to 1 for all values
of x which can improve local search.

times causes the Hessian matrix to become numerically unstable. In order to avoid
this problem, it is desirable to represent fi as a product of continuous, differentiable
functions z(l) that satisfy 0 ≤ z(l) ≤ 1 everywhere. This would eliminate the need
for clipping x because each fi would have a meaningful value on the entire space Rn.

One parametrization that satisfies these properties is the sigmoid function. The
sigmoid is a logistic function commonly used to approximate the discrete step function
and is widely used in neural networks, image processing and other areas of computer
science. The sigmoid function is defined as follows7,

S(x) =
1

1 + ρ
, ρ = e−K(x− 1

2
),

where K is the “stiffness factor”. The larger the value of K, the closer the sigmoid is
to a discrete step function. For smaller values of K, the sigmoid approaches a linear
function asymptotically squeezed between 0 and 1. The first and second-order partial
derivatives of this function can be shown to be,

∂S(x)

∂x
= KρS2(x)

∂2S(x)

∂x2
= Kρ(ρ− 1)S3(x)

By substituting these expressions for z(l), ∂z(l)
∂xj

and ∂2z(l)

∂x2j
in equations (4.1) and (4.2),

a sigmoid parametrization of SAT is obtained. While the sigmoid is a convenient
parametrization for real-valued clauses, there are some drawbacks associated with it:

• computing the sigmoid and its derivatives is costly.

7The standard sigmoid has a phase transition at x = 0. We shift the sigmoid to the right by
∆x = 1

2 to place the phase transition at the center of our domain D.

39

• the convergence speed of Newton’s Method is sensitive to the value of the “stiff-
ness” parameter K and choosing a robust value of K that works across multiple
problems is difficult, and

• unlike the linear parametrization, the second-order derivative of the sigmoid is
not zero which makes for a denser Hessian matrix.

The pseudocode for the heuristic is presented in Listing 4.2. Since we can easily
compute the Hessian matrix in closed form, we can use Newton’s Method for scalar
equations in place of a simple gradient descent to speed up the search. Unlike the
m×n Jacobian matrix used in our first heuristic, the size of the Hessian matrix is only
n×n. Since the number of clauses is always greater than the number of variables8, the
Hessian matrix is much smaller than the Jacobian, and can be solved more quickly.
Similar to the first heuristic, this method can be made to function in fail-first mode;
to achieve this, we simply negate the objective function. For convenience, we also
provide a sample C++ implementation (see Appendix A) of this heuristic (the static
version) which uses gradient descent instead of Newton’s Method.

Helper functions DiffR(F, i,x) and DoubleDiffR(F, i, j,x) compute the first and
second order partial derivatives of the conflict potential of F with respect to variables
xi and xj, and evaluate the result at point x.

We now show that the well-known Jeroslow-Wang (JW) value ordering heuristic
can be seen as a special case of the conflict potential method. Specifically, we show
that JW is equivalent to a single gradient descent optimization step of a linear conflict
potential starting from the center of the unit hypercube. As described in Chapter 3,
the JW heuristic sets the decision variable vu to True if an only if,∑

i : vu∈Ci

2−|Ci| >
∑

i : v̄u∈Ci

2−|Ci|

with the intuition that a larger sum corresponds to a greater fraction of potential
assignments that can be eliminated if vu is assigned accordingly. Consider now a con-
flict potential R(x) as defined in Equation (4.4). A single optimization step amounts
to computing the gradient ∇R(x) at the point (1

2
, 1

2
, ..., 1

2
) and making a small step

against its direction. Since we only consider one step, the preferred polarity of each
Boolean variable vi is completely determined by the sign of its corresponding gradient
component (i.e. the partial derivative of R(x) with respect to xi). We now explic-

itly compute the derivative ∂R(x)
∂xu

for the decision variable vu. The expression follows
directly from Equation (4.6):

∂R(x)

∂xu
=

m∑
i=1

∂fi(x)

∂xu

We can split the sum into two parts: terms which contain xu (corresponding to clauses
containing v̄u) and terms which contain 1 − xu (corresponding to clauses containing
vu). Terms which do not depend on xu contribute nothing to the partial derivative
and can be omitted.

8In practice, m can be orders of magnitude greater than n.

40

Algorithm 4.2: HeuristicB(F, mode)

input : A CNF formula F with n variables and m clauses, mode of
operation (promise or fail-first)

output : A vector of preferred polarities for all variables
parameters: The maximum number of iterations max iterations, step size λ

// Begin search at the center of the unit hypercube

for i← 1 to n do
xi ← 1

2

H ← n× n sparse matrix

for iteration← 1 to max iterations do
// Apply Newton’s Method to refine the estimate

for i← 1 to n do
Gi ← DiffR(F, i,x)
for j ← 1 to n do

Hij ← DoubleDiffR(F, i, j,x)

Solve H∆x = G for ∆x
if mode = promise then
x← x− λ∆x

else
x← x+ λ∆x

// Restrict x to the unit hypercube

for i← 1 to n do
xi ← max(0,min(1, xi))

// Round x to the nearest Boolean assignment

for i← 1 to n do
if xi >

1
2

then polarity[i]← True
else polarity[i]← False

return polarity

41

∂R(x)

∂xu
=

∑
i : vu∈Ci

∂fi(x)

∂xu
+

∑
i : v̄u∈Ci

∂fi(x)

∂xu

A real-valued clause fi which depends on xu is a product of |Ci| factors, at most one of
which is a function of xu. After differentiating fi with respect to xu, we are left with
|Ci| − 1 factors and a sign as specified in Equation (4.2). At the center of the unit
hypercube, all variables have coordinates xi = 1

2
. Therefore, all remaining factors

evaluate to 1
2

(this also holds for positive literals, since 1 − 1
2

= 1
2
). The magnitude

of each differentiated term is therefore (1
2
)|Ci|−1.

∂R(x)

∂xu

∣∣∣∣
x=(1

2
, 1
2
,..., 1

2
)

=
∑

i : vu∈Ci

(−1)
∏
l∈Ci
l 6=vu

(
1

2

)
+

∑
i : v̄u∈Ci

(+1)
∏
l∈Ci
l 6=v̄u

(
1

2

)

= −
∑

i : vu∈Ci

(
1

2

)|Ci|−1

+
∑

i : v̄u∈Ci

(
1

2

)|Ci|−1

For the decision variable vu to be set to True, the partial derivative has to be negative
(recall that we go against the gradient in gradient descent). Setting up the inequality,
rearranging and dividing both sides by 2, we obtain the final condition, which is
equivalent to the Jeroslow-Wang formulation.

−
∑

i : vu∈Ci

2−|Ci|+1 +
∑

i : v̄u∈Ci

2−|Ci|+1 < 0

∑
i : vu∈Ci

2−|Ci| >
∑

i : v̄u∈Ci

2−|Ci|

The result is interesting in that the Jeroslow-Wang formula was derived from a com-
pletely discrete point of view (by counting the number of rows in the truth table that
can be eliminated), while our conflict potential formulation is completely continuous
in nature.

4.4 Method 3: Stochastic Optimization

The third method builds on the idea of conflict potentials by adding a stochastic
element to the search. In doing so, we attempt to escape local extrema and obtain a
better polarity estimate.

There are many ways of adding randomized behaviour to optimization algorithms
such as ours. Perhaps the simplest modification would be to use a random starting
guess x0 instead of the fixed “center of the hypercube” assignment (1

2
, 1

2
, ..., 1

2
). We

have had some success with this technique, however due to the high dimensionality
of the problem, the quality of the approximation is very sensitive to the choice of the
starting position, which negatively impacts the repeatability of results.

42

We propose a different technique, which has shown to be more robust and effective.
The starting guess is (1

2
, 1

2
, ..., 1

2
) as before, however the decision on how to refine the

starting guess is made by examining not one, but multiple conflict potentials. In
most applications, local search methods have only one objective function to work
with and have to rely on stochastic methods such as simulated annealing and genetic
algorithms to escape local extrema. In this situation, however, we have the advantage
of being able to generate as many objective functions for the same CNF formula as
we need.

As stated previously, there exists an infinite number of ways of representing real-
valued clauses of a CNF formula, and each parametrization gives rise to a unique
conflict potential. For example, both R1 = x1x2 and R2 = x1

2x2 are valid conflict
potentials for the Boolean function F = (v̄1 ∧ v̄2). R1 and R2 “conflict” (evaluate to
1) only for (x1, x2) = (1, 1) corresponding to the only falsifying Boolean assignment
(v1, v2) = (True, True). This result stems from the simple observation that the curves
x and x2 have the same endpoints at x = 0 and x = 1.

In general, for a given function F , we can generate as many different conflict
potentials as we wish by simply choosing different parametrizations for the real-valued
clauses fi. All such potentials will have the same values at the corners of D, but the
shape of the function (and the distribution of local extrema) will be different for each
choice of parametrization. Inevitably, some potentials will be better suited for local
optimization methods than others, and there is no simple way of determining which
parametrization is best ahead of time. We can however, sample a few such potentials
and let them vote on where to go next.

The heuristic repeatedly samples from a family of conflict potentials Rθ, where
θ = (θ1, θ2, ..., θn) is a vector of exponents uniquely identifying the potential. Each Rθ
is a sum of real-valued clauses represented as products of exponential curves defined
as follows,

z(l) =

{
xθuu if l = vu

(1− xu)θu if l = v̄u
(4.8)

Notice that the basic conflict potential defined in equation (4.1) is also a member of
Rθ. Specifically, it is the potential with θ = (1, 1, ..., 1).

Example 4.5 (Family of Conflict Potentials). The family of conflict potentials as-
sociated with the CNF formula F = v̄1 ∧ (v1 ∨ v̄2) ∧ (v̄1 ∨ v2) is Rθ(x) = xθ11 + (1 −
x1)θ1xθ22 + xθ11 (1 − x2)θ2. For example, the conflict potential R(2,1)(x) = x2

1 + (1 −
x1)2x1

2 + x2
1(1− x2)1 is a member of this family for θ = (2, 1).

The pseudocode for the heuristic is presented in Listing 4.3. Uniform(a, b) returns
a random real number sampled from the uniform distribution in [a, b]. The algorithm
repeatedly samples multiple vectors of exponents θ, constructs corresponding conflict
potentials Rθ, and uses their gradients evaluated at the current estimate x to vote
on a common gradient direction. The algorithm then advances x by a small step
in that direction. Since the vote vector is not a real gradient, we cannot rely on its
magnitude for gradient descent. Instead, we opt for making fixed-size steps ∆x in the
direction of the vote vector. The geometric interpretation of this method is that the

43

Figure 4.4: The stochastic heuristic represents real-valued clauses as products of exponential
curves with randomly-sampled exponents θi. This parametrization gives rise to a family of
conflict potentials Rθ. On the right, two members of this family, R(2,0.5) and R(1,4), are
plotted for the CNF formula F = v̄1∧(v1∨ v̄2)∧(v̄1∨v2). All potentials in Rθ have the same
values at the corners of the unit hypercube, but different distributions of local extrema; this
useful property is exploited by the stochastic gradient descent.

member functions of the Rθ family represent different interpolations between fixed
values at the corners of the unit hypercube. We do not know apriori which of these
interpolations is best for performing gradient descent on; we can however, poll several
interpolations and decide on a common gradient direction.

For this heuristic, we use a simple gradient descent in favour of more advanced
techniques. Our experiments showed that Newton’s Method tends to become increas-
ingly unstable when faced with the severe non-linearity of randomly-sampled conflict
potentials. Furthermore, since many samples are required at each step, Newton’s
Method becomes prohibitively expensive.

The exponents θi are sampled in a way that generates a mixture of convex func-
tions (such as x0.5) and concave functions (such as x2). To achieve this, we first
sample a value σ from a uniform distribution between 1 and an upper bound σmax,
and then with probability 1

2
, set θi to either σ or 1/σ.

The gradient of each fi is found using equation (4.2) with the following rule for
literal p which stems directly from the definition of the exponential curves used to
represent the real-valued clauses,

∂z(l)

∂xj
=

{
θjx

θj−1
j if l = vj

−θj(1− xj)θj−1 if l = v̄j

Similarly to the other two heuristics, this method can be made to function in
fail-first mode by simply reversing the direction of the gradient. Given enough time
and a high number of samples, this method has demonstrated remarkably good re-
sults, however it is computationally expensive and is better suited for use as a static
heuristic.

44

Algorithm 4.3: HeuristicC(F, mode)

input : CNF formula F with n variables and m clauses, and the mode of
operation (promise or fail-first)

output : A list of preferred polarities for all variables
parameters: The number of iterations max iterations, the number of samples

max samples, maximum exponent σmax, step size λ

for i← 1 to n do
xi ← 1

2

for iteration← 1 to max iterations do
// Create a mixture of convex and concave potentials

for i← 1 to n do
votesi ← 0
Sample σ ∼ Uniform(1, σmax)
if Uniform(0, 1) > 0.5 then θi ← σ else θi ← 1

σ

// Vote on a common direction

for sample← 1 to max samples do
gradient← ∇Rθ(x)
for i← 1 to n do

if gradienti > 0 then
votesi ← votesi + 1

else if gradienti < 0 then
votesi ← votesi − 1

// Update x and restrict it to the unit hypercube

for i← 1 to n do
if mode = promise then
xi ← xi − sign(votesi)λ

else
xi ← xi + sign(votesi)λ

xi ← max(0,min(1,xi))

for i← 1 to n do
if xi >

1
2

then polarity[i]← True
else polarity[i]← False

return polarity

45

4.5 Using the Heuristics

We now describe how to use our heuristics in a SAT solver. Since all three heuristics
are computationally expensive and share the unusual property that they compute
preferred polarities for all unassigned variables at once, special care needs to be taken
when using them in practice.

In order to use our polarity heuristics, the SAT solver needs to maintain a global
vector of n Boolean variables which store the preferred polarity for each variable.
Minisat comes equipped with such a vector (the polarity[] vector of the Solver

class) which is normally used for the phase-saving feature. Other solvers may need
to be extended with such a vector.

In order to use the heuristics statically, one simply executes the desired heuristic
once right after the formula has been pre-processed, but before the search begins.
At this point, all variables are unassigned and all clauses are still unsatisfied; this
fact can be exploited to implement a particularly efficient version of the heuristic
by avoiding a number of special cases and checks. The output of each heuristic is
a vector of preferred polarities which is then stored in the global preference vector.
At each branch decision, the solver consults this vector for the polarity to try first.
When the heuristic is used statically, we can afford to invest extra time into obtaining
a good initial estimate; this corresponds to using a large number of iterations at a
fine resolution (small step size λ).

Using the heuristic dynamically is more challenging. Since all three heuristics are
computationally expensive and compute the preferred polarities for all unassigned
variables at once, it would be extremely wasteful to compute them at every branch
decision. Moreover, the computational complexity of the heuristics which rely on
solving sparse matrices varies greatly from instance to instance, and cannot be gauged
easily.

Intuitively, the decisions made early on (higher up in the search tree) carry a
heavier weight than the decisions made later on. A “good” decision near the root can
provide exponential savings in the number of nodes explored. For this reason, the
approach we propose in this thesis uses the depth of the branch decision as a criterion
for when to use the heuristic. Specifically, the user supplies a parameter 0 < τ < 1
which denotes the fraction of the height of the search tree where the heuristic should
be computed. Since the exact height of the search tree is not known apriori, we can
simply use n as the upper bound. If the branching decision occurs at depth between
0 and n

τ
, the heuristic is computed, and the result is stored in the global polarity

preference vector. All decisions made at depths below this threshold simply use the
polarities computed above, as in the static approach.

Another dynamic method would be to apply the heuristics after a certain number
of uninstantiated variables remain, and/or a certain number of unsatisfied clauses
remain. For example, one could choose to apply the heuristic whenever n < 100 and
m < 1000. In doing so, the heuristic examines only small (and bounded) sub-trees
within the main search tree. This approach may not be very accurate, but it is a
practical way to place an upper bound on the computational cost of each heuristic
computation. This is of particular importance to matrix-based heuristics as they tend

46

Problem Representation Optimization Method Parametrization

1 System of equations NM for systems of equations Linear
2 Conflict potential NM for scalar functions Linear / Sigmoid
3 Family of conflict potentials Stochastic gradient descent Exponential

Table 4.1: The three heuristics presented in this thesis differ in their choice of problem
representation, the optimization method used, and the parametrization of the real-valued
clauses.

to consume a lot of resources on large SAT instances.

4.6 Summary

We have presented three value ordering heuristics based on local optimization tech-
niques. All three methods convert the SAT problem into a real-valued optimization
problem defined on the unit hypercube, and then use different optimization tech-
niques to approximate the optimal assignment (promise mode), or the least optimal
assignment (fail-first mode). The heuristics then round this estimate to the nearest
Boolean assignment and use it as a polarity guide for DPLL. The differences between
the three heuristics are highlighted in Table 4.1.

Next, we evaluate these heuristics on different classes of SAT problems, discuss
parameter selection, and analyze the strengths and weaknesses of each approach.

47

Chapter 5

Experimental Evaluation

In this chapter, we empirically evaluate our heuristics. First, we describe our testing
environment and discuss the benchmarks used in our experiments. Then, we calibrate
the parameters of our algorithms and compare the performance of our heuristics
on a set of randomly-generated instances. In addition to our heuristics, we also
examine three standard value-ordering heuristics: MOMS, Jeroslow-Wang, and phase-
saving. To gain more insight into the convergence rates of our approach, we conduct
additional experiments with varying amounts of pre-processing and analyze its effects
on the accuracy of the results. We then proceed to apply our methods to large-scale
crafted and real-world instances. Finally, we aggregate our results and compare the
performance of our heuristics against six other state-of-the-art SAT solvers, including
a lookahead solver and two incomplete solvers. We conclude with a simulation of
heuristic portfolios (combinations of heuristics) and a discussion on how multi-core
CPUs can benefit our approach.

5.1 Experimental Setup

We implemented static versions of our heuristics in the MiniSAT 2.2 framework1

[ES04] with the CSparse library [Dav06] for sparse matrix operations. MiniSAT was
compiled using gcc with the -O3 optimization switch on a 64-bit Linux kernel 2.6. All
tests were run on a cluster of 64-bit 2 × Dual Core AMD Opteron machines clocked
at 2.6GHz with 10GB of RAM.

For each SAT instance, we recorded the solver output (SAT, UNSAT or INDET),
the model (if any), as well as basic statistics (the elapsed CPU time, the total number
of decisions made, the total number of restarts, and the total number of conflicts).
We enforced a CPU timeout of 1200 seconds (20 minutes) per instance2, which is a
standard policy in SAT competitions. The timeout applies to both the static heuristic
and the main search process (that is, more pre-processing means less time for the
actual search). No memory limit was enforced. For stochastic heuristics, the results
are averaged over 30 runs with different seeds. The result of the solver is verified

1Latest version as of 2012.
2Throughout this section, all measures of time refer to CPU time, rather than wall clock time.

48

at a later stage to ensure correctness. The verification step is not counted as search
time. For satisfiable instances, the verification step consists of simply plugging the
model into the formula; for unsatisfiable instances, we rely on the results of state-of-
the-art solvers, as well as benchmark descriptions (many benchmarks are specifically
designed to be unsatisfiable). None of our tests produced erroneous results, which is
not surprising since MiniSAT is known to be a reliable framework. Considering that
the only component of the search we alter is the value ordering heuristic, there is no
risk of weakening the integrity of MiniSAT.

Clearly, all components of a CDCL solver interact with each other in non-trivial
ways during search; for example, value ordering decisions affect subsequent variable
ordering, restarts, learned clauses, and vice versa. It would be desirable to test
the merits of our value ordering heuristic in isolation (that is, with other CDCL
enhancements and heuristics disabled), as some researchers advocate [Hoo95]. This,
however, is problematic because modern crafted and real-world instances are usually
almost intractable with CDCL enhancements turned off. The goal of our experiments
was to see how our value ordering heuristics can benefit MiniSAT as a whole.

With the exception of the value ordering heuristic, we used all the default settings
of MiniSAT 2.2. In order to improve the repeatability of our results, we did not use
the random variable selection heuristic (MiniSAT can be configured to occasionally
pick a random decision variable to introduce a small amount of noise into the search
process.) For experiments where the phase-saving heuristic is enabled (the default
behaviour of MiniSAT), we used the standard “full phase-saving” mode (--phase-
saving=2).

5.2 Algorithms

The methods described in the previous chapter give rise to numerous choices for im-
plementing the heuristics in practice. For example, the conflict potential approach
can be implemented in promise or fail-first mode, with a linear or sigmoid parameter-
ization, and optimized using gradient descent or Newton’s method. We selected the
most representative and telling combinations of techniques and parameterizations.
Our preliminary tests suggested that unlike promise-based heuristics, all fail-first
gradient-based methods (linear potential, sigmoid potential, stochastic vote) pro-
duced very similar results in terms of accuracy. For this reason, we focused our
attention on the linear potential for computing fail-first polarities, as it is the cheap-
est heuristic among the three. In our naming convention, we use a subscript plus sign
to denote promise-based heuristics, and a subscript minus sign to denote fail-first
heuristics. We implemented and tested the Jacobian-based heuristics NS+ and NS−,
the Hessian-based promise heuristic HS+, a stochastic vote promise heuristic VS+,
and three gradient-based methods: linear potential heuristics GS+ and GS−, and a
sigmoid potential promise heuristic SS+. The detailed summary of heuristics used in
our evaluation is presented in Table 5.1.

In addition to our selection of heuristics, we also tested a few simple branching
policies: always branching on False, always branching on True, and branching on

49

Heuristic Type Formulation Optimization Method
NS+ promise System of equations Newton’s method
NS− fail-first System of equations Newton’s method
GS+ promise Linear conflict potential Gradient descent
GS− fail-first Linear conflict potential Gradient ascent
HS+ promise Linear conflict potential Newton’s method
SS+ promise Sigmoid conflict potential Gradient descent
VS+ promise Family of conflict potentials Stochastic vote descent

Table 5.1: The heuristics examined in our evaluation.

False with phase-saving enabled (the default behaviour of MiniSAT). In our results,
we refer to these heuristics as False, True and PS respectively. The reason we
test these three heuristics separately is twofold: first, we wish to investigate whether
enabling phase-saving has any substantial merit over simply branching on False in
practice. Secondly, we wish to investigate whether branching on False has in fact a
consistent advantage over always branching on True. There exist benchmarks (such
as the battleship sat benchmark used in our evaluation) where branching on True
solves almost twice as many instances as branching on False. However, if we were
to simply negate each variable in that benchmark, we would obtain SAT instances of
equivalent difficulty, but with the opposite preferred branch polarity. For this reason,
we evaluate both True and False heuristics separately.

We have also implemented two well-known greedy dynamic value ordering heuris-
tics, MOMS and Jeroslow-Wang, as described in Chapter 2. Since both heuristics
only examine clauses which contain the decision variable, they can be implemented
quite efficiently in the MiniSAT framework by tapping into the existing literal watch
list mechanism. Our implementation does not use learned clauses for making deci-
sions (our preliminary tests on random instances suggested that using learned clauses
drastically slowed down the decision process while offering little in return).

Lastly, we examine the bigger picture of where MiniSAT equipped with our heuris-
tics stands in the world of modern SAT algorithms. To do this, we investigate how
our heuristics fare against a selection of state-of-the-art solvers. Our test suite con-
sists of well-known solvers selected from the winners of the most recent (as of this
writing) SAT Competition 20113. These solvers have won gold, silver, and bronze
medals in at least one benchmark category. Although the primary focus of our the-
sis is on complete DPLL-CDCL solvers, we wanted to see how MiniSAT equipped
with our heuristic performs relative to other solver architectures. We selected four
complete solvers, one of which is a lookahead solver, and two incomplete stochastic
solvers. We used glucose (won gold in SAT+UNSAT application, silver in UNSAT
application, bronze in UNSAT crafted), clasp (gold in UNSAT crafted), lingeling
(bronze in SAT+UNSAT crafted), march rw (gold in UNSAT random), as well as two
incomplete solvers sparrow2011 (gold in SAT random) and adaptg2wsat (bronze in
SAT random at SAT Competition 2009). The detailed list of solvers used in our

3http://www.satcompetition.org/

50

Solver Version / Build Type Reference
MiniSAT 2.2 Complete [ES04]
glucose 2.0 Complete [AS09]
clasp 2.0-R4092 Complete [GKNS07]
lingeling release 587 Complete [Bie10]
march rw SAT11 Competition build Complete (lookahead) [HvZD11]
sparrow2011 SAT11 Competition build Incomplete (SLS) [SS11]
adaptg2wsat SAT11 Competition build Incomplete (SLS) [LWZ07]

Table 5.2: SAT solvers used in our evaluation. With the exception of our reference solver
(MiniSAT), all have scored high at SAT Competition 2011. Although our heuristics are
geared toward complete DPLL-CDCL algorithms, we have also included two incomplete
solvers, and one look-ahead solver for comparison.

evaluation is given in Table 5.2. The solvers were compiled from source in our testing
environment. The source code and detailed descriptions of the solvers are available
from the SAT Competition website. We used the same rules (1200 second timeout,
no memory limit, default settings) for each of our reference solvers.

5.3 Benchmark Selection

We now turn our attention to the SAT benchmarks used in our experiments. Our
goal was to select a wide range of modern benchmarks that are sufficiently difficult
to solve. The number of variables (or clauses) in a formula is not necessarily a good
indicator of the difficulty of an instance. In our test set, there are instances with
hundreds of thousands of variables that get solved within seconds, and instances with
as few as 180 variables that stump even the most advanced solvers. For example,
the once-challenging SATLIB and DIMACS benchmarks4 which have been used for
evaluating SAT solvers for many years are much too easy for modern solvers. Our
preliminary tests have shown that MiniSAT can successfully solve the largest uni-
form random 3-SAT SATLIB benchmarks (uf250-1065 and uuf250-1065) in under 10
seconds per instance just by using its default branching rules. On these instances,
the time it takes to compute our static heuristics often outweighs the time actually
spent searching. Similarly, the dynamic heuristics MOMS and Jeroslow-Wang did
not offer any measurable performance boost. For this reason, we focus our atten-
tion on benchmarks that can be considered to have “medium” to “hard” difficulty
by modern (complete) solver standards. We were interested in benchmarks where
MiniSAT on its default settings solves less than half of all instances within our 20
minute limit. We avoided benchmarks which are too hard (MiniSAT solves less than
5% of the instances) or too easy (MiniSAT solves more than 50% of the instances
within 1 minute).

Nonetheless, the fact that the cost of our static heuristics can sometimes outweigh
the actual search time on easy instances can be seen as the first observable weakness

4Available at http://www.satlib.org

51

of our approach. Since there is no simple and reliable way of estimating how difficult
a SAT instance is ahead of time, we cannot tune the amount of work (for example,
the number of iterations) that goes into computing the static heuristic. One simple
way of addressing this shortcoming would be to start the search normally, and only
engage our static heuristic if the instance still has not been solved after some fixed
amount of time. This would allow easy instances to be solved without incurring the
time penalty of our heuristic.

With the above-mentioned criteria in mind, we selected all our benchmarks from
the submissions to the most recent SAT Competitions. Instances from all these
benchmarks have been used in SAT-Race 2009 and SAT-Race 2011 and are available
for download from the SAT Competition website. We also used a few instances
from SAT-Race 2007 for parameter calibration and preliminary testing. We used the
benchmarks as they are provided, without removing or modifying any instances. As
is usually done in SAT solver evaluation, we have constructed three separate test
sets: randomly-generated (uniform 3-SAT formulas), crafted (puzzles and games),
and application (cryptography, circuits, bioinformatics, and other real-world sets).

The random set (r3sat) consists of all satisfiable medium-sized 3-SAT instances
from SAT-Race 2009. These 110 uniform formulas have each 360 to 560 variables
and a clause-to-variable ratio of 4.25. This ratio ensures that the instances are hard
to solve. This “phase-transition phenomenon” is one of the most striking empirical
results obtained in the history of SAT research. The phase transition region for 3-
SAT formulas lies between clause-to-variable ratios of at least 3.42 [KKL06] and at
most 4.506 [DBM00]. This benchmark proved to be sufficiently challenging for the
complete solvers used in our evaluation, with MiniSAT on default settings solving only
about 35% of the instances within the 20 minute limit. We also experimented with
unsatisfiable random 3-SAT formulas, although finding a good benchmark proved to
be difficult. We settled on the random unsatisfiable 3-SAT instances from SAT-Race
2007, because the more recent benchmarks turned out to be too hard for MiniSAT.
We refer to this set as r3unsat.

The crafted and application test sets were constructed from a wide selection of
SAT benchmarks varying in type (puzzles, proofs, circuit verification, cryptography),
the number of variables (ranging from a few dozen to over half a million), satisfiability
(satisfiable only, unsatisfiable only, or mixed), and difficulty. We also tried to keep
the number of satisfiable and unsatisfiable instances balanced as much as possible.
We briefly describe the different benchmarks used in our experiments below; for more
information, see the supplied references.

The crafted test suite consists of 224 instances in 10 benchmarks. These instances
are primarily puzzles, games, and graph-based challenges.

• edgematching [Heu09]: a puzzle involving the placement of differently-shaped
pieces on a grid in a way such that the edges of the connected pieces match.
The problem is known to be NP-complete. Since there is no straightforward
encoding of the problem into SAT, the benchmark experiments with a number
of different encodings of the same problem.

• battleship sat and battleship unsat [SH11]: a simple game which involves

52

sinking moving battleships (see reference for the exact rules of the game). The
instances encode the decision problem whether a ship can be sunk in a given
number of shots.

• mosoi289 sat and mosoi289 unsat [Mos11]: determining whether a 17 × 17
grid is 4-colourable. The puzzle is based on a challenge by Lance Fortnow5.

• sgen sat and sgen unsat: SAT instances generated using the sgen1 tool by
Ivor Spence[Spe09]. This tool employs a number of techniques for generating
very small but extremely hard instances.

• automata sync [ST11]: discovery of synchronizing words in a finite state au-
tomaton (FSA). A synchronizing word (also known as a reset sequence) is an
input which sends every state of the FSA to the same state. Although deter-
mining whether a synchronizing word exists can be done in polynomial time,
finding a synchronizing word of a fixed length is an NP-complete problem.

• modcircuits [KKY09]: an optimization problem for finding efficient circuits
for the MOD function.

• vanderwaerden [AKS11]: discovery of van der Waerden numbers [Ros04] which
have applications in combinatorics and number theory. The instances are en-
coded as a hypergraph colouring problem.

The application test suite consists of 142 instances in 6 benchmarks. These bench-
marks are real-world problems in the fields of bioinformatics, software verification,
and cryptography.

• aprove09 [Fuh09]: proving termination properties of programs (specifically,
Term Rewrite Systems [BN]). The benchmark was generated using the AProVE

software verification tool.

• bioinfo [CFT10]: discovery of parameters in discrete genetic networks (specif-
ically, Gene Regulatory Networks). The problem is first formulated as a CSP,
and then translated into SAT.

• bioinstances [BJ09]: computation of two different distance measures between
evolutionary trees. Both measures are known to be NP-hard to compute. Ac-
curate distance measures allow reconstruction of species lineages.

• desgen [SJ09b], md5 [SJ09a], and aes 32 [GK10]: key-finding problems for three
well-known encryption standards: Data Encryption Standard (DES), MD5, and
Advanced Encryption Standard (AES). These encryption methods are consid-
ered to be quite secure; correspondingly, the instances should be hard to solve.

• slp aes [FSK10]: modeling an encryption algorithm as an XOR circuit with a
minimal number of gates; based on the work of Boyar and Peralta [BP10].

The complete list of crafted and application benchmarks is given in Table 5.3.

5http://blog.computationalcomplexity.org/2009/11/17x17-challenge-worth-28900-this-is-
not.html

6This benchmark is erroneously labeled as unsatisfiable. We found that at least one instance
(289-unsat-6x30.cnf) is in fact satisfiable.

53

Crafted benchmarks (224 instances)
Benchmark # of instances Type nmax mmax Reference
automata sync 12 SAT+UNSAT 63882 123981 [ST11]
battleship sat 28 SAT 3655 78604 [SH11]
battleship unsat 17 UNSAT 900 13950 [SH11]
edgematching 30 SAT 24356 1884008 [Heu09]
modcircuits 19 SAT+UNSAT 1698 903653 [KKY09]
mosoi289 sat 15 SAT 720 28980 [Mos11]
mosoi289 unsat 15 SAT+UNSAT6 3360 661080 [Mos11]
sgen sat 13 SAT 300 720 [Spe09]
sgen unsat 13 UNSAT 153 316 [Spe09]
vanderwaerden 62 SAT+UNSAT 705 260122 [AKS11]

Application benchmarks (142 instances)
Benchmark # of instances Type nmax mmax Reference
aes 32 10 SAT 1116 4312 [GK10]
aprove09 18 SAT 94663 318353 [Fuh09]
bioinfo 20 SAT+UNSAT 670867 3513333 [CFT10]
bioinstances 30 SAT+UNSAT 4692 582514 [BJ09]
desgen 19 SAT 32465 97748 [SJ09b]
md5 10 UNSAT 70139 228634 [SJ09a]
slp aes 35 SAT+UNSAT 130182 440311 [FSK10]

Table 5.3: Crafted and application benchmarks used in the evaluation of our heuristics.
nmax denotes the largest number of variables and mmax denotes the largest number of
clauses in each benchmark. All benchmarks were taken from SAT Competition 2009 and
SAT Competition 2011.

54

5.4 Parameter Selection

The heuristics developed in the previous chapter have several parameters, each of
which can have a significant impact on the net efficiency and accuracy of the solver.
Rather than trying to fine-tune each parameter to individual benchmarks and test
sets, we attempt to find reliable parameters which work across many types of instances
and do not significantly slow down the solver. All of our heuristics share two key
properties: the total number of optimization steps, and the step size. In addition,
the sigmoid-based method SS+ requires a “stiffness” parameter K which determines
how steep the underlying sigmoid curves are. The stochastic method VS+ requires
the total number of objective functions to sample and the maximum perturbation
exponent θmax which defines the family of sampled conflict potentials.

First, we focus on the number of iterations, as it is directly proportional to the
net computational cost of each heuristic. Intuitively, more iterations at a smaller step
size should yield better results. We must, however, set a reasonable limit on these
parameters, since we are bound by the 20 minute execution limit. The computational
cost per iteration for the three methods are shown in Figure 5.1. We evaluated
the Jacobian-based approach NS+ (averaged over 100 iterations), the gradient-based
approach GS+ (averaged over 10000 iterations), and the Hessian-based approach HS+

(averaged over 100 iterations) on the random satisfiable set r3sat. Note that the
corresponding fail-first versions (NS−,GS−, and HS−) have the exact same complexity
and speed since the only difference between them is the direction of optimization. The
complexity of the sigmoid-based approach SS+ is identical to that of GS+, although
the speed is understandably slightly lower due to the overhead of computing the
sigmoid function and its derivatives. Finally, the computational cost of the stochastic
vote method VS+ is simply a multiple of the cost of GS+ since all it does is sample a
fixed number of objective functions from a family of potentials, whereas GS+ always
uses the same fixed potential Rθ=(1,1,...,1).

Several observations can be immediately made. The gradient-based GS+ is ex-
tremely cheap with CPU time requirements of approximately 0.16ms per iteration
for the largest instances in the set (560 variables). The complexity is linear in the
number of literals, which in this set is directly proportional to the number of vari-
ables (since the formulas have three literals per clause, and a fixed clause-to-variable
ratio, the total number of literals is |F | = 3 × 4.25n). On the other hand, the two
matrix-based heuristics are orders of magnitude slower to compute: HS+ clocks in at
0.21s for the largest instances, while NS+ takes 1.15s per iteration. Both methods
rely on the CSparse library for solving sparse matrices, the complexity of which is
cubic in the worst case. HS+ takes less time to compute since it only has to solve
the n × n Hessian matrix, whereas NS+ solves the m × n Jacobian matrix. In this
set, m = 4.25n, which corresponds to a 560 × 560 Hessian and a 2380 × 560 Ja-
cobian for the largest instances in set r3sat. As is evident from the graph, these
methods do not scale well for large instances such as those in the application test set.
The largest instances that we were able to reliably test with NS+ and NS− (given
our implementation and time limit) are about 3,000 variables and 60,000 clauses in
size. Three crafted benchmarks (automata sync, edgematching, mosoi289 unsat)

55

360 380 400 420 440 460 480 500 520 540 560
0

0.2

0.4

0.6

0.8

1

1.2

Number of variables

T
im

e
(s

)

NS

+

HS
+

360 380 400 420 440 460 480 500 520 540 560
1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

−4

Number of variables

T
im

e
(s

)

GS

+

Figure 5.1: The cost of computing a single iteration of the three main heuristics: NS+, HS+,
and GS+ as a function of the number of variables. The results were obtained on the random
satisfiable test set r3sat. The cost is measured in CPU time. The gradient-based GS+ is
extremely cheap and scales linearly with the number of literals. NS+ and HS+ do not scale
well, as they both rely on an external sparse matrix solver which has cubic complexity. HS+

is more efficient than NS+ as it only requires solving the n × n Hessian matrix which is
much smaller than the m× n Jacobian.

56

were too large for the matrix-based approaches (NS+, NS−, and HS+). Similarly, all
but one application benchmark (aes 32) were too large for the matrix-based meth-
ods. The bioinstances benchmark, however, was still within practical limits for the
Hessian-based HS+ heuristic.

In the case of matrix-based methods, the computational cost is completely dom-
inated by solving, rather than filling the matrix. Computing the partial derivatives
and setting up the matrix amount to less than 2% of the net cost of computing the
heuristic on the random test set. The simplest way to speed up these heuristics
would be to replace CSparse with a more efficient library. Such specialized libraries
exist and are usually fine-tuned to the hardware of the machine. Some libraries even
utilize the graphics processing unit (GPU) and multiple CPU cores for carrying out
matrix operations at high speed. Nonetheless, the complexity of these algorithms is
not as attractive as the gradient-based method when it comes to very large crafted
and real-world application benchmarks.

Since the iterations can get expensive for larger instances, we must ensure that
the solver does not waste the 20 minutes on the heuristic, and has enough time to
actually perform the search. We chose to reserve at most 10% of the allocated time
budget for computing the static heuristic. In other words, our version of MiniSAT
has at most 2 minutes of pre-processing, and at least 18 minutes of search time per
instance. For smaller instances, this time limit is rarely an issue because the heuristics
are sufficiently fast to carry out the required number of iterations within the first 2
minutes. For large instances, the iterations are costly (especially in the case of NS+),
and the pre-processing time limit is often reached. This means many large instances
(primarily in the application test set) often do not have a chance to carry out the
target number of optimization steps.

To select a target number of iterations and the step size, we conducted a few
preliminary tests on a random 5-SAT calibration test set consisting of an equal number
of large satisfiable and unsatisfiable instances. The reason we chose 5-SAT is because
it more closely matches the structure of real-world instances: most SAT instances are
dominated by very short (2 and 3 literal) clauses, while clauses of length 10 and above
occur rarely even for large application benchmarks. By trial and error, we found a
reasonably high number of iterations that can be safely executed within the 2 minute
pre-processing limit, and then tried several step sizes at that number of iterations.
The step size with the highest accuracy rate was selected as the step size to be used on
all other benchmarks. These results corresponded to approximately 2,000 iterations
for GS+, GS−, and SS+ with step size λ = 0.001, and 1,000 iterations for VS+ with
step size λ = 0.01. Since the matrix-based methods NS+, NS−, and HS− are a lot
more costly to compute, we set the target iteration count at 100; in practice, this
number of iterations is rarely achieved in medium to large instances. The step size
for these methods is also much larger (λ = 0.3).

We now turn our attention to the sigmoid-based method SS+. The larger the
stiffness parameter K, the closer a sigmoid function is to a regular step function.
A true step function is not suited for iterative optimization since its derivative is
discontinuous (the derivative is zero on either side of the step function and infinite
at the transition). Similarly, a product of several sigmoid functions with a high

57

stiffness parameter suffers from the same problem: the derivatives outside the unit
hypercube quickly approach zero and can effectively stall the optimization process
due to rounding errors. We found that this regularly occurs for values of K above 40.
This threshold is even lower for instances with longer clauses (since each literal in a
clause results in an additional sigmoid factor, which weakens the derivative). On the
other hand, choosing a value of K that is too small stretches the sigmoid potential
out and requires more optimization steps to converge. With this in mind, we tried
several K values on 30 random 5-SAT formulas (15 satisfiable and 15 unsatisfiable)
used in SAT-Race 2009. The experimental data from our calibration set suggested
that random 5-SAT formulas can be reliably optimized using values of K between 3
and 20. For simplicity, we used K = 10 for all our experiments. We do not, however,
exclude the possibility that much better choices of K exist.

Finally, we calibrate the stochastic vote method VS+. The perturbation exponents
for this heuristic are sampled in the range from 1

θmax
to θmax. When θmax is small

(that is, close to 1), all sampled potentials are very close to the potential Rθ=(1,1,...,1)

which is the default linear conflict potential used in gradient-based methods GS+ and
GS−. In this case, virtually all votes will point in the same direction (same as the
direction of the gradient), and the accuracy of the method will be the same as that
of the GS heuristics, but at a multiple of the cost (for example, ten samples means
ten times the computational cost). On the other hand, if the value of θmax is too
large, each sampled potential will be extremely non-linear (“wavy”); this is not a bad
thing per se, since all conflict potentials sampled in this way are correct in the sense
that they all can be used to find the least/most conflicting assignments of the same
Boolean formula. The caveat is that, when sampling from a wider gamut of conflict
potentials, we need to take more samples to have a meaningful (noise-free) gradient
vote. Ideally, we would like to sample an infinite number of samples from the widest
range of conflict potentials possible (θmax → ∞). In practice, however, we are very
much bound by the number of samples we can take, since the computational cost of
the heuristic is directly proportional to the number of sampled potentials. Therefore,
we first decide on the number of samples, and then tune θmax to it. We decided that
we can afford a ten-fold slowdown relative to GS+, which corresponds to sampling
10 potentials. As with the matrix-based methods, this heuristic rarely manages to
carry out the required number of iterations on very large instances. We examined
several values of θmax (1.5, 2, 5, 10, 20) on the random 5-SAT set and obtained an
11% accuracy boost at θmax = 5 relative to the next best results for 2 and 10. We
therefore used θmax = 5 as the maximum perturbation exponent for all subsequent
experiments.

5.5 Results and Discussion

We present the detailed timing results for each heuristic using time vs. accuracy graphs
which have become standard in SAT evaluations. The vertical axis corresponds to the
percentage of instances solved, and the horizontal axis corresponds to the time cut-off
in the range from 0 to 1200 seconds. Intuitively, curves that grow faster and higher

58

are more desirable (meaning, the algorithm solves more instances in less time). The
rightmost point on each curve indicates the final percentage of instances the algorithm
managed to solve.

We first turn our attention to the random set r3sat. The results for this set are
presented in Figure 5.2. The following observations can be made. First, there is very
little difference between always branching on False and always branching on True.
Always branching on True is slightly (about 3%) more accurate on medium instances,
but both heuristics end up solving approximately the same number of instances (34%
for False and 36% for True) in the 1200 second timeframe. This is expected, since
randomly-generated problems are unlikely to have a bias towards either polarity. The
curve for the default MiniSAT branching rule (branching on False with phase-saving
enabled) actually underperforms both True and False for easy instances, and is
eventually sandwiched between the two curves at a total of 35% instances solved. In
this test set, enabling phase-saving offers little to no advantage. One could argue
that the reason for this is that caching previous decisions is not helpful in random
instances due to the lack of a repeatable structure.

59

0
20

0
40

0
60

0
80

0
10

00
12

00
0102030405060708090

T
im

e
C

ut
of

f (
s)

% Instances Solved

F

al
se

T
ru

e
P

S
M

O
M

S
JW N

S
+

N
S

+
(2

)

N
S

−
H

S
+

G
S

+
G

S
−

S
S

+
V

S
+

F
ig

u
re

5.
2:

T
im

e
v
s.

ac
cu

ra
cy

fo
r

th
e

ap
p

li
ca

ti
on

sa
ti

sfi
ab

le
ra

n
d

om
se

t
r
3
s
a
t
.

J
ac

ob
ia

n
-b

as
ed

N
S

+
b

as
ed

on
a

sy
st

em
-o

f-
eq

u
a
ti

o
n

s
a
n

d
th

e
gr

ad
ie

n
t-

b
as

ed
G

S
+

ea
si

ly
ou

tp
er

fo
rm

th
e

b
as

el
in

e
M

in
iS

A
T

b
ra

n
ch

in
g

ru
le

s.
A

lw
ay

s
b

ra
n

ch
in

g
on

T
ru
e

a
n

d
a
lw

ay
s

b
ra

n
ch

in
g

o
n

F
a
ls
e

h
av

e
n

ea
rl

y
id

en
ti

ca
l

re
su

lt
s,

an
d

en
ab

li
n

g
p

h
as

e-
sa

v
in

g
h

as
v
ir

tu
al

ly
n

o
b

en
efi

t.

60

The two greedy dynamic heuristics JW and MOMS fared much better, solving 45%
and 50% of instances respectively. Since all the clauses in this benchmark are at most
three literals in length, and the distribution of variables across them is uniform, these
greedy methods work quite well for detecting imbalances between the two polarities of
the decision variable. Both methods perform similarly for easy to medium instances,
but MOMS quickly outpaces JW for more difficult instances. Since both heuristics
have the same complexity, it is not immediately apparent why MOMS outperforms
JW. We note, however, that the curve for JW is much smoother, likely due to the
fact that this heuristic considers a weighted sum of the clauses rather than simply
going for the polarity which appears in the maximum number of shortest clauses.

The worst performing heuristics are GS− and NS− (both solving only 32% of the
instances) which lag behind all other algorithms on virtually every instance. These
are fail-first heuristics, and it is evident that their predictions are the complete oppo-
site of what we seek in this benchmark. The matrix-based NS− is likely more accurate
at computing the fail-first preference vector than its gradient-based peer, and hence
performs even worse on medium instances. We can also conclude, that a fail-first
approach does not generate sufficiently strong learned clauses to help MiniSAT find
the model quicker on random formulas. In contrast, the two best performing heuris-
tics turned out to be their promise-based duals GS+ and NS+, solving 80% and 85%
of instances respectively. This makes sense, as the gradient-based methods are con-
ceptually similar to incomplete stochastic solvers which excel at random satisfiable
formulas. The difference between our method and incomplete solvers is that the op-
timization is deterministic and takes place inside the unit hypercube, rather than on
its corners. The system-of-equations approach, while computationally expensive, is
even more accurate since it is the most natural translation of the CNF formula into
a real-valued optimization problem. Unlike the gradient-based methods, NS+ tries
to “satisfy” all real-valued clauses simultaneously, rather than minimizing their sum.
This method is nearly as accurate even when the number of iterations is reduced: the
curve NS+2 is the same algorithm as NS+ but with only 10 instead of 100 iterations,
which gives it a superiour performance on virtually all instances, including the easy
ones. Notice that the curves for many of our heuristics rise almost vertically right
after the completion of the optimization, which indicates that the heuristic is nearly
optimal and the solver almost never backtracks. This is especially true for easy in-
stances. GS+, SS+, and VS+ solve more instances in 5 seconds than the baseline
MiniSAT (branching on False with phase-saving) solves in 20 minutes.

The most disappointing results were for the Hessian-based HS+ heuristic which
came in at only 37% of instances solved. The curve for this heuristic is omitted
from the graph for clarity, as it essentially overlaps the phase-saving curve. We ex-
pected this algorithm to perform as well as the gradient-based approach, but in fewer
iterations (after all, both algorithms optimize the same objective function, with the
difference that HS+ uses a second-order local search method which typically converges
faster). The algorithm worked well on isolated instances during preliminary testing,
but offered only a negligible 1% boost over the baseline MiniSAT branching rules.
Upon closer examination of the optimization process, it became apparent that New-
ton’s method, which is the driving force behind HS+, became trapped in “plateaus”

61

within the unit hypercube, and unlike its gradient-based peer, was unable to drop
down to lower levels sufficiently fast. Decreasing the step size (λ = 0.01, λ = 0.001,
and λ = 0.00001) did not remedy the problem across the benchmark. Nonetheless
(as will be demonstrated shortly), the method performs reasonably well on crafted
instances. We can only conclude that a second-order approximation is not the best
optimization technique for conflict potentials stemming from randomly-generated 3-
SAT instances. The local quadratic approximation ends up tossing the optimization
steps around aimlessly.

It is interesting to note that reducing the number of iterations of NS+ tenfold
had virtually no impact on its accuracy. Inspired by this observation, we decided to
investigate the relationship between the number of iterations a static heuristic per-
forms versus its accuracy. Specifically, we measure the accuracy as the percentage of
instances solved within the 1200 second time limit. The intuition is that more itera-
tions should yield better results (that is, more instances solved). This is indeed the
trend we observed in our preliminary tests, and our next experiment quantifies these
results. We focus our attention on algorithms NS+ and GS+ which performed best
on the random satisfiable set. The two heuristics represent the system-of-equations
approach and the gradient-based approach respectively. To investigate how the ac-
curacy of these two methods depends on the number of iterations, we conducted an
additional series of full solver runs on r3sat for each heuristic, gradually raising the
number of optimization steps while keeping the time limits on pre-precessing and
search constant. The ranges we examined were from 1 to 250 iterations for NS+, and
from 1 to 20,000 for GS+ (recall that gradient-based methods are much cheaper to
compute). For each run, we recorded the net number of instances solved.

The accuracy results for NS+ and GS+ are presented in Figure 5.3. First, notice
that the horizontal axis is logarithmic. Several interesting observations can be made.
The matrix-based NS+ yields 65% accuracy after just one iteration, and quickly con-
verges to about 83% accuracy in only 100 iterations. The gradient-based GS+, on
the other hand, results in a 54% accuracy after one iteration, and steadily increases
to about 79% for 20,000 iterations. Since the data points for GS+ appear to lie on
a roughly straight line, the convergence rate of this heuristic is approximately log-
arithmic in this region. Note that the leftmost point on each curve corresponds to
a single iteration; the “zero iterations” point corresponds to reverting to MiniSAT’s
default branching rules which yield about 35% accuracy on this test set. This means
that even a single iteration of NS+ and GS+ increases the accuracy from 35% to
65% and 54% respectively. Considering that the gradient-based methods are orders
of magnitude cheaper to compute than the matrix-based methods and scale much
better for larger problems, they are the preferred choice for the crafted and applica-
tion benchmarks. For example, to achieve an accuracy of 75%, NS+ executes about
5 iterations at an average cost of 0.6s per iteration for a total pre-processing time of
3s. To achieve the same accuracy, GS+ executes 5,000 iterations at an average cost of
0.14ms per iteration for a total cost of only 0.7s. We should also point out that the
two accuracy curves are not monotone, which we attribute to “snapping” (rounding)
the real-valued estimate to the nearest Boolean assignment. While the continuous
objective function may be well-optimized at a certain point, its value may not be as

62

10
0

10
1

10
2

10
3

10
4

10
5

50

55

60

65

70

75

80

85

Iterations

%
 In

st
an

ce
s

S
ol

ve
d

GS
+

NS
+

Figure 5.3: The accuracy of the two most successful heuristics: NS+ (system of equations
solved with Newton’s method) and GS+ (linear conflict potential solved by gradient descent)
as a function of the number of optimization iterations. The results were obtained on the
random test set r3sat. NS+ reaches a plateau of about 83% in only 100 iterations, while
GS+ steadily improves from about 54% to 79% in 20,000 iterations. Notice that zero
iterations (not shown on the graph) corresponds to reverting to MiniSAT’s default branching
behaviour, which has accuracy of about 35% on this test set.

good at the nearest Boolean assignment.
The time vs. accuracy graph for the crafted test set is presented in Figure 5.4,

and the detailed breakdown of the results on individual benchmarks is summarized
in Table 5.4. Surprisingly, the default MiniSAT branching rules beat all other heuris-
tics on virtually all benchmarks with a total of 97 out of 224 instances solved. The
stochastic vote method and always branching on True trail behind at 92 and 91 in-
stances respectively. While slightly more accurate in the long run, the stochastic vote
heuristic incurs a heavy pre-processing penalty which degrades its performance on
easy and medium instances. With this observation factored in, the gradient-based
GS+ is a more reliable candidate as it performs better across all instances for a to-
tal of 90 instances solved. The performance of GS+ closely trails the performance
of always branching on True. MOMS and Jeroslow-Wang underperform all of our
gradient-based promise methods at 82 and 84 solved instances respectively. Inter-
estingly, always branching on False has the worst accuracy of all aforementioned
heuristics. At 81 instances solved, always branching on False underperforms always
branching on True by 10 instances (mostly due to the benchmarks battleship sat

and vanderwaerden). This difference in accuracy can be attributed to the fact that,
unlike random instances, crafted instances are likely to have a bias toward either
polarity. In this case, always branching on False (the default polarity of MiniSAT)
is actually significantly worse than always branching on True.

The time vs. accuracy graph for the application test set is presented in Figure 5.5
and the detailed breakdown of the results on individual benchmarks is summarized
in Table 5.4. Similarly to the crafted set, the net accuracy of each heuristic is within

63

a narrow range (from 43% to 47%). However, two of our gradient-based methods
(linear and sigmoid) edge out the baseline MiniSAT by 2 and 5 instances respectively.
The sigmoid method SS+ comes in first at 68 out of 142 instances solved, with GS+

trailing behind at 65 instances solved. For SS+, the bulk of the accuracy boost
comes from the slp aes cryptography benchmark where it solved 4 times as many
instances as baseline MiniSAT did. As with the crafted set, the accuracy of SS+

comes at the cost of a hefty pre-processing penalty, which weakens its performance on
easy and medium instances. GS+, on the other hand, closely trails the performance
of the default branching rules, and finally edges out on the hard instances. The
remaining algorithms come in at 61 instances solved and generally underperform
the three leading heuristics across all instances with the fail-first GS− substantially
lagging behind despite its short pre-processing time. Interestingly, always branching
on True and always branching on False are virtually indistinguishable in terms of
accuracy. This is somewhat surprising, as we expected real-world instances to have a
clearly defined polarity bias. Since real-world instances are of particular importance
to SAT research, we wanted to investigate the three winning heuristics further. We
conducted additional experiments with the time limit raised to 1 hour. Unfortunately,
we did not observe any significant changes in accuracy with the increased time limit.
Both SS+ and GS+ solved an additional 7 instances each, while the baseline MiniSAT
solved another 8 instances bringing the totals to 75, 72, and 71 solved instances
respectively.

64

0
20

0
40

0
60

0
80

0
10

00
12

00
051015202530354045

T
im

e
C

ut
of

f (
s)

% Instances Solved

F

al
se

T
ru

e
P

S
M

O
M

S
JW G

S
+

G
S

−
S

S
+

V
S

+

F
ig

u
re

5.
4:

T
im

e
v
s.

ac
cu

ra
cy

fo
r

th
e

cr
af

te
d

te
st

se
t.

T
h

is
is

th
e

on
ly

se
t

w
h

er
e

th
e

d
ef

au
lt

b
eh

av
io

u
r

o
f

M
in

iS
A

T
(a

lw
ay

s
b

ra
n

ch
in

g
on

F
a
ls
e

w
it

h
p

h
as

e-
sa

v
in

g
en

ab
le

d
)

si
gn

ifi
ca

n
tl

y
ou

tp
er

fo
rm

s
al

l
ot

h
er

h
eu

ri
st

ic
s.

T
h

e
st

o
ch

as
ti

c
vo

te
a
lg

o
ri

th
m

V
S

+
co

m
es

in
se

co
n

d
at

th
e

co
st

of
m

or
e

p
re

-p
ro

ce
ss

in
g.

T
h

e
gr

ad
ie

n
t

m
et

h
o
d

G
S

+
is

sl
ig

h
tl

y
w

or
se

th
an

al
w

ay
s

b
ra

n
ch

in
g

o
n
T
ru
e,

w
h

ic
h

in
th

is
se

t
ou

tp
er

fo
rm

s
al

w
ay

s
b

ra
n

ch
in

g
on

F
a
ls
e.

T
h

e
cu

rv
es

fo
r

th
e

m
at

ri
x
-b

as
ed

m
et

h
o
d

s
ar

e
n
ot

sh
ow

n
b

ec
a
u

se
th

e
b

en
ch

m
a
rk

s
co

n
ta

in
ed

to
o

m
an

y
in

st
an

ce
s

th
at

w
er

e
to

o
la

rg
e

to
re

li
ab

ly
ap

p
ly

th
e

h
eu

ri
st

ic
s.

65

0
20

0
40

0
60

0
80

0
10

00
12

00
05101520253035404550

T
im

e
C

ut
of

f (
s)

% Instances Solved

F

al
se

T
ru

e
P

S
M

O
M

S
JW G

S
+

G
S

−
S

S
+

V
S

+

F
ig

u
re

5.
5:

T
im

e
v
s.

ac
cu

ra
cy

fo
r

th
e

ap
p

li
ca

ti
on

te
st

se
t.

T
h

e
si

gm
oi

d
-b

as
ed

h
eu

ri
st

ic
S

S
+

so
lv

es
th

e
m

os
t

in
st

a
n

ce
s

a
t

th
e

co
st

o
f

m
or

e
p

re
-p

ro
ce

ss
in

g
(a

n
d

th
u

s,
w

or
se

p
er

fo
rm

an
ce

on
ea

sy
in

st
an

ce
s)

.
T

h
e

gr
ad

ie
n
t-

b
as

ed
G

S
+

co
m

es
in

se
co

n
d

,
b

u
t

h
a
s

b
et

te
r

ov
er

a
ll

p
er

fo
rm

an
ce

.
T

h
e

cu
rv

es
fo

r
th

e
m

at
ri

x
-b

as
ed

m
et

h
o
d

s
ar

e
n

ot
sh

ow
n

b
ec

au
se

th
e

b
en

ch
m

ar
k
s

co
n
ta

in
ed

to
o

m
a
n
y

in
st

a
n

ce
s

th
a
t

w
er

e
to

o
la

rg
e

to
re

li
ab

ly
ap

p
ly

th
e

h
eu

ri
st

ic
s.

66

There are several possible explanations why our heuristics do not drastically im-
prove the accuracy of MiniSAT on the crafted and application benchmarks. The first
factor is the size of the instances. More variables and more clauses means increased
computational cost of the heuristic and fewer iterations executed (our matrix-based
algorithms have timed out after completing as little as 3 optimization steps on some
of the larger instances). It is also possible that larger instances require far more opti-
mization iterations than we expect. Secondly, with the increased number of variables,
there is an increased room for error; even if the heuristic gets 80% of the polarities
right, an instance with over half a million variables (such as those in the bioinfo

benchmark) can easily trap the solver in unfavourable regions of the search space if it
simply branches on a few incorrectly predicted variables near the root of the search
tree. We believe discrepancy based search (described in Chapter 3) may alleviate this
issue. Thirdly, the composition of the instance matters. Instances from the random
set r3sat have many nice properties (all clauses have the same length, the number
of clauses is a fixed multiple of the number of variables, the distribution of variables
across clauses is uniform) which do not hold for real-world instances. Lastly, the
constraint structure of the instances likely plays a crucial role. The local information
gathered from random instances through iterative optimization is more likely to lead
to a solution quickly due to a uniform distribution of solutions across the search space,
whereas crafted and application instances can have intricate structures and complex
distributions of solutions which may be more difficult to identify using non-linear
optimization.

Now that we have identified the winning heuristics in each category, we can com-
pare their performance to state-of-the-art solvers and other solver architectures. The
results for the different solvers on the random, crafted, and application benchmarks
are presented in Figures 5.6, 5.7, and 5.8. The entries are sorted in increasing accuracy
order and the baseline MiniSAT results are highlighted.

We first turn our attention to the random set. Unsurprisingly, the two incomplete
solvers sparrow2011 and adaptg2wsat solve all 110 instances, since random satisfi-
able formulas is the category stochastic local search solvers typically excel at. The
complete lookahead solver march rw also performs exceptionally well, solving 104 in-
stances. Complete solvers lingeling and glucose come in last at 17 and 21 solved
instances respectively. Whereas the baseline MiniSAT implementation solves only
39 instances, our systems-of-equations approach NS+ and the gradient-based GS+

offer a significant accuracy boost with 87 and 92 instances solved respectively. All
of our promise heuristics performed better than clasp (57) and MiniSAT equipped
with MOMS (55) and JW (50). This makes our most successful combination (Mini-
SAT with NS+) the second best complete solver and fourth best solver overall in the
random category.

Whereas the results for the random set display a wide gamut of accuracy scores
(ranging from 15% to 100%), the range of scores is much narrower in the crafted set
(ranging from 29% to 43%) with the lookahead solver march rw performing worst (65
out of 224 solved) and the baseline MiniSAT performing best (97 out of 224 solved).
Even though march rw was the top complete solver in the random category, it signif-
icantly lags behind on the crafted set, which once again illustrates that the structure

67

Crafted benchmarks

Benchmark T
ot

al

F
al

se

T
ru

e

P
S

M
O

M
S

J
W

G
S

+

G
S
−

S
S

+

V
S

+

N
S

+

N
S
−

H
S

+

automata sync 12 8 8 8 7 8 8 8 8 8 - - -
battleship sat 28 9 17 18 8 8 17 8 16 19 16 16 16
battleship unsat 17 8 8 8 8 8 8 8 8 8 8 8 8
edgematching 30 18 16 18 19 18 15 17 19 19 - - -
modcircuits 19 6 4 5 4 5 4 6 4 3 5 4 6
mosoi289 sat 15 15 15 15 15 15 15 15 15 15 15 15 15
mosoi289 unsat 15 0 0 1 0 0 0 0 0 1 - - -
sgen sat 13 1 4 4 1 2 4 1 3 2 4 1 3
sgen unsat 13 3 3 3 3 3 3 3 3 3 3 3 3
vanderwaerden 62 13 16 17 17 17 16 16 13 14 13 16 16
ALL 224 81 91 97 82 84 90 82 89 92 64 63 67

Application benchmarks

Benchmark T
ot

al

F
al

se

T
ru

e

P
S

M
O

M
S

J
W

G
S

+

G
S
−

S
S

+

V
S

+

N
S

+

N
S
−

H
S

+

aes 32 10 5 5 6 5 4 5 4 5 4 4 4 4
aprove09 18 16 16 17 16 18 17 17 17 18 - - -
bioinfo 20 20 20 20 20 20 20 20 20 20 - - -
bioinstances 30 8 8 8 7 7 8 9 8 7 - - 7
desgen 19 5 5 5 5 5 6 4 5 7 - - -
md5 10 5 5 5 5 5 5 5 5 4 - - -
slp aes 35 2 2 2 3 2 4 2 8 1 - - -
ALL 142 61 61 63 61 61 65 61 68 61 4 4 11

Table 5.4: The number of instances solved in 1200 seconds by each MiniSAT heuristic in
each benchmark. Dashes indicate that a particular benchmark contained too many instances
which were too large to reliably apply the heuristic (this mainly applies to matrix-based
methods).

68

110

110

104

92

87

84

78

57

55

50

39

21

17

0 20 40 60 80 100 120

adaptg2wsat

sparrow2011

march_rw

MiniSAT (NS+)

MiniSAT (GS+)

MiniSAT (VS+)

MiniSAT (SS+)

clasp

MiniSAT (MOMS)

MiniSAT (JW)

MiniSAT

glucose

lingeling

Figure 5.6: The total number of instances solved by different solvers and heuristics in the
satisfiable random benchmark (110 instances). The two incomplete solvers easily solve all
instances. Our gradient and systems-of-equations heuristics raise the baseline MiniSAT
accuracy from 39 to 87 and 92 instances solved respectively.

97

92

91

90

90

89

89

86

84

82

82

72

65

0 20 40 60 80 100 120

MiniSAT

MiniSAT (VS+)

sparrow2011

lingeling

MiniSAT (GS+)

MiniSAT (SS+)

clasp

glucose

MiniSAT (JW)

MiniSAT (MOMS)

MiniSAT (GS-)

adaptg2wsat

march_rw

Figure 5.7: The total number of instances solved by different solvers and heuristics in
the crafted benchmark (224 instances). Surprisingly, the basic MiniSAT finishes first with
97 instances solved, followed by the stochastic vote method (92), and sparrow2011 (91).
The lookahead solver march rw has the worst accuracy at only 65 instances solved. Our
heuristics end up hindering the baseline MiniSAT branching rules, but not by much.

69

68

65

64

63

62

61

61

61

61

57

14

7

4

0 10 20 30 40 50 60 70 80

MiniSAT (SS+)

MiniSAT (GS+)

lingeling

MiniSAT

glucose

MiniSAT (GS-)

MiniSAT (VS+)

MiniSAT (MOMS)

MiniSAT (JW)

clasp

march_rw

sparrow2011

adaptg2wsat

Figure 5.8: The total number of instances solved by different solvers and heuristics in the
application benchmark (142 instances). The two incomplete solvers and the lookahead solver
perform poorly, solving less than 9% of all instances. Heuristics GS+ and SS+ modestly
boost the accuracy of MiniSAT by 2 and 5 solved instances respectively. The sigmoid
potential heuristic finishes first with 68 instances solved versus 64 for lingeling and 63 for
MiniSAT.

of the problem can be crucial to an algorithm’s performance. As discussed above, the
baseline MiniSAT edges out all of our heuristics; what’s even more surprising is that
it beats all other solvers. Our stochastic vote method VS+, while less accurate than
baseline MiniSAT comes in second (92 instances solved), surpassing all other solvers
by a small margin.

In the application category, the algorithms fall into one of two accuracy ranges:
3% to 10% (adaptg2wsat, sparrow2011, march rw) and 40% to 48% (the rest). The
incomplete and lookahead solvers perform worst, which is the complete opposite of
the results observed on the random test set where adaptg2wsat, sparrow2011, and
march rw were the top three solvers. On the other hand, the solver lingeling (which
was the worst performing algorithm on the random set) comes in third beating the
baseline MiniSAT by one instance. Our algorithms SS+ (68 out of 142 solved) and
GS+ (65 out of 142 solved) dominate not only the baseline MiniSAT, but all other
solvers as well. It is also interesting to note that the fail-first heuristic GS− is not
that much worse than its promise-based counterpart (61 vs. 65 instances solved) and
just as good as MOMS, JW, and the stochastic vote method.

It should be noted that we cannot expect the incomplete solvers to perform ex-
ceptionally well on both the crafted and the application sets, as those contain unsat-
isfiable instances which stochastic local search cannot solve (unless the solver uses a
formula pre-processor capable of determining unsatisfiability before search begins).
The fact that none of the methods was able to solve even 50% of the crafted and
application sets is a testament to the difficulty of the chosen benchmarks. MiniSAT

70

also reasserts itself as a robust and competitive framework for SAT research across
multiple types of instances. It is also evident that none of our heuristics (includ-
ing the fail-first ones) significantly degrade the accuracy of the baseline MiniSAT
even on both satisfiable and unsatisfiable instances. Furthermore, our promise-based
heuristics consistently beat MOMS and JW in all three categories.

We close off our experimental results with a brief discussion of a potential way to
improve the accuracy of our approach. The idea for this method stems from so-called
portfolio-based SAT solvers. Rather than trying to devise a universal algorithm which
works well across all SAT instances, portfolio-based solvers incorporate a multitude of
different algorithms, each tailored for a particular type of SAT instances. For example,
the relatively new solver ppfolio7 did exceptionally well at SAT-Competition 2011
and has won several medals in multiple categories. At its core, ppfolio simply runs
five different state-of-the-art SAT solvers in parallel and terminates the search as soon
as one of the solvers finds a solution. Because different solvers excel at different types
of instances, the overall boost in accuracy can often outweigh the cost of running
several processes in parallel. Furthermore, modern CPUs usually spread running
tasks across multiple cores, which improves the efficiency even further. Inspired by
the success of this approach, we examined the possibility of running several of our
heuristics in parallel. We found that our heuristics indeed excel at different instances,
and that by taking the best result among the lot, we can boost the net accuracy.

We now demonstrate the potential benefits of this approach by simulating different
portfolios from our existing results. Consider a portfolio with H different heuristics.
On a single-core CPU architecture, the heuristics in the portfolio would have to be
interleaved during run-time, which leads us to the following approximation for the
best time:

T 1
best = H ×min{T1, T2, .., TH}

,
where T1, T2, .., TH are the times for each heuristic to find the solution. We multiply
by H to adjust for the interleaving (assuming all heuristics have equal priority). If
the result cost exceeds 1200 seconds, the instance is marked as unsolved. For an
architecture with H available cores, we simply take the best result among all the
cores (no interleaving):

THbest = min{T1, T2, .., TH}.

This, of course, is also an approximation, as it does not take into account the effects
of sharing resources (such as cache, disk, and RAM) between the individual cores.

To get an upper bound on the accuracy boost, we first simulate running all of
the available heuristics (including False, True, PS, MOMS, and JW) in parallel on
an unlimited number of cores. When compared against the top heuristic in each test
set, the number of instances solved rises from 92 to 102 in the random set, from 97
to 105 in the crafted set, and from 68 to 75 in the application set. This corresponds
to accuracy rates of 92.7%, 46.9%, and 52.8% respectively (approximately a 3% to
6% gain). Naturally, we would like to find the smallest portfolio that still achieves

7http://www.cril.univ-artois.fr/˜roussel/ppfolio

71

Random benchmarks
Portfolio Single-core Multi-core
{NS+} (reference) 92 92
{NS+ GS+} 92 96
{NS+ VS+} 95 99
{NS+ VS+ GS+} 95 100
{NS+ VS+ GS+ SS+ MOMS} 92 102

Crafted benchmarks
Portfolio Single-core Multi-core
{PS} (reference) 97 97
{PS GS−} 95 98
{PS VS+} 93 99
{PS GS− VS+} 92 101
{PS GS− VS+ SS+} 88 102
{PS GS− VS+ SS+ GS+ MOMS} 87 105

Application benchmarks
Portfolio Single-core Multi-core
{SS+} (reference) 68 68
{SS+ PS} 63 69
{SS+ GS+} 63 71
{SS+ GS+ GS−} 60 74
{SS+ GS+ GS− VS+} 53 75

Table 5.5: The simulated number of instances solved in 1200 seconds by using various
heuristic portfolios. In each portfolio, the heuristics run simultaneously, and the best result
is reported. The results are simulated for interleaved execution (single-core CPU) and
parallel execution (multi-core CPU). For interleaved execution, portfolios almost always
degrade the performance. For parallel execution, however, the number of solved instances
can be increased from 92 to 102 in the random set, from 97 to 105 in the crafted set, and
from 68 to 75 in the application set.

the same accuracy. Table 5.5 summarizes the simulated accuracy scores for different
heuristic portfolios. The smallest portfolios that still achieve the top accuracy scores
have sizes 5 (random), 6 (crafted) and 4 (application). It is not unreasonable to
assume that a computer dedicated to solving SAT instances would have 4 to 6 available
cores. Unfortunately, it appears that for single-core CPUs, portfolios of our heuristics
degrade the performance in most cases. Nonetheless, the simulated results for the
multi-core architecture make the portfolio method the top solver in the crafted and
application categories, and the top complete solver in the random category.

5.6 Summary

In this chapter, we empirically evaluated our heuristics on a wide assortment of SAT
instances. We obtained the best results on satisfiable random formulas, where our

72

systems-of-equations approach solved 85% of instances compared to 35% solved by
MiniSAT’s default branching rules. We found that the gradient method, although less
accurate than the system-of-equations method, scales better for large instances, and
that variations of the gradient method (sigmoid potential and stochastic vote) can be
tuned to perform well on a wide range of benchmarks. While our approach showed
no performance boost on crafted instances, we observed a modest gain in accuracy
on real-world application instances (47% of instances solved compared to 44% solved
by MiniSAT’s default branching rules). Nonetheless, MiniSAT equipped with our
heuristics is very competitive when compared to state-of-the-art SAT solvers.

In the next chapter, we conclude the thesis with a summary of our results, and a
describe future work and potential improvements to our approach.

73

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the contributions of the thesis, briefly reiterate our
approach, and highlight important results. We also state open questions and list
some possible directions for future work.

6.1 Conclusion

The seemingly simple question of whether a Boolean formula can ever evaluate to
True serves as a gateway between efficient solvers and complex real-world applica-
tions ranging from circuit design to bioinformatics. In this thesis, we explored the
challenging task of designing fast and accurate value ordering heuristics for solving
the Boolean Satisfiability (SAT) problem using backtracking search. The backtrack-
ing DPLL algorithm has become the most common framework for modern complete
SAT solvers. When branching on a decision variable, choosing the right polarity to
explore first can lead to dramatic savings in runtime and resources. Due to the inher-
ent difficulty of deciding which polarity is better, not much research has been done
on value ordering in SAT, and only few reliable heuristics are known. In this thesis,
we presented three separate methods for constructing value ordering heuristics by
tapping into the power of non-linear optimization methods.

Our methods first translate the Boolean formula into a corresponding continuous
optimization problem defined on the unit hypercube, whose corners correspond to
the 2n Boolean assignments. Then an iterative non-linear optimization technique
is applied to approximate the Boolean assignment with the most desired score; the
relative location of the estimate is then used to decide the polarity of the decision
variable. The three methods differ in their formulation of the optimization problem
and the local search technique used.

The first method models the optimization problem as a system of non-linear equa-
tions and attempts to find a root of the system by using Newton’s Method. This
amounts to repeatedly solving a linear system defined by the Jacobian matrix of the
equations. The second method introduces the concept of conflict potentials; these
are objective functions which measure the number of clause conflicts within the unit
hypercube. The heuristic then uses gradient descent or Newton’s Method to op-

74

timize the conflict potential (the latter involves solving a linear system defined by
the Hessian matrix of the conflict potential). A similar idea is used in incomplete
solvers; however, our approach optimizes the objective function on the continuous
space within the unit hypercube, rather than on its corners. The third method builds
on the concept of conflict potentials, but adds a stochastic element to the search.
Instead of optimizing a single conflict potentials, the method samples a fixed number
of related conflict potentials (perturbed by small random exponents) and lets them
vote on a common optimization direction at each iteration. Since the distribution of
local extrema is different among the sampled potentials, the heuristic has less chance
of getting stuck during the optimization process. We implemented our heuristics in
the renowned MiniSAT framework.

All of our heuristics share the unusual property that the polarity estimates are
computed for all unassigned variables at once (as opposed to the decision variable
only). While computationally expensive, this property allows the heuristic to be used
both dynamically and statically.

6.2 Summary of Results

Since it is well known that SAT solvers have varying degrees of accuracy across
different classes of instances, we tested our heuristics on random, crafted, and real-
world application benchmarks used in recent SAT-Race competitions. The heuristic
parameters were selected based on the algorithms’ performance on random formulas,
and were not otherwise tuned to individual test sets. We measured the accuracy as
the number of instances solved within a 1200 second time limit.

We obtained by far the best results on random satisfiable formulas, boosting the
baseline MiniSAT accuracy from 35% to 80% (gradient-based approach) and to 85%
(matrix-based approach). The matrix-based method NS+ converges very quickly (in
under 100 iterations), but the iterations are costly. The gradient-based GS+, on the
other hand, is cheap to compute, but requires more iterations; we determined that
its accuracy increases approximately logarithmically with the number of iterations.
We also found that even a single optimization iteration of NS+ boosts MiniSAT’s
accuracy from 35% to 65% on the random set.

Our heuristics did not have such a dramatic impact on the crafted and application
sets. On the application set, we obtained a modest gain, raising the accuracy of
MiniSAT from 44% to 48% with SS+. Surprisingly, MiniSAT came in first in the
crafted category, and none of our heuristics managed to improve its accuracy; on the
contrary, our promise-based heuristics degraded the accuracy by as much as 4%.

The sigmoid-based method SS+ shines in the application category, where it beats
not only MiniSAT, but all state-of-the-art solvers. On other benchmarks, its per-
formance is generally similar to that of its linear counterpart GS+. Nonetheless, its
exceptional performance on the cryptography benchmark slp aes confirms that a
change in the parametrization of the conflict potential can have a significant impact
on the performance of the heuristic.

The Hessian-based heuristic HS+ performed surprisingly poorly on the random

75

set (37% accuracy) compared to its peers, but showed average performance on the
other two sets. Our expectation that the method would be as accurate as its gradient
descent version was shown to be incorrect. It appears that a second-order optimization
method does not offer any advantage over plain gradient descent for the types of
formulas we examined.

The stochastic vote method VS+ shows average performance, except on the crafted
set where it comes in second, surpassing its peers and sparrow2011. It should be
noted that this method has a high pre-processing cost which degrades its performance
on easy instances compared to other heuristics. However, this method has many
parameters, and it is conceivable that a more refined calibration would have yielded
better results.

In general, the heavy computational cost of our heuristics makes them less attrac-
tive for solving easy instances, as the time spent computing the heuristic can often
outweigh the actual search time. For this reason, we focused our attention on medium
and hard instances only. The complexity of the gradient-based methods is linear in
the length of the formula, which allows them to scale to large instances easily. The
matrix-based methods, on the other hand, have cubic complexity in the dimension
of the matrix to be solved (n × m for Jacobian-based methods, n × n for Hessian-
based methods) and do not scale beyond medium-sized instances, even though these
matrices are extremely sparse. The largest instances that we were able to use the
matrix-based methods on had about 3,000 variables and 60,000 clauses.

Overall, MiniSAT performed reliably across all categories, and our promise-based
heuristics either boosted its accuracy (35% to 85% for random, 44% to 48% for
application) or lightly degraded it (down to as low as 39% from 43% for crafted).
On crafted and application sets, MiniSAT equipped with our heuristics beat all six
state-of-the-art solvers. On the random set, MiniSAT equipped with our heuristics
comes in fourth behind the lookahead and incomplete solvers, but still surpassing
lingeling, glucose, and clasp. Unlike MiniSAT, the other solvers displayed a huge
variance in accuracy scores across the different test sets. For example, the incomplete
solvers sparrow2011 and adaptg2wsat achieved 100% accuracy on the random set,
but under 5% accuracy on real-world instances. Similarly, lingeling came in 2nd in
the application category but last in the crafted category.

We observed that the promise-based versions of our heuristics always outperformed
the fail-first versions. This is contrary to our initial assumption that branching to-
wards conflict-rich regions of the search space would help MiniSAT produce stronger
learned clauses and hence speed up the search. Interestingly, our promise-based
heuristics appear to be very reliable: they usually increase the accuracy on satisfiable
instances and do not (significantly) decrease the accuracy on unsatisfiable instances.

We also showed that the well-known Jeroslow-Wang heuristic can be seen as a
single iteration of our gradient-based method GS+ evaluated at the center of the unit
hypercube. Unlike Jeroslow-Wang, GS+ goes beyond a single iteration, and repeat-
edly refines the initial guess. This may explain why our promise-based heuristics
outperform both Jeroslow-Wang and the related heuristic MOMS on all test sets.
Both Jeroslow-Wang and MOMS have similar accuracy scores, with MOMS outper-
forming Jeroslow-Wang by about 5% on hard random instances, and underperforming

76

by about 2% on the crafted set.
In our tests, we did not observe a significant advantage of always branching on

False (the default MiniSAT polarity) vs. always branching on True; in fact, on our
crafted set, always branching on True solved 10 instances more. We also observed
that enabling phase-saving (the default MiniSAT behaviour) does indeed provide a
small accuracy boost (a few percentage points) on most benchmarks.

Lastly, we examined a portfolio-based approach, where many successful heuristics
work in parallel until one of them finds the solution. While the results of our sim-
ulation are not exact, they suggest that by bundling 4 to 6 heuristics together and
running them on separate cores, the accuracy of MiniSAT can be boosted further.

6.3 Future Work

In this thesis, we modified just one component of MiniSAT, namely, the value ordering
heuristic. Naturally, this is not the only aspect affecting the efficiency of search. All
of MiniSAT’s features such as variable ordering, clause learning, clause pruning, and
restarts play an important role and affect each other in non-trivial ways. In particular,
it would be interesting to modify the variable ordering heuristic to match the strategy
of our value ordering heuristics more closely. The default variable ordering heuristic
VSIDS is inherently a fail-first heuristic, which may or may not be the best choice
when the value ordering heuristic operates in a different mode. It would be insightful
to test our value ordering heuristic with other existing variable ordering heuristics, or
perhaps devise a new variable ordering heuristic based on the information obtained
from the non-linear optimization process. For example, in our stochastic heuristic
VS+, sampled conflict potentials vote on a common direction. The sign of the vote
is used to make a polarity choice; its magnitude, however, is not taken into account.
Perhaps, the variable which has received the largest number of consenting votes could
be branched on next with the intuition that the polarity of that variable has a higher
measure of confidence. Similarly, we can extract this “confidence score” from the the
gradient-based methods GS+ and SS+ by measuring the magnitude of each component
of the gradient.

Another potential improvement would be to integrate our value ordering heuristics
into a discrepancy-based SAT solver (as described in Chapter 3). Discrepancy-based
solvers systematically branch against the value ordering heuristic in a predefined
pattern which causes the search tree to be explored more sporadically. This way, a
bad decision made high up in the search tree has less chance of trapping the solver
in unfavourable regions of the search space. We noticed that in the case of satisfiable
instances, the polarity vector computed by our heuristics usually contains a very
large fraction of correctly-guessed polarities; unfortunately, a few bad decisions at
the top of the search tree can render this good initial guess useless. We speculate
that discrepancy-based search could help bring out those correctly-guessed polarities
in the long run.

It would also be interesting to apply our heuristics in the closely-related field of
Maximum Satisfiability (MAX-SAT) which attempts to find a variable assignment

77

which satisfies as many clauses as possible. In essence, that is exactly what our non-
linear optimization methods are designed to do. The conflict potential (the objective
function in two of our methods) is a measure of clause conflicts within the unit
hypercube. By minimizing this conflict potential, our heuristics discover Boolean
assignments which violate as few clauses as possible (or equivallently, satisfy as many
clauses as possible). This would allow us to transform our heuristics into MAX-SAT
algorithms.

78

Appendix A

Sample Implementation

For convenience, we provide a sample C++ implementation of one of the simpler
static heuristics GS+ (or GS− when run in fail-first mode) based on a linear conflict
potential with gradient-based optimization.
(See next page).

79

1 /* Assume the following global variables have been defined and initialized.

2 {int n}: the number of variables in the instance.

3 {int m}: the number of clauses in the instance.

4 {Clause clauses[m]}: a vector of all the clauses in the instance.

5 {bool preferred_polarities[n]}: a vector to store the preferred polarities.

6 The Clause class is essentially a vector of Literal objects.

7 The Literal class represents a single literal and has the following methods:

8 {int Literal::var()}: returns the variable of the literal.

9 {bool Literal::is_positive()}: returns true iff the literal's variable is not negated.

10 */

11

12 /* Computes the gradient of the linear conflict potential at point x[n].

13 The result is stored in grad[n]. Only to be used with static heuristics. */

14 void gradR(double x[], double grad[]) {

15 for (int i=0; i<n; i++) grad[i] = 0;

16 for (int i=0; i<m; i++) { // Iterate over clauses.

17 Clause c = clauses[i];

18 for (int j=0; j<c.size(); j++) { // Iterate over the literals in the clause.

19

20 Literal l = c[j]; // Differentiate clause c with respect to literal l.

21 double product = l.is_positive() ? -1 : 1;

22 for (int k=0; k<c.size(); k++) {

23 if (j==k) continue; // Do not differentiate the clause c against l twice.

24 Literal ll = c[k];

25 product *= ll.is_positive() ? (1-x[ll.var()]) : x[ll.var()];

26 }

27

28 grad[l.var()] += product; // Add the clause's contribution.

29

30 }

31 }

32 }

33

34 /* Fills the global vector preferred_polarities[n] with

35 the preferred polarities for each variable computed by performing

36 gradient descent (promise_mode=true) or ascent (promise_mode=false) on the

37 linear conflict potential. Static version only. */

38 void GS(bool promise_mode, int max_iterations, double step_size) {

39

40 double x[n], grad[n];

41 for (int i=0; i<n; i++) x[i] = 0.5; // Start search at the center of the unit hypercube.

42

43 if (promise_mode) step_size *= -1.0; // In promise mode, we minimize the conflict potential.

44

45 int iteration = 0;

46 while (++iteration < max_iterations) {

47

48 gradR(x, grad); // Compute the gradient at the current estimate.

49 for (int i=0; i<n; i++) {

50 x[i] += step_size * grad[i]; // Perform gradient descent or ascent.

51 x[i] = max(0, min(1, x[i])); // Restrict the estimate to the search domain.

52 }

53 }

54

55 for (int i=0; i<nVars(); i++)

56 preferred_polarities[i] = x[i] > 0.5; // Snap to the nearest corner (Boolean assignment).

57 }

-1-

80

Bibliography

[AKS11] Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily. On the van
der Waerden numbers w(2; 3, t). Technical Report arXiv:1102.5433v1
[math.CO], arXiv, February 2011.

[AS09] G. Audemard and L. Simon. Glucose: a solver that predicts learnt
clauses quality. SAT Competition, pages 7–8, 2009.

[Atk09] K.E. Atkinson. An introduction to numerical analysis. Wiley-India,
2009.

[BB92] M. Buro and H.K. Büning. Report on a SAT competition. Fachbereich
Math.-Informatik, Univ. Gesamthochschule, 1992.

[Bie08] A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Model-
ing and Computation, 4(75-97):45, 2008.

[Bie10] A. Biere. Lingeling, plingeling, picosat and precosat at sat race 2010.
FMV Report Series Technical Report, 10(1), 2010.

[BJ09] M. Bonet and K. John. Efficiently calculating evolutionary tree mea-
sures using sat. Theory and Applications of Satisfiability Testing-SAT
2009, pages 4–17, 2009.

[BN] F. Baader and T. Nipkow. Term rewriting and all that. 1998.

[BP10] J. Boyar and R. Peralta. A new combinational logic minimization
technique with applications to cryptology. Experimental Algorithms,
pages 178–189, 2010.

[BS01] R. Bruni and A. Sassano. Restoring satisfiability or maintaining un-
satisfiability by finding small unsatisfiable subformulae. In In LICS
Workshop on Theory and Applications of Satisfiability Testing, page
2001, 2001.

[BW92] D. Basin and T. Walsh. Difference unification. 1992.

[CA93] J.M. Crawford and L.D. Auton. Experimental results on the crossover
point in satisfiability problems. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 21–21. Citeseer, 1993.

81

[CFT10] Fabien Corblin, Eric Fanchon, and Laurent Trilling. Applications of
a formal approach to decipher discrete genetic networks. BMC Bioin-
formatics, 11:385, 2010.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of com-
puting, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[Dav06] T.A. Davis. Direct methods for sparse linear systems, volume 2. Soci-
ety for Industrial Mathematics, 2006.

[DBM00] O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-sat for-
mulae and the satisfiability threshold. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 126–127.
Society for Industrial and Applied Mathematics, 2000.

[DD04] G. Dequen and O. Dubois. Kcnfs: An efficient solver for random k-sat
formulae. In Theory and Applications of Satisfiability Testing, pages
305–306. Springer, 2004.

[DK89] J. De Kleer. A comparison of atms and csp techniques. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelli-
gence, volume 1, pages 290–296. Citeseer, 1989.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

[EB05] Niklas Een and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. In In proc. SAT05, volume 3569 of
LNCS, pages 61–75. Springer, 2005.

[ES04] N. Eén and N. Sörensson. An extensible sat-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, volume 2919 of Lecture Notes in Computer
Science, pages 333–336. Springer Berlin / Heidelberg, 2004.

[FK05] D. Furcy and S. Koenig. Limited discrepancy beam search. In In-
ternational joint conference on artificial intelligence, volume 19, page
125. Lawrence Erlbaum Associates ltd, 2005.

[Fre95] Jon William Freeman. Improvements to propositional satisfiability
search algorithms. PhD thesis, Philadelphia, PA, USA, 1995. UMI
Order No. GAX95-32175.

82

[FSK10] C. Fuhs and P. Schneider-Kamp. Synthesizing shortest linear straight-
line programs over gf (2) using sat. Theory and Applications of Satis-
fiability Testing–SAT 2010, pages 71–84, 2010.

[Fuh09] C. Fuhs. Sat instances for termination analysis with aprove. SAT 2009
competitive events booklet: preliminary version, page 63, 2009.

[G+89] F. Glover et al. Tabu search-part i. ORSA Journal on computing,
1(3):190–206, 1989.

[Gal77] Z. Galil. On the complexity of regular resolution and the davis-putnam
procedure. Theoretical Computer Science, 4(1):23–46, 1977.

[Gen02a] I.P. Gent. Arc consistency in sat. In ECAI, volume 2, pages 121–125,
2002.

[Gen02b] I.P. Gent. Arc consistency in sat. In ECAI, volume 2, pages 121–125,
2002.

[Gin93] M.L. Ginsberg. Dynamic backtracking. Arxiv preprint cs/9308101,
1993.

[GK10] M. Gwynne and O. Kullmann. Attacking AES via SAT. PhD thesis,
BSc Dissertation (Swansea), 2010.

[GKNS07] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A
conflict-driven answer set solver. Logic Programming and Nonmono-
tonic Reasoning, pages 260–265, 2007.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Sci-
ence, 39:297–308, 1985.

[HDVZVM05] M. Heule, M. Dufour, J. Van Zwieten, and H. Van Maaren. March eq:
Implementing additional reasoning into an efficient look-ahead sat
solver. In Theory and Applications of Satisfiability Testing, pages 898–
898. Springer, 2005.

[Heu09] M.J.H. Heule. Solving edge-matching problems with satisfiability
solvers. SAT 2009 competitive events booklet: preliminary version,
page 69, 2009.

[HG95] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In
International Joint Conference on Artificial Intelligence, volume 14,
pages 607–615. Citeseer, 1995.

[HMBM08] E. Hsu, C. Muise, J. Beck, and S. McIlraith. Probabilistically es-
timating backbones and variable bias: Experimental overview. In
Principles and Practice of Constraint Programming, pages 613–617.
Springer, 2008.

83

[Hoo95] J.N. Hooker. Testing heuristics: We have it all wrong. Journal of
Heuristics, 1(1):33–42, 1995.

[Hoo99] H.H. Hoos. On the run-time behaviour of stochastic local search algo-
rithms for sat. In Proceedings of the national conference on artificial
intelligence, pages 661–666. JOHN WILEY & SONS LTD, 1999.

[Hoo02] H.H. Hoos. An adaptive noise mechanism for walksat. In Proceedings
of the national conference on artificial intelligence, pages 655–660.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2002.

[HTH02] F. Hutter, D.A.D. Tompkins, and H.H. Hoos. Scaling and probabilistic
smoothing: Efficient dynamic local search for sat. Lecture notes in
computer science, 2470:233–248, 2002.

[Hua07] Jinbo Huang. The effect of restarts on the efficiency of clause learning,
2007.

[HV95] J. N. Hooker and V. Vinay. Branching rules for satisfiability. Journal
of Automated Reasoning, 15:359–383, 1995.

[HvM08] M.J.H. Heule and H. van Maaren. Whose side are you on? Journal on
Satisfiability, Boolean Modeling and Computation, 4:117–148, 2008.

[HvZD11] M.J.H. Heule, J.E. van Zwieten, and M. Dufour. marchrw sat solver.
http://www.st.ewi.tudelft.nl/sat/, 2011.

[JG79] D.S. Johnson and M.R. Garey. Computers and intractability: A guide
to the theory of np-completeness. Freeman&Co, San Francisco, 1979.

[Joh73] David S. Johnson. Approximation algorithms for combinatorial prob-
lems. In Proceedings of the fifth annual ACM symposium on Theory of
computing, STOC ’73, pages 38–49, New York, NY, USA, 1973. ACM.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional satis-
fiability problems. Annals of Mathematics and Artificial Intelligence,
1:167–187, 1990. 10.1007/BF01531077.

[KGJV83] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[KKL06] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. The probabilistic anal-
ysis of a greedy satisfiability algorithm. Random Structures & Algo-
rithms, 28(4):444–480, 2006.

[KKY09] A. Kojevnikov, A. Kulikov, and G. Yaroslavtsev. Finding efficient
circuits using sat-solvers. Theory and Applications of Satisfiability
Testing-SAT 2009, pages 32–44, 2009.

84

[Kor96] R.E. Korf. Improved limited discrepancy search. In Proceedings of the
National Conference on Artificial Intelligence, pages 286–291, 1996.

[KSS10] L. Kroc, A. Sabharwal, and B. Selman. An empirical study of optimal
noise and runtime distributions in local search. Theory and Applica-
tions of Satisfiability Testing–SAT 2010, pages 346–351, 2010.

[Kul02] O. Kullmann. Investigating the behaviour of a sat solver on random
formulas. Submitted to Annals of Mathematics and Artificial Intelli-
gence, 2002.

[LA97] Chu Min Li and Anbulagan Anbulagan. Heuristics based on unit prop-
agation for satisfiability problems. In Proceedings of the 15th inter-
national joint conference on Artifical intelligence - Volume 1, pages
366–371, San Francisco, CA, USA, 1997. Morgan Kaufmann Publish-
ers Inc.

[Lev73] L. Levin. Universalnyıe perebornyıe zadachi (universal search prob-
lems: in russian). Problemy Peredachi Informatsii, 9(3):265–266, 1973.

[LH05] C. Li and W. Huang. Diversification and determinism in local search
for satisfiability. In Theory and Applications of Satisfiability Testing,
pages 158–172. Springer, 2005.

[Lib00] Paolo Liberatore. On the complexity of choosing the branching literal
in dpll. Artificial Intelligence, 116:200–0, 2000.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal
speedup of las vegas algorithms. Information Processing Letters,
47:173–180, 1993.

[LWZ07] C. Li, W. Wei, and H. Zhang. Combining adaptive noise and look-
ahead in local search for sat. Theory and Applications of Satisfiability
Testing–SAT 2007, pages 121–133, 2007.

[MDWH+10] S. Mijnders, B. De Wilde, M.J.H. Heule, D. Mitchell, and E. Ter-
novska. Symbiosis of search and heuristics for random 3-sat. In Pro-
ceedings of the Third International Workshop on Logic and Search
(LaSh 2010), pages 231–240. Academic Service, 2010.

[Mes97] P. Meseguer. Interleaved depth-first search. In International Joint
Conference on Artificial Intelligence, volume 15, pages 1382–1387.
Lawrence Erlbaum Associates ltd, 1997.

[MJPL90] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-
scale constraint satisfaction and scheduling problems using a heuristic
repair method. In Proceedings of the eighth National conference on
Artificial intelligence, pages 17–24, 1990.

85

[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th
annual Design Automation Conference, pages 530–535. ACM, 2001.

[Mor93] P. Morris. The breakout method for escaping from local minima. In
Proceedings of the national conference on artificial intelligence, pages
40–40. JOHN WILEY & SONS LTD, 1993.

[Mos11] A. Mosoi. Grid colouring challenge. SAT 2011 benchmark description,
2011.

[Ms99] Joo Marques-silva. The impact of branching heuristics in propositional
satisfiability algorithms. In In 9th Portuguese Conference on Artificial
Intelligence (EPIA, pages 62–74, 1999.

[MSK97] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in
local search. In Proceedings of the national conference on artificial
intelligence, pages 321–326. JOHN WILEY & SONS LTD, 1997.

[MVVW06] D. Mpekas, M. Van Vlaardingen, and S. Wieringa. The first steps to
a hybrid sat solver. Delft University of Technology, 2006.

[NG02] Y. Novikov and E. Goldberg. Berkmin: a fast and robust sat-solver.
Proceedings of Design, Automation and Test in Europe (DATE02),
page 0142, 2002.

[PD07a] K. Pipatsrisawat and A. Darwiche. A lightweight component caching
scheme for satisfiability solvers. Theory and Applications of Satisfia-
bility Testing–SAT 2007, pages 294–299, 2007.

[PD07b] K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver description.
Solver description, SAT competition, 54:9–10, 2007.

[Pre96] D. Pretolani. Efficiency and stability of hypergraph sat algorithms.
Cliques, coloring, and satisfiability: second DIMACS implementation
challenge, October 11-13, 1993, 26:479, 1996.

[PRI12] S.J.D. PRINCE. Computer vision: models, learning, and inference.
Recherche, 67:02, 2012.

[Ros04] V. Rosta. Ramsey theory applications. the electronic journal of com-
binatorics, 1000(0):DS13–Dec, 2004.

[SH11] Evgeny Skvortsov and Carl Hubinette. Moving battleship problem.
SAT 2011 benchmark description, 2011.

[SJ09a] M. Sesum and P. Janicic. Generator of sat instances of unknown sat-
isfiability. SAT 2009 competitive events booklet: preliminary version,
page 87, 2009.

86

[SJ09b] M. Sesum and P. Janicic. Generator of satisfiable sat instances. SAT
2009 competitive events booklet: preliminary version, page 85, 2009.

[SKC93] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satis-
fiability testing. Cliques, coloring, and satisfiability: Second DIMACS
implementation challenge, 26:521–532, 1993.

[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving
local search. In Proceedings of the national conference on artificial
intelligence, pages 337–337. JOHN WILEY & SONS LTD, 1994.

[SLM92] B. Selman, H. Levesque, and D. Mitchell. A new method for solv-
ing hard satisfiability problems. In Proceedings of the tenth national
conference on Artificial intelligence, pages 440–446, 1992.

[Spe09] I. Spence. sgen1: A generator of small, difficult satisfiability bench-
marks. SAT 2009 competitive events booklet: preliminary version,
page 95, 2009.

[SS11] K.A. Sakallah and L. Simon. Proceedings of the 14th international
conference on theory and application of satisfiability testing. 2011.

[ST11] E. Skvortsov and E. Tipikin. Experimental study of the shortest re-
set word of random automata. Implementation and Application of
Automata, pages 290–298, 2011.

[Tse68] G S Tseitin. Studies in constructive mathematics and mathematical
logic, 8(115-125):234–259, 1968.

[VGTUoC95] A. Van Gelder, Y. Tsuji, and Santa Cruz. Computer Research Labora-
tory University of California. Satisfiability testing with more reasoning
and less guessing. Computer Research Laboratory,[University of Cal-
ifornia, Santa Cruz, 1995.

[Wal97] T. Walsh. Depth-bounded discrepancy search. In International
joint conference on artificial intelligence, volume 15, pages 1388–1395.
LAWRENCE ERLBAUM ASSOCIATES LTD, 1997.

[Wal00] T. Walsh. Sat v csp. Principles and Practice of Constraint
Programming–CP 2000, pages 441–456, 2000.

[War99] J.P. Warners. Nonlinear approaches to satisfiability problems. Univ.,
1999.

[ZHG11] M. Zhou, F. He, and M. Gu. An efficient resolution based algorithm
for sat. In Theoretical Aspects of Software Engineering (TASE), 2011
Fifth International Symposium on, pages 60–67. IEEE, 2011.

87

