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Abstract

Nonadiabatic dynamical processes are ubiquitous in chemistry and biology. Such events

are directly connected to the treatment of energetically close lying states which gives rise

to strong vibronic interactions in which case the Born-Oppenheimer approximation tends

to break down. In case of biradicals, nonadiabatic events are facilitated by conical intersec-

tions, as a result of symmetry lowering of degenerate electronic states due to Jahn-Teller

distortion.

A central problem in the treatment of the nonadiabatic molecular dynamics is posed

by the representation of potential energy surfaces. A point by point calculation of a

potential energy surface on a multi-dimensional grid is very cumbersome and in general

does not provide with an analytical functional form of the potential. This becomes even

more complicated when the adiabatic surfaces have cusps, where the function becomes

non-differentiable.

Vibronic model Hamiltonians, which represent the potential in the form of a potential

matrix which contains the electronic energies as well as the couplings in a diabatic basis.

A Taylor series expansion of the potential matrix can be done to get a smooth analytical

functional form of the potential matrix elements. These models can then be used to

perform nuclear dynamics using either exact diagonalization time-independent method or
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the wavepacket propagation based time-dependent methods. Thus, vibronic models provide

a compact representation of complicated coupled potential energy surfaces, which can be

used in conjunction with non-adiabatic nuclear dynamics

Vibronic models have been constructed for selected biradicals, for which photodetach-

ment spectra have been simulated using the time-independent (VIBRON) as well as time-

dependent (MCTDH) methods. Consistent results have been obtained with both the ap-

proaches for small systems. This also assures the use of MCTDH program for larger

systems, where the time-independent methods are not applicable. Moreover, for biradi-

cals, the parent anionic state also undergoes a Jahn-Teller distortion, or often the ground

state potential energy surface is highly anharmonic in nature. This requires the description

of anionic ground state by a vibronic model.

Therefore, in order to simulate the photodetachment spectra of biradicals, three vi-

bronic models are constructed for each simulation. The first model describes the ground

and excited states of the parent anionic (neutral) species. Two other vibronic models de-

scribe singlet and triplet states of the target neutral (cation) species, and the spectrum is

simulated using the vibronic ground state(s) of the anion (neutral) as the absorbing state

in VIBRON/MCTDH. The electronic states and vibronic model parameters are obtained

using the IP-EOM-CCSD and DIP-STEOM-CCSD methodology as coded in the ACESII

quantum chemistry program package. The photodetachment spectra of NO3, C4H
−
4 and
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C(CH2)
−
3 have been studied using this methodology.
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Chapter 1

Introduction

The advent of quantum mechanics in early twentieth century made it possible to study the

science of Chemistry at the atomic scale. To come up with answers for puzzling questions

of Chemistry became possible in principle, such as − what happens when two substances

are mixed, why a certain product is formed, will a product be formed at all, if yes in what

time, it may be a matter of seconds or even a matter of years! What more, to explore

properties of matter became possible and so did our ability to design new materials. If we

look at our kitchen today, and a picture of our kitchen in our grandparents days, we would

notice how much progress Chemistry has made over the years. It has completely changed

the way of living life (whether for the good or the bad, is a very subjective question, and

let us not get into that here!).
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All this became possible due to the study of molecular processes at atomic level. Theory

along with the experiments has played a major role in the progress of Science, and often

has motivated experimentalists to carry out new and challenging experiments. Talking

about molecules, one can readily identify the two components which make the chemistry

happen - Electrons and Nuclei. It turns out that in general the time scale of motion of

electrons and nuclei differ greatly (attosecond for electrons, femtosecond for nuclei) and

one can independently solve for the Schroedinger equation for the two cases and come up

with many possible answers of the interesting questions posed above. This formulation has

been the central backbone of doing chemistry – be it energetics, kinetics or spectroscopy,

and is famously known as the Born-Oppenheimer or the adiabatic approximation. The

first part of dealing with the motion of electrons is known as Electronic Structure Theory

while the theory dealing with motion of nuclei is termed Nuclear Dynamics.

Simplicity lies on the other side of the complexity. Nature is complex, and one tries

to understand nature with the use of simple yet beautiful physical models. One such

complexity arises when the aforementioned Born-Oppenheimer approximation starts to

break down in certain cases. This happens more often than one would like to think. Such

processes where the motion of electrons and nuclei can no longer be treated independently

are called nonadiabatic processes. Even though such processes were known for a long time

in history, the theoretical developments for treating such processes started in 1980s with
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the advent of vibronic models by Koppel, Domcke and Cederbaum. [1]

Vibronic models provide a great tool to study the nonadiabatic processes by providing

a compact representation of potential energy surfaces in close energetic proximity. The

parameters of the model responsible for the coupled motion of electrons and nuclei can

be obtained by high-level ab initio electronic structure methods. One such method, the

Similarity Transformed Equation of Motion (STEOM) will be used to obtain the electronic

excitation energies and the vibronic model parameters in the work presented here. This is

where the first part of simulating the spectra ends: it lays the foundation for performing

nuclear dynamics by formulating the electronic structure problem of the molecular systems.

It goes without saying that the electronic structure aspects of any nonadiabatic process

represent only half of the picture. In order to determine the observables associated with

the experiment, one must solve the nuclear motion problem. This will be accomplished

through the use of time-independent exact diagonalization as well as the time-dependent

wavepacket propagation methods. The systems of interest are biradicals, a very interesting

and challenging type of species holding much importance in different areas of chemistry,

and the observable quantity we will be looking at is the electron binding energy through

Photodetachment spectroscopy.

In recent years, a large number of spectroscopic data has been obtained for radicals

and biradicals, for which there is no characterization available. By using the theoretical
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methods and computational tools used in this work, one can readily simulate and interpret

the experimental spectra, and a lot of physical insight can be gained into the molecular

properties. Explanation is one thing, and prediction is other. Besides the ability to in-

terpret and explain the features of experimental spectra, new spectra can be predicted by

using these methods for which there is no experimental data available. This also motivates

experimentalists to carry out new and challenging experiments opening up a whole new

world of possibilities.

In this thesis, an attempt on both fronts has been made on a preliminary level, to

explain and to predict the photodetachment spectra of selected biradicals. The theoretical

formulation behind our approach to simulate the spectra will be laid out in Chapter 2,

while Chapter 3 will try to provide a detailed account of the actual computational process

involved in performing such calculations, and essentially lays out much of the machinery

of the entire process. The steps involved have been illustrated using NO2 as an example

and the input files also have been provided which should give the reader some idea of what

goes in and what comes out in doing these calculations. Chapter 4 deals with interest-

ing application of these methods to the small but rather complicated system, NO3 while

Chapter 5 deals with complicated systems of larger size, namely cyclobutadiene (C4H4)

and trimethylenemethane (C(CH2)3) where the simulated spectrum for C4H4 will be pre-

dictive in nature. The thesis finishes with few concluding remarks and developments in
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sight in Chapter 6. Get ready for a bumpy ride and enjoy the journey!
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Chapter 2

Theoretical Background

2.1 Electronic Structure of Biradicals

According to Salem,[2] biradicals can be defined as molecules in which two electrons oc-

cupy two degenerate, or nearly degenerate, spatial orbitals. A few examples of biradical

molecules are carbenes, conjugated hydrocarbons which can not be represented by clas-

sical Kekule structures, antiaromatic annulenes, and others. Also, biradicals often act as

reactive intermediates, or transition states in the course of a chemical reaction.

There are six different possible ways in which two electrons can be placed in two orbitals,

or equivalently in four spin orbitals. This is shown in figure 2.1 . Among these six possible
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Figure 2.1: Possible configurations for the occupancy of two electrons in two orbitals

configurations, |ψαxψαy 〉 and |ψβxψβy 〉 are clearly triplet states, while |ψαxψβx〉 and |ψαyψβy 〉 are

singlet states. Also, the sum of configurations |ψαxψβy 〉 and |ψβxψαy 〉 represents the third

component (Ms = 0) of the three-fold degenerate triplet, while their difference represents

the third singlet state. The important point to note here is that the individual determinants

are not spin eigenstates.

In total, four closely lying multiplets are present overall, one three-fold degenerate

triplet and the three singlets. The question that arises here is: what are the relative energies

of these states, and which one is the ground state? Furthermore, the (near)degeneracy of

the singlet states and the mixing of configurations can lead to distortion in molecular

geometry resulting in the lowering of energy. This makes the prediction of the ground

state more complicated.

Let us look at the relative energies of these four states in quantum-mechanical terms.

Assuming that |ψx〉 and |ψy〉 are degenerate, the energy terms for one- and two-electron
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operators are:

h = one electron energy of ψi or ψj

Kij = exchange energy between ψi and ψj

J̄ = average coulombic repulsion between two electrons in ψi or ψj

Jij = coulombic repulsion between two electrons; one in ψi, one in ψj

The relative energies of these states can be written as follows:

Triplet

|ψiψj (αβ + βα)/2〉 E = 2h + Jij − Kij (2.1)

Singlet

|ψiψj (αβ − βα)/2〉 E = 2h + Jij + Kij (2.2)

Singlet

1√
2

(|ψαi ψ
β
i 〉 − |ψαj ψ

β
j 〉) E = 2h + J̄ − Jij (2.3)

Singlet

1√
2

(|ψαi ψ
β
i 〉 + |ψαj ψ

β
j 〉) E = 2h + J̄ + Jij (2.4)

In consideration of different terms contributing to E, a few conclusions can be made.

First, J̄ >> Jij > Kij > 0, which means that the triplet should be the ground state as
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there is a reduction in energy due to the exchange correlation. However, a difficulty lies

in the comparison of Jij − Kij and J̄ − Jij. No certain rule is followed in general. An

important point to note in the above analysis is that we are not considering energetic

terms which involve the other orbitals of the system. Even if the two orbitals are closely

degenerate, those terms may not be equal for different configurations, and may eventually

lead a singlet to fall below the triplet in energy. [3]

To obtain the energies from equation 2.1 − 2.4, a knowledge of MOs ψi and ψj is

required. In a closed-shell molecule, where the N MOs of lowest energy contain the total

number of 2N electrons, optimal MOs are obtained by solving the SCF equations. The

form of the equations remain the same for all MOs. This approach is also known as the

Restricted Hartree-Fock (RHF) method, since the MOs occupied by α and β electrons are

restricted to be the same.

SCF methods have also been developed for the open-shell systems, Restricted open-shell

Hartree-Fock (ROHF) in which the MOs occupied by α and β electrons are restricted to

be the same, and Unrestricted Hartree-Fock (UHF) where this restriction is lifted. Though

the UHF energy is always equal to or lower than the ROHF energy, qualitatively it can

only describe wavefunctions which are of a single Slater determinantal form. Therefore,

while UHF can treat the high spin triplets (|ψαi ψαj 〉 and |ψβi ψ
β
j 〉) correctly, it fails to provide

a qualitatively correct description for the corresponding singlets where the wavefunction
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requires two Slater determinants. In addition, singlet states in 2.3 and 2.4 are linear

combinations. Also, UHF leads to a mixture of singlet and triplet states when applied to

the low spin (Ms = 0) component of triplet and the corresponding open-shell singlet.

In addition, correlation between the two partially occupied MOs, and the rest of the

”core” electrons can play an important role in determination of the relative energies. This

correlation is missing in the above discussed treatments. Electron correlation techniques,

and multiconfigurational wavefunction approach is briefly discussed later.

2.2 Overview of quantum chemical approaches

Among the single determinant based techniques of electron correlation, configuration in-

teraction (CI) is the oldest method. In CI, contributions to the ground electronic state are

made by mixing in excited configurations. From the reference ground state, the electrons

are promoted to the virtual orbitals to build all possible configurations and the electronic

Hamiltonian thus obtained is diagonalized. This leads to what is known as Full CI (FCI),

and gives the exact energy for the electronic Hamiltonian in a given basis set. However, FCI

becomes highly impractical for medium sized molecules, or even for very small molecules in

a larger basis set. However, if the diagonalization is performed in the basis consisting of the

reference determinant (obtained by HF-SCF) and the single and double excitations only,
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the resulting truncation is known as Configuration interaction singles and doubles (CISD).

Although CISD is computationally tractable as compared to FCI, it suffers from the size-

inconsistency problem. CISD has lost popularity in past few decades, and is no longer

used very widely compared to its descendant many-body perturbation theory (MBPT),

and coupled-cluster (CC) techniques.

MBPT is the simplest size-consistent electron correlation technique, particularly when

the perturbation is carried out to second order, referred to as MBPT(2). This method has

been extensively used to treat electron correlation, and has provided quite good results

in terms of accuracy. While the third order MBPT does not yield an improved accuracy,

MBPT(4) results in a significant improvement over MBPT(2). Going beyond MBPT(4)

makes it computationally very expensive. MBPT is losing favor due to a number of reasons,

which are discussed in a review article. [4]

The CC theory is based upon an exponential ansatz, and the wavefunction is written

as

|ψ〉 = eT̂ |φ0〉 (2.5)

where |φ0〉 is the single Slater determinant reference state, and T̂ is the cluster operator

which produces excited determinants. It can be written as

T̂ = T̂1 + T̂2 + . . . T̂n (2.6)
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T̂1 =
∑
ai

tai â
†î (2.7)

T̂2 =
1

4

∑
abij

tabij â
†â†îĵ (2.8)

...

where tab...ij... are the t-amplitudes which represent the corresponding weights of the excitation

operators. The operators following the t-amplitudes are creation and annihilation oper-

ators, which when acting on the reference state promotes an electron from the occupied

orbital i to virtual orbital a (in T̂1) as well as from from the occupied orbital j to virtual

orbital b (in T̂2). The coupled-cluster equations which are solved for ground state energy

E, and the t-amplitudes can be written as:

〈φ0|e−T̂HeT̂ |φ0〉 = E (2.9)

〈φλ|e−T̂HeT̂ |φ0〉 = 0 (2.10)

The cluster operator T̂ is usually truncated at n = 2 resulting in computationally tractable

CCSD (coupled-cluster singles and doubles) model. CCSD is size-consistent, and the expo-

nential operator makes sure the presence of determinants of all excitation levels. To reach

the desired accuracy, a perturbative triples correction is included to CCSD which results

in the highly accurate CCSD(T) model. CCSD(T) is often called ”the gold standard of

quantum chemistry”. [4]
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Density functional theory (DFT) is another widely used ab-initio method in which the

ground-state energy of an N particle system is expressed as a functional of the one-electron

density.

In many systems, such as biradicals, more than one configuration contributes sub-

stantially to the wavefunction. For such situations, multiconfigurational approaches are

applied. The starting wavefunction is expressed as a linear combination of the important

configurations with corresponding weights:

|ψ〉 =
∑
i

Ci|φi〉 (2.11)

where an optimization is performed for the coefficients Ci and orbitals φi. Such an approach

is known as multiconfigurational SCF (MCSCF). The selection of relevant configurations

is by no means a trivial task. Usually, the orbitals are divided into two spaces, namely

active and inactive, and the active space is selected in the valence region. This also re-

quires a fair amount of chemical intuition. The most widely used version of MCSCF

is often known as complete active space SCF (CASSCF) which results from doing the

complete (full) CI in a set of active orbitals. A clear advantage of multiconfigurational

approaches is that all the contributing determinants to the wavefunction are treated in a

balanced way. Although MCSCF calculations take nondynamical correlations into account

effectively, MCSCF wavefunctions often overestimate bond lengths and underestimate vi-

brational frequencies.[5]
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Multireference CI (MRCI) calculations have proven to be highly accurate in the treat-

ment of residual correlation effects, and have even been remarked as the method for gen-

erating potential energy surfaces. [4] However, like CI, MRCI is not size-consistent. Also,

MRCI calculations become highly expensive as the size of the molecule increases.

In a lesser known class of methods, the reference state is calculated for a state in which

the number of electrons are not the same as the actual state of interest! One such class

of methods, the equation-of-motion coupled-cluster (EOM-CC) will form the basis of the

work presented in this thesis. The great feature of these methods is a balanced treatment

of mixed configuration, and dynamical electron correlation; while avoiding the inherent

difficulties of the multireference methods. These methods will be explored in some detail

now, and their potential application to biradical systems will be discussed.

2.3 Equation-of-Motion Coupled-Cluster Methods

According to Krylov, [6] ”The Equation-of-motion coupled-cluster (EOM-CC) method is

a versatile electronic structure tool that allows one to describe a variety of multiconfigu-

rational wavefunctions within a single reference formalism.” The Fock space formalism, in

which one can talk about wavefunctions with varying number of electrons, is exploited to

separate the target and reference states. As stated in an earlier section, these methods
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provide a useful means to study the electronic structure of open-shell systems, in particular

biradicals. A brief formalism of various EOM-CC methods is presented in this section.

The starting point of traditional EOM methods is to have a closed-shell reference state

|φ0〉, which has a few more, or a few less electrons than the target state. This reference

state is a single Slater determinant, and a well behaved state for the closed-shell methods.

In EOM-CC, the HF-SCF orbitals are optimized and the CCSD equations are solved to

obtain T̂ for the reference state. However, to obtain the target states, the transformed

Hamiltonian H̄ = e−T̂ ĤeT̂ is diagonalized in a selected basis of determinants, which

correspond to the configuration of target states. What this means is that, if the target

state has N − 1 electrons , where N is the number of electrons in the reference state |φ0〉,

the diagonalization will be performed in a basis consisting of determinants obtained by

the removal of one electron from |φ0〉. The target states are accessed with the help of an

excitation operator R̂, which acts on |φ0〉. Depending on the number of electrons in the

target state, the form of R̂ will change so as to obtain the relevant target states.

Let us analyze this situation for Ionization-Potential EOM (IP-EOM) approach, where

the target state has one less electron than the reference state. This approach is suitable

for doublet radicals. The target state is defined as

|ψk〉 = ˆR(k) |φ0〉 (2.12)
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where ˆR(k) is the excitation operator. If we limit ˆR(k) to singles and doubles excitation,

we can write

ˆR(k) = ˆR1(k) + ˆR2(k) (2.13)

where

ˆR1(k) =
∑
i

ri(k)̂i (2.14)

which is a 1-hole operator. And,

ˆR2(k) =
1

2

∑
a

∑
i,j

raij(k)â†ĵ î (2.15)

which is a 2-hole 1-particle operator. The indices i, j . . . represent the occupied orbitals,

and a, b . . . represent the virtual orbitals.

Since the transformed Hamiltonian H̄ is not hermitian, the final states have to be

represented by a biorthogonal set of bra and ket functions.[7] These functions can be

written as follows:

|ψk〉 = eT̂ ˆR(k) |φ0〉 (2.16)

〈ψk| = 〈φ0| ˆL(k)e−T̂ (2.17)
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L can be defined in a similar manner to that of R,

ˆL(k) =
∑
i

li(k)î† +
1

2

∑
a

∑
i,j

lija (k)î†âĵ† (2.18)

Now, the IP-EOM-CCSD energy is obtained by the diagonalization of H̄, so that

E = 〈φ0| ˆL(k)H̄ ˆR(k)|φ0〉 (2.19)

or

E = 〈φ0| ˆL(k)e−̂THeT̂ ˆR(k)|φ0〉 (2.20)

The geometry of different target states can be optimized, and subsequently vibrational

frequencies can be calculated. Importantly, a number of different states can be obtained

from diagonalization of H̄.

Similarity-Transformed Equation-of-Motion Coupled-Cluster

The purpose of STEOM is a further simplification of the transformed eigenvalue prob-

lem. To accomplish this, a series of similarity transformations is performed on the Hamilto-

nian. [8, 9] In essence, the EOM methodology is carried one additional step forward, where

a second transformation is performed resulting in the removal of the first order coupling

between the singly and the doubly excited determinants.[10]

The transformations are executed at the level of second quantization in STEOM. Let

us write our Hamiltonian, and the transformed Hamiltonian (EOM level) in the second
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quantization form:

Ĥ = h0 +
∑
p,q

hp;q{p̂†q̂} +
1

4

∑
p,q,r,s

hpq;rs{p̂†r̂q̂†ŝ} (2.21)

where h0 is the energy of reference determinant, and hp;q is the corresponding Fock

operator. Also,

ˆ̄H = e−T̂ ˆ̄HeT̂ = h̄0 +
∑
p,q

h̄p;q{p̂†q̂} +
1

4

∑
p,q,r,s

h̄pq;rs{p̂†r̂q̂†ŝ} + ... (2.22)

In the EOM picture, the coupling between the singly excited and the doubly excited

determinants is given by operators h̄ab;ej{â†êb̂†ĵ} and h̄mb;ij{m̂†îb̂†ĵ}, where e represents an

active virtual orbital and m is an active occupied orbital. Now, the second transformation

is defined as a eŜ, with Ŝ = Ŝ+ + Ŝ−

Ŝ+ =
∑
a′ ,e

sa′ ;e{â
′†ê} +

1

2

∑
a,b,j,e

sab;ej{â†êb̂†ĵ} (2.23)

Ŝ− =
∑
i′ ,m

sm;i′{m̂†î
′} − 1

2

∑
i,j,b,m

smb;ij{m̂†îb̂†ĵ} (2.24)

where the prime indices represent explicitly inactive orbitals. The doubly transformed

Hamiltonian is given by

Ĝ = {eŜ}
−1 ˆ̄H{eŜ} = g0 +

∑
p,q

gp;q{p̂†q̂} +
1

4

∑
p,q,r,s

gpq;rs{p̂†rq̂†ŝ} + ... (2.25)
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The parameters which enters Ŝ are calculated by solving the equations:

ga′ ;e = gab;ej = 0 −→ Ŝ+ (2.26)

gm;i′ = gmb;ij = 0 −→ Ŝ− (2.27)

To obtain the s-amplitudes, a normalization condition is used on a proper subset of

IP-EOM-CC (EA-EOM-CC) eigenvectors which correspond to principal IPs(EAs). This

makes STEOM very robust numerically, as only eigenvalue problems are solved beyond the

CCSD ground state problem.

The DIP scheme

On a similar line of the EOM approach, STEOM can be used in diagonalization prob-

lems which involve a different number of electrons with respect to the reference state. More

specifically, systems which have two more electrons than a closed-shell parent state can be

described by Double Electron-attachment STEOM (DEA-STEOM). On the other hand,

systems which have two less electrons than a closed-shell parent state can be described by

Double Ionization-potential STEOM (DIP-STEOM). The DIP approach can be used to

study systems in which apart from the closed-shell ”core”, two electrons in two orbitals,

or four electrons in three orbitals are present. Biradicals fall in the former category. In

application of the DIP scheme, a di-anion is created as the reference state by filling the

partial occupied orbitals at first. Optimal MOs are obtained for this state. In the final
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step, the effective Hamiltonian is diagonalized in the basis of determinants which have two

less electrons than the dianion, the two-hole configurations, to obtain the target states of

the biradical. [9] If truly di-anion states are used, which are unbound, the DIP-STEOM

description is physically unsound. In practice even then the method can give reasonable

results, as long as the one-particle basis set is not too large.

The DIP-STEOM approach will be used to analyze the energetics of ground and excited

states, as well as to generate vibronic model Hamiltonians for biradicals. A summary of

important steps involved in a general STEOM calculation is as follows:[10]

1. Solve the CCSD equations. 〈φλ|e−T̂ ĤeT̂ |φ0〉 = = 0

2. Transform the Hamiltonian. H̄ = e−T̂ ĤeT̂

3. Select active occupied orbitals. Solve IP-EOM-CC equations → Ŝ−

4. Select active virtual orbitals. Solve EA-EOM-CC equations → Ŝ+. (This step is not

needed in the DIP version)

5. Get relevant matrix elements of the doubly transformed Hamiltonian.

Ĝ = {eŜ+ + Ŝ−}
−1 ˆ̄H{eŜ+ + Ŝ−}

6. Diagonalize G over îĵ|φ0〉, states with two less electrons than |φ0〉.
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7. Obtain approximate left-hand states and calculate properties as biorthogonal expec-

tation values.
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Spin-Flip Equation-of-Motion Coupled-Cluster

In Spin-flip equation-of-motion coupled-cluster method,[5] the reference is a high-spin

triplet state, which can be described in a qualitatively correct manner by the single reference

wavefunction (usually UHF). Then the target states are obtained via spin-flip excitations

(e.g. α→ β) as

ψs,tMs=0 = R̂Ms=−1ψ̃
t
Ms=+1 (2.28)

where ψ̃tMs=+1 represents the αα component of the triplet reference state, ψs,tMs=0 represents

the target low-spin singlet and triplet states Ms = 0, and R̂Ms=−1 is the excitation operator

which flips the spin of an electron. SF-EOM has been applied to describe a variety of

systems such as excited states, bond-breaking problems, biradicals, and triradicals, and

have achieved good results. [11] Further developments of SF-EOM methods are in active

development at the iOpenshell center, University of Southern California. [12]

2.4 Concepts of Vibronic Theory

2.4.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is the central approximation in the study of chem-

ical systems which lays the foundation for the most important concept in Chemistry –
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Potential Energy Surface (PES), defining much of the basic chemical concepts such as

molecular structure with chemical kinetics, spectroscopy, molecular dynamics, photochem-

istry and others. PES gives a description of the energy of a molecule in terms of its

structure. The global minimum on the surface corresponds to an equilibrium structure of

the molecule. In fact, all minima are some sort of stable conformations of the molecule.

First order saddle point corresponds to a transition state for a reaction. A reaction path

is the minimum energy path which connects a transition state to the minima. Let us try

to formulate the Born-Oppenheimer approximation, first in simple theoretical terms, and

then diving into more mathematical details. This will form the basis for our journey of

going from the Born-Oppenheimer approximation to Vibronic Models.

As most of the chemistry textbooks like to put it, the time scale of electronic and

nuclear movement differ greatly, nuclei being much heavier than electrons, therefore the

two degrees of freedom can be decoupled effectively . The molecular Hamiltonian can be

written as a sum of two terms, T̂N + Ĥe, where the first term is the nuclear kinetic energy

while the latter term refers to the electronic Hamiltonian including electron kinetic energy

as well as all the potential terms.

According to the Born-Oppenheimer approximation, the electronic problem involving

Ĥe is solved first at a fixed geometry Q (clamped nuclei), which gives the electronic wave-

function φn(r,Q) as well as a single adiabatic energy Vn(Q) for each electronic state. By
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varying Q one can obtain the full PES which is a function of nuclear coordinates.

To solve for nuclear wavefunction in the Born-Oppenheimer framework, the molecular

wavefunction is written as a product of the electronic wavefunction φn(r,Q) and a function

χn(Q) which depends on the nuclear configuration

ΨBO = χn(Q)φn(r,Q) (2.29)

The molecular Hamiltonian is a sum of two terms, as described above

Ĥ = T̂N + Ĥe (2.30)

Where

TN = − ~
2µ

∂2

∂Q2
(2.31)

Applying equation 2.30 on 2.29, it can be shown that

ĤΨBO = χnĤeφn −
1

2
(φnOR

2χn + χnOR
2φn + 2ORχnORφn) (2.32)

The last two terms in the equation 2.32 are neglected which leads to the Born-Oppenheimer

approximation. This essentially justifies the assumption that the electronic and nuclear

motion are decoupled (i.e., they are governed by two different equations). As stated earlier,

the interpretation here is that the motion of electrons do not depend on the motion of the

nuclei, though it clearly depends on the position of the nuclei!
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Before getting into the mathematical formulation of the Born-Oppenheimer approxi-

mation and the issue of non-adiabatic couplings, let us briefly look at one of the most

widely used methods in molecular spectroscopy – the harmonic Franck-Condon approach.

The Franck-Condon approach uses harmonic potentials along with the Born-Oppenheimer

approximation. What follows in the actual calculation is the geometry optimization of

the ground state and the calculation of a quadratic force field which gives the vibrational

frequencies. A similar procedure is repeated for the excited states of interest. The intensity

of individual transitions can be calculated from the overlap factors of the harmonic oscil-

lator states between ground and excited states. A combination of the Born-Oppenheimer

approximation with the Franck-Condon approach provides us with the familiar picture of

spectroscopy, as shown in the figure 2.2 .

Although the aforementioned scheme of calculating the spectra is computationally ef-

ficient and has been successful in studying a wide range of molecular systems, there are

limitations of the approximation and in certain situations the Franck-Condon methodology

faces a number of disadvantages. This can largely be categorized into two cases:

• Anharmonicities: It is possible that the equilibrium geometry of an excited state

of interest is considerably far from the geometry of the absorbing state. If such a

situation arise, the harmonic approximation to the PES of the excited state might

result in an inadequate approximation to the true PES in the Franck-Condon region
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Figure 2.2: The textbook picture of Spectroscopy: The Franck-Condon Approach

of the molecule, which is vital from the spectroscopic point of view. Moreover, often

excited electronic states are very close to each other resulting in complicated surface

topologies which again leads to a breakdown of the harmonic approximation.

• Conical Intersections: Excited state PESs often cross each other giving rise to

conical intersections. Due to surface crossings, it could well be that an excited state

minimum may not even exist! As an example, it is possible that the lowest point on

a PES is a conical intersection, or, if the PES is followed through the crossing the

final minimum coincides with the minimum located for another excited state!

In a nutshell, nuclear motion takes place on complicated potential energy surfaces which
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may not be described adequately by a single excited state surface. This necessitates to

move beyond the Born-Oppenheimer approximation in order to perform accurate studies

of spectroscopy.

Let us discuss the issue of nonadiabatic couplings now, which will eventually lead us to

a discussion on vibronic models, the heart of the studies performed in this work.

2.4.2 Nonadiabatic Couplings: From Adiabatic to Diabatic States

We have seen in the last section that the Born-Oppenheimer approximation is not suitable

to describe certain systems, which requires a form of analysis where the coupling between

electronic and nuclear motion is taken into account. Let us first try to formulate the

complete electronic and nuclear problem to understand the origin of this coupling, and

then provide a motivation towards why vibronic models are a good tool to study such

systems.

Let us write the full molecular Hamiltonian in a slightly different form now as compared

to the last section,

Ĥ = T̂e + T̂N + Û(r,Q) (2.33)

where T̂e and T̂N are the electronic and nuclear kinetic energy operator, and Û(r,Q) is

the potential energy operator for the complete system. As before, r and Q stand for the
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electronic and nuclear coordinates.

In order to solve for the full Schroedinger equation, the electronic part of the problem

is solved first by setting the nuclear kinetic energy term to zero i.e., T̂N = 0

Ĥe = T̂e + Û(r,Q); (Ĥe − Vn)φn(r,Q) = 0 (2.34)

which gives us the Born-Oppenheimer adiabatic electronic states φn(r,Q) and the cor-

responding adiabatic PES Vn(Q) for each electronic state as a function of nuclear geometry.

The full molecular wavefunction is then expressed as what is called the Born-Huang ex-

pansion employing φn(r,Q) as basis functions and the coefficients χn(Q) which depend on

the nuclear coordinates

Ψ = Σnχn(Q)φn(r,Q) (2.35)

This raises a doubt about the form of molecular wavefunction described in the previous

section. There, a single adiabatic states was multiplied by a coefficient depending on the

nuclear geometry. When electronic states start to come into close energetic proximity of

each other, it becomes important to include more than one of them in the expansion. In

fact, it should be noted that the equation 2.35 is formally exact if the set of adiabatic

states {φn(r,Q)} is complete. In practice, however, the expansion is truncated to a small

number of states.
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Now, the coefficients χn(Q) can be obtained by solving the full Schroedinger equation

(Ĥ − E)Ψn = 0 (2.36)

Inserting equation 2.35 into 2.36 and multiplying both sides from the left by
∫
drφm

∗

leads to a set of coupled equations

(T̂N + Vm(Q) − E)χm(Q) =
∑
n

Λ̂mnχn(Q) (2.37)

where

Λ̂mn = −
∫
drφm

∗[T̂N , φn] (2.38)

The operator Λ̂mn is known as the nonadiabatic operator, which is also the coupling

between the nuclear and the electronic motions as T̂N contains the nuclear coordinates while

φn contains the electronic coordinates. Let’s look at this more closely. The nonadiabatic

operator can be decomposed into first- and second-order derivative coupling by using the

definition of the T̂N reading as

Λ̂mn =
∑
k

~2

Mk

F k
mn

∂

∂Qk

−
∑
k

~2

Mk

Gk
mn (2.39)

where Mk are nuclear masses and

F k
mn = 〈φn(r)|Ok|φm(r)〉, (2.40)
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Gk
mn = 〈φn(r)|O2

k|φm(r)〉, (2.41)

where Ok ≡ ∂
∂Qk

.

The full Hamiltonian and the set of coupled equations can now be written as

Ĥ = T̂N + Vm(Q) − Λ̂ (2.42)

(Ĥ − E · I)χ = 0 (2.43)

The Hamiltonian matrix H describes the motion of nuclei in a selected manifold of

electronic states. χ is a column vector with elements χn, and Vm(Q) is the diagonal matrix

of electronic energies. The quantity Λ̂ represents the nonadiabatic coupling effects in the

adiabatic electronic representation.

Let us now consider a simple example of two excited electronic states which are very

close in energy and the nuclear motion takes place on both the surfaces. So the set of

coupled equations for this moon can be written as

[T̂N + V1(Q) − E]χ1 + Λ11χ1 = Λ12χ2 (2.44)

and

[T̂N + V2(Q) − E]χ2 + Λ21χ1 = Λ22χ2 (2.45)
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In matrix notation this can be rewritten asTn + Λ11 Λ12

Λ21 Tn + Λ11


χ1

χ2

 +

V1(Q) 0

0 V2(Q)


χ1

χ2

 =

E 0

0 E


χ1

χ2

 (2.46)

Therefore, the kinetic energy operator is non-diagonal, while the potential energy op-

erator is diagonal in the adiabatic electronic representation. If one can solve these coupled

equations, one can get the nuclear dynamics in a quite exact manner. The question here

is – can these equations be solved?

Let us look at some important points before we arrive at an answer to this question:

• When the nonadiabatic operator Λ̂ is set to zero, the Hamiltonian becomes diagonal,

and one arrives at the Born-Oppenheimer or adiabatic approximation. Then the

nuclear motion takes place on the two surfaces independently of each other.

• In general, the elements of nonadiabatic operator Λ̂ are extremely difficult to calcu-

late, especially in the regions of conical intersections.

• Although there are quantum chemistry programs such as COLUMBUS and MOL-

PRO, which can calculate the nonadiabtaic couplings by analytical gradient meth-

ods, the adiabatic representation still remains conceptually challenging in the regions

where two PESs come very close to each other, and the electronic wave function does

not remain a single valued function.
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• Representation of PESs in adiabatic approximation can be very poor, due to the

presence of cusps at conical intersections. This also makes them a non-differentiable

functions of nuclear coordinates.

• Last but not the least, solving nuclear dynamics equations where the kinetic energy

operator is non-diagonal is a challenging task.

Therefore, the take-home message is that the adiabatic approximation is cumbersome

to use in many cases. This eventually leads us to a new representation of electronic states

– the diabatic representation!

In a diabatic representation, the derivative couplings of the adiabatic representation are

forced to be zero and the wavefunction become a smooth function of nuclear coordinate

by a suitable unitary transformation. In this representation, the nuclear kinetic energy

operator becomes diagonal while the coupling between the electronic states is introduced

via the off-diagonal terms of the potential energy operator of the molecular Hamiltonians.

This is precisely what is termed as vibronic coupling and this model of studying coupled

electronic-nuclear problem is known as a vibronic model.

An important point to note here is that the diabatic states are not unique in nature.

These states are obtained by a rotation (unitary transformation) of the adiabatic states

which is dependent on the nuclear coordinates. Any rotation which is independent of the
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nuclear coordinate will produce different diabatic states, conserving the eigenvalues of the

Hamiltonian.

Before we move to the computational scheme of calculating the diabatic states and

constructing the vibronic models, let us again look at a simple example of two excited

states very close in energy, this time in the diabatic framework. Also, let us vary the

energy gap between the two states to see the importance of vibronic coupling as the states

become closer and closer in energy. This will bring our discussion of basic concepts of

vibronic theory to an end.

Figure 2.3: A figure showing the diabatic vs adiabatic surfaces

In the diabatic representation, the potential matrix is non-diagonal

V (Q) =

V11(Q) V12(Q)

V21(Q) V22(Q)

 (2.47)
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Now the nuclear motion equation can be written asT̂ + V11(Q) V12(Q)

V21(Q) T̂ + V22(Q)


χ1

χ2

 = Eλ

χ1

χ2

 (2.48)

The form of Hamiltonian can be written as a sum of kinetic and potential energy matrix

where the potential energy matrix is written in terms of excitation energies, harmonic

oscillator potential, and some constants which are responsible for the coupling between the

two states. A simple linear coupling model would be

Ĥ =

T̂ 0

0 T̂

 +

E + ĥho + λ1q1 µq2

µq2 E + ∆ĥho + λ2q1

 (2.49)

This is the Vibronic Model Hamiltonians. q are the dimensionless normal mode coor-

dinates, while λs and µ are the coupling constants. Before moving further, let us look at

some important points regarding ”normal coordinates”:

• Normal coordinates represent a set of one-dimensional nuclear displacement coordi-

nate along which the nuclear vibrational motions are all simple harmonic motion.

• In general, potential energy surfaces are anharmonic for real systems. Nonetheless,

close to the minimum, the potential can still be approximated by a harmonic poten-

tial. Small amplitude motions can be described in terms of normal mode coordinates.
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For large amplitude motions, such as torsional rotation, an internal coordinate system

might be needed.

Normal modes can be derived from cartesian coordinates, and the detail methodology is

well-documented in the literature. [13]

Now, let us try to vary the values for the coupling constants to see their effect on

potentials and in turn the spectrum

λ1 = 0.15eV , λ2 = −0.1eV , µ = 0.2eV

E = 0.2eV , ω1 = 0.10eV , ω2 = 0.10eV

∆ = [0.2, 0.5, 1.0]eV

∆ denotes the vertical energy gap between the two states. Let’s look at the potential

energy surfaces, and the Franck-Condon vs. vibronic spectra for the three different values

of ∆.

Case 1: ∆ = 1.0

The energy gap between the two states is 1eV , and the Franck-Condon approximation

in this case gives a reasonable spectrum which is close to the vibronic spectrum.

Case 2: ∆ = 0.5

The two states some closer in energy, and the Franck-Condon approximation starts to
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Figure 2.4: Two dimensional PESs for the two states for Case 1

Figure 2.5: One dimensional PESs along one of the normal modes for Case 1

break down. It is also clear that a harmonic approximation to the lower PES is just not

good.

Case 3: ∆ = 0.2
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Figure 2.6: Franck-Condon vs. Vibronic Spectra for Case 1

Figure 2.7: Two dimensional PESs for the two states for Case 2

The states come very close in energy now, i.e. 0.2eV apart, and the Franck-Condon

spectrum starts to look really bad. It is important to point out that the minimum for the

upper surface does not exist in this case, as discussed previously, and also the lower state

PES is a double-well kind of potential and an harmonic approximation does not make any
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Figure 2.8: One dimensional PESs along one of the normal modes for Case 2

Figure 2.9: Franck-Condon vs. Vibronic Spectra for Case 2

sense at all.

The importance of vibronic coupling and the failure of the Franck-Condon approach

can be seen when the states are close in energy. Let us now discuss a (routine) procedure of

constructing diabatic states and calculation of coupling constants for polyatomic systems,
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Figure 2.10: Two dimensional PESs for the two states for Case 3

Figure 2.11: One dimensional PESs along one of the normal modes for Case 3

as implemented in the ACESII, Dalton, and ADF program suites. [14]
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Figure 2.12: Franck-Condon vs. Vibronic Spectra for Case 3

2.4.3 Construction of Vibronic Models

We will now turn our focus towards the construction of vibronic model Hamiltonians,

where the most important aspect is the diabatization scheme, which starts from the adia-

batic eigenfunctions and eigenvalues and leads to a vibronic model Hamiltonian in a dia-

batic basis. It should be emphasized here that the adiabatic states (the BO approximate

wavefunctions) are the only thing which can be calculated using the electronic structure

methods.

A selected number of adiabatic states are calculated at first, a linear combination of

which is used to form the diabatic states

φd(r,Q) =
∑
λ

φλ(r,Q)Uλd(Q) (2.50)
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where Uλd(Q) is a unitary transformation. In order to find this unitary transformation,

an overlap matrix between the adiabatic states at the ground state geometry q0 and at a

slightly displaced geometry ∆ = q0 + dqi (along the ith normal mode) is found

Sµλ =

∫
φ∗µ(r,∆)φλ(r, q0) (2.51)

The unitary matrix is evaluated according to the condition such that

Sdλ =
∑
µλ

UdµSµλ ≈ δdλ (2.52)

In general, it is not possible to find such a unitary transformation exactly [15] , but the

elements of S can be made as close to zero as possible. The diabatic states thus obtained

undergo as little change as possible with changes in the geometry. Now the potential matrix

can be generated as

Eab =
∑
λ

UλaEλUλb (2.53)

In order to get the vibronic coupling constants, the potential energy matrix is expanded

as a Taylor series

Vab = Eaδab +
∑
i=1,Nq

Ei
abqi +

1

2

∑
i,j=1,Nq

Eij
abqiqj + . . . ∀a, b = 1, . . . , Ne (2.54)

Where Nq is the number of normal modes and Ne is the number of electronic states. Ea

are the vertical excitation energies, Ei
ab are the linear coupling constants, Eij

ab are quadratic

coupling constants and so on.
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Coupling constants are obtained by the use of numerical derivatives, e.g. the linear

coupling constant can be obtained as

Ei
ab =

Eab(q0 + dqi) − Eab(q0 − dqi)

2dqi
(2.55)

Coupling constants of higher order (quadratic, cubic, quartic) can also be obtained on

a similar line for each normal mode. To emphasize once again, the diabatic representation

is advantageous because the nonadiabatic derivative coupling elements are negligible, and

equally importantly, the potential energy matrix Vab(q) is a smoothly varying functions of

nuclear geometry, for which an accurate Taylor series expansion can be made up to low

order.

Let us now move to the technique of photodetachment spectroscopy, which has used

to study biradical systems and the simulation of which has been used as an application of

vibronic models.

2.5 Photodetachment Spectroscopy

In photodetachment spectroscopy a molecular beam of an anionic (or neutral) species is

intersected with an intense ultraviolet laser beam, resulting in photodetachment of an

electron from the anion (or neutral) giving a neutral (or cationic) molecule. This process

can be described as follows:
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AB−(Etot) + hν → AB(Etot) + e−(eKE) (2.56)

As a result of the conservation of energy, measuring the electron kinetic energy (eKE)

provides us with the internal energy of the neutral molecule. Photodetachment spec-

troscopy gives insight into the molecular structure of both the anion and the neutral

species, provides information about electron affinities (EA), and also gives an idea about

anharmonicities. Often if the anionic species (or any parent state) is chosen carefully,

photodetachment can allow us to study a lot of unstable radical and/or cationic species,

which might be difficult to study by other techniques. Let us explore briefly how some

of this information can be extracted, especially in situations where the electronic states

of the parent as well as the target molecule are close in energy, which will lead us to the

necessity of having multiple vibronic models.

In the figure 2.13 the photodetachment spectra of a hypothetical system AB− is repre-

sented schematically. Potential energy surfaces and the vibrational energy levels are shown

for the ground state of the anion (A), and for the ground state (B) and first excited state

(C) of the neutral AB molecule. The transition from the ground vibronic (vibrational +

electronic) state of the anion to the ground vibronic state of the neutral gives the electron

affinity (EA) of the neutral molecule or the ionization potential (IP) of the anion molecule.

Transitions to higher vibronic levels of the neutral gives a nice vibrational progression. If a
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Figure 2.13: A schematic representation of the photodetachment from the ground state of

the anion to the ground and first excited state of the radical

transition takes place from the excited vibronic levels of the anion to the excited vibronic

levels of the neutral molecule, these peaks are termed as hot bands. One can determine the

vibrational frequencies and anharmonicities by analyzing the spacings between the peaks.

Moreover, the intensity pattern of the peaks can give the information about geometry

changes between the anion and the neutral molecule, as is evident from the pattern of

peaks for the ground and excited state of the neutral molecule.
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These interpretations become difficult when the electronic states are close in energy,

and the vibrational levels of different electronic state start to overlap. This is where the

importance of having vibronic models comes into picture, as discussed in the previous

section. What is even more important here, and is often overlooked in the literature is

what happens when the electronic states of the anion are also close in energy, or even

possibly the ground state is a Jahn-Teller system. This is often the case with biradical

systems as we will explore further.

For such systems, a vibronic model is also constructed for the anion (or any parent

state), and the ground and excited vibronic states are found in order to calculate transitions

from the ground state as well as the hot bands. Let us explore the different methods of

calculating the photodetachment spectra in this manner.

2.6 Calculation of Photodetachment Spectra

Till now, we have seen the theory of describing coupled nuclear-electronic problem with

the vibronic model Hamiltonians. There are observables associated with these Hamiltoni-

ans which can be numerically determined. The quantities thus calculated become useful

in the characterization of the dynamics of the system, and a direct comparison with the

experiments can be made. As we discussed in the last section, we are interested in calcu-
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lating the photodetachment spectra based on the vibronic models constructed for biradical

systems. Time-independent as well as time-dependent methods of obtaining the spectra

will be discussed in this section.

2.6.1 Time-independent Method

In the time-independent picture, the spectral intensity distribution is calculated for an

electronic (or vibronic) transition from the parent state to the vibronically coupled manifold

of target states. According to Fermi’s golden rule the distribution is described by the

function

P (E) =
∑
ν

|〈Ψi|T̂ |Ψν〉|2δ(E − Eν + Ei) (2.57)

In the above equation, T̂ represents the transition operator and E is the energy trans-

ferred to the system. Ψi is the set of initial states for the parent anion, while Ψν is the set

of final states obtained by solving for the respective vibronic Hamiltonians. A number of

roots for the vibronic eigenstates of the parent state are calculated, and contribution from

each root is taken in calculating the intensities depending on the temperature, and in turn

the Boltzmann factor of the each state. The transition moment is obtained by the sum of

vibrational projections of the electronic sub-blocks of the final state eigenvector onto the
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vibronic wavefunction of the initial state.

One major step in the calculation of spectrum is solving the eigenvalue problem for the

vibronic Hamiltonian of the target states. In order to do this, the state vector is expanded

in a direct-product basis of suitable harmonic oscillator wavefunctions

|Ψν〉 =
∑

i,n1,n2,...,nk

an1,n2,...,nk
(ν)|Φi〉|n1〉|n2〉 . . . |nk〉 (2.58)

Where the subscripts 1 . . . k stand for the set of vibrational normal modes, and the

expansion coefficient an1,n2,...,nk
(ν) are determined numerically. Numerical techniques such

as Lanczos algorithm are used to solve the full eigenvalue problem, but it still remains

a major computational challenge because of an exponential increase in basis function as

the number of vibrational modes increases. Let’s say if there 6 vibrational modes, and 20

basis functions are required to get the converged results, the total dimension of the space

becomes 206, which means diagonalizing a Hamiltonian of this size! In order to overcome

this problem, time-dependent approaches are used to solve the nuclear dynamical problem,

which are computationally more efficient.
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2.6.2 Time-dependent Method

Let us now look at the time-dependent method of solving the Schroedinger equation which

is computationally less expensive and also provides some additional insight into the vibronic

dynamics. The basic idea is the evolution of wavepacket on the coupled potential energy

surfaces. Let us try to explore the time evolution of an initial wavepacket Ψ(0) which is

formed from an initial state Ψi by means of optical excitation using a short laser pulse.

This can be written with the help of transition operator as

|Ψ(0)〉 = T̂ †|Ψi〉 (2.59)

The Condon approximation is used during the excitation which assumes that the nuclei

do not move when an electron is ejected and this amounts to vertically lifting the nuclear

wavefunction of the initial state to the target state PESs. As a first step, the ground state

wave function for the anion (initial state) is obtained by applying the energy relaxation

(propagation in imaginary time) to a guess wavepacket using the vibronic model Hamil-

tonian created for the anion. Different approaches for relaxation will be discussed in the

next chapter. The vertical excitation involves taking the lowest energy eigenfunction of

the anion and placing it to all of the diabatic states of the target molecule.

The time evolution of the wavepacket under the influence of the vibronic Hamiltonian
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changes position, shape, and electronic composition. These changes are captured by the

autocorrelation function

C(t) = 〈Ψ(0)|Ψ(t)〉 = 〈Ψ(0)| exp−iHt/h Ψ(0)〉 (2.60)

The spectrum can be calculated by taking the Fourier transform of the autocorrelation

function

I(ω) ∼ ω

∫
dtC(t) exp iωt (2.61)

We need the knowledge of the state vector |Ψ(t)〉 which is obtained by solving the

time-dependent Schroedinger equation. This is done using the Multi Configuration Time

Dependent Hartree (MCTDH) wavepacket propagation method. [16] In this scheme, a

multiconfiguration ansatz for the wavefunction is used, where each configuration is ex-

pressed as a Hartree product of time-dependent basis functions, known as Single Particle

Functions (SPFs). For a multiset formulation, the wavefunction can be written as

Ψ(Q1, Q2, . . . , Qf , t) = Ψ(q1, q2, . . . , qp, t) =
σ∑

α=1

n1
(α)∑

j1=1

. . .

np(α)∑
jp=1

A
(α)
j1...jp

(t)×
p∏

k=1

φ
(α,k)
jk (qk, t)|α〉

(2.62)
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=
∑
α

∑
j

A
(α)
J Φ

(α)
J |α〉 (2.63)

In the above equations, f and p represent the number of vibrational degrees of free-

dom, and MCTDH particles respectively. A
(α)
j1...jp

represents the time-dependent expansion

coefficients while φ
(α,k)
jk are the one-dimensional expansion functions, known as SPFs. The

labels α are indices representing the manifold of electronic states. The Wavepacket ,

Ψ(α)(=
∑

J A
(α)
J Φ

(α)
J associated with each electronic state is described using a different set

of SPFs, namely {φ(α,k)
jk }. In a single set formalism, the same set of SPFs are used for

every electronic state. The equations of motion can be derived for both the expansion

coefficients as well as the SPFs using the variational principle.

The accuracy of a MCTDH calculation relies heavily on the chosen size of the primitive

and the SPF basis functions. Convergence criteria may be different for different properties

or even differing for individual systems, so it is hard to come up with a general recipe.

The quality of SPF basis is reflected in the population of natural orbitals. If a calculation

contains natural orbitals with a low population, these are not significant for the represen-

tation of the wavefunction, and the calculation is of a reasonable quality. As a general rule

of thumb, when the population of the highest (least populated) natural orbital falls below

1 percent (i.e. a population below 0.01), the calculation will be reasonable, although strict

convergence may not have been reached.
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Let us briefly look at the memory requirement for the MCTDH method. The memory

required by standard method is proportional to N f , where N is the total number of grid

points or primitive basis functions and f is the total number of degrees of freedom. In

contrast, memory needed by the MCTDH method scales as

memory ∼ fnN + nf (2.64)

where, n represent the SPFs. The memory requirements can however reduced if SPFs

are used that describe a set of degrees of freedom, termed as multimode SPFs. By com-

bining d degrees of freedom together to form a set of p = f/d particles, the memory

requirement changes to

memory ∼ fñNd + ñf (2.65)

where ñ is the number of multimode functions needed for the new particles. If only

single-mode functions are used i.e. d = 1, the memory requirement is dominated by nf .

By combining degrees of freedom together this number can be reduced, but at the expense

of longer product grids required to describe the multimode SPFs.
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Chapter 3

Computational Framework

The theory of vibronic coupling and the methods concerning the simulation of photode-

tachment spectra for biradicals were discussed in the previous chapter. In this chapter, the

actual computational steps involved in the calculation of the spectrum will be delineated.

We will use NO2 as an illustrative example to explain the machinery of the calculations

while taking a brief look at what goes in and what comes out at each step of the calculation.

The entire process of simulating the spectrum from first principles can largely be cate-

gorized into two parts – first, the vibronic model Hamiltonians are created for the parent

state as well as the target state(s). This is the Electronic Structure part of the calculation.

Once the model Hamiltonians are created and coupling constants are obtained, the Nuclear

Dynamical calculations are carried out in order to generate the spectrum. The ACESII
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quantum chemistry program package has been used for the electronic structure part, while

for the second part, VIBRON and MCTDH suites of program have been utilized.

First, let us briefly look at the general functionality of the aforementioned programs.

We will then move to the detailed computational process using NO2 as an example. To

aid future users of the programs input files will be provided for each step documenting the

calculations.

3.1 Brief Overview of Functionalities of ACESII, VI-

BRON, and MCTDH

ACESII is an electronic structure software package, [17] which is capable of performing

ground and excited states calculations using the EOM and STEOM class of methods. A

local version is actively maintained in our group by Prof. Marcel Nooijen. The local

version provides the functionality for DIP-STEOM calculations, as well as the generation

of vibronic model Hamiltonian using a suitable diabatization scheme.

VIBRON is a computer program developed in our group by Anirban Hazra and Prof.

Marcel Nooijen, [18] which extracts the vibronic coupling constants which are essentially

given by the ACESII program. VIBRON is also capable of simulating nonadiabatic vibronic
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spectra using time-independent techniques as well as harmonic and full Born-Oppenheimer

Franck-Condon spectra.

MCTDH is a suite of programs developed in the Heidelberg group of Hans-Dieter Meyer,

Germany, to perform multi-dimensional quantum dynamics which uses the MCTDH al-

gorithm to do the wavefunction propagation. The algorithm solves the time-dependent

Schroedinger equation for multidimensional dynamical systems consisting of distinguish-

able particles. MCTDH is therefore capable of determining the quantal motion of the

nuclei of a molecular system evolving on one or several coupled electronic potential en-

ergy surfaces. MCTDH by its very nature is an approximate method. However, it can

be made as accurate as desired, but at an increasing computational cost, sometimes even

prohibitive. [19]

3.2 The Computational Scheme

The process of simulating the photodetachment spectrum can be largely broken down into

the following steps:

• Geometry optimization and vibrational frequency calculation of reference state: ACESII
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• Calculation of Ionization energies using IP-EOM-CC/DIP-STEOM-CC methods at

a single geometry to determine the number of states to be included in the vibronic

model: ACESII

• Construction of vibronic models by calculating diabatic energy matrices at a large

set of displaced geometry: ACESII

• Calculation of coupling constants: VIBRON

• Generation of potential energy surfaces: VIBRON

• Simulation of photodetachment spectra: VIBRON/MCTDH

Let us now take a closer look at the each of the steps involved in the computational

process.

Geometry optimization and vibrational frequency calculation of reference state

In order to create vibronic models for the parent and target states, a suitable reference

geometry is required. For biradicals, this geometry is either taken as the ground state

equilibrium geometry of the closed-shell (dianionic) parent state or the ground state equi-

librium geometry of the neutral triplet state of the biradical. For NO2, the reference
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geometry is taken as the equilibrium geometry of NO2
−, the closed shell anion. The ge-

ometry optimization is performed at the CCSD level of theory using the TZ2P basis set.

Following the optimization, the vibrational frequency calculation is performed in order to

obtain harmonic frequencies. In addition, a force constant matrix (fcmfinal) as well as a

file (normal fdif) containing information about normal modes is generated, which will be

used later on during the construction of vibronic models.

Figure 3.1: Input file for the optimization and frequency calculation

Table 3.1: Optimized parameters for the closed-shell anion

R(NO) 1.261A0

A(ONO) 115.9110
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Table 3.2: Vibrational normal modes for the closed-shell Anion

Normal Mode Description Frequency (cm−1) Frequency (eV)

1 (A1) ONO Bending 806.55 0.099

2 (A1) NO Symmetric Stretch 1369.07 0.169

3 (B1) NO Asymmetric Stretch 1293.21 0.160

Single point IP-EOM/DIP-STEOM CC calculations

The next step is the single point STEOM calculation which provides us with the excitation

energies of the target biradical, both of singlet and triplet states. By observing the energy

ordering of the excited states, we can decide what states are to be included in the calculation

of the vibronic model, leading to a manifold of coupled states on which nuclear dynamics

will be carried out later. As discussed in the theory section, we start from the closed-shell

parent state which has two extra electrons compared to the target state, and then two holes

are created in order to get the different roots of the target states. First, the ionized states

are calculated by creating one hole in the closed-shell species using IP-EOMCC method.

These states act as an active space for the calculation of the double ionized states, which

are the states of the target molecule. Usually, a large number of roots are calculated for

the IP case, which can be selected by giving a cut-off value of the ionization potential using
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the ip low keyword in the ∗mrcc gen namelist. What value is suitable can be judged by

looking at the orbital energies of the parent state. As for the roots of STEOM calculation,

a large number of roots are usually asked as the calculation is very cheap computationally

and the DIP SYM keyword can be used to ask for the desired roots of a given symmetry

corresponding to the point group symmetry of the molecule.

Figure 3.2: Input file for the STEOM calculation

Construction of vibronic models

Once the excitation energies have been obtained from the STEOM calculation, we can

set up the calculation for creating the vibronic models. An effective diabatic Hamiltonian

yielding the energies of the excited states at displaced nuclear geometries is created using

the discussed diabatization scheme for the parent as well the target state(s). One of the

important keywords in this calculation is GRID VIBRON which specifies the order of
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Table 3.3: Ionization energies of the anion calculated using IP-EOM-CCSD

State Ionization Energy (eV)

2A1 2.42

2B1 3.40

2A2 3.89

2B2 8.64

2A1 8.78

2B1 9.35

coupling constants to be calculated. Following are the specifications for associated values

of GRID VIBRON used in the calculations

59



Table 3.4: Double ionization energies of the anion calculated using DIP-STEOM-CCSD

State Ionization Energy (eV)

1A1 14.59

1A2 16.06

1B1 16.84

1B2 17.70

1A1 18.01

3B1 14.45

3A2 15.66

3B2 17.06
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Next, the manifold of states is selected using the keywords heff low and heff high by

looking at the energy values obtained from the STEOM calculation. The lower limit is

taken to be slightly below the energy of the ground state of the singlet (and similarly for

triplet) while the upper limit is chosen when there is a considerable gap in the energy of

excited states. Different threshold can be selected for the singlet and triplet states of the

biradical.

For NO2, three vibronic models have been constructed using GRID = 7:

1. NO2 Radical: 6 lowest ionized states

2. NO2 Cation : 5 lowest double-ionized singlet states

3. NO2 Cation: 3 lowest double-ionized triplet states

Calculation of coupling constants

Using the output of previous calculation, coupling constants are calculated using numerical

differentiation in the VIBRON program. Moreover, coupling terms that are forbidden by

symmetry are set to zero during this calculation. The output file cp.h is copied to cp.auto,

which is the final vibronic model, and contains all the required information in order to

generate the potential energy surfaces and to simulate the photodetachment spectra.

62



Figure 3.3: Input file for the construction of vibronic models

Let us look at the linear coupling constants for all three models ofNO2. A large coupling

constant, i.e. greater than 0.1 is indicative of strong coupling between the electronic states.

Generation of potential energy surfaces

The potential energy surfaces are generated corresponding to each normal mode for all of

the models using the respective cp.auto files. One dimensional surfaces can be generated
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Figure 3.4: Input file for the calculation of coupling constants

along a particular direction for any normal mode. Two dimensional surfaces can also be

generated along a pair of normal modes.

Calculation of photodetachment spectra

Once the potential energy surfaces have been generated successfully, it can be seen that

the constructed vibronic model is able to give a compact representation of the complicated

coupled surfaces. Now, the utility of these models lies in calculating quantities which can

be observed experimentally. As it has been discussed before, the photodetachment spectra

will be simulated using these vibronic models.
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Table 3.6: Linear coupling constants between states of the radical for NO symmetric stretch

2A1
2B1

2A2
2B2

2A1
2B2

2A1 -0.349426 0.000000 0.000000 0.000000 0.233663 0.000000

2B1 0.000000 0.091054 0.000000 0.000000 0.000000 0.142089

2A2 0.000000 0.000000 0.096010 0.000000 0.000000 0.000000

2B2 0.000000 0.000000 0.000000 0.344791 0.000000 0.000000

2A1 0.233663 0.000000 0.000000 0.000000 0.268042 0.000000

2B2 0.000000 0.142089 0.000000 0.000000 0.000000 0.168995

Photodetachment spectra will be simulated for NO2 leading to a description of singlet

and triplet states of NO2
+. We will look at the time-independent as well as time-dependent

method of simulating the spectra as discussed in the theory section, and a comparison will

be made between the two approaches as well as to the experiment for both cases. In

addition, hot bands will be calculated for the triplet states using both the approaches at

a temperature of 800K. A similar methodology will be used for all the other molecules in

following chapters.

1. VIBRON: eigdirect/special-seed

In the time-independent scheme of things, the lowest vibronic eigenstates are calculated
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Table 3.7: Linear coupling constants between Singlet states of the cation for NO symmetric

stretch

1A1
1A2

1B1
1B2

1A1

1A1 -0.414290 0.000000 0.000000 -0.381733 0.000000

1A2 0.000000 -0.233390 0.000000 0.000000 0.000000

1B1 0.000000 0.000000 -0.224120 0.000000 0.000000

1B2 -0.381733 0.000000 0.000000 0.232721 0.000000

1A1 0.000000 0.000000 0.000000 0.000000 0.048223

Table 3.8: Linear coupling constants between Triplet states of the cation for NO asymmetric

stretch

3B1
3A2

3B2

3B1 0.000000 0.000000 0.000000

3A2 0.000000 0.000000 0.287190

3B2 0.000000 0.287190 0.000000
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Figure 3.5: Input file for the generation of potential energy surfaces

first using a direct diagonalization method. An output file eig.25 is created containing the

dominant part of the lowest eigenfunctions. This file will be used to read in the absorbing

states in the subsequent calculation.

Next, a Lanczos calculation is performed with the keyword special seed=on, the ab-

sorbing states are read from the file eig.25.

In order to calculate hot bands, the two parameters in the special seed calculations are

changed, namely the Boltzmann threshold, and the temperature at which the simulation

is taking place. Boltzmann population for each absorbing state in the eig.25 is calculated,

and if the population is above the threshold, contribution to the spectrum from that root

67



is calculated. A table showing the lowest eigenstates as well as their Boltzmann population

at 800K is shown in the table 3.9 .

Table 3.9: Vibronic eigenvalues of the radical as calculated in VIBRON and MCTDH with

Boltzmann population at 800K

Root VIBRON Energy (eV) MCTDH Energy (eV) Boltzmann Population

1 1.754 1.754 0.614

2 1.854 1.854 0.164

3 1.895 1.895 0.079

4 1.936 1.936 0.043

5 1.936 1.936 0.043

6 1.986 1.986 0.021

7 2.027 2.027 0.012

8 2.027 2.027 0.012

9 2.038 2.038 0.009

10 2.076 2.076 –

2. MCTDH: block-improved-relaxation/propagation
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A similar set of calculations are performed in the time-dependent scheme of things.

First, an operator file is created for all the three models containing all the information about

vibronic Hamiltonian (similar to cp.auto) compatible to MCTDH program. Generating

these MCTDH operator files is a feature of the VIBRON program developed in our group

by Prof. Nooijen and an undergraduate student Yao Li. As the first step of calculating

the vibronic eigenstates of the radical, a block-improved-relaxation calculation is performed

which uses the block-Davidson algorithm [20]. Two such calculations are carried out for

both the radical and singlet cation as well as the radical and triplet cation. For this and

further calculations, we need two combined operator files for the two cases to have the

same degrees of freedom for propagation as that of the relaxation. This is a technical issue

in the MCTDH code. The operators files are merged using a Python script, which can be

found in appendix.

In the output of block-improved-relaxation, a restart file for each eigenstate containing

the information about the wavefunction is generated as rst000, rst001, rst002 and so on.

These files will be read as the absorbing state in the subsequent propagation calculation.

In MCTDH, there are other methods of finding the vibronic eigenstates using different

relaxation schemes, however, we have not been able to get consistent results for all the

available methods, and the block-improved-relaxation will be used for all the subsequent

calculations carried out in this work. One disadvantage of block-improved-relaxation is that
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it only allows to perform a single-set kind of calculation where a same set of SPFs are used

for each electronic state. However, this often is able to give reasonable results and also in

the case of larger systems (chapter five - cyclobutadiene and tmm), multi-set calculation

might be computationally very expensive! This will be discussed further in the mentioned

chapter.

All the spectra are calculated as the Fourier transform of the autocorrelation functions

generated by the wavepacket propagation. The autospec84 program of MCTDH package

is used to generate the spectrum. Let us say we want to calculate the spectrum for the

singlet cationic states of the NO2, the following command has to be executed

autospec84 -e -1.754 eV 10 16 eV 30 1

Since the ground state energy is not zero, -e option is used to shift the energy scale by

the ground state energy amount to get the correct ionization energies. The spectrum is

calculated for the energy range of 10 to 16 eV, while the linewidth is 30cm−1.

Boltzmann averaging of spectra can be performed using the sumspec84 program which

calculates the total spectrum as a weighted sum of individual spectrum where the weight

is given by the Boltzmann population of the individual state. For example, the hot band

spectrum for the triplet cation state can be calculated as

sumspec84 s0 0.614 s1 0.164 s2 0.079 s3 0.043 s4 0.043 s5 0.021 s6 0.012
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s7 0.012 s8 0.009

This generates a file called sumspec.pl which is the Boltzmann sum of individual spec-

trum. Similarly, the total spectrum for cationic NO2 taking individual contributions from

singlet (one part) and triplet (three parts) can be calculated using the same program.

3.3 Comparison of Different Spectra

Now we are in a position to make comparison between different spectra. Comparison to the

experimental spectrum is what constitutes the accuracy of a model/method to interpret the

experiment in terms of theoretical concepts and to possibly resolve any existing conflicts.

Theoretical models, if correct, also give the power to predict spectra for new molecules

and motivation to carry out such experiments, which might be useful in various fields of

chemistry and physics.

One question to ask here is, ”Why do we compare the spectrum calculated from VIBRON

to that calculated from MCTDH?” As stated earlier, MCTDH by it’s very nature an ap-

proximate method, while the time-independent calculations perform exact diagonalization

of the Hamiltonian within the basis set used to expand the wavefunctions. MCTDH can be

converged to give the same results as those given by the time-independent method. Since

time-independent methods can not be applied to the systems larger than 6− 7 degrees of
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freedom, we have to rely on MCTDH program for the systems of bigger size, such as cy-

clobutadiene (18 vibrational degrees of freedom) and trimethylenemethane (24 vibrational

degrees of freedom). Therefore, it is essential that an agreement is reached between the

two spectra for small molecules. Specially, the calculation of spectra using the schemes

outlined in this thesis is either not studied or not very well-documented in the literature

to the best knowledge of the author, and thus it makes it even more important to gauge

the accuracy of these programs. From a practical point of view, we need to learn how to

use the MCTDH program, and also explore many different features/methods available to

perform quantum dynamics.

Note:The time-independent and the time-dependent methods should give exactly the

same spectrum for the same parameters as they are just different ways of looking at one

thing, more like two sides of a coin. The underlying physics does not change. To think of it

in simple terms, we might think of a white light passing through a prism, which splits into

seven color beams on the other side of the prism. Did the information contained change?

No, it has just revealed another hidden aspect of it.

For the photodetachment spectrum, NO+
2 ←− NO2, we can see an excellent agreement

between the VIBRON spectrum and the MCTDH spectrum (figure 3.13) for both singlet

as well as triplet states. This confirms the well-behaved nature of both the programs, and

gives us confidence to apply the same methodology to other molecules.
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Five bands are seen in the experimental spectrum (figure 3.14), which can be assigned

to the singlet and triplet states by comparing to the simulated spectrum. The first band

(labelled 1 in the experimental spectrum) in the range of 10 − 12eV corresponds to the

lowest singlet state (1A1) of the cation. The second band in the range of 12 − 13.5eV

corresponds to the lowest triplet state (3B1) of the cation. Band 3 and 4 are the result of

overlapping bands of first excited states of singlet and triplet (1A2 and 3A2 respectively)

while the fifth band corresponds to the second excited state of the singlet state (1B1) of

the cation.

For the hot band spectrum also, we get an excellent agreement between VIBRON

and MCTDH, for the total spectrum as well as for the individual spectrum starting from

different roots of neutral. We can also see in the figure 3.16 that the spectrum changes

pattern significantly depending on the starting state of the neutral molecule. Also, a

comparison is made for the triplet hot band spectrum (at 800K) with the 0K spectrum

which does not show major differences. This would seem to indicate that the vibrational

levels are evenly spaced (harmonic). In that case one would only expect slight intensity

changes, while the position of the bands is unchanged. This is more or less what is observed

here.
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3.4 Treatment of Jahn-Teller Systems: A prototype

case

The reasons pertaining to the deviations from adiabatic approximation were discussed

in the previous chapter. Perhaps the most striking breakdown of the Born-Oppenheimer

approximation takes place due to the presence of orbitally degenerate electronic states. The

Jahn-Teller theorem states that any nonlinear polyatomic system in a symmetry induced

degenerate state will undergo a geometric distortion such that the degeneracy is lifted, and

the symmetry is lowered. Longuet-Higgins in 1958 [21] calculated the vibronic energy-level

structure resulting from the interaction of a doubly degenerate electronic state (E) with one

doubly degenerate vibrational mode (e
′
), famously known as the E⊗e JT effect. Interesting

features and complications arise due to the conical intersection of two potential energy

surfaces. In this section, we want to address two important aspects of JT states which

arise in spectroscopy: the interference effect and the effects of the transfer of transition

amplitude between the two degenerate state.

The interference effect arises due to the surface coupling (conical intersection!) between

two states which shows that if we calculate the spectrum for two states individually and

sum them up, the resulting spectrum is far from the spectrum of individual states. A more

subtle issue arises in the definition of Jahn-Teller states. Since the states are orbitally
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degenerate, how does one distinguish between the states or even label them as state 1 or

2? Are the states uniquely defined? Why is this important to consider? We know that

the states are coupled, and the wavepacket dynamics takes place on both the surfaces

simultaneously and the spectrum shows vibronic features from both the surfaces. Now the

question arises where does one place the initial wavepacket? The simplest solution would

be to place the wavepacket on one state at t = 0, calculate the spectrum for that state,

and repeat the same procedure for the second state and then sum the spectra. But since

a linear combination of the degenerate states is as good a representation of the two states

as the individual state, what if we put part of the wavepacket on one surface and the

remaining on the other and do the same for another orthogonal linear combination, and

then sum the spectra? Will the resulting spectrum remain invariant?

We will try to find answers to these questions by looking at a simple prototype case of

E⊗e JT system, the C3 biradical at a D3h geometry. The first two triplet excited states of

the biradical are doubly degenerate, which couples through the normal modes 2 and 3 of e
′

symmetry. The anionic ground state is degenerate but we will lift the degeneracy manually

in order to find a non-degenerate vibronic ground state which will be the absorbing state

for further analysis. Let us consider a case of photodetachment spectra, where we go from

the non-degenerate anionic ground state into the first excited JT pair of the neutral triplet

molecule. For the sake of convenience let us the call the state 3B2 as state 1 and the state
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3A1 as the state 2.

Let us look at four different cases of excitation from the anionic ground state to the

first excited pair of triplet JT states, the numbers corresponding to each state represent

the transition moments for that state:

Case 1: State 1 = 0.1, State 2 = 0.0

Case 2: State 1 = 0.0, State 2 = 0.1

Case 3: State 1 = -0.0707, State 2 = 0.0707 (Antisymmetric)

Case 4: State 1 = 0.0707, State 2 = 0.0707 (Symmetric)

The individual spectra for these four cases are shown in figures 3.19, 3.20, 3.21 and

3.22, which all look quite different from each other. Also, the sum of spectra for case 1 and

2, and case 3 and 4 are shown in figure 3.23 which is invariant with respect to the definition

of two states. It can also be seen that the individual spectra for any of the four cases are

quite different from the summation of spectra of two individual cases (interference effect!).

This confirms that the sum of spectra is an invariant property, and for the other JT

systems in the following chapters, only the sum of spectra will be reported for JT states,

not the individual spectra for each states.

It is also worth mentioning that the sum of spectra remains the same whether calculated

in VIBRON or in MCTDH, as shown in figure 3.24. This is also true for the spectrum of
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individual cases. This again confirms that things are well-behaved in MCTDH and for the

larger systems in Chapter five, only the MCTDH program will be used.

Table 3.10: Vibrational normal modes for C3

Normal Mode Frequency (cm−1)

1 (A
′
1) 1383.92

2 (E
′
) 985.14

3 (E
′
) 985.14

Table 3.11: Ionization energies of the C3 anion calculated using IP-EOM-CCSD

State Ionization Energy (eV) Symmetry (D3h) Symmetry (C2v)

1 -4.82 2E
′ 2B1

2 -4.82 2E
′ 2B2

3 -2.25 2A
′
1

2A1
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Table 3.12: Double ionization energies of the C3 dianion calculated using DIP-STEOM-

CCSD

State Ionization Energy (eV) Symmetry (D3h) Symmetry (C2v)

1 -2.5 3A
′
2

3B2

2 -0.41 3E
′ 3B2

3 -0.41 3E
′ 3A1

4 1.51 3E
′′ 3B1

5 1.51 3E
′′ 3A2
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Figure 3.6: Adiabatic surfaces for the doublet states: (a,b): Bending Mode, (c,d): Sym-

metric Stretch, (e,f): Asymmetric Stretch 79
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Figure 3.7: Adiabatic surfaces for the singlet states: (a,b): Bending Mode, (c,d): Symmet-

ric Stretch, (e,f): Asymmetric Stretch 80
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ric Stretch, (e,f): Asymmetric Stretch 81



Figure 3.9: VIBRON input file for the calculation of vibronic eigenstates of radical

Figure 3.10: VIBRON input file for the spectrum calculation
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Figure 3.11: MCTDH input file for the calculation of vibronic eigenstates of radical
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Figure 3.12: MCTDH input file for the calculation of spectrum of singlet states
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Figure 3.13: Photodetachment spectrum of the NO2: MCTDH vs. VIBRON
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Figure 3.14: Photodetachment spectrum of the NO2: MCTDH vs. VIBRON
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Figure 3.15: Hot band spectrum of triplet cation at 800K: MCTDH vs. VIBRON
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Figure 3.16: Hot band spectrum of triplet at 800K in VIBRON starting from different

eigenstate
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Figure 3.17: Comparison of spectrum at 0K vs. 800K in VIBRON
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Figure 3.18: Adiabatic potential surfaces for Normal mode 3: Triplet C3 and C−3
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Figure 3.20: Case 2: Vertical excitation from nondegenerate ground anionic state to the

second state (3A1) of JT pair
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Figure 3.21: Case 3: Vertical excitation from nondegenerate ground anionic state to an

asymmetric linear combination of (3B2) and (3A1)
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Figure 3.22: Case 4: Vertical excitation from nondegenerate ground anionic state to the
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Chapter 4

Nitrate Radical

4.1 Introduction

The nitrate free radical (NO3) has continued to be a challenging system to study for both

experimentalists and theoreticians equally. It’s importance in atmospheric chemistry is

well known. Much debate has taken place in the literature over the ”symmetry breaking”

problem for the ground state of neutral NO3 as well as about the cation, NO+
3 , whether

the symmetry of each ground state belongs to D3h or C2v point group. The symmetry

breaking of the electronic wavefunction in NO3 has almost become a textbook example.

[22]
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Very few studies have attempted to consider the excited states of NO+
3 , which is a

biradical system. The motivation behind such theoretical analysis came from the two

experimental studies of NO3 ionization spectrum in the mid 1990s. In the first study

performed in 1994, Monks et al. [23] carried out the photoionization experiment of NO3,

in which they determined the first principal IP at 12.57 eV which was attributed to the

lowest vertical ionization, i.e. NO+
3 (1A

′
1) ←− NO3 (2A

′
2) in D3h symmetry. In the second

study performed in 1997, Wang et al. [24] reported the first photodetachment spectrum

of NO3, in which they observed five distinct bands. Their analysis also questioned the

results obtained by Monks et al.. Although the first principal IP (12.55 eV) was in close

agreement, Wang et al. obtained several higher IPs which were not found by Monks et al..

Two important theoretical studies took place in the year 2002, interestingly at the

same time, attempting to explore these issues in detail with the use of high-level ab initio

calculations. In the first study by Eisfeld and Morokuma [25] , the vertical ionization

spectrum of NO3 was calculated using CASSCF and MRCI methods. They calculated

and characterized 15 ionic singlet and triplet states of NO+
3 , for D3h geometries. Also,

they obtained equilibrium geometries and harmonic frequencies for the controversial higher

principal ionization and adiabatic ionization potentials were obtained. In the second study

by Wladyslawski and Nooijen [26], the ionization spectrum of NO3 radical and the ground

and excited states of the NO+
3 cation were examined by the DIP-STEOM-CCSD method.
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Both of the aforementioned theoretical studies obtained good agreement with the ex-

periment for the first principal IP, but saw major disagreements for the higher transitions.

The two studies did not support the experimentally assigned features at 14.05 eV. The

features between 13.25 eV to 13.51 eV also became a matter of controversy and no clear

assignments were made in this region of the spectrum. Wladyslawski and Nooijen also

pointed out the presence of a conical intersection for states 3E
′

and 3A2
′ and strong non-

adiabatic effects are expected in the vibrational spectra associated with these states.

The two theoretical studies proposed a reassignment of the photodetachment spectrum

of Wang et al. by performing a full vibronic analysis of the low triplet surfaces in order to

verify the suggestions made therein and resolve some of the controversies. In fact, Eisfeld

and Morokuma proposed to carry out such a study in the second paper of the series, but

surprisingly such a study has never been reported to date. To the best knowledge of the

author, no such study has been reported in the literature by anyone else either.

In this chapter, a full vibronic spectrum of NO3 radical is calculated in the range of

12 to 15 eV, using the methodology and tools discussed in previous chapters. The study

presented here tries to verify some of the suggestions and attempts to resolve some of the

issues associated with the assignment of the spectrum.
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4.2 Methodology

Two sets of vibronic model will be created for the radical as well as the singlet and triplet

cation NO3 species. For both sets, three vibronic models will be created. One model

for the NO3 radical and two models, one for each singlet and triplet states of NO+
3 , will

be created centered at the geometry of the NO3 radical ground state. We call this the

Single Model scheme and from here onwards it will be referred as Model 1. Similarly, in

the second set, three vibronic models, one for the NO3 radical and one for each singlet

and triplet states of NO+
3 will be created at the the optimized ground state geometry of

the closed-shell anion NO−3 . This model will be referred as Model 2. While calculating

the photodetachment spectrum using Model 1, we will not use the radical vibronic model

and the ground state of NO3 radical will be treated within harmonic approximation. The

primary purpose of such analysis is to show the importance of having a vibronic model for

the parent state (in this case the NO3 radical) in order to correctly represent the potential

energy surface and to get a correct ground state wavefunction. The electronic states and

vibronic model parameters are obtained from IP-EOMCC and DIP-STEOM calculations.

Most of the analysis and comparison to the experiment and previous studies will be

made using the results obtained by Model 2. The calculation of spectrum is performed

using the same techniques as described in Chapter 3, using both MCTDH and VIBRON.
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Once again, a comparison will also be made between these two approaches to make sure

we are on the right track!

All the electronic structure calculations are performed at the CCSD level of theory

using the TZ2P basis set.

4.3 Results & Discussions

The optimized geometry and the harmonic vibrational frequencies of the closed-shell anion

as well as the neutral radical are shown in table 5.1 and 5.2.

Table 4.1: Optimized geometry for the closed-shell anion and neutral radical

Parameter Anion Radical

R(NO) 1.2546852A0 1.2301654A0

The ionization and double ionization energies of the closed-shell anion NO−3 have been

calculated using IP-EOMCC/DIP-STEOMCC at both of the reference geometries. It is

evident that the singlet 1A1
′ is the ground state of the cation NO+

3 . The four excited states

of singlet spin form JT pairs, while the low lying states of triplet also form two JT pairs
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Table 4.2: Vibrational normal modes for the closed-shell anion and neutral radical

Normal Mode Description Frequency Anion (cm−1) Frequency Radical (cm−1)

1 (A′1) Symmetric Stretch 1079.44 1132.75

2 (E ′) ONO Bending 723.93 248.71

3 (E ′) ONO Bending 723.93 248.71

4 (E ′) Asymmetric Stretch 1413.54 1113.21

5 (E ′) Asymmetric Stretch 1413.54 1113.21

6 (A′′2) Torsion Mode 877.15 814.25

and lie within a very close energetic proximity of each other. In total, 11 states of the NO+
3

have been calculated as the vertical ionization of NO3 which are ordered in energy in table

4.5 and the values are compared to those obtained by experiment as well as the CASSCF

and MRCI methods. The agreements between the values is generally very good. The first

principle IP has been shifted to the value of 12.55 eV to make a direct comparison to the

experimental values.

Two sets of vibronic models are created using the GRID = 3 scheme by making a

selection of states from the manifold of calculated ionized states of NO3 radical and cation.
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Table 4.3: Ionization energies of the anion calculated using IP-EOM-CCSD at two geome-

tries

State (D3h/C2v) IP Model 1 (eV) IP Model 2 (eV)

2A2
′/ 2B2 3.61 3.74

2E ′′/ 2A2 4.99 4.98

2E ′′/ 2B1 4.99 4.98

2E ′/ 2A1 5.84 5.80

2E ′/ 2B2 5.84 5.80

Model 1

Reference Geometry: NO3 radical ground state

NO3: 5 lowest states

Singlet NO+
3 : 3 lowest states

Triplet NO+
3 : 5 lowest states

Model 2

Reference Geometry: NO−3 anion ground state

NO3: 5 lowest states

Singlet NO+
3 : 3 lowest states
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Table 4.4: Double ionization energies of the anion calculated using DIP-STEOM-CCSD at

two geometries

State (D3h/C2v) DIP Model 1 (eV) DIP Model 2 (eV)

1A1
′/ 1A1 15.94 16.06

1E ′′/ 1B1 16.67 16.69

1E ′′/ 1A2 16.67 16.69

1E ′/ 1A1 18.71 18.98

1E ′/ 1B2 18.71 18.98

3E ′′/ 3B1 16.57 16.67

3E ′′/ 3A2 16.57 16.67

3E ′/ 3B2 16.96 17.02

3E ′/ 3A1 16.96 17.02

3A2
′/ 3B2 16.78 17.09

3A2
′′/ 3B1 18.24 18.18

Triplet NO+
3 : 5 lowest states

After obtaining the coupling constants, the potential energy surfaces are generated for

all these six models. The surfaces are shown for the Model 1. It is observed that the radical
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Table 4.5: Electronic states of NO+
3 , and vertical ionization potentials (in eV) of NO3

from various calculations

No State (D3h/C2v) Exp STEOM 1 STEOM 2 CASSCF MR-SDCI

1 1A1
′/ 1A1 12.55 12.55 12.55 12.55 12.54

2 3E ′′/ 3B1 13.18 13.18 13.16 13.21 13.36

3 3E ′′/ 3A2 13.18 13.18 13.16 13.21 13.36

4 1E ′′/ 1B1 14.05 13.28 13.18 13.25 13.37

5 1E ′′/ 1A2 14.05 13.57 13.18 13.25 13.37

6 3E ′/ 3B2 13.62 13.57 13.51 13.61 13.62

7 3E ′/ 3A1 13.62 13.57 13.51 13.61 13.62

8 3A2
′/ 3B2 - 13.39 13.58 13.70 14.02

9 3A2
′′/ 3B1 - 14.85 14.67 15.01 14.73

10 1E ′/ 1A1 15.54 15.32 15.47 15.01 15.12

11 1E ′/ 1B2 15.54 15.32 15.47 14.55 15.12

ground state is very flat, for normal modes 2 and 3. Also, it can be seen that the potential

surfaces for triplet are very close to each other and have complicated topologies. Two
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dimensional surfaces can also be plotted to gain a better visual understanding. Since the

potentials all look good, and are bound in nature, we can proceed towards the simulation

of spectrum.

The spectrum for Model 1 is calculated trivially, using Lanczos algorithm for VIBRON

and using wavepacket propagation for MCTDH, both starting from a harmonic ground

state. For Model 2, the methodology used for NO2 in previous chapter is followed. First

the vibronic eigenstates are obtained for NO3 radical (Table 4.7), and then the ground

vibronic state will be read in as the absorbing state for the subsequent calculation. The

computational setup of MCTDH is shown in table 5.5.

The calculated spectra are all shown along with the experimental spectrum as obtained

by Wang et al.. For Model 2, three bands are seen in the calculated spectrum. The first

band, which has a sharp peak, clearly belongs to the ground state singlet (12.55 eV). The

second band between 13.25 to 13.51 eV is a superposition of 1E
′′

and 3E
′′

states, which

nearly coincide with each other. The last band is result of superposition of JT states

3E
′

with some contribution from the dark state 3A2
′. As suggested by Wladyslawski and

Nooijen, there are strong nonadiabatic effects for these states as shown in figure 4.9, which

is a superposition of two 3E
′

and 4.10, which shows the full triplet spectrum along with

the vibronic line structure for 3E
′

states. However, contrary to what was suggested by

Wladyslawski and Nooijen, there is not much of a vibronic interaction of the dark 3A2
′
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state with the 3E
′

state, and the weak, broad feature near the 14.05 eV is a Jahn-Teller

effect from the 3E
′

states, which is missing from the allowed vertical ionization results.

On another note, a comparison between the spectrum calculated from Model 1 and

Model 2 is made and it is evident that the single model results are not accurate and the

ground state of the NO3 radical is correctly described with the use of a vibronic model.

4.4 Summary

The photodetachment spectrum of the NO3 radical has been calculated successfully in

the region of 12 to 15 eV. Many assignments have been made, some of which agree with

the suggestions made by Wladyslawski and Nooijen, while some do not. The comparison

with experiment is difficult, also because of the poor resolution of the experiment and

the involvement of ”stripping” of a strong NO2 signal. It is worth mentioning that the

combined spectrum of NO3 and NO2 was obtained from the pyrolysis of N2O5. A more

refined experimental spectrum, at a high resolution, is desirable to perform a better com-

parison. At a theoretical level, we look forward to carry out the calculations using the

GRID = 10 scheme in order to get a better representation of the complicated potential

energy surfaces.
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Table 4.6: Details of the MCTDH computational setup. Degenerate modes are combined

together. Mode combinations are listed along with the primitive bases of these modes,

and the number of SPFs used for the relaxation as well as for the propagation calculation.

Vibrational normal modes in one bracket constitute single particles. The primitive basis

is the number of harmonic-oscillator DVR functions. Each particle has a primitive basis

consisting of 20× 20× 20 = 8000 functions. The SPF basis is the number of single particle

functions used for each electronic state. Only triplet SPFs are shown for Propagation.

Particle Normal Modes Primitive basis SPF Basis (Relaxation) SPF Basis (Propagation)

1 (1) [20,20,20] (5,5,5,5,5) (5,5,5,5,5)

2 (2, 3) [20,20,20] (5,5,5,5,5) (5,5,5,5,5)

3 (4, 5) [20,20,20] (5,5,5,5,5) (5,5,5,5,5)

4 (6) [20,20,20] (5,5,5,5,5) (5,5,5,5,5)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Vibrational normal modes for NO3: (a) Symmetric Stretch, (b) Bending, (c)

Bending, (d) Asymmetric Stretch, (e) Asymmetric Stretch, (f) Torsion
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Figure 4.2: Adiabatic surfaces as calculated with Model 1 for the NO3 radical for normal

modes as shown in figure 5.1 110
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Figure 4.3: Adiabatic surfaces as calculated with Model 1 for the Singlet NO+
3 for normal

modes as shown in figure 5.1 111



 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(a)

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 21.5

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(b)

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(c)

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(d)

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(e)

 16.4

 16.6

 16.8

 17

 17.2

 17.4

 17.6

 17.8

 18

 18.2

-4 -2  0  2  4

E
n

e
rg

y
 (

e
V

)

Nuclear Coordinate

1 
3
B1

2 
3
A2

3 
3
B2

4 
3
A1

5 
3
B2

(f)

Figure 4.4: Adiabatic surfaces as calculated with Model 1 for the Singlet NO+
3 for normal

modes as shown in figure 5.1 112



Table 4.7: Three lowest vibronic eigenvalues of the NO3 radical in VIBRON and MCTDH

Root VIBRON (eV) MCTDH (eV) Relative Energy (cm−1)

1 3.570 3.570 0.0

2 3.618 3.618 381.60

3 3.618 3.618 381.60
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Figure 4.5: Experimental photodetachment spectrum of the NO3: Reproduced from
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Chapter 5

Cyclobutadiene &

Trimethylenemethane

Jahn-Teller systems were briefly discussed in Chapter 3 where we also looked at the pro-

totype case of such systems, the C3 molecule. In this chapter an attempt will be made to

simulate the photodetachment spectra of cyclobutadiene and trimethylenemethane nega-

tive ions, leading to a characterization of two very challenging biradical systems - cyclobu-

tadiene (C4H4) and trimethylenemethane (TMM), C(CH2)3.

It has been a challenge for theoretical chemists to elucidate the electronic structure of

these two biradicals, in particular to determine the singlet-triplet energy gaps, to deter-
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mine whether the singlet falls below the triplet in energy, or to determine the equilibrium

geometry of the ground state.[27]

In addition to their complex electronic structure, these systems present a major chal-

lenge to the nuclear dynamics simulation not only due to the presence of Jahn-Teller dis-

tortion, but also due to the presence of a large number of vibrational degrees of freedom.

While C4H4 has 18 (3N − 6, N = 8) degrees of freedom, TMM has of 24 (3N − 6, N = 10)

degrees of freedom. While the time-independent methods of spectral simulations become

out of the question at once for systems of this magnitude, to carry out full quantum

dynamics simulation using the efficient time-dependent methods also start to hit the walls.

This chapter makes an attempt to simulate the photodetachment spectra for the neg-

ative ions of these two systems using the DIP-STEOM methodology to carry out the elec-

tronic structure calculations, while using the advanced features of the MCTDH program

to perform the nuclear dynamics simulations. To the best of our knowledge, the studies

performed in this chapter are first of their kind and there has not been any report in the

literature to date. An important point to note here is that the emphasis of this chapter is

not on answering the electronic structure questions to a great accuracy, but to be able to

carry out simulations of photodetachment spectra using the methodology presented in this

thesis. The DIP-STEOM methodology is fast and also accurate for excited state energies,

but there are issues with this method in regards to application on biradical systems.[10]
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The spectral simulation for C4H
−
4 will be predictive in nature, as there has been no

experiment reported in the literature on this system. We hope that this study can stimulate

the experimental chemists to consider to perform this challenging experiment. On the other

hand, a beautiful photodetachment spectrum for TMM− exists, carried out by Wenthold

et al. and a comparison will be made to our simulated spectrum.

5.1 Cyclobutadiene

Cyclobutadiene, an antiaromatic annulene containing 4π electrons, represents one of the

classic cases where nonadiabatic effects play a vital role in its structure and stability. One

would anticipate a square planar, D4h, structure for this molecule, but it turns out that the

equilibrium geometry for C4H4 is rectangular, D2h. A CASSCF study has been performed

[28] on cyclobutadiene discussing the molecular structures, vibrational frequencies and

energies of the ground and low-lying excited states taking into account the pseudo Jahn-

Teller effect, responsible for the symmetry lowering. A comparison will be drawn to the

values calculated with our methods.
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5.1.1 Method

As stated earlier, the methodological scheme to carry out the simulation is very much

the same as described in chapter 3 for NO2, the only difference being that there is no

time-independent simulation of spectrum in this case. The reference geometry here is

taken as the ground state geometry of triplet state of the neutral cyclobutadiene. At this

geometry, the closed-shell dianion (C4H
2−
4 ) is taken as the reference state for the EOMCC

calculations, and the ionization and double ionization energies are calculated using the

IP-EOMCC and DIP-STEOMCC methods respectively. Vibronic models are created for

all the three systems – the anion, as well as the singlet and triplet states of the neutral

cyclobutadiene using the GRID = 10 scheme. All the electronic structure calculations

have been performed at the CCSD level of theory using the TZ2P basis set. The choice of

TZ2P basis set is made due to it’s small size to avoid the issues of diffuse basis set for the

dianion.

For the simulation of spectra, first the vibronic eigenstates of the anion are calculated

using the block-improved-relaxation technique for both the singlet and triplet cases. The

spectrum is calculated as a weighted sum of spectrum starting from the two lowest eigen-

states, which are degenerate/near-degenerate in energy. The mode combination technique

is used to get the maximum efficiency in MCTDH calculations.
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5.1.2 Results & Discussions

The optimized geometry of the neutral triplet state at the square planar geometry is given

in table 5.1. The harmonic vibrational frequencies at this geometry are calculated at the

UCCSD level and are compared to the MP2 values calculated using Gaussian09 as given

in table 5.2.

Table 5.1: Optimized parameters for the neutral triplet cyclobutadiene

R(CC) 1.44A0

R(CH) 1.08A0

The energies of the lowest states for the anion as well as for the singlet and triplet states

of the neutral are calculated using the aforementioned EOMCC methods. It can be seen

that the ground state of the anion is degenerate where the two states 2E1g and 2E1g are

equal in energy. The two highest occupied molecular orbitals in the closed-shell dianion

are degenerate and creating two holes from these orbitals gives rise to four lowest states

of the neutral, three singlets (1B2g,
1B1g,

1B1g) and one triplet (3B2g). From the table of

energies, it can be seen that the ground state is the singlet 1B2g, lying 4.93kcal/mol below

the triplet. The singlet-triplet gap predicted by MCSCF calculation is 6.2kcal/mol.[29] As

127



predicted by the MCSCF studies, our studies also confirm that singlet is the ground state

for the neutral cyclobutadiene.

The vibronic model Hamiltonians are now set up for the anion (6 lowest states) as well as

for the singlet (3 lowest states) and triplet (3 lowest states) for the neutral cyclobutadiene.

The diabatic Hamiltonian is created and the coupling constants are calculated for all

the three cases. The adiabatic potential energy surfaces are also generated for all the

three systems. We can identify the important normal modes by looking at the coupling

constants, in particular the linear coupling constants, as well as by looking at the behaviour

of adiabatic potential surfaces.

Cyclobutadiene represents one of the simplest systems with a square-planar D4h geom-

etry in the high symmetry configuration and a doubly degenerate E term which results in a

E⊗ (b1 +b2) type of Jahn-Teller problem. For the anion, the ground state is doubly degen-

erate 2E1g term, the symmetrized direct product of which with itself can be decomposed

as

E1g × E1g = A1g + B1g + B2g (5.1)

According to the general theory [30] the Jahn-Teller active coordinates are of either b1g

or b2g symmetry, which results in D2h configurations of a rhombus or rectangle, respectively.

By looking at frequency table and the adiabatic surfaces for the anion, it can be clearly
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seen that for cyclobutadiene anion these modes are Normal mode 14 (B1g), 16 (B2g), and

17 (B2g). Normal mode 1, 4, 5 are also important due to large anharmonicities and the

double well kind of structure of the potential surfaces corresponding to these modes. The

degenerate E vibrational modes (4-11) may be PJT active, rather than being JT active

for cyclobutadiene as opposed to an E ⊗ e Jahn-Teller problem. Displacement diagrams

for the important normal modes are shown in figure 5.1. Adiabatic surfaces corresponding

to these normal modes are shown in figure 5.2. Very similar is the case for the neutral

singlet and triplet cyclobutadiene and the adiabatic surfaces corresponding to the above

mentioned 6 normal modes are shown in figure 5.3 and 5.4.

We are now in a position to calculate the photodetachment spectrum of C4H
−
4 . As a

first step, the vibronic eigenstates and eigenfunctions of the anion are calculated using the

block-improved-relaxation method. The 18 vibrational degrees of freedom are combined

into eight particles involving either three, two or one DOF each, in order to reduce the

computational cost of wavepacket propagation on the product primitive grid. The mode

combination used are given in table 5.5. 10 primitive basis function are used for all the

particles. Several SPFs are used for the first four particles, constituting the important

modes, while a single SPF is used for the remaining particles.

Two such calculations are performed, for anion + singlet, as well as for anion + triplet

after merging the operator files. Both the calculations produce the same set of eigenvalues
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: The important normal modes for cyclobutadiene: Mode 1(A1g, 1280.19cm−1),

4(E1g, 559.03cm−1), 5(E1g, 559.03cm−1), 14(B1g, 951.97cm−1), 16(B2g, 1026.00cm−1),

17(B2g, 1375.64cm−1)
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(as they should) and it can be seen that the lowest vibronic eigenstate is degenerate. The

spectrum for both the singlet and triplet will be calculated starting from both the states.

The next step is to perform the dynamics of the neutral cyclobutadiene once the initial

wavefunction has been generated. A vertical excitation corresponding to the instantaneous

removal of an electron with no relaxation of nuclear framework is used to form the initial

wavepacket. This is done by the help of an excitation operator which takes the lowest

energy vibronic eigenfunction of the anion and places it into all of the diabatic states of

the neutral. This step is repeated four times, two times for singlet where the two separate

calculation takes place starting from the two lowest degenerate states of the anion and

the similar procedure is repeated for the triplet. The photodetachment spectrum for the

individual states are obtained first by taking the Fourier transform of the time correlation

function, and then a Boltzmann averaged spectrum is calculated for both the singlet and

triplet case using the sumspec program.

It is apparent that the contribution to the spectrum (for both singlet and triplet) from

different roots of the vibronic degenerate eigenstates is quite different. A Boltzmann av-

eraging is performed to get the total spectrum for singlet as well as triplet. Again, to

get the total spectrum for the neutral cyclobutadiene, singlet and triplet spectra are com-

bined with appropriate weighted sum i.e. 1 and 3 respectively. A predictive experimental

spectrum is presented in figure 5.10.
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5.1.3 Summary

The methodology for calculating the photodetachment spectrum described in the earlier

chapters has been successfully applied to the cyclobutadiene molecule. Unfortunately, there

is no experimental spectrum to which a comparison can be made. It is important to note

that convergence can be an issue for MCTDH calculations, and further calculations need to

be performed in order to make sure that convergence is reached for both stages – whether

finding the initial wavefunction or performing the dynamics to calculate the spectrum.

Another meaningful comparison can be made with a spectrum simulated using the models

created at a different GRID, let us say for GRID=3, which can show the importance (or

lack thereof) of the higher order coupling constants in the representation of PESs as well

as in the simulation of spectrum. We look forward to carry out these calculations in near

future.

5.2 TMM

In our studies of biradicals, the last molecule we are going to look at is Trimethylen-

emethane (TMM), a notorious biradical. The photodetachment spectrum of the negative

ion of the TMM has been reported by Lineberger et al [31] . This non-Kekule conjugated

hydrocarbon has continued to be a challenging subject for electronic structure calculations
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for many years now and a wide variety of electronic structure methods have been employed

in it’s study, including the sophisticated multireference methods such as Spin-Flip Equation

of Motion Coupled Cluster (SF-EOMCC)[32] and Reduced Multireference Coupled Cluster

(RMR CC) [33] methods. The four π electrons in neutral TMM are delocalized over four

π MOs. Orbital occupation gives rise to a 3A
′
2 state of D3h symmetry, which is the ground

state, and a 1E′ state undergoing JT distortion leading to two singlets, 1A1 and 1B2, with

C2v geometries. Considerable efforts have been put in the studies of equilibrium geometry,

energies and vibrational frequencies of these states in the above mentioned references, as

well as to determine the singlet-triplet energy gaps.

The goal in this section is to simulate the photodetachment spectra of TMM−, which

is a challenging task not only due to the presence of JT and PJT couplings in the anion

as well as the neutral TMM, but also due to the large number of vibrational degrees of

freedom this molecule has (24!). At the electronic structure level, it can be a daunting

task to find a meaningfully compact representation of such complicated surfaces also due

to the presence of large amplitude motions. On the other hand, at the nuclear dynamics

level, while the computational expense grows exponentially, it also becomes a challenge to

get a converged spectrum. We employ the computational tools discussed in this thesis so

far to reach this goal, and a reasonable agreement with experiment has been obtained. It

is worthwhile to mention that such a theoretical study for TMM has not been reported in
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the literature till date. We hope to refine our analysis and send these results for a journal

publication.

5.2.1 Method

A similar procedure to that used for C4H4 in the last section will be followed here. The

reference geometry is taken as the triplet ground state geometry the neutral TMM. The

DIP-STEOM methodology is used to calculate the ionization energies starting from the

closed-shell dianion (TMM2−). Vibronic models are created for all the three systems – the

anion, as well as the singlet and triplet states of the neutral TMM using the GRID = 10

scheme. All the electronic structure calculations have been performed at the CCSD level

of theory using the TZ2P basis set.

In order to perform nuclear dynamics, as a first step the vibronic eigenstates of the

anion are calculated using the block-improved-relaxation method for both the singlet and

triplet cases, as discussed in Chapter 3. The spectrum is calculated as a weighted sum of

spectrum starting from the two lowest eigenstates, which are degenerate/near-degenerate

in energy. Normal modes are combined in order to get the maximum efficiency in MCTDH

calculations.
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5.2.2 Results & Discussions

The optimized parameters of the neutral triplet state at the D3h geometry is given in table

5.7. The harmonic vibrational frequencies are calculated at the UCCSD level and are given

in two tables, 5.8 and 5.8, for degenerate and non-degenerate modes respectively.

The energies of several low-lying excited states for the anion as well as for the singlet and

triplet states of the neutral are calculated using the aforementioned EOMCC methods. It

is observed that the ground state of the anion is degenerate by symmetry (2E ′′). Moreover,

the ground state of the singlet TMM also forms a degenerate pair of 1E
′

symmetry. From

the table of energies, it can be clearly observed that the ground state of the neutral TMM

is the triplet 3A2
′, lying 1.08eV below the singlet, at the triplet optimized geometry.

Two deferent sets of vibronic models are created using the GRID = 10 scheme:

Model-1 :

TMM−: 3 lowest states

Singlet TMM : 3 lowest states

Triplet TMM : 3 lowest states

Model-2 :

TMM−: 6 lowest states
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Singlet TMM : 6 lowest states

Triplet TMM : 3 lowest states

Adiabatic potential surfaces are created for all the six cases. In TMM, the degeneracy

of E
′′

and E
′
electronic states are lifted by the coupling with normal modes of E

′
symmetry

as predicted by the Jahn-Teller theorem, and leads to a symmetry lowering (from D3h to

C2v). This can be seen in the potential surfaces diagrams, and also large linear coupling

constants can be seen in the model Hamiltonian parameters. Normal modes of E
′

and E
′′

symmetry are shown in figure 5.11 and 5.12. Adiabatic potential surfaces corresponding

to these modes for Model-1 are shown in figure 5.13 and 5.14 for anion, 5.15 and 5.16 for

singlet, and 5.17 and 5.18 for triplet.

For Model-2, some of the adiabatic surfaces represent unbound potentials (figure 5.19.

This might be due to the increased active space (number of states in IP) or also due to

the presence of large amplitude motions (rotation of CH2 groups) in singlet. This is a

limitation of vibronic model Hamiltonians, where the calculated potentials might not be

the true representation of real potential energy surfaces. The extra states (4-6) in the

model seem to be causing the problem.

The photodetachment spectrum of TMM− is simulated using the vibronic models from

Model-1. Vibronic eigenstates and eigenfunctions of the TMM− are calculated using the
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block-improved-relaxation method. The 24 vibrational degrees of freedom are combined

into eight particles involving either two, three or four DOF each, in order to reduce the

computational cost of wavepacket propagation on the product primitive grid. The mode

combination used is given in table 5.12. 10 primitive basis function are used for all the

particles. SPFs used for each particle are also mentioned in the table 5.12.

Two such calculations are performed, for anion + singlet, as well as for anion + triplet

after merging the operator files. Both the calculations produce the same set of eigenvalues

(as they should) and it can be seen that the lowest vibronic eigenstate is degenerate. The

spectrum for both the singlet and triplet will be calculated starting from both the states.

Once the initial wavefunctions have been generated, the next step is to perform the

dynamics of the neutral TMM. Once again, a vertical excitation corresponding to the

instantaneous removal of an electron with no relaxation of nuclear framework is used to

form the initial wavepacket. This is done by the help of an excitation operator which

takes the lowest energy vibronic eigenfunction of the anion and places it into all of the

diabatic states of the neutral. This step is repeated four times, two times for singlet where

the two separate calculation takes place starting from the two lowest degenerate states

of the anion and the similar procedure is repeated for the triplet. The photodetachment

spectrum for the individual states are obtained first by taking the Fourier transform of the

time correlation function, and then a Boltzmann averaged spectrum is calculated for both
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the singlet and triplet case using the sumspec program.

The simulated spectrum comprised of 3 low lying singlet as well 3 low lying triplet states

is shown in figure 5.20. The spectrum between the range of 0 to 3 eV is shown in figure

5.21 along with the experimental spectrum in figure 5.22. There is a reasonable agree-

ment between the experimental and simulated spectrum. The first band (lower energy)

corresponds to the ground state triplet while the second band corresponds to the lowest

singlet state. The triplet region of the spectrum is expanded where a good agreement with

simulation (figure 5.23) and experiment (figure 5.24) is seen.

5.2.3 Summary

The photodetachment spectra of TMM− has been simulated successfully using the compu-

tational tools discussed and a reasonable agreement with the experiment has been observed.

Most certainly, there are issues with convergence in MCTDH and more accurate calcula-

tions with increased number of Primitive bases and SPFs need to be carried out. These

calculations also tend to become expensive very quickly and a careful monitoring of the

convergence is required. Nonetheless, the analysis performed in this chapter shows that the

methodology discussed is quite useful for simulating the complicated vibronic spectrum of

biradicals of larger size.
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Table 5.2: Vibrational normal modes for the neutral triplet cyclobutadiene

Normal Mode Description Frequency CCSD (cm−1) Frequency MP2 (Gaussian)(cm−1)

1 (A1g) 1280.19 1303.04

2 (A1g) 3303.52 3311.13

3 (A2g) 1223.43 1217.33

4 (E1g) 559.03 481.5

5 (E1g) 559.03 481.5

6 (E1u) 875.68 1093.23

7 (E1u) 875.68 1093.23

8 (E1u) 1326.69 1824.57

9 (E1u) 1326.69 1824.57

10 (E1u) 3276.44 3303.66

11(E1u) 3276.44 3303.66

12(B2u) 467.68 335.83

13(B2u) 625.07 531.03

14 (B1g) 951.97 949.26

15 (B1g) 3262.95 3273.21

16 (B2g) 1026.00 1036.30

17 (B2g) 1375.64 1378.79

18 (A2u) 556.87 470.20
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Table 5.3: Ionization energies of the anion calculated using IP-EOM-CCSD

State Ionization Energy (eV)

2E1g -6.23

2E1g -6.23

2A2u -1.10

2E1u -0.20

2E1u -0.20

2B2g 0.18
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Table 5.4: Double ionization energies of the anion calculated using DIP-STEOM-CCSD

State Ionization Energy (eV)

1B2g -6.72

1B2g -5.12

1B1g -4.22

3B2g -6.51

3E1u -1.32

3E1u -1.32
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Figure 5.2: Adiabatic surfaces for the anion cyclobutadiene: Mode 1, 4, 5, 14, 16, 17
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Figure 5.3: Adiabatic surfaces for the singlet neutral cyclobutadiene: Mode 1, 4, 5, 14, 16,
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Figure 5.4: Adiabatic surfaces for the triplet neutral cyclobutadiene: Mode 1, 4, 5, 14, 16,
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Table 5.5: Details of the MCTDH computational setup. Mode combinations are listed along

with the primitive bases of these modes, and the number of SPFs used for the relaxation as

well as for the propagation calculation. Vibrational normal modes in one bracket constitute

single particles. The primitive basis is the number of harmonic-oscillator DVR functions.

Each particle has a primitive basis consisting of 10 × 10 × 10 = 1000 functions. The

SPF basis is the number of single particle functions used for each electronic state (being a

single-set calculation).

Particle Normal Modes Primitive basis SPF Basis (Relaxation) SPF Basis (Propagation)

1 (4, 5, 14) [10,10,10] 7 10

2 (1, 16,17) [10,10,10] 7 10

3 (13, 18) [10,10,10] 7 10

4 (8, 9) [10,10,10] 7 10

5 (10, 11, 15) [10,10,10] 1 2

6 (6, 7, 12) [10,10,10] 1 2

7 (2) [10,10,10] 1 2

8 (3) [10,10,10] 1 2
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Table 5.6: Vibronic eigenvalues of the cyclobutadiene anion as MCTDH with block-

improved-relaxation method

Root Energy (eV) Energy (cm−1)

1 0.0 0.0

2 0.0 0.0

3 0.036 290.03

4 0.040 322.25

5 0.058 467.27

6 0.059 475.32

7 0.064 515.61

8 0.064 515.61

9 0.065 523.66

10 0.065 523.66
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Figure 5.5: Photodetachment spectrum of the C4H
−
4 : singlet states contribution from two

lowest eigenstates of anion
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Figure 5.6: Photodetachment spectrum of the C4H
−
4 : Boltzmann averaged total singlet

spectrum
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Figure 5.7: Photodetachment spectrum of the C4H
−
4 : triplet states contribution from two

lowest eigenstates of anion
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Figure 5.8: Photodetachment spectrum of the C4H
−
4 : Boltzmann averaged total triplet

spectrum
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Figure 5.9: Photodetachment spectrum of the C4H
−
4 : Total spectrum showing individual

singlet and triplet contributions
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Table 5.7: Optimized geometry for the neutral triplet TMM

R(CC) 1.4130214941A0

R(CH) 1.0792693355A0

A(HCC) 120.85678162230
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Table 5.8: Vibrational normal modes for the neutral triplet TMM: Degenerate Modes (E
′′
)

and (E
′
)

Normal Mode Frequency CCSD (cm−1)

1 (E
′′
) 476.91

2 (E
′′
) 476.91

3 (E
′′
) 698.61

4 (E
′′
) 698.61

5 (E
′
) 429.61

6 (E
′
) 429.61

7 (E
′
) 1029.54

8 (E
′
) 1029.54

9 (E
′
) 1362.11

10 (E
′
) 1362.11

11 (E
′
) 1518.55

12 (E
′
) 1518.55

13 (E
′
) 3184.61

14 (E
′
) 3184.66

15 (E
′
) 3294.32

16 (E
′
) 3294.32
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Table 5.9: Vibrational normal modes for the neutral triplet TMM: Non-degenerate Modes

Normal Mode Frequency CCSD (cm−1)

1 (A
′
1) 937.50

2 (A
′
1) 1539.21

3 (A
′
1) 3191.88

4 (A
′′
1) 470.96

5 (A
′
2) 971.24

6 (A
′
2) 3291.37

7 (A
′′
2) 498.75

8 (A
′′
2) 739.15
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Table 5.10: Ionization energies of the anion calculated using IP-EOM-CCSD

State Ionization Energy (eV) Symmetry (D3h) Symmetry (C2v)

1 -4.97 2E
′′ 2B1

2 -4.97 2E
′′ 2A2

3 -0.34 2A
′′
2

2B1

4 1.15 2E
′ 2B2

5 1.15 2E
′ 2A1

6 1.92 2A2
′ 2B2
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Table 5.11: Double ionization energies of the anion calculated using DIP-STEOM-CCSD

State Ionization Energy (eV) Symmetry (D3h) Symmetry (C2v)

1 -3.99 1E
′ 1A1

2 -3.99 1E
′ 1B2

3 -0.97 1A
′
1

1A1

4 1.75 1A
′′
1

1A2

5 1.78 1E
′′ 1A2

6 1.78 1E
′′ 1B2

7 -5.07 3A
′
2

3B2

8 0.33 3E
′ 3A1

9 0.33 3E
′ 3B2
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The E
′

JT active modes for TMM: Mode 5, 6 (429.61cm−1), 9, 10

(1362.11cm−1), 11, 12 ( 1518.55cm−1)
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(a) (b)

(c) (d)

Figure 5.12: The E
′′

degenerate modes for TMM: Mode 1,2 (476.91cm−1), 3,4

(698.61cm−1)
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Figure 5.13: Adiabatic surfaces for the TMM−: For modes shown in figure 5.11
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Figure 5.14: Adiabatic surfaces for the TMM−: For modes shown in figure 5.12
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Figure 5.15: Adiabatic surfaces for the Singlet TMM : For modes shown in figure 5.11
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Figure 5.16: Adiabatic surfaces for the Singlet TMM : For modes shown in figure 5.12
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Figure 5.17: Adiabatic surfaces for the Triplet TMM : For modes shown in figure 5.11
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Figure 5.18: Adiabatic surfaces for the Triplet TMM : For modes shown in figure 5.12
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Figure 5.19: Adiabatic surfaces for selected JT modes of the Singlet TMM : Model-2,

unbound potentials
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Table 5.12: Details of the MCTDH computational setup. Mode combinations are listed

along with the primitive bases of these modes, and the number of SPFs used for the

relaxation as well as for the propagation calculation. Vibrational normal modes in one

bracket constitute single particles. The primitive basis is the number of harmonic-oscillator

DVR functions. Each particle has a primitive basis consisting of 10 × 10 × 10 = 1000

functions. The SPF basis is the number of single particle functions used for each electronic

state (being a single-set calculation).

Particle Normal Modes Primitive basis SPF Basis (Relaxation) SPF Basis (Propagation)

1 (1, 11, 12) [10,10,10] 7 7

2 (2, 13, 14) [10,10,10] 7 7

3 (3, 15, 16) [10,10,10] 7 7

4 (17, 18, 19) [10,10,10] 7 7

5 (4, 7, 8) [10,10,10] 5 5

6 (5, 6) [10,10,10] 2 2

7 (9, 10, 23, 24) [10,10,10,10] 5 5

8 (20, 21, 22) [10,10,10] 2 2
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Table 5.13: Vibronic eigenvalues of the TMM anion as MCTDH with block-improved-

relaxation method

Root Energy (eV) Energy (cm−1)

1 0.0 0.0

2 0.0 0.0

3 0.024 193.35

4 0.030 241.69

5 0.050 402.81

6 0.050 402.81

7 0.058 467.27

8 0.061 491.44

9 0.065 523.66

10 0.066 531.72
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Figure 5.20: Simulated Photodetachment Spectrum of TMM−
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Figure 5.21: Simulated Photodetachment Spectrum of TMM− : 0 to 3 eV
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Figure 5.22: Experimental Photodetachment Spectrum of TMM−
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Figure 5.23: Expanded view of the simulated triplet region of the photodetachment spec-

trum
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Figure 5.24: Expanded view of the simulated triplet region of the photodetachment spec-

trum

172



Chapter 6

Conclusions

Vibronic model Hamiltonians are a very good starting point for the studies of nonadiabatic

systems, which can provide a compact representation of complicated coupled potential en-

ergy surfaces. The construction of vibronic models for small-to-medium sized molecule is

a routine procedure with the computational tools and methods available in our group. A

large number of vibronic models have been constructed successfully for radicals and bi-

radicals, the characterization of which still remain a challenge for theoretical chemistry.

In this work, photodetachment spectra of selected biradicals have been successfully sim-

ulated starting from first principles, with systems including up to 24 vibrational degrees

of freedom. For systems, where the anionic ground state is also Jahn-Teller, the use of

a multiple vibronic model scheme becomes essential. Consistent results are obtained for
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VIBRON and MCTDH for small molecules (Chapter 3), which gave us confidence to use

the methodology for systems having more degrees of freedom (18-24, Chapter 5) where the

use of time-independent methods is essentially not possible. In general, a reasonably good

agreement is obtained in comparison with experiment. For C4H4, there is no experimental

spectrum available and a predicted experimental spectrum is presented.

6.1 Future Directions

Convergence in MCTDH remains a major issue which needs more attention and a careful

analysis, and so does a reliable method for finding the vibronically excited states. Chal-

lenges still remain in exploring the full potential and available methods of the MCTDH

program and also the computational limitations thereof. If MCTDH hits the limits for

systems at 24-30 degrees of freedom, there is a need for more efficient algorithms to do

quantum dynamics on larger molecules, which is so vital to Chemistry, including transition

metal complexes.

On the Electronic Structure front, there certainly are limitations to the DIP-STEOM

methodology, and one needs to go beyond it towards the true multireference methods

in order to find accurate excited states. The multireference version of EOMCC (MR-

EOMCC) is in active development in our group which might be able to give much more
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accurate vibronic models and thus will allow to do more accurate theoretical spectroscopy.

Spin orbit coupling also remains to be included in the model Hamiltonian, which is

important for transition metal complexes as well as other heavy elements. This work is

also being pursued currently in our group and in the near future the vibronic models will

be able to incorporate the spin orbit effect.

With the theoretical methodology and computational tools available to us, a wide

variety of challenging systems can be explored and interesting studies can be performed to

gain more insight into the structure and reactivity of these systems. We also look forward

to doing the Time-Resolved Photoelectron Spectra in near future.

A website on vibronic theory is also being put together in our group by Julia Endicott,

from where the vibronic models of radicals/biradicals can be downloaded, and also the

normal modes and potential energy surfaces can be visualized .
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APPENDICES

Python program for merging two MCTDH operator

files

#! /usr/bin/python

# Merge.py -- Merge two MCTDH operator files

# ------------------------------------------

# Prateek Goel - June 9th, 2012

# University of Waterloo

# Comments/Questions: p2goel@uwaterloo.ca

# ---------------------------------------
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# If you find a bug, please contact your nearest

# Pest control agency!

import fileinput

import sys, os

from shutil import copyfile

# User Inputs and Usage of the Program

if __name__ == ’__main__’:

usage = ’’’\

usage: python merge.py GSname GSstates IPname IPstates Mergedname Model

example: python merge.py GS.op 1 IP.op 3 COM.op quartic

Notes:
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1. Model can be -- linear, quadratic, cubic, quartic, full (grid=10)!

2. Please remove artificial ground state from IP, if it is there to begin with.

3. GS will have one artificial state, and no transition moments.

’’’

try:

oipfile = sys.argv[1] # GS file name

n1 = sys.argv[2] # No of electronic states in GS (include artifical ground state)

dipfile = sys.argv[3] # IP file name

n2 = sys.argv[4] # No of electronic states in IP (exclude artifical ground state)

newfile = sys.argv[5] # Merged file name

model = sys.argv[6] # which model do you have -- linear, quadratic, cubic, quartic?

except IndexError:

sys.exit(usage)

ipfile = ’start.op’ # dummyfile to make changes in GS

copyfile(oipfile,ipfile)

n1 = int(n1)
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n2 = int(n2)

# Helper Function -- Replace a string with a new one in a file

# ------------------------------------------------------------

def replace(filename, oldstring, newstring, backupext=None):

’’’

replace oldstring with newstring in file filename.

if backupext is a string, create a backupfile that has

backupext appended to the original file name.

’’’

old = open(filename).read() # load old file content

new = old.replace(oldstring, newstring) # create new file content

if old == new: # replacement had no effect - don’t need to save

print ’file %s unchanged’ % filename

return # leave function, don’t return any value

# if we get here, the filecontent has changed. Save it

if type(backupext) is str: # backup file requested by user
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if not backupext.startswith(’.’): # make sure the extension starts with a dot

backupext = ’.’ + backupext

backupfilename = filename + backupext

try:

open(backupfilename, ’w’).write(old)

print ’back up file written successfully’

except (IOError, OSError): # couldn’t write backup file - leave

print ’backup failed -- original file %s unchanged’ % filename

return

# if we get here, backup file was either successfully created or not requested

try:

open(filename, ’w’).write(new)

except:

print ’writing changed file %s failed’

else:

print ’file %s modified’ % filename

# Helper Function to insert particular lines at a particular place
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# ----------------------------------------------------------------

def insertAll(startsip, endsip, startsdip, endsdip):

’’’

How This Works:

’’’

tempip = []

tempdip = []

for line in fread:

if (line.startswith(startsdip) and line.endswith(endsdip)):

tempdip.append(fread.index(line))

nindex = tempdip[len(tempdip)-1]

for line in gread:

if (line.startswith(startsip) and line.endswith(endsip)):

tempip.append(line)
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fread.insert(nindex+1, ’\n’)

for line in tempip:

fread.insert(nindex+2, line)

# Helper Function -- Diagonal and Off-diagonal coupling constants

# ---------------------------------------------------------------

def diag_coup():

tindex = []

findex = []

for line in gread:

if ’Diagonal Quadratic’ in line:

tindex.append(gread.index(line))

if ’Cubic Coupling’ in line:

tindex.append(gread.index(line))

tall = gread[tindex[0]:tindex[1]]
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for line in tall:

if ’Off_diagonal’ in line:

offindex = tall.index(line)

tdiag = tall[2:offindex]

toffdiag = tall[offindex+2:len(tall)]

for line in fread:

if ’Off_diagonal’ in line:

findex.append(fread.index(line))

for line in tdiag:

fread.insert(findex[0]-1, line)

findex2 = []

for line in fread:

if ’Cubic Coupling’ in line:

findex2.append(fread.index(line))
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for line in toffdiag:

fread.insert(findex2[0]-1, line)

return

# -------------------------------------------------------------------

# Get, Set, Go

# -------------------------------------------------------------------

#

# Replace all electronic labels in GS

for i in range(n1-1,-1,-1):

if i+1+n2 <= 9:

replace(ipfile, ’s0’+str(i+1), ’s0’+str(n2+i+1))

elif i+1+n2 > 9:

replace(ipfile, ’s0’+str(i+1), ’s’+str(n2+i+1))

for i in range(n1-1,-1,-1):
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for j in range(n1-1,-1,-1):

replace(ipfile, ’S’+str(i+1)+’&’+str(j+1), ’S’+str(n2+i+1)+’&’+str(n2+j+1))

# Open files to read and write (GS, IP, Combined!)

fread = open(dipfile, ’r’).readlines()

fwrite = open(newfile, ’w’)

gread = open(ipfile, ’r’).readlines()

# Separate code for Merging Electronic Labels in Hamiltonian Section

# ------------------------------------------------------------------

temp = []

temp2 = []

for i in range(n1):

for line in gread:
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if (line.startswith(’EH’) and line.endswith(’S’+str(n2+i+1)+’&’+str(n2+i+1)+’

\n’)):

temp.append(line)

for line in fread:

if (line.startswith(’EH’) and line.endswith(’S’+str(n2)+’&’+str(n2)+’ \n’)):

temp2.append(fread.index(line))

for line in temp:

fread.insert(temp2[0],line)

# Writing Field Operators

# -----------------------

# Relaxation operator and Tmoms - copy from IP to ALL

etmom = []

mtmom = []

for line in gread:

186



if ’Electronic transition moments’ in line:

etmom.append(gread.index(line))

if (line.startswith(’Mx’) and line.endswith(’ev \n’)):

mtmom.append(gread.index(line))

tmoms = gread[etmom[0]:mtmom.pop()+1]

lcons = []

for line in fread:

if (line.startswith(’EH’) and line.endswith(’ev \n’)):

lcons.append(fread.index(line))

needed = lcons.pop()

for i in range(len(tmoms)):

fread.insert(needed+i+1, tmoms[i])

# Same code for tmom operator hamiltonian function (may be make a function)
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etmomop = []

mtmomop = []

for line in gread:

if ’HAMILTONIAN-SECTION_Ex’ in line:

etmomop.append(gread.index(line))

for line in gread:

if line.startswith(’end-operator’):

mtmomop.append(gread.index(line))

tmomsop = gread[etmomop[0]:mtmomop.pop()+1]

put = []

for line in fread:

if ’end-hamiltonian-section’ in line:

put.append(fread.index(line))

for i in range(len(tmomsop)):
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fread.insert(put[0]+i+1, tmomsop[i])

# Start Merging other things -- Call insertAll with proper keywords !!!

if model == ’linear’:

insertAll(’EH’, ’ev \n’, ’EH_s0’+str(n2), ’ev \n’)

insertAll(’C1’, ’ev \n’, ’C1’, ’ev \n’)

insertAll(’C1’, ’q \n’, ’C1’, ’q \n’)

elif model == ’quadratic’:

insertAll(’EH’, ’ev \n’, ’EH_s0’+str(n2), ’ev \n’)

insertAll(’C1’, ’ev \n’, ’C1’, ’ev \n’)

insertAll(’C1’, ’q \n’, ’C1’, ’q \n’)

diag_coup()

insertAll(’C2’, ’q \n’, ’C2’, ’q \n’)

insertAll(’C2’, ’q^2\n’, ’C2’, ’q^2\n’)

elif model == ’cubic’:
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insertAll(’EH’, ’ev \n’, ’EH_s0’+str(n2), ’ev \n’)

insertAll(’C1’, ’ev \n’, ’C1’, ’ev \n’)

insertAll(’C1’, ’q \n’, ’C1’, ’q \n’)

diag_coup()

insertAll(’C2’, ’q \n’, ’C2’, ’q \n’)

insertAll(’C2’, ’q^2\n’, ’C2’, ’q^2\n’)

insertAll(’C3’, ’ev \n’, ’C3’, ’ev \n’)

insertAll(’C3’, ’q^3\n’, ’C3’, ’q^3\n’)

elif model == ’quartic’:

insertAll(’EH’, ’ev \n’, ’EH_s0’+str(n2), ’ev \n’)

insertAll(’C1’, ’ev \n’, ’C1’, ’ev \n’)

insertAll(’C1’, ’q \n’, ’C1’, ’q \n’)

diag_coup()

insertAll(’C2’, ’q \n’, ’C2’, ’q \n’)

insertAll(’C2’, ’q^2\n’, ’C2’, ’q^2\n’)

insertAll(’C3’, ’ev \n’, ’C3’, ’ev \n’)

insertAll(’C3’, ’q^3\n’, ’C3’, ’q^3\n’)
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insertAll(’C4’, ’ev \n’, ’C4’, ’ev \n’)

insertAll(’C4’, ’q^4\n’, ’C4’, ’q^4\n’)

elif model == ’full’:

insertAll(’EH’, ’ev \n’, ’EH_s0’+str(n2), ’ev \n’)

insertAll(’C1’, ’ev \n’, ’C1’, ’ev \n’)

insertAll(’C1’, ’q \n’, ’C1’, ’q \n’)

diag_coup()

insertAll(’C2’, ’q \n’, ’C2’, ’q \n’)

insertAll(’C2’, ’q^2\n’, ’C2’, ’q^2\n’)

insertAll(’C3’, ’ev \n’, ’C3’, ’ev \n’)

insertAll(’C3’, ’q^3\n’, ’C3’, ’q^3\n’)

insertAll(’C4’, ’ev \n’, ’C4’, ’ev \n’)

insertAll(’C4’, ’q^4\n’, ’C4’, ’q^4\n’)

insertAll(’B3’, ’ev \n’, ’B3’, ’ev \n’)

insertAll(’B3’, ’q \n’, ’B3’, ’q \n’)

insertAll(’B3’, ’q^2\n’, ’B3’, ’q^2\n’)

insertAll(’B4’, ’ev \n’, ’B4’, ’ev \n’)

insertAll(’A4’, ’ev \n’, ’A4’, ’ev \n’)
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insertAll(’B4’, ’q \n’, ’B4’, ’q \n’)

insertAll(’B4’, ’q^3\n’, ’B4’, ’q^3\n’)

insertAll(’A4’, ’q^2\n’, ’A4’, ’q^2\n’)

fwrite.writelines(fread)

os.remove(ipfile)
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