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Abstract

The inferred mode protocol uses contextual reasoning and local mediators to eliminate

the need to access specic modes to perform draw, select, move and delete operations in a

sketch interface. This thesis describe an observational experiment to understand the learn-

ability, user preference and frequency of use of mode inferencing in a sketch appli- cation.

Novel methodology is presented to study both quantitative and long term qualitative facets

of mode inferencing. The experiment demonstrated that participants instructed in the in-

terface features enjoyed fluid transitions between modes. As well, interaction techniques

were not self-revealing: Participants who were not instructed in interaction techniques took

longer to learn about inferred mode features and were more negative about the interaction

techniques. Over multiple sketching sessions, as users develop expertise with the system,

they combine inferred mode techniques to speed interaction, and frequently make use of

scratch space on the display to retrain themselves and to tune their behaviors. Lastly, post-

task interviews outline impediments to discoverability and how performance is affected by

negative perceptions around computational intelligence. The results of this work inform

the design of sketch interface techniques that incorporate noncommand features.
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Chapter 1

Introduction

Pen and paper have supported fluid interaction for brainstorming, problem solving, design,

and other creative tasks for a large part of history. Moreover, sketches themselves form the

basis of creative problem solving by allowing people to generate new and alternative ideas.

The benefits of sketching on pen and paper can be attributed to the inherent speed of

production, and the ability to maintain ambiguity and flexibility of interpretation [16, 35].

Indeed, even the act of drawing a simple sketch is highly valuable in both problem solving

and expression as it forces the individual to synthesize relevant information while ignoring

irrelevant data [48].

Considering these benefits, it is no surprise that past research has looked into repli-

cating the advantages in the digital domain. For instance, the Electronic Coktail Napkin

provides similar support for ambiguity and flexibility [17], while SILK allows designers

to focus on the creative process [29]. However, despite significant research into hardware

and software, the current generation of pen-tablet computers do not support the fluidity

of interaction delivered by pen and paper. While part of this failure may still be due to

hardware limitations (screen resolution, the ‘feel’ of drawing), it is also true that software

systems, particularly our sketch interfaces, have yet to support the effective incorporation

of computation in the sketching task.

The problem of interaction is clear when considering the modern WIMP paradigm. The

standard widgets (e.g. buttons, lists, menus) were built with keyboards and mice in mind
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and are ill suited for sketching. As a result, much of the research in Human Computer

Interaction in the sketch domain has focused on new methods of interacting with strokes on

digital canvases built for tablet PCs, surfaces and mobile devices. Specifically, a significant

direction has been attempting to switch operation modes (e.g. drawing, selecting, deleting)

with a stylus while moving away from WIMP’s toolbars and menus (see the Related Work

chapter).

This work focuses on the Inferred Mode Protocol – an interaction technique developed

by Saund and Lank [46] that uses context to distinguish between drawing, editing and

deleting. Though the inferred mode is a reasonably well known sketch-based interaction

technique, it has undergone little scrutiny with regards to real-world usability and learn-

ability. This thesis describes work evaluating the inferred mode protocol using a novel

experimental design. This thesis first describes the inferred mode protocol in detail and

then go through the research problems, the contributions and outline before delving into

the study itself.

1.1 Inferred Mode Protocol

The focus of this research is on the inferred mode protocol [46] which attempts to mini-

mize mode cost by combining draw, select and delete operations in a single mode using

contextual information and local mediator buttons. Figure 1.1 depicts the inferred mode

protocol’s interaction paradigm.

The inferred mode protocol uses a decision tree to reason about user input. A truncated

version of the decision tree is shown in Figure 1.2. This decision tree is focused specically

on smart circle select and smart click select features. The full set of features of the in-

ferred mode makes use of a more complex decision tree, including reasoning about delete

mediators and scribble gestures. In all cases, inferred mode decision tree reasoning begins

by examining the state of the system, including whether a mediator is showing or whether

selections exist. Depending on where the user clicked (on a selection or somewhere else

on the display) and depending on the path the user drew (short or long, closed or open),

various actions are performed to support interaction. The decision tree reasoning allows
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Figure 1.1: The inferred mode protocol. Panel a. shows smart circle select. When an

object is circled, a mediator appears (top), but no mediator appears if the circle encloses

nothing. Panel b. shows smart select click. Panel c. shows smart delete (top) and shading

(bottom). Panel d. shows translation (top) vs smart drawing (bottom).

the user to perform inking, editing, and delete operations at any point in time without

switching out of a single interface mode.

One characteristic of the inferred mode protocol is that it makes the assumption that

all strokes should be classifed as ink – preserving pen-and-paper behavior – unless the user

explicitly invokes computational support (i.e. by selecting a button mediator) or unless

object state indicates otherwise (e.g. the user is trying to drag a selected object). In this

way, users are free to treat the tablet as a sheet of paper, and the pen-and-paper paradigm

is preserved. However, if the users want augmented drawing behaviors such as editing and

deletion, then they need to explicitly invoke computational support through the use of

button mediators, as shown in Figure 1.1.

For example, as shown in Figure 1.1a, if a user draws a circle that contains an object,

they may wish to draw a circle or to select the object. In this case, the interface supporting

inferred mode inks a circle and displays a local button mediator labeled with “Select?”. A

user can then select content using lasso selection by pressing the select button or they can

leave the ink on the display by ignoring the button. As shown at the bottom of Figure 1.1a,

3



Figure 1.2: The reasoning behind the inferred mode protocol’s Select Circle.
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if no content is inside the circle gesture, there is no ambiguity, and the circle is interpreted

as ink. Similarly, Figure 1.1b depicts click selection. If a user clicks (inks a short stroke)

on another stroke, the object is selected. If the user clicks in whitespace, then either an

ink dot is placed on the screen, or, if selections exist, everything is deselected and no dot is

placed on the screen. Figure 1.1c shows delete versus shading. Finally, Figure 1.1d shows

translation behavior. If a user performs pen-down on a selected object and drags, the

object is translated. However, a pen down and drag anywhere else on the display results

in deselecting all objects and drawing the gesture.

1.2 Research Problems

In order to frame the motivation of this work, this section presents the two primary sets

of research problems.

The first goal of this research is to evaluate the inferred mode protocol as a tool for

improving interaction in sketch-based interfaces. There are three specific aspects of the

inferred mode protocol explored. First, if the inferred mode protocol is available in an

interface, do users use the protocol? Second, do users need to be taught the features

of the inferred mode protocol, or is it self-revealing? Finally, what are users’ subjective

evaluations of the protocol and how might the protocol be improved?

The second goal of this research is to use the evaluation of the inferred mode as a

platform for the study of similar interaction techniques that use computational intelligence

to assist the user in their task. Though past researchers have built significant methodology

for evaluating usability and learnability of interaction techniques and interfaces (see [37]

and [19], respectively, for surveys), computational intelligence adds further complexity to

their study. This work hopes to provide useful lessons about how computational intelligence

in interfaces should be evaluated as a result of designing a long term study of noncommand

interaction.

Certainly, it is common practice to report metrics such as recognition rates, type I and

II errors, etc. However, special consideration must also be given to the prior perception of

users towards the currently non-standard nature of intelligence in interfaces as well as the
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effects it has on users over a prolonged period. For instance, adding recognition technology

implies that there is a need to study how failures affect users, how fatigue influences results

(if it applies), how feedback of complex internal algorithms is best displayed and how it may

modify perceptions. Additionally, what are proper methods of correction and frustration

costs of failures? As a result, this work explores methodology to study the long term

usability and learnability of the inferred mode protocol with the hope that the lessons

learned evaluating it will apply to other implementations of computational intelligence in

interaction.

1.3 Contributions

Providing valid answers to the above research questions requires careful experimental design

and requires longitudinal study [39] or user behavior. To address this challenge, a 2X2

observational study was designed. We created two interface variants of the inferred mode,

one in which the inferred mode was present by default and one in which the inferred

mode had to be specifically invoked using a special “smart” mode; and two instruction

conditions, one where participants were give a short overview of the inferred mode and one

where no instruction was given. Researchers analyzed screen videos of eight participants,

two in each group, performing sketching tasks over multiple sessions each (over 30 one-

hour sessions were analyzed). The researchers also conducted interviews of participants to

capture impressions.

The analysis examines issues of learnability and usability of the inferred mode tech-

nique. First, without instruction it is difficult to develop an accurate mental model of the

interaction technique, and that participants rapidly become frustrated and ignore interface

behaviors that they do not understand. Moreover, the results outline impediments to dis-

coverability such as a failure to attract attention to the features and a disconnect between

what users expect and what the system produces as a result of their actions.

However, if participants either understand (through instruction) or develop understand-

ing (through exploration) of the technique, they use the technique liberally during their

interaction with the sketch. Given an understanding of the technique, they also spend
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significant time exploring ways that the technique can be used to optimize their behavior

within interfaces. Participants optimize on a variety of factors, involving speed, perceived

operational cost, and use of whitespace. For example, participants use scratch-space on

the display to explore tolerances and improve their ability to invoke gestures; participants

combined operations such as select and delete to perform group deletion in unused screen

space; and participants treated mediators in different ways depending on the perceived

cost of the operation (e.g. delete is more costly than select, even with an undo operation

present).

Finally, this work highlights some of the design implications of this research. Specifi-

cally, it touches on the need for training on interaction techniques, the benefits of scratch

space, and enhancements to inferred mode operations. Together, these results inform the

design of new inferred mode techniques to support fluid inking and editing in interfaces.

1.4 Outline

The remainder of this thesis is structured as follows. First is a description of related work

in the area of mode switching in interfaces. The section delves into the definition of the

mode problem and how it relates to tablet interfaces. In focus are the costs of modes

in an interface: cognitive demand affecting performance times, and a larger number of

errors stemming from being in the wrong mode. A number of alternative mode switching

techniques are presented in order to understand the state of the art in interface modes.

Next, the related work section describes past work looking at methodology for evalua-

tion computational intelligence in interfaces. Past evaluations of interfaces are considered

based on an ecological validity spectrum which maps well controlled laboratory studies and

long term, flexible studies.

The main chapter of thesis presents an observational study that looks at the learnability

and usability of the Saund and Lank Inferred Mode Protocol in a more realistic setting.

The results involve looking at the use and perceptions of individual features, as well as an

in depth look at both initial and extended learnability of the protocol. Qualitative and

quantitative results present the importance of explicit instruction over perceptions and
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performance. Observations during the study uncovers how discoverability occurs and how

behaviour evolves over time to optimize interaction.

Finally the thesis closes with a discussion that looks into how perceptions affect per-

formance with computational intelligence, and lessons learned in terms of how to evaluate

noncommand interaction methods. A number of future work possibilities are considered

to better understand the inferred mode and take the lessons learned about feedback and

recognition accuracy into non-sketching domains.
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Chapter 2

Related Work

In order to properly situate this research, this chapter contains a summary of previous

research into mode switching and evaluations of interaction techniques that use computa-

tional intelligence.

2.1 Cost of Modes in Tablet Interfaces

Despite Larry Tesler’s plea to not “mode me in” [47], modern interface designers still

struggle with overloading actions onto input devices. For instance, in a table PC drawing

application a stylus must alternatively generate new ink strokes, select existing strokes, or

delete content. There are two problems with modes. The first is that they may introduce

errors into user interaction. The second is that there is a cognitive cost to modes that

increases in proportion to the number of modes available in an interface [45]. This cognitive

cost translates directly to increased time performing tasks in the interface.

This section describes the two penalties for modes in interfaces – time and errors – as

well as important related work that has studied the two. Finally, the rest of this section

is a brief look at two classes of techniques that improve efficiency in mode selection. The

first class consists of techniques which provide improved access to modes by efficiently

positioning options or providing a separate command space for activating them. The
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second class looks at noncommand methods of interaction where the user fluidly gestures

and the system uses computational intelligence to interpret which strokes are commands

and which are inking strokes.

Mode Errors

Mode errors result from the user either forgetting to select a mode prior to inputting strokes

or simply forgetting which operational mode the system is in. For instance, Yang et al

looked at fluid sketch-based interaction techniques that naturally switch between gestures

and inking [30]. To switch between gestures and inking, Yang et al considered a number

of popular techniques: holding down a barrel button, using pressure to distinguish mode,

holding the stylus motionless on the canvas, and setting the mode with the non-preferred

hand. As a percentage of total strokes, switching modes by holding a barrel button and by

using pressure both produced error rates above 3%; holding a button motionless to switch

modes led to error rates above 5%; and using the non-preferred hand to switch modes

produced only 1%. Moreover, when erring in setting the mode, the user finds themselves

activating miscellaneous commands or drawing spurious strokes on the canvas. As a user

regularly performs a large number of strokes on the canvas in a session, even a seemingly

small error rate of 3-5% produces numerous occurences of mode errors. Moreover, the

price of such mode errors in sketch-based interaction can be high as the user must not only

get into the right mode, but also likely spend additional time repairing the results of the

erroneous input.

Increased Cognitive Cost

In addition to the cost of repairing a mode error, there is also a cognitive cost that increases

with the number of operational states in an interface. Past work by Ruiz et al built a

temporal model for switching modes with the non-preferred hand [45], the relatively error

free and efficient mode switching technique. Ruiz et al formulate the task requiring prior

selection of mode with the non-preferred hand as a decision problem broken down into

three time intervals: the time until mode switch occurs (i.e. perception and planning
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time), the time interval between the activation of the mode and the first activation of the

pen, and finally the time spent gesturing with the pen. As the latter intervals (the interval

between mode switch and gesture start, and the gesture time) are independent of the

number of modes in the interface, only the cognitive load time measuring perception and

planning are considered. The authors show empirically that the cognitive load associated

with finding and selecting a mode from a list of options is dependent on the number of

available choices (i.e. modes) and is modeled well by the Hick-Hyman Law [23, 7]. The

Hick-Hyman Law describes participants’ response to a set of choices by modeling the time

as a logarithmic function of the number of equally probable choices. As a result, Ruiz et

al show that the cognitive load associated with selecting a mode with the non-preferred

hand grows according to a logarithmic function of the number of modes available in the

interface, everything else being equal. Considering Yang et al’s previous study which found

mode switching through the non-preferred hand as the least error prone and most efficient

technique when compared to techniques that use hardware buttons alternative command

spaces (e.g. pressure space)[30], it is likely that this function of cognitive load may be a

lower bound for similar mode selection techniques.

2.1.1 Alternative Mode Switching Techniques

Among the first efforts to improve mode selection from a list of items was research that

considers item positioning. Placing the modes as pie slices centered around the cursor’s

current position was shown to be more efficient than a traditional list-based menu [6].

Marking menus further iterated on the concept of localized pie slices by allowing the

user to either use radial menus, or perform a quick gesture mark in the direction of the

desired item. The user can perform a shortcut by simply stroking in the direction of the

desired option (i.e. a stroke whose angle is within the option’s pie slice) without waiting

for the radial menu to appear [42]. Hierarchical menu structures could be supported by

allowing the user to change the direction of their strokes for selecting sub-menu options.

Lastly, Hinkley et al’s Scriboli allowed the user to draw one stroke to specify both the

target object and the operation through a marking menu [25]. Scriboli supported encircling
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items and then appending a pigtail-like gesture ending in a direction in accordance to the

appropriate operation mode in the radial marking menu.

As tablet interfaces became more popular, researchers sought to overload the stylus to

perform various actions.

One direction to solve the ambiguity in interpretation has been to use a different com-

mand space to switch operational modes. For instance, Mynatt et al’s Flatland [33],

Guimbretière’s PostBrainstorm [21], and Landay’s SILK distinguish between command

input and content using a button press on the stylus[29]. However, these techniques are

overly-reliant on specific hardware to interact with the system. Less hardware reliant

command spaces proposed to switch modes include speech [8], and stylus hover space [20].

Recent work has evaluated some of the above methods of switching between ink and

gesture modes. For instance, Li et al have demonstrated that pressing a button with the

non-preferred hand to switch modes is much more efficient than pressing a stylus button

or using alternative command spaces (e.g. stylus pressure) [30]. Systems like Springboard

[24] and Alias SketchBook [15] use the non-preferred hand to enable a quasimode – a

transient mode enabled as long as the non-preferred hand activates the button. Using

the non-preferred hand has proven to be a reliable and highly effective method of mode

switching.

The above techniques work to improve efficiency in selecting an interpretation of user

input. However, these techniques require the selection of mode as a precursor for operations

in the system. As a result, though the methods provide efficient access to modes in an

interface, the mode problem still plagues such systems. The user must keep track of the

current system state or face misinterpreted commands and spurious inputs that are costly

to repair. Additionally, regardless of how efficient the access to modes is, there is significant

cognitive cost that only grows with the number of mode options available in the interface.

As the number of interface modes increases, there is a growing need to develop intelligent

mode switching techniques that provide low cost access to different interface operations.
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2.1.2 Noncommand Interaction

Nielsen’s noncommand interaction paradigm allows the user to perform fluid and “natural”

input while the system uses computational intelligence to interpret the user’s intent and

support them in their task. In the context of mode switching, the user provides sketch

input and the system interprets strokes as either inking or command gestures depending on

local characteristics. Local characteristics include the spatial context of a stroke (“Where

is it drawn?”) with respect to other input strokes, its temporal context (“When is it

drawn? Before/After other strokes?”), its domain context (“Can we interpret input based

on knowledge of the operating domain?”), and geometrical characteristics (“How is it

drawn?”) that naturally define the input strokes without prior selection of mode. In

addition to the Inferred Mode Protocol, which has been previously outlined, therer are

other systems of note that allow for fluid sketch input where the intepretation is left to a

semi-intelligent system.

Teddy is a system that allows the user to create 3D shapes by interpreting their 2D

strokes [26]. The system uses contextual cues (where and when the stroke is created) to

distinguish between a number of modeling operations. For instance, a closed stroke in

an empty area is used to define an initial spherical 3D shape that can be further refined

with modeling operations. In contrast, a closed stroke on an already created 3D object

takes the system to an Extrude mode and select the 3D subset of the object defined by the

stroke. Subsequent strokes define the direction and shape the selection should be extruded.

In contrast, a non closed stroke is just a painting stroke. A scratchout stroke can either

be interpeted as a delete operation if over a painting stroke or a smoothing operation if

over a pre-selected extrude region. Teddy restricts the user’s input to one domain – the

creation and definition of a 3D model – to restrict the interpretation of strokes in the

system as one of extruding, cutting, or painting operations. It uses this domain as well

as a few predetermined command gestures towards allowing the user relatively free-form

input whitout explicitly setting the mode through traditional means.

SketchREAD is a sketching system in which the sketch is automatically recognized

based on little information regarding the domain of the input [3]. SketchREAD allows the

user to input a sketch whose syntactical components are recognized automatically. The
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system uses Bayesian Networks to reason about the user’s input based on understanding the

given domain. The system allows the user to input basic shapes (e.g. triangles, circles, etc)

and specify relations between them to create compound elements. Bayesian networks are

used to maintain running hypotheses of the interpretation of stroke input. For instance, the

authors use circuit diagrams as an example input. A diode can be sketched as a triangle

with a line drawn such that it touches one end of the triangle and is parallel with the

opposite edge. A Not-gate can be represented as a triangle with a circle at one end. There

is no need to switch modes to assist the user in understanding whether an input triangle is

to be interpreted as a Not-gate, a diode, or perhaps just a random shape. The system keeps

partial hypotheses for understanding the shapes as the user draws them fluidly. The user

simply sketches out their diagram and the system interprets input according to relational

and geometrical characteristics without any further input from the user.

Flow Selection allows users to sketch and repair curves without prior selection of mode

[27]. The main feature of the interaction technique involves selecting and repairing existing

strokes on the canvas. The user can hold the stylus relatively near a region that is to be

edited. A single point alongside the stroke nearest the epicenter will be selected. As the user

maintains the stylus still, the selection expands outwards to points on the stroke around

the current selection. The user can then drag the stylus to manipulate the selected points.

Points closest on the stroke to the epicenter of the selection will move faster, while those

farther away will be translated less for every pixel of stylus movement. Effectively, the user

can drag part of the stroke to repair or smooth them similar to manipulating control points.

Users efficiently alternate between drawing strokes, selecting them, or manipulating them

without explicitly changing modes.

Fluid Inking uses noncommand interaction to sketch and manipulate strokes without

prior selection of mode [49] in a manner similar to the Inferred Mode Protocol. The

system contains many of the command gestures of the inferred mode: a scratchout gesture

for delete, and encircling to delete. Moreover, the authors allow users to copy, cut and

paste with a gesture resembling the letter L. The system recognizes potential gestures in

the input strokes, but does not act right away. The user can resolve the ambiguity by

tapping on the canvas. Alternatively, holding the stylus on the canvas brings up a more

traditional radial menu. While the inferred mode uses a mediator button to settle the
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ambiguity between interpretations, Fluid Inking uses taps at the end of the gesture to

activate a gesture.

2.2 Evaluating Computational Intelligence in Sketch

Interfaces

The study of usability and learnability of interaction techniques has been a focus of HCI

research since the beginning of the field (see e.g. [37] and [19] for surveys of usability and

learnability methodology). Following Nielsen’s formalization of usability [40], traditional

evaluations are concerned with the learnability of the system – how easy can users accom-

plish basic tasks without prior experience –, efficiency – how quickly can experienced users

perform a task –, memorability – the ease with which users become proficient again after

discontinuing use –, errors – the number of errors users make as well as the difficulty of

error recovery –, and satisfaction. Though Nielsen looked at learnability in the context

of first-time use, Grossman’s survey of learnability expands the definition to include ex-

tended learnability [19]. The extended learnability of a system corresponds to the change

in performance over time.

In order to study the usability and learnability of systems, there have been many

methodologies introduced and borrowed from other scientific fields. As a general classi-

fication, Nielsen categorizes usability evaluations as those that are tasked with learning

about problems with a system (formative evaluation), and those that assess how well the

application achieves its stated goals, often in comparison with a similar system (summative

evaluation).

Examples of formative evaluations relevant to this work include Ericsson and Simon’s

use of the think-aloud protocol in which participants are asked to verbalize their intents,

strategies and overall thinking process as they use a system [13]. Rieman asked participants

to fill out a diary of their experience with a system in order to identify learning strategies

and difficulties [43]. Such a diary study is done in a natural setting which provides some

confidence that the findings can be generalized to realistic scenarios. Lastly, the highly

popular heuristic evaluation sits on the other end of the spectrum by evaluating an interface

15



by considering its performance on a set of common heuristics in a relatively controlled

setting[38].

In terms of relevant summative evaluation methodologies, past work has considered

controlled lab studies aimed at extracting subjective metrics of the system overall, or com-

pared with competing systems. For instance, Elliott et al. asked participants to perform a

series of tasks in a lab setting and complete a survey judging the learnability and usabil-

ity of the system [12]. In general, summative evaluations are lab-based controlled studies

which attempt to judge effectiveness, error rates, and learnability through quantitative

means.

When it comes to the specific problem of mode switching, all of the techniques pro-

posed to either simplify or to eliminate explicit modes from sketch interfaces have been

evaluated experimentally. However, many of the evaluations performed have been quan-

titative summative evaluations using simplified tasks like pie-cutting [30] or line drawing

[45]. Others have used discrete command invocation evaluation [25, 18] where the user is

told to perform a specific command – ‘delete’, ‘cut’, ‘copy’, ‘select’ – and the user performs

the action that invokes the command. While laboratory evaluations are useful in telling us

about speed and error rate in controlled conditions, they tell us little about the usability

of techniques in real-world drawing tasks [39].

Some researchers, recognizing the shortcomings of pure laboratory experiments on con-

trolled tasks, have performed studies with higher ecological validity in specific areas of

sketch interface research. One example is Bragdon et al.’s [4] GestureBar evaluation,

where participants performed diagram transcription and editing tasks that approximate

real world diagram creation. Two gesture learning techniques, GestureBar and a crib sheet,

were contrasted. However, as the goal of their study was restricted to evaluating a training

mechanism for gestures, the participants were given a strict script/tutorial that described

the tasks they must do in order to learn a particular set of gestures. The script was realis-

tic, but was still carefully controlled and fully specified. Users had less agency than they

would in self-directed tasks.

In user interface work, one example of a study with high ecological validity is Kurten-

bach and Buxton’s [28] analysis of marking menus in a real-world graphical user interface
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over a period of time. Two users used an application with marking menus for approxi-

mately ten hours in total, with use spread over several days. Although the evaluation had

only two participants, the researchers were able to extract very personal continuous feed-

back that looked at both short-term usability and effectiveness and long term perceptions

of the application through multiple extended sessions. This work, exploring real-world use

of a small number of users in detail, was invaluable in validating many of the laboratory

findings associated with the speed, accuracy, and learnability of marking menus.

Figure 2.1: Situating the presented study among related evaluations on the ecological

validity spectrum.

Evaluating computational intelligence tools like the inferred mode requires special care.

For instance, evaluating the types of errors that users make must be extended to account

for the precision of the system itself (e.g. the accuracy of a shape recognizer). Moreover,

computational intelligence in tablet interfaces often deal with multiple interpretations of

input (e.g. overloading a stroke to represent a delete operation, or a draw operation

depending on context). This means that an evaluation must take into consideration both

how the ambiguity is presented, and the effectiveness of the resolution mechanism provided

in the interface. Finally, intelligent user interfaces can provide opportunities for unforseen

evolution of user behaviour over extended use. Altogether, these requirements suggest
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the need for methodology that measures not only quantitative performance metrics in a

relatively controlled environment, but also one that gives sufficient time for users to develop

their understanding in a realistic scenario.

To better situate the work among some of the past work mentioned, consider Figure

2.1 which shows evaluation on an ecological validity spectrum. Bragdon et al.’s study of

GestureBar represents a class of evaluations that represents a prototypical well controlled

laboratory study. In contrast, Kurtenbach’s work on Marking Menus falls on the other side

of the spectrum, providing the opportunity for a long term, detailed look at the usability

and learnability of the technique. The study presented in this thesis hopes to situate itself

between these two extremes, providing a specific task but allowing for long term use in

order to uncover evolving behaviour.
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Chapter 3

Observational Study

The goal in this study was to evaluate the usability of the inferred mode protocol of Saund

and Lank [46] during realistic sketching. This study technique is inspired by Kurtenbach

and Buxton’s ecological evaluation of marking menus [28] and Bragdon et al.’s [4] evalua-

tion of GestureBar. This work describes an experiment where, as in Bragdon’s evaluation,

participants were given pre-specified sketch entry and editing tasks to perform in an in-

terface incorporating the inferred mode protocol, but, as with Kurtenbach and Buxton’s

evaluation, participants were not required to use the inferred mode protocol to complete

the sketching tasks.

A primary goal is to measure user adoption of the inferred mode protocol, both from

the perspective of learnability – how easy it is to acquire expertise with the technique –

and user preference – whether users actually make us of the interface. Over time, user

preference can be measured by comparing the frequency of use of inferred mode features

with the frequency of use of other options available in the interface. If participants use

either inferred mode or alternatives more frequently, one can claim that there is a preference

for one or the other. How participants make use of the technique provides us with details

on how expertise is acquired.

To accomplish a thorough study of the inferred mode protocol, an observational exper-

iment was designed in which 24 participants reproduced circuit diagrams and then edited
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them over three to five sessions. This chapter outlines the experimental design of the study

and the data analysis techniques.

3.1 Experiment Design

This section describes the observational experiment, from experimental set-up, tasks, pro-

cedure and participant demographics.

3.1.1 Experimental Set-up

In this study, participants were asked to sketch out circuit diagrams and then edit them

accordingly. All tasks were done on a simple sketching application written in Adobe Flash

(see Figure 3.1 for a screenshot of the application). The application was maximized at a

resolution of 1400x1050 on a Toshiba M200 tablet PC running at 1.8GHz. Participants

used the stylus to perform all tasks in the experiment.

3.1.2 Experimental Tasks

In order to get a good understanding of the inferred mode protocol, there were two re-

quirements in the choice of experimental tasks. Firstly, there was a need to provide a

longer term study that could help understand the inferred mode protocol under both the

short and long term scenarios of use. The second requirement was to balance the valuable

the internal validity of a controlled laboratory study with the external validity of a more

realistic study.

To fulfill these requirements, a task was designed in which participants are required to

reproduce a given digital circuit diagram using the tablet PC. Figure 3.2 shows the given

circuit to reproduce, as well as a participant’s rendition. Upon completion, participants

were asked to modify the digital logic circuit in specific ways, for example by inserting,

deleting, or changing gates.
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Figure 3.1: A screenshot of the sketch Flash application maximized on a Tablet PC.

Figure 3.2: The first task given to the users; on the left, the given drawing and on the

right is a participants’ rendition.

As there was a desire to provide the opportunity for long term use, participants were
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asked to come in for three to five sessions composed of sketch-and-edit sequences. Samples

of the given sketches and edits are given in Figure 3.2. The selected diagrams roughly

increased in complexity. Circuit diagrams were chosen as a terget for this experiment since

they provide a realistic scenario for sketching that Computer Science students already

perform throughout their undergraduage studies.

While the “work” done by participants was not real, they were free to perform the

tasks in any way they wished within the sketch interface. There was no direction on how

to perform the tasks; only what tasks they were to perform in the sketch interface. The

combination of a long term study as well as the choice of tools helps to maintain some

degree of ecological validity

3.1.3 Experimental Procedure

The designed evaluation was a multi-session 2X2 observational study that looked at learn-

ability and user preference of the inferred mode protocol. To study learnability, participants

were divided into two groups, those who received instruction and those who did not. All

participants received approximately 5 minutes of instruction of digital logic circuits. The

participants in the Instructed group were also give a three minute overview of how the in-

ferred mode protocol worked in the sketching interface they were using, while participants

in the Not Instructed group were given no information on the inferred mode protocol. To

limit bias, researchers were careful to show participants in the Instructed group both the

inferred mode protocol and mechanisms for changing modes in the interface without using

the inferred mode protocol, and did not express any preference for one technique over the

other. This design allowed the researchers to determine how easy it was to master the

inferred mode protocol. Was instruction necessary to master the interface technique, or

was the technique self-revealing to users? What strategies did users in different conditions

take to master the technique?

To study user preference, the resaerchers wanted to see whether participants made use of

the inferred mode protocol over time. To do this, two interface variants were designed. The

first interface variant, pictured in Figure 3.3a, contained four modes: draw, select, delete

and smart. The draw mode performed inking in the interface. Select allowed content to
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be lassoed or clicked on for selection, and translation operations could be performed on

selected content for editing. The delete button allowed users to delete entire strokes by

drawing a gesture that intersected strokes that they wished to delete. Finally, the smart

mode button implemented the inferred mode protocol.

Figure 3.3: the explicit interface in the foreground (a) and the implicit interface in the

background (b). note the extra “smart” button in the explicit interface.

When designing the study, one concern was that participants using the four-mode

interface might never make use of the “Smart Mode” and, therefore, might never see any

of the interface techniques that comprise the inferred mode technique. Participants were

free to perform the tasks however they wished, and there was a need to ensure that at least

some of the participants in the study saw the button mediators that invoke computational

support. With this in mind, a second interface was designed.

The second interface variant (Figure 3.3b) had only three modes – draw, select and

delete. Select and delete functioned identically to select and delete in the first interface.
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No computational intelligence was integrated into these modes. However, the Draw mode

was designed to implement the inferred mode protocol, essentially mimicking the behavior

of the “Smart” mode in the first interface.

In the study design, these interface conditions were labeled Explicit, having an explicit

smart mode, and Implicit, having the smart mode implicitly included in draw mode. As a

result of the two instruction and two interface designs, there were four unique configurations

for the study: Instructed/Explicit, Instructed/Implicit, Not Instructed/Explicit, and Not

Instructed/Implicit.

The study was designed as a between subjects, multi-session observational study. Each

participant was assigned to one of the instruction/interface configurations, and remained

with that instruction/interface configuration throughout their session (i.e. repeated mea-

sures was not used).

For each session, participants came to the researchers’ lab and were given a set of

drawing and editing tasks to perform, specifically a set of digital logic circuits to draw and

then edit. There were a total of five sessions consisting of digital logic circuit drawing and

editing sequences. Though there were five potential sessions, the researchers stopped the

experiment once behaviour stabilized after a minimum of three sessions. Each drawing

and editing session took approximately 45 minutes, and participants were paid $5 for

each session they completed. At the end of the experiment, a semi-structured interview

was administered in order to understand participants’ qualitative views of the tasks, their

tools, struggles and successes.

3.1.4 Recruiting and Participants

A total of 24 participants completed the study (eight females), allowing for six participants

per condition, assigned randomly. Participants ranged in age from 22 to 31 (mean = 24.9,

s.d. = 2.0). Participants were undergraduate and graduate students generally selected

from the Faculties of Mathematics and Engineering at the University of Waterloo. Of

the two students who were not studying Mathematics or Engineering, one was part of the

Faculty of Arts and another in Science.
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All participants were comfortable with computers and general graphics applications

such as Microsoft Paint and Adobe Photoshop, but had almost no experience with tablet

PC interaction (only P5 had passive knowledge from YouTube videos on tablet PC in-

teraction). In addition, all participants had at least passing experience with digital logic

circuits.

The selection process was focused on participants to represent early adopters expe-

rienced with computing and graphics applications, though not necessarily expert tablet

users. This sample population allows the study of relatively new technically savvy users

who have some experience with drawing and editing logic circuits.

3.2 Data and Analysis

This section briefly discusses how qualitative and quantitative data was captured and

analyzed.

3.2.1 Data Capture

In designing this experimen , the researchers were interested in not only quantitative data

that examines patterns of use, but also qualitative data representing participants’ feedback

and qualitative changes in behaviour over time. In satisfying the first requirement, all

sessions were recorded using software running on the tablet PC. This video data allowed

the experimenters to not only examine instances of tool usage, but also identify novel

strategies and behaviours of participants. Moreover, this video data was supported by

field notes consisting of observations of behaviour and any feedback given throughout the

session.

Lastly, the last source of data were transcripts from the exit interviews. These tran-

scripts outlined participants’ impressions and suggestions for improvements.
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3.2.2 Analysis of Data

In order to understand how participants made use of the application and why, researchers

analyzed the data both quantitatively and qualitatively. First, researchers performed a

closed coding of the videos consisting of approximately twenty-two hours of video record-

ings. One researcher analyzed the patterns of use and counted the instances of tool acti-

vations, erroneous output, inadvertent input, and ignored mediators when they appeared.

Additionally, researchers performed an open coding of the video recordings, the obser-

vational field notes, and the diagram artifacts that participants produced. This allowed

the experimenters to understand participants’ learning behaviour and emergent expert

behaviour as they navigated through the tasks. Lastly, an open coding of the exit inter-

view transcripts was performed in order to uncover user perceptions, usability issues, and

potential avenues to improve the inferred mode protocol.

3.2.3 Hypotheses

Prior to carrying out the observational study, a series of hypotheses were developed that ex-

press the experimenters’ expectations for participants’ patterns of use and the learnability

of the inferred mode protocol.

H1. Instruction Effect Hypothesis: Instruction plays a large role in participants’

subjective evaluation of the protocol. Instructed participants will be more positive towards

the inferred mode protocol than those uninstructed. The expectation is that appropriate

instruction is the primary predictor of future use and subjective evaluation.

H2. Preference of Use Hypothesis: Based on the small scale prior study of the inferred

mode protocol, the expectation is that those users who receive instruction will choose to

use the inferred mode over the standard toolbar modes, regardless of whether they are

using the implicit or explicit interface.

H3. Error Hypothesis: User preference of the inferred mode protocol is not linked

with the number of mode errors or inadvertent activations of the protocol. Moreover,

the expectation is that instructed participants’ positivity is not linked to the number of

inadvertent activations of the protocol (i.e. there is no significant difference in the number
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of inadvertent activations between instructed and uninstructed participants). In other

words, the experimenters expect that instructed participants are more lenient towards

erroneous activations than their uninstructed counterparts.

H4: Consistent Use Hypothesis: Participants will make use of their preferred tools

regardless of explicitness of the interface. In other words the expectation is that instructed

participants to use the inferred mode protocol extensively while staying away from tool-

bar options (as per H2) while uninstructed participants will prefer the toolbar options,

regardless of the presented interface variant (implicit or explicit).

H5: Implicit Discovery Hypothesis: Not Instructed/Implicit users will discover the

features of the inferred mode more readily than Not Instructed/Explicit users. The expec-

tation is that being passively exposed to the features of the inferred mode protocol will

lead to better results in discovering the features rather than simply avoiding them through

the explicit interface.

H6: Early Discoverability Hypothesis: Exploration of the features is mainly done in

the first session. Behaviour of use stabilizes quickly after the first session.

These hypotheses help frame experimenter predictions of the usability and short term

learnability of the inferred mode protocol.
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Chapter 4

Results

This chapter explores use and learnability of the inferred mode protocol. First, an analysis

of coded video data is presented. This coded video data captures use of inferred mode

protocol. Both the overall use of the intelligent selection features and the use of the

specific interaction techniques is examined to determine what factors influence behaviours.

Next, an analysis of the learnability of the inferred mode protocol is presented, also based

on data from coded video. This work uses Grossman et al’s classification of learnability

[19] to distinguish initial and extended learnability. The following sections explore how

participants learn to use the basic features of the protocol, examine training and retraining

behaviours, and describe expert behaviours that evolved during the study.

4.1 Use of the Inferred Mode Protocol

As noted in Chapter 3, three different sources of data were captured when studying the

inferred mode protocol: video-taped sessions of use, observational notes of the researcher,

and transcripts of post-study exit interviews. In this section an analysis of frequency of use

of the different features of the inferred mode protocol is presented based on screen capture

of participants sessions. Table 4.1 shows a summary of use, split by condition.

The first row indicates the number of sessions for each participant. Recall that each
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participant performed multiple sessions using the inferred mode. One factor to note here

is the variable number of sessions for different participants. The reason for this variable

number of sessions is that participants who seemed more frustrated with the inferred mode,

or who had more difficulty with aspects of the techniques, participated in more sessions than

did participants who quickly mastered the techniques. During each session, as participants

completed their task, observations of the participants indicated how frustrated, difficult,

or awkward the interface seemed to be to use. As it was this research’s objective to

evaluate the inferred mode protocol’s learnability and adoption, participants who were

least frustrated – the majority of instructed participants and P13 – have fewer than five

sessions (an average of 3.9 sessions). In contrast, all but one of the uninstructed participants

have five sessions, an indication of their higher level of frustration.

The remainder of the table contains usage data on the inferred mode protocol and on

other mode-switching techniques incorporated into the interface. The second grouping of

data indicates the average number of times per session each participant used the inferred

mode protocol interactions (labeled as Smart Select Click, Smart Select Circle, and Smart

Delete). The third data grouping indicates the number of times participants tried to access

inferred mode mediators and the mediators failed to appear or the inferred modes were

activated in error. For example, a participant might draw a circular shape around an object

that does not pass the threshold for recognition as a select circle operation. The mediator

would, therefore, not appear, resulting in a Smart Select Circle. On the other hand, the

participant might inadvertently click on an object, causing a selection action instead of a

short pen stroke (a Select Click Error). The fourth group of results, the ignored smart

features, indicates those instances where a mediator appeared and users did not interact

with it. These are not errors in the inferred mode’s behavior. The inferred mode always

assumes inking, and if participants want augmented behavior, they must interact with a

button mediator. Finally, the last group, Button Select and Button Delete, are instances

where participants used the explicit modes of operation.

Participants’ use patterns were analyzed by performing a between-subjects analyis of

variance with Instruction and Explicitness as factors. The quantitative analysis that follows

is framed in terms of the hypotheses H1-H4.

31



4.1.1 H1: The Instruction Effect Hypothesis

As can be seen in Table 4.1, whether or not participants received instruction played a large

role in their choice of tools. Instructed participants generally made use of the inferred

mode extensively, while uninstructed users had trouble mastering the features – in the

case of Not Instructed/Implicit users – or bypassing the features altogether.

Figure 4.1: Average instances of inferred mode features, by instruction.

Overall, participants behaved as predicted by the Instruction Effect Hypothesis. As seen

in Figure 4.1, those who received instruction in the use of the inferred mode used Smart

Select Circle (mean = 2.05, S.D. = 5.74) and Smart Delete (mean = 3.49, S.D. = 4.02)

more than those who did not (mean = 0.18, S.D. = 0.34 and mean = 0.20, S.D. = 0.58),

respectively for those uninstructed). An analysis of variance showed a significant effect

of Instruction on instances of the inferred mode’s select circle (F1,22 = 13.57, p < 0.005)

and on delete (F1,22 = 7.89, p < 0.05). Of note is that there was no significant effect of

Instruction on instances of select click – a sign that this feature is less important when

given good alternatives for selecting content.

As per the hypothesis, whether or not participants received instruction is an accurate

predictor for whether participants make use of the inferred mode features. When breaking

the instructed participants based on whether they used the implicit or explicit interface,

there is no significant difference in the all participants’ patterns of use. Though the sample

size becomes too small to generalize in this case, it is interesting to see that the inferred
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mode protocol is used even when participants are not forcefully exposed to the protocol.

Participants appear to make the conscious decision to engage the features even when

given the choice to completely bypass any contact with the protocol through traditional

alternatives in the interface.

4.1.2 H2: The Preference of Use Hypothesis

Due to instructed participants’ continued use of the inferred mode to interact with con-

tent, we would expect there to be significantly fewer number of explicit button operations

(Button Select and Delete) when compared to participants in the Not Instructed condi-

tions. However, as Figure 4.2 shows, this was not the case. Instructed participants used

the Button Select and Button Delete (mean = 3.77, S.D. = 4.76 and mean = 8.83, S.D.

= 5.86 respectively) at similar rates as to that of uninstructed participants (mean = 7.44,

S.D. = 3.99 for Button Select and mean = 10.91, S.D. = 5.76 for Button Delete).

Figure 4.2: Average instances of button activations, by instruction.

An analysis of variance showed no significant effect of Instruction on instances of Button

Delete (F1,22 = 0.77, ns), and merely a weak trend for Instruction and Button Select (F1,22

= 4.20, p = 0.053). Counter to the stated Preference of Use Hypothesis, instructed partic-

ipants did not use the inferred mode features exclusively, though they did so extensively.

However, the inferred mode protocol does not appear to be a replacement for traditional
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mode switching. As participants gained expertise with the interface, they attempted to

optimize their behaviour and varied their selection of tools to achieve the current task.

The section discussing Extended Learnability will touch on specifically which factors par-

ticipants optimize with experience.

4.1.3 H3: The Error Hypothesis

Based on the theoretical efficiency of the inferred mode protocol, the expectation was

that it would be used extensively if participants are given instruction. Moreover, the

Error Hypothesis formalized the prediction that users will be more lenient with regards to

errors or inadevertent activations of features they find useful. The validated Instruction

Effect Hypothesis states that instructed participants use the inferred mode significantly

over uninstructed users, though not exclusively. The extensive use and positive qualitative

feedback of instructed users falls in contrast to the number of the high number of errors

encountered while activating the protocol (false negatives) and a high rate of inadvertent

ativations (false positives). In other words, the expectation is that participants recognize

the inferred mode’s usefulness even in the face of errors.

Figure 4.3: Average instances of false positives and false negatives by Instruction.

As expected, with more use of the inferred mode protocol, instructed participants en-

countered significantly more instances of errors for deleting and selecting content than unin-

structed participants (F1,22 = 11.716, p < 0.01 for Error Smart Delete and F1,22 = 6.755,
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p < 0.05 for Error Smart Select Circle). As Figure 4.3 shows, instructed participants

encountered an average of 0.4 errors for encircling text compared to uninstructed partic-

ipants’ 0.04 instances. The difference is much more obvious when looking at instances of

Smart Delete errors: instructed participants encountered 2.6 errors on average, compared

to uninstructed participants’ 0.25 instances. Of course, this is evidence that uninstructed

participants simply did not use the protocol and therefore encountered fewer errors. How-

ever, it is important to note that despite the fact that such computational intelligence is

more error prone than traditional interaction, users are more lenient if they see value in

its use.

Figure 4.4: Average instances of ignored features by condition.

In addition to erroneous activations of the inferred mode protocol, it is important to

note the false positives that arise when enabling such computational intelligence. It was

previously noted that qualitative feedback was much more positive for participants who

were instructed in the use of the protocol than those who were not. One of the major

issues that led to frustration was the frequency of inadvertent activations of the protocol.

As Figure 4.4 shows, when breaking participants into their respective conditions, there is

no significant difference in number of false activations between users who used the same

interface, regardless of instruction. All participants who used the Implicit interface en-

countered a large number of inadvertent “Select?” and “Delete?” mediators. Despite this

similarity, participants who did not receive instruction were highly negative and frustrated

about these unexplained occurences. This pattern in the number of instances of inadvertent
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activations of inferred features further confirms the Error Hypothesis: participants who re-

ceived instruction are more lenient towards the inferred mode protocol than uninstructed

users. This pattern holds true even as instructed participants encounter significantly more

false negatives (i.e. mode errors), and a similar number of false positives as uninstructed

participants.

4.1.4 H4: The Consistent Use Hypothesis

The expectation was that participants who are instructed in the use of the protocol will

not only use it extensively, but also use it continuously and consistently. H4 formalizes the

belief that participants will use the inferred mode protocol regardless of which interface

they are presented with.

Overall, the analysis of use supports this consistent use hypothesis. Though it was noted

that instructed participants do not solely rely on the inferred mode protocol to perform

their task, there is virtually no effect of Explicitness (whether the interface included an

explicit Smart mode for the inferred mode, or if it was hidden in the Draw mode) in

participants’ patterns of use. There was no significant effect of Explicitness in instructed

participants’ use of the inferred mode features (Figure 4.5). Moreover, though instructed

participants still judiciously use the Button Select and Button Delete in the toolbar, their

frequency of use is not significantly different when split by Explicitness.

In fact, there was only one effect of Explicitness on any of metric regardless of break-

down: when only considering Not Instructed participants (n = 12), there was a significant

effect of Explicitness on instances of Ignored Select Circle (F1,10 = 17.32, p < 0.005)

and Ignored Delete (F1,10 = 42.15, p < 0.001). This pattern was unsurprising since

Not Instructed/Implicit participants had the inferred mode enabled, while the Not In-

structed/Explicit users could – and, in fact, did – bypass it by seldom activating the Smart

mode. Figure 4.5 shows a summary of features used by participants split by whether they

used the Explicit or Implicit interface

The validity of the Instructed Effect hypothesis demonstrated that instructed partic-

ipants use the inferred mode protocol at a higher rate, though not moving away from
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Figure 4.5: Average instances of features used, by explicitness.

traditional button modes (as per the partial invalidity of The Preference of Use hypoth-

esis). Given this, the Consistent Use Hypothesis aimed to predict behaviours of use that

are consistent regardless of explicitness in the interfaces. The analysis of use confirms that

the way the interface is laid out (either presenting the inferred mode protocol explicitly

through a button or having it enabled by default) is not a direct factor in participants’

choice of tools. However, though Instruction is a primary predictor of inferred mode us,

Explicitness has an important effect on learnability which will be discussed in later sections.
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4.2 Usability of the Inferred Mode Protocol

Participant use of the protocol uncovered common themes relating to usability and useful-

ness of the features in the protocol. These include participants’ perceptions of mediators

and of the different inferred mode techniques. The qualitative feedback from the users

is in line with the quantitative evidence regarding hypotheses H1-H4: participants that

receive instruction are more positive than those that do not and make consistent use of the

inferred mode features to perform their task, ignoring the large number of false positives

and negatives in their experience. This section first presents feedback with regards to the

individual features of the inferred mode, and continues with perceptions of the general

computational intelligence from the post-experiment interviews.

4.2.1 Individual Features

Having looked at the overall patterns of use in the last section, this subsection now delves

deeper into participants’ feedback regarding the mediators and the individual features of

the inferred mode protocol.

One characteristic of the inferred mode is the frequent presence of mediators on the

display. Mediators were perceived very differently by participants in the Instructed and

Not Instructed conditions. Instructed participants typically ignored the mediators when

they did not want to select or delete content, as exemplified by P1.

I didn’t even bother [dismissing the mediator] sometimes since I would just

continue my work and it would just go away. [P1]

In contrast, Not Instructed/Implicit did not form a mental model that linked their

pen input with mediators appearing on the screen; these participants found the mediators

annoying, and found that they interfered with interaction on the display.

I have to tap out of the screen. So that was annoying. [..] It gives me this

minipanic, for a microsecond; [..] it wasn’t something I wanted and I was

afraid it would affect my work. [P21]
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The majority of the instructed participants used Smart Select Circle frequently, as

shown in Table 4.1. For these participants, it was easily the preferred mode for selecting

content on the screen. Participants who made use of this feature saw it in the same light

as a keyboard accelerator, with one participant even comparing it to a shortcut:

[Select Circle] is like a shortcut to me. I don’t have to go to the menu and then

back to the graph. [...] Very good feature to keep. [P12]

Select Click was one feature that was controversial with participants. Most participants

found its use limited, but opinions varied as to how frustrating it really was. Similar to

Select Circle, participants in the Not Instructed conditions found this feature frustrating.

The problem with Select Click is inadvertent activations, common when dotting ‘i’s’ or

inserting punctuation. For example, P19, who did not use the inferred mode features,

noted that it frequently selected things while they were drawing.

Participants in the Instructed conditions used Select Click sparingly, either because they

forgot it existed or because the circle select was sufficient for their particular task. However,

instructed participants did not consider inadvertent activations very problematic when

sketching in the interface. As a result, when asked if they would keep this functionality

in the inferred mode, most participants considered it a useful alternative. This attitude is

exemplified by P9, who used Select Click extensively (20 instances per session).

I guess it is useful having a secondary backup. Sometimes if I’m just selecting

a line I can just tap on it; I like that function (Select Click); [...] When it fails

I like having the Select button. [P9]

Lastly, participants were split in their use of the delete gesture. Overall, instructed

participants averaged 3.5 instances of the scratchout gesture (as per Table 4.1). However,

six of the users (P1, P4, P5, P7, P11, P12) used the gesture extensively at a rate of

6.3 per session, while the remaining six instructed users averaged 0.7 instances. Though

participants were reasonably positive about the feature in concept, there was concern

regarding its usefulness and the quality of the implementation. Users noted that the delete

gesture is rarely the most efficient method for deleting content due to a lack of accuracy.
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Sometimes it’s hard to control how big of an area to scratch out. [..] If the

diagram gets really crowded, you don’t have the room to do a scratchout. [P11].

Additionally, participants reported a significant number of false negatives when they

attempted to use the delete gesture. This observation is supported by the high number of

Smart Delete Errors recorded from the video data. The system misrecognized 2.6 intended

scratch out gestures per session for instructed participants. Most alarming is that this

value underestimates the true error rate since these failures turned participants away from

the feature altogether.

For delete, I feel using [explicit] buttons is more convenient because last time

I saw a problem and delete didn’t show up. Especially when I want to delete

something very small. [P10]

This failure in recognition is caused by two factors: first, the implementation is too

restrictive in distinguishing the scratch out gesture from regular draw strokes; second, the

scratch out gesture itself may not be appropriate when attempting to delete relatively

small strokes, surrounded by little whitespace. Facing these problems, even participants

who made use of the inferred mode’s delete noted that the explicit delete operation is more

precise, making it the preferred method for deleting strokes in the drawing. Delete gestures

are not sufficiently precise to avoid surrounding content.

4.2.2 Perceptions of Computational Intelligence

Instructed participants generally liked the inferred mode protocol as a method for adding

and manipulating strokes in a sketch interface. The technique was perceived as being more

efficient than the explicit buttons by the majority of users.

If you have to select the [explicit] button, then it’s a little bit more work because

you’re kind of moving away from your picture; whereas if you’re drawing in the

flow of things, you can just click on [the mediator]. [P9]
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Uninstructed participants were generally less positive; implicit users were very nega-

tive as a result of the false activations that plagued their sessions. However, participants

who did not prefer the inferred mode protocol (both uninstructed and the few instructed

participants) had some important observations and biases towards the protocol and com-

putational intelligence in general.

To summarize participants’ perceptions towards computational intelligence, there is a

distinction between purposeful and multi-purpose interaction. The protocol tries to infer

the user’s intent and interpret the input appropriately. Embedded in this dialogue is the

possibility of a misunderstanding between user and system. In contrast, selecting from

explicit modes in a toolbar allows the user to be very specific in their intent. To quote

P16, the explicit interaction paradigm is “purposeful,” while the inferred mode – and

similar computational intelligence – represents a multi-purposed paradigm.

I want it so that it’s purposeful. I guess what you’ve done here is create short-

cuts. [P16]

The ambiguity that comes with multi-purpose interaction can be daunting and steer

users away from such systems. The observation that the inferred mode protocol is not

“purposeful” may be a common thread to some of the participants’ perception of the

inferred mode:

• The ambiguity inherent in the inferred mode leads to distrust and a sense of “error

proneness”

• The protocol is less suitable for a particular task when compared to a specific tool

• The protocol is less accurate than explicit modes

Firstly, the relative complexity and inherent ambiguity in the interpretation of the

input is perceived – at times, rightly so – to lead to more errors in interaction. P5 used

the inferred mode’s delete gesture but stayed away from the selection operations.
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[Smart] Select is not very often used. I am just scared of making mistake and

I don’t want to confuse between the delete and select [functionality]. [P5]

P5 chose to bypass the inferred mode’s select both because they did not perform many

select operations, and because of a fear of errors. Intelligent systems like the inferred mode

can be seen with distrust by their users who see the computational ambiguity as a potential

for errors.

Secondly, when comparing the inferred mode to the purposeful interaction of explicit

mode switching, participants perceive the multi-purpose nature of the former to be inferior

for a particular task. For instance, P3 was a Instructed/Explicit user who mainly stayed

away from the inferred mode. When experimenting after their final session, the user was

surprised to learn that the inferred mode’s Select Circle worked better than the explicit

Select button mode in a particular case.

Kind of surprising the simple one didn’t work, but the smart one did. [...] I

tend to believe the [explicit modes] work better; more reliable and have more

control. [P3]

Of note is the language used by P3; the explicit modes are referred to as the “simple”

modes, recognizing the inherent complexity of the inferred mode. Additionally, participants

perceived single purpose tools like the Select button mode as more accurate for the task

they are built for than a multi-purpose tool like the inferred mode. This bias is one

of specialization versus generalization of functionality. P12, for example, perceived the

inferred mode’s Select Circle to be less accurate than the Select mode, even while the

internal source code is the same for both methods.

I thought [Smart Circle] Select wouldn’t work as well than the button. I guess I

never actually compared them. [P12]

P12 is one of the participants with the highest usage metrics of the inferred mode.

Though they used and liked the features, their perception was that the inferred mode is
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less accurate because it provides multiple functions as opposed to specializing functionality.

Moreover, they realized that this was an unfounded perception as they had not explicitly

tested their hypothesis. The inferred aspect of the protocol is seen as inferior in some cases

and more error prone simply because it is not a separate tool bred for a singular purpose.

Though the inferred mode protocol is a relatively simple instance of computational

intelligence, it is still partly plagued by the perception of inferiority. Most participants

recognized its usefulness for quickly and efficiently editing diagrams. However, the fact

that it uses a hidden computational model for determining output is combined with its

multi-purpose nature to inspire distrust in the form of perceived inferiority and error-

pronedness.

4.3 Learnability of the Inferred Mode Protocol

A major goal of this work was to understand the inferred mode protocol’s learnability,

both in the short and long term. In the context of this study, learnability is affected by

a number of factors in noncommand interaction. First, users must be able to notice the

feedback provided by the system and deduce the existence of a computational black box

that behaves in some unknown way. Second, users must be able to determine how the

system output is mapped to their input. Only by forming this mental model can the full

system be understood to a usable degree. Finally, with enough experience, users must

deduce the inner workings of the black box (e.g. how recognition works) and use this

knowledge to come up with novel workflows.

As a result of the experiment setup, the discussion can focus on initial learnability using

uninstructed participant groups to determine whether they notice the feedback and form

a mental model of input to output. Moreover, the study enables the discussion of training

and retraining behaviours that lead to discovery and proficiency with the system. Lastly,

this work consider extended learnability by providing examples of advanced behaviours

and an evolved understanding of the computational black box as a result of mastery of the

system.
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4.3.1 Initial Learnability

Using Grossman et al.’s definition of learnability [19], this work considers initial learnability

to be the initial performance with the system.

When examining video data and interview data, there were three themes surrounding

initial learning behaviours. First, for users instructed in the inferred mode, this section

explores training and retraining behavior during interaction. Next, for participants in

the Not Instructed condition, this work explores active experimentation versus passive

experiences of these participants as they worked with the interface. Finally, this section

considers reported impediments to discoverability and difficulties in learning.

Implicit Discovery and Early Discoverability

Participants in the Not Instructed condition (P13-24) were required to learn to use the

inferred mode features without any explicit training, and no embedded help nor “What’s

This” widget was provided to clarify behaviors of the inferred mode, by design. Participants

using an interface with embedded help would exhibit either the behavior of the Instructed

participants – i.e. they would use the help feature to master the inferred mode techniques

and then behave as Instructed participants – or the behavior of the Not Instructed par-

ticipants. The goal with the Not Instructed users was to explore initial encounters with

the inferred mode to determine the strategies employed to learn to effectively use the tech-

nique. These learnability attempts are analyzed in response to the Implicit Discovery and

Early Discoverability hypotheses.

First, the Implicit Discovery Hypotheses outlined the prediction that the always-on

nature of the Implicit interface – i.e. where the inferred mode protocol was on by default

– would encourage participants to master the inferred mode faster, so that mediators were

useful rather than a distraction, whereas participants using the Explicit interface – i.e. a

separate “Smart” mode – would have little impetus to explore the behavior of inferred

mode. In fact, the opposite was true for P13, P14 and P16; the presence of a “Smart”

mode seemed to encourage experimentation for these participants. Though only half of the

participants in the Not Instructed/Explicit condition experimented, there was no similar

44



catalyst for experimentation for the Not Instructed/Implicit users.

Early behavior of participants in the Not Instructed condition was similar when inter-

acting with the inferred mode initially (either by default or through the “Smart” mode).

Participants learned that clicking away from the mediator would cause it to vanish. How-

ever, participants with the Implicit interface would then continue to passively encounter

and dismiss the mediator, and made no apparent effort to master the inferred mode tech-

niques. As noted by P20

It was more annoying because I didn’t know when the boxes came up and they

got in the way when I was trying to do stuff afterwards. [...] I never bothered

to do it because there were other ways to do it. [...] When it occured I know

what it did but I didn’t figure out how. [P20]

All Not Instructed/Explicit participants had five sessions to master the protocol. As

seen in Table 4.1, except for P21 who experimented and eventually discovered the features,

the remaining Not Instructed/Implicit participants did not make use of any of the smart

features. This is in spite of ample opportunity to discover the inferred mode protocol.

As Figure 4.6 demonstrates, there is no significant difference between the number of ig-

nored/inadvertent activations of the inferred features between the Instructed/Implicit and

Not Instructed/Implicit conditions. For instance, P14 ignored the Select mediator a total

of 59 times over 5 sessions, with P20 seeing 128 instances. Despite the presence of these

mediators, uninstructed participants never explored their behaviors.

Of note is that there is an exception to this rule: P21 continuously explored the fea-

tures throughout the sessions and finally discovered them all. This user was interested

in the interaction paradigm and took significant time to actively explore all facets of the

interface. By the end, their use of the inferred mode appeared to converge with Instructed

participants.

Confirming the Early Discoverability hypotheses, the analysis uncovered that users

mainly explore the interface in the early stages, if at all. In the Not Instructed/Explicit

condition, the existence of the “Smart” button prompted P13, P14 and P15 to explore

the interface. P13 analyzed the Smart mode very carefully during the first session and
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Figure 4.6: Average instances of ignored features by condition.

mastered all of the smart mode techniques, then converged on the behavior of the instructed

participants for later sessions. P14 and P15 also tried to master the “Smart” features during

the first session but failed initially. However, during the last sessions (sessions four and

five, respectively) these participant began to understand and use the features. As the study

was limited to five sessions, it was not possible to determine whether additional sessions

would have increased these users’ use of the Smart mode, and whether their behaviors

would have converged on the behavior of instructed participants.

Overall, counter to experimenter predictions, having an explicit mode to enable the

inferred mode serves as a catalyst for active exploration. This active exploration is criti-

cal towards the Not Instructed/Explicit participants’ understanding of the features of the

inferred mode protocol and mainly occurs in the early sessions outside of task-driven in-

teraction. In contrast, the passive understanding gained by the Not Instructed/Implicit

users was not enough to help them uncover the features in the five-session experiment.
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Training and Retraining

While the Instructed participants did not need to actively explore the interface, to under-

stand the basics of the inferred mode, they actively trained and retrained throughout the

sessions. During the initial session, instructed participants would try each of the features

carefully to ensure that they could successfully activate the inferred mode. On subsequent

sessions, participants would begin to perform their tasks. As they required features of the

inferred mode, they moved to white space on the display and practiced the inferred mode

techniques prior to making use of the technique in their drawing. Figure 4.7 shows an

example of one participant retraining on the delete gesture.

Figure 4.7: A participant using part of the canvas as a designated “training area” to

experiment with the delete gesture

This training and retraining behavior demonstrates the value of “scratch space” within

sketch interfaces. In GestureBar [4] researchers noted the need for multiple interactions

of a gesture to train muscle memory so the gesture could be replicated successfully on the

display. As a result of this need for training or practice, Bragdon et al. created a separate

panel activated from the toolbar for users to experiment on with gestures. In this study’s

interface, there was also a need for scratch space where users can explore the behaviors of

the interaction techniques and the tolerances associated with mediator activation. While

GestureBar accomplishes this using separate panels, this study’s participants seemed to

prefer interaction with content on the actual drawing canvas in an unused area and cleaning
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that area of the canvas up using a group delete operation after interaction. This distinction

between participants in this study and participants in GestureBar’s formative studies may

be because of the distinction between a recognition interface like GestureBar, where each

gesture must be recognized by a gesture recognizer, and sketch interface techniques like the

inferred mode protocol, where the user needs unrecognized ink content to interact with,

i.e. to select or to delete, in order to explore gesture behavior.

Impediments to Discoverability

An analysis of post-task interviews uncovers some important reasons why Not Instructed

participants did not discover the features of the inferred mode. These reported impediments

to discoverability fall into five themes:

• Perception of erroneous systems

• Lack of interest

• Confusion of expectation

• Lack of guidance

• Comfort or the perception of usefulness

A significant failure in Not Instructed/Implicit participants’ discovery of the inferred

mode features was previously noted. Though a lack of guidance certainly plays a large

role, participants did not form a good mental model that links their input on the canvas

with the mediators that appear. The result is that participants perceived the mediators

as errors in the system, rather than useful functionality.

It’s sometimes select, sometimes delete; I thought it’s not a rule; I thought it’s

an error. I didn’t notice it is related to the way I was selecting or something.

[P22]
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This perception of an erroneous system is partially caused by the instances in which

the mediators appeared. The given task asked participants to draw a variety of circuit

diagrams with many small parts. Patterns in gestures (e.g. drawing a circle around other

strokes brings up a Select mediator) are very difficult to distinguish when drawing many

small elements. As a result, any passive learning regarding the functionality is limited

by the inability to form these implicit patterns from the input stream. Moreover, this

perception of an erroneous system further limits any efforts to actively experiment.

Secondly, though the “Smart” mode appears to encourage exploration, a lack of interest

prevented other participants’ discovery. This lack of interest is found in most of Not

Instructed/Implicit participants as well. They were simply focused on the given task and

were not interested in trying to actively experiment with the interface.

Oh, no I didn’t notice [the Smart button]. What’s the function of this button?

[P15]

Thirdly, some participants reported a mismatch between their own expectations and

that of the system’s. For instance, P16 expected the interface to react in some way when

selecting the Smart mode. Furthermore, simply selecting the Smart mode takes them out

of Draw mode. The user’s expectation is that this mode’s functionality lies outside of

drawing strokes.

I clicked on the Smart button but I didn’t try drawing. [..] When you click on it, it takes

you out of draw mode. [..] I tapped on it and it just seemed irrelevant; it didn’t appear to

have functionality. [P16]

This is an example of mismatched expectations between designer and user. Though

the researchers expected the user to experiment by adding strokes to the canvas, some

participants exited the Smart mode when no immediate effect was discovered.

Moreover, the disinterest in discovery caused by mismatched expectations was exac-

erbated by a lack of guidance in this experiment’s system. In addition to the minimal

training the Not Instructed participants received, experimenters did not provide any em-

bedded help options by design. The goal was to simulate a common scenario: a user wants
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to perform a task (e.g. draw circuit diagrams) but does not take the time to go through

tutorial videos or help menus. However, though few avenues for explicit or embedded help

were provided, some users leave the onus on the designers to demonstrate features that are

best suited for a particular task. In post-task interview, P17 mentioned that they simply

did not explore the interface because the focus was on the task and not on discovery. There

was no explicit requirement to use a particular tool and therefore little impetus to find it

in the interface.

If I was told to carve a line, I would look to which button to carve the line with.

[P17]

Though the experimenters intentionally gave little guidance, it was surprising to find

that participants would like designers to steer the user towards the most efficient tools

for performing a task. This observation may be validation for the need for better tutorial

tasks and GestureBar-like practice sessions.

Lastly, an alternative explanation for Not Instructed/Implicit participants’ lack of ex-

ploration was simply habitual use of established tools such as explicit toolbar items (i.e.

Button Select and Delete).

For the first 5 times I thought [the Select mediator] was an error; but by the

6th to 10th time I realized it may be another way of doing things; but by that

time [..] you’ve already learned not to use that function. You’re just used to go

to the Select button. [..] My mentality is ’if I were to learn how to use this, it

wouldn’t be faster than what i’m doing right now’ [P23]

Habits form as a result of continued use with the system. Though P23 realized the me-

diators may specify additional functionality, there was no obvious impetus for exploration.

There is no perceived benefit to take the time to experiment when the explicit tools are

performing well.

Though discoverability is difficult to judge in an interface that uses computational

intelligence, it is important to consider factors that impede learnability in the interface

itself, in the given task, and in the perceptions of the participants.
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4.3.2 Extended Learnability

Extended use over multiple sessions leads to a familiarity with both the benefits and lim-

itations of available tools. Participants who understood the functionality of the inferred

mode (P1-14) quickly began to combine operations to more effectively make use of the in-

teraction techniques. This evolved understanding and user driven optimization exemplifies

the study of extended learnability. This section presents learning behaviour past the initial

stage and the related expert patterns of use that emerge in experienced users.

Evolved Understanding

As participants gained experience with the inferred mode protocol and the system as a

whole, they demonstrated an advanced level of understanding.

Firstly, there were some differences between participants’ perception of delete and select

operations. The delete operation removes content from the display, whereas the select

content simply changes the state of on-screen content. The delete operation, even in the

presence of “Undo”, was treated more carefully by the participants. Of note is that some

participants were very careful to dismiss the delete mediator to avoid accidental activation,

while they were more comfortable simply ignoring the select mediator.

Secondly, participants demonstrated a deep level of understanding by abstracting func-

tionality. For instance, encircling content not only selects it, but the lasso also permanently

cuts strokes. With extensive use, Instructed participants understood that the select func-

tionality can effectively be treated as a “trim” tool. Smart Select Circle was, then, not only

relegated for selecting and moving behaviours, but also became a tool to cut extraneous

strokes and delete them by scratching them out. In the same way, Select Click was also

absracted as a tool to recover selections by selecting the previously cut strokes or to verify

stroke boundaries for further editing. The ability to treat the features as high level Trim

and Recover functionality seems trivial to a relatively knowledgeable user, but beginners

do not show evidence of such abstraction. Uninstructed users showed evidence of abstract-

ing Select to Trim after a session, but in large did not use clicking to select as a recover

mechanism in the same way Instructed users did.
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Lastly, though most of the instances of evolved understanding presented were given by

Instructed participants, Not Instructed participants also developed a passive understanding

of the features. Participants tended to learn quickly to dismiss the mediators when they

appeared, regardless of their understanding of functionality. Moreover, while Instructed

participants implicitly dismissed appearing mediators by continuing to draw, some of the

more careful uninstructed participants modified their workflow around them. When a

mediator appeared, these participants either explicitly dismissed it or changed targets and

started drawing content away from the affected areas. Such care around mediators was,

for some users, a passive response to the ever changing system behaviour, and for others

an active avoidance of features they did not understand or did not desire. Though Not

Instructed participants suffered from a missing mental model between input and output,

the output – or the effect of activating the mediator – was often understood. In this way,

avoiding the mediator was a similar reaction to Instructed participants’ specific care around

content altering buttons (e.g. the Delete mediator).

User-driven Optimization

Observing participants’ progress throughout the sessions, there were a few advanced be-

haviours which amount to user-driven optimizations of the given interaction tools. As

they gained experience, participants combined their own pre-determined workflows with

behaviours that optimized whitespace, speed, and number of errors. The result was un-

epexpected behaviours which uncovered valuable feedback regarding the usefulness of the

provided tools and the evolution of behaviour.

The primary factor optimized by participants was, unsurprisingly, time of completion.

Though it was previously reported that Instructed participants make extensive use of the

inferred mode features, not all of the participants used it right away. P5, for instance,

initially used the explicit modes out of habit. However, after experimenting with the

features, they slowly transitioned away from the explicit modes. P5’s initial session saw 15

instances of Button Delete and no instances of the inferred mode. By the last session, the

participant almost exclusively used the inferred mode with 30 activations of the inferred

mode’s scratchout gesture and zero explicit deletes. This user’s evolution is indicative of
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a pattern in some instructed participants: an initial reluctance to work with the inferred

mode is overcome after experimentation and significant use.

Figure 4.8: A participant scratching out accumulated strokes in their assigned “trash”

region of the canvas.

Additionally, there were differences in how participants use the tools to perform pre-

defined workflows. For instance, P23 and P4 had previous experience with digital circuits.

A common workflow for these users involves laying out the logic gates first and then

linking them appropriately. However, P23 was not instructed and did not discover the

features of the inferred mode. In the latter sessions, P23 minimized the number of editing

operations they performed by first laying out the gates in their final locations (Figure

4.9a). In contrast, P4 assigned an area as their virtual workbench which gathered all the

logic gates they would ever need (Figure 4.9b). The speed of editing given by the inferred

mode protocol allowed them to quicky select and drop gates wherever needed. Though it is

impossible to generalize, it is interesting to note participants tweaking the same pre-defined

workflow to take advantage of their current toolset’s advantages.

Secondly, participants work towards optimizing the precision and use of whitespace with

significant experience. In the inferred mode’s delete, a scribble gesture must be made over

content to be deleted. However, when content is densely arranged on the display, a scribble

lacks precision to delete without affecting surrounding content. As a result, participants

would move small content into white space and perform deletion away from surrounding
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Figure 4.9: Experience influencing pre-defined workflows. Panel a. shows a virtual work-

bench from which gates are moved into place using the inferred mode. Panel b. shows a

similar workflow that minimizes editing with the explicit buttons by laying out the logic

gates in their final locations.

content. Participants also used circle select in the inferred mode to accumulate strokes for

later deletion. They would move the strokes to a “trash” location on the display, as shown

in Figure 4.8, and then apply the delete operation to all of the unwanted strokes at once.

Thirdly, experimenters consistently found that participants understand which features

to use to maximize their precision. In addition to the above behaviour that bypasses the

scratchout gesture’s inherent imprecision, select click is often used when participants need

very accurate selection. Though the select lasso provides substantial control it also requires

significant care. Clicking to select is a much quicker alternative that does not change the

state of the strokes.

Lastly, instructed participants gained a quick understanding for the reasoning behind

false activations of the inferred mode. As a result, Not Instructed/Explicit participants

found ways to minimize these erroneous activations by selectively enabling the Smart mode.

P2 noted that the initial content creation stage of their session does not require many

editing operations. This participant chose to use the default Draw mode with sparse

instances of explicit editing operations (i.e. Button Select and Delete). As the second

stage of the session required many editing operations, P2 used the Smart mode to quickly
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switch between draw, select and delete operations using the inferred mode. This selective

use of the inferred mode takes advantage of the protocol’s relative speed, while minimizing

erroneous activations in cases where editing is not common.
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Chapter 5

Discussion

5.1 Usability of the Inferred Mode Protocol

The analysis of use and post-task qualitative data has uncovered valuable information

regarding the usability of the inferred mode protocol. First, determining the toolset in

even a simple drawing application is a difficult problem that cannot be solved by simply

providing the most efficient tools without overlap. Second, the implementation and choice

of gestures have an impact on how likely users are to return to a single-mode paradigm

like the inferred mode. Lastly, though instruction has a big impact on users’ overall

perception of the system, participants come with pre-defined biases regarding noncommand

user interfaces.

If given instruction, participants used and were generally highly positive of the inferred

mode’s circle to select and scratchout gesture. However, though instructed participants

used the inferred mode extensively, it was not a replacement for traditional button modes.

Feature bloat – the suggestion that an application contains an overly complex set of un-

necessary features – has been a much maligned issue in the software world (e.g. [1, 2]).

Though there is sufficient overlap between some of the features (e.g. Button Select, Smart

Select Click and Smart Select Circle), not all participants used the same set. While some

users had no need for Smart Select Click, others found it a useful alternative. Moreover,
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the study suggests that, given experience, participants tend to optimize their workflows

by using whichever tool works best for a particular situation – be it an explicit button

mode, or an inferred mode feature. This experiment’s findings mirror that of McGrenere

and Moore [31]: users have different subjective experiences of “bloat” and benefit from a

degree of flexibility and choice in their toolset. Over time, this experiments’ participants

developed a deep understanding of the tools available and enjoyed the ability to mix and

match explicit and inferred editing tools as the situation dictated.

Moreover, users used the inferred mode protocol extensively even when given the choice

of a traditional mode toolbar. The participants valued the protocol as an efficient means

of interacting with content. Even when a feature like the protocol’s scratchout gesture did

not function according to the users’ expectations, they were still positive of the gestural

interaction paradigm. The fact that users consistently used the protocol throughout all of

their sessions, regardless of the given interface, is highly promising.

However, participants’ positivity regarding the protocol even in the face of erroneous

output was not a carte blanche for failure. For instance, users had difficulty activating the

scratchout gesture for deleting content in closed spaces. Such errors in implementations

can drive users away from the inferred mode altogether. When a user failed to perform a

gesture, they turned to other tools for attaining their goals. Though not a large problem

in this experiment, re-capturing users who have turned away from a special input mode

like the inferred mode as a result of implementation failures can be very difficult. Some

of the users temporarily switched away from the inferred mode for the session when they

encountered erroenous input, only to return later when its’ use was “worth it.” Addition-

ally, designers of similar gesture systems should consider not only implementation-specific

constraints such as recognition thresholds, but also the design of the gesture itself. For

instance, a scratchout gesture is inherently more prone to errors when the target content is

not surrounded by whitespace. An alternative gesture (e.g. circle to select and then simply

cross once for deletion) can provide much better results and maintain a user’s interest to

the inferred mode protocol.

Additionally, subjective experience is highly affected by the level of instruction offered

to the participants. The Not Instructed/Implicit participants had the inferred mode per-

manently enabled, which led to high levels of frustration as they struggled with a system
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that behaved unpredictably. As a result, the Not Instructed/Implicit participants were

much less lenient towards false positives in the system than Instructed participants. Users’

perception of the failings of an interface that uses computational intelligence is highly af-

fected by their developed mental model. This issue further exacerbates the need for proper

learning opportunities and help systems that slowly build knowledge of the system.

Along the same lines, participants had various predetermined biases and misconceptions

about the inferred mode protocol. The inferred mode protocol is an example of Nielsen’s

noncommand interaction paradigm [36] which tries to predict what the user is doing and

interpret the input appropriately. The purpose of such computational intelligence is to

meet the user halfway and help them perform their task. However, participants come

with predetermined opinions of intelligence in interfaces. For instance, some of the users

had a negative perception towards the inferred mode due to its lack of “purposefulness.”

This finding mirrors those found in adaptive systems like Eager [9]. Cypher reported

that, although the Eager system provided efficient interaction, users were “uncomfortable

with relinquishing control” [9]. In the same way, the reported lack of purposefulness is

indicative of the paradigm of noncommand user interfaces: users no longer control the

system with a strict object/verb interpretation; instead, input is inherently flexible, multi-

purpose and merely give hints of the user’s intent with the expectation that the system

meet the user halfway. Stemming from this observation, some of the users perceived the

inferred mode as being somehow less accurate and less suitable for a task than explicit

methods. Though the majority of the instructed participants made use of the inferred

mode extensively, the experiment uncovered a distinct set of perceptions regarding the

accuracy and suitability of noncommand user interfaces that affected user perceptions and

behaviours. A more detailed qualitative experiment focused on user’s pre-task perceptions

regarding noncommand interfaces may be useful in uncovering intial hurdles of use.

Fortunately, though these reported pre-conceived misgivings regarding the inferred

mode protocol as an interaction paradigm were generally negative, there is hope. Users

who were not forced to use the inferred mode (i.e. using the Explicit interface) and stayed

away from it (e.g. P13, P16, P17) mentioned that they may go beyond their initial neg-

ative opinion of the noncommand paradigm. With time, P21 even mentioned that, like

the Microsoft Ribbon interface, they may grow to appreciate its usefulness. Similar to the
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Microsoft Ribbon, the biggest challenge of the inferred mode is to get users accustomed

to this interface paradigm [11]. Disimilarly, however, noncommand user interfaces suffer

from negative perceptions related to their embedded ambiguity and are only now becoming

more popular in user systems. It is to be expected, then, that getting accustomed to such

a different interaction paradigm will be more difficult than acceptance of the new Ribbon

user interface.

5.2 Learnability

A major goal of this research was to study the learnability of interaction techniques that

use computational intelligence to assist the user. This observational experiment looked at

the learnability of the inferred mode protocol in a more realistic scenario. This section

discusses the findings in terms of lessons learned about the study of learnability itself and

about the inferred mode protocol in specific.

5.2.1 Learnability of the Inferred Mode Protocol

In terms of the study of learnability of the inferred mode protocol, there were vastly differ-

ent behaviours and understanding form between the user groups. Instructed participants

alotted time during the first sessions to get a better understanding of the gestures. These

users understood that the purpose of the experiment was to evaluate a novel gestural

interaction technique and tried their best to understand it well. The act of introducing

and explaining a novel interaction technique draws the user’s attention and encourages

experimentation.

In contrast, uninstructed participants were presented with a task and a drawing appli-

cation, with no particular hints as to the functionality of objects in the interface. These

users focused on the task and how to complete it as fast as possible. As a result, any

mediators that appeared were perceived as errors in the system. The participants did not

link the feedback provided by the Saund and Lank Inferred Mode Protocol to their input.

Adding to the list of impediments of discoverability was a confusion as to what should
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happen when selecting the “Smart” mode in the interface or even if the extra effort to

experiment was even worth it. The study design forced an all too common situation where

the user wishes to perform a task through a “walk up and use” approach. The experimental

setup unveiled many of the impediments to such an undirected approach to noncommand

interactions. Though placing the inferred mode functionality in a separate “Smart” mode

encourages experimentation by nature of its labeling, this study’s results suggest that en-

abling it by default does not produce a reliable model for how such interaction paradigms

function. In the absence of tutorial videos (e.g. GestureBar [4]) or helpful tooltips, the

user is left with an interface that is familiar, yet mysteriously difficult to predict.

This disconnect between interaction designers and users is a function of their percep-

tions and expectations of one another. Designers may expect users to search for help and

seek instruction or otherwise discover the features on their own. Some users expect the

system to present them with novel functionality up front and do little outside of using

common tools to perform their task. In essence, users are focused on the task at hand,

and will use tools they are familiar with to best perform their task. A lack of interest –

or rather goal-orientedness – is a large problem in initial discoverability of novel features.

Moreover, the study results suggest that participants also do not necessarily find new fea-

tures useful or “worth it” to learn, even if they discover them. In terms of the inferred

mode, this disconnection meant that participants who were not instructed had issues with

discoverability and extended learnability as their skills stayed mainly at the baseline.

In contrast, instructed participants were given an idea about how system output maps

generally to their input. Given a hint of the existence of the computational black box

that sits at the core of the inferred mode protocol, participants formed a strong mental

model and, through active experimentation, deduced the inner workings of the black box.

The resulting understanding allowed these instructed participants to invent new workflows

that take advantage of all available tools in interface and otherwise use the canvas in ways

the designers did not imagine. An advanced understanding of the inferred mode protocol

stemmed from active experimentation induced either by explicit instruction providing a

baseline framework, or by an intriguingly labeled mode that houses the computational

intelligence.
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5.2.2 Study of Learnability

In designing the methodology and executing the study, there was much learned about the

nature of learnability when it comes to computational intelligence in interfaces. First, the

task that participants are asked to perform and its domain have large repercussions on user

behaviour. Second, care must be taken to consider the prior experience of the chosen user

sample in studying a relatively uncommon example of noncommand interaction. Lastly,

learnability happens at various stages and selecting an appropriate timeframe in order to

capture the transition from novice to expert is highly important for interaction techniques

that use computational intelligence.

Firstly, when designing the study, the task choosen can play a large role in the findings

relating to learnability. This study simulates a real task of drawing and editing circuit

diagrams. This allowed for a reasonable measure of ecological validity. However, the

circuits chosen for the task ended up affecting the results in unanticipated ways. For

instance, circuit diagrams often have small connector circles to indicate that a wire “is-

connected-to” another wire. These connector circles are helpful in disambiguating whether

two wires are connected, or one simply goes over top of another for aesthetic reasons.

However, in the context of the inferred mode protocol, the connectors provide interesting

side effects. Certainly, when forced to use the inferred mode protocol, participants found

many more false positives while drawing the small connectors than if they were given a

different task. However, for uninstructed participants, they were also a source of confusion

which led to disatisfaction and frustration. The connectors are often drawn as spirals

producing small shaded-in circles. In such close proximity, the system can interpret the

spirals as either a selection, or a scratchout gesture prompting a delete mediator. The

ambiguity inherent in drawing the small objects did not allow uninstructed participants to

form a mental model between their input and the system’s output. Though it is common

knowledge to take care of the task researchers choose for studying interaction techniques,

there are subtle effects on the results that can be missed without a close inspection of the

particulars of the interation with the task.

A second noteworthy observation is the effects of the user sample and their experience

on the results relating to learnability. A common definition of users when dealing with
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the study of learnability is to consider new users – those without any formal training

– and experienced users. However, the inferred mode protocol represents a novel and

uncommon interaction paradigm. In order to properly study learnability, experimenters

must additionally consider users who have experience with drawing systems as presented

in this study, but not necessarily with gestural interaction. This additional parameter is

described by Davis et al as “subsequent learning” [10]. Considering this additional type

of user in the analysis unveils another dimension to the study of learnability. All of this

experiment’s users had significant experience with drawing programs such as Microsoft

Paint, or Photoshop. However, none of them used tablet PCs and, most significantly, were

not experienced with similar types of noncommand interaction found in the inferred mode

protocol. For instructed participants, the demonstration of a novel interaction technique

encouraged them to experiment more than they would have otherwise in a more traditional

application. In contrast, uninstructed participants were presented with what looked like

a simple drawing application. The apparent familiarity to an application like Microsoft

Paint may have led to users focusing immediately on the task at hand. Though it was

surprising how few uninstructed participants were curious enough to click on the mediators

that appeared, the lack of experimentation was detrimental to the discoverability of the

inferred mode.

Thirdly, of note is the importance of separating initial from extended learnability and

to study the transition from one stage to the next. Starting from a baseline which separates

the intial conditions for participants (i.e. instructed vs uninstructed) produced an inter-

esting flow of skills and experiences. Active experimentation and retraining can lead to

very similar behavioural patterns even when participants start under different instrction.

In contrast, a lack of experimentation leads to a vastly different subjective experience.

Passivity is not rewarded well in interfaces that use computational intelligence, perhaps as

a result of the increased complexity and inherent ambiguity. Forming a mental model of

the interaction is difficult without some exploration external to a results-driven scenario of

use. Finally, being able to track user progress over a long period of time helped uncover

expert behaviours that often go unreported in traditional evaluations of interaction tech-

niques. Finding a balance between a long term observational study and a qualitiatively

rich lab-controlled study is difficult but potentially rewarding. The attention to extended
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learnability – one that happens as a result of extensive use with a system – in this study

was a source of great qualitative findings that enriched the study of the inferred mode

protocol.

Finally, evaluating noncommand user interfaces has unique challenges due to the often

ambiguous understanding of input. In addition to challenges regarding learnability of a,

as of yet, rarely used interaction paradigm, such computational intelligence can lead to

difficulties in studying the formation of mental models. For instance, P14 and P15 ac-

tively explored the interface but failed due to the uncertainty of the recognizer. When not

providing instruction, the ability for users to form a mental model is dependent on their

linking input to output. Providing even a simple recognizer used in the inferred mode

protocol provides difficulties in performance and hinders the study of learnability of the

technique. Due to imprecise tuning of the parameters, the exploratory attempts of P14

and P15 were disrupted as a result of false positives and negatives. As similar looking in-

puts produced different outputs, participants’ confidence fell and their interest to uncover

the features waned. This fall in confidence as a result of recognizer performance mirrors

the experimenters’ findings in another example of recognition-based interaction [34]. Dur-

ing the evaluation of motion gestures for mobile interfaces, experimenters discovered that

learnability is hurt by performance dips as a result of an uncertain input stream. Figure

5.1 shows an example of two users’ performance, measured in accuracy to perform the

given motion gestures over time.

Figure 5.1: Two participants’ performance over a five input rolling-window in a study

evaluating mobile motion gestures.
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During this study, participants’ performance dipped to extremely low levels as they

attempted to perform the gestures. As recognition performance fell significantly, users

tried to diagnose why those recognition failures were occurring. In the case of motion

gestures, participants had no way to characterize why gestures failed. As a result, they

would try to vary the intensity, the timing, the direction, the device angle, etc. In essence,

users tried to explore the space of recognizer inputs to determine whether some other set of

parameters of movement would enhance accuracy. This pattern of recognition performance

affected confidence and created a negative feedback loop in this study of the inferred mode

as well. However, this problem was exacerbated for users P14 and P15 who received no

specific instruction on the features. Though recognition parameters can be tweaked, it is

difficult to tune it to all users, especially if given no instruction of the input domain. The

difficulty in providing feedback in recognition-based noncommand interaction affects the

study of learnability significantly as active exploration is easily deterred.
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Chapter 6

Conclusions and Future Work

The inferred mode protocol is an example of Nielsen’s noncommand interaction paradigm

[36]. The premise of the inferred mode is that the role of the computer in supporting in-

teraction is to “interpret user actions and [to do] what it deems appropriate” [36]. Nielsen

claimed that this form of interaction would dominate new user interface paradigms. How-

ever, adoption has been slow, and realistic studies of interaction provide evidence for why

this is the case.

When evaluating noncommand interaction in pen/tablet interfaces, there are many of

the same pitfalls associated with past generations of intelligent interfaces [47, 41]. For

example, users had difficulty developing mental models of how the inferred mode protocol

worked. As noted, the inferred mode protocol analyzes actions and context using a sim-

ple decision-tree model. Arguably, decision trees are the simplest form of computational

intelligence, yet users still struggle to understand how the system works.

While it may seem that noncommand interfaces are difficult to understand, it should

also be noted that many Instructed participants preferred the inferred mode protocol and

used it extensively. Participants noted that changing from “Select” mode to “Draw” mode

is much simpler with the inferred mode, as a user can start drawing at any location on the

canvas. The challenge is in how best to communicate to participants the features that are

available within intelligent interfaces like the inferred mode interface.
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With this in mind, creating an explicit mode for noncommand interaction seemed to

work well. For half of the Not Instructed/Explicit participants, the “Smart” mode gave

them a clue that there was a non-standard aspect to the interaction, and motivated them

to understand how the interface worked. P13, P14 and P16 actively explored the Noncom-

mand features of the inferred mode, with the first mastering the technique early on and

behaving like an instructed participant. The latter two developed an understanding of the

smart mode over five sessions of sketching. In contrast, making computational intelligence

standard in the interface by embedding it directly into the “Draw” mode caused significant

problems for participants in the Not Instructed group.

This study explored the learnability and use of features of the inferred mode protocol

using a multi-session observational study. Results show that, with instruction, participants

value intelligent interface techniques, and make liberal use of them during drawing. Fur-

thermore, this work highlights lessons learned for incorporating noncommand behaviors

into sketch interfaces in realistic settings.

This chapter ends with an outline of potential future work uncovered through and

closing thoughts.

6.1 Future Work

As a result of the study, there are two branches that warrant further exploration. First,

there are a number of design enhancements that can be made to the inferred mode protocol.

Finally, there is considerable room for improvement in terms of feedback and recognition.

6.1.1 Design Enhancements

During post-study interviews, many participants suggested enhancements to the system.

The most common recommendation was the implementation of a Delete Selection option.

It is frequently the case that participants wish to delete a specific region in the diagram.

Participants create their own Delete Selection by selecting and moving objects from that
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region to an unused area on the canvas. The Delete Selection option would allow partici-

pants to eliminate the translation operation.

Current versions of the inferred mode are currently experimenting with options for

Delete Selection. One that appears to hold promise and maintains the default pen-and-

paper behavior is a “select-then-cross” operation where users first select an object (using

smart circle select) then draw a line through the selection to prompt to Delete. If they

press the mediator, a delete occurs. Otherwise, the behavior defaults to pen-and-paper

inking, and a line is drawn on the display and content is de-selected.

A second design suggestion involved options for eliminating click select in the inferred

mode. P3 noted that selection and cutting of curves is a common and often tedious

operation. Users first cut the curves. Then, if they deselect the objects, or if they drop

the objects at another location and add to the end of the objects, it can become difficult

to know where one stroke ends and the next begins. This participant felt that recovering

selections would be simplified if there were a selection undo stack. Because much of the

use of the select click feature is restricted to retrieving selections, an undo stack would

eliminate the need for select click.

Thirdly, sketching with the inferred mode protocol uses an inked stroke as a primitive.

Given this, the inferred mode protocol can expand its editing toolset by allowing strokes to

be merged and cut at will while still maintaining its independence from a specific domain

(e.g. digital circuit drawing). For example, two strokes can be automatically merged if

they are relatively close and have similar spline properties at their end points (e.g. c0

continuity). Feedback about strokes’ endpoints and local properties can be overlaid on the

drawing without significantly distracting the user. Providing a simplified mechanism to

group and combine strokes has the potential to improve editing tasks.

6.1.2 Feedback and Recognition

Noncommand interaction like the inferred mode protocol provides significant challenges

in communicating the inner model to the user and aiding them to perform better. As

demonstrated, without an impetus for active explorations, users have difficulty creating
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a mental model of behaviour. This problem is exacerbated by performance variability

created by recognizers.

One idea currently being explored to address both the issue of feedback and recognizer

variability is a multiple threshold recognition system that can be used to help users who

have difficulty understanding and performing commands. When discriminating commands

such as circle to select and scratchout to delete from regular stroke input, designers often

create a threshold, i.e. a criterion value, that best trades off between false positives (acci-

dental activations) and false negatives (failed attempts to perform the command gesture).

If the criterion value is too permissive, many false positives will occur. However, if the

criterion value is too restrictive, it may become very difficult for the system to reliably

identify intentional user gestures from its input stream.

A solution to this problem is to simply provide multiple thresholds for recognizing

command gestures. Consider Figure 6.1 illustrating the allowable input space for strokes

using the inferred mode protocol.

Figure 6.1: An illustration of a two-level thresholding recognizer for stroke command ges-

tures.

The proposed two-level thresholding technique provides two recognition thresholds to

improve performance and is summarized as follows: if a user-performed stroke does not

meet a strict threshold for recognition as one of the command gestures, we then consider

the gesture using a relaxed threshold a more permissive criterion value and wait to see
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if a similar input stroke follows it. The system recognizes a gesture either if the end-user

performs a tightly thresholded stroke gesture (i.e. success in the first instance), or if the

user performs two relaxed thresholded gestures within a short period of time. Such a

recognizer with two thresholds can assist users who have difficulty performing commands

such as select circle or delete. Moreover, recognizing two loosely thresholded input strokes

can be a sign that a user needs feedback to determine how to converge onto the template

gesture. If the recognition process can be broken down into independent features that need

to lie within a threshold for activation, a similar bi-level thresholding approach for each

feature can outline specific problems with the input through its loose model and how to fix

it. Such a recognizer that uses multiple thresholds of recognition can be used to effectively

improve true positives while enabling the detection of specific problems in the user input

and suggest feedback mechanisms.

6.2 Conclusion

Supporting computational intelligence in the sketching task has been a much studied prob-

lem. Traditional user interface elements such as buttons, lists, and menus are unwieldly

when applied to the inherently fluid and ambiguity-laden task of sketching.

A large issue in translating traditional WIMP-style widgets to the sketching domain

is the mode problem which deals with how to assist the user in interpreting stylus input.

Inking, selecting, deleting and translating content are just some of the potential interpre-

tations for user input that are often broken up into operational modes. However, there is

significant cognitive load associated with modes that rises logarithmically with respect to

their number.

The inferred mode protocol is a non-command method of interaction that uses contex-

tual cues (how and where a stroke is drawn) to interpret the input. As the user draws, the

system attempts to infer intent by recognizing that encircled content may imply selection,

or that scratching out content may mean that the user wants to perform a delete operation.

The user can resolve ambiguity in input by selecting a mediator that appears local to the

input stroke.
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This work deals with four major research problems:

• How to evaluate computational intelligence in interfaces?

• What can this study say about the usability of the inferred mode protocol as a means

to infer user intent? Do participants make use of the protocol if given more traditional

choices?

• What are important aspects dealing with its learnability, both in the short and long

term?

• How does behaviour change over time? What can be inferred from users’ continued

evolution of behaviour?

In order to answer these questions, this work presented a long term observational exper-

iment that looks at the usability and learnability of the inferred mode protocol. This study

design serves as a platform for evaluating long term use of similar interfaces that use com-

puational intelligence. The results of this experiment suggest that users who are instructed

in the use of the inferred mode protocol are positive towards the inferred mode protocol

and make use of it even if given the choice of a traditional interface paradigm. These users

see use in the protocol and are more lenient in their judgement than their uninstructed

peers, even while expeiencing similar rates of false positives and significantly higher rate of

false negatives. In terms of learnability, allowing the user to explicitly enable the inferred

mde through the interface helps discoverability by encouraging active exploration. This

active exploration is critical towards forming a mental model that links input to output.

In contrast, enabling the inferred mode by default leads to a passive understanding that

does not result in discovery.

The results of the study suggest significant impediments to discovering features of the

inferred mode protocol including a lack of interest and confusion in between what the user

and the system expect. Moreover, when encountering such computational intelligence in

interfaces, users tend to have negative intial biases that must be overcome for successful

integration of new features.
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Finally, this work explored various methodology in developing the study. This exper-

iment combines quantitative and qualitative analysis of use over a long period of time.

Such a long term analysis helps uncover difficulties in studying noncommand interaction

like the inferred mode protocol as a result of inherent ambiguity.
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Tracking menus. In Proceedings of the 16th annual ACM symposium on User interface

software and technology, UIST ’03, pages 71–79, New York, NY, USA, 2003. ACM.

[16] Vinod Goel. Sketches of Thought. MIT Press, Cambridge, MA, 1995.

76



[17] Mark D. Gross. The electronic cocktail napkin–a computational environment for

working with design diagrams. Design Studies, 17(1):53 – 69, 1996.

[18] Tovi Grossman, Patrick Baudisch, and Ken Hinckley. Handle flags: efficient and

flexible selections for inking applications. In GI ’09: Proceedings of Graphics Interface

2009, pages 167–174, Toronto, Ont., Canada, Canada, 2009. Canadian Information

Processing Society.

[19] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. A survey of software learn-

ability: metrics, methodologies and guidelines. In Proceedings of the 27th interna-

tional conference on Human factors in computing systems, CHI ’09, pages 649–658,

New York, NY, USA, 2009. ACM.

[20] Tovi Grossman, Ken Hinckley, Patrick Baudisch, Maneesh Agrawala, and Ravin Bal-

akrishnan. Hover widgets: using the tracking state to extend the capabilities of pen-

operated devices. In Proceedings of the SIGCHI conference on Human Factors in

computing systems, CHI ’06, pages 861–870, New York, NY, USA, 2006. ACM.

[21] François Guimbretière, Maureen Stone, and Terry Winograd. Fluid interaction with

high-resolution wall-size displays. In Proceedings of the 14th annual ACM symposium

on User interface software and technology, UIST ’01, pages 21–30, New York, NY,

USA, 2001. ACM.

[22] W. Hick. On the rate of gain of information. Journal of Experimental Psychology,

4:11 – 36, 1952.

[23] W. E. Hick. On the rate of gain of information. Quarterly Journal of Experimental

Psychology, 4(1):11–26, 1952.

[24] K. Hinckley, F. Guimbretiere, P. Baudisch, R. Sarin, M. Agrawala, and E. Cutrell.

The springboard: multiple modes in one spring-loaded control. In Proceedings of

the Conference on Human Factors in Computing Systems, CHI 2006, pages 181–190,

2006.

77



[25] Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and Francois Guimbretiere. Design

and analysis of delimiters for selection-action pen gesture phrases in scriboli. In CHI

’05: Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 451–460, New York, NY, USA, 2005. ACM.

[26] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching interface

for 3d freeform design. In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07, New York,

NY, USA, 2007. ACM.

[27] Gabe Johnson, Mark D Gross, and Ellen Yi-Luen Do. Flow selection: a time-based

selection and operation technique for sketching tools. In Proceedings of the working

conference on Advanced visual interfaces, AVI ’06, pages 83–86, New York, NY, USA,

2006. ACM.

[28] Gordon Kurtenbach and William Buxton. User learning and performance with mark-

ing menus. In CHI ’94: Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 258–264. ACM, 1994.

[29] James A. Landay. Silk: sketching interfaces like krazy. In Conference companion on

Human factors in computing systems: common ground, CHI ’96, pages 398–399, New

York, NY, USA, 1996. ACM.

[30] Y. Li, K. Hinckley, Z. Guan, and J. Landay. Experimental analysis of mode switching

techniques in pen-base user interfaces. In Proceedings of the Conference on Human

Factors in Computing Systems, CHI 2005, pages 461 – 470, 2005.

[31] J. McGrenere and G. Moore. Are we all in the same ”bloat”? In GI ’00: Proceedings

of Graphics Interface 2000, pages 187–196, 2000.

[32] Joanna McGrenere, Ronald M. Baecker, and Kellogg S. Booth. A field evaluation of an

adaptable two-interface design for feature-rich software. ACM Trans. Comput.-Hum.

Interact., 14, May 2007.

[33] Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, and Anthony LaMarca.

Flatland: new dimensions in office whiteboards. In Proceedings of the SIGCHI con-

78



ference on Human factors in computing systems: the CHI is the limit, CHI ’99, pages

346–353, New York, NY, USA, 1999. ACM.

[34] Matei Negulescu, Jaime Ruiz, Yang Li, and Edward Lank. Tap, swipe, or move: atten-

tional demands for distracted smartphone input. In Proceedings of the International

Working Conference on Advanced Visual Interfaces, AVI ’12, pages 173–180. ACM,

2012.

[35] Mark W. Newman and James A. Landay. Sitemaps, storyboards, and specifications:

a sketch of web site design practice. In Proceedings of the 3rd conference on Designing

interactive systems: processes, practices, methods, and techniques, DIS ’00, pages 263–

274, New York, NY, USA, 2000. ACM.

[36] Jakob Nielsen. Noncommand user interfaces. Commun. ACM, 36(4):83–99, 1993.

[37] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1995.

[38] Jakob Nielsen. Usability inspection methods. In Conference companion on Human

factors in computing systems, CHI ’95, pages 377–378, New York, NY, USA, 1995.

ACM.

[39] Jakob Nielsen. Novice vs. expert users, February 2000.

http://www.useit.com/alertbox/20000206.html.

[40] Jakob Nielsen. Usability 101: Introduction to usability, 2012.

http://www.useit.com/alertbox/20030825.html.

[41] Donald A. Norman. The Design of Everyday Things. Basic Books, September 2002.

[42] Ian Oakley and Junseok Park. Motion marking menus: An eyes-free approach to

motion input for handheld devices. Int. J. Hum.-Comput. Stud., 67(6):515–532, 2009.

[43] John Rieman. A field study of exploratory learning strategies. ACM Trans. Comput.-

Hum. Interact., 3(3):189–218, September 1996.

79



[44] J. Ruiz and E. Lank. A study of the scalability of non-preferred hand mode switching.

In Proceedings of International Conference On Multimodal Interfaces, ICMI 2007,

2007.

[45] Jaime Ruiz, Andrea Bunt, and Edward Lank. A model of non-preferred hand mode

switching. In GI ’08: Proceedings of graphics interface 2008, pages 49–56, 2008.

[46] Eric Saund and Edward Lank. Stylus input and editing without prior selection of

mode. In UIST ’03: Proceedings of the 16th annual ACM symposium on User interface

software and technology, pages 213–216. ACM, 2003.

[47] L. Tesler. The smalltalk environment. Byte, pages 90–147, 1981.

[48] Barbara Tversky. What do sketches say about thinking? In T. Stahovic, J. Landay,

and R. Davis, editors, AAAI Spring Symposium on Sketch Understanding, Menlo

Park, CA, 2002. AAAI Press.

[49] Robert Zeleznik and Timothy Miller. Fluid inking: augmenting the medium of free-

form inking with gestures. In GI ’06: Proceedings of Graphics Interface 2006, pages

155–162, Toronto, Ont., Canada, Canada, 2006. Canadian Information Processing

Society.

80


	List of Tables
	List of Figures
	Introduction
	Inferred Mode Protocol
	Research Problems
	Contributions
	Outline

	Related Work
	Cost of Modes in Tablet Interfaces
	Alternative Mode Switching Techniques
	Noncommand Interaction

	Evaluating Computational Intelligence in Sketch Interfaces

	Observational Study
	Experiment Design
	Experimental Set-up
	Experimental Tasks
	Experimental Procedure
	Recruiting and Participants

	Data and Analysis
	Data Capture
	Analysis of Data
	Hypotheses


	Results
	Use of the Inferred Mode Protocol
	H1: The Instruction Effect Hypothesis
	H2: The Preference of Use Hypothesis
	H3: The Error Hypothesis
	H4: The Consistent Use Hypothesis

	Usability of the Inferred Mode Protocol
	Individual Features
	Perceptions of Computational Intelligence

	Learnability of the Inferred Mode Protocol
	Initial Learnability
	Extended Learnability


	Discussion
	Usability of the Inferred Mode Protocol
	Learnability
	Learnability of the Inferred Mode Protocol
	Study of Learnability


	Conclusions and Future Work
	Future Work
	Design Enhancements
	Feedback and Recognition

	Conclusion

	References

