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Abstract

The demand for wireless data services has been dramatically growing over the last

decade. This growth has been accompanied by a significant increase in the number of

users sharing the same wireless medium, and as a result, interference management has

become a hot topic of research in recent years. In this dissertation, we investigate feedback

and transmitter cooperation as two closely related tools to manage the interference and

achieve high data rates in several wireless networks, focusing on additive white Gaussian

noise (AWGN) interference, X, and broadcast channels.

We start by a one-to-many network, namely, the three-user multiple-input multiple-

output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains

the channel state information (CSI) through feedback links after a finite delay. We also

assume that the feedback delay is greater than the channel coherence time, and thus,

the CSI expires prior to being exploited by the transmitter for its current transmission.

Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help

the transmitter to achieve significantly higher data rates compared to having no CSI. We

indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which

is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio

(SNR). For the symmetric case, i.e., with the same number of antennas at each receiver,

we propose different transmission schemes whose achievable DoFs meet the upper bound

for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric

case, we propose transmission schemes that characterize the DoF region for certain classes

of antenna configurations.

Subsequently, we investigate channels with distributed transmitters, namely, Gaussian

single-input single-output (SISO) K-user interference channel and 2×K X channel under

the delayed CSIT assumption. In these channels, in major contrast to the broadcast

channel, each transmitter has access only to its own messages. We propose novel multiphase

transmission schemes wherein the transmitters collaboratively align the past interference

at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater

than one (which is the channel DoF without CSIT), and strictly increasing in K. Our

results are yet the best available reported DoFs for these channels with delayed CSIT.
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Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter

causes interference on only r receivers in a cyclic manner. By developing a new upper

bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing

our multiphase transmission ideas, we show that, for r = 3, this channel can achieve strictly

greater than K/3 DoF with delayed CSIT.

Next, we add the capability of simultaneous transmission and reception, i.e., full-duplex

operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaus-

sian K-user interference and M ×K X channel under the delayed CSIT assumption. By

proposing new cooperation/alignment techniques, we show that the full-duplex transmit-

ter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This

is in sharp contrast to the previous results on these channels indicating the inability of

full-duplex transmitter cooperation to increase the channel DoF with either perfect in-

stantaneous CSIT or no CSIT. With the recent technological advances in implementation

of full-duplex communication, it is expected to play a crucial role in the future wireless

systems.

Finally, we consider the Gaussian K-user interference and K×K X channel with output

feedback, wherein each transmitter causally accesses the output of its paired receiver. First,

using the output feedback and under no CSIT assumption, we show that both channels can

achieve DoF values greater than one, strictly increasing in K, and approaching the limiting

value of 2 as K →∞. Then, we develop transmission schemes for the same channels with

both output feedback and delayed CSIT, known as Shannon feedback. Our achievable

DoFs with Shannon feedback are greater than those with the output feedback for almost

all values of K.
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Chapter 1

Introduction

Since the pioneering work of Shannon in 1948 [46], the reliable communication between two

or more nodes has been an active topic of research. While communication over point-to-

point channels has been thoroughly studied from different prospectives such as capacity,

reliability, delay, and complexity, complete characterization of the communication per-

formance remains far from accomplished when it comes to multi-user networks. Indeed,

except for some multi-user networks, such as multiple access channel (MAC) and special

classes of broadcast channel (BC), the capacity of the majority of multi-user networks is

still unknown. The main bottleneck which limits the performance of multi-user networks

is the inherent interference between the users. In such networks, the interaction between

users for utilization of a shared medium calls for efficient interference management tech-

niques. The first study of these interactions is by Shannon [45] in the context of two-way

channels.

The simplest case of a channel with multiple unicast information flows is the two-user

interference channel (IC) introduced by Ahlswede [6], which consists of two transmitter-

receiver pairs having interference on each other. Exact capacity characterizations under

certain assumptions such as weak, strong, and very strong interference have been obtained

for the two-user Gaussian IC [7,14,36,40,43]. The best inner bound for the capacity region

of this channel is due to Han and Kobayashi (HK) rate-splitting scheme [24], which turned

out to achieve the capacity of the two-user Gaussian IC to within one bit [18].
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CHAPTER 1: Introduction

In networks with more than two information flows, such asK-user IC,K ≥ 3, (which is a

network with K unicast flows) and M×K X channel (which is a network with M broadcast

flows), traditional schemes such as HK scheme fail to manage multiple interference terms

observed at each receiver. The new concept of Interference Alignment, introduced in [32]

for a class of two-user multiple-input multiple-output (MIMO) X channel, has proved to

efficiently manage the aggregated interference simultaneously at all receivers. The idea

behind the interference alignment is to design the transmitted signals such that the total

interference observed by each receiver occupies only a predetermined fraction of the whole

degrees of freedom (DoF) available at that receiver. Using this technique, the DoFs of the

fading K-user single-input single-output (SISO) IC and M×K SISO X channel were shown

to be K/2 and MK/(M +K− 1), respectively [10,12], and the DoF region of the two-user

MIMO X channel was characterized in [29] . As a first order approximation of the channel

capacity, the DoF of a channel characterizes its sum-capacity in high signal-to-noise-ratio

(SNR) regime, i.e.,

C(SNR) = DoF× log2(SNR) + o(log2(SNR)), (1.1)

where C(SNR) is the sum-capacity for a given SNR and DoF is the channel sum-DoF, or

simply, DoF. The interference alignment technique has been also extended to obtain the

DoF of some classes of the constant (time-invariant) fading SISO K-user IC in [17] using

number theoretical arguments.

1.1 Feedback in Communication Channels

The crucial role of feedback in reliability, throughput, and complexity of transmission over

communication networks has made it an indispensable ingredient of all modern commu-

nication systems. In spite of the first result by Shannon that shows the capacity of a

memoryless point-to-point channel is not increased with feedback [44], there are various

results affirming the significant effect of feedback on other performance criteria such as

complexity and error probability of this channel [9, 19, 41, 42] (see also [20] and references

therein). On the other hand, feedback has proved to enlarge the capacity region of sev-

eral multi-user channels. The capacity regions of (non-fading) Gaussian MAC and BC

2



CHAPTER 1: Introduction

are enlarged with noiseless output feedback as shown in [37, 38] using generalizations of

Schalkwijk and Kailath (SK) scheme [41, 42]. It was shown in [8], using SK scheme and

dirty-paper coding, that even a single output feedback link from one of receivers enlarges

the capacity region of the two-user Gaussian BC. The capacity region enlargements for dis-

crete memoryless multiple access and broadcast channels with access to noiseless output

feedback are reported in [15,47,58].

In non-fading Gaussian channels, each receiver observes only its output of channel, and

thus, any type of feedback is a function of the output(s) of channel. In fading Gaussian

channels, however, since it is commonly assumed that each receiver obtains the chan-

nel state information (CSI) instantaneously and perfectly through the channel estimation

phase, the channel output(s) and/or the CSI can be fed back to the transmitter(s). With-

out any feedback, and hence, without CSI at any transmitter (no CSIT), the capacity

regions of SISO fading two-user broadcast and two-user Z-interference channels have been

characterized to within constant gaps [53, 65]. The K-user multiple-input single-output

(MISO) broadcast channel with no CSIT was studied in [28]. Other works include [27,66]

which investigate the DoF region of two-user MIMO broadcast and interference channels

without CSIT. It was shown in [56] that a large class of MISO multi-user channels includ-

ing broadcast, interference, X, and cognitive radio channels can achieve no more that one

degree of freedom (DoF) with no CSIT.

1.1.1 CSI Feedback

When there is CSI feedback to transmitter(s) and the channel variations are not too fast

compared to the feedback delay, it is commonly assumed that the CSI obtained through

feedback links is valid at least over the current channel use, and hence, the transmitter(s)

have access to perfect and instantaneous CSI (full CSIT). Under constant CSI and full

CSIT assumption, the capacity region (and hence, the DoF region) of the MIMO BC was

characterized in [59], where the author showed the capacity region can be achieved by

dirty-paper coding. The DoF characterization of the SISO IC and X channel [10, 12] is

based on time-varying CSI and full CSIT assumption. It is important to note that in all the

conventional interference alignment techniques, the full CSIT assumption is central, since

3



CHAPTER 1: Introduction

the transmitters require the current CSI to design their transmitted signals. However, if

the feedback delay is greater that the channel coherence time, the CSI obtained through

feedback links is often outdated. This makes the “full CSIT assumption” practically im-

plausible, since the CSIT expires prior to the beginning of each channel use.

A model which makes a bridge between the two extremes of full and no CSIT was

proposed in [33] in the context of MISO BC. In this model, being referred to as delayed

CSIT, the transmitter knows the CSI perfectly but with a finite delay. It was established

that even the outdated CSIT yields DoF gains in the MISO BC. In particular, the MISO

BC with K receivers and M ≥ K antennas at transmitter was shown to have K/(1+1/2+

· · · + 1/K) DoF with delayed CSIT, which is greater than one and scales with K. The

DoF of two-user and three-user MIMO BC with delayed CSIT was then studied in [3,55],

where achievable and tight results were obtained. Initial achievable DoF results for the

three-user SISO IC and two-user SISO X channel with delayed CSIT were reported in [35].

Their result was then improved for the two-user X channel in [23]. Achievable DoFs for the

K-user SISO IC and X channel has been reported in [1, 2], which are still the best known

DoF lower bounds for these channels with delayed CSIT. The DoF region of the two-user

MIMO IC and sum-DoF of the two-user symmetric MIMO X channel were studied under

delayed CSIT assumption in [21,22,57].

1.1.2 Output Feedback

It should be noted that the works of [8,37,38], as mentioned at the beginning of this section,

assume that the CSI is fixed and known to all nodes (fixed and full CSIT assumption).

Under the same assumption, the capacity region of the two-user SISO Gaussian IC with

output feedback was characterized to within 2 bits in [48]. Generalizing SK and Ozarow’s

feedback coding schemes, Kramer proposed transmission strategies for the K-user SISO

Gaussian IC with output feedback in [30,31], and the capacity of K-user symmetric cyclic

Z-IC with output feedback was obtained in [49].

When there is no instantaneous CSIT, feedback still can help to attain DoF gains. In

[35], the authors showed that the three-user SISO IC and two-user SISO X channel with no

4



CHAPTER 1: Introduction

CSIT can achieve respectively 6/5 and 4/3 DoF with output feedback. The two-user MIMO

IC with delayed CSIT and output feedback, known as Shannon feedback, was studied in

[50, 54], where its DoF region was characterized. In [4, 5], achievable DoFs were obtained

for the K-user SISO IC and K ×K X channels with output feedback (without CSIT) and

also with Shannon feedback.

1.2 Transmitter Cooperation

Output feedback in multi-user channels with distributed transmitters, such as IC and X

channel, naturally provides some level of transmitter cooperation. As such, there are con-

nections between communication over these channels with feedback and that with trans-

mitter cooperation. A common cooperation setup is to enable transmitters to operate

in full-duplex mode, i.e., transmit and receive simultaneously, which is gaining increasing

attention in communication industry due to recent advances in technology. The two-

user IC with full-duplex transmitters (under full CSIT assumption) was investigated in

[13,25,39,52,63]. In [13,39,63] achievable schemes are proposed based on further splitting

the common and/or private information of the HK scheme into two parts, namely, non-

cooperative and cooperative part. The cooperative part is decoded at the other transmitter

as well to be able to cooperate in delivering the information to the desired receiver. By

developing an upper bound the sum-capacity of the two-user Gaussian IC with full-duplex

transmitters was obtained to within a constant number of bits in [39].

Moreover, it was shown in [11,26] that under the full CSIT assumption, the full-duplex

cooperation and/or output feedback cannot increase DoF of the Gaussian SISO K-user

IC and M ×K X channel. In other words, the full-duplex cooperation as well as output

feedback can only yield “additive” capacity increase in the aforementioned channels when

the full CSI is available at the channel nodes. With no CSIT also the full-duplex transmitter

cooperation cannot help these channels to achieve more than one DoF, since the MISO

broadcast channel DoF is equal to one with no CSIT[56]. However, the situation is different

when the CSIT is delayed as reported in [4,5], where it was shown that these channels can

potentially achieve higher DoFs with full-duplex transmitter cooperation.
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1.3 Dissertation Outline and Main Contributions

In this dissertation, we address communication over Gaussian multi-user networks with

feedback and/or transmitter cooperation and with no instantaneous knowledge of CSI at

the transmitter(s). The following summarizes the main contributions in this dissertation:

1.3.1 Chapter 2

Chapter 2 is dedicated to investigation of communication over the three-user MIMO broad-

cast channel with delayed CSIT. The main contributions of this chapter are as follows:

• Symmetric Three-user MIMO BC with Delayed CSIT

Different transmission schemes are proposed for the symmetric case, i.e., with M

antennas at transmitter and N antennas at each receiver. The schemes are proved

to be DoF optimal for M ≤ 2N and M ≥ 3N by showing that their achievable

DoF meets the existing upper bound. For 2N < M < 3N , our achievable DoF is

very close to the upper bound, and is yet the best reported achievable DoF for this

channel.

• General Three-user MIMO BC with Delayed CSIT

The general (not necessarily symmetric) case is also investigated for a class of three-

user MIMO BCs with

M ≤ max{N1, N2, N3,min(N1 +N2, N2 +N3, N3 +N1)}, (1.2)

where Ni is the number of antennas at receiver i, 1 ≤ i ≤ 3. Two different transmis-

sion schemes are proposed, each of which is shown to be DoF region optimal for a

range of antenna configurations.

1.3.2 Chapter 3

In this chapter, communication over the SISO interference and X channels are addressed

under delayed CSIT assumption. The main contributions of this chapter are as follows:
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• Fully-connected K-user SISO IC with Delayed CSIT

A multiphase transmission scheme is proposed for the SISO fully connected K-user IC

with delayed CSIT that achieves DoF values greater than one and strictly increasing

in K. For K = 3, 36/31 DoF is achieved, which is strictly greater than the previously

reported 9/8 DoF in [35].

• Cyclic K-user SISO IC with Delayed CSIT

The K-user cyclic SISO IC is investigated. Inspired by a channel model introduced

by Wyner [60], the K-user r-cyclic IC represents a set of K base stations located

along a circle together with K mobile stations distributed around the base stations.

Each transmitter causes interference on only r − 1 closest receivers in the array. We

first show that K-user r-cyclic IC has K/r DoF with no CSIT. Then, we focus on

r = 3 and show that this channel can achieve strictly more than K/3 DoF with

delayed CSIT.

• Fully-connected 2×K SISO X Channel with Delayed CSIT

A multiphase transmission scheme is proposed for the 2 × K SISO X channel with

delayed CSIT. The achievable DoFs for this channel are greater than one and strictly

increasing in K.

All achievable DoFs in this chapter are strictly greater than the previously reported DoFs

for K ≥ 3, and to date, are the best known achievable DoF results for the channels under

consideration with delayed CSIT.

1.3.3 Chapter 4

In Chapter 4, we address the following problems:

• Full-duplex Transmitter Cooperation and Delayed CSIT

– K-user SISO IC: A transmission scheme is proposed whose achievable DoFs

are strictly increasing in K and greater than our achievable DoFs for the same

channel with delayed CSIT but without transmitter cooperation (cf. Chapter 3).
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– M ×K SISO X Channel: A transmission scheme is proposed that achieves

DoFs strictly increasing in K and greater than our achievable DoFs of Chapter 3

for the 2×K X channel with delayed CSIT but without transmitter cooperation.

The results of this part are the first to show that full-duplex transmitter cooperation

can potentially yield DoF gains in multi-user channels (in contrast to the full or

no CSIT cases where it is known that full-duplex cooperation cannot increase the

channel DoF).

• Output Feedback

By proposing different transmission schemes, achievable DoFs are obtained for the

K-user SISO IC and K ×K SISO X channel with output feedback (with no CSIT).

The output feedback considered in this dissertation is indeed a “limited” output

feedback in the sense that each transmitter is assumed to have output feedback from

its own paired receiver (not all receivers). The achievable DoFs for both channels

strictly increase with K and approach the limiting value of 2 as K →∞.

• Shannon Feedback

The Shannon feedback, which is a combination of output feedback and delayed CSIT,

is also studied for both the K-user SISO IC and K×K SISO X channel. We achieve

DoFs with Shannon feedback that are strictly increasing in K and greater than our

achievable DoFs with output feedback for K = 5 and K ≥ 7 in IC and K ≥ 3 in X

channel.

Our achievable DoFs under output or Shannon feedback are the first and yet the best

known achievable results for both channels.
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Chapter 2

Three-User MIMO Broadcast

Channel with Delayed CSIT

In this chapter1, we investigate a three-user MIMO Gaussian broadcast channel with i.i.d.

fading. It is assumed that the channel state information (CSI) is fed back to the transmitter

with a finite delay, a model which is referred to as delayed CSIT model throughout this

dissertation. Hence, due to the feedback delay and i.i.d. fading, the CSI is completely

outdated when obtained by the transmitter. We first study the three-user MIMO broadcast

channel with the same number of antennas at each receiver in Section 2.2. We obtain

achievable results on the degrees of freedom (DoF) of this channel and also show that

our achievable DoF is tight for some ranges of transmit-receive antenna ratio. We then

consider this channel in the general case of having an arbitrary (not necessarily equal)

number of antennas at each receiver in Section 2.3. In this case, we propose transmission

schemes and obtain their achievable DoF regions. We also identify transmit-receive antenna

configurations for which our achievable DoF regions meet the outer bound, and thus,

characterize the channel DoF region with delayed CSIT.

1Part of the work in this chapter has been reported in [3]
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2.1 System Model

We consider a three-user Gaussian MIMO broadcast channel (BC) with M antennas at

the transmitter and Nj antennas at receiver j, 1 ≤ j ≤ 3 (denoted by RXj). We denote

this channel as (M,N1, N2, N3) BC. The input and output of this channel at time slot t,

t = 1, 2, · · · , are related to each other by

y[j](t) = H[j](t)x(t) + z[j](t), 1 ≤ j ≤ 3, (2.1)

where x(t) = [x1(t), x2(t), · · · , xM(t)]T ∈ CM is the transmitted vector with average power

constraint

E[x(t)†x(t)] ≤ P, (2.2)

y[j](t) = [y
[j]
1 (t), y

[j]
2 (t), · · · , y[j]

Nj
(t)]T ∈ CNj is the received vector at RXj, H[j](t) is the Nj×

M channel matrix from the transmitter to RXj, and z[j](t) = [z
[j]
1 (t), z

[j]
2 (t), · · · , z[j]

Nj
(t)]T is

the vector of zero-mean unit-variance complex Gaussian noise elements z
[j]
n (t) ∼ CN (0, 1),

n = 1, 2, · · · , Nj, at RXj. The noise elements are i.i.d. across all receive antennas as well

as time. Also, the channel coefficients are assumed to be i.i.d. across all nodes, antennas,

and time. We define the CSI matrix H(t) , [(H[1](t))T , (H[2](t))T , (H[3](t))T ]T . We make

the following assumptions on the knowledge of CSI at different nodes:

Definition 1 (Delayed CSIT for BC). RXj, 1 ≤ j ≤ 3, instantaneously knows the elements

of H[j](t), while having access to the channel matrix of the other receivers with a finite delay.

The transmitter has access to H(t) with a finite delay through noiseless feedback links from

all receivers. Without loss of generality, one time slot delay is assumed throughout this

dissertation.

The transmitter wishes to communicate a message W [j] ∈ W [j] = {1, 2, · · · , 2τR[j]} of

rate R[j] to RXj over a block of τ time slots or channel uses. To do so, a block code of

length τ is used by the transmitter, which is defined as follows:

Definition 2 (Block Code with Delayed CSIT). A (2τR, τ) code of block length τ and

rate R ,
[
R[1], R[2], R[3]

]
with delayed CSIT in the 3-user MIMO BC is a set of encoding
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functions {ϕt,τ}τt=1, such that

x(t) = ϕt,τ (W
[1],W [2],W [3], {H(t′)}t−1

t′=1), 1 ≤ t ≤ τ, (2.3)

together with three decoding functions ψ
[i]
τ , 1 ≤ i ≤ 3, such that

Ŵ [i]
τ = ψ[i]

τ (
{
y[i](t)

}τ
t=1

, {H(t)}τ−1
t=1 ,H

[i](τ)). (2.4)

Defining the probability of error of a code as the probability that any of the receivers

decodes its message incorrectly, we have the following definitions for an achievable rate

and the capacity region:

Definition 3 (Achievable Rate, and Capacity Region). For a given power constraint P ,

a rate tuple R(P ) is said to be achievable if there exists a sequence {(2τR(P ), τ)}∞τ=1 of

codes such that their probability of error goes to zero as τ → ∞. The closure of the set

of all achievable rate tuples R(P ) is called the capacity region of the channel with power

constraint P and is denoted by CBC(P ).

Definition 4 (DoF for Three-user BC with Delayed CSIT). If R(P ) ∈ CBC(P ) is an

achievable rate tuple for the (M,N1, N2, N3) BC with delayed CSIT, then d = [d[1], d[2], d[3]] ,

limP→∞
R(P )
log2 P

is called an achievable DoF tuple and DoFBC(M,N1, N2, N3) , d[1] +d[2] +d[3]

is called an achievable sum-DoF or simply achievable DoF. The closure of the set of all

achievable DoF tuples is called the channel DoF region and denoted by DBC(M,N1, N2, N3),

and the channel sum-DoF or simply DoF is defined as

DoFBC(M,N1, N2, N3) , max
d∈DBC(M,N1,N2,N3)

d[1] + d[2] + d[3]. (2.5)

Using the fact that feedback does not enlarge the capacity region of a physically de-

graded broadcast channel, Maddah-Ali et al. in [34] developed an outer bound on the DoF

region of a K-user MISO broadcast channels with delayed CSIT. By generalizing this idea

to the MIMO case, Vaze et al. in [55] obtained an outer bound on the DoF region of a

K-user MIMO broadcast channel with delayed CSIT. The following proposition presents

this outer bound for K = 3:
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Proposition 1 ([55]). An outer bound to the DoF region of (M,N1, N2, N3) BC with

delayed CSIT is

DBC-dCSIT
outer (M,N1, N2, N3) ,

{
(d[1], d[2], d[3])

∣∣∣ d[j] ≥ 0, ∀j,

3∑
i=1

d[π(i)]

min
(
M,
∑3

j=iNπ(j)

) ≤ 1, ∀π
}
,

(2.6)

where π is a permutation of the set {1, 2, 3}.

Using this outer bound, and after some manipulations, we get the following upper

bound on the DoF of (M,N,N,N) BC with delayed CSIT:

Proposition 2. The DoF of (M,N,N,N) BC with delayed CSIT is upper bounded by

DoFBC
upper(M,N,N,N) ,

3
1

min(M,N)
+ 1

min(M,2N)
+ 1

min(M,3N)

. (2.7)

The above upper bound can be explicitly expressed as follows:

DoFBC
upper(M,N,N,N) =



M M ≤ N

3MN
M+2N

N < M ≤ 2N

6MN
3M+2N

2N < M ≤ 3N

18
11
N M > 3N

. (2.8)

2.2 (M,N,N,N) BC with Delayed CSIT

In this section, we consider the (M,N1, N2, N3) BC with N1 = N2 = N3 = N and with

delayed CSIT. We will show how the delayed CSIT can be utilized to achieve DoF gains

over the no CSIT case for some ratios M/N . The main idea lies behind the following

observations: Since the transmitter has access to both past CSI and past transmitted

information symbols, it perfectly knows the whole past interference at each receiver. Also,
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an interference term at a receiver can be a useful piece of information for some other

receivers about their information symbols. Therefore, retransmission of such interference

terms not only aligns the interference at some receivers, but also provides other receivers

with a desired piece of information about their information symbols.

Although the DoF region of a two-user MIMO BC with delayed CSIT with arbitrary

number of antennas at each node has been fully characterized in [55], its DoF region or

even its sum-DoF is not known when there is more than two receivers in the system. In this

section, we will show that the upper bound of (2.8) is tight for M ≤ 2N and M ≥ 3N . We

also propose two achievable schemes for 2N < M < 3N that achieve DoF values very close

to the upper bound. The following theorem summarizes our main results in this section:

Theorem 1. For (M,N,N,N) BC with delayed CSIT,

(a) if M ≤ 2N , then the upper bound of (2.8) is achievable. In other words, the channel

DoF is equal to

DoFBC(M,N,N,N) =
3M min(M,N)

2 min(M,N) +M
; (2.9)

(b) if 2N < M ≤ 3N , then we have

DoFBC(M,N,N,N) ≥ max

{
12MN

5M + 7N
,

24MN

15M + 2N

}
. (2.10)

Remark 1. The cases M = 2N and M = 3N are the scaled versions of the three-user

MISO broadcast channel with two and three transmit antennas, respectively. These MISO

channels have been studied in [33,34], where their DoF has been shown to be 3
2
N and 18

11
N ,

respectively. The DoF of the case M > 3N is trivially equal to that of the case M = 3N ,

which is 18
11
N .

Proof. For M ≤ N , DoFBC(M,N,N,N) = M is achievable using a time-division scheme.

Indeed, for M ≤ N , the outer bound region of Proposition 2 is achieved even without CSIT

since min(M,N) = M (cf. [56]). Also, even with full CSIT, more than M DoF cannot be

achieved in this range of M since min(M, 3N) = M (cf. [59]).

For N < M ≤ 3N , we propose transmission schemes which compose of three distinct

phases outlined as follows:
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• Phase 1 takes K1 symbols from i.i.d. Gaussian codewords (K1/3 symbols per receiver)

and generates K2 “order-2 symbols” in T1 time slots. An order-2 symbol is defined as

a symbol which is intended to be delivered to a pair of receivers. An order-2 symbol

which is intended for RXi and RXj is denoted by u[i,j] and called an “(i, j)-symbol”.

• Phase 2 takes the K2 order-2 symbols generated by the end of phase 1 (K2/3 order-2

symbols for each pair of receivers) and generates K3 “order-3 symbols” in T2 time

slots. An order-3 symbol is defined as a symbol which is intended to be delivered to

all three receivers.

• Phase 3 takes the K3 order-3 symbols generated by the end of phase 2 and delivers

them to all three receivers in T3 time slots.

Since the proposed schemes differ only in their phase 1, we first describe phase 1 of each

proposed scheme. The phases 2 and 3 will be described subsequently, once for all the

schemes. We consider two disjoint regions N < M ≤ 2N and 2N < M ≤ 3N separately:

Phase 1 (N < M ≤ 2N):

• Scheme 1:

The transmitter transmits K1 = 6M symbols in T1 = 3 time slots as follows: Let

u
[j]
1 , [u

[j]
1 , u

[j]
2 , · · · , u[j]

M ]T and u
[j]
2 , [u

[j]
M+1, u

[j]
M+2, · · · , u

[j]
2M ]T denote two vectors containing

2M symbols from an i.i.d. Gaussian codeword intended for RXj, 1 ≤ j ≤ 3. We call

these symbols “information symbols” of RXj. Each time slot is dedicated to two receivers

where the transmitter transmits M linear combinations of the 2M information symbols

of the corresponding receivers over its M antennas: In the first time slot, the transmitter

transmits the vector

x(1) = u
[1]
1 + u

[2]
1 = [u

[1]
1 + u

[2]
1 , u

[1]
2 + u

[2]
2 , · · · , u[1]

M + u
[2]
M ]T . (2.11)

The second and third time slots are dedicated to transmission of

x(2) = u
[2]
2 + u

[3]
1 = [u

[2]
M+1 + u

[3]
1 , u

[2]
M+2 + u

[3]
2 , · · · , u[2]

2M + u
[3]
M ]T , (2.12)
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x(3) = u
[3]
2 + u

[1]
2 = [u

[3]
M+1 + u

[1]
M+1, u

[3]
M+2 + u

[1]
M+2, · · · , u

[3]
2M + u

[1]
2M ]T . (2.13)

After the first time slot, each receiver obtains N noisy linear equations in terms of u
[1]
1

and u
[2]
1 over its N antennas. Consider all N equations available at RX1 together with

M −N of the equations available at RX2 (note that M −N ≤ N):

RX1 : y[1]
n (1) = (h[1]

n (1))Tu
[1]
1 + (h[1]

n (1))Tu
[2]
1 + z[1]

n (1), 1 ≤ n ≤ N, (2.14)

RX2 : y[2]
n (1) = (h[2]

n (1))Tu
[1]
1 + (h[2]

n (1))Tu
[2]
1 + z[2]

n (1), 1 ≤ n ≤M −N, (2.15)

where h
[j]
n (t) denotes the n’th column of (H[j](t))T . If we somehow deliver {(h[1]

n (1))Tu
[2]
1 }Nn=1

to both RX1 and RX2, then RX1 can obtain (h
[1]
n (1))Tu

[1]
1 +z

[1]
n (1) = y

[1]
n (1)− (h

[1]
n (1))Tu

[2]
1 ,

1 ≤ n ≤ N , which are N noisy linearly independent equations in terms of its own informa-

tion symbols. Also, RX2 can use {(h[1]
n (1))Tu

[2]
1 }Nn=1 as N linearly independent equations in

terms its own information symbols (the elements of u
[2]
1 ). The linear independence follows

from the fact that the elements of H[j](t) are i.i.d., and hence, it is full rank almost surely.

Since N < M , the rows of H[j](t) are linearly independent almost surely.

Remark 2. Since the noise variance in each linear equation is bounded (it does not scale

with P ), as far as DoF is concerned, the noise terms can be neglected. Therefore, in our

DoF analysis, we ignore the whole (bounded) noise at receivers.

Similarly, if we deliver {(h[2]
n (1))Tu

[1]
1 }M−Nn=1 to both RX1 and RX2, each of them can

obtain M − N linearly independent equations in terms of its own information symbols.

Thus, we consider the set

{u[1,2]
n }Mn=1 , {(h[1]

n (1))Tu
[2]
1 }Nn=1 ∪ {(h[2]

n (1))Tu
[1]
1 }M−Nn=1 (2.16)

as a set of M (1, 2)-symbols. Note that each of RX1 and RX2 after delivering these

M order-2 symbols will obtain M linearly independent equations in terms of its own

information symbols. Similar order-2 symbols are defined for the receiver pairs (RX2, RX3)

and (RX1, RX3) after the second and third time slots, respectively. Therefore, K2 = 3M

order-2 symbols are generated after this phase. We note that according to delayed CSIT

assumption, the transmitter has access to all the generated order-2 symbols by the end of
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this phase. It only remains to deliver these order-2 symbols to their respective pairs of

receivers. This will be accomplished during phases 2 and 3.

Phase 1 (2N < M ≤ 3N): In this case, consider two different transmission schemes

as follows:

• Scheme 2-1:

Similar to Scheme 1, 3M linear combinations of 6M information symbols are transmit-

ted in 3 time slots. Now, after the first time slot, all the N equations available at RX1 and

all the N equations available at RX2 are considered. Ignoring the noise, we have

RX1 : y[1]
n (1) = (h[1]

n (1))Tu
[1]
1 + (h[1]

n (1))Tu
[2]
1 , 1 ≤ n ≤ N, (2.17)

RX2 : y[2]
n (1) = (h[2]

n (1))Tu
[1]
1 + (h[2]

n (1))Tu
[2]
1 , 1 ≤ n ≤ N. (2.18)

Using the same arguments as in Scheme 1, the set

{u[1,2]
n }2N

n=1 , {(h[1]
n (1))Tu

[2]
1 }Nn=1 ∪ {(h[2]

n (1))Tu
[1]
1 }Nn=1 (2.19)

is considered as a set of 2N (1, 2)-symbols. However, since 2N < M , each of RX1 and RX2

after delivering {u[1,2]
n }2N

n=1 still needs M − 2N extra (linearly independent) equations in

terms of its own information symbols in order to be able to resolve all its M information

symbols.

Note that after the first time slot, RX3 also obtains N linear equations in terms of

information symbols of both RX1 and RX2 almost surely. Consider M − 2N of these

equations ignoring the noise (note that M − 2N ≤ N):

RX3: y[3]
n (1) = (h[3]

n (1))Tu
[1]
1 + (h[3]

n (1))Tu
[2]
1 , 1 ≤ n ≤M − 2N. (2.20)

If we somehow deliver {(h[3]
n (1))Tu

[1]
1 }M−2N

n=1 and {(h[3]
n (1))Tu

[2]
1 }M−2N

n=1 to RX1 and RX2,

respectively, then each of them is provided with M − 2N extra equations in terms of its

information symbols. It is easy to see that the M desired equations which will then be

available at each of RX1 and RX2 are linearly independent, and hence, can be solved

for their M information symbols. To this end, we will deliver {(h[3]
n (1))Tu

[1]
1 }M−2N

n=1 to
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both RX1 and RX3. Then, RX3 can obtain {(h[3]
n (1))Tu

[2]
1 }M−2N

n=1 using (h
[3]
n (1))Tu

[2]
1 =

y
[3]
n (1)− (h

[3]
n (1))Tu

[1]
1 . Hence, (h

[3]
n (1))Tu

[2]
1 , 1 ≤ n ≤M − 2N , will indeed be new symbols

which are available at RX3 and are intended to be delivered to RX2. Now, we use the

following notation:

Notation 1. A symbol (piece of information) which is available at RXj and the transmitter,

and is desired by RXi, i 6= j, is denoted by u[i;j].

Therefore, {(h[3]
n (1))Tu

[1]
1 }M−2N

n=1 is a set ofM−2N (1, 3)-symbols while {(h[3]
n (1))Tu

[2]
1 }M−2N

n=1

is a set of M − 2N side information symbols denoted by {u[2;3]
n }M−2N

n=1 . Note that all

these symbols are available at the transmitter using delayed CSIT. Proceeding in the

same manner, we obtain 2N (2, 3)-symbols, M − 2N (1, 2)-symbols, and M − 2N sym-

bols {u[3;1]
n }M−2N

n=1 (resp. 2N (1, 3)-symbols, M − 2N (2, 3)-symbols, and M − 2N sym-

bols {u[1;2]
n }M−2N

n=1 ) after the second (resp. third) time slot. To summarize, a total of

(M − 2N) + 2N = M order-2 symbols for each pair of receivers are generated together

with {u[2;3]
n }M−2N

n=1 , {u[3;1]
n }M−2N

n=1 , and {u[1;2]
n }M−2N

n=1 .

The order-2 symbols are ready to be fed to phase 2. For the side information symbols,

we note that for any {i, j} ⊂ {1, 2, 3}, if we have side information symbols of both types

u[i;j] and u[j;i], then the following equation is an order-2 (i, j)-symbol:

u[i,j] , u[i;j] + u[j;i]. (2.21)

Indeed, if we deliver u[i,j] to both RXi and RXj, then RXi can obtain u[i;j] by removing

u[j;i] from u[i,j]. RXj can similarly obtain u[j;i].

Since we only have side information symbols of types u[2;3], u[3;1], and u[1;2], we simply

repeat phase 1 with another 6M fresh information symbols (vectors u
′[j]
1 and u

′[j]
2 , 1 ≤ j ≤

3). However, we now interchange the roles of receivers in constructing the side information

symbols. Specifically, after the first time slot, {(h[3]
n (1))Tu

′[2]
1 }M−2N

n=1 serve as M − 2N

(2, 3)-symbols and {(h[3]
n (1))Tu

′[1]
1 }M−2N

n=1 serve as the side information available at RX3

about RX1, denoted by {u[1;3]
n }M−2N

n=1 . The side information symbols {u[2;1]
n }M−2N

n=1 and

{u[3;2]
n }M−2N

n=1 are similarly generated after the second and third time slots, respectively.

Therefore, using (2.21), the following 3× (M − 2N) order-2 symbols can be defined:

u[1,2]
n , u[1;2]

n + u[2;1]
n , 1 ≤ n ≤M − 2N, (2.22)
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u[2,3]
n , u[2;3]

n + u[3;2]
n , 1 ≤ n ≤M − 2N, (2.23)

u[3,1]
n , u[3;1]

n + u[1;3]
n , 1 ≤ n ≤M − 2N. (2.24)

In summary, we transmit K1 = 2 × 6M = 12M fresh information symbols in T1 =

2 × 3 = 6 time slots during two rounds of phase 1, and generate a total of K2 = 2 ×
3M + 3 × (M − 2N) = 3(3M − 2N) order-2 symbols. We also note that all the order-2

symbols generated by the end of this phase are available at the transmitter by delayed

CSIT assumption.

• Scheme 2-2:

It takes T1 = 6 time slots to transmit K1 = 6M fresh information symbols, 2M informa-

tion symbols per receiver. In each time slot, the transmitter transmits M fresh information

symbols of one of the receivers over its M antennas. The first two time slots are dedicated

to RX1. After the first time slot, RX1, obtaining N linearly independent equations over its

N antennas, needs M−N extra equations to resolve all its M information symbols. At the

same time, each of RX2 and RX3 has obtained N linearly independent equations in terms

of information symbols of RX1. Hence, all N equations available at RX2 and M − 2N

of equations available at RX3 are considered as {u[1;2]
n }Nn=1 and {u[1;3]

n }M−2N
n=1 , respectively

(M − 2N ≤ N). If we deliver all these M − N side information symbols to RX1, then it

will be able to decode all its M information symbols.

In the second time slot, the transmitter transmits another M information symbols of

RX1 over its M antennas. In the same way, but interchanging the roles of RX2 and RX3,

we consider M − 2N side information symbols of type u[1;2] at RX2 together with N side

information symbols of type u[1;3] at RX3. Therefore, after the first two time slots, two

sets of M − 2N + N = M −N side information symbols {u[1;2]
n }M−Nn=1 and {u[1;3]

n }M−Nn=1 are

generated at RX2 and RX3, respectively.

Analogously, the next two time slots are dedicated to transmission of 2M information

symbols for RX2 and generation of {u[2;1]
n }M−Nn=1 and {u[2;3]

n }M−Nn=1 , and the last two time

slots are dedicated to transmission of 2M information symbols for RX3 and generation

of {u[3;1]
n }M−Nn=1 and {u[3;2]

n }M−Nn=1 . Then, using (2.22) to (2.24), K2 = 3(M − N) order-2
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symbols {u[1,2]
n }M−Nn=1 , {u[2,3]

n }M−Nn=1 , and {u[3,1]
n }M−Nn=1 are generated, which will all be available

at the transmitter by the end of this phase using delayed CSIT.

Phase 2: In each time slot, the transmitter transmits M ′ order-2 symbols intended for

a specific pair of receivers over M ′ of its antennas, where

M ′ , min(M, 2N). (2.25)

Therefore, this phase takes T2 time slots to transmit all K2 order-2 symbols, where

T2 =
K2

M ′ . (2.26)

Assume that the first T2/3 time slots are dedicated to transmission of (1, 2)-symbols.

After each of these time slots, each of RX1 and RX2 obtains N linearly independent

equations in terms of the transmitted (1, 2)-symbols, and so, needs M ′−N extra equations

to resolve all order-2 symbols transmitted in this time slot. Concurrently, RX3 also obtains

N equations in terms of these order-2 symbols. Since M ′ −N ≤ N , M ′ −N of equations

available at RX3 can serve as the M ′−N extra equations required by both RX1 and RX2.

Now, we use the following notation:

Notation 2. A symbol (piece of information) which is available at RXk and the transmitter,

and is desired by both RXi and RXj, i 6= j 6= k, is denoted by u[i,j;k].

Hence, {u[1,2;3]
n }(M ′−N)T2/3

n=1 denotes the set of (M ′ −N)T2/3 equations available at RX3

and required by both RX1 and RX2 after the first T2/3 time slots. Similarly, assuming that

the second (resp. last) T2/3 time slots are dedicated to transmission of (2, 3)-symbols (resp.

(1, 3)-symbols), after these time slots, RX1 (resp. RX2) will obtain the set{u[2,3;1]
n }(M ′−N)T2/3

n=1

(resp. {u[3,1;2]
n }(M ′−N)T2/3

n=1 ) of (M ′−N)T2/3 equations required by both RX2 and RX3 (resp.

RX1 and RX3).

Now, consider three symbols u[2,3;1], u[3,1;2], and u[1,2;3]. Note that each receiver has

exactly one of these three symbols and needs the other two. Hence, if we deliver two

random linear combinations of these three symbols to all receivers, then RX1 can remove

u[2,3;1] from these two equations, and thereby, solve the two equations in terms of two
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unknowns u[1,2;3] and u[3,1;2]. RX2 (resp. RX3) can also perform a similar operation to

obtain u[1,2;3] and u[2,3;1] (resp. u[3,1;2] and u[2,3;1]). Therefore, defining K3 as

K3 , 2× (M ′ −N)T2

3
=

2(M ′ −N)K2

3M ′ , (2.27)

K3 random linear combinations are constructed as mentioned above and can be interpreted

as order-3 symbols for phase 3.

Phase 3: The transmitter takes K3 order-3 symbols and transmits N symbols in each

time slot using N of its antennas (note N < M). Thus, this phase takes T3 time slots,

where

T3 =
K3

N
=

2(M ′ −N)K2

3M ′N
. (2.28)

Using (2.26) and (2.28), we have

T2 + T3 =
(2M ′ +N)K2

3M ′N
. (2.29)

Since each receiver is equipped with N antennas, it obtains N linearly independent equa-

tions in terms of N order-3 symbols almost surely, and hence, can resolve all order-3

symbols.

Finally, the achievable DoF of each proposed scheme can be found using

DoFBC(M,N,N,N) =
K1

T1 + T2 + T3

. (2.30)

Using (2.29) and (2.30), the achievable DoF of the proposed schemes are found and

summarized in Table 2.1. We note that for N < M ≤ 2N , the achievable DoF is equal to

the upper bound of (2.8), and thus, characterizes the channel DoF for this range of M

and N . Also, the overall achievable DoF for 2N < M ≤ 3N is equal to the maximum of

those of the schemes 2-1 and 2-2:

DoFBC(M,N,N,N) = max

{
12MN

5M + 7N
,

24MN

15M + 2N

}
. (2.31)

This last observation completes the proof.

20



CHAPTER 2: Three-User MIMO BC with Delayed CSIT

Table 2.1: Different parameters together with the achievable DoF of the proposed schemes

for (M,N,N,N) BC with delayed CSIT

Range of M Scheme K1 T1 + T2 + T3 DoFBC(M,N,N,N)

N < M ≤ 2N 1 6M 3 + 2M+N
N

3MN
M+2N

2N < M ≤ 3N
2-1 12M 6 + 5(3M−2N)

2N
24MN

15M+2N

2-2 6M 6 + 5(M−N)
2N

12MN
5M+7N

To get more insight into the behavior of the DoF in (M,N,N,N) BC with delayed CSIT,

we define normalized DoF as DoFBC
norm(M

N
) , 1

3N
DoFBC(M,N,N,N). Also, defining the

transmit-receive antenna ratio as m̄ ,M/N , we can express the achievable DoFBC-dCSIT
norm (m̄)

as follows:

DoFBC-dCSIT
norm (m̄) =



m̄
3

m̄ ≤ 1

m̄
m̄+2

1 < m̄ ≤ 2

8m̄
15m̄+2

2 < m̄ ≤ 2.4

4m̄
5m̄+7

2.4 < m̄ ≤ 3

6
11

3 < m̄

. (2.32)

Figure 2.1 compares our achievable DoFBC-dCSIT
norm (m̄) with the upper bound of (2.8). It

also plots DoF of (M,N,N,N) BC with no CSIT and also with full CSIT for comparison

[56,59]:

DoFBC-nCSIT
norm (m̄) =


m̄
3

0 < m̄ ≤ 1

1
3

1 < m̄
,

DoFBC-fCSIT
norm (m̄) =


m̄
3

0 < m̄ ≤ 3

1 3 < m̄
.

(2.33)

21



CHAPTER 2: Three-User MIMO BC with Delayed CSIT

m̄ = M
N

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2
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1
Upper bound for delayed CSIT

with perfect CSIT
without CSIT

Achieved with delayed CSIT

B

Figure 2.1: The normalized achievable DoF for (M,N,N,N) BC with delayed CSIT for

m̄ = M
N
≤ 3.5, and its comparison with the upper bound and also normalized channel DoFs

with full CSIT and without CSIT.

The point m̄ = 2.4 (indicated as point B in the figure) is the breaking point below

which Scheme 2-1 outperforms Scheme 2-2. Note also that the upper bound of (2.8) is

equal to 2m̄
3m̄+2

for 2 < m̄ < 3, which is strictly greater than DoFBC-dCSIT
norm (m̄) in this range

of m̄. The upper bound and DoFBC-dCSIT
norm (m̄) merge together as m̄ approaches the borders

of this interval.

2.3 (M,N1, N2, N3) BC with Delayed CSIT

In this section, we consider the general (non-symmetric) case of (M,N1, N2, N3) BC with

delayed CSIT and arbitrary numbers of antennas at the receivers. We focus on the case
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where

M ≤ max{N1, N2, N3,min(N1 +N2, N2 +N3, N3 +N1)}. (2.34)

By developing interference alignment ideas to capture unequal numbers of receive antennas,

we obtain achievable DoF regions for the non-symmetric BC. We obtain conditions on

the number of antennas at different nodes under which our achievable DoF regions meet

the outer bound of Proposition 1. As we will see, there will still remain some antenna

configurations for which there exists a gap between the achievable and outer bound regions.

In the following, we assume without loss of generality that N1 ≤ N2 ≤ N3, and thus,

the antenna range of (2.34) is now equivalent to

M ≤ max(N3, N1 +N2). (2.35)

We first scrutinize the outer bound of Proposition 1 for this antenna range and determine

its corner points. We then present our achievable schemes and obtain their tightness

conditions.

Before proceeding with the details of the DoF region with delayed CSIT, we note that

the DoF regions of the (M,N1, N2, N3) BC without CSIT and also with full CSIT are

known [56,59] and given by

DBC-nCSIT(M,N1, N2, N3) ,

{
(d[1], d[2], d[3])

∣∣∣ d[j] ≥ 0, ∀j,
3∑
j=1

d[j]

min (M,Nj)
≤ 1

}
, (2.36)

DBC-fCSIT(M,N1, N2, N3) ,

{
(d[1], d[2], d[3])

∣∣∣ 0 ≤ d[j] ≤ min(M,Nj), ∀j,

d[i] + d[j] ≤ min(M,Ni +Nj), ∀i, j, i 6= j,

3∑
j=1

d[j] ≤ min(M,
3∑
j=1

Nj)

}
. (2.37)

We further partition the range M ≤ max(N3, N1 +N2) into 4 mutually exclusive ranges.

In all ranges, we note that the corner points of the outer bound on the DoF axes are

achievable even without CSIT. Hence, we call these points the “trivial” corner points and

will not discuss their achievability in the following.
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Figure 2.2: Shape of the DoF region for M ≤ N1

1. M ≤ N1: In this range, the outer bound is characterized by the subregion of the first

octant which is confined by the plane d[1]/M + d[2]/M + d[3]/M = 1, as depicted in

Fig. 2.2. It is easy to see that in this case,

DBC-nCSIT = DBC-dCSIT = DBC-dCSIT
outer = DBC-fCSIT. (2.38)

2. N1 < M ≤ N2: In this range, the outer bound is characterized by the subregion

of the first octant which is confined by the plane d[1]/N1 + d[2]/M + d[3]/M = 1, as

depicted in Fig. 2.3. Also, in this case we have

DBC-nCSIT = DBC-dCSIT = DBC-dCSIT
outer ⊂ DBC-fCSIT. (2.39)

3. N2 < M ≤ N3: We define

M ′ , min(M,N1 +N2). (2.40)

The outer bound is determined by the subregion of the first octant which is confined

by the planes d[1]/N1 + d[2]/M ′ + d[3]/M = 1 and d[1]/M ′ + d[2]/N2 + d[3]/M = 1, as
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Figure 2.3: Shape of the DoF region for N1 < M ≤ N2

depicted in Fig. 2.4. In this case, the achievability of the non-trivial corner point

P12 =

(
M ′N1(M ′ −N2)

M ′2 −N1N2

,
M ′N2(M ′ −N1)

M ′2 −N1N2

, 0

)
(2.41)

has been shown in [55] for a two-user MIMO BC with delayed CSIT and M antennas

at the transmitter and N1 and N2 antennas at the receivers. One can also verify that

in this range of antennas,

DBC-nCSIT ⊂ DBC-dCSIT = DBC-dCSIT
outer ⊂ DBC-fCSIT. (2.42)

4. N3 < M ≤ N1 +N2: In this range, the outer bound is characterized by the subregion

of the first octant which is confined by the planes

P1 :
d[1]

N1

+
d[2]

M
+
d[3]

M
= 1, (2.43)

P2 :
d[1]

M
+
d[2]

N2

+
d[3]

M
= 1, (2.44)

P3 :
d[1]

M
+
d[2]

M
+
d[3]

N3

= 1, (2.45)
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Figure 2.4: Shape of the DoF region for N2 < M ≤ N3

as depicted in Fig. 2.5. The corner points

P12 =

(
MN1(M −N2)

M2 −N1N2

,
MN2(M −N1)

M2 −N1N2

, 0

)
, (2.46)

P23 =

(
0,
MN2(M −N3)

M2 −N2N3

,
MN3(M −N2)

M2 −N2N3

)
, (2.47)

P31 =

(
MN1(M −N3)

M2 −N1N3

, 0,
MN3(M −N1)

M2 −N1N3

)
, (2.48)

are achievable in two-user (M,N1, N2) BC, (M.N2, N3) BC, and (M,N3, N1) BC with

delayed CSIT [55]. The corner point P is given by

P =

(
M(m̄2 − 1)(m̄3 − 1)

m̄1m̄2m̄3 − m̄1 − m̄2 − m̄3 + 2
,

M(m̄3 − 1)(m̄1 − 1)

m̄1m̄2m̄3 − m̄1 − m̄2 − m̄3 + 2
,

M(m̄1 − 1)(m̄2 − 1)

m̄1m̄2m̄3 − m̄1 − m̄2 − m̄3 + 2

)
, (2.49)

where m̄i , M/Ni, 1 ≤ i ≤ 3. We note here that for the symmetric case N1 =

N2 = N3 = N , after trivial simplifications, we have P =
(
Nm̄
m̄+2

, Nm̄
m̄+2

, Nm̄
m̄+2

)
. Also, this
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Figure 2.5: Shape of the DoF region outer bound for N3 < M ≤ N1 +N2

range of M will be equivalent to N < M ≤ 2N . Recall that Scheme 1 proposed in

Section 2.2 achieves the channel sum-DoF for N < M ≤ 2N , which is 3Nm̄/(m̄+ 2)

(cf. (2.32)). Therefore, point P for the symmetric case can be achieved by Scheme 1,

and hence the outer bound is tight. In the rest of this section, we propose two different

transmission schemes, namely Scheme 3 and Scheme 4 for N3 < M ≤ N1 + N2 and

obtain the conditions on the number of antennas at different nodes under which the

achievability of point P by our schemes is guaranteed.

• Scheme 3:

This scheme has 3 distinct phases as follows:

Phase 1 (Scheme 3): In this phase, 2M fresh information symbols per time slot

are transmitted for a pair of receivers as in phase 1 of Scheme 1. In particular, Tij time

slots are spent for RXi and RXj, and order-2 symbols {u[i,j]
n }MTij

n=1 are generated, (i, j) ∈
{(1, 2), (2, 3), (3, 1)}. The parameters Tij will be determined later.
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Phase 2 (Scheme 3): The order-2 symbols generated in phase 1 are transmitted

over the channel in this phase as follows: Tij time slots are dedicated to transmission of

{u[i,j]
n }MTij

n=1 for RXi and RXj, (i, j) ∈ {(1, 2), (2, 3), (3, 1)}. In each time slot, M order-2

symbols of type u[i,j] for a specific pair (i, j) are transmitted using the M transmit antennas.

In the time slot dedicated to pair (i, j), RXi and RXj respectively receive Ni and Nj linear

combinations in terms of the transmitted order-2 symbols, and hence, require extra M−Ni

and M −Nj linearly independent combinations to resolve all the M transmitted symbols.

According to (2.34), we have M −Ni ≤ Nk and M −Nj ≤ Nk, where k , {1, 2, 3}\{i, j}.
Now, if we deliver M − Ni (resp. M − Nj) out of Nk equations available at RXk to RXi

(resp. RXj), it will be able to decode all the M transmitted order-2 symbols. Alternatively,

it suffices to deliver M−Ni (resp. M−Nj) random linear combinations of the Nk equations

available at RXk to RXi (resp. RXj). In summary, we have the following observations:

(a) RX1 needs (T12 + T31)(M − N1) random linear combinations of the T12N3 equations

available at RX3 and the T31N2 equations available at RX2.

(b) RX2 needs (T12 + T23)(M − N2) random linear combinations of the T12N3 equations

available at RX3 and the T23N1 equations available at RX1.

(c) RX3 needs (T23 + T31)(M − N3) random linear combinations of the T23N1 equations

available at RX1 and the T31N2 equations available at RX2.

The aforementioned linearly independent combinations will be delivered to each receiver

in phase 3.

Phase 3 (Scheme 3): This phase takes T time slots. In each time slot, M random

linear combinations of the T23N1, T31N2, and T12N3 equations (quantities or symbols)

respectively available at RX1, RX2, and RX3 are transmitted over theM transmit antennas.

Hence, in each time slot, RXi, 1 ≤ i ≤ 3, obtains Ni linear combinations of its desired

symbols out of the whole T23N1 + T31N2 + T12N3 symbols. Note that since Ni < M ,

1 ≤ i ≤ 3, these Ni linear combinations are independent almost surely. According to

observations (a) to (c), T should satisfy the following inequalities simultaneously:

TN1 ≥ (T12 + T31)(M −N1), (2.50)
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TN2 ≥ (T12 + T23)(M −N2), (2.51)

TN3 ≥ (T23 + T31)(M −N3). (2.52)

We indeed choose T to be

T , max

{
(T12 + T31)(M −N1)

N1

,
(T12 + T23)(M −N2)

N2

,
(T23 + T31)(M −N3)

N3

}
, (2.53)

or equivalently,

T , max
{

(T12 + T31)(m̄1 − 1), (T12 + T23)(m̄2 − 1), (T23 + T31)(m̄3 − 1)
}
. (2.54)

If T12, T23, and T31 are scaled by the same factor, the achievable DoF will not change.

Hence, by an appropriate scaling of T12, T23, and T31, we can always ensure that T is an

integer.

Since 2(T12+T23+T31)+T time slots have been spent to deliver M(T12+T31) information

symbols to RX1, M(T12 +T23) information symbols to RX2, and M(T23 +T31) information

symbols to RX3, this transmission scheme achieves the following DoF tuple:

P ′ ,

(
M(T12 + T31)

2(T12 + T23 + T31) + T
,

M(T12 + T23)

2(T12 + T23 + T31) + T
,

M(T23 + T31)

2(T12 + T23 + T31) + T

)
. (2.55)

Any choice of (T12, T23, T31) ∈ (R≥0)3 yields an achievable DoF tuple P ′ given by (2.55)

with T given by (2.54). Now, we examine the achievable DoF tuple P ′ and derive the

necessary and sufficient conditions to have P ′ = P . Let us define

T1 , T31 + T12, (2.56)

T2 , T12 + T23, (2.57)

T3 , T23 + T31. (2.58)

Then, we can rewrite (2.54) and (2.55) as

T = max
{
T1(m̄1 − 1), T2(m̄2 − 1), T3(m̄3 − 1)

}
, (2.59)

P ′ =

(
MT1

T1 + T2 + T3 + T
,

MT2

T1 + T2 + T3 + T
,

MT3

T1 + T2 + T3 + T

)
. (2.60)
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Inserting the coordinates of P ′ into the planes P1, P2, and P3, i.e., (2.43) to (2.45), we get

P1 :
m̄1T1 + T2 + T3

T1 + T2 + T3 + T
=
T1 + T2 + T3 + T1(m̄1 − 1)

T1 + T2 + T3 + T
≤ 1, (2.61)

P2 :
T1 + m̄2T2 + T3

T1 + T2 + T3 + T
=
T1 + T2 + T3 + T2(m̄2 − 1)

T1 + T2 + T3 + T
≤ 1, (2.62)

P3 :
T1 + T2 + m̄3T3

T1 + T2 + T3 + T
=
T1 + T2 + T3 + T3(m̄3 − 1)

T1 + T2 + T3 + T
≤ 1, (2.63)

where the inequalities follow from (2.59). Also, by (2.59), at least one of inequalities

(2.61) to (2.63) holds with equality, and thus, point P ′ always lies on the outer bound.

Therefore, we have P ′ = P if and only if the following set of equations has a solution in

(R≥0)3:

(T12 + T31)(m̄1 − 1) = (T12 + T23)(m̄2 − 1) = (T23 + T31)(m̄3 − 1). (2.64)

The above set of equations determines a line in R3 which passes through the origin and

can also be expressed as:

T12

m̃2m̃3 + m̃3m̃1 − m̃1m̃2

=
T23

m̃3m̃1 + m̃1m̃2 − m̃2m̃3

=
T31

m̃1m̃2 + m̃2m̃3 − m̃3m̃1

, (2.65)

where m̃i , m̄i − 1, 1 ≤ i ≤ 3. Hence, (2.64) has a solution (infinitely many solutions)

in (R≥0)3 if and only if the above line passes through the first octant in R3, i.e., if all the

denominators in (2.65) have the same sign. Equivalently, the inequalities

(m̃2m̃3 + m̃3m̃1 − m̃1m̃2)(m̃3m̃1 + m̃1m̃2 − m̃2m̃3) ≥ 0, (2.66)

(m̃3m̃1 + m̃1m̃2 − m̃2m̃3)(m̃1m̃2 + m̃2m̃3 − m̃3m̃1) ≥ 0, (2.67)

(m̃2m̃3 + m̃3m̃1 − m̃1m̃2)(m̃1m̃2 + m̃2m̃3 − m̃3m̃1) ≥ 0 (2.68)

must hold, which can be simplified to the following inequalities by some manipulations:

|m̃1m̃2 − m̃2m̃3| ≤ m̃3m̃1, (2.69)

|m̃2m̃3 − m̃3m̃1| ≤ m̃1m̃2, (2.70)

|m̃3m̃1 − m̃1m̃2| ≤ m̃2m̃3. (2.71)
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Since N1 ≤ N2 ≤ N3 ≤ M , we have 0 ≤ m̃3 ≤ m̃2 ≤ m̃1, and thus, m̃2m̃3 ≤ m̃1m̃2,

m̃2m̃3 ≤ m̃3m̃1, and m̃3m̃1 ≤ m̃1m̃2. Therefore, the above inequalities reduce to the pair

of inequalities

m̃1m̃2 ≤ m̃2m̃3 + m̃3m̃1, (2.72)

m̃3m̃1 ≤ m̃1m̃2 + m̃2m̃3. (2.73)

Since m̃3 ≤ m̃2, it is easy to see that inequality (2.73) holds for the whole range of

N3 < M ≤ N1 +N2. Hence, one must only satisfy inequality (2.72), or equivalently,(
M

N1

− 1

)(
M

N2

− 1

)
≤
(
M

N3

− 1

)(
M

N1

+
M

N2

− 2

)
. (2.74)

It is observed that the inequality (2.74) does not necessarily hold for the whole range

of N3 < M ≤ N1 + N2. We also note that for the symmetric case N1 = N2 = N3 = N ,

(2.74) holds for the entire range of N < M ≤ 2N .

Finally, let us characterize the achievable DoF region when (2.74) is not satisfied. In

fact, we need to obtain T12, T23, and T31 such that their corresponding point P ′ yields the

largest achievable region. We can easily verify from (2.55) that P ′ satisfies the following

inequalities

d[1] ≤ d[2] + d[3], (2.75)

d[2] ≤ d[3] + d[1], (2.76)

d[3] ≤ d[1] + d[2]. (2.77)

One can also show using (2.49) that the point P satisfies the first two inequalities for the

whole range of N3 < M ≤ N1 + N2, and the third inequality if and only if the inequality

(2.74) holds. Therefore, if (2.74) does not hold, the plane d[3] = d[1] + d[2] intersects the

segment P12P in Fig. 2.5 at a point which is strictly between P12 and P . Let us denote

this point by Pa.

The point Pa is indeed the intersection of the planes d[1]/N1 + d[2]/M + d[3]/M = 1,

d[1]/M + d[2]/N1 + d[3]/M = 1, and d[3] = d[1] + d[2], which can be shown to be

Pa =

(
Mm̃2

m̃1m̃2 + 2(m̃1 + m̃2)
,

Mm̃1

m̃1m̃2 + 2(m̃1 + m̃2)
,

M(m̃1 + m̃2)

m̃1m̃2 + 2(m̃1 + m̃2)

)
. (2.78)

31



CHAPTER 2: Three-User MIMO BC with Delayed CSIT

This point can be achieved by our scheme using T12 = 0 and T23 = m̃1

m̃2
T31 in (2.55).

Therefore, the polyhedron characterized by the corner points Pa, P12, P23, P31, (N1, 0, 0),

(0, N2, 0), and (0, 0, N3) is achievable. The typical shape of this achievable region is depicted

in Fig. 2.6. To show that this is the largest DoF region among all the DoF regions with

corner point P ′ (if (2.74) does not hold), consider the difference between this region and

the outer bound, i.e., the pyramid PP31P23Pa. It suffices to show that P ′ cannot lie inside

this pyramid. To this end, we indeed show that the inequality (2.77), which is a necessary

condition for the coordinates of the point P ′, cannot be satisfied by any point inside the

pyramid. Now, we have the following observations about the corner points of the pyramid:

• P : For this point, as already mentioned, we have d[3] > d[1] + d[2].

• P31 and P23: Since m̃3 ≤ m̃2 ≤ m̃1, one can easily verify using (2.47) and (2.48) that

for these two points we have d[3] ≥ d[1] + d[2].

• Pa: For this point, by definition, we have d[3] = d[1] + d[2].

Since any point inside the pyramid is a weighted summation of the corner points P , P31,

P23, and Pa with positive weights, the above observations imply the desired conclusion.

In the following, we propose another transmission scheme and obtain the conditions

under which it achieves the corner point P on the outer bound.

• Scheme 4:

This scheme has 2 distinct phases.

Phase 1 (Scheme 4): The first T1 time slots are dedicated to transmission of infor-

mation symbols for RX1, M fresh information symbols per time slot over the M transmit

antennas. After each time slot, RX1 receives N1 linearly independent combinations of the

M symbols, and thus, needs M −N1 extra equations to resolve all the M symbols. On the

other hand, RX2 and RX3 respectively receive N2 and N3 linear combinations in terms of

the M information symbols of RX1. Consider the matrix H[i] of size Ni×M of the channel
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Figure 2.6: Shape of the achievable DoF region for N3 < M ≤ N1 + N2 using Scheme 3

when the condition (2.74) does not hold. The region with corner point Pa is achievable.

coefficients of RXi, 1 ≤ i ≤ 3, in a specific time slot. The time index has been omitted for

ease of notations.

Denote the row spaces of H[1], H[2], and H[3] by H[1], H[2], and H[3], repectively. Also,

denote byH[2]∩H[3] (resp.H[1]∩H[2]∩H[3]) the intersection ofH[2] andH[3] (resp.H[1], H[2],

and H[3]). Since H[1], H[2], and H[3] are generated i.i.d. and max{N1, N2, N3} ≤ M , their

row spaces are respectively N1-dimensional, N2-dimensional, and N3-dimensional almost

surely. Thus, since H[1], H[2], and H[3] are generated independent of each other, from

standard linear algebra we have

dim(H[2] ∩H[3]) = (N2 +N3 −M)+, (2.79)

dim(H[1] ∩H[2] ∩H[3]) = (N1 + dim(H[2] ∩H[3])−M)+ = ((N2 +N3 −M)+ +N1 −M)+,

(2.80)

where (x)+ , max(x, 0). We further assume that

M ≤ 1

2
(N1 +N2 +N3). (2.81)
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Then, since M ≤ N2 +N3, one can show in view of (2.81) that

dim(H[2] ∩H[3]) = N2 +N3 −M, almost surely, (2.82)

dim(H[1] ∩H[2] ∩H[3]) = N1 +N2 +N3 − 2M, almost surely. (2.83)

Denote by H[123] the matrix of size (N2 + N3 −M) ×M containing the basis vectors of

H[2] ∩ H[3] as its rows, whose first N1 + N2 + N3 − 2M rows also constitute a basis for

H[1] ∩ H[2] ∩ H[3]. Therefore, the last (N2 + N3 −M)− (N1 + N2 + N3 − 2M) = M −N1

rows of H[123] are linearly independent of the rows of H[1]. Also, since all these M − N1

row vectors lie in both H[2] and H[3], if any of them is used as the coefficient vector to

linearly combine the M transmitted information symbols, the result is available at both

RX2 and RX3. Hence, M − N1 linearly independent combinations can be formed which

are all available at both RX2 and RX3. These equations are linearly independent of the

equations available at RX1, and thus, constitute the M −N1 extra equations required by

RX1. We denote each of them as a symbol of type u[1;2,3]. Therefore, after T1 time slots,

T1(M −N2) symbols of type u[1;2,3] are generated.

Similarly, the next T2 and T3 time slots are dedicated to transmission of information

symbols of RX2 and RX3 and generation of T2(M −N2) and T3(M −N3) symbols of type

u[2;3,1] and u[3;1,2], respectively. We emphasize that the same condition of (2.81) is also

required in these T2 and T3 time slots. The generated symbols will be delivered to their

corresponding receiver in phase 2.

Phase 2 (Scheme 4): This phase takes T time slots. In each time slot, M random

linear combinations of all the T1(M −N1) + T2(M −N2) + T3(M −N3) symbols generated

in phase 1 are transmitted over the M transmit antennas. We note that RXi, 1 ≤ i ≤ 3,

needs Ti(M −Ni) out of these symbols, while having the rest of symbols. Hence, in each

time slot, RXi receives Ni linearly independent equations solely in terms of its desired

symbols. Therefore, the following condition guarantees that each receiver obtains enough

number of equations to resolve all its desired symbols:

T = max

{
T1(M −N1)

N1

,
T2(M −N2)

N2

,
T3(M −N3)

N3

}
, (2.84)
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or equivalently,

T = max
{
T1(m̄1 − 1), T2(m̄2 − 1), T3(m̄3 − 1)

}
. (2.85)

The achieved DoF tuple is then given by

P ′ =

(
MT1

T1 + T2 + T3 + T
,

MT2

T1 + T2 + T3 + T
,

MT1

T1 + T2 + T3 + T

)
. (2.86)

Since the expressions for T and P ′ are the same as (2.59) and (2.60), in order for

Scheme 4 to achieve the corner point P on the outer bound, the following set of equations

should have a solution in (R≥0)3:

T1(m̄1 − 1) = T2(m̄2 − 1) = T3(m̄3 − 1). (2.87)

The above equation is a line which passes through the origin in R3. Since m̄i ≥ 1, 1 ≤ i ≤ 3,

it passes through the first octant, and thus, there are infinitely many solutions in (R≥0)3

for (2.87). Therefore, Scheme 4 achieves the corner point P if and only if the inequality

(2.81) is satisfied.

In summary, let us define the following regions:

D1 ,

{
(d[1], d[2], d[3])

∣∣∣ d[j] ≥ 0, ∀j, d[1]

min(M,N1)
+
d[2]

M
+
d[3]

M
≤ 1

}
, (2.88)

D2 ,

{
(d[1], d[2], d[3])

∣∣∣ d[j] ≥ 0, ∀j, d[1]

N1

+
d[2]

M
+
d[3]

M
≤ 1,

d[1]

M
+
d[2]

N2

+
d[3]

M
≤ 1

}
, (2.89)

D3 ,

{
(d[1], d[2], d[3])

∣∣∣ d[j] ≥ 0, ∀j, d[1]

N1

+
d[2]

M
+
d[3]

M
≤ 1,

d[1]

M
+
d[2]

N2

+
d[3]

M
≤ 1,

d[1]

M
+
d[2]

M
+
d[3]

N3

≤ 1

}
. (2.90)

Define the condition C ∗ as

C ∗ ,M ≤ 1

2
(N1 +N2 +N3) or

(
M

N1

− 1

)(
M

N2

− 1

)
≤
(
M

N3

− 1

)(
M

N1

+
M

N2

− 2

)
,

(2.91)
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and also, define D4 as the region in the first octant which is confined by the plane passing

through the points Pa, P23, and P31. Then, the results of this section are summarized in

the following theorem:

Theorem 2. In (M,N1, N2, N3) BC with delayed CSIT and N1 ≤ N2 ≤ N3 and M ≤
max(N3, N1 +N2), we have the following:

(i) If M ≤ N2, DBC-dCSIT = D1,

(ii) If N2 < M ≤ N3, DBC-dCSIT = D2,

(iii) If N3 < M ≤ N1 +N2 and condition C ∗ is satisfied, DBC-dCSIT = D3.

(iv) If N3 < M ≤ N1 +N2 and condition C ∗ is not satisfied, D3 ∩D4 ⊆ DBC-dCSIT ⊆ D3.

2.4 Conclusion

We studied the impact of delayed CSIT on the DoF of the 3-user Gaussian MIMO broadcast

channel. We first considered the symmetric case with M antennas at the transmitter and

N antennas at each receiver. By developing new multiphase transmission schemes, we

obtained achievable sum-DoF for any pair of positive integers M,N ∈ Z+. Moreover, we

showed that our achievable sum-DoF meets the upper bound for M ≤ 2N and M ≥ 3N ,

and hence, characterizes the channel sum-DoF with delayed CSIT. For 2N < M < 3N , we

achieved DoF values close to the best known upper bound on the sum-DoF of this channel.

We then investigated the general MIMO case with arbitrary number of antennas at

each node. We obtained achievable DoF regions for specific antenna configurations and

obtained the subclass of antenna configuration sfor which our achievable DoF region is

tight and characterizes the channel DoF region with delayed CSIT. Our results show that

for a large subset of antenna configurations, the sum-DoF and DoF region of the three-user

MIMO broadcast channel with delayed CSIT strictly lie between those with no CSIT and

full CSIT.
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Chapter 3

SISO Interference and X Channels

with Delayed CSIT

In this chapter1, we study SISO Gaussian interference and X channels with delayed CSIT. It

is known that both channels have no more than one degree of freedom (DoF) without CSI at

transmitters. We propose multi-phase transmission schemes that exploit the delayed CSIT

to achieve DoF values greater than one, except for the two-user interference channel whose

DoF is equal to one even with full CSIT. In contrast to the broadcast channel, in networks

with distributed transmitters such as interference and X channels, there is a fundamental

constraint in using the knowledge of past CSI at transmitters: Each transmitter has only

access to its own information symbols. Indeed, a transmitter cannot obtain the whole past

interference at a receiver when the interference is due to more than one interferer. This

restriction turns out to be a performance limiting factor in terms of DoF of the system for

networks with more than two users.

After presenting the system model in Section 3.1, we present and briefly discuss our

main results of this chapter in Section 3.2. Then, we prove our results for interference and X

channels in Sections 3.3 and 3.4. In specific, we first investigate the 3-user SISO interference

channel with delayed CSIT and show that 36/31 DoF is achievable in this channel. This is

greater than the previously reported 9/8 DoF in [35]. Then, we consider the K-user SISO

1Part of the work in this chapter has been reported in [1, 2]
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interference channel for K > 3 with delayed CSIT, and propose a transmission scheme

that achieves DoF values which are strictly increasing in K and approach the limiting

value of 4/(6 ln 2− 1) ≈ 1.2663 as K →∞. Thereafter, we investigate the X channel with

delayed CSIT in Section 3.4. We first consider the 2 × 3 SISO X channel as an example

and show that this channel can achieve 9/7 DoF under delayed CSIT assumption. By

generalizing our transmission scheme to the 2×K SISO X channel with delayed CSIT, we

achieve DoF values which are strictly increasing in K and approach the limiting value of

1/ ln 2 ≈ 1.4427 as K →∞. For K ≥ 3, our achievable DoFs for the 2×K X channel are

strictly greater that the achievable DoFs reported in [23] for the K × K X channel with

delayed CSIT. Finally, in Section 3.5, we consider the effect of limited network connectivity

in the form of so-called “K-user r-cyclic interference channel” wherein each transmitter

causes interference on a subset of r− 1 receivers which are neighbouring its paired receiver

in a cyclic manner. We first show that DoF of this channel without any CSI at the

transmitters is equal to K/r. We then focus on r = 3 and study the impact of delayed

CSIT on DoF of this channel. We propose a transmission scheme that achieves DoF values

greater than K/r for every K ≥ 3. We conclude this chapter in Section 3.6.

3.1 System Model

A K-user interference channel (IC) with private messages is a set of K transmitters and

K receivers, depicted in Fig. 3.1, where transmitter i (TXi), 1 ≤ i ≤ K, wishes to commu-

nicate a message W [i] ∈ {1, 2, 3, · · · , 2τR[i]} of rate R[i] to receiver i (RXi) over a block of τ

channel uses (or time slots). In time slot t, t = 1, 2, · · · , τ , signal x[i](t) ∈ C is transmitted

by TXi, 1 ≤ i ≤ K, and signal y[j](t) ∈ C is received by RXj, 1 ≤ j ≤ K, where

y[j](t) =
K∑
i=1

h[ji](t)x[i](t) + z[j](t), (3.1)

and h[ji](t) ∈ C is the channel coefficient from TXi to RXj, and z[j](t) ∼ CN (0, 1) is the

complex additive white Gaussian noise (AWGN) at RXj. The transmitted signal x[i](t),

1 ≤ i ≤ K, is subject to power constraint P , i.e., E[|x[i](t)|2] ≤ P . The K × K channel

matrix H(t) in time slot t is defined as H(t) ,
(
h[ji](t)

)
1≤i,j≤K . The channel coefficients
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Encoder K Decoder K

Encoder 2 Decoder 2

Encoder 1 Decoder 1

Figure 3.1: K-user SISO interference channel

are i.i.d. across all nodes as well as time. The channel coefficients are assumed to be drawn

according to a finite-variance continuous distribution.

An M ×K X channel with private messages is a set of M transmitters and K receivers

as depicted in Fig. 3.2, where TXi, 1 ≤ i ≤M , has a message W [i|j] ∈ {1, 2, 3, · · · , 2τR[i|j]}
of rate R[i|j] for each receiver RXj, 1 ≤ j ≤ K. The input-output relationship of this

channel is given by

y[j](t) =
M∑
i=1

h[ji](t)x[i](t) + z[j](t), (3.2)

with the same channel parameters as the IC and power constraint P at each transmitter.

The channel matrix H(t) here is a K ×M matrix defined as H(t) ,
(
h[ji](t)

)
1≤i≤M,1≤j≤K .

The X channel investigated in this chapter has M = 2 transmitters, although our achievable

results are also valid for M > 2.

We make the following assumption about the knowledge of CSI at the transmitters and

receivers:
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Encoder M

Decoder K

Encoder 2
Decoder 2

Encoder 1

Decoder 1

Figure 3.2: M ×K SISO X channel

Definition 5 (Delayed CSIT for IC and X Channel). Each RXj, 1 ≤ j ≤ K, knows all

its incoming channel coefficients in time slot t, i.e., {h[ji](t)}Ki=1 in the K-user IC and

{h[ji](t)}Mi=1 in the M ×K X channel, perfectly and instantaneously, while having access to

the channel coefficients of the other receivers with one time slot delay. The channel matrix

H(t) becomes available at all transmitters with one time slot delay via noiseless feedback

links.

We denote the side information available at TXi before time slot t by I [i](t). Hence,

under the delayed CSIT assumption, we have I [i](t) , {H(t′)}t−1
t′=1. A block code with

feedback is defined as follows:

Definition 6 (Block Code with Feedback for IC and X Channel). A (2τR, τ) code of block

length τ and rate R =
(
R[i]
)K
i=1

with feedback in the K-user IC is defined as K sets of

encoding functions {ϕ[i]
t,τ}τt=1, 1 ≤ i ≤ K, such that

x[i](t) = ϕ
[i]
t,τ (W

[i], I [i](t)), 1 ≤ t ≤ τ, (3.3)

together with K decoding functions ψ
[j]
τ , 1 ≤ j ≤ K, such that

Ŵ [j]
τ = ψ[j]

τ (
{
y[j](t)

}τ
t=1

, {H(t)}τ−1
t=1 , {h[ji](τ)}Ki=1). (3.4)
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Similarly, A (2τR, τ) code of block length τ and rate R =
(
R[i|j])

1≤i≤M,1≤j≤K with feedback

in the M ×K X channel is defined as M sets of encoding functions {ϕ[i]
t,τ}τt=1, 1 ≤ i ≤M ,

such that

x[i](t) = ϕ
[i]
t,τ ({W [i|j]}Kj=1, I [i](t)), 1 ≤ t ≤ τ, (3.5)

together with K decoding functions ψ
[j]
τ , 1 ≤ j ≤ K, such that

{Ŵ [i|j]
τ }Mi=1 = ψ[j]

τ (
{
y[j](t)

}τ
t=1

, {H(t)}τ−1
t=1 , {h[ji](τ)}Mi=1). (3.6)

All encoding and decoding functions are revealed to all transmitters and receivers before

the transmission begins. The probability of error, achievable rate, and capacity region are

defined exactly as in Section 2.1. We study these channels in the limit of P → ∞ and

define their DoF as follows:

Definition 7 (DoF for IC and X Channel). If R(P ) = (R1(P ), R2(P ), · · · , RN(P )) ∈ C(P )

is an achievable rate tuple, then d , limP→∞
R(P )
log2 P

is called an achievable DoF tuple and

d1 + d2 + · · ·+ dN is called an achievable sum-DoF or simply achievable DoF. The closure

of the set of all achievable DoF tuples is called the DoF region and denoted by D, and the

channel sum-DoF, or simply DoF, is defined as maxd∈D d1 + d2 + · · ·+ dN .

In this dissertation, DoFIC
1 (K) and DoFX

1 (M,K) represent achievable DoFs for the K-

user SISO IC and M × K SISO X channel with delayed CSIT, respectively. We indeed

consider a more general transmission setup in this chapter: For the K-user SISO IC, fix an

integerm, 1 ≤ m ≤ K. Denote by Sm a subset of cardinalitym of {1, 2, · · · , K}. Obviously,

SK = {1, 2, · · · , K}. For every subset Sm ⊆ {1, 2, · · · , K}, and every i ∈ Sm, TXi wishes

to communicate a common message W [i|Sm] of rate R[i|Sm] to all receivers RXj, j ∈ Sm.

We call W [i|Sm] an order-m message. The case m = 1 represents the interference channel

with private messages as described earlier. The codes, probabilities of error, achievable

rates, capacity region, and degrees of freedom are similarly defined as before, now for a

K
(
K
m−1

)
-tuple of rates. For any 1 ≤ m ≤ K, an achievable DoF of transmission of order-m

messages over the K-user SISO IC with delayed CSIT is denoted by DoFIC
m (K).

Similarly, for the M ×K X channel, fix an integer m, 1 ≤ m ≤ K. For every subset

Sm ⊆ {1, 2, · · · , K}, and every i ∈ {1, 2, · · · ,M}, TXi wishes to communicate a common
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message W [i|Sm] of rate R[i|Sm] to all receivers RXj, j ∈ Sm. The case m = 1 corresponds

to the X channel with private messages. The achievable rates, capacity region, and degrees

of freedom are similarly defined, now for an M
(
K
m

)
-tuple of rates. An achievable DoF of

this channel under delayed CSIT assumption is denoted by DoFX
m(M,K) for 1 ≤ m ≤ K.

Before proceeding with our results, let us introduce some notations which are widely

used throughout this chapter.

Notation 3. We use u[i|Sm;Sn] to denote a symbol which is available at TXi and also at

every RXj, j ∈ Sn, and is intended to be decoded at every RXk, k ∈ Sm. We refer to

u[i|Sm;Sn] as an (Sm;Sn)-symbol available at TXi. The order of symbol u[i|Sm;Sn] is defined

as the ordered pair (m,n) containing the cardinalities of Sm and Sn, respectively. For

instance, u[2|1,5;3] is a (1, 5; 3)-symbol of order (2, 1) which is available at TX2 and RX3,

and is intended to be decoded at both RX1 and RX5, where the set braces “{” and “}” have

been omitted to avoid cumbersome notations. For ease of notation, a symbol u[i|Sm;Sn] with

Sn = {} is denoted by u[i|Sm] and is called an Sm-symbol of order m.

3.2 Main Results and Discussion

3.2.1 Main Results

The main results of this chapter are summarized in the following two theorems:

Theorem 3. The K-user (K ≥ 3) SISO interference channel with delayed CSIT can

achieve DoFIC
1 (K) degrees of freedom almost surely, where DoFIC

1 (K) is obtained by

DoFIC
1 (K) =

[
1− K − 2

K(K − 1)2
− K − 2

K − 1
A2(K)

]−1

, (3.7)

and A2(K) is given by

A2(K) , − (K − 2)(K − 3)

4 [4(K − 2)2 − 1]
+

K−3∑
`1=0

(K − `1 − 1)(3`2
1 + `1 − 1)

2(K − `1)(4`2
1 − 1)

K−2∏
`2=`1+1

`2

2`2 + 1
. (3.8)
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Moreover, for 2 ≤ m ≤ K, DoFIC
m (K) degrees of freedom is achievable in transmission

of order-m messages, where DoFIC
m (K) is given by[

1 +
(K −m)(K −m− 1)

2m[4(K −m)2 − 1]
−

K−m−1∑
`1=0

(K −m− `1 + 1)(3`2
1 + `1 − 1)

2(K − `1)(4`2
1 − 1)

K−m∏
j=`1+1

`2

2`2 + 1

]−1

.

(3.9)

Proof. See Section 3.3.

Theorem 4. The 2 × K SISO X channel with delayed CSIT can achieve DoFX
1 (2, K)

degrees of freedom almost surely, where

DoFX
1 (2, K) =

[
1−

K−2∑
`1=0

(K − 1− `1)(`1 + 1)

(K − `1)(2`1 + 1)

K−1∏
`2=`1+1

`2

2`2 + 1

]−1

. (3.10)

More generally, for 2 ≤ m ≤ K, DoFX
m(2, K) degrees of freedom is achievable in trans-

mission of order-m messages, where

DoFX
m(2, K) =

[
1−

K−m−1∑
`1=0

(K −m− `1)(`1 + 1)

(K − `1)(2`1 + 1)

K−m∏
`2=`1+1

`2

2`2 + 1

]−1

. (3.11)

Proof. See Section 3.4.

3.2.2 Discussion

Our achievable DoFs for the K-user SISO IC and 2 × K SISO X channel with private

messages and delayed CSIT are plotted in Figs. 3.3 and 3.4 for 2 ≤ K ≤ 75, respectively.

For the sake of comparison, the achievable DoF reported in [23] for the K × K SISO X

channel with delayed CSIT is also plotted in Fig. 3.4. As it is seen in the figure, for K ≥ 3,

our achievable DoF for the 2×K X channel, i.e., DoFX
1 (2, K) presented in Theorem 4, is

strictly greater than 4
3
− 2

3(3K−1)
which is achieved in [23] for the K × K X channel. It

can be also easily shown that our achievable DoFs are strictly increasing in K, and it is

proved in Appendix C that, as K → ∞, the achievable DoFs approach limiting values

of 4
6 ln 2−1

≈ 1.2663 and 1
ln 2
≈ 1.4427 for the IC and X channel, respectively. Tables 3.1
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K
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Figure 3.3: Our achievable DoF for the K-user SISO interference channel with delayed

CSIT and 3 ≤ K ≤ 75.

and 3.2 list our achievable DoFs for the K-user IC and 2 × K X channel with delayed

CSIT and 2 ≤ K ≤ 5. For K = 3, we achieve 36
31

DoF which is greater than the previously

reported value of 9
8

DoF in [35].

Remark 3. Using scaled versions of the schemes proposed in Sections 3.3 and 3.4, NDoFIC
1 (K)

and NDoFX
1 (2, K) are achievable in the K-user MIMO IC and 2 ×K MIMO X channel,

respectively, with N antennas available at each node and with delayed CSIT.

The schemes proposed in the next two sections for the K-user interference and 2×K
X channels operate in K main phases: In phase 1, the transmitters send fresh information

symbols together with some redundancy over time. The redundancy is such that “part”

of the interference can be removed at each receiver by the end of this phase. Then, each

transmitter exploits its knowledge of past CSI and its own transmitted information symbols

to obtain the interference terms it caused at the non-intended receivers (if not already
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K

Our achievable DoF for 2   K X channel
Acheivable DoF in [23] for K   K X channel
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Figure 3.4: Our achievable DoF for the SISO X channel with delayed CSIT and 2 ≤ K ≤
75.

removed). Each of these interference terms, if being retransmitted, can align the past

interference at a receiver while providing a useful linear combination for another receiver.

Hence, they can be considered as common messages of order 2, which are desired by pairs

of receivers, and are fed to the system in phase 2 together with some redundancy over time.

The transmitted redundancy again helps some receivers to remove part of the interference.

The transmitters again using the past CSI and their own transmitted order-2 messages,

will obtain their non-removed interference terms at non-intended receivers. This yields

Table 3.1: Achievable DoFs for the K-user SISO interference channel with delayed CSIT

K 2 3 4 5

Our achievable DoF for the K-user IC 1 36
31

45
38

1400
1171
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Table 3.2: Achievable DoFs for the M ×K SISO X channel with delayed CSIT

K 2 3 4 5

Our achievable DoF for the 2×K X channel 6
5

9
7

105
79

1575
1163

Achievable DoF in [23] for the K ×K X channel 6
5

5
4

14
11

9
7

generation of common messages for subsets of cardinality 3 of receivers. These order-3

messages, in turn, will be transmitted in phase 3, towards generation of order-4 messages.

This procedure goes on phase by phase up to phase K where order-K messages will be

delivered to all receivers without generating higher order messages.

Remark 4. As mentioned in Chapter 2, the term “information symbol” in this dissertation

refers to a symbol from an i.i.d. Gaussian codeword. Also, since the noise components which

are observed by receivers in our transmission schemes have finite variances, they do not

affect the DoF. Therefore, throughout this dissertation the noise is ignored in analysis of

the transmission schemes.

3.3 Proof of Theorem 3

In this section, we prove that DoFIC
m (K), 1 ≤ m ≤ K, stated in Theorem 3 can be achieved

in the K-user SISO IC with delayed CSIT. To this end, we first elaborate on our achievable

scheme for the case of K = 3. We then propose our transmission scheme for the general

K-user setting.

3.3.1 The 3-user SISO Interference Channel with Delayed CSIT

In order to achieve DoFIC
1 (3) = 36/31, suggested by (3.7), transmission is accomplished

in three distinct phases. The fresh information symbols are fed to the channel in the

first phase. In the remaining phases, extra linear equations are delivered to the receivers
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in such a way that the interference is properly aligned at each receiver. At the end of

transmission scheme, the receivers are left with the desired number of equations in terms

of their respective information symbols.

It is important to point out that we will use several random coefficients during our

transmission scheme to construct and transmit different channel input symbols. These

coefficients are randomly generated and revealed to all transmitters and receivers before

the beginning of communication. The transmission phases are described in detail as follows:

Phase 1 (3-user IC with Delayed CSIT): This phase takes 5 time slots, dur-

ing which each transmitter feeds 4 fresh information symbols to the channel. Let u[i] ,

[u
[i]
1 , u

[i]
2 , u

[i]
3 , u

[i]
4 ]T denote the vector containing the information symbols of TXi, 1 ≤ i ≤ 3.

In each time slot, every transmitter transmits a random linear combination of its 4 infor-

mation symbols. Let c[i](t) ,
[
c

[i]
1 (t), c

[i]
2 (t), c

[i]
3 (t), c

[i]
4 (t)

]T
denote the vector containing the

random coefficients of the linear combination transmitted by TXi, 1 ≤ i ≤ 3, over time slot

t, 1 ≤ t ≤ 5, i.e., x[i](t) =
(
c[i](t)

)T
u[i]. Ignoring the noise terms at receivers, the received

signal at RXj, 1 ≤ j ≤ 3, in time slot t, 1 ≤ t ≤ 5, is equal to

y[j](t) = h[j1](t)x[1](t) + h[j2](t)x[2](t) + h[j3](t)x[3](t)

= h[j1](t)
(
c[1](t)

)T
u[1] + h[j2](t)

(
c[2](t)

)T
u[2] + h[j3](t)

(
c[3](t)

)T
u[3]. (3.12)

Therefore, by the end of phase 1, RXj obtains the following system of linear equations in

terms of all transmitted information symbols:

y[j] = Dj1C
[1]u[1] + Dj2C

[2]u[2] + Dj3C
[3]u[3], 1 ≤ j ≤ 3, (3.13)

where y[j] is the 5 × 1 vector of received symbols at RXj during 5 time slots, Dji is the

5 × 5 diagonal matrix containing h[ji](t), 1 ≤ t ≤ 5, on its main diagonal, and C[i] is the

5×4 matrix containing the random coefficients employed by TXi during these 5 time slots,

C[i] ,
[
c[i](1)|c[i](2)|c[i](3)|c[i](4)|c[i](5)

]T
, 1 ≤ i ≤ 3. (3.14)

Since the elements of C[i] are i.i.d., it is full rank almost surely, i.e., rank(C[i]) = 4.

Furthermore, Dji is a diagonal matrix with i.i.d. elements on its main diagonal, and
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thereby, it is also full rank almost surely, i.e., rank(Dji) = 5. Since C[i] and Dji are

independent of each other, their multiplication is also full rank almost surely. This means

rank(Qji) = 4, where Qji , DjiC
[i], 1 ≤ i, j ≤ 3. Since Qji is a full rank 5× 4 matrix, its

left null space is one dimensional almost surely. As a result, for each (i, j), 1 ≤ i, j ≤ 3,

there exists a nonzero 5× 1 vector ωji = [ωji1, ωji2, ωji3, ωji4, ωji5]T such that

QT
jiωji = 04×1, 1 ≤ i, j ≤ 3. (3.15)

Note that by the end of phase 1, all transmitters and receivers have access to Qji,

1 ≤ i, j ≤ 3, and thus, can calculate ωji, 1 ≤ i, j ≤ 3. Using (3.13) and (3.15), RX1 can

obtain

(y[1])Tω13 = (u[1])TQT
11ω13 + (u[2])TQT

12ω13 + (u[3])T

0︷ ︸︸ ︷
QT

13ω13

= (u[1])TQT
11ω13 + (u[2])TQT

12ω13, (3.16)

(y[1])Tω12 = (u[1])TQT
11ω12 + (u[2])T

0︷ ︸︸ ︷
QT

12ω12 +(u[3])TQT
13ω12

= (u[1])TQT
11ω12 + (u[3])TQT

13ω12. (3.17)

Similarly, RX2 can obtain

(y[2])Tω21 = (u[2])TQT
22ω21 + (u[3])TQT

23ω21, (3.18)

(y[2])Tω23 = (u[2])TQT
22ω23 + (u[1])TQT

21ω23, (3.19)

and RX3 can obtain

(y[3])Tω31 = (u[3])TQT
33ω31 + (u[2])TQT

32ω31, (3.20)

(y[3])Tω32 = (u[3])TQT
33ω32 + (u[1])TQT

31ω32. (3.21)

If we deliver (u[1])TQT
21ω23, (u[2])TQT

12ω13, (u[1])TQT
31ω32, and (u[3])TQT

13ω12 to RX1,

then it can obtain enough equations to resolve its four desired information symbols as

follows:

• (u[1])TQT
21ω23 and (u[1])TQT

31ω32 are two desired equations in terms of 4×1 informa-

tion vector u[1].
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• (u[2])TQT
12ω13 can be subtracted from (y[1])Tω13 to yield (u[1])TQT

11ω13, which is a

desired equation in terms of u[1].

• (u[3])TQT
13ω12 can be subtracted from (y[1])Tω12 to yield (u[1])TQT

11ω12, which is a

desired equation in terms of u[1].

Therefore, RX1 will have a system of four linear equations in terms of 4 × 1 information

vector u[1], namely, (u[1])TQT
21ω23, (u[1])TQT

31ω32, (u[1])TQT
11ω13, and (u[1])TQT

11ω12. As

we prove in Appendix B.1, these equations are linearly independent almost surely, and

therefore, RX1 can solve them to obtain u[1]. By a similar argument, having (u[1])TQT
21ω23,

(u[2])TQT
12ω13, (u[2])TQT

32ω31, and (u[3])TQT
23ω21, RX2 can obtain four linearly independent

equations in terms of u[2], and so, it can solve them to obtain u[2]. Also, after providing

RX3 with (u[1])TQT
31ω32, (u[3])TQT

13ω12, (u[2])TQT
32ω31, and (u[3])TQT

23ω21, it can obtain

enough equations to solve for u[3].

Therefore, our goal in phase 2 boils down to delivering (u[1])TQT
21ω23 and (u[2])TQT

12ω13

to both RX1 and RX2, delivering (u[1])TQT
31ω32 and (u[3])TQT

13ω12 to both RX1 and RX3,

and delivering (u[2])TQT
32ω31 and (u[3])TQT

23ω21 to both RX2 and RX3. Therefore, the

following order-2 symbols can be defined:

u[1|1,2] , (u[1])TQT
21ω23, u[1|1,3] , (u[1])TQT

31ω32, (3.22)

u[2|1,2] , (u[2])TQT
12ω13, u[2|2,3] , (u[2])TQT

32ω31, (3.23)

u[3|1,3] , (u[3])TQT
13ω12, u[3|2,3] , (u[3])TQT

23ω21. (3.24)

Phase 2 (3-user IC with Delayed CSIT): This phase takes 12 time slots to transmit

18 order-2 symbols generated in phase 1. Since we have generated only 6 order-2 symbols

in phase 1, we simply repeat phase 1 three times to obtain 18 order-2 symbols required in

phase 2. This takes 3 × 5 = 15 time slots and hence, phase 2 begins at time slot t = 16.

Consequently, at the beginning of phase 2, for every (i, j), 1 ≤ i, j ≤ 3, i < j, there are

three order-2 symbols u
[i|i,j]
1 , u

[i|i,j]
2 , and u

[i|i,j]
3 at TXi and three order-2 symbols u

[j|i,j]
1 ,

u
[j|i,j]
2 , and u

[j|i,j]
3 at TXj. The transmission in phase 2 is then carried out as follows:

In the first time slot of phase 2, TX1 transmits a random linear combination of u
[1|1,2]
1

and u
[1|1,2]
2 while TX2 transmits u

[2|1,2]
1 . In the second time slot, TX1 transmits another
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random linear combination of u
[1|1,2]
1 and u

[1|1,2]
2 while TX2 repeats u

[2|1,2]
1 . TX3 is silent

during these two time slots. After these two time slots, every receiver obtains two linearly

independent equations in terms of three (1, 2)-symbols u
[1|1,2]
1 , u

[1|1,2]
2 , and u

[2|1,2]
1 almost

surely. Thus, each of RX1 and RX2 in order to resolve these three order-2 symbols, needs

an extra equation. Consider the equations received at RX3 during these two time slots:

y[3](t) = h[31](t)x[1](t)+h[32](t)x[2](t) = h[31](t)
(
c[1|1,2](t)

)T
u[1|1,2]+h[32](t)u

[2|1,2]
1 , t = 16, 17,

(3.25)

where u[1|1,2],
[
u

[1|1,2]
1 , u

[1|1,2]
2

]T
, and c[1|1,2](t),

[
c

[1|1,2]
1 (t), c

[1|1,2]
2 (t)

]T
is the 2 × 1 vector of

random coefficients employed by TX1 in time slot t. Now, RX3 can form

1

h[32](16)
y3(16)− 1

h[32](17)
y3(17) =

[
h[31](16)

h[32](16)

(
c[1|1,2](16)

)T − h[31](17)

h[32](17)

(
c[1|1,2](17)

)T]
u[1|1,2],

(3.26)

which is an equation solely in terms of the elements of u[1|1,2]. This is the side information

that RX3 has about the order-2 symbols of RX1 and RX2, and can provide the extra

equation required by both RX1 and RX2 to resolve their order-2 symbols. Based on our

terminology, this quantity is denoted by u[1|1,2;3]. The next two time slots are dedicated

to the transmission of another three order-2 (1, 2)-symbols. However, this time, the roles

of TX1 and TX2 are exchanged. Specifically, during time slots t = 18, 19, TX2 transmits

two random linear combinations of u
[2|1,2]
2 and u

[2|1,2]
3 while TX1 repeats the same symbol

u
[1|1,2]
3 . The side information u[2|1,2;3] is similarly formed at RX3 by the end of these two

time slots.

Up to this point, we have sent 6 order-2 (1, 2)-symbols in 4 time slots, and generated

two pieces of side information at RX3. Analogously, for each of receiver pairs {1, 3} and

{2, 3}, the above procedure can be repeated using their respective transmitters. Therefore,

by spending another 2× 4 = 8 time slots, we will transmit 2× 6 = 12 order-2 symbols and

generate the side information u[2|2,3;1] and u[3|2,3;1] at RX1, and u[1|1,3;2] and u[3|1,3;2] at RX2.

Therefore, our goal is reduced to

(a) delivering u[1|1,2;3] and u[2|1,2;3] to both RX1 and RX2,

(b) delivering u[1|1,3;2] and u[3|1,3;2] to both RX1 and RX3,
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(c) delivering u[2|2,3;1] and u[3|2,3;1] to both RX2 and RX3.

To this end, consider a random linear combination α1u
[1|1,2;3] +α2u

[1|1,3;2]. If we deliver this

quantity to all three receivers, then

• RX1 obtains a linear equation in terms of its own desired symbols,

• since RX2 has u[1|1,3;2], it can cancel u[1|1,3;2] to obtain u[1|1,2;3],

• since RX3 has u[1|1,2;3], it can cancel u[1|1,2;3] to obtain u[1|1,3;2].

Therefore, α1u
[1|1,2;3]+α2u

[1|1,3;2] is desired by all three receivers. By similar arguments, one

can conclude that β1u
[2|2,1;3] + β2u

[2|2,3;1] and γ1u
[3|1,3;2] + γ2u

[3|2,3;1] are desired by all three

receivers, where β1, β2, γ1, and γ2 are random coefficients. According to our terminology,

we define the following order-3 symbols:

u[1|1,2,3] , α1u
[1|1,2;3] + α2u

[1|1,3;2], (3.27)

u[2|1,2,3] , β1u
[2|1,2;3] + β2u

[2|2,3;1], (3.28)

u[3|1,2,3] , γ1u
[3|1,3;2] + γ2u

[3|2,3;1]. (3.29)

Although delivering u[1|1,2,3], u[2|1,2,3], and u[3|1,2,3] to all three receivers will provide each

of them with useful information about its desired symbols as discussed above, it is not still

sufficient to achieve the goals (a), (b), and (c). To be more specific, recall that RX1 needs

to obtain both symbols u[1|1,2;3] and u[1|1,3;2]. Thus, assuming u[1|1,2,3] has been delivered

to all three receivers, RX1 still needs an extra equation in terms of u[1|1,2;3] and u[1|1,3;2].

To obtain this extra equation, we notice that by delivering u[1|1,2,3] to all three receivers,

both RX2 and RX3 will have both symbols u[1|1,2;3] and u[1|1,3;2]. Therefore, any random

linear combination α′1u
[1|1,2;3] +α′2u

[1|1,3;2] can be considered as the extra equation required

at RX1 which is also available at RX2 and RX3. Therefore, we can define the following

(1; 2, 3)-symbol at TX1:

u[1|1;2,3] , α′1u
[1|1,2;3] + α′2u

[1|1,3;2]. (3.30)

By repeating the same argument for RX2 and RX3, the following (2; 1, 3)-symbol and

(3; 1, 2)-symbol can be defined:

u[2|2;1,3] , β′1u
[2|1,2;3] + β′2u

[2|2,3;1], (3.31)
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u[3|3;1,2] , γ′1u
[3|1,3;2] + γ′2u

[3|2,3;1], (3.32)

where β′1, β′2, γ′1, and γ′2 are random coefficients. To summarize, one can achieve the goals

(a), (b), and (c) if:

I. u[1|1,2,3], u[2|1,2,3], and u[3|1,2,3] are delivered to all three receivers.

II. u[1|1;2,3], u[2|2;1,3], and u[3|3;1,2] are respectively delivered to RX1, RX2, and RX3.

The goals I and II will be accomplished in the next phase.

Phase 3-I (3-user IC with Delayed CSIT): In this subphase, which takes three

time slots, we fulfill the goal I as follows: Using time division in three consecutive time

slots, the three symbols u[1|1,2,3], u[2|1,2,3], and u[3|1,2,3] will be delivered to all three receivers.

Phase 3-II (3-user IC with Delayed CSIT): In this subphase, the goal II is ac-

complished in one time slot by simultaneous transmission of symbols u[1|1;2,3], u[2|2;1,3], and

u[3|3;1,2] by TX1, TX2, and TX3, respectively.

Finally, in order to compute the achieved DoF, we note that a total of 3 × 12 = 36

fresh information symbols were fed to the system in phase 1. To deliver these information

symbols to their intended receivers, we spent 3× 5 = 15 time slots in phase 1, 3× 4 = 12

time slots in phase 2, three time slots in subphase 3-I, and one time slot in subphase 3-II.

Therefore, our achieved DoF is equal to

DoFIC
1 (3) =

36

15 + 12 + 3 + 1
=

36

31
. (3.33)

One finally notes that the proposed transmission scheme starting from the phase 2 was

dedicated to transmission of order-2 messages to the receivers. Therefore, we have proved

that DoFIC
2 (3) = 18

12+3+1
= 9

8
is achievable in the 3-user IC with delayed CSIT as suggested

by (3.9). Also, DoFIC
3 (3) = 1 was trivially achieved using time division in the phase 3-I.

3.3.2 The K-user SISO Interference Channel with Delayed CSIT

In this section, we generalize our multiphase transmission scheme to the K-user SISO IC

with delayed CSIT and K > 3. The transmission scheme is a multiphase scheme wherein
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Phase 1 Phase 3-IPhase 2-I Phase K-I

Phase 3-II Phase K-II

Fresh data 
symbols

order-2
symbols

order-3
symbols

order-(1,2)
symbols

order-4
symbols

order-(1,3)
symbols

order-K
symbols

order-           
symbols

Figure 3.5: Block diagram of the proposed multiphase transmission scheme for the K-user

IC, K ≥ 3.

the fresh information symbols are fed to the system in phase 1 towards generating order-2

symbols. The remaining phases are responsible for generating higher order symbols and

finally providing each receiver with appropriate equations to resolve its own information

symbols. Fig. 3.5 depicts a high-level block diagram for the proposed multiphase scheme.

Phase 1 (K-user IC with Delayed CSIT): In this phase, each transmitter transmits

(K − 1)2 + 1 random linear combinations of (K − 1)2 information symbols in (K − 1)2 + 1

time slots. Let u[i] ,
[
u

[i]
1 , u

[i]
2 , · · · , u[i]

(K−1)2

]T
be the information vector of TXi, 1 ≤ i ≤ K.

Define

C[i] ,
[
c[i](1)|c[i](2)| · · · |c[i]((K − 1)2 + 1)

]T
, 1 ≤ i ≤ K, (3.34)

where c[i](t) is the (K − 1)2× 1 vector of the random coefficients employed by TXi in time

slot t, 1 ≤ t ≤ (K − 1)2 + 1. Then, ignoring the noise, after these (K − 1)2 + 1 time slots,

RXj receives the following vector of (K − 1)2 + 1 channel output symbols:

y[j] = Dj1C
[1]u[1] + Dj2C

[2]u[2] + · · ·+ DjKC[K]u[K], 1 ≤ j ≤ K, (3.35)

where Dji is the diagonal matrix of size [(K − 1)2 + 1]× [(K − 1)2 + 1] which contains the

channel coefficients h[ji](t), 1 ≤ t ≤ (K − 1)2 + 1, on its main diagonal.

Define Qji , DjiC
[i], 1 ≤ i, j ≤ K. Since Dji and C[i] are full rank almost surely and

independent of each other, their multiplication is also full rank almost surely. Hence, Qji is

a full rank matrix of size [(K−1)2 +1]×(K−1)2 almost surely, and so, its left null space is

one dimensional. Therefore, there exist nonzero vectors ωji = [ωji1, ωji2, · · · , ωji((K−1)2+1)]
T

such that

QT
jiωji = 0(K−1)2×1, 1 ≤ i, j ≤ K. (3.36)
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Thus, for any 1 ≤ j ≤ K and any i ∈ SK\{j}, RXj can construct

(y[j])Tωji =
∑

i′∈SK\{i}

(u[i′])TQT
ji′ωji = (u[j])TQT

jjωji +
∑

i′∈SK\{i,j}

(u[i′])TQT
ji′ωji. (3.37)

We note that (u[i′])TQT
ji′ωji, i

′ ∈ SK\{i, j}, is an equation solely in terms of u[i′], and thus,

it is desired by RXi′ . It is easy to see that if we deliver all K− 2 quantities (u[i′])TQT
ji′ωji,

i′ ∈ SK\{i, j}, to RXj, then RXj can cancel their summation from (3.37) to obtain

(u[j])TQT
jjωji, which is a desired equation for RXj. Therefore, one can define K−2 order-2

(i′, j)-symbols available at TXi′ by

u[i′|i′,j] , (u[i′])TQT
ji′ωji, i′ ∈ SK\{i, j}. (3.38)

Since for a fixed j there are K − 1 choices of i, i ∈ SK\{j}, a total of (K − 1)(K − 2)

order-2 symbols of the form u[i|i,j], i ∈ SK\{j}, will be constructed for a fixed j. These

symbols, if delivered, will provide RXj with K − 1 equations solely in terms of u[j] while

providing every RXi, i ∈ SK\{j}, with K − 2 equations in terms of u[i].

Since there are K choices for RXj, 1 ≤ j ≤ K, a total of K(K − 1)(K − 2) order-2

symbols u[i|i,j], i ∈ SK\{j}, are generated by the end of phase 1. After delivering all

these symbols to their intended pairs of receivers, every receiver will be provided with

K − 1 + (K − 1)(K − 2) = (K − 1)2 linear equations in terms of its own information

symbols. Namely, RXj will obtain the following (K − 1)2 linear equations in terms of u[j]:

(u[j])TQT
jjωji1 , i1 ∈ SK\{j}, (3.39)

(u[j])TQT
i2j
ωi2i3 , i2, i3 ∈ SK\{j}, i2 6= i3. (3.40)

It is proved in Appendix B.1 that these (K−1)2 equations are linearly independent almost

surely, and thus, each receiver can resolve all its (K − 1)2 information symbols.

Finally, it takes K(K−1)(K−2)

DoFIC
2 (K)

time slots to deliver all the order-2 symbols generated in

phase 1 to their intended pairs of receivers. Hence, one can write

DoFIC
1 (K) =

(K − 1)2K

(K − 1)2 + 1 + K(K−1)(K−2)

DoFIC
2 (K)

. (3.41)
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Phase m-I, 2 ≤ m ≤ K−1 (K-user IC with Delayed CSIT): This subphase takes

a total of N IC-I
m order-m symbols of the form u[i|Sm], Sm ⊂ SK , i ∈ Sm, and transmits them

to the receivers in T IC
m time slots. Then, a total of N IC-I

m+1 order-(m + 1) symbols of the

form u[i|Sm+1], Sm+1 ⊆ SK , i ∈ Sm+1, together with N IC-II
m+1 symbols of the form u[i|i;Sm+1\{i}],

Sm+1 ⊆ SK , i ∈ Sm+1, are generated such that if the generated symbols are delivered to

their intended receiver(s), then every subset Sm of cardinality m of receivers will be able

to decode all the Sm-symbols transmitted in this subphase. The parameters N IC-I
m , T IC

m ,

N IC-I
m+1, and N IC-II

m+1 are given by

N IC-I
m = m[2(K −m) + 1]

(
K

m

)
, (3.42)

T IC
m = m(K −m+ 1)

(
K

m

)
, (3.43)

N IC-I
m+1 = (m2 − 1)

(
K

m+ 1

)
, (3.44)

N IC-II
m+1 = (m+ 1)

(
K

m+ 1

)
. (3.45)

The following is a detailed description of this subphase:

Fix Sm ⊂ SK and sort the elements of Sm in ascending cyclic order. Fix i1 ∈ Sm
and let i2 ∈ Sm be the element immediately after i1 in that ordering. Consider vector

u[i1|Sm] ,
[
u

[i1|Sm]
1 , u

[i1|Sm]
2 , · · · , u[i1|Sm]

K−m+1

]T
of K −m+ 1 Sm-symbols available at TXi1 and

vector u[i2|Sm] ,
[
u

[i2|Sm]
1 , u

[i2|Sm]
2 , · · · , u[i2|Sm]

K−m

]T
of K − m Sm-symbols available at TXi2 .

In the first K − m + 1 time slots of this subphase, TXi1 and TXi2 transmit K − m + 1

random linear combinations of elements of u[i1|Sm] and u[i2|Sm], respectively, while the rest

of transmitters are silent. Let c[i1|Sm](t) (resp. c[i2|Sm](t)) be the (K −m + 1) × 1 vector

(resp. (K − m) × 1 vector) of the random coefficients employed by TXi1 (resp. TXi2) in

time slot t, 1 ≤ t ≤ K −m + 1. Then, ignoring the noise, by the end of these time slots,

RXj, 1 ≤ j ≤ K, will have the following vector of K −m+ 1 channel output symbols:

y[j] = Dji1C
[i1|Sm]u[i1|Sm] + Dji2C

[i2|Sm]u[i2|Sm] (3.46)

= Qji1u
[i1|Sm] + Qji2u

[i2|Sm], (3.47)
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where C[i1|Sm] and C[i2|Sm] are defined as

C[i1|Sm] ,
[
c[i1|Sm](1)|c[i1|Sm](2)| · · · |c[i1|Sm](K −m+ 1)

]T
, (3.48)

C[i2|Sm] ,
[
c[i2|Sm](1)|c[i2|Sm](2)| · · · |c[i2|Sm](K −m+ 1)

]T
, (3.49)

Dji1 and Dji2 are the diagonal matrices of size (K −m+ 1)× (K −m+ 1) containing

the channel coefficients h[ji1](t) and h[ji2](t), 1 ≤ t ≤ K −m+ 1, on their main diagonal,

respectively, and Qji1 and Qji2 are defined as Qji1 , Dji1C
[i1|Sm] and Qji2 , Dji2C

[i2|Sm].

Therefore, in specific, each receiver RXj, j ∈ Sm, obtains K −m + 1 desired linearly

independent equations in terms of the 2(K −m) + 1 transmitted Sm-symbols, and thus,

needs K−m extra equations to resolve all the transmitted Sm-symbols. It is easily verified

that Qji2 , 1 ≤ j ≤ K, is a full rank matrix of size (K −m + 1)× (K −m) almost surely,

and so, its left null space is one dimensional. Specifically, there exist nonzero vectors ωj′i2

such that

QT
j′i2ωj′i2 = 0, j′ ∈ SK\Sm. (3.50)

Hence, each receiver RXj′ , j
′ ∈ SK\Sm, can construct yTj′ωj′i2 = (u[i1|Sm])TQT

j′i1
ωj′i2 which

is a linear combination in terms of u[i1|Sm] and thus, if delivered to all receivers RXj, j ∈ Sm,

can provide each of them with an extra equation in terms of their desired Sm-symbols. On

the other hand, the above linear combination is solely in terms of u[i1|Sm] (available at TXi1)

and the channel coefficients (available at TXi1 , due to the delayed CSIT assumption, by

the end of these K−m+1 time slots). Therefore, based on our terminology, one can define

u[i1|Sm;j′] , (u[i1|Sm])TQT
j′i1ωj′i2 , j′ ∈ SK\Sm. (3.51)

After delivering all these side information symbols to all receivers RXj, j ∈ Sm, each

of them will obtain K − m + 1 linear equations in terms of the K − m + 1 transmitted

Sm-symbols. Namely, RXj, j ∈ Sm, will obtain the following equations:

Qji1u
[i1|Sm] + Qji2u

[i2|Sm] (3.52)

(u[i1|Sm])TQT
j′i1ωj′i2 , j′ ∈ SK\Sm. (3.53)

It is shown in Appendix B.2 that the above equations are linearly independent almost

surely, which enables RXj to solve them for u[i1|Sm] and u[i2|Sm].
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We repeat the same procedure for every choice of i1 ∈ Sm, i.e., for each choice, we

spend K −m + 1 time slots to transmit 2(K −m) + 1 Sm-symbols and generate K −m
side information symbols. This implies the transmission of a total of m[2(K − m) + 1]

Sm-symbols in m(K − m + 1) time slots and generation of m(K − m) side information

symbols. Since Sm ⊂ SK could be any subset with cardinality m, we transmit a total

of N IC-I
m order-m symbols in T IC

m time slots and generate m(K −m)
(
K
m

)
side information

symbols, where N IC-I
m and T IC

m are given by (3.42) and (3.43).

In order to deliver the generated side information symbols to their respective intended

receivers, fix a subset Sm+1 ⊆ SK and an index i1 ∈ Sm+1. For every j′ ∈ Sm+1\{i1},
we have generated exactly one side information symbol u[i1|Sm+1\{j′};j′]. Since there are m

different choices for j′, j′ ∈ Sm+1\{i1}, we can identify m symbols of the form u[i1|Sm+1\{j′};j′]

for fixed Sm+1 ⊆ SK and i1 ∈ Sm+1. Moreover, every receiver RXj′ , j
′ ∈ Sm+1\{i1}, has

exactly one of these m symbols and wishes to obtain the rest, while RXi1 wishes to obtain

all the m symbols. Therefore, if we deliver m − 1 random linear combinations of these

m symbols to all receivers in Sm+1, then each of them (except for RXi1) will remove its

known side information and obtain m − 1 linearly independent equations in terms of the

m − 1 desired symbols almost surely and hence, decode all desired symbols. Thus, we

define m− 1 Sm+1-symbols as follows

u
[i1|Sm+1]
` ,

∑
j′∈Sm+1\{i1}

α
[i1|Sm+1\{j′};j′]
` u[i1|Sm+1\{j′};j′], 1 ≤ ` ≤ m− 1, (3.54)

where α
[i1|Sm+1\{j′};j′]
` , j′ ∈ Sm+1\{i1}, 1 ≤ ` ≤ m− 1, is a random coefficient.

Since RXi1 wishes to obtain all the m symbols u[i1|Sm+1\{j′};j′], j′ ∈ Sm+1\{i1}, after

delivering the above m − 1 linear equations to RXi1 , it still requires one extra linearly

independent equation to resolve all its desired symbols. However, recall that after delivering

all the Sm+1-symbols defined in (3.54) to all receivers RXj′ , j
′ ∈ Sm+1, every receiver RXj′ ,

j′ ∈ Sm+1\{i1}, will be able to obtain all the m symbols u[i1|Sm+1\{j′};j′], j′ ∈ Sm+1\{i1}.
Thereafter, any linear combination of the symbols u[i1|Sm+1\{j′};j′], j′ ∈ Sm+1\{i1}, will be

available at every receiver RXj′ , j
′ ∈ Sm+1\{i1}. In specific, we can define a new random
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linear combination

u[i1|i1;Sm+1\{i1}] ,
∑

j′∈Sm+1\{i1}

α[i1|Sm+1\{j′};j′]
m u[i1|Sm+1\{j′};j′], (3.55)

as a symbol which is available at TXi1 and at every receiver RXj′ , j
′ ∈ Sm+1\{i1}, and is

desired by RXi1 .

Since there are
(
K
m+1

)
choices of Sm+1 ⊆ SK , and m + 1 choices of i1 ∈ Sm+1 for each

Sm+1, a total of N IC-I
m+1 order-(m+ 1) Sm+1-symbols and N IC-II

m+1 order-(1,m) (i1;Sm+1\{i1})-
symbols will be generated where N IC-I

m+1 and N IC-II
m+1 are given by (3.44) and (3.45). If we

deliver all the Sm+1-symbols and (i1;Sm+1\{i1})-symbols, Sm+1 ⊂ SK , i1 ∈ Sm+1, defined

in (3.54) and (3.55) to their intended receiver(s), then each receiver will be able to decode

all its desired order-m symbols transmitted in this subphase. This will be accomplished

during the next phases.

Phase K-I (K-user IC with Delayed CSIT): In this subphase, in each time slot,

an order-K symbol of the form u[i|SK ], i ∈ SK , is transmitted by TXi while the other

transmitters are silent. After each time slot, ignoring the noise, each receiver receives the

transmitted symbol without any interference. This implies that

DoFIC
K (K) = 1. (3.56)

Phase m-II, 3 ≤ m ≤ K (K-user IC with Delayed CSIT): In this subphase, each

time slot is dedicated to transmission of the order-(1,m − 1) symbols u[i|i;Sm\{i}], i ∈ Sm,

for a fixed Sm, Sm ⊂ SK . In specific, in the time slot dedicated to Sm, every transmitter

TXi, i ∈ Sm, transmits u[i|i;Sm\{i}], simultaneously. Since each receiver RXj, j ∈ Sm, has

all symbols u[i|i;Sm\{i}], i ∈ Sm\{j}, it will decode its desired symbol (i.e., u[j|j;Sm\{j}])

after this time slot. If we denote by DoFIC-II
m (K) the achievable DoF of transmitting all

(i;Sm\{i})-symbols over the K-user SISO IC with delayed CSIT, then one can write

DoFIC-II
m (K) = m, 3 ≤ m ≤ K. (3.57)

Combining (3.42) to (3.45) and (3.57), we conclude that

DoFIC
m (K) =

N IC-I
m

T IC
m +

N IC-II
m+1

DoFIC-II
m+1(K)

+
N IC-I
m+1

DoFIC
m+1(K)
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=
m[2(K −m) + 1]

(
K
m

)
m(K −m+ 1)

(
K
m

)
+

(m+1)( K
m+1)

m+1
+

(m2−1)( K
m+1)

DoFIC
m+1(K)

=
m[2(K −m) + 1]

m(K −m+ 1) + K−m
m+1

+ (m−1)(K−m)

DoFIC
m+1(K)

, 2 ≤ m ≤ K − 1. (3.58)

In Appendix A.1, it is shown that (3.9) is a closed form solution to the recursive

equation (3.58) with the initial condition (3.56) and 2 ≤ m ≤ K. As a result, for m = 2,

it is shown that

DoFIC
2 (K) =

1

1− A2(K)
, (3.59)

where A2(K) is given in (3.8). Equation (3.7) immediately follows from (3.8), (3.41)

and (3.59).

3.4 Proof of Theorem 4

For K = 2, our transmission scheme achieves the same DoF of 6/5 as the scheme proposed

in [23]. Hence, we would rather start with K = 3 and elaborate on our transmission scheme

for the 2× 3 X channel with delayed CSIT. We show that it achieves DoFX
1 (2, 3) = 9

7
and

DoFX
2 (2, 3) = 9

8
, as suggested by (3.10) and (3.11). Then, we will proceed with the general

2×K case.

3.4.1 The 2× 3 SISO X Channel

In this section, we prove that DoFX
1 (2, 3) = 9

7
and DoFX

2 (2, 3) = 9
8

are achievable in the

2× 3 SISO X channel with delayed CSIT. To this end, we propose a transmission scheme

which has three distinct phases:

Phase 1 (2 × 3 X Channel with Delayed CSIT): This phase takes 9 time slots

to transmit 15 information symbols as follows: Fix i1 = 1 and i2 = 2. During the first 3

time slots, 5 information symbols u[i1|1] , [u
[i1|1]
1 , u

[i1|1]
2 , u

[i1|1]
3 ]T and u[i2|1] , [u

[i2|1]
1 , u

[i2|1]
2 ]T

(all intended for RX1) are transmitted by TXi1 and TXi2 , respectively. In specific, in
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each of these 3 time slots, TXi1 transmits a random linear combination of u
[i1|1]
1 , u

[i1|1]
2 ,

and u
[i1|1]
3 while TXi2 transmits a random linear combination of u

[i2|1]
1 and u

[i2|1]
2 . Let

c[i1|1](t) , [c
[i1|1]
1 (t), c

[i1|1]
2 (t), c

[i1|1]
3 (t)]T and c[i2|1](t) , [c

[i2|1]
1 (t), c

[i2|1]
2 (t)]T denote the vectors

containing the random coefficients of the linear combinations transmitted by TXi1 and

TXi2 , respectively, over time slot t, 1 ≤ t ≤ 3.

After these 3 time slots, every receiver obtains 3 linearly independent equations in terms

of the 5 transmitted information symbols almost surely. Thus, RX1 in order to resolve

these 5 desired information symbols, needs two more linearly independent equations. Now,

consider the equations received at each of RX2 and RX3 in time slot t, 1 ≤ t ≤ 3:

y[j](t) =
2∑

k=1

h[jik](t)x[ik](t)

=
2∑

k=1

h[jik](t)
(
c[ik|1](t)

)T
u[ik|1], j = 2, 3. (3.60)

The system of linear equations received at RXj, j = 2, 3, by the end of these 3 time slots

can be written as

y[j|1] =
2∑

k=1

Djik|1C
[ik|1]u[ik|1], j = 2, 3, (3.61)

where y[j|1] is the 3× 1 vector of received symbols at RXj during these 3 time slots, Djik|1

is the 3× 3 diagonal matrix containing h[jik](t), 1 ≤ t ≤ 3, on its main diagonal, and C[i1|1]

(resp. C[i2|1]) is the 3× 3 (resp. 3× 2) matrix containing the random coefficients employed

by TXi1 (resp. TXi2) during these 3 time slots, i.e.,

C[ik|1],
[
c[ik|1](1)|c[ik|1](2)|c[ik|1](3)

]T
, k = 1, 2. (3.62)

Since the elements of C[i1|1] and C[i2|1] are i.i.d., they are full rank almost surely, i.e.,

rank(C[i1|1]) = 3 and rank(C[i2|1]) = 2. One can verify that Djik|1 is also full rank almost

surely and is independent of C[ik|1]. Therefore, Qjik|1 , Djik|1C
[ik|1] is full rank almost

surely. Specifically, Qji2|1 is a full rank 3 × 2 matrix, and thus, its left null space is one

dimensional almost surely. Let the 3×1 vector ωji2|1 be in the left null space of Qji2|1, i.e.,

QT
ji2|1ωji2|1 = 02×1, j = 2, 3. (3.63)
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After these 3 time slots, every receiver can calculate ωji2|1, j = 2, 3. Then, using (3.61)

and (3.63), RXj, j = 2, 3, can obtain

(y[j|1])Tωji2|1 = (u[i1|1])TQT
ji1|1ωji2|1 + (u[i2|1])T

0︷ ︸︸ ︷
QT
ji2|1ωji2|1

= (u[i1|1])TQT
ji1|1ωji2|1, (3.64)

which is an equation solely in terms of u[i1|1]. Therefore, if we deliver (u[i1|1])TQT
ji1|1ωji2|1,

j = 2, 3, to RX1, then it will have enough equations to resolve its 5 desired information

symbols (it can be easily shown that these equations are linearly independent almost

surely). Hence, two symbols u[i1|1;2] and u[i1|1;3] can be defined as

u[i1|1;j] , (u[i1|1])TQT
ji1|1ωji2|1, j = 2, 3. (3.65)

In the same way, the following 5 fresh information symbols (now, all intended for RX2)

are transmitted during the next 3 time slots:

u[i1|2] , [u
[i1|2]
1 , u

[i1|2]
2 , u

[i1|2]
3 ]T , (3.66)

u[i2|2] , [u
[i2|2]
1 , u

[i2|2]
2 ]T , (3.67)

and the following two side information symbols are generated:

u[i1|2;j] , (u[i1|2])TQT
ji1|2ωji2|2, j = 1, 3, (3.68)

where QT
ji1|2 and ωji2|2 are similarly defined.

The same procedure is followed during the last 3 time slots to transmit another 5 fresh

information symbols

u[i1|3] , [u
[i1|3]
1 , u

[i1|3]
2 , u

[i1|3]
3 ]T , (3.69)

u[i2|3] , [u
[i2|3]
1 , u

[i2|3]
2 ]T , (3.70)

which are all intended for RX3, and generate the two side information symbols

u[i1|3;j] , (u[i1|3])TQT
ji1|3ωji2|3, j = 1, 2, (3.71)
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with similar definitions of QT
ji1|3 and ωji2|3.

After these 9 time slots, if we deliver the side information symbols defined in (3.65),

(3.68) and (3.71) to their respective receivers, then each receiver will be able to decode all

its own 5 information symbols. To this end, consider the linear combination u[i1|1;2]+u[i1|2;1].

If we deliver this linear combination to both RX1 and RX2, then RX1 can cancel u[i1|2;1]

to obtain u[i1|1;2]. Similarly, RX2 can cancel u[i1|1;2] to obtain u[i1|2;1]. Note also that both

u[i1|1;2] and u[i1|2;1] are available at TXi1 , and so is their summation. Therefore, one can

define the following order-2 symbol available at TXi1 :

u[i1|1,2] , u[i1|1;2] + u[i1|2;1]. (3.72)

The following order-2 symbols can be similarly defined:

u[i1|1,3] , u[i1|1;3] + u[i1|3;1], (3.73)

u[i1|2,3] , u[i1|2;3] + u[i1|3;2]. (3.74)

Our goal in phase 2 is to deliver the above three order-2 symbols to their respective pairs

of receivers.

Phase 2 (2× 3 X Channel with Delayed CSIT): This phase takes 12 time slots to

transmit 18 order-2 symbols generated in phase 1. Recall that in phase 1 we generated only

three order-2 symbols u[i1|1,2], u[i1|1,3], and u[i1|2,3] which are all available at TXi1 , where

i1 = 1. As we will see later, the following 18 order-2 symbols are required for phase 2:

u
[i|1,2]
k , u

[i|1,3]
k , u

[i|2,3]
k , i = 1, 2, 1 ≤ k ≤ 3. (3.75)

Therefore, we repeat phase 1 three times with (i1, i2) = (1, 2) and three times with (i1, i2) =

(2, 1) to generate the above 18 order-2 symbols required for phase 2. The transmission in

phase 2 is then accomplished as follows:

The first 4 time slots of phase 2 are dedicated to transmission of 6 (1, 2)-symbols

{u[1|1,2]
k }3

k=1 and {u[2|1,2]
k }3

k=1. This is accomplished in exactly the same way as the first 4

time slots of phase 2 in Section 3.3.1, and the side information symbols u[1|1,2;3] and u[2|1,2;3]

will be generated at RX3. Similar to phase 2 of Section 3.3.1, the next 8 time slots are
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dedicated to transmission of 6 (1, 3)-symbols and 6 (2, 3)-symbols. However, in contrast to

Section 3.3.1, the (1, 3)-symbols and (2, 3)-symbols are here transmitted by TX1 and TX2.

Hence, after these 8 time slots, the side information u[1|2,3;1] and u[2|2,3;1] will be generated

at RX1 and the side information u[1|1,3;2] and u[2|1,3;2] will be generated at RX2.

Therefore, after these 12 time slots, our goal is reduced to

(a) delivering u[1|1,2;3] and u[2|1,2;3] to both RX1 and RX2,

(b) delivering u[1|1,3;2] and u[2|1,3;2] to both RX1 and RX3,

(c) delivering u[1|2,3;1] and u[2|2,3;1] to both RX2 and RX3.

Now, consider u[1|1,2;3], u[1|1,3;2], and u[1|2,3;1]. Note that these three symbols are available

at TX1, and so is any linear combination of them. Another observation is that each receiver

has exactly one symbol out of these three symbols and requires the other two. Hence, if

we deliver two random linear combinations of these three symbols to all receivers, then

RX1 can remove u[1|2,3;1] from the two linear combinations to obtain two random linear

combinations solely in terms of u[1|1,2;3] and u[1|1,3;2], and so, solve them for u[1|1,2;3] and

u[1|1,3;2]. Likewise, RX2 (resp. RX3) can remove u[1|1,3;2] (resp. u[1|1,2;3]) from the two random

linear combinations and obtain two random linear equations solely in terms of its own pair

of desired symbols, and resolve its desired symbols. Thus, the following two random linear

combinations can be considered as order-3 symbols to be delivered to all three receivers in

the next phase:

u
[1|1,2,3]
1 , α1u

[1|1,2;3] + α2u
[1|1,3;2] + α3u

[1|2,3;1], (3.76)

u
[1|1,2,3]
2 , α′1u

[1|1,2;3] + α′2u
[1|1,3;2] + α′3u

[1|2,3;1]. (3.77)

Using the same arguments for u[2|1,2;3], u[2|1,3;2], and u[2|2,3;1], one can define the following

order-3 symbols:

u
[2|1,2,3]
1 , β1u

[2|1,2;3] + β2u
[2|1,3;2] + β3u

[2|2,3;1], (3.78)

u
[2|1,2,3]
2 , β′1u

[2|1,2;3] + β′2u
[2|1,3;2] + β′3u

[2|2,3;1], (3.79)

where βi and β′i, 1 ≤ i ≤ 3, are random coefficients.
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Phase 3 (2 × 3 X Channel with Delayed CSIT): Using time division in 4 time

slots, the 4 order-3 symbols u
[1|1,2,3]
1 , u

[1|1,2,3]
2 , u

[2|1,2,3]
1 , and u

[2|1,2,3]
2 will be delivered to all

three receivers.

At the end, in view of the fact that we have fed a total of 6×15 = 90 fresh information

symbols to the system in 6× 9 = 54 time slots in phase 1, and spent 12 time slots in phase

2 and 4 time slots in phase 3, the achieved DoF is equal to

DoFX
1 (2, 3) =

90

54 + 12 + 4
=

9

7
. (3.80)

Also, regarding the phases 2 and 3, we have DoFX
2 (2, 3) = 18

12+4
= 9

8
, and DoFX

3 (2, 3) = 1.

3.4.2 The 2×K SISO X Channel

Our transmission scheme for the 2×K SISO X channel with delayed CSIT is a multiphase

scheme as depicted in Fig. 3.6. In particular, for every m, 1 ≤ m ≤ K − 1, phase m

takes NX
m order-m symbols of the form u[i|Sm], Sm ⊂ SK , i ∈ {1, 2}, and transmits them

to the receivers in TX
m time slots. Then, a total of NX

m+1 order-(m + 1) symbols of the

form u[i|Sm+1], Sm+1 ⊆ SK , i ∈ {1, 2} are generated such that if the generated symbols are

delivered to their intended receivers, then every subset Sm of cardinality m of receivers will

be able to decode all the Sm-symbols transmitted in phase m. The parameters NX
m, TX

m ,

and NX
m+1 are given by

NX
m = 2[2(K −m) + 1]

(
K

m

)
, (3.81)

TX
m = 2(K −m+ 1)

(
K

m

)
, (3.82)

NX
m+1 = 2m

(
K

m+ 1

)
. (3.83)

The following is a detailed description of phase m:

Phase m, 1 ≤ m ≤ K − 1 (2 × K X Channel with Delayed CSIT): Fix i1 = 1

and i2 = 2. For every Sm ⊂ SK , consider the following two vectors of Sm-symbols:

u[i1|Sm] ,
[
u

[i1|Sm]
1 , u

[i1|Sm]
2 , · · · , u[i1|Sm]

K−m+1

]T
, (3.84)
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Phase 1 Phase 3Phase 2 Phase K

Fresh data 
symbols

order-2
symbols

order-3
symbols

order-4
symbols

order-K
symbols

Figure 3.6: Block diagram of the proposed multiphase transmission scheme for the 2×K
X channel, K ≥ 2.

u[i2|Sm] ,
[
u

[i2|Sm]
1 , u

[i2|Sm]
2 , · · · , u[i2|Sm]

K−m

]T
, (3.85)

and transmit them exactly as the phase m-I of Section 3.3.2. More specifically, in K−m+1

time slots, TXi1 and TXi2 transmit K − m + 1 random linear combinations of elements

of u[i1|Sm] and u[i2|Sm], respectively. Using the same arguments as in the phase m-I of

Section 3.3.2, K − m side information symbols of the form u[i1|Sm;j′], j′ ∈ SK\Sm, are

generated after these K−m+ 1 time slots (see (3.51)). If we deliver all symbols u[i1|Sm;j′],

j′ ∈ SK\Sm, to every receiver RXj, j ∈ Sm, then every receiver RXj, j ∈ Sm, will be

obtain enough linearly independent equations to decode all the Sm-symbols in u[i1|Sm] and

u[i2|Sm].

Therefore, for every Sm ⊂ SK , a total of 2(K −m) + 1 Sm-symbols are transmitted in

K −m+ 1 time slots, and K −m side information symbols are generated. Since there are(
K
m

)
choices of Sm ⊂ SK , this implies the transmission of [2(K−m)+1]

(
K
m

)
order-m symbols

in (K − m + 1)
(
K
m

)
time slots and generation of (K − m)

(
K
m

)
side information symbols.

Now, in order to deliver the generated side information symbols to their respective intended

receivers, fix a subset Sm+1 ⊆ SK . For every j′ ∈ Sm+1, we have generated exactly one side

information symbol u[i1|Sm+1\{j′};j′]. Since there are m+1 different choices for j′, j′ ∈ Sm+1,

we can identify m+1 symbols of the form u[i1|Sm+1\{j′};j′] for a fixed Sm+1 ⊆ SK . Moreover,

every receiver RXj′ , j
′ ∈ Sm+1, has exactly one of these m+1 symbols and wishes to obtain

the rest. Therefore, if we deliver m random linear combinations of these m + 1 symbols

to all receivers in Sm+1, then each of them will remove its known side information and

obtain m linearly independent equations in terms of the m desired symbols almost surely

and hence, decode all desired symbols. Thus, we define m Sm+1-symbols as follows:

u
[i1|Sm+1]
` ,

∑
j′∈Sm+1

β
[i1|Sm+1\{j′};j′]
` u[i1|Sm+1\{j′};j′], 1 ≤ ` ≤ m, (3.86)
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where β
[i1|Sm+1\{j′};j′]
` , j′ ∈ Sm+1, 1 ≤ ` ≤ m, is a random coefficient. Since there are

(
K
m+1

)
choices of Sm+1, Sm+1 ⊆ SK , a total of m

(
K
m+1

)
order-(m + 1) symbols will be generated

as above.

Finally we note that, so far, we have only generated order-(m+ 1) symbols of the form

u[i1|Sm+1], with i1 = 1, which are all available at TX1. However, in order for phase m+ 1 to

work, we need order-(m+ 1) symbols of both forms u[1|Sm+1] and u[2|Sm+1]. This can be seen

from (3.84) and (3.85). To resolve this issue, we simply repeat phasem with (i1, i2) = (2, 1).

This together with the previous round of phase m implies the transmission of a total of NX
m

order-m symbols in TX
m time slots, and generation of NX

m+1 order-(m + 1) symbols, where

NX
m, TX

m , and NX
m+1 are given by (3.81) to (3.83). If we deliver all these Sm+1-symbols to

their intended subsets of receivers, then each receiver will be able to decode all its desired

order-m symbols transmitted in this phase. This will be accomplished during the next

phases.

Phase K (2×K X Channel with Delayed CSIT): In this phase, in each time slot,

an order-K symbol of the form u[i|SK ], i ∈ {1, 2}, is transmitted by TXi while the other

transmitter is silent. Therefore,

DoFX
K(2, K) = 1. (3.87)

Finally, using (3.81) to (3.83), we can express DoFX
m(2, K), the achieved DoF of trans-

mission of order-m symbols in the 2×K SISO X channel with delayed CSIT, as

DoFX
m(2, K) =

NX
m

TX
m +

NX
m+1

DoFX
m+1(2,K)

=
2[2(K −m) + 1]

(
K
m

)
2(K −m+ 1)

(
K
m

)
+

2m( K
m+1)

DoFX
m+1(2,K)

=
(m+ 1)[2(K −m) + 1]

(m+ 1)(K −m+ 1) + m(K−m)

DoFX
m+1(2,K)

, 1 ≤ m ≤ K − 1. (3.88)

It is proved in Appendix A.2 that (3.10) and (3.11) are indeed closed form expressions

for DoFX
m(2, K), 1 ≤ m ≤ K, satisfying the recursive equation (3.88) together with the

initial condition (3.87).
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Figure 3.7: K-user 3-cyclic SISO IC.

3.5 Cyclic SISO Interference Channel

In this section, we study the K-user r-cyclic SISO interference channel, 1 ≤ r ≤ K. In this

model, TXi, 1 ≤ i ≤ K, causes interference to r − 1 receivers RXi+1, RXi+2, · · · , RXi+r−1

in a cyclic manner. Figure 3.7 depicts the block diagram of this channel. The case r = K

corresponds to the fully connected IC which was studied in Section 3.1. With full CSIT,

it is known that this channel has K/2 DoF if r ≥ 2 [10] and K DoF if r = 1. In the

following, we first show that this channel has K/r DoF with no CSIT. Then, we focus on

r = 3, and by generalizing our multiphase transmission ideas presented in Section 3.3.1,

show that this channel can achieve more than K/3 DoF with delayed CSIT.

67



CHAPTER 3: SISO IC and X Channel with Delayed CSIT

3.5.1 K-user r-cyclic Interference Channel with no CSIT

We prove that this channel has K/r DoF when there is no CSI available at the transmit-

ters. To do so, we first show that K/r is an upper bound to the DoF of this channel.

Consider the sub-channel which is composed of only the first r transmitter-receiver pairs

{(TXi,RXi)}ri=1. Since adding interference does not increase the DoF, the sum-DoF of

this sub-channel is an upper bound to the total DoF of these users in the original channel.

Next, we show that the sum-DoF of this channel is upper bounded by 1.

Denote by x[i] , [x[i](1), x[i](2), · · · , x[i](τ)]T and y[j] , [y[j](1), y[j](2), · · · , y[j](τ)]T =∑j
i=1 h[ji] ◦x[i] + z[j] the vectors transmitted by TXi and received by RXj over a block of τ

time slots, where h[ji] , [h[ji](1), h[ji](2), · · · , h[ji](τ)]T and z[j] , [z[j](1), z[j](2), · · · , z[j](τ)]T

and “◦” denotes the element-wise product. Also, denote by H[j] , [h[ji]]1≤i≤j the matrix

of channel coefficients of RXj over the block of τ time slots. By Fano’s inequality [16], we

have

τR[j] ≤ I
(
x[j]; y[j],H[j]

)
+ τετ (3.89)

(a)
= I

(
x[j]; y[j]|H[j]

)
+ τετ , j = 1, 2, · · · , r, (3.90)

where ετ → 0 as τ → ∞, and (a) follows from the fact that there is no CSI at the

transmitters, and thus, x[j] and H[j] are independent of each other. Summing up the above

inequalities for 1 ≤ j ≤ r and taking the limit as τ →∞, we get

r∑
j=1

R[j] ≤
r∑
j=1

lim
τ→∞

1

τ
I
(
x[j]; y[j]|H[j]

)
, (3.91)

=
r∑
j=1

lim
τ→∞

1

τ

[
h

(
j∑
i=1

h[ji] ◦ x[i] + z[j]
∣∣∣H[j]

)
− h

(
j−1∑
i=1

h[ji] ◦ x[i] + z[j]
∣∣∣H[j]

)]
,

(3.92)

(a)
= lim

τ→∞

1

τ
h
(
y[r]|H[j]

)
, (3.93)

where (a) uses the fact that the channel coefficients are i.i.d. across all nodes as well as

time and the noise terms are also i.i.d. across receivers and time, and thus

h

(
j−1∑
i=1

h[(j−1)i] ◦ x[i] + z[j−1]
∣∣∣H[j−1]

)
= h

(
j−1∑
i=1

h[ji] ◦ x[i] + z[j]
∣∣∣H[j]

)
. (3.94)
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Now, we can write
r∑
j=1

d[j] ≤ lim
P→∞

1

log2 P

(
lim
τ→∞

1

τ
h
(
y[r]|H[j]

))
≤ 1, (3.95)

where the last inequality follows the fact that a SISO point-to-point channel has at most

1 DoF.

Using the same arguments for similar sub-channels (which are selected in a cyclic man-

ner), we get
∑`+r−1

j=` d[j] ≤ 1 for every `, 1 ≤ ` ≤ K. Summing up both sides of these

inequalities for every `, 1 ≤ ` ≤ K, we get r
∑K

j=1 d
[j] ≤ K, which yields the desired upper

bound.

Finally, it is easy to see that
∑K

j=1 d
[j] = K/r is achievable with no CSIT as follows: In r

time slots, each transmitter repeats only one information symbol. After r time slots, each

receiver obtains r linearly independent combinations of r symbols (one desired symbols

and r − 1 interference symbol), and hence, can resolve its desired symbol. The following

theorem summarizes the above results:

Theorem 5. The K-user r-cyclic SISO IC has K/r DoF with no CSIT.

3.5.2 K-user 3-cyclic Interference Channel with Delayed CSIT

We note that when r = 1 the r-cyclic channel turns to a K-user interference-free channel

which has K DoF with or without CSIT. Also, for r = 2, this channel is called cyclic Z-

interference channel which has K/2 DoF with or without CSIT. Therefore, these channels

have the same DoFs also with delayed CSIT. For r > 2, there is a strict gap between DoFs

with full and no CSIT. In this case, focusing on r = 3, we show that more than K/3 DoF

can be achieved in the 3-cyclic IC with delayed CSIT. In specific, we prove the following

theorem:

Theorem 6. The K-user 3-cyclic IC (K ≥ 3) with delayed CSIT can achieve DoFIC
1 (K, 3)

DoF almost surely, where

DoFIC
1 (K, 3) =


4K2

11K−2bK
3
c , K 6= 5

15
8
, K = 5

. (3.96)
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Proof. Consider the following transmission scheme which has three phases: In phase 1,

4K fresh information symbols are transmitted over 5 time slots, exactly as in the scheme

proposed for the 3-user IC with delayed CSIT in Section 3.3.1. In particular, each trans-

mitter transmits 5 random linear combinations of 4 information symbols in 5 time slots.

Then, 2K order-2 symbols u[j−1|j−1,j], u[j−2|j−2,j], 1 ≤ j ≤ K, will be generated accordingly.

Therefore, the achievable DoF is obtained by

DoFIC
1 (K, 3) =

4K

5 + 2K
DoFIC

2 (K,3)

, (3.97)

where DoFIC
2 (K, 3) denotes our achievable DoF for transmission of the order-2 symbols. In

phase 2, the generated order-2 symbols are transmitted over the channel. Three different

cases of K = 3L, K = 3L + 1, and K = 3L + 2 are treated separately. We define an

“order-2 transmission graph” as a bipartite graph with 2K vertices corresponding to the

2K nodes of the channel under consideration. In this graph, TXi is connected to RXi and

RXj if and only if u[i|i,j] is transmitted by TXi.

Phase 2 (K-user 3-cyclic IC with K = 3L):

Spend 2 time slots. In each time slot, for every 1 ≤ m ≤ L,

• TX3m−2 transmits a random linear combination of u
[3m−2|3m−2,3m−1]
1 and u

[3m−2|3m−2,3m−1]
2 .

• TX3m−1 repeats u[3m−1|3m−1,3m+1].

• TX3m is silent.

After these 2 time slots, for every 1 ≤ m ≤ L, RX3m−2 obtains 2 equations in terms of 3

desired symbols u
[3m−2|3m−2,3m−1]
1 , u

[3m−2|3m−2,3m−1]
2 , and u[3m−4|3m−4,3m−2]. Also, RX3m−1

obtains 2 equations in terms of 3 desired symbols u
[3m−2|3m−2,3m−1]
1 , u

[3m−2|3m−2,3m−1]
2 , and

u[3m−1|3m−1,3m+1]. Hence, each of them requires one extra linearly independent combination

to resolve its own symbols. Now, using the same arguments as in Section 3.3.1, for every

1 ≤ m ≤ L, RX3m can remove u[3m−1|3m−1,3m+1] to obtain a linear equation solely in

terms of u
[3m−2|3m−2,3m−1]
1 and u

[3m−2|3m−2,3m−1]
2 . This equation is desired by both RX3m−2

and RX3m−1, and is denoted as u[3m|3m−2,3m−1;3m]. These symbols will be delivered to their
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Figure 3.8: Order-2 transmission graph for K-user 3-cyclic SISO IC with K = 3L.

respective pairs of receivers in phase 3. Figure 3.8a depicts the transmission graph of phase

2. The number of fresh order-2 symbols transmitted by each transmitter is indicated in the

figure next to its corresponding node. Also, the curved arrows show the pairs of receivers

which require the side information available at each RX3m, 1 ≤ m ≤ L.

In order to transmit the same number of each order-2 symbol, we repeat this phase.

However, we now follow the transmission strategy of Fig. 3.8b. Also, we make 4 new

strategies by making one and two cyclic shifts to each graph in Fig. 3.8. Therefore, 3

order-2 symbols of each type are transmitted in this phase. That is, transmission of a total

of 3 × 2K = 6K order-2 symbols in 3 × 2 × 2 = 12 time slots and generation of 2K side

information symbols u[i|i,i+1;i+2], u[i|i,i+2;i+1], 1 ≤ i ≤ K. The achieved DoF is then given

by

DoFIC
2 (K, 3) =

6K

12 + 2K
DoFIC

2;1(K,3)

(3.98)
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=
K

2 + L
DoFIC

2;1(K,3)

, K = 3L, (3.99)

where DoFIC
2;1(K, 3) denotes the achievable DoF for transmission of the side information

symbols of type u[i|i,i+1;i+2] or u[i|i,i+2;i+1].

Phase 2 (K-user 3-cyclic IC with K = 3L+ 1):

In this case, the transmission graphs of Figs. 3.9a and 3.9b are used to transmit order-2

symbols. However, it can be seen that in each of these graphs RX2 receives an interference

term from TXK , i.e., the symbol u[K|K,1]. Hence, after delivering the side information

symbols generated in this phase (generated exactly as in the case of K = 3L), RX2 still

needs to decode this symbol to be able to decode all its desired symbols. But, we notice

that this symbol will be available at RX1 and RXK after delivering the side information

symbols. Therefore, one can denote this symbol as u[K|2;K,1].

It can be verified that by L − 1 times repeating the K cyclically shifted versions of

graph of Fig. 3.9a together with L + 1 times repeating the K cyclically shifted versions

of graph of Fig. 3.9b, we can transmit LK order-2 symbols of each type, i.e., a total of

2LK2 order-2 symbols. To do so, we spend a total of 4LK time slots, and will generate

(L − 1)LK symbols of type u[i|i,i+1;i+2], (L + 1)LK symbols of type u[i|i,i+2;i+1], and 2LK

symbols of type u[i|i+2;i,i+1]. Therefore, we get

DoFIC
2 (K, 3) =

2LK2

4LK + 2L2K
DoFIC

2;1(K,3)
+ 2LK

DoFIC
1;2(K,3)

(3.100)

=
K

2 + L
DoFIC

2;1(K,3)
+ 1

DoFIC
1;2(K,3)

, K = 3L+ 1, (3.101)

where DoFIC
1;2(K, 3) denotes the achievable DoF for transmission of the side information

symbols of type u[i|i+2;i,i+1], and we have used the fact that the total number of generated

symbols of type u[i|i,i+1;i+2] or u[i|i,i+2;i+1] is equal to (L− 1)LK + (L+ 1)LK = 2L2K.

Phase 2 (K-user 3-cyclic IC with K = 3L+ 2):

In this case, if L ≥ 2, the transmission graphs of Figs. 3.9c and 3.9d are used to transmit

order-2 symbols. It can be verified that by L + 2 times repeating the K cyclically shifted
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Figure 3.9: Order-2 transmission graph for K-user 3-cyclic SISO IC with K = 3L+ 1 and

K = 3L+ 2.

versions of graph of Fig. 3.9c together with L− 2 times repeating the K cyclically shifted

versions of graph of Fig. 3.9d, we can transmit LK order-2 symbols of each type, i.e., a total

of 2LK2 order-2 symbols. To do so, we spend a total of 4LK time slots, and will generate

(L+ 2)LK symbols of type u[i|i,i+1;i+2] and (L− 2)(L+ 1)K + (L+ 2)K = L2K symbols of

type u[i|i,i+2;i+1], i.e., a total of 2L(L+ 1)K symbols of type u[i|i,i+1;i+2] or u[i|i,i+2;i+1]. The

achieved DoF will be

DoFIC
2 (K, 3) =

2LK2

4LK + 2L(L+1)K

DoFIC
2;1(K,3)

=
K

2 + L+1
DoFIC

2;1(K,3)

, K = 3L+ 2. (3.102)

For L = 1, i.e., K = 5, only the 5 cyclically shifted versions of graph of Fig. 3.9c

are used. Hence, 5 × 5 order-2 symbols are transmitted in 2 × 5 time slots and 10 side

information symbols u[i|i,i+1;i+2] and u[i|i,i+2;i+1], 1 ≤ i ≤ 5, are generated. In this way, one
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can verify that 3 order-2 symbols of type u[i|i,i+2] and 2 order-2 symbols of type u[i|i,i+1]

are transmitted for every 1 ≤ i ≤ 5. To maintain the balance between the transmitted

order-2 symbols, we need to transmit another symbol of type u[i|i,i+1] for each 1 ≤ i ≤ 5.

These 5 symbols are transmitted in 3 time slots as follows: In each time slot, TXi repeats

u[i|i,i+1]. Thus, after the 3 time slots, each receiver is provided with 3 linearly independent

combinations of 3 symbols (two desired and one interference) and can decode all of them.

Therefore, the achieved DoF for K = 5 will be

DoFIC
2 (5, 3) =

25 + 5

10 + 3 + 10
DoFIC

2;1(5,3)

=
30

13 + 10
DoFIC

2;1(5,3)

. (3.103)

Phase 3 (K-user 3-cyclic IC): Each set of K symbols u[i|i,i+1;i+2] (or u[i|i,i+2;i+1]),

1 ≤ i ≤ K, are delivered in 2 time slots using repetition of each symbol by its corresponding

transmitter. Therefore,

DoFIC
2;1(K, 3) =

K

2
. (3.104)

Also, each set of K symbols u[i|i+2;i,i+1], 1 ≤ i ≤ K, are delivered in 1 time slot by

transmission of each symbol by its corresponding transmitter. Therefore,

DoFIC
1;2(K, 3) = K. (3.105)

The proof is then complete in view of (3.97), (3.99) and (3.101) to (3.105).

Figure 3.10 plots our achievable DoF for the K-user 3-cyclic IC with delayed IC, given

by Theorem 6, for 3 ≤ K ≤ 30, and compares it with the channel DoFs with no CSIT

(Theorem 5) and full CSIT.

3.6 Conclusion

We proposed new multiphase interference alignment schemes and obtained new achievable

results on the DoF of the Gaussian K-user SISO interference channel and 2×K SISO X

channel under delayed CSIT assumption. Our results show that the DoF of these channels
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Figure 3.10: The achievable DoF for K-user 3-cyclic IC with delayed CSIT and the channel

DoFs with no CSIT and full CSIT.

with the outdated CSI at transmitters is strictly greater than that with no CSIT. The

achieved DoFs are strictly increasing in K and approach limiting values of 4/(6 ln 2 − 1)

and 1/ ln 2, respectively, for the interference and X channels as K →∞. This is in contrast

to the no CSIT assumption wherein it is known that both channels have only one DoF

for all values of K. For the interference channel, we improved the best previously known

result on the DoF of the 3-user case with delayed CSIT, and to the best of our knowledge,

this chapter presents the first and yet the best DoF results for the K-user case with K > 3.

For the 2 ×K X channel, our achievable DoF is strictly greater than the best previously

reported result on that of the K × K X channel. We also generalized our multiphase

transmission ideas to the cyclic interference channel. In particular, we showed that the 3-

cyclic interference channel with delayed CSIT can achieve a DoF greater than K/3, which

is its DoF with no CSIT, for all values of K ≥ 3.
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Chapter 4

SISO Interference and X Channels

with Full-Duplex Transmitter

Cooperation and Feedback

In this chapter1, we address the K-user SISO IC and M × K SISO X channel with no

instantaneous CSIT, and study the impact of full-duplex transmitter cooperation and/or

different types of feedback on DoF of these channels. We present the system model in

Section 4.1. Then, we give some illustrative examples of transmission over the interference

channel in Section 4.2 and X channel in Section 4.3. These examples exploit the feed-

back/transmitter cooperation models defined in Section 4.1 and highlight our transmission

ideas for these channels with a few number of users. Then, we present our main results

in Section 4.4, and provide the proofs in subsequent sections. In particular, we consider

these channels with delayed CSIT and full-duplex transmitter cooperation in Section 4.5.

Regarding the full-duplex CSI, we assume that the source nodes (transmitters) have only

access to their incoming full-duplex CSI. We propose transmission schemes that achieve

DoF values greater than the best available achievable DoFs for these channels with delayed

CSIT but without transmitter cooperation (cf. Chapter 3).

In Section 4.6, we consider the same channels with output feedback, wherein we assume

1The work in this chapter has been reported in [4, 5]

76



CHAPTER 4: Full-duplex TX Cooperation and Feedback

that each transmitter has a causal access to the output of its paired receiver through a

feedback link. This is indeed a limited output feedback (in contrast to providing each

transmitter with the outputs of more than one receiver), however, the term “limited” will

be henceforth dropped for brevity. Therefore, in the X channel, we hereafter consider

only M = K with a one-to-one mapping between transmitters and receivers for feedback

assignment. The 3-user IC and 2 × 2 X channel with output feedback were previously

investigated in [35], wherein 6/5 and 4/3 DoF were respectively achieved. While achieving

the same DoFs for the 3-user IC and 2 × 2 X channel, our main contribution here is

proposing multi-phase transmission schemes for the general K-user cases that achieve DoF

values strictly increasing in K.

Next, we study the K-user SISO IC and K×K SISO X channel with delayed CSIT and

output feedback in Section 4.7. Under this assumption, which is referred to as Shannon

feedback, we propose multi-phase transmission schemes capturing both the delayed CSI

and output feedback to cooperatively transmit over the channel. The achieved DoFs are

strictly increasing in K and greater than those we achieved with output feedback for K = 5

and K > 6 in the K-user IC and for K > 2 in the K × K X channel. The achievable

results will be compared and discussed in Section 4.8, and finally, the chapter is concluded

in Section 4.9.

4.1 System Model

Consider the K-user SISO Gaussian IC and M ×K X channel as defined in Section 3.1.

The delayed CSIT model was defined in Section 3.1 for these channel. In this chapter, we

first assume that the transmitters, in addition to having delayed CSI, are able to operate

in full-duplex mode, which is defined as follows:

Definition 8 (Full-duplux Transmitter Cooperation). The transmitters are said to operate

in full-duplex mode if they can transmit and receive simultaneously. In full-duplex mode,

the received signal of TXi in time slot t is given by

K-user IC : ỹ[i](t) =
K∑
i′=1

h̃[ii′](t)x[i′](t) + z̃[i](t), 1 ≤ i ≤ K. (4.1)
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M ×K X channel : ỹ[i](t) =
M∑
i′=1

h̃[ii′](t)x[i′](t) + z̃[i](t), 1 ≤ i ≤M. (4.2)

The noise terms and channel coefficients are assumed to be drawn according to CN (0, 1) and

i.i.d. across all nodes as well as time. No feedback link is available between the transmitters,

and hence, TXi is assumed to have only its incoming full-duplex channel coefficients, i.e.,

{h̃[ii′](t)}Ki′=1 in the IC and {h̃[ii′](t)}Mi′=1 in the X channel, perfectly and instantaneously.

Moreover, we consider two different feedback models as follows:

Definition 9 (Feedback Models). We assume that each receiver knows channel coefficients

of the other receivers with one time slot delay. Also,

• Output Feedback: Each channel output y[i](t), 1 ≤ i ≤ K, will become available

at TXi with one time slot delay via a noiseless feedback link. Therefore, for the X

channel, we only consider M = K under the output feedback assumption.

• Shannon Feedback: The transmitters have access to both delayed CSIT and output

feedback as defined above. Therefore, for the X channel, we only consider M = K

under the Shannon feedback assumption.

Definition 10 (Transmitter Side Information). Using Definitions 8 and 9, the following

feedback and/or transmitter cooperation models will be investigated in this chapter, each of

which is equivalent to a certain transmitter side information:

(a) The K-user IC and M ×K X channel with delayed CSIT and full-duplex transmitter

cooperation:

K-user IC:

I [i](t) ,
{
ỹ[i](t′),H(t′)

}t−1

t′=1
∪
{
h̃[ii′](t′) : 1 ≤ i′ ≤ K

}t
t′=1

, 1 ≤ i ≤ K. (4.3)

M ×K X channel:

I [i](t) ,
{
ỹ[i](t′),H(t′)

}t−1

t′=1
∪
{
h̃[ii′](t′) : 1 ≤ i′ ≤M

}t
t′=1

, 1 ≤ i ≤M. (4.4)
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(b) The K-user IC and K ×K X channel with output feedback:

I [i](t) ,
{
y[i](t′)

}t−1

t′=1
, 1 ≤ i ≤ K. (4.5)

(c) The K-user IC and K ×K X channel with Shannon feedback:

I [i](t) ,
{
y[i](t′),H(t′)

}t−1

t′=1
, 1 ≤ i ≤ K. (4.6)

For the definitions of block codes and DoF, the reader is referred to Definitions 6 and 7.

In the following two sections, we elaborate on our transmission schemes for examples

of the IC with a few number of users. Each channel will be investigated under each of the

following assumptions defined in Definition 10:

(a) Full-duplex transmitter cooperation and delayed CSIT (which is also called full-duplex

delayed CSIT in this chapter);

(b) Output feedback;

(c) Shannon feedback.

4.2 Illustrative Examples: Interference Channel

Note that for the two-user IC, none of the assumptions (a)-(c) can help to achieve more

than one DoF. This follows from the fact that DoF of this channel with full CSIT is equal

to 1, and full-duplex cooperation and/or output feedback cannot increase the channel

DoF with full CSIT[11]. Hence, we start by the 3-user IC and present our transmission

scheme under each of the assumptions (a)-(c). Subsequently, we consider the 4-user IC to

illustrate how our transmission techniques are generalized to the IC with more users. Let

us introduce some notations which will be used only in this section and Section 4.3:

Notation 4. In the IC, we denote fresh information symbols of TX1, TX2, TX3, and

TX4 (intended for their paired receivers) by u, v, w, and s variables, respectively. Each of

these symbols is selected from a Gaussian codeword which is intended to be decoded at its

corresponding receiver.
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Notation 5. The transmission schemes are multiphase. A linear combination of transmit-

ted symbols which is received by RX1 is denoted by La(·) if we are in phase 1 of the scheme,

and by L′a(·) or L′a,t(·) if we are in phase 2, where t is the time index. Similarly, Lb(·),

Lc(·), and Ld(·) and their primed versions denote the linear combinations available at RX2,

RX3, and RX4, respectively. A linear combination which is available at a receiver but is

not desired by that receiver is coloured by a colour specified to that receiver. In particular,

“blue”, “red”, “green”, and “yellow” are assigned to RX1 to RX4, respectively.

4.2.1 3-user Interference Channel

The schemes we propose for the 3-user IC under the assumptions (a)-(c) are motivated

by the scheme proposed in [35] for the 3-user IC with output feedback, i.e., assumption

(b). Indeed, the scheme proposed here for the 3-user IC with output feedback is a modified

version of the scheme proposed in [35] and achieves the same DoF of 6/5. The modification

is such that our scheme can be systematically generalized to larger networks. For the full-

duplex delayed CSIT and Shannon feedback, our transmission schemes also achieve 6/5

DoF. Each scheme operates in 2 distinct phases. Since phase 1 is the same for all three

schemes, we present phase 1 only once, and then present phase 2 under each assumption

separately.

Phase 1 (3-user IC):

This phase takes 3 time slots, during which 6 information symbols {u1, u2}, {v1, v2},
and {w1, w2} are fed to the system respectively by TX1, TX2, and TX3 as follows:

� First time slot : TX1 and TX2 transmit u1 and v1, respectively, while TX3 is silent.

Hence, ignoring the noise, RX1 and RX2 each receive one linear equation in terms of u1

and v1 by the end of the first time slot as follows:

RX1 : La(u1, v1) = h[11](1)u1 + h[12](1)v1, (4.7)

RX2 : Lb(u1, v1) = h[21](1)u1 + h[22](1)v1. (4.8)

Therefore, if we deliver another linearly independent combination of u1 and v1 to RX1, it

will be able to decode both transmitted symbols (the desired symbol u1 and the interference
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symbol v1). Similarly, if we deliver a linearly independent combination of u1 and v1 to RX2,

it can decode both u1 which is interference and v1 which is a desired symbol.

Now, we observe that RX3 has also received a linear combination of u1 and v1, i.e.,

ignoring the noise,

RX3 : Lc(u1, v1) = h[31](1)u1 + h[32](1)v1. (4.9)

Note first that this quantity does not contain any information about the information sym-

bols of RX3 (w symbols). Therefore, it is not desired by RX3. However, since the channel

coefficients are i.i.d. across the nodes, Lc(u1, v1) is linearly independent of each of La(u1, v1)

and Lb(u1, v1) almost surely. Therefore, if we somehow deliver Lc(u1, v1) to both RX1 and

RX2, each of them will be able to decode its own desired symbol (together with the inter-

ference symbol). Hence, Lc(u1, v1) is a new “symbol” which is simultaneously desired by

both RX1 and RX2 and is available at RX3.

Transmission in the second and third time slots is done similar to the first time slot,

except that roles of the nodes are exchanged:

� Second time slot : TX2 and TX3 transmit v2 and w1, respectively, while TX1 is silent.

After this time slot, the linear combination La(v2, w1) will be desired by both RX2 and

RX3.

� Third time slot : TX3 and TX1 transmit w2 and u2, respectively, while TX2 is silent.

After this time slot, Lb(u2, w2) will be desired by both RX3 and RX1.

The transmission in phase 1 is visually illustrated in Fig. 4.1. Note in the figure

that in each time slot, the coloured quantity denotes the quantity which is available and

undesired at the corresponding receiver by the end of that time slot. It only remains to

deliver these coloured symbols, i.e., Lc(u1, v1), La(v2, w1), and Lb(u2, w2) to the pairs of

receivers where they are desired as discussed above. This will be accomplished in phase 2

through cooperation between the transmitters. The type of cooperation is determined by

the channel feedback/cooperation assumption, that is, the assumptions (a)-(c). However,

under each assumption, phase 2 takes 2 time slots, and thus, the overall achieved DoF will

be 6/5. In the following, we present the phase 2 under each assumption separately:
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Phase 2 (Full-duplex 3-user IC with Delayed CSIT):

Recall that in the first time slot, TX1 and TX2 respectively transmitted u1 and v1,

and TX3 was silent. According to full-duplex operation of the transmitters, TX1 receives

a noisy version of v1 and TX2 receives a noisy version of u1 by the end of this time slot.

This along with the delayed CSIT assumption enables both TX1 and TX2 to reconstruct a

noisy version of Lc(u1, v1), whose noise can be ignored as mentioned in previous chapters.

Similarly, both TX2 and TX3 will reconstruct La(v2, w1) after the second time slot, and

both TX3 and TX1 will reconstruct Lb(u2, w2) after the third time slot. Therefore, this

phase takes 2 time slots as follows:

� Fourth time slot : The symbols Lc(u1, v1), La(v2, w1), and Lb(u2, w2) are transmitted

by TX1, TX2, and TX3, respectively. Then, RX1 receives the following linear combination

L′a,4 (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) =

h[11](4)Lc(u1, v1) + h[12](4)La(v2, w1) + h[13](4)Lb(u2, w2),

and since it already has the undesired quantity La(v2, w1), it can cancel it to obtain an

equation solely in terms of Lc(u1, v1) and Lb(u2, w2). Remember that both Lc(u1, v1) and

Lb(u2, w2) are going to be delivered to RX1.

Also, RX2 receives

L′b,4 (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) =

h[21](4)Lc(u1, v1) + h[22](4)La(v2, w1) + h[23](4)Lb(u2, w2),

and RX3 receives

L′c,4 (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) =

h[31](4)Lc(u1, v1) + h[32](4)La(v2, w1) + h[33](4)Lb(u2, w2)

by the end of the fourth time slot. Similarly, RX2, having the undesired quantity Lb(u2, w2),

will obtain an equation in terms of two desired quantities La(v2, w1) and Lc(u1, v1). Also,

RX3 will similarly obtain an equation solely in terms of La(v2, w1) and Lb(u2, w2).
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Figure 4.1: Phase 1 of the transmission scheme for 3-user IC. Each coloured linear combi-

nation is the one which is (i) available at a receiver, (ii) not desired by that receiver, and

(iii) desired by the other receivers.

� Fifth time slot : This time slot is an exact repetition of the fourth time slot. Hence,

since the channel coefficients are i.i.d. in time, by the end of this time slot, each receiver

obtains a linearly independent equation in terms of its own two desired quantities, and

thus, can decode both desired quantities.

The above transmission scheme in phase 2 is illustrated in Fig. 4.2a. This completes

the delivery of the 6 information symbols {u1, u2, v1, v2, w1, w2} to their intended receivers

in 5 time slots, and thus, proves achievability of 6/5 DoF with full-duplex delayed CSIT.

Phase 2 (3-user IC with Output Feedback):

With access to output feedback, the quantity Lc(u1, v1) is available at TX3 after the first

time slot. Similarly, La(v2, w1) and Lb(u2, w2) are available at TX1 and TX2, respectively,

after the second and third time slots. Hence, transmission of these symbols in phase 2

can be done in two time slots using the same scheme explained above. The only difference

is that here La(v2, w1), Lb(u2, w2), and Lc(u1, v1) are transmitted by TX1, TX2, and TX3

respectively, as shown in Fig. 4.2b.

Phase 2 (3-user IC with Shannon Feedback):

Under the Shannon feedback assumption, we argue that Lc(u1, v1) is available at all

three transmitters after the first time slot as follows: TX3 obtains Lc(u1, v1) through the

output feedback. On the other hand, TX1, having access to output feedback, obtains

83



CHAPTER 4: Full-duplex TX Cooperation and Feedback
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(a) Full-duplex delayed CSIT.
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(b) Output feedback.

t = 4, 5t = 4, 5

ca,tLa(v2, w1) + cb,tLb(u2, w2) + cc,tLc(u1, v1)

0

0
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ca,tLa(v2, w1) + cc,tLc(u1, v1)

ca,tLa(v2, w1) + cb,tLb(u2, w2)

(c) Shannon feedback.

Figure 4.2: Phase 2 of the transmission scheme for 3-user IC.
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La(u1, v1) after this time slot. Then, since it also has access to delayed CSI and its own

transmitted symbol u1, it can cancel the effect of u1 from La(u1, v1) to obtain v1. Therefore,

it can reconstruct Lc(u1, v1) using u1, v1, and the delayed CSI. Similarly, TX2 can recon-

struct Lc(u1, v1). Using a similar argument, La(v2, w1) and Lb(u2, w2) will be available at

all three transmitters after the second and third time slots, respectively.

Recall that under each of the assumptions of full-duplex delayed CSIT and output

feedback, to deliver La(v2, w1), Lb(u2, w2), and Lc(u1, v1) to their intended pairs of receiver

in phase 2, we delivered two random linear combinations of them to each receiver. In

those cases, each of these symbols was repeated by one of the transmitted in two time

slots simultaneously. Here, we again deliver two random linear combinations of these

three symbols to each receiver using another approach: two random linear combinations of

La(v2, w1), Lb(u2, w2), and Lc(u1, v1) are transmitted by one of the transmitters, say TX1,

in two time slots t = 4, 5, while the rest of transmitters are silent. The coefficients of these

combinations are generated offline and revealed to all receivers before the transmission

begins. Hence, after two time slots, each receiver obtains two random linear combinations

in terms of La(v2, w1), Lb(u2, w2), and Lc(u1, v1), and will be able to remove its known

undesired quantity and decode the other two desired quantities. Therefore, 6/5 DoF is also

achieved with Shannon feedback. The phase 2 of the transmission scheme with Shannon

feedback is depicted in Fig. 4.2c, where {ca,t, cb,t, cc,t|t = 1, 2} are the random coefficient.

4.2.2 4-user Interference Channel

Before proceeding with the 4-user IC, let us summarize the common ingredients of the

transmission schemes proposed for the 3-user IC as follows:

(i) The transmission is accomplished in consecutive phases (two phases in case of the

3-user IC).

(ii) In each time slot of phase 1, fresh information symbols are transmitted by a subset

S of transmitters (with |S| = 2 in case of the 3-user IC). The set of all receivers is

then partitioned into two subsets S and its complement Sc (with |Sc| = 1 in case
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of the 3-user IC). Each receiver in S has a desired information symbol among the

transmitted symbols, whereas the receivers in Sc are not interested in decoding any

transmitted symbol in this time slot.

(iii) Each receiver in S receives a piece of information (linear equation) in terms of its

own desired symbol and |S|−1 interference symbol(s). Since there are more than one

unknowns in the received equation, the receiver cannot resolve the equation for its

desired symbol. It requires another |S| − 1 linearly independent equations to resolve

its own desired symbol (and the interference symbols).

(iv) Each receiver in Sc receives a piece of information (linear equation) in terms of |S|
undesired (interference) symbols. The linear equations received by any arbitrary

|S| − 1 receivers out of these |Sc| receivers are, however, desired by all receivers in

S, in view of observation (iii) and the fact of the channel coefficients are i.i.d. across

the channel nodes.

(v) Let RXj∗ be one of these |S|−1 receivers. The linear combination received by RXj∗ , if

retransmitted, provides each receiver in S with a desired equation without causing any

further interference at RXj∗ . In this sense, this linear combination can be considered

as an “aligned interference” at RXj∗ because it only occupies one dimension in the

received equation space of RXj∗ .

(vi) These |S| − 1 pieces of information are also available at a “subset of transmitters”,

depending on the channel feedback/cooperation assumption. These transmitters can

cooperate to retransmit these |S| − 1 pieces of information in the subsequent phases

of the transmission scheme (phase 2 in case of the 3-user IC).

Along the direction highlighted by the above observations, we propose a 3-phase trans-

mission scheme for the 4-user IC under each of the assumptions (a)-(c). As in the 3-user

case, the proposed schemes for the 4-user IC have the same performance in terms of achiev-

able DoF and achieve 24/19 DoF under each assumption. We note that this is strictly

greater than 45/38 DoF which is the best known achievable DoF for the 4-user IC with

delayed CSIT [1]. Since the three schemes are common in their phase 1, we present phase

1 only once and then present the remaining phases separately under each assumption:
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Figure 4.3: Phase 1 of the transmission scheme for 4-user IC. Each coloured linear combi-

nation is the one which is (i) available at a receiver, (ii) not desired by that receiver, and

(iii) desired by two of the other receivers.

Phase 1 (4-user IC):

This phase takes 12 time slots, during which 24 information symbols

{ui, vi, wi, si|i = 1, · · · , 6} (4.10)

are fed to the system by the transmitters in parallel with phase 1 of the scheme for the

3-user IC (see Section 4.2.1). Figure 4.3 illustrates the transmission in phase 1 for the

4-user IC.
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� Time slots t = 1, · · · , 3: TX1, TX2, and TX3 transmit 6 information symbols

{u1, u2, v1, v2, w1, w2} exactly as in the 3-user case. TX4 is silent during the first 3 time

slots. Consequently, the linear combinations La(v2, w1), Lb(u2, w2), and Lc(u1, v1) which

are respectively received by RX1, RX2, and RX3 need to be delivered to their respective

pairs of receivers during the remaining phases. The availability of these quantities at TX1,

TX2 and TX2 after the first 3 time slots depends on the channel feedback/cooperation as-

sumption and can be summarized as follows (see the corresponding phase 2 in Section 4.2.1

for a detailed discussion):

• Full-duplex delayed CSIT : La(v2, w1) is available at TX2 and TX3; Lb(u2, w2) is avail-

able at TX1 and TX3; and Lc(u1, v1) is available at TX1 and TX2.

• Output feedback : La(v2, w1), Lb(u2, w2), and Lc(u1, v1) are available at TX1, TX2,

and TX3, respectively.

• Shannon feedback : La(v2, w1), Lb(u2, w2), and Lc(u1, v1) are available at all three

transmitters TX1, TX2, and TX3.

The transmission in the remaining time slots of this phase is similarly proceeded by

different subsets of 3 out of the 4 transmitters:

� Time slots t = 4, · · · , 6: TX1, TX2, and TX4 transmit fresh information symbols

{u3, u4, v3, v4, s1, s2}, while TX3 is silent. Similarly, La(v4, s1), Lb(u4, s2), and Ld(u3, v3)

which are respectively received by RX1, RX2, and RX4 need to be delivered to their respec-

tive pairs of receivers during the remaining phases. These quantities are similarly available

at subsets of {TX1,TX2,TX4} based on the channel feedback/cooperation assumption.

� Time slots t = 7, · · · , 9: TX1, TX3, and TX4 transmit fresh information symbols

{u5, u6, w3, w4, s3, s4}, while TX2 is silent. Similarly, La(w4, s3), Lc(u6, s4), and Ld(u5, w3)

which are respectively received by RX1, RX3, and RX4 need to be delivered to their respec-

tive pairs of receivers during the remaining phases. These quantities are similarly available

at subsets of {TX1,TX3,TX4} based on the channel feedback/cooperation assumption.

� Time slots t = 10, · · · , 12: TX2, TX3, and TX4 transmit fresh information symbols

{v5, v6, w5, w6, s5, s6}, while TX1 is silent. Similarly, Lb(w6, s5), Lc(v6, s6), and Ld(v5, w5)
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which are respectively received by RX2, RX3, and RX4 need to be delivered to their respec-

tive pairs of receivers during the remaining phases. These quantities are similarly available

at subsets of {TX2,TX3,TX4} based on the channel feedback/cooperation assumption.

Now, let us proceed with the remaining phases under each of the channel feedback/

cooperation assumptions (a)-(c):

Full-duplex 4-user IC with Delayed CSIT

Phase 2 (Full-duplex 4-user IC with Delayed CSIT):

This phase takes 4 time slots. In each time slot, 3 transmitters simultaneously transmit

three symbols generated during phase 1 as follows:

� Time slot t = 13: TX1, TX2, and TX3 respectively transmit Lc(u1, v1), La(v2, w1),

and Lb(u2, w2), while TX4 is silent. RX1 has La(v2, w1) and wishes to decode Lb(u2, w2)

and Lc(u1, v1). Hence, RX1 can obtain a linear combination solely in terms of Lb(u2, w2)

and Lc(u1, v1) by cancelling La(v2, w1) from its received equation. Similarly, RX2 and RX3

each obtain a linear combination in terms of their desired pair of quantities. Thus, each

of RX1, RX2, and RX3 requires another linearly independent equation to resolve its both

desired quantities.

Now, consider the following linear combination received by RX4 over this time slot:

L′d (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) =

h[41](13)Lc(u1, v1) + h[42](13)La(v2, w1) + h[43](13)Lb(u2, w2).

If we somehow deliver the above linear combination to RX1, it can obtain h[41](13)Lc(u1, v1)+

h[43](13)Lb(u2, w2) by cancelling La(v2, w1). Since the channel coefficients are i.i.d. across

the channel nodes, this linear combination is linearly independent of the equation RX1 has

received during this time slot, and hence, it will enable RX1 to resolve its both desired

quantities. Likewise, if we deliver L′d (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) to RX2 and RX3,

each of them will be able to decode its both desired quantities. Thus, it is desired by RX1,

RX2, and RX3, and will be delivered to them in phase 3.
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Figure 4.4: Phase 2 of the transmission scheme for full-duplex 4-user IC with delayed

CSIT. Each coloured linear combination is the one which is (i) available at a receiver, (ii)

not desired by that receiver, and (iii) desired by the other receivers.

We now argue that this linear combination will be available at TX1, TX2 and TX3 after

this time slot. We indeed show that Lc(u1, v1), La(v2, w1), and Lb(u2, w2) will be available

at these three transmitters, which together with the delayed CSIT assumption yields the

desired result. But this immediately follows from the fact that each of TX1, TX2, and TX3

has two out of these three quantities, and thus, by the full-duplex operation, receives the

third one during this time slot.

The transmission in the remaining 3 time slots of phase 2 is similarly done by other

subsets of 3 out of the 4 transmitters:
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� Time slot t = 14: TX1, TX2, and TX4 respectively transmit Ld(u3, v3), La(v4, s1),

and Lb(u4, s2) and the following linear combination which is received by RX3 will be desired

by RX1, RX2, and RX4 and available at TX1, TX2, and TX4:

L′c (La(v4, s1), Lb(u4, s2), Ld(u3, v3)) =

h[31](14)Ld(u3, v3) + h[32](14)La(v4, s1) + h[34](14)Lb(u4, s2).

� Time slot t = 15: TX1, TX3, and TX4 respectively transmit Ld(u5, w3), La(w4, s3),

and Lc(u6, s4) and the following linear combination which is received by RX2 will be desired

by RX1, RX3, and RX4 and available at TX1, TX3, and TX4:

L′b (La(w4, s3), Lc(u6, s4), Ld(u5, w3)) =

h[21](15)Ld(u5, w3) + h[23](15)La(w4, s3) + h[24](15)Lc(u6, s4).

� Time slot t = 16: TX2, TX3, and TX4 respectively transmit Ld(v5, w5), Lb(w6, s5),

and Lc(v6, s6) and the following linear combination which is received by RX1 will be desired

by RX2, RX3, and RX4 and available at TX2, TX3, and TX4:

L′a (Lb(w6, s5), Lc(v6, s6), Ld(v5, w5)) =

h[12](16)Ld(v5, w5) + h[13](16)Lb(w6, s5) + h[14](16)Lc(v6, s6).

Figure 4.4 illustrates the transmission in phase 2 for the 4-user IC with full-duplex

delayed CSIT. The symbols L′a, L
′
b, L

′
c, and L′d will be delivered to their respective triples

of receivers in phase 3.

Phase 3 (Full-duplex 4-user IC with Delayed CSIT):

This phase takes 3 time slots. In each time slot, L′d, L
′
c, L

′
b, and L′a are transmitted

by TX1, TX2, TX3, and TX4, respectively. Each receiver has one of these quantities

and requires the other three. By the end of this phase, each receiver will obtain three

random linear combinations of its three desired quantities, and thus, will decode its desired

quantities.
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4-user IC with Output Feedback

Phase 2 (4-user IC with Output Feedback):

The above scheme for the phase 2 under full-duplex delayed CSIT assumption can be

used under output feedback assumption as well. The only difference is that in each of the 4

time slots, the three corresponding symbols are transmitted using a different permutation

of the same transmitters as follows:

� Time slot t = 13: TX1, TX2, and TX3 respectively transmit La(v2, w1), Lb(u2, w2),

and Lc(u1, v1), while TX4 is silent. The linear combination L′d(La(v2, w1), Lb(u2, w2), Lc(u1,

v1)) will then be desired by RX1, RX2, and RX3 and will be available at TX4 after this

time slot via output feedback.

� Time slot t = 14: TX1, TX2, and TX4 respectively transmit La(v4, s1), Lb(u4, s2), and

Ld(u3, v3), while TX3 is silent. The linear combination L′c(La(v4, s1), Lb(u4, s2), Ld(u3, v3))

will be desired by RX1, RX2, and RX4 and available at TX3.

� Time slot t = 15: TX1, TX3, and TX4 respectively transmit La(w4, s3), Lc(u6, s4),

and Ld(u5, w3), while TX2 is silent. The linear combination L′b(La(w4, s3), Lc(u6, s4), Ld(u5,

w3)) will be desired by RX1, RX3, and RX4 and available at TX2.

� Time slot t = 16: TX2, TX3, and TX4 respectively transmit Lb(w6, s5), Lc(v6, s6), and

Ld(v5, w5), while TX1 is silent. The linear combination L′a(Lb(w6, s5), Lc(v6, s6), Ld(v5, w5))

will be desired by RX2, RX3, and RX4 and available at TX1.

The symbols L′a, L
′
b, L

′
c, and L′d will be delivered to their respective triples of receivers

in phase 3.

Phase 3 (4-user IC with output feedback):

This phase takes 3 time slots. In each time slot, the symbols (linear combinations) L′a,

L′b, L
′
c, and L′d are transmitted by TX1, TX2, TX3, and TX4, respectively. Similar to the

full-duplex delayed CSIT, by the end of this phase, each receiver will decode its desired

symbols.
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4-user IC with Shannon Feedback

Phase 2 (4-user IC with Shannon Feedback):

This phase takes 4 time slots as follows:

� Time slot t = 13: Recall from phase 1 that La(v2, w1), Lb(u2, w2), and Lc(u1, v1) are

all available at each of TX1, TX2, and TX3. We also note that if we deliver two random

linear combinations of these three quantities to RX1, RX2, and RX3, then each of them

will be able to decode its two desired quantities out of these three quantities. Hence, two

random linear combinations of them with offline generated coefficients are simultaneously

transmitted by two transmitters out of TX1, TX2, and TX3 (say, TX1 and TX2). Then,

each of RX1, RX2, and RX3 receives one linear equation in terms of La(v2, w1), Lb(u2, w2),

and Lc(u1, v1) and requires another random linear combination to resolve both desired

quantities. Thus, the linear combination L′d (La(v2, w1), Lb(u2, w2), Lc(u1, v1)) which is re-

ceived by RX4 is desired by each of the other three receivers. Also, this linear combination

is available at TX4 through the output feedback and is available at the other transmitters,

since they all have La(v2, w1), Lb(u2, w2), and Lc(u1, v1).

The remaining 3 time slots are similarly dedicated to transmission of other linear com-

binations as follows:

� Time slot t = 14: Two random linear combinations of La(v4, s1), Lb(u4, s2), and

Ld(u3, v3) are transmitted by TX4 and TX1. The linear combination L′c(La(v4, s1), Lb(u4,

s2), Ld(u3, v3)) which is received by RX3 is desired by each of the other three receivers, and

is available at all 4 transmitters.

� Time slot t = 15: Two random linear combinations of La(w4, s3), Lc(u6, s4), and

Ld(u5, w3) are transmitted by TX3 and TX4. The linear combination L′b(La(w4, s3), Lc(u6,

s4), Ld(u5, w3)) which is received by RX2 is desired by each of the other three receivers,

and is available at all 4 transmitters.

� Time slot t = 16: Two random linear combinations of Lb(w6, s5), Lc(v6, s6), and

Ld(v5, w5) are transmitted by TX2 and TX3. The linear combination L′a(Lb(w6, s5), Lc(v6,

s6), Ld(v5, w5)) which is received by RX1 is desired by each of the other three receivers,

and is available at all 4 transmitters.
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The transmission in phase 2 for the 4-user IC with Shannon feedback is illustrated in

Fig. 4.5.

Phase 3 (4-user IC with Shannon feedback):

Over 3 time slots, one of the transmitters, say TX1, transmits 3 random linear combi-

nations of L′a, L
′
b, L

′
c, and L′d, and thus, each receiver will decode its desired symbols by

the end of this phase.

Our achievable DoF for the 4-user IC under each of the feedback/cooperation assump-

tions will then be 24/(12 + 4 + 3) = 24/19.

Remark 5. Although the proposed transmission schemes for the 3-user and 4-user IC

achieve the same DoF under each of the channel feedback/cooperation assumptions, this is

not generally the case as it will be seen later. Indeed, for K > 6, the proposed transmission

schemes achieve strictly different DoFs under different feedback/cooperation assumptions.

4.3 Illustrative Examples: X Channel

In this section, we illustrate our transmission schemes for the 2 × 2 and 3 × 3 X channel

under each of the channel feedback/cooperation assumptions (a)-(c). Before proceeding

with the details of the transmission schemes, let us introduce a notation which is exclusively

used in this section:

Notation 6. The symbols ua, ub, and uc denote information symbols of TX1, TX2, and

TX3, respectively, all intended for RX1. Similarly, va, vb, and vc denote information

symbols intended for RX2, and wa, wb, and wc are all intended for RX3.

We also use the same notations for the linear combinations and their colouring as

defined in Notation 5.

4.3.1 2× 2 X Channel

It is already known that 2× 2 X channel can achieve 4/3 DoF with output feedback [35].

This is indeed the DoF of 2-user MISO broadcast channel with Shannon feedback [34],
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Figure 4.5: Phase 2 of the transmission scheme for 4-user IC with Shannon feedback. Each

coloured linear combination is the one which is (i) available at a receiver, (ii) not desired

by that receiver, and (iii) desired by the other receivers.
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which is also an upper bound to the DoF of 2×2 X channel under each of the assumptions

(a)-(c). Hence, the DoF of 2×2 X channel with output feedback or with Shannon feedback

is equal to 4/3. In this section, we show that 2× 2 X channel has the same DoF under the

full-duplex delayed CSIT assumption as well. The transmission scheme operates in parallel

with scheme proposed in [34] for the 2-user MISO broadcast channel and employed in [35]

for the 2×2 X channel with output feedback. It is a two-phase transmission scheme depicted

in Fig. 4.6, wherein the fresh information symbols are transmitted over the channel in the

first phase and delivery of the symbols to their intended receivers is completed in the second

phase. In particular, 4 information symbols are delivered in 3 time slots as follows:

Phase 1 (Full-duplex 2× 2 X Channel with Delayed CSIT):

This phase takes 2 time slots to transmit 4 information symbols as follows:

� First time slot : The symbols ua and ub are transmitted by TX1 and TX2, respectively.

Ignoring the noise, RX1 will receive a linear equation

La(u
a, ub) = h[11](1)ua + h[12](1)ub, (4.11)

in terms of 2 desired information symbols, and hence, requires another linearly independent

equation to resolve them. Simultaneously, RX2 receives another linear equation, namely,

Lb(u
a, ub) = h[21](1)ua + h[22](1)ub, (4.12)

in terms of ua and ub. Since the channel coefficients are i.i.d. across the channel nodes,

Lb(u
a, ub) is linearly independent of La(u

a, ub) almost surely. Therefore, if we deliver

Lb(u
a, ub) to RX1 it will be able to decode both ua and ub. On the other hand, according

to full-duplex operation of the transmitters, both TX1 and TX2 will have both ua and ub,

and by the delayed CSIT assumption, they can reconstruct Lb(u
a, ub) after this time slot.

� Second time slot : Similarly, va and vb are transmitted respectively by TX1 and TX2.

Then, the linear combination

La(v
a, vb) = h[11](2)va + h[12](2)vb, (4.13)

which is received by RX1 will be desired by RX2 and available at both TX1 and TX2.
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Figure 4.6: The transmission scheme for full-duplex 2 × 2 X channel with delayed CSIT.

Each coloured linear combination is the one which is (i) available at a receiver, (ii) not

desired by that receiver, and (iii) desired by the other receiver.

Therefore, it only remains to deliver Lb(u
a, ub) and La(v

a, vb) to RX1 and RX2 respec-

tively. This is accomplished in one time slot in phase 2:

Phase 2 (Full-duplex 2× 2 X Channel with Delayed CSIT):

� Third time slot : One of the transmitters, say TX1, transmits Lb(u
a, ub) +La(v

a, vb),

while the other transmitter is silent. RX1 receives this linear combination, and it can

cancel La(v
a, vb) which it already has, to obtain the desired quantity Lb(u

a, ub). Similarly,

RX2 can cancel Lb(u
a, ub) to obtain La(v

a, vb).

4.3.2 3× 3 X Channel

For this channel, we achieve 24/17 DoF with full-duplex delayed CSIT. We also achieve

3/2 DoF and 27/17 DoF with output feedback and Shannon feedback, respectively. In the

following, we show the achievability of each of the above DoFs:

Full-duplex 3× 3 X Channel with Delayed CSIT

We propose a 3-phase transmission scheme which delivers 72 information symbols in 51

time slots, and thus, achieves 24/17 DoF as follows:

Phase 1 (Full-duplex 3× 3 X Channel with Delayed CSIT):

This phase takes 12 times slots to transmit 24 information symbols.
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� Time slots t = 1, · · · , 6: Only TX1 and TX2 transmit information symbols, and

TX3 is silent. In particular, for each pair of receivers, TX1 and TX2 use 2 time slots to

transmit 4 information symbols exactly as in phase 1 of the scheme proposed above for the

full-duplex 2× 2 X channel with delayed CSIT.

� Time slots t = 7, · · · , 12: Similarly, another 12 information symbols are now trans-

mitted by TX1 and TX3, while TX2 is silent.

The transmission in this phase is illustrated in Fig. 4.7. Each coloured linear combi-

nation in the figure is available at one receiver and desired by another receiver, and will

also be reconstructed by two of the transmitters after its corresponding time slot. For

example, Lb(u
a
1, u

b
1) is available at RX2 and desired by RX1, and will be reconstructed by

TX1 and TX2 after the first time slot. Now, it only remains to deliver the following 6

linear combinations to their respective pairs of receivers (as discussed in phase 2 of the

full-duplex 2× 2 X channel with delayed CSIT):

TX1 & TX2


Lb(u

a
1, u

b
1) + La(v

a
1 , v

b
1) −→ RX1 & RX2

Lc(u
a
2, u

b
2) + La(w

a
1 , w

b
1) −→ RX1 & RX3

Lc(v
a
2 , v

b
2) + Lb(w

a
2 , w

b
2) −→ RX2 & RX3

, (4.14)

TX1 & TX3


Lb(u

a
3, u

c
1) + La(v

a
3 , v

c
1) −→ RX1 & RX2

Lc(u
a
4, u

c
2) + La(w

a
3 , w

c
1) −→ RX1 & RX3

Lc(v
a
4 , v

c
2) + Lb(w

a
4 , w

c
2) −→ RX2 & RX3

. (4.15)

This will be accomplished during the remaining phases of the transmission scheme.

Phase 2 (Full-duplex 3× 3 X Channel with Delayed CSIT):

This phase takes 3 time slots to transmit the linear combinations indicated in (4.14)

and (4.15) by TX1 and TX2 as follows. TX3 is silent in this phase.

� Time slot t = 13: TX1 and TX2 transmit Lb(u
a
3, u

c
1) + La(v

a
3 , v

c
1) and Lb(u

a
1, u

b
1) +

La(v
a
1 , v

b
1), respectively, while TX3 is silent. By the end of this time slot, RX1 obtains

a linear combination in terms of the (desired) Lb quantities (after cancelling the known
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Figure 4.7: Phase 1 of the transmission scheme for full-duplex 3×3 X channel with delayed

CSIT. Each coloured linear combination is the one which is (i) available at a receiver, (ii)

not desired by that receiver, and (iii) desired by one of the other receivers.

La quantities). Hence, it requires another linearly independent combination of the Lb

quantities to decode both of them. Similarly, RX2 obtains a linear combination of the

(desired) La quantities and needs another linearly independent combination of them to

decode both. Now, one can easily verify that the linear combination

L′c = h[31](13)[Lb(u
a
3, u

c
1) + La(v

a
3 , v

c
1)] + h[32](13)[Lb(u

a
1, u

b
1) + La(v

a
1 , v

b
1)], (4.16)

received by RX3 during this time slot, is linearly independent of the linear combination

received by each of RX1 and RX2. Therefore, if we deliver this linear combination to both

RX1 and RX2, each of them will be able to decode its both desired Lb or La quantities.

On the other hand, by the delayed CSIT assumption, L′c is available at TX1 as well (note

that TX1 has both transmitted linear combinations).

The next two time slots are similarly dedicated to the other pairs of receivers:
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� Time slot t = 14: TX1 and TX2 transmit Lc(u
a
4, u

c
2) + La(w

a
3 , w

c
1) and Lc(u

a
2, u

b
2) +

La(w
a
1 , w

b
1), respectively. Now, each of RX1 and RX3 receives a desired linear combination

and the linear combination

L′b = h[21](14)[Lc(u
a
4, u

c
2) + La(w

a
3 , w

c
1)] + h[22](14)[Lc(u

a
2, u

b
2) + La(w

a
1 , w

b
1)], (4.17)

received by RX2 during this time slot, will be desired by both RX1 and RX3. This linear

combination is also available at TX1 after this time slot.

� Time slot t = 15: TX1 and TX2 transmit Lc(v
a
4 , v

c
2) + Lb(w

a
4 , w

c
2) and Lc(v

a
2 , v

b
2) +

Lb(w
a
2 , w

b
2), respectively. Each of RX2 and RX3 receives a desired linear combination and

the linear combination

L′a = h[11](15)[Lc(v
a
4 , v

c
2) + Lb(w

a
4 , w

c
2)] + h[12](15)[Lc(v

a
2 , v

b
2) + Lb(w

a
2 , w

b
2)], (4.18)

received by RX1 during this time slot, will be desired by both RX2 and RX3. This linear

combination is also available at TX1 after this time slot.

In summary, the linear combinations L′a, L
′
b, and L′c each are available at one receiver

and desired by the other two receivers, and all of them are available at TX1. They will be

delivered to their respective pairs of receivers in phase 3.

Phase 3 (Full-duplex 3× 3 X Channel with Delayed CSIT):

� Time slots t = 16, 17: In each time slot, a random linear combination of L′a, L
′
b,

and L′c is transmitted by TX1, while the rest of transmitters are silent. It can be easily

verified that after these two time slots, each receiver will be able to decode its both desired

quantities.

3× 3 X Channel with Output Feedback

Our transmission scheme for this channel is a 2-phase scheme wherein 9 information sym-

bols are delivered to the receivers in 6 time slots, yielding 3/2 DoF, as illustrated in Fig. 4.8

and elaborated on in the following:
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Figure 4.8: Transmission scheme for 3× 3 X channel with output feedback. Each coloured

linear combination is the one which is (i) available at a receiver, (ii) not desired by that

receiver, and (iii) desired by one of the other receivers.

Phase 1 (3× 3 X Channel with Output Feedback): This phase has 3 time slots.

Each time slot is dedicated to transmission of information symbols intended for one of the

receivers:

� First time slot : The information symbols ua, ub, and uc, all intended for RX1, are

transmitted by TX1, TX2 and TX3, respectively. By the end of this time slot, RX1 receives

linear combination La(u
a, ub, uc) of the three desired symbols and requires two extra linearly

independent equations to resolve all three symbols. RX2 receives the linear combination

Lb(u
a, ub, uc) which is linearly independent of La(u

a, ub, uc), and thus, is desired by RX1.

Similarly, the linear combination Lc(u
a, ub, uc) received by RX3 is desired by RX1. On the

other hand, Lb(u
a, ub, uc) (resp. Lc(u

a, ub, uc)) will be also available at TX2 (resp. TX3)

through the output feedback.
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The second and third time slots are similarly dedicated to RX2 and RX3, respectively:

� Second time slot : The information symbols va, vb, and vc, all intended for RX2, are

transmitted by TX1, TX2 and TX3, respectively. Similarly, La(v
a, vb, vc) and Lc(v

a, vb, vc),

received by RX1 and RX3 and available at TX1 and TX3 through the output feedback, will

be desired by RX1 after this time slot.

� Third time slot : The information symbols wa, wb, and wc, all intended for RX3, are

transmitted by TX1, TX2 and TX3, respectively. Similarly, La(w
a, wb, wc) and Lb(w

a, wb, wc),

received by RX1 and RX2 and available at TX1 and TX2 through the output feedback, will

be desired by RX3 after this time slot.

Therefore, to deliver the transmitted information symbols to their intended receivers,

it suffices to

(i) deliver Lb(u
a, ub, uc) and Lc(u

a, ub, uc) to RX1;

(ii) deliver La(v
a, vb, vc) and Lc(v

a, vb, vc) to RX2;

(iii) deliver La(w
a, wb, wc) and Lb(w

a, wb, wc) to RX3.

This will be done in phase 2.

Phase 2 (3× 3 X Channel with Output Feedback):

This phase takes 3 time slots. Each time slot is dedicated to a pair of receivers as

follows:

� Fourth time slot : Over this time slot, which is dedicated to RX1 and RX2, La(v
a, vb, vc)

and Lb(u
a, ub, uc) are respectively transmitted by TX1 and TX2, while TX3 is silent. After

this time slot, RX1 obtains the desired linear combination Lb by cancelling the known un-

desired linear combination La. Similarly, RX2 obtains its own desired linear combination

La by cancelling Lb.

� Fifth time slot : The quantities La(w
a, wb, wc) and Lc(u

a, ub, uc) are transmitted by

TX1 and TX3, while TX2 is silent. Then, each of RX1 and RX3 similarly obtains its desired

quantity.
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� Sixth time slot : The quantities Lb(w
a, wb, wc) and Lc(v

a, vb, vc) are transmitted by

TX2 and TX3, while TX1 is silent. Then, each of RX2 and RX3 similarly obtains its desired

quantity.

3× 3 X Channel with Shannon Feedback

Our transmission scheme for this channel has two rounds of operation, during which 27

information symbols are delivered to the receivers in 17 time slots as follows:

� Round 1 (3× 3 X Channel with Shannon Feedback):

The first round consists of two phases. Phase 1 takes 3 time slots to transmit 9 informa-

tion symbols {ua1, ub1, uc1, va1 , vb1, vc1, wa1 , wb1, wc1} exactly as in phase 1 of the scheme proposed

above for the same channel with output feedback. Before proceeding with phase 2, one

notes that TX1 after the first time slot will obtain the linear combination

La(u
a
1, u

b
1, u

c
1) = h[11](1)ua1 + h[12](1)ub1 + h[13](1)uc1, (4.19)

through the output feedback. Since TX1 has access to delayed CSI as well (Shannon

feedback assumption), it can cancel its own transmitted symbols ua1 to obtain

h[12](1)ub1 + h[13](1)uc1, (4.20)

which is a linear combination of ub1 and uc1. TX1 knows the coefficients h[12](1) and h[13](1)

of this linear combination. Similarly, TX2 will obtain h[21](2)va1 +h[23](2)vc1 after the second

time slot using Shannon feedback.

In phase 2, over one time slot, TX1 and TX2 transmit La(v
a
1 , v

b
1, v

c
1) and Lb(u

a
1, u

b
1, u

c
1),

while TX3 is silent. Hence, La(v
a
1 , v

b
1, v

c
1) and Lb(u

a
1, u

b
1, u

c
1) are delivered to RX2 and RX1,

respectively (as in the phase 2 of the scheme proposed with output feedback). Now, TX1

will obtain Lb(u
a
1, u

b
1, u

c
1) since it has access to Shannon feedback and its own transmitted

quantity i.e., La(v
a
1 , v

b
1, v

c
1). Therefore, by cancelling ua1 from Lb(u

a
1, u

b
1, u

c
1), TX1 will obtain

h[22](1)ub1 + h[23](1)uc1, (4.21)

which is another linear combination of ub1 and uc1. Hence, using (4.20) and (4.21), TX1

will be able to decode both ub1 and uc1. Thereby, having access to delayed CSI, TX1 can
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reconstruct Lc(u
a
1, u

b
1, u

c
1). Likewise, TX2 will be able to decode both va1 and vc1, and hence,

can reconstruct Lc(v
a
1 , v

b
1, v

c
1).

In summary, after these 4 time slots, it only remains to

(i) deliver Lc(u
a
1, u

b
1, u

c
1) to RX1;

(ii) deliver Lc(v
a
1 , v

b
1, v

c
1) to RX2;

(iii) deliver La(w
a
1 , w

b
1, w

c
1) and Lb(w

a
1 , w

b
1, w

c
1) to RX3.

On the other hand, TX1 has access to Lc(u
a
1, u

b
1, u

c
1) by above argument and has access

to La(w
a
1 , w

b
1, w

c
1) using output feedback. Similarly, TX2 has access to Lc(v

a
1 , v

b
1, v

c
1) and

Lb(w
a
1 , w

b
1, w

c
1). Hence, it suffices to deliver the following two linear combinations to their

respective pairs of receivers:

TX1 : Lc(u
a
1, u

b
1, u

c
1) + La(w

a
1 , w

b
1, w

c
1) −→ RX1 & RX3, (4.22)

TX2 : Lc(v
a
1 , v

b
1, v

c
1) + Lb(w

a
1 , w

b
1, w

c
1) −→ RX2 & RX3. (4.23)

Before proceeding with the second round, we repeat the above procedure two more times

and transmit another 2×9 = 18 fresh information symbols, namely {uai , ubi , uci , vai , vbi , vci , wai ,
wbi , w

c
i}i=2,3, in another 2×4 = 8 time slots. However, in the first repetition, La(w

a
2 , w

b
2, w

c
2)

and Lc(u
a
2, u

b
2, u

c
2) are transmitted by TX1 and TX3 in phase 2, and it will suffice to deliver

the following two linear combinations to their respective pairs of receivers:

TX1 : Lb(u
a
2, u

b
2, u

c
2) + La(v

a
2 , v

b
2, v

c
2) −→ RX1 & RX2, (4.24)

TX3 : Lb(w
a
2 , w

b
2, w

c
2) + Lc(v

a
2 , v

b
2, v

c
2) −→ RX2 & RX3. (4.25)

Similarly, in the second repetition, Lb(w
a
3 , w

b
3, w

c
3) and Lc(v

a
3 , v

b
3, v

c
3) are transmitted by TX2

and TX3 in phase 2, and it will suffice to deliver the following two linear combinations to

their respective pairs of receivers:

TX2 : La(v
a
3 , v

b
3, v

c
3) + Lb(u

a
3, u

b
3, u

c
3) −→ RX1 & RX2, (4.26)

TX3 : La(w
a
3 , w

b
3, w

c
3) + Lc(u

a
3, u

b
3, u

c
3) −→ RX1 & RX3. (4.27)
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Up to this point, we have spent 12 time slots, transmitted 27 information symbols.

Now, we need to to deliver the above 6 linear combinations to their respective pairs of

receivers. This will be done in the second round.

� Round 2 (3× 3 X Channel with Shannon Feedback):

This round takes 5 time slots, i.e., t = 13, · · · , 17. During the first 3 time slots the

above 6 linear combinations are transmitted over the channel. Each time slot is dedicated

to a pair of receivers as follows:

� Time slot t = 13: TX1 and TX2 respectively transmit Lb(u
a
2, u

b
2, u

c
2) + La(v

a
2 , v

b
2, v

c
2)

and La(v
a
3 , v

b
3, v

c
3)+Lb(u

a
3, u

b
3, u

c
3) (both to be delivered to RX1 and RX2 according to (4.24)

and (4.26)), while TX3 is silent. Then, using an argument similar to the phase 2 of the

transmission scheme proposed for the full-duplex 3× 3 X channel with delayed CSIT, RX1

(resp. RX2) receives an equation in terms of the (desired) linear combinations Lb(u
a
2, u

b
2, u

c
2)

and Lb(u
a
3, u

b
3, u

c
3) (resp. La(v

a
2 , v

b
2, v

c
2) and La(v

a
3 , v

b
3, v

c
3)). Also, the equation

L′c = h[31](13)[Lb(u
a
2, u

b
2, u

c
2) + La(v

a
2 , v

b
2, v

c
2)] + h[32](13)[La(v

a
3 , v

b
3, v

c
3) + Lb(u

a
3, u

b
3, u

c
3)],

(4.28)

received by RX3 in this time slot will be desired by both RX1 and RX2. It can also be

easily verified that L′c can be reconstructed by TX1 due to Shannon feedback.

� Time slot t = 14: TX1 and TX3 respectively transmit Lc(u
a
1, u

b
1, u

c
1) +La(w

a
1 , w

b
1, w

c
1)

and La(w
a
3 , w

b
3, w

c
3) + Lc(u

a
3, u

b
3, u

c
3), both desired by RX1 and RX3, while TX2 is silent.

Then, the linear combination

L′b = h[21](14)[Lc(u
a
1, u

b
1, u

c
1) + La(w

a
1 , w

b
1, w

c
1)] + h[23](14)[La(w

a
3 , w

b
3, w

c
3) + Lc(u

a
3, u

b
3, u

c
3)],

(4.29)

received by RX2 will be desired by both RX1 and RX3 and can be reconstructed by TX1

using Shannon feedback.

� Time slot t = 15: TX2 and TX3 respectively transmit Lb(w
a
2 , w

b
2, w

c
2) + Lc(v

a
2 , v

b
2, v

c
2)

and Lb(w
a
2 , w

b
2, w

c
2) + Lc(v

a
2 , v

b
2, v

c
2), both desired by RX2 and RX3, while TX1 is silent.

Then, the linear combination

L′a = h[12](15)[Lb(w
a
2 , w

b
2, w

c
2) + Lc(v

a
2 , v

b
2, v

c
2)] + h[13](15)[Lb(w

a
2 , w

b
2, w

c
2) + Lc(v

a
2 , v

b
2, v

c
2)],

(4.30)
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received by RX1 will be desired by both RX2 and RX3 and is received by TX1 using

Shannon feedback (output feedback).

During the last 2 time slots of this round, the linear combinations L′a, and L′b, and L′c

are delivered to their intended pairs of receivers:

� Time slots t = 16, 17: Two random linear combinations of L′a, and L′b, and L′c are

transmitted by TX1, while the rest of transmitters are silent. Each receiver will then be

able to decode its two desired linear combinations.

The achieved DoF is therefore equal to 27/(12 + 3 + 2) = 27/17.

4.4 Main Results

The main results of this chapter are summarized in the following six theorems. The proof

of each theorem is provided in its respective section.

4.4.1 Full-duplex Transmitter Cooperation and Delayed CSIT

Theorem 7. The K-user (K ≥ 3) SISO Gaussian interference channel with delayed CSIT

and full-duplex transmitters can achieve DoFICFD
1 (K) degrees of freedom almost surely,

where DoFICFD
1 (K) is given by

DoFICFD
1 (K) =

4

3− 2
dK

2
e(dK

2
e−1)

+ 4
bK

2
c(dK

2
e−1)

∑K
`=dK

2
e+1

1
`

. (4.31)

Proof. See Section 4.5.1.

Theorem 8. The M × K SISO Gaussian X channel with delayed CSIT and full-duplex

transmitters can achieve DoFXFD
1 (M,K) degrees of freedom almost surely, where DoFXFD

1 (M,K)

is given by
(

1
dK

2
e − 1 +

∑dK
2
e−1

`1=1
1
`21

+ 1
dK

2
e(bK

2
c+1)

∑K
`2=dK

2
e

1
`2

)−1

, M > dK
2
e(

1
M−1
− 1 +

∑M−2
`1=1

1
`21

+ 1
M2

∑K
`2=M−1

1
`2

(M−1
M

)min(`2,K−M+1)−M
)−1

, M ≤ dK
2
e
. (4.32)

Proof. See Section 4.5.2.
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4.4.2 Output Feedback

Theorem 9. The K-user (K ≥ 3) SISO Gaussian interference channel with output feed-

back can achieve DoFICOF
1 (K) degrees of freedom almost surely, where DoFICOF

1 (K) is given

by

DoFICOF
1 (K) = max

w∈{bw∗Kc,dw
∗
Ke}

w

a(K)w(w − 1)2 + (w + 1)/2
, (4.33)

with w∗K and a(K) defined as

w∗K ,
1

3
+

1

6

(
8a(K) + 3

√
48a(K) + 81 + 27

a(K)

) 1
3

+
1

6

(
8a(K)− 3

√
48a(K) + 81 + 27

a(K)

) 1
3

,

(4.34)

a(K) ,
1

dK
2
e − 1

− 1

2dK
2
e +

1

bK
2
c

K∑
`=dK

2
e+1

1

`

 . (4.35)

Proof. See Section 4.6.1.

Theorem 10. The K × K SISO Gaussian X channel with output feedback can achieve

DoFXOF
1 (K,K) = 2K

K+1
degrees of freedom almost surely†.

Proof. See Section 4.6.2.

4.4.3 Shannon Feedback

Theorem 11. The K-user (K ≥ 3) SISO Gaussian interference channel with Shannon

feedback can achieve DoFICSF
1 (K) degrees of freedom almost surely, where DoFICSF

1 (K) is

given by

DoFICSF
1 (K) = max

2≤w≤dK/2e
w∈Z+

w

1 + w−2
DoFICOF

w (K)
+ w

(w+1)DoFICSF
w+1 (K)

, (4.36)

†The result of this theorem has been simultaneously and independently reported in [51]
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with DoFICOF
m (K) given by (4.58), and DoFICSF

m (K) given by
(

1
m

+m(m− 1)
[

1
m
− 1
bK

2
c −

∑bK
2
c

`1=m+1
1
`21

+ 1
bK

2
cdK

2
e

∑K
`2=bK

2
c+1

1
`2

])−1

, 2 ≤ m ≤ bK
2
c(

m
K−m+1

∑K
`=m

1
`

)−1

, bK
2
c < m ≤ K

.

(4.37)

Proof. See Section 4.7.1.

Theorem 12. The K ×K SISO Gaussian X channel with Shannon feedback can achieve

DoFXSF
1 (K,K) degrees of freedom almost surely, where DoFXSF

1 (K,K) is given by

DoFXSF
1 (K,K) =

K2

K2+7K−6
2

− 2(K−1)

bK
2
c − 2(K − 1)

∑bK
2
c

`1=1
1
`21

+ 2(K−1)

bK
2
cdK

2
e

∑K
`2=bK

2
c+1

1
`2

. (4.38)

Proof. See Section 4.7.2.

4.4.4 Some Comments

Before proceeding with the proof details, we highlight some key features of our proposed

transmission schemes through the following observations:

1. For each of IC and X channel and under each of the feedback/cooperation assump-

tions, a “multi-phase” transmission scheme is proposed.

2. During phase 1, in each time slot, fresh information symbols are transmitted by a

subset of transmitters such that:

(i) Each receiver receives a number of linear combinations of its own desired infor-

mation symbols (and possibly some interference symbols). The received linear

combinations are not enough to resolve all desired symbols (possibly including

some interference symbols).

(ii) Each receiver also receives some linear combinations solely in terms of undesired

information symbols. However, these linear combinations are desired by some
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other receivers in view of observation (2i). On the other hand, by the end of

phase 1, each of these linear combinations will be also available at a subset of

transmitters based on the feedback/cooperation assumption.

3. During the remaining transmission phases, the transmitters deliver the linear com-

binations mentioned in observation (2ii) to the receivers where they are desired:

(i) Phase m, m ≥ 2, takes some linear combinations as its inputs. Each of these

linear combinations is available at a subset of transmitters and is desired by a

subset of cardinality m of receivers (and is at most available at one unintended

receiver as well).

(ii) During phase m, the input linear combinations are transmitted over the channel

such that each intended receiver obtains “part” of the information required to

decode the input linear combinations. The rest of information required by each

intended receiver (to decode all its desired linear combinations) is obtained by

a subset of unintended receivers. These pieces of information will be delivered

to the intended receivers during phases m+ 1,m+ 2, · · · .

(iii) In specific, the mentioned pieces of information (or a mixture of them) is now

desired by a subset of cardinality m+ 1 of receivers, and is available at a subset

of transmitters and at most one unintended receiver. These linear combinations

constitute the inputs of phase m+ 1.

(iv) The transmission continues until the last phase. The input of the last phase is

the linear combinations which are desired by all receivers (except for at most one

unintended receiver where the linear combination is already available). These

linear combinations are delivered to their intended receivers by an appropriate

number of transmissions.

4. Under the full-duplex delayed CSIT assumption, for both IC and X channel, only

two transmitters are simultaneously active in each time slot of phase 1.

5. Under the output feedback and Shannon feedback assumptions, in each time slot of

phase 1,
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(i) for the X channel, all transmitters are simultaneously active.

(ii) for the IC, the number of active transmitters is a function of the number of

users.

6. Under the Shannon feedback assumption, the schemes proposed for both IC and X

channel operate in two rounds: The first round follows the scheme proposed for the

output feedback. However, as the scheme proceeds, each transmitter obtains more

information about the symbols of the other transmitters using Shannon feedback.

Eventually, each transmitter will be able to decode some information symbols of the

other transmitters. Then, the transmission scheme will move on to the second round,

where more transmitters can cooperate in the rest of transmissions.

Here, we introduce some notations which are widely used in the subsequent proof

sections, namely, Sections 4.5 to 4.7. These notations are consistent with Notation 3.

Notation 7. In the M×K X channel (with arbitrary M), the subsets of cardinality m1 and

m2 of transmitters and receivers are denoted by S(t)
m1 ⊆ S(t)

M and S(r)
m2 ⊆ S(t)

K , respectively,

where S(t)
M = {1, 2, · · · ,M} and S(r)

K = {1, 2, · · · , K} are respectively the index sets of all

transmitters and all receivers and m1 ≤ M , m2 ≤ K. A symbol which is available at all

transmitters TXi, i ∈ S(t)
m1, and all receivers RXj′, j

′ ∈ S(r)
m3, and is intended to be decoded

at all receivers RXj, j ∈ S(r)
m2, is denoted by u[S(t)

m1
|S(r)
m2

;S(r)
m3

]. The superscripts “ (t)” and

“ (r)” may be omitted whenever it is clear. If S(r)
m3 = {}, the mentioned symbol is denoted

by u[S(t)
m1
|S(r)
m2

] and is called an order-m2 symbol.

4.5 SISO Interference and X Channels with Full-duplex

Transmitter Cooperation and Delayed CSIT

In this section, we investigate the impact of full-duplex transmitter cooperation on the

DoF of the K-user IC and M ×K X channel with delayed CSIT. We will demonstrate how

transmitters can exploit their knowledge about each other’s messages (attained through

the full-duplex cooperation) combined with the delayed CSIT to achieve a higher DoF
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compared to the non-cooperative delayed CSIT. In specific, we prove Theorems 7 and 8 as

follows:

4.5.1 Proof of Theorem 7

Our transmission scheme for the K-user IC consists of K − 1 phases as follows:

Phase 1 (Full-duplex K-user IC with Delayed CSIT): In this phase, fresh infor-

mation symbols are fed to the channel as follows: For every subset S3 = {i1, i2, i3} ⊆ SK ,

spend 3 time slots to transmit 6 fresh information symbols {u[i1]
1 , u

[i1]
2 , u

[i2]
1 , u

[i2]
2 , u

[i3]
1 , u

[i3]
2 }

by {TXi1 ,TXi2 ,TXi3} as follows:

In the first time slot, TXi1 and TXi2 transmit u
[i1]
1 and u

[i2]
1 , respectively, the rest of

transmitters are silent. Hence, ignoring the noise, RXi1 and RXi2 each receive one linear

equation in terms of u
[i1]
1 and u

[i2]
1 by the end of the first time slot. Therefore, if we deliver a

linearly independent equation in terms of u
[i1]
1 and u

[i2]
1 to both RXi1 and RXi2 , each of them

will be able to decode both transmitted symbols (desired and interference). This linearly

independent equation is indeed the linear combination h[i3i1](1)u
[i1]
1 + h[i3i2](1)u

[i2]
1 received

by RXi3 during this time slot. On the other hand, according to full-duplex operation of

the transmitters, both TXi1 and TXi2 will have both u
[i1]
1 and u

[i2]
1 by the end of the first

time slot. This along with the delayed CSIT assumption enables both TXi1 and TXi2 to

reconstruct h[i3i1](1)u
[i1]
1 + h[i3i2](1)u

[i2]
1 . Thus, according to Notation 7, one can define

u[i1,i2|i1,i2;i3] , h[i3i1](1)u
[i1]
1 + h[i3i2](1)u

[i2]
1 . (4.39)

Similarly, the second and third time slots are described as follows:

• Second time slot : TXi2 and TXi3 transmit u
[i2]
2 and u

[i3]
1 , respectively. The symbol

u[i2,i3|i2,i3;i1] will be accordingly generated after this time slot.

• Third time slot : TXi3 and TXi1 transmit u
[i3]
2 and u

[i1]
2 , respectively. The symbol

u[i3,i1|i3,i1;i2] will be accordingly generated after this time slot.
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Therefore, 6
(
K
3

)
information symbols are transmitted in 3

(
K
3

)
time slots and 3

(
K
3

)
sym-

bols of type u[S2|S2;j], j ∈ SK\S2, are generated by the end of phase 1. We denote by

DoFICFD
m (K), 2 ≤ m ≤ K − 1, our achievable DoF for transmission of symbols of type

u[Sm|Sm;j], j ∈ SK\Sm, over the K-user IC with full-duplex delayed CSIT. The achieved

DoF is then calculated as

DoFICFD
1 (K) =

6
(
K
3

)
3
(
K
3

)
+

3(K3 )
DoFICFD

2 (K)

=
2

1 + 1
DoFICFD

2 (K)

. (4.40)

Phase m, 2 ≤ m ≤ K − 2 (Full-duplex K-user IC with Delayed CSIT): For

m,n ∈ Z, define

Lm(n) , lcm{n−m,m} (4.41)

Qm(n) , min{n−m,m}, (4.42)

where lcm{x, y}, x, y ∈ Z, is the least common multiplier of x and y. This phase takes
m+1
m
αm(K) symbols u[Sm|Sm;j], j ∈ SK\Sm, transmits them over the channel in αm(K)

Qm(K)
time

slots, and generates Qm(K)−1
Qm(K)

αm(K) symbols of type u[Sm+1|Sm+1;j], j ∈ SK\Sm+1, where

αm(K) is defined as

αm(K) ,

(
K

m+ 1

)(
K −m− 1

Qm(K)− 1

)
Lm(K). (4.43)

Fix a subset Sm+1 = {i1, i2, · · · , im+1} ⊂ SK , and a subset SQm(K)−1 ⊆ SK\Sm+1. Dur-

ing Lm(K)
Qm(K)

time slots, each TXin , 1 ≤ n ≤ m+ 1, transmits a random linear combination

of u
[Sm+1\{in−1}|Sm+1\{in−1};in−1]
k , 1 ≤ k ≤ Lm(K)/m, (with i0 , im+1) in each time slot.

Therefore, a total of (m + 1)Lm(K)
m

symbols are transmitted in Lm(K)
Qm(K)

time slots. We note

that the random coefficients of these linear combinations are generated offline and shared

with all nodes. Now, the following observations are important:

(i) RXj, j ∈ Sm+1, wishes to decode the Lm(K) symbols {u[Sm+1\{j′}|Sm+1\{j′};j′]
k }Lm(K)/m

k=1 ,

j′ ∈ Sm+1\{j}. Since it has all the symbols {u[Sm+1\{j}|Sm+1\{j};j]
k }Lm(K)/m

k=1 , by cancel-

ing them, it will obtain Lm(K)
Qm(K)

equations out of its received equations, solely in terms

of its desired symbols.
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(ii) TXi, i ∈ Sm+1, has all the transmitted symbols except for {u[Sm+1\{i}|Sm+1\{i};i]
k }Lm(K)/m

k=1 .

According to the full-duplex operation, it will obtain Lm(K)
Qm(K)

random linear combina-

tions of these symbols after canceling its known symbols, and since Lm(K)
Qm(K)

≥ Lm(K)
m

,

it can decode all of them.

(iii) RXj′ , j
′ ∈ SQm(K)−1, receives Lm(K)

Qm(K)
linear equations in terms of all transmitted sym-

bols. If we deliver these linear combinations to RXj, j ∈ Sm+1, it will be able to cancel

its undesired part as argued in observation (i) and obtain Lm(K)
Qm(K)

equations solely in

terms of its desired symbols. On the other hand, in view of observation (ii) and

according to the delayed CSIT assumption, TXi, i ∈ Sm+1, can reconstruct all these

linear combinations by the end of the Lm(K)
Qm(K)

time slots. Thus, the Lm(K)
Qm(K)

linear combi-

nations received by RXj′ , j
′ ∈ SQm(K)−1, are denoted by {u[Sm+1|Sm+1;j′]

k }Lm(K)/Qm(K)
k=1 .

After delivering these (Qm(K) − 1) × Lm(K)
Qm(K)

symbols to RXj, j ∈ Sm+1, it will be

provided with a total of Lm(K) linear combinations in terms of its Lm(K) desired

symbols. Also, it is easy to show that these linear combinations are linearly indepen-

dent almost surely, and hence, can be solved for the desired symbols.

Since there are
(
K
m+1

)
choices of Sm+1 and

(
K−m−1
Qm(K)−1

)
choices of SQm(K)−1 for each Sm+1,

the achieved DoF equals

DoFICFD
m (K) =

(m+ 1)αm(K)/m
αm(K)
Qm(K)

+ (Qm(K)−1)αm(K)/Qm(K)

DoFICFD
m+1 (K)

=
m+ 1

m
× Qm(K)

1 + Qm(K)−1

DoFICFD
m+1 (K)

, 2 ≤ m ≤ K − 2. (4.44)

Phase K − 1 (Full-duplex K-user IC with Delayed CSIT): During K − 1

consecutive time slots, TXi, i ∈ SK , repeats the symbol u[SK\{i−1}|SK\{i−1};i−1] (with

u[SK\{0}|SK\{0};0] , u[SK\{K}|SK\{K};K]). It is easily verified that, in each time slot, each

receiver obtains a linear combination of its K − 1 desired symbols. Hence, after K − 1

time slots, every receiver will be able to decode all its K − 1 desired symbols. One then

can write

DoFICFD
K−1 (K) =

K

K − 1
. (4.45)

113



CHAPTER 4: Full-duplex TX Cooperation and Feedback

At the end, following Appendix A.3, it can be shown that (4.31) is indeed the closed

form solution to the recursive equations (4.40) and (4.44) with initial condition (4.45).

4.5.2 Proof of Theorem 8

For the general M×K SISO X channel, a K-phase transmission scheme is proposed wherein

the information symbols are transmitted in the first phase towards generation of higher

order symbols during the subsequent phases. The order-K symbols will be finally delivered

to all receivers in phase K.

Phase 1 (Full-duplex M × K X Channel with Delayed CSIT): Fix i1, i2 ∈
S(t)
M . For any {j1, j2} ∈ S(r)

K , TXi1 and TXi2 transmit four fresh information symbols

u[i1|j1], u[i2|j1], u[i1|j2], and u[i2|j2] in two time slots as follows (we have ignored the indices

of symbols for ease of notations): over the first time slot, TXi1 and TXi2 respectively

transmit u[i1|j1], u[i2|j1], both intended for RXj1 . After this time slot, the linear combination

h[j2i1]u[i1|j1] + h[j2i2]u[i2|j1], which has been received by RXj2 , is available at TXi1 and TXi2

due to full-duplex operation of the transmitters and delayed CSIT, and is desired by RXj1

to be able to decode u[i1|j1] and u[i2|j1]. Hence, it is denoted as u[i1,i2|j1;j2]. Similarly, over the

second time slot, TXi1 and TXi2 respectively transmit u[i1|j2], u[i2|j2], both intended now for

RXj2 , and the symbol u[i1,i2|j2;j1] is generated. It is easily verified that u[i1,i2|j1;j2] +u[i1,i2|j2;j1]

is desired by both RXj1 and RXj2 . Hence, one can define the following order-2 symbol:

u[i1,i2|j1,j2] , u[i1,i2|j1;j2] + u[i1,i2|j2;j1]. (4.46)

By the end of this phase, 4
(
M
2

)(
K
2

)
fresh information symbols are transmitted in 2

(
M
2

)(
K
2

)
time slots and

(
M
2

)(
K
2

)
order-2 symbols are generated, which will be delivered to their cor-

responding pairs of receivers during the rest of the transmission scheme. The achieved DoF

is then calculated as

DoFXFD
1 (M,K) =

4
(
M
2

)(
K
2

)
2
(
M
2

)(
K
2

)
+

(M2 )(K2 )
DoFXFD

2 (M,K)

=
4

2 + 1
DoFXFD

2 (M,K)

, (4.47)

where DoFXFD
2 (M,K) denotes our achievable DoF for transmission of order-2 symbols of

type u[S(t)
2 |S

(r)
2 ] over the full-duplex M ×K SISO X channel with delayed CSIT.
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Phase m, 2 ≤ m ≤ K−1 (Full-duplex M ×K X Channel with Delayed CSIT):

Consider the following distinct cases:

(i) M > K
2
, 2 ≤ m ≤ K

2
:

In this case, order-m symbols of type u[S(t)
m |S

(r)
m ] are transmitted over the channel. Fix

a subset S(r)
2m ⊆ S(r)

K , and a subset S(t)
m+1 = {i1, i2, · · · , im+1} ⊆ S(t)

M . Note that since

m ≤ K/2 < M , both subsets exist. All transmitters TXj, j ∈ S(t)
M \S

(t)
m+1, are silent,

while the transmitters TXin , 1 ≤ n ≤ m + 1, simultaneously transmit as follows:

For every subset S(r)
m ⊂ S(r)

2m, spend one time slot to transmit u[in,in+1,··· ,in+m−1|S(r)
m ]

by TXin , n = 1, · · · ,m + 1, where ik , ik−m−1 for m + 1 < k ≤ 2m. Every RXj,

j ∈ S(r)
m , receives one linear equation in terms of m + 1 desired symbols, and thus,

requires m extra independent equations to resolve all the m + 1 symbols. It is easy

to see that the equation received by RXj, j ∈ S(r)
2m\S(r)

m , is linearly independent of

the equation received by each RXj, j ∈ S(r)
m , and hence, is desired by all of them.

On the other hand, every TXin , 1 ≤ n ≤ m + 1, knows exactly m symbols out of

the m + 1 transmitted symbols, and thus, obtains the last one using the full-duplex

operation by the end of this time slot. Hence, TXin , 1 ≤ n ≤ m + 1, having access

to all the m+ 1 transmitted symbols and the delayed CSI, can reconstruct the linear

combinations received by all receivers by the end of this time slot. In particular, one

can denote the linear combination received by RXj, j ∈ S(r)
2m\S(r)

m , as u[S(t)
m+1|S

(r)
m ;j].

Now, we have the following observation: For any subset S(r)
m+1 ⊂ S(r)

2m, consider the

m + 1 symbols u[S(t)
m+1|S

(r)
m+1\{j};j], j ∈ S(r)

m+1, as defined above. Each receiver RXj,

j ∈ S(r)
m+1, has exactly one of these symbols and requires the other m. Therefore,

if we deliver m random linear combinations of these m + 1 symbols to all receivers

RXj, j ∈ S(r)
m+1, each of them will be provided with m random linear combinations

of m desired unknowns, and thus, will resolve all of them. Hence, these m random

linear combinations can be denoted as {u[S(t)
m+1|S

(r)
m+1]

k }mk=1. These order-(m+1) symbols

will be delivered to their corresponding receivers during the rest of the transmission

scheme. We denote by DoFXFD
m (M,K), 2 ≤ m ≤ K/2 < M , our achievable DoF for

transmission of order-m symbols of type u[S(t)
m |S

(r)
m ] over the full-duplex M ×K SISO

X channel with delayed CSIT. Since there are
(
K
2m

)
choices for S(r)

2m,
(
M
m+1

)
choices for
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S(t)
m+1, and

(
2m
m

)
choices for S(r)

m , the achieved DoF is calculated as

DoFXFD
m (M,K) =

(
M
m+1

)(
K
2m

)(
2m
m

)
(m+ 1)(

M
m+1

)(
K
2m

)(
2m
m

)
+

( M
m+1)(

K
2m)( 2m

m+1)m
DoFXFD

m+1(M,K)

=
(m+ 1)2

m+ 1 + m2

DoFXFD
m+1(M,K)

, M >
K

2
, 2 ≤ m ≤ K

2
. (4.48)

(ii) M > K
2
, K

2
< m ≤ K − 1:

In this case, order-m symbols of type u[S(t)
bK/2c+1

|S(r)
m ] are transmitted over the channel.

Since K/2 < M and K/2 < m, we have K −m+ 1 ≤ bK/2c+ 1 ≤M . Fix a subset

S(t)
bK/2c+1 ⊆ S

(t)
M of transmitters. For every subset S(r)

m ⊂ S(r)
K of receivers, spend one

time slot to simultaneously transmit K − m + 1 symbols {u[S(t)
bK/2c+1

|S(r)
m ]

k }K−m+1
k=1 by

K −m + 1 arbitrary transmitters out of the bK/2c + 1 transmitters. Then, each of

the m receivers in S(r)
m will receive one linear combination in terms of the K −m+ 1

desired transmitted symbols. Hence. each of them requires K − m more linearly

independent combinations to resolve all the transmitted symbols. Therefore, the

linear combinations received by the K − m receivers in S(r)
K \S

(r)
m will be desired by

every receiver in S(r)
m . On the other hand, these linear combinations will be available

at every transmitter in S(t)
bK/2c+1 by the delayed CSIT assumption (the transmitters

do not use their full-duplex capability in this case). Thus, one can denote them as

u[S(t)
bK/2c+1

|S(r)
m ;j], j ∈ S(r)

K \S
(r)
m .

To deliver these generated side information symbols to their respective subsets of

receivers, one can make a similar observation as in case (i). In particular, for every

subset S(r)
m+1 ⊆ S(r)

K of m+ 1 receivers, m random linear combinations of the symbols

u[S(t)
bK/2c+1

|S(r)
m+1\{j};j], j ∈ S(r)

m+1, will be desired by each receiver in S(r)
m+1, and hence,

can be denoted as {u[S(t)
bK/2c+1

|S(r)
m+1]

k }mk=1. These order-(m + 1) symbols are the inputs

of the next phase of transmission scheme. Finally, the achieved DoF of this phase

satisfies the following recursion:
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DoFXFD
m (M,K) =

(
M

bK/2c+1

)(
K
m

)
(K −m+ 1)(

M
bK/2c+1

)(
K
m

)
+

( M
bK/2c+1)(

K
m+1)m

DoFXFD
m+1(M,K)

=
(m+ 1)(K −m+ 1)

m+ 1 + m(K−m)

DoFXFD
m+1(M,K)

, M >
K

2
,

K

2
< m ≤ K − 1.

(4.49)

(iii) 2 ≤M ≤ K
2
, 2 ≤ m < M :

In this case, order-m symbols of type u[S(t)
m |S

(r)
m ] are transmitted over the channel.

Since in this case we have m < M ≤ K/2, the transmission scheme proposed for case

(i) works for this case as well and the achieved DoF is given by (4.48).

(iv) 2 ≤M ≤ K
2
, M ≤ m ≤ K − 1:

In this case, order-m symbols of type u[S(t)
M |S

(r)
m ] are transmitted over the channel without

operating in the full-duplex mode. The scheme is very similar to the scheme proposed

in case (ii), except that here we have S(t)
M instead of S(t)

bK/2c+1. Also, for every subset

S(r)
m ⊂ S(r)

K of receivers, here we spend one time slot to simultaneously transmit min{M −
1, K −m}+ 1 symbols of type u[S(t)

M |S
(r)
m ] (as opposed to case (ii) where K −m+ 1 symbols

were transmitted). It can be similarly shown that the following DoF is achievable in this

case

DoFXFD
m (M,K) =

(m+ 1)(min{M − 1, K −m}+ 1)

m+ 1 + m×min{M−1,K−m}
DoFXFD

m+1(M,K)

, M ≤ K

2
, M ≤ m ≤ K − 1,

(4.50)

where DoFXFD
m (M,K) (resp. DoFXFD

m+1(M,K)) denotes our achievable DoF for transmission

of symbols of type u[S(t)
M |S

(r)
m ] (resp. u[S(t)

M |S
(r)
m+1]) over the full-duplex M ×K SISO X channel

with delayed CSIT.

To summarize our achievable results for the above cases, for m,M,K ∈ Z, we define

Qm(M,K) , min{M − 1, K −m,m}, (4.51)
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Θm(M,K) , min{M, bK/2c+ 1,m}, (4.52)

and denote by DoFXFD
m (M,K) our achievable DoF for transmission of order-m symbols

of type u[S(t)
Θm(M,K)

|S(r)
m ] over the full-duplex M × K SISO X channel with delayed CSIT.

Then, it is easy to see from (4.47) to (4.50) that our achievable DoF satisfies the following

recursive equation:

DoFXFD
m (M,K) =

(m+ 1)(Qm(M,K) + 1)

m+ 1 + m×Qm(M,K)

DoFXFD
m+1(M,K)

, 1 ≤ m ≤ K − 1. (4.53)

Phase K (Full-duplex M ×K X Channel with Delayed CSIT):

In this phase, the symbols of type u
[S(t)

ΘK (M,K)
|S(r)
K ]

are delivered to all K receivers by

simple transmission of one symbol per time slot by one of the transmitters (which has

access to that symbol). Therefore,

DoFXFD
K (M,K) = 1. (4.54)

It is shown in Appendix A.4 that (4.32) is indeed the closed form solution to the

recursive equation (4.53) together with the initial condition (4.54).

4.6 SISO Interference and X Channels with Output

Feedback

In this section, we investigate the impact of output feedback on the DoF of the K-user IC

and K×K X channel. As defined in Section 4.1, we assume that output of each receiver is

fed back to its paired transmitter. This provides each transmitter with “some” information

about the other transmitters’ messages, which enables the transmitters to cooperate in

their subsequent transmissions. Recall that in our achievable schemes for the full-duplex

IC and X channel with delayed CSIT, described in Section 4.5, each transmitter acquired

pure symbols of the other transmitters via full-duplex cooperation in order to reconstruct

the linear combinations received by the receivers. The number of simultaneously active
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transmitters was restricted in each time slot such that each active transmitter can obtain a

pure symbol transmitted by one of the others. For instance, in phase 1 of the scheme, only

two transmitters per time slot were allowed to simultaneously transmit over the channel.

In contrast, when the output feedback is available, the linear combination received by each

receiver will become readily available at one of the transmitters, and thus, the restriction

on the number of simultaneously active transmitters is relaxed, providing for a higher level

of transmitter cooperation and interference alignment. The rest of this section presents

proofs of Theorems 9 and 10.

4.6.1 Proof of Theorem 9

Our transmission scheme for the K-user IC with output feedback consists of K−µ(K) + 1

phases as follows, where the integer µ(K), 2 ≤ µ(K) ≤ dK/2e, will be determined later:

Phase 1 (K-user IC with Output Feedback): For every subset Sµ(K) ⊂ SK , and

every subset Sµ(K)−1 ⊆ SK\Sµ(K), in one time slot, each TXi, i ∈ Sµ(K), transmits a fresh

information symbol u[i]. Then, if we deliver µ(K) − 1 linearly independent combinations

of the µ(K) transmitted symbols to RXi, i ∈ Sµ(K), it will be able to decode all the

transmitted symbols. Thus, the equation received by RXj, j ∈ Sµ(K)−1, which will be

available at TXj via the output feedback, is desired by all the receivers RXi, i ∈ Sµ(K).

Hence, they can be denoted as u[j|Sµ(K);j], j ∈ Sµ(K)−1.

Therefore, µ(K)
(

K
µ(K)

)(
K−µ(K)
µ(K)−1

)
information symbols are transmitted in

(
K

µ(K)

)(
K−µ(K)
µ(K)−1

)
time slots and (µ(K) − 1)

(
K

µ(K)

)(
K−µ(K)
µ(K)−1

)
symbols u[j|Sµ(K);j] are generated by the end of

phase 1. Denoting by DoFICOF
m (K) our achievable DoF for transmission of symbols u[j|Sm;j],

j ∈ SK\Sm, over the K-user IC with output feedback, the achieved DoF is equal to

DoFICOF
1 (K) =

µ(K)

1 + µ(K)−1

DoFICOF
µ(K) (K)

. (4.55)

Phase m, 2 ≤ m ≤ K − 2 (K-user IC with Output Feedback): This phase

feeds m+1
m
αm(K) symbols of type u[j|Sm;j], j ∈ SK\Sm, to the channel in αm(K)

Qm(K)
time
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slots, and generates Qm(K)−1
Qm(K)

αm(K) symbols of type u[j|Sm+1;j], j ∈ SK\Sm+1. In spe-

cific, for every subset Sm+1 ⊂ SK , and every subset SQm(K)−1 ⊆ SK\Sm+1, during Lm(K)
Qm(K)

time slots, every TXi, i ∈ Sm+1, transmits Lm(K)
Qm(K)

random linear combinations of sym-

bols {u[i|Sm+1\{i};i]
k }Lm(K)/m

k=1 . Each RXj, j ∈ Sm+1, wishes to decode the Lm(K) symbols

{u[j′|Sm+1\{j′};j′]
k }Lm(K)/m

k=1 , j′ ∈ Sm+1\{j}. Also, RXj, j ∈ Sm+1, after removing u
[j|Sm+1\{j};j]
k ,

k = 1, · · · , Lm(K)/m, from its received equations, obtains Lm(K)
Qm(K)

linear equations solely

in terms of its desired symbols. If we deliver the Lm(K)
Qm(K)

linear equations received by RXj′ ,

j′ ∈ SQm(K)−1, to RXj, j ∈ Sm+1, it will obtain another (Qm(K) − 1) × Lm(K)
Qm(K)

linear

equations solely in terms of its desired symbols. Since these equations will be available at

TXj′ , j
′ ∈ SQm(K)−1, via the output feedback, they are denoted as {u[j′|Sm+1;j′]

k }Lm(K)/Qm(K)
k=1 .

Therefore, RXj, j ∈ Sm+1, will have Lm(K) (linearly independent) equations in terms of

its Lm(K) desired symbols, and can solve them for its desired symbols.

Finally, since the number of input symbols, spent time slots, and output symbols of

this phase are equal to those of phase m in the proposed transmission scheme for the full-

duplex K-user IC with delayed CSIT described in proof of Theorem 7, the achieved DoF

for phase m satisfies the same recursive equation, i.e., (4.44):

DoFICOF
m (K) =

m+ 1

m
× Qm(K)

1 + Qm(K)−1

DoFICOF
m+1 (K)

, 2 ≤ m ≤ K − 2. (4.56)

Phase K− 1 (K-user IC with Output Feedback): During K− 1 consecutive time

slots, TXi, i ∈ SK , repeats the symbol u[i|SK\{i};i]. Therefore, each receiver receives K − 1

linear combination of its K − 1 desired symbols, and thus, will be able to decode all its

K − 1 desired symbols. Hence,

DoFICOF
K−1 =

K

K − 1
. (4.57)

It is shown in Appendix A.3 that the solution to recursive equation (4.56) with initial

condition (4.57) is given by

DoFICOF
m (K) =


(

1
2
− m(m−1)

2dK
2
e(dK

2
e−1)

+ m(m−1)

bK
2
c(dK

2
e−1)

∑K
`=dK

2
e+1

1
`

)−1

, 2 ≤ m ≤ dK
2
e(

m
K−m

∑K
`=m+1

1
`

)−1

, dK
2
e < m ≤ K − 1

.

(4.58)
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Substituting (4.58) for DoFICOF
µ(K) (K) in (4.55), we get

DoFICOF
1 (K) =

µ(K)

a(K)µ(K) (µ(K)− 1)2 + (µ(K) + 1)/2
, (4.59)

where a(K) is defined by (4.35). Now, we choose µ(K) such that DoFICOF
1 (K) given in

(4.59) is maximized. In other words,

µ(K) = arg max
2≤w≤dK/2e

w∈Z+

f ICOF
K (w), (4.60)

where f ICOF
K (w) is defined as

f ICOF
K (w) ,

w

a(K)w(w − 1)2 + (w + 1)/2
. (4.61)

By taking the derivative of f ICOF
K (w) with respect to w, it can be shown that the solution

w∗K to the maximization problem w∗K = arg max2≤w≤dK/2e f
ICOF
K (w) is given by (4.34).

Thus, since f ICOF
K (w) is a continuous and concave function of w, the solution µ(K) to the

maximization problem (4.60) is either bw∗Kc or dw∗Ke, depending on which yields a greater

f ICOF
K (w), i.e.,

µ(K) = arg max
w∈{bw∗Kc,dw

∗
Ke}

f ICOF
K (w), (4.62)

which in view of (4.59) and (4.61) completes the proof. Figure 4.9 shows the achiev-

able DoF for different values of µ(K) together with the optimized achievable DoF, i.e.,

DoFICOF
1 (K), for 3 ≤ K ≤ 30.

4.6.2 Proof of Theorem 10

We propose a transmission scheme which consists of 2 main phases as follows:

Phase 1 (K×K X Channel with Output Feedback): For every j ∈ SK , spend one

time slot to transmit the fresh information symbols u[1|j], u[2|j], · · · , u[K|j] respectively by

TX1, TX2, · · · , TXK , all intended for RXj. By the end of this time slot, RXj has received

one linear combination of all K desired symbols. Therefore, if the linear combinations
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Figure 4.9: Achievable DoFs for the K-user IC with output feedback.

received by RXj′ , j
′ ∈ SK\{j}, are delivered to RXj, it can decode all the K symbols. On

the other hand, according to the output feedback, the linear combination received by RXj′ ,

j′ ∈ SK\{j}, will be available at TXj′ after this time slot. Hence, they can be denoted as

u[j′|j;j′], j′ ∈ SK\{j}. Therefore, after K time slots, K(K − 1) symbols u[j′|j;j′], j ∈ SK ,

j′ ∈ SK\{j}, will be generated. These symbols will be delivered to their respective receiver

during the next phase.

Phase 2 (K×K X Channel with Output Feedback): This phase takes K(K−1)/2

time slots to deliver the K(K − 1) symbols generated in phase 1 as follows: For any

subset {j, j′} ⊆ SK , spend one time slot to transmit u[j|j′;j] and u[j′|j;j′] by TXj and TXj′ ,

respectively, while the other transmitters are silent. After this time slot, each of RXj and

RXj′ can decode its desired symbol by canceling the interference symbol which it already

has. The achieved DoF is then equal to

DoFXOF
1 (K,K) =

K2

K +K(K − 1)/2
=

2K

K + 1
, (4.63)
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completing the proof.

4.7 SISO Interference and X Channels with Shannon

Feedback

With Shannon feedback, each transmitter has access to all observations made by its paired

receiver, i.e., the channel output and all the channel coefficients, with some delay. More-

over, it has access to its own transmitted symbols. If a receiver wants to decode, say, n

symbols (some of which might be interference), it requires n linearly independent equa-

tions in terms of the n symbols. However, the key observation is that after delivering n−1

required equations to a receiver, its paired transmitter having access to Shannon feedback

and its own transmitted symbol (which is one of the n symbols), will be able to decode all

the remaining n− 1 symbols. Then, using the delayed CSIT, it will be able to reconstruct

the last (yet undelivered) linear combination, and hence, to cooperate for its delivery. This

allows for achieving higher DoFs compared to what we achieved in Sections 4.5 and 4.6.

The following two subsections offer proofs of Theorems 11 and 12.

4.7.1 Proof of Theorem 11

Our achievable scheme for the K-user IC with Shannon feedback has two rounds of oper-

ation:

� Round 1 (K-user IC with Shannon Feedback): In this round, the transmitters use

only the output feedback in parallel with the scheme proposed in proof of Theorem 9. In

specific, during phase 1, for every subset Sν(K) ⊂ SK , every subset Sν(K)−1 ⊆ SK\Sν(K),

and every j0 ∈ Sν(K)−1, in one time slot, each TXi, i ∈ Sν(K), transmits a fresh information

symbol u[i]. The integer ν(K), 2 ≤ ν(K) ≤ dK/2e, will be determined later. The linear

combination received by RXj, j ∈ Sν(K)−1, which will be available at TXj via the output

feedback, is desired by every RXi, i ∈ Sν(K).

Now, TXi, i ∈ Sν(K), using Shannon feedback and having u[i], obtains an equation in

terms of the symbols u[i′], i′ ∈ Sν(K)\{i}. We deliver the ν(K) − 2 linear combinations
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available at the receivers RXj, j ∈ Sν(K)−1\{j0}, to every RXi, i ∈ Sν(K), using the scheme

proposed in proof of Theorem 9. Meanwhile, TXi using Shannon feedback and having u[i],

will obtain another ν(K)−2 linearly independent combinations of u[i′], i′ ∈ Sν(K)\{i}, and

hence, can decode all of them. Thereby, it can reconstruct the linear combination available

at RXj0 , which is still required by every RXi, i ∈ Sν(K). Hence, this linear combination

will be denoted as u[Sν(K)∪{j0}|Sν(K);j0].

We note that, for every subset Sν(K)+1 ⊆ SK , and every subset Sν(K)−2 ⊆ SK\Sν(K)+1,

we have generated ν(K) + 1 symbols u[Sν(K)+1|Sν(K)+1\{j0};j0], j0 ∈ Sν(K)+1. Since every

RXi, i ∈ Sν(K)+1, needs exactly ν(K) out of these ν(K) + 1 symbols, ν(K) random linear

combinations of these symbols are desired by each RXi, i ∈ Sν(K)+1, and can be denoted as

{u[Sν(K)+1|Sν(K)+1]

k }ν(K)
k=1 . They will be delivered during round 2 of the transmission scheme.

The achieved DoF is therefore given by

DoFICSF
1 (K)=

ν(K)β(K)

β(K) + (ν(K)−2)β(K)

DoFICOF
ν(K) (K)

+
( K
ν(K)+1)(

K−ν(K)−1
ν(K)−2 )ν(K)

DoFICSF
ν(K)+1(K)

=
ν(K)

1 + ν(K)−2

DoFICOF
ν(K) (K)

+ ν(K)

(ν(K)+1)DoFICSF
ν(K)+1(K)

, (4.64)

where

β(K) ,

(
K

ν(K)

)(
K − ν(K)

ν(K)− 1

)
(ν(K)− 1), (4.65)

and DoFICSF
m (K) denotes our achievable DoF for transmission of the symbols of type u[Sm|Sm]

over the K-user IC with Shannon feedback.

� Round 2 (K-user IC with Shannon Feedback): This round consists of K − ν(K)

phases described as follows:

Phase m, ν(K) + 1 ≤ m ≤ K − 1 (K-user IC with Shannon Feedback): In this

phase, symbols of type u[Sm|Sm] are fed to the channel and symbols of type u[Sm+1|Sm+1] are

generated as follows: Fix a subset SQm(K+1)+m−1 ⊆ SK , where Qm(n), n ∈ Z, is defined in

(4.42). For any Sm ⊂ SQm(K+1)+m−1, spend one time slot to transmit {u[Sm|Sm]
k }Qm(K+1)

k=1 by

Qm(K + 1) arbitrary transmitters out of {TXj : j ∈ Sm}. Then, RXj, j ∈ Sm, requires
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Qm(K + 1) − 1 extra equations to resolve all the transmitted symbols. Thus, the linear

combination received by RXj′ , j
′ ∈ SQm(K+1)+m−1\Sm, which will be available at TXj′ via

the output feedback, is desired by every RXj, j ∈ Sm. On the other hand, every TXj,

j ∈ Sm, having access to all the transmitted symbols and delayed CSI, can reconstruct this

linear combination. Therefore, it is denoted as u[Sm∪{j′}|Sm;j′].

Now, for any subset Sm+1 ⊆ SQm(K+1)+m−1, consider m+ 1 symbols u[Sm+1|Sm+1\{j};j],

j ∈ Sm+1. It is easy to see that m random linear combinations of these symbols are desired

by each RXi, i ∈ Sm+1, and can be denoted as {u[Sm+1|Sm+1]
k }mk=1. The achieved DoF equals

DoFICSF
m (K) =

Qm(K + 1)
(
Qm(K+1)+m−1

m

)(
K

Qm(K+1)+m−1

)
(

K
Qm(K+1)+m−1

)(
Qm(K+1)+m−1

m

)
+

m(Qm(K+1)+m−1
m+1 )( K

Qm(K+1)+m−1)
DoFICSF

m+1 (K)

=
(m+ 1)Qm(K + 1)

m+ 1 + m×(Qm(K+1)−1)

DoFICSF
m+1 (K)

, 2 ≤ m ≤ K − 1. (4.66)

Phase K (K-user IC with Shannon Feedback): In this phase, one symbol u[SK |SK ]

per time slot is transmitted by an arbitrary transmitter. Hence,

DoFICSF
K (K) = 1. (4.67)

It is shown in Appendix A.5 that the solution DoFICSF
m (K) to the recursive equation

(4.66) with initial condition (4.67) is given by (4.37). Therefore, the proof is complete in

view of (4.64) and the fact that ν(K) is chosen to maximize DoFICSF
1 (K). The achievable

DoF for different values of ν(K) and the optimized achieved DoF are plotted in Fig. 4.10

for 2 ≤ K ≤ 30.

4.7.2 Proof of Theorem 12

Our transmission scheme for the K × K X channel with output feedback operates in 2

rounds:

� Round 1 (K × K X Channel with Shannon Feedback): This round has 2 phases in

parallel with the scheme proposed in proof of Theorem 10 for the same channel with output
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Figure 4.10: Achievable DoFs for the K-user IC with Shannon feedback.

feedback. In particular, in phase 1, K2 fresh information symbols u[i|j], 1 ≤ i, j ≤ K, are

transmitted over the channel during K time slots in the same way as the phase 1 of the

scheme proposed in proof of Theorem 10, and K(K − 1) symbols u[j′|j;j′], {j, j′} ⊆ SK , are

generated correspondingly. After time slot j, TXj, having access to its own transmitted

symbol and Shannon feedback, will obtain a linear combination of the K − 1 symbols

u[i|j], i ∈ SK\{j}. Therefore, if TXj is provided with extra K − 2 linearly independent

combinations of these K − 1 symbols (with known coefficients), it will be able to decode

all of them.

In phase 2, the symbols u[j′|j;j′] are transmitted in the same way as in the phase 2 of

the scheme presented in proof of Theorem 10. However, here, according to the Shannon

feedback, each TXi obtains more linear combinations of the symbols u[j|i], j ∈ SK\{i}, as

we proceed with the transmissions. In specific, fix an index j0, j0 ∈ SK . Then, for any

{j, j′} ∈ SK\{j0}, spend one time slot to transmit u[j|j′;j] and u[j′|j;j′] respectively by TXj

and TXj′ , while the other transmitters are silent. By the end of this time slot, u[j|j′;j] and
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u[j′|j;j′] are delivered to RXj and RXj′ , respectively. Also, TXj will obtain u[j′|j;j′] through

Shannon feedback, which is a linear combination of u[i|j], i ∈ SK\{j}. Similarly, TXj′ will

obtain u[j|j′;j] which is a linear combination of u[i|j′], i ∈ SK\{j′}. Therefore, one can verify

that, after the
(
K−1

2

)
time slots of this phase,

(i) each RXj, j ∈ SK\{j0}, will receive all the symbols u[j′|j;j′], j′ ∈ SK\{j0, j};

(ii) each TXj, j ∈ SK\{j0}, will obtain u[j′|j;j′], j′ ∈ SK\{j0, j}, which are K − 2 linear

combinations of the symbols u[i|j], i ∈ SK\{j}. These linear combinations together

with the linear combination obtained during phase 1, constitute K − 1 linearly inde-

pendent combinations of K − 1 unknowns, and thus, can be solved for the symbols

u[i|j], i ∈ SK\{j}.

By observation (i), it only remains to deliver the 2(K − 1) symbols u[j|j0,j], u[j0|j;j0],

j ∈ SK\{j0}, to their respective receivers. On the other hand, by observation (ii), the

symbol u[j0|j;j0], j ∈ SK\{j0}, can now be reconstructed by TXj, and thus, can be denoted

as u[j,j0|j;j0]. Consequently, one can define the following order-2 symbol which is available

at TXj:

u[j|j,j0] , u[j|j0;j] + u[j,j0|j;j0], j ∈ SK\{j0}. (4.68)

Therefore, it only remains to deliver the above K − 1 order-2 symbols to their respective

pairs of receivers. Before proceeding with the next round, we point out here that by K

times repetition of phase 1, each time with K2 fresh information symbols and a new j0,

1 ≤ j0 ≤ K, we will generate K(K − 1) order-2 symbols u[j|j,j0], j0 ∈ SK , j ∈ SK\{j0}, as

above. The achieved DoF will then be given by

DoFXSF
1 (K,K) =

K ×K2

K ×K +K ×
(
K−1

2

)
+ K×(K−1)

DoFXSF
2 (K,K)

=
K2

K + (K−1)(K−2)
2

+ K−1
DoFXSF

2 (K,K)

, (4.69)

where DoFXSF
2 (K,K) represents our achievable DoF for transmission of symbols u[i|i,j] and

u[j|i,j], {i, j} ⊆ SK , over the K×K SISO X channel with Shannon feedback. These symbols

will be delivered to their respective pairs of receivers during the next round.
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� Round 2 (K ×K X Channel with Shannon Feedback): This round has K − 1 phases

(i.e., phases 2 to K). If K = 2, then the symbols u[1|1,2] and u[2|1,2] are transmitted

respectively by TX1 and TX2 in 2 time slots, by the end of which both receivers will

obtain both symbols. If K > 2, then the K(K − 1) order-2 symbols of type u[i|i,j] and

u[j|i,j], {i, j} ⊆ SK , are transmitted over the channel in phase 2 as follows: For each S3 =

{i1, i2, i3} ⊆ SK , spend three time slots to transmit u[ik|ik,i`] and u[i`|ik,i`], {k, `} ⊂ {1, 2, 3}.
In specific, over the first time slot, u[i1|i1,i2] and u[i2|i1,i2] are respectively transmitted by

TXi1 and TXi2 while the other transmitters are silent. Then, RXi1 and RXi2 each require

an extra linear equation to decode both symbols. Hence, after this time slot, the linear

combination h[i3i1]u[i1|i1,i2] + h[i3i2]u[i2|i1,i2] received by RXi3 , which is now available at TXi3

via the output feedback, is desired by both RXi1 and RXi2 , where the time indices have

been omitted for brevity. On the other hand, TXi1 and TXi2 having access to their own

transmitted symbol and Shannon feedback, can decode each other’s symbol. Therefore,

using delayed CSIT, they can reconstruct h[i3i1]u[i1|i1,i2] +h[i3i2]u[i2|i1,i2]. Thus, we can define

u[S3|i1,i2;i3] , h[i3i1]u[i1|i1,i2] + h[i3i2]u[i2|i1,i2].

Similarly, the second and third time slots are dedicated respectively to transmission

of {u[i1|i1,i3], u[i3|i1,i3]} and {u[i2|i2,i3], u[i3|i2,i3]}, and generation of u[S3|i1,i3;i2] and u[S3|i2,i3;i1].

Now, if we deliver two random linear combinations of u[S3|i1,i2;i3], u[S3|i1,i3;i2], and u[S3|i2,i3;i1]

to RXi1 , RXi2 , and RXi3 , each of them will be able to decode its desired symbols. Therefore,

we can define the following order-3 symbols:

u
[S3|S3]
1 , α1u

[S3|i2,i3;i1] + α2u
[S3|i1,i3;i2] + α3u

[S3|i1,i2;i3], (4.70)

u
[S3|S3]
2 , α′1u

[S3|i2,i3;i1] + α′2u
[S3|i1,i3;i2] + α′3u

[S3|i1,i2;i3], (4.71)

where αk, α
′
k, k = 1, 2, 3, are random coefficients. The achieved DoF is thus given by

DoFXSF
2 (K,K) =

6
(
K
3

)
3
(
K
3

)
+

2(K3 )
DoFXSF

3 (K,K)

=
6

3 + 2
DoFXSF

3 (K,K)

, (4.72)

where DoFXSF
3 (K,K) denotes our achievable DoF for transmission of symbols of type u[S3|S3]

over the K ×K SISO X channel with Shannon feedback.

128



CHAPTER 4: Full-duplex TX Cooperation and Feedback

Since the K×K SISO X channel has the same input-output relationship as the K-user

SISO IC, the problem of transmission of order-3 symbols of type u[S3|S3] over the K ×K
X channel with Shannon feedback is equivalent to that of the IC with Shannon feedback.

Hence, phase m, 3 ≤ m ≤ K, of round 2 the scheme proposed in proof of Theorem 11 can

be used for transmission of the order-3 symbols and generation of higher order symbols

up to order-K symbols which will be delivered to all receivers in phase K. Therefore,

the same recursive equation, i.e., (4.66), holds for DoFXSF
m (K,K), 3 ≤ m ≤ K − 1, with

DoFXSF
K (K,K) = 1, and thus, DoFXSF

m (K,K), 3 ≤ m ≤ K, is given by (4.37). Finally,

(4.38) results from (4.37), (4.69) and (4.72).

4.8 Comparison and Discussion

We compare the results of this chapter with achievable DoFs obtained in Chapter 3 for

both channels with delayed CSIT. Figure 4.11 plots our achievable DoF for the K-user

SISO IC with delayed CSIT and full-duplex transmitter cooperation, given by (4.31),

together with our achievable DoFs for the K-user IC with output and Shannon feedback,

respectively given by (4.33) and (4.36), and compares them with the achievable DoF for

the same channel with delayed CSIT for 2 ≤ K ≤ 30. It is seen from the figure that all

our achievable DoFs for the K-user IC are strictly increasing in K, and for K ≥ 3, they

are greater than the achievable DoF for the same channel with delayed CSIT. Also, for

K ≥ 6, we achieve greater DoF with output feedback than with full-duplex delayed CSIT.

Our achievable DoF with Shannon feedback is greater than that with output feedback for

K = 5 and K ≥ 7. One can also verify from (4.31) that

lim
K→∞

DoFICFD
1 (K) =

4

3
. (4.73)

Regarding (4.34) and (4.35) and the fact that µ(K) is either bw∗Kc or dw∗Ke, one can

show µ(K) = o(K), which in view of (4.58) yields limK→∞DoFICOF
µ(K) (K) = 2. This together

with (4.55), and the fact that limK→∞ µ(K) =∞, implies that

lim
K→∞

DoFICOF
1 (K) = 2. (4.74)
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Figure 4.11: Achievable DoFs for the K-user IC with Shannon feedback, output feedback,

full-duplex delayed CSIT, and delayed CSIT.

We now show that limK→∞DoFICSF
1 (K) = 2. To do so, it suffices to show that

DoFICSF
1 (K) < 2. An application of the Squeeze theorem regarding (4.74) and the fact

that DoFICOF
1 (K) ≤ DoFICSF

1 (K) will then yield the desired result. Using (4.36), we have

DoFICSF
1 (K) = max

2≤w≤dK/2e
w∈Z+

w

1 + w−2
DoFICOF

w (K)
+ w

(w+1)DoFICSF
w+1 (K)

< max
2≤w≤dK/2e

w∈Z+

w

1 + w−2
DoFICOF

w (K)

(a)
= max

2≤w≤dK/2e
w∈Z+

1

a(K)(w − 1)(w − 2) + 1
2

(b)
= 2, (4.75)

where (a) follows from (4.35) and (4.58), and (b) uses the fact that the denominator is

strictly increasing in w for w ≥ 2, and thus, is minimized at w = 2.

Figure 4.12 plots our achievable DoFs for the M × K SISO X channel with delayed
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CSIT and full-duplex transmitter cooperation, given by (4.32), for M = 2, 3, and M > K
2

,

and 2 ≤ K ≤ 30, and compares them with the achievable DoF reported in [1] for the 2×K
X channel with delayed CSIT. For all values of M , our achievable DoF for the full-duplex

M ×K X channel with delayed CSIT is strictly increasing in K and greater than that of

the 2 × K X channel with delayed CSIT. Also, it can be shown using (4.32) that for a

fixed M :

lim
K→∞

DoFXFD
1 (M,K)=

1∑M−2
`1=2

1
`21

+ 1
M−1

+ 1
(M−1)2

[(
M
M−1

)M−2
lnM −∑M−2

`2=1

(
M
M−1

)M−2−`2 1
`2

] .
(4.76)

For instance, limK→∞DoFXFD
1 (2, K) = 1

ln 2
and limK→∞DoFXFD

1 (3, K) = 8
3 ln 3+2

, as indi-

cated in Fig. 4.12. Moreover, it follows from (4.32) and
∑∞

n=1
1
n2 = π2

6
that, if M > K/2

for sufficiently large K, then

lim
K→∞

DoFXFD
1 (M,K) =

6

π2 − 6
. (4.77)

Figure 4.13 compares our achievable DoF for the K × K X channel with Shannon

feedback (given by (4.38)), output feedback (which is 2K/(K + 1) by Theorem 10), full-

duplex delayed CSIT (given by (4.32)), and delayed CSIT [1] for 2 ≤ K ≤ 30. It is

observed that for K > 2,

DoFXFD
1 (K,K) < DoFXOF

1 (K,K) < DoFXSF
1 (K,K). (4.78)

Also, one can easily verify using (4.38) and DoFXOF
1 (K,K) = 2K/(K + 1) that

lim
K→∞

DoFXOF
1 (K,K) = lim

K→∞
DoFXSF

1 (K,K) = 2. (4.79)

4.9 Conclusion

We investigated the SISO Gaussian interference and X channels with arbitrary number of

users, where we assumed that the CSI is not instantaneously available at the transmitters.
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Figure 4.12: Achievable DoFs for the M × K X channel with delayed CSIT, with and

without full-duplex transmitter cooperation.

We obtained achievable results on the DoF of these channels under three different assump-

tions, namely, full-duplex delayed CSIT (where the transmitters access the delayed CSI and

can operate in full-duplex mode), output feedback (where each transmitter causally accesses

the output of its paired receiver), and Shannon feedback (where each transmitter accesses

both the output feedback and delayed CSI). Under each assumption, the transmitters, ob-

taining side information about each other’s messages through full-duplex or feedback links,

could cooperate to align the interference at the receivers in a multi-phase fashion.

For each channel, the transmitters enjoyed a different level of cooperation under each

assumption, and hence, we achieved different values of DoF. Our achievable DoFs are

greater than the best available achievable DoFs for both channels with delayed CSIT (cf.

Chapter 3), and are strictly increasing with the number of receivers, though approaching

limiting values not greater than 2 for asymptotically large networks. Our DoF results

under the full-duplex delayed CSIT assumption are the first to demonstrate the potential
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Figure 4.13: Achievable DoFs for the K × K X channel with Shannon feedback, output

feedback, full-duplex delayed CSIT, and delayed CSIT.

of full-duplex transmitter cooperation to yield DoF gains in multi-user networks.
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Conclusion

In this dissertation, we studied the impact of feedback and transmitter cooperation on

communication performance over several wireless networks. All networks were assumed to

be subject to i.i.d. fading and additive white Gaussian noise, and moreover, no instanta-

neous knowledge of CSI were assumed at the transmitter(s). The following summarizes

our main contributions in this dissertation:

5.1 Summary of Main Contributions

In Chapter 2, we investigated the DoF of the 3-user MIMO broadcast channel assuming that

the CSI is fed back to the transmitter after a finite delay (delayed CSIT assumption). We

considered both the symmetric case with M antennas at the transmitter and N antennas

at each receiver and the general non-symmetric case. For the symmetric case, we achieved

DoFs that meet the upper bound for M ≤ 2N and M ≥ 3N , and hence, characterize the

channel sum-DoF with delayed CSIT. Our achievable DoF for 2N < M < 3N is close to

the known upper bound on the sum-DoF of this channel and approaches the upper bound

as M approaches either ends of this interval. For the non-symmetric case, we proposed

transmission schemes that meet the known outer bound, and thus, characterize the channel

DoF region with delayed CSIT for certain classes of antenna configurations.
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In Chapter 3, we studied the K-user SISO IC and 2×K SISO X channel with delayed

CSIT. We proposed novel multiphase transmission schemes that achieve DoFs strictly

increasing in K and approaching limiting values of 4/(6 ln 2 − 1) and 1/ ln 2 as K →
∞, respectively, for the interference and X channels. To the best of our knowledge, our

achievable DoFs for both channels are yet the best reported DoF results. Our transmission

schemes employ new sequential interference cancellation/retransmission approaches that

align the past interference at appropriate receivers. We also considered the K-user r-cyclic

IC and showed that this channel has K/r DoF with no CSIT. Then, focusing on r = 3, we

showed that the 3-cyclic lC can achieve strictly more than K/3 DoF with delayed CSIT.

In Chapter 4, we considered the K-user SISO IC and M ×K SISO X channel without

any instantaneous CSIT. We first enabled the the transmitters to operate in full-duplex

mode, i.e., transmit and receive simultaneously, and obtained achievable DoFs for both

channels under delayed CSIT assumption. We demonstrated how the transmitters can

exploit their partial knowledge of each others’ messages, obtained via the full-duplex oper-

ation, to efficiently align the past interference. Our achievable DoFs in this part are greater

than the best known achievable DoFs for the same channels with delayed CSIT (achieved

in Chapter 3). This corroborates the potential of full-duplex transmitter cooperation to

increase the channel DoF when the CSIT is delayed. We emphasize here that this type of

cooperation cannot yield any DoF gain in the channels under consideration when there is

either full CSI or no CSI at the transmitters (cf. [11, 56]).

We then considered the K-user SISO IC and K × K SISO X channel with output

feedback, where each transmitter causally accesses the output of its paired receiver and

each receiver obtains the whole CSI with a finite delay. Having no CSIT, we proposed

transmission schemes wherein each transmitter using its partial knowledge of other trans-

mitters’ messages, obtained via the output feedback, cooperates with them in aligning the

interference in a multiphase fashion. The level of cooperation attained through the out-

put feedback turned out to be higher than that with full-duplex delayed CSIT, and thus,

yielded higher DoFs for both channels for almost all values of K.

Finally, we considered the K-user SISO IC and M ×K SISO X channel with Shannon

feedback, where each transmitter accesses both the output feedback and delayed CSI. We
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showed that the transmitters can enjoy a higher level of cooperation compared to our

scheme with output feedback, and hence, greater DoFs were achieved for almost all values

of K.

5.2 Future Research Directions

The works in this dissertation can be followed in different directions, some of which are

highlighted as follows:

5.2.1 Upper Bounds

The main focus of the dissertation was on achievable DoFs for different multi-user channels

under different feedback/transmitter cooperation models. However, without tight upper

bounds, no optimality argument can be made for any of the considered channels, except for

the broadcast channel. Indeed, the only available upper bounds on the DoF of a multi-user

channel with delayed CSIT are for the K-user MISO broadcast channel in [34] (which was

immediately applied to the MIMO case in [55]) and for the two-user MIMO IC in [57].

There exists no non-trivial upper bound on the DoF of the K-user IC (K ≥ 3) or M ×K
X channel (M,K ≥ 2) with delayed CSIT, full-duplex delayed CSIT, output feedback, or

Shannon feedback. For the three-user MIMO broadcast channel studied in Chapter 2, there

are still classes of antenna configurations for which there is a gap between our achievable

DoF and the upper bound. In these cases, it is an open problem whether our achievable

DoF or the upper bound or none of them is tight.

5.2.2 Finite SNR Regime: Capacity Characterization

Although the schemes proposed in this dissertation were designed to efficiently exploit

the available DoF in the channels under consideration (i.e., the infinite SNR regime),

they can be extended to finite SNR regime as well and their achievable rates can be

analyzed. However, capacity characterization of multi-user channels under the considered
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feedback/cooperation models requires specific treatment of noise as well as interference,

and opens an interesting research direction to follow. A very recent work on achievable

rates of the K-user MISO broadcast channel with delayed CSIT in finite SNR regime can

be found in [64].

5.2.3 Security Issues

Security is an important issue in all wireless systems. Characterization of secure DoF,

achievable rates and capacity for several wireless networks has become very popular re-

cently. There are few recent works on secure DoF under delayed CSIT assumption, cf.

two-user MIMO broadcast channel with confidential messages in [61] and MISO wiretap

channel in [62]. Investigation of information theoretical security aspects of the channels

considered in this dissertation is another direction of research.
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Closed Form Expressions

A.1 Closed Form Expression for the Recursive Equa-

tion (3.58)

In this appendix, we derive a closed form solution to the recursive equation

DoFIC
K−i(K) =

(K − i)(2i+ 1)

(K − i)(i+ 1) + i
K−i+1

+ (K−i−1)i

DoFIC
K−i+1(K)

, 1 ≤ i ≤ K − 2, (A.1)

DoFIC
K (K) = 1. (A.2)

We start by rearranging (A.1) in the form of

1− 1

DoFIC
K−i(K)

=
i

(K − i)(2i+ 1)

[
(K − i− 1)

(
1− 1

DoFIC
K−i+1(K)

)
+

K − i
K − i+ 1

]
,

(A.3)

for 1 ≤ i ≤ K − 2, and defining AK−i(K) , 1− 1
DoFIC

K−i(K)
. Then, we have

AK−i(K) =
i

(K − i)(2i+ 1)

[
(K − i− 1)AK−i+1(K) +

K − i
K − i+ 1

]
, 1 ≤ i ≤ K − 2,

(A.4)

AK(K) = 0. (A.5)
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Express AK−i(K) as

AK−i(K) =
i∑

`=0

a
[K−i]
K−`

K − `, (A.6)

where a
[K−i]
K−` is found using

a
[K−i]
K−` = [(K − `)AK−i(K)]

∣∣∣
K=`

, 0 ≤ ` ≤ i. (A.7)

Substituting the expansion of (A.6) for AK−i+1(K) in (A.4), we get

AK−i(K) =
i

(K − i)(2i+ 1)

[
i−1∑
`=0

(K − i− 1)a
[K−i+1]
K−`

K − ` +
K − i

K − i+ 1

]
. (A.8)

Equations (A.7) and (A.8) lead to three recursive equations as follows:

a
[K−i]
K−` =

(i− `+ 1)i

(i− `)(2i+ 1)
a

[K−i+1]
K−` , 0 ≤ ` ≤ i− 2, (A.9)

a
[K−i]
K−i+1 =

i

2i+ 1

(
2a

[K−i+1]
K−i+1 + 1

)
, (A.10)

a
[K−i]
K−i = − i

2i+ 1

i−1∑
`=0

a
[K−i+1]
K−`

i− `

= − i

2i+ 1
a

[K−i+1]
K−i+1 −

i−2∑
`=0

a
[K−i]
K−`

i− `+ 1
, (A.11)

where (A.11) follows from (A.9). Applying (A.9) i− `− 1 times, we will have

a
[K−i]
K−` =

1

2
a

[K−`−1]
K−` (i− `+ 1)

i∏
j=`+2

j

2j + 1
, 0 ≤ ` ≤ i− 2. (A.12)

Substituting (A.12) in (A.11), we get

a
[K−i]
K−i = − i

2i+ 1
a

[K−i+1]
K−i+1 −

1

2

i−2∑
`=0

a
[K−`−1]
K−`

i∏
j=`+2

j

2j + 1
(A.13)

(a)
= − i

2i+ 1

[
−(i− 1)a

[K−i+2]
K−i+2

2(i− 1) + 1)
− 1

2

i−3∑
`=0

aK−`−1
K−`

i−1∏
j=`+2

j

2j + 1

]
− 1

2

i−2∑
`=0

a
[K−`−1]
K−`

i∏
j=`+2

j

2j + 1

=
i(i− 1)

(2i+ 1) [2(i− 1) + 1]
a

[K−i+2]
K−i+2 −

i

2(2i+ 1)
a

[K−i+1]
K−i+2
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(b)
=

i(i− 1)

(2i+ 1) [2(i− 1) + 1]
a

[K−i+2]
K−i+2 −

i

2(2i+ 1)
× i− 1

2(i− 1) + 1

(
2a

[K−i+2]
K−i+2 + 1

)
= − i(i− 1)

2(2i+ 1) [2(i− 1) + 1]

= − i(i− 1)

2(4i2 − 1)
, 0 ≤ i ≤ K − 2, (A.14)

where (a) results from reapplying (A.13) to a
[K−i+1]
K−i+1 , and (b) follows from applying (A.10)

to aK−i+1
K−i+2.

Employing (A.14) for a
[K−i+1]
K−i+1 in (A.10), one can obtain

a
[K−i]
K−i+1 =

i

2i+ 1

[
1− (i− 1)(i− 2)

4(i− 1)2 − 1

]
=

i

2i+ 1
× 3(i− 1)2 + (i− 1)− 1

4(i− 1)2 − 1
, 0 ≤ i ≤ K − 2. (A.15)

It follows from substituting (A.15) in (A.12) that

a
[K−i]
K−` =

(i− `+ 1)(3`2 + `− 1)

2(4`2 − 1)

i∏
j=`+1

j

2j + 1
, 0 ≤ ` ≤ i− 2. (A.16)

Finally, using (A.6) and (A.14) to (A.16), we have

AK−i(K) = − i(i− 1)

2(4i2 − 1)(K − i)+
i−1∑
`=0

(i− `+ 1)(3`2 + `− 1)

2(K − `)(4`2 − 1)

i∏
j=`+1

j

2j + 1
, 0 ≤ i ≤ K−2.

(A.17)

Since, by definition, DoFIC
K−i(K) = 1

1−AK−i(K)
, we have the following closed form expression

for DoFIC
K−i(K), 0 ≤ i ≤ K − 2:

DoFIC
K−i(K) =

[
1 +

i(i− 1)

2(4i2 − 1)(K − i) −
i−1∑
`=0

(i− `+ 1)(3`2 + `− 1)

2(K − `)(4`2 − 1)

i∏
j=`+1

j

2j + 1

]−1

.

(A.18)
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A.2 Closed Form Expression for the Recursive Equa-

tion (3.88)

In this appendix, we derive the closed form solution to the recursive equation

DoFX
K−i(2, K) =

(K − i+ 1)(2i+ 1)

(K − i+ 1)(i+ 1) + (K−i)i
DoFX

K−i+1(2,K)

, 1 ≤ i ≤ K − 1, (A.19)

DoFX
K(2, K) = 1. (A.20)

Rearranging (A.19) in the form of

1− 1

DoFX
K−i(2, K)

=
i

(K − i+ 1)(2i+ 1)

[
(K − i)

(
1− 1

DoFX
K−i+1(2, K)

)
+ 1

]
, (A.21)

for 1 ≤ i ≤ K − 1, and defining BK−i(K) , 1− 1
DoFX

K−i(2,K)
, one can write

BK−i(K) =
i

(K − i+ 1)(2i+ 1)
[(K − i)BK−i+1(K) + 1] , 1 ≤ i ≤ K − 1, (A.22)

BK(K) = 0. (A.23)

Express BK−i(K) as

BK−i(K) =
i−1∑
`=0

b
[K−i]
K−`

K − `, (A.24)

where b
[K−i]
K−` is found using

b
[K−i]
K−` = [(K − `)BK−i(K)]

∣∣∣
K=`

, 0 ≤ ` ≤ i− 1. (A.25)

Substituting the expansion of (A.24) for BK−i+1(K) in (A.22), we get

BK−i(K) =
i

(K − i+ 1)(2i+ 1)

[
i−2∑
`=0

(K − i)b[K−i+1]
K−`

K − ` + 1

]
. (A.26)

Equations (A.25) and (A.26) result in two recursive equations as follows:

b
[K−i]
K−` =

(i− `)i
(i− `− 1)(2i+ 1)

b
[K−i+1]
K−` , 0 ≤ ` ≤ i− 2, (A.27)
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b
[K−i]
K−i+1 =

i

2i+ 1

[
1−

i−2∑
`=0

b
[K−i+1]
K−`

i− `− 1

]

=
i

2i+ 1
−

i−2∑
`=0

b
[K−i]
K−`

i− ` , (A.28)

where (A.28) follows from (A.27). Applying (A.27) i− `− 1 times, we will have

b
[K−i]
K−` = b

[K−`−1]
K−` (i− `)

i∏
j=`+2

j

2j + 1
, 0 ≤ ` ≤ i− 2. (A.29)

Substituting (A.29) in (A.28), it follows that

b
[K−i]
K−i+1 =

i

2i+ 1
−

i−2∑
`=0

b
[K−`−1]
K−`

i∏
j=`+2

j

2j + 1
(A.30)

=
i

2i+ 1
− i

2i+ 1
b

[K−i+1]
K−i+2 −

i−3∑
`=0

b
[K−`−1]
K−`

i∏
j=`+2

j

2j + 1

=
i

2i+ 1
− i

2i+ 1
b

[K−i+1]
K−i+2 −

i

2i+ 1

i−3∑
`=0

b
[K−`−1]
K−`

i−1∏
j=`+2

j

2j + 1

=
i

2i+ 1
− i

2i+ 1

[
b

[K−i+1]
K−i+2 +

i−3∑
`=0

b
[K−`−1]
K−`

i−1∏
j=`+2

j

2j + 1

]
(a)
=

i

2i+ 1
− i

2i+ 1
× i− 1

2(i− 1) + 1

=
i2

4i2 − 1
, 0 ≤ i ≤ K − 1, (A.31)

where (a) simply follows from an application of (A.30) for b
[K−i+1]
K−i+2 . Substituting (A.31)

for b
[K−`−1]
K−` in (A.29), we obtain

b
[K−i]
K−` =

(i− `)(`+ 1)

2(`+ 1)− 1

i∏
j=`+1

j

2j + 1
, 0 ≤ ` ≤ i− 2. (A.32)

Combining (A.24), (A.31) and (A.32), we can write

BK−i(K) =
i−1∑
`=0

(i− `)(`+ 1)

(K − `) [2(`+ 1)− 1]

i∏
j=`+1

j

2j + 1
, 0 ≤ i ≤ K − 1. (A.33)
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which together with DoFX
K−i(2, K) = 1

1−BK−i(K)
, yields

DoFX
K−i(2, K) =

[
1−

i−1∑
`=0

(i− `)(`+ 1)

(K − `)(2`+ 1)

i∏
j=`+1

j

2j + 1

]−1

, 0 ≤ i ≤ K − 1. (A.34)

A.3 Closed Form Expression for the Recursive Equa-

tions (4.44) and (4.56)

Consider the following recursive equation:

DoFm(K) =
m+ 1

m
× Qm(K)

1 + Qm(K)−1
DoFm+1(K)

, 2 ≤ m ≤ K − 2, (A.35)

with Qm(K) = min{K −m,m} and the initial condition DoFK−1(K) = K/(K − 1). We

treat two different cases separately:

(i) dK/2e ≤ m ≤ K − 1: In this case, we have Qm(K) = K −m, and hence,

K −m
mDoFm(K)

=
1

m+ 1
+

K −m− 1

(m+ 1)DoFm+1(K)
. (A.36)

Then, defining γm(K) , K−m
mDoFm(K)

, one can write γm(K) = 1
m+1

+ γm+1(K), which implies

that γm(K) =
∑K

`=m+1
1
`
, or equivalently,

DoFm(K) =

(
m

K −m
K∑

`=m+1

1

`

)−1

, dK/2e ≤ m ≤ K − 1. (A.37)

(ii) 2 ≤ m < dK/2e: In this case, we have

1

DoFm(K)
=

1

m+ 1
+

(
m− 1

m+ 1

)
1

DoFm+1(K)
, (A.38)

which can be rewritten as

2

DoFm(K)
− 1 =

m− 1

m+ 1

(
2

DoFm+1(K)
− 1

)
. (A.39)
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It immediately follows that

2

DoFm(K)
− 1 =

m(m− 1)

dK
2
e(dK

2
e − 1)

(
2

DoFdK
2
e(K)

− 1

)
(a)
=

m(m− 1)

dK
2
e(dK

2
e − 1)

(
2dK

2
e∑K

`=dK
2
e+1

1
`

bK
2
c − 1

)
, 2 ≤ m < dK/2e,

(A.40)

where (a) uses (A.37) with m = dK
2
e, and the fact that K − dK

2
e = bK

2
c.

It finally follows from (A.37) and (A.40) that

DoFm(K) =


(

1
2
− m(m−1)

2dK
2
e(dK

2
e−1)

+ m(m−1)

bK
2
c(dK

2
e−1)

∑K
`=dK

2
e+1

1
`

)−1

, 2 ≤ m ≤ dK
2
e(

m
K−m

∑K
`=m+1

1
`

)−1

, dK
2
e < m ≤ K − 1

.

(A.41)

A.4 Closed Form Expression for the Recursive Equa-

tion (4.53)

Consider the recursive equation

DoFm(M,K) =
(m+ 1)(Qm(M,K) + 1)

m+ 1 + m×Qm(M,K)
DoFm+1(M,K)

, 1 ≤ m ≤ K − 1, (A.42)

with Qm(M,K) = min{M − 1, K − m,m} and initial condition DoFK(M,K) = 1. The

following distinct cases can be differentiated:

(i) M − 1 ≥ dK/2e: In this case, Qm(M,K) = Qm(K) = min{K −m,m}, and hence,

Qm(K) + 1

mDoFm(M,K)
=

1

m
+

Qm(K)

(m+ 1)DoFm+1(M,K)
. (A.43)

Now, if dK/2e ≤ m ≤ K, then similar to Appendix A.3, one can show that

DoFm(K) =

(
m

K −m+ 1

K∑
`=m

1

`

)−1

, dK/2e ≤ m ≤ K. (A.44)
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Otherwise, the recursive (A.43) can be rewritten as

1

m2DoFm(M,K)
=

1

m2(m+ 1)
+

1

(m+ 1)2DoFm+1(M,K)

=

dK
2
e−1∑

`=m

1

`2(`+ 1)
+

1

dK
2
e2DoFdK

2
e(M,K)

(a)
=

1

dK
2
e −

1

m
+

dK
2
e−1∑

`=m

1

`2
+

1

dK
2
e(bK

2
c+ 1)

K∑
`=dK

2
e

1

`
, 1 ≤ m < dK/2e,

(A.45)

where (a) uses (A.44) with m = dK
2
e, and the fact that K − dK

2
e = bK

2
c.

Equations (A.44) and (A.45) yield

DoFm(M,K) =


(
m2

dK
2
e −m+m2

∑dK
2
e−1

`=m
1
`2

+ m2

dK
2
e(bK

2
c+1)

∑K
`=dK

2
e

1
`

)−1

, 1 ≤ m < dK
2
e(

m
K−m+1

∑K
`=m

1
`

)−1

, dK
2
e ≤ m ≤ K

.

(A.46)

(ii) M − 1 < dK/2e: In this case, if K −M + 1 ≤ m ≤ K, then the same expression as

(A.44) holds for DoFm(K). Otherwise, if M−1 ≤ m < K−M+1, then Qm(M,K) = M−1,

and we have

1

mDoFm(M,K)
=

1

mM
+

(
M − 1

M

)
1

(m+ 1)DoFm+1(M,K)

=
1

M

K−M∑
`=m

(
M − 1

M

)`−m
1

`
+

(
M−1
M

)K−M−m+1

(K −M + 1)DoFK−M+1(M,K)

(a)
=

1

M

K−M∑
`1=m

(
M − 1

M

)`1−m 1

`1

+
1

M

(
M − 1

M

)K−M−m+1 K∑
`2=K−M+1

1

`2

,

(A.47)

where (a) follows from (A.44) with m = K −M + 1. Therefore,

DoFm(M,K) =

(
m

M

K∑
`=m

1

`

(
M − 1

M

)min(`,K−M+1)−m
)−1

, M − 1 ≤ m < K −M + 1.

(A.48)
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Finally, if 1 ≤ m < M − 1, then

1

m2DoFm(M,K)
=

1

m2(m+ 1)
+

1

(m+ 1)2DoFm+1(M,K)

=
1

M − 1
− 1

m
+

M−2∑
`=m

1

`2
+

1

(M − 1)2DoFM−1(M,K)

(a)
=

1

M − 1
− 1

m
+

M−2∑
`1=m

1

`2
1

+
1

M2

K∑
`2=M−1

1

`2

(
M − 1

M

)min(`2,K−M+1)−M

,

(A.49)

where (a) uses (A.48) with m = M − 1. Thus, for 1 ≤ m < M − 1,

DoFm(M,K) =
1

m2

M−1
−m+m2

∑M−2
`1=m

1
`21

+
(
m
M

)2∑K
`2=M−1

1
`2

(
M−1
M

)min(`2,K−M+1)−M .

(A.50)

A.5 Closed Form Expression for the Recursive Equa-

tion (4.66)

Consider the recursive equation

DoFm(K) =
(m+ 1)Qm(K + 1)

m+ 1 + m×(Qm(K+1)−1)
DoFm+1(K)

, 2 ≤ m ≤ K − 1, (A.51)

with initial condition DoFK(K) = 1. For bK
2
c < m ≤ K, it is easily shown that DoFm(K)

is given by (A.44). For 2 ≤ m ≤ bK
2
c, we have

1

DoFm(K)
=

1

m
+

(
m− 1

m+ 1

)
1

DoFm+1(K)

=
1

m
+m(m− 1)

bK
2
c−1∑

`=m

1

`(`+ 1)2
+

(
m(m− 1)

bK
2
c(bK

2
c+ 1)

)
1

DoFbK
2
c+1(K)

(a)
=

1

m
+m− 1− m(m− 1)

bK
2
c −m(m− 1)

bK
2
c∑

`1=m+1

1

`2
1

+
m(m− 1)

bK
2
cdK

2
e

K∑
`2=bK

2
c+1

1

`2

,

(A.52)
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where (a) uses (A.44) with m = bK
2
c + 1, and the fact that K − bK

2
c = dK

2
e. Therefore,

for 2 ≤ m ≤ bK/2c,

DoFm(K) =

 1

m
+m(m− 1)

 1

m
− 1

bK
2
c −

bK
2
c∑

`1=m+1

1

`2
1

+
1

bK
2
cdK

2
e

K∑
`2=bK

2
c+1

1

`2

−1

.

(A.53)
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Appendix B

Proofs of Linear Independence

B.1 Proof of Linear Independence in Phase 1 for the

K-user IC with Delayed CSIT

In this appendix, we show that after phase 1 of the proposed transmission scheme for the

K-user SISO IC with delayed CSIT, the (K−1)2 linear equations obtained by each receiver

in terms of its data symbols are linearly independent almost surely (see Section 3.3.2, (3.39)

and (3.40)). To this end, consider the aforementioned equations at RXj, 1 ≤ j ≤ K:

(u[j])TQT
jjωji1 , i1 ∈ SK\{j}, (B.1)

(u[j])TQT
i2j
ωi2i3 , i2, i3 ∈ SK\{j}, i2 6= i3, (B.2)

which are equivalent to the system of linear equations (u[j])TP[j], where P[j] is a (K−1)2×
(K − 1)2 matrix defined as

P[j] ,
[{

QT
jjωji1

}
i1∈SK\{j}

,
{
QT
i2j
ωi2i3

}
i2,i3∈SK\{j},i2 6=i3

]
(B.3)

= (C[j])T
[
{Djjωji1}i1∈SK\{j} , {Di2jωi2i3}i2,i3∈SK\{j},i2 6=i3

]
. (B.4)

Let h̃ij denote the vector of length (K − 1)2 + 1 containing the main diagonal of Dij and

define v` , [1, 1, · · · , 1︸ ︷︷ ︸
`

]T . Then, one can write

P[j] = (C[j])T
(
H̃[j] ◦Ω[j]

)
, (B.5)
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where

H̃[j] ,

[
h̃jjv

T
K−1,

{
h̃ijv

T
K−2

}
i∈SK\{j}

]
, (B.6)

Ω[j] ,
[
{ωji1}i1∈SK\{j} , {ωi2i3}i2,i3∈SK\{j},i2 6=i3

]
= [ωj1i1 ]i1∈SK\{j},j1∈SK\{i1} , (B.7)

and “◦” denotes the element-wise product operator. Recall that

QT
j1i1

ωj1i1 = (C[i1])TDj1i1ωj1i1 = 0(K−1)2×1. (B.8)

Hence, the vector Dj1i1ωj1i1 lies in the left null space of C[i1]. However, C[i1] is a random

[(K−1)2 +1]×(K−1)2 matrix, and thus, it is full rank almost surely and its left null space

is one dimensional, denoted by the nonzero unit vector n[i1]. It immediately follows that,

for every j1 ∈ SK\{i1}, there exists a nonzero scalar aj1i1 such that Dj1i1ωj1i1 = aj1i1n
[i1],

or equivalently, ωj1i1 = aj1i1D
−1
j1i1

n[i1]. Note that Dj1i1 is full rank, and so, invertible almost

surely. Therefore, Ω[j] can be rewritten as follows

Ω[j] =
[
aj1i1D

−1
j1i1

n[i1]
]
i1∈SK\{j},j1∈SK\{i1}

. (B.9)

Since aj1i1 ’s are nonzero and each of them scales a whole column of H̃[j] ◦Ω[j], they do not

affect the rank. Hence,

rank(H̃[j] ◦Ω[j]) = rank(H̃[j] ◦
[
D−1
j1i1

n[i1]
]
i1∈SK\{j},j1∈SK\{i1}

). (B.10)

One also can write

H̃[j] ◦
[
D−1
j1i1

n[i1]
]
i1∈SK\{j},j1∈SK\{i1}

= H̃[j] ◦N[j] ◦ (Ĥ[j])◦(−1)

= Φ[j] ◦ (Ĥ[j])◦(−1), (B.11)

where

Ĥ[j] ,
[
h̃j1i1

]
i1∈SK\{j},j1∈SK\{i1}

(B.12)

N[j] ,
[
n[i1]vTK−1

]
i1∈SK\{j}

(B.13)

Φ[j] , H̃[j] ◦N[j], (B.14)
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and (Ĥ[j])◦(−1) denotes the element-wise inverse of Ĥ[j]. We note that Ĥ[j] and N[j] are

independent of each other, since N[j] is a function of {C[i1]}i1∈SK\{j} which are independent

of Ĥ[j]. Also, H̃[j] and Ĥ[j] are independent of each other, since the channel coefficients

are i.i.d. across the transmitters and receivers. Hence, Φ[j] is independent of Ĥ[j].

On the other hand, it can be easily verified that the elements of Ĥ[j], and thereby

(Ĥ[j])◦(−1), are i.i.d.. Also, it is easy to show that all elements of Φ[j] are nonzero almost

surely. Therefore, for any given Φ[j], the elements of Φ[j] ◦ (Ĥ[j])◦(−1) are also independent

of each other, since Φ[j] is independent of (Ĥ[j])◦(−1). This implies that, for any given Φ[j],

Φ[j] ◦ (Ĥ[j])◦(−1) is full rank almost surely. This means that Φ[j] ◦ (Ĥ[j])◦(−1) is full rank

almost surely.

Finally, we note that C[j] is independent of H̃[j], N[j], and Ĥ[j], and thereby, of H̃[j]◦Ω[j].

Therefore, regarding (B.5), (B.10) and (B.11) and applying Lemma 1, one can conclude

that P[j] is full rank almost surely.

Lemma 1. Let Am×n and Bn×m be two independent (not necessarily i.i.d.) random ma-

trices with continuous probability distributions and let m ≤ n. If A and B are full rank

almost surely, then AB is full rank almost surely.

Proof. If m = n, then the lemma is obviously true. Assume m < n. Let ai, 1 ≤ i ≤ n, and

bj, 1 ≤ j ≤ m, be the ith and jth column of A and B, respectively. Then, the jth column

of AB can be written as
∑n

i=1 bjiai. Now, assume a linear combination of the columns of

AB are equal to zero, namely

m∑
j=1

γj

n∑
i=1

bjiai = 0m×1. (B.15)

Therefore, exchanging the order of the summations, we have
∑n

i=1

(∑m
j=1 γjbji

)
ai = 0m×1.

This can be written in matrix form as follows

A

(
m∑
j=1

γjbj

)
= 0m×1. (B.16)

Thus, the vector
∑m

j=1 γjbj either is equal to zero or lies in the null space of A. In

the former case, we get γj = 0, 1 ≤ j ≤ m, since B is full rank almost surely. In the
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latter case, since A is full rank almost surely, its null space is n − m dimensional. Let

Nn×(n−m) , [n1,n2, · · · ,nn−m] denote the basis of the null space of A. Then, there should

exist ξ`, 1 ≤ ` ≤ n−m, such that

m∑
j=1

γjbj =
n−m∑
`=1

ξ`n`. (B.17)

Note that N is independent of B, since A and B are independent of each other. Consider

the square matrix [B|N]n×n. Since B and N are full rank almost surely (with continuous

distributions) and independent of each other, one can easily show that [B|N] is full rank

almost surely. This together with (B.17) yields γj = 0, 1 ≤ j ≤ m, and ξ` = 0, 1 ≤ ` ≤
n−m.

B.2 Proof of Linear Independence in Phase m-I for

the K-user IC and Phase m for the 2×K X Chan-

nel with Delayed CSIT

Consider the following system of linear equations:

Qji1u
[i1|Sm] + Qji2u

[i2|Sm] (B.18)

(u[i1|Sm])TQT
j′i1ωj′i2 , j′ ∈ SK\Sm. (B.19)

which are equivalent to the system of linear equation (u[Sm])TG[j], where G[j] and u[Sm]

are defined as

G[j] ,

 (Qji1)T
{
QT
j′i1

ωj′i2

}
j′∈SK\Sm

(Qji2)T ©

 , (B.20)

u[Sm] ,
[
(u[i1|Sm])T , (u[i1|Sm])T

]T
. (B.21)

Note first that, by definition, Qji1 = Dji1C
[i1|Sm] and Qji2 = Dji2C

[i2|Sm]. These matrix

multiplications are nothing but scaling the columns of C[i1|Sm] and C[i2|Sm] by the diagonal

elements of Dji1 and Dji2 , respectively. Since the diagonal elements of Dji1 and Dji2 are
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nonzero almost surely and since scaling the columns of a matrix by nonzero factors does

not affect its rank, one can write

rank(Qji1) = rank(C[i1|Sm]) = K −m+ 1, (B.22)

rank(Qji2) = rank(C[i2|Sm]) = K −m. (B.23)

Also, if a linear combination of some columns is added to a (nonzero) scaled version of a

column in a matrix then its rank does not change. Therefore, if we replace the K−m+1’th

column of G[j] with a linear combination of its first K −m+ 1 columns, its rank will not

change. If we choose the coefficients of such a linear combination to be the elements of ωji2

(which are all nonzero almost surely), then since by definition, (Qji2)Tωji2 = 0(K−m)×1, we

get

rank(G[j]) = rank(G̃[j]), (B.24)

where

G̃[j] ,

 (Q̃ji1)T
{
QT
j′i1

ωj′i2

}
j′∈(SK\Sm)∪{j}

(Q̃ji2)T ©

 , (B.25)

and Q̃ji1 and Q̃ji2 are respectively the submatrices of Qji1 and Qji2 including their first

K − m rows. Hence, it suffices to show G̃[j] is full rank. To do so, we note that Q̃ji2 is

a (K − m) × (K − m) matrix with rank(Q̃ji2) = rank(Qji2) = K − m. If we show that

the matrix
[
QT
j′i1

ωj′i2

]
j′∈(SK\Sm)∪{j} is also a square full rank matrix of size (K −m+ 1)×

(K −m + 1), then using Lemma 2, it immediately follows that G̃[j] is full rank. Now, we

rewrite
[
QT
j′i1

ωj′i2

]
j′∈(SK\Sm)∪{j} as:[

QT
j′i1ωj′i2

]
j′∈(SK\Sm)∪{j} = (C[i1|Sm])T [Dj′i1ωj′i2 ]j′∈(SK\Sm)∪{j} . (B.26)

Since the matrices are square, we have

det(
[
QT
j′i1ωj′i2

]
j′∈(SK\Sm)∪{j}) = det(C[i1|Sm]) · det([Dj′i1ωj′i2 ]j′∈(SK\Sm)∪{j}), (B.27)

and since C[i1|Sm] is full rank almost surely, det
(
C[i1|Sm]

)
6= 0. Thus, it remains to show

[Dj′i1ωj′i2 ]j′∈(SK\Sm)∪{j} is full rank. Using the same argument as in Appendix B.1, one

can write

ωj′i2 = aj′i2D
−1
j′i2

n[i2], (B.28)
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where aj′i2 is a nonzero scalar. Therefore,

rank([Dj′i1ωj′i2 ]j′∈(SK\Sm)∪{j}) = rank(
[
aj′i2Dj′i1D

−1
j′i2

n[i2]
]
j′∈(SK\Sm)∪{j})

(a)
= rank(

[
Dj′i1D

−1
j′i2

n[i2]
]
j′∈(SK\Sm)∪{j})

(b)
= rank(

[
h[j′i1](t)

h[j′i2](t)

]
1≤t≤K−m+1

j′∈(SK\Sm)∪{j}

)

(c)
= K −m+ 1, (B.29)

where (a) follows from the fact that scaling the columns of a matrix by nonzero factors

(aj′i2 ’s) will not change its rank; (b) follows from the fact that scaling the rows of a matrix

by nonzero factors (elements of n[i2]) will not change its rank; and (c) is true since h[j′i1](t)

h[j′i2](t)
’s

are i.i.d. for 1 ≤ t ≤ K −m+ 1 and j′ ∈ (SK\Sm) ∪ {j}.

Lemma 2. Let A = [aij]m×m and B = [bij]n×n be two square matrices which are full rank

almost surely and let C = [cij]m×n be an arbitrary matrix. Then the following matrix is

full rank almost surely:

D =

 C A

B ©

 . (B.30)

Proof. Denote by aj, bj, and dj the j’th columns of A, B, and D, respectively. Assume

that
m+n∑
j=1

αjdj = 0(m+n)×1, (B.31)

for some α1, α2, · · · , αm+n ∈ C. Then, since dij = 0 for m + 1 ≤ i ≤ m + n and n + 1 ≤
j ≤ m + n, one can write

∑n
j=1 αjbj = 0n×1 and since B is full rank almost surely, we

have αj = 0, 1 ≤ j ≤ n. This together with (B.31) yields
∑m+n

j=n+1 αjdj = 0(m+n)×1.

Considering the first m elements of these columns, it follows that
∑m+n

j=n+1 αjaj−n = 0m×1

and since A is full rank almost surely, we have αj = 0, n+ 1 ≤ j ≤ m+ n.
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Achievable DoF Limits for K-user IC

and 2×K X Channel with Delayed

CSIT

In this appendix, we show that

lim
K→∞

DoFIC
1 (K) =

4

6 ln 2− 1
, (C.1)

lim
K→∞

DoFX
1 (2, K) =

1

ln 2
. (C.2)

Regarding (3.7), (3.8) and (3.10), it suffices to show that

lim
K→∞

Ψ(K) =
21

16
− 3

2
ln 2. (C.3)

lim
K→∞

Φ(K) = 1− ln 2. (C.4)

where

Ψ(K) ,
K−3∑
`1=0

(K − `1 − 1)(3`2
1 + `1 − 1)

2(K − `1)(4`2
1 − 1)

K−2∏
`2=`1+1

`2

2`2 + 1
, (C.5)

Φ(K) ,
K−2∑
`1=0

(K − `1 − 1)(`1 + 1)

(K − `1)(2`1 + 1)

K−1∏
`2=`1+1

`2

2`2 + 1
. (C.6)
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To do so, for any integers K, p ≥ 0, define the functions Γp(K) and Λp(K) as

Γp(K) ,
K−p∑
`=0

K − `− 1

(K − `)2K−` , (C.7)

Λp(K) ,
K−p∑
`=0

`(K − `− 1)

K(K − `)2K−` . (C.8)

Using
∑∞

n=1
1
n2n

= ln 2,
∑∞

n=1
n
2n

= 2, and
∑∞

n=1
1

2n
= 1, it is easily verified that, for any

integer p ≥ 0,

lim
K→∞

Γp(K) = lim
K→∞

Λp(K) = − ln 2 + 21−p +

p−1∑
n=1

1

n2n
. (C.9)

In specific,

lim
K→∞

Γ2(K) = lim
K→∞

Λ2(K) = 1− ln 2, (C.10)

lim
K→∞

Γ3(K) = lim
K→∞

Λ3(K) =
7

8
− ln 2. (C.11)

Now, using the following two lemmas together with the Squeeze Theorem, (C.3) and (C.4)

are immediate.

Lemma 3. The following inequalities hold for K ≥ 3:

3K

2K − 3
Λ3(K) < Ψ(K) <

3

2
Γ3(K) +

K − 2

5(K − 1)2K
. (C.12)

Proof. (i) Upper bound:

Ψ(K) =
K−3∑
`1=0

(K − `1 − 1)(3`2
1 + `1 − 1)

2(K − `1)(4`2
1 − 1)
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`2=`1+1

`2

2`2 + 1

=
K−3∑
`1=0

(K − `1 − 1)(3`2
1 + `1 − 1)(`1 + 1)

2(K − `1)(4`2
1 − 1)(2`1 + 3)

K−2∏
`2=`1+2

`2

2`2 + 1

=
K − 1

6K

K−2∏
`2=2

`2

2`2 + 1
+

K − 2

5(K − 1)
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`2=3

`2

2`2 + 1

+
K−3∑
`1=2

(K − `1 − 1)(3`2
1 + `1 − 1)(`1 + 1)

2(K − `1)(4`2
1 − 1)(2`1 + 3)

K−2∏
`2=`1+2

`2

2`2 + 1
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(a)
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K − 2

5× 24(K − 1)
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`2

2`2 + 1
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{
3(K − 1)

24K
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`2

2`2 + 1
+

3(K − 2)

24(K − 1)
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`2=3

`2

2`2 + 1
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K−3∑
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3(K − `1 − 1)

24(K − `1)
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`2

2`2 + 1

}
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5× 24(K − 1)
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3
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3
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K − 2

5(K − 1)2K
, (C.13)

where (a) follows from the fact that
(3`21+`1−1)(`1+1)

(4`21−1)(2`1+3)
< 3

8
for `1 ≥ 2 together with

inequality 1
6
< 3

16
, and (b) is valid since `2

2`2+1
< 1

2
for `2 ≥ 2.

(ii) Lower bound:

Ψ(K) =
K−3∑
`1=0

(K − `1 − 1)(3`2
1 + `1 − 1)

2(K − `1)(4`2
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where (a) follows from the fact that
(3`21+`1−1)(`1+1)

4`21−1
> 3

4
`1 for `1 ≥ 0, and `2

2`2−1
> 1

2
for

`2 ≥ 2.

Lemma 4. The following inequalities hold for K ≥ 2:

2K

2K − 1
Λ2(K) < Φ(K) < Γ3(K) +

(K − 1)2

2(2K − 1)(2K − 3)
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15K2K
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Proof. (i) Upper bound:
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where (a) follows from the fact that (`1+1)2(`1+2)
(2`1+1)(2`1+3)(2`1+5)

< 1
8

for `1 ≥ 1, and (b) is true

since `2
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for `2 ≥ 3.

(ii) Lower bound:
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2
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2
for `2 ≥ 2.
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