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Abstract 

The Diesel Oxidation Catalyst (DOC) is a key component in the exhaust after-

treatment system of diesel engines. In this study two aspects of a DOC were investigated: 

catalyst distribution and reactant species interactions. In the first part, the effect of an axial Pt 

distribution along a DOC was investigated by comparing a standard sample, with a 

homogeneous Pt distribution along the length, with a zoned sample, where the Pt was non-

homogeneously distributed along the length. Temperature-programmed oxidation (TPO) and 

spatially-resolved gas-phase concentration measurement experiments were used to compare 

the CO, C3H6 and NO oxidation performance of the standard and zoned catalysts. Both 

catalyst types had the same total amount of Pt but different distributions. The zoned catalyst, 

with more Pt located in the upstream portion, showed better performance than the standard 

catalyst, especially at high total flow rate and when a mixture of the reactants were used. The 

superior performance of the zoned sample is due to a larger, localized exotherm in the 

upstream region, where more Pt is located, and a decrease in the self-poisoning effect 

downstream, where reaction light-off occurs. In addition, catalyst durability against thermal 

degradation was tested by exposing the whole catalyst (homogeneous aging) and part of the 

catalyst (heterogeneous aging) to high temperatures. In general, the zoned catalyst showed 

better performance than the standard catalyst after thermal aging, especially after 

heterogeneous aging. The reason for the superior performance of the zoned catalyst, 

especially after heterogeneous aging, is that the back of the catalyst, which is exposed to 

higher temperature, contains less Pt than the front; therefore, most of the Pt particles in the 

zoned catalyst were not affected by thermal aging. However, after homogeneous aging, the 
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performance of the standard catalyst was better than the zoned catalyst at higher flow rate 

and temperature most likely due to the different sintering rates in the zoned sample compared 

to the standard one.   

In the second part of this research, the interactions between CO, C3H6, H2, and NO 

were tested over a commercial Pt/Al2O3 monolith sample by studying these reactions during 

ignition and extinction (warm-up and cool-down). Results showed that CO, C3H6, and NO 

inhibit their own oxidation and each other’s oxidation due to the self-poisoning effect and 

competitive adsorption over active sites. In the case of a CO + C3H6 mixture, interesting CO 

and C3H6 oxidation trends were observed during the extinction phase. As the C3H6 

concentration increased in the mixture, the catalytic activity of CO oxidation during the 

extinction phase decreased until it was actually poorer than that during the ignition phase. In 

situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed different 

C3H6 oxidation intermediates during the extinction phase on the catalyst surface, thus 

blocking active sites and lowering catalyst activity.     
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Chapter 1: Introduction 

One goal of this research is to optimize the performance of a diesel oxidation catalyst (DOC) 

in terms of cold start emissions reduction and its resistance to thermal degradation, by re-distributing 

the active metal along the catalyst length. Optimizing the distribution of the active metal will result in 

a catalyst with higher efficiency and lower cost than the typical uniformly distributed catalyst used 

today by the automotive industries. In addition, the interaction between different reactant species was 

studied over a commercial Pt/Al2O3 catalyst, as a part of an Auto21 project and due to interesting 

findings observed during the course of the research. In the first chapter a brief description of a DOC, 

its function and effect on our health and environment, and the regulations and standards used to 

control diesel emissions are presented. In the second chapter a literature review on DOC background, 

reaction, preparation, degradation, and optimization is presented, to better understand the different 

aspects related to the goals of this study. Methodologies and experimental procedures used to test and 

characterize the DOC are discussed in Chapter Three. In Chapters Four and Five, the performance of 

the uniformly and non-uniformly distributed catalysts, before and after thermal degradation, are 

shown respectively. The interactions between CO, C3H6, and NO over a commercial Pt/Al2O3 catalyst 

are discussed in Chapter Six. An unexpected trend in CO oxidation behavior was observed. In 

Chapter Seven, this trend is described and the reasons for it demonstrated. Finally the conclusions and 

recommendations of this study are discussed in Chapter Eight.       

1.1 Automobiles and Pollution 

Air quality in most urban areas is heavily affected by emissions from passenger vehicles and 

heavy-duty trucks. In the United States, cars, trucks, and off-road vehicles are estimated to be 

responsible for about 50% of nationwide nitrogen oxides emissions, about 40-50% of hydrocarbon 

emissions, and 80-90% of CO emissions in urban areas [1]. Diesel trucks and buses are widely used 

for public transportation due to their superior fuel efficiency and durability. Diesel fuel is a mixture of 
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hydrocarbons that ideally should produce CO2 and H2O during combustion. In reality, however, diesel 

engine emissions are a mixture of several components including CO, hydrocarbons (HC), nitrogen 

oxides (NOX), and particulate matter (PM). These listed products are the major emission concerns in 

terms of human health and environmental impact. Heavy duty diesel engines are the major source of 

pollutants in urban areas. For example, diesel engines are a major source of NOX in California with 

on-road vehicles contributing 18% and off-road diesels contributing 19% of the total emitted NOX [2]. 

The U.S. Environmental Protection Agency (US-EPA) has reported that heavy-duty trucks and buses 

produce about one-third of NOX emissions and one-quarter of particulate emissions from all highway 

cars and trucks, even though they comprise only 2% of the total number of vehicles on the roadways 

[3]. Table (1-1) shows typical emissions of a diesel engine without a catalytic emissions control 

system, measured during a transient test cycle [4]. To control diesel engine exhaust emissions, 

scientists and engineers have developed many technologies. The health and environmental effects of 

diesel emissions, the standards and regulations, and diesel technologies developed to reduce the effect 

of diesel exhaust emissions are presented in the following section.  

Table 1-1 : Typical emissions of diesel engine. 

Emissions species Emissions, g/KW-h 

Carbon monoxide 1.77 

Gaseous hydrocarbons 0.44 

Oxides of nitrogen 6.31 

Extractable particulate 0.037 

 

1.1.1 Health Impacts of Diesel Emissions 

Even though there is no consensus on the effect of diesel emissions on humans, several 

organizations, such as the World Health Organization (WHO) and the International Agency for 

Research on Cancer (IARC), have studied the health effects of diesel engine exhaust on human health 
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and found that diesel exhaust gas is a potential carcinogen for humans [5]. According to WHO, many 

epidemiological studies on people who are exposed to diesel emissions, such as truck drivers and 

railroad workers, showed that these people have a tendency to have a 20-40% higher incidence of 

lung cancer [6]. Table (1-2) lists the biological impact of some diesel emissions components [7]: 

Table 1-2 : Biological impacts of diesel emission components. 

Component Impact 

Carbon monoxide highly toxic to humans; blocks oxygen uptake 

Nitrogen oxides respiratory tract irritation, major ozone precursor 

Sulfur dioxide respiratory tract irritation and contributes to acid rain 

Particulate matter respiratory tract irritation and carcinogenic 

 

In general, emissions of CO and HC from diesel engines are lower than those from gasoline 

engines; however, CO, HC, and NOX emissions from diesel engines are higher than those from 

gasoline engines equipped with a three-way catalyst (TWC). When released into the atmosphere, NO 

undergoes a series of reactions to form other substances of much higher toxicity as well as ground 

level ozone. Most air pollution studies focus on the health and environmental effects of NO2 which is 

a product of NO and has higher toxicity than NO.  

Diesel particulate matter (PM) emission is a major health concern.  Some of the PM is small 

in size (0.10  m is the mean size), and therefore can penetrate deep into human lungs [8]. According 

to a study by the American Cancer Society, PM exposure damages the respiratory system and causes 

a wide variety of medical problems such as asthma and possible asthma onset, heart attacks and 

premature death [9]. Several health organizations hold PM responsible for various diseases and 

consider PM as the most dangerous component in diesel engine emissions.  
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1.1.2 Environmental Impacts of Diesel Emissions 

In addition to the health effects of diesel engine emissions, environmental agencies have 

reported that diesel emissions contribute to various environmental problems such as air quality issues, 

photochemical smog, acid rain, and global warming. Table (1-3) lists the environmental impact of 

some diesel exhaust components [10] 

Table 1-3 : Environmental impacts of diesel exhaust components. 

Component Impact 

Carbon dioxide most common greenhouse gas 

Nitrogen oxides photochemical smog, acid rain, and destruction of stratospheric ozone 

Particulate matter reduces atmospheric visibility, and contributes to global warming 

 

CO2 is one of the most abundant greenhouse gases and contributes to climate warming. 

Diesel vehicles release lower CO2 emissions than their gasoline counterparts [11]. Similarly, black 

carbon soot from diesel emissions can contribute to global warming due to its ability to absorb light 

and heat [12]. 

1.2 Standards and Regulations 

Governments have authorized regulatory agencies to control and limit known harmful 

emissions. These agencies are responsible for legislation of laws and standards for diesel engine 

exhaust emissions, and force engine manufacturers to comply with these standards, which specify the 

required emission limits. Regulated diesel emissions include the following: PM, NOX, HCs, and CO 

[1]. In recent years these standards have become increasingly strict in order to reduce emissions and 

improve air quality. Table (1-4) lists emission requirements for heavy-duty diesel engines in the US 

and Canada from 2000 to 2010 [13-15].  
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Table 1-4 : Emissions requirements for heavy-duty diesel vehicles, g/KW-hr. 

United States 

Year CO HC NOX PM 

2004 20.8 0.67 3.35 0.13 

2007 20.8 0.187 1.6 0.013 

2010 20.8 0.187 0.26 0.013 

Canada 

Year CO HC NOX PM 

2000 20.8 1.75 5.4 0.13 

2005 19.3 HC + NOX = 1.0 0.13 

2010 19.3 0.187 0.26 0.013 

 

With advanced after-treatment technologies and engine design, modern diesel engines not 

only meet the strict emission limits and standards, but also outperform in responsiveness and fuel 

economy [1]. 

1.3 Diesel Technologies    

Controlling diesel emissions by engine design is not enough to meet the regulations. Catalytic 

after-treatment devices are required. However, more research is needed to integrate these after-

treatment systems to meet the new standards and improve the economics. The most promising after-

treatment technologies to control diesel emissions include: (1) DOCs, (2) selective catalytic reduction 

(SCR) catalysts, (3) NOX storage and reduction (NSR) catalysts, and (4) PM filters. DOCs provide 

very effective control of CO and HC emissions, with conversions higher than 90% at exhaust gas 

temperatures above 300 °C [1]. NSR and SCR are promising technologies to reduce NOX emissions 

from diesel engines.  
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A typical NSR catalyst consists of an oxidizing component (Pt), a NOX storage component 

(Ba), and a reducing component (Rh). The NSR system operates by switching between fuel lean and 

rich phases. In the lean phase, which lasts for a few minutes, NOX is trapped on the catalyst by 

bonding to the storage component. When the adsorption capacity becomes saturated, NOX is reduced 

to N2 and released during the rich phase or regeneration, which lasts a few seconds. Figure (1-1) 

describes the mechanism of the NSR reaction. Several studies have shown that NO2 enhances the 

performance of the NSR catalyst by improving NOX storage, as NO2 is faster and easier to trap than 

NO [16, 17]. Therefore, in the exhaust aftertreatment system, it is advantageous to place a DOC 

upstream of NSR catalysts in order to increase the amount of NO2.   

 

Figure 1-1 : NSR operating cycle (source: www.dieselnet.com). 

SCR utilizes ammonia as a reducing agent to reduce NOX in diesel engine exhaust. The main 

reaction in the SCR system is: 

4NO + 4NH3 + O2  4N2 + 6H2O                     (1) 

SCR is widely used in industrial application because of its high conversion, which can exceed 

90%. SCR has proven successful in stationary diesel engines; however, there is ongoing research for 

its use in mobile applications [18, 19]. Installing a DOC before the SCR catalyst can further enhance 

the total conversion of NOX via SCR by increasing the amount of NO2 and driving a second reaction, 

which is faster and occurs at lower temperature than reaction (1): 
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   NO + NO2 + 2NH3  2N2 + 3H2O                   (2) 

Diesel particulate matter, or soot, is removed from diesel exhaust gas by diesel particulate 

filters (DPFs), a wall-flow monolith that traps solid particles from the exhaust. When the filter is 

overloaded with particulate, it is regenerated by exposing it to high temperature to oxidize the 

accumulated soot. Today’s DPFs are capable of removing more than 90% of soot with acceptable 

mechanical and thermal durability [1]. Further, NO2 produced in a DOC is beneficial for DPFs, 

because NO2 oxidizes soot at lower temperature than O2. For example, O2 oxidizes soot at 500-600 

°C, whereas NO2 does at 350 °C. For this reason, DOCs are installed upstream of DPFs to lower soot 

oxidation temperatures [20, 21].   

1.4 Catalyst Optimization 

In their aim to optimize the performance and reduce the cost of DOCs, catalyst manufacturers 

have studied a variety of catalyst aspects including precious metal/support/promoter types, geometry 

and structure of the honeycomb support, and different preparation conditions. All of these factors 

have been utilized in optimizing standard catalysts that have a uniform distribution of catalyst 

material along the catalyst length. However, some studies have shown improvement in catalyst 

performance by using non-uniformly distributed catalysts. In these catalysts the active metal is not 

homogeneously deposited along the catalyst length, instead a distribution of active sites is made along 

the catalyst length. Most published work in non-uniform catalyst distribution is based on 

mathematical modeling, in which few have considered catalyst deactivation in the optimization 

model. For example, Tronci et al [22] have considered thermal degradation in their model, and they 

found that the performance of the uniformly distributed catalyst was more severely affected by 

thermal aging than a two zoned catalyst, with more Pt loading in the front zone. Therefore more 

investigations are required before commercializing the non-uniform catalyst converter for diesel 

engines.  
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1.5 Objectives 

 The ultimate goal of this research is to improve the performance of a DOC by redistributing the 

active sites on the catalyst surface in order to efficiently utilize the amount of precious metal. CO, 

C3H6 and NO oxidation over a DOC will be investigated by studying the competition and inhibition 

effects of these components of these reactions. The effect of thermal deactivation will also be 

characterized. This research is divided into two sections in which special tools and techniques will be 

used. In the first section the performance of uniformly and non-uniformly distributed catalysts are 

tested before and after thermal degradation by the following sequence:   

(1) Making samples with a homogeneous distribution along the axial direction. 

(2) Testing and characterizing fresh and aged homogeneous distribution samples.  

(3) Making samples with gradients in distribution along the axial direction. 

(4) Testing and characterizing the fresh and aged non-homogeneous samples. 

 Testing the homogenous and non-homogeneous samples will include measuring the distribution 

of gas compositions, overall conversion, and temperature along the axial direction of a DOC, and 

measuring how the distribution changes as a function of thermal aging. In the second section of this 

work, the interactions between CO, C3H6, and NO are examined over Pt/Al2O3 with the focus on the 

hysteresis behavior of CO oxidation in a CO and C3H6 mixture. 

1.6 Contributions 

 This research work provided valuable information about the DOC that is used in lean burn 

engines. With the data obtained, and the gradients in activity measured, we can design a new catalyst 

having axial gradients in active metal that could improve light-off characteristics and minimize 

degradation. This led to optimizing the DOC to meet mandated emission regulations and reduce the 

cost of the DOC.  
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 A primary result of this work is a more efficient catalyst by zone-coating the sample with the 

same overall amount of precious metal. Furthermore, the gradients can be used to slow thermal 

degradation, also potentially resulting in the need to use less active metal since the catalysts are 

usually designed for “end-of-useful-life”. In other words, the amount of Pt/Pd/Rh added is sufficient 

for the catalyst to meet regulation requirements after being used for more than 100,000 miles. If less 

thermal degradation occurs, less overall metal is required. In addition, understanding the influence of 

each reactant component on its own, and with other species, oxidation will provide a clear picture of 

the nature of the reactions on the DOC catalyst. These data can be utilized in the future to build more 

accurate models for DOC reactions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 10 

Chapter 2: Literature Review 

A review of the DOC functions, diesel exhaust species interactions on the catalyst, catalyst 

aging, catalyst preparation, the influence of active metal distribution on performance, and the 

hysteresis behavior of CO are presented in this chapter. 

2.1 Diesel Oxidation Catalyst (DOC) 

2.1.1 DOC Background 

A diesel oxidation catalyst is a catalytic device that oxidizes the following components: CO, 

HCs, NO, and the organic fraction of diesel particulates. Since the 1970s, the DOC has been 

commercially used in a number of light and heavy duty engine applications. It was first used in 

construction, tunneling, and material handling to reduce the CO and odor from diesel-powered 

equipment [13]. In the early 1990s, with the success of the gasoline engine catalytic converter and the 

strict standards for diesel engine emissions, diesel engine manufacturers considered catalysts for 

controlling engine emissions [23]. DOCs used in the after-treatment system of diesel engines are 

normally a flow through cordierite honeycomb shaped configuration coated with Pt or Pt/Pd on an 

Al2O3 support, with CeO2 and zeolite components sometimes added [24-26]. Today, DOCs are 

capable of removing more than 90% of CO and HCs and can reduce diesel particulate matter (PM) up 

to 30% [1].  

2.1.2 DOC Reactions 

The DOC is designed to oxidize different species in diesel exhaust. Two main reactions are 

CO and HC oxidation: 

CO         +           0.5 O2     CO2    (3) 

CnH2m    + (n + m/2) O2      nCO2 + mH2O   (4) 

The oxidation of NO to NO2 is another reaction that occurs on a DOC.  
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NO         +             1/2O2         NO2                                         (5) 

Because NO2 is more toxic than NO, previously scientists classified NO oxidation as an 

undesired reaction that creates air quality concerns [27]. However, NO oxidation can be beneficial for 

downstream DPFs, NSR, and SCR catalysts. The optimal ratio of NO2/NO is 1:1 in SCR catalysis 

[28, 29], with typical engine out NO2 values at about 10%. The disadvantage of the presence of NO2 

in the feed of SCR is the formation of N2O, which is a greenhouse gas and contributes to the depletion 

of the ozone layer. N2O is formed at low temperature as a result of the side reaction between NO2 and 

NH3 on the SCR catalyst [28, 30, 31]. In addition, studies have shown NOX storage efficiencies are 

significantly improved with NO2 relative to NO [16, 17, 32], thus an upstream DOC is typically a part 

of this system also. NO oxidation over a DOC is enhanced with increasing O2 concentration but 

suppressed with increasing H2O concentration [29]. For DPFs, NO2 formed in the upstream DOC is 

utilized to oxidize the trapped soot. Since NO2 is a stronger oxidizer than O2, the DPF system is more 

easily (lower temperature and higher rates) regenerated with NO2 [33]. 

2.2 Species Interactions in DOC 

The performance of a DOC can be evaluated by the light-off temperature, total conversion of 

reactants, and durability. There are several parameters that influence the overall performance, such as 

catalyst volume, washcoat type, composition, distribution, loading of precious metal, and preparation 

methods. Even though it has been used for many years, the mechanism that governs the operation of a 

DOC and the interactions between different species on the surface of the catalyst remain 

controversial. A better understanding of the mechanism and resultant rate expressions would be 

advantageous in helping to model DOCs.  

Diesel exhaust gas is primarily composed of CO2, H2O, O2, and N2. All these gases are 

environmentally friendly products, except CO2 which is a greenhouse gas. Traces of other pollutants 

such as CO, unburned HCs, NOX, and PM are also emitted. Studies have shown that the activity of 
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the DOC is greatly influenced by the concentrations of various exhaust gas species [21, 34, 35]. The 

presence of some species that can strongly adsorb onto active sites may retard the reaction of a more 

reactive species and delay the light-off temperature until the desorption temperature of the inhibiting 

adsorbate is reached. The effects of the main reactants on the DOC are evaluated in the following 

sections. 

In 1973, Voltz and his group studied the effects of O2, CO, C3H6 and NO on the rates of CO 

and C3H6 oxidation over a Pt/Al2O3 pellet catalyst [35]. CO and C3H6 oxidation rates increased with 

increasing O2 concentration and decreased with increasing CO and C3H6 concentrations. These results 

agree with other previous work that studied CO and C3H6 oxidation [36, 37]. The inhibition effect of 

CO both on its own oxidation, a phenomenon known as self-poisoning, and on C3H6 oxidation is 

related to strong chemisorption of CO on Pt sites on the catalyst. Similarly, the inhibition effect of 

C3H6 is also related to chemisorption of C3H6 on active sites [35]. The chemisorption of both CO and 

C3H6 is sufficient at lower temperature to cause significant inhibition, but at temperatures above 400 

°C, CO and C3H6 chemisorption is insignificant and thus inhibition effects are reduced or eliminated. 

As the temperature increases, CO chemisorption decreases, and consequently the effect of CO self-

inhibition decreases [35, 38, 39]. Further, NO has an inhibiting effect on CO and C3H6 oxidation: this 

inhibition effect of NO increases with increasing NO concentration. At low temperature, there is no 

inhibition effect for NO on CO and C3H6 oxidation, but at temperatures above 200 °C, NO is 

chemisorbed onto active sites, once CO and C3H6 adsorption decreases leaving some sites free, thus 

inhibiting CO and C3H6 oxidation. Separate studies have also shown that CO and HCs inhibit NO 

oxidation by delaying the light-off temperature and decreasing the conversion of NO [21, 40]. This 

negative effect has been attributed to the competition of CO, HC, and NO for the active sites. In 

addition, NO2, the product of NO oxidation, is a stronger oxidant than O2 and therefore NO2 is 

consumed preferentially in C3H6 and CO oxidation thus resulting in an apparent inhibition of NO 
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oxidation [21, 41]. Other hydrocarbons such as m-xylene and dodecane had the same effect as C3H6 

on NO oxidation. Because of its high sticking coefficient on Pt and this strong oxidizing ability, NO2 

can also inhibit NO oxidation by covering the surface of the catalyst with oxygen, preventing NO and 

other species from reaching the surface [42, 43]. 

Unlike other compounds, H2 promotes oxidation reactions on a DOC. In a study of the effect 

of H2 on the combustion of methane on a Pt catalyst in a lean methane/air mixture, increasing H2 

decreased the light-off temperature of the methane [44]. Even though exhaust from light-duty and 

heavy-duty diesel trucks contains very little or no H2 (CO/H2 ~40 to 70) as compared to that of a 

gasoline car exhaust (CO/H2 ~3), even small amounts of H2 can promote oxidation reactions over a 

DOC [45]. Literature evidence shows that when a mixture of H2, CO, and O2 passes over a Pt catalyst, 

CO hinders the H2 light-off temperature, but H2 promotes CO light-off [46-48]. CO starts oxidizing 

first until it reaches ~50% conversion, then H2 is rapidly converted [49-53]. Studies found that adding 

a small amount of H2 showed the greatest effect on CO oxidation, however the rate of the 

enhancement effect decreased as the H2 concentration increased [46, 48]. Several explanations were 

proposed for the H2 enhancement effect. Sun et al [54], explained the H2 enhancement effect by the 

associated increase in temperature due to the exothermic H2 oxidation reaction. Another explanation 

was the interaction on the surface between H2 and other adsorbed species [46, 48]. Mhadeshwar 

suggested a mechanism that utilizes a parallel path for CO oxidation with a hydroxyl (OH) species 

that would decrease the CO light-off temperature [55]. Salomons and coworkers have linked the 

enhancement effect of H2 on CO oxidation to H2 adsorption and CO desorption [46]. In their kinetic 

model of the CO/H2 oxidation mechanism, the activation energy of CO desorption decreased as 

function of H2 adsorption [46]. 

The most acceptable reaction mechanism of CO oxidation on Pt is the Langmuir-

Hinshelwood (L-H) dual-site mechanism, where the rate determining step (RDS) is the surface 
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reaction between adsorbed CO and O2 on two different sites [47, 56-58]. Similarly, the L-H 

mechanism was also proposed for hydrocarbon oxidation reactions, and the surface reaction between 

adsorbed O2 and HCs is the RDS [35, 59, 60]. The mechanism of CO and C3H6 oxidation are shown 

in equations (6-9).  

R (g)       + AS          ↔   R-AS                            (6) 

O2 (g)     + 2AS        ↔    2(O-AS)                       (7) 

R-AS      + O-AS       →    CO2-AS + AS             (8) 

CO2-AS                    ↔    CO2 (g) + AS               (9) 

R: reactant (CO or C3H6) 

AS: Active Site 

Several studies in the literature have shown that CO oxidation is inhibited by CO at low 

temperatures, due to strong CO chemisorption on active sites, while at high temperature the reaction 

is mass transfer limited [35, 38, 39]. In a mixture of reactants, CO, C3H6, and NO inhibit the oxidation 

of each other due to competitive adsorption over the active site. The rate equations of CO and C3H6 

oxidation including the resistance term, that accounts for CO, C3H6, and NO inhibition, were reported 

by Voltz as shown in equations (10-12) [35, 61]. 

  

 CO or C   
  

-kr or kr2  (CO or C   )(O2)

[ +ka (CO)+ka2(C   )]2  [ +ka (CO)(C   )]2  [ +ka4( O)] . 
                  (10) 

 

kr    kr   
 

exp  -
 r 

R
 /( T+4   )     (    for CO and 2 for C    )                             (11) 

 

kai   kai  
 

exp  -
 ai

R
 /( T+4   )   (i  , 2,  , 4)                                                        (12) 

 

 

(CO) = mole % of CO 

(O2) = mol % of O2 
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(C3H6) = ppm of C3H6 

(NO) = ppm of NO 

kri = intrinsic rate constant based on catalyst volume [ sec
-1

 O2
-1

 ] 

ka1 = adsorption rate constant for CO [CO]
-1

  

ka2 = adsorption rate constant for C3H6 [C3H6]
-1

 

ka3 = adsorption rate constant for combination of CO and C3H6 [(CO) (C3H6)]
-2

 

ka4 = adsorption rate constant for NO [NO]
-1

 

k°rj = frequency factor for krj   

k°ai = frequency factor for kai   

Erj = activation energy for krj  [btu / lb mol]  

Eai = activation energy for kai [btu / lb mol]   

R = ideal gas constant, 1.987  [btu / lb mol °R] 

T = catalyst temperature [°F] 

 

Further, it was observed that the CO oxidation reaction rate oscillates depending on the 

reaction conditions and chemical state of the surface [62-65]. Different reasons were proposed to 

describe CO oxidation oscillation including temperature inertia and CO concentration; however, Pt 

oxidation and reduction, proposed by Sale et al. [66], is the most reasonable explanation. With an 

excess amount of O2, Pt is oxidized to form Pt oxide (PtO), which is less reactive toward CO 

oxidation, thus lowering the CO oxidation rate. However, as the CO oxidation rate increases, the PtO 

reduces back, by CO, to metallic Pt, which is more active than PtO. This oscillation in reaction rate 

was also observed during C3H6 oxidation [61]. Yao, who studied the kinetics of CO and C3H6 

oxidation under excess O2 over different precious metals and supports, found that the reaction rate, 

which was reported in the form of a power law, exhibits negative orders with respect to CO and C3H6 

and positive order with respect to O2  [67]. Similarly, for CO oxidation over a Pt/γ-Al2O3 catalyst, the 
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CO oxidation rate was found to be proportional to the O2 and inversely proportional to CO partial 

pressures and at low temperature, below the light-off temperature, the Pt surface is covered with CO 

[68].      

2.3 Aging Effects 

Catalyst deactivation (aging) influences research, development, design, and operation of 

many commercial processes. In diesel engines, the deactivation of the catalyst causes a gradual 

decrease in performance, resulting in increased emissions from the vehicle. Catalyst deactivation can 

be classified as chemical, mechanical, and thermal. All the deactivation methods are applicable to 

diesel exhaust catalysts, but this thesis research is focused on thermal deactivation.  

2.3.1 Thermal Degradation 

Thermal degradation is caused by exposure to high exhaust gas temperature or heat generated 

via exothermic reactions, and is a major source of emissions catalyst deactivation. Even though the 

diesel engine exhaust temperature is lower than that in gasoline engines, the DOC can still be exposed 

to high temperatures, imposed for example during regeneration of diesel particulate filters [69]. At 

high temperature, active phase crystallite growth, collapse of the carrier pore structure and reactions 

between the active phase and carrier or promoters can occur. If the reaction is structure sensitive, 

catalyst activity can either increase or decrease with increasing metal crystallite size during sintering 

[70].  

High temperature exposure can result in particle sintering, which typically decreases catalyst 

activity. Sintering refers to the loss of active surface area via structural modification of the catalyst, 

which is usually a thermally activated process and is physical by nature [71]. Under high temperature 

conditions, atoms and molecules migrate to form larger particles on the surface of the catalyst. 

Sintering has been shown responsible for the loss in performance of an aged DOC [71, 72].  
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Sintering can be divided into two types: active site sintering and carrier sintering. In active 

site sintering, the surface area of the typically small particles decreases as the particles aggregate to 

form larger ones. Support sintering can alter the pore structure and therefore size, typically making 

pores smaller and more resistant to diffusion. In terms of structure change, an example is when γ-

Al2O3 is transformed into δ-Al2O3, and the surface area of the support decreases from 150 to less than 

50 m
2
/g [73]. Furthermore, at high temperature, the catalytic species can react with the support 

forming components that are less active.  

The presence of certain additives such as BaO, CeO2, and La2O3 are known to reduce support 

sintering by forming thermally stable spinel phases with alumina. These stabilizers fix the catalytic 

components to the surface decreasing their mobility and hence crystal growth [70].  Additives on the 

carrier can affect thermal properties of the catalyst by changing sites or forming new phases. For 

example, alkali metals accelerate sintering [70]. Sintering is easier to prevent than cure, because it is 

kinetically slow and typically irreversible.  

2.4 Catalyst Design 

In this section, monolithic catalyst composition and preparation methods for DOCs are 

presented. The composition of the DOC and the preparation methods play an important role in the 

properties and performance of the final product.  

2.4.1 Monolithic Catalyst Compositions 

Monolithic catalysts are used extensively in environmental applications due to their low 

pressure drop associated with high flow rates, and thermal and mechanical stability. A frontal view is 

shown below in Figure 2-1). 
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                                     Figure 2-1: Honeycomb monolithic catalyst converter [74]. 

The monolithic catalyst substrates are usually made of ceramic. Because of the small specific 

surface area of ceramic substrates, the honeycomb wall is coated with a high surface area material in 

which the catalytic component is deposited. The majority of commercial ceramic honeycomb 

catalysts are made of cordierite. Cordierite is  most widely used  due to its mechanical stability, low 

thermal expansion coefficient, and the macroporous structure that facilitates the attachment of a 

powder layer [75].  

2.4.1.1 Supports 

Catalyst carriers (washcoat) are coated onto the channel wall of the monolith substrate to 

increase the surface area in order to assist in the dispersion and stability of the active catalytic phase. 

Most carriers (and all those for vehicle applications) are porous, high surface area metal oxides 

having high pore volume, capacity, and stability, as well as dispersed catalytic phases during reaction 

[76]. Zeolites, silica, and alumina are the most common commercial carriers.  

High surface area, appropriate pore structure, thermal stability over a wide temperature range, 

and ability to be used in industry to form pellets or to coat a honeycomb monolith  are the most 

important qualities of the washcoat material [76, 77]. γ–Al2O3 combines all these properties and is 

widely used in DOCs. However, other carriers are sometimes used. For example, in both CO and H2 

oxidation, ceria-supported Pt catalysts are more active than alumina-supported Pt catalysts [78]. 
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2.4.1.2 Active Components 

The active phase is the key to the catalysis, and it is usually the most expensive part of 

catalytic converters. The active phase contains the active sites where the reactions take place. Pt-, Pd-, 

and Rh-based catalysts are the most common active phases used in automotive pollution control [47, 

79, 80]. Rh is very active in NOX reduction, but its oxidation activity toward CO and HC is less than 

that of Pt and Pd [81, 82]. Pt catalysts have high oxidation capability for CO and HC, but at the same 

time are active in SO2 oxidation at low temperature, which is not desired. SO2 formation can be 

lowered by using non precious metal catalysts, although these are typically less active for other 

reactions compared to Pt [83]. Even though Pd has high thermal stability, it has not been used alone 

in diesel applications because at low temperature conditions, it is severely poisoned by fuel sulfur 

[80]. The advantages and disadvantages of Pt and Pd are shown in Table (2-1) [80]. Today, with the 

reduction of sulfur content in diesel fuel, Pd has become more viable as a DOC component. A Pt/Pd 

blended catalyst is exceptionally active, more thermally durable, and has a satisfactory tolerance 

toward sulfur poisoning compared to conventional Pt catalysts in diesel applications [80].   

Table 2-1 : Comparison between Pt and Pd in DOC catalyst. 

Metal Advantages Disadvantages 

Pt  Low temperature activity  More expensive 

 

 NO2 generation  CO poisoning 

 

 Lower risk of S poisoning 

 
Pd  High CO light-off activity  Higher risk of poisoning 

   Low price  Low NO2 generation 
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2.4.2 Catalyst Preparation 

The catalytic properties of heterogeneous catalysts are strongly affected by every step of the 

preparation process. The choice of preparation methods depends on the base materials used and the 

desired physical and chemical properties of the catalyst, with several preparation methods available 

for a given base material [84]. However, catalyst design is often considered an art. Catalyst 

manufacturers do not reveal many critical preparation details as they are considered trade secrets to 

protect the proprietary nature of their product [73]. However, there are well known general 

procedures for catalyst preparation in the laboratory. Monolith-supported catalysts are prepared in the 

laboratory through three main steps: impregnation, drying, and calcination. 

2.4.2.1 Impregnation 

Impregnation is the simplest and most typical commercial procedure for dispersing a catalyst 

species within a carrier. Often the active metal is dissolved in an aqueous solution and brought into 

contact with a porous oxide catalyst support. The active metal adsorbs from the aqueous solution onto 

the support [85].  

Based on the total amount of aqueous solution used, impregnation is divided into “wet” and 

“dry”, also known as incipient wetness. In incipient wetness or capillary impregnation methods, the 

precursor salt is dissolved in an amount of water equal to the water pore volume of the carrier, 

whereas in wet impregnation the precursor salt is dissolved in an excess amount of water. Then the 

aqueous solution containing the precursor is added to the carrier until it is saturated. The carrier 

adsorbs the catalytic element by capillary force distributing it over the porous surface area. In some 

cases, after impregnation, additives such as BaO or CeO2 are added in order to stabilize the active 

metals and avoid significant movement or agglomeration of the dispersed catalytic species [70]. Dry 

impregnation is difficult for a large structure, because it is hard to supply the monolith with exactly 

the amount equal to its pore volume as the liquid needs to travel a long distance to reach all pores 
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[86]. Therefore, it is difficult to obtain a homogeneous distribution using dry impregnation. On the 

other hand, in wet impregnation the metal precursor concentration in the liquid is determined based 

on pore volume of the monolith so that the liquid to be taken by the monolith will produce the desired 

metal loading. To achieve an even distribution of the metal, it is recommended that the contact time 

of the monolith in the solution should be short to prevent any excess of metal adsorbing onto the 

support [86].  

There are many studies in the literature on catalyst preparation with attempts to understand 

the physical and chemical aspects of the impregnation process. The experimental work of Maatman 

showed that Pt can be uniformly distributed on an alumina carrier by adding salts or acid to the 

chloroplatinic acid impregnating solution [87].  Heise and Schwarz experimentally and theoretically 

studied different aspects of impregnation including the effect of pH, ionic strength, and concentration 

on Pt metal distribution on an alumina support [88-90]. For example, Pt adsorbed and the penetration 

depth could be controlled by adjusting the pH and ionic strength. Spieker and Regalbuto studied the 

uptake of Pt on an alumina support as a function of initial Pt concentration, and found that an excess 

amount of Pt in the impregnating solution leads to Pt self-inhibition based on the ionic strength of the 

solution [85]. Ruckenstein and Karpe have shown that the total uptake of the metal by the support 

decreases when the ionic strength of the impregnating solution increases [91]. In addition, Pt uptake 

increases as the pH moves away from the point of zero charge (PZC), the pH at which the net surface 

charge is zero [91]. Regalbuto found that Pt uptake increases as the pH is moved away from the PZC, 

and slowed at extreme pH due to the ionic strength of the impregnating solution [92].   

2.4.2.2 Drying 

The next step in monolithic catalyst preparation is drying the catalyst, typically at about 110 

°C, to get rid of excess water and other volatile species. The rate of drying can influence the 

deposition of the active materials in the pores [76]. Studies on supported catalysts such as Ni/alumina 



 

 22 

have shown that at a low drying rate most of the catalytic species are deposited in the deep end of the 

pores; whereas, at a high drying rate, they are deposited in the entrance of pores [93, 94]. Drying rate 

can also affect distribution of the active metal along the monolith. In an oven dried monolith, Figure 

(2-2), the distribution was much lower in the middle parts of the monolith (as indicated by the lightly 

gray color in the middle) than that at the ends due to humidity gradients that formed between the 

inside and the outside on the channels. In room temperature drying, the humidity gradient was lower 

than that of the oven, but only a small zone, in the middle, was not covered by the active metal 

because this zone was not completely dried before calcination. It is therefore very crucial to control 

the temperature and humidity during the drying process. 

 

Figure 2-2 : Axial section of Ni impregnated monoliths obtained by (A) oven drying, (B) room 

temperature drying and (C) microwave drying followed by calcination at 550 °C [93]. 

2.4.2.3 Calcination 

The final stage in monolithic catalyst preparation is calcination. Catalysts are calcined at high 

temperature to decompose precursor salts and other preparation components. Calcination is typically 

in air at a temperature higher than that used in the catalytic reactions, thereby also stabilizing the 

catalyst activity. Calcination at high temperatures, above 500 °C, can crack the monolith by pressure 

build up in micropores via the rapid heat up of trapped H2O. Furthermore, at high calcination 
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temperatures, exothermic reactions due to decomposing salts can accelerate sintering [73]. Therefore 

care must be taken when calcining the catalysts.  

2.4.3 Optimization of Active Metal Distribution 

 

Catalyst manufacturers have studied various design factors to improve the performance of the 

catalyst, especially in terms of improving cold start performance and reducing degradation effects. 

Advances in catalyst coating technologies have enabled both washcoat and precious metals to be 

distributed non-homogeneously along the length of a catalyst monolith [95]. Theoretical studies 

focused on oxidation reactions or NOX reduction, have shown that an axial distribution of the active 

metal, with higher loading in the upstream section of the monolith and lower loading in the 

downstream, is superior to that of a uniform distribution, while utilizing the same amount of active 

metal [22, 81, 95-104]. Collins and colleagues optimized three-way catalyst performance by targeted 

zoning of precious metal [81]. They found that most pollutant conversion occurs in the front portion, 

and consequently the optimum catalysts have the majority of the precious metal content there [81]. 

Furthermore, through analysis of CO, HC, and NOX conversion along the catalyst length, results have 

shown that CO and HC are converted in the front portion of the catalyst whereas NOX conversion 

relies on the total volume of catalyst [81]. Based on a one-dimensional, two-phase model of the light-

off behavior and cumulative emissions of a generic catalytic monolith, Ramanthan and his colleagues 

found that for a fixed amount of metal loading, redistribution of the active sites with more near the 

front section of the monolith can achieve higher conversion and lower ignition temperature [99-102]. 

If catalyst fouling is an issue, then multiple-zone distribution is the optimum design with more 

catalyst in the middle [100]. The optimal axial distribution of the active catalyst was also investigated 

to minimize cold start emissions [22, 102, 103]. Based on their numerical study, the authors found 

that a high concentration of the active metal in the upstream section of the monolith was optimal to 



 

 24 

minimize cold start emissions because it ensured that the highest temperature is maintained at the 

inlet of the monolith and heat transfer by convection dominates [22, 103]. Similar results were 

observed in a separate study where different Pt distribution profiles along the reactor length were 

examined, and it was found that the best light-off performance was achieved with Pt concentrated in 

the upstream section of the monolith [104]. Similarly, precious metal usage in DPFs was optimized 

by non-uniform catalyst coating, with more catalyst in the front part showing improvements in CO 

and HC conversion as well as cold start emissions [101].  

In addition to the light-off temperature performance, Tronci et al. [22] suggested that 

degradation due to sintering is more severe in the case of a uniform active site distribution. Even 

though the surface area loss in the front section of the non-uniform active site distribution catalyst 

(front-loaded catalyst) was larger than that of the uniform distribution, the remaining activity was 

high enough to maintain the minimum heat to keep a high solid temperature and avoid monolith 

cooling by the inlet gas [22]. Furthermore, based on a theoretical study of methane oxidation under 

steady-state and transient operating conditions, non-uniform catalyst distributions have the potential 

to achieve lower thermal stresses as the temperature gradient in the catalyst is lower than that for a 

uniform distribution [96]. In some conditions, catalyst distribution with high loading at the entrance 

has no effect on conversion improvement, such as when the space velocity is too high for high 

conversions to be achieved in the higher loaded region (above SV=1,000,000 hr
-1

 in this example) 

[105]. This suggests, as does other work, that there is a range of catalyst loadings in which the 

optimal design corresponds to having more catalyst at the front but not for all [98]. For example, in an 

adiabatic reactor, the optimal active component distribution profile was shown to be axially 

decreasing along the reactor length for first-order exothermic reactions and increasing for 

endothermic reactions, while a uniform active component distribution profile is optimal for first order 

reactions in an isothermal reactor [105].  
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Precious metal component zoning in lean NOX trap system performance has shown that 

reverse precious metal zoning (zoned with low loading in the front section of the monolith followed 

by a zone with higher loading) can be used to reduce the cost of the LNT while essentially 

maintaining the NOX reduction performance, compared to a similarly sized trap with a uniform, high 

precious metal loading [99]. After high temperature aging, the back half of the tested NOX trap had 

better performance than the front half, because the front of catalyst was exposed to higher 

temperatures than the back due to the heat generated from exothermic HC and CO oxidation. 

Therefore, high loading at the back of the catalyst protects the active sites in that zone and better 

preserves the low temperature NOX performance of the LNT [99]. In a more recent study of an aged 

diesel truck aftertreatment system, a Ford research team found that the back of a DOC deteriorated 

most significantly than the rest of the catalyst because the back is most affected by the heat generated 

from the exothermic reactions, specifically burning hydrocarbons during filter regeneration [39].  

2.5 Hysteresis Behavior 

As was mentioned earlier, CO, NO and C3H6 TPO experiments, with tests done with 

individual reactants and in mixtures, were conducted as a part of an Auto21 project. In these 

experiments outlet gas concentrations and temperatures, across the monolith length, were monitored 

during ignition and extinction processes. Preliminary results showed interesting hysteresis behavior in 

the case of gas mixtures, specifically CO inverse hysteresis behavior in a CO and C3H6 mixture. This 

phenomenon was characterized and therefore, the hysteresis behavior of CO is discussed in the 

following section.     

The oxidation of CO on Pt has been investigated in numerous studies beginning with the 

classic work of Langmuir [35, 48, 106-109]. CO oxidation is known to occur through a Langumir-

Hinshelwood (LH) dual-site mechanism, in which the reaction occurs between CO and O2 after both 

molecules adsorb on the surface [47, 48, 56]. CO oxidation studies during a temperature ramp up and 
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then ramp down have shown hysteresis behavior, with higher conversion during extinction [47, 110-

123]. This higher conversion during extinction is often called normal hysteresis behavior. Researchers 

have proposed different reasons to explain the higher activity of the catalyst during extinction, of 

which surface inhibition by CO adsorption, reaction exotherm, and thermal inertia of the catalyst are 

the most common. Carlsson and Skoglundh [111], explained normal hysteresis as a combination of 

three possible reasons: (1) inherent kinetics bistability, (2) interaction between reaction kinetics and 

diffusion phenomenon, and (3) local overheating of the catalyst surface. Hysteresis, or multiplicity, in 

CO oxidation on Pt was first observed by Beusch et al. [110] in 1972. In addition to the Beusch study, 

Wei and Becker [123], Schmitz et al. [118], Hegedus et al. [115], and Chakrabaty [112] have 

demonstrated that interaction between surface reaction and diffusion can lead to hysteresis behavior.  

Hegedus et al. [115] concluded that CO oxidation hysteresis behavior is due to the interaction of the 

negative-order kinetics for CO oxidation with the diffusive resistances of the catalysts. For example, 

the region of hysteresis could be broadened by increasing the diffusion resistance of the tested 

Pt/Al2O3 catalyst by partially aging the catalyst [115]. Oh et al. [116], who investigated the role of 

intrapellet diffusion resistance in hysteresis during CO oxidation over Pt-Al2O3, showed that the 

width of conversion-temperature hysteresis loop is a function of particle size and it could be 

eliminated if the catalyst particle size is very small. In addition to  the reaction-diffusion interaction 

explanation, Chakrabaty et al. [112] stressed the effect of surface reaction-sorption interference. For 

example, multiple steady states were observed depending on whether CO, O2, or CO and O2 are 

preadsorbed on the catalyst [112]. The oscillations in CO conversion observed in the multiplicity 

region of CO oxidation were explained partly by switches in adsorbate concentrations [112], as 

mentioned above. Eigenberger proposed that two or more surface rate steps where CO is chemisorbed 

on Pt could result in multiple steady states without obvious changes in reaction conditions [124]. A 

transient, in-situ FTIR study of CO oxidation over a Pt/Al2O3 catalyst, by Carlsson et al. [56], 
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associated CO oxidation hysteresis with different rates by which Pt is oxidized and reduced as a 

function of gas-phase composition. Their results showed that a transition during the extinction 

process from an O2 to a CO covered surface occurs on a much longer time scale than the reverse 

transition from a CO to O2 covered surface during the ignition process. The authors concluded this 

was due to Pt oxide formation, during extinction, which changes the adsorption kinetics [56]. In their 

CO oxidation model, Salomons et al. [47] suggested multiple steady states with the hysteresis effect 

corresponding to two Pt states; predominantly CO covered during ignition and O2 covered during 

extinction. The model was based on adsorption and surface reaction using a LH mechanism, with a 

dissociative chemisorption step for oxygen requiring two surface sites, whereby ignition and 

extinction processes correspond to the two states of predominantly CO covered or O2 covered [47]. 

This idea of surface coverage is consistent with research by Langmuir and other researchers who 

observed that at high temperature and excess oxygen, active sites are entirely covered with oxygen 

and the reaction is limited by the rate at which CO adsorbs to the surface [106, 107, 109]. However, at 

low temperature the surface is covered with CO and the reaction is inhibited by strong adsorption of 

CO on the surface, a phenomenon known as CO self-poisoning [35, 106, 108, 109]. The effect of CO 

self-poisoning increases with increasing CO concentration [48], and decreases with increasing 

temperature, with negligible inhibition above 400 °C [35, 107].  

Another explanation was put forward by Subbotin and Gudkov et al [113, 119-121, 125], who 

explained hysteresis by local “overheating” of the active sites on the catalyst, caused by relatively 

slow dissipation of the energy through dispersed catalyst particles. They proposed it is possible to 

explain the hysteresis behavior in exothermic reactions, such as CO oxidation, by overheating of the 

active sites of the catalyst via the exotherm. This conclusion was extended to another catalytic system 

by Subbotin et al. [121] who tested hysteresis in CO oxidation on both supported and unsupported 

catalysts. They concluded that CO conversion during extinction was higher than CO conversion 
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during ignition due to local overheating of an active center rather than a transition from one steady 

state to another [121]. This was supported by their observation that the higher the number of active 

sites of the catalyst, the larger the hysteresis loop became; and in the case of bulk metals, no 

hysteresis was observed due to their ability to disperse the reaction heat [121]. In an exothermic 

reaction, such as CO oxidation, the rate of heat being liberated is larger than the rate of heat being 

dissipated into the environment due to the low heat conductivity of the support or inactive catalytic 

mass in which heat is released. Therefore, during the extinction phase when the temperature of the 

inlet gas decreases, the temperature drop over the catalyst surface lags, staying warmer [113, 125]. 

Similar conclusions were made in another study, of the oxidation and methanation of CO and 

propylene hydrogenation, as temperature hysteresis was explained by overheating of the active sites 

due to slow removal of reaction heat [126]. In addition, it has been observed that the width of 

hysteresis loop increases with increasing active component and CO concentration in the reaction 

[119-121].  

Unlike CO oxidation, Hauptmann et al. [114] have shown that NO oxidation on a Pt catalyst 

under excess oxygen conditions exhibits “inverse hysteresis” as the catalytic activity during ignition 

exceeds the activity during extinction. The reason for inverse hysteresis behavior is that at high 

temperature Pt is oxidized by NO2 to form an oxide phase that is less catalytically active than metallic 

Pt and at low temperature Pt oxide is reduced back by NO to metallic Pt, a phenomenon known as 

reversible oxidation of Pt. Thus, during the extinction phase, which initiates at high temperature, Pt is 

in a less active state than that during ignition. In addition, in a CO/NO/O2 mixture, CO hysteresis 

behavior switches from normal hysteresis to inverse hysteresis, which the authors suggested was due 

to reversible oxidation of the Pt surface [114]. 
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Chapter 3: Methodology 

The thesis work is divided into two main topics: (1) a comparison study between the 

performance of uniformly and non-uniformly distributed catalysts before and after thermal aging, and 

(2) reactant species interactions on a DOC, specifically CO oxidation hysteresis behavior in a mixture 

of CO and C3H6. In the first stage, fresh and aged homogeneous catalysts’ performances were 

analyzed using TPO and spatially resolved experiments to study the reactions and active regions 

along the axial direction of the catalyst. Based on the analysis, a non-homogeneous catalyst with a 

distribution of active metal along the length was designed and tested using the same conditions that 

were previously used for the homogeneous catalyst. Characteristics including total loading and 

dispersion of the fresh and aged samples were measured. During my thesis work at UW, experiments 

were performed as part of an Auto21 project. A matrix of experiments was designed to study the 

interactions and effect of CO, C3H6, and NO on the overall performance of a DOC. These data were 

then used at University of Alberta in developing a predictive model to characterize DOC reactions 

during ignition and extinction processes. In this work, low catalytic activity were obtained during the 

extinction process, which is rarely characterized, leading to further investigation with the focus on 

understanding the hysteresis behavior of CO oxidation.  

3.1 Catalyst Preparation 

A cordierite substrate in monolithic form (400 cells per square inch – cpsi) with 1.59 g/in
3
 

(97.03 kg/m
3
) γ–Al2O3 coating (donated by Johnson Matthey) was used to prepare Co-based catalysts, 

to practice, and Pt-based catalysts with various axial distributions along the catalyst length. The 

samples provided were 9” in diameter and  ” in length. The precursor for Co was cobaltous nitrate-

hexahydrate (CoN2O6.6H2O) purchased from Fluka and for Pt was tetraammine platinum (II) nitrate, 
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Pt(NH3)4(NO3)2, purchased from Alfa-Aesar. The monolithic samples were cut to 1” diameter and 

2.4” length.  

For the catalyst with a non-uniform distribution, the goal was to prepare a sample with more 

catalyst deposited in the front section of the monolith while keeping the overall loading the same as 

that of the uniform sample. This was not to suggest that such a distribution is the optimum – 

experimentation and modeling lead catalyst design, but the modeling studies discussed in the 

literature review overall suggest this leads to improved performance. The monolith was prepared 

using the wet impregnation method. Before impregnating the monolith, the water pore volume of the 

support was determined by immersing the monolith sample into DI water and measuring the weight 

difference between wet and dry samples. 

The sample was then dried in an oven at 120 °C for 2 h before impregnation. For uniform 

distribution, based on the desired loading, a catalyst solution was prepared by dissolving a certain 

amount of the precursor into DI water. For example, water up-take was measured to be 5 g, and Pt 

tetra-ammine-platinum (II) hydroxide powder was dissolved in DI water to make the precursor 

solution. The precursor solution was diluted with 30 ml of DI water, so that each time the monolith is 

immersed in the solution, it would adsorb an amount of Pt equal to 0.5%. The monolith was dipped 

into the fresh solution, quickly removed, and an air line was used to blow excess solution out of the 

monolith channels. The sample was then air dried for 2 hrs and then in an oven at 120 °C overnight. 

For the uniform catalyst this process was repeated twice so that the total Pt loading equaled 1%, 

whereas for the non-uniform catalyst, the whole monolith was dipped once and the front 2 times to 

make a two-zone monolith with Pt loadings equal to 1.5% in the front and 0.5% in the back. Finally 

the sample was calcined for 4 hrs at 500 °C. Figure (3-1) shows the uniform and non-uniform 

catalysts after Pt loading.  
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Figure 3-1: Monolith samples with uniform and non-uniform catalyst distribution. 

 

In order to validate the procedure used in sample preparation and understand the results 

obtained, certain features of the catalyst samples were characterized before and after aging. There are 

many techniques to characterize catalysts; here, simply total loading and dispersion were used to 

validate the zone coated catalyst and examine the effects of degradation in each zone. For these 

characterizations, powder samples are required, so the monolith-supported samples were crushed for 

testing. For the non-homogeneous samples, the monolith was cut into two sections and each section 

was analyzed separately. Inductively coupled plasma (ICP) analysis was used to measure the total 

loading of active metal. The samples were prepared for ICP by dissolving the crushed monolith 

sample in a mixture of acids. 0.1g of the monolith sample was crushed to fine powder and dissolved 

in 4 ml of nitric acid (HNO3), 3 ml of hydrochloric acid (HCl), and 3 ml of sulfuric acid (H2SO4) 

while heating to 150 °C and continuously stirring the mixture. The mixture was then diluted with DI 

water before running the ICP test. Samples from the uniform catalyst and the front and back part of 

the non-uniform catalyst were tested using a Prodigy High-Dispersion ICP Spectrometer. The 

uniform sample contains 1.01 wt.% Pt, and the front and back parts of the zoned sample contain 
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1.50% and 0.55% Pt, respectively. Due to the lower cost of Co-based catalysts compared to Pt-based 

catalysts, before preparing Pt-based catalysts, several Co-based catalysts were prepared and analyzed 

by ICP to ensure the validation of the procedures used. ICP results of the Co samples are shown in 

Appendix (A). The uniform Co-based sample before and after deposition of the active metal is shown 

in Figure (3-2).  

 

Figure 3-2: Monolithic sample before impregnating (white) and after impregnating (black) with 

the active metal. 

The dispersion of the active sites over the catalyst before and after thermal aging was 

measured by H2 chemisorption. The crushed powder of the tested sample was loaded into a Hiden 

Catlab micro-reactor. The catalyst was pretreated with H2 at 450 °C for 30 minutes then the catalyst 

was exposed to 26 pulses of 100 μl of 5% H2 with a He balance for 30 seconds with 1 minute of pure 

He between each pulse. The detailed reaction protocol for H2 chemisorption is shown in Figure (3-3). 
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Figure 3-3: H2 chemisorption protocol. 

 

3.2 Catalyst Performance 

 Catalyst performance was tested by measuring the temperature and gas concentrations at the 

reactor outlet and along the axial direction of flow. To do that, two well-known methods were used: 

(1) temperature programmed oxidation and (2) spatially resolved capillary-inlet mass spectrometry 

(SpaciMS).  

3.2.1 Temperature Programmed Oxidation (TPO) Experiments 

 This method was used to evaluate the effect of different flow conditions on the performance of 

the DOC as a function of temperature. In these experiments, the temperature of the catalyst was 

ramped up and/or down, while measuring the gas concentrations of the outlet flow. TPO of different 

reactant mixtures was utilized to test the catalytic activity of the fresh and aged samples with different 

axial distributions of the active metal. The tube reactor system used for such tests consists of a gas 

mixing unit, the actual tube reactor, and gas analyzers, as shown in Figure (3-4). Pure gases and gas 

mixtures were supplied by Praxair, except N2, which was generated using a nitrogen generator 

manufactured by OnSite, and were metered with Bronkhorst mass flow controllers. Water was 

introduced downstream after the dry gas mixture had been heated. The water system consists of a 

water tank, carrier nitrogen gas, and a Bronkhorst controlled evaporator mixer. The wet gas mixture 
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was further preheated prior to entering the reactor. The pre-heater raised the temperature of the feed 

gas to a value close to the test temperature. The reactor system consists of a furnace, 2 ” quartz tube, 

small quartz tubes, and the catalyst sample. The sample was inserted into the larger quartz tube, 

which was placed inside a Lindberg Minimite temperature-controlled furnace as shown in Figure (3-

5). The catalyst was wrapped with 3M insulation material to seal the catalyst in the tube, and ensure 

that no gas slips around the sample. To stabilize the temperature inside the reactor and better preheat 

the gases, smaller quartz tubes were placed in the front part of the reactor, while the catalyst sample 

was placed in the back. For temperature measurements, three K-type thermocouples were placed at 

different positions along the catalyst length. 

The effluent gas of the reactor was analyzed using a MKS MultiGas 2030 FT-IR analyzer and 

a Hiden HPR20 mass spectrometer (MS). Both instruments measure the concentration of gases as a 

function of time. The FTIR instrument was used to measure the concentrations of CO, CO2, NO, NO2, 

N2O, C3H6, and H2O. The MS was used to measure O2 and H2, and also used in spatial resolution 

experiments to measure the concentrations of C3H6, NO, NO2, CO2, H2O, O2, and H2. In the spatial 

resolution experiments, the composition of the gas at different locations inside the sample was 

measured by moving the capillary inlet of the MS to the specified location.      

 

Figure 3-4: Flow diagram of the tubular reactor system. 
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Figure 3-5: Furnace portion of the tube reactor system, with a DOC catalyst inserted. 

Isothermal inlet and TPO experiments were conducted. For TPO, the concentrations of gases 

at the catalyst outlet and temperature along the catalyst were measured as a function of time. For the 

isothermal inlet experiments, the temperature was set to some nominal value, using an upstream 

thermocouple, and the concentrations of gases at different locations in the catalyst were measured 

once steady-state was achieved. These measurements were repeated at different temperatures. In all 

experiments the feed stream contained O2, H2O, CO2, He, and reactant gas(es), with N2 as the balance 

gas. Table (3-1) describes the set of TPO experiments that was used to test each catalyst.  
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Table 3-1 : Experiment Matrix. 

Run 
CO 

[ppm] 

C3H6 

[ppm] 

NO 

[ppm] 

Flow rate 

[L/min] 

1 1000     10 

2   1000   10 

3     200 10 

4   1000 200 10 

5 1000     28 

6   1000   28 

7     200 28 

8   1000 200 28 

 

3.2.2  Spatially Resolved Capillary-Inlet Mass Spectrometry (SpaciMS) Experiments 

 Spatially resolved capillary-inlet mass spectrometry (SpaciMS) was used to measure the gas 

concentrations at different locations along the monolith, at a constant upstream temperature. Due to 

reaction exotherms, and decreasing reactant species concentrations and increasing product 

concentrations down the length of catalyst, the activity and kinetics varied along the catalyst length. 

This technique provided information about the progress and behavior of different reactions, and the 

change of reaction rates as a function of position along the catalyst, which is critical in understanding 

the effects or activity of not only a normal, homogeneously distributed catalyst, but even more critical 

in understanding catalysts with different active site densities. These experiments were run at different 

temperatures and a variety of feed gas compositions. Figure (3-6) shows the configuration of the 

SpaciMS technique. A silica capillary, I.D. = 0.3 mm and O.D. = 0.34 mm, with a throughput of 20 

mL/min was connected to the Hiden HPR20 MS and placed inside one of the central channels of the 

monolith. The capillary was heated along its entire length to avoid condensation. 1000 ppm C3H6, 200 

ppm NO, 120 ppm He (added for calibration), 5% H2O, 10% O2, and N2 as a balance were fed to the 



 

 37 

reactor at 80 °C. The temperature was then raised to 220 °C. After reaching steady state, the capillary 

was moved from the inlet (0 cm) to the back (7 cm) of the monolith in 1 cm increments in order to 

measure the gas composition at 8 different locations along the catalyst length. This was also done at 

270 °C. The pretreatment protocol before each experiment was: the sample was heated to 450 °C 

while flowing 10% H2O, 5% CO2, and balance N2; then 10% O2 was added to the mixture for 5 

minutes followed by 2000 ppm of H2 for 5 minutes; and then the temperature was decreased to 80 °C 

before starting the experiment. 

 

 

Figure 3-6 : SpaciMS configuration. 

3.3 Catalyst Aging 

 After collecting data using the fresh sample, the monolith was thermally deactivated and the 

experiment methods described above were again used to characterize the aged sample. For thermal 

degradation, two methods were used, homogeneous and heterogeneous thermal aging, both 

representing different conditions in real application. In the first method, the sample was heated slowly 

in a furnace to a chosen temperature so that no temperature gradients exist in the catalyst. This 

method represents the case where the catalyst is exposed to constant and high temperatures, such as 

when exhaust gas temperature is the only source of heat. In the second method, the sample was 

thermally degraded using the heat generated during an exothermic reaction. The heat released from 

the exothermic reaction causes an increase in the temperature of the zone where the reaction takes 
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place, which causes a gradient in temperature along the catalyst. These temperature gradients lead to 

different degrees of thermal degradation along the axial length. This method represents the case when 

exothermic HC or CO oxidation occurs on the catalyst causing an increase in temperature at distinct 

locations. In real application degradation is a combination of both exhaust gas temperature and 

exothermic reactions. First, the samples were heterogeneously aged using the exothermic heat of 

propylene oxidation. Then the samples were placed in an oven at higher temperature to further 

deactivate the whole sample; homogeneous aging. The temperature of the homogeneous aging, 750 

°C, was higher than that of the heterogeneous aging to ensure that the all parts of the sample were 

equally affected. Using a lower temperature, i.e. close to that of the heterogeneous aging, would not 

necessarily result in “homogeneous” aging.    

For the homogeneous aging, the sample was placed in a 47900 Barnstead Thermolyne 

furnace at 750 °C for 4 hours. For heterogeneous aging, the inlet gas stream was cycled between an 

inert composition and a phase containing O2 and C3H6, with C3H6 oxidation being exothermic and 

acting as the heat source. The catalyst, at approximately 500 °C, was exposed for 10 seconds to the 

exotherm phase, which consisted of 7000 ppm C3H6, 10% O2, 5% H2O, and balanced by N2, and 150 

seconds to the inert phase, which consisted of 5% H2O and balanced by N2. This cycle was repeated 

50 times. The same TPO and steady-state experiments were repeated after thermally aging the 

catalyst. Figures (3-7) and (3-8) show the temperature profile inside the standard and zoned samples. 

The heterogeneous aging protocol resulted in the front temperature reaching around 550 °C, and the 

back about 680 °C.  
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Figure 3-7 : Temperature data at different locations of the standard sample during 

heterogeneous aging. 

 

Figure 3-8 : Temperature data at different locations of the zoned sample during heterogeneous 

aging. 
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Chapter 4: Improved CO, Hydrocarbon and NO Oxidation 

Performance Using Zone-Coated Pt-Based Catalysts* 

4.1 Abstract 

The effect of an axial Pt distribution along a diesel oxidation catalyst (DOC) was investigated 

by comparing a standard catalyst, with a homogeneously distributed Pt amount along the length, with 

a non-homogeneously distributed catalyst (zoned). The zoned catalyst had more Pt located at the 

upstream portion, and less downstream, while maintaining the same total amount of Pt as the standard 

case. The effects of flow rate on NO, CO or C3H6 oxidation, and during oxidation of NO and C3H6 as 

a mixture, were used for the comparison. The reaction details along the catalyst were also resolved 

using spatially-resolved, capillary inlet mass spectrometry (Spaci-MS). Results showed that the 

performance of the two catalysts are similar at low flow rate and with a single reacting gas, while the 

zoned sample works better for CO and C3H6 oxidation as the flow rate increases, and better for NO 

oxidation in a NO/C3H6 gas mixture. With CO oxidation or C3H6 oxidation, the superior performance 

of the zoned sample is due to a larger, localized exotherm and a decreased self-poisoning effect. The 

exothermic reaction heat produced in the front part of the zoned catalyst allows it to reach higher 

temperature at the front faster than the homogeneous/standard sample and it also lowers the effect of 

self-poisoning by converting most of the reactants in the front part. NO oxidation, being kinetically 

more challenging, occurs along the entire length of catalyst at low temperature, not achieving near 

100% conversion in these tests. Spatially-resolved experiments during C3H6 and NO oxidation, as a 

mixture, show that NO oxidation starts after C3H6 is consumed. Therefore, for the zoned sample, 

C3H6 is oxidized closer to the inlet portion of the catalyst, where a higher density of Pt is located, 

leaving the rest of the catalyst for NO oxidation. However, with the standard sample, C3H6 oxidation 

utilizes a larger part of the catalyst leaving a smaller portion of the monolith for NO oxidation. 

*See Appendix C for permission. 
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4.2 Introduction 

The diesel oxidation catalyst (DOC) has been used in many heavy duty applications since the 

 9  ’s. DOCs are used to convert, or help convert, carbon monoxide (CO), hydrocarbon ( C), and 

nitrogen oxide (NOX) emissions from diesel engines into less harmful components. Today, DOCs can 

remove CO and HCs from diesel emissions with efficiencies reaching more than 90% [1]. However, 

with increasingly strict environmental regulations for vehicle emissions, more research is needed to 

improve the performance of DOCs to meet the new standards, especially at low temperature. Even 

though CO and HC oxidation on a DOC are seemingly uncomplicated reactions, the low temperature 

of diesel engine exhaust impacts catalyst efficiency during low-speed driving or the cold start 

emissions period, i.e. the first 1-2 minutes after starting the engine [127].  

Many sources in the literature have observed that the CO oxidation reaction is inhibited by 

CO adsorption at low temperature, a phenomenon known as CO self-poisoning [47, 56]. This 

inhibition by CO decreases as temperature increases [35]. Similarly, the C3H6 oxidation reaction is 

also self-inhibited by C3H6 chemisorption on the catalyst surface at low temperature [35]. In a study 

of three-way catalysis, Collins et al. found that CO and HC oxidation reactions occur in the front 

portion of catalyst once light off has occurred [81]. Similar results were observed for C3H6 oxidation 

over Pt/Al2O3 [128]. Evidence shows that C3H6 oxidation under certain test conditions occurs via 

back-to-front light-off and the reaction zone moves closer to the inlet as the temperature increases 

[128, 129].  This is due to a combination of conduction along the monolith and associated decreased 

self-poisoning. NO oxidation to NO2 is an important reaction over a DOC, as the presence of NO2 can 

enhance the performance of other downstream catalysts in the emissions control system, such as 

selective catalytic reduction, lean NOX traps and diesel particulate filters (DPF) [24, 130].  However, 

NO oxidation is kinetically limited at low temperature and thermodynamically limited at high 

temperature, with conversions typically lower than those of CO and HC species [131]. 
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Reducing the cost of the DOC is a common target for catalyst manufacturers. A major 

contributor to the DOC cost is of course the precious metal component, usually Pt or Pt/Pd blends; 

therefore, efficient use of the catalyst can reduce the cost while maintaining the same performance. 

Preliminary research, based on mathematical modeling, has shown that an axial distribution of the 

active metal, with higher loading in the upstream section of the monolith and lower loading in the 

downstream, is superior to that of a uniform distribution, while utilizing the same amount of active 

metal [22, 95-97, 101-103, 105, 132]. Collins et al. optimized three-way catalyst performance by 

targeted precious metal zoning [56]. As mentioned above, they found that most CO and HC 

conversion occurs in the front portion, and consequently the optimum catalysts have the majority of 

the precious metal content there. Optimal axial distribution of the active catalyst has been investigated 

to minimize cold start emissions [95, 102, 133]. Tronci et al. numerically investigated the effect of 

catalyst distribution on cold start emissions in a monolithic catalyst converter. Based on their model, 

they predicted that a high concentration of the active metal in the upstream section of the monolith 

was optimal to minimize cold start emissions because it ensured that the highest temperature is 

maintained at the inlet of the monolith and heat transfer by convection dominates [22]. Kim et al. [95] 

used a one-dimensional catalyst model to predict the optimal design of axial noble metal distribution 

on the performance of a Pt/Rh-based catalytic converter. Based on their model, lower light-off and 

CO emissions were achieved with a design that contained more catalyst in the upstream section and 

lower catalyst in the downstream section, compared to that with a uniform distribution. In another 

study, Khanaev et al. [133] also predicted that in order to lower the CO oxidation light-off 

temperature while maintaining the same performance as an uniformly distributed catalyst, the active 

component should be concentrated in the inlet section of the monolith. Ramanathan and colleagues 

[102] simulated the cumulative cold start emissions of a monolithic catalyst converter with a non-

uniform catalyst loading. Based on their mathematical model, they found that cold start emissions 
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were reduced by redistributing the catalyst with more catalyst near the inlet. Similarly, Koltsakis et al 

[97] found that catalyst zoning with more catalyst in the front is favorable for CO and HC conversion 

in a DPF.  

In this work, the performance of uniformly distributed catalyst was compared to that of a 

zone-coated catalyst. Both samples contained the same amounts of Pt, but the zoned sample had more 

located at the inlet and less at the outlet. This represents a first experimental study of these non-

uniform distributions.    

4.3 Experimental Procedures 

An Al2O3 washcoated cordierite honeycomb monolith brick, with a 1.59 g/in
3
 (97.03 kg/m

3
) 

Al2O3 loading, and a 325 cell/in
2
 (cpsi) cell density, was provided by Johnson Matthey. Samples were 

cut to  ” in diameter with a length of  ”. 5 g of tetraammine platinum (II) nitrate (Pt(  3)4(NO3)2, 

Alfa Aesar), was first dissolved in 250 ml of water. To make the uniform catalyst with 1% Pt loading, 

the sample was dipped twice in the Pt-solution, and each time 0.5% Pt was loaded. Between 

impregnations, the sample was dried in air overnight, and heated in an oven to 300°C for 1 hr to 

evaporate H2O and fix Pt. The zoned catalyst with 1.5% Pt loading in the front and 0.5% at the back 

was prepared by dipping the whole catalyst once and the front half two more times. Similarly, after 

each dipping the sample was dried in air overnight, and heated to 300°C for 1 hr. Finally, both 

samples were calcined at 500°C for 4 hrs.  

The amounts of Pt in both samples were measured using the inductively-coupled plasma 

(ICP) technique. Samples from the homogeneous catalyst and the front and back part of the zoned 

catalyst were tested using a Prodigy High-Dispersion ICP Spectrometer. The homogeneous/standard 

sample contains 1.01 wt.% Pt, and the front and back part of the zoned sample contains 1.50% and 

0.55% Pt, respectively. 
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The schematic of the monolith test reactor used is shown in Figure (4-1). The sample was 

wrapped with 3M insulation, to prevent gas bypass around the sample, and placed in a horizontal 

quartz tube with three thermocouples; two to measure the inlet and outlet temperatures and one placed 

2 cm from the inlet face inside one the central channels. CO, C3H6, NO, CO2 and He, were supplied 

as compressed gas cylinders by Praxair, and N2 was generated using a nitrogen generator 

manufactured by OnSite Gas Systems. The gases were fed to the reactor with Bronkhorst mass flow 

controllers. Water was introduced using a Bronkhorst CEM system. The feed gases were mixed and 

heated before entering the reactor. All inlet and outlet lines were heated and insulated to prevent 

water condensation. The composition of the outlet gas was analyzed using an MKS MultiGas 2030 

FT-IR. A Hiden HPR20 MS connected to a capillary for gas sampling within the reactor, known as 

spatially-resolved capillary inlet mass spectrometry (Spaci-MS), was also used to spatially resolve 

reaction patterns inside the monolith sample. More detail about the Spaci-MS set-up can be found in 

previous work [134-136]. Before running experiments, the temperature gradient across the catalyst 

was checked by flowing inert gas, N2, and ramping the temperature from 80°C to 500°C at 5°C/min. 

The maximum temperature difference between the front and the back of the catalyst was about 5°C. 

To avoid the effect of exothermic reactions on the temperature, the front thermocouple was used to 

compare data. 

 

           Figure 4-1: Diagram of the monolith reactor. 
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The gas compositions and flow rates during the experiments run are described in Table (4-1). 

Temperature-programmed oxidation (TPO) was used as the test technique. The feed stream consisted 

of CO, C3H6 or NO, or a combination of C3H6 and NO, always in the presence of 10% O2, 5% H2O, 

5% CO2, and N2 as the balance. Performance was tested under low and high flow rate conditions: 10 

and 28 L/min, corresponding to space velocities of 19200 and 53700 hr
-1

, respectively, at STP (273K 

and 1atm). The TPO experiments were performed by ramping the temperature from 80°C to 500°C at 

a rate of 5°C/min.  

For Spaci-MS, a silica capillary, I.D. = 0.3 mm and O.D. = 0.34 mm, was connected to the 

Hiden HPR20 MS and placed inside one of the central channels of the monolith. The capillary was 

heated along its entire length to avoid condensation. 1000 ppm C3H6, 200 ppm NO, 120 ppm He 

(added for calibration), 5% H2O, 10% O2, and N2 as a balance were fed to the reactor, initially set at 

80°C. The temperature was then raised to 220°C. After reaching steady state, the capillary was moved 

from the inlet (0 cm) to the back (7 cm) of the monolith in 1 cm increments in order to measure gas 

composition at 8 different locations along the catalyst length. This was also done at 270°C.  

The sample was pretreated prior to each experiment: the sample was heated to 450°C while 

flowing 10% H2O, 5% CO2, and balance N2; then 10% O2 was added to the mixture for 5 minutes 

followed by 2000 ppm of H2 for 5 minutes; and then the temperature was decreased to 80°C before 

starting the experiment. 
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Table 4-1 : Experiment matrix for TPO. 

Run 
CO 

[ppm] 

C3H6 

[ppm] 

NO 

[ppm] 

Flow rate 

[L/min] 

1 1000     10 

2   1000   10 

3     200 10 

4   1000 200 10 

5 1000     28 

6   1000   28 

7     200 28 

8   1000 200 28 

 

4.4 Results and Discussion 

4.4.1 CO Oxidation 

The results of the TPO experiment with 1000 ppm CO over both the zoned and homogeneous 

samples at different flow rates, 10 L/min and 28 L/min, are shown in Figure (4-2). CO conversion, in 

both samples, started instantaneously around 80°C, the onset of the TPO experiment, and identical 

trends were observed up to 30% conversion during the temperature ramp. However, with a further 

increase in temperature, the zoned catalyst showed better performance at the higher flow rate. The 

light-off temperature, T(50), of the zoned catalyst was 2°C lower than the homogeneous catalyst in the 

case of the lower flow rate, and 4°C lower in the case of the higher flow rate. This difference in 

performance increased as the conversion approached 100%. To validate the results and ensure 

reproducibility, experiments at high flow rate were repeated and the data were reproducible with a 

<2°C maximum difference between data sets. Therefore, at low flow rates the performance of the 

zoned and homogeneous samples could be considered the same as the small difference in T(50) falls 

within the margin of error of the data. However, there was a real difference between zoned and 

homogeneous sample performance at the higher flow rate. The superior performance of the zoned 
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catalyst is due to a higher localized exothermic heat of reaction and lower CO self-poisoning during 

the warm up period. CO oxidation in DOCs follows a back-to-front ignition pattern under these 

conditions, a common trend in heterogeneous catalyst systems with exothermic reactions [21, 137-

139]. During the cold start emission period, CO oxidation is inhibited by CO self-poisoning due to 

strong CO adsorption on Pt at low temperatures. The zoned catalyst, with a higher Pt concentration in 

the front section, oxidizes more CO in the front and therefore accumulates more exothermic heat near 

the inlet of the monolith. This exothermic heat lowers the effect of CO self-poisoning downstream, 

plus as more CO is converted in the upstream this lowers it further [22]. Figure (4-3) shows the 

temperature difference (ΔT) between the inlet temperature and the temperature at 2 cm from the inlet, 

of the homogeneous and zoned catalysts as a function of CO conversion at high flow rate. The 

temperature rise is larger in the front section of the zoned sample, indicating that the exothermic heat 

of CO oxidation is greater thereby reaching a higher temperature faster than the homogeneous 

sample, especially at the lower temperatures. Even though the reaction is back-to-front and the 

homogeneous sample has more Pt in the back, the conversion rates of both samples are equal below 

30% conversion. This is because below 30% conversion the exotherm is still forming and is 

apparently not significant enough to result in an integral difference (i.e. show a difference between 

the two when considering the entire catalyst length) and the rate of heat transfer from the back to the 

front by conduction is slow; thus CO conversion rates of both samples are similar. As conversion 

increased and as the reaction zone moves toward the front, the zoned sample with more Pt in the front 

section generated more heat via the exothermic reaction and reaches 100% conversion faster than the 

homogeneous sample, and the temperature difference between the zoned and homogeneous samples 

increased with increasing CO conversion as shown in Figure (4-3). The different stages of the 

reaction can also be reflected in the slopes of the lines, which correlate to the reaction rates, 

in Figure (4-2).  
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Figure 4-2 : CO conversion as a function of temperature. The feed gas consisted of 1000 ppm 

CO, 10% O2, 5% CO2, 5% H2O, balanced with N2. 

 

Figure 4-3 : Temperature rise at 2 cm from the inlet of the catalyst relative to the inlet 

temperature as a function of CO conversion at a feed flow rate of 28 L/min with the inlet 

conditions as listed in Figure 4-2. 
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4.4.2 C3H6 Oxidation 

TPO of C3H6 experiments were also carried out on both catalysts. The results were somewhat 

similar to CO oxidation as shown in Figure (4-4). However, unlike CO oxidation, at low and high 

flow rates the difference between the homogeneous and zoned samples was observable even at low 

conversion. At the higher flow, the difference between the homogeneous and zoned samples was still 

more significant. For example, the difference in T(50) between the zoned and homogeneous samples 

was 5°C at the lower total flow rate and 8°C at the higher. This is related to the larger exothermic heat 

generated by C3H6 oxidation relative to CO oxidation; therefore, the differences between the zoned 

and homogeneous catalysts were more significant and observable even at lower conversion. Figure 

(4-5) shows the temperature rise in the front 2 cm section as a function of C3H6 conversion for both 

samples at high flow rate. As expected, the temperature rise is higher compared to CO oxidation due 

to the larger exothermic heat generated. As the conversion increases, the reaction zone moves toward 

the front and the temperature rise in the front section reaches its maximum at 100% conversion. Due 

to higher Pt concentration in the front section of the zoned sample, the temperature rise in the front 

part of the zoned sample was higher than that of the homogeneous sample. Again, the higher 

temperature rise indicates a larger exotherm produced in the front part of the zoned catalyst, which 

helps prevent the effect of C3H6 self-poisoning downstream by oxidizing most of the C3H6 in the 

front. The higher exotherm also lowered the light off temperature of the catalyst. 
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Figure 4-4: C3H6 conversion as a function of temperature. The inlet gas consisted of 1000 ppm 

C3H6, 10% O2, 5% CO2, 5% H2O, balanced with N2. 

 

Figure 4-5: Temperature rise at 2 cm from the inlet of the catalyst, relative to the inlet, as a 

function of C3H6 conversion at 28 L/min with the inlet gas described in Figure 4-4. 
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4.4.3 NO Oxidation 

The results of the NO TPO are shown in Figure (4-6). NO oxidation kinetics are slower than 

those of CO and C3H6, and are also thermodynamically limited in the higher end of the temperature 

range of interest. Both the homogeneous and zoned samples showed similar trends in terms of light-

off temperature, T(50), and maximum conversion at low and high total flow rates. In NO oxidation, 

unlike CO and C3H6 oxidations, increasing the total flow rate did not result in any difference between 

the homogeneous and zoned catalysts. These results were expected since in the case of NO oxidation, 

there is negligible exothermic heat and significant NO2 poisoning [43]. Figure (4-7) shows the 

temperature difference between inlet temperature and the temperature at 2 cm from the inlet of the 

two catalysts at the higher total flow rate. As shown, NO oxidation produced an insignificant amount 

of heat in the front section of both catalysts. In addition, analysis of the NO oxidation activity is 

complicated here, as NO oxidation is known to depend on Pt particle size, where NO oxidation rates 

increase with increasing particle size [140-145]. The zoned sample with more Pt particles 

concentrated in the front of the catalyst has larger Pt particles in the front, with a dispersion of 8.5%, 

and the homogeneous sample had a higher dispersion, 11.7% (with the back of the zoned sample 

having a 39% dispersion – all measured with H2 chemisorption). So, although the zoned sample has 

larger particle sizes in the front section, the NO conversion was still similar to that of the 

homogeneous sample, which may be due to the homogeneous sample having larger particles at the 

outlet section, combined with the less significant heat of reaction. Furthermore, NO oxidation is 

product inhibited, with NO2 having a significant poisoning effect. This is due to the high sticking 

coefficient of NO2 on Pt, with the NO2 “over-oxidizing” the Pt, making it less active [21, 42]. 

Because of these many factors, it is not clear which effects were more dominant and may have 

cancelled each other, resulting in the similar conversions observed. 
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Figure 4-6 : NO conversion as a function of temperature. The inlet gas consisted of 200 ppm 

NO, 10% O2, 5% CO2, 5% H2O, balanced with N2. 

 

Figure 4-7: Temperature rise at 2 cm from the front of the catalyst, relative to the inlet, as a 

function of NO conversion at 28 L/min with the inlet gas described in Figure 4-6. 
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4.4.4 Oxidation of C3H6 and NO as a Mixture  

The performances of the homogeneous and zoned samples in the oxidation of a mixture of 

C3H6 and NO were also evaluated. Results of the TPO experiments are shown in Figures (4-8) and (4-

9). For both low and high total flow rates, the performance of the zoned sample was better than the 

performance of the homogeneous. In Figure (4-8), again the difference in C3H6 light off temperature 

T(50) between the homogeneous and zoned samples was greater at higher flow rate than the lower. 

Likewise, Figure (4-9) shows that at the higher flow rate, the NO light off temperature of the zoned 

sample was lower and reached higher conversion than that of the homogeneous sample. For C3H6 

oxidation, the difference in T(50) between the zoned and homogenous samples was similar to that 

observed when just C3H6 oxidation was evaluated (in the absence of NO). For NO oxidation however, 

the difference in T(50) between the zoned and homogeneous samples for the mixture was more 

pronounced, more than twice as large, relative to the results from the experiments where just NO 

oxidation was evaluated (i.e. in the absence of C3H6). The zoned sample, with more Pt at the front, 

was oxidizing most of the C3H6 in the front section of the catalyst when noticeable NO oxidation was 

measured (as will be shown below), leaving the rest available for NO oxidation. In addition, the 

zoned catalyst can utilize the exothermic heat in the front, caused by C3H6 oxidation, to heat the 

catalyst faster and initiate NO oxidation earlier. This conclusion is initially based on literature 

evidence which shows that hydrocarbon and CO oxidation conversion, including C3H6, takes place in 

the front part of the catalyst, whereas NO oxidation requires the entire volume of the monolith [56]. 

Further, Irani et al. [21] studied the effect of hydrocarbons on NO oxidation over a model DOC. 

Using SpaciMS, they found that in a C3H6/NO mixture, C3H6 inhibits NO oxidation by preferentially 

consuming NO2, the product of NO oxidation, relative to O2, as an oxidant in C3H6 oxidation. 

Therefore, NO2 was observed in the outlet after C3H6 was almost completely oxidized. Therefore, for 

the C3H6 and NO mixture, C3H6 is oxidized in the front zone of monolith, then after it is completely 
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oxidized any NO2 formed will not react with C3H6, resulting in observed NO oxidation in the 

remaining part of the catalyst. The zoned catalyst, with more Pt particles in the front, makes the active 

C3H6 oxidation zone shorter leaving a larger volume for NO oxidation. To further investigate this, 

spatially resolved experiments were used to measure C3H6 and NO concentrations as a function of 

catalyst length.      

 

Figure 4-8: C3H6 conversion as a function of temperature. The inlet gas consisted of 1000 ppm 

C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, balanced with N2. 
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Figure 4-9: NO conversion as a function of temperature. The inlet gas consisted of 1000 ppm 

C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, balanced with N2. 
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samples were able to oxidize all of the C3H6, however, the zoned sample was still slightly better than 

the homogeneous catalyst in terms of NO oxidation, with the difference only 16 ppm. Thus for the 

low flow rate and mixture case, both catalysts were capable of reaching 100% C3H6 conversion and 

the difference in the overall NO conversion was relatively small, but the trends in the C3H6 and NO 

oxidation conversions inside the catalysts were significantly different and support the conclusion that 

having more volume available for NO oxidation, by oxidizing the HC species in a smaller zone, 

results in higher NO oxidation conversions.  

At higher flow rates and 220°C, the differences were again more evident. For example, the 

zoned sample reached 70% C3H6 conversion within half of the catalyst length, however, the 

homogeneous sample required the entire length of the catalyst to reach the same conversion. 

Consequently, NO oxidation on the zoned sample reached higher conversions as it had more volume 

with lower C3H6 concentration available. Overall, for the C3H6/NO mixture case, the zoned sample 

with more catalyst in the front generates a larger exotherm in the front that heats up the catalyst faster 

resulting in more of the C3H6 oxidized in a smaller volume leaving more volume for NO oxidation.  

Figures (4-12) and (4-13) show the results of C3H6 and NO oxidation at 270°C. At the lower 

flow rate, the trends in C3H6 and NO oxidation along catalyst length are similar for both samples 

because the active zones of both samples have moved close to the front of the catalyst at this higher 

temperature condition and only a small portion of the catalyst is required to oxidize C3H6. At the 

lower flow rate, both samples oxidized most or all the C3H6 using the first 1 cm. NO conversion also 

started in this region. However, at the higher flow rate, there was a small difference between zoned 

and homogeneous samples in C3H6 oxidation as shown in Figure (4-12). The C3H6 conversion in the 

zoned sample reached 99% within 2 cm, while it was 90% at the same position in the homogeneous 

sample. The difference in performance was also seen in NO oxidation. Overall, these results suggest 
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that under conditions where the catalyst is “stressed”, for example at high flow rate and lower 

temperature, the differences in performance become more significant. 

 

 

Figure 4-10: C3H6 concentration as a function of position at 220 °C measured using SpaciMS. 

The inlet gas consisted of 1000 ppm C3H6, 200 ppm NO, 100 ppm He, 10% O2, 5% H2O, 

balanced with N2. 
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Figure 4-11: NO2 concentration as a function of position at 220 °C measured using SpaciMS. 

The inlet gas conditions are described in Figure 4-10. 

 

 

 

 

 

 



 

 59 

 

Figure 4-12: C3H6 concentration as a function of position at 270C measured using SpaciMS. 

The inlet gas consisted of 1000 ppm C3H6, 200 ppm NO, 100 ppm He, 10% O2, 5% H2O, 

balanced with N2. 

 

 

Figure 4-13: NO2 concentration as a function of position at 270 °C measured using SpaciMS. 

The inlet conditions are described in Figure 4-12. 
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4.5 Conclusions 

The effect of a catalyst axial distribution on the performance of a diesel oxidation catalyst 

was studied. Two Pt catalysts were prepared, containing the same amount of Pt; one with a 

homogeneous distribution, and one with more Pt concentrated in the upstream section. Results show 

that the zoned catalyst performed better for CO and C3H6 oxidation, but the two samples were similar 

for NO oxidation. The difference in performance between the zoned and homogeneous samples was 

less significant with a lower total flow rate and more significant when a mixture of reactions was 

tested and at a higher total flow rate. For CO and C3H6 oxidation, the better performance of the zoned 

sample was due to a higher catalyst upstream temperature resulting from a larger exothermic heat of 

reaction, generated nearer the front of the catalyst and a coincident decreased self-poisoning effect. 

Spatially resolved gas measurements showed that in a C3H6/NO mixture, the zoned catalyst oxidizes 

C3H6 in a smaller volume at the front part of the monolith sample leaving a larger volume available 

for NO oxidation; therefore, the zoned catalyst had better performance than the homogeneous catalyst 

in mixtures especially for NO oxidation at low temperature.  
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Chapter 5: Investigation of Thermal Degradation on the 

Performance of Zone-Coated Pt-Based Catalysts 

 

5.1 Abstract 

Temperature-programmed oxidation (TPO) experiments were used to evaluate the 

performance of uniformly (standard) and non-uniformly (zoned) distributed Pt/Al2O3 catalysts after 

homogeneous and heterogeneous thermal degradation. Both catalysts were homogeneously aged in an 

oven by exposing the entire catalyst to 750 °C in air for 4 hours at atmospheric pressure. In 

heterogeneous aging, only the back of the catalysts were exposed 680 °C, while the temperature at the 

inlet section did not exceed 550 °C. This was accomplished by pulsing in C3H6 and O2, with an inert 

gas between each pulse, for 50 cycles, and using the heat generated via the exothermic oxidation 

reaction to thermally age zones of the samples. In all cases the performances of both catalysts after 

heterogeneous aging were better than those after homogeneous aging, because only part of the 

catalyst was damaged in heterogeneous aging, and the homogeneous aging temperature was higher. 

The zone-coated catalyst, with more Pt concentrated in the front of the monolith, showed better 

performance than the standard sample after heterogeneous aging. The reason is that most of the Pt in 

the zoned sample, which is located in the front half, was not affected by the more significant aging at 

the back of the monolith. On the other hand, at a higher total flow rate and higher temperature, the 

performance of the homogenously aged zoned catalyst was worse than that of the standard, because 

the effect of the Pt-rich upstream area of the zoned catalyst is lost through formation of  larger 

particles widening the reaction zone into the less Pt-rich downstream region.  
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5.2 Introduction 

It is commonly known that all catalysts deactivate. In diesel engine exhaust aftertreatment, 

catalyst deactivation results in a gradual decrease in performance, resulting in increased emissions 

from the vehicle. Catalysts can deactivate via a variety of mechanisms, including sulfur poisoning, 

mechanical deterioration, and thermal aging [16]. With the new restrictions on sulfur content in diesel 

fuel, new generation ultra-low sulfur fuels are expected to contribute less than 1 ppm to the total 

sulfur content of the exhaust gas [16], although accumulation over time still poses a serious issue. 

Thermal degradation occurs when the catalyst is exposed to high temperatures, via a hot inlet exhaust 

gas or from exothermic oxidation reactions occurring on the catalyst surface. The focus of this study 

is catalyst degradation by thermal aging.  

Even though diesel engine exhaust temperature is relatively low, the DOC can be exposed to 

higher temperatures due to heat generation via exothermic hydrocarbon oxidation, and during the 

regeneration of diesel particulate filters (DPF)  [69], where the filter requires temperatures in excess 

of 550 °C for soot oxidation to commence. For example, during the regeneration of a DPF, the DOC 

bed temperature can reach 850 °C [146]. In addition, during the lean NOX trap (LNT) desulfation 

process, the DOC can be exposed to temperatures around 650 °C, with temperatures in excess of 600 

°C required to remove sulfur from an LNT [16, 69]. When the catalyst is exposed to such a high 

temperature, catalyst atoms, molecules and particles aggregate to form larger particles on the surface 

of the catalyst [71, 72, 147]. This sintering effect results in a decrease in catalytic activity due to a 

loss of active surface area. With sintering, DOC performance drops, typically expressed as an 

increase in reaction light-off temperature, and ultimately resulting in reduced conversion of key 

species. In addition, DOC thermal deactivation can influence the performance of aftertreatment 

components downstream of the DOC, such as the selective catalytic reduction (SCR) and LNT 

catalysts. For example, a decrease in NO to NO2 conversion over a DOC can reduce the SCR 
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efficiency since the fast SCR reaction requires an NO:NO2 ratio of 1:1  [28] and reduce LNT 

efficiency as LNT catalysts trap NO2 more readily than NO [16].  

Homogenous aging, by placing the monolith in a furnace so that the entire monolith is 

exposed to a constant temperature, is a common laboratory thermal degradation technique. However, 

several studies have shown that, in real applications, thermal degradation is non-uniform [39, 128, 

139]. Lambert et al. [39] found that the outlet of the DOC deteriorated the most significantly, after 

aging a Tier 2 light-duty diesel truck aftertreatment system to an equivalent of 120,000 miles. This is 

because the outlet of the DOC is exposed to the highest temperatures over time, being relatively 

adiabatic and catalyzing a variety of exothermic reactions. On the other hand, Winkler et al [72], who 

also tested the catalytic activity of an engine aged DOC, found that the degradation was non-uniform 

with the front section more affected than the rest of the catalyst. However, in the analysis performed, 

the authors showed that the particle sizes at the back of the catalyst were larger than in the front, 

indicating more thermal degradation had indeed occurred at the outlet section of the DOC. The reason 

for the poorer performance of the catalyst front was directly related to chemical poisoning by S, Zn, 

P, Mg and Ca. Using IR-thermography and spatially resolved capillary-inlet mass spectrometry 

(SpaciMS), Shakir el al. [139], observed that C3H6 oxidation follows back-to-front light-off, and the 

ignition front of the thermally aged sample moved more slowly toward the inlet relative to the non-

thermally degraded sample. Using the same technique and methodology, Shakir et al. results were 

confirmed by Russell et al. [128], who observed an increase in time for the temperature and 

concentration waves to travel though the catalyst during back-to-front ignition. Furthermore, the 

reaction zones were spread farther into the catalyst relative to those observed before aging.  

This chapter focuses on the influence of homogeneous and heterogeneous thermal 

degradation on the performance of a uniformly distributed catalyst (standard) and a non-uniformly 

distributed catalyst (zoned). Using the same amount of Pt for both samples, the Pt was 
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homogeneously distributed on the standard sample, whereas the zoned sample had more Pt in the 

front section and less Pt in the back. To compare the performances of the two samples under different 

thermal aging situations, two aging protocols were used, homogeneous and heterogeneous thermal 

aging, both representing different conditions in real application. In homogeneous aging, the sample is 

heated in a furnace to a chosen temperature so that no temperature gradients exist in the catalyst. This 

method represents the case where the catalyst is exposed to constant and high temperatures, such as 

when exhaust gas temperature is the only source of heat. In heterogeneous aging, the sample is 

thermally degraded by the heat of exothermic reactions. The heat released from the exothermic 

reaction causes an increase in the temperature of the zone where the reaction takes place, which will 

cause a gradient in temperature in the catalyst. These temperature gradients will lead to different 

degrees of thermal degradation along the axial length. This method represents the case when 

exothermic HC or CO oxidation occurs on the catalyst causing an increase in temperature where the 

reaction occurs, thus in distinct catalyst zones. In real applications degradation is a combination of 

both exhaust gas temperature and exothermic reactions.  

In our previous study, fresh zoned and standard catalysts were compared [37]. The zoned 

catalyst with more Pt located in the upstream portion and less downstream showed better performance 

for CO and C3H6 oxidation at higher flow rates due to larger heat generated at the front via the 

exothermic reaction and a decreased self-poisoning effect downstream. In a NO/C3H6 mixture, the 

zoned catalyst showed higher NO conversion than the standard catalyst because most of the C3H6 was 

oxidized in a small volume in the front of the catalyst leaving the rest of the catalyst available for NO 

oxidation; whereas the standard catalyst utilized a larger area to oxidize C3H6 thus leaving a smaller 

volume for NO oxidation.    
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5.3 Experimental Procedures 

The uniformly (standard) and non-uniformly (zoned) distributed catalysts used in this study 

were prepared using the same method described in previous work [38]. The Pt/Al2O3 monolith 

samples, with a 1.59 g/in
3
 (97.03 kg/m

3
) Al2O3 loading, 325 cell/in

2
 (cpsi) cell density,  ” in diameter 

and a length of  ”, were thermally aged using two different aging protocols, representing 

heterogeneous and homogenous aging of a DOC. The same protocols were used for both the standard 

and zoned samples. In the first aging protocol, in order to heterogeneously age the back of the sample, 

the front of the monolith was exposed to 50 pulses of 7000 ppm C3H6, 10% O2, 5% H2O,  balanced 

with N2 for 10 s at 500 °C with a gas hourly space velocity (GHSV) of 25 000 hr
-1

. To avoid over 

heating the catalyst, an inert phase consisting of 5% H2O and balanced with N2 was pulsed into the 

reactor for 150 s after each C3H6-containing pulse. As a result, the exothermic C3H6 oxidation 

increased the temperature of the front section of the monolith to 680 °C after 50 cycles, while the 

temperature of the back of the catalyst did not exceed 550 °C. The reactor used is non-adiabatic, thus 

we had to thermally damage the front, switch the position of the sample in the reactor (flipped) to 

simulate a sample that is more heavily aged on the downstream section, as was noted by Lambert 

[39]. In the second aging protocol, homogeneous aging, the samples were placed in an oven at 

atmospheric pressure and 750 °C for 4 hours to age the whole sample.  

For reaction performance testing, the sample was wrapped with 3M insulation and placed in a 

horizontal quartz tube with two thermocouples, one in the front and one in the back of the monolith, 

each about 1 mm inside the sample. The performances of the heterogeneously and homogenously 

aged samples were tested using temperature-programmed oxidation (TPO) experiments. The inlet gas 

consisted of CO, C3H6, or NO, or a mixture of C3H6 and NO, in the presence of 10% O2, 5% H2O, 5% 

CO2 and N2 as the balance gas. At 80 °C, the inlet gas was fed into the reactor then the temperature 

was ramped at 5 °C/min to 500 °C. TPO experiments were run with two flow rates: 10 L/min and 28 
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L/min. To ensure the consistency of the experimental conditions, the catalyst was pretreated before 

each experiment by flowing 10% O2, 5% CO2, and 5% H2O with a N2 balance at 500 °C for 20 

minutes, then the temperature was cooled down to 80 °C with N2 only.  

The dispersion of the active sites over the surface area of the catalyst before and after 

homogeneous aging was measured using the H2 chemisorption method. For the fresh sample, two 

were prepared simultaneously and we assume that they had the same initial dispersions. No 

measurements were taken between heterogeneous and homogeneous aging protocols as the same 

sample was used and the measurements required sample destruction. For the measurement, different 

portions of the monolithic sample were crushed to fine powder. Then the powder was loaded into a 

Hiden Catalab micro-reactor and was exposed to 26 pulses of 100 μl of 5 % H2 with a He balance for 

30 seconds with 1 minute of pure He between each pulse. Before each measurement, the catalyst was 

pretreated in 100 ml/min He at 25 °C for 25 minutes, then 5% H2 was added and the temperature was 

ramped at 10 °C/min to 450 °C. The catalyst was exposed to 450 °C for 30 minutes, then the H2 was 

turned off and the temperature was cooled down to 25 °C before starting the H2 pulses. H2 

chemisorption was measured based on irreversible H2 adsorption on a Pt site with a H2:Pt ratio 

assumed to be 1:2. H2 chemisorption results showed that before aging, the dispersion of the zoned 

sample was 8.5% at the front and 39% at the back, while the standard was 11.7%. After the 

homogeneous thermal aging protocol, the Pt dispersion of the standard sample was 2.4%, whereas the 

dispersion of zoned sample was 1.1% at the front and 3.8% at the back.   

5.4 Results and Discussion 

5.4.1 CO Oxidation 

The results of temperature programmed CO oxidation experiments from the fresh, 

heterogeneously aged, and homogeneously aged samples with 1000 ppm CO are shown in Figures (5-
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1) and (5-2). In general, the zoned sample showed better performance than the standard sample, 

except after homogeneous aging with the higher total flow rate and at high temperature conditions. 

Table (5-1) shows the light-off temperature corresponding to 50% conversion, T50, for both samples 

before and after thermal aging.           

Table 5-1 : T50 of CO oxidation for the standard (STD) and zoned (Z) samples before and after 

thermal aging. 

Sample FR [L/min] Fresh HT* Aged HM* Aged 

Standard 10 95 °C 109 °C 142 °C 

Zoned 10 93 °C 104 °C 137 °C 

Standard 28 105 °C 123 °C 156 °C 

Zoned 28 101 °C 111 °C 146 °C 

               *HT=heterogeneously, HM=homogeneously. 

 

 

Figure 5-1: CO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm CO, 10% O2, 5% CO2, 5% H2O, balanced with N2 at 

10 L/min. 
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Figure 5-2:  CO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm CO, 10% O2, 5% CO2, 5% H2O, balanced with N2 at 

28 L/min. 

At the lower total flow rate, as shown in Figure (5-1), CO conversions after homogeneous 

aging were more negatively affected than those after heterogeneous aging, or just aging the back of 

monolith. For example, in the case of standard sample the difference in T50 between the 

heterogeneously aged sample and fresh sample, ΔT50, was 14 °C, whereas the ΔT50 between the 

homogeneously aged and fresh was 47 °C. These differences in T50 after heterogeneous and 

homogeneous aging were lower in the case of zoned sample. The reason for the better performance of 

the heterogeneously aged sample compared to the homogeneously aged sample is that: (1) during the 

homogeneous aging the sample was exposed to higher temperature than during heterogeneous aging 

and (2) during heterogeneous aging only the back of the catalyst was affected by exposure to high 

temperature, whereas as in homogeneous aging the whole catalyst was exposed to high temperatures. 
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Therefore, in all cases, the light-off temperature of the heterogeneously aged sample was about 33 °C 

lower than that of the homogeneously aged sample. It has been reported in the literature that a DOC is  

likely to suffer more extensive thermal degradation (sintering) at the outlet compared to the front 

[39]; therefore, these results suggest that a zoned sample, with more catalyst concentrated in the front 

part, can enhance catalytic performance and durability if heterogeneous thermal aging is the primary 

degradation mode, at least to the temperatures studied.  

In addition, there is a region at low temperature when the CO conversions of both the 

standard and zoned samples are identical. For example, CO conversion trends overlap at temperatures 

below 86 °C for the fresh samples, 95 °C after heterogeneous aging, and 127 °C after homogeneous 

aging.  During this period, the catalyst temperature is low, below the light-off temperature of CO, and 

the catalyst surface is dominated by CO adsorption, or CO self-poisoning, thus inhibiting the CO 

oxidation reaction. As the catalyst temperature increases, more CO is oxidized, and consequently 

more exothermic heat is generated, thereby the effect of CO self-poisoning decreases and the reaction 

proceeds faster, which is sometimes called light off. This change in reaction rate is shown by the 

black circles in Figures (5-1). This shift in the reaction rate of the zoned sample occurs at lower 

temperature than the standard, thus the cold start period was shorter. Our previous study of the 

performance of a standard and zoned DOC has shown that the zoned catalyst, with a larger amount of 

Pt concentrated at the inlet, lights-off at lower temperature due to the greater amount heat released via 

the exothermic reaction and a lower CO self-poisoning effect during the cold start period.  Hence in 

the case of zone coated catalyst, the cold start period was shorter and CO lit off at lower temperature 

[38]. The performance of the zoned catalyst after heterogeneous aging was more similar to the fresh 

than that after homogeneous aging in terms of a short cold start period.  The reason for the shorter 

cold start period associated with the zoned sample after heterogeneous aging is that heterogeneous 

aging primarily damaged the back of the monolith, which contains a smaller amount of active sites 
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with most of the active sites in the front of the monolith being less affected. Therefore the zoned 

catalyst oxidizes more CO in the front, producing more heat in the front compared to the standard 

catalyst, thus increasing the temperature of the catalyst faster and coincidentally lowering the effect of 

CO self-poisoning. On the other hand, more catalyst (sintering of the precious metal) in the 

downstream section was damaged on the standard sample with the uniform distribution. As a result, 

the zoned catalyst lights-off at lower temperature and reaches higher conversion faster than the 

standard sample after heterogeneous aging. For this reason, the zoned catalyst, after heterogeneous 

aging, can maintain good performance in terms of low light-off temperature, which is critical for the 

cold start period, when most of the pollutants leave the DOC unreacted [148-150].  

In the case of homogeneous aging, the light-off temperatures of both samples were higher and 

the cold start period was longer than those of the heterogeneously aged catalysts. This is due to 

exposing the entire catalyst to high temperature, thus forming larger Pt particles and lowering catalyst 

activity. For example, after homogeneous aging, the dispersion of the standard sample decreased by 

20% and that of the zoned sample decreased by 13% at the front and 10% at the back. It is observed 

that during the warm up period, below 20% conversion, the difference between the standard and 

zoned catalyst was smaller after homogeneous aging than that after heterogeneous aging as shown by 

the black circle in Figure (5-1). However, as the temperature increases the difference between both 

catalysts becomes similar to that after heterogeneous aging, with the zoned catalyst having a lower 

T50 by 5 °C. Studies have shown that at low conversion the reaction occurs at the back and it moves 

toward the front as temperature increases [38, 128, 151]. Even though the back of the standard 

catalyst contains more catalyst compared to the back of the zoned catalyst, the dispersion was higher 

at the back of the zoned catalyst, 3.8%, than that of the standard, 2.4%. Therefore, at low conversion 

and temperature, when the reaction occurs in the back, the standard and zoned samples showed 

similar performance. However, as the temperature increased and the reaction zone propagated toward 
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the front, the zoned sample showed slower CO conversion than the standard sample especially at 

higher flow rate. For example, in Figure (5-2), it is observed that the CO conversion with the 

homogeneously aged zoned sample slowed down, when the CO conversion reached 70%. This is 

because at higher temperature and conversion, the reaction zone is located within the front section of 

the monolith, where the zoned sample had lower dispersion, 1.1%, compared to 2.4% for the standard 

sample. Therefore, the zoned sample exhibits lower activity than the standard, when the reaction zone 

reaches the front of the monolith.              

At higher total flow rate, as shown in Figure (5-2), the differences between the standard and 

zoned samples after heterogeneous and homogeneous aging were greater than those at the lower total 

flow rate in Figure (5-1). For example, after heterogeneous aging the difference in light-off 

temperature between the zoned and standard sample was 6 °C higher than that at the lower total flow 

rate. Previous modeling work has shown that the differences between zoned and standard catalysts 

become more evident when the catalyst is operating under more severe conditions, such as higher 

flow rates, higher levels of reactants, low precious metal content, slow ramp rates, etc. [151], 

consistent with the observations here. The reasons given were related to front-loaded catalysts, such 

as the zoned sample in this study, catalyzing more oxidation at the front, resulting in more heat 

generated, thus less CO self-poisoning and a more rapid warm up, all relative to a standard sample. 

Furthermore, there was a longer period of similar CO conversion in the low temperature region, 5 °C 

higher than that at the lower total flow rate. This is ultimately due to a greater CO self-poisoning 

effect. During the warm up period, prior to light-off, the effect of heat transfer by convection is more 

significant than that by conduction because of the higher total flow rate and smaller exotherm 

produced. This leads to CO conversions for both cases being similar at low temperature [151].  

Similarly, after homogeneous aging, the overlap period was longer and the difference in light-

off temperature between both samples was higher than that at the lower total flow rate. However, as 
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the conversion reached 70% in the zoned sample, the rate of increase in CO conversion slowed, 

whereas the CO conversion of the standard sample continued to increase rapidly with temperature. 

This could be attributed to more significant agglomeration of the Pt particles in the front section of 

the zoned sample, which contains more Pt particles in the front section than the standard sample does. 

As mentioned before, chemisorption results showed that Pt dispersion in the front of the zoned 

sample was 1.1% compared to 2.4% in the front of standard sample. Thus bigger particles were 

formed in the front of the zoned sample after homogeneous aging relative to the standard sample. So, 

as the temperature increased the reaction zone moved toward the front of the monolith [128, 152, 

153], where for the zoned sample more of the active sites are located. High conversions are observed 

when the reaction zone is located at the inlet portion [128]. If more damage was done to the higher 

density Pt on the zoned sample, then the reaction zone cannot shift as far to the front, leaving the back 

to do more of the catalysis, which has less active site density.  This is also consistent with previous 

observations made where thermally degrading the catalyst  widens the reaction zone and slows down 

its movement from back to front [128]. After homogeneous aging, the Pt-rich section of the zoned 

sample will suffer more extensive agglomeration, and as the reaction zone becomes wider it will 

spread to areas with less and less Pt, and the movement from back to front becomes slower and may 

not reach the front. Thus the rate of CO conversion slows as the reaction zone moves closer to the 

front of the monolith. This effect was more evident when the catalyst was operating under the higher 

total flow rate.  

5.4.2 C3H6 Oxidation 

The results of TPO experiments with 1000 ppm C3H6 after homogeneous and heterogeneous 

aging at lower and higher total flow rates are shown in Figures (5-3) and (5-4), respectively. Like CO 

oxidation, the C3H6 oxidation catalytic performance of the standard and zoned samples was more 
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affected by homogeneous aging than by heterogeneous aging as expected. Table (5-2) shows the T50 

for C3H6 oxidation before aging and after heterogeneous and homogeneous aging.  

Table 5-2: T50 of C3H6 oxidation for the standard (STD) and zoned (Z) samples before and after 

thermal aging. 

Sample FR [L/min] Fresh HT* Aged HM* Aged 

Standard 10 150 °C 167 °C 198 °C 

Zoned 10 145 °C 154 °C 178 °C 

Standard 28 156 °C 179 °C 221 °C 

Zoned 28 147 °C 162 °C 191 °C 

                   *HT=heterogeneously, HM=homogeneously 

 

 

Figure 5-3: C3H6 conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 10% O2, 5% CO2, 5% H2O, balanced with N2 

at 10 L/min. 
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Figure 5-4: C3H6 conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 10% O2, 5% CO2, 5% H2O, balanced with N2 

at 28 L/min. 

 

 Like the CO conversion trends, the thermally deactivated zoned sample showed better 

performance than that of the standard sample except at the higher temperature/higher total flow rate 

conditions. For example, at the lower total flow rate, the light-off temperature of the zoned sample 

after heterogeneous aging was 13 °C lower than the light-off temperature of the heterogeneously aged 

standard sample. The same reasoning for the superior performance of the zoned sample over the 

standard sample applies here: heterogeneous aging affected the back of the catalyst, thus the zoned 

sample, which contains less catalyst in the back and more catalyst in the front, was less affected by 

the heterogeneous aging. Similar to CO oxidation, the performance of the zoned sample, after 

homogeneous aging, was better than the performance of the standard sample at the lower total flow 

rate. For example, at lower total flow rate, the light-off temperature T50 of the homogeneously aged 
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zoned sample was 9 °C higher than the fresh, whereas the standard sample was 17 °C higher. At 

higher total flow rate, 28 L/min, the trend for C3H6 conversion was similar to that at the lower flow 

rate, but the ΔT50 was greater between the fresh and aged samples because the catalyst was operating 

under higher flow rates. As mentioned before, at higher flow rate more heat is transferred by 

convection than that at the lower flow rate, thus there is also less impact of conduction. Therefore the 

light-off temperature moves to a corresponding higher inlet temperature, and the difference between 

the fresh and aged samples becomes greater than that at lower flow rates.  Again, as the reaction 

proceeded to higher temperature and conversions above 70%, the rate of C3H6 oxidation conversion 

increase becomes slower because the reaction zone reaches the front of the monolith, which contains 

larger particles than those at the front of the standard sample.                    

5.4.3 NO Oxidation 

The results for NO TPO before and after thermal aging at the lower and higher flow rates are 

shown in Figures (5-5) and (5-6), respectively. The performance of the zoned catalyst in NO 

oxidation in all cases was better than the standard, especially at the lower flow rate and after 

heterogeneous aging. Table (5-3) shows the temperatures corresponding to 10% NO conversion, T10, 

of the standard and zoned samples before and after heterogeneous and homogeneous aging.  

Table 5-3: T10 of NO oxidation for the standard (STD) and zoned (Z) samples before and after 

thermal aging. 

Sample FR [L/min] Fresh HT Aged HM Aged 

Standard 10 112 °C 119 °C 126 °C 

Zoned 10 107 °C 112 °C 113 °C 

Standard 28 125 °C 135 °C 150 °C 

Zoned 28 124 °C 125 °C 140 °C 

                         *HT=heterogeneously, HM=homogeneously 
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Figure 5-5: NO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 200 ppm NO, 10% O2, 5% CO2, 5% H2O, balanced with N2 at 

10 L/min. 

 

Figure 5-6: NO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 200 ppm NO, 10% O2, 5% CO2, 5% H2O, balanced with N2 at 

28 L/min 



 

 77 

Like CO and C3H6 oxidation, NO oxidation after homogeneous aging was affected more than 

that after heterogeneous aging. At the lower total flow rate, Figure (5-5), the temperature to reach 

10% conversion, T10, of the zoned sample was slightly affected by the heterogeneous and 

homogeneous aging procedures, with the differences between the fresh and heterogeneously aged 

samples being 5 °C and fresh and homogeneously aged samples being 6 °C.  As the temperature 

increased, the NO conversion profile of the heterogeneously aged zoned sample converged to that of 

the fresh zoned sample. This indicates that at the lower NO oxidation conversions, or at lower 

temperatures, the reaction rate was influenced by aging the back of the catalyst, but as the 

temperature increased, the performance of the catalyst became similar to the fresh. The performance 

of the standard sample was worse than the performance of the zoned sample after thermal aging, 

especially after heterogeneous aging as T10, and more evidently T50, were higher than those of the 

zoned sample. For example, at the lower flow rate, the NO conversion of the heterogeneously aged 

standard sample reached 64% at 200 °C, whereas over the heterogeneously aged zoned sample the 

conversion reached 80% at the same temperature. On the other hand, the homogeneous aging more 

significantly affected both samples. For example, at the lower total flow rate, the T10 difference 

between the fresh and homogeneously aged standard sample was 23 °C. This difference increased to 

33 °C for T50. Similarly the difference between fresh and homogeneously aged zoned sample was 6 

°C for T10 and 28 °C for T50. NO oxidation requires the entire length of the monolith under the 

conditions tested [81]. And therefore the changes noted cannot be explained based on the width of a 

reaction zone. However, similar logic can be applied. The influence of heterogeneous aging was less 

significant for the zoned sample because more Pt particles were damaged by homogeneous aging than 

heterogeneous aging, and the zoned catalyst, with a higher Pt concentration in the front was less 

affected by heterogeneously aging the back of the monolith. 
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5.4.4 Oxidation of C3H6 and NO in a Mixture 

The results of TPO of a C3H6 and NO mixture at the lower and higher total flow rates after 

thermal deactivation are shown in Figures (5-7), (5-8), (5-9), and (5-10). Tables (5-4) and (5-5) list 

the 50% C3H6 conversion temperatures, T50, and 10% NO conversion temperatures, T10. 

Table 5-4: T50 of C3H6 oxidation in C3H6 +NO mixture for the standard (STD) and zoned (Z) 

samples before and after thermal aging. 

Sample FR [L/min] Fresh HT Aged HM Aged 

Standard 10 201 °C 218 °C 246 °C 

Zoned 10 197 °C 202 °C 216 °C 

Standard 28 206 °C 241 °C 268 °C 

Zoned 28 201 °C 217 °C 235 °C 

*HT=heterogeneously, HM=homogeneously 

 

Table 5-5: T10 of NO oxidation in C3H6 +NO mixture for the standard (STD) and zoned (Z) 

samples before and after thermal aging. 

Sample FR [L/min] Fresh HT Aged HM Aged 

Standard 10 207 °C  221 °C 253 °C 

Zoned 10 202 °C 203 °C 213 °C 

Standard 28 214 °C 250 °C 296 °C 

Zoned 28 203 °C 223 °C 260 °C 

*HT=heterogeneously, HM=homogeneously 
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Figure 5-7: C3H6 conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, 

balanced with N2 at 10 L/min. 

 

Figure 5-8: NO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, 

balanced with N2 at 10 L/min. 
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Figure 5-9: C3H6 conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, 

balanced with N2 at 28 L/min. 

 

Figure 5-10: NO conversion as a function of temperature after homogeneous and heterogeneous 

aging. The feed gas consisted of 1000 ppm C3H6, 200 ppm NO, 10% O2, 5% CO2, 5% H2O, 

balanced with N2 at 28 L/min. 
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 Like the experiments with only C3H6 or NO, in the combined C3H6 and NO mixture the 

zoned sample showed better performance than the standard sample at the two flow rates, and the 

effect of heterogeneous aging was less significant than that of homogeneous aging. As explained in 

detail above, heterogeneous aging impacted the back section of the catalyst more than the front; 

therefore the zoned sample with the lower Pt concentration at the back was less affected. Comparing 

the zoned and standard samples at the lower total flow rate, the difference in C3H6 oxidation light-off 

temperature was higher between the fresh and heterogeneous and homogeneous aging with the 

standard sample, as shown in Figure (5-7). At higher total flow rate, the differences in the C3H6 and 

NO oxidation light-off temperatures between the fresh samples and after heterogeneous and 

homogeneous aging were larger than those at lower flow rate, because the catalysts are working under 

harsher conditions, i.e. higher flow rate. Aging the front of the monolith, where C3H6 is oxidized, 

would increase the width of the C3H6 reaction zone, hence decreasing the available area for NO 

oxidation [38, 128]. This drop in NO oxidation in a mixture with C3H6 is due to the large Pt particles 

formed throughout the monolith that reduce the active site surface area and activity of the catalyst.  

5.4.5 Conclusions 

TPO experiments were used to compare the performance of standard and zone-coated 

Pt/Al2O3 catalysts after heterogeneous and homogeneous aging. In most cases the zone-coated 

catalyst showed better performance than the standard sample; however, after homogeneous aging, at 

the higher flow rate and at higher temperatures, the zone-coated catalyst was poorer due to more loss 

of the effect of the Pt rich zone at the inlet, which is key to high conversions, and resulting slow 

movement of the reaction front toward the catalyst inlet under harsher conditions. The performance of 

the zoned sample after heterogeneous aging was similar to that of the fresh catalyst, because most of 

Pt particles, concentrated in the front section, were not affected by damaging the back of the sample, 

which contains less Pt. In the case of the C3H6 and NO mixture, the difference between the standard 
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and zoned catalysts was greater at higher flow rate because of a more significant effect of convective 

heat transfer, where the light off temperature is higher and thus when it does occur, the hotter 

particles at the front of the zoned catalyst result in higher conversions more quickly. Like the single 

reactant reactions, after heterogeneous aging, the performance of the zoned catalyst was better than 

the standard because the damage was less significant in the upstream volume where most of C3H6 was 

oxidized, thus leaving a larger volume available for NO oxidation.     
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Chapter 6: The Effect of CO/H2, C3H6, and NO on the Oxidation of 

Each Other over a Pt-based Diesel Oxidation Catalyst 

6.1 Abstract 

Diesel oxidation catalyst (DOC) reactions were investigated, with H2/CO, C3H6 or NO added 

separately and added as mixtures, to further understand the effect of different reactants on the 

performance of a DOC under various inlet gas component conditions. Experimental sets of different 

compositions and concentrations of these reactants were designed to evaluate the performance of the 

DOC (Pt/Al2O3) catalyst. Results show an inhibition effect of CO, C3H6, and NO on CO and C3H6 

oxidation. The light-off temperatures of CO and C3H6 were higher in a mixture than that when 

individually tested. When not in a mixture, CO and C3H6 inhibited their own oxidation by adsorbing 

to the active sites, known as “self-poisoning”, especially at low temperature. In a mixture, CO and 

C3H6 oxidation reactions were also inhibited by each other due to competition for active sites. The 

inhibition effect of CO, C3H6, and NO increased with increasing concentrations of each in the feed 

gas. On the other hand, hydrogen enhanced CO oxidation, where literature suggests this is due to H2 

lowering the activation energy of CO desorption. 

6.2 Introduction 

In this chapter, some of the data obtained during the course of an Auto21 project are 

presented. The project was conducted in conjunction with the University of Alberta (U of A) and 

Umicore, to further understand DOC reactions, in order to develop a more comprehensive and 

accurate model. A matrix of experiments was constructed to test the performance of two commercial 

catalysts, Pt/Al2O3 and Pt-Pd/Al2O3, with different compositions of inlet gases. The reactants of 

interest were CO, C3H6, NO, and H2. Different combinations of these reactants were fed to the reactor 

with 10% O2, 10% H2O, 10% CO2, 1% or 300 ppm He and N2 as a balance always added. Inverse 



 

 84 

hysteresis behavior was observed with the CO and C3H6 mixture during ignition/extinction 

experiments, thus more investigations were done for this specific system and are discussed in the next 

chapter. In this chapter, part of the Pt/Al2O3 data is shown. Extra results can be found in Appendix B.   

6.3 Experimental Procedures 

A Pt/Al2O3 monolith sample, supplied by Umicore AG with a total Pt loading of 95 g/ft
3 
 

(3.35 kg/m
3
) based on total volume, was used to test the performance of the catalyst with different 

inlet gas compositions.  The sample was cut to  .9” diameter with a length of 2.4” and had a cell 

density of 400 cpsi. A matrix of different combinations and concentrations of the reactants was 

constructed to test the performance of the catalysts. The reactants of interest were CO, H2, C3H6, and 

NO. In all of these experiments, the feed stream was introduced to the reactor at temperatures below 

8 ˚C, to try to avoid any reaction before ramping. Then the temperature was ramped at a rate of 

approximately  ˚C/min. When complete oxidation was achieved, the reactor was cooled down by 

decreasing the furnace temperature. In all experiments the feed stream consisted of 10% O2, 10% 

H2O, 10% CO2, 300 ppm or 1% He, the CO, C3H6 and/or NO reactant gas(es), and N2 as the balance 

gas. The gas flow rate was 9.34 L/min, equivalent to a space velocity of 25,000 hr
-1 

at STP (298K and 

1 atm). The outlet gas was measured using a MultiGas 2030 FT-IR analyzer (MKS) and a HPR20 

mass spectrometer (MS). Before running any experiment, a test with N2 only (no reactant) was 

performed to check the temperature difference between the front and the back of the catalyst as well 

as the radial direction. The test showed that the maximum difference was less than 5˚C between the 

front and the back and 4˚C in the radial direction.  
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6.4 Results and Discussion 

6.4.1 CO Oxidation 

The results of CO TPO experiments at different CO and H2 concentrations are shown in 

Figure (6-1). The catalyst was tested with different CO concentrations in the inlet gas: 500 ppm, 1000 

ppm, and 2000 ppm, while maintaining a 3:1 ratio of CO: H2 in all experiments. An increase in CO 

concentration in the feed increased the CO light-off temperature, T(50). The CO oxidation light-off 

temperatures are listed in Table (6-1). This increase in light-off temperature, with increasing CO 

concentration, was due to CO self-inhibition. The self-poisoning phenomenon primarily occurs at low 

temperature, for example in Figure (6-1) at temperatures below 101°C, in the case of 1000 ppm CO, 

and 111°C, in the case of 2000 ppm CO. As the temperature increases above these temperatures, the 

CO reaction rate increases rapidly indicating a shift from a CO-dominated surface, to O2 dominated, 

at high temperature [106, 107, 109]. The effect of different species on CO oxidation was investigated 

by adding H2, C3H6, and NO to the feed gas. Figure (6-2) and Table (6-2) show the results. In all 

cases 2000 ppm CO was introduced to the reactor with different concentrations of other species. C3H6 

and NO inhibited CO oxidation, while H2 promoted the reaction. For example, the light-off 

temperature of CO in the presence of H2 was 16°C lower that in the absence of H2. This positive 

effect of H2 on CO oxidation is due to H2 lowering the effect of CO self-poisoning by reducing the 

activation energy of CO desorption [46]. On the other hand, C3H6 inhibited CO oxidation, with the 

CO oxidation light-off temperature increased by 30 °C when 750 ppm C3H6 was added to the CO + 

H2 mixture. This inhibition was greater when 600 ppm NO was introduced to the previous mixture as 

the CO oxidation light-off temperature further increased by 21 °C. The negative effects of C3H6 and 

NO on CO oxidation are due to competition between these species and CO for active sites [35].  
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Table 6-1: CO oxidationT50 values with different CO concentrations in the feed. 

CO/H2 [ppm] T 50 [°C] 

500/167 92 

1000/333 106 

2000/666 115 

 

Table 6-2 : CO oxidation T50 values with different feed gas compositions. 

Experiment 

CO 

[ppm] 

H2 

[ppm] 

C3H6 

[ppm] 

NO 

[ppm] 

T(50) 

[°C] 

1 2000 

   

131 

2 2000 666 

  

115 

3 2000 666 750 

 

145 

4 2000 666 750 600 166 

 

 

 

Figure 6-1: CO conversion as a function of temperature with different CO and H2 

concentrations in the feed. 
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Figure 6-2: CO conversion as a function of temperature with different inlet gas composition. 

 

6.4.2 C3H6 Oxidation 

The results of C3H6 TPO at different C3H6 concentrations are shown in Figure (6-3). Like CO 

oxidation, the light-off temperature of C3H6 increased with increasing C3H6 concentration in the feed. 

Table (6-3) lists light-off temperatures for different C3H6 concentrations in the feed. The kinetics of 

C3H6 oxidation are similar to CO, as both follow the Langmuir-Hinshelwood mechanism [35, 36, 67, 

154], in which the reaction occurs after CO or C3H6 and O2 molecules are adsorbed on the surface at 

two different sites [47, 48, 56]. The increase in C3H6 light-off temperature with increasing C3H6 

concentration is due to C3H6 self-poisoning. As the temperature increased, the desorption rate of C3H6 

increased and the surface became dominated by O2 instead, just as in the case of CO. To study the 

effect of CO on C3H6 oxidation, CO was added to the inlet gas with the following concentrations: 500 

ppm, 1000 ppm, 2000 ppm, while the C3H6 concentration was maintained at 250 ppm. Figure (6-4) 
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shows the resulting CO and C3H6 conversions. The C3H6 oxidation light-off temperature increased 

with increasing CO in the mixture. This inhibition effect of CO on C3H6 oxidation was again due to 

competition between CO and C3H6 for active sites. CO molecules have a higher affinity in adsorbing 

to Pt and block active sites making the sites unavailable for C3H6 oxidation. Once CO oxidation 

begins, sites become free, leading to C3H6 oxidation onset. The influence of NO on C3H6 oxidation 

was also investigated, with results shown in Figure (6-5). The concentration of NO was doubled in 

each run, while maintaining the C3H6 concentration at 500 ppm. Table (6-4) shows the C3H6 oxidation 

light-off temperatures with NO in the mixture. The light-off temperature of C3H6 increased with 

increasing NO concentration in the mixture. NO2 was not observed until the C3H6 was completely 

oxidized, because C3H6 reacts with produced NO2 [21]. HC oxidation has been shown to 

preferentially consume the NO2 relative to O2, thus NO2 was not observed until all C3H6 was 

completely reacted. Figure (6-6) compares the effect of CO and NO on C3H6 oxidation and Table (6-

5) lists the light-off temperatures with different inlet gas compositions. The C3H6 oxidation light-off 

temperature increased with the addition of both CO and NO to the mixture. This inhibition increases 

with increasing CO and NO concentrations in the mixture [35].          

Table 6-3: C3H6 T50 oxidation values with different C3H6 concentrations in the feed. 

C3H6 [ppm] T 50 [°C] 

250 102 

500 121 

750 136 

 

 

 

 

Table 6-4: C3H6 and NO oxidation T50 values with different feed gas compositions. 
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C3H6 [ppm] NO [ppm] C3H6 T50 [°C] NO T50 [°C] 

500 150 165 174 

500 300 177 186 

500 600 184 194 

 

Table 6-5 : C3H6 light-off temperatures T50 at different feed gas compositions. 

Experiment 

CO 

[ppm] 

H2 

[ppm] 

C3H6 

[ppm] 

NO 

[ppm] 

T50 

[°C] 

1 

  

500 

 

121 

2 1000 333 500 

 

145 

3 1000 333 500 150 150 

  

 

 

Figure 6-3: C3H6 conversion as a function of temperature with different C3H6 concentrations in 

the feed. 
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Figure 6-4: C3H6 and CO conversions as a function of temperature with 250 ppm C3H6 and 

different CO and H2 concentrations in the feed. 

  

Figure 6-5: C3H6 and NO conversions as a function of temperature with 500 ppm C3H6 and 

different NO concentrations in the feed. 
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Figure 6-6: C3H6 conversion as a function of temperature with and without CO, H2 and NO 

added. 

6.5 Conclusions 

The oxidation performance of a Pt/Al2O3 catalyst when different inlet gas compositions were 

fed was investigated using temperature-programmed oxidation experiments to better understand the 

effect of different species on the overall conversion. TPO results showed that CO, C3H6, and NO 

inhibited CO and C3H6 conversions by increasing the oxidation reaction light-off temperatures. The 

CO and C3H6 oxidation light-off temperatures, when tested separately, increased with increasing CO 

and C3H6 concentrations due to a self-poisoning effect. When present in a mixture, C3H6 and NO 

inhibited CO oxidation by competing with CO for active sites. For the same reason, C3H6 oxidation 

was inhibited by CO and NO.  

These experiments actually included both ignition (shown) and extinction, where the 

temperature is ramped downward while the reaction is still being evaluated. The conversions as a 
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function of temperature differ between these two phases, with the activity during CO and C3H6 

oxidation being higher during extinction than ignition, as will be explained in the following chapter. 

However, when these two were added together, the opposite was observed under certain conditions, 

i.e. activity during ignition was higher than extinction. This phenomenon was investigated further.   
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Chapter 7: Inverse Hysteresis Phenomenon during CO and C3H6 

Oxidation over a Pt/Al2O3 Catalyst* 

 

7.1 Abstract 

It is well known that conversion as a function of temperature hysteresis can occur in 

exothermic reaction experiments, such as CO oxidation over Pt/Al2O3, with the activity during the 

ignition process not matching that during the extinction process. Conversions being higher during 

extinction than that during ignition are often observed. Several explanations have been proposed in 

which heat effects, different catalyst surface states, and different Pt oxidation states are the most 

common. In this work CO oxidation hysteresis behavior, when in a mixture with C3H6, was 

investigated. The results show that when C3H6 was absent, CO oxidation followed normal hysteresis 

behavior; however, when C3H6 was added to the mixture, the catalytic activity during the extinction 

phase decreased. As the C3H6 concentration in the mixture increased, the hysteresis loop became 

smaller and ultimately reverse hysteresis was observed. The decrease in catalytic activity during 

extinction was due to the formation of C3H6 oxidation intermediate species. These species competed 

with CO for active sites, thus inhibiting CO oxidation, and were not present during ignition as CO 

was the dominant adsorbed species when starting at low temperature.  

7.2 Introduction 

Carbon monoxide (CO) and hydrocarbons (HCs) are pollutants emitted from vehicle engines. 

For diesel engines, diesel oxidation catalysts (DOCs) are used in aftertreatment systems to convert 

CO and HC species to CO2 and H2O.  

 

*See Appendix C for permission. 



 

 94 

 

Even though DOCs provide very effective control of CO and HC emissions at higher 

temperatures, during the cold start period significant amounts of CO and HCs pass unconverted 

through the catalyst [22, 127]. During the cold start period the catalyst temperature is too low for the 

reactions to take place. The oxidation of CO on Pt has been investigated in numerous studies, 

including in the classic work of Langmuir [35, 48, 106-109, 129]. CO oxidation is known to occur 

through a Langumir-Hinshelwood dual-site mechanism, in which the reaction occurs between CO and 

O2 after both molecules adsorb on the surface [47, 48, 56]. Langmuir and others observed that at high 

temperature and excess oxygen, active sites are entirely covered with oxygen and the reaction is 

limited by the rate at which CO adsorbs to the surface [106, 107, 109]. However, at low temperature 

the surface is covered with CO and the reaction is inhibited by strong adsorption of CO on the 

surface, a phenomenon known as CO self-poisoning [35, 106, 108, 109]. The effect of CO self-

poisoning increases with increasing CO concentration [48] and decreases with increasing 

temperature, with negligible inhibition above 400 °C [35, 107]. Voltz et al. [35] found that at low 

temperature, CO and C3H6 are both self-inhibiting. Furthermore, in a CO + C3H6 mixture, CO inhibits 

C3H6 oxidation and vice versa due to competitive adsorption over catalytically active sites [35].  

CO oxidation ignition and extinction studies show hysteresis behavior, with higher 

conversion during extinction [47, 56, 110-123]. Carlsson and Skoglundh [111] explained normal 

hysteresis as a combination of three possible reasons: (1) inherent kinetic bistability, (2) interaction 

between reaction kinetics and diffusion phenomena, and (3) locally high temperatures on the catalyst 

surface. Hysteresis, or multiplicity, in CO oxidation on Pt was discussed by Beusch et al. [110] who 

argued that the multiplicity exists when the intrinsic rates of the reaction and chemisorption steps are 

of equal size. An alternative explanation of hysteresis [115, 117, 118, 123]  is the interaction between 

surface reaction and diffusion. Hegedus et al. [115] concluded that CO oxidation hysteresis behavior 
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is due to the interaction of the negative-order kinetics for CO oxidation with the diffusive resistances 

of the catalysts. For example, the region of hysteresis was broadened by increasing the diffusion 

resistance of the tested Pt/Al2O3 catalyst by partially aging the catalyst [115]. Oh et al. [116], who 

investigated the role of intrapellet diffusion resistance in hysteresis during CO oxidation over Pt-

Al2O3, also showed that the width of conversion-temperature hysteresis loop is a function of particle 

size and it could be eliminated if the catalyst particle size is very small. However, Carlsson et al. [56] 

concluded that CO oxidation hysteresis is associated with different rates at which Pt is oxidized and 

reduced as function of gas-phase composition, which could also be related to the different oxidation 

and reduction rates associated with different particle sizes. Another explanation was put forward by 

Gudkov and et al. [113], who explained hysteresis as local “overheating” of the active sites on the 

catalyst, caused by relatively slow dissipation of the energy through dispersed catalyst particles. This 

was supported in other studies by Subbotin et al. [119-121]. According to their results, in an 

exothermic reaction, such as CO oxidation, the rate of heat liberated is larger than the rate of heat 

dissipated in the environment due to the support’s (or inactive catalytic mass) low thermal 

conductivity in which heat is released. Therefore, during the extinction phase, when the temperature 

of the inlet gas decreases, the temperature drop over the catalyst surface lags, staying warmer. In 

addition, it has been observed that the width of hysteresis loop increases with increasing CO 

concentration [119-121]. In terms of Pt state, Salomons et al. [47] modeled CO oxidation during 

ignition and extinction using a LH mechanism, with a dissociative chemisorption step for oxygen 

requiring two surface sites, whereby ignition and extinction processes corresponded to the two states 

of predominantly CO covered or O2 covered.  

Unlike CO oxidation, Hauptmann et al. [114] have shown that NO oxidation on a Pt catalyst 

under excess oxygen conditions exhibits “inverse hysteresis” as the catalytic activity during ignition 

exceeds the activity during extinction. The reason for this inverse hysteresis behavior during NO 
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oxidation is that Pt is oxidized by NO2, and the oxide is less catalytically active than metallic Pt. As 

the temperature drops during extinction, the Pt is more highly oxidized than it was during ignition, 

leading to poorer performance. In addition, in a CO/NO/O2 mixture, CO hysteresis behavior switches 

from normal hysteresis to inverse hysteresis, which the authors attributed to reversible oxidation of Pt 

[114].  

In this study, the hysteresis behavior of CO oxidation in a CO + C3H6 mixture over a Pt/Al2O3 

monolith catalyst was investigated. Specifically, it was observed that C3H6 had a negative effect on 

CO oxidation during extinction. To explain the impact, TPO experiments and in situ DRIIFTS were 

used, during ignition and extinction, to determine if this was due to temperature or surface changes as 

a function of the C3H6 exposure.        

7.3 Experimental Procedures 

The Pt/Al2O3 sample used, with a total Pt loading of 95g/ft
3 

(3.35kg/m
3
) based on total 

monolith volume, was provided in monolithic form by Umicore AG. The sample was  ” in diameter 

with a length of 2.5”. The sample was inserted into a horizontal quartz tube, which was placed inside 

a Lindberg Minimite temperature controlled furnace. The temperature was measured with 2 K-type 

thermocouples located at radial centers of the catalyst; the front one placed 1mm upstream of the 

catalyst and the back one just inside outlet face of the catalyst. CO, C3H6, CO2 and O2, were supplied 

from compressed gas cylinders by Praxair, and N2 was generated using a nitrogen generator 

manufactured by OnSite Gas Systems. The flow rates of the various gases were controlled by 

Bronkhorst mass flow controllers and water was introduced using a Bronkhorst CEM system. The 

effluent gas from the reactor was analyzed using a MKS MultiGas 2030 FTIR analyzer. A matrix of 

experiments with different CO and C3H6 concentrations was run, shown in Table (7-1), and in all 

experiments the feed also contained 10% O2, 10% H2O, 10% CO2, and a balance of N2, at a space 

velocity of 25,000 hr
-1

 at standard conditions. In all CO + C3H6 mixture experiments, the temperature 
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was ramped from 90°C to 160°C at a rate of 3°C/min. Then the ramping was stopped and the reactor 

was cooled by decreasing the temperature of the furnace back to 90°C. Before each experiment the 

catalyst was treated with 10% O2 in N2 for 20 minutes at 200°C, then the catalyst was cooled down 

under N2 to 90°C for the next experiment. 

Table 7-1: CO and C3H6 concentrations during TPO experiments 

Run CO [ppm] C3H6 [ppm] 

1 500 0 

2 1000 0 

3 1000 300 

4 1000 500 

5 1000 800 

 

7.4 Results and Discussion 

7.4.1 CO Oxidation 

Figure (7-1) shows the results from temperature programmed CO oxidation of 500 ppm and 

1000 ppm CO during the temperature ramp up (solid lines) and the temperature ramp down (dashed 

lines). The inlet gas temperatures corresponding to 50% CO conversion, T(50), during ignition and 

extinction are listed in Table (7-2). These data show normal hysteresis behavior. Also, the 

temperature difference (ΔT) at 5 % conversion between the ignition and extinction increased with 

increasing CO concentration. Thus, the width of the hysteresis loop was larger with higher CO 

concentration. Such a trend has been previously observed in several studies [16-20, 22, 23] for the 

reasons explained in the Introduction section. A potential explanation, based on the possibilities listed 

in the Introduction section, for the increase in activity during extinction is the catalyst surface or 

active sites being at a higher temperature than the measured temperature due to the heat generated by 



 

 98 

the exothermic reaction and thermal inertia of the catalyst (the catalyst temperature change lags 

behind the inlet temperature change during the ramp down) [114]. Data in Figure (7-1) and 

temperature differences listed in Table (7-2) support this theory. It can also be related to Pt surface 

coverage and Pt chemical state [56, 111, 115], or a combination of these effects. As mentioned above, 

during ignition catalytic activity increases, but initially the Pt surface is predominantly covered with 

CO and the reaction is CO self-poisoned [56, 111, 155]. At higher temperature, once the reaction 

reaches complete conversion, all adsorbed CO is converted and the Pt surface becomes predominantly 

covered with O2. Therefore, during extinction, as the temperature decreases below the temperature of 

complete conversion, the catalyst can remain active until adsorbed CO builds up, which is slowed due 

to the locally high temperatures of the active sites. The data in Figure (7-1) indicate that CO coverage 

inhibited the reaction at low temperature, CO self-inhibition, and this affected the reaction during 

ignition of course, but only affects the extinction phase once the inlet gas temperature was much 

lower. 

Table 7-2: Ignition and extinction T(50) CO oxidation values in a gas mixture including 10% O2, 

10% H2O, 10% CO2, balanced by N2 at a GHSV 25,000 h
-1

. 

CO [ppm] Ignition T  [°C] Extinction T [°C] Δ T   C  

500 95 87 8 

1000 120 108 12 
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Figure 7-1: Temperature-programmed CO oxidation with the following inlet conditions: 1000 

ppm or 500 ppm CO, 10% H2O, 10% CO2, and 10% O2 over a Pt/Al2O3 monolith. 

 

7.4.2 CO + C3H6 Oxidation 

The results of TPO, during heating and cooling, with a CO and C3H6 mixture are shown in 

Figures (7-2) and (7-3). The inlet gas mixture consisted of different C3H6 concentrations (300 ppm, 

500 ppm, 800 ppm), 1000 ppm CO, 10% H2O, 10% O2, 10% CO2, and balanced by N2. Figure (7-2) 

shows CO conversion as a function of inlet gas temperature at different C3H6/CO ratios. When C3H6 

was not present in the inlet mixture, CO conversion exhibited normal hysteresis behavior as the 

ignition temperature at lower conversions was higher than those for extinction. However, when C3H6 

was added to the mixture, the temperatures required to achieve certain conversions during the 

extinction phase increased and the hysteresis loop became smaller. Table (7-3) shows temperature 

differences between ignition and extinction corresponding to 20%, 50%, and 80% conversion. As the 

C3H6/CO ratio increased, the extinction conversions continued to shift to higher temperature. At a 0.8 
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C3H6/CO ratio, the extinction temperatures, for conversions less than 100%, became higher than the 

ignition temperatures, reverse hysteresis, as shown in Table (7-3) (with a negative difference between 

the ignition and extinction temperatures representing reverse hysteresis). C3H6 conversion as a 

function of inlet temperature is shown in Figure (7-3). Like CO conversion, increasing the C3H6 

concentration increased the temperatures to reach a certain conversion during the extinction phase and 

the hysteresis loop became smaller. Table (7-4) lists the temperature differences between the front 

and the back of the monolith at maximum conversion for the CO + C3H6 mixtures. The difference 

between front and back temperature, ΔT, increased with increasing C3H6 in the mixture, however, the 

hysteresis loop became smaller as the temperature required to sustain maximum conversion increased 

during extinction. This is therefore not explained by the heat generated by the exothermic reactions or 

overheating theory that was proposed in many studies. Based on the overheating theory, the higher 

the concentration of reactant in the feed, the higher the exothermic heat released, and the larger the 

hysteresis loop should have become. However, these results with the CO/C3H6 mixture showed that 

the hysteresis loop became smaller when C3H6 concentration, and consequently exothermic reaction 

heat generated, increased.  

Table 7-3: (TIgnition - Textinction) at T(20),  T(50),  and T(80),  of different inlet C3H6 concentrations,  

1000 ppm CO, 10% O2, 10% H2O, 10% CO2, balanced N2 at a GHSV 25,000 h
-1

. 

CO [ppm] 

C3H6 

[ppm] ΔT20 [°C] ΔT50 [°C] ΔT80 [°C] 

1000 0 13 11 10 

1000 300 2 5 5 

1000 500 0 2 3 

1000 800 -3 -3 -4 
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Table 7-4: Difference between back and front temperatures, ΔT, at maximum conversion with 

different combinations of CO and C3H6 with 10% O2, 10% H2O, 10% CO2, and balanced N2 at 

a GHSV 25,000 h
-1

. 

CO [ppm] C3H6 [ppm] Δ T   C  

1000 0 23 

1000 300 30 

1000 500 38 

1000 800 56 

 

                            

                           

Figure 7-2: Temperature-programmed oxidation of CO/C3H6 mixture at the following inlet 

conditions: 1000ppm CO, 10% H2O, 10% CO2, 10% O2, with different amounts of C3H6 over 

the Pt/Al2O3 monolith. 
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Figure 7-3: Temperature-programmed oxidation of CO/C3H6 mixture at the following inlet 

conditions: 1000ppm CO, 10% H2O, 10% CO2, 10% O2, and different amount of C3H6 over a 

Pt/Al2O3 monolith. 

7.5 DRIFT Spectroscopy 

In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to 

investigate species formation on the catalyst surface in the presence of the CO/C3H6 mixture during 

ignition and extinction tests. DRIFTS spectra were recorded at 100, 120, 140, and 160°C, first 

increasing from 100 to 160°C, as in ignition, then decreasing back to 100°C, as in extinction. In order 

to understand the difference between what occurred during ignition versus extinction, in terms of 

catalyst surface coverage, DRIFTS spectra obtained with exposure of the Pt/Al2O3 powder to 1000 

ppm CO and 0 or 600 ppm C3H6 are shown in Figure (7-4). In the absence of C3H6, the species 

formed on the surface, CO2 at 2300-2400 cm
-1

, blue circle, CO at 2000-2200 cm
-1

, red circle, and 

carboxylate groups at 1500-1700 cm
-1

 [156-159], green circle, during ignition are similar to the those 

present during extinction, with the spectra overlapping, Figure (7-4-(A)), except for the peak at 1596 
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cm
-1

 which corresponds to the presence of bidentate carbonate species on the surface during 

extinction. This peak indicates that bidentate carbonate species are CO oxidation intermediates or 

byproducts that built up on the surface as the temperature decreased during the extinction phase.  

On the other hand, in the case of exposure to the CO + C3H6 mixture, Figure (7-4-(B)), more 

species are present during extinction than during ignition. The peaks between 2300-2400 cm
-1

 are 

assigned to CO2 bound to Pt and CO2 gas, and were present in both ignition and extinction and they 

follow the same trend in terms of intensity. Similarly, in both phases, the peak at 2067 cm
-1

, assigned 

to Pt bound CO, was seen at low temperature, but it disappeared at temperatures above 140°C. Unlike 

Figure (7-4-(A)), at temperatures below 120°C, the peak at 2067 cm
-1

 (Pt-CO) was present and the 

peaks at 2300-2400 cm
-1

 (CO2) were absent in Figure (7-4-(B)). The absence of the CO2 peak, and the 

CO peak being present at higher temperatures, albeit this may be associated with C3H6 oxidation as 

discussed below, is consistent with C3H6 inhibition of CO oxidation [35]. Furthermore, CO is an 

intermediate product of C3H6 oxidation during the extinction process, as discussed below; therefore, 

in the presence of C3H6 the peak at 2067 cm
-1

 appeared at higher temperatures and with greater 

intensity than in the absence of C3H6. The peaks increased in intensity as the C3H6 concentration 

increased. As verification, in tests with only C3H6 (i.e. with no CO in the mixture, data not shown), 

peaks in this range also appeared during extinction, demonstrating that these were associated with 

C3H6 oxidation intermediates. For this reason, the CO peak in Figure (7-4-(B)) is related to C3H6 

oxidation rather than CO in the feed. In addition, between 1700 and 1300 cm
-1

 more peaks were 

observed with C3H6 in the mixture relative to in its absence, as shown in green circles in Figure (7-4). 

For example, in the presence of C3H6 the peaks at 1662 to 1560, 1456, and 1388 cm
-1

, associated with 

different carboxylic groups [156, 157, 159-162], were higher in intensity during extinction, relative to 

ignition. During extinction, as the temperature decreased, the oxidation of these intermediate species 

slowed, allowing them to remain longer and therefore build up. The peaks at 1652 and 1456 cm
-1

 are 
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assigned to surface and bulk bicarbonates [156-159], respectively. The peaks at 1585 and 1388 are 

attributed to formate species [156, 160]. This indicates that in the presence of C3H6, more bicarbonate 

and formate species are present during the extinction process. At high temperatures these 

intermediates were easily oxidized, but as the temperature dropped, they built-up on the surface and 

compete with CO for active sites, thus inhibiting CO oxidation during extinction process. 

Overall, these results show that intermediate species form during C3H6 oxidation and that the 

amounts on the surface during ignition and extinction differ. The data suggest that during the 

extinction phase, these intermediates compete with CO for, or block CO from, active sites. For this 

reason, CO oxidation during the extinction phase was inhibited. The inhibition stems from the build-

up of different carboxylic, bicarbonate, and formate species as the temperature dropped. Thus, as the 

C3H6 concentration increased in the mixture, more intermediate species were present on the surface 

and CO oxidation during extinction moved to higher temperature.  
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Figure 7-4: DRIFTS spectra recorded during ignition and extinction phases at different steady 

state temperatures with 1000 ppm CO and (A) 0 ppm C3H6 and (B) 600 ppm C3H6. 
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7.6 Conclusions 

The oxidation of CO and CO + C3H6 over Pt/Al2O3 was studied, during both ignition and 

extinction. The results show that CO oxidation exhibits normal hysteresis in the absence of C3H6. 

However, in a CO + C3H6 mixture, as the C3H6 concentration increased in the mixture, CO and C3H6 

normal hysteresis behavior shifted to inverse hysteresis, with the catalytic activity during extinction 

phase lower than that during ignition. The decrease in catalytic activity during the extinction phase in 

the CO + C3H6 mixture was due to the formation of intermediate C3H6 oxidation species. These 

intermediate species, carboxylic groups, carbonates, and formates, compete with CO for active sites, 

thus inhibiting CO oxidation during extinction.    
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Chapter 8: Conclusions and Recommendations 

8.1 Conclusions 

In this study different aspects of Pt/Al2O3 oxidation catalysis were studied, including the 

effect of axial distribution of the catalyst and species interaction on the overall performance.  The first 

part focuses on the performance and durability of a uniformly distributed catalyst (standard) and a 

non-uniformly distributed catalyst (zoned), with more Pt concentrated at the inlet of the catalyst, with 

different inlet gas compositions and total flow rates. Results showed that the performance of the 

zoned catalyst was superior to that of the standard for CO and C3H6 oxidation reactions, whereas the 

two samples were similar for NO oxidation. At a higher total flow rate and with a mixture of reactants 

(i.e. C3H6 and NO), the difference between the zoned and standard samples was more significant; 

however, at a lower total flow rate and a single reactant case the difference was less significant. For 

CO and C3H6 oxidation, the temperature profile inside the catalyst showed that the zoned sample 

produced more heat in the front via the exotherm generated during the oxidation reaction and there 

was a coincident lower self-poisoning effect. Hence, the performance of the zoned sample was better 

than that of the standard sample. In a C3H6/NO mixture, spatially resolved gas measurements showed 

that the zoned sample utilizes a smaller volume at the front of the monolith to oxidize C3H6 leaving a 

larger volume for NO oxidation. The zoned sample, therefore, had better performance than the 

standard sample in this mixture especially at low temperature. Catalyst durability was tested by 

thermally degrading the whole catalyst (homogeneous aging) and the back part only (heterogeneous 

aging) to simulate different conditions that the catalyst experiences in a real application. Thermal 

aging results showed that the performance of the zoned catalyst was better than that of the standard 

catalyst. The performance of the zoned sample was not greatly affected after heterogeneous aging 

because most of the Pt particles, located in the front part, remained unaffected by exposing the back, 

which contains less Pt particles, to high temperature. At a high total flow rate, the rate of conversion 
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increase with temperature for CO and C3H6 oxidation in the zoned sample slowed down as the 

reaction zone moved toward the front, which contains larger Pt particles, thus Pt sintering was greater 

in the front of the zoned sample compared to that of the standard sample.  

In the second part of this work, the effect of reactant species interactions on a commercial 

Pt/Al2O3 catalyst was investigated using a matrix of experiments with different inlet gas 

compositions. Results show that in a reaction involving only one of the species of interest, CO and 

C3H6 inhibit their own oxidation due to an increasing self-inhibition effect. When there is a mixture of 

the key species, CO, C3H6, and NO inhibit each other oxidation because of competitive adsorption on 

active sites. In contrast, H2 promotes CO oxidation because it reduces the effect of CO self-inhibition. 

Studying the CO + C3H6 reactions during ignition and extinction produced an interesting hysteresis 

phenomenon as C3H6 concentration increased in the mixture. In the absence of C3H6, CO oxidation 

exhibits normal hysteresis as CO conversion during extinction occurred at lower temperature than the 

conversion during ignition. In the presence of high levels of C3H6, however, normal hysteresis 

behavior shifts to inverse hysteresis. As the C3H6 concentration increased in the CO+ C3H6 mixture, 

CO conversion during extinction occurred at higher temperature than CO conversion during ignition. 

DRIFTS results show that this inhibition effect on CO conversion during extinction is due to the 

presence of C3H6 oxidation intermediates including carboxylic groups, carbonates and formates that 

compete with CO for active sites, thereby inhibiting CO oxidation during extinction.       

8.2 Recommendations 

A main goal of this thesis research was to improve the performance of a DOC by utilizing the 

catalyst more efficiently. In addition, studying the interactions between different species help us 

understand the mechanism and chemistry on the DOC surface. Based on the experience gained in this 

work, several recommendations are proposed for the future work to improve the design and 

performance of DOC:  



 

 109 

 The effect of Pt loading on the performance of the standard and zoned catalyst should be 

studied – as more significant differences may be observed.  

 The effect of chemical degradation (i.e. SO2 poisoning) should be tested on the zoned-based 

catalyst and compared with the homogeneously distributed catalyst. If the performance of 

standard catalyst shows better performance than the two-zoned catalyst after SO2 poisoning, 

the two-zoned catalyst can be retailored to overcome the effect of SO2 poisoning by possibly 

including an upstream “buffer” zone.    

 The performance of catalysts should be tested under a larger variety of thermal degradation 

conditions so the effect of different sintering rates on different zones of the monolith can be 

more fully understood. 

 The effect of hydrocarbons on the CO hysteresis behavior could be further investigated by 

turning off the inlet flow of C3H6 at high temperature and running TPR with H2 in order to 

change in extinction process in a clean surface.  

 The inverse hysteresis phenomenon was observed at different combinations of CO + NO and 

C3H6 + NO, thus more investigation on the extinction phase of these reactions can better 

explain the behavior of catalytic converters during accelerating and decelerating.  
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Appendix A 

Statistical Analysis 

 

A.1 ICP Results 

The validation of preparation methods used to make the standard and zone-coated catalyst 

was checked by measuring the total loading of active metal. ICP was used to measure the loading on 

the standard and zoned catalysts. The sample was prepared for ICP analysis by crushing the monolith 

sample into fine powder, then dissolving the powder into different acids in order to make liquid 

solution of the tested metal. These procedures were described earlier in detail in Chapter 3. Due to the 

high cost of Pt-based catalysts, Co-based catalysts were prepared to practice catalyst preparation. ICP 

results of the Co-based catalysts, 2 standard and 2 zoned, are show in Table (A-1). The error 

associated with the standard catalyst loading was very low, less than 3% for both samples. Similarly, 

the error associated with the loading measurement of the back of the zoned catalyst was about the 

same for both samples, less than 7%. The calculated error for the front section loading was higher, but 

still less than 10%. This variation of the front loading, from 3.5% up to 9.2%, is likely due to the need 

for multiple dips of the front part, potentially compounding the error. Overall the errors were judged 

to be low and the methods used acceptable.     

Table A- 1: ICP results of Co-based samples. 

Sample No. Type Loading % ICP results Error % 

1 Standard 5 4.887 2.26 

2 Zoned (F) 4 3.630 9.26 

3 Zoned (B) 1 0.931 6.94 

6 Standard 5 4.895 2.10 

7 Zoned (F) 4 3.860 3.51 

8 Zoned (B) 1 0.934 6.64 
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A.2 TPO Results 

In the experiments several variables were measured including the temperatures at different 

positions in the reactor, and the concentration of various species such as CO, C3H6, NO, NO2, CO2, 

and H2O.  Statistical analysis is important to identify the accuracy and reliability of the measured data 

based on a few experiments. In addition, statistical analysis can also identify the source of 

experimental error and test the effect of different variables on the output without wasting time and 

money to run extra experiments. This section presents the Normal Probability Plot and Hypothesis 

Testing, used to check if the data follow a normal distribution and if the results are repeatable 

(reproducibility). In addition the error with each instrument is provided.         

Uncertainty 

 

All measurements are subjects to uncertainty. Uncertainty of the devices used is reported in 

Table (A-2). These values are obtained from the associated manuals [15].  

Table A- 2 : Uncertainties associated with Instruments. 

Instrument Uncertainty (+/-) 

Mass Flow Controllers 0.5% of the max. value   

Heating System 0.8  °C 

Reactor Thermocouples 1° C 

FTIR (MKS) 0.9% of the reading 

Mass Spectrometry 2-5% of the reading 

 

Reproducibility 

The reproducibility of the data was measured to ensure that the experiments can be repeated 

in the future using the same conditions. Although some of the TPO experiments were only once 

repeated, the repeats have shown good agreement with the original experiments, as shown in Figure 
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(A-1). Thus the standard deviations were calculated based on the errors taken from the MKS and 

thermocouple measurements reported in Table (A-2). CO oxidation TPO at total flow rate of 10 

L/min with the inlet gas composed of 1000 ppm CO, 10% O2, 5% CO2, 5% H2O, and N2 balance was 

repeated for both the standard and zoned samples. The error bars for these CO oxidation experiments 

are shown in Figure (A-2). The repeats of both samples fall within the error bar, although admittedly 

barely, indicating that the experiments are reproducible and the variation between different 

experiments was small.  

                             

Figure A- 1: CO oxidation as a function of temperature of the standard and zoned sample 

experiments with the repeats. 
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Figure A- 2: CO oxidation as a function of temperature with the error bar corresponding to its 

standard deviation. 

 

Normal distribution 

Normal distribution is widely used in science to describe the trend or behavior of data set or 

to simplify a complex phenomenon. For example, experimental error due to observation is usually 

assumed to follow a normal distribution and error propagation is computed using this assumption. 

The normal probability plot is a technique used in statistics to test whether or not a data set is 

normally distributed. It is based on a graph where the data are plotted against a theoretical normal 

distribution values. Normally distributed data will produce a straight line. If there is a deviation from 

a straight line, then the data are not non-normally distributed. To apply normal probability plot test, 

first the data are sorted from smallest to highest starting with the smallest value equals to 1. Second 

the data are ranked using equation (A.3), where ἱ is the rank of the data starting from  , and   is the 

total number of data points.     
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Rank (P)   (ἱ-0.5)/N                                                   (A.3) 

Third the corresponding expected value of each value of (P) is found either in normal 

probability distribution table (Z-values) or using NORMSIN(P) function in excel. Finally, the 

expected theoretical value is plotted as a function of observed data. If the data points are normally 

distributed, it will form a straight line. Normal probability plot tables for standard and zoned samples 

are shown in tables (A-5) and (A-6) respectively. These temperature-programmed experiments (TPO) 

were run at 28 L/min, 1000 ppm CO, 5% H2O, 5% CO2, and 10% O2 balanced with N2. Normal 

probability plots of the standard and zoned samples are shown in Figures (A-3) and (A-4). As seen in 

both figures, the data forms approximately a straight line, which indicates that both catalysts data are 

normally distributed. The value of the coefficient of determination, R2, was close to 1, 0.9719 for 

standard sample and 0.9715 for zoned sample, which indicates that the model accounts for the data 

variation with high percentage.     

Table A- 3 : Normal probability plot table for CO oxidation (standard sample). 

Conversion 

[%] Rank [i] P (rank) 

Expected 

Value 

0.043 1 0.024 -1.981 

5.043 2 0.071 -1.465 

10.064 3 0.119 -1.180 

14.507 4 0.167 -0.967 

20.204 5 0.214 -0.792 

24.949 6 0.262 -0.637 

30.203 7 0.310 -0.497 

34.499 8 0.357 -0.366 

40.463 9 0.405 -0.241 

44.910 10 0.452 -0.120 

50.621 11 0.500 0.000 

54.940 12 0.548 0.120 

60.342 13 0.595 0.241 

64.646 14 0.643 0.366 

69.937 15 0.690 0.497 

74.763 16 0.738 0.637 
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80.507 17 0.786 0.792 

84.799 18 0.833 0.967 

90.424 19 0.881 1.180 

95.024 20 0.929 1.465 

99.917 21 0.976 1.981 

 

Table A- 4 : Normal probability plot table for CO oxidation (zoned sample). 

Conversion 

[%] Rank [i] P (rank) 

Expected 

Value 

0.347 1 0.024 -1.981 

5.280 2 0.071 -1.465 

10.037 3 0.119 -1.180 

14.962 4 0.167 -0.967 

20.234 5 0.214 -0.792 

25.028 6 0.262 -0.637 

30.213 7 0.310 -0.497 

35.059 8 0.357 -0.366 

39.499 9 0.405 -0.241 

45.018 10 0.452 -0.120 

49.888 11 0.500 0.000 

54.446 12 0.548 0.120 

60.474 13 0.595 0.241 

65.441 14 0.643 0.366 

69.965 15 0.690 0.497 

75.536 16 0.738 0.637 

80.101 17 0.786 0.792 

84.294 18 0.833 0.967 

90.354 19 0.881 1.180 

95.016 20 0.929 1.465 

99.920 21 0.976 1.981 
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Figure A- 3: Normal probability plot obtained from data taken using the standard sample. 

 

 

Figure A- 4: Normal probability plot obtained from data taken using the zoned sample. 
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Appendix B 

Auto21 Data 

In this section, the rest of the Auto21 data, some of which was discussed in Chapter 6, are 

presented including: NO oxidation, CO + C3H6 + H2 mixtures, and CO + C3H6 + NO + H2 mixtures. 

These are simply presented for further reference. 

 

Figure A- 5: NO conversion as a function of temperature with different NO concentrations in 

the feed. 
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Figure A- 6 : CO conversion as a function of temperature for a CO + C3H6 + H2 mixture with 

different inlet gas compositions. 

 

Figure A- 7 : C3H6 conversion as a function of temperature for a CO + C3H6 + H2 mixture with 

different inlet gas compositions. 
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Figure A- 8 : CO conversion as a function of temperature for a CO + C3H6 + NO + H2 mixture 

with different inlet gas compositions. 

 

Figure A- 9 : C3H6 conversion as a function of temperature for a CO + C3H6 + NO + H2 mixture 

with different inlet gas compositions. 
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Figure A- 10 : NO conversion as a function of temperature for a CO + C3H6 + NO + H2 mixture 

with different inlet gas compositions. 

 

The reproducibility of these data was also measured to ensure that the experiments are 

meaningful. Three repeats of CO oxidation TPO at total flow rate of 9.34 L/min with the inlet gas 

composed of 500 ppm CO, 10% O2, 10% CO2, 10% H2O, and N2 balance are shown in Figure (A-11). 

Based on these repeats the standard deviation was calculated to be 2.4 °C. The repeats with the error 

are shown in Figure (A-12). 
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Figure A- 11 : The repeats of CO oxidation as a function of temperature (Auto21). 

 

Figure A- 12 : CO oxidation as a function of temperature with the error bar corresponding to 

its standard deviation (Auto21). 
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