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Abstract

In recent years speed and cost have emerged as important competitive priorities in supply
chains. Firms are now investing substantially in lead time reduction; however, the focus of
such investments has been quite different for make-to-stock (MTS) and make-to-order
(MTO) firms. The demand for MTS items tends to be deterministic but price-sensitive,
while demand for MTO items is more variable and sensitive to both price and delivery
lead time. These differences in market characteristics require that MTS firms focus on
supplying predictable demand at the lowest possible cost while MTO firms focus on
reducing the delivery lead time. Our research deals with the costs and benefits of lead time
management in supply chains, taking into account the differences in competitive
environments. In particular, we develop separate lead time management models for profit-

maximising MTS and MTO firms.

For the MTO firm, we assume that customer demand is stochastic and the mean demand
rate is decreasing in both price and a uniform guaranteed delivery lead time offered by the
firm. To further model the premium for lower delivery lead times, we assume that price is
decreasing in the length of the guaranteed delivery lead time. We also capture economies
of scale by assuming the unit operating cost to be a decreasing convex function of the
demand rate. The MTO firm may invest in increasing capacity in order to reduce delivery
lead time, but must be able to satisfy customers according to a pre-specified service level.
Our analytical model for delivery lead time management of such MTO firms trades off the
costs of investment against the resultant benefits. Our model allows a MTO firm to
determine the optimum level of the guaranteed delivery time, processing rate and
investment that maximise its profit. We show that ignoring - i) the dependence of market
price on the lead time offered and economies of scale, when they exist, and ii) the inherent

preference of customers for price or lead time - can lead to potentially large profit losses.

Normally MTS firms invest in developing more efficient processes that reduce operating
costs. While the process-improving investments can be of various types, we focus on
investments in reducing supplier lead time and develop models for supply lead time
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management for MTS firms. We show that such investments in lead time reduction can,
after accounting for all the associated costs and benefits, result in substantial reduction of
inventory costs. We examine different types of investment and amortisation schemes in
supplier lead time reduction and the different cost models they generate. We compute the
cost-minimising inventory and supply lead time levels for each type of model. We also
perform comparative statics with respect to model parameters, and find several

"apparently" counter-intuitive results.

We then assume that a MTS firm sets its price as a percentage mark-up over its total
operating costs per unit. In that case, any investment in reducing operating costs can lower
price and help the firm to gain a greater market share. For the case of investment in set-up
time (cost) reduction, we are able to formulate an integrated production-marketing model
for a profit-maximising MTS firm where price and demand, and hence profit, are
functions of the firm's operating variables. We show that when demand depends on the
operating variables in a profit maximisation model, some of the best known properties
from classical inventory management no longer hold. We are also able to show that if a
MTS firm ignores the explicit dependence by either assuming demand to be constant or
price to be an independent decision variable, sub-optimality occurs and the firm can loose
substantial profits. For the case of investment in supply lead time reduction, we are also
able to formulate the profit-maximising problem in terms of the operating variables of the

firm and to indicate how it can be solved.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Speed is one of the most important competitive elements in many modern business
environments. With this in mind, many supply chains are investing in reducing lead times
throughout their operations. The focus of lead time reduction in supply chains varies
depending on their product characteristics. Make-to-stock supply chains typically strive
for cost reduction. On the other hand, the aim for make-to-order supply chains is normally
to reduce their delivery times. One of the most popular ways of cost reduction in make-to-

stock supply chains is through investment in supply lead time reduction.

In this thesis we attempt to gain insights into the impact of investing in lead time
reduction for supply chains that operate in different competitive environments taking into
account both the costs and benefits associated with such reductions. We develop three
analytical models to investigate the issue. One model deals with delivery lead time
management for make-to-order supply chains; the other two models deal with set-up time

and supply lead time management for make-to-stock supply chains.

The initial motivation for this research came from discussions with an Electronics
Manufacturing Service (EMS) company in Toronto. In general, EMS companies provide
everything from a simple cable harness to a complete high-end server or workstation for
the supply chains of large original equipment manufacturers (OEMs). Recently, OEMs
have recognised EMSs capabilities and are outsourcing an increasing amount of
production to them. The EMS industry is forecast to grow from $78 billion in 1999 to
$260 billion in 2004, a 28% compound annual growth rate (CAGR), compared to CAGR
of about only 8% for the electronics industry as a whole during the same time (Carbone

2000). This particular EMS specialises in supplying electronics components for a number



of international OEMs primarily in the computer and communications industry. The EMS
was involved in a number of supply lead time reduction initiatives for the OEMs and
somewhat surprisingly, the OEMs were ready to pay for many of those initiatives. Our
research began by trying to gain a better understanding of why OEMs were willing to

invest in lead time reduction.

In this case, one of the OEMs that specialised in customised servers indicated that the
reason for their interest in supply lead time reduction was to reduce the delivery time of
customised server products to their customers. The servers were mainly being built for
dot-com companies that were ready to pay a significant price premium for early delivery.
The situation for another OEM that specialised in standard, off-the-shelf computers was
different. The reason for their focus on supply lead time reduction was to reduce inventory
costs and ultimately to cut prices. The market for such standard computers is extremely

competitive and price is a key selling feature.

This discussion led us to realise that while investment in lead time reduction within the
supply chain can lead to cost reduction and/or faster delivery, such investments are
motivated by different factors depending on the marketplace. To set the broader stage for
this research, in the next section we provide an overview of the relevant supply chain

environment issues.
1.2 Background

1.2.1 Costs and Benefits of Lead Time Reduction in Supply Chains

The 1980s brought a widespread recognition of the importance of effective analysis and
improvement of manufacturing practices in maintaining a firm’s competitiveness (Hayes,
Wheelwright and Clark 1988). It was also during the 1980s that many firms started
outsourcing a large part of their business (refer to October 2000 issue of Fortune for more
on the importance of outsourcing in modern business). The move towards large-scale

outsourcing led to the break-up of vertically integrated companies which began to give
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way to a network of loosely integrated companies that use each others’ capabilities to
form beneficial, win-win partnerships called supply chains. Companies started recognising
that they had to rely on effective management of their supply chains for competitive

advantage (Tayur et al. 1999).

In the early 80s, most manufacturers believed that low cost and high quality were the most
fundamental sources of competitive advantage. Interestingly enough, quality is now no
more a discriminating market factor as in the past; rather it has become a "order qualifying
characteristic” (Monczka and Trent 1995). Success in many businesses now depends
largely on time-based competition. This concept was made popular by the classic works of
Stalk and Hout (1990) and Blackburn (1991) who showed how firms could gain advantage
by being faster than competitors in different aspects of their operations. In recent times a
huge volume of academic as well as popular literature has been published on this issue

(e.g., So and Song 1998; Suri 1998).

Two other related developments have increased the importance of time-based strategies.
The first is the growth of service organisations. The service sector now accounts for 55%
of the United States Gross Domestic Product (Center for Retailing Education and
Research 2001) and 68% of the Canadian Gross Domestic Product (Industry Canada
2001). In service industries, customers regard total service time as a key concern - the
shorter the sojourn time in the facility, the better (Stevenson 1999). The second
development is the growth in the use of the internet as a robust channel for commerce.
Research projections for firms that do business both on and offline indicate that by the end
of 2000, 25% of their revenue will come from the Web. This number is forecast to rise to
34% in 2001 and 50% by 2002 (Levy 2000). Internet shoppers tend to be driven by one of
two rewards - either the best price on a readily-available item or finding something special
faster than possible by any other means (E-commerce News 2000; Smith, Bailey and
Brynjolfsson 2000). A recent survey of overall performance at 110 organisations in five
major manufacturing sectors by Performance -Management Group, a subsidiary of high-

tech management consultants PRTM, indicates that the best in the class performers focus



their attention on achieving breakthroughs in costs and speed (Geary and Zonnenberg
2000).

As speed became a driver of business success, lead time reduction emerged as a dominant
issue in manufacturing strategy (van Beek and van Putten 1987; Suri 1998; Hopp and
Spearman 2000). Lead times in a supply chain can have a number of elements including
product development time, supply lead time, set-up time, manufacturing/service time,
waiting time and delivery time. For our research we assume that the product or service has
already been developed and the firm is in regular operation. We concentrate only on those
lead time elements that are related to producing and delivering the product or service to

the customer.

There are many advantages of reducing lead times. Some of them include lowering WIP
(Work-in-Process), better scheduling, better quality, reduction of bullwhip effect, better
service and lower cost (Karmarkar 1993; Simchi-Levi et al. 2000). It is not only that the
mean lead time is important - high variability in lead times makes planning very difficult.
It has been known for some time that reducing the variability of supply/manufacturing
lead time usually causes lower levels of raw materials/finished goods safety stock and
hence lower costs. Lower variability also may cause lower "safety times" and fewer
difficulties in co-ordination and scheduling. For some more advantages of reducing lead

times refer to Suri (1998), Hopp and Spearman (2000) and to Chapter 2 of this thesis.

Another effect of lead time reduction is becoming apparent - its effect on final customer
demand and price. Though the concept is intuitively appealing, the economics literature
does not normally deal with the relationship between demand and lead time; the focus has
been mainly on the effects of price on demand. However, empirical studies by Sterling
and Lambert (1989), Blackburn et al. (1992), Maltz and Maltz (1998), Smith et al. (2000),
etc. suggest that the length of the waiting/delivery time can have a significant effect on
customer demand. In industrial markets, a 5% decrease in delivery time can result in
almost 24% drop in purchases by the existing customer base (Ballou 1998). Recent

operations management literature has begun to recognise this relation by modelling
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demand as a function of both price and delivery time (So and Song 1998; Palaka et al.
1998; So 2000 and the references therein). Firms also realise that lower delivery times can
bring in a price premium. For example, Federal Express can charge almost 50% more for
guaranteed next day 8am delivery than for guaranteed next day Spm delivery. More
anecdotal evidences of price premium for shorter delivery times can be seen in Magretta
(1998), Blackburn et al. (1992) and Ballou (1998).

Most times, lead time reduction can only be realised by investment (Zipkin 1991).
Reductions in lead time might be in the form of investment in better communication,
newer machines, improved process design, set-up time reduction, better modes of
transportation or possibly standardisation of processes. Several applications of lead time
reduction techniques and their effects on market share, internal efficiency and customer
satisfaction can be found in Garg and Lee (1999), Suri (1998), a study by Helsinki
University of Technology (http://130.233.88.250/hyperlogi) and Hopp and Spearman
(2000).

It is typical for investments to yield diminishing returns to the scale of investment. This
naturally raises the question of how much to invest in lead time reduction so as to obtain
the maximum benefit, measured by an appropriate objective function. It is then necessary
to have models that weigh the advantages gained by shorter lead times against the
associated costs. The models we develop in this thesis address both the costs and benefits

related to lead time reduction issues.

1.2.2 Relation between Product Characteristics and Lead Time Reduction in

Supply Chains

The previous sub-section explained the reason behind the recent surge of interest in lead
time reduction for supply chains and the costs and benefits associated with such
reductions. However, the focus of lead time reduction depends to a large extent on the
competitive environment of the supply chain, especially on its product characteristics
(Fisher 1997; Ramdas and Spekman 2000; Chopra and Meindl 2001).




What is meant here by product characteristics? We can group most products into the

following two categories:

a) Products that are standard or "functional” in nature and hence can be produced
before receipt of a customer order are called make-to-stock products. The
production system creates goods in anticipation of demand, customer orders are
typically filled from existing stock and production orders are used to replenish
those stocks. Examples include basic food products like baking soda, standard
electrical components like resistors, lumber, diapers and light bulbs (Zipkin 2000;
Hopp and Spearman 2000; Fisher 1997);

b) Products that are customised in nature are produced in response to customer
demand where each customer waits until his/her order is completed and are called
make-to-order products. Examples include custom furniture, courier services, hair-
cutting and custom machine tools (Zipkin 2000). Indeed, almost all services are

make-to-order in nature.

If we examine the demand characteristics of these two types of products, they are quite
different (refer also to Fisher 1997 and Chopra and Meindl 2001 for more details).
Normally, the waiting time for make-to-stock products is almost nil (either they are there
or not), and customers are primarily price-sensitive. Hence, such firms aim for a cost
leadership strategy to attract customers. In the case of make-to-order products, customers
wait for the product or service and so they really "feel" the delivery time. For such
products, customers are not only price but also delivery time sensitive. Hence, make-to-
order firms must differentiate themselves strategically based on price and delivery time
they offer to customers (for more on competitive strategy refer to Porter 1998). The nature
of make-to-stock products also makes their demand much more predictable than for make-
to-order products. Another difference is that the profit margin is typically lower for make-
to-stock products than for make-to-order products (Fisher 1997).

It is important to recognise that the supply chain's design must complement the nature of
the demand for the product and the competitive strategy (Fisher 1997; Ramdas and
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Spekman 2000; Hill and Khosla 1992; Chopra and Meindl 2001). For make-to-stock
products, the supply chain should supply predictable demand efficiently at the lowest
possible cost, and lead time reduction initiatives to be undertaken should be focussed on
cost reduction. On the other hand, make-to-order supply chains should invest in
decreasing the delivery time so that it can respond quickly to unpredictable demand,

without increasing price "too much”.
= Supply Chain Design for Make-to-Stock Firms

If some make-to-stock firm uses mark-up pricing based on their operating costs (Wang
and Zhao 2000; Hay and Morris 1991), it may wish to invest in improving their processes
to reduce their operating costs and gain a larger share of price-sensitive customers. For
make-to-stock firms, inventory costs can be a significant portion of operating costs. For
example, in the case of retail industry, inventory cost can be as high as 80% of the total
operating cost and even for make-to-stock manufacturing firms it is as much as 65% of the
total operating cost (Ballou 1998; CAPS Research 2000). Hence it is natural that many
such firms have targeted inventory cost reduction as a means to achieve their goal of

reducing operating costs (Fisher 1997).

As far as inventory cost reduction is concerned, one of the ways it can be realised is
through lead time reduction. The two elements of lead time that have been the greatest
targets for cost reduction are - i) supply lead time, and ii) set-up time (or cost) (Chopra
and Meindl 2001). The growth of supply chains means that the supply lead time between
the elements of the chain is now a competitive priority (Australian National Audit Office
Report 1997-98; Chopra and Meindl 2001). Many buyers are ready to pay for the
investments undertaken by their suppliers in supply lead time reduction. Even with that
cost, the buyer seems to be better off as far as total inventory cost is concemned
(Purchasing Online 1998). Similarly, investments in set-up time (cost) reduction can also
reduce the total inventory costs for make-to-stock firms (Porteus 1985; Hopp and

Spearman 2000). However, the increased demand resulting from cost reductions, in turn,



will affect the original investment decision. Hence, make-to-stock supply chains must take

this "circularity” into account while deciding on the optimal lead time.
* Supply Chain Design for Make-to-Order Firms

Make-to-order firms try to attract customers by catering to their lead time sensitivity. Such
firms (or supply chains) use three main strategies to utilise speed to attract customers -
i) serving customers as fast as possible, 1i) encouraging potential customers to obtain a
delivery lead time "quote" prior to ordering, and iii) guaranteeing a "uniform" delivery
lead time for all potential customers (for examples of each type refer to So and Song
1998). However, make-to-order firms focus not only on the length of the delivery time but
also on its reliability. The issue of delivery time reliability is especially important to retain

customers and for repeat business.

For make-to-order firms, one of the ways to achieve shorter delivery times is to invest in
increasing their capacity. Since services cannot be inventoried, optimal capacity design is
especially important in service sector (Stevenson 1999). Make-to-order firms must also
keep in mind two other issues - i) customers may be ready to pay a price premium for
early delivery, and ii) if lower delivery times can attract more customers, it may lead to
economies of scale for the firm (i.e., lower operating costs). Hence, make-to-order firms
must account for all these costs and benefits while determining their optimal delivery

time.
1.2.3 Research Agenda
From the above discussion we can conclude that:

a) Lead time reduction is a key concern for supply chains, has many potential

benefits, but requires investment;
b) The focus of lead time reduction appears to be different for make-tc-stock and

make-to-order firms.



Since the mid-1980s, the strategic benefits of models and tools from Operations Research
to analyse the consequences of integration and the use of new technologies or processes
before their introduction have become well known (Maloni and Benton 1997). Given the
widespread recognition of the need for effective supply chain management, and the
importance of speed as a competitive prerogative, we decided to focus our thesis on

analytical models of lead time management issues in supply chains.
Specifically we wanted to address the following topics:

a) Develop delivery lead time management models for make-to-order supply chains;
b) Develop lead time management models for make-to-stock supply chains focusing

on the lead time elements of supply time and set-up time.

While some lead time management issues for both make-to-order and make-to-stock
supply chains have been investigated before in the literature, we have not seen any model

that takes into account all the elements that we include in ours.

1.3 Modelling Strategy

For our research, we assume a three party supply chain - a profit-maximising firm, its
supplier and its final customers. The firm is dealing in a single end product. To address
the specific research issues, identified in Section 1.2, we have developed three separate

analytical models.
»  Delivery Lead time Management Model for Make-to-Order Firms

For this model, we focus on the firm and its customers assuming that the firm is dealing in
a make-to-order product/service. The firm announces a uniform delivery lead time for all
customers within which they guarantee to satisfy each customer order. The customers are
ready to pay a price premium for shorter delivery times and the firm knows that it can

obtain economies of scale by attracting more customers. The firm has to invest in
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increasing capacity so that it will be able to keep the delivery time low even when it is
attracting a lot of customers (refer to Figure 1.3(a)). This part of the thesis will develop an
analytical model to help a make-to-order firm optimally determine its lead time by trading
off the benefits of reduced delivery time against the costs of investment (Model A).

Economies Investment in Delivery time and Price and delivery
of scale increasing capacity price change time sensitive

‘ l customers
\ ‘
MAKE-TO-ORDER <:j CUSTOMERS

FIRM

Figure 1.3(a): Supply Chain for Model A
e Lead time Management Model for Make-to-Stock Firms

For this model, we assume that the firm is dealing in a make-to-stock product, which it
either produces or buys from a supplier and sells directly to the customers. When the
product is procured from a supplier, supply lead time might be the most important
component of overall lead time and needs to be properly managed. Hence we first focus

on supply lead time management models for make-to-stock firms.

Supply Lead Time Management Model

In this model, we focus on the firm and its supplier. The firm procures material from
the supplier in batches following a (Q, r) policy and stores it in its warehouse. The
replenishment lead time is stochastic. The customer demand is constant, occurs one
unit at a time and is fulfilled directly from the warehouse. The firm wishes to reduce
the supply lead time and it is ready to pay for any investment that will be done by the
supplier for this reduction. The lead time reduction can be attained through different
types of investments. While such reductions will lower the inventory costs for the
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firm, the cost of the investment must also be accounted for (refer to Figure 1.3(b)).
This part of the thesis will model the inventory cost for the make-to-stock firm
incorporating both the costs and the benefits of reduced supply time, and help the firm
determine the cost-minimising supply lead time, investment and inventory policy
values (Model B).

Investment for change in
supply lead time passed on by

the supplier to the buyer Supply lead

l time change

MAKE-TO-STOCK <—_—| CUSTOMERS
suepLsR [ > FIRM

Figure 1.3(b): Supply Chain for Model B

If we assume that the make-to-stock firm uses mark-up pricing over operating costs,
proper investments in lead time reduction might bring down the total inventory costs and
hence the price of the product for such firms. This implies that the demand will go up
since customers are price sensitive. However, the increased demand will have an effect on
the extent of the lead time reduction decision itself (Figure 1.3(c)). Hence, in this setting,
both price and demand are functions of the operating variables. This part of the thesis will
develop an integrated analytical production-marketing model to help the make-to-stock
firm maximise its profit by proper selection of lead time (Model C). Specifically, we will

focus on set-up time and supply lead time elements of overall lead time.
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Investment in
decreasing
operating cost
¢ Mark-up
I I | »  pricing '
SUPPLIER l:> MAKE-TO-STOCK <: CUSTOMERS

FIRM (price-sensitive)
l Price and demand I
change

Figure 1.3(c): Supply Chain for Model C

1.4 Organisation of Remainder of the Thesis

To satisfy our research objectives the remainder of this thesis will be organised as follows:
Chapter 2 will present a review of the literature relevant to the issues outlined in this
chapter. It will also show how components of some previous models can be used in our
research and where our research fits into the related body of knowledge. Chapter 3 will
deal with delivery lead time management for make-to-order firms taking into account the
demand and price characteristics for such products (Model A). Chapter 4 will tackle the
issue of supply lead time management and how investment in supply lead time reduction
can minimise inventory costs for make-to-stock firms (Model B). In Chapter 5 we will
present a model of how make-to-stock firms can determine their set-up times and supply
lead times to maximise their profits (Model C). An overall summary of the results and

recommendations for future research will be presented in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the previous chapter we dealt with the motivation behind this research and its relevance
to modern business environments. While lead time reduction is beneficial for all supply
chains, it requires investments whose goals vary depending on the competitive
environment of the supply chain. Specifically, we discussed make-to-order and make-to-
stock supply chains and how the different demand characteristics of these two require
different supply chain design and lead time reduction foci. In this thesis, our aim is to
develop models that trade-off the costs and benefits of lead time reduction to determine
optimal lead time for make-to-order and make-to-stock firms. Though no previous
research captures all the issues that we address, we draw on work done in related areas.

This chapter will examine related models and explain their significance to our research.
In this chapter we will address the literature related to the following:
a) Growth of supply chains and the buyer-supplier interface;

b) Importance of lead time, in general, in modern enterprises and specifically the

relation between lead time and inventory costs;

c) (O, r) continuous review stochastic inventory models;
d) Process improving investments, especially investments in lead time reduction;
e) Price and lead time sensitive demand;

f) Integrated Production-Marketing models;
g) Mark-up pricing models;
h) Forms of Investment and Demand functions.
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2.2 Growth of Supply Chains

From the late 1980s, the corporate world increasingly used outsourcing for products and
services once made in-house. This led to the growth of supply chains (Bryne 1996). More
and more firms are now focusing on better management of their supply chains. The goal
of effective supply chain management is efficient integration of all parties of the chain in
order to minimise system wide costs while satisfying the service level requirements
(Simchi-Levi et al. 2000). This integration can be difficult because of the decentralised
nature of the chain, short product life cycles and increased customer expectations;
however, properly integrated supply chains have a bottom line advantage. According to
recent estimates there is a difference of about six to eight per cent savings in yearly
revenue between the performance of an average and first-class supply chain. That amounts
to approximately $60 to $80 million in savings for a company with a billion dollars in

annual revenue (Gort 2000).

One of the basic issues in proper integration of supply chains is a close buyer-supplier
relationship. The success of the Japanese manufacturers in utilising this relationship has
been highly publicised. Frazier et al. (1988) pointed out that such relationships sometimes
require specialised or "idiosyncratic" investments by the supplier. This can lead to
relatively "high risk" from both the buyer’s and the supplier’s point of view and in some
cases costs of these investments are likely to outweigh its benefits. Newman (1989) and
Kalwani and Narayandas (1995) have also expressed similar concerns and pointed out that
this might lead to problems in the relationship. In their research on idiosyncratic
investments, Fazel et al. (1998) and Levi (1999) point out that the supplier might pass

some of the relation-specific investment back to the buyer that requires the investment.

In summary, we can conciude that:

* The recent emphasis on effective supply chain management shows that our research is

timely.
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s Articles related to the buyer-supplier interface support our modelling assumption that
if there is a substantial relation-specific investment required by a supplier, the supplier

could pass a part or whole of the investment to the buyer.

2.3 Importance of Lead Time in Modern Business

Seminal studies by Stalk and Hout (1990) and Blackburn (1991) led firms to realise the
importance of speed in modern business. This was further strengthened by the results from
empirical studies by Jackson et al. (1986), Marr (1994) and several others (refer to Ballou,
Chapter 4, 1998). Firms started to focus on reduction of time throughout their operations
like supply time, set-up time, manufacturing time and delivery time. It became clear that
"time-based competition" is a survival strategy for firms. To effectively compete, firms
need to differentiate themselves based on price and length and reliability of the lead time
offered to customers (i2's White Paper on E-Business 2000; Monczka and Morgan 2000;
Chopra and Meindl 2001).

There is a huge volume of research pointing out the advantages of lead time reduction,
some of which were already discussed in Chapter 1. With longer lead times, schedules
must be frozen over a longer horizon. This increases the chance of incorrect demand
forecast. Longer and more variable lead times are also usually associated with higher lead
time demand variability. In general, safety stocks are related to the variability of demand
over lead time, which grow larger as lead time increases leading to "excess" safety stocks.
Hence, lead time reduction can result in reduction of inventory costs. In production for
assembly, variability causes difficulty in co-ordinating parts and requires large
intermediate and finished goods safety stocks (Karmarkar et al. 1985). Other benefits of
lead time reduction include the ability to quickly fill customer orders that cannot be filled

from stock, and reduction in the bullwhip effect (Simchi-Levi et al. 2000).

In more recent times, shorter delivery lead times have been also associated with larger
demand and a price premium, especially for make-to-order products (Ballou 1998; So and
Song 1998; Weng 1999). Recent research (Garg and Lee 1999) has indicated the potential
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of lead time reduction strategies in handling product variety. There have been several
other recent studies focusing extensively on the techniques of lead time reduction and its
effects (Karmarkar 1993; Groenevelt 1993; Song and Zipkin 1996; Suri 1998; Garg and
Lee 1999; Hopp and Spearman 2000).

In most of the above research, the emphasis is mainly on the benefits of lead time
reduction and the methods of achieving it, ignoring the costs associated with such

reductions.
2.3.1 Lead Time and Inventory Costs

Many of the analytical models related to lead time reduction have focussed exclusively on
the effect of such reductions on inventory costs. The reason for this focus is the important
role played by inventory in the modern economy. As we indicated in Chapter 1, inventory
costs comprise the major portion of the total operating cost for a make-to-stock firm. In
more general terms, as of March 1999, businesses in the United States excluding
government and not-for-profit firms held about $1.1 trillion worth of inventories which is
much more than their total monthly sales (Zipkin 2000). Many of the success stories of the
last few decades, like Japanese manufacturing companies, Wal-Mart or Delil can be
attributed to their ability to operate with substantially lower inventories than their
counterparts (Zipkin 2000). One of the ways in which these organisations achieve a lower
level of inventory is by lead time reduction throughout their supply chains (Chopra and
Meindl 2001).

It is during any replenishment lead time that the likelihood of a stock-out is highest.
Hence, the most important element in any inventory related research is the lead time
demand (LTD). LTD is composed of two parts: lead time duration and demand per unit
time. Inventory models are normally categorised based on their LTD characteristics -
deterministic or stochastic, and review frequency - periodic, i.e., inventory level is known
only at certain points in time, or continuous, i.e., inventory level is known at all times.

There are two basic issues in any inventory model - when to order (reorder point) and how
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much to order (batch size). With the increased use of information technology for
inventory tracking, inventory levels are more or less known at all times. Hence, the most
popular inventory control model used in practice is the continuous review, order
quantity/reorder point type (Q, r) policy (Chopra and Meindl 2001). With this policy, an
order for quantity Q is placed as soon as the inventory position (= inventory on hand +

inventory on orders — backorders) drops to a fixed reorder point, » (Zheng 1992).

Economic Order Quantity (EOQ) models and their extensions are used for models with
deterministic LTD. For such models, calculation of a reorder point is straightforward and
the primary decision variable is the batch size (Q). EOQ models determine the optimal
batch size that will minimise the relevant inventory costs per unit time by trading off the
set-up cost and holding cost. For a detailed review of how EOQ models and its extensions

can help firms in reducing their inventory costs refer to Lee and Nahmias (1993).

If either or both the constituents of LTD are random, the LTD will also be stochastic. For
stochastic inventory models, both the reorder point () and the batch size (Q) are decision
variables and the objective is normally the minimisation of expected inventory costs per
unit time. These are called as (Q, r) models. For stochastic LTD, stock-outs are possible.
Unmet demands are either backordered or lost. Stochastic models deal simultaneously
with two trade-offs - i) between set-up and holding costs, and ii) between backordering

and holding costs.

There are certain models that primarily focus on the trade-off between the holding and
backordering costs. These models can be either single-period (newsvendor problem) or
multi-period (base stock policy). Gerchak and He (2000) used a mean preserving
transformation, which changes the demand variability while keeping the mean constant, to
show the effect of randomness of demand for an arbitrary demand distribution on optimal
inventory cost and order quantity in a newsvendor problem. While the optimal inventory
cost always increases with variability, the optimal order quantity does not necessarily
follow the same pattern. Gerchak and Mossman (1992) point out the conditions under

which the optimal order quantity also increases with variability. Song (1994a) used
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stochastic ordering for a model where demands form a compound Poisson process and
lead times are stochastic. The author investigated the effect of both stochastically larger
and more variable supply lead times when base stock policy is optimal. While the optimal
base-stock level is higher for larger lead times, it does not necessarily lead to higher
optimal long-run average cost. More variable lead time always leads to a higher optimal
average cost but the optimal base stock level depends on the cost structure and will be
higher if and only if the penalty cost is high relative to the holding cost rate. In a related
article (Song 1994b), a similar model was investigated with the performance measure
being infinite horizon expected total discounted cost. In this case it is not always true that
larger lead-time dermand will have larger optimal base stock level. For a detailed review of
inventory models, in general, refer to Graves et al. (1993) and Zipkin (2000). For
stochastic inventory models, particularly single-period or multi-period problems refer to
Porteus (1990). Since our primary interest is in continuous review stochastic inventory

models with backordering, we will consider them in greater detail.

2.4 Continuous Review (0O, r) Stochastic Inventory Models with

Backordering

Interest in continuous review, stochastic inventory models with backordering started with
the classic work of Hadley and Whitin (1963) who developed such an inventory cost
model with backordering cost per unit (no time dimension) and the assumptions of one
order outstanding and a positive reorder point. They proved the joint convexity in Q and r
of the cost function under some restrictive conditions and showed how to determine the
cost-minimising batch size and reorder point. For the case of one order outstanding and
backordering cost per unit per unit time they developed a model for Poisson demand, but
could not prove the joint convexity of the cost function. Other studies that analysed and
compared the effects of lead time demand on inventory levels and costs used different
techniques like simulation (Gross and Soriano 1969) and numerical computation (Vinson

1972; Naddor 1978).
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Research on stochastic (Q, r) inventory models has shown that a key issue is the
variability of LTD, especially the standard deviation, whether it originates from demand
or lead time duration. The variability of LTD requires some safety stock, the stock in
excess of mean lead time demand, for the situations when LTD is high. An analytical
study by Das (1975) showed that in a Hadley-Whitin type of (Q, r) inventory model, the
average inventory cost is dependent on the variance of the lead time demand and not on
the mean. Bagchi et al. (1986) use a case study and numerical examples to show the
importance of incorporating the variability of lead time in determining the distribution of
demand during lead time and safety stock levels. They recommend that a compound
distribution of demand during lead time, or a good approximation of it, be used to
calculate safety stocks. In a similar vein, Eppen and Martin (1988) also considered setting
safety stock levels in the presence of stochastic lead times for cases when both lead time
and demand are random variables. Their research concerns cases when the parameters of
the distributions are known as well as the case where they are unknown. For some more

early research in this area refer to Zheng (1992) and Lee and Nahmias (1993).

Up to the mid 1980s most of the research in (Q, r) models was based on approximate
models following the traditional Hadley-Whitin framework of time-independent
backordering costs and a single order outstanding. The assumption of single order
outstanding allowed variability of the LTD to be modelled due to variability of both
demand and lead time duration. For models with multiple orders outstanding, lead times
were assumed to be constant with the variability of LTD coming only from demand.
Without this assumption, models with stochastic lead times and muitiple orders

outstanding created the problem of order crossing.

The (Q, r) model got a major boost from the seminal works of Zipkin in mid 1980s.
Zipkin (1986a) showed that if the supply system is assumed to be exogenous and
sequential then we can develop (Q, r) inventory models with stochastic lead times even
for more than one order outstanding (for more details refer to Zipkin 2000). In the same
paper, Zipkin also showed that the relation between the limiting values of the random
variables — Inventory level (/L), Inventory position (/P) and lead time demand (LTD),

19



IL = IP - LTD, is valid under very general conditions and that /P and LTD are
independent. Zipkin (1986b) showed that popular approximations of (Q, r) models with
backordering cost per unit backorder per unit time, where the backordering cost term is
simplified assuming single order outstanding, may perform poorly when mean lead time
demand is large compared to Q or when lead time demand is highly variable. He went on
to prove that the exact expression for backorders, with more than one order outstanding
and possible negative reorder point, is a jointly convex function of the control variables, O
and r. The implication of these two papers is that it was possible to develop "exact” (Q, r)
models without any need for assumptions like one order outstanding, positive reorder
point or constant lead time. In a recent article, Zhang (1998) significantly simplified
Zipkin's (1986b) proof of the joint convexity of the inventory cost expression in terms of

Qandr.

The understanding of the exact continuous review stochastic (Q, r) inventory models was
further augmented by Zheng (1992) who compared such models to corresponding
deterministic EOQ models. The backordering cost considered was per backorder per unit
time. The research was an extension of Federgruen and Zheng (1988) where a discrete
model was considered and a simple and efficient algorithm for cost minimisation and
calculation of control variables was developed. The main results from the paper (1992)
show that average inventory costs and optimal order quantity in stochastic models are
larger than their deterministic counterparts. An interesting result is that the relative
increase in the costs incurred by using the quantity determined by EOQ instead of that
from the stochastic model is no more than 1/8 and vanishes when the ordering costs are
significant relative to other costs. Gallego (1998) extended Zheng's research by capturing
the distributional information about lead time demand into its mean and variance and
solving the resulting problem against the worst possible distribution. This is sometimes
called a maximal approximation. Gallego obtained bounds on optimal long run average

inventory costs and batch size for exact (Q, r) models using the maximal approximation.

Gallego showed that with +/2 EOQ batch size, the cost penalty would be no more than
6.07% of the overall optimal.
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The absence of closed form expressions for (Q, r) models, even for approximate models,
means that analytical comparative statics for such models is relatively difficult. Gerchak
(1990) showed the direction of change in the reorder point as shortage penalty, expected
demand and holding costs are changed in the (Q, ) model under the assumptions of single
order outstanding and backordering cost independent of time. Bookbinder and
Cakanyildirim (1999) have also performed first order analytical comparative statics with
the assumptions of single order outstanding and positive reorder point. Recently De
Groote and Zheng (1997) and Zipkin (2000) have shown how the optimal reorder point
and batch size will vary with changes in set-up cost, holding cost and backordering cost
for an "exact" (Q, ) model. They have also shown how the inventory cost increases with
the standard deviation of the LTD and developed limits to the optimal cost and batch size

in terms of standard deviation of LTD.
Based on the above discussion we can conclude that:

* The importance of lead time in modern business is consistent with our emphasis on
models for effective lead time management in supply chains.

= The continuous review stochastic inventory models are concemed mainly with
understanding the stochastic inventory systems more clearly and relating them to
deterministic models. While some researchers show that an increase in variability of
lead time demand can adversely affect the cost, none of them addresses the issue that
there might be a price to be paid to reduce the variability. In our research we will
account for both the costs and benefits associated with lead time reduction to
determine the "optimal" lead time. The "exact" (Q, r) model, with proper

modifications, will form the basis of our model.
2.5 Process-Improving Investments

The success of Japanese firms with their policy of continuous process improvement
created the impetus for a large number of firms to invest in process improvements. This

also had an effect on the research paradigm in the production/inventory area by changing
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the nature of certain parameters from exogenously given to endogenously determined by
proper investments (Gerchak and Parlar 1991). A substantial amount of research has been
done in the area of process-improving investments. Some examples include, research on -
i) investments in reduction of yield randomness in an EOQ model (Gerchak and Parlar
1990), ii) investments in process quality improvement (Porteus 1986b), and iii) how
investments by one entity of a supply chain affects the other parties of the chain (Gilbert
and Cvsa 2000). For detailed review of this literature refer to Nye (1997) and Ray,
Gerchak and Jewkes (2000). However, in our research the focus is on investments in lead

time reductions, specifically on set-up time and supply lead time reductions.
2.5.1 Investments in Reduction of Set-up Time

Most of the research dealing with investments in set-up time reduction assumes set-up
cost to be a surrogate for set-up time, i.e., investments in set-up time reduction will also
reduce the set-up cost. One of the earliest proponents of the research on investments in
set-up cost reduction was Porteus (1985). In the first part of his paper, Porteus showed that
such investments in a traditional average inventory cost per unit time EOQ model makes
sense solely on the basis of benefits obtained in the form of reduced inventory costs. The
basic setting in Porteus' research is a classical undiscounted EOQ model with the option of
investing in reducing set-up cost. The EOQ model is optimised for batch size and set-up
cost. The total cost function per unit time includes both the inventory costs (set-up costs +
holding costs) and an opportunity cost for the investment. For two special cases of
investment functions, Logarithmic and Power — both decreasing convex in set-up cost,
Porteus was also able to show that the objective function will be strictly concave-convex
in the relevant region and has a unique local minimum. Porteus subsequently extended his
work to the cases of discounted EOQ models (1986a) and simultaneous investments in
set-up cost reduction and process quality improvement (1986b). Leschke and Weiss
(1997) extended the work of Porteus (1985) to help managers decide how to allocate
investments in set-up cost reduction programs in a multi-product environment. They use a

transformation of Porteus' model to show that it is better to standardise set-ups across
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several products in stages than to focus on a single set-up and reduce it as much as

possible before proceeding to the next set-up.

Nasri et al. (1990) dealt with the issue of investing in reduction of set-up costs in a model
with stochastic lead times and time-independent backorders. Normally, set-up cost
reduction models assumed a static cost reduction approach, i.e., the decision to invest in
reduction is made only at the initial set-up. In Hong et al. (1996), the authors examined

different production policies where a decision to reduce set-up costs could be made at the

beginning of each planning cycle.

Nye (1997) considered the question of interdependence of investments for improvement in
manufacturing processes. The specific improvement practices considered are setup time
reduction and quality improvement, both of which require investment. This research
considers not only the traditional EOQ model for showing the interdependence but also
the effect of congestion in the form of WIP costs. In Hariga (2000), the author investigates
the "approximate" (Q, r) model of Hadley-Whitin with normally distributed lead time
demand where lead time is a deterministic function of batch size and set-up time and
investments can be made to reduce the set-up time. For a detailed review of literature on

set-up time (cost) reduction refer to Nye (1997).
2.5.2 Investments in Reduction of Supply Lead Time

In EOQ models the only way we can benefit from lead time reduction is through set-up
time reduction that also reduces set-up cost. In a deterministic demand scenario, any
change in supply lead time duration will only change the reorder point but not the optimal
batch size or the cost. Hence, almost all the models related to replenishment lead time
reduction deal with stochastic LTD in a (Q, r) framework. These models can be divided
into two groups - i) those where variability of lead time demand (LTD) is due only to
demand variation while lead time duration is deterministic, and ii) those where variability

of LTD is due only to variability of lead time duration and demand is constant.
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The earliest research where variability of LTD is from stochastic demand and
deterministic lead time duration seems to be that of van Beek and van Putten (1987). They
showed how in the classical Hadley-Whitin (Q, r} model, in addition to batch size and
reorder point, lead time duration can be controlled by investment. Hill and Khosla (1992)
extended that model by assuming an investment cost more general than van Beek and van
Putten (1987). Liao and Shyu (1991a) consider Poisson demand in a (Q, r) setting and the
objective is to minimise the expected inventory cost per unit time by determining the
optimal reorder point and lead time pair while batch size is assumed to be known. In a
related paper, Liao and Shyu (1991b) consider the same model with normal demand, and
where lead time is decomposed into components each having different piecewise linear
crashing cost for reduction. Ben-Daya and Raouf (1994) extend the Liao and Shyu
(1991b) normal demand model to also include order quantity as a decision variable. They
consider the crashing cost to be a continuous function of lead time. Li et al. (1997)
consider a (Q, r) model with backordering where there is a cost per unit backordered only.
Investment can be made to reduce the decision variables - set up cost, lead time and
variance of demand forecast error simultaneously. Hariga and Ben-Daya (1999) consider
models with partial backordering and lost sales where there is a crashing cost associated
with reducing lead time. The model is solved for both complete and partial information

about the lead time demand distribution.

The earliest research where variability of LTD is due only to variability of lead time
duration and demand is constant seems to be that of Gerchak and Parlar (1991). The
authors dealt with the classical Hadley-Whitin continuous review (Q, r) inventory model
with backordering cost per unit backordered. This is one of the few papers that use the
mean preserving transformation to capture the effect of investments without assuming any
particular LTD distribution. The decision variables are reorder point, batch size and
variability of LTD. Paknejad et al. (1992) analyses the options of investment in reduction
of lead time variance only or reduction of lead time variance and set-up cost
simultaneously. The basic model is a finite range stochastic lead time inventory model
with backordering cost per unit per unit time. Numerical results indicate that simultaneous

investments result in lower cost and batch size than separate investments, pointing
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towards meaningful interaction between reduction in lead time variance and set-up cost.
For Choi (1994) the variables considered are variance of lead time duration and quality
level. A service level criterion is used rather than explicit backordering costs in a
stochastic, continuous review (Q, r) model. A recent paper by Bookbinder and
Cakanyildirim (1999) also considers a (Q, #) model with backordering cost per unit per
unit time. Their model assumes single order outstanding and compare the model where
lead time is endogenous to the case where it is exogenous. For a detailed review of

literature on supply lead time reduction refer to Ray, Gerchak and Jewkes (2000).

These papers show that costs and benefits associated with lead time reduction make it
imperative to balance the two to arrive at the optimal solution. They also show that
intelligent investments in lead time reduction can lead to inventory cost reduction. We

will follow this approach.

However, most models dealing with investments in set-up time/supply lead time reduction
focus on cost minimisation assuming demand to be constant or stochastic with mean
demand rate being constant and do not capture the effect of reduced cost on market
demand. The recent emphasis on "integrated" supply chain models implies that it is
important to consider not only the effect of investments on efficiency but also their
ultimate effect on price and demand. We will refer to some "integrated" supply chain
models in Section 2.7 and indicate why it is especially necessary to develop such models

to investigate process-improving investments.

Also there are two issues that have not yet been fully addressed in the existing research on

investments in supply lead time reduction in (Q, ) models:

a) Most focus on models with assumptions like backordering cost per unit,
disregarding the duration of the shortage, or one order outstanding. However, most
recent research on (Q, r) models assumes a backordering cost per unit per time,
allows more than one order outstanding and negative reorder point. Qur work deals

with investing in lead time reduction in the latter framework;
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b) Most models assume that the investment in lead time reduction is a one-time
investment. However, several other investment strategies might be used for such
reductions. We will show that ignoring the nature and frequency of the type of
investments in lead time reduction when deciding on the “"optimal” strategy may

result in sub-optimal decisions.
2.6 Price and Lead Time Dependent Demand

The relation between price and demand is one of the best known relations in
microeconomics. As we indicated in the previous section, for a long time, operations
management (OM) did not emphasise the demand side of any supply chain. In the few
instances where demand was not assumed to be totally exogenous, it was assumed to be
sensitive to price only, but unaffected by operational variables. There is some literature in
OM that deals with price-sensitive demand (refer to Porteus 1990; Eliashberg and
Steinberg 1993; Petruzzi and Dada 1999).

Recent OM literature recognises that long customer waiting times might have an adverse
effect on the demand rate, especially for make-to-order products. Hence, for such products
demand rate should not only be dependent on price but also on delivery/waiting time.
Customers might be even ready to pay a price premium for shorter delivery times for such
products. However, we must keep in mind that firms may need to invest in increasing
capacity to shorten their delivery times. Also, models have to account for the congestion
that might be caused by the increase of demand. Congestion can lead to increased WIP

cost and/or waiting time for customers.

Research in lead-time-dependent-demand models typically focuses on internal pricing and
capacity selection issues for service facilities by taking into account user's delay costs and
capacity costs (Dewan and Mendelson 1990; Stidham 1992). The consumer's choice
depends on price and on the waiting time (full price = price charged + cost of waiting). As

an increase in demand might increase congestion and thus the waiting time (leading to
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decrease in demand), the firm’s profit will depend on scheduling, outsourcing and pricing

decisions.

Many of the researchers have used a game-theoretic framework for investigation of
pricing and capacity selection issues. Li (1992) explored the role of inventory in response
time competition by examining the behaviour of customers and competing firms. Lederer
and Li (1997) studied the issue of competition between firms serving delay-sensitive
customers and the resultant effect on price, production rate and scheduling policies. In a
recent paper, Ha (1998) has extended the research of Dewan and Mendelson (1990) by
deriving incentive-compatible pricing schemes that can achieve optimal arrival rates and
induce delivery-time-sensitive customers to choose optimal service rates when service is
Jjointly produced by the customers and the facility. For some other related research based

on game-theoretic frameworks, refer to So and Song (1998).

There exist various other streams of literature that investigates lead-time dependent
demand and/or price. This includes the use of quoted customer lead times to explore the
impact of due-date setting on demand and profitability (Duenyas and Hopp 1995; Weng
1999). Hill and Khosla (1992) constructed a model where demand is a function of actual
delivery time and price and the firm's objective is to maximise profit by optimal selection
of price and lead time. But their model is totally deterministic. On the other hand, Buss et
al. (1994) determine the best production capacity where demand is stochastic but do not
consider the impact of lead times on demand. Weng (1996) models price premium for
shorter lead times but does not consider the effect of lead time and/or price on demand

rate or any investment in increasing capacity.

While all these lines of research are important, as So and Song (1998, pg 30) point out,
they are basically different from the recently popular strategy of committing to a
"uniform" delivery time guarantee for all customers, the focus of our research. In the case
of a delivery time guarantee, firms advertise a uniform delivery lead time for all customers
within which they guarantee to satisfy each customer order. The length of the delivery

time guarantee is a decision variable that directly affects overall demand. In practice,
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usually it is very difficult to quantify user's delay costs, which is used by most research.
Therefore, it makes sense to use a reliability constraint to ensure a satisfactory service
level once the uniform delivery time guarantee is selected. The strategy of committing to a
uniform delivery lead time has been investigated by So and Song (1998), Palaka,
Erlebacher and Kropp (1998), So (2000) and Rao et al. (2000b). The basic setting is that
the demand rate is a function of price and/or length of the uniform guaranteed delivery
time. Some investment needs to be made in increasing capacity so that the delivery times
can be reduced. There is also a service level constraint and/or WIP holding and penalty
costs. The main objective is to find the optimal price and/or guaranteed delivery time that
maximises profit per unit time. While So and Song (1998) and Palaka et al. (1998) deal
with a single firm, So (2000) extended So and Song's work by analysing the impact of
using delivery time guarantees in the presence of competition. Rao et al. (2000b) integrate
uniform delivery time guarantee strategy with production planning. For more detailed

analysis of each of the four papers refer to Chapter 3.

Based on our above discussion we can conclude that these papers clearly show the recent
trend of assuming demand to be a function of both price and lead time. Some of these
papers directly address the issue of a uniform delivery time guarantee for all customers,

which is also the focus of one part of our research.

Our model will be significantly different from the existing research on uniform delivery

time guarantee in two regards:
a) We will address the issue of a price premium for shorter delivery times;

b) We will explicitly model the economies of scale that may be realised through

increased demand by committing to a shorter delivery time.

28



2.7 Integrated Production-Marketing Models in the Presence of

Investment

Marketing often has incentives based on revenue while production has incentives based on
cost. However, actions that maximise revenues or minimise costs may not maximise
profits. Hence, it is necessary to develop models that take into account the production-
marketing interactions to attain the goal of maximising profitability of a firm (Chopra and
Meindl 2001). Eliashberg and Steinberg (1993) also give a useful argument for why joint
production-marketing decision-making is important, and provide a comprehensive review
of such integrated models up to the late 1980s. Such integrated modelling attains even

more importance when firms invest in reducing their costs to increase demand.

Though the volume of integrated production-marketing literature is not very large, its
history is quite long. Note that here we will mainly discuss continuous time concave-cost
models with static pricing (for literature review on dynamic pricing models refer to Deng
and Yano 2000). The first integrated production-marketing model of this kind was
formulated by Whitin (1955) who incorporated pricing into the traditional framework of
the EOQ model through a linear price-demand relation where demand is price-sensitive.
The objective was to determine the price the firm should charge in order to maximise its

profits. This problem was later explicitly solved by Porteus (1985, Section 6).

Porteus (1985, Section 7) was the first that approached the problem of joint production-
marketing decisions when an investment is made in changing some operating parameter.
Eliashberg and Steinberg (1993) pointed out that incorporation of investment costs
associated with changing the set-up cost makes Porteus' model much more realistic than
Whitin's model. Portues modelled demand as price-sensitive and examined the situation
where the firm can invest in reducing the set-up cost in a traditional EOQ framework. The
objective of the firm is to maximise its profit (revenue - production cost - holding cost -
set-up cost - investment cost) by optimal selection of demand rate (or price) and set-up
cost. The complex nature of the problem means that the problem could be solved only for

some special demand and investment functions. Though Porteus' paper's first part, where
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he proves the inventory-cost reducing effect of investments in set-up cost reduction, might
be one of the most widely cited OM articles of recent times, the last part, despite being

more general, seems to have been largely ignored.

More recent models following Whitin's or Porteus’ framework includes Cheng (1990),
Sajjad and Sarker (1991), Min and Chen (1995) and Weng (1995). These models assume
price to be a decision variable, independent of operating costs. Zipkin (1992) also
formulated a model of an integrated production-marketing system through a queue that
takes into account the congestion effect for higher demand. However, price is an
independent decision variable and the objective is to maximise the firm's profit with

respect to price, batch size and reorder point.

Ladany and Sternlieb (1974) consider price to be a fixed mark-up over production costs in
a profit-maximising EOQ model where the demand rate is decreasing in price. Lee and
Nahmias (1993) point out that explicitly relating operating costs and demand makes the
objective function much more complex and simplifying assumptions about the demand
and production cost functions are needed to obtain closed form expressions. Lee and
Rosenblatt (1986) also consider a model similar to that of Ladany and Sternlieb but

include advertising investments and quality problems.

Other streams of literature that have modelled integrated production-marketing issues
include the economics of queues (refer to So and Song 1998 and Section 2.6) and single-
period stochastic inventory models with pricing (refer to Petruzzi and Dada 1999). In most
of this literature, price is treated as an independent decision variable and either no

investment are considered or the investments are in increasing capacity.

All the above models imply that since process-improving investments have the prospect of
decreasing costs and increasing market demand, it is necessary to develop integrated
production-marketing models to investigate such investments. This issue will be one of

the cornerstones of our research also.
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However, our models differ from the existing literature in two major aspects:

a) The models that consider price as an independent decision variable do not
explicitly account for the effect of operating costs on price and demand. When the
product is such that the profit margin is very low, it is quite natural to determine
price as a mark-up over the total operating cost. In those situations it is more
realistic to assume that price and demand are both functions of the operating
variables. However, we acknowledge that for high-profit goods it might be more
natural to assume price to be an independent decision variable;

b) The models that consider price to be a mark-up (e.g., Ladany and Sternlieb 1974),
it is a mark-up over the production costs only and not the entire operating costs. In
addition, these models do not take into account the investment required to effect

process improvements.

As we will show later, both of these issues will have a significant effect on modelling.
2.8 Mark-Up Pricing

Two common methods of pricing referred to in the literature are cost-based pricing and
market-based pricing. One of the most popular cost-based methods is mark-up pricing
where prices are established based on an estimated total cost plus a percentage mark-up.
The mark-up rate depends on the product line, tradition, competition, and other market
factors (US Department of Defense Contract Pricing Reference Guides 2000). This type of
pricing is frequently used for make-to-stock products in the manufacturing sector, in the

apparel industry and in the retail industry (refer to Chapter 5).

Hall and Hitch (1939) and later empirical studies by Eckstein and Fromm (1968) and
Coutts, Godley and Nordhaus (1978) found that many firms set prices relative to some
notion of average cost and a reasonable mark-up to cover profits. According to Hay and
Morris (1991) almost 75% of firms use some variant of mark-up pricing. Bloch and Olive

(1997) noted that cost changes play a dominant role in determining prices. Their model
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also seems to suggest that the change in price and cost for manufacturing companies are
proportional, suggesting a mark-up model. There are several models involving mark-up
pricing in the operations management literature (Ladany and Sternlieb 1974; Lee and
Rosenblatt 1986; Wang and Zhao 2000 to name a few). For more details on mark-up
pricing refer to Hay and Morris (1991) and Lohr and Park (2000). The relation between
mark-up pricing and the profit-maximisation pricing advocated in the economics literature

will be discussed in Chapter 5.

Based on the ample empirical evidence regarding the use of mark-up pricing for make-to-
stock products, we will assume that as the pricing technique for our make-to-stock supply

chain.
2.9 Forms of Investment and Demand Functions

There are a variety of functional forms used for process-improving investments in the
literature - general convex, exponential, logarithmic, power, piecewise linear. It is very
difficult to say which type of investment function mirrors the practical situation most
closely. A comprehensive list of different types of investment functions used in the

literature has been given in Nye (1997).

There are two main types of demand functions found in OM literature: linear (Porteus
1985; Palaka et al. 1998) and constant elasticity (Hill and Khosla 1992; Weng 1995; So
and Song 1998). As the name implies, in case of constant elasticity the price elasticity of
demand (or lead time elasticity, as the case may be) remains constant while the slope of
the curve changes. For the linear demand case, demand elasticity increase with price while

the slope remains constant. Many researchers have used linear demand functions because

of analytical simplicity.

In our research, the demand and investment functions will be selected to strike a balance

between analytical tractability and reality.
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2.10 Summary

From the literature review we can conclude that though there are significant relevant
research contributions to lead time management issues for make-to-stock and make-to-

order products/services, there are some gaps in them:

* The existing research dealing with determining optimal delivery lead time for make-
to-order product/services does not account for the price premium from lower delivery
times and the economies of scale from higher demand.

= The relevant research on the effects of investments in supply lead time reduction on
inventory costs in a make-to-stock scenario does not take into account all possible
types of such investments and the resultant effects and none of them models the effect
of lower costs on customer demand.

® None of the research investigating integrated production-marketing models for make-
to-stock products with process-improving investments in set-up time/supply lead time
is based on mark-up pricing over the entire operating cost and hence does not

explicitly account for the effects of all the operating variables on price and demand.

Our research, investigating lead time management issues in make-to-stock and make-to-
order supply chains, will address all the above "gaps" so as to develop more
comprehensive models. Our research aims to make a significant contribution to the

operations management literature on "time-based" competition.

33



CHAPTER 3

DELIVERY LEAD TIME MANAGEMENT
FOR MAKE-TO-ORDER FIRMS

3.1 Introduction

Firms specialising in make-to-order products or services often use a time-based
competitive strategy, since customers are not only sensitive to the price they are paying
but also to the length and reliability of the delivery lead time. For example, Japanese
machine tool exports to the United States (US) surged from $22.1 million in 1973 to
$687.5 million in 1981. Much of this increase had to do with the shorter and more reliable
delivery lead times offered by the Japanese manufacturers. The traditional practice of
order backlog management used by US machine tool manufacturers implicitly assumed
that the customers would wait for the make-to-order machine tools. However, by the late
1970s and early 1980s many foreign firms, especially Japanese ones, started to offer fast
delivery of quality machines to US customers. Very quickly, many of the US customers
changed their allegiance to the foreign firms (National Research Council Report 1983).
Accordingly, this chapter will focus on how make-to-order firms (or supply chains) can

manage their delivery lead times to maximise their profits (Model A of Chapter 1).

While there have been a number of strategies used by make-to-order firms to use speed to
attract customers, guaranteeing a "uniform" delivery lead time for all potential customers
has become quite popular recently. Many companies are adopting the strategy of
advertising a uniform delivery lead time for all customers within which they guarantee to
satisfy each customer order (So and Song 1998). This includes manufacturing firms like
Titliest/Foot-Joy, a leading manufacturer of customised golf balls, LeatherTech, a
manufacturer of customised leather fumiture (Rao, Swaminathan and Zhang 2000b) and
also service facilities like Wells Fargo Bank, Lucky supermarket and Federal Express (So
and Song 1998).
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While the strategy of offering a uniform delivery lead time guarantee may attract many
customers, there is a risk if the firm announces a very short delivery lead time that attracts
a lot of customers. The demand may then exceed the companies' capacity to respond. In
such situations, the waiting time for customers may be greater than the guaranteed
delivery lead time offered by the firm. This can lead to a penalty cost for the manufacturer
and/or it might lead to decrease in repeat business. With this strategy, it is important to
have some internal mechanism to ensure that the promised delivery lead times are feasible

and reliably met.

The traditional economics literature deals primarily with the effect of price on customer
demand, but not with the effect of lead times. Since the late 1980's, a large volume of
operations management literature started to recognise that customer demand increases
both with shorter lead times and lower prices (Hill and Khosla 1992; Duenyas and Hopp
1995; So and Song 1998; Ballou 1998). Increased demand, in turn, can bring down unit
operating costs through economies of scale (Scherer 1980). Recent studies seem to
suggest that the effect of delivery lead time is more than just on the demand rate.
Karmarkar (1993) pointed out that lead times are most probably inversely related to
market share or price premiums or both. Ballou (1998) also noted that shorter delivery
lead times could result in a price premium. For example, shipping costs from
Amazon.com are more than double when the delivery lead time guarantee is around two
days than when it is around one week. While there has been pressure on firms to reduce
their delivery lead times, this pressure has opened up new opportunities for companies
that are able to satisfy this requirement. Some customers are ready to pay a price premium
for shorter and more reliable delivery lead times. Many cutting-edge supply chains are
aware of this added incentive to reduce delivery lead times. One of the ways that firms can
reliably satisfy a guaranteed delivery lead time is by investing in increasing capacity (So
and Song 1998; Palaka et al. 1998). The firms then must trade-off the potential for

increased demand and price against the costs of investment.

In this chapter, we model a supply chain of a make-to-order firm and its customers where

the firm is using the strategy of announcing a "uniform” delivery lead time guarantee for
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all its customers. Customer demand is random and the mean demand rate is a function of
both price and guaranteed delivery lead time, and the market price is determined by the
length of the guaranteed delivery lead time. More specifically, the first part of this chapter
presents an analytical approach for a make-to-order firm to maximise its profit by optimal
selection of a guaranteed delivery lead time. Mean demand is modelled as a decreasing
function of price and guaranteed delivery lead time while price itself is a decreasing
function of the guaranteed delivery lead time. The model takes into account that -
i) reducing lead time by increasing capacity will require investment, and ii) the company
must be able to satisfy the guaranteed delivery lead time according to a pre-specified
reliability level. In the second part of this chapter we expand our initial model to
incorporate the economies of scale by assuming that higher demand can reduce unit

operating costs.

There are several papers that assume that the mean arrival rate to any
service/manufacturing facility depends on guaranteed delivery lead time and/or price, i.e.,
demand increases when the price and/or the length of the guaranteed delivery lead time
decreases. In one of the seminal papers in this area, So and Song (1998) model the firm as
a queuing system where the mean customer demand has a log-linear relationship with
price and guaranteed delivery lead time. The objective is to maximise the profit per unit
time by suitable selection of the decision variable values - length of the guaranteed
delivery lead time, price and capacity. The revenue function is the product of mean
demand per unit time and profit per unit, while cost consists of capacity cost. The
constraints are in the form of delivery reliability, non-negativity and queue stability. Some
analytical comparative statics of the parameters are performed for the optimal decision
variables. With the help of numerical examples they are also able to show that direct
operating and capacity costs will have a significant effect on the optimal decision variable

values.

In Palaka, Erlebacher and Kropp (1998) the mean demand rate decreases linearly with
price and delivery lead time. Their objective is to maximise profit per unit time. While the

capacity costs and the decision variables for Palaka et al. are similar to that of So and
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Song (1998), Palaka et al. also explicitly take into consideration WIP costs and penalty
costs. The constraints are delivery reliability, non-negativity and queue stability. Their

analysis suggests that there is a critical service level that affects the problem solution.

So (2000) extended So and Song's work by analysing the impact of using delivery lead
time guarantees in the presence of competition. While the basic setting remains the same,
the focus is on investigating how firms select the best price and guaranteed delivery lead
time in the presence of multiple-firm competition. The first part of the paper analyses the
optimisation problem and its solution in a multiple-firm setting. In the latter part, the

author illustrates how different firm and market characteristics would affect the optimal

strategies.

Rao et al. (2000b) integrate a uniform delivery lead time guarantee strategy with
production planning for a make-to-order firm. Demand depends on delivery lead time, but
price is an exogenous parameter. Unlike other research, Rao et al. do not use WIP holding
costs or a delivery reliability constraint. Though the firm has an in-house capacity
restriction, it can buy from an infinite capacity supplier, albeit at a higher per unit
outsourcing cost than in-house production cost. The discrete production schedule for the
firm is synchronised with the guaranteed delivery lead time and the firm optimises on the
delivery lead time to maximise the long-run average expected profit per period. They also
provide some analytical comparative statics with respect to outsourcing cost, selling price

and production capacity.

So and Song (1998), Palaka et al. (1998), So (2000) and Rao et al. (2000b) assume
demand per unit time to be dependent on price and/or guaranteed delivery lead time.
However, they do not consider the relationship between price and guaranteed delivery
lead time. We extend previous research by explicitly taking into account the fact that
customers may be willing to pay a price premium for shorter delivery lead times. The
numerical examples in the previous papers also show that operating costs play an

important role for firms. However, none of the papers analytically model the effect of
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demand on operating cost. We include economies of scale by modelling unit operating

cost as a decreasing function of the mean demand rate.
3.2 Overview and Assumptions of the Physical System

We consider a supply chain in which a firm that is dealing in a make-to-order
product/service announces a uniform guaranteed delivery lead time, L, within which it
promises to satisfy each customer order. Orders arrive for processing/service according to
a Poisson process with mean rate A. There is a single server in the facility and the
processing times of the orders are independent and exponentially distributed with a mean
processing rate of i The assumption of exponential service times, though simplistic,
makes the problem tractable without significant loss of accuracy (refer to So and Song
1998 and Palaka et al. 1998). Customers are served on a first-come-first-served (FCFS)
basis. The mean customer demand rate depends on the price, p, and the stated delivery
lead time guarantee, L. We assume that customers prefer shorter delivery lead times and
lower prices. We also assume that the firm has performed some market research and is
aware of how much of a price premium it can obtain from the market by guaranteeing a
shorter delivery lead time. For example, UPS or FedEx perform market research to learn
how much of a price premium customers are willing to pay for shorter delivery lead times.
Hence, the price, p, is higher for a guarantee of shorter delivery lead time, L. We assume
that raw material is available whenever required. If the firm is a service facility, there will
be no holding cost for raw material and the customers' waiting cost will be indirectly
taken care of by the effect of delivery lead time on demand. For manufacturing facilities

we do not model holding costs in Sections 3.4 and 3.5.

The firm has established an internal target delivery lead time reliability level, s®
(0 <s® < 1), which is the probability that a random customer will have a waiting time of L
or less in the facility. We assume the target reliability level to be set by management as an
internal performance measure not announced to the customers. As failure to satisfy an
arriving customer within L might have an adverse impact on repeat business, s® will be

close to 1. Hence, the occurrences of actual waiting time being greater than guaranteed
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delivery lead time will be rare. Under this assumption, we will not explicitly account for
penalty cost incurred by failing to meet delivery lead time guarantee in the models in
Sections 3.4 and 3.5. However, as we will show later, our formulation using the service
level constraint is consistent with a setting where a firm has to pay a penalty cost, as long

as the penalty is independent of the length of the delay.

The firm can invest in increasing the processing rate, z, through, for example, hiring extra
workers or acquiring improved equipment. Successive investments in increasing u by the
same amount will cost more; thus it is reasonable to assume that the investment function
for increasing x, M(u), is increasing and convex. The objective of the firm is to maximise
its profit per unit time subject to satisfying the delivery reliability constraint. The entire
supply chain system is shown in Figure 3.2.1.

Firm announces uniform

delivery lead time
guarantee (L) for all

customers
MAKE-TO- l

Investment
fvestment 5 | ORDER FIRM <"1 CUSTOMER DEMAND
(random but mean demand

rate is price and delivery lead

time guarantee sensitive)

Figure 3.2.1: Supply Chain System for Make-to-Order Firms

3.3 Notation

The following notation will be used for this chapter:

A = mean demand rate (units/unit time)
H = mean processing rate (units/unit time)
D = unit market price of the product/service ($/unit)
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m = unit operating cost ($/unit)

L = uniform guaranteed delivery lead time announced to the customers (time)
w = steady state actual waiting time in the facility, i.e., sojourn time (time)

s = actual delivery reliability level, P(W < L)

st = minimum desired delivery reliability level (i.e., s = 5%

M(w) =investment cost per unit time to achieve the processing rate g ($/unit time)

3.4 Analytical Model of the System

We assume that the mean demand rate, 4, depends linearly on L and p, i.¢.,

A@,LYy=a-bp-bL, 3.4.1)
where:
a represents the mean demand rate when both p and L are zero and b, and b, represent the
price and delivery lead time sensitivitiecs of the mean demand rate, respectively

(a, b, b2 > 0). A higher value of a represents a higher overall potential for demand.

The linear demand function has the desirable properties that price and delivery lead time
elasticity of demand are higher at higher prices and guaranteed delivery lead times that
even the more popular Cobb-Douglas function does not have (Palaka et al. 1998). These
properties are desirable since we would expect that the customers would be more sensitive
to long delivery lead times when they are paying more and also sensitive to high prices
when they have long waiting times. A linear demand function will also help us to obtain

basic qualitative insights without much analytical complexity.

We explicitly model price premiums for shorter delivery lead times by assuming that a
guarantee of a shorter delivery lead time can command a higher market price. We assume
that the firm has done market research and knows what price premium it will be able to
charge for committing to a shorter delivery lead time. Furthermore, we assume that the

firm can approximate the relation between p and L by a linear relationship - for a
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guaranteed delivery lead time of L, the market price, p, will be given by (for a particular

demand rate):
p=d-elL, (3.4.2)

where:
d = price when L = 0, i.e., the maximum price the market is willing to pay,
and

e’ = delivery lead time sensitivity of price (d, e' > 0).
Combining (3.4.1) and (3.4.2) we can express A in terms of L as:

A=(a-bd)-(bz-b;e)L =a’'-b'L, (3.4.3)
where:
a'=a-bd,
and
b'=by-b;€’

Note that both @’ and 4’ can, in theory, be unrestricted in sign. However, we will assume
that a’ > 0, since otherwise when &' is positive, A will be negative for all L. As L increases,

both A and p decreases and any decrease in p increases demand.

If b'> 0, A decreases with L - this is the case to which most recent operations management
literature refers. This represents the situation where customers are "more lead-time-
sensitive than price-sensitive" (i.e., bz > b, e). Then the decrease of demand rate due to
increase in L will be more than the increase of demand rate due to corresponding decrease
of p (p decreases since L increases). Some thought shows that 4’ < 0 (i.e., b; e’ > b;) also
makes sense when customers are ready to wait longer to pay a lower price. In this case, 4
increases with L. Customers are "more price-sensitive than lead-time-sensitive", i.e., the
decrease of demand rate due to increase in L will be less than the increase of demand rate

due to corresponding decrease of p (p decreases since L increases). For &' = 0, 4 is

41



constant (= a’) for any L - the customers are "equally sensitive towards price and lead-
time", i.e., b = b; e’ and so the decrease of demand rate due to increase in L will be equal

to the increase of demand rate due to corresponding decrease of p.

This type of customer price and lead time sensitivity has been referred to in the literature.
Blackburn et al. (1992) pointed out that there are both "price-sensitive" and "time-
sensitive” customers in the market. The former segment always chooses a lower price
even with longer delivery times while the latter segment is ready to pay a price premium
for shorter delivery times. A recent paper by Smith et al. (2000) noted a similar
phenomenon in the electronic marketplace. Internet retailers try to create price

discrimination among customers using this difference in price and value of time.

Since the firm wishes to maximise expected profit per unit time, 7, its goal can be written

as:

(P3.1) Maxi{nise r(u, L)=(p-m)A - M(u), (3.4.4)

subject to:

s=P(W<L)=1- et > 5% (delivery reliability constraint),

M > A (system stability constraint),

p= m=0,L>0, A20 (non-negativity constraints),
where A is given by (3.4.3), p by (3.4.2) and from our assumption about the investment
function, M(x) is an increasing convex function in . For this section we assume the unit

operating cost, m, to be constant; in the next section we will introduce economies of scale.

The form of the delivery reliability constraint is based on the fact that for an M/M/I queue
the waiting time has an exponential distribution. Note that at high service levels the
waiting time distribution is well approximated by the exponential distribution even for a

G/G/s queue (So and Song 1998).

We can now present the following propositions:
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Proposition 3.4.1: 7 (4 L) in P3.1 is (i) decreasing concave in g, (ii) decreasing convex
in L for b’ > 0 and (iii) concave in L for ' <0.

Proof: Differentiating 7 (1, L) with respect to u we have':

M:.M -M:.M

o T e (3.4.5)

With the assumption that M(u) is increasing convex in g it is clear that 7 (g L) is

decreasing concave in . Differentiating 7 (1, L) with respect to L we have:

2
an(a;Lz,L) — Aulp - m) + Ape: a_’;(zg'.ﬂ= Au(p-m)+ 240+ Apr.  (3.4.6)

As both p and A are linear in L, A;; and p;; are both equal to zero. Thus, from (3.4.2),
(3.4.3) and (3.4.6) we can say that if ' > 0, then 7 (&, L) is decreasing convex in L and if
b’'<0, then 7 (x, L) is concave in L. [ ]

Proposition 3.4.2: The service level is increasing concave in u for all 4' but increasing

concave in L for only &' = 0.

Proof: Differentiating the service level, s, with respect to L we have:

& s _*gzi o Lo DL, (3.4.7)
11

From (3.4.7) we can say that s is increasing concave in g Similarly, differentiating s with
respect to L and from the stability condition, we can easily prove that s is also increasing

concave in L for &' = 0. n

! For this thesis, Zg will represent the first derivative of function Z with respect to Q and
Zpo will represent the second derivative.
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Proposition 3.4.1 gives some understanding of the response surface of 7 (x4, L) in zand L.
From Proposition 3.4.2, it is clear that there is 2 one-to-one relation between s and u. As u
approaches A, s tends towards 0, while as u approaches «;, s approaches 1. This is quite
intuitive since when u is very high (for a fixed L) we will be able to satisfv all demand
reliably, while when 4 is almost equal to A then there will be heavy congestion and we

will not be able to satisfy demand as reliably.

Propositions 3.4.1 and 3.4.2 lead to our third proposition (Palaka et al., 1998 and So and
Song, 1998 also obtain a similar result).

Proposition 3.4.3: At optimality, the delivery reliability constraint is binding.
Proof: From the delivery reliability constraint we know that the service level must be at
least s (i.e., s > s%). This implies that the processing rate must be at least the minimum

required to achieve the minimum desired service level, (i.e., u = /IR (L) where 1 -

e (#"trl = Ry We can illustrate the above by Figure 3.4.1 (recall that stability

constraint requires u > A).

] - e HLIL = ¢

Infeasible s, u

(N

A L) 7

_

W

7

7

Figure 3.4.1: Plot of Service Level (s) versus Processing Rate (v)
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From Proposition 3.4.1 we know that 7 (4, L) is decreasing concave in . It is obvious that
for a profit maximising firm, for a fixed L, the objective would be to make x as small as

possible while maintaining feasibility. This implies that at optimality, z should be equal to
;f (L) where:

L) = #ﬁm , (3.4.8)

is the processing rate required to achieve the minimum desired service level, s*.

Therefore, at optimality s = s*. [ |

The optimal processing rate, u*, will therefore lie on the curve 4 (L). If we can find the
optimal L, L*, we can substitute it in (3.4.8) to determine the optimal processing rate, u*,
and in (3.4.2) to determine the optimal price, p* Note that z (L) clearly shows that
u* > A (since [-In(1-s®)] and L > 0), i.e., at optimality, the stability condition will be
satisfied. Since the reliability constraint is tight at optimality, to explicitly model a penalty
cost for failing to meet the time guarantee, we can just add a term y(1 - s%) to the unit
operating cost representing the expected penalty, where y is the penalty cost for each

instance of failure to meet the guarantee independent of the length of the delay (So 2000).

Proposition 3.4.4: £/ (L) is a decreasing convex function of L for 5’ > 0 and convex for
b'<O.
Proof: If we differentiate 1/ (L) with respect to L we have:

R 2 R
out _ (n +b’), u =(2n)20,

oL \I* o \r

3 R 4 R
Oh _ S coama TA My, (3.4.9)
of L oL L

where n = [-In(1-s%)] (n 2 0).
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From (3.4.9) we can tell that if ' > 0, /£ (L) is a decreasing convex function of L (So and
Song 1998), and if 5’ < 0, 2 (L) is convex in L. -

Figure 3.4.2 illustrates ;/e (L) for b’ 2 0 and b’ < 0. Note that for any b’, as L — 0, L) -
. For b’ > 0, as L increases, 4 (L) decreases in a convex, monotone fashion. For &' < 0,

as L increases, /& (L) initially decreases reaching its minimum at L = (%)— and then

increases.

@) a

(-b')
Figure 3.4.2: Plot of /(L) versus L

Having illustrated 47 (L), we can transform the problem P3.1 into a new problem P3.2 in

terms of a single variable, L:

(P3.2) Maximise #(L) = A(p - m) - ML L)), (3.4.10)

subject to:

A20,L>0,p2m=0,
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where:
A=a'-bL,p=d-eL,

and

L) = _—_I'i(_I.L_:il.*.,{(L).

Now the problem is simply to find L*, the value of L that maximises = (L) for P3.2. For
the rest of this section we will suppress the argument of 7 (L) of (3.4.10) unless otherwise

stated.

First let us consider the feasible range for L. If ' > 0, then 4 2 0, i.e., L < (a/b"). The

d—m

—. Then for b’ = 0, the feasible
e

condition p > m implies that (d - e’L) > m, i.e., L <

region for L is (0, min (g—’iﬂ) ). If b’ < 0 then the condition 4 > 0 will be satisfied for

el
any L > 0 and the feasible region for L is (0, (d—_,ﬁ) ). Note that from (3.4.10) and
e

assumptions about M{(x) we can conclude that as L tends towards the feasible limits, the
profits are negative - infinite at lower limit and finite at the upper limit. Differentiating 7

with respect to L we have:

m =0 (p-m) + dpu- Mk @) L, 3.4.11)
R 2 R
and 71 = 22001 - Mulil (1)) (%‘;)’ - MR (1) aaf., (3.4.12)

Casel: b'<(

Proposition 3.4.5: For b'< 0, 7in P3.2 is concave in L.
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Proof: If ' < 0, we know A; 2 0 and p,; < 0 implying that 24; p; < 0. Then from (3.4.9)
and the assumption that M is increasing convex in g, (3.4.12) will be negative and hence =

inP3.21s concavein L. [ |

Case2:5'>0

Proposition 3.4.6: For ' > 0 and M, = 0, my = 0 can have zero, one or two feasible
solutions.
Proof: When b’ > 0, then 4, < 0 and p; < 0, thus 24; p; > 0 and the sign of 7y is

unrestricted. Rearranging 7; = 0 from (3.4.11), we have:

Aip-m)+ Ap, = (3.4.13)
Differentiating both sides of (3.4.13) with respect to L we have:
i(LHS) =24, p, =2b'e", i(LHS) =0 (3.4.14)
oL Lo T L2 ) o
d 5;1 ut
o (RHS) = Myl (L) ()" + M;M(L» LZ ;. (34.15)
6/1 a,u o’ u® o’ u®
8L2 9 (RHS) = Myl il (L)) (=) + 3 M (1 (L)) (=— ) o M (L)) PR
(3.4.16)

Taking into account the constraints of P3.2, it is easy to see that the LHS of (3.4.13) is
always negative and linearly increasing. It will start from a finite negative value and
increase linearly to a finite negative value at the upper feasible limit of L. If we assume
that M, > O (i.e., not only do successive investments cost more, the rate also increases as
M increases) and since M, and M, are positive, from (3.4.9) we can deduce that (3.4.16) is

negative for &' > 0. The RHS of (3.4.13) will always be negative for feasible L, will tend
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to - «< as L tend towards O and increase in a concave manner to a finite negative value at
the upper feasible limit of L. With the above forms of LHS and RHS of (3.4.13), we can
convince ourselves that there can be either zero, one or two feasible solutions to 7z = 0

(refer to Figure 3.4.3). |

From these observations, we can conclude that when demand is decreasing in L, 7 may

not be unimodal for feasible L. Let us now consider the three possible outcomes:

a) No solution to 7z = 0: In this case the RHS is always below the LHS for feasible L
and hence 7 will always be increasing (Figure 3.4.3(1));

b) One solution to z; = 0: In this case there might be two situations. It might be that
RHS < LHS for small L and as L increases the RHS will intersect the LHS from
below. In this case # will be increasing up to the solution for 7z = 0 and then
decreasing (Figure 3.4.3(ii)). It might also be that while RHS < LHS for small L,
as L increases the RHS rather than intersecting is tangent to LHS from below. In
this case also the RHS is always below the LHS for feasible L and hence 7 will
always be increasing for feasible L and the solution to 77 = 0 will be the inflection

point;

c) Two solutions to 7z = 0: In this case the RHS will first intersect the LHS from
below and then it will intersect from above. The profit, =z is initially increasing,

then deéreasing and then again increasing in L (Figure 3.4.3(iii)).

Note the only thing we can say about x for ' > 0 is the range where 7 will be increasing

or decreasing and not whether it will be concave or convex.

What can we then say about L* for Case 1 and Case 2? First, since n is increasing as
L — O (the lower feasible limit of L), L* will be given by etther the feasible solution(s) to
7 = 0 or the upper limit for the feasible limit of L. As there are a finite number of possible
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- alternatives we can easily compare the profit at those alternatives to find L* We can
reduce the possible alternatives further since from Figure 3.4.3(iii) it is clear that for
multiple feasible solutions to 7z = 0 for 5’ > 0, the larger solution can never be L*. So, it is

relatively simple to determine L*.

3.4.3(i) No solution
U
0 4 L ’L (L)
_—4€——LHSof ;,=0 LY
A~ < RHS of ;=0 L
3.4.3(ii) One solution
LY L (LA
—— RHS of 77 =0
—— LHS of ., =0 LY
0 —>
L
3.4.3(iii) Two solutions
0 >L (L)
RHS of L= 0
LHS of ;=0
A
0 >
L
Legends: LY = Upper feasible limit of L

A=Valueof LHSatL=0

Figure 3.4.3: Three Possible Forms of (L) for 5'> 0
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It is not necessary that (L*) will be positive. If 7(L*) is negative (e.g., if L* = upper
feasible limit of L) it implies that the firm cannot make a profit even when acting
optimally and hence should not be in the business at all. If there is no feasible solution to
7 = 0 (Figure 3.4.3(i)), the objective function will then be negative (increasing) for the
entire feasible range of L. If, however, #(L*) > 0, the firm can announce a guaranteed
delivery lead time of L* and set its processing rate by substituting L * into (3.4.8) to satisfy
the service level. The market price (p*) will be determined by (3.4.2) and the mean

demand rate will then be given by (3.4.3).
3.4.1 Numerical Examples

Example 3.4.1: First let us consider an example with the following parameters:
a=100,b;,=5,b,=8,d=10,e'=1,m =1, M(t) = AsL where 4 =0.0001 and s* = 0.98.
Wehavea'=a-b,d=50,b'=b,-b,e'=3,A=50-3Landp-m=9-L.

In this example, customers are more lead-time-sensitive than price-sensitive (since 5’ > 0),
L € (0, 9), A € (23, 50) (4 is decreasing in L) and p € (1, 10). The solution for the
constrained problem P3.2 in this example is given in Table 3.4.1. Note that 7 is unimodal

but not concave (similar to Figure 3.4.3(i1)).
Different parameter values can give rise to cases similar to Figures 3.4.3(i) and 3.4.3(iii).

Example 3.4.2: Suppose b; = 2 in Example 3.4.1, so that 5’ = -3 and A = 50 + 3L. While
the feasible region of L and the range of p remain the same as Example 3.4.1, in this
example A € (50, 87) and is increasing in L - customers are more price-sensitive than

lead-time-sensitive. Since b’ < 0, 7is known to be concave in L.

Example 3.4.3: In this example, a = 73 and b, = 2 while all the other parameters are the
same as in Example 3.4.1. Then a’' = 23 and b'= -3 and A = 23 + 3L. For this example,

customers are more price-sensitive than lead-time-sensitive and A is increasing in L. Note
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that for this example the feasible ranges of L, p and A are all similar to Example 3.4.1.
Since b’ <0, 7is known to be concave in L.
We compare the values of the optimal guaranteed delivery lead time, processing rate,

price, demand and profit for the above examples in Table 3.4.1.

Table 3.4.1: Comparison of L*, y*, p*, A* and n* for
Examples 3.4.1 - 3.4.3

b’ L* HL*) p(L*) AL¥) m(L*)
Example 3.4.1 3 0.26 64.27 9.74 49.22 403.64
Example 3.4.2 -3 0.39 61.18 9.61 51.17 417.65
Example 3.4.3 -3 0.81 30.27 9.19 25.42 205.50

These examples show that the sign of 4’ has a significant impact on the ptimal decision
variable values. Recall that for b’ < 0, customers are ready to wait longer if they can pay a
lower price. Comparison of Examples 3.4.1 and 3.4.2 show the effect of the change in
sign of b’ on the optimal decision variable values, demand and profit. For ' < 0, L* is
larger and p* and 4* are smaller than for ' > 0. Increased revenue from higher demand

and reduced investment cost more than offset the loss of revenue from lower price.

Comparison of Examples 3.4.1 and 3.4.3 shows that even when the ranges of p and A are
similar, a negative b’ forces L* to be higher and u* to be lower (leading to less
investrnent) so that p* can be reduced to cater to more price-sensitive customers.
Comparison of Examples 3.4.2 and 3.4.3 shows that lower a leads to higher L* and lower
7*. While the comparative statics of So & Song (1998) and Palaka et al. (1998) show a
similar phenomenon, our model not only takes into account the price and lead-time
sensitivity of demand rate but also explicitly accounts for the relationship between price

and the length of the guaranteed delivery lead time.
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3.4.2 Effect of Treating p as a Decision Variable

We have chosen to explicitly model the relationship between p and L rather than to
assume that p and L are independent decision variables. While this reduces the number of
decision variables, it captures for managers a relationship which exists in practice, and
which could lead to a decision error if ignored. In this section, our aim is to see the effect
on profit if managers ignore the dependence of price on the length of the delivery lead

time guarantee and assume p to be a decision variable, independent of L.

With both p and L as decision variables, 4 (p, L) = a - b;p - b;L (b;, b, > 0) and the
. . —in(1-s*%)

optimal x4 depends on both p and L, i.e., WLl = ——-L—-—+ A( p,L). The problem

is now to maximise 7 (p, L) = A(p, L) (p - m) - M(L* (p, L)).

Example 3.4.4: Let us consider an example with the following parameters:

a=73,b;=5by=2,m=1,d=12, e'=0.9, M(t) = Az’ where A =0.0001 and s* = 0.98.
4

With these parameters, the solution with p as a decision variable will be:

L,*=0.40,p*=7.98 and p*, L,*) = 42.03.

If we use our model (p dependent on L), the solution will be:

L*=3.44, 1L*)=22.73, p(L*) = 8.91, A(L*) =21.59 and #(L*) =169.55.

The differences in the optimal values are expected since the models are dissimilar. Table
3.4.2 shows how large the effect on profit will be if in reality p is related to L, as in our
model, but the manager ignores it and determines L* assuming p to be an independent

decision variable (i.e., guarantees L = 0.4 rather than 3.44 in our model).
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Table 3.4.2: Comparison of 4*, p*, A* and z* for Different L for Example 3.4.4

L) | p*L) | AML) | m*L)
Model assuming p and L to be related as 22.73 8.91 21.59 | 169.55
p=d-elL (L*=3.44)
Model assuming p and L to be decision variables | 23.76 | 11.64 | 14.00 | 147.63
(L =0.40)

In this example, customers are more price-sensitive than lead-time-sensitive. However, if
we ignore the relation between p and L when it actually exists, we will be guaranteeing a
much shorter delivery lead time (L = 0.4) compared to the optimal (L = 3.44). Though the
price will be higher the demand will be much less. Also, we have to invest more to satisfy
the small L with the desired reliability. The net result is that profit will be about 13%
lower! We can also show examples when the opposite will happen, i.e., the firm will be

offering a "higher" L for more lead-time-sensitive than price-sensitive customers, and will

be loosing profit.

There will be cases when assuming p and L to be independent decision variables will not
have much impact on profits. For example, in Example 3.4.1 assuming p to be a decision
variable would have given L,* as 0.25 and profit would be quite close to the optimal profit

with L* = 0.26. However, in general, it is clear that when p and L are related we should

model the relationship explicitly.

We performed numerical experiments to observe the effect of s* on L. For both 5’ > 0 and
b'< 0, L* is increasing convex in s*. Note that this effect is similar to that of service level
on inventory cost implying that the length of the delivery lead time guarantee can be
thought of as an inventory of time and more "time inventory” is required as the service

level increases.
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In this section, we were able to develop a model for a profit-maximising make-to-order
firm whose demand rate depends on price and a uniform guaranteed delivery lead time
while price itself is determined by the length of the guaranteed delivery lead time. The
firm has to satisfy some delivery reliability constraint but can invest in reducing its
processing time. The resulting problem is different from previous literature as it explicitly
accounts for the relationship between price and delivery lead time. This model can capture
two distinct consumer preferences: i) where the customers are willing to pay more for
faster delivery, and ii) where the customers are ready to wait longer to pay less. By using a
reliability constraint and a relation between price and delivery lead time, we were able to

express the problem in terms of a single variable, guaranteed delivery lead time.

We were able to show that the form of the solution will be rather simple, and through
some numerical examples that it is important that the customer preferences are taken into
account while deciding upon the optimal policy for the firm. The optimal policies
(including investment decisions) for firms whose customers are more sensitive towards
price than delivery lead time will be quite different from firms whose customers wants
shorter delivery lead time. We also showed how our model gives rise to different
decisions than models that assume price and delivery lead time to be independent decision
variables. Ignoring the relation between price and the guaranteed delivery lead time can
lead to investing in lead time reduction to guarantee a shorter delivery lead time when
customers want lower prices and are willing to wait longer or not providing short enough
delivery lead times when the market is willing to pay a price premium for shorter delivery
lead times. This is consistent with the empirical findings of Sterling and Lambert (1989)
that management often subjectively sets customer service levels that are not consistent
with customer preferences, not realising that customers might have different needs than

the seller.
3.5 Analytical Model Incorporating Economies of Scale

Companies may be able to achieve economies of scale by spreading fixed costs over a

large production volume. For such operations, it is reasonable to assume that the unit
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operating costs is a decreasing function of the demand rate, at least within a certain
volume range (Scherer 1980). Such economies of scale are present in almost all types of
firms - manufacturing or service. Numerical examples of So and Song (1998), Palaka et
al. (1998) and So (2000) show that operating costs may have a significant impact on the
optimal operating characteristics of a firm. In this section, we analytically explore the

implications of scale economies on the basic model introduced in Section 3.4.

While the exact nature of the scale economies will depend on many factors, here we
explore the case when the unit operating cost, m = uA"", is decreasing convex with respect
to the mean demand rate. In the relation, v (> 0) is the sensitivity of unit operating costs
with respect to the mean demand rate and u is a finite constant. We assume that the
economies of scale can come from any number of sources. The relationship between A and
L as well as between p and L and the characteristics of the investment function, M, remain

the same as in Section 3.4.

The problem of maximising expected profit per unit time can now be written as:

(P3.3) Maxi;:_nise 7w L) =(p - m)A - M(u), 3.5.1)
M.
subject to:
PW<L)2>s® ie, - et >sR (delivery reliability constraint),
M > A (system stability constraint),

p=2m=20, L>0, A 20 (non-negativity constraints).

In the above expression, p =d - e’L, A =a' - b'L and hence, m = u(a’' - b'’L)"™. From the
definition, m is decreasing convex with respect to A. When b’ < 0 (demand increases with
increase in L), A; is positive and m is decreasing convex in L and when b’ > Q0 (demand

decreases with increase in L), A, is negative and m is increasing convex in L.

Proposition 3.5.1: 7 (u, L) of P3.3 is (1) decreasing concave with respect to x4 and

(it) decreasing with respect to L for 4'= 0.
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Proof: Part (i) is similar to the proof for Proposition 3.4.1. Differentiating (3.5.1) with

respect to L we have:
wi(ps LY=A(p -m) + Apy - Amy; wp(pt, L) =24,pp - 2A0my - Amyy. (3.5.2)

For 6’2 0, mx < 0 and thus 7 (&, L) is decreasing with respect to L. While for b’ = 0,

(4, L) is linear in L, for ' > 0, it can be either convex or concave. |
Note that for b’ < 0, we cannot tell whether 7 is increasing/decreasing or convex/concave.

The reasoning in Section 3.4 showing that the optimal z will be along 4 (L) given by
(3.4.8), is still valid as the expression for 4 (L) is independent of m and so remains
unchanged. We can now express problem P3.3 in terms of the single decision variable L

as:

(P3.4) Maximise 7(L) = (p - m)d - M(/ (L)), (3.5.3)

subject to:

p2m=0, L, 420 (non-negativity constraints).

In(3.53),p=d-eL,A=a'-b'L,m=u(a - bL)™, (L) = (/L) + A and n = -In(1 - s%)
> 0. The feasible region for L will be given by the constraints p 2m >0, L>0and 1 > 0.
As in Section 3.4, as L = 0, 7 (L) — -oc but can be positive or negative at the feasible
limits of L. Our objective is to find L* that maximises 7 (L) in P3.4. The value of L* will
determine the optimal values of the other decision variables and also the optimal profit.
For the rest of this section we suppress L as the argument of & (L) in (3.5.3) unless

otherwise stated.
Differentiating (3.5.3) yields (recall that A;; and p;; = 0):

m = (p-m)+ Apy - Amy - M (1 (L))
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=(-b)(p - m) - e'A + (-bYuvA™ - ML (L)) %, (3.5.4)

and
aﬂk 2 az.ul!
AL = 2241 - 2A0my - Amys - Myl (L)) (- M (L) T
(3.5.5)
We follow the same method as we did in Section 3.4 to find L*.
On rearranging the terms of 7; = 0 we have:
_ ou*
AL (p - m)+ Apy - Amy = M(F (L)) - (3.5.6)
Differentiating both sides of (3.5.6) with respect to L we have:
2 (LHS) = 20, p, + (w0 )(3, ) (A )(1=v); (3.5.7)
2
2 (LHS ) =)0+ (1L - () (3.5.8)

0 rus) = m .t f LY o fSH(L)
aL(RH-S’)—M,,,,(,u )[ oL J+M,,(# )( % ]-(3-5-9)

From (3.4.9) and characteristics of M, the RHS of (3.5.6) is increasing in L for any b". To
solve the constrained problem P3.4, we will have to consider three cases: i) b’ = 0,

11) b'< 0 and iii) b'> 0.

Casel:b'=0

In thiscase 4, =0, p, <0, m; =0 and m;, =0.
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Proposition 3.5.2: For '=0, ris concave in L.
Proof: From (3.4.9) and remembering that A; =0, p; <0, m; =0 and m;; = 0 when 4'= 0,

it is clear that (3.5.5) is negative and ris concave in L for 5'= 0. =

Case2:5'<0

In this case 4, > 0, p; <0, m; <0 and m;; > 0.

Proposition 3.5.3: For ' < 0, My, > 0 and M,,,, > 0, the RHS of (3.5.6) will be

2
increasing concave up to the unique solution for _6_(£H2ﬂ= 0 (say, L*) and then it will be

increasing convex and the value of the RHS at L* will be positive.

Proof: Refer to Appendix 3.1. .

Example 3.5.1: For better understanding, let us consider a numerical example with the

following parameters:

a=73,b;=5,b,=2,d=10,e"=1 (= b'=-3), 4 =0.001 and s® = 0.98. The feasible
range of L is (0, 9.54). In Figure 3.5.1, we show the RHS for 7z =0 in (3.5.6).

The RHS is increasing throughout the feasible region of L, is negative till L = 1.14

G ( :’ )) and then positive, and concave till L = 4.07 (=L’°, unique solution of
2
__6 (alil:{ S)=0, refer to Appendix 3.1) and then convex.
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Figure 3.5.1: Plot of RHS of 7 =0 versus L for 5’ <0

Now we can develop a proposition regarding the structure of ;.

Proposition 3.5.4:, If v> 1, M, > 0 and M, > 0, for b’ < 0, 7z = 0 will have zero or
one feasible solution.
Proof: The LHS of (3.5.6) in this case will be unrestricted in sign, finite as L — 0 and

decreasing convex in L. The RHS of (3.5.6) will be always increasing, negative for

L< . r;),) (RHS — -« as L — 0), positive for L > ’( ';,) , concave for L < L® and

convex for L > L°. Hence, we can convince ourselves that there can be zero or one feasible

solution to 7z = 0. P

Case3: 5'>0

In this case 4, <0, py <0, m; > 0 and m;; > 0.
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Proposition 3.5.5: If v>1 and M,,, > 0, for ' > 0, ;x = 0 can have zero, one, two or
three feasible solutions.

Proof: The LHS of (3.5.6) in this case will be always negative and concave in L (from
(3.5.7) and (3.5.8)). The RHS of (3.5.6) will be always negative, increasing and concave
(from 3.4.15 and 3.4.16). As L — 0, the RHS — - o« but the LHS is finite and negative.
We can now convince ourselves that 7.z = 0 can have zero, one, two or three feasible

solutions (refer to Figure 3.5.2). [ |

Since the lower feasible limit of L for this section is not necessarily zero, the possible
cases are now more complex than in Section 3.4. However if we assume the lower feasible
limit to be equal to zero then the four possible outcomes of Proposition 3.5.5 will look like

Figure 3.5.2. AsL —» 0, # —> - o and 7y — + <, i.e., xis increasing at an infinite rate. At

the upper limit of L, both 7 and 7z can be positive or negative.

a) No solution to 7z = 0: In this case the RHS is always below the LHS for feasible L
and hence 7 will always be increasing (Figure 3.5.2(i));

b) One solution to 7z = 0: In this case, 7 will be increasing up to the solution for

m. = 0 and then decreasing (Figure 3.5.2(ii));

c) Two solutions to 7z = O: In this case, the RHS will first intersect the LHS from
below and then it will intersect from above. The profit function, 7, is initially

increasing, then decreasing and then again increasing in L (Figure 3.5.2(iii));

d) Three solutions to 7z; = 0: The nature of intersections and the resultant structure of

mare shown in Figure 3.5.2(iv).

What can we now say about L* for Cases 1, 2 and 3? When the lower limit of feasible L is
not zero, then L* will be given by either the feasible solution(s) to 2 = O or one of the

limits for feasible range of L. Since there are a finite number of possible alternatives we
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can compare the profit at those alternatives to obtain L*. As in Section 3.4, there may be
cases when the RHS and the LHS may not intersect, but one might be tangent to another.
It is quite straightforward to find the shape of 7 in those cases also. We can also reduce
the possible alternatives further by reasoning (e.g., for b’= 0 or b’ < 0, if there is a feasible
solution to m; = 0, then it will be L*; for ' > 0, if there are three feasible solutions to

m, = 0, the middle solution can never be L*). So, it is again relatively simple to determine

L*
3.5.2(1) No solution
ot L [ (L)4
LHS of ;; =0 :
Al RHS of 7 = 0 Y
of n; 0 / .
L
3.5.2(ii) One solution
U
0 A L $L (L) 4
RHS of ;=0
All AT T 4—— LHS of =0
y 0 ’
L
3.5.2(1i1) Two solutions
0 4 LY L a(L)A
-&4——— LHS of , =0
RHS of ; =0
Al
y 0 >
L
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3.5.2(iv) Three solutions

U
0 4 ;L L (L)4
: RHS of ; =0
LHS of ;; =0
Al
0 >
L
Legends: V= Upper feasible limit of L

Al =Valueof LHS at L=0

Figure 3.5.2: Four Possible Forms of (L) for 5'> 0

As in Section 3.4, 2(L*) may not be positive. If 2(L*) is negative, it implies that the firm
cannot make a profit even when acting optimally and hence should not be in the business
at all. If #(L*) > 0, then the firm can announce a guaranteed delivery lead time of L* and
set its processing rate by substituting L* into (3.4.8) to satisfy the service level. The
market price (p*) will be determined by (3.4.2) and this combination of p* and L* will
give the mean demand rate from (3.4.3). The mean demand rate will induce the operating

cost, m(L*) (=uA*""), and the firm's profit will be maximised.
3.5.1 Numerical Examples

The following examples show how our decision-making will be affected when we

consider economies of scale.
Example 3.5.2: Let us assume the same parameters as in Example 3.4.1:

a=100,b,=5,b,=8,d=10, e’ = 1, M() = Az where 4 = 0.0001 and s* = 0.98. Also,
u=185,v=1.5, so that m = 185(50 - 3L)"5.
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Here a’= 50, b’ = 3 (i.e., customers are more lead-time-sensitive than price-sensitive) and
A =50 - 3L. For this example, L € (0, 9.54), A € (24.56, 50) and m € (0.52, 1.52). In
Table 3.5.1 we compare the optimal values of L*, u*, p* m*, A* and z* for Example
3.4.1 (without economies of scale, i.e., m = 1) to that of Example 3.5.2 (with economies

of scale).

Table 3.5.1: Comparison of L*, u*, p*, m*, A* and =*

for Examples 3.4.1 and 3.5.2

L* ML¥ | pL | md*) | ALY AL*)
Example 3.4.1 0.26 64.27 9.74 1 49.22 | 403.64
Example 3.5.2 0.25 64.60 9.75 0.535 49.25 | 426.50

Note that while xis unimodal within the feasible range of L, it is not concave for Example
3.5.2. Though we used the same parameter values, L* is lower when economies of scale
exist. Since for this example, b’ > 0, lower L* leads to higher x#* and p*. This is intuitive;
we have more incentive to guarantee a shorter delivery lead time so as to attract more
customers and thereby decrease m. A guarantee of a shorter delivery lead time will also
command a higher price. However, we have to invest in increasing the processing rate so

that we can satisfy the reliability constraint even at the higher demand level.

Similarly we can easily show examples that firms having different economies of scale (i.e,
only the value of parameter v is different) will guarantee different L* to maximise their
profits. The direction of change in L* as v changes will depend on the sign of &', i.e.,
whether customers are more price-sensitive or lead-time-sensitive. Though there is not
much difference in the L* for Examples 3.4.1 and 3.5.2, this is not always the case, as we

show in the next example.

64




Example 3.5.3: Let us consider an example similar to Example 3.4.4 with b’ < 0 (i.e,
customers are more price-sensitive than lead-time-sensitive). The parameters are:
a=73,b;=5b=2,d=12,e'=0.9, u= 175, v=1.45, M() = A4 where A = 0.0001
and s® =0.98. Then 1 = 13 + 2.5L and m = 175(13 + 2.5L)"*.

We already solved this problem assuming that no economies of scale exist (i.e., m = 1)
with p explicitly related to L (L* = 3.44) as well as with p as a decision variable
independent of L (L,* = 0.4). Solving this problem assuming p is explicitly related to L
and that economies of scale exist, we obtain L* = 4.41. Table 3.5.2 shows what the effect
on profit will be, if in reality p is related to L and economies of scale exist as in our model,
but the manager ignores either economies of scale or both economies of scale and the

relation between p and L (i.e., guarantees L = 3.44 or 0.4 rather than 4.41 in our model).

Table 3.5.2: Comparison of u*, p*, m*, A* and z* for Different L for Example 3.5.3

uXL) | p*AL) | m* (L) | AXL) | »*(L)
Model with economies of scale and p and L | 24.91 8.03 1.74 | 24.02 | 149.54
related by p=d-eL (L*=4.41)
Model without economies of scale and pand L | 22.73 | 8.91 2.03 21.59 | 147.23
related by p =d - eL (L = 3.44)
Model without economies of scale and pand L | 23.76 | 11.64 | 3.81 14.00 | 108.27
as independent decision variables (L = 0.40)

The illustrative example clearly shows the importance of not only explicitly modelling the
relation between p and L, but also the effect of demand on the operating cosi. If a manager
recognises the relation between p and L but ignores the effect of demand on operating cost
when it really exists, the firm will be loosing a profit of about 1.5% (i.e., 149.54 vs

147.24). For large companies, this percentage difference can be substantial in dollar terms.
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If the manager also ignores the explicit relation between p and L as in (3.4.2), then the
firm stands to loose profit of about 38% (i.e., 149.54 vs 108.25)! We noted in Example
3.4.4 that for "more price-sensitive than lead-time-sensitive" customers, accounting for the
dependence of price on the length of the guaranteed delivery lead time will lead to a
comparatively higher L to bring down the price and increase demand. If in addition,
economies of scale exist for unit operating costs, taking that into account will result in an
even higher delivery lead time guarantee L to increase demand further and by that
decrease operating cost. Note that our numerical examples are only illustrative; the exact
amount of profit loss from using the "wrong" model will depend on the parameter values

and can be larger or smaller than the resuits in Table 3.5.2.

In summary, this section presented a model of a profit-maximising make-to-order firm
whose demand depends on guaranteed delivery lead time and price (which itself depends
on the length of the delivery lead time guarantee) and economies of scale exist for
operating costs. The firm must satisfy a delivery reliability constraint and can invest in
increasing its processing rate. We were able to determine the optimal value of the
guaranteed delivery lead time that will maximise the firm's profit. We can say that for
practising managers it is not only important to know the customer preferences (as in

Section 3.4), but also to take into account the effect of economies of scale when they are

present.

3.6 Analytical Model with Holding and Backordering Costs

In Sections 3.4 and 3.5 we assumed that there is no holding cost for the raw materials
work-in-process (WIP) and that the penalty cost is time-independent. Though for the
physical system discussed in Section 3.2 these assumptions are reasonable, there might be
firms for which it is necessary to develop models relaxing those assumptions. Suppose
pre-processing requirements make it necessary for some firms to “take out" the raw
material as soon as the order is received rather than wait for the order to reach the server
before doing so. Then the raw material will be waiting in front of the server and there will

be a WIP holding cost. If the facility is congested, then this holding cost can become
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significant. Similarly, if the penalty cost depends on the length of the customer waiting
time, our model should be modified to explicitly account for such penalty costs.

In the model of this section all the other conditions remain the same as in Section 3.4, i.e.,
raw material is still available whenever required, demand depends on price and guaranteed
delivery lead time while price itself is determined by the length of the guaranteed delivery
lead time. In this section, we assume the unit operating cost to be constant (= m). The

expected profit per unit time can now be written as:

7y L) = Expected revenue per unit time - expected WIP holding cost per unit time -

expected penalty cost per unit time - investment cost per unit time

- R A tuar

—l(p-m)—(‘u_ﬂ)—(‘u_l)e(” " M(p), (3.6.1)
where:
A=a'-b'L,
p=d-e'L,

h’= WIP holding cost per unit per unit time ($/unit/unit time),
and

&= penalty cost per time per unit lateness ($/unit/unit time).

The first term of the right hand side of (3.6.1) represents expected revenue per unit time
while the last term represents the investment costs per unit time. The second term is the
WIP holding cost that can be calculated from Little's law. The third term represents the
penalty cost for late jobs. Recall that for an M/M/I queue, the probability that a job/service
is late is given by P(W > L) = e™#"*"* and the expected lateness given that a job is late is

given by [1/(u-4)] (refer to Palaka et al. 1998).

The problem for the firm is now:

.. = _ - h'A _ & ~(pu-A)L _
(P3.5) Ma:gimse (g, LYy=A(p-m) (A (#*A)e M(y), (3.6.2)
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subject to:
PW<L)2s® ie., 1- e >sR (delivery reliability constraint),
M > A (system stability constraint),

p=m=0,L >0, >0 (non-negativity constraints).

We feel that even with an explicit penalty cost, the delivery reliability constraint should be
there. In this case, we can define s® to be a service level below which the demand rate falls

drastically. So, the firm cannot afford to allow its service level to dip below s,

Proposition 3.6.1: 7 (1 L) of P3.5 is concave with respect to s
Proof: Differentiating (3.6.2) with respect to x we have:

—_ h’l 51 -(u—-1)L a‘L ~(u—-2)L
L)= + “ +—=——e -M,; 3.6.3
U T - A g 0o
_ 28R 284 _an 280 AL _an
Tl D)= = TAF Tt Ay (n-2)° (u-2)" Mr
(3.6.4)

Under the conditions #> 420, L >0 and M, =0, it is clear that z,,(x L) <0, i.e., 7of
(3.6.2) is concave in .. "

Differentiating (3.6.2) with respect to L we have:

h'b' u + 7 o (ML SA(pu—A+bL) g (HAL

m(p L) = -e'A-b'(p-m) +

(u=A) (u-A) (H—-2)
(3.6.5)
— 2h'(b')2,u 24:(17')2# ~(p=A)L ¢t ~(u-2)L 2§(b')2L ~(u-A)L
=2b'e’- - # “ L5097 &= tn
kol tiyony y onary (u=2) °
_ 26(b' )L o (H-AIL _ EA(p—A +b'L) e fHAL (3.6.6)
(p~A1) (u—-24) . o
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We cannot determine the sign of either (3.6.5) or (3.6.6). For 4’ > 0, the first two terms of
m; are negative while others are positive while for 7;; only the first term is positive and
the others are negative. For b’ < 0, the 2™ term of 7 is positive and the last term can be
positive. For 77, only the 4% term is positive. Hence 7 can be either convex or concave

with respect to L.

If we assume L to be a given constant, then the mean demand rate and price of equations
(3.4.2) and (3.4.3) will be constant and there is only one decision variable, x The
constraint 1 - e™* % > s® now implies that x> [(-In(I-sY/L) + 4] = 1£(L) (as in 3.4.8).
Note that in this case, &~ (L) is a constant. Since 7 is concave with respect to 4, we can
solve 7, = 0 and let y that solves 7, = 0 be gop(L). If paop(L) > 4 (L), then we would
want u* to be = pp(L). If piop(l) < £ (L), then we would want M* to be equal to L.
This implies that z* = max (. (L), Hopi(L)) Figure 3.6.1 illustrates the concept.

”(/1)? ﬂ(ﬂ)*

-] \\

> >
L) popdL) H Hop(L) L) u
[ie* = popdL) > 1A(L)] [u* = 1£(L) > tiop(L))

Figure 3.6.1: Optimal u when L is Constant

In general, the solution of P3.5 will be analytically complex. However, using the concept

of 4* we can have some understanding of its solution.
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Proposition 3.6.2: The optimal service level for P3.5 will be given by s* = Max (5%, s%)
and the optimal processing rate by u*(L) = —2—[ -ln(] — Max(s,s* ))] + A

Proof: From (3.4.7), we know that s is an increasing concave function of & This implies
that there is a one-to-one relation between s and x Now let us define a critical service
level, s°, given by s° = 1 - e™,,™YE, i, 5° is the service level given by (L), the
processing rate maximising 7 for fixed L. From (3.4.8), we already know that 4 (L) is the
processing rate required to achieve the minimum desired service level s®. Since for a fixed

L, p*=max (/L (L), Hopi(L)), the optimal service level will be given by:
s* = Max (5%, s%). (3.6.7)

We can now say that x* will satisfy / - e” £ = Max (s°, s*) from which:

u*(L) = -L’- [~in{l — Max(s°,s* ))] + A. (3.6.8)

[
Note in (3.6.8), s® is a known parameter fixed by management while s° is a function of L.
Only if p is independent of L would s° be a constant the value of which will depend on the
problem parameters (refer to Palaka et al., 1998).
Replacing the expression for x*(L) into the original expression of xin (3.6.2) we have the

transformed problem P3.6 in terms of single variable, L.

1ma1 = - - ﬂ_ﬂ —x(L) _ *
(P3.6) Max{mlse n(l)=A(p-m (L) x(L)e M(u*(L)), (3.6.9)

subject to:
A=20,L>0,p2m=20,
where:
x(L) =-In[1 - Max (s°, s%)], A=a'- b'L, p = d - 'L and p*(L) is given by (3.6.8).
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Problem P3.6 is a function of only one variable, L. If we can determine the L* that
maximises (3.6.9), we can then substitute it in (3.6.8) to obtain x#* and in (3.4.2) to obtain
p*. However, since s is also a function of L, the expression for s for P3.6 will be
analytically difficult to handle and we leave this for future research. However, we can

solve one special case of the general problem.
3.6.1 Special Case

Let us consider the special case of 5'= 0 (b, = b, e), i.e., while both p and L affects 4 and
also L affects p, the direct effect of L (b,) is equal to the indirect effect of L through p

(b; €).
In this case 7 can be written as:

ha &
(p-a') (u-a)

m(uL)=a'ld-m-e'lL)- et _M(u).  (3.6.10)

We can show that xis concave with respect to L. Note that b, - b; e'=0=>¢e’'= Z—z Let
}

’

us define the critical service level, s° = I - (g) (¢’ must be < &) and L,,(y) as the

'

. e ~(u-a'
solution to 7z = 0. From m; = 0, we can show that / - (—) =71 - g eNel#) The
service level, s, is an increasing concave function of L. Following previous logic (in this
case with respect to L rather than 4), we can say that s* = Max (5", s®). Note that s° is now

a constant dependent on the parameter values e’ and & The expression for L* will be given

by:

—In(1-s%)

X 3.6.11
(n-a') ( )

L*p=
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As s* is between zero and 1 and the constraint on z is 4 > a', so L* will be positive.
Replacing L*(y) in (3.6.10) we now have an objective function (to be maximised) in terms
of a single variable 4 with the constraints that > a’and p > m 2 0 (as s* = Max (5%, s5),
the delivery reliability constraint will always be satisfied). Since m(x, L*(u)) is concave
with respect to 4, the solution to 7z, = 0 can give us u4*. Replacing u4* into (3.6.11) gives

us L* and then from (3.4.2) we can determine p*. This combination of (u* L* p*) will

7

.. . . . el . .
maximise the constrained problem. This critical service level / - [—) 1s In agreement

with that of Palaka et al. (1998) for the special case b’ = 0 (in their paper s. = /- :—} )
1

Example 3.6.1: Let us consider a numerical example with the following parameters:
a=100,b;=5,b,=5,e'=1(sothat b'=0),d=10,m =1, M() =A;z3 where 4 = 0.0001,
s®=0.98, h'=1 and £=10. Then 5" = 0.1 implying that s* = s = 0.98. In this case we can
easily determine that L* = 0.2727 and u* = 64.345. The value of L* will determine the

price and the demand rate.

In this section we introduced WIP holding costs and penalty costs to the profit maximising
problem of Section 3.4. The present literature that deals with holding and penalty costs do
not take into account the relation between p and L. As we have seen in Section 3.4, it is
important to take into consideration the relation between p and L when they exist.
Otherwise, the model may give us substantially sub-optimal solutions. We could
formulate the profit-maximising problem taking holding and penalty costs into account
and assuming price to be dependent on the guaranteed delivery lead time, L. We were also
able to express the objective function in terms of only the decision variable L. Though we
could solve a special case, the structure of the general problem makes analytical solution
difficult. We leave this for future research.
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3.7 Conclusions and Future Research Opportunities

In this chapter, we modelled a make-to-order supply chain consisting of a firm and its
customers where the mean demand rate is a function of price and guaranteed delivery lead
time and the market price is determined by the length of the guaranteed delivery lead time.
We then extended our model by incorporating economies of scale where the unit operating
cost is a decreasing convex function of the mean demand rate. The firm can invest in
Increasing capacity to guarantee a shorter delivery lead time but must be able to satisfy the

guaranteed delivery lead time according to a specified reliability level.

Our models explicitly accounted for "price-sensitive" and "lead-time-sensitive" customers.
We showed how the firm could select the optimum length of the guaranteed delivery lead
time to maximise its profits by a relatively simple procedure. Our numerical examples
clearly showed that ignoring the dependence of market price on the guaranteed delivery
lead time and the economies of scale, when they really exist, can lead to potentially large
profit losses for the firm. It is also important for firms to take note of the inherent
preference of the customers for price or delivery lead time when making decisions. We
also extended our model by explicitly accounting for holding cost and penalty cost for the

firm. However, in that case we were only able to formulate the problem without deriving

many insights.

We feel that the models in this chapter captured some of the most salient characteristics of
make-to-order firms and can help such firms to better manage their delivery times to gain

competitive advantage in a time-based-competition environment.

Future research opportunities to extend our model include:

a) As So and Song (1998) point out, customers may be sensitive to the service level
delivered. Hence, the mean demand rate may be a function of the service level in
addition to that of price and delivery lead time;

b) Analytically solve the case where our model explicitly accounts for the WIP

holding costs and penalty costs (i.e., Section 3.6);
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c) Though we put forth our reasons for assumption cf linear demand (Section 3.4),
extension of our model with non-linear demand of the form used by So and Song

(1998) and in our Chapter 5 might give new insights.
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CHAPTER 4

SUPPLY LEAD TIME MANAGEMENT FOR
MAKE-TO-STOCK FIRMS

4.1 Introduction

The growth of supply chains and emergence of speed as a key competitive priority means
that supply lead time is one of the main performance drivers of the supply chain
performance. There seems to be a growing feeling that supply lead time reduction
opportunities need to be identified and adopted more widely (Australian National Audit
Office Report 1997-98; Chopra and Meindl 2001). In this chapter we develop models to
investigate the effects of investment in supply lead time reduction on inventory costs for a

make-to-stock firm (Model B of Chapter 1).

Any type of lead time reduction requires careful planning and sometimes substantial
investments (Zipkin 1991). For example, if faster processing or testing reduces lead times,
capital intensive equipment acquisitions may be required. Some investments might not
even be in the form of capital expenditure, but may amount to holding extra inventory.
Clearly, the size and type of investment required to reduce lead times will depend on the

type of process involved and also on the extent of change desired.

In the context of supply chains, management of lead times between a supplier and a buyer
are crucial and often negotiated. A buyer may wish a supplier to shorten replenishment
lead time to reduce the buyer's inventory costs or to reduce customer response time. This
may involve the supplier, for example, investing in installing a new machine or a better
information system or a new warehouse (e.g., some companies like General Motors and
British Aerospace have "convinced" their suppliers to build warehouses near their
assembly plant, so that supply lead time will be reduced). From the supplier's point of

view, this investment might benefit a number of buyers, or it maybe primarily for a
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specific buyer (relation-specific or idiosyncratic investment; refer to Levi 1999, for more
details of such investments). As several authors have pointed out, many small companies
simply cannot afford improvements owing to the costs involved (Zipkin 1991; Groenevelt
1993; Bensaou 1999) and they seek to pass on some of the investment to the buyer
(Chopra and Meindl 2001). This type of recouping of investment costs will happen if and
only if there is no major disparity in the power between the two parties.

In recent times, we have seen that buyers are ready to pay for investments made by
suppliers in lead time reduction since they believe that their "total cost" will still be
reduced (Anderson et al. 1997; Chopra and Meindl 2001). For example, companies using
more expensive transport services are finding that savings in inventory costs more than
compensate for increased transportation costs (Australian National Audit Office Report
1997-98).

The focus of this chapter will be to investigate the effectiveness of investment in supply
lead time reduction when the supplier will make the investment but will pass on the cost
of the investment, partly or fully, to the buyer. We will develop analytical models that can
capture the costs and benefits of such lead time reductions from the buyer's view point and

can assist the buyer in deciding how much of lead time reduction to pursue.

Though there is a significant literature on investment in lead time reduction within the
(Q, r) modelling framework, as we indicated in Chapter 2, there are two issues that have

not yet been properly addressed:

a) Most research focuses on models that use a backordering cost per unit,
disregarding the duration of the shortage or assume one order outstanding.
However, state-of-the-art (Q, ) models provide a more "exact” representation that
assumes a backordering cost per unit per unit time, allows more than one order
outstanding and a negative reorder point. Our work deals with investing in lead

time reduction in the latter framework;
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b) Most research does not differentiate between the frequency and the nature of the
investment and the effect this has on modelling. This chapter will address the issue
of different types of investment in lead time reduction in the (Q, r) framework and
show that it is very important for the buyer to consider such issues in decision

making.
4.2 Overview of the Physical System

We consider a single firm (buyer) who procures a make-to-stock product in batches from
a supplier according to a continuous review (Q, r) control system. Customer demand
occurs one unit at a time and is satisfied directly from the warehouse. Since it is a make-
to-stock product, it is reasonable to assume constant customer demand. The procurement
lead time is stochastic which results in a stochastic lead time demand for the buyer. All
unmet demands are backordered. The buyer wants the supplier to improve replenishment
lead time by reducing its mean and/or variability. A schematic representation of the two-

party supply chain is shown in Figure 4.2.1.

Suppose the supplier, in order to respond to the buyer, must make a substantial investment
to reduce the supply lead time. The investment might be relation-specific if the
improvements will not help the supplier vis-a-vis its other customers or it might be for a
number of customers. We assume that the supplier can pass on at least part of the
investment cost to the buyer (i.e., there is no major disparity in market power between the
buyer and the supplier). The buyer will be the ultimate decision maker and has to take
both the costs and benefits of lead time reduction into consideration before deciding how
much of a reduction in lead time to request, if any. Hence, we assume that the supplier
will first inform the buyer of the cost consequences of investment in lead time reduction

but will make the investment only after the buyer has made a decision.

Though we assume that the buyer and the supplier are two separate entities, they may also
be parts of the same organisation. Since the environment we are considering is make-to-

stock, any reduction in the procurement lead time (either external or internal) has no
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impact on the delivery time to the ultimate customer. This lead time reduction will only
affect the buyer’s inventory costs (Hill and Khosla 1992).

Investment
required for change
in supply lead time
Investment passed on
to the buyer
— < |
SUPPLIER (MAKE-TO-STOCK ORDERS
orders EIRM) (constant)
Lead time
change

Figure 4.2.1: Supply Chain System for Chapter 4

In the presence of stochastic lead times, to obtain proper analytical results in a (Q, r)
framework, we must make sure that: (i) deliveries of orders cannot cross in time, and
(ii) the supply lead time is independent of the number and size of the outstanding orders
{Porteus 1990). These conditions will hold in the above supply chain under the
assumptions that the supply system is exogenous and sequential (Zipkin 2000). An
exogenous system means that while the supplier’s overall workload may fluctuate over
time, the buyer’s orders contribute little to these fluctuations. This implicitly assumes a
reasonably large supplier. An exogenous system ensures that the supply lead times for the
orders will be independent of the number and size of the outstanding orders. A sequential
system is one for which the supplier processes the buyer's orders in a FIFO (First-In-First-
Out) manner. This implies that there will be no order crossing even if there is more than
one order outstanding at any time. For examples demonstrating the generality of these
assumptions refer to Zipkin (2000).
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4.3 Notation

The following notation will be used in this chapter:

Ity =inventory on hand at time 7 (units)
B() =backorders at time ¢ (units)
IL(t) = inventory level at time ¢ = I(¢) - B(t) (units)
IP(t) = inventory position at time ¢

= JL(¢) + orders outstanding at time ¢ (units)
E() = expected on hand inventory (units)
E(B) = expected backorders (units)

K = fixed set-up cost incurred for each order ($/order)
c = purchase price/unit for the buyer from the supplier ($/unit)
i = period interest rate (while our model can handle different interest rates for the

buyer and the supplier, for notational simplicity we assume it to be equal for both
parties) ($/$/unit time)

= holding cost/unit/time = ic ($/unit/unit time)

= backordering penalty cost/unit backordered/time ($/unit/unit time)

= backordering penalty cost/unit backordered ($/unit)

= reorder point (units)

= batch size (units)

= demand rate (units/unit time)

O S Y o - o>

= expected total inventory cost per unit time ($/unit time)

X will represent the continuous random variable denoting lead time demand (LTD). It will

have cumulative distribution function (CDF) F, density fand mean u .
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4.4 The(Q, r) Model

For demands occurring one at a time it is known that (Q, r) policy is optimal (Zipkin
2000). With (Q, r) inventory control, the buyer orders Q units as soon as the /P reaches
the reorder point, . Normally, the planning horizon is infinite and the objective is to
minimise long-run expected total inventory costs per unit time. The classical inventory
model of this type was developed by Hadley and Whitin (1963). That model includes
(average) ordering costs, inventory holding costs and backorder penalty costs. Purchase
cost is not considered, as for their model it does not depend on the decision variables - O
(batch size) and r (reorder point). The most often used expression for expected long-run

total inventory cost per unit time is (Nahmias 1997):

c@r= %+h{r+—§-—y}+é—[ A J';(x—r)f(x)dx]. (4.4.1)

The above model is an approximation of the exact cost expression. It is adequate for some
situations, assuming arrival process is Poisson, backordering is negligible and time
dependent backordering costs is not present. For details about the conditions when the

approximation might not work well, refer to Zipkin (1986b) and Chapter 2.

Because of the importance of Zheng's (1992) research on continuous review (Q, r)
modelling to this thesis, it will be helpful to review his basic model. The author models a
fully backordered, single-item, continuous review inventory system where demands arrive
at rate A. Demand is random and the relevant costs are ordering, holding and backordering
penalty. The backordering cost is taken to be per unit per unit time, 4, and the objective is
minimisation of long-run expected inventory costs per unit time. Zheng combined the
backordering and holding costs together and termed it as inventory costs. If G (y) is the
rate of accumulation of expected inventory costs at time (¢ + L7) when the inventory
position at time ¢ equals y and X is the random variable for lead time demand, i.e., total
demand during the time interval from ¢ to (¢ + L) where L7 is the constant procurement

lead time, we have:
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G () =E[hy-X)" +bX-y»"], (4.4.2)

where (x)* = max(x, 0).

With the above definition of G(3), the total cost function can be written as:
KA 1 _¢re0
C@n=—+—=[]_ G(ylay]. (4.4.3)
2 *otl-

The above model holds under the conditions that the inventory position in steady state is
uniformly distributed on the interval (r, r+() and is independent of lead time demand.
These conditions are met when a non-decreasing stochastic process with stationary
increments and continuous sample paths can model cumulative demand. Hence, this
model does not require the assumption of Poisson arrivals like Hadley and Whitin's
model. Zipkin (1986a, 1986b) shows that these conditions hold even for quite general
stochastic lead time distributions. The above cost equation assumes inventory position,
lead time demand and the decision variables, O and , are continuous. This assumption is
reasonable and is quite good as long as the order quantity is not too small (Zipkin 1986a,
1986b). If the demands and inventory positions are assumed to be discrete then the cost

function is:

r+Q

c@,n= —+—[Zy=,+, G(y)l (4.4.4)

In the above case, the steady state inventory position is uniform in the interval {r+1,
r+2,.., r+Q}. Zheng studies the continuous cost function because of ease of comparison to

EOQ model (with backordering) where Q and r are typically assumed to be continuous. It
can be shown that under a given (Q, r) policy, () = (1/Q) [ °E(y-X )*dyand
y=r

EB) = (1/Q) I;:,QE(X—y)*dy, and it can also be verified that E(J) = (% +r-LTA)+

E(B).
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Using this relation, (4.4.3) can be written as:

C(Q,r= % + RE(I) + bE(B) = %+h(—§—+r _LTA)+ (A +B)EB).  (44.5)

Zipkin (1986b) proved the joint convexity of E(B) in Q and r for (4.4.5). All other terms
in (4.4.5) are clearly convex; so C(Q, r) is also jointly convex in Q and r. Note that the

term G(y) of (4.4.3) can also be written as:

G) = (h + b) j :0 F(t)dt+b{LTA-y), (4.4.6)
which implies:
c@.n= %’Hé J'yQ [(h+b) [ F(t)de+b(L"A~y)]dy, (4.4.7)

where L7A = 4, is the mean lead time demand.

The joint convexity in Q and r makes possible the sequential minimisation of the above
cost function — first with respect to r and then with respect to to Q. The first-order
condition with respect to » (with Q fixed) for the optimal reorder point, r*, is then,
r = r¥Q) (for any Q > 0) if and only if, G(r) = G(r+Q) with G(y) defined as in (4.4.6).
Then the problem becomes that of minimising C(Q, 7*(Q)). Defining H(Q) = G(r*(Q)), it

can be shown that the cost function becomes:

Kd I ¢e
Q)= —+— H(y)dy. 4438
@= T+5 | H )by (4.4.8)

The convexity of the cost function gives the optimality condition for optimal batch size,
Q', as H(Q* = C(Q% and, finally, (Q* r*) is optimal for C(Q, r) if and only if
C(@*, ™) = G(r*) = G(r*+ 0%).
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Even with these simultaneous equations it might be difficult to solve for the optimal
values. While for a given Q, the optimal r is independent of K, assuming r* is selected
properly, O* will depend on both ordering costs and inventory costs. Results comparing
the stochastic model with an EOQ model with backordering have already been discussed

in Chapter 2.

In the above model, the main random variable of interest is the lead time demand (LTD).
Though Zheng's model assumed that the variability in LTD stems from stochastic demand
(assuming supply lead time to be deterministic), all the results hold even if the variability
in the LTD stems from the lead time duration (with demand constant), or even if both lead
time duration and demand are stochastic (Zipkin 2000). For stochastic lead times, it is

necessary to assume an exogenous and sequential system, like ours, for the results to hold.
4.S The (Q, r) Model with Reduced Lead Time

Suppose, at the request of the buyer, the supplier decides to reduce the lead time duration.
In this section, we develop a (Q, r) model with reduced supply lead time. In the next
section we will incorporate the investment costs required to reduce the supply lead time.
Any reduction in lead time duration will change the LTD. We assume « to be the decision
variable that signifies the reduction of LTD due to a change in lead time duration. Let the
new "reduced" LTD random variable be X . A particular form of transformation that

allows us to reduce mean and variability simultaneously is simply:
X=aX (4.5.1)

In this case, £(X) = au and Var(X) = oVar(X), both decrease when a declines. Note
that the transformation is not general in the sense that it assumes that the standard
deviation (std) and mean of the LTD decline by the same fraction, i.e., the CV (co-
efficient of variation) remains constant. This modelling approach is reasonable given the
literature that indicates that as the absolute mean lead time is reduced, it will also reduce

the absolute lead time variation and the CV will remain almost constant (Ballou 1998).
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The transformation in (4.5.1) does not assume any particular lead time demand
distribution, unlike models in the literature which are generally based on normal LTD
distribution. Since in our case the investment cost required to reduce a will also be quite

general, the transformation in (4.5.1) is not as restrictive as it may seem.

Proposition 4.5.1: For only non-negative values, X of the form of (4.5.1) is stochastically

non-decreasing in a.
Proof: diE[W(zi’ N= E[i[l//(z\" Nl = E[i[w(aﬂ’ N] = Ely,(aX)X]. As long as yis
a da da

increasing and X is non-negative, it is clear that X is stochastically non-decreasing in

(Ross 1983). For a related proof also refer to Bookbinder and Cakanyildirim (1999). R

This transformation was used by Gupta and Gerchak (1995), Bookbinder and
Cakanyildirim (1999) and Gerchak and He (2000). While ideally the only restriction on «
should be a > 0, for an existing system it makes sense to have 0 < < 1 with &= 1 as the
status-quo. When a = 0, both the mean and the variance of the lead time duration, and

hence the LTD, are also equal to zero.

We can now develop the cost model from the buyer's viewpoint. It is known that the
limiting distributions of the random variables /L, /P and lead time demand (X) are related
by IL = IP — X. Since, IP and X are independent, and if /P, X, Q and r are taken as
continuous, then /P is uniformly distributed between r and (r + Q) (Zipkin 1986a). IL is
related to J and B by IL = I - B. The expected value of the difference of two random

variables is the difference of their expected values. Thus:

E () = E(B) + E(IP) - E(X). (4.5.2)
Replacing X by X (from 4.5.1), we have:

E() =EB)+E(UP)-E(X), (4.5.3)

and hE(l) + bE(B) = h{E(B) + E(IP) - E(X )} + bE(B)
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= (h + b)E(B) + h{E(IP) — E(X)}. (4.5.4)

Hence, with the transformation, we can write the expected long-run total inventory cost

per unit time as:

Expected total inventory cost / unit ttime=C (Q, r, a)
= Set-up/Ordering cost + Holding Cost + Backordering Cost + Purchase Cost

= %+h£(l)+b£(3)+cz

= % + (h + B)E(B) + h{E(IP) — E(X )}+ cA. (4.5.5)

As IP is uniformly distributed between » and (r+Q), by conditioning and unconditioning

on /P we obtain the following expression:

E(P) -é- [ r_+rQE'(IP=s ) ds, (4.5.6)

and E(B) -é- j’Q E(B|IP =s)ds. (4.5.7)
Note that (BI IP = s) represents the backorder level given that the inventory position at
which the order is placed is s. When /P = s and the lead time demand variable is X,

( B|IP = 5) is defined as follows:

(B|IP=s) =0 if X<s
=(%-s) if 25

= (B|IP=s) =0 if  ax<s(from4.5.1)
=(axx~-s) if ax2s
= (B|I/P=s) =0 if x<s/a
=(ax-s) if x2s/a.
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The above is quite straightforward. If the LTD is more than the /P at which the order is

placed, then there will be backordering; otherwise there will be no backordering.

Therefore, E(BIP=s) = E/a)(i -5 )fx)dx

=" (ax-s)fx)dx

(s/a)

=a j:/a)(x—i-)j(x)dx.
From (4.5.7) and E(B|IP = s ) we obtain:
_ 1 r+Q _ - 3 r+Q o __{.
E@) =5 [ E(BlP=s) =3 [ (], (s~ 2) fnydys. (4.5.8)

From (4.5.6), E(IP) can be easily seen to be:

L r+0p r?
)

=r+(Q/2). (4.5.9)
From (4.5.5), (4.5.8) and (4.5.9) and recalling that E(X)= au, we have:

EUP) = é [CE(IP=s)ds -

c,r a)

_ KA 0 (h+b)a pr+e , = s

= —Q—+h{r+?—ap}+——Q— J‘ {L”a)(x—;)j(x)dx}ds +cA. (4.5.10)
. . . @® -] S

Simplifying, L . { L_(”a)( x—;) fix)dx}ds

= AL P s

Jorras FxIx s
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(x-—é—) F(x)dx, (4.5.11)

IO
x=(r/a)

where F=1-F

Similarly, J:”Q { I B (x— s ) f(x)dx

xu(s/ax) a

= aI:#r+Q)/a(x- - -;Q )F(x)dx ’ (4.5-12)

Now (4.5.10) can be written as:

r+
(4

Q

ao,r, a)= %+h{r+—2——ay}+M

Q)1+ea, (4.5.13)

r

[N(—)-N(
a

where N(y/a) = J:(y/a) [x—(y/«a )]75( x)dx . Note that F still represents the distribution

of the original LTD.

Another way of representing C(Q, r, @) is to simplify the term hE(J) + bE(B). Proceeding

as in (4.5.8) we can easily show that:

E(l) = % IQ { J’”"”(i—x) fx)dx}ds. (4.5.14)

0

Replacing (4.5.8) and (4.5.14) and simplifying we obtain:

hE(I) + bE(B)

= L e [ + wat [, (x-2) feodepyas

1 pre0 s s (s/a)
= ) j {ha(;)F(;)—han x flx)dx

(s/a)

+bafu- |

0

x flx)dx] - ba(i)[l - F(-‘S;)J} ds
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= -I“ng {(’H'b)GI(‘/“F(x)dea(#—i)}ds, (4.5.15)
Q- 0 a

and
CQr, a)
= %+h£(1)+bE(B)+cﬁ.

=K 2 ["Glay)dy+eh, (4.5.16)

Q Q-

where G(a, y) = (h+b) jo(y,a)F(x)dx+b(,u—£).

While both (4.5.13) and (4.5.16) represent the same expected long-run total inventory
costs per unit time for the buyer, depending on the circumstances use of one might be
preferable than the other. This cost model is "exact" under the assumptions that
cumulative demand can be modelled by a non-decreasing stochastic process with
stationary increments and continuous sample paths and the supply system is exogenous
and sequential. Under these conditions, it is applicable for stochastic lead time demand
and more than one order outstanding, regardless of whether the variability arises from
demand or supply lead time. Remember that in our case demand is constant and variability

is due to lead time duration.
4.5.1 Mean Preserving Transformation

Another transformation that can be used keeps the mean LTD constant, while variability

decreases with « (hence called a Mean Preserving Transformation). In that case, the

"reduced" lead time demand random variable X will be given by:

X=aX+(1-au (4.5.17)
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Note that, E(X) = aE(X)+(-a)u= au+(-a)u=u (for all a) and Var(X) =
a’Var(X). Not only does the variance of the transformed variable increase in «, the

transformed random variable become more variable in the general notion of variability

(for more details refer to Gerchak and He 2000). Since the mean of the transformed
variable remains the same for all @ and X is non-negative for all &, to prove the assertion
about variability we have to show that for X of the form of (4.5.17), E[y X )] is non-
decreasing in @ where is a convex function (Ross 1983).
Proposition 4.5.2: X of the form of (4.5.17) becomes more variable as « increases.

d S d s d
Proof: — E[y(X)]= E[—[w(X)]] = E[——[y(aX +(1-a)u)]]

da da da
= Efw, [(X —u)a+u](X -pu)]. Replacing the random variable Y for oX - 1) (note

1
that £(Y) =0) we have, Ef/y, [(X-u)a+ u]J(X - u)] = -&-E[WQ(Y+;1)Y] .
0 « -

However, Efy (Y +p)Y] = Loyy/a(y+/1)f(y)dy+ L yw.(y+u)f(y)dy. Since y

is convex, it implies that Va is increasing and hence,

[ ywaly+m)f(y)dy+ [ ywa(y+u)f(y)dy
> [ ywa(u)f(y)dy+ [ yw(u)f(y)dy.
Since, [ ywal ) (3)dy+ [ ywa(s)f (y)dy =po(u)E(Y) =0 and a2 0, it is cloar

that ?j—E [w(X )] =0 and hence, E[y{ X )] is non-decreasing in a. Hence proved.®
a

With the transformation of (4.5.17),

_a reQ e s—(l—-a)u
EB)= 5 [N E: —5) findx)ds,

x=s/a

and EUP) = r+(Q/2).
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So, the long-run expected inventory costs per unit time for the buyer will be given by

(after some simplification):

_K1 Q_
O, r, a)= ) +h{r+2 H}+
(h+Qb)az [N(r—(l—a)#)_N((r+Q);(1*a)ﬂ)]+c,1, (4.5.18)

Though the transformation (4.5.17) was used by Gerchak and Parlar (1991) and Gerchak
and Mossman (1992), some reflection on (Q, r) models leads to the realisation that, in
general, changes only in the mean lead time demand confer no cost benefits, do not
change @, and change r by the same amount as change in the mean. Thus the
transformations (4.5.1) and (4.5.17) are essentially equivalent here. This is formally
proved in Appendix 4.1. In particular, for constant demand, as in our model, reduction
only in mean lead time duration reduces only the mean lead time demand and hence has
no effect on Q or C. Since the transformation in (4.5.1) is simpler to work with
analytically, we will adopt it as our model. This result implies that in the domain of the

(Q, r) model, MPT as a technique has virtually no added significance.

4.6 The (Q, r) Model with Investments in Lead Time Reduction

In Section 4.5 we developed (Q, r) cost models with reduced lead time duration. However,
both cost equations (4.5.13) and (4.5.16) have ignored the costs needed to achieve a
reduction in lead time. Using the transformation, the parameter we invest in reducing is &
(assuming demand is constant). If there was no cost in reducing «, the inventory policy
we will be following will be the EOQ model with backordering (which is a first-order
approximation of the stochastic model). Zheng (1992, pgs 94-95) shows that the cost of
the optimal EOQ model with backordering will always be less than that of the optimal

stochastic model cost with backordering. If the cost of changing « is nil, the best option
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for the buyer is obviously @ = 0. But, as we have already mentioned, most of the time

there will be a cost associated with reducing a.

While the functional form of the investment needed to reduce «a will be case specific, it is
reasonable to assume that such costs will be decreasing convex in «, i.e., successive
reductions in « will require larger and larger investments per unit reduction. Let the
investment function to reduce « be denoted by M(a). A reduction of @ means a reduction
in both the mean and variance of the lead time duration, and therefore a reduction in the
mean and variance of the lead time demand. Though, at this point, we do not specify any
particular form for M( ), we assume that there is a finite cost to maintain the status-quo
lead time duration distribution (i.e., M(1) is finite) and that the cost to reduce the mean
and variance of the lead time to zero {i.e., M(0)} is essentially infinite. From this

preamble, it is reasonable to assume that M{ « ) has the following characteristics:

M(a) 20, M(a)<0, M, (a)=20. (4.6.1)

From an "engineering" perspective, M(«) might be very different from investment to

investment.

To get further insights into how companies invest in reducing lead time in practice, we
contacted several Canadian companies. Their experience seems to suggest that investment
in reducing « by the supplier can be of two main types: i) Recurring investment, where
M(«a) represents each instalment, and ii) One-time investment, where M(a) represents

that investment.

Recurring investments can be incurred: i) Per unit (e.g., use of more skilled labour that

reduces processing time but increases per unit variable cost), or ii) Per cycle (e.g., costlier
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but faster transportation each cycle), or iii) Per unit time (e.g., special maintenance checks

each period by the supplier to decrease machine downtime).

The one-time investment might also be of three types depending on whether the life of the
investment depends on: i) Number of units produced by the investment (e.g., a test
equipment or machine that can be used for certain number of parts), or ii) Number of
cycles it can be used (e.g., an apparatus that can reduce set-up time but can be used only
certain number of cycles), or iii) Lifetime of its use (e.g., lease of an IT facility valid for

certain amount of time).

Let us explain the concept in some more detail. When the buyer requests the supplier to
reduce the lead time duration, the supplier examines its own facility and notes that the
greatest opportunity to reduce supply lead time lies in reducing transportation time.
Suppose at status-quo, the supplier is using rail for transportation. To reduce its lead time,
it decides to use trucks. While it will reduce both the mean and variability of lead time
duration (and so the mean and variability of lead time demand), the supplier has to incur
an extra cost per cycle for transportation (Ballou 1998) which it will pass on to the buyer.
The supplier can reduce the mean and variability of lead time duration further by using air
transport which will require even more cost per cycle on the part of the buyer to be paid to
the supplier. As « is getting reduced from rail to truck to air (i.e., both mean and
variability of lead time duration and lead time demand), the buyer is incurring an extra

cost; however, this extra cost is a recurring cost per cycle.

On the other hand, the most opportunity to reduce the mean and variability of supply lead
time may be in using more skilled labourers that will reduce the processing time. Such an
action will increase the direct labour cost for the supplier, which it will pass on to the

buyer. In this case, the buyer will be paying a price premium every unit for early delivery.
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Though both types of investment lead to a reduction of «, the "physical” type of
investment done by the supplier and the effect of the extra cost passed on to the buyer is
very different. In practice, the opportunities for improvement most likely will be finite and
hence M{(a) will have a finite number of discrete values; but for analytical simplicity, we

assume M( @) to be continuous.

By focusing on the different nature of investments and amortisation schemes we have
been able to make our model general enough to be used in diverse models of lead time
reduction related to transportation, maintenance and capital expenditure, as is evident
from the examples given above. Most previous articles seem to focus on recurring
investments per unit time or one-time investment where the life of the investment depends

on lifetime of its use.

Depending on the nature of the relationship, only a fraction, say 8 (0 < 8 < 1), rather than
all of the investment might be passed on by the supplier to the buyer. One of the cases
where €= 1 is for an in-house supplier and then both the buyer and the supplier are parts
of the same organisation. Though we assumed that the investment would be relation-
specific, in reality, there might be cases where the investment in supply lead time
reduction can benefit a number of buyers. Then it might be reasonable to allocate some
part of the investment for the particular buyer and the fraction of the investment to be
allocated (€ ) can be decided by negotiation (for some related ideas about this type of
investment allocation refer to Gerchak and Gupta 1991). However, some types of
investments, e.g., changing the transportation mode that is used solely for one particular
buyer, will require no investment allocation. In that case, whether & should be equal to 1

or less than 1 will be dependent on the nature of the buyer-supplier relationship.

Thus, the nature of the investment will result in 6 different types of models. While the

basic inventory model has been already discussed, we will now illustrate how the nature
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of the investment will affect modelling. For analytical simplicity we will assume that the
one time investment will have a long life, so that as an approximation we can assume

infinite life (this approximation works well; refer to literature review of Nye 1997).

We will use the following additional notation to signify the different investment functions
and amortisation schemes: M*'?(@) where the first superscript indicates whether the
investment is one-time (1) or recurring (R). The second superscript signifies whether the
investment is done per unit (U), per cycle (C) or per period (7) for recurring investment or
whether the life of the investment depends on the number of units produced (U), cycles
(C) or periods (7) it will be used for one-time investment. For example, M*“(a) represents
each instalment of a recurring investment done each cycle and M'Y(a) represents a one-
time investment where its life depends on the number of units produced. If only a fraction
6 of the investment costs is passed on, then Table 4.6.1 shows the effects on C(Q, r, @) in
(4.5.13), depending on the nature of the investment. Note that here we are assuming that
the supplier can reduce the lead time by making any une of the investments, i.e., the
investments are mutually exclusive. In reality, there may be cases where more than one
type of investment can be done simultaneously. It will only result in more complex cost

functions and we leave it for future research.
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Table 4.6.1: Cost Models with Different Investment Functions

Type of Investment Incurred Changes in C (Q, r, a) of (4.5.13)

Investment

1A) Per unit creplaced by c(a) =c + oM*Y(a) and

h by h(a) =ic(a)

Recurring | 1B) Per cycle ?K replaced by K(a) = K + 6M*“(a)

1C) Per unit time Extra term OM"(a)

2A) Life depends on the | *¢ replaced by (@) = ¢ + [8M'Y( a)(i/A)] and

number of units
h by h(a) =ic(a)
produced

2B) Life depends on the | Extra term [{8M'(@)i}/(V O)I(V/Q) = M ()i

One time number of cycles used

2C) Life depends on the | Extra term M’ ()i
length of use

? In this case, we can view the situation as if the cost per set-up has increased from X to
[K + 6M*C(a)] while length of the set-up time (and hence lead time) has decreased. This
model is a mixture of two cases: i) increased set-up cost, and ii) reduced lead time.

? Note that while Gerchak and Parlar (1991) referred to this type of investment, they did
not take into account the effect on holding costs. For Models 1A and 2A, both the
purchase and the holding cost will be affected. Though less safety stock may be required,
each unit will cost more to procure and hold.
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The developments of the recurring investment models are relatively straightforward.
Model 1A:

If there is a recurring unit investment of M*"(a) per unit and a fraction & of it is decided to
be passed on to the buyer, then the buyer has to pay a purchase price of
(@) =c + Y a) per unit and the holding cost will be A(a) = ic(a) (as a decreases both
the purchase price and the holding cost goes up). Hence, the purchase cost, ¢, in (4.5.13)

or (4.5.16) will be replaced by ¢(a) and the holding cost per unit per time, A, by h(a).
Model 1B:

If there is a recurring per cycle investment of M ‘() each cycle and a fraction 6 of it is
passed on, then though there will be no effect on the purchase or the hclding cost, the
effective set-up cost per cycle, K(a@) = K + M (), will change with a. As « decreases,

the buyer has to pay an increased effective set-up cost.
Model 1C:

If there is a recurring investment of M*’(a) each unit of time and a fraction & of it is
passed on, then there will be an extra cost, 8M*'(a), to be paid lumpsum by the buyer
every unit of time (e.g., a lumpsum annual amount) and this amount will increase as «

decreases.
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The development of the one-time investment models particularly those for Models 2A and

2B, are more involved.
Model 2A:

Suppose that a one-time investment M'Y(a) is made by the supplier and the life of the
investment depends on the number of units produced. Assuming that the investment lasts
for a large number of units, i.e., it has an infinitely large life, and a fraction @ of the

investment is passed on:

Amortised investment / year (assuming the unit of time to be a year) = OM'Y(a)i.
MY (a)i
—

MY (a)i
—

As « decreases, the buyer has to pay a price premium for early delivery. The holding

MY(iax)i
A

The price increase per unit (since A is the annual demand) =

After the investment, the unit purchase price will be: c(a@ ) = c+

cost/unit/time will now be: A(a) = i(c + ). As ¢, i and A are constants, A(a)

has the same properties as M’/ (a), i.e., (@) 20, h(2)<0, h_(a)=0.

Hence, after the investment, the new long-run average total inventory cost for the buyer

will be (from (4.5.13)):

c@.r,ey=" 2 hayrre Loy OIS [yt rtQ) M),
(0] 2 o a a i
(4.6.2)
where i(a) =i(c + QM—WZ(—Q{) .

Note that for Models 1A and 2A, both the purchase cost and the holding cost are functions

of the decision variable o Hence, purchase cost must be a part of our "total inventory
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cost" unlike the traditional (Q, r) models where purchase cost is independent of decision

variables and hence can be ignored for cost minimisation purpose.

Model 2B:

Suppose that the supplier has to make a one-time investment of M’S(a) that will have a
lifetime of 7€ order cycles. Since each time period has (/Q) order cycles, the investment
will have a lifetime of N©= T</(1/Q) time periods. If the supplier wishes to pass on a cost

of 6M' C(a), the equivalent cost per period will be (Fraser et al. 2000):

1c . . \NC
oM (a)z(}-*—z) . 4.6.3)
(1+i)¥ -1
If there are (A/Q) > 1 cycles per period, then the cost per cycle for the supplier that will be

passed on to the buyer will be:

[6M '€ ()il + i)* V[A+D)¥ -1]
A/Q '

(4.6.4)

If N€ is large, then (4.6.4) becomes approximately [8M'(a)i]/(/Q) (Fraser et al. 2000).
However, since there will be (4/Q) cycles per unit time for the buyer, the "approximate”

cost expression for the buyer will only have an extra term of M’ €(a)i.

If the approximation that N€ is large is not applicable, then the "exact" cost function of the

buyer will have an extra term [6M'C(a)i(1+i)" V[(1+§)"  —1]which itself will contain
both the decision variables, z and Q. Note that we only show the "approximate" total cost
expression in Table 4.6.1 and it will be taken as the cost expression for Model 2B unless

otherwise indicated.
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Model 2C:

The development of Model 2C is relatively straightforward. Suppose that a one-time
investment M'"(a) is made by the supplier and the life of the investment depends on the
number of units produced. Assuming the investment has an infinitely large life and a
fraction @ of the investment is passed on, the amortised investment / year (assuming unit
of time to be year) = M'7(a)i, and so the only effect on the cost function will be in the

form of an extra term.

We note that in Models 1A and 2A, the additional cost factored into the purchase price
affects the holding costs. Some might argue that in the remaining models the additional
costs should also be factored into the purchase price and influence holding costs.
However, for decision-making purposes it is necessary to emphasise the "engineering"
aspects of the investment, and it will not be proper to roll the additional cycle or period

costs into the effective purchase price (or acquisition cost) of the product.
4.7 Convexity Analysis

The buyer's objective is to minimise the cost function C in Table 4.6.1 by proper selection
of the values of the three decision variables - Q, r and a. The optimal decision variable
values for the buyer will be different depending on the type of the investment done by the
supplier and how it is passed on to the buyer. Hence, it is important for the buyer to

consider that issue before deciding on its optimal strategy.

In this section, we concentrate on investigating the convexity of the cost function. If
proven so, first-order conditions (FOCs) will be both necessary and sufficient to determine

the optimum decision variable values. Let us first analyse the cost equation (4.5.5):

KA 0

cQ,r,a)= E +(h+b)E(B)+h{-E+r—a,u }+ cA. 4.7.1)

Proposition 4.7.1: The cost function of (4.7.1) is jointly convex in Q, r and a.
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Proof: In a (0O, r) policy, an order is placed whenever the IP reaches r. A backorder will
occur only when the lead time demand exceeds the inventory position at which the order

was placed and if it is less, then there will be no backorder. Hence, we can write, £(B) =

E; »(max(X ~IP),0).

For our case, X = aX and IP is uniformly distributed over (r, r + Q). So we can substitute
IP = r + QU where U is uniform on (0, 1] and X = aX. To prove the joint convexity of
E(B) it is sufficient to show that max {(aX - r - QU), 0} is jointly convex in O, r and « for
fixed values of (X, U) (Zhang 1998). It is obvious that (aX - r - QU) is jointly convex in
the three decision variables O, r and « for fixed values of X and U. As max {g(.), 0} is

convex for any convex function g(.), E(B) is also jointly convex in Q, r and a. As the

other terms of (4.7.1) are clearly convex, we can say that the cost function of (4.7.1) is

jointly convex in Q, r and a. »

While the basic inventory cost model with transformed LTD is jointly convex in Q, r and
@, it is not clear what will happen when the investment cost is also taken into account (i.e.,

models of Table 4.6.1).

Proposition 4.7.2: Models 1C, 2C and 2B of Table 4.6.1 are jointly convex in the three

decision variables, Q, r and a.
Proof: For Models 1C, 2C and 2B, the only difference in the cost function from (4.7.1) is

an extra term. Since the investment function is by assumption convex in ¢, it is clear that
the extra term, which is independent of Q and r, will be convex in « for all the three
models. So, the cost equations for these three models are jointly convex in Q, r and e even

after taking the investment cost into account. .

For the "exact" Model 2B, we can show that the sufficient condition for joint convexity
will be that (M'C.)(M'C) > (M'C,)* (Appendix 4.2). This condition is satisfied by
decreasing convex investment functions like power (4a”, 4, a > 0) and logarithmic

(A(1-In(@)), 4 > 0) used by Porteus (1985).
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Proposition 4.7.3: A sufficient condition for joint convexity of Model 1B in Table 4.6.1
is 2(M )M = (ML)
Proof: Refer to Appendix 4.3. [ |

Obviously this condition is also satisfied by decreasing convex investment functions like

power (4a°, A, a > 0) and logarithmic (4(1-In(@)), 4 > 0).

Proposition 4.7.4: Models 1A and 2A of Table 4.6.1 are jointly convex in @ and r for a
fixed a and also convex in « for fixed Q and r.

Proof: For joint convexity of Models 1A and 2A with respect to Q and r for a fixed «
refer to Zheng (1992). For convexity with respect to « for fixed Q and r refer to Appendix
4.4. [ |

Models 1A and 2A are not, in general, jointly convex in Q, r and «. While E(J) is convex,
and so is #(a) = ic(a), the product of two convex functions may not be convex®. A
sufficient condition for these mo dels to be convex is the joint convexity in Q, r and a of
h(a@)E(l) (since E(B) is jointly convex in the three variables and c(a) is by assumption

convex in @), i.e., joint convexity in Q, r and @ of:
ha r+Q (s/a)
—(Q / f [ L (s—ax)f(x)dx]ds. 4.7.2)

To obtain more insights into the behaviour of the cost functions, we did extensive
numerical experiments with different types of LTD distributions, e.g., exponential,
logistic, and gamma, and different types of investment functions, e.g., power and

logarithmic (details given in Section 4.9). From our numerical experiments, the cost

‘ Example: f= -log x, g = x*; while £ and g are individually convex for all positive values
of x, (fg) is not convex for all positive values of x. A sufficient condition for product of
two convex functions to be convex is that both of them are monotone of the same sign.
We cannot guarantee this in our case.
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functions, while not necessarily convex, seems to be "univalleyed”’ in the relevant region

of the decision variables, i.e.,

1 retapQ%a) d h A
—(aG(a, dy+—=——=0, 4.7.3
o) [re)  [gg(aG(ay)idy+== (4.7.3)
where O*(a) and r*(a) denote optimal Q and r for a given ¢, has a unique solution in the
relevant region of o, 0 < a < 1 (Appendix 4.5). If C is "univalleyed", FOCs are both
necessary and sufficient to determine the optimum values of the decision variables. If

there is no solution, it implies that o* = 1 (as « tends towards 0, the cost will tend towards

oc, but is finite for a@=1).

In the previous sections, the assumption was that the demand is constant and the
variability in lead time demand is solely due to lead time duration variability. In that case
if we know the demand rate (1), and the mean (z) and variance (o) of the status-quo lead
time demand (a = 1), then from the optimal value of @, a*, we can deduce the optimal
mean and variability of lead time duration from the buyer's viewpoint (Appendix 4.6).
However, all our previous analytical results and the insights in the following sections are
based on the lead time demand distribution and not on the lead time duration distribution.
Hence, even if the demand is random, we can proceed as before and determine the optimal
value of a. When the demand is random, the variability in lead time demand comes from
both demand and lead time duration and then the mean and the variance of the lead time
demand is given by (Nahmias 1997):

“=Au, (4.7.4)
and & = (o) + A(ar), (4.7.5)

* We use the term univalleyed in a cost minimisation in the same sense as unimodality is
used for profit maximisation.
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where u and o are the respective mean and variance of the lead time demand distribution,
4 and (o1)? are the respective mean and variance of the lead time duration distribution and
A and (o)? are the respective mean and variance of the demand distribution. As long as
the reduction in lead time demand is solely due to lead time duration reduction and the
mean and variance of the demand remains the same for all lead time, we can still deduce
the optimal mean and variance of lead time duration (Appendix 4.6). Though the analysis
in this chapter, including the numerical examples, is based on a constant demand, in fact,
the model is much more general and can be used even with random demand. The exact
values in the numerical examples might vary but the insights, we believe, will remain the
same. However, note that when demand is random a change in only the mean lead time

duration will change both the variance, as well as the mean, of the LTD.
4.8 Analytical Comparative Statics of 0* and r* with respect to o

A careful examination of the 6 models of Table 4.6.1 reveals that for constant ; and A,

Models 1A and 2A are structurally similar (with M*Y(@) in Model 1A replaced by

M'Y(a)i
—————1in Model 2A), Models 1C and 2C are structurally similar (with MRT(a) in

Model 1C replaced by M'’(a)i in Model 2C) and Models 2B and 2C are structurally
similar (M’7(a) in Model 2C replaced by M'“(a) in Model 2B). Hence, we can restrict our
detailed analysis to 3 basic models: 1A, 1B and 1C, which from now on we will refer to as

"unit", "cycle" and "time" models respectively.

In this section we will perform the comparative statics of O* and »* with respect to « for
the unit, cycle and time models. In other words, we examine the effect of decreasing the
supply lead time duration on the optimal reorder point and batch size. This issue is
important from the buyer's perspective since any change in O* and 7* affects the buyer's

operations directly, e.g., warehouse size, unloading dock design, manpower planning.
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Proposition 4.8.1: For time and unit models, 7* and (r* + 0*) decreases as a decreases.

Proof: Refer to Appendix 4.7. |

It is known that any decrease in mean lead time demand only decreases r*, but has no
effect on O* and any decrease in variability of lead time demand reduces O* (De Groote
and Zheng 1997). Based on these two effects and Proposition 4.8.1, we can conclude thar
for the time and unit models, Q* will also decrease as a decreases. The effect of  on r*
and O* is intuitive since if « gets smaller, we would expect that the buyer has to hold less
safety stock (since lead time demand will be less variable) and order less in each batch

(since it will not take long for the supplier to deliver, there is no point of ordering more).

Proposition 4.8.2: For the cycle model, r* decreases as a decreases but (¥* + O*) may

increase as a decreases.
Proof: Refer to Appendix 4.7. [ |

For the cycle model, we are able to analytically show that while r* decreases as «
decreases, (r* + O0*) may increase as @ decreases. This implies that O* may increase as a
decreases. This also makes sense if we think carefully about the cycle model: as «
decreases, the effective set-up cost, K(a) = K + 6M*(a), increases. There are two
opposite effects produced: a decrease of a will reduce O* (DeGroote and Zheng 1997)
while an increase in K(@) will increase Q*. Depending on which effect is stronger, 0*
may increase as « decreases. The effect of increased effective set-up cost can be so high
that even (r* + O*) might increase as « decreases, though »* itself will always decrease as

a decreases.

Example 4.8.1: Suppose for the cycle model, the LTD has an exponential (f) distribution
and the investment functions is of the power form. The parameters have the following
values: =1, K =100, b = 18.75, ¢ = 0.75, i = 0.05, A = 87, A = 500, # = 0.001. The
values of r*(a), 0*(a) and r*(a) + Q*(«) are plotted versus « in Figures 4.8.1(a), 4.8.2(b)
and 4.8.3(c) respectively.
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It is clear that while r*(a) decreases with «, both Q*(a@) and r*(a) + O*(«) initially

decrease and then increase with a.

"

~ 4000 -
iy ;
= 2000 ’

0 0.2 0.4 0.6 0.8 1

Figure 4.8.1(a): r*(a) versus « for the Cycle Model

0 0.2 0.4 0.6 0.8 1

Figure 4.8.1(b): 0*(a) versus « for the Cycle Model
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Figure 4.8.1(c): r*(a) + Q*(a) versus a for the Cycle Model

This apparently counter-intuitive result is due to the fact that in our model the trade-off is
between a reduction in lead time duration and an increase in set-up cost. As lead time (set-
up time) is reduced, we can use that free time (capacity) to increase batch size and partly
compensate for the increase in set-up cost. As is evident from Appendix 4.7, the effect of

« for the cycle model will depend on the value of M*C ().

4.9 Numerical Examples

This section will report numerical examples explaining some of our previous assertions.
Bagchi et al. (1986) suggests that the most common LT distributions are gamma,
exponential and normal. We use the logistic distribution in place of normal as it
approximates normal distribution quite accurately while the CDF and right-tail
distribution can be obtained in closed form (refer to Gerchak and Parlar 1991 and
references therein for more details). We primarily worked with 3 LTD distributions -
exponential (), logistic (x4, f) and gamma (2, £). We used two different investment
functions for M(a) - Power, A/q, and Logarithmic, A[1 - In(a)] (for more details on the
investment functions refer to Porteus 1985).
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&  Cost Function of the Unit Model

We proved the unconditional convexity of cycle and time models, but for the unit model
we have conditions for the cost function to be convex or univalleyed. One of our first
goals for the numerical experiments was to assess the shape of the cost function for the
unit model over a wide variety of parameter settings and all combinations of LTD
distributions and investment functions. For each value of a we calculated O*(a), r*(@)
and the corresponding C(a). Recall that C is jointly convex in Q and r for a fixed o even
for the unit model. Then we plotted the cost function C(Q*(a), r*(a), a) versus a. In the
following example, we plot C(Q*(a), r*(a), @) versus a for two combinations of LTD

distribution and investment functions.

Example 4.9.1: In Figure 4.9.1(a) we plot C(Q*(a), r*(a), a) as a function of « for the
unit model with an exponential (0.00667) LTD distribution, logarithmic investment
function and the following parameter values: §=1, K =15, b =15, ¢ = 1, i = 0.00085,

A=0.1,4A=17.

In Figure 4.9.1(b), the LTD for the unit model has a logistic (150, 20.7) distribution, the
investment function is of the power form and the parameter values are as follows: 8 =1,

K=15,6=22,¢=1,i=0.025,4=0.075, A= 10.
In both the above examples, the cost function is clearly univalleyed. Similarly, in all our

numerical experiments, the cost function was univalleyed implying that there is an unique

combination of Q, r and « that minimises C even for the unit model.
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Figure 4.9.1(a): C*(a) versus a for the Unit Model (a)
(Exponential LTD Distribution, Logarithmic Investment Function)

Figure 4.9.1(b): C*(a) versus « for the Unit Model (b)
(Logistic LTD Distribution, Power Investment Function)
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= An [llustrative Example

If the trivariate cost function C(Q, 7, @) is convex or univalleyed, then the optimal values

of the decision variables can be determined from the first order conditions (FOCs). For

example, for the unit model, the cost function (4.5.16) can be written as:

Q. r, @)= % + —g— ["%G(ay )y +c(a)a,

where:
Gl y) = (h(@) +b) "7 F(x)dx +blu- o},

h(a) = ic(a),
and

c(a@) = c + M*Y(a).
For the cycle model, (4.5.16) will be:

_{K+6M"(a))i
Q

cQ,r, a % J:HQ G'(a,y)dy+cA,

where:

Glay)=h+b) [ F(x)dx + biu- (/a)},

0

and

h=ic.
For the time model, (4.5.16) will be:

aQ,r,)= %+% jr”QG'(a, y)dv+cd+0M*(a).
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For the unit model the three FOCs are (by differentiating 4.9.1):

ColQ,7, @) =0 = '%'é r’+QG(a,y)dy+g-G(a,r+Q)=0
=>0Q,r, a)-c()i=aG(a, r+Q); (4.9.4)

C{Q,r,®=0 = G(a, r)=G(ar+ Q); (4.9.5)

CLO, 7, @)=0 = é jg G(a,y)dy +g jg G, (a, y)dy+c,(a)l=0.

(4.9.6)

Similarly we can also find the FOCs for cycle and time models by differentiating (4.9.2)

and (4.9.3) respectively with respect to the decision variables - Q, r and .

We used Maple to solve the three FOCs to obtain O*, r* and o*. We might also use some
iterative technique by fixing the values of two decision variables at a time and solving for
the third one until some convergence criterion is achieved (refer to Gerchak and Parlar

1991). As long as C is univalleyed, convergence is guaranteed.

Example 4.9.2: Let us take the case of unit model with the following parameter values at

the status quo: 4=1,K=11,5=16.125,c=1, i=0.00096, 4 =0.075, A = 178.

Suppose also that at status-quo (i.e., @ = 1) the LTD is exponentially (5) distributed with a
mean of 6250 units (i.e., S = 0.00016). If we assume the unit of time to be days, then the
demand per day is 178 units (assumed constant) and the mean and standard deviation of
lead time duration is approximately 35 days. The firm is paying $1.07S5 per unit to the
supplier, including the cost of maintaining the lead time duration at status quo. The
optimal strategy for the firm at status quo will be: 0* = 5241 and r* = 57,916, i.e,
whenever the inventory position at the firm's warehouse reaches 57,916 units, the firm
will order 5241 units from the supplier. By following this inventory policy the firm will be
incurring a cost of C* = $254.20 per day. However, the firm is not satisfied with the status
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quo. It has to hold almost 10.5 months of inventory as well as order 30 days of inventory
at a time. Hence, the firm (buyer) wishes to reduce the supply lead time duration.

At the request of the buyer, the supplier looks at its operation and decides that it can
reduce the lead time duration only by making some type of recurring per unit investment
(e.g., extra labour to process each unit faster). Also the investment will be of logarithmic
type, i.e., it will cost a fixed amount to reduce a by a fixed percentage (Porteus 1985). The
supplier specifies to the buyer how much extra per unit the buyer has to pay to reduce lead
time for various values of a. In this case, the buyer has to pay extra 4.83% per unit to
bring a to 0.5, extra 9.67% per unit to bring & to 0.25 and so on. The buyer's manager
takes that into account and uses our unit model to make a decision. The optimal decision

variable values will be as follows: 0* = 3094, r* =11,412 and o* = 0.21.

The manager of the firm should instruct the supplier to invest in lead time reduction and to
reduce the mean and standard deviation of the lead time duration from 35 days to 7.35
days (more accurately the distribution itself will change; however, from managerial
viewpoint this is easier to understand). The buyer is ready to pay a price premium of close
to 11% per unit for this reduction. The buyer’s optimal reorder point will be reduced to
11,412 units, i.e., approximately 64 days inventory, and the optimal order quantity will be
approximately 17.5 days demand! Why is the buyer ready to pay the price premium? Even
after paying the premium the buyer's optimal costs will be C* = $227.50 per day, almost
10.5% less than its status-quo optimal cost. Note that there is no point of urging the
supplier to achieve "perfect delivery", at least as far as inventory cost is concerned. For
example, a mean lead time duration of 3.5 days (with standard deviation of also 3.5 days,
i.e.,, a = 0.1) will require a price premium of almost 16%. Though the optimal reorder
point will then be around 28.5 days stock and the optimal order quantity will be 14 days

demand, the optimal cost will be almost 1.3% more than the overall optimal.

In the following table (Table 4.9.1) we show the individual cost elements (purchase, set up
and holding + backordering), batch size, reorder point and cost for the unit model for this

example at status-quo and at the optimal solution.
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Table 4.9.1: Cost Elements for Example 4.9.2

Status-quo (a=1) Optimal (o= 0.21)
Batch size (units) 5241 3094
Reorder point (units) 57,916 11,412
Purchase costs ($/day) 191.35 212.06
Set up costs ($/day) 0.37 0.63
(Holding + Backordering) costs ($/day) 62.48 14.81
Total cost ($/day) 254.20 227.50

At the status-quo, the purchase cost accounted for almost 75% of the total cost and the
remaining 25% was from holding and backordering costs. In the example, we deliberately
kept the set-up cost quite small. There are two reasons for this: (i) If set-up cost is high,
then it is known that EOQ model will work quite well (Zheng 1992), and (ii) In recent
times in retail environments if the transportation cost is taken to be a part of the purchase
cost itself (i.e., transportation cost is paid for by the supplier), then the so called ordering
cost has become very low. In the optimal solution, set-up cost has gone up, though as a
percentage it is still quite small, and the purchase cost accounts for almost 93% of the total
cost. Due to reduction in supply lead time duration, the backordering and holding costs
now account for only about 7% of the total cost. We can easily develop "extreme"
examples where the advantage from investing in supply lead time reduction can be much

more significant.

What would have been the result if the buyer did not take into account that the investment
done by the supplier is of the unit type and instead assumed that it is as in cycle or time
models? With the same parameter values the optimal decision variable values for the cycle

model will be: O* = 2084, r* = 5 and o* = 0.0003, and the optimal decision variable
values for the time model will be: O* = 2033, r* = 64 and o* = 0.0022.
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Note that the optimal values will be very different than those for the unit model. If the
buyer follows any of these policies, the cost penalty will also be significant. For example,
following the optimal values of the decision variables from the time model will make the
cost almost 21% more than the optimal and following the cycle model will make it almost
33% more than the optimal. In practice, most probably the investment costs for the unit
model will be very different than that of cycle or time models and hence chances for such
mistakes will be rare. However, we want to point out here that it is important to consider
the type of investment done by the supplier in lead time reduction to arrive at the optimal

decision.

We can also develop similar examples for cycle and time models. An example of a
situation where the cycle model is appropriate is when the buyer pays for the
transportation cost separately to the supplier and the supplier feels that the only way to
reduce supply lead time is by reducing the transportation time. Then the buyer might have
to pay extra transportation cost per cycle, i.e., increased effective set-up cost. Similarly, an
example of a situation where the time model is appropriate is when the supplier feels that
it can reduce supply lead time by reducing the downtime of its machines. The buyer might
pay an extra lumpsum amount per year to the supplier to have a better maintenance

program but even after paying it, the buyer maybe better off.
Basically, there are two important insights that come out of the example:

a) If used properly, there can be substantial cost reduction from investment in supply
lead time reduction. Even after paying a price premium (for the unit model) or a
premium on the set-up cost (for the cycle model) or a lumpsum amount (for the
time model), the buyer firm can decrease its inventory costs. However, the buyer
must be careful before taking any decision. Depending on the parameter values,
the amount of cost reduction might vary. If the cost of reducing the supply lead
time is high, i.e, if 4 is high, then it might be that the status-quo is optimal.
Similarly there might also be other situations where investment in supply lead time

reduction might not make much sense. However, all these will come out of the
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analytical model we have built. Qur model will help managers in deciding when to
go for supply lead time reduction and if lead time reduction is necessary then what
should be the optimal supply lead time, and associated optimal investment and

inventory levels;
b) Our models also show that the managers must be very careful about correctly
modelling the supplier's investments in lead time reduction and which model to

use (i.e., unit or cycle or time) while deciding on the optimal decision variable

values.

Note that these models are very much in tune with the recent phenomenon of focusing on
"total" inventory cost rather than just purchase cost (Australian National Audit Office
Report 1997-98; Purchasing Online 1998). Our models are also consistent with the JIT

philosophy since we reduce the non-value added supply lead time (Stevenson 1999).

= Effect of Investment Functions

We investigated the effects of the investment functions on the model. We used
logarithmic (4{1 - In(@)]) and power (4/a) investment functions for all three LTD
distributions. For both time and unit models it is seen that for all values of ¢,
C(Q*(a), r*(a), a) is lower for the logarithmic investment than for the power and O*, r*,
a* and C* for the power investment are greater than that for the logarithmic investment
(for the same A).

Example 4.9.3: In Figure 4.9.2 we plot C(Q*(a), r*(a), a) versus « for the unit model for
exponential (0.00016) LTD distribution and the following parameter values for both the
investment functions: 8=1,K=15,6=15,c¢=1,i=0.002,4 =0.1, A =250.

The optimal decision variable values and costs for the two investments are as follows:
Logarithmic: Q% =2901, r* =9773, a* =0.2, C* =344.6.

Power: O* = 3843, r* = 24,231, o* =0.48, C* = 366.86.
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Figure 4.9.2: C*(a) versus « for Different Investment Functions
(Exponential LTD Distribution, Unit Model)

The above result is quite intuitive since for all values of a the investment for logarithmic
is less than the investment for power, except at @ = 1 when they are equal. This leads to
lower a* and hence lower r*, O* and C*. For the same reason we noted that for the cycle
model, while 7*, o* and C* follow a similar pattern, Q* for the power investment function
might be less than Q* for the logarithmic investment function. Recall that lower o* might
lead to higher O* for the cycle model.

Example 4.9.4: For the cycle model, suppose that the LTD has an exponential (0.00016)
distribution with the following parameter values: =1, K=15,5 =15, c =1, i = 0.002,
A4 =10000, 4 =250.

The optimal decision variable values and costs for the two investments are then as

follows:
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Logarithmic: O* = 70,839, r* = 14,988, a* = 0.43, C* = 416.34.
Power: 0* =66,212, r* = 24,944, o* = 0.65, C* = 424.20.

In this case while *, o* and C* are lower for the logarithmic investment than the power,
O* is higher.

Example 4.9.5: Consider another example for the cycle model where the LTD has a
gamma distribution (2, 3125) with the following parameter values: =1, K =15, b =15,
c=1,i=0.002, 4 =500, A =250.

The optimal decision variable values and costs for the two investments are then as

follows:
Logarithmic: Q* =19,972, r* =3039, o* =0.13, C* =294.35.
Power: O* = 20,494, r* = 8787, a* =0.34, C* = 304.32.

In this case all O*, r*, o* and C* are lower for the logarithmic investment than the power.
= Effect of Neglecting « for the Holding Cost in the Unit Model

As we noted before, while time and cycle models are convex, the unit model is difficult to
be proven convex or univalleyed. Convexity does hold for a unit model if we assume that
while pulr'chase cost will increase as a decreases, there will be no effect on the holding
cost (as in Gerchak and Parlar 1991 and Bookbinder and Cakanyildirim 1999). However,
we feel that it is important to take into consideration the effect on holding cost, as
otherwise the model would be underestimating the inventory cost and lead to wrong

operational decisions. Sometimes this underestimation can be quite high.
Example 4.9.6: Suppose for the unit model the LTD has an exponential (0.00016)
distribution and the investment is of the logarithmic form with the following parameter

values: =1, K=15,b=15,¢c=1,i=0.004, 4 =0.75, A = 250.
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The optimal decision variable values and costs are then as follows:

O* = 3033, r* = 34,866, a* =0.77, C* =771.72.

However, if we solve the model using the same parameters but ignoring the investment's
effect on holding cost, the optimal decision variable values and costs will then be as

follows:
O* =2834, r* =25,557, a* = 0.56, C* =736.13.

For this example the underestimation in cost is almost 4.5% (we can easily construct more
"extreme" examples). Note that when the effect on holding costs is not taken into account,
then more investment is done, and both the optimal batch size and reorder point will be
lower. In this case batch size is almost 6.5% lower and reorder point is almost 26% lower.
Ignoring the effect on holding cost can also lead to the decision of instructing the supplier
to invest in lead time reduction, when really the status-quo is optimal. Hence, it is very
important to take into consideration the effect on the holding cost along with that on the

purchase cost for the unit model.
* Approximations

Even approximations like (i) E(/L) = E(J) (assuming backordering time to be negligible as
has been used by Nahmias 1997), or (ii) one order outstanding (like Bookbinder and
Cakanyildirim 1999) for the unit model might not produce a convex cost function. Note
that the first approximation will always underestimate the "exact" model's cost while the
second approximation will always overestimate it. The only way we can prove those
approximations to be jointly convex in the three variables easily is by assuming the
holding cost to be independent of a. However, as we have already indicated, under the
assumption of holding cost being independent of a we can prove the convexity of even

the "exact" model. Hence, these approximations would not be of much use here.
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The one possible approximation that can be employed is to use the optimal decision
variable values from the model assuming that holding cost is independent of « but the
purchase cost is a function of a, which is provably convex, in unit models. Though we
noted before that such model by itself underestimates the true cost, using the decision
variable values from that model in the "true" unit model can act as an approximation. In
Example 4.9.6 such approximation will result result in a cost of 776.87, only about 0.66%
higher than the optimal cost. From our numerical experiments, again with all
combinations of the three LTD distributions and two investment functions, we can say
that this approximation will work fairly well unless 4 or i are very high. This is intuitive,
since when A or i are high the effect of holding costs will be significant. In passing, we
would also like to mention that the approximation of one order outstanding performs
poorly for highly variable LTD distributions and low K. This is in line with Zipkin's
(1986b) assertions for a standard  (Q, r) model without c. In that sense, examples with
exponential LTD with one order outstanding assumption as in Bookbinder and
Cakanyildirim (1999) are not advisable. We also noted that one-order-outstanding
approximation performs poorly for low values of 4. This is intuitive since high values of b
will naturally lead to one order being outstanding and so low values of b exposes the

model to problems.

4.10 Numerical Comparative Statics

FOCs for the exact (Q, r) model, even without ¢, are very involved and it is not possible
to obtain closed form solutions for the optimal decision variables. But De Groote and
Zheng (1997) and Zipkin (200) have performed comparative statics of an exact (Q, r)
model. While it might be possible to do some analytical comparative statics for our
trivariate cost model, it would be quite complex. Therefore, we report only numerical

comparative statics for the parameters.

For our numerical comparative statics, we also used three LTD distributions (logistic,
gamma and exponential) and two investment functions (power and logarithmic). The

focus is on the effect on optimum decision variable values rather than cost. Following are
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our results for the different parameters involved (in the following T denotes increases,

4 denotes decreases and T\ denotes that it might increase or decrease):

= System Cost Parameters

»  Set-up Cost (K)
AsK T, for unit and time models >0t Nl o T
for the cycle model >0, red, o\

As K increases, as expected O* increases for time and unit models. At the same time we
reduce our investment in « to partly compensate for possible increase in holding cost (so
a* increases). This effect on « is quite intuitive. As Q* increases, the number of orders
will decrease and so the frequency of the inventory level reaching the reorder point will
decrease. This will create an incentive for reduced investment in a In the traditional
(O, r) model, it can be shown that as K T, while 0* T, r* { (Zheng 1992). However, in

our model, under certain circumstances, r* may increase as K increases.

Example 4.10.1: Suppose for the unit model the LTD is exponentially distributed
(0.00016), the investment function is logarithmic and the parameter values are as follows:
€=1,b=15,c¢=1,i=0.002, 4 = 0.1, 1 =250.

For K = 15, the optimal decision variable values are: 0* = 2901, * = 9773, o* = 0.20.
For K = 40, the optimal decision variable values are: 0* = 4149, r* = 9651, o* =0.21.

Example 4.10.2: Suppose for the unit model the LTD has a logistic (1000, 150)
distribution, the investment function is logarithmic and the parameter values are as

follows: €=1,b=50,c¢=5,i=0.00125,4=1,4=5.

For K = 15, the optimal decision variable values are: O* = 207, r* = 1053, a* = 0.49.
For K = 40, the optimal decision variable values are: Q* = 300, r* = 1068, a* = 0.51.
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While for Example 4.10.1, r* decreases with increase in K, for Example 4.10.2, r*

increases with increase in XK.

The reason for this apparently counter-intuitive behaviour of 7* is that in some cases, the
increase in Q* alone is not enough to counterbalance the increase in @* and so r* also
needs to increase to have more safety stock. This is contrary to what Bookbinder and
Cakanyildirim (1999) reported on the effect of K on r*, i.e., they reported that even in the

presence of a, as K increases, r* will always decrease.

The effect for the cycle model is also intuitive; increasing K leads to an increase in Q* and
if O* is increasing due to K, we would expect a* to decrease. The decrease of o* will just

have an added impact on O* and we can use the reduced a* to decrease r*.

Note that as X increases, a* increases for the time and unit models. This implies that there
will be some threshold value of X which will make o* = 1 and for any K larger than the
threshold value, the status-quo will be optimal. We think that this result is important since
it shows that when X is sufficiently large then there is no point in reducing supply lead
time; rather the focus should be on set-up time (cost) reduction (refer to Chapter 5). As
both Zheng (1992) and Zipkin (2000) pointed out, when the ordering cost is large and
variability is low (i.e., EOQ type models) the more important trade-off is between the set-

up cost and the holding cost. In that case, the focus should be on reducing the set-up cost.
*  Backordering cost/unit/unit time (b)
Asb T, for unit and time models >0 TN, o,

for the cycle model ->0*T, i, o L.

It can be shown that for a traditional (Q, r) model as b increases, r* and (r* + Q*) must

increase (De Groote and Zheng 1997), while the effect on O* alone is not obvious.
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However, if we think carefully, the apparently counter-intuitive effect of b on r* we report
is not so strange. If b increases, there are three ways of compensating - reduce o*,
increase r*, or both. While in most cases both occur, if the investment cost is very small
and/or holding cost is high, it is better to reduce a* only than to increase 7*. Our model
will first try to see whether the cost of changing «a is small or not. If it is inexpensive then
it will try to lower a* as much as possible which can lead to reduced * and O* and hence
savings in holding costs. Obviously, sometimes it may be necessary to reduce a* and
increase * simultaneously. In all cases, o* will decrease and the model will compensate

by reducing O* to save on holding costs.

That this apparently counter-intuitive result makes sense can also be seen from the
following argument: Let us assume that at status-quo the backordering cost is significant.
This wiil impiy that »* will be greater than the mean lead time demand, i.e, there will be
some safety stock. Now suppose the backordering cost increases, but is finite and the cost
of changing « is zero. In that case, the optimal strategy will be the EOQ model with
backordering. For the EOQ model with backordering, it is well known that r* is always
less than the mean lead time demand as long as the backordering cost is finite (Zipkin
2000). Hence, it is clear that if the cost of changing « is zero, then even as b increases,
r* will decrease. Only when the cost of changing « is greater than some threshold value

will 7* start increasing with b.

Example 4.10.3: Suppose the LTD distribution is gamma (2, 3125) and the investment
function is of the power form for the unit model and the parameter values are as follows:

6=1,K=15,c¢=1,i=0.001,4=0.1, A =250.

For b =5, the optimal decision variable values are: O* = 5058, r* = 28,317, a* = 0.90.
For b = 40, the optimal decision variable values are: O* = 4862, r* = 31,188, a* = 0.81.
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Example 4.10.4: Suppose the LTD distribution is exponential (0.00016) and the

investment function is logarithmic for the unit model and the parameter values are as

follows: 8=1,K=15,¢=1,i=0.002,A=0.1, A =250.

For b = 15, the optimal decision variable values are: 0* = 2901, r* = 9773, o* = 0.20.
For b = 50, the optimal decision variable values are: O* = 2775, r* = 9743, o* =0.17.
While for Example 4.10.3, r* increases with increase in b, for Example 4.10.4, r*

decreases with increase in b!

For the cycle model, as b increases, a* decreases. Decreased a* increases the effective
set-up cost for this model and so O* increases. Since O* is increasing, so there might not
be any further need to raise 7* too! Only if the increase of O* is not enough to compensate

for the increased b, it will be required to increase »* also. Hence, in this case also, as &

increase, r* can either increase or decrease.

Example 4.10.5: Suppose the LTD distribution is gamma (2, 3125) and the investment
function is of the power form for the cycle model and the parameter values are as follows:

8=1,K=15,c=1,i=0.002, 4 =500, 4 =250.

For b =5, the optimal decision variable values are: 0* = 19,835, r* = 8295, o* = 0.37.
For b = 40, the optimal decision variable values are: O* = 21,057, r* = 9185, a* =0.32.

Example 4.10.6: Suppose the LTD distribution is exponential (0.00016) and the
investment function is of the logarithmic form for the cycle model and the parameter

values are as follows: =1, K=15,¢c=1,i=0.002, 4 = 10000, A = 250.

For b =5, the optimal decision variable values are: 0* = 67,961, r* = 15,203, o* =0.51.
For b = 40, the optimal decision variable values are: O* = 73,084, r* = 14,806, o* = 0.37.
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While for Example 4.10.5, r* increases with increase in b, for Example 4.10.6, r*

decreases with increase in b!

*  Holding cost/unit/unit time (h)
As we have already defined /4 = ic, the effect of 2 can be decomposed into two

parts: i) effect of i, and ii) effect of c.
Asi/c T, for unit, cycle and time models >0t rl, o

The effect of i and c on the models is intuitive. If / or ¢ is higher, holding cost per unit will

increase. Hence we would want O* and r* to be lower, to save on the holding costs. This

would require the model to reduce a*.

However, in the case of Models 2A and 2C, the effect of i and ¢ can be quite different.
This is clear from the expression of the cost functions for those two models. In those
models, if / increases, we would want the investment to be lower (implying o* will be
higher) and also we would want to hold less stock to reduce inventory holding costs. This
would lead to reduced O* and also have a downward effect on r*. However note that
increased a* itself will try to increase r*. Hence, depending on which effect is stronger, r*
will either increase or decrease. On the contrary, when c¢ increases there is no need to
reduce investment and so then o* will reduce to lower Q* and 7* so that holding costs can

be reduced.
= Investment Cost Parameters

s Investment Cost (A)
AsAT, for unit and time models - 0T, re T, o*T;
for the cycle model >0, 't a1,

Increase of 4 implies that more investment will be needed to change a. Hence, we would
not want to decrease & much and so a®* increases for unit and time models. This increase
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in a* will cause an increase in 7* also in these models. For time and unit models, while in
most cases 0* will increase with 4 to take care of the higher o*, there are instances (e.g.,
exponential LTD distribution and logarithmic investment function) when O* decreases as
A increases. This happens since the increase in r* itself is enough to "handle" the excess

supply lead time and it makes further increase in O* superfluous.

For the cycle model, an increase in A will also lead to an increase in o* to reduce the
amount of investment. Increased o* will lead to increase in r*, as in the unit and time
models. For the cycle model, any increase in o* will decrease the effective set-up cost that

will try to decrease O*. On the other hand, increased o* will try to increase Q*. From our
numerical experiments it seems that the latter effect will always dominate the former and

so for the cycle model as A4 increases, O* will tend to increase.

® Fraction of Investment cost passed on (6)
As 6T, for unit and time models >0, T, e T
for the cycle model >0t T, T

As @ increases, the supplier passes on more of the investment to the buyer. Hence, as
expected, the effect of an increase in 6 on the optimal decision variable values is similar to

that of increase in A4 for all the models.
= Demand Rate (1)
AsAT, for unit, cycle and time models 0T, re T, a*!.

This effect is more complex to explain than the other parameters. As A increases, both u
and o for LTD also increases (i.e., the distribution of the LTD itself changes). The relation
is given by: = Az and & = A’a;? as shown in (4.7.4) and (4.7.5) respectively. In this
case, O* and »* increases to take care of the increased demand while o* decreases to at

least partly "control” the increase of O* and r*. In our case we are also trying to reduce .
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So there are two opposite effects acting on the LTD distribution simultaneously - an
increase of A and decrease of a. Though from our numerical experiments we noticed the
above effects on O* and r*, we would expect that the ultimate effect on O* and r* will
depend on the overall effect of increasing A and decreasing @ on the LTD. A detailed
investigation of the effect of 4 on the decision variables for a traditional (Q, r) model can

also be found in Zipkin (2000) and De Groote and Zheng (1997).

The decrease of o* with A implies that there is a threshold value of A below which the
staus-quo will be optimal for any demand rate (i.e., &* = 1). This is intuitive, since if there
is not enough demand, then there is no point in investment in supply lead time reduction.
Such investments make sense only above a certain demand level. This result is also in line
with the assertion of Porteus (1985) regarding investment in set-up cost reduction where

he shows that such investments make sense only above a certain critical demand rate.

Example 4.10.7: Suppose the LTD distribution is exponential and the investment function
is logarithmic for the unit model and the parameter values are as follows (remember in
this case as 4 will change, the LTD distribution will also change): =1, K =15, 56 =5,
c=1,i=0.001,4=0.2, gz =25 and o = 25.

In this case for A < 7.25 (approximately), o* =1, i.e., the demand rate must be more than

7.25 units per unit time for any investment in supply lead time reduction to make sense.

Example 4.10.8: Suppose the LTD distribution is exponential and the investment function
is logarithmic for the cycle model and the parameter values are as follows: =1, K =15,

b=10,c=1,i=0.001, 4 = 10000, 24 =25 and o = 25.

In this case for A < 130 (approximately), a* =1, i.e., the demand rate must be more than

130 units per unit time for any investment to make sense.
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While the effect of A on the decision variables is important, we feel that a more interesting
issue to investigate is how the optimal cost per unit (C*/1) changes with A. It is not
surprising that a bigger company (i.e., higher demand) has higher total cost or total profit.
Though total cost or profit can be a measure of the size of the company, it cannot be a
measure of efficiency (cost per unit) or profitability (profit per unit). While this has been
recognised in ex-post financial analysis of firm's performance (e.g., Return on Investment,
Earnings per share), we have not been able to locate any significant research on this in ex-
ante stochastic operations management models. Most of the models have total cost/profit
as objective rather than cost/profit per unit. However, recently Gerchak et al. (2000) have
shown that in a newsvendor framework the optimal decision variable values for a ratio
objective can be very different from absolute objectives and using one for the other can

result in significant losses.

We plotted (C*/A) versus A for our different models. In all cases, we found that there is a
decreasing convex relation between (C*/1) and 4. We have plotted two examples in
Figures 4.10.1 and 4.10.2 - one for an exponential LTD distribution and logarithmic
investment function for the unit model (Figure 4.10.1) and another for exponential LTD
distribution and logarithmic investment function for the cycle model (Figure 4.10.2). The
decreasing convex relation is clear in both cases. This type of relation is present for all
models for all LTD distribution and investment function combinations signifying that
there are decreasing economies to scale in inventory costs. Zipkin (2000) notes that for a
traditional (Q, r) model, C* is increasing in o, becoming nearly linear for large o (i.e., for
large A, since in our model A is proportional to o). But for us « is a decision variable and
we are investing in reducing it and reduction of a will also reduce o. Hence, we would
expect that it will require a larger 4 than that in traditional (Q, r) model for C* to be
linear. In Figure 4.10.2 we plot (C*/A) at a = 1 for exponential LTD distribution and
logarithmic investment function for the cycle model and compare it to the overall optimal
model. It is clear that when we invest in reducing ¢, the economies of scale are "more"
than from traditional (Q, ) model alone. But the decreasing "convex" optimal cost per

unit signifies that even here economies of scale will disappear for "high"(er) A.

126



1.44 *
< i
* .\
| ” e \\‘—-«——o——_._*
1.28 -
0 20 40 60 80
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Figure 4.10.2: C*/A versus A for the Cycle Model at Optimal ¢ and at =1
(Exponential LTD Distribution, Logarithmic Investment Function)
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Even with its inherent limitations regarding the number and range of experiments, the
above numerical comparative statics make one thing clear - our intuitive reasoning and
even some results pertaining to traditional (Q, r) models might fail when the additional
variable a is introduced. As is evident, the cost of changing «, the type of the model and
the LTD distribution plays a big role. Since, in our trivariate model, all the three decision
variables are inter-related, depending on the cost of changing «, the model will adjust the
optimal decision variable values and this adjustment for O* and r* can be very different
from traditional models. But this interaction of three decision variables will also render

analytical comparative statics even more difficult than for existing (Q, r) models.
4.11 Conclusions and Future Research Opportunities

In this part of the research, we showed analytically and numerically the effects of
investments in supply lead time reduction in a two-party make-to-stock supply chain. We
used a continuous review (Q, r) model and incorporated the effects of reduction in lead
time duration on the model through a single variable, o. We also took into account the
cost (in the form of some investment) associated with this lead time reduction. In practice,
investments can be one-time or recurring. It might also vary depending on the nature of
the reduction needed (e.g., per unit or per cycle or per unit time). Our overall trivariate
model captured both the costs and benefits of lead time reduction for the different types of

possible investment.

The cost models were analysed in detail as to their convexity. Numerical experiments with
different LTD distributions and investment functions were performed to obtain a better
feel of the behaviour of the model. The numerical experiments clearly show not only the
benefits of investment in supply lead time reduction but also the importance of taking into
consideration the type of the investment done by the supplier and how costs are passed on
to the buyer before deciding on the optimal strategy. The complexity of the cost models
render analytical comparative statics difficult. We performed extensive numerical
comparative statics, which showed that the three decision variables are very much

interdependent. Some of the results are quite counter-intuitive.
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These new models have both technical and managerial contributions. From a technical
standpoint, we incorporated a new variable which represents the supply lead time in the
traditional (Q, r) model. There is a cost of reducing the supply lead time that depends on
the type of the investment done by the supplier. This created six analytical models and we
were able to perform the convexity and sensitivity analysis of those models. From our
analysis we were able to show that not only investments in supply lead time reduction can
result in significant savings but also that these models are "different” from traditional
(Q, r) models. Our analysis showed results that are seemingly counter-intuitive but makes

perfect sense in the new model. We were able to explain the reasons behind such counter-

intuitive results.

From a managerial perspective, we were able to show that it makes sense to invest in
supply lead time reduction. Even when the buyer is “paying" for supply lead time
reduction it can give substantial benefits. However, managers should not blindly go for
supply lead time reduction. Our models will help them in deciding when investment in
supply lead time reduction makes sense and when not to invest in such reductions. Our
models will also help decide their "optimal strategy” both in terms of inventory (reorder
point and batch size) and time (supply lead time) that will minimise their inventory costs.
In this age of large-scale outsourcing, we feel that our models can help supply chain
managers reduce inventory costs and give them a competitive advantage in the

marketplace.

In terms of scope for future research, it would be nice to prove analytically that the unit
model is univalleyed. Similarly, analytical comparative statics will be better than
numerical results. But a trivariate model without closed form solutions for any of the

decision variables (as ours is) can make such analysis extremely difficult.

One of the comparative statics that we think is particularly interesting is the consequence

of varying 4. We noted that (C*/4) is decreasing convex with respect to A. This opens up

an interesting avenue of research regarding the effect of inventory costs on market

demand. Higher demand leads to reduced unit costs. In case of make-to-stock products,

the unit cost is often related to unit price by mark-up pricing. If investment in supply lead
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time reduction brings down the unit cost, it will also lead to reduced unit price. If the
buyer is willing to pass on the reduction in cost due to lead time reduction to the final
customer (refer to Figure 4.2.1), then demand for make-to-stock products will increase
(since price-sensitive). So we can expect that a chance for increased demand will provide
more incentive for investment. We feel that an inventory model with demand being a
function of cost by its effect on price can be very interesting and give a much better
picture of the entire supply chain. One of the main goals of any cost reduction initiative is
to achieve a larger market share by increasing demand. Hence, there is a need to couple
the inventory models and the relevant marketing models to establish market effectiveness

of increased speed. In the next chapter we will address this issue.
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CHAPTER 5

LEAD TIME MANAGEMENT FOR MAKE-TO-STOCK FIRMS

5.1 Introduction

In this chapter we will develop an integrated production-marketing framework which will
allow profit-maximising make-to-stock firms to determine their optimal lead time taking
into account the costs and benefits associated with lead time reduction (Model C of
Chapter 1). In the first part of the chapter, we will focus on a general modelling
framework that forms the basis of the latter part of the chapter where we develop specific

models.

Recent studies in such diverse fields as health care (Connor et al. 1998) and grocery
industries (McGoldrick 1993) have shown that cost reduction initiatives by firms have led
to price reductions and, in turn, increased market share due to customers' price-sensitivity.
Growth in the Japanese share of the US market in the automobile industry (Nanto, Cooper
and Bass, 1995), and in electronic goods, long thought to be the domain of US
manufacturers (Zipkin 1991), can be partly attributed to the lower Japanese prices. The
price advantage stemmed largely from lower production costs (Rao 2000a). For example,
in the early 1980s, production costs of Japanese firms were about 25% lower than their
US counterparts. This allowed the Japanese firms to charge a lower selling price and
capture a larger market share (National Research Council Report 1983).

Fisher (1997) contends that for any "functional” product, one that has a reasonable life
cycle and fairly stable demand, competition is typically very high, i.e., the profit margin is
low and customer's price sensitivity is high. As we indicated in Chapter 1, these types of
market characteristics are normally seen in make-to-stock products. For such products,

customers are primarily price-sensitive; hence, the firms aim for cost leadership focusing
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on maximising efficiency and minimising costs in the supply chain (also refer to Chopra
and Meindl 2001).

Encouraged by the Japanese experience, many make-to-stock companies have invested in
process improvements to reduce costs, the most successful improvement strategies
involving capital investments (Zipkin 1991). Cachon and Fisher (1999) find that the
benefits from cost-reducing process improvements can be significantly more valuable than

those derived from information sharing.

Since inventory costs comprise a large portion of the total operating costs of many make-
to-stock firms, they have focussed specifically on inventory cost reduction as a primary
means of reducing operating costs. It is well known that reduction of either internal or
supply lead time can result in reduced inventory costs (Karmarkar 1993; Zipkin 2000;
Chapter 4 of this thesis). There are several anecdotal examples in recent literature that
show that one of the most popular process improvement techniques used by firms to
reduce their inventory cost is lead time reduction (Suri 1998; Simchi-Levi et al. 2000).
Note that while lead time reduction can yield many benefits, here we are focusing mainly

on the effects of lead time reduction on inventory costs.

Mark-up pricing is a strategy used for make-to-stock products in the manufacturing sector
(Bloch and Oliver 1997), internet pricing (Wilson 2000), apparel industry (San Francisco
Fashion Industry Report 2000) and retail industry (Wang and Zhao 2000). In mark-up
pricing, price is based on the unit operating cost plus a constant percentage mark-up (or a
constant amount) which depends on factors such as the industry and the product type (US
Department of Defense Contract Pricing Reference Guides 2000).

Traditional economists contend that mark-up pricing is not consistent with market-based
profit-maximisation pricing, i.e., marginal analysis approach. However, the simplicity of
cost-based pricing makes it a very appealing alternative for many firms. Empirical studies
have revealed that very seldom do managers use the concept of equating marginal cost to

that of marginal revenue in setting prices. Rather, most managers work in terms of mark-
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ups or profit margins as their basis for pricing (see number of references in Hay and

Morris 1991).

Despite this apparent inconsistency, it is not very difficult to relate the concept of mark-up
pricing and profit-maximising pricing (Hay and Morris 1991). In profit-maximising

pricing, we equate marginal revenue (MR) to marginal cost (MC). MR is given by:

1
demand elasticity =

MR = price(l + (5.1.1)

If MC is taken to be equal to a constant average cost, then the profit-maximising equality,
MR = MC can be simplified to show that the optimal mark-up should be inversely
proportional to the demand elasticity. This also makes intuitive sense. If there are close
substitutes existing in the market, then firms cannot charge a high mark-up. However, for
price-inelastic products the firm can extract a large price premium from customers. There
is ample evidence that firms vary the mark-up inversely with the price elasticity for the
product's demand (Bliss 1988; Hay and Morris 1991). Hence, the firms that use mark-up
pricing implicitly strive for profit maximisation pricing. However, this implicit profit
maximisation is done based on empirical evidence of the product's price elasticity and not

explicitly through a marginal analysis approach.

In environments where some make-to-stock firm has a cost advantage and knows that
customers are price-sensitive, it might use mark-up pricing. Furthermore, the popularity of
mark-up pricing is likely to be sustained because of the recent trend of cost transparency.
The cost of products is becoming more "transparent” nowadays due to widely available
information on the internet. This implies that firms now have less opportunity to extract a
price premium. Sinha (2000) postulates that, under such circumstances, customers will
pay the seller's actual costs and a "reasonable" premium, i.e., that the price should be

based on the cost and a "reasonable" mark-up.
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Keeping in mind its widespread use as a simple and effective approximation to profit-
maximising behaviour, we will assume in our research that a percentage mark-up is the
pricing technique used by make-to-stock firms. For a particular product, the mark-up
percentage will be fixed. However, the manager will decide on the constant percentage

based on her/his experience pertaining to the product’s price-elasticity.

Hay and Morris (1991) highlighted the need to link profit margins to demand conditions
facing the firm. According to their work, firms which employ mark-up pricing estimate a
unit cost based on normal ranges of production, independent of actual output (i.e., for
pricing purposes they think of their average total cost curve to be horizontal). Ignoring the
demand curve might generate substantial overestimation or underestimation of sales,
which then might make the calculated average cost incorrect. But still this approximation
is done largely to avoid the circularity that would otherwise develop of having to estimate
demand (in order to determine output and associated unit costs) before the price derived
from mark-up pricing is known. In our research, we show that even while using mark-up
pricing it is possible to tackle the issue of "circularity”. We develop models that, rather
than assuming the operating cost to be constant, explicitly take into account how the

demand affects average costs.

If some make-to-stock firm uses mark-up pricing, it may try to reduce operating costs
through some process-improving investments. The firm then has a choice of either to
reduce price to gain a greater market share or to keep the price constant and let the
increased profits flow right to the bottom line. We feel that this is a question of firm's
strategy. For many make-to-stock firms, the focus of pricing is to improve market share
rather than to maximise short-run profit. If a firm has a cost advantage and its customers
are price-sensitive, it makes sense for the firm to cut price to gain market share (Rao et al.
2000; Hay and Morris 1991) even if such cost advantage is short-lived (since the
competition will eventually catch up). The temporary advantage can be sustained within

an overall strategy of "continuous improvement".
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As Likierman (1981) points out, in competitive markets, increasing market share is
imperative for both cost competitiveness as well as market power. For example, in the
1980's Japanese firms used their lower costs to under-price North American
manufacturers. This created a perception among the customers that "Detroit" had been
overcharging them and this perception of price unfairness is hurting North American
manufacturers even to this day (Sinha 2000). Our setting is a profit-maximising firm that
deals in a make-to-stock product and has price-sensitive customers. The firm's strategy is
to attain a cost advantage in the market through process-improving investments. Qur
assumption that the firm passes on its savings from process improvements to the

customers as a price reduction in order to improve its market share is thus reasonable.

5.2 General Model

Let us consider a price-setting retailer/manufacturer (henceforth termed firm) selling a
single make-to-stock product for which customers are price-sensitive. The demand rate
for the product, A (units/unit time), depends on the unit selling price of the product, p

($/unit):

A =fi(p). (5.2.1)
The firm may be a monopolist, or may be one of several competing firms that offer similar
products. However, we do not explicitly model the competition between firms except to
assume that demand is decreasing in price (Deng and Yano, 2000).
The firm sets its price based on its total unit operating cost, m ($/unit):

P =/fam), (5.2.2)

so that:
A =fi(f2(m)). (5.2.3)
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Note that mark-up pricing is a special case of (5.2.2) where f;(m) = nm (n > 1) and
(77 - 1)*100 percent is the desired per unit contribution margin. Recall that for make-to-
stock firms operating costs consist mainly of relevant inventory costs (Chapter 1). Hence
for us, the operating costs per unit will include set-up costs, purchase and/or production
costs and inventory costs (holding and backordering). The firm can invest in projects that
will reduce operating costs, and so we also include an investment cost per unit time in the

total operating cost per unit:

m = [(set-up cost + production and/or purchase cost + inventory holding cost +

backordering cost + investment cost) per unit time] / [demand per unit time]. (5.2.4)

We note that demand depends on price, which depends on unit operating costs, which in

turn depends on demand. The firm's objective is to maximise its profit per unit time,

(P5.1) Maximise 7= (p - m)4,
subject to:
p=2m=>0and 120,
where m is given by (5.2.4), p by (5.2.2) and 4 by (5.2.1).

Theoretically, the following general procedure can be used to solve the optimisation

problem:

Step 1: Determine the relationship between A and m (as in (5.2.3)).
Step 2: Substitute (5.2.3) into (5.2.4) and obtain an explicit expression for m in terms of

the relevant decision variables, i.e.,

m = f3 (DV). (5.2.5)

Note that m may, at least initially, appear in both the numerator and denominator
of the right-hand-side of the expression in (5.2.4), and thus writing (5.2.5)

explicitly may or may not be possible.
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Step 3: Substitute (5.2.5) into (5.2.3) to express A in terms of the decision variables:

A= [ilf(fsDOVI)). (5.2.6)
Step 4: Solve the following maximisation problem for the firm:

(P5.2) Maximise 7= (p - m)A4,
subject to:
p2m=0and A 20,
where p, m and A are given by (5.2.2), (5.2.5) and (5.2.6) respectively.

In general, the above model can be used in situations where operating costs are reduced by
investments in changing some operating parameters, demand depends solely on price and
price is a known, deterministic function of the operating costs. Obviously the complexity
of the problem will vary from case to case. In our research we will be concemed with
using this model to guide decisions on investments in lead time reduction. Several

examples where our model can be used to help firms in making such decisions are:

(a) A deterministic customer demand setting where an Economic Order Quantity (EOQ)
policy is used. The firm can then invest in reducing set-up time. If we assume the set-
up time to be proportional to set-up cost, this is equivalent to investment in set-up cost
reduction (Porteus 1985). As indicated in Chapter 2, Porteus (1985) showed that
investments in reducing set-up costs can lead to decrease in relevant inventory costs
per unit time. If the firm is using mark-up pricing, then reduction in inventory cost can
reduce price and the reduced price will lead to increased demand from price-sensitive
customers. However, the demand rate is also a parameter for the original cost
minimisation problem. This implies that operating costs will be a function of the
operating variables, batch size (Q) and set-up cost (K), as will be both price and
demand. Now the firm's profit maximisation problem will have an objective function
with only batch size and set-up cost as decision variables. In Section 5.3 we develop

models to show how to determine the optimal set-up cost (time) for such investments;
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(b) A stochastic lead time demand setting where a (Q, ) policy is applied. The firm may
decide to invest in reducing the mean and/or variability of the lead time demand by
reducing the procurement lead time duration. In Chapter 4, we showed that such
investments could also lead to a decrease in expected long-term inventory cost per unit
time for the buyer, which in turn would affect the price and demand rate. In Section
5.4 we formulate models to help firms in making optimal supply lead time decisions
where the operating costs are a function of the operating variables, reorder point (r),
batch size () and lead time duration variability (@). Both price and demand, and
hence the profit, will depend on the decision variables - batch size, reorder point and

lead time duration (or demand) variability.

Our literature review shows that integrated inventory-marketing models like the ones we
develop in this chapter have not been addressed thoroughly in the traditional operations

management literature. Based on our review of previous research, we also observe that:

a) Models that consider price as an independent decision variable do not explicitly
account for the effect of operating costs on price and demand though price and
demand are related by a demand function;

b) Models that consider mark-up pricing, employ a mark-up over the production cost
only and not the entire operating cost. In addition, these models do not take into

account the investment required to affect process improvements.

Our models in this chapter will address the above two issues and show that they will have

considerable effect on the optimal decision of firms.

Since we are dealing with make-to-stock products, we assume that customer demand is
deterministic but price-sensitive (refer to Chapter 1). Also note that in the tradition of
previous researchers (e.g., Porteus 1985; Hariga 2000 and references therein) we will use

set-up cost as a surrogate for set-up time.
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5.3 Investments in Set-up Cost Reduction

In Section 5.3.1 we develop models where no investment in reducing set-up cost is
possible. These models will set the stage for Section 5.3.2 where we will deal with models

in which investments can be done in reducing the set-up cost.
5.3.1 EOQ Model with Price-Sensitive Demand and Mark-up Pricing

The basic model setting in this section is similar to that of Section 5.2, i.e., a firm
buying/producing a single make-to-stock item and selling it directly to price-sensitive
customers. We make the usual EOQ assumptions (refer to Lee and Nahmias, 1993, pg 9)
except that the demand rate, A, is a decreasing function of retail price per unit, p. We
assume that the firm uses a constant percentage mark-up over the total operating cost per
unit, m, to determine the price. Operating costs include a set-up cost of K per order, a
holding cost of % per unit per unit time and a purchase/production cost per unit, ¢. The
holding cost is assumed to consist primarily of the cost of capital invested in the
inventory. Each order is for a batch of Q units, and c is a decreasing function of Q, i.e., the
purchase/production cost exhibits economies of scale based on the batch size. The scale
economies might be due to a supplier quantity discount or economies of scale in
transportation (Lee and Rosenblatt 1986; Chopra and Meindl 2001). Since the holding
cost per unit, /4, equals ic, where i is the carrying cost per unit per unit time, it too will be a
function of Q. The firm's ordering or set-up cost per unit time is (K1 / Q); the holding cost
per unit time is (icQ / 2) and the purchase/production cost per unit time is (cA). From

(5.2.4), the firm's total operating cost per unit, m, will be given by:

%ﬁ+%+cﬂ.
= ’ 5.3.1
m 5 (5:3.1)

where c is a function of Q and 4 = ic.
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Since price depends on the operating costs and demand is a function of price, demand is
also a function of the operating costs. Note that demand itself affects the unit operating
costs. The objective of the firm is to maximise its profit per unit time, as in problem P5.2
in Section 5.2, where the only decision variable is the batch size, Q. The operating cost
per unit, m, will be obtained by solving (5.3.1) in terms of Q. A schematic representation

of the proposed system is shown in Figure 5.3.1.

» Mark-up pricing

(= 7m) l
MAKE-TO-STOCK <::l
FIRM CUSTOMER DEMAND
m = Operating cost/unit = (set-up cost + (deterministic, but
inventory holding cost price-sensitive)

+ purchase/production cost) / demand per unit time '

Figure 5.3.1: Supply Chain System for Section 5.3.1

5.3.1.1 Log-linear demand function, mark-up pricing and general non-

increasing unit purchase cost

Before analysing a general form of demand function, in this section we will assume a
particular log-linear demand function so that we are able to get better insights. We initially

choose a demand function of the form:

A=a@?), (53.2)
where a higher value of a represents higher overall potential for demand. This function
while having the desirable properties of constant demand elasticity is also analytically

tractable. Since the price is a fixed mark-up over the total operating cost per unit, m, we
have:
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p=rnm. (5.3.3)
We can now express A in terms of m as:
A=(agtm>. (5.3.9)

The per unit purchase cost function, ¢(Q), is assumed to be a general, non-increasing

function of Q. The profit function for the firm will then be:

7=(p - m)A=[arf (- 1)]m". (5.3.5)
Let
u=c(@0——, (5.3.6)
2an
and
- £Q<_+ «(0). (5.3.7)

Substituting (5.3.4) into (5.3.1) and solving for m we obtain:

1£vJ1-4uv

m=_—— 5.3.8
> (5.3.8)

As long as the discriminant of (5.3.8) is positive, both roots will be real and positive.
However, if we substitute the two roots of m in the profit function in (5.3.5), we can show
that the root corresponding to the minus sign will always give a higher profit than the root
corresponding to the plus sign (Appendix 5.1). Hence, we can ignore the root
corresponding to the plus sign for further analysis.
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For each value of Q there will thus be a single relevant m (and hence 7)) and we want to
find out the Q for which x will be maximised. Substituting the root corresponding to the
minus sign of (5.3.8) into (5.3.5) we have:

-2 _
o= 200 (01 (5.3.9)
1-+1-4uv
The firm's problem can be written as:
-2
(5.3) Maximisen = 227 (114
Q 1-1-4uv

subject to:

0<4uv<l.

We can show that under certain conditions the profit function will be semi-strictly
quasiconcave in Q for feasible Q (Appendix 5.2). When ris semi-strictly quasiconcave, a
local maximum will be the global maximum (Schaible 1981) and the optimum O* will be
given by the solution to the equation 7z = 0, and the optimal profit (7*) will be given by
substituting O* into (5.3.9).

5.3.1.2 Log-linear demand function, mark-up pricing and constant unit

purchase cost

In this section, we will analyse the case when unit purchase cost is constant, i.e., c¢(Q) = ¢
V @, and all other conditions remain the same as before. With this assumption, the
condition 0 < 4uv < 1 implies that 0 < K < [(ar"?/2ic) - Oc] and we can prove an even

stronger result about the profit function than just semi-strict quasiconcavity.

Proposition 5.3.1: For constant unit purchase/production cost, the profit function (7#) is
concave in Q for feasible Q.
Proof: Refer to Appendix 5.3. u
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The equation for 7z, = 0 will be a quadratic equation in Q - one solution will be negative

and the other positive. Since batch size should be positive, the optimum Q will be given

by:

2Kan™
ic

O*K)= %[ -2K]. (5.3.10)

Note that (5.3.10) requires only that K < (ar“?/2ic) which is less restrictive than the
condition for 1 - 4uv = 0 and so will be satisfied by all feasible K. The explicit expression
for O* in (5.3.10) also allows us to investigate analytically the nature of the optimal batch

size.

Proposition 5.3.2: O* is concave in K and reaches its maximum at K = ar*%/8ic.
Proof: Differentiating Q*(X) of (5.3.10) twice with respect to K we can easily show that
Q* is concave in K and by solving d0*(K)/0K = 0 for K, we can show that 0*(X) reaches

its maximum at K = an“%/8ic. [

The implication of Proposition 5.3.2 is interesting. In almost all types of cost minimisation
inventory models, including stochastic ones, the optimal batch size is always monotone
increasing concave in K. Our model produces different results. Though O* is still concave
in X, it is not monotone increasing. This implies that for the type of firms we are
modelling, managers must be careful about reducing batch size when set-up cost is
decreased. The explanation lies in the inter-relationship between demand and the

operating variable, batch size, itself (we will come back to this issue later).

There might be a tendency on the part of many firms to set price as a mark-up over only

the production/purchase cost. Ladany and Sternlieb (1974) analysed the profit-maximising

batch size of such a firm where price is taken to be a mark-up over purchase cost only

(i.e., p = nc(Q)). In that case, the effects of set-up cost and holding cost on the price are

not accounted for explicitly. When ¢(Q) = c (> 0) ¥ Q, then Ladany and Sternlieb’s model

will be equivalent to the traditional EOQ model where A is the demand corresponding to
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the price, 77¢c (note that all other conditions remain the same as in our model). With this

demand rate the profit maximising batch size in their model is given by:

-2
O = L |2Kan” (5.3.11)

c ic

Comparing (5.3.10) and (5.3.11), it is clear that omitting set-up and holding cost from

operating costs when determining price will lead to a different optimal batch size.

Proposition 5.3.3: O*;s > Q* for positive K and the difference will increase as K

increases and/or ¢ decreases.

Proof: O* - O* = K Hence, Q*;.s will always be greater than O* for any X' > 0. The
C

difference is linear increasing in X and convex decreasing in c. |

Since, in our model, demand and price are both functions of batch size, we would expect
that there would be such a difference. However, from a managerial standpoint, it is
important to note that if X is large and/or c is small, the difference in the optimal batch
sizes might be substantial. As K increases we would expect the set-up cost to have a larger
effect compared to purchase/production cost on the total cperating cost and hence in our
model the price and demand will be affected more, resulting in larger difference in
optimal batch sizes. On the other hand, as c¢ increases the effect of purchase/production
cost on the total unit operating cost will increase and hence the difference in the value of
optimal batch sizes will decrease. Also note that Q*;, as expected, is monotone

increasing concave in XK.

It is important to investigate the effect on the firm's profit if O*;s is used in our model
instead of Q*. Since in our model demand itself is a function of the decision variable, Q,
any type of comparison should be based on a profit function including the purchase cost
(this is unlike in the traditional EOQ model where purchase cost is independent of Q and
hence should be ignored). Comparing the profit functions we obtain:
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(0% =( u(Q") J.(l-\/l—“u(Q‘u)V(Q*u)}. (53.12)
7(Q%s) \wQ%s)) | 1-\I=2u(Q( QY

By definition, m(Q*)/2(Q*.s) = 1. In fact, this ratio can be quite large. If we plot
2(Q*)/ O*5) versus K, it appears to be increasing convex in X (refer to Figure 5.3.2 in
page 147 for a plot of this ratio for Example 5.3.1.1) with the ratio — 1 as K — 0. This
reason behind this intuitive result is same as we indicated before regarding the difference
between O*;s and Q*. As X increases, the effect of set-up costs on the total operating cost
will increase and hence it will be more harmful to use Q*;s as the optimal batch size.
However, as K — 0, purchase/production cost will be the defining element in the
operating costs and hence it will be natural to base the price just on that cost. In the

following numerical example we will show the detailed effect of using O*;s instead of

o*.

Example 5.3.1.1: The parameter values are as follows: X = 1100, i = 0.3, p = 1.2,
a = 6000, and ¢ = 1 V Q. With our model O* = 3327.71. In the Ladany and Sternlieb
model, p = 1.2 (1.2*1), so 4 = 4166.67 and thus O*;s = 5527.71. Table 5.3.1 shows the

detailed cost and revenue elements with O* and Q*;s in our model.
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Table 5.3.1: Cost and Revenue Elements with @* and Q*;s for Example 5.3.1.1

0*=3327.71 0* s=5527.71

A) Set-up cost / time 499.16 212.36

B) Holding cost / time 499.16 829.16

C) Purchase cost / time 1510.04 1067.13

D) Total Operating Cost / time (= A + B+ C) 2508.35 2108.65

E) Demand rate (1 = ap) 1510.04 1067.13

F) Operating Cost per unit (» = D/E) 1.66 1.98

G) Price / unit (p = nm) 1.99 2.37

H) Revenue (= pA) 3010.03 2530.37

I) Profit (7= [p - m]A) 501.67 421.73

For this numerical experiment, Q* s is approximately 40% greater than O* and the
optimal operating cost per unit is larger if O*.5 is used in our model. The total operating
costs are lower with O*.s; however, 4 is also smaller with Q*s resulting in higher unit
operating cost, m. The net result is that the profits are about 19% lower using Q*,5 in our

model instead of Q*. With K = 1250, the difference in profit can be as large as 30%.

In our model, the inventory costs (set-up + holding) depend on A which itself depends on
the inventory costs (through m). This explicit circular dependence makes this model much
more complex and realistic than the normal EOQ model. The optimal batch size attempts
to minimise the unit operating cost rather than the absolute operating cost which is one of
the reasons for the "apparently counter-intuitive” behaviour of O* (for a somewhat related

idea refer to Gerchak, Hassini and Ray 2000).
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Figure 5.3.2: Plot of (Q*)/n(Q*.s) versus K for ¢c(Q) =c VQ
(i=03,n1=12,c=1,a=6000)

If we vary K, then Q* is increasing up to K = 1736.11 (= ar?/8ic) and then decreasing. If
due to some reason K decreases from 1800 to 1750, the firm should not blindly decrease
the batch size. Note that the O* in our model can be thought of as the "modified" optimal

%*
EOQ (=1/£%(Q—) ), but A(QO¥) itself will be a complex function of Q*. In the following

sub-section we will extend the model of this section by assuming a more general form of

decreasing unit purchase cost function.

5.3.1.3 Log-linear demand function, mark-up pricing and non-increasing unit

purchase cost function of power form

Let us assume a more general form of unit purchase cost: ¢(Q) = ¢ + (d/Q) (¢, d > 0), but
the form of log-linear demand function remains the same as before. This type of unit
purchase cost function has been used in the literature (Ladany and Sternlieb 1974; Lee and
Rosenblatt 1986). With these assumptions, the profit function will be of the same form as
(5.3.9), but with:
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d [

u=Q(c+ Q)za”_z . (5.3.13)
and
y=K+d . (5.3.14)
Q

The optimisation problem for the firm will be similar to P5.3.

We can now have the following proposition:

Proposition 5.3.4: The profit function () is semi-strictly quasiconcave in Q for feasible
0.

Proof: From (5.3.13) and (5.3.14) it is clear that u is linear increasing in Q while v is
decreasing convex in Q. Also wv is convex in Q. The rest of the proof is similar to
Appendix 5.2. .

Note that Ladany and Sternlieb (1974) did not prove the unimodality of their profit
function even for this particular functional form of ¢(Q). Though we prove that Q) is
unimodal, it is not possible to obtain an explicit solution for Q* from my = 0 assuming
c(Q) = ¢ + (d/Q); however 7y = O can easily be solved using any standard mathematical
package. The solution to 1 - 4uv = 0 (a quadratic, concave function in Q) will give the
limits of feasible Q. At the smaller root, the discriminant will be increasing and at the
larger root it will be decreasing. Since at both limits the profit function will be positive,
then for feasible Q the profit will be positive. This is intuitive since our price is a mark-up
over the total operating cost. We will again use a numerical example to show the effect on
zif O*5(i.e., the optimal batch size when the price is a mark-up over only ¢(Q)) is used

in place of Q* for this model.

Example 5.3.1.2: Let the parameters be: K = 1400, i = 0.1, = 1.2, a = 6000, ¢ = 2 and
d = 100. The optimal batch size in our model, O* = 2437.46 and n* = 256.93. For the
Ladany and Sternlieb model, Q*,s = 3745.72. In Table 5.3.2 we show the detailed effect

of using Q*;s in our model.
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Table §.3.2: Cost and Revenue Elements with O* and @*, ¢ in Example 5.3.1.2

c m y 4 A /4
Q*=2437.46 2.04 3.24 3.89 396.08 256.93
O*s=3745.72 2.03 3.55 4.25 331.41 235.02

Note that when price is a mark-up over just the purchase costs, unless the mark-up is
"large"” enough, profits may actually become negative. As in the last section, Q*;5 is much
greater than O* (about 35%) and profit is much lower (about 9.5%). The reasoning for the

low profit will be similar to Example 5.3.1.1. However, when ¢ is a function of Q, O*

might not be 2KA(0%) as it was in Section 5.3.1.2.
ic(Q%)

From our numerical experiments we observe that 0* s > O*. However, the generality of
the observation is difficult to prove analytically because of the complex nature of the first

order condition:

7= (uQ) V1 — 4uv + 2uv(uq) - ug+ 2u*(vq) =0, (5.3.15)
where u and v are given by (5.3.13) and (5.3.14) respectively.

Even for the specific demand and unit purchase cost function, equation (5.3.15) will be
quite complex. This should not be surprising since it is also difficult to prove the
unimodality of Ladany-Sternlieb model. From our numerical experiments it also appears

that Q*;s- O* # (2K/c(0*)), in general.

For this section, there is no explicit solution for Q*(X), though we can determine an

explicit expression for the lower bound on its value. This lower bound will help to reduce

the search space for Q*. Let us define Q; as the solution to 7o =0 where T=1 - V1 -4uv .
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Proposition 5.3.5: Q; is a lower bound on O*.
Proof: O* is derived from the solution to 7y = upT - Tou = 0. Since up is non-negative, so
Q* requires that Tp > 0. We can show that T is convex in Q. Therefore, the lower bound

on O* will be given by Q;. [ |

For this section, the expression for Q; is:

0= %Jd(K +d). (5.3.16)

To determine the behaviour of O* we have to resort to total differentiation. Total
differentiation of mp = 0 with respect to K gives us the following expression for

00*(K)/9K (refer to Appendix 5.4):

00*(K) _ ¥oxT +uoly ~ulpe —uxTp (5.3.17)
oK Toou —up,T

We have, upx = 0, ugp = 0 and ux = 0. The expression in (5.3.17) simplifies to:

B02(K)  bole ~Wlge (5.3.18)
oK Toou o

It can be easily shown that, Tx > 0 and up > 0 and the expression for Tpx will be:

(W)QK,/‘_—I_MHM
1-4w (5.3.19)

Tox=2
oK 1-4uv

Since (uv)gx < 0, (uv)g = 0 and (uv)x = O, the sign of Tpx and (5.3.18) can be either
positive or negative. Our numerical experiments confirm that O* will not be necessarily
monotone in K as in Section 5.3.1.2, it will be concave in XK. In Table 5.3.3, we show the

values of O*(K) for different values of d. In all cases, O* is concave in K. To prove the
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concavity of Q* with respect to K we will have to determine the sign of 3Q*(X)/8K>. This
expression is quite complex (refer to Appendix 5.4). We leave the analysis for future

research,

From Table 5.3.3 we also note that while O* might be monotone in d, the direction is not
clear. It is increasing for smaller K while decreasing for larger X. The behaviour of O*
with respect to 4 is intuitive. For smaller values of X, O* increases with d to take
advantage of lower production/purchase cost. But as K increases and the effect of 4
becomes less significant, O* reduces to decrease the holding cost. Managers must thus be
very careful when deciding about the optimal batch size even when the economies of scale
vary. For a profit-maximisation model like ours, the explicit relation between the demand
and the operating variables can give results that run counter to most traditional cost

minimisation models.

We can also have the following proposition for the model of this section.

Proposition 5.3.6: The condition +/1—4uv < (1/3) is sufficient for the profit function ()
to be concave in Q for feasible Q.

Proof: Refer to Appendix 5.5. [

The expression +/1—4uv is positive concave in Q and at the feasible limits of Q it will be
equal to 0 (increasing at lower limit while decreasing at upper limit). So, we are sure that
for Q sufficiently close to the feasible limits, 7is concave in Q. Also for any O, < 0 < 0%,
7 is also concave in Q. However, it is difficult to analytically prove concavity of r for all

feasible Q.
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Table 5.3.3: Q*(K) for Different Values of K and d (i = 0.3, 7= 1.2, c = 1, a = 6000)

K d=0 d=10 d=20 d=30 d=40 d=50
900 3200.00 3204.86 3209.52 3213.97 3218.22 3222.27
1100 3327.71 3329.44 3331.01 333241 3333.64 3334.7
1300 3409.25 3408.48 3407.55 3406.48 3405.26 3403.89
1500 3454.97 3452.08 3449.05 3445.88 3442.58 3439.14
1700 3471.84 3467.09 3462.21 3457.2 3452.06 3446.78
1900 3464.83 3458.4 3451.84 3445.15 3438.34 3431.39

5.3.1.4 General price-sensitive, decreasing demand function, mark-up pricing

and general non-increasing unit purchase cost

In Sections 5.3.1.1 - 5.3.1.3 we showed that it is possible to determine the profit-

maximising batch size when demand is price sensitive and price is assumed to be a

percentage mark-up over the operating costs. However, in all the three previous sub-

sections we assumed specific form of the demand and/or the unit production/purchase cost

to obtain closed form solutions. In this section we will analyse the make-to-stock firm's

maximisation problem assuming a more general demand function.

Suppose we assume a general log-linear demand function of the form:

A=a(p?, (5.3.20)

where a higher value of a represents higher overall potential for demand and ¢ (< 0)

represents the constant price elasticity (So and Song 1998; Ladany and Sternlieb 1974;

Lee and Rosenblatt 1986) while p is equal to 77m.
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Substituting A into (5.3.1) and solving to obtain m = g(Q) (all others parameters are

assumed constant), the firm's profit can be written as:

7(Q) =an’(n-1) g(Q)°® " V. (5.3.21)

Differentiating (5.3.21) with respect to Q it is possible to arrive at the following

conclusions:

Observation 1:
@) For ¢ > -1, concavity of g in Q is sufficient (not necessary) for concavity of zin Q
while convexity of g in Q is necessary (not sufficient) for convexity of zin Q and

mp will have the same sign as gp.

(i1) For ¢ < -1, convexity of g in Q is necessary (not sufficient) for concavity of 7in Q
while concavity of g in Q is sufficient (not necessary) for convexity of 7in Q and

mp will have the opposite sign to go.

For ¢ > -1, the profit will be increasing in Q if the operating cost is increasing in Q, i.e., as
@ tends towards zero, we can increase m which will increase p, but the relative inelasticity
of demand will result in demand being almost fixed and hence 7 will increase with m. For
the special case of constant demand (i.e., ¢ = 0) and ¢(Q) =c V Q, mwill be convex in Q
implying that the optimal Q from our model is at either of the feasible limits. For ¢ = -1,
the profit function will be constant (=a7z[7-1]) for any Q. This behaviour is not
unexpected. As is well known in microeconomics, when demand is inelastic in price (i.e.,
0 > @ = -1), a price increase will lead to non-decrease in the firm's revenue (So and Song
1998; Pappas and Brigham 1979). Since our basic setting is an environment where
demand is price-sensitive, assuming ¢ = -2 (Sections 5.3.1.1 - 5.3.1.3), i.e,, the demand is
"sufficiently price-sensitive"”, is justified. However, with this general log-linear form of
the demand function we do not obtain many managerial insights into the firm's optimal

action.
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In Sections 5.3.1.1 to 5.3.1.4, we were able to develop a profit maximising model for a
make-to-stock firm that determines its price as a constant percentage mark-up over the
unit operating cost and sells its products to price-sensitive customers. We were able to
prove the unimodality of the profit function and determine easily-computable explicit
expressions for optimal batch size or its bounds for practising managers. In these types of
firms it is important for managers to note that one of the most basic tenets of inventory
models which specifies that the optimal batch size will always increase with set-up cost,
does not hold. When operating cost, price and demand are explicitly related, then for
profit-maximisation models, the optimal batch size can behave quite differently. Also we
show that using an EOQ batch size, or optimal batch size assuming price to be a mark-up
over just the production cost, can result in substantial profit loss. Managers should be

especially careful in choosing the batch size when the set-up cost is a major portion of the

operating cost.

5.3.2 EOQ Model with Price-Sensitive Demand, Mark-up Pricing and Investments
in Set-up Cost Reduction

Though the models in Section 5.3.1 had no investment in lead time reduction, they are
important since they provide us valuable insights and form the basis of the models of this
section where we incorporate investments in set-up cost reduction. We consider a firm in
the same setting as in Section 5.3.1 except that now the firm has the option of investing in
reducing its set-up cost, K. As indicated in the literature review, both practical experience
and academic research (Porteus 1985; Cachon and Fisher 1999) has clearly proven the
effectiveness of investment in set-up cost reduction. Following Porteus (1985, Section 2)
and other research in this area, we assume that the investment function a(X) denotes the
cost of fixing the set-up cost at level X. We peg the cost for fixing the set-up cost at a
particular level rather than to a change in it. An opportunity cost of ia(X) is charged per
unit time as part of the operating cost for the investment. Like in Porteus (1985), the
investment cost can be thought of as either one-time irreversible investment cost or as a

revocable lease that specifies a fee to be paid per unit time to maintain that set-up cost
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level. A schematic representation of the proposed physical and conceptual system will

now look like as shown in Figure 5.3.3.

Investment in set-up cost reduction
| —p»  Mark-up pricing
l (p = 7m)

MAKE-TO-STOCK <:l CUSTOMER DEMAND
FIRM

m = Operating cost per unit = (set-up cost (deterministic, but

+ inventory holding cost + purchase/production cost price-sensitive)

+ investment cost) / demand per unit time

f

Figure 5.3.3: Supply Chain System for Section 5.3.2

With the investment cost as a part of the operating cost, expression (5.3.1) take the form:

ﬁ+%+czl+ia([<)

-9
m 2 . (5.3.22)

where, as in Section 5.3.1, the unit production cost, ¢, can be a constant or a function of O,

and A = ic.

Now the profit maximisation model will have two explicit decision variables, K and Q.
The basic model structure and the solution method of this section will be the same as in
Section 5.3.1. However the investment cost will affect the operating cost and hence

demand, which in turn will influence the operating cost and investment decision.
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The profit maximisation problem for the firm will now be:

(P5.4) Margcixxnise /4

subject to:

0<4wz <1,

where:

_ _2an’w 5.3.23
(T e (5-3.23)
w= i_z (209) | k), (5.3.24)

an 2
and
z= g+ «(0). (5.3.25)

Note that in this section 7, w and z are all functions of Q and K.
5.3.2.1 Profit maximisation with respect to Q

In this section we investigate the maximisation problem P5.4 with respect to the decision

variable, Q, assuming X to be constant.

We will concentrate on two cases: i) c(Q) =c V @, and ii) ¢(Q) = ¢ + (d/Q).

= For both cases, T=1 - y/1-wz will be convex in Q and the profit function will be
semi-strictly quasiconcave in O implying that the solution to 7y = 0 will give the
optimal O, O* However, we cannot obtain closed form results solving for Q in
mp=0evenfore(Q)=cV Q.

* For both cases we can use the concept of Proposition 5.3.6 to prove that

J1=4uz < (1/3) is sufficient for concavity of 7.

= The sign of 30*(K)/0K is not obvious. However, from numerical examples we can
deduce that O*(X) is not monotone in X but concave. In Table 5.3.4 we show O*(X)
as a function of X for different types of investment functions, a(X): i) Power (a(K) =
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b/K where b is a positive constant), and ii) Logarithmic (a(X) =, - bIn(K) where both j
and b are positive constants) and for both ¢(Q) = ¢ V Q and ¢(Q) = ¢ + (d/Q). Note that
since we would expect that successive reductions in K will require larger and larger
investments per unit reduction it is plausible that a(K) should be decreasing convex in
K. Both the forms of a(X) satisfy the condition and are the most frequently used types
of investment functions for this type of analysis (Porteus 1985; Nye 1997). In all cases

O*(K) is not monotone, but concave in X.

Table 5.3.4: @*(K) versus K for Different a(K) (: =0.1, n=1.5, c =2, a=6000)

Power Investment Power Investment Logarithmic Investment
a(K) = b/K, a(K) = b/K, a(K) =j - bln(K),
b=100,d=0 b=100,d=10 j=100,6=10,d=0
K 0*(K) K o*(K) K o*(K)
1000 2227.46 1000 2232.43 1000 2220.52
1500 2452.83 1500 2454.44 1500 244461
2000 2564.34 2000 2563.77 2000 2554.96
2500 2603.08 2500 2600.87 2500 2592.61
3000 2590.15 3000 2586.55 3000 2578.57
3500 2538.05 3500 2533.21 3500 2525.33
5.3.2.2 Profit maximisation with respect to K

In this section, we investigate the maximisation problem P5.4 with respect to the set-up
cost, K, assuming the batch size to be a given parameter. Note that this investigation might

be worthwhile in itself, if for some reason the firm has to fix the batch size at some
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particular value (e.g., a material handling constraint) and hence the only option available

to the firm is to invest in reducing the set-up cost.

In this section, we will again focus on power (a(K) = b/K, b > 0) and logarithmic (a(K) =
- bIn(X), j, b > 0) investment functions. Before going into the details of the decreasing
convex investment functions, we would like to examine what will happen for a linear

investment function (say, b - jK, b,j > 0).

For linear investment of the form b - jK (K < b/j) we can show that wz is concave in K.
Therefore, the range of feasible K might be continuous or discontinuous. Assuming that
the range is continuous (i.e., the maximum value of 4wy is < 1), it can be shown that for

c(Q) =c+ (d/Q) or ¢(Q) = ¢ V Q, the solution to the first order condition (wxT - Txgw = 0

withT=1-Jl-wz ) will give us K* = (Qc(Q)/2)) + (blj) = (b/)). Hence, there is no
optimal solution within the feasible range of K. The first differentiation of the profit
function is either positive or negative within the feasible range. The profit function is thus
monotone and can be either increasing or decreasing. This implies that either of the limits

will be the optimum value.

For the power investment function, a(K) > 0 is always satisfied. For the logarithmic
investment a(K) > O requires that X < ¢”®. For both investment functions and cost
functions of the form ¢(Q) = ¢ V Q and ¢(Q) = ¢ + (d/Q), wz will be convex in K. For
logarithmic investment function, convexity of (wz) requires that K < Qc(Q) and we will
assume it to be true in the rest of the section. So we can tell that 7 will also be convex in
K. However, w is not concave in K rather it is decreasing convex in K, and hence it is not

necessary that 7 will be semi-strictly quasiconcave in X.

For both types of investment functions, as K ~» 0, wz — . So, the lower limit for feasible
K, K, must be strictly positive. If we assume that the minimum of 4wz does not exceed 1
and for the logarithmic investment function at the upper feasible limit of X (Ky), 4wz > 1

and (wz)x > 0, then there must be some feasible range of X and wz and T cannot be
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monotone within it. It is easy to show examples where 7 will not be concave in X for both

power and logarithmic investment functions (Figure 5.3.4). So, we have to try to prove the

unimodality of 7 with respect to K.
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Figure 5.3.4(a): Plot of 7 as a Function of K for a(K) =; - In(K) and ¢(Q) =c VQ
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Figure 5.3.4(b): Plot of 7as a Function of X for a(K) = /K and c(Q) =c + (d/Q)
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The first order condition (FOC) for z with respect to K (7x) will be of the form wxT =
Tyxw. Differentiating both sides of the FOC with respect to X we have:

O(LHS) 0*(LHS)
k- Wi T + Wy Ty Tz =2We o Ty + Wy Ty + Wiy T (5.3.26)
A(RHS) 8*(RHS)
T= WTKK +WKTK,'——6—KT-—'= WTKKK +2wKTKK +WKKTK' (5327)
Differentiation of T yields:
2
2wz o NT=wz +4 L2 ]
7, =2k . - 1-wz (5.3.28)
1-wz 1—wz

Proposition 5.3.7: 7 = 0 will have either one or three solutions.

Proof: For both types of investment functions, as K — K, Tx — -oc. Since wg is negative
and T is positive, the LHS of the FOC will always be negative. Though Tk is unrestricted
in sign (recall that T is convex in K), we are only interested in Tx < 0 (for Tx > 0, 7 will
be negative). Since w 2 0, wx £ 0, wgx 2 0, wgkk < 0 and Txx = O (for both investment
functions), so for Tx < 0 we can show that the LHS will always be negative (finite
negative as K — K), increasing and concave. For Tx < O it is possible to prove that
Tkxx < 0 (Appendix 5.6). Then the RHS will also be increasing and concave. However, as
K tends to its lower feasible limit, the RHS will tend to - «, increase in a concave manner
up to Tx = 0 and then become positive. If Tis not monotone, then for this type of RHS and

LHS, it follows that 7zx = 0 will have either one or three solutions. |

As K — K;, 7 will be increasing at infinite rate and for Tx > 0, 7 will be decreasing in K.
If 7x = 0 has only one solution then 7 must be increasing up to that point and then
decreasing, and so the unique solution to FOC will give us the profit-maximising K*. If
x = 0 has three solutions, then the profit function will be increasing from K; up to the

first solution, then decreasing up to the second solution, again increasing up to the third
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solution and then finally decreasing up to K. It is obvious that the maximum value of 7
will be given by either the first or the third solution to the FOC and so K* can be
determined easily by simple comparison of the value of x at the first and the third

solution.

Though Proposition 5.3.7 shows that zx = 0 can have three solutions, in all our numerical
experiments with both types of investments, the profit function was always unimodal in K.
A sufficient condition that 7x = 0 will have an unique solution is to prove that the slope of
the RHS of the FOC is greater than the slope of the LHS of the FOC for Tx < 0, i.e.,
(RHS)k > (LHS)k for Tk < 0. However, we can show by numerical examples that it is not,

in general, true.

We can show that the optimal set-up cost, K*, must be < X (the solution to Tx = 0) and so
K; can be an upper bound on K*. For the power investment function we can even show
that the upper bound is independent of Q (for logarithmic investment, K; will be a
function of Q). The upper bound will help us reduce the search region for K*, especially

for the power investment case when the upper bound is very easily computable.

Proposition 5.3.8: In general K* < X; and, for a power investment function, a(K) = b/K,
K*< \25.

Proof: The solution of the FOC requires that 7x < 0. As we have already said, T is convex
in K, implying that X* must be < K. From (5.3.28), the solution to Tx = 0 will be given by

the solution to (wz)x = 0. For the power investment function the solution to (wz)x = 0 will

simplify to (1/2) - (b/K;%) = 0, implying that K* < +/2b . »
It is somewhat interesting that for the power investment function, the upper bound of K*

is independent of Q of all parameters except b. We would normally expect it to be

dependent on parameters other than b as well.
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5.3.2.3 Joint Profit maximisation with respect to Q and K

In this section, we will investigate the maximisation of P5.4 jointly with respect to the
decision variables, Q and K. We have already shown in Figure 5.3.4 that = is not
necessarily concave in K. However, the profit function can still be unimodal with respect
to the two decision variables. One of the ways to prove unimodality in this case is to find
O*(K) and then try to prove the unimodality of #(O*(X), K) with respect to K. Since we
have already proved that 7 will be semi-strictly quasiconcave in Q, the solution to wpT -
wTp = 0 will give us the unique O*(X). If we replace Q in (5.3.23) by this 0*(K) we will
obtain 7 (O*(K), K). Now we have to prove the unimodality of #(Q*(K), K) with respect
to X, i.e., that

(WQ aQa*IgK) +w, )T_(TQaQ_a‘]gﬁ.-f TK )w: 0 (5.3.29)

has a unique solution within the feasible range of K (in (5.3.29) T represents

1- JI-w(Q*(K)K)z(Q*(K ).K)). Since we are concemned with 0*(K) and we know
that woT - Tow = 0, thus we have to prove that wxT - Txw has a unique solution for

feasible K. Before going further we state the following proposition.

Proposition 5.3.9: For the model of Section 5.3.1.2, 2(Q*(K), K) will be decreasing in K.

Proof: For the model of Section 5.3.1.2, we can show that Tx will be positive for feasible

K and wx = 0 implying that zx(0*(X), K) < 0 for feasible K. Hence, ris decreasing in X.
|

The above proposition is rather intuitive since if there were no cost to reduce X, we would

want it to be as low as possible. However, from our previous results, we know that T is

convex in K and Tk can be both positive and negative. Since wg is always negative, we are

only concerned with Tx < 0 (for Tx = 0, 7 will be decreasing). Also as K - K;, Ty - - =<

but wg will be finite negative. So, as K — K, we can say that x will be increasing at

infinite rate. But analytically it is difficult to prove that there will be unique solution to
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wgT - Tyw = 0 for feasible X. However, our extensive numerical experiments with power
and logarithmic investment functions always resulted in a unique solution. Based on the
fact that we know that #(Q*(K), K) will be increasing near the lower feasible limit and
will be decreasing for any K for which Tx = 0 and from our numerical experiments we are

confident that, in general, 7(Q*(K), K) will be unimodal in X.

We performed numerical experiments to compare the optimal values of the decision
variables and the profit from our model with two possible alternatives that a firm might

employ:

a) Alternative I: If the firm does not explicitly take into account that lower operating
costs from investments in set-up cost reduction can be passed on to the customers
so as to increase demand. That is, it selects its price as a mark-up over a constant
production/purchase cost, estimate demand based on that price and then
determines the optimal batch size and set-up cost based on the estimated demand.

b) Altermative II: If the firm decides not to explicitly take into account the effect of
lower operating costs on demand and chooses to use the decision variables
resulting from solving a model assuming p and K to be independent decision

variabies.

Our numerical experiments show that, as expected, the optimal batch size and set-up cost
resulting from our model can be very different from those of either of the above
alternatives. However, if the firm uses values of decision variables derived from the

alternatives within our model, the "loss in profit" can be significant.

Example 5.3.2.1: Let us assume that a(K) = b/K. With the parameters: i = 0.35, = 1.2,
a =350, b = 2600 and ¢ = 0.5 V Q, the optimal decision variable values in our model are
as follows: O* = 386 and K* = 26.97. The optimal profit, (Q*, K*) = 68.48. For
Alternative I, p = 0.6 and A = 972.22. The optimal decision variable values in this case
will be K;* = 21.35 and Q;* = 487 (refer to Sections 4 and 5 of Porteus 1985). For
Alternative II, the optimal decision variable values are: K>* = 34.41 and p* = 1.23. The
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induced optimal batch size in this case will be O,* = 302 (refer to Sections 6 and 7 of
Porteus 1985). In Table 5.3.5 we show the effect on profit, demand, price and operating
cost if we use either of the alternative optimal decision variable values in our model in place

of O* and K*.

Table 5.3.5: Cost and Revenue Elements with X*/O* , K;*/ Q,;* and K,* O>*

for Example 5.3.2.1
m p A 2
K*=26.97, Q* =386 0.710 0.852 482.38 68.48
K;*=21.35, O,*=487 0.732 0.878 454.24 66.46
K>*=34.41, 0,*=302 0.730 0.876 456.41 66.61

From the representative numerical experiment it is clear that the optimal batch size and
set-up cost of our model are very different from those of Porteus' model. Our optimal set-
up cost is about 26% higher than Alternative I and about 22% lower than Alternative II
while optimal batch size is about 21% lower than Alternative I and 28% higher than
Alternative II. If the optimal decision variable values from either alternative are used in
our model, the "loss in profit" can be significant. In our example it is almost 3%, which is
quite high for companies in competitive situations. Using the optimal decision variable
values from "wrong models" leads to larger operating costs per unit. Larger operating cost
leads to higher price and hence lowers demand with the net result being that the profits are
lower. If, in addition, there were economies of scale from batch size (e.g., ¢(Q) = ¢ +
[d/Q]) and if it is not taken into account (i.e., assuming ¢(Q) = ¢ V¥ Q), it can have an even
stronger effect on the optimal decision variable values and hence on profit. Obviously as
the economies of scale become more prominent, the detrimental effect on profit of

ignoring them becomes more severe.
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54 Investments in Supply Time Reduction

In Section 5.3 we developed models based on the idea that operating costs can be reduced
by investments in set-up time (cost) reduction. In Chapter 4 we showed that investment in
supply lead time reduction could also decrease inventory costs. In this section we develop

models similar to those of Section 5.3 with the focus now on investment in supplier lead

time reduction.
5.4.1 Basic Model

Assume a firm buying a single make-to-stock item from a supplier (internal or external)
and selling it directly to price-sensitive customers. However, unlike in Section 5.3, there is
a supply lead time from the supplier to the buyer that is random. Though the final
customer demand is deterministic, because of the stochastic procurement lead time the
lead time customer demand for the buyer will also be stochastic. The buyer is following a

(Q, r) policy for its procurement control.

The customer demand rate, 4, is a decreasing function of price per unit charged to the
customers, p. The firm sets its price, p, as a constant percentage mark-up over the
operating cost per unit, m. Since the lead time demand is random, the firm might loose
customers if it does not have sufficient safety stock. Hence, in addition to set-up cost,
holding cost and purchase cost, the firm also incurs a backordering penalty cost per unit
per unit time of 5. The holding cost is assumed to consist primarily of cost of capital
invested in inventory. Since the buyer is using a (Q, r) policy, whenever the inventory
position of the buyer reaches r, it orders Q units from the supplier. As in Section 5.3, cisa

non-increasing function of Q.

The firm's total inventory cost is composed of ordering costs, holding costs, backordering

costs and purchase costs per unit time and from Chapter 4 will be given by,
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cQ,n= %— +hE(I)+bE(B)+cAd, where E(I) and E(B) have been defined in Chapter

4. The firm's total operating cost per unit, m, will be given by:

%+h£{]}+bE(B)+c/l

m= , 54.1)
7 (

where c is a function of Q and & = ic.

Since customers are price-sensitive, the demand, 4, will be a function of the price, p, and
because the firm employs mark-up pricing, p = nm where m is given by (5.4.1). The
objective of the firm is to maximise its profit per unit time, similar to problem P5.2, where
the decision variables are now both the batch size, O and the reorder point, r. A schematic

representation of the proposed system is shown in Figure 5.4.1.

»  Mark-up pricing
p=nm) ,

——=>| MAKE-TO-STOCK CUSTOMER
SUPPLIER | FIRM <:! DEMAND

m = Operating cost per unit = (set-up cost (deterministic, but
+ inventory holding cost + backordering cost price-sensitive)

+ purchase cost) / demand per unit time

Figure 5.4.1: Supply Chain System for Section 5.4.1
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5.4.2 Model with Investments in Supply Lead Time Reduction

In this section we extend the general model developed in Section 5.4.1 assuming that the
firm invests in reducing supply lead time. Hence, the system is now similar to those
considered in Chapter 4 except that customer demand, A, is deterministic with a price-
sensitive rate. The price will be determined by the firm's operating cost and so both p and

A will be functions of the operating decision variables.

In Chapter 4, we developed six different models based on the nature and frequency of the
investment type. For the present model, let us assume that the investment in supply lead
time reduction is one-time with the life of the investment depending on the time it is being

used. The total cost will be given by:

€. r.= "+ [ G ay iy ciram(a), (542)

Q

where Gl(@, ) = (h +b) [["'" F(x)dx +b(u- {y/a}) and h = ic.

Note that now there are three operational decision variables - @ (batch size), r (reorder

point) and « (refer to Chapter 4). The operating cost will now be given by:

K2 L C (D Griay )y + A+ @M ()

_Q g*
m 3 , (5.4.3)

where c is a function of Q and 4 = ic.

The price charged by the firm will be p = 7m and the demand rate A will be given by the
relation in (5.2.1). However, the demand rate A itself will affect m and even the
investment decision will be affected by the integration of the cost minimisation model

with market demand. The problem for the firm can now be written as:
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(P5.5) Masnimise n=(p-m)A,

subject to:
p2m=20and 120,
where m is given by (5.4.3), p = pm and A =f(p) (A is some decreasing function of p).

While the general procedure to solve this problem will be the same as shown in Section
5.2, the analysis will be much more complex than in Section 5.3. The operating cost
affects the price as well as the demand. The demand rate in turn will affect the lead time
demand distribution. Hence, the operating variables - O, r and « - will affect the lead time
demand distribution, i.e., £(x). In this case obtaining a closed form solution for m in terms
of the decision variables will be difficult. Though we formulate the problem here, we

leave the analysis for future research.
5.5 Conclusions and Future Research Opportunities

In this chapter, we set about to model a profit-maximising firm selling a single make-to-
stock product to price-sensitive customers. The firm sets its price as a fixed percentage
mark-up over its operating costs per unit, and is considering investing in reducing its
operating costs by optimal management of its lead time so that it can lower the price to
gain a greater market share. For the case of deterministic (but price-sensitive) demand and
investment in set-up time (cost) reduction, we were able to formulate a model where price
and demand, and hence profit, are functions of the operating variables - batch size and set-
up cost - of the firm. We show that when there is explicit dependence of the demand on
the operating variables in a profit maximisation model, some well known solution
properties from classical inventory management do not hold true anymore. In that case,
managers have to be extra careful about choosing optimal operating variables. We were
also able to show that investments in increasing efficiency (i.e., decreasing operating cost
by some investment in set-up cost reduction) can be passed on as a price decrease to the

customers which will increase the demand and the profit for the firm. If the firm does not
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take this effect into account, and determines the optimal decision variables assuming that
the demand is constant or price is an independent decision variable, it will lead to sub-

optimal results and the firm would be loosing substantial profit in a competitive market.

We were also able to formulate the problem for the case when the firm is buying the stock
from some supplier before selling it and the supply lead time is stochastic. In this case, the
lead time demand for the firm will be random and the firm can invest in reducing the
variability of the supply lead time either by making the investment itself or by paying the
supplier for lead time reduction investments. Again the price and demand (and hence
profit) will be functions of the operating variables of the firm. In this case the variables
will be - batch size, reorder point and variability of supply lead time. However, the
complexity of this problem makes further analysis cumbersome and difficult. We leave

this for future research.

We feel that our model adequately captures the main features of make-to-stock firms in a
competitive environment and how such firms can use a time-based strategy to reduce costs
and increase market share. The main contribution of this research lies in the fact that for
the first time in the literature we develop a model where the profit-maximising operational
variables for a firm are determined by taking into account how efficiency improvements
can explicitly impact the profitability of the firm. We were able to couple the cost
reducing operations research based models with relevant microeconomic models to

demonstrate how not taking such interactions into account can lead to sub-optimal results.

In terms of scope for future research, further analysis of the model formulated in Section 5.4
with investments in supply lead time reduction would be worthwhile. As we indicated, most
of the process-improvement models in operations management (discussed in Sections 2.5 and
2.6) assumed demand to be constant or stochastic with the mean demand rate being constant.
It might be useful to use the general framework developed in Section 5.2 to analyse some of
those models with price-sensitive demand. Such integrated production-marketing modelling

will help in establishing the overall contribution of investments in increasing efficiency.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

In this thesis, we investigated the issue of lead time management in supply chains in
different competitive environments. We took into account both the costs and benefits
associated with lead time reduction in three analytical models. One model studied delivery
lead time management for make-to-order firms, and the other two models analysed supply

lead time and set-up time management for make-to-stock firms.

The motivation for this research and some relevant background were presented in Chapter
1. It showed the importance of effective lead time management in modern supply chains
and discussed the various costs and benefits that firms need to consider before deciding on
the optimal lead time. We also discussed why it is necessary to have a different supply

chain design and lead time reduction focus for make-to-order and make-to-stock supply

chains.

In Chapter 2 we identified several gaps in the current literature on lead time management

in supply chains.

= Models investigating delivery lead time management for make-to-order supply chains
did not analytically account for the possibility of a price premium from shorter
delivery times or economies of scale from increased demand.

* Previous literature on investments in supply lead time reduction did not employ the
state-of-the-art (Q, ) model or capture the different types of possible investments
while determining the optimal supply lead time.

=  Models investigating set-up time/supply lead time management for make-to-stock
supply chains either totally ignored or did not explicitly account for the effect of
reduction of operating costs on final customer demand.
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In our research, we addressed the above gaps so as to develop more comprehensive

models. This has led to many new insights into lead time management in supply chains.

In Chapter 3, we dealt with delivery lead time management issues for make-to-order
firms. We modelled a make-to-order supply chain consisting of a firm and its customers
where the mean demand rate is a function of price and guaranteed delivery lead time and
the market price is determined by the length of the guaranteed delivery lead time. We then
extended our model by incorporating economies of scale where the unit operating cost is a
decreasing convex function of the mean demand rate. The firm can invest in increasing
capacity to guarantee a shorter delivery lead time but must be able to satisfy the customers
according to a specified reliability level. Our models explicitly accounted for “price-
sensitive” and "lead-time-sensitive” customers. We showed how the firm could select the
optimal length of the guaranteed delivery lead time and processing rate to maximise its
profits by a relatively simple procedure. Our numerical examples clearly indicated that
ignoring the dependence of market price on the lead time offered and economies of scale,
when they in fact exist, could lead to potentially large profit losses for the firm. It is also
important for firms to take note of the inherent preference of customers for price or lead
time when making decisions. We also extended our model by explicitly accounting for
WIP holding costs and penalty costs for the firm. In that case we were only able to
formulate the problem without providing any analytical solutions. Some of the possible

extensions to this model might include:

a) Allowing the mean demand rate to be a function of the service level in addition to
price and guaranteed delivery time;

b) Extending our model to a non-linear demand function;

c) Analytical solution of the model developed in Section 3.6 taking holding costs and

backordering costs into account.

In Chapter 4, we developed models for investigating investments in supply lead time
reduction for make-to-stock products. We used a continuous review "exact" (Q, ) model

and captured the effects of investment in lead time duration reduction through investment
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in changing a single variable, a. In practice, investments can be one-time or recurring. It
might also vary depending on the nature of investment (e.g., per unit or per cycle or per
unit time). Our six new trivariate models captured both the costs and benefits of lead time
reduction for the different types of possible investment. Our analysis of the cost model
illustrated the benefits of investments in supply lead time reduction in terms of inventory
cost. It also highlighted the importance of taking into consideration the type of the
investment made by the supplier and how it is being passed on to the buyer before
deciding on the optimal strategy. Our extensive numerical comparative statics showed that
the interdependency of the three decision variables could result in some seemingly
counter-intuitive results. From this chapter, we can conclude that investments in supply
lead time reduction can result in substantial reduction of inventory costs after accounting
for all the associated costs and benefits. However, it is important to consider the frequency
and nature of the investment while developing models for supply lead time management.

Some of the possible extensions to this model might include:

a) Analytical proof that the cost function of the unit model is univalleyed;

b) Analytical comparative statics.

In Chapter 5, we developed models for determining the optimal lead time for make-to-
stock firms. In this chapter we considered a profit-maximising firm selling a single make-
to-stock product to price-sensitive customers. The firm sets its price as a fixed percentage
mark-up over its operating costs per unit and is considering investing in reducing its
operating costs by proper management of its lead time. Lower operating costs will allow
the firm to reduce price and gain a greater market share. For the case of deterministic
demand and investment in set-up time (cost) reduction, we were able to formulate a model
where price and demand, and hence profit, are functions of the operating variables - batch
size and set-up cost - of the firm. We showed that when there is explicit dependence of the
demand on the operating variables in a profit maximisation model, some of the best
known solution properties from classical inventory management do not hold true
anymore. In that case, managers have to be extra careful about choosing the optimal

values of the operating variables. We were also able to show that in this case, if the firm
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ignores the explicit dependence by either assuming demand to be constant or price to be
an independent decision variable, it will lead to sub-optimal results and the firm would be
loosing substantial profit. For the case of stochastic lead time demand and investment in
supply lead time reduction, we were also able to formulate the problem in terms of the
operating variables of the firm - batch size, reorder point and variability of supply lead
time. However, the complexity of the problem makes further analysis cumbersome and

difficult. Some possible extensions to this model will include:

a) Analysis of the model developed in Section 5.4 where investrnent is made in
supply lead time reduction in a stochastic lead time demand environment;

b) Utilising the general framework developed in Chapter 5 to extend a whole
generation of process-improving-investment models that were developed ignoring

the price-sensitivity of the customers (refer to Sections 2.5 and 2.6).

From a technical standpoint, the main contribution of this research lies in the fact that we
develop new models incorporating issues that were not accounted for in previous models
both for make-to-stock as well as make-to-order firms. Our models are able to provide
new insights into lead time management issues in supply chains. Specifically, we showed
the importance of integrated operations-marketing modelling in making supply chain
decisions. From a managerial standpoint, this research can help managers to determine the
key issues they must focus upon, depending on their competitive environment, when
making their lead time decisions. Our research shows that both make-to-order and make-
to-stock firms can gain competitive advantage through lead time management. As e-
commerce and outsourcing grows in popularity and customers becomes more demanding,
the importance of price and speed as competitive priorities will only increase.
Simultaneously, competition will make resources scarcer, necessitating their optimal use.
We feel that the integrative nature of our research is a significant addition to the

operations management literature on time-based competition.

We would like to add here that as in most analytical research, the ability to use the models

developed in this thesis is limited by the number of simplifying assumptions made.
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However, we believe that the qualitative insights drawn such as the risks of decision error
and importance of integrated production-marketing modelling are applicable for a wide

variety of real-life manufacturing and service systems.
6.2 Recommendations for Future Research

The summary and the conclusions presented in the previous section show our current
understanding of the lead time management issues for supply chains. However, the
models developed in this research have significant potential for being extended and
further evolved. We have discussed some of the possible extensions to the models already

developed. In this section we will present some ideas for new models.
= Assemble-to-Order Environment

In recent years assemble-to-order production has become very popular. This approach
combines the effectiveness of make-to-stock and make-to-order environments by
producing components to stock and then assembling them as required by customer orders.
Normally the result is faster response than the traditional make-to-order approach, with
fewer inventories than a make-to-stock approach (Hopp and Spearman 2000). This is the
technique used, for example, by Dell for manufacturing its computers. The models
developed in Chapters 3, 4 and S can be integrated to develop models for an assemble-to-
order environment where demand is random with the mean demand rate being sensitive to

both price and delivery time.

Assemble-to-order firms have two options to increase demand through investment. One is
to reduce the operating cost by investing in supply lead time reduction for suppliers of
components (like in Chapters 4 and 5) so that price can be reduced. The other way is to
improve the length and accuracy of the delivery time by investing in increasing its own
assembly capacity (like in Chapter 3). If there is limited budget available for investment,
then the firm has to optimally allocate it to reduce supply lead time and/or delivery time.
Though intuitively it appears that the allocation will depend on the sensitivity of demand
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rate to price and delivery time, the optimal allocation decision is not clear. Development
of models to analytically investigate the issue of optimal allocation of constrained
resources to improve efficiency and/or responsiveness for an assemble-to-order

environment can be a worthwhile endeavour.
= Lead Time and Price Based on Customer Sensitivity

In Chapter 3 we assumed that customers are homogeneous - either price-sensitive or lead-
time sensitive. However, recent technology has made it possible to collect customer
characteristics in more detail (Smith, Bailey and Brynjolfsson 2000). If some firm has
such data then it is imperative to use it to make intelligent decisions. The firm then might
quote lower prices and higher delivery times to customers who are more price-sensitive
than time-sensitive and vice versa. We feel that priority queueing techniques can be used
to model the case where, rather than giving "uniform" delivery time guarantee to all
customers, the profit-maximising firm can provide different delivery time (and so charge

different price) to different customer niches depending on their price and lead time

sensitivity.
= "Active" Supplier

In our research, the issue of supply lead time reduction has been investigated assuming
that the supplier has no information about the final customer demand and so it passes on
part or whole of the investment cost to the buyer (i.e., the supplier is relatively passive).
However, if the supplier is aware of the demand sensitivity of the final customers, then it
might keep its price and delivery times low by its own choice. Such an action will reduce
the inventory cost for the buyer and probably result in increased demand. In case of sole
supplier (like ours), this means increased order for the supplier also. Development of an
integrated supply chain model with a more "active" supplier that takes into account its
pricing and lead time decisions' effect on the whole supply chain is an interesting future

direction.
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Appendix 3.1

Proof of Proposition 3.5.3

From (3.4.9) and (3.5.9), we can say that the RHS of (3.5.6) is always increasing in L,

negative up to L = ’(—%; and then positive. From (3.4.16),

DRES) - Muatslt @) Py + 3 Mt @) oy TEy + 11, 4 ()
(A3.1.1)
From (3.4.9) and assuming M, > 0, we have (A3.1.1) is negative for L < and so
the RHS of (3.5.6) is concave for L < (_'; - (A3.1.2)
Differentiating (A3.1.1) with respect to L we have:
L) — Myt ) (Z + bl 1)) (L TEy +
3, U DX A “ a“ aL,R )+ My (i D)) aaf )
(A3.1.3)

From (3.4.9) and assuming that M, > 0 and M, > 0, we see that only the third term of

d°(RHS) to

(A3.1.3) is negative while all others are positive. A sufficient condition for 3L

be increasing is:
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a" R a'u a: R

ou®
3M, . A3.14
(DN )5 L) (A3.1.4)
We can show that condition (A3.1.4) implies that for any L > (_;b') o° (a IIZfIS ) .
increasing.
(A3.1.5)

If (A3.1.1) is positive for higher L (otherwise RHS will be throughout concave), from
3’ (RHS)

(A3.1.2) and (A3.1.5) it is clear that there is a unique solution of P 0 (say L)
2
g9 (aifls 2 is negative for L < I* and positive for L > L. Also, L* > ’( r; — implying

that RHS will be concave till L* and then it will be convex and at L*, the RHS will be

positive.

177



Appendix 4.1

Proof of Equivalence of Inventory Cost Function with the Transformations X = aX

and X =aX +(l-a)u

With X = aX,

0

C(QO.r.a) =£Q‘£+h(r+3_a#)+(h+b)a

[J(r)=JYr+Q)] +pd, (A4.l.1)

where J1(r)= _[t[ J’: F(x)dx] ds.

(s/a)

With X =aX +(1-a)u,
(h+b)a

C(Qr.a) =%d+h(r+%—p)+——§—[J2(r)—J2(r+Q)]+pd, (A4.1.2)

F(x)dx]ds.

-]

where J2(r) = j‘” [ j

=f{s~(l-a)ul]/a

Let us define Z(x) = If (x) (for this Appendix only).

-]

Then, Jli(r,, )= J:r [L F(x)dx]ds (r,, 1s the reorder point for X =aX)

=(s/a)

=" [Z(co)—Z(%)]ds. (A4.13)

With s=t—(l-a)u,

D

(A4.1.3) = j

I=r  +(l-a)u

[Z(oo)—Z(f—‘—(—E“—)ﬁ)ldz

= -[l-r,, ( J‘x.[r—(l_a)FI/aF(xMx) dt
=J2(rv) (7, is the reorder point for X = aX +(1~a)u)

where r, =r,, +(1-)u.
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Q
2

Similarly, J1(r,,+Q)=J2(r, + Q) and clearly h(2+rm—ap)=h(

+7r, —u).
> ', — M)

Therefore, from (A4.1.1) and (A4.1.2) we can say that Q and C are same for X =aX as

for X =aX +(1-a)u, and r,=r,, +(1-a)u V a This proof is applicable for any

distribution, as it does not use any particular property of F(x).
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Appendix 4.2

Proof of Convexity for Model 2B (exact)

To prove the convexity of "exact" Model 2B we must prove that the extra term (in this

Appendix M will represent M'(a)),

[OM(a)i(1+i)" ] /[(1+i)" —1] = A (for this Appendix only),

is jointly convex in Q, r and « (all the other terms are jointly convex). Since the extra term

is independent of r, we need to prove the joint convexity of 4 in Q and «.

Let 8i=ClI, (1 +i)=x, and T/A = C2 (for this Appendix only). Then we have:

_ (Cl)(Ma )x(CZJQ

(C2)Q _y

_ (Cl)(Maa)x(CZ)Q

b
x(€2e _1

AQ ’ Aaa

X

_ xR cC2)in(x) (x')2(C2)In(x)
Ao =(CIY(M) €22 _q - (x(€V2 _1 2

x(CZ)Q(x(CZ)Q + 1)

Agp=(Cl )(A/I)(CZ)Z[In(x)Jz[ (x(€e _1p

],

x(Cz)Q

Aga=-(CHMY(C)[In(x)]/ (R

].

It is not difficult to show that A4, = 0, Agp =0 and 4p, 2 0.
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The principal determinant of the hessian matrix (4.« Agp - AQ,,Z) on simplification is,

(C2)0 2
(X ) 7 (n() P2 + 1) (M) M) - (MY,

2 2
(CI) (C‘?) [(X(CZ)Q __1)4

Since (xX“?2 + 1) 2 1, (M.)(M) - (M)? = 0 is sufficient for the hessian to be positive and

hence for A4 to be jointly convex in Q and c.
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Appendix 4.3

Proof of Convexity for Model 1B

To prove joint convexity of Model 1B we have to prove the joint convexity of the term,

E= Q{—*gﬂi, in O and & (for this Appendix M will represent M*(a)).
_ [K+6M]A
Ep=-1K+XM]A
Q
K +aM]A
Egg= o ,
g O(M 2
Q
Ege= —_9(M‘m )1 s
0
_ (M, )A
Ega = -T— .

It is easy to see that Egp = 0, Eq; 2 0 and Eg, 2> 0.

The principal determinant of the hessian matrix (Eqq Egg - Eg’) on simplification is,

2KO(M o )2 20" (M)(M,,) _6°(M, ) E
Q* Q* o) '

It is then easy to show that 2(M.)(M) = (M,)’ is a sufficient condition for the determinant

to be positive and hence for the term E to be jointly convex in Q and a.
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Appendix 4.4

Proof of Convexity for Models 1A and 2A with respect to « for Fixed Q and r
The cost function for Models 1A and 2A (for fixed Q and r) is given by:

Cla) = %+% J’Q G(a,y)dy +c(a)A, (A4.4.1)

where G(a, ) = (h() + b) L’”"’F(x Jdx + b(u - (W @)), k(@) = ic(a).

The only difference in the two models is that for Model 1A, c(a) is given by
[c + OM*Y(@)], while for Model 2A, c(a) is given by ¢ + [HM’ Y(@)(i/A)]. However, this
difference will not matter since our aim here is to prove the convexity of the cost function

with respect to « for fixed Q and r and both i and A are constant parameters.
On simplification C(a) can be written as:

Cla)=

[Zl N a(h((;)+b) J‘:*Q[L”‘” F(x)dx]dy+ab,u—%[(r+Q)z -ri]+c(a)l.

(A4.4.2)

Since we have assumed that 0 and r are constants and ¢(«) is by assumption convex in &,

to prove the convexity of C(@) in & we need to prove that,

ao(h(a)+b)
o

1s convex in @, i.€., Tpa = 0.

r+Q (y/a) . .
[r j’o F(x)dx]dy= T (for this Appendix only),
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Then (A represents A(a)),

T,= _(h'i‘b) Irr*'Q[J‘(:y/a)xf(x)dx]dy_*_%-.'-N'Q[J':}'/G)F(x)dx]dy’

9, g
and
Taa= G522 [ 10y 1@ )1 (v ldy + Z [0 [ Cx s oy
_% mg)[ﬂ””;f{x}dx}dy.

If r is positive, it is easy to see that T, = 0 (since i, < 0 and Ay, = 0).
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Appendix 4.5

Condition under which Cost Functions of Models 1A and 2A will be "Univalleyed"

The cost function for Model 1A is,

C(o.ra)= %’hé [CraGta.yyay+ 225,

where G(a,y) =(h(a)+b )L’”“'F(x JMx+bfp—(y/a)],

h(a) =ic(a) and c(a) =c + QM’w(a).

We know that C is convex in Q and r for fixed @. Let Q*(a)and r*(a) be the optimal
Q and r for a fixed «. This implies:

KA a J'r‘(a Q% a)

h(a)
Q*(a)+Q*(a) G(a,y)dy+——i A.

C(Q*(a).r*(a) a)=

refa)

(A4.5.1)
In the sequel, we suppress the argument of Q*(a)and r*(a).

From (A4.5.1),

_90* aC _ar* aC (e

Cea + +
da 0Q* Oda or* Q*

G(a,y)dy

re*

a reeee h(a
+§ . Ga(a,y)dy+—g—)/1.

By design 6aQC’“ and aarc; are both equal to zero, implying that,

c 1 reeQ®

a=Q* r*

A
[-j%(aG(a,y))]dy+££?-)—. (A4.5.2)
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To prove that C is univalleyed, it is enough to show that (A4.5.2) = 0 has a unique (or no)

solution for 0 < a < 1. The condition will be similar for Model 2A with the only

difference being that A(a ) = i(c+

BM‘”(a)i)
— )
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Appendix 4.6

Optimal Lead Time Duration with Random Demand

It is well known that when demand and lead time duration are both random, the mean and

variance of the lead time demand are given by:

M=y (A4.6.1)
and & = (o) + A2(or), (A4.6.2)

where zand o are the respective mean and variance of the lead time demand distribution,
4 and (oy)’ are the respective mean and variance of the lead time duration distribution and

A and (o) are the respective mean and variance of the demand distribution.

When the demand is constant (i.e., (o, )*= 0 and 4 is just the demand rate) and x4 and
o’ at status-quo are known, we can easily find g, and (o,)*at a@=1. The optimal «,

o*, gives us the optimal mean ( , *) and variance (o, *)* of the lead time duration:
¥ =(a¥)(u, at a=1), (A4.6.3)

and

(0, =(a*)?(c,’ at a=1). (A4.6.4)

Suppose the demand is random but the reduction in lead time demand comes solely from
the reduction in lead time duration. The mean and variance of the demand is presumed to
be the same for any lead time duration. Let the reduced lead time demand random variable
be X =aX and there is an investment in reducing « . Like in the constant demand case,

we can determine the optimal o* that minimizes the buyer’s cost. Since all our analytical
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and numerical results are based on LTD distribution and cost associated with changing

X (i.e., « is our decision variable), all of them will still hold.

If the mean and variance of the lead time demand distribution and demand distribution at
status-quo are known, we can determine the mean and variance of the lead time duration
at status-quo. For random demand, the optimal mean and variance of the lead time

duration then will be given by:

w* = (a®)(pata=l), (A4.6.5)
and (0,4 = {(@V (T ata=1)) = ((0,) ata=1)(w Y} (A4.6.6)

From (A4.6.5) and (A4.6.6) it is clear that we can determine the optimal mean and

variance of lead time duration for random demand case also.
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Appendix 4.7

Analytical Comparative Statics of r*(a)and {r*(a)+Q*(a)} with respect to «
for Unit, Time and Cycle Models

The FOCs for the time model (recalling that all three models are jointly convex in Q and r

for fixed &) can be written as:

C(Or)-6M* —cA = aG(a,r)=aG(a,r+Q), (A4.7.1)

where C(Q, r) =%+% .["Q G(a,y)dy +cA+6M* | with a as parameter.

In the following analysis, » and Q represent r *(«) and Q*(a) respectively.

We know from Zheng (1992) that 4> (b + h )F(r/a). Total differentiation with respect
to @ of aG(a,r)=C(Q,r)—-6M* —cilat r and Q gives (recall that (9C/3Q )and
(0C/ or) are by design equal to zero):

daG(a,r) + aaG(a,r)i
o l74 or oa

= é [CraG.(ay)+Glaydy.  (A472)

Simplifying (A4.7.2) we have:

51 z0ay-z(r)

o _ , (A4.7.3)
oa aG, (a,r)

where Z(y) =aG,(a,y) + G(a,y)and G, (a,r) =(b+h)F(r/a)-b.
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Z(y) is a decreasing function of y. We can also show that Z(r + Q) 20 if and only if

(r+Q)/a

bli(b+h) = [( I xf(x)dx)/( I:.xf (x)dx)]. This condition will most probably hold

0

for b >> h, unless a = 0, but then (r + Q) will also be =0 and so (r + Q) a will probably
still be finite. If we assume that Z(r + Q) = 0, then both Z(r) and Z(r + Q) are positive and

we can show that é [z(y)dy-z(r)<0and é [*®2(y)dy—-z(r+Q)=0. So, from

(A4.7.3), (0r/8a) = 0 since both the numerator and the denominator are negative.

Using total differentiation with respect to @ of aG(a,r+Q)=C(Q,r)-6M* —cA and

recalling that G, ,(a,r+Q)=(b+h)F ( rT Q) —-b20 (Zheng 1992), we can similarly
a

show that [(0r/0a)+(8Q/0a)]=0. But we cannot analytically determine the sign of
(0Q/0a).

For the unit model, the procedure will remain exactly the same as before with M%7
replaced by M *“ and 4 replaced by h(a)=ifc+6M*" ] . In this case, though Z(y) is still
a decreasing function, the condition for Z(r + Q) > 0 will be different. From our numerical

experiments we can tell that Z(r + Q) will still be positive in almost all cases. Assuming

that Z(» + Q) 2 0 and following the same method as for time model, we can prove that

(dr/de) >0 and [(Br/da) + (30! da)] 2 0.

For the cycle model, C,= 0 will be:

[aG(a,y)]dy =aG(a,r*(a)+Q*(a)).

(K+6M* )A L1 Ir’(a)«»Q‘(a)
O*(a) Q*(a)

r*fa)

(A4.7.49)

Following the procedure as before (r and Q representing » *(a ) and Q* (a )respectively)
we will have:
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LA L7 , (A4.7.5)
oa aG,.(a,r) aG.(a,r)

where Z(y) and G(a, y) are as in the time model.

As éf,HQZ(y)dy—Z(r), aG,(a,r)and 6M;“are all negative, we can say that
(Or/dca) = 0. But now,

A anre 1oz -
> o0 oM. Qj, (y)dy-Z(r+Q)

= +
da da oG, (ar+Q) aG, ,(ar+Q)

. (A4.7.6)

While the second part of RHS is positive, the first part is negative (since the numerator is

negative while the denominator is positive). So, for the cycle model

[(8r/ dcx) + (BQ/ dcx)] can be positive or negative depending on the value of GM .
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Appendix 5.1

Proof that Profit with the Root with Minus Sign is Higher
The profit function is given by:
7= (p - m)A=(arf ?(7-1))m"", (A5.1.1)

and the two solutions to /m are given by:

+ 11—
2u
where:
=00, (A5.1.3)
2an™*

and
=K, c(Q). (AS.1.4)

Q
Substituting the two roots in (A5.1.2) in (A5.1.1) we have:
m(negative root of m) - a(positive root of m)

- V-4

= (aﬂ”’(rrl))—viv-. (A5.1.5)

If V1 -4uv > 0, then (AS5.1.5) is strictly positive implying that the profit function with the
negative root of m will always be greater than the profit function with the positive root of

m.
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Appendix 5.2

Proof of Semi-Strict Quasiconcavity of 7

Remerubering that ¢ is a function of O, we can easily show that:
i) K(cgo) + Oc(cop) + 2Q(co)* + 4c(cg) = 0 is sufficient for convexity of uv,
and

ii) 2¢cg + Q(cgp) < 0 is sufficient for concavity of u.

Hence, (1 - 4uv) is concave in Q and since (1 - 4uv) is positive for feasible Q, this implies
that v1—4uv is also positive concave. Since the denominator of (5.3.9) is convex in O
and the numerator is concave (both positive), we can conclude that 7 is semi-strictly

quasiconcave in O (Schaible, 1981).

Both conditions will be satisfied when the unit purchase/production cost is constant, i.e.,
c(Q) = c (> 0) V Q. The condition 2cg + O(cgp) < 0 is also satisfied by most of the
common non-increasing convex unit cost functions we expect to see in the literature -
linear, power and logarithmic. These types of functions, but under some additional

constraints, will also satisfy the condition K(cgg) + Qc(cog) + 2Q(cp)* + 4c(cg) = 0.
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Appendix 5.3

Proof of Proposition 5.3.1
With 1 - V1—-4uv =T, xin (5.3.9) can be written as:

_2 —
o= 287 (77 Lu (A5.3.1)

Differentiating (A5.3.1) twice with respect to O, we get the following expression for 7o

which is a cubic equation in Q:
(ugQ)T’ - uT(Tpg)- 2T(To)(ug) + 2u(T)’. (A5.3.2)

For constant unit purchase/production cost, ugg = 0 and Tpp = 0. Of the three solutions to
(AS5.3.2), two will be complex and one will be negative. So, for any positive O, (AS5.3.2)
has the same sign. Note that T is increasing linear in Q, i.e., Tp 2 0 V Q. It is now easy to
prove that (A5.3.2) is negative for any feasible Q < O* (solution to upT - Tpu = 0). Since
we know that (AS5.3.2) will have the same sign for any positive Q, it must be negative for

all feasible Q. Therefore, ris concave for all feasible Q.
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Appendix 5.4

Derivation of 30*(K)/ 6K and 8*Q*(K)/ aK*
For Section 5.3.1.3,

=0 = upT - Tou=0. (A5.4.1)
Differentiating (AS5.4.1) with respect to X we have:

o0*(K o00*(K *
(uQQ—%K(——) +ugx)T + uQ(TQ—%I% + Tk) - (TQQ-aQ—-aIgQ + Tox)u

- (uQEQ‘%IQ +u)Tp=0. (A5.4.2)

Rearranging we have the expression in (5.3.17).

Differentiating (5.3.17) with respect to X we have:

2°0*(K) _
oK?
1 00*(K) oP*(K 00*(K
L
00*(K) 00*(K) 00 *(K
+(TQKK+TQKQT)u}TQQu-{(uQ‘gaK—-+UK)TQQ+(TQQK+TQQQQ_aIE——Z)u}
(uply —ulyy ). (A5.4.3)
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Appendix 5.5

Proof of Proposition 5.3.6

The condition for concavity of zis given in (A5.3.2) of Appendix 5.3. The condition can

be written as (recalling that 7= 1 - 1—4uv ).

1
V1 -4uv

(A5.5.1)

_u[(uv)sz { 4

<0.
1-4uv " J1-4uv /

~12}+(2u(uv )y, +4u?(uv)? ){1-

Note that [1 - (1/4/1 ~4uv)] and -(u[(uv)g]z)/(l - 4uv) are negative since 0 < 4uv < 1 for

feasible Q. Then the sufficient conditions for concavity of z are: i) /1 —4uv < (1/3), and
i1) 2u(uv)gg + 4ug(uv)g 2 0. It is possible to show that

20(uv)op + 4(uv)p = 0. (A5.5.2)

From (A5.5.2) it is possible to show that the condition 2u(uv)pp + 4ug(uv)g = 0 will

always be satisfied for feasible Q. So, v1—4uv < (1/3) is sufficient for concavity of 7.
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Appendix 5.6

Proof of Txxx <O0for Tx <0

Differentiation of Tkxin (5.3.28) with respect to K after some simplification yields:

X + 2(WZ)I‘(£WZ)“ +4[(WZ)K]2(M’Z)K )(XZ)

2
Tkex = F{((Wz)xxx X3

—(=)dwz)(Z))}, (AS5.6.1)

where X= /1-(wz) and Z is the numerator of Txx in (5.3.28) (for this Appendix only).

Noting that feasible X requires (1 - wz) 2 0, i.e., X = 0, and we are interested in Tx < 0,
from the expression of (5.3.28) we can tell that (wz)x < 0. For both investment functions
we can show that (wz)x < 0, (wz)kx = 0, (W2)kxx < 0 and Z = 0. Then from (AS.6.1) we can

prove that Txxx < 0.
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