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Abstract 

In recent years speed and cost have ernerged as important cornpetitive pnorities in supply 

chahs. Firms are now investing substantially in lead t h e  reduction; however, the focus of 

such investments has been quite different for make-to-stock (MTS) and make-to-order 

(MTO) £ïrms. The demand for MTS items tends to be deterministic but pnce-sensitive, 

while demand for MT0 items is more variable and sensitive to both price and delivery 

lead tirne. These differences in market characteristics require that MTS firms focus on 

supplying predictable demand at the Iowest possible cost while MT0 firms focus on 

reducing the delivery lead tirne. Our research deals with the costs and benefits of lead tirne 

management in supply chains, taking into account the differences in competi tive 

environrnents. In particular, we develop separate lead time management models for profit- 

maximising MTS and MT0 firms. 

For the MT0 firm, we assume that custorner demand is stochastic and the mean demand 

rate is decreaçing in both price and a uniform guaranteed delivery lead time offered by the 

£km. To M e r  model the prerriurn for lower delivery lead times, we assume that price is 

Cecreasing in the Ien,oth of the guaranteed delivery lead time. We also capture economies 

of scale by ûssuming the unit operating cost to be a decreasing convex function of the 

demand rate. The MT0 fkm may invest in increasing capacity in order to reduce delivery 

lead tirne, but m u t  be able to satisfy customers according to a pre-specified service levei. 

Our analytical model for delivery lead time management of such MT0 firms trades off the 

costs of investment against the resultant benefits. Our model allows a MT0 firm to 

determine the optimum level of the guaranteed delivery time, processing rate and 

investment that maximise its profit. We show that ignonng - i) the dependence of market 

price on the lead time offered and economies of scale, when they exist, and ii) the inherent 

preference of customers for pnce or lead time - can lead to potentiaily large profit losses. 

Normally MTS fixms kvest in developing more efficient processes that reduce operating 

costs. While the process-improving investments can be of various types, we focus on 

investments in reducing supplier lead time and develop models for supply lead time 



management for MTS fhns. We show that such investments in lead time reduction cm, 

after accounting for al1 the associated costs and benefits, result in substantial reduction of 

inventoy costs. We examine different types of investment and amortisation schemes in 

supplier lead tirne reduction and the different cost models they generate. We compute the 

cost-minimising inventory and supply lead t h e  levels for each type of model. We also 

perfom comparative statics with respect to model parameters, and find several 

"apparently" counter-intuitive results. 

We then assume that a MTS h n  sets its price as a percentage mark-up over its total 

operating costs per unit. In that case, any investment in reducing operating costs can lower 

price and help the firm to gain a greater market share. For the case of invesûnent in set-up 

tirne (cost) reduction, we are able to fornulate an integrated production-marketing model 

for a profit-maximishg MTS firm where price and demand, and hence profit, are 

functions of the f h f s  operating variables. We show that when demand depends on the 

operaihg variables in a profit maximisation model, some of the best hown properties 

fiom classical inventory management no longer hold. We are also able to show that if a 

MTS f ïm ignores the explicit dependence by either assuming demand to be constant or 

price to be an independent decision variable, sub-optimality occurs and the firm can loose 

substantial profits. For the case of investment in supply lead time reduction, we are also 

able to formulate the profit-maximising problem in terms of the operating variables of the 

finn and to indicate how it can be solved. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Speed is one of the most important cornpetitive elements in many modem business 

environments. With this in mind, many supply chahs are investing in reducing lead times 

throughout their operations. The focus of lead time reduction in supply chains varies 

depending on their product characteristics. Make-to-stock supply chains typically strive 

for cost reduction. On the other hand, the aim for make-to-order supply chains is noxmally 

to reduce their delivery times. One of the most populu ways of cost reduction in make-to- 

stock supply chains is through investment in supply lead time reduction. 

In this thesis we attempt to gain insights into the impact of investing in lead time 

reduction for supply chains that operate in different competitive environments taking into 

account both the costs and benefits associated with such reductions. We develop three 

analytical models to investigate the issue. One mode1 deals with delivery lead time 

management for make-to-order supply chains; the other two models deal with set-up time 

and supply lead tirne management for make-to-stock supply chains. 

The initial motivation for this research came fiom discussions with an Electronics 

Manufactunng Senrice (EMS) Company in Toronto. In general, EMS companies provide 

everything fiom a simple cable harness to a complete high-end server or workstation for 

the supply chains of large original equipment manufacturers (OEMs). Recently, OEMs 

have recognised EMSs capabilities and are outsourcing an increasing amount of 

production to them. The EMS industry is forecast to grow from $78 billion in 1999 to 

$260 billion in 2004, a 28% compound annual growth rate (CAGR), compared to CAGR 

of about only 8% for the electronics industry as a whole during the same time (Carbone 

2000). This particula. EMS specialises in supplying electronics components for a number 



of international OEMs phari ly  in the cornputer and communications industry. The EMS 

was involved in a number of supply Iead t h e  reduction initiatives for the OEMs and 

somewhat surpnsingly, the OEMs were ready to pay for many of those initiatives. Our 

research began by hying to gain a better understanding of why OEMs were willing to 

invest in lead time reduction. 

In this case, one of the OEMs that specialised in customised servers indicated that the 

reason for their interest in supply lead t h e  reduction was to reduce the delivery time of 

customised server products to their customers. The servers were mainly being built for 

dot-corn companies that were ready to pay a significant price premium for early delivery. 

The situation for another OEM that specialised in standard, off-the-shelf computers was 

different. The reason for their focus on supply lead tirne reduction was to reduce inventoxy 

costs and ultimately to cut prices. The market for such standard cornputers is extremely 

competitive and price is a key selling feature. 

This discussion led us to redise that while investment in lead time reduction within the 

supply chah can lead to cost reduction and/or faster delivery, such investments are 

motivated by different factors depending on the marketplace. To set the broader stage for 

this research, in the next section we provide an oveMew of the relevant supply chain 

environment issues. 

1.2 Background 

1.2.1 Costs and Benefits of Lead Time Reduction in Supply Chains 

The 1980s brought a widespread recognition of the importance of effective analysis and 

irnprovement of manufactuxing practices in maintaining a fim's competitiveness (Hayes, 

Wheelwright and Clark 1988). It was also during the 1980s that many firms started 

outsourcing a large part of their business (refer to October 2000 issue of Fortune for more 

on the importance of outsourcing in modem business). The move towards large-scale 

outsourcing led to the break-up of vertically integrated companies which began to give 



way to a network of loosely integrated companies that use each others' capabilities to 

form beneficial, win-win partnerships called supply chahs. Companies started recognising 

that they had to rely on effective management of their supply c h a h  for competitive 

advantage (Tayur et al. 1999). 

In the early SOS, most manufacturers believed that Iow cost and high quality were the most 

fundamental sources of competitive advantage. Interestingly enough, quality is now no 

more a discriminating market factor as  in the past; rather it has become a "order qualiwng 

characteristic" (Monczka and Trent 1995). Success in many businesses now depends 

largely on tirne-based cornpetition. This concept was made popular by the classic works of 

Stalk and Hout (1990) and Blackburn (1991) who showed how firms could gain advantage 

by being faster than cornpetitors in different aspects of their operations. In recent times a 

huge volume of academic as well as popular literature has been published on this issue 

(e-g., So and Song 1998; Suri 1998). 

Two other related developments have increased the importance of time-based strategies. 

The h t  is the growth of service organisations. The service sector now accounts for 55% 

of the United States Gross Domestic Product (Center for Retailing Education and 

Research 2001) and 68% of the Canadian Gross Domestic Product (Industry Canada 

2001). In service industries, custorners regard total service time as a key concern - the 

shorter the sojourn time in the facility, the better (Stevenson 1999). The second 

developrnent is the growth in the use of the internet as a robust channel for commerce. 

Research projections for firms that do business both on and offline indicate that by the end 

of 2000, 25% of their revenue will corne fiom the Web. This number is forecast to nse to 

34% in 2001 and 50% by 2002 (Levy 2000). htemet shoppers tend to be driven by one of 

two rewards - either the best price on a readily-available item or finding something special 

faster than possible by any other means (E-commerce News 2000; Smith, Bailey and 

Brynjolfsson 2000). A recent survey of overall performance at 110 organisations in five 

major manufacturing sectors by Performance -Management Group, a subsidiary of high- 

tech management consdtants PRTM, indicates that the best in the class performers focus 



their attention on achieving breakthroughs in costs and speed (Geary and Zonnenberg 

2000). 

As speed becarne a driver of business success, lead t h e  reduction emerged as a dominant 

issue in manufacturing strategy (van Beek and van Putten 1987; Suri 1998; Hopp and 

Spearman 2000). Lead times in a supply chah can have a nurnber of elements including 

product development time, supply lead time, set-up time, manufacturing/service time, 

waiting time and delivery time. For our research we assume that the product or service has 

aiready been developed and the fhm is in regular operation. We concentrate only on those 

lead time elements that are related to producing and delivering the product or service to 

the customer. 

There are many advantages of reducing lead times. Some of them include Iowering WIP 

(Work-in-Process), better scheduling, better quality, reduction of bullwhip effect, better 

service and lower cost (Karmarkar 1993; Simchi-Levi et al. 2000). It is not only that the 

mean lead time is important - high variability in lead times makes planning very difficult. 

It has been known for some tirne that reducing the variability of supply/manufachiring 

lead tune usually causes lower levels of raw materialdfinished goods safety stock and 

hence lower costs. Lower variability also may cause lower "safety times" and fewer 

difficulties in CO-ordination and scheduling. For some more advantages of reducing lead 

times refer to Suri (19981, Hopp and Spearman (2000) and to Chapter 2 of this thesis. 

Another effect of lead time reduction is becorning apparent - its effect on final custorner 

demand and pnce. Though the concept is intuitively appealing, the economics literature 

does not nomally deal with the relationship between demand and Iead time; the focus has 

been mainly on the efXects of pnce on demand. However, empirical studies by Sterling 

and Lambert (1989), Blackburn et al. (19921, Mdtz and Maltz (1998), Smith et al. (2000), 

etc. suggest that the length of the waiting/delivery time can have a significant effect on 

customer demand. In industrial markets, a 5% decreaçe in delivery time can result in 

almost 24% drop in purchases by the existing customer base (Ballou 1998). Recent 

operations management literature has begun to recognise this relation by modelling 



demand as a h c t i o n  of both price and delivery time (So and Song 1998; Palaka et al. 

1998; So 2000 and the references therein). F b s  also redise that lower delivery times can 

bring in a pnce prernium. For example, Federal Express can charge almost 50% more for 

guaranteed next day 8am delivery than for guaranteed next day 5pm delivery. More 

anecdotal evidences of pnce premium for shorter delivery times can be seen in Magretta 

(1998), Blackburn et al. (1992) and BaIlou (1998). 

Most tirnes, lead time reduction can only be redised by investment (Zipkin 1991). 

Reductions in lead time rnight be in the fom of investment in better communication, 

newer machines, improved process design, set-up tirne reduction, better modes of 

transportation or possibly standardisation of processes. Several applications of lead time 

reduction techniques and their effects on market share, intemal efficiency and customer 

satisfaction can be found in Garg and Lee (1999), Suri (1998), a study by Helsinki 

University of Technology (http://130.233.88.25O/hyperlogi) and Hopp and Spearman 

(2000). 

It is typical for investments to yield diminishing rehims to the scale of investment. This 

naturally raises the question of how much to invest in lead time reduction so as to obtain 

the maximum benefit, measured by an appropnate objective fiction. It is then necessary 

to have models that weigh the advantages gained by shorter lead times against the 

associated costs. The models we develop in this thesis address both the costs and benefits 

related to lead tirne reduction issues. 

1.2.2 Relation between Product Characteristics and Lead Time Reduction in 

Supply Chains 

The previous sub-section explained the reason behind the recent surge of interest in lead 

time reduction for supply chains and the costs and benefits associated with such 

reductions. However, the focus of lead time reduction depends to a large extent on the 

cornpetitive environment of the supply chain, especially on its product charactenstics 

(Fisher 1997; Ramdas and Spekman 2000; Chopra and Meindl 2001). 



What is meant here by product characteristics? We can group most products into the 

following two categories: 

a) Products that are standard or "hctional" in nature and hence can be produced 

before receipt of a customer order are cdled make-to-stock products. The 

production system creates goods in anticipation of demand, customer orders are 

typically filled fiom existing stock and production orders are used to replenish 

those stocks. Examples include basic food products like baking soda, standard 

electrical components like resistors, lumber, diapers and light bulbs (Zipkin 2000; 

Hopp and Spearman 2000; Fisher 1997); 

b) Products that are customised in nature are produced in response to customer 

demand where each customer waits until hidher order is completed and are called 

make-to-order products. Examples include custom furnitme, courier services, hair- 

cutting and custom machine tools (Zipkin 2000). Indeed, almost al1 services are 

make-to-order in nature. 

If we examine the demand characteristics of these two types of products, they are quite 

different (refer also to Fisher 1997 and Chopra and Meindl 2001 for more details). 

Normally, the waiting time for make-to-stock products is almost ni1 (either they are there 

or not), and customers are primarily price-sensitive. Hence, such finns aim for a cost 

leadership strategy to attract customers. In the case of make-to-order products, customers 

wait for the product or seMce and so they really "feel" the delivery time. For such 

products, customers are not oniy price but also delivery time sensitive. Hence, make-to- 

order firms m u t  differentiate themselves strategically based on pnce and delivery time 

they offer to customers (for more on competitive strategy refer to Porter 1998). The nature 

of make-to-stock products also makes their demand much more predictable than for make- 

to-order products. Another difference is that the profit margin is typicaily lower for make- 

to-stock products than for make-to-order products (Fisher 1997). 

It is important to recognise that the supply chah's design must complement the nature of 

the demand for the product and the competitive strategy (Fisher 1997; Rarndas and 



Spekma. 2000; Hi11 and Khosla 1992; Chopra and Meindl 2001). For rnake-to-stock 

products, the supply chain should supply predictable demand efficiently at the lowest 

possible cost, and lead time reduction initiatives to be undertaken should be focussed on 

cost reduction. On the other hand, make-to-order supply chains should invest in 

decreasing the delivery time so that it can respond quickiy to unpredictable demarid, 

without increasing price "too much". 

Supply Chain Design for Make-to-Stock Firms 

If some make-to-stock firm uses mark-up pricing based on their operating costs (Wang 

and Zhao 2000; Hay and Moms 1991), it may wish to invest in improving their processes 

to reduce their operating costs and gain a larger share of price-sensitive customers. For 

make-to-stock firms, inventory costs can be a significant portion of operating costs. For 

exarnple, in the case of retail industry, inventory cost c m  be as high as 80% of the total 

operating cost and even for make-to-stock manufacturing h n s  it is as much as 65% of the 

total operating cost (Ballou 1998; CAPS Research 2000). Hence it is natural that many 

such firms have targeted inventory cost reduction as a means to achieve their goal of 

reducing operating costs (Fisher 1 997). 

As far as inventory cost reduction is concerned, one of the ways it can be realised is 

through Iead time reduction. The two elements of lead t h e  that have been the greatest 

targets for cost reduction are - i) supply lead time, and ii) set-up time (or cost) (Chopra 

and Meindl 2001). The growth of supply chains means that the supply lead tirne between 

the elements of the chain is now a cornpetitive priority (Ausûxlian National Audit Office 

Report 1997-98; Chopra and Meindl 2001). Many buyers are ready to pay for the 

investments undertaken by their suppliers in supply lead time reduction. Even with that 

cost, the buyer seems to be better off as fa- as total inventory cost is concemed 

(Purchasing Online 1998). Similarly, investments in set-up time (cost) reduction can also 

reduce the total inventory costs for make-to-stock firms (Porteus 1985; Hopp and 

Spearman 2000). However, the increased demand resulting f?om cost reductions, in tum, 



will affect the original investment decision. Hence, make-to-stock supply chains must take 

this "circulariiy" into account while deciding on the optimal lead tirne. 

Supply Chain Design for Make-to-Order Firms 

Make-to-order firms try to attract customers by catering to their lead t h e  sensitivity. Such 

nmis (or supply chains) use three main strategies to utilise speed to attract customers - 
i) serving customers as fast as possible, ii) encouraging potential customers to obtain a 

delivery lead t h e  "quote" pnor to ordering, and iii) guaranteeing a "uniforni" delivery 

lead time for al1 potential customers (for exvnples of each type refer to So and Song 

1998). However, make-to-order h s  focus not only on the length of the delivery time but 

also on its reliability. The issue of delivery time reliability is especially important to retain 

customers and for repeat business. 

For make-to-order hrms, one of the ways to achieve shorter delivery times is to invest in 

increasing their capacity. Since services cannot be inventoned, optimal capacity design is 

especially important in service sector (Stevenson 1999). Make-to-order f i n s  must also 

keep in mind two other issues - i) customers may be ready to pay a price premium for 

early delivery, and ii) if lower delivery times can attract more customers, it may lead to 

economies of scale for the firm (Le., lower operating costs). Hence, make-to-order firms 

rnust account for al1 these costs and benefits while detemining their optimal delivery 

time. 

1.2.3 Research Agenda 

From the above discussion we can conclude that: 

a) Lead time reduction is a key concem for supply chahs, has many potential 

bene fi ts, but requires investment; 

b) The focus of lead time reduction appears to be different for make-tc-stock and 

make-to-order fïrms. 



Since the mid-1980s, the strategic benefits of models and tools fiom Operations Research 

to anaiyse the consequences of integration and the use of new technologies or processes 

before their introduction have become well known (Maloni and Benton 1997). Given the 

widespread recognition of the need for effective supply chah management, and the 

importance of speed as a cornpetitive prerogative, we decided to focus our thesis on 

analytical models of lead tirne management issues in supply chains. 

Specifically we wanted to address the following topics: 

a) Develop delivery lead time management models for make-to-order supply chahs; 

b) Develop lead time management models for make-to-stock supply chains focusing 

on the Iead time elements of supply time and set-up t h e .  

While some lead time management issues for both make-to-order and make-to-stock 

supply chains have been investigated before in the literature, we have not seen any mode1 

that takes into account al1 the elements that we include in ours. 

1.3 Modelling Strategy 

For our research, we assume a three party supply chah - a profit-maxirnising firm, its 

supplier and its final customers. The firm is dealing in a single end product. To address 

the specific research issues, identified in Section 1.2, we have developed three separate 

analytical models. 

Delivery Lead t h e  Management Model for Make-to-Order Firms 

For this model, we focus on the fhm and its customers assuming that the fim is dealing in 

a make-to-order product/service. The firm announces a uniform delivery lead time for a11 

customers withïn which they guarantee to satis@ each customer order. The customers are 

ready to pay a price premium for shorter delivery times and the firm knows that it can 

obtain economies of scale by attracting more customers. The firm has to invest in 



increasing capacity so thai it will be able to keep the delivery time low even when it is 

attracting a lot of customers (refer to Figure 1.3(a)). This part of the thesis will develop an 

analytical model to help a make-to-order firm optimally detexmine its lead time by trading 

off the benefits of reduced deiivery time against the costs of investment (Model A). 

Economies Investment in Delivery time and 
of scde increasing capacity pnce change 

Prke and delivery 
time sensitive 
customers 

CUSTOMERS 

Figure 13(a): Supply Chain for Model A 

Lead time Management Model for Make-toStack Firms 

For this model, we assume that the firm is dealing in a make-to-stock product, whiçh it 

either produces or buys fkom a supplier and sells directly to the customers. When the 

product is procured fkom a supplier, supply lead time might be the most important 

component of overall lead time and needs to be properly managed. Hence we first focus 

on supply lead tirne management models for make-to-stock f m s .  

Supply Lead Time Management Mode1 

In this model, we focus on the firm and its supplier. The firm procures material fiom 

the supplier in batches following a (Q, r) policy and stores it in its warehouse. The 

replenishment Iead time is stochastic. The customer demand is constant, occurs one 

unit at a t h e  and is fulfilled directly fiom the warehouse. The firm wishes to reduce 

the supply lead time and it is ready to pay for any investment that will be done by the 

supplier for this reduction. The leau t h e  reduction can be attained through different 

types of investments. While such reductions will lower the inventory costs for the 



firm, the cost of the investment m u t  also be accounted for (refer to Figure 1.3(b)). 

This part of the thesis will model the inventory cost for the rnake-to-stock firm 

incorporating both the costs and the benefits of reduced supply time, and help the firm 

detemùne the cost-minimishg supply lead time, investment and inventory policy 

values (Model B). 
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Figure 1.3(b): Supply Chain for Model B 

If we assume that the make-to-stock firm uses mark-up pricing over operating costs, 

proper investrnents in lead tirne reduction might bring down the total inventory costs and 

hence the price of the product for such firms. This implies that the demand will go up 

since customers are price sensitive. However, the increased demand will have an effect on 

the extent of the lead time reduction decision itself (Figure 1.3(c)). Hence, in this setting, 

both pnce and demand are fbnctions of the operating variables. This part of the thesis will 

develop an integrated analytical production-marketing model to help the make-to-stock 

firm maximise its profit by proper selection of lead time (Model C). Specifically, we will 

focus on set-up time and supply lead time elements of overall lead time. 
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Figure 1.3(c): Supply Chain for Model C 

1.4 Organisation of Remainder of the Thesis 

To satisfy our research objectives the remainder of this thesis will be organised as follows: 

Chapter 2 will present a review of the literature relevant to the issues outlined in this 

chapter. It will also show how components of some previous models can be used in our 

research and where our research fits into the related body of knowledge. Chapter 3 will 

deal with delivery lead time management for make-to-order firms taking into account the 

demand and pnce characteristics for such products (Model A). Chapter 4 will tackie the 

issue of supply lead time management and how investment in supply lead time reduction 

can minimise inventory costs for make-to-stock firms (Model B). In Chapter 5 we will 

present a mode1 of how make-to-stock firms can determine their set-up times and supply 

lead times to maximise their profits (Model C). An overall summary of the resdts and 

recomrnendations for fûture research will be presented in Chapter 6. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In the previous chapter we dealt with the motivation behind this research and its relevance 

to modern business environments. While lead time reduction is beneficial for al1 supply 

chains, it requires investments whose goals vary depending on the competitive 

environment of the supply chain. Specifically, we discussed make-to-order and make-to- 

stock supply chains and how the different demand characteristics of these two require 

different supply chain design and lead time reduction foci. In this thesis, o u  aim is to 

develop models that trade-off the costs and benefits of lead time reduction to determine 

optimal lead time for make-to-order and make-to-stock h s .  Though no previous 

research captures al1 the issues that we address, we draw on work done in related areas. 

This chapter wiIl examine related models and explain their significance to our research. 

In this chapter we will address the literature related to the following: 

Growth of supply c h a h  and the buyer-supplier interface; 

Importance of lead tirne, in general, in modem enterprises and specifically the 

relation between lead time and inventory costs; 

(Q, r) continuous review stochastic inventoq models; 

Process irnproving investments, especially investments in lead time reduction; 

Price and lead time sensitive demand; 

Integrated Production-Marketing models; 

Mark-up priculg models; 

Foms of Investment and Demand fûnctions. 



2.2 Growth of Supply Chains 

From the Iate 1980s' the corporate world increasingly used outsourcing for products and 

services once made in-house. This led to the growth of supply chains (Bryne 1996). More 

and more h s  are now focusing on better management of their supply chains. The goal 

of effective supply chain management is efficient integration of al1 parties of the chain in 

order to minimise system wide costs while satisfying the service level requirements 

(Simchi-Levi et al. 2000). This integration can be difficult because of the decentralised 

nature of the chain, short product life cycles and increased customer expectations; 

however, properly integrated supply chains have a bottom line advantage. According to 

recent estimates there is a difference of about six to eight per cent savings in yearly 

revenue between the performance of an average and kt-c lass  supply chain. That amounts 

to approximately $60 to $80 million in savings for a Company with a billion dollars in 

annual revenue (Gort 2000). 

One of the basic issues in proper integration of supply chains is a close buyer-supplier 

relationship. The success of the Japanese manufacturers in utilising this relationship has 

been highly publicised. Frazier et al. (1988) pointed out that such relationships sometimes 

require specialised or "idiosyncratic" investments by the supplier. This can lead to 

relatively "high nsk" f?om both the buyer's and the supplier's point of view and in some 

cases costs of these investments are likely to outweigh its benefits. Newman (1989) and 

Kalwani and Narayandas (1995) have also expressed similar concems and pointed out that 

this rnight lead to problems in the relationship. In their research on idiosyncratic 

invesûnents, Fazel et al. (1998) and Levi (1999) point out that the supplier might pass 

some of the relation-specific investment back to the buyer that requires the investment. 

In summary, we can conclude that: 

The recent emphasis on effective supply chah management shows that our research is 

timely . 



= Articles related to the buyer-supplier interface support our modelling assumption that 

if there is a substantial relation-specific investment required by a supplier, the supplier 

could pass a part or whole of the investment to the buyer. 

2.3 Importaace of Lead Time in Modern Business 

Seminal studies by StaIk and Hout (1990) and Blackburn (1991) led fims to realise the 

importance of speed in modem business. This was M e r  strengthened by the results from 

empincal studies by Jackson et al. (1986), M m  (1994) and severai others (refer to Ballou, 

Chapter 4, 1998). F k s  started to focus on reduction of time throughout their operations 

Like supply time, set-up t h e ,  manufacturing time and delivery time. It became clear that 

"the-based cornpetition" is a survival strategy for h s .  To effectively compete, firms 

need to differentiate themselves based on price and length and reliability of the lead time 

offered to customers (i2's White Paper on E-Business 2000; Monczka and Morgan 2000; 

Chopra and Meindl 2001). 

There is a huge volume of research pointing out the advantages of lead time reduction, 

some of which were already discussed in Chapter 1. With longer lead times, schedules 

must be fiozen over a longer horizon. This increases the chance of incorrect demand 

forecast. Longer and more variable lead times are also usually associated with higher lead 

time demand variability. In general, safety stocks are related to the variability of demand 

over lead tirne, which grow larger as lead time increases leading to "excess" safety stocks. 

Hence, lead time reduction can result in reduction of inventory costs. In production for 

assembly, variability causes difficulty in CO-ordinating parts and requires large 

intemediate and finished goods safety stocks (Karmarkar et al. 1985). Other benefits of 

lead time reduction include the ability to quickly fil1 customer orders that cannot be filled 

fkom stock, and reduction in the buIlwhip effect (Simchi-Levi et al. 2000). 

In more recent times, shorter delivery lead times have been also associated with larger 

demand and a price premiurn, especially for make-to-order products (Ballou 1998; So and 

Song 1998; Weng 1999). Recent research ( k g  and Lee 1999) has indicated the potential 



of lead tirne reduction strategies in handihg product variety. There have been several 

other recent studies focusing extensively on the techniques of lead time reduction and its 

effects (Karmarkar 1993; Groenevelt 1993; Song and Zipkin 1996; Suri i998; Garg and 

Lee 1999; Hopp and Spearman 2000). 

In most of the above researçh, the emphasis is mainly on the benefits of lead time 

reduction and the methods of achieving it, ignonng the costs associated with such 

reductions. 

2.3.1 Lead Time and Inventory Costs 

Many of the analytical models related to lead time reduction have focussed exclusively on 

the effect of such reductions on inventory costs. The reason for this focus is the important 

role played by inventory in the modem economy. As we indicated in Chapter 1, inventory 

costs comprise the major portion of the total operating cost for a make-to-stock firm. In 

more general ternis, as of March 1999, buinesses in the United States excluding 

government and not-for-profit h s  held about $1.1 trillion worth of inventories which is 

much more than their total monthly sales (Zipkin 2000). Many of the success stones of the 

1 s t  few decades, Iike Japanese manufacturing companies, Wal-Mart or Del1 c m  be 

attributed to their ability to operate with substantially lower inventories than their 

counterparts (Zipkin 2000). One of the ways in which these organisations achieve a lower 

level of inventory is by lead time reduction throughout their supply chains (Chopra and 

Meindl 200 1). 

It is during any replenishment lead time that the likelihood of a stock-out is highest. 

Hence, the most important element in any inventory related research is the lead time 

demand (LTD). LTD is composed of two parts: lead tirne duration and demand per unit 

time. hventory models are nomally categorised based on their LTD charactenstics - 
detemiinistic or stochastic, and review fkequency - periodic, i.e., i~ventory level is known 

only at certain points in time, or continuous, Le., inventory level is known at al1 times. 

There are two basic issues in any inventory mode1 - when to order (reorder point) and how 



much to order (batch size). With the increased use of information technology for 

inventory tracking, inventory levels are more or less h o w n  at al1 tirnes. Hence, the most 

popular inventory control mode1 used in practice is the continuous review, order 

quantityheorder point type (Q, r) policy (Chopra and Meindl 2001). With this policy, an 

order for quantity Q is placed as soon as the inventory position (= inventory on hand + 
inventory on orders - backorders) drops to a fixed reorder point, r (Zheng 1992). 

Economic Order Quantity (EOQ) models and their extensions are used for models with 

deterministic LTD. For such models, calculation of a reorder point is straightforward and 

the primary decision variable is the batch size (Q). EOQ models determine the optimal 

batch size that will minimise the relevant inventory costs per unit time by trading off the 

set-up cost and holding cost. For a detailed review of how EOQ models and its extensions 

can help nmis in reducing their inventory costs refer to Lee and Nahmias (1993). 

If either or both the constituents of LTD are random, the LTD will aiso be stochastic. For 

stochastic inventoq models, bot!! the reorder point (r) and the batch size (Q) are decision 

variables and the objective is normally the minimisation of expected inventory costs per 

unit time. These are called as (Q, r) models. For stochastic LTD, stock-outs are possible. 

Unrnet demands are either backordered or lost. Stochastic models deal simultaneously 

with two trade-offs - i) between set-up and holding costs, and ii) between backordenng 

and holding costs. 

There are certain models that primarily focus on the trade-off between the holding and 

backordering costs. These models cm be either single-penod (newsvendor problem) or 

rnulti-period (base stock policy). Gerchak and He (2000) used a mean presewing 

transformation, which changes the demand variability while keeping the mean constant, to 

show the effect of randomness of demand for an arbitrary demand distribution on optimal 

inventory cost and order quantity in a newsvendor problem. While the optimal inventory 

cost always increases with variability, the optimal order quantity does not necessarily 

follow the same pattern. Gerchak and Mossrnan (1992) point out the conditions under 

which the optimal order quantity also increases with variability. Song (1994a) used 



stochastic ordering for a model where demands form a compound Poisson process and 

lead times are stochastic. The author investigated the effect of both stochastically larger 

and more variable supply lead times when base stock policy is optimal. While the optimal 

base-stock level is higher for larger lead tirnes, it does not necessarîly lead to higher 

optimal long-run average cost. More variable lead t h e  always leads to a higher optimal 

average cost but the optimal base stock level depends on the cost structure and will be 

higher if and only if the penalty cost is high relative to the holding cost rate. In a related 

article (Song 1994b), a similar model was investigated with the performance measure 

being infinite horizon expected total discounted cost. In this case it is not always true that 

larger lead-tirne demand will have Iarger optimal base stock leveI. For a detailed review of 

inventory models, in general, refer to Graves et al. (1993) and Zipkin (2000). For 

stochastic inventory models, particularly single-penod or multi-penod problems refer to 

Porteus (1990). Since our primary interest is in continuous review stochastic inventory 

models with backordering, we will consider them in greater detail. 

2.4 Continuous Review (Q, r) Stochastic Inventory Models with 

Backordering 

Interest in continuous review, stochastic inventory models with backordering started with 

the classic work of Hadley and Whitin (1963) who developed such an inventory cost 

model with backordenng cost per unit (no time dimension) and the assumptions of one 

order outstanding and a positive reorder point. They proved the joint convexity in Q and r 

of the cost function under some restrictive conditions and showed how to detennine the 

cost-minirnising batch size and reorder point. For the case of one order outstanding and 

backordenng cost per unit per unit tirne they developed a model for Poisson demand, but 

could not prove the joint convexity of the cost function. Other studies that analysed and 

compared the effects of lead time demand on inventory levels and costs used different 

techniques like simulation (Gross and Soriano 1969) and numerical computation (Vinson 

1972; Naddor 1978). 



Research on stochastic (Q, r) inventory models has shown that a key issue is the 

variability of LTD, especially the standard deviation, whether it originates ftom demand 

or lead time duration. The variability of LTD requires some safety stock, the stock in 

excess of mean lead time demand, for the situations when LTD is hi&. An analytical 

study by Das (1975) showed that in a Hadley-Whitin type of (Q, r) inventory model, the 

average inventory cost is dependent on the variance of the lead time demand and not on 

the mean. Bagchi et al. (1986) use a case study and numencal exarnples to show the 

importance of incorporating the variability of lead time in determining the distribution of 

demand during lead time and safety stock levels. They recommend that a compound 

distribution of demand durùig lead t h e ,  or a good approximation of it, be used to 

calculate safety stocks. In a similar vein, Eppen and Martin (1988) also considered setting 

safety stock levels in the presence of stochastic lead times for cases when both lead time 

and demand are random variables. Their research concems cases when the parameters of 

the distributions are h o w n  as well as the case where they are unlaiown. For some more 

early research in this area refer to Zheng (1 992) and Lee and Nahwas (1 993). 

Up to the mid 1980s most of the research in (Q, r) models was based on approximate 

models following the traditional Hadley-Whitin h e w o r k  of time-independent 

backordenng costs and a single order outstanding. The assumption of single order 

outstanding allowed variability of the LTD to be modelled due to variability of both 

demand and lead time duration. For models with multiple orders outstanding, lead times 

were assurned to be constant with the variability of LTD coming only fkom demand. 

Without this assumption, models with stochastic lead times and multiple orders 

outstanding created the problem of order crossing. 

The (Q, r) rnodel got a major boost fiom the seminal works of Zipkin in mid 1980s. 

Zipkin (1986a) showed that if the supply system is assurned to be exogenous and 

sequential then we can develop (Q, r) inventory models with stochastic lead tirnes even 

for more than one order outstanding (for more details refer to Zipkin 2000). In the same 

paper, Zipkin also showed that the relation between the limiting values of the random 

variables - Inventory leve1 (IL), Inventory position (P) and lead time demand (LTD), 



IL = P - LTD, is valid under very general conditions and that IP and LTD are 

independent. Zipkin (19866) showed that popular approximations of (Q, r) models with 

backordering cost per unit backorder per unit time, where the backordering cost term is 

simplified assuming single order outstanding, may perform poorly when mean lead time 

demand is large compared to Q or when lead t h e  demand is highly variable. He went on 

to prove that the exact expression for backorders, with more than one order outstanding 

and possible negative reorder point, is a jointly convex fhction of the control variables, Q 

and r. The implication of these two papers is that it was possible to develop "exact" (Q, r) 

models without any need for assumptions like one order outstanding, positive reorder 

point or constant lead t h e .  In a recent article, Zhang (1998) significantly simplified 

Zipkin's (1986b) proof of the joint convexity of the inventory cost expression in ternis of 

Q and r. 

The understanding of the exact continuous review stochastic (Q, r) inventory models was 

M e r  augmented by Zheng (1992) who compared such models to corresponding 

deterministic EOQ models. The backordering cost considered was per backorder per unit 

time. The research was an extension of Federgruen and Zheng (1988) where a discrete 

model was considered and a simple and efficient a l g o r i t .  for cost minimisation and 

calculation of control variables was developed. The main results fkom the paper (1992) 

show that average inventory costs and optimal order quantity in stochastic models are 

iarger than their deterministic counterparts. An interesting result is that the relative 

increase in the costs incurred by using the quantity determined by EOQ instead of that 

from the stochastic model is no more than 118 and vanishes when the ordering costs are 

significant relative to other costs. Gallego (1 998) extended Zheng's research by capturing 

the distributional information about lead time demand into its mean and variance and 

solving the resulting problem against the worst possible distribution. This is sometirnes 

cdled a maximal approximation. Gallego obtained bounds on optimal long run average 

inventory costs and batch size for exact (Q, r) models using the maximal approximation. 

Gallego showed that with fi EOQ batch size, the cost penalty would be no more than 

6.07% of the overall optimal. 



The absence of closed form expressions for (Q, r) models, even for approximate models, 

means that analytical comparative statics for such models is relatively difficult. Gerchak 

(1990) showed the direction of change in the reorder point as shortage penalty, expected 

demand and holding costs are changed in the (Q, r) model under the assumptions of single 

order outstanding and backordering cost independent of tirne. Boo kbinder and 

Çakanyildirim (1 999) have aiso perfoxmed £ k t  order analytical comparative statics with 

the assumptions of single order outstanding and positive reorder point. Recently De 

Groote and Zheng (1997) and Zipkin (2000) have shown how the optimal reorder point 

and batch size wil1 Vary with changes in set-up cost, holding cost and backordering cost 

for an "exact" (Q, r) model. They have also shown how the inventory cost increases with 

the standard deviation of the LTD and developed limits to the optimal cost and batch size 

in terms of standard deviation of LTD. 

Based on the above discussion we can conclude that: 

The importance of Iead time in modem business is consistent with our emphasis on 

models for effective lead time management in supply chahs. 

The continuous review stochastic inventory models are concerned mainly with 

understanding the stochastic inventory systems more clearly and relating them to 

deteministic models. While some researchers show that an increase in variability of 

lead time demand can adversely affect the cost, none of them addresses the issue that 

there might be a pnce to be paid to reduce the variability. In our research we will 

account for both the costs and benefits associated with lead tirne reduction to 

determine the "optimal" lead time. The "exact" (Q, r) model, with proper 

modifications, will form the basis of our model. 

2.5 Process-Improving Investments 

The success of Japanese firms with their policy of continuous process improvernent 

created the impetus for a large number of fïrms to invest in process improvements. This 

also had an effect on the research paradigm in the productiodinventory area by changing 



the nature of certain parameters fkom exogenously given to endogenously determined by 

proper investments (Gerchak and Parlar 199 1). A substantial amount of research has been 

done in the area of process-improving investments. Some examples include, research on - 
i) investments in reduction of yield randomness in an EOQ model (Gerchak and Parlar 

1990), ii) investments in process quality improvement (Porteus 1986b), and iii) how 

investments by one entity of a supply chain affects the other parties of the chah (Gilbert 

and Cvsa 2000). For detailed review of this literature refer to Nye (1997) and Ray, 

Gerchak and Jewkes (2000). However, in our research the focus is on investments in Iead 

tirne reductions, specifically on set-up time and supply lead time reductions. 

2.5.1 Investments in Reduction of Set-up Time 

Most of the research dealing with investments in set-up t h e  reduction assumes set-up 

cost to be a surrogate for set-up tirne, i.e., investments in set-up time reduction will also 

reduce the set-up cost. One of the earliest proponents of the research on investrnents in 

set-up cost reduction was Porteus (1985). In the k t  part of his paper, Porteus showed that 

such investments in a traditional average inventory cost per unit tirne EOQ model makes 

sense solely on the basis of benefits obtained in the form of reduced inventory costs. The 

basic setting in Porteus' research is a classical undiscounted EOQ model with the option of 

investing in reducing set-up cost. The EOQ model is optirnised for batch size and set-up 

cost. The total cost function per unit time includes both the inventory costs (set-up costs + 
holding costs) and an opportunity cost for the investment. For two special cases of 

investment functions, Logarithmic and Power - both decreasing convex in set-up cost, 

Porteus was also able to show that the objective function will be strictly concave-convex 

in the relevant region and has a unique local minimum. Porteus subsequently extended his 

work to the cases of discounted EOQ models (1986a) and simultaneous investments in 

set-up cost reduction and process quality improvernent (1986b). Leschke and Weiss 

(1997) extended the work of Poaeus (1985) to help managers decide how to allocate 

investments in set-up cost reduction prognims in a multi-product environment. They use a 

transformation of Porteus' model to show that it is better to standardise set-ups across 



several products in stages than to focus on a single set-up and reduce it as much as 

possible before proceeding to the next set-up. 

Nasn et ai. (1990) dealt with the issue of investing in reduction of set-up costs in a mode1 

with stochastic lead times and tirne-independent backorders. Norrnally, set-up cost 

reduction models assumed a static cost reduction approach, i.e., the decision to invest in 

reduction is made only at the initial set-up. In Hong et al. (1996), the authors examined 

different production policies where a decision to reduce set-up costs could be made at the 

beginning of each planning cycle. 

Nye (1997) considered the question of interdependence of investments for improvement in 

manufacturing processes. The specific improvement practices considered are setup time 

reduction and quality improvement, both of which require investment. This research 

considers not only the traditional EOQ model for showing the interdependence but also 

the effect of congestion in the form of WIP costs. In Hariga (2000), the author investigates 

the "approximate" (Q, r) model of Hadley-Whitin with normally distributed lead time 

demand where lead time is a deterministic function of batch size and set-up time and 

investments can be made to reduce the set-up tirne. For a detailed review of Iiterature on 

set-up time (cost) reduction refer to Nye (1997). 

2.5.2 Investments in Reduction of Supply Lead Time 

In EOQ models the only way we can benefit fiom lead time reduction is through set-up 

tirne reduction that also reduces set-up cost. In a deterministic demand scenario, any 

change in supply lead time duration will only change the reorder point but not the optimal 

batch size or the cost. Hence, almost dl the rnodels related to replenishment lead time 

reduction deal with stochastic LTD in a (Q, r) b e w o r k .  These models c m  be divided 

into two groups - i) those where variability of lead time demand (LTD) is due only to 

demand variation while lead time duration is deterministic, and ii) those where variability 

of LTD is due only to variability of lead t h e  duration and demand is constant. 



The earliest research where variabifity of LTD is fiom stochastic demand and 

detemiinistic lead time duration seems to be that of van Beek and van Putten (1987). They 

showed how in the classical Hadley-Whitin (Q, r) model, in addition to batch size and 

reorder point, lead time duration can be controIled by investment. Hill and Khosla (1 992) 

extended that model by assuming an investment cost more genera1 than van Beek and van 

Putten (1987). Liao and Shyu (1991a) consider Poisson demand in a (Q, r) setting and the 

objective is to minimise the expected inventory cost per unit t h e  by detennining the 

optimal reorder point and lead t h e  pair while batch size is assumed to be known. In a 

related paper, Liao and Shyu (1 991b) consider the same model with normal demand, and 

where lead time is decomposed into components each having différent piecewise linear 

crashing cost for reduction. Ben-Daya and Raouf (1994) extend the Liao and Shyu 

(1991b) normal demand model to also include order quantity as a decision variable. They 

consider the crashing cost to be a continuous fùnction of lead tirne. Li et al. (1997) 

consider a (Q, r) model with backordenng where there is a cost per unit backordered only. 

Investment can be made to reduce the decision variables - set up cost, lead time and 

variance of demand forecast error simultaneously. Hariga and Ben-Daya (1 999) consider 

models with partial backordering and lost sales where there is a crashing cost associated 

with reducing lead time. The model is solved for both complete and partial information 

about the lead time demand distribution. 

The earliest research where variability of LTD is due only to variability of lead time 

duration and demand is constant seems to be that of Gerchak and Parlar (1991). The 

authors dealt with the classical Hadley-Whitin continuous review (Q, r) inventory model 

with backordering cost per unit backordered. This is one of the few papers that use the 

mean p r e s e ~ n g  transformation to capture the effect of investments without assuming any 

particular LTD distribution. The decision variables are reorder point, batch size and 

variability of LTD. Paknejad et al. (1992) analyses the options of investment in reduction 

of lead tirne variance only or reduction of lead time variance and set-up cost 

simultaneously. The basic model is a finite range stochastic lead time inventory model 

with backordering cost per unit per unit time. Numerical results indicate that simultaneous 

investments result in Iowa cost and batch size than separate investments, pointing 



towards meaningfbl interaction between reduction in lead time variance and set-up cost. 

For Choi (1994) the variables considered are variance of lead time duration and quality 

level. A service level criterion is used rather than explicit backordering costs in a 

stochastic, continuous review (Q, r) model. A recent paper by Bookbinder and 

Çakanyildirim (1999) also considers a (Q, r) model with backordering cost per unit per 

unit tirne. Their model assumes single order outstanding and compare the model where 

lead time is endogenous to the case where it is exogenous. For a detailed review of 

literature on supply lead t h e  reduction refer to Ray, Gerchak and Jewkes (2000). 

These papers show that costs and benefits associated with Iead time reduction make it 

imperative to balance the two to amive at the optimal solution. They also show that 

intelligent investments in lead time reduction can lead to inventory cost reduction. We 

will follow this approach. 

However, most models dealing with investments in set-up timdsupply lead time reduction 

focus on cost minimisation assuming demand to be constant or stochastic with mean 

demand rate being constant and do not capture the effect of reduced cost on market 

demand. The recent emphasis on "integrated" supply chah models implies that it is 

important to consider not oniy the effect of investments on efficiency but also their 

ultimate effect on pnce and demand. We will refer to some "integrated" supply chah 

models in Section 2.7 and bdicate why it is especially necessary to develop such models 

to investigate process-improving investments. 

Also there are two issues that have not yet been fully addressed in the existing research on 

investments in supply lead time reduction in (Q, r) models: 

a) Most focus on models with assumptions like backordenng cost per unit, 

disregarding the duration of the shortage, or one order outstanding. However, most 

recent research on (Q, r) models assumes a backordering cost per unit per time, 

allows more than one order outstanding and negative reorder point. Our work deals 

with investing in lead tirne reduction in the latter fiamework; 



b) 

2.6 

The 

Most models assume that the investrnent in lead t h e  reduction is a one-tirne 

investment. However, several other investment strat egies might b e used for such 

reductions. We will show that ignoring the nature and fiequency of the type of 

investments in Iead tirne reduction when deciding on the "optimal" strategy may 

result in sub-optimal decisions. 

Price and Lead Time Dependent Demand 

relation between price and demand is one of the best known relations in 

microeconornics. As we indicated in the previous section, for a long time, operations 

management (OM) did not emphasise the demand side of any supply chah. In the few 

instances where demand was not assumed to be totaily exogenous, it was assumed to be 

sensitive to price only, but unaffected by operational variables. There is some literature in 

OM that deals with price-sensitive demand (refer to Porteus 1990; Eliashberg and 

Steinberg 1993; Peîruzzi and Dada 1999). 

Recent OM literature recognises that long customer waiting times might have an adverse 

effect on the demand rate, especially for make-to-order products. Hence, for such products 

demand rate should not only be dependent on pnce but also on deliveqdwaiting time. 

Customers might be even ready to pay a price premium for shorter delivery times for such 

products. However, we must keep in mind that f ims may need to invest in increasing 

capacity to shorten their delivery times. Also, models have to account for the congestion 

that might be caused by the increase of demand. Congestion can lead to increased WIP 

cost and/or waiting t h e  for custorners. 

Research in lead-tirne-dependent-demand models typically focuses on intemal pricing and 

capacity selection issues for senice facilities by taking into account user's delay costs and 

capacity costs (Dewan and Mendelson 1990; Stidharn 1992). The consumer's choice 

depends on pnce and on the waiting time (full pnce = pnce charged + cost of waiting). As 

an increase in demand might increase congestion and thus the waiting time (leading to 



decrease in demand), the firm's profit will depend on scheduling, outsourcing and pricing 

decisions. 

Many of the researchers have used a game-theoretic h e w o r k  for investigation of 

pncing and capacity selection issues. Li (1992) explored the role of inventory in response 

time competition by examining the behaviour of customers and competing firms. Lederer 

and Li (1997) studied the issue of competition between fims serving delay-sensitive 

customers and the resultant effect on pnce, production rate and scheduling policies. In a 

recent paper, Ha (1998) has extended the research of Dewan and Mendelson (1990) by 

deriving incentive-compatible pncing schemes that can achieve optimal arriva1 rates and 

induce delivery-time-sensitive customers to choose optimal s e ~ c e  rates when service is 

jointly produced by the customers and the facility. For some other related research based 

on game-theoretic îrameworks, refer to So and Song (1998). 

There exist various other streams of literature that investigates lead-time dependent 

demand and/or pnce. This includes the use of quoted customer lead times to explore the 

impact of due-date setting on demand and profitability (Duenyas and Hopp 1995; Weng 

1999). Hill and Khosla (1992) constructed a model where demand is a fûnction of actual 

delivery time and pnce and the firm's objective is to maximise profit by optimal selection 

of pnce and lead time. But their model is totally deterministic. On the other hand, Buss et 

al. (1994) determine the best production capacity where demand is stochastic but do not 

consider the impact of lead times on demand. Weng (1996) models price premium for 

shorter lead times but does not consider the effect of lead time andlor price on dernand 

rate or any investment in increasing capacity. 

While ail these lines of research are important, as So and Song (1998, pg 30) point out, 

they are basically different fiom the recently popular strategy of comrnitting to a 

"unifoxm" delivery time guarantee for al1 customers, the focus of our research. In the case 

of a delivery tirne guarantee, firms advertise a uniforni delivery lead time for al1 customers 

within which they guarantee to satisw each customer order. The length of the delivery 

tirne guarantee is a decision variable that directly affects overail demand. In practice, 



usually it is very difficult to quanti@ user's delay costs, which is used by most research. 

Therefore, it makes sense to use a reliability consiraint to ensure a satisfactory service 

level once the uniform delivery t h e  guarantee is selected. The strategy of committing to a 

unifonn delivery lead time has been investigated by So and Song (1998), Palaka, 

Erlebacher and Kropp (1998), So (2000) and Rao et al. (2000b). The basic setting is that 

the demand rate is a h c t i o n  of price andor length of the uniform guaranteed delivery 

tirne. Sorne investment needs to be made in increasing capacity so that the delivery times 

c m  be reduced. There is also a service level constraint and/or WIP holding and penalty 

costs. The main objective is to find the optimal price andor guaranteed delivery time that 

maximises profit per unit tirne. While So and Song (1998) and Palaka et al. (1998) deal 

with a single fim, So (2000) extended So and Song's work by analysing the impact of 

using delivery time guarantees in the presence of cornpetition. Rao et al. (2000b) integrate 

uniform delivery time guarantee strategy with production planning. For more detailed 

analysis of each of the four papers refer to Chapter 3. 

Based on our above discussion we can conclude that these papers clearly show the recent 

trend of assuming demand to be a fùnction of both pnce and lead time. Some of these 

papers directly address the issue of a uniform delivery time guarantee for al1 customers, 

which is also the focus of one part of our research. 

Our model will be significantly different fiom the existing research on uniform delivery 

time guarantee in two regards: 

a) We will address the issue of a pnce premium for shorter delivery times; 

b) We will explicitly model the economies of scale that may be realised through 

increased demand by committing to a shorter delivery time. 



2.7 Integrated Production-Marketing Models in the Presence of 

Investment 

Marketing often has incentives based on revenue while production has incentives based on 

cost. However, actions that maximise revenues or minimise costs may not maximise 

profits. Hence, it is necessary to develop models that take into account the production- 

marketing interactions to attain the goal of maxirnising profitability of a firm (Chopra and 

Meindl 2001). Eliashberg and Steinberg (1993) also give a usefil argument for why joint 

production-marketing decision-making is important, and provide a comprehensive review 

of such integrated models up to the late 1980s. Such integrated modelling attains even 

more importance when firms invest in reducing their costs to increase demand. 

Though the volume of integrated production-marketing literature is not very large, its 

history is quite long. Note that here we will mainly discuss continuous time concave-cost 

models with static pricing (for literature review on dynamic pricing models refer to Deng 

and Yano 2000). The h t  integrated production-marketing model of this kind was 

formulated by Whitin (1955) who incorporated pricing into the traditional fiarnework of 

the EOQ model through a linear price-demand relation where demand is price-sensitive. 

The objective was to determine the price the fhm should charge in order to maximise its 

profits. This problem was later explicitly solved by Porteus (1 985, Section 6). 

Porteus (1985, Section 7) was the first that approached the problem of joint production- 

marketing decisions when an investment is made in changing some operating parameter. 

Eliashberg and Steinberg (1993) pointed out that incorporation of investment costs 

associated with changing the set-up cost makes Porteus' model much more realistic than 

Whitin's model. Portues modelled demand as price-sensitive and examined the situation 

where the Fim can invest in reducing the set-up cost in a traditional EOQ framework. The 

objective of the firm is to maximise its profit (revenue - production cost - holding cost - 
set-up cost - investment cost) by optimal selection of demand rate (or price) and set-up 

cost. The complex nature of the problem means that the problem could be solved only for 

sorne special demand and investment fiinctions. Though Porteus' paper's first part, where 



he proves the inventory-cost reducing effect of investments in set-up cost reduction, might 

be one of the rnost widely cited OM articles of recent times, the last part, despite being 

more general, seems to have been largely ignored. 

More recent models following Whitin's or Porteus' fi-amework includes Cheng (1990), 

Sajad and Sarker (1991), Min and Chen (1995) and Weng (1995). These models assume 

pnce to be a decision variable, independent of operating costs. Zipkin (1992) also 

formulated a model of an integrated production-marketing system through a queue that 

takes into account the congestion effect for higher demand. However, price is an 

independent decision variable and the objective is to maximise the fim's profit with 

respect to price, batch size and reorder point. 

Ladany and Stemlieb (1974) consider pnce to be a fixed mark-up over production costs in 

a profit-rnaximising EOQ mode1 where the demand rate is decreasing in pnce. Lee and 

Nahmias (1993) point out that explicitly relating operating costs and demand makes the 

objective fimction much more complex and simplifjrïng assurnptions about the demand 

and prodriction cost functions are needed to obtain closed fom expressions. Lee and 

Rosenblatt (1986) also consider a model similar to that of Ladany and Sternlieb but 

include advertising investrnents and quality problems. 

Other streams of literature that have modelled integrated production-marketing issues 

include the economics of queues (refer to So and Song 1998 and Section 2.6) and single- 

penod stochastic inventory models with pricing (refer to Petnizzi and Dada 1999). In most 

of this literature, price is treated as an independent decision variable and either no 

investment are considered or the investments are in increasing capacity. 

All the above models imply that since process-improving investments have the prospect of 

decreasing costs and increasing market demand, it is necessary to develop integrated 

production-marketing models to investigate such investments. This issue will be one of 

the cornerstones of our research also. 



However, our models differ nom the existing literature in two major aspects: 

a) The models that consider price as an independent decision variable do not 

explicitly account for the effect of operating costs on pnce and demand. When the 

product is such that the profit rnargin is very low, it is quite natural to determine 

pnce as a mark-up over the total operating cost. In those situations it is more 

realistic to assume that pnce and demand are both functions of the operating 

variables. However, we acknowledge that for high-profit goods it might be more 

natural to assume price to be an independent decision variable; 

b) The models that consider price to be a mark-up (e.g., Ladany and Stemlieb 1974), 

it is a mark-up over the production costs only and not the entire operating costs. In 

addition, these modeIs do not take into account the investrnent required to effect 

process improvements. 

As we will show later, both of these issues will have a significant effect on modelling. 

2.8 Mark-Up Pricing 

Two comrnon methods of pricing referred to in the literature are cost-based pricing and 

market-based pricing. One of the most popular cost-based rnethods is mark-up pricing 

where prices are established based on an estimated total cost plus a percentage mark-up. 

The mark-up rate depends on the product line, tradition, cornpetition, and other market 

factors (US Department of Defense Contract Pncing Reference Guides 2000). This type of 

pricing is frequently used for make-to-stock products in the manufacturing sector, in the 

apparel industry and in the retail industry (refer to Chapter 5). 

Hall and Hitch (1939) and later empincal studies by Eckstein and Fromm (1968) and 

Coutts, Godley and Nordhaus (1978) found that many fims set prices relative to some 

notion of average cost and a reasonable mark-up to cover profits. According to Hay and 

Monis (1991) almost 75% of firms use some variant of mark-up pricing. Bloch and Olive 

(1997) noted that cost changes play a dominant role in deterrnining prices. Their mode1 



also seems to suggest that the change in price and cost for manufachiring companies are 

proportional, suggesting a mark-up model. There are severai models involving mark-up 

pncing in the operations management literature (Ladany and Stemlieb 1974; Lee and 

Rosenblatt 1986; Wang and Zhao 2000 to name a few). For more details on mark-up 

pncing refer to Hay and Moms (1991) and Lohr and Park (2000). The relation between 

mark-up pncing and the profit-maximisation pricing advocated in the economics literature 

will be discussed in Chapter 5. 

Based on the ample empincal evidence regarding the use of mark-up pricing for make-to- 

stock products, we will assume that as the pricing technique for our make-to-stock supply 

chain. 

2.9 Forms of Investment and Dernand Functions 

There are a variety of functional forms used for process-hproving investments in the 

literature - general convex, exponential, logariîhmic, power, piecewise linear. It is very 

difficult to Say which type of investment function mirrors the practical situation most 

closely. A comprehensive list of different types of investment functions used in the 

literature has been given in Nye (1997). 

There are two main types of demand functions found in OM literature: linear (Porteus 

1985; Palaka et ai. 1998) and constant elasticity (Hill and Khosla 1992; Weng 1995; So 

and Song 1998). As the narne implies, in case of constant elasticity the pnce elasticity of 

demand (or lead time elasticity, as the case may be) remains constant while the slope of 

the curve changes. For the linear demand case, demand elasticity increase with pnce while 

the slope remains constant. Many researchers have used linear demand functions because 

of analytical simplicity. 

In our research, the demand and investment functions will be selected to strike a balance 

between analytical tractabili ty and reaiity. 



2.10 Summary 

From the literature review we can conclude that though there are significant relevant 

research contributions to lead time management issues for make-to-stock and make-to- 

order products/services, there are some gaps in them: 

The existing research dealing with determining optimal delivery lead time for make- 

to-order product/services does not account for the pnce premium f?om lower delivery 

times and the economies of scale fiom higher demand. 

8 The relevant research on the effects of investments in supply lead time reduction on 

inventory costs in a make-to-stock scenario does not take into account al1 possible 

types of such investments and the resultant effects and none of them models the effect 

of lower costs on customer demand. 

8 None of the research investigating integrated production-marketing modeIs for make- 

to-stock products with process-improving investments in set-up timelsupply lead time 

is based on mark-up pncing over the entire operating cost and hence does not 

explicitly account for the effects of al1 the operating variables on pnce and demand. 

Our research, investigating lead time management issues in make-to-stock and make-to- 

order supply chains, will address al1 the above "gaps" so as to develop more 

comprehensive models. Our research aims to make a significant contribution to the 

operations management literature on "time-based" competition. 



CHAPTER 3 

DELIVERY LEAD T m  MANAGEMENT 

FOR 1MAKE-TO-ORDER FIRMS 

3.1 Introduction 

Fims specialising in make-to-order products or services often use a time-based 

cornpetitive strategy, since customers are not only sensitive to the pnce they are paying 

but also to the length and reliability of the delivery lead tirne. For exarnple, Japanese 

machine tool exports to the United States (US) surged from $22.1 million in 1973 to 

$687.5 mi1 lion in 198 1. Much of this increase had to do with the shorter and more reliable 

delivery lead tirnes offered by the Japanese manufacturers. The traditional practice of 

order backlog management used by US machine tool manufacturers implicitly assumed 

that the customers would wait for the make-to-order machine tools. However, by the late 

1970s and early 1980s many foreign f h s ,  especially Japanese ones, started to offer fast 

delivery of quality machines to US customen. Very quickly, many of the US customers 

changed their allegiance to the foreign h s  (National Research Council Report 1983). 

Accordingly, this chapter will focus on how make-to-order firms (or supply chains) can 

manage their delivery lead times to maximise their profits (Mode1 A of Chapter 1). 

While there have been a nurnber of strategies used by make-to-order firrns to use speed to 

attract custorners, guaranteeing a "uniform" delivery lead time for al1 potential customers 

has become quite popular recently. Many companies are adopting the strategy of 

advertising a uniform delivery lead time for al1 custornea within which they guarantee to 

satisQ each customcr order (So and Song 1998). This includes manufacturing firms like 

TitIiestFoot-Joy, a leading manufacturer of customised golf balls, LeatherTech, a 

manufacturer of customised leather fumiture (Rao, Swaminathan and Zhang 2000b) and 

also service facilities like Wells Fargo Bank, L u c b  supemarket and Federal Express (So 

and Song 1998). 



While the strategy of offering a uniform delivery lead time guarantee may attract many 

cuçtomers, there is a nsk if the fhn  announces a very short delivery Iead tirne that attracts 

a lot of customers. The demand may then exceed the companies' capacity to respond. In 

such situations, the waiting time for customers may be greater than the guaranteed 

delivery lead time offered by the firm. This can lead to a penalty cost for the manufacturer 

amilor it might lead to decrease in repeat business. With this strategy, it is important tu 

have some intemal rnechanism to ensure that the promised delivery lead times are feasible 

and reliably met. 

The traditional economics literature deals pnmarily with the effect of pnce on customer 

demand, but not with the effect of lead times. Since the late 1980's, a large volume of 

operations management literature started to recognise that customer demand increases 

both with shorter lead times and lower prices (Hill and Khosla 1992; Duenyas and Hopp 

1995; So and Song 1998; Ballou 1998). Increased demand, in tum, can bring down unit 

operating costs through economies of scale (Scherer 1980). Recent studies seem to 

suggest that the effect of delivery lead time is more than just on the demand rate. 

Karmarkar (1993) pointed out that lead times are most probably inversely related to 

market share or pnce premiums or both. Ballou (1998) also noted that shorter delivery 

lead times could result in a pnce premiurn. For example, shipping costs fiom 

Amazon.com are more than double when the delivery Iead time guarantee is around two 

days than when it is around one week. While there has been pressure on firms to reduce 

their delivery lead times, this pressure has opened up new opportunities for companies 

that are able to satisfy this requirement. Some custorners are ready to pay a pnce premium 

for shorter and more reliable delivery lead times. Many cutting-edge supply chains are 

aware of this added incentive to reduce delivery lead times. One of the ways that firms can 

reliably satisQ a guaranteed delivery lead time is by investing in increasing capacity (So 

and Song 1998; Palaka et al. 1998). The fhms then m u t  trade-off the potential for 

increased demand and price against the costs of investment. 

In this chapter, we mode1 a supply chain of a make-to-order fim and its customers where 

the f b n  is using the strategy of announcing a "uniform" delivery lead time guarantee for 



al1 its customers. Customer demand is random and the mean demand rate is a function of 

both pnce and guaranteed delivery lead t h e ,  and the market pnce is detennined by the 

length of the guaranteed delivery lead tirne. More specifically, the f in? part of this chapter 

presents an analyticd approach for a make-to-order fïrm to maximise its profit by optimal 

selection of a guaranteed delivery lead time. Mean demand is modelled as a decreasing 

fùnction of price and guaranteed delivery lead time while price itself is a decreasing 

function of the guaranteed delivery lead tirne. The model takes into account that - 
i) reducing lead thne by increasing capacity will require investment, and ii) the Company 

must be able to satisQ the guaranteed delivery lead time according to a pre-specified 

reliability level. In the second part of this chapter we expand our initial model to 

incorporate the economies of scaIe by assuming that higher demand c m  reduce unit 

operating costs. 

There are several papers that assume that the mean arriva1 rate to any 

service/manufacturing facility depends on guaranteed delivery lead time and/or price, i.e., 

demand increases when the pnce and/or the length of the guaranteed delivery lead time 

decreases. In one of the seminal papers in this area, So and Song (1 998) model the firm as 

a queuing system where the mean customer demand has a log-linear relationship with 

pnce and guaranteed delivery lead time. The objective is to maximise the profit per unit 

time by suitable selection of the decision variable values - length of the guaranteed 

delivery lead time, price and capacity. The revenue function is the product of mean 

demand per unit time and profit per unit, while cost consists of capacity cost. The 

constraints are in the form of delivery reliability, non-negativity and queue stability. Some 

analytical comparative statics of the parameters are performed for the optimal decision 

variables. With the help of numerical examples they are also able to show that direct 

operating and capacity costs will have a significant effect on 'he optimal decision variable 

values. 

In Palaka, Erlebacher and Kropp (1998) the mean demand rate decreases linearly with 

pnce and delivery lead tirne. Their objective is to maximise profit per unit time. While the 

capacity costs and the decision variables for Palaka et al. are similar to that of So and 



Song (1998), Palaka et al. also explicitly take into consideration W P  costs and penalty 

costs. The constraints are delivery reliability, non-negativity and queue stability. Their 

analysis suggests that there is a critical s e ~ c e  level that a e c t s  the problem solution. 

So (2000) extended So and Song's work by analysing the impact of using delivery lead 

time guararitees in the presence of competition. While the basic setting remains the sarne, 

the focus is on investigating how firms select the best price and guaranteed delivery lead 

time in the presence of multiple-fïxm competition. The first part of the paper analyses the 

optimisation problem and its solution in a multiple-firm setting. In the latter part, the 

author illustrates how different firm and market characteristics would affect the optimal 

strategies. 

Rao et al. (2000b) integrate a uniform delivery lead time guarantee strategy with 

production planning for a rnake-to-order firm. Demand depends on delivery lead time, but 

price is an exogenous parameter. Unlike other research, Rao et al. do not use WIP holding 

costs or a delivery reliability constmint. Though the fkm has an in-house capacity 

restriction, it can buy fkom an infinite capacity supplier, albeit at a higher per unit 

outsourcing cost than in-house production cost. The discrete production schedule for the 

fhm is synchronised with the guaranteed delivery lead time and the firm optimises on the 

delivery lead time to maximise the 1ong-m average expected profit per penod. They also 

provide some analytical comparative statics with respect to outsourcing cost, selling pice 

and production capacity. 

So and Song (1998), Palaka et al. (1998), So (2000) and Rao et al. (2000b) assume 

demand per unit time to be dependent on price a d o r  guaranteed delivery lead time. 

However, they do not consider the relationship between pnce and guaranteed delivery 

lead tirne. We extend previous research by explicitly taking into account the fact that 

customers may be willing to pay a pnce premium for shorter delivery lead times. The 

numencal examples in the previous papers also show that operating costs play an 

important role for firms. However, none of the papers analytically mode1 the effect of 



demand on operating cost. We include economies of scale by modelling unit operating 

cost as a decreasing fûnction of the mean demand rate. 

3.2 Overview and Assumptions of the Physical System 

We consider a supply chain in which a firm that is dealing in a make-to-order 

productlservice announces a uniform guaranteed delivery lead time, L, within which it 

promises to satisfi each customer order. Orders arrive for processing/service according to 

a Poisson process with mean rate A. There is a single semer in the facility and the 

processing times of the orders are independent and exponentially distributed with a mean 

processing rate of p. The assumption of exponential service times, though simplistic, 

makes the problem tractable without significant loss of accuracy (refer to So and Song 

1998 and Palaka et al. 1998). Customers are served on a first-come-first-served (FCFS) 

basis. The mean customer demand rate depends on the price, p, and the stated delivery 

lead time guarantee, L. We assume that customers prefer shorter deIivery lead times and 

lower pnces. We also assume that the firm has performed some market research and is 

aware of how much of a price premium it can obtain fiom the market by guaranteeing a 

shorter delivery lead time. For example, UPS or FedEx perfom market research to l e m  

how much of a price premium customers are willing to pay for shorter delivery lead tirnes. 

Hence, the pnce, p, is higher for a guarantee of shorter delivery lead time, L. We assume 

that raw material is available whenever required. If the firm is a service facility, there will 

be no holding cost for raw matenal and the customers' waiting cost will be indirectly 

taken care of by the effect of delivery lead time on demand. For manufacturing facilities 

we do not mode1 holding costs in Sections 3.4 and 3.5. 

The firm has established an interna1 target delivery lead time reliability level, sR 

(O S sR a 1), which is the probability that a random customer will have a waiting time of L 

or less in the facility. We assume the target reliability Ievel to be set by management as an 

intemal periormance measure not announced to the customers. As failure to satisQ an 

arriving customer within L might have an adverse impact on repeat business, sR will be 

close to 1. Hence, the occwences of actual waiting time being greater than guaranteed 



delivery lead time will be rare. Under this assumption, we will not explicitly account for 

penalty cost incurred by failing to meet delivery lead t h e  guarantee in the models in 

Sections 3.4 and 3.5. However, as we will show later, our fomulation using the service 

levet constraint is consistent with a setîing where a firm has to pay a penalty cost, as long 

as the penalty is independent of the length of the delay. 

The firm c m  invest in increasing the processing rate, A through, for example, hiring extra 

workers or acquiring improved equipment. Successive investments in increasing p by the 

same amount will cost more; thus it is reasonable to assume that the investment fünction 

for increasing 6 Mb), is increasing and convex. The objective of the fim is to maximise 

its profit per unit time subject to satisSing the delivery reliability constraint. The entire 

supply chah system is shown in Figure 3 -2.1. 

Fimi announces unifonn 
delivery lead time 
guarantee (L) for al1 
cuSfomers 

hvestment , MAKE-TO- 

in capacity 

1 I l  <-, CUSTOMER D E m  

L----J (random but mean demand 
rate is price and delivery lead 

time guarantee sensitive) 

Figure 3.2.1: Supply Chain System for Make-to-Order Firms 

3.3 Notation 

The following notation will be used for this chapter: 

h = mean demand rate (unitdunit tirne) 

P = mean processing rate (unitdunit time) 

P = unit market pnce of the product/service ($/unit) 
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m = unit operating cost ($/unit) 

L = uniform guaranteed delivery lead time announced to the customers (time) 

W = steady state actual waiting time in the facility, i.e., sojoum time (time) 

s = actuaI delivesr reliability level, P( W < L) 

sR = minimum desired delivery reliability level (i.e., s r sR) 

M@) = investment cost per unit time to achieve the processing rate p ($/unit time) 

3.4 Analytical Mode1 of the System 

We assume that the mean demand rate, A, depends linearly on L andp, Le., 

A(p ,  L) = a  - b p  - b2L, (3 -4.1 ) 

where: 

a represents the mean demand rate when both p and L are zero and bl and bi represent the 

price and delivery Iead time sensitivities of the mean demand rate, respectively 

(a, bl, b2 > O). A higher value of a represents a higher overaII potential for demand. 

The Iinear demand function has the desirable properties that price and delivery lead time 

elasticity of demand are higher at higher pnces and guaranteed delivery lead times that 

even the more popular Cobb-Douglas function does not have (Palaka et al. 1998). These 

properties are desirable since we would expect that the customers would be more sensitive 

to long delivery lead times when they are paying more and also sensitive to high pnces 

when they have long waiting times. A linear demand function will also help us to obtain 

basic qualitative insights without much andytical complexity. 

We explicitly mode1 price premiums for shorter delivery lead times by assurning that a 

guarantee of a shorter delivery lead time can command a higher market price. We assume 

that the firm has done market research and knows what price premium it wiIl be able to 

charge for committing to a shorter delivery Iead tirne. Furthemore, we assume that the 

firm can approximate the relation between p and L by a linear relationship - for a 



guaranteed delivery lead time of L, the market price, p, will be given by (for a particular 

demand rate): 

where: 

d = price when L = O, Le., the maximum pnce the market is willing to pay, 

and 

e' = delivery lead time sensitivity of price (d, et > O). 

Combining (3.4.1) and (3.4.2) we can express A. in terms of L as: 

A=(a-&rd)-(bz-bre3L = a t - b Z ,  

where: 

a '= a - bfd, 

and 

b'= bl- bl et. 

Note that both a' and b' can, in theory, be unrestricted in sign. However, we will assume 

îhat a' > O, since otherwise when b' is positive, R will be negative for al1 L. As L increases, 

both A and p decreases and any decrease in p increases demand. 

If b' > O, R decreases with L - this is the case to which most recent operations management 

literature refers. This represents the situation where customers are "more lead-time- 

sensitive than pnce-sensitive" (Le., bZ > bl e'). Then the decrease of demand rate due to 

increase in L will be more than the increase of demand rate due to corresponding decrease 

of p @ decreases since L increases). Some thought shows that b' < O (Le., bl e' > b2) also 

makes sense when customers are ready to wait longer to pay a lower price. Zn this case, R 

increases with L. Customers are "more price-sensitive than lead-time-sensitive", Le., the 

decrease of demand rate due to increase in L will be less than the increase of demand rate 

due to corresponding decrease of p (p decreases since L increases). For b' = 0, R is 



constant (= a3 for any L - the customers are "equally sensitive towards price and lead- 

the" ,  i.e., b2 = bl e' and so the decrease of demand rate due to increase in L will be equal 

to the increase of demand rate due to corresponding decrease ofp. 

This type of customer price and lead time sensitivity has been referred to in the literature. 

Blackburn et al. (1992) pointed out that t!!ere are both "price-sensitive" and "time- 

sensitive" customers in the market. The former segment always chooses a lower price 

even with longer delivery times while the latter segment is ready to pay a price premium 

for shorter delivery times. A recent paper by Smith et al. (2000) noted a similar 

phenornenon in the electronic marketplace. Intemet retailers try to create price 

discrimination among customers using this difference in price and value of time. 

Since the firm wishes to maximise expected profit per unit t h e ,  rr; its goal can be written 

as: 

(P3.1) Maximise x 01, L) = (p - m)R - MM), 
P. L 

subject to: 

s = P( W c L) = I - e-''-"'L >- sR (delivery reliability constraint), 

p > A (system stability constraint), 

p 2 rn 2 0, L > O, A 2 O (non-negativity constraints), 

where R is given by (3.4.3), p by (3.4.2) and fiom our assurnption about the investment 

function, M(p) is an increasing convex function in g For this section we assume the unit 

operating cost, m, to be constant; in the next section we will introduce economies of scale. 

The f o m  of the delivery reliability constraint is based on the fact that for an M/M/I queue 

the waiting time has an exponential distribution. Note that at high service levels the 

waiting time distribution is well approximated by the exponential distribution even for a 

G/G/s queue (So and Song 1998). 

We c m  now present the following propositions: 



Proposition 3.4.1: zOc, L) in P3.1 is (i) decreasing concave in (ii) decreasing convex 

in L for b' 2 O and (iii) concave in L for b' < O. 

Proof: Di fferentiating 

With the assumption 

decreasing concave in 

~r Or, L) with respect to p we have': 

that M(p) is increasing convex in p, it is clear that n L )  is 

,u Differentiating aOr, L) with respect to L we have: 

As both p and A. are linear in L, AU and p u  are both equal to zero. Thus, &om (3 .4.2), 

(3.4.3) and (3.4.6) we can Say that if b' 2 O, then zOc, L) is decreasing convex in L and if 

b 'c  0, then zOr, L) is concave in L. 

Proposition 3.4.2: The s e ~ c e  level is increasing concave in p for al1 b' but increasing 

concave in L for only 6' = 0. 

Proof: Differentiating the service level, s, with respect to L we have: 

From (3.4.7) we can Say that s is increasing concave in ,u Similarly, differentiating s with 

respect to L and from the stability condition, we can easily prove that s is also increasing 

concave in L for b' = 0. I 

' For this thesis, ZQ will represent the h t  derivative of function Z with respect to Q and 
ZQP "11 represent the second denvative. 
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Proposition 3.4.1 @es some understanding of the response surface of ~r Or, L) in p and L. 

From Proposition 3.4.2, it is clear that there is a one-to-one relation between s and p. As p 

approaches A, s tends towards O, while as ,u approaches a, s approaches 1. This is quite 

intuitive since when p is very high (for a fixed L) we will be able to satisfy al1 demand 

reliably, while when p is almost equal to A then there will be heavy congestion and we 

will not be able to satis@ demand as reliably. 

Propositions 3.4.1 and 3.4.2 lead to o u  third proposition (Palaka et al., 1998 and So and 

Song, 1998 also obtain a similar result). 

Proposition 3.4.3: At optimality, the delivery reliability constraint is binding. 

Proof: From the delivery reliability constraint we know that the service level must be at 

least % (Le., s 2 8). This implies that the processing rate rnust be at least the minimum 

required to achieve the minimum desired service level, (i.e., /r 2 fl  (L) where 1 - 
e -'pR'L'-'~L = sR). We can illustrate the above by Figure 3.4.1 (recall that stability 

constraint requires p > A). 

Figure 3.4.1: Plot of Semce Level (s) venus Processing Rate (p) 



From Proposition 3.4.1 we h o w  that zOr, L) is decreasing concave in p It is obvious that 

for a profit maximising fïrm, for a fixed L, the objective would be to make p as small as 

possible while maintainhg feasibility. This implies that at optimality, ,K should be equal to 

,d (L) where: 

is the processing rate required to achieve the minimum desired service level, sR. 

Therefore, at optimality s = sR. rn 

The optimal processing rate, p*, will therefore lie on the curve ,d (L). If we can find the 

optimal L, L*, we can substitute it in (3.4.8) to determine the optimal processing rate, p*, 

and in (3.4.2) to determine the optimal pnce, p*. Note that f l  (L) clearly shows that 

p* > A. (since [-h(l-sR)] and L > O), Le., at optimality, the stability condition will be 

satisfied. Since the reliability constraint is tight at optimality, to explicitly mode1 a penalty 

cost for failing to meet the time guarantee, we c m  just add a term ~ ( 1  - sR) to the unit 

operating cost representing the expected penalty, where x is the penalty cost for each 

instance of failure to meet the guarantee independent of the length of the delay (So 2000). 

Proposition 3.4.4: f l  (L) is a decreasing convex function of L for b' r O and convex for 

b'c  0. 

Proof If we differentiate ,d (L) with respect to L we have: 

a3pR 6n - = -- d 4 p R  24n 
IOand  -=- a~~ L~ 

20, at' L~ 

where n = [-ln(l-sR)] (n 2 0). 



From (3.4.9) we c m  tell that if 6' 2 O,# (L) is a decreasing convex fûnction of L (So and 

Song 1 998), and if b ' c 0, f l  (L)  is convex in L. 

Figure 3.4.2 illustrates 4 (L) for b' 2 O and b' < O. Note that for any b: as L + O,#  (L) + 
Q. For bt  > O, as L increases, f l  (L) decreases in a convex, monotone fashion. For b' < O, 

7 

as L increases, 4 (L) initiaily decreases reaching its minimum at L and then 

increases. 

Figure 3.4.2: Plot of f l  (L) versus L 

Having illustrated # (L), we can transform the problem P3.1 into a new problem P3.2 in 

terms of a single variable, L: 

(P3.2) Maximise m(L) = A@ - m) - M@ (L)), 
L 

subject to: 

A2O,L>O,p>rn20 ,  



where: 

;Z=at-b'L,p=d-e'L,  

and 

Now the problem is simply to find L*, the value of L that maximises rr (L) for P3.2. For 

the rest of this section we will suppress the argument of x (L) of (3.4.10) unless otherwise 

stated. 

First let us consider the feasible range for L. If b' 2 O, then A 2 O, i.e., L < (a1&?. The 

d-rn 
condition p 2 rn implies that (d - e x )  2 m, Le., 1: 5 - . Then for b' 2 0, the feasible 

e' 

(b:, ém) ). If b' < 0 then the condition 1 2 O will be satisfied for region for L is (O, min - - 

any L > O and the feasible region for L is (O, ( d  - 1. Note that frorn (3.4.10) and 

assurnptions about MM) we can conclude that as L tends towards the feasible limits, the 

profits are negative - infinite at lower limit and finite at the upper limit. Differentiating n 

with respect to L we have: 

and 

Case 1: b',< O 

Proposition 3.4.5: For b'< O, lrin P3.2 is concave in L. 



ProoE If b' l O, we know /Zr 2 O and p~ c O implying that 2AL p~ 5 0. Then fkom (3.4.9) 

and the assumption that M is increasing convex in f i  (3.4.12) will be negative and hence n 

in P3.2 is concave in L. H 

Case 2: b'> O 

Proposition 3.4.6: For b' > O and MW 2 O, a = O can have zero, one or two feasible 

solutions. 

ProoE When b' > O, then AL < O and p~ -= O, thus 2& pr > O and the sign of is 

unrestricted. Rearranging a = O fiom (3.4.1 l), we have: 

Differentiating both sides of (3.4.13) with respect to L we have: 

Takhg into account the conshaints of P3.2, it is easy to see that the LHS of (3.4.13) is 

always negative and linearly increasing. It will start from a finite negative value and 

increase linearly to a finite negative value at the upper feasible limit of L. If we assume 

that MW 2 O (Le., not only do successive investments cost more, the rate also increases as 

,u increases) and since MF and MW are positive, fkom (3.4.9) we can deduce that (3.4.16) is 

negative for b' > O. The RHS of (3.4.13) will always be negative for feasible L, will tend 



to - as L tend towards O and increase in a concave manner to a finite negative value at 

the upper feasible limit of L. With the above forms of LHS and RHS of (3.4. I3), we c m  

convince ourselves that there can be either zero, one or two feasible solutions to q = O 

(refer to Figure 3.4.3). 

From these observations, we can conclude that when demand is decreasing in L, rmay  

not be unimodal for feasible L. Let us now consider the three possible outcornes: 

a) No solution to IIL = O: In this case the RHS is always below the LHS for feasible L 

and hence lrwill always be increasing (Figure 3.4.3(i)); 

b) One solution to n~ = O: In this case there rnight be two situations. It might be that 

RHS < LHS for small L and as L increases the RHS will intersect the LHS fkom 

below. In this case ~r will be increasing up to the solution for = O and then 

decreasing (Figure 3.4.3(ii)). It might also be that while RHS c LHS for small L, 

as L increases the RHS rather than intersecting is tangent to LHS fkom below. In 

this case also the RHS is always below the LHS for feasible L and hence R will 

always be increasing for feasible L and the solution to x- = O will be the inflection 

point; 

C) Two solutions to = O: In this case the RHS will first intersect the LHS from 

below and then it will intersect f?om above. The profit, n; is initially increasing, 

then decreasing and then again increasing in L (Figure 3.4.3(iii)). 

Note the only thing we can Say about n for 6' > O is the range where rr will be increasing 

or decreasing and not whether it will be concave or convex. 

M a t  can we then Say about L* for Case 1 and Case 2? First, since a is increasing as  

L + O (the Iower feasible limit of L), L * will be given by either the feasible solution(s) to 

n~ = O or the upper limit for the feasible limit of L. As there are a finite number of possible 



alternatives we can easily compare the profit at those alternatives to find L*. We can 

reduce the possible alternatives m e r  since nom Figure 3.4.3(iii) it is clear that for 

multiple feasible solutions to n~ = O for 6' > 0, the larger solution can never be L *. So, it is 

relatively simple to determine L *. 

3.4.3 (i) No solution 

LHS o f  zL = O 

RHS ofnL=O 

3.4.3(ii) One solution 

3.4.3(iii) Two solutions 

Legends: LO = Upper feasible limit of L 

A = Value of LHS at L = O 

Figure 3.4.3: Three Possible Foms of NL) for b' > O 
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It is not necessary that n(L *) will be positive. If n(L *) is negative (e.g., if L * = upper 

feasible lirnit of L) it irnplies that the fïrm cannot make a profit even when acting 

optimally and hence should not be in the business at dl. If there is no feasible solution to 

z~ = O (Figure 3.4.3(i)), the objective fùnction will then be negative (increasing) for the 

entire feasible range of L. If, however, a*) > 0, the firm can announce a guaranteed 

delivery lead tirne of L * and set its processing rate by substituting L * into (3.4.8) to satisfy 

the service level. The market pnce (p*) will be determined by (3.4.2) and the mean 

demand rate will then be given by (3.4.3). 

3.4.1 Numerical Examples 

Example 3.4.1: First let us cowider an example with the following parameters: 

a = 100, bI = 5, b2= 8, d = 10, et= 1, m = 1, M(p) = ~d where A = 0.0001 and sR = 0.98. 

Wehavea'=a-bld=50,b'=b2-bIe'=3,A=50-3Landp-m=9-L. 

In this example, customers are more lead-tirne-sensitive than price-sensitive (since b' > O), 

L E (O, 9), A E (23, 50) (A is decreasing in L) and p E (1, 10). The solution for the 

constrained problem P3.2 in this example is given in Table 3.4.1. Note that lris unimodal 

but not concave (similar to Figure 3.4.3(ii)). 

Different parameter values can give nse to cases similar to Figures 3.4.3(i) and 3.4.3(iii). 

Example 3.4.2: Suppose b2 = 2 in Example 3.4.1, so that b' = -3 and R = 50 + 3L. While 

the feasible region of L and the range of p remain the same as Example 3.4.1, in this 

example A. E (50, 87) and is increasing in L - customers are more pnce-sensitive than 

lead-tirne-sensitive. Since b' < 0, nis  known to be concave in L. 

Exanrple 3.4.3: In this example, a = 73 and b2 = 2 while al1 the other parameters are the 

same as in Example 3.4.1. Then a' = 23 and b' = -3 and A = 23 + 3L. For this example, 

custorners are more price-sensitive than lead-time-sensitive and A. is increasing in L. Note 



that for this example the feasible ranges of L, p and A are al1 simila. to Example 3.4.1. 

Since b' O, lris known to be concave in L. 

We compare the values of the optimal guaranteed delivery lead tirne, processing rate, 

price, demand and profit for the above examples in Table 3.4.1. 

Table 3.4.1: Comparison of L *, ,u*,p*, A* and f l  for 

Examples 3.4.1 - 3.4.3 

These examples show that the sign of b' has a significant impact on the ptimal decision 

variable values. Recall that for b ' c  O, customers are ready to wait longer if they can pay a 

lower pnce. Comparison of Examples 3.4.1 and 3.4.2 show the effect of the change in 

sign of 6' on the optimal decision variable values, demand and profit. For b' < O, L* is 

larger and p* and p* are smaller than for b' > O. Increased revenue fiom higher demand 

and reduced investment cost more than offset the loss of revenue fiom lower price. 

Exarnple 3.4.1 

Example 3.4.2 

Example 3.4.3 

Comparison of Examples 3.4.1 and 3.4.3 shows that even when the ranges of p and R are 

similar, a negative b' forces L* to be higher and ,u* to be lower (leading to less 

investment) so that p* can be reduced to cater to more price-sensitive customers. 

Comparison of Examples 3.4.2 and 3.4.3 shows that lower a leads to higher L* and Iower 

n*. While the comparative statics of So & Song (1998) and Palaka et al. (1998) show a 

similar phenornenon, our mode1 not only takes into account the pnce and lead-time 

sensitivity of demand rate but also explicitly accounts for the relationship between price 

and the length of the guaranteed delivery lead tirne. 

&' 

3 

-3 

-3 

L* 

0.26 

0.39 

0.8 1 

HL*) 

64.27 

61.18 

30.27 

PW*) 

9.74 

9.6 1 

9.19 

AU*) 

49.22 

51.17 

25.42 

n(Lf) 

403 -64 

4 17.65 

205.50 



3.4.2 Effect of Treatingp as a Decision Variable 

We have chosen to explicitly mode1 the relationship between p and L rather than to 

assume that p and L are independent decision variables. While this reduces the nurnber of 

decision variables, it captures for managers a relationship which exists in practice, and 

which could lead to a decision error if ignored. In this section, our aim is to see the effect 

on profit if managers ignore the dependence of p i c e  on the length of the delivery lead 

time guarantee and assurnep to be a decision variable, independent of L. 

With both p and L as decision variables, A. @, L) = a - b,p - bZL (61, b2 > 0) and the 

- 1 n ( 1 - s R )  
optimal ,u depends on bothp and L, Le., f l  (p. L) = + R(p, L) . The problem 

L 

is now to maximise IT@, L) = Rb, L) @ - m) - MU (p. L)). 

Example 3.4.4: Let us consider an example with the following parameters: 

With these parameters, the solution withp as a decision variable will be: 

Lp* = 0.40,p* = 7.98 and &*, L,*) = 42.03. 

If we use our model (p dependent on L), the solution will be: 

L * = 3.44, AL*) = 22.73, p(L*) = 8.91, A@*) = 21.59 and z(L *) = 169.55. 

The differences in the optimal values are expected since the models are dissimilar. Table 

3.4.2 shows how large the effect on profit will be if in reality p is related to L, as in our 

model, but the manager ignores it and detemines L* assuming p to be an independent 

decision variable (Le., guarantees L = 0.4 rather than 3.44 in Our model). 



Table 3.4.2: Cornparison of p*, p*, A* and n* for Different L for Example 3.4.4 

In this example, customers are more price-sensitive than lead-time-sensitive. However, if 

we ignore the relation between p and L when it actuaily exists, we will be guaranteeing a 

much shorter delivery lead tirne (L = 0.4) compared to the optimal (L = 3.44). Though the 

pnce will be higher the demand will be much less. Also, we have to invest more to satisfy 

the small L with the desired reliability. The net result is that profit will be about 13% 

lower! We can also show examples when the opposite will happen, Le., the firm will be 

offering a "higher" L for more lead-time-sensitive than price-sensitive customers, and will 

be loosing profit. 

Model assumingp and L to be related as 

p = d-e l .  (L*= 3.44) 

Model assumingp and L to be decision variables 

(L = 0.40) 

There will be cases when assuming p and L to be independent decision variables will not 

have rnuch impact on profits. For example, in Example 3.4.1 assuming p to be a decision 

variable would have given L,* as 0.25 and profit would be quite close to the optimal profit 

with L * = 0.26. However, in general, it is clear that when g and L are related we should 

mode1 the relationship explicitly. 

We performed numerical expenments to observe the effect of sR on t. For both 6' 2 O and 

b'< O, L* is increasing convex in sR. Note that this effect is similar to that of service level 

on inventory cost implying that the length of the delivery lead time guarantee can be 

thought of as an inventory of time and more "time inventory" is required as the service 

level increases. 

,u*(L) 

22.73 

23.76 

P*(U 

8.91 

11.64 

A*(L) 

21.59 

14.00 

PL) 

169.55 

147.63 



In this section, we were able to develop a model for a profit-maximising make-to-order 

fïrm whose demand rate depends on pnce and a unifom guaranteed delivery lead time 

while price itself is detennined by the length of the guaranteed delivery lead time. The 

firm has to satis@ some delivery reliability constraint but can invest in reducing its 

processing tirne. The resuiting problem is different fiom previous literature as it explicitly 

accounts for the relationship between pnce and delivery lead tirne. This model can capture 

two distinct consumer preferences: i) where the customers are willing to pay more for 

faster delivery, and ii) where the customers are ready to wait longer to pay less. By using a 

reliability constraint and a relation between pnce and delivery lead time, we were able to 

express the problem in terms of a single variable, guaranteed delivery lead time. 

We were able to show that the form of the solution will be rather simple, and through 

some numerical examples that it is important that the customer preferences are taken into 

account while deciding upon the optimal policy for the firm. The optimal policies 

(including investment decisions) for fïrms whose customers are more sensitive towards 

price than delivery lead tirne will be quite different firom fhns  whose customers wants 

shorter delivery lead tirne. We also showed how our model gives rise to different 

decisions than models that assume price and delivery lead time to be independent decision 

variables. Ignoring the relation between price and the guaranteed delivery lead time can 

lead to investing in lead time reduction to guarantee a shorter delivery lead time when 

customers want lower prices and are willing to wait longer or not providing short enough 

delivery lead times when the market is willing to pay a price premium for shorter delivery 

lead times. This is consistent with the empirical findings of Sterling and Lambert (1989) 

that management often subjectively sets customer service levels that are not consistent 

with customer preferences, not realising that customers might have different needs than 

the seller. 

3.5 Analytical Mode1 Incorporating Econornies of Scale 

Companies may be able to achieve economies of scale by spreading fixed costs over a 

large production volume. For such operaîions, it is reasonable to assume that the unit 



operating costs is a decreasing function of the demand rate, at least within a certain 

volume range (Scherer 1980). Such economies of scale are present in alrnost al1 types of 

finns - manufacturing or service. Nurnerical examples of So and Song (1998), Palaka et 

al. (1998) and So (2000) show that operating costs may have a significant impact on the 

optimal operating characteristics of a h. In this section, we analytically explore the 

implications of scale econornies on the basic mode1 introduced in Section 3.4. 

While the exact nature of the scale economies will depend on rnany factors, here we 

explore the case when the unit operating cost, rn = UR@'), is decreasing convex with respect 

to the mean demand rate. In the relation, v (> O) is the sensitivity of unit operating costs 

with respect to the mean demand rate and u is a finite constant. We assume that the 

economies of scale can corne fiom any number of sources. The relationship between Â and 

L as well as between p and L and the characteristics of the investment function, M, remain 

the sanie as in Section 3.4. 

The problem of maximising expected profit per unit time can now be written as: 

(P3.3) Maximise zir, L) = (p - m)A - Mb), 
P. L 

subject to: 

P(W< L) 2 s R ,  i.e., 1 - e-'p"'L - >sR (delivery reliability constraint), 

,u > A. (system stability constraint), 

p 2 m 2 0, L > 0, A 1 O (non-negativity constraints). 

In the above expression, p = d - eZ. A = a' - bZ and hence, rn = u(af - b ~ ) " " ) .  Frorn the 

definition, rn is decreasing convex with respect to A. When b f  < O (demand increases with 

increase in L), AL is positive and rn is decreasing convex in L and when b' > O (demand 

decreases with increase in L), AL is negative and m is increasing convex in L. 

Proposition 3.5.1: z (g L) of P3.3 is (i) decreasing concave with respect to f i  and 

(ii) decreasing with respect to L for b' 2 O. 



Proof: Part (i) is similar to the proof for Proposition 3.4.1. Differentiating (3.5.1) with 

respect to L we have: 

For b' 2 O, ni 5 O and thus z 01, L) is decreasing with respect to L. While for b' = 0, 

zOr, L) is linear in L, for b' > O, it can be either convex or concave. rn 

Note that for b' c O, we cannot tell whether lr is increasingldecreasing or convex/concave. 

The reasoning in Section 3.4 showing that the optimal ,K will be dong ,d (L) given by 

(3.4.8), is still valid as the expression for 4 (L) is independent of rn and so remains 

unchanged. We can now express problem P3.3 in texms of the single decision variable L 

as: 

(P3.4) Maximiselr(L) = @  - m)R- M@(L)), 
L 

subject to: 

p 2 rn 2 O, L, A 2 O (non-negativity constraints). 

In (3.5.3),p = d -  eZ, R = a ' -  bZ, rn = u(af -  b!L)(-"), #(L) = (nlL) + A  and n = -ln(l - sR) 

> O. The feasible region for L will be given by the constraints p 2 m 2 O. L > O and A 2 0. 

As in Section 3.4, as L + 0, K (L) -t -a but c m  be positive or negative at the feasible 

limits of L. Our objective is to h d  L * that maximises a (L) in P3.4. The value of L* will 

determine the optimal values of the other decision variables and also the optimal profit. 

For the rest of this section we suppress L as the argument of a (L) in (3.5.3) unless 

otherwise stated. 

Differentiating (3.5.3) fields (recall that Au mdpLL = 0): 



and 

We follow the sarne method as  we did in Section 3.4 to find L *. 

On rearranging the terms of ZL = O we have: 

Differentiating both sides of (3.5.6) with respect to L we have: 

From (3.4.9) and charactenstics of M, the RHS of (3.5.6) is increasing in L for any b'. To 

solve the constrained problem P3.4, we will have to consider three cases: i) 6' = 0, 

ii) 6' < O and iii) b' > O. 

Case 1: br=  O 

In this case AL = 0 , p ~  == O, r n ~  = O  and m u  =O. 
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Proposition 3.5.2: For b ' = O, lsis concave in L. 

Proof: From (3.4.9) and remembering that = O, p~ < O, r n ~  = O and mu = O when 6' = 0, 

it is clear that (3.5.5) is negative and lris concave in L for b' = 0. I 

Proposition 3.5.3: For b' c O, MW 2 O and M,, 2 0, the RHS of (3.5.6) will be 

increasing concave up to the unique solution for a'(RHS' = O (say, Ls) and then it will be 
aL' 

increasing convex and the value of the RHS at Ls will be positive. 

ProoT: Refer to Appendix 3.1. 

Example 3.5.1: For better understanding, let us consider a numerical example with the 

following parameters: 

a = 73, bl = 5, b2 = 2, d = 10, e' = 1 (3 b' = -3), A = 0.001 and sR = 0.98. The feasible 

range ofL is (0,9.54). In Figure 3.5.1, we show the RHS for =O in (3.5.6). 

The RHS is increasing throughout the feasible region of L, is negative till L = 1.14 

and then positive, and concave till L = 4.07 (=LS, unique solution of 
F b ' )  

a2(ms) 
= O, refer to Appendix 3.1) and then convex. z2 



Figure 3.5.1: Plot of RHS of z- = O versus L for b'< O 

Now we can develop a proposition regarding the structure of q-. 

Proposition 3.5.4:, If  v 2 1, M,, t O and MW h 0, for b' < O, a = O will have zero or 

one feasible solution. 

Proof: The LHS of (3.5.6) in this case will be unrestricted in sign, finite as L + O and 

decreasing convex in L. The RHS of (3.5.6) will be always increasing, negative for 

W S  + -a as ~5 O), positive for L t , concave for L 5 Ls and 

convex for L > LS. Hence, we can convince ourselves that there can be zero or one feasible 

solution to z~ = 0. 

Case 3: b f >  O 



Proposition 3.5.5: If v 2 1 and MW 2 0, for 6' > 0, n- = O can have zero, one, two or 

three feasible solutions. 

Proof: The LHS of (3.5.6) in this case wiII be always negative and concave in L (fiom 

(3.5.7) and (3.5.8)). The RHS of (3.5.6) will be always negative, increasing and concave 

(fiom 3.4.15 and 3.4.16). As L + 0, the RHS + - a but the LHS is finite and negative. 

We can now convince ourselves that n-~ = O c m  have zero, one, two or three feasible 

solutions (refer to Figure 3.5.2). 

Since the lower feasible lirnit of L for this section is not necessady zero, the possible 

cases are now more complex than in Section 3.4. However if we assume the lower feasible 

limit to be equal to zero then the four possible outcomes of Proposition 3.5.5 will look like 

Figure 3.5.2. As L + O, ~ r +  - a and z- + + oc, i.e., r i s  increasing at an infinite rate. At 

the upper limit of L, both zand can be positive or negative. 

a) No solution to nr = O: Ln this case the RHS is always below the LHS for feasible L 

and hence lrwill always be increasing (Figure 3.5.2(i)); 

b One solution to z- = O: In this case, z will be increasing up to the solution for 

ni = O and then decreasing (Figure 3.5.2(ii)); 

c Two solutions to l r ~  = O: In this case, the RHS wiII first intersect the LHS from 

below and then it will intersect fiom above. The profit function, R, is initially 

increasing, then decreasing and then again increasing in L (Figure 3.5.2(iii)); 

d) Three solutions to = O: The nature of intersections and the resultant structure of 

n u e  shown in Figure 3.5.2(iv). 

What can we now Say about L * for Cases 1,2  and 3? When the lower limit of feasible L is 

not zero, then L * will be given by either the feasible solution(s) to RL = O or one of the 

limits for feasible range of L. Since there are a finite number of possible alternatives we 



c m  compare the profit at those alternatives to obtain L*. As in Section 3.4, there may be 

cases when the W S  and the LHS may not intersect, but one might be tangent to another. 

It is quite straightforward to find the shape of xin those cases also. We c m  also reduce 

the possible alternatives M e r  by reasoning (e-g., for b ' = O or 6 ' < O, if there is a feasible 

solution to z~ = O, then it will be L*; for 6' > O, if there are three feasible solutions to 

c m  never be L*). So, it is again relatively simple to detemine n~ = 0, the middle solution 

3.5.2(i) No solution 

3.5.2(ii) One solution 

3.5.2(iii) Two solutions 



3 .5.2(iv) Three solutions 

Legends: 

L" L - n(LM 

R H S o f n f = O  

LHS of m=O 

O + 
L 

LU = Upper feasible lirnit of L 

Figure 3.5.2: Four Possible F o m s  of n(L) for b' > O 

As in Section 3.4, a*) may not be positive. If NL*) is negative, it implies that the firm 

cannot make a profit even when acting optimally and hence should not be in the business 

at dl .  If n(L *) > O, then the fim can announce a guaranteed delivery lead time of L * and 
set its processing rate by substituting L* into (3.4.8) to satise the service level. The 

market price @*) will be determined by (3.4.2) and this combination of p * and L * will 

give the mean demand rate fkom (3.4.3). The mean demand rate will induce the operating 

cost, m(L *) (=UA*'-"), and the fim's profit will be maximised. 

3.5.1 Numerical Examples 

The following examples show how our decision-making will be afTected when we 

consider economies of scale. 

Example 3. S. 2: Let us assume the sarne parameters as in Example 3.4.1 : 

a =  1 0 0 , b r = 5 , b 2 = 8 , d =  10 ,e r=  1, ~ @ ) = ~ ~ w h e r e ~ = 0 . 0 0 0 1  a n d P = 0 . 9 8 . ~ l s o ,  

u = 185, v = 1.5, so that rn = 185(50 - 3 ~ ) ?  



Here a' = 50, 6' = 3 (Le., customers are more lead-tirne-sensitive than price-sensitive) and 

R = 50 - 3L. For this example, L E (0, 9.54), A E (24.56, 50) and m E (0.52, 1.52). In 

Table 3.5.1 we compare the optimal values of L*, p*, p*, m*, A* and IZ' for Exarnple 

3.4.1 (without econornies of scale, Le., rn = 1) to that of Example 3.5.2 (with economies 

of scale). 

Table 3.5.1: Cornparison of L *, p*,p*, m*, il* and n* 

for Examples 3.4.1 and 3.5.2 

Note that while lris unimodal within the feasible range of L, it is not concave for Exarnple 

3.5.2. Though we used the sarne parameter values, L* is lower when economies of scale 

exist. Since for this exarnple, b'> O, lower L* Ieads to higher p* and p*. This is intuitive; 

we have more incentive to guarantee a shorter delivery lead time so as to attract more 

customers and thereby decrease m. A guarantee of a shorter delivery lead time will also 

command a higher pnce. However, we have to invest in increasing the processing rate so 

that we can satisQ the reiiability constraint even at the higher demand Ievel. 

Example 3.4.1 

Example 3.5.2 

Similarly we can easily show exarnples that fims having different economies of scale (i.e, 

only the value of parameter v is different) will guarantee different L* to maximise their 

profits. The direction of change in L* as v changes will depend on the sign of b', i.e., 

whether customers are more price-sensitive or lead-time-sensitive. Though there is not 

much difference in the L* for Examples 3.4.1 and 3.5.2, this is not always the case, as we 

show in the next exarnple. 

L* 

0.26 

0.25 

dL *) 

64.27 

64.60 

P(L *) 

9.74 

9.75 

NL*) 

403.64 

426.50 

M L * )  

1 

0.535 

w * )  

49.22 

49.25 



Example 3.5.3: Let us consider an example similar to Example 3.4.4 with b' < O (i-e., 

customers are more pnce-sensitive than lead-time-sensitive). The parameters are: 

a = 73, bl = 5,  b 2 = 2 ,  d =  12, e1=0.9,  u =  175, v =  1.45, M b )  = ~ d  whereA = 0.0001 

and sR = 0.98. Then A = 13 + 2.SL and m = l X ( l 3  + 2.5~)-'-'~. 

We already solved this problem assuming that no economies of scale exist (Le., rn = 1 )  

with p explicitly related to L (L* = 3.44) as well as with p as a decision variable 

independent of L (L,* = 0.4). Solving this problem assuming p is explicitly related to L 

and that economies of scaIe exist, we obtain L* = 4.41. Table 3.5.2 shows what the effect 

on profit will be, if in realityp is related to L and economies of scale exist as in o w  model, 

but the manager ignores either econornies of scale or both economies of scale and the 

relation betweenp and L (Le., parantees L = 3.44 or 0.4 rather than 4.41 in our model). 

Table 3.5.2: Comparison of p*,p*, m*, A* and n* for Different L for Exarnple 3.5.3 

Model with economies of scale and p and L 

related by p = d - eL (L * = 4.41) 

The illustrative exarnple clearly shows the importance of not only explicitly modelling the 

relation between p and L, but also the effect of demand on the operating c0c.i. Tf a. niaager 

recognises the relation betweenp and L but ignores the effect of demand on operating cost 

when it really exists, the fim will be loosing a profit of about 1.5% (i.e., 149.54 vs 

147.24). For large companies, this percentage di fference cm be substantial in dollar tems. 

Model without economies of scaie and p and L 

related by p = d - e t  (L = 3.44) 

Model without economies of scale and p and L 

as independent decision variables (L = 0.40) 

p*(L) 

24.91 

22.73 

23.76 

P * W  

8.03 

8.91 

1 1.64 

m*(O 

1.74 

2.03 

3.8 1 

A*(L) 

24.02 

n"k(L) 

149.54 

21 -59 

14.00 

147.23 

108.27 



If the manager also ignores the explicit relation between p and L as in (3.4.2), then the 

firm stands to loose profit of about 38% (Le., 149.54 vs 108.25)! We noted in Exarnple 

3.4.4 that for "more price-sensitive than lead-time-sensitivett customers, accounting for the 

dependence of price on the length of the guaranteed delivery lead time will lead to a 

comparatively higher L to bring down the pnce and increase demand. If in addition, 

economies of scde exist for unit operating costs, taking that into account will result in an 

e - m  higher delivery lead time guarantee L to increase demand M e r  and by that 

decrease operating cost. Note that our numencal examples are only illustrative; the exact 

arnount of profit loss from using the "wrong" model will depend on the parameter values 

and can be larger or smaller than the results in Table 3.5.2. 

In summary, this section presented a model of a profit-maxirnising make-to-order firm 

whose demand depends on guaranteed delivery lead tirne and pnce (which itself depends 

on the length of the delivery lead time guarantee) and economies of scale exist for 

operating costs. The fhm m u t  satis@ a delivery reliability constraint and can invest in 

increasing its processing rate. We were able to determine the optimal value of the 

guaranteed delivery lead time that will maximise the fïrm's profit. We can Say that for 

practising managers it is not only important to know the customer preferences (as in 

Section 3.4), but also to take into account the effect of economies of scale when they are 

present. 

3.6 Analytical Mode1 with Holding and Backordering Costs 

In Sections 3.4 and 3.5 we assumed that there is no holding cost for the raw matenals 

work-in-process (WIP) and that the penalty cost is time-independent. Though for the 

physical system discussed in Section 3.2 these assurnptions are reasonable, there might be 

h s  for which it is necessary to develop models relaxing those assurnptions. Suppose 

pre-processing requirements make it necessary for some fïrms to "take out" the raw 

material as soon as  the order is received rather han wait for the order to reach the server 

before doing so. Then the raw materiai will be waiting in fiont of the server and there will 

be a WIP holding cost. If the facility is congested, then this holding cost can become 



significant. Shilarly, if the penalty cost depends on the length of the customer waiting 

t h e ,  ou.  model should be rnodified to explicitly account for such penalty costs. 

In the model of this section al1 the other conditions remain the same as in Section 3.4, Le., 

raw matenal is still available whenever required, demand depends on price and guaranteed 

delivery lead time while price itself is determined by the length of the guaranteed delivery 

lead tirne. ln this section, we assume the unit operating cost to be constant (= m). The 

expected profit per unit t h e  can now be written as: 

lrb L) = Expected revenue per unit rime - expected WIP holding cost per unit time - 

expected penalty cost per unit t h e  - investment cost per unit time 

where: 

A=& bZ, 

p = d - e ' L ,  

h' = WIP holding cost per unit per unit thne ($/unithnit time), 

and 

5= penalty cost per time per unit lateness ($/unit/unit time). 

The fïrst term of the right hand side of (3.6.1) represents expected revenue per unit time 

while the 1s t  term represents the investment costs per unit tirne. The second tem is the 

WLP holding cost that can be calculated from Little's law. The third term represents the 

penalty cost for late jobs. Recall that for an M/M/I queue, the probability that a job/service 

is late is given by P(W > L) = e-('-"'L and the expected lateness given that a job is late is 

given by [I/(p-il)] (refer to Palaka et al. 1998). 

The problem for the fim is now: 



subject to: 

P(W< L) 2sR, Le., I - e-"-"" 2 sR (delivery reliability constraint), 

p > A (system stability constraint), 

p 2 rn 2 0, L > O, il 2 O (non-negativity constraints). 

We feel that even with an explicit penalty cost, the delivery reliability constraint should be 

there. In this case, we can define sR to be a service level below which the demand rate falls 

drastically. So, the fim cannot afford to allow its senice level to dip below sR. 

Proposition 3.6.1: z(fi L) of P3.5 is concave with respect to ,u 

Proof: Differentiating (3.6.2) with respect to p we have: 

Under the conditions p > A > O, L > O and MW 2 0, it is clear that zP& L) 5 O, i.e., lrof 

rn (3.6.2) is concave in ,u 

Differentiating (3.6.2) with respect to L we have: 

h'b' ,K a(, L) = - e 2  - b@-nt) + + @'P e-rr-. 

( p  - n)2 (P - w2 



We cannot determine the sign of either (3.6.5) or (3.6.6). For b' > 0, the first two tems of 

z~ are negative while others are positive while for only the first term is positive and 

the others are negative. For b' c 0, the 2nd term of RL is positive and the last t e m  can be 

positive. For only the 4& terrn is positive. Hence ~ c a n  be either convex or concave 

with respect to L. 

If we assume L to be a given constant, then the mean demand rate and price of equations 

(3.4.2) and (3.4.3) will be constant and there is only one decision variable, p. The 

consîraht 1 - e''p-l'L 2 8 now implies that p > [(-ln(]-sR)/~) + A .  = ,&L) (as in 3 -4.8). 

Note that in this case, ,d (L) is a constant. Since lr is concave with respect to p, we can 

solve n; = O and let p that solves z-jj = O be hpl(L). If hPI(L) > f l  (L), then we would 

want p* to be = bpI(L). If fipl(L) J# (L), then we would want p* to be equal to ,d (L). 

This implies that p* = max (L), ,+,(L)) Figure 3.6.1 illustrates the concept. 

Figure 3.6.1: Optimal p when L is Constant 

In general, the solution of P3.5 will be anatytically complex. However, using the concept 

of S we can have some understanding of its solution. 



Proposition 3.6.2: The optimal service level for P3.5 will be given by s* = Max (se, sR) 

I 
and the optimal processing rate by p*(L) = - [- ln(2 - ~ a r ( s ' ,  s ' ))] + A 

L 

ProoE From (3.4.7), we know that s  is an increasing concave function of p This implies 

that there is a one-to-one relation between s and f i  Now let us define a critical service 

level, sc, given by sC = I - e4p0P~L)'a)L, i.e., sc is the service level given by hPt(L), the 

processing rate maximising lr for fixed L. From (3.4.8), we already h o w  that f l  (L) is the 

processing rate required to achieve the minimum desired sentice level sR. Since for a fixed 

L, p *  = max (L), p+(L)), the optimal s e ~ c e  level will be given by: 

s * = Mar (sc, sR). 

We can now Say that p* will satism I - e-f"-"'L = Max (sc, sR) 6rom which: 

Note in (3.6.8), sR is a lmown parameter fixed by management while sC is a function of L. 

Only i f p  is independent of L would sC be a constant the value of which will depend on the 

problem parameters (refer to Palaka et al., 1998). 
e 

Replacing the expression for p*(L) into the original expression of z i n  (3.6.2) we have the 

tiansfoxmed problem P3.6 in terms of single variable, L. 

e-xfu-M(p*(L)), (P3.6) Maximise z (L/ = R (p - m) - - - - 
L 

subject to: 

/ t 2 O , L > O , p 2 m t O ,  

where: 

x(L) =-ln[l - Max (sc, sR)], A = a f -  b 2 , p  = d -  e Z  and p*(L) is given by (3.6.8). 



Problem P3.6 is a function of only one variable, L. If we can determine the L* that 

maximises (3.6.9). we c m  then substitute it in (3.6.8) to obtain p* and in (3.4.2) to obtain 

p*. However, since sC is also a function of L. the expression for ni for P3.6 will be 

analytically difficult to handle and we leave this for future research. However, we can 

solve one special case of the general problem. 

3.6.1 Specia! Case 

Let us consider the special case of b'= O (b2 = bl e3, Le., while bothp and L affects A and 

also L affects p, the direct effect of L (62) is equal to the indirect effect of L through p 

(bl e3. 

In this case m a n  be written as: 

We can show 

us define the 

4 that z i s  concave with respect to L. Note that b2 - bl et = O et = =. Let 

cntical service level, sC = 1 - ( )  (e' must be < 4 and L,,,&) as the 

solution to n-~ = O. From n~ = O, we can show that I - ($) = I - e - ( ~ - a ' & ,  ( P )  . The 

service level, s, is an increasing concave function of L. Following previous logic (in this 

case with respect to L rather than p), we can Say that s * = Mar (sc. sR). Note that sc is now 

a constant dependent on the parameter values e ' and 5. The expression for L * will be given 

b y: 



As s* is between zero and I and the constraint on p is p > a', so L* will be positive. 

Replacing L *(p) in (3.6.10) we now have an objective fiuiction (to be rnaximised) in texms 

of a single variable p with the constraints that p > a' and p 2 m 2 O (as s* = Mar (s: sR). 

the delivery reliability constraint will always be satisfied). Since nOr, L*(,u)) is concave 

with respect to fi  the solution to zp = O can give us p*. Replacing p* into (3.6.11) gives 

us L* and then fkom (3.4.2) we can d e t e d e  p*. This combination of (p*, L *, p*) will 

maximise the constrained problem. This critical service level I - ) is in agreement 

b2 with that of Palaka et al. (1998) for the specid case 6' = O (in their paper s, = I -  - ). 
b,Ç 

Example 3.6.1: Let us consider a numericd example with the following parameters: 

a = 100, br = 5, bz= 5, et=  1 (so that b'= O), d =  10, rn = 1, MM) =A$ where A = 0.0001, 

sR = 0.98, h'= 1 and 5- 10. Then $ = 0.1 implying tliat s* = sR = 0.98. In this case we can 

easily determine that L* = 0.2727 and p* = 64.345. The value of L* will determine the 

price and the demand rate. 

in this section we introduced WIP holding costs and penalty costs to the profit maximising 

problern of Section 3.4. The present literature that deals with holding and penalty costs do 

not take into account the relation between p and L. As we have seen in Section 3.4, it is 

important to take into consideration the relation behveen p and L when they exist. 

Otherwise, the mode1 may give us substantiaily sub-optimal solutions. We could 

formulate the pro fit-maximising problem taking holding and penalty costs into account 

and assuming price to be dependent on the guaranteed delivery lead time, L. We were also 

able to express the objective function in terms of only the decision variable L. Though we 

could solve a special case, the structure of the general problern makes analytical solution 

difficult. We leave this for future research. 



3.7 Conclusions and Future Research Opportunities 

In this chapter, we modelled a make-to-order supply chah consisting of a firm and its 

customerç where the mean demand rate is a function of price and guaranteed delivery lead 

time and the market pnce is detennined by the Iength of the guaranteed delivery lead time. 

We then extended our model by incorporating economies of scale where the unit operating 

cost is a decreasing convex fiuiction of the mean dernand rate. The firm can invest in 

increasing capacity to guarantee a shorter delivery lead time but must be able to satisfy the 

guaranteed delivery lead tirne according to a specified reliability level. 

Our rnodels explicitly accounted for "price-sensitive" and "lead-time-sensitive" customers. 

We showed how the firm could select the optimum length of the guaranteed delivery lead 

tirne to maximise its profits by a relatively simple procedure. Our numencal examples 

clearly showed that ignoring the dependence of market price on the guaranteed delivery 

lead time and the economies of scale, when they really exist, can Iead to potentially large 

profit losses for the firm. It is also important for f m s  to take note of the inherent 

preference of the customers for price or delivery Iead time when making decisions. We 

also extended our model by explicitly accounting for holding cost and penalty cost for the 

firm. However, in that case we were only able to formulate the problem without deriving 

many insights. 

We feel that the models in this chapter captured some of the most salient characteristics of 

make-to-order firms and can help such firms to better manage their delivery times to gain 

cornpetitive advantage in a time-based-competition environment. 

Future research opportuni ties to extend our model include: 

a) As So and Song (1998) point out, customers may be sensitive to the service level 

delivered. Hence, the mean demand rate may be a function of the service level in 

addition to that of price and delivery lead time; 

b) Analytically solve the case where our model explicitly accounts for the WIP 

holding costs and penalty costs (i.e., Section 3.6); 



C )  Though we put forth our reasons for assumption cf linear demand (Section 3.4), 

extension of our mode1 with non-linear demand of the form used by So and Song 

(1998) and in our Chapter 5 might give new insights. 



CHAPTER 4 

SUPPLY LEAD TIME MANAGERlENT FOR 

4.1 Introduction 

The growth of supply chains and emergence of speed as a key competitive pnonty means 

that supply lead time is one of the main performance drivers of the supply chah 

performance. There seems to be a growing feeling that supply lead time reduction 

opportdies  need to be identified and adopted more widely (Australian National Audit 

Office Report 1997-98; Chopra and Meindl 2001). In this chapter we develop rnodels to 

investigate the effects of investment in supply lead tirne reduction on inventory costs for a 

make-to-stock finn (Mode1 B of Chapter 1). 

Any type of lead tirne reduction requires careh1 planning and sometimes substantial 

investments (Zipkin 199 1). For example, if faster processing or testing reduces lead times, 

capital intensive equipment acquisitions rnay be required. Some investments might not 

even be in the f o m  of capital expenditure, but may amount to holding extra inventory. 

Clearly, the size and type of investment required to reduce lead times will depend on the 

type of process involved and also on the extent of change desired. 

In the context of supply chains, management of lead times between a supplier and a buyer 

are crucial and often negotiated. A buyer may wish a supplier to shorten replenishrnent 

lead time to reduce the buyeis inventory costs or to reduce customer response time. This 

rnay involve the supplier, for example, investing in installing a new machine or a better 

uiformation system or a new warehouse (e.g., some companies like General Motors and 

British Aerospace have "convinced" their suppliers to build warehouses near their 

assembly pIant, so that supply lead time will be reduced). From the supplier's point of 

view, this investment might benefit a number of buyers, or it maybe primarily for a 



specific buyer (relation-specific or idiosyncratic investment; refer to Levi 1999, for more 

details of such investments). As several authors have pointed out, many small companies 

simply cannot afford improvements owing to the costs involved (Zipkin 1991; Groenevelt 

1993; Bensaou 1999) and they seek to pass on some of the investment to the buyer 

(Chopra and Meindl 2001). This type of recouping of inveçtment costs will happen if and 

only if there is no major disparity in the power between the two parties. 

In recent times, we have seen that buyers are ready to pay for investments made by 

suppliers in lead time reduction since they believe that their "total cost" will still be 

reduced (Anderson et al. 1997; Chopra and Meindl 2001). For example, companies using 

more expensive transport seMces are finding that savings in inventory costs more than 

compensate for increased transportation costs (Australian National Audit Office Report 

1997-98). 

The focus of this chapter will be to investigate the effectiveness of investment in supply 

lead time reduction when the supplier will make the investment but will pass on the cost 

of the investment, partly or fully, to the buyer. We will deveIop analytical models that can 

capture the costs and benefits of such lead time reductions f?om the buyer's view point and 

cm assist the buyer in deciding how much of lead tirne reduction to pursue. 

Though there is a significant literature on investment in lead time reduction within the 

(Q, r) modelling fkamework, as we indicated in Chapter 2, there are two issues that hwe 

not yet been properIy addressed: 

a) Most research focuses on models that use a backordenng cost per unit, 

disregarding the dwation of the shortage or assume one order outstanding. 

However, state-of-the-art (Q, r) models provide a more "exact" representation that 

assumes a backordering cost per unit per unit time, allows more than one order 

outstanding and a negative reorder point. Our work deals with investing in lead 

time reduction in the fatter fiamework; 



Most research does not differentiate between the frequency and the nature of the 

investment and the effect this has on modelling. This chapter wiIl address the issue 

of different types of investment in lead time reduction in the (Q, r) h e w o r k  and 

show that it is very important for the buyer to consider such issues in decision 

making. 

OveMew of the Physical System 

We consider a single firm (buyer) who procures a make-to-stock product in batches îrom 

a supplier according to a continuous review (Q, r) control system. Customer demand 

occm one unit at a time and is satisfied directly fYom the warehouse. Since it is a make- 

to-stock product, it is reasonable to assume constant customer demand. The procurement 

lead time is stochastic which results in a stochastic lead t h e  demand for the buyer. Al1 

unmet demands are backordered. The buyer wants the supplier to improve replenishment 

lead tirne by reducing its mean and/or variability. A schematic representation of the two- 

party supply chah is shown in Figure 4.2.1. 

Suppose the supplier, in order to respond to the buyer, must make a substantial invesûnent 

to reduce the supply lead tirne. The investment might be relation-specific if the 

improvements will not help the supplier vis-a-vis its other customers or it might be for a 

nurnber of customers. We assume that the supplier can pass on at l e s t  part of the 

investment cost to the buyer (i.e., there is no major disparity in market power between the 

buyer and the supplier). The buyer will be the ultimate decision maker and has to take 

both the costs and benefits of lead time reduction into consideration before deciding how 

much of a reduction in lead time to request, if any. Hence, we assume that the supplier 

will first infonn the buyer of the cost consequences of investment in lead time reduction 

but will make the investment only after the buyer has made a decision. 

Though we assume that the buyer and the supplier are two separate entities, they may also 

be parts of the sarne organisation. Since the environment we are considenng is make-to- 

stock, any reduction in the procurement lead tirne (either extemal or internal) has no 



impact on the delivery tirne to the ultimate customer. This lead time reduction will only 

affect the buyer's inventory costs (Hill and Khosla 1992). 

f Investment 
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Figure 4.2.1: Supply Chain System for Chapter 4 

In the presence of stochastic lead times, to obtain proper analytical results in a (Q, r )  

framework, we m u t  make sure that: (i) deliveries of orders cannot cross in time, and 

(ii) the supply Lead tirne is independent of the number and size of the outstanding orders 

(Porteus 1990). These conditions will hold in the above supply chain under the 

assumptions that the supply system is exogenous and sequential (Zipkin 2000). An 

exogenous system means that while the supplier's overall workload may fluctuate over 

time, the buyer's orders contribute little to these fluctuations. This implicitly assumes a 

reasonably large supplier. An exogenous system ensures that the supply lead times for the 

orders will be independent of the number and size of the outstanding orders. A sequential 

system is one for which the supplier processes the buyer's orders in a F E 0  (First-In-First- 

Out) manner. This hnplies that there will be no order crossing even if there is more than 

one order outstanding at any time. For examples demonstrating the generality of these 

assumptions refer to Zipkin (2000). 



4.3 Notation 

The following notation will be used in this chapter: 

= inventory on hand at time t (units) 

= backorders at tirne t (units) 

= inventory level at time t = I(t) - B(t) (units) 

= inventory position at time t 

= E(t) + orders outstanding at tirne t (units) 

= expected on hand inventory (units) 

= expected backorders (units) 

= fixed set-up cost incurred for each order ($/order) 

= purchase pricehnit for the buyer fiom the supplier ($/unit) 

= period interest rate (while our mode1 can handle different interest rates for the 

buyer and the supplier, for notationai simplicity we assume it to be equal for both 

parties) ($/$/unit t h e )  

= holding cost/unit/time = ic ($/unWunit time) 

= backordering penalty costhnit backorderedtirne ($/unithnit time) 

= backordering penalty cost/Unit backordered ($/unit) 

= reorder point (uni&) 

= batch size (units) 

= demand rate (unitdunit time) 

= expected total inventory cost per unit time ($/unit time) 

Xwill represent the continuous random variable denoting lead time demand (LTD). It will 

have cumulative distribution fùnction (CDF) F, density f and rnean ,K . 



4.4 The (Q, r) Mode1 

For demands occurrhg one at a time it is h o w n  that (Q, r) policy is optimal (Zipkin 

2000). With (Q, r) inventory control, the buyer orden Q units as soon as  the IP reaches 

the reorder point, r. Normally, the plamhg horizon is infinite and the objective is to 

minimise long-run expected total inventory costs per unit time. The classical inventory 

model of this type was developed by Hadley and Whitin (1963). That model includes 

(average) ordering costs, inventory holding costs and backorder penalty costs. Purchase 

cost is not considered, as for their mode1 it does not depend on the decision variables - Q 
(batch size) and r (reorder point). The most often used expression for expected long-nui 

total inventory cost per unit time is (Nahmias 1997): 

The above model is an approximation of the exact cost expression. It is adequate for some 

situations, assuming arriva1 process is Poisson, backordenng is negligible and time 

dependent backordering costs is not present. For details about the conditions when the 

approximation rnight not work well, refer to Zipkin (1 986b) and Chapter 2. 

Because of the importance of Zheng's (1992) research on continuous review (Q, r) 

modelling to this thesis, it will be helpful to review his basic model. The author models a 

fully backordered, single-item, continuous review inventory systern where demands arrive 

at rate A.. Demand is random and the relevant costs are ordering, holding and backordering 

penalty. The backordering cost is taken to be per unit per unit tirne, b, and the objective is 

minimisation of long-nin expected inventoxy costs per unit time. Zheng combined the 

backordering and holding costs together and termed it as inventory costs. If G O>) is the 

rate of accumulation of expected inventory costs at time ( r  + L ~ )  when the inventory 

position at time t equals y and X is the random variable for lead time dernand, i.e., total 

dernand during the rime interval fiom t to (t + ~3 where L~ is the constant procurernent 

lead time, we have: 



With the above definition of G(y), the total cost function can be written as: 

The above model holds under the conditions that the inventory position in steady state is 

unifonnly distributed on the interval (r, r+Q) and is independent of lead time demand. 

These conditions are met when a non-decreasing stochastic process with stationary 

increments and continuous sample paths can mode1 cumuIative demand. Hence, this 

model does not require the assumption of Poisson arrivals like Hadley and Whitin's 

model. Zipkin (1986a, 1986b) shows that these conditions hold even for quite general 

stochastic lead tïme distributions. The above cost equation assumes inventory position, 

lead time demand and the decision variables, Q and r, are continuous. This assumption is 

reasonable and is quite good as long as the order quantity is not too small (Zipkin 1986a, 

1986b). If the demands and inventory positions are assumed to be discrete then the cost 

function is: 

In the above case, the steady state inventory position is uniform in the interval { e l ,  

rt2, ..., r+Q). Zheng studies the continuous cost function because of ease of cornparison to 

EOQ model (with backordering) where Q and r are typically assumed to be continuous. It 

can be shown that under a given (Q, r) policy, E(I) = (1/Q) Ir'Q E ( ~  - X)+dy  and 
Y" 

E(B) = (i lQ) Ir'Q E(X  - y )+dy ,  and it can also be verified that E(Z) = (e + r - L'A) + 
y=r 2 

E(B)= 



Using this relation, (4.4.3) can be written as: 

Zipkin (1986b) proved the joint convexity of E(B) in Q and r for (4.4.5). Al1 other terms 

in (4.4.5) are clearly convex; so C(Q, r )  is also jointly convex in Q and r. Note that the 

tenn G(y) of (4.4.3) c m  also be written as: 

which implies: 

where L ~ A  = f i  is the mean lead time demand. 

The joint convexity in Q and r makes possible the sequential minimisation of the above 

cost fûnction - first with respect to r and then with respect to to Q. The first-order 

condition with respect to r (with Q fixed) for the optimal reorder point, r*, is then, 

r = r*(Q) (for any Q > O) if and ody  if, G(r) = G(r+Q) with GO.) defined as in (4.4.6). 

Then the problem becomes that of minimishg C(Q, r'(Q)). Defining H(Q) = G(r*(Q)), it 

can be s h o w  that the cost function becomes: 

The convexity of the cost function gives the optimaiity condition for optimal batch size, 

Q', as H(Q*) = C(Q*) and, finally, (Q*, r*) is optimal for C(Q, r)  if and only if 

C(Q*, P) = G(r*) = G(r* + Q*). 



Even with these sirnultaneous equations it might be difficult to solve for the optimal 

values. While for a given Q, the optimal r is independent of K, assuming r* is selected 

properly, Q* will depend on both ordering costs and inventory costs. Results comparing 

the stochastic model with an EOQ model with backordering have already been discussed 

in Chapter 2. 

Ln the above model, the main random variable of interest is the lead time demand (LTD). 

Though Zheng's model assumed that the variability in LTD stems fiom stochastic demand 

(assuming supply lead tirne to be deterministic), al1 the results hold even if the variability 

in the LTD stems fkom the lead time duration (with demand constant), or even if both lead 

tirne duration and demand are stochastic (Zipkin 2000). For stochastic lead times, it is 

necessary to assume an exogenous and sequential system, like ours, for the results to hold. 

4.5 The (Q, r) Model with Reduced Lead Time 

Suppose, at the request of the buyer, the supplier decides to reduce the lead time duration. 

In this section, we develop a (Q, r) model with reduced supply lead time. In the next 

section we will incorporate the investment costs required to reduce the supply lead tirne. 

Any reduction in lead time duration will change the LTD. We assume a to be the decision 

variable that signifies the reduction of LTD due to a change in lead time duration. Let the 

new "reduced" LTD random variable be 2. A particula. form of transformation that 

allows us to reduce mean and variability simultaneously is simply: 

In this case, E ( 2 )  = ap and Var(2  ) = &ar(X), both decrease when a declines. Note 

that the transformation is not general in the sense that it assumes that the standard 

deviation (std) and mean of the LTD decline by the same fraction, Le., the CV (co- 

efficient of variation) remains constant. This modelling approach is reasonable given the 

literature that indicates that as the absolute mean lead time is reduced, it will also reduce 

the absolute lead thne variation and the CV will remain almost constant (Ballou 1998). 
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The transformation in (4.5.1) does not assume any particular lead time demand 

distribution, unlike rnodels in the literature which are generdly based on normal LTD 

distribution. Since in our case the investment cost required to reduce a will also be quite 

general, the transformation in (4.5.1) is not as restrictive as it may seem. 

Proposition 4.5.1 : For only non-negative values, 2 of the foxm of (4.5.1 ) is stochastically 

non-decreasing in a 

d d d 
Proot - E[I(~)]= E [ - [ ~ ( X ) ] ]  = E[-[~y(c%)]] = E[y, (&)XI . As long as g is 

da da: da 

increasing and X is non-negative, it is clear that 2 is stochastically non-decreasing in a 

(Ross 1983). For a related proof aiso refer to Bookbinder and Çakanyildirim (1 999)M 

This transformation was used by Gupta and Gerchak (1995), Bookbinder and 

Çakanyildirim (1 999) and Gerchak and He (2000). While ideally the only restriction on a 

should be a: 2 0, for an existing system it makes sense to have O I a I 1 with a = 1 as the 

status-quo. When a = O, both the mean and the variance of the lead time duration, and 

hence the LTD, are also equal to zero. 

We c m  now develop the cost mode1 fiom the buyer's viewpoint. It is known that the 

limiting distributions of the random variables IL, IP and lead tirne demand (X)  are related 

by IL = IP - X. Since, IP and X are independent, and if IP, X, Q and r are taken as 

continuous, then IP is uniformly distributed between r and (r + Q) (Zipkin 1986a). IL is 

related to 1 and B by IL = I - B. The expected value of the difference of two random 

variables is the digerence of their expected vaiues. Thus: 

Replacing X by 2 (from 4.5.1 ), we have: 

and 



Hence, with the transformation, we can write the expected long-run total inventory cost 

per unit rime as: 

Expected total inventory cost / unit time = C (Q, r, a) 

= Set-up/Ordenng cost + Holding Cost + Backordering Cost + Purchase Cost 

As P is uniformly distributed between r  and (r+Q), by conditioning and unconditioning 

on IP we obtain the following expression: 

and 

Note that (BIIP = s) represents the backorder Ievel given that the inventory position at 

which the order is placed is S .  When IP = s  and the lead time demand variable is 2, 

( B I  IP = s )  is defined as follows: 

( B I  IP = s) = O  if X e s  

= ( X  - s )  if X l s  

= O  if ax < s (from 4.5.1) 

= ( a - s )  if ~ 1 x 2 s  

= O  if x < s / a  

= ( a - s )  if x 2 d a .  



The above is quite straightforward. I f  the LTD is more than the IP at which the order is 

placed, then there will be backordering; othexwise there will be no backordenng. 

There fore, E ( B I I P  = s )  = 

- - 

From (4.5.7) and E(B(IP = s )  we obtain: 

From (4.5.6), E ( P )  c m  be easily seen to be: 

= r + (Q/2). 

From (4.5.5), (4.5.8) and (4.5.9) and recalling that ~ ( 2 )  = ark we have: 



where F = 1 - F. 

Now (4.5.10) can be written as: 

where Nwa) = Iw [ x  -(y / a ) ]F (x )d r .  Note that F still represents the distribution 
-(Y /a) 

of the original LTD. 

Another way of representing C(Q, r, a) is to simpIifL the term hE(4 + bE(B). Proceeding 

as in (4.5.8) we c m  easily show that: 

Replacing (4.5.8) and (4.5.14) and simplifying we obtain: 



and 

KA. 
= - + hE(I )  + bE(B) + CA. 
Q 

While both (4.5.13) and (4.5.16) represent the same expected long-run total inventory 

costs per unit time for the buyer, depending on the circumstances use of one might be 

preferable than the other. This cost mode1 is "exact" under the assumptions that 

cumulative dernand can be modelled by a non-decreasing stochastic process with 

stationary increments and continuous sarnple paths and the supply system is exogenous 

and sequential. Under these conditions, it is applicable for stochastic Iead time demand 

and more than one order outstanding, regardless of whether the variability arises £kom 

demand or supply lead time. Remember that in our case demand is constant and variability 

is due to lead time duration. 

4.5.1 Mean Preserving Transformation 

Another transformation that can be used keeps the mean LTD constant, while vaiability 

decreases with a (hence called a Mean Preserving Transformation). In that case, the 

"reduced" lead time demand random variable 9 will be given by: 



Note thai, ~ ( 2 )  = aE(X)  + (1 - a)p = ap + (1 - a ) p  = p (for al1 a )  and var( 2) = 

a2var(x). Not only does the variance of the transformed variable increase in a, the 

transfomed random variable become more variable in the general notion of variability 

(for more details refer to Gerchak and He 2000). Since the mean of the transformed 

variable rem* the same for al1 a and f is non-negative for al1 4, to prove the assertion 

about variability we have to show that for 2 of the fonn of (4.5.17), E [ a  2 )] is non- 

decreasing in a where iy is a convex function (Ross 1983). 

Proposition 4.5.2: 2 of the form of (4.5.1 7) becomes more variable as  a increases. 

= E l y / ,  [(X - p)a + p](X - p)] . Replacing the random variable Y for 4X - p) (note 

1 
that E(Y) = O) we have, E[w,[ (X - p)a + p ] ( X  - p)] = - E[yla(Y + p)Y] . 

a 

is convex, it implies that iy, is increasing and hence, 

d 
that - ~ [ ~ ( f ) ]  2 O and hence, E [ &  2)) is non-decreasing in a. Hence proved.. 

d a  

With the transformation of (4.5.17), 

and 



So, the long-run expected inventory costs per unit time for the buyer will be given by 

(after some simplification): 

KA. Q 
C(Q, r, a ) =  -+h{ r+- -p )+  

Q 2 

Though the transformation (4.5.17) was used by Gerchak and ParIar (1991) and Gerchak 

and Mossman (1992), some reflection on (Q, r) models leads to the realisation that, in 

general, changes only in the mean lead t h e  demand confer no cost benefits, do not 

change Q, and change r by the same arnount as change in the mean. Thus the 

transformations (4.5.1) and (4.5.17) are essentially equivalent here. This is fonnally 

proved in Appendix 4.1. In particular, for constant demand, as in our model, reduction 

only in mean lead time duration reduces only the mean lead time demand and hence has 

no effect on Q or C. Since the transformation in (4.5.1) is simpler to work with 

analytically, we will adopt it a s  our model. This result implies that in the domain of the 

(Q, r)  model, MPT as a technique has virtually no added significance. 

4.6 The (Q, r) Mode1 with Investments in Lead Time Reduction 

Ln Section 4.5 we deveioped (Q, r) cost models with reduced lead time duration. However, 

both cost equations (4.5.13) and (4.5.16) have ignored the costs needed to achieve a 

reduction in lead time. Using the transformation, the parameter we invest in reducing is a 

(assuming demand is constant). If there was no cost in reducing a. the inventory policy 

we will be following will be the EOQ mode1 with backordering (which is a first-order 

approximation of the stochastic rnodel). Zheng (1992, pgs 94-95) shows that the cost of 

the optimal EOQ model with backordering will always be less than that of the optimal 

stochastic model cost with backordering. If the cost of changing a is nil, the best option 



for the buyer is obviously a = O. But, as we have already mentioned, most of the time 

there will be a cost associated with reducing a 

While the fûnctional form of the investment needed to reduce a will be case specific, it is 

reasonable to assume that such costs will be decreasing convex in a, i-e., successive 

reductions in a will require larger and larger investments per unit reduction. Let the 

investment function to reduce a be denoted by M(a). A reduction of a means a reduction 

in both the mean and variance of the lead time duration, and therefore a reduction in the 

mean and variance of the lead tirne demand. Though, at this point, we do not specify any 

particular form for M(a), we assume that there is a fkite cost to maintain the status-quo 

lead time duration distribution (Le., M(l) is finite) and that the cost to reduce the mean 

and variance of the lead tirne to zero (i.e., M(0)) is essentially infinite. From this 

prearnble, it is reasonable to assume that M(a )  has the following charactenstics: 

M( a ) 2 O, Ma (a) O, Ma,(a)  2 O. 

From an "engineering" perspective, M(a) might be very different fiom investment to 

investment. 

To get M e r  insights into how companies invest in reducing lead time in practice, we 

contacted several Canadian companies. Their experience seems to suggest that investment 

in reducing a by the supplier can be of two main types: i) Recuming investment, where 

M(a ) represents each instalment, and ii) One-time investment, where M(a  ) represents 

that investment. 

Recurring investments can be incurred: i) Per unit (e.g., use of more skilled labour that 

reduces processing time but increases per unit variable cost), or ii) Per cycle (e.g., costlier 



but faster transportation each cycle), or iii) Per unit tirne (e.g., special maintenance checks 

each penod by the supplier to decrease machine downtime). 

The one-time investment might also be of three types depending on whether the life of the 

investment depends on: i) Number of units produced by the investment (e.g., a test 

equipment or machine that can be used for certain number of parts), or ii) Nurnber of 

cycles it can be used (e.g., an apparatus that can reduce set-up tirne but can be used only 

certain number of cycles), or iii) Lifetime of its use (e.g., lease of an TT facility valid for 

certain arnount of time). 

Let us explain the concept in some more detail. When the buyer requests the supplier to 

reduce the lead time duration, the supplier examines its own facility and notes that the 

greatest opportunity to reduce supply lead tirne lies in reducing transportation time. 

Suppose at statu-quo, the supplier is using rail for transportation. To reduce its lead time, 

it decides to use trucks. While it will reduce both the mean and variability of lead time 

duration (and so the mean and vax-iabiiity of lead time demand), the supplier has to incur 

an extra cost per cycle for transportation (Ballou 1998) which it will pass on to the buyer. 

The supplier can reduce the mean and variability of lead time duration further by using air 

transport which will require even more cost per cycle on the part of the buyer to be paid to 

the supplier. As a is getting reduced f?om rail to truck to air (Le., both mean and 

variability of lead time duration and lead time demand), the buyer is inctming an extra 

cost; however, this extra cost is a recurring cost per cycle. 

On the other hand, the most opportunity to reduce the mean and variability of supply lead 

tirne may be in using more skilled labourers that will reduce the processing time. Such an 

action will increase the direct labour cost for the supplier, which it will pass on to the 

buyer. In this case, the buyer wiil be paying a price premium every unit for early delivery. 



Though both types of investment lead to a reduction of cq the "physical" type of 

investment done by the supplier and the effect of the extra cost passed on to the buyer is 

very different. In practice, the opportunities for improvement most likely will be finite and 

hence M(a) wilI have a finîte number of discrete values; but for analytical simplicity, we 

assume M(a) to be continuous. 

By focusing on the different nature of investments and arnortisation schemes we have 

been able to make our model general enough to be used in diverse models of lead time 

reduction related to transportation, maintenance and capital expenditure, as is evident 

fiom the exarnples given above. Most previous articles seem to focus on r e c h n g  

investments per unit time or one-tirne investment where the life of the investment depends 

on lifetime of its use. 

Depending on the nature of the relationship, only a fraction, Say 8 (0 < 0 I l), rather than 

al1 of the investment might be passed on by the supplier to the buyer. One of the cases 

where 0 = 1 is for an in-house supplier and then both the buyer and the supplier are parts 

of the sarne organisation. Though we assumed that the investment would be relation- 

specific, in reality, there might be cases where the investment in supply lead tirne 

reduction c m  benefit a number of buyers. Then it might be reasonable to allocate some 

part of the investment for the particular buyer and the Çaction of the investment to be 

allocated (8 ) can be decided by negotiation (for sorne related ideas about this type of 

investment allocation refer to Gerchak and Gupta 1991). However, some types of 

investments, e.g., changing the transportation mode that is used solely for one particular 

buyer, will require no investment allocation. In that case, whether 8 should be equal to 1 

or less thui 1 will be dependent on the nature of the buyer-supplier relationship. 

T ~ u s ,  the nature of the investment will result in 6 different types of models. While the 

basic inventory model has been already discussed, we will now illustrate how the nature 



of the investment will &ect modellhg. For anaiytical simplicity we will assume that the 

one time investment will have a long life, so that as an approximation we cm assume 

infinite life (this approximation works well; refer to literature review of Nye 1997). 

We will use the following additional notation to s ipi@ the different investment functions 

and amortisation schemes: MB(a) where the first superscript indicates whether the 

investment is one-the (1) or recurring (R). The second superscnpt signifies whether the 

investment is done per unit (U), per cycle (C) or per period (7) for recurring invesûnent or 

whether the life of the investment depends on the number of units produced (U), cycles 

(C) or penods (T)  it will be used for one-time investment. For example, @'(a) represents 

each instalment of a recurring investment done each cycle and ~ ' ~ ( a )  represents a one- 

tirne investment where its life depends on the number of units produced. If only a fraction 

0 of the investment costs is passed on, then Table 4.6.1 shows the effects on C(Q, r, a) in 

(4.5.13), depending on the nature of the investment. Note that here we are assuming that 

the supplier can reduce the lead tirne by making any one of the investments, Le., the 

investments are mutually exclusive. Xn reality, there may be cases where more than one 

type of investment can be done simultaneously. It will only result in more cornplex cost 

functions and we Ieave it for future research. 



Table 4.6.1: Cost Models with Diff'erent Investment Functions 

Type of 

Investment 

Recurring 

One time 

Investment Incurred 

ZA) Per unit 

1B) Per cycle 

1 C) Per unit time 

- 

2A) Life depends on the 

number of units 

produced 
- - 

2B) Life depends on the 

number of cycles used 

2C) Life depends on the 

length of use 

Changes in C (Q, r, a) of (4.5.13) 

c replaced by c(a) = c + 6bfU(a) and 

Extra terni 0 P T ( a )  

- - -  - - - - 

' c  replaced by c( a) = c + [ @ ~ ' ~ ( a ) ( i A ) ]  and 

h by h(a )  = i c (a)  

Extra term [ ( BM"(a)i) /(A/ Q)] (A@) = BM"(a)i 

Extra tenn BM' '(a)i  

In this case, we can view the situation as if the cost per set-up has increased fiom K to 
[K + &'(a)] while length of the set-up time (and hence Iead time) has decreased. This 
mode1 is a mixture of two cases: i) increased set-up cost, and ii) reduced lead time. 

' Note that while Gerchak and Parlar (1991) referred to this type of investment, they did 
not take into account the effect on holding costs. For Models 1A and 2A, both the 
purchase and the holding cost will be affected. Though less safety stock may be required, 
each unit will cost more to procure and hold. 



The developments of the recurring investment models are relaîively straightforward. 

Model 1A: 

If there is a recurring unit investrnent of MRU(a) per unit and a fiaction B of it is decided to 

be passed on to the buyer, then the buyer has to pay a purchase pnce of 

c(a) = c + ~ ! ~ ( a )  per ,t and the holding cost will be h(a) = ic(a) (as a decreases both 

the purchase price and the holding cost goes up). Hence, the purchase cost, c, in (4.5.13) 

or (4.5.16) will be replaced by c(a) and the holding cost per unit per time, h, by h(a). 

Model 1B: 

If there is a recurring per cycle investment of @$a) each cycle and a &action 0 of it is 

passed on, then though there will be no effect on the purchase or the hdding cost, the 

effective set-up cost per cycle, K(a) = K + 6!Mc(a), wil1 change with a As a decreases, 

the buyer has to pay an increased effective set-up cost. 

Model 1C: 

If there is a recuxTing investment of pr(a)  each unit of time and a nsiction 0 of it is 

passed on, then there will be an extra cost, €!Mr(cr), to be paid Iumpsum by the buyer 

every unit of time (e.g., a lumpsurn annual arnount) and this arnount will increase as a 

decreases. 



The development of the one-the investment models particularly those for Models 2A and 

îB, are more involved. 

Suppose that a one-time investment ~ ' ~ ( a )  is made by the supplier and the life of the 

investment depends on the number of n i t s  produced. Assurning that the investment lasts 

for a large number of units, i.e., it has an infinitely large life, and a fraction B of the 

investment is passed on: 

Amortised investment / year (assuming the unit of time to be a year) = 0 ~ * ~ ( a ) i .  

The price increase per unit (since A. is the annual demand) = 
B M ' ~ (  a )  i 

A. 

After the investment, the unit purchase pnce will be: c ( a  ) = ct 
B M ' ~ ( ~ )  i 

A 

As a decreases, the buyer has to pay a pnce premiurn for early delivery. The holding 

cost/unit/time will now be: h ( a )  = i(c + O M ' ~ ( ~ )  i 
). As c, i and A are constants, h ( a )  

A 

Hence, af€er the investment, the new long-nui average total inventory cost for the buyer 

will be (fiom (4.5.13)): 

KA. Q ( h ( a )  + b)a2 .+Q h(a)A  
C(Q, r, a )  = -+ h(a)(r+--apCr)+ 

Q 2 Q r w 3  - w-)I +- , a a I 

where h( a ) = i(c + ~ ~ ' " ( c r )  i 

A. 
1 - 

Note that for Models 1A and 2A, both the purchase cost and the holding cost are functions 

of the decision variable a Hence, purchase cost m u t  be a part of our "total inventoy 
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cost" unlike the traditionai (Q, r) models where purchase cost is independent of decision 

variables and hence can be ignored for cost minimisation purpose. 

Model 2B: 

Suppose that the supplier has to make a one-time investment of ~ ' ~ ( a )  that will have a 

lifetime of f o r d e r  cycles. Since each time penod has (NQ) order cycles, the investment 

will have a lifetime of @= ?EI(ZQ) time periods. If the supplier wishes to pass on a cost 

of e ~ * q a ) ,  the equivalent cost per period will be (Fraser et al. 2000): 

If there are (2Q) > 1 cycles per penod, then the cost per cycle for the supplier that will be 

passed on to the buyer will be: 

If fl is large, then (4.6.4) becomes approximately [e~'~(a)i]/(~/~) (Fraser et al. 2000). 

However, since there will be (A/Q) cycles per unit time for the buyer, the "approximate" 

cost expression for the buyer will only have an extra term of 0~*~(a)i. 

If the approximation that Af is large is not applicable, then the "exact" cost function of the 

buyer will have an extra term [~~'~(a)i(l+ i )NC ]/[(1+ i)"= - 11 which itself will contain 

both the decision variables, a and Q. Note that we only show the "approximate" total cost 

expression in Table 4.6.1 and it will be taken as the cost expression for Model 2B unless 

otherwise indicated. 



The development of Mode1 2C is relatively straightfonvard. Suppose that a one-time 

invesîment ~ ' * ( a )  is made by the supplier and the life of the investment depends on the 

number of units produced. Assuming the investment has an infinitely large life and a 

fiaciion 6 of the investment is passed on, the arnortised investment / year (assuming unit 

of time to be year) = ~~'~(a)i, and so the only effect on the cost f i c t ion  will be in the 

form of an extra term. 

We note that in Models 1A and 2A, the additional cost factored into the purchase price 

affects the holding costs. Some might argue that in the remaining models the additional 

costs shouId also be factored into the purchase price and influence holding costs. 

However, for decision-making purposes it is necessary to emphasise the "engineering" 

aspects of the investment, and it will not be proper to roll the additional cycle or period 

costs into the effective purchase price (or acquisition cost) of the product. 

4.7 Convexiîy Analysis 

The buyer's objective is to minimise the cost function C in Table 4.6.1 by proper selection 

of the values of the three decision variables - Qy r and ai The optimal decision variable 

values for the buyer will be different depending on the type of the investment done by the 

supplier and how it is passed on to the buyer. Hence, it is important for the buyer to 

consider that issue before deciding on its optimai strategy. 

In this section, we concentrate on investigating the convexity of the cost function. If 

proven so, first-order conditions (FOCS) will be both necessary and sufficient to determine 

the optimum decision variable values. Let us first analyse the cost equation (4.5.5): 

Proposition 4.7.1: The cost fiuiction of (4.7.1) is jointly convex in Q, r and a. 
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Proof: In a (Q, r) policy, an order is placed whenever the IP reaches r. A backorder will 

occur only when the lead time demand exceeds the inventory position at which the order 

was placed and if it is less, then there will be no backorder. Hence, we can write, E(B) = 

E~ .,p (rnax(2 - IP), O) . 

For our case, 2 = aY and IP is uniformly distributed over (r, r + (3). So we cm substitute 

IP = r + QU where U is uniform on (O, 11 and 2 = a. TO prove the joint convexity of 

E(B) it is sufficient to show that max {(d- r - QU), O) is jointly convex in Q, r and a for 

fixed values of (X, U) (Zhang 1 998). It is obvious that (d - r - QU) is jointly convex in 

the three decision variables Q, r and a for fixed values of X and U. As max {g(.), O) is 

convex for any convex function g(.), E(B) is also jointly convex in Q, r and a As the 

other ternis of (4.7.1) are clearly convex, we can Say that the cost function of (4.7.1) is 

jointly convex in Q, r and a. 

While the basic inventory cost mode1 with transfomed LTD is jointly convex in Q, r and 

a; it is not clear what will happa  when the investment cost is also taken into account (i.e., 

models of Table 4.6.1). 

Proposition 4.7.2: Models lC, 2C and 2B of Table 4.6.1 are jointly convex in the three 

decision variables, Q, r and a. 

Proof: For Models IC, 2C and 2B, the only difference in the cost function from (4.7.1) is 

an extra term. Since the investment fùnction is by assumption convex in cy it is cIear that 

the extra texm, which is independent of Q and r, will be convex in a for al1 the three 

models. So, the cost equations for these three models are jointly convex in Q, r and a even 

after taking the investment cost into account. 

For the "exact" Mode1 2B, we can show that the sufficient condition for joint convexity 
JC 2 will be that (M'~,,)(M'~) 2 (M ,) (Appendix 4.2). This condition is satisfied by 

decreasing convex investment fiinctions iike power (Aad,  A, a > 0) and logarithmic 

(A(1-ln(a)), A > O) used by Porteus (1985). 



Proposition 4.7.3: A sufficient condition for joint convexity of Mode1 1B in Table 4.6.1 
C 2 is 2(MRCaa)(MRc) > (A@ a) . 

Proof: Refer to Appendix 4.3. rn 

Obviously this condition is also satisfied by decreasing convex investment fiuictions like 

power (Aa*, A, a > 0) and logarithrnic (A(1-ln(a)), A > 0). 

Proposition 4.7.4: Models 1A and 2A of Table 4.6.1 are jointly convex in Q and r for a 

fixed a and also convex in a for fixed Q and r. 

Proof: For joint convexity of Models 1A and 2A with respect to Q and r for a fixed a 

refer to Zheng (1 992). For convexity with respect to a for fixed Q and r refer to Appendix 

4.4. w 

Models 1A and 2A are not, in general, jointly convex in Q, r and a: While E(T) is convex, 

so is h(a)  = ic(a), the product of two convex functions may not be convex4. A 

sufficient condition for these mo dels to be convex is the joint convexity in Q, r and a of 

h(a)E(I) (since E(B) is jointly convex in the three variables and c(a)  is by assurnption 

cünvex in a), Le., joint convexity in Q, r and a of: 

To obtain more insights into the behaviour of the cost functions, we did extensive 

numerical experiments with different types of LTD distributions, e.g., exponential, 

logistic, and gamma, and different types of investment functions, e.g., power and 

logarithrnic (details given in Section 4.9). From our numerical experiments, the cost 

Exarnple: f = -log x, g = a?; while f and g are individually convex for al1 positive values 
of x, vg) is not convex for al1 positive values of x. A sufficient condition for product of 
two convex functions to be convex is that both of them are monotone of the sarne sign. 
We cannot guarantee this in our case. 



functions, while not necessarily convex, seems to be "unival~e~ed"~ in the relevant region 

of the decision variables, Le., 

where Q*(a) and r*(a) denote optimal Q and r for a given cq has a unique solution in the 

relevant region of 4 O I a < 1 (Appendix 4.5). If C is "univalieyed", FOCS are both 

necessary and sufficient to determine the optimum values of the decision variables. If 

there is no solution, it implies that d' = 1 (as a tends towards 0, the cost will tend towards 

a, but is finite for a = 1). 

In the previous sections, the assurnption was that the demand is constant and the 

variability in lead t h e  demand is solely due to lead time duration variability. In that case 

if we know the demand rate (A), and the mean (p) and variance (2) of the status-quo lead 

time demand (a = l), then fiom the optimal value of cq dL, we can deduce the optimal 

mean and variability of lead time duration fiom the buyer's viewpoint (Appendix 4.6). 

However, al1 our previous analytical results and the insights in the following sections are 

based on the lead time demand distribution and not on the lead time dwation distribution. 

Hence, even if the demand is random, we cm proceed as before and detemine the optimal 

value of a When the demand is random, the variability in lead time demand comes ffom 

both dernand and lead time duration and then the mean and the variance of the lead time 

demand is given by (Nahmias 1997): 

and 

' We use the term univalleyed in a cost minimisation in the same sense as unimodality is 
used for profit maximisation. 



where p and bZ are the respective mean and variance of the lead time demand distribution, 

p and ( C T ~ ) ~  are the respective mean and variance of the lead time duration distribution and 

A and (oA)' are the respective mean and variance of the demand distribution. As long as 

the reduction in lead time demand is sole& due to lead tirne duration reduction and the 

mean and variance of the demand remains the same for al1 lead time, we can still deduce 

the optimal rnean and variance of lead time duration (Appendix 4.6). Though the analysis 

in this chapter, including the numerical examples, is based on a constant demand, in fact, 

the mode1 is much more general and c m  be used even with random demand. The exact 

values in the numerical examples might vary but the insights, we believe, will remain the 

same. However, note that when demand is random a change in only the mean lead time 

duration will change both the variance, as well as the mean, of the LTD. 

4.8 Analytical Comparative Statics of Q* and r* with respect to a 

A carehl examination of the 6 models of Table 4.6.1 reveals that for constant i and A, 

Models 1A and 2A are stmcturally similar (with P U ( a )  in Model 1A replaced by 

in Model 2A), Models 1C and 2C are stnicîurally similar (with flT(a) in 
A 

Model 1C replaced by ~ ' ~ ( a ) i  in Model 2C) and Models 2B and 2C are stnicturally 

similar ( ~ ' ~ ( a )  in Model 2C replaced by ~ ' ~ ( a )  in Model 2B). Hence, we c m  restnct our 

detailed analysis to 3 basic models: 1 A, 1B and lC, which fkom now on we will refer to as 

"unit", "cycle" and "time" models respectively. 

In this section we will perform the comparative statics of Q* and r* with respect to a for 

the unit, cycle and time models. In other words, we examine the effect of decreasing the 

supply lead time duration on the optimal reorder point and batch size. This issue is 

important eom the buyer's perspective since any change in Q* and r' affects the buyer's 

operations directly, e.g., warehouse size, unloading dock design, manpower planning. 



Proposition 4.8.1 : For time and unit models, r* and (r* + Q*) decreases as a decreases. 

Proof: Refer to Appendix 4.7. 

It is known that any decrease in mean lead time demand only decreases P, but has no 

ef5ect on Q* and any decrease in variability of lead time demand reduces Q* (De Groote 

and Zheng 1997). Based on these two effects and Proposition 4.8.1, we can conclude rhat 

for the time and unit models, Q* wilZ also decrease as a decreases. The effect of a on r* 

and Q* is intuitive since if a gets smaller, we would expect that the buyer has to hold l e s  

safety stock (since lead tirne demand will be less variable) and order Iess in each batch 

(since it will not take long for the supplier to deliver, there is no point of ordenng more). 

Proposition 4.8-2: For the cycle model, r* decreases as a decreases but (r* + Q*) may 

increase as a decreases. 

Proof: Refer to Appendix 4.7. rn 

For the cycle model, we are able to analytically show that while r* decreases as a 

decreases, (r* + Q*) may increase as a decreases. This implies that Q* may increase as a 

decreases. This also makes sense if we think carefully about the cycle model: as a 

decreases, the eflective set-up cost, K(a) = K + 8iC((r), increases. There are two 

opposite effects produced: a decrease of a will reduce Q* (DeGroote and Zheng 1997) 

while an increase in K(a) will increase Q*. Depending on which effect is stronger, Q* 

may increase as a decreases. The effect of increased effective set-up cost c m  be so high 

that even (r* + Q*) might increase as adecreases, though r' itself will always decrease as 

a decreases. 

Example 4.8.1: Suppose for the cycle model, the LTD has an exponential (B) distribution 

and the investment functions is of the power fom. The parameters have the following 

values: 8= 1, K = 100, b = 18.75, c = 0.75, i = 0.05, A = 87, R = 500, P = 0.001. The 

values of r*(a), Q*(a) and Z(a) + Q*(a) are piotted versus a in Figures 4.8.1 (a), 4.8.2@) 

and 4.8.3(c) respectively. 



It is clear that while r*(a) decreases with 4 both Q*(a) and r*(cr) + Q*(a) initidiy 

decrease and then increase with a 

Figure 4.8.l(a): r*(a) versus a for the Cycle Model 

Figure 4.8.l(b): Q*(a) versus a for the Cycle Model 



Figure 4.8.l(c): r*(a) + Q*(a) versus a for the Cycle Mode1 

This apparently counter-intuitive resuIt is due to the fact that in our model the trade-off is 

between a reduction in lead t h e  duration and an increase in set-up cost. As lead time (set- 

up thne) is reduced, we can use that fkee time (capacity) to increase batch size and partly 

compensate for the increase in set-up cost. As is evident 60m Appendix 4.7, the effect of 

a for the cycle model will depend on the value of o r n a ) .  

4.9 Numerical Examples 

This section will report numencal exarnples explaining some of o u  previous assertions. 

Bagchi et al. (1986) suggests that the most common LT distributions are gamma, 

exponential and normal. We use the logistic distribution in place of normal as it 

approximates nomal distribution quite accurately while the CDF and right-tail 

distribution can be obtained in closed form (refer to Gerchak and Parlar 1991 and 

references therein for more details). We pnmarily worked with 3 LTD distributions - 
exponential 0, logistic 01, P) and gamma (2, 4. We used hvo different investment 

functions for M(a) - Power, Ala, and Logarithmic, A[l - in(#] (for more details on the 

investment functions refer to Porteus 1 985). 

1 O6 



Cost Function of the Unit Mode1 

We proved the unconditional convexity of cycle and time models, but for the unit model 

we have conditions for the cost function to be convex or univalleyed. One of our first 

goals for the numerical experiments was to assess the shape of the cost function for the 

unit model over a wide variety of parameter settings and al1 combinations of LTD 

distributions and investment functions. For each value of a we calculated Q*(a), P(a) 

and the comesponding C(a). Recall that C is jointly convex in Q and r for a fixed a even 

for the unit model. Then we plotted the cost function C(Qf(a), r*(a), a) versus a In the 

following example, we plot C(Q*(a), r*(a), a) vernis a for two combinations of LTD 

distribution and investment fünctions. 

Example 4.9.1: In Figure 4.9.l(a) we plot C(Q*(a), r*(a), a) as a function of a for the 

unit model with an exponential (0.00667) LTD distribution, logarithrnic investment 

function and the following parameter values: 6 = 1, K = 15, b = 15, c = 1, i = 0.00085, 

A = 0.1, A= 7. 

In Figure 4.9.1@), the LTD for the unit model has a logistic (150, 20.7) distribution, the 

investment function is of the power form and the parameter values are as follows: B = 1, 

K =  15, b = 22, c = 1, i = 0.025, A = 0.075, il = 10. 

In both the above examples, the cost function is clearly univalleyed. Sirnilarly, in al1 Our 

numerical experiments, the cost function was univalleyed implying that there is an unique 

combination of Q, r and a that minimises C even for the unit rnodel. 



Figure 4.9.l(a): C(a) versus a for the Unit Model (a) 

(Exponential LTD Distribution, Logarithmic Investment Function) 

Figure 4.9.l(b): C(a)  versus afor  the Unit Model (b) 

(Logistic LTD Distribution, Power Investment Function) 



An Illustrative Example 

If the trivariate cost hction C(Q, r, a) is convex or univalleyed, then the optimal values 

of the decision variables can be determined fkom the first order conditions (FOCS). For 

example, for the unit model, the cost fhction (4.5.16) can be written as: 

where: 

h(a)  = ic(a), 

and 

c(a) = c + OMRU(a). 

For the cycle model, (4.5.16) will be: 

where: 

and 

h = ic. 

For the time model, (4.5.16) wiI1 be: 



For the unit model the three FOCs are @y differentiating 4.9.1): 

Similarly we can dso fbd  the FOCs for cycle and time models by differentiating (4.9.2) 

ami (4.9.3) respectively with respect to the decision variables - Q, r and a. 

We used Maple to solve the three FOCs to obtain Q*, r* and aL. We might also use some 

iterative technique by fixing the values of two decision variables at a time and solving for 

the third one until some convergence critenon is achieved (refer to Gerchak and P a r k  

199 1). As long as C is univalleyed, convergence is guaranteed. 

Example 4.9.2: Let us take the case of unit model with the following parameter values at 

thestatus quo: O= 1 , K =  11, b =  16.125, c =  1, i=O.OOO96, A = O . O X ,  A= 178. 

Suppose also that at statu-quo (i-e., a= 1) the LTD is exponentially (P) distributed with a 

mean of 6250 units (i.e.. ,û = 0.00016). If we assume the unit of time to be days, then the 

demand per day is 178 units (assumed constant) and the mean and standard deviation of 

lead time duration is approximately 35 days. The firm is paying $1.075 per unit to the 

supplier, including the cost of maintainhg the lead time duration at status quo. The 

optimal strategy for the firm at status quo will be: Q* = 5241 and Z = 57,916, Le., 

whenever the inventory position at the firm's warehouse reaches 57,916 units, the firm 

will order 5241 units £kom the supplier. By following this inventory policy the firrn will be 

incurring a cost of CL = $254.20 per day. However, the firm is not satisfied with the status 



quo. It has to hold almost 10.5 months of inventory as well as order 30 days of inventory 

at a t h e .  Hence, the £hm (buyer) wishes to reduce the supply lead time duration. 

At the request of the buyer, the supplier looks at its operation and decides that it c m  

reduce the lead tirne duration only by making some type of r e c e g  per unit investment 

(e-g., extra labour to process each unit faster). Also the investment will be of logarithmic 

type, Le., it will cost a fixed amount to reduce a: by a fixed percentage (Porteus 1985). The 

supplier specifies to the buyer how much extra per unit the buyer has to pay to reduce lead 

tirne for various values of a In this case, the buyer has to pay extra 4.83% per unit to 

bring a to 0.5, extra 9.67% per unit to bring a to 0.25 and so on. The buyeis manager 

takes that into account and uses our unit model to make a decision. The optima1 decision 

variable values will be as follows: Q* = 3094, r+ = 11,412 and CP = 0.21. 

The manager of the fhm should instruct the supplier to invest in lead time reduction and to 

reduce the mean and standard deviation of the lead time duration fkom 35 days to 7.35 

days (more accurately the distribution itself will change; however, fiom managerial 

viewpoint this is easier to understand). The buyer is ready to pay a pnce prernium of close 

to 1 1% per unit for this reduction. The buyer's optimal reorder point will be reduced to 

11,412 units, i.e., approximately 64 days inventory, and the optimal order quantity will be 

approximately 17.5 days demand! Why is the buyer ready to pay the pice  premium? Even 

after paying the premium the buyer's optimal costs will be C = $227.50 per day, almost 

10.5% less than its status-quo optimal cost. Note that there is no point of urging the 

supplier to achieve "perfect delivery", at least as far as inventory cost is concemed. For 

example, a mean lead time duration of 3.5 days (with standard deviation of also 3.5 days, 

i-e., a = 0.1) will require a price premium of almost 16%. Though the optimal reorder 

point will then be around 28.5 days stock and the optimal order quantity will be 14 days 

demand, the optimal cost will be almost 1.3% more than the overall optimal. 

In the following table (Table 4.9.1) we show the individual cost elements burchase, set up 

and holding + backordering), batch size, reorder point and cost for the unit model for this 

example at status-quo and at the optimal solution. 



Table 4.9.1: Cost Elements for Example 4.9.2 

1 S tatus-quo (a = 1) Optimal (a = 0.21) I 
Batch sue (units) 

Reorder point (units) I 57,9 16 11,412 

--- - - - 

Set up costs (Slday) 

Purchase costs ($/day) l 191.35 

(Holding + Backordering) costs ($/da~) 

2 12.06 

- 

At the status-quo, the purchase cost accounted for alrnost 75% of the total cost and the 

remaining 25% was fiom holding and backordering costs. In the example, we deliberately 

kept the set-up cost quite small. There are two reasons for this: (i) If set-up cost is high, 

then it is known that EOQ model will work quite well (Zheng 1992), and (ii) In recent 

times in retail envkonments if the transportation cost is taken to be a part of the purchase 

cost itself (i.e., transportation cost is paid for by the supplier), then the so called ordering 

cost has become very low. In the optimal solution, set-up cost has gone up, though as a 

Total cost ($/day) l 254.20 

percentage it is still quite small, and the purchase cost accounts for almost 93% of the total 

cost. Due to reduction in supply lead time duration, the backordenng and holding costs 

now account for only about 7% of the total cost. We can easily develop "extreme" 

examples where the advantage fkom investing in supply lead time reduction can be much 

more significant. 

227.50 

What would have been the result if the buyer did not take into account that the investrnent 

done by the supplier is of the unit type and instead assumed that it is as in cycle or time 

models? With the same parameter values the optimal decision variable values for the cycle 

mode1 will be: Q* = 2084, r* = 5 and d = 0.0003, and the optimal decision variable 

values for the fime model will be: Q* = 2033, r* = 64 and dt = 0.0022. 



Note that the optimal values will be very different than those for the unit model. If the 

buyer follows any of these policies, the cost penalty will also be significant. For example, 

following the optimal values of the decision variables fiom the time model will make the 

cost almost 21% more than the optimal and following the cycle mode1 will make it almost 

33% more than the optimal. In practice, most probably the investment costs for the unit 

model will be very different than that of cycle or time models and hence chances for such 

rnistakes will be rare. However, we want to point out here that it is important to consider 

the type of investment done by the supplier in lead time reduction to anive at the optimal 

decision. 

We can also develop sirnilar examples for cycle and time models. An example of a 

situation where the cycle model is appropriate is when the buyer pays for the 

transportation cost separately to the supplier and the supplier feels that the only way to 

reduce suppiy lead tirne is by reducing the transportation tirne. Then the buyer rnight have 

to pay extra transportation cost per cycle, Le., increased effective set-up cost. Similarly, an 

example of a situation where the time model is appropnate is when the supplier feels that 

it can reduce supply lead time by reducing the downtime of its machines. The buyer might 

pay an extra lumpsum arnount per year to the supplier to have a better maintenance 

program but even after paying it, the buyer maybe better off. 

Basically, there are two important insights that come out of the example: 

a) If used properly, there can be substantial cost reduction korn investment in supply 

lead tirne reduction. Even after paying a price premium (for the unit model) or a 

premium on the set-up cost (for the cycle model) or a lumpsum amount (for the 

time model), the buyer firm can decrease its inventory costs. However, the buyer 

rnust be carefûl before taking any decision. Depending on the parameter values, 

the amount of cost reduction rnight Vary. If the cost of reducing the supply lead 

time is high, Le., if A is high, then it might be that the status-quo is optimal. 

Similarly there might also be other situations where investment in supply lead time 

reduction rnight not make much sense. However, al1 these will come out of the 



analytical model we have built. Our model will help managers in deciding when to 

go for supply lead time reduction and if lead time reduction is necessary then what 

should be the optimal supply lead time, and associated optimal investment and 

inventory levels; 

b) Our models also show that the managers m u t  be very carefùl about correctly 

modeHing the supplier's investments in lead tirne reduction and which mode1 to 

use (Le., unit or cycle or tirne) while deciding on the optimal decision variable 

values. 

Note that these models are very much in tune with the recent phenomenon of focusing on 

"total" inventory cost rather than just purchase cost (Australian National Audit Office 

Report 1997-98; Purchasing Online 1998). Our models are also consistent with the JIT 

philosophy suice we reduce the non-value added supply lead tirne (Stevenson 1999). 

Effect of Investment Functions 

We investigated the effects of the investment functions on the model. We used 

logarithic (Ar1 - In(@]) and power (Ala)  investment fünctions for al1 three LTD 

distributions. For both time and unit rnodels it is seen that for al1 values of a, 

C(Q*(a), r*(a), a) is lower for the logarithrnic investment than for the power and Q*, 9, 

a? and C for the power investment are greater than that for the logarithmic investment 

(for the same A). 

Example 4.9.3: In Figure 4.9.2 we plot C(Q*(a), P(a), a) versus a for the unit model for 

exponential (0.00016) LTD distribution and the following parameter values for both the 

investment fiinctions: B = 1, K = 15, b = 15, c = 1, i = 0.002, A = 0.1, R. = 250. 

The optimal decision variable values and costs for the two investments are as folIows: 

Logarithmic: Q* = 2901, r* = 9773, dC = 0.2, C* = 344.6. 

Power: Q* = 3843, r* = 24,23 1, a* = 0.48, C* = 366.86. 
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Figure 4,9.2: P(a) versus a for Different Investment Functions 

(Exponential LTD Distribution, Unit Model) 

The above result is quite intuitive since for dl values of a the investment for logarithmic 

is less than the investrnent for power, except at cr = 1 when they are equal. This leads to 

lower a* and hence lower r*, Q* and C*. For the same reason we noted that for the cycle 

model, while r*, a+ and C* follow a similar pattern, Q* for the power investrnent function 

might be less than Q* for the logarithmic investment function. Recall that lower might 

lead to higher Q* for the cycle model. 

Example 4.9.4: For the cycle model, suppose that the LTD has an exponential (0.00016) 

distribution with the following parameter values: 8 = 1, K = 15, b = 15, c = 1, i = 0.002, 

A = 10000, A = 250. 

The optimal decision variable values and costs for the two investments are then as 

follows: 



Logarithmic: Q* = 70,839, r* = 14,988, dL = 0.43, C* = 416.34. 

Power: Q* = 66,212, r* = 24,944, dC = 0.65, C* = 424.20. 

In this case while f ,  rr* and CL are lower for the logarithmic investment than the power, 

Q* is higher. 

Example 4.9.5: Consider another example for the cycle model where the LTD has a 

gamma distribution (2, 3 125) with the following parameter values: 8 = 1, K = 15, b = 15, 

c = 1, i = 0.002, A = 500, R = 250. 

The optimal decision variable values and costs for the two investrnents are then as 

follows: 

Logarithmic: Q* = 19,972, r+ = 3039, Cr* = O. 13, C = 294.35. 

Power: Q* = 20,494, r* = 8787, dt = 0.34, CC = 304.32. 

In this case al1 Q*, r*, cr* and C* are lower for the logarithrnic investment than the power. 

= Effect of Neglecting a for the Holding Cost in the Unit Model 

As we noted before, while tirne and cycle models are convex, the unit mode1 is difficult to 

be proven convex or univalleyed. Convexity does hold for a unit model if we assume that . 
while puichase cost will increase 3s a decreases, there will be no effect on the holding 

cost (as in Gerchak and Parlar 1991 and Bookbinder and Çakanyildinm 1999). However, 

we feel that it is important to take into consideration the effect on holding cost, as 

otherwise the mode1 would be underestimating the inventory cost and iead to wong 

operational decisions. Sometimes this underestimation can be quite hi&. 

Example 4.9.6: Suppose for the unit model the LTD has an exponential (0.0001 6) 

distribution and the investment is of the logarithmic form with the following parameter 

values: O= 1 ,K=  15, b =  15, c =  1, i=0.004,A=0.75, Â=250. 



The optimal decision variable values and costs are then as follows: 

Q* = 3033, r* = 34,866, dC = 0.77, C* = 771.72. 

However, if we solve the model using the same parameters but ignoring the investmentfs 

effect on holding cost, the optimal decision variable values and costs will then be as 

follows: 

Q* = 2834, r* = 25,557, dC = 0.56, C* = 736.13. 

For this example the underestimation in cost is almost 4.5% (we can easily construct more 

"extreme" examples). Note that when the effect on holding cos& is not taken into account, 

then more investment is done, and both the optimal batch size and reorder point will be 

lower. In this case batch size is almost 6.5% lower and reorder point is almost 26% lower. 

Ignonng the effect on holding cost can also lead to the decision of instructing the supplier 

to invest in lead tirne reduction, when really the status-quo is optimal. Hence, it is very 

important to take into consideration the effect on the holding cost along with that on the 

purchase cost for the unit model. 

Approximations 

Even approximations like (i) E(IL) z E(l) (assuming backordenng time to be negligible as 

has been used by Nahrnias 1997), or (ii) one order outstanding (like Bookbinder and 

Çakanyildirim 1999) for the unit model might not produce a convex cost hc t ion .  Note 

that the first approximation will always underestimate the "exact" model's cost while the 

second approximation will always overestimate it. The only way we can prove those 

approximations to be jointly convex in the three variables easily is by assuming the 

holding cost to be independent of a: However, as we have aiready indicated, under the 

assumption of holding cost being independent of cr we can prove the convexity of even 

the "exact" model. Hence, these approximations would not be of much use here. 



The one possible approximation that can be employed is to use the optimal decision 

variable vaiues îkom the mode1 assuming that holding cost is independent of a but the 

purchase cost is a function of a, which is provably convex, in unit models. Though we 

noted before that such model by itself underestimates the true cost, using the decision 

variable values from that model in the "me" unit model can act as an approximation. In 

Example 4.9.6 such approximation will result result in a cost of 776.87, only about 0.66% 

higher than the optimal cost. From our numerical experiments, again with al1 

combinations of the three LTD distributions and two investment functions, we can Say 

that this approximation will work fairly well unless A or i are very hi&. This is intuitive, 

since when A or i are high the effect of holding costs will be significant. In passing, we 

would also like to mention that the approximation of one order outstanding performs 

poorly for highly variable Ln> distributions and low K. This is in line with Zipkin's 

(1986b) assertions for a standard (Q, r) model without a In that sense, exarnples with 

exponential LTD with one order outstanding assurnption as in Bookbinder and 

Çakanyildirim (1999) are not advisable. We also noted that one-order-outstanding 

approximation performs poorly for low values of b. This is intuitive since hi& values of b 

will naturally lead to one order being outstanding and so low values of b exposes the 

model to problems. 

4.10 Numerical Comparative Statics 

FOCS for the exact (Q, r) model, even without 9 are very involved and it is not possible 

to obtain closed form solutions for the optimal decision variables. But De Groote and 

Zheng (1997) and Zipkin (200) have performed comparative statics of an exact (Q, r)  

model. While it might be possible to do some analytical comparative statics for our 

trivariate cost model, it would be quite complex. Therefore, we report only numencal 

comparative statics for the parameters. 

For our numerical comparative statics, we also used three LTD distributions (logistic, 

gamma and exponential) and two invesûnent functions (power and logarithmic). The 

focus is on the effect on optimum decision variable values rather than cost. Following are 
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our results for the different parameters involved (in the following ? denotes increases, 

denotes decreases and hl denotes that it might increase or decrease): 

System Cost Parameters 

. set-up cost (Q 

AS K t ,  for unit and time models -t Q* t, r* h &, a* t; 
for the cycle mode1 + Q* î,rt &, CP 4. 

As K increases, as expected Q* increases for time and unit models. At the same time we 

reduce our investment in a to partly compensate for possible increase in holding cost (so 

cr* increases). This effect on a is quite intuitive. As Q* increases, the number of orders 

will decrease and so the eequency of the inventory level reaching the reorder point will 

decrease. This will create an incentive for reduced investment in a In the traditional 

(Q, r) model, it can be shown that as K ?, while Q* ?, r* 4 (Zheng 1992). However, in 

our model, under certain circumstances, r* may increase as K increases. 

Example 4.10.1: Suppose for the unit model the LTD is exponentially distrîbuted 

(0.00016), the investment function is logarithmic and the parameter values are as follows: 

O= 1, b =  15,c= 1, i=0.002,A=O.I, Â=250. 

For K = 15, the optimal decision variable values are: Q* = 2901, r* = 9773, a* = 0.20. 

For K = 40, the optimal decision variable values are: Q* = 4149, r* = 965 1, & = 0.21. 

Example 4.10.2: Suppose for the unit model the LTD has a logistic (1000, 150) 

distribution, the investment fûnction is logarithmic and the parameter values are as 

follows: 8= 2,  b = 50, c = 5, i = 0.00125, A = 1, A = 5. 

For K = 15, the optimal decision variable values are: Q* = 207, r* = 1053, a* = 0.49. 

For K = 40, the optimal decision variable values are: Q* = 300, P = 1068, a" = 0.5 1. 



While for Example 4.10.1, r* decreases with increase in K, for Example 4.10.2, r* 

increases with increase in K. 

The reason for this apparently counter-intuitive behaviour of r* is that in some cases, the 

increase in Q* alone is not enough to counterbalance the increase in d' and so r* also 

needs to increase to have more safety stock. This is contrary to what Bookbinder and 

Çakanyildirim (1999) reported on the effect of K on r+, Le., they reported that even in the 

presence of q, as K increases, 9 will always decrease. 

The effect for the cycle model is also intuitive; increasing K leads to an increase in Q* and 

if Q* is increasing due to K, we would expect cr* to decrease. The decrease of dC will just 

have an added impact on Q* and we can use the reduced d' to decrease P. 

Note that as K increases, dL increases for the time and unit models. This implies that there 

will be some threshold value of K which will make a* = 1 and for any K larger than the 

threshold value, the status-quo will be optimal. We think that this result is important since 

it shows that when K is sufficiently large then there is no point in reducing supply lead 

time; rather the focus should be on set-up tirne (cost) reduction (refer to Chapter 5). As 

both Zheng (1992) and Zipkin (2000) pointed out, when the ordering cost is large and 

variability is low (Le., EOQ type models) the more important trade-off is between the set- 

up cost and the holding cost. In that case, the focus should be on reducing the set-up cost. 

Backurdering cos/rrnit/unit fime (b) 

As b ?, for unit and time models -, Q* &, r* Tl&, a*&; 

for the cycle mode1 + Q* T, FM, a* &. 

It can be shown that for a haditional (Q, r) model as b increases, r* and (r* + Q*) must 

increase @e Groote and Zheng 1997). while the effect on Q* alone is not obvious. 



However, if we think carefully, the apparently counter-intuitive effect of b on r * we report 

is not so strange. If b increases, there are three ways of compensating - reduce a?, 

increase r*, or both. While in most cases both occur, if the investment cost is very small 

a d o r  holding cost is high, it is better to reduce O? only than to increase P. Our rnodel 

will h t  try to see whether the cost of changing a i s  small or not. If it is inexpensive then 

it will try to lower cr* as  much as possible which can lead to reduced r* and Q* and hence 

savings in holding costs. Obviously, sometimes it may be necessary to reduce dC and 

increase r* simultaneously. In al1 cases, d' will decrease and the rnodel will compensate 

by reducing Q* to Save on holding costs. 

That this apparently counter-intuitive result mrrkes sense can also be seen korn the 

foflowing argument: Let us assume that at status-quo the backordering cost is significant. 

Tiiis wiii impiy tiiat r* will be greater than the mean lead time demand, Le, there will be 

some safety stock. Now suppose the backordenng cost increases, but is finite and the cost 

of changing a is zero. In that case, the optima1 strategy will be the EOQ model with 

backordenng. For the EOQ model with backordering, it is well known that r* is always 

less than the mean lead time demand as long as the backordenng cost is finite (Zipkin 

2000). Hence, it is clear that if the cost of changing a is zero, then even as b increases, 

r* will decrease. Only when the cost of changing a is greater than some threshold value 

will r* start increasing with 6. 

Example 4.10.3: Suppose the LTD distribution is gamma (2, 3125) and the investrnent 

fünction is of the power form for the unit mode1 and the parameter values are as follows: 

O= 1 , K =  15,c= 1,i=0.001,A=0.1,i2=250. 

For b = 5, the optima1 decision variable values are: Q* = 5058, t.* = 28,3 17, dC = 0.90. 

For b = 40, the optimal decision variable values are: Q* = 4862, r* = 3 1,188, dC = 0.81. 



Example 4.10.4: Suppose the LTD distribution is exponential (0.00016) and the 

invesîment function is logarithmic for the unit model and the parameter values are as 

follows: O= 1, K =  15, c = 1, i = 0.002, A = 0.1, A = 250. 

For b = 15, the optimal decision variable values are: Q* = 2901, r* = 9773, dC = 0.20. 

For b = 50, the optimal decision variable values are: Q* = 2775, P = 9743, & = 0.17. 

While for Exampte 4.10.3, r+ increases with increase in b, for Example 4.10.4, r* 

decreases with increase in b! 

For the cycle model, as b increases, dt decreases. Decreased dt increases the effective 

set-up cost for this model and so Q* increases. Since Q* is increasing, so there might not 

be any M e r  need to raise P too! Only if the increase of Q* is not enough to compensate 

for the increased 6, it will be required to increase r* also. Hence, in this case also, as b 

increase, P cm either increase or decrease. 

Example 4.10.5: Suppose the LTD distribution is gamma (2, 3125) and the investment 

function is of the power fonn for the cycle model and the pararneter values are as follows: 

O= 1, K =  15, c = 1, i = 0.002, A = 500, Â. = 250. 

For b = 5, the optimal decision variable values are: Q* = 19,835, r* = 8295, CP = 0.37. 

For b = 40, the optimal decision variable values are: Q* = 21,057, r* = 9185, a* = 0.32. 

Example 4.10.6: Suppose the LTD distribution is exponential (0.00016) and the 

investment function is of the logarithmic form for the cycle model and the pararneter 

values are as follows: O= 1, K = 15, c = 1, i = 0.002, A = 10000, Â = 250. 

For b = 5, the optimal decision variable values are: Q* = 67,961, r+ = 15,203, a* = 0.5 1. 

For b = 40, the optimal decision variable values are: Q* = 73,084, r* = 14,806, a* = 0.37. 



While for Example 4.10.5, r* increases with iacrease in b, for Example 4.10.6, r* 

decreases with increase in b! 

Holding cosl/unit/unit time (h) 

As we have already defined h = ic, the effect of h can be decomposed into two 

parts: i) effect of i, and ii) effect of c. 

As i / c ?, for unit, cycle and t h e  models + Q* &, r* A, a*&; 

The effect of i and c on the rnodels is intuitive. If i or c is higher, holding cost per unit will 

increase. Hence we would want Q* and f to be lower, to Save on the holding costs. This 

would require the model to rzduce cr*. 

However, in the case of Models 2A and 2C, the effect of i and c can be quite different. 

This is clear £tom the expression of the cost functions for those two models. In those 

models, if i increases, we would want the investment to be lower (implying a* will be 

higher) and also we would want to hold less stock to reduce inventory holding costs. This 

would lead to reduced Q* and also have a downward effect on P. However note that 

increased a* itself will try to increase r'. Hence, depending on which effect is stronger, r* 

will either increase or decrease. On the contrary, when c increases there is no need tu 

reduce investment and so then a* will reduce to lower Q* and r* so that holding costs can 

be reduced. 

Investment Cost Parameters 

Investment Cost (A) 

ASAT,  for unit and time models + Q* TI&, r* ?, a*?; 
for the cycle mode1 -+ Q* T, PT, a* r. 

Increase of A implies that more investment will be needed to change n Hence, we would 

not want to decrease a much and so dt increases for unit and time models. This increase 
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in a* will cause an increase in r* also in these models. For tirne and unit models, while in 

most cases Q* will increase with A to take care of the higher a', there are instances (e-g., 

exponential LTD distribution and logarithmic investment function) when Q* decreases as 

A increases. This happens since the increase in P itself is enough to "handle" the excess 

supply lead time and it makes fûrther increase in Q* superfiuous. 

For the cycle model, an increase in A will also lead to anincrease in dt to reduce the 

amount of investment. Increased a* will lead to increase in f l ,  as in the unit and time 

models. For the cycle model, any increase in & will decrease the effective set-up cost that 

will try to decrease Q*. On the other hand, increased & will try to increase Q*. From our 

numencal experiments it seems that the latter effect will always dominate the former and 

so for the cycle rnodel as A increases, Q* will tend to increase. 

Fraction of Znvestment cost passed on ( 8 )  

AS O?, for unit and time models + Q* ?/&, r* ?, a* ?; 
for the cycle mode1 + Q* T, PT, Q? ?. 

As B increases, the supplier passes on more of the investment to the buyer. Hence, as 

expected, the effect of an increase in Bon the optimal decision variable values is sirnilar to 

that of increase in A for al1 the rnodels. 

Demand Rate (A) 

AS A t, for unit, cycle and tirne models + Q* t, t ?, a*$. 

This effect is more complex to explain than the other parameters. As A increases, both ,U 

and ofor LTD also increases (Le., the distribution of the LTD itself changes). The relation 
2 2 is given by: p = ApL and d = A cq as s h o w  in (4.7.4) and (4.7.5) respectively. In this 

case, Q* and r* increases to take care of the increased demand while a* decreases to at 

least partly "control" the increase of Q* and fl. In our case we are also trying to reduce a 



So there are two opposite effects acting on the LTD distribution simultaneously - an 

increase of A. and decrease of a: Though firom our numerical experiments we noticed the 

above effects on Q* and 9, we would expect that the ultimate effect on Q* and r* will 

depend on the overall effect of increasing R and decreasing a on the LTD. A detailed 

investigation of the effect of Â on the decision variables for a traditional fQ, r) model can 

also be found in Zipkin (2000) and De Groote and Zheng (1997). 

The decrease of dr with A implies that there is a threshold value of R below which the 

staus-quo will be optimal for any demand rate (Le-, a? = 1). This is intuitive, since if there 

is not enough demand, then there is no point in investment in supply lead time reduction. 

Such investments make sense oniy above a certain demand level. This result is also in Iine 

with the assertion of Porteus (1985) regarding investment in set-up cost reduction where 

he shows that such investments make sense only above a certain cntical demand rate. 

Example 4.10.7: Suppose the LTD distribution is exponential and the investment b c t i o n  

is logarithmic for the unit model and the pararneter values are as follows (remember in 

this case as h will change, the LTD distribution will aiso change): 8 = 1, K = 15, b = 5, 

c = 1, i =  0.001, A =  0.2, PL= 25 and CL= 25. 

In this case for ;2 5 7.25 (approximately), d' =1, Le., the demand rate must be more than 

7.25 units per unit t h e  for any investment in supply lead time reduction to make sense. 

Example 4.10.8: Suppose the LTD distribution is exponential and the investment fûnction 

is logarithmic for the cycle model and the pararneter values are as follows: 0 = 1, K = 15, 

b =  10, c =  1, i=0.001, A =  10000,pL=25 and q = 2 5 .  

In this case for A. 5 130 (approximately), dC 4, i.e., the demand rate must be more than 

130 units per unit time for any investment to make sense. 



While the effect of A on the decision variables is important, we feel that a more interesting 

issue to investigate is how the optimal cost per unit (C'VA) changes with A. It is not 

surprising that a bigger company (i.e., higher demand) has higher total cost or total profit. 

Though total cost or profit can be a rneasure of the size of the company, it cannot be a 

rneasure of efficiency (cost per unit) or profitability (profit per unit). While this has been 

recognised in ex-post financial analysis of firm's performance (e-g., R e m  on Investment, 

Earnings per share), we have not been able to locate any significant research on this in ex- 

ante stochastic operations management models. Most of the models have total cost/profit 

as objective rather than cost/profit per unit. However, recently Gerchak et al. (2000) have 

shown that in a newsvendor k e w o r k  the optimal decision variable values for a ratio 

objective cm be very different ffom absolute objectives and using one for the other c m  

result in significant losses. 

We plotted (C*/A) versus R for our different models. In al1 cases, we found that there is a 

decreasing convex relation between ((?/A) and A. We have plotted hvo exarnples in 

Figures 4.10.1 and 4.10.2 - one for an exponential LTD distribution and logarithmic 

investment function for the unit mode1 (Figure 4.20.1) and another for exponential LTD 

distribution and logarithmic investment function for the cycle model (Figure 4.10.2). The 

decreasing convex relation is clear in both cases. This type of relation is present for al1 

models for al1 LTD distribution and investment function combinations signifjhg that 

there are decreasing economies to scale in inventory costs. Zipkin (2000) notes that for a 

traditional (Q, r) model, C is increasing in O, becoming nearly linear for large o(i.e., for 

large A, since in our model A is proportional to a). But for us a is a decision variable and 

we are investing in reducing it and reduction of a will also reduce a: Hence, we would 

expect that it will require a larger h than that in traditional ((3, r) model for C* to be 

linear. In Figure 4.10.2 we plot (C'*/A) at a = 1 for exponential LTD distribution and 

logarithmic investment function for the cycle model and compare it to the overall optimal 

model. It is clear that when we invest in reducing a; the economies of scale are "more" 

than fiom traditionai (Q, r) model alone. But the decreasing "convex" optimal cost per 

unit signifies that even here economies of scale will disappear for "highW(er) A. 



Figure 4.10.1: F I A  venus R for the Unit Model 

(Exponential LTD Distribution, Logarithmic Investment Function) 

Figure 4.10.2: C*lA versus A for the Cycle Model at Optimal a and at a = 1 

(Exponential LTD Distribution, Logarithmic Investment Function) 



Even with its inherent limitations regarding the number and range of experiments, the 

above numerical comparative statics make one thing clear - our intuitive reasoning and 

even some results pertaining to traditional (Q, r) models might fail when the additional 

variable a is introduced. As is evident, the cost of changing n, the type of the model and 

the LTD distribution plays a big role. Since, in our trivariate model, al1 the three decision 

variables are inter-related, depending on the cost of changing a; the mode1 will adjust the 

optimal decision variable values and this adjustment for Q* and r* can be very different 

h m  traditional models. But this interaction of three decision variables will also render 

analytical comparative statics even more difficult than for existing (Q, r) models. 

4.11 Conclusions and Future Research Opportunities 

In this part of the research, we showed analytically a d  numencally the effects of 

investments in supply lead time reduction in a two-party make-to-stock supply chain. We 

used a continuow review (Q, r) model and incorporated the effects of reduction in lead 

tirne duration on the model through a single variable, a: We aiso took into account the 

cost (in the form of some investment) associated with this lead time reduction. In practice, 

investments c m  be one-time or recurrïng. It might also Vary depending on the nature of 

the reduction needed (e-g., per unit or per cycle or per unit tirne). Our overall trivariate 

model captured both the costs and benefits of lead time reduction for the different types of 

possible investment. 

The cost models were analysed in detail as to their convexity. Numencal experiments with 

different LTD distributions and investment functions were performed to obtain a better 

feel of the behaviour of the model. The numerical expenments clearly show not only the 

benefits of investment in supply lead time reduction but also the importance of taking into 

consideration the type of the investment done by the supplier and how costs are passed on 

to the buyer before deciding on the optimal strategy. The complexity of the cost models 

render analytical comparative statics difficult. We performed extensive numerical 

comparative statics, which showed that the three decision variables are very much 

interdependent. Some of the results are quite counter-intuitive. 



These new models have both technical and managerial contributions. From a technical 

standpoint, we incorporated a new variable which represents the supply lead time in the 

traditional (Q, r) rnodel. There is a cost of reducing the supply lead time that depends on 

the type of the investment done by the supplier. This created six analytical models and we 

were able to perform the convexity and sensitivity analysis of those models. From our 

analysis we were able to show that not only investments in supply lead time reduction can 

result in significant savings but also that these models are "different" f?om traditional 

(Q, r) models. Our analysis showed results that are seemingly counter-intuitive but makes 

perfect sense in the new model. We were able to explain the reasons behind such counter- 

intuitive results. 

From a managerial perspective, we were able to show that it makes sense to invest in 

supply lead time reduction. Even when the buyer is "paying" for supply lead time 

reduction it can give substantial benefits. However, managers should not blindly go for 

supply lead time reduction. Our rnodels will help them in deciding when investment in 

supply lead tirne reduction makes sense and when not to invest in such reductions. Our 

models will also help decide their "optimal strategy" both in terms of inventory (reorder 

point and batch size) and time (supply lead time) that will minimise their inventory costs. 

in this age of large-scale outsourcing, we feel that our models can help supply chain 

managers reduce inventory costs and give them a cornpetitive advantage in the 

marketplace. 

In terms of scope for firture research, it would be nice to prove analytically that the unit 

model is univalleyed. Similarly, analytical comparative statics will be better than 

nurnencal results. But a trivariate model without closed fom solutions for any of the 

decision variables (as ours is) can make such analysis extremely difficult. 

One of the comparative statics that we think is particularly interesting is the consequence 

of varying A. We noted that (CM) is decreasing convex with respect to A. This opens up 

an interesting avenue of research regarding the effect of inventory costs on market 

demand. Higher demand leads to reduced unit costs. In case of rnake-to-stock products, 

the unit cost is offen related to unit pnce by mark-up pricing. If investment in supply lead 
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tirne reduction brings d o m  the unit cost, it will also lead to reduced unit price. If the 

buyer is willing to pass on the reduction in cost due to lead t h e  reduction to the final 

customer (refer to Figure 4.2.1 ), then demand for make-to-stock products will increase 

(since pnce-sensitive). So we can expect that a chance for increased demand will provide 

more incentive for investment. We feel that an inventory mode1 with demand being a 

function of cost by its effect on price can be very interesting and give a much better 

picture of the entire supply c h a h  One of the main goals of any cost reduction initiative is 

to achieve a larger market share by increasing demand. Hence, there is a need to couple 

the inventory models and the relevant marketing models to establish market effectiveness 

of increased speed. In the next chapter we will address this issue. 



CHAPTER 5 

LEAD TIME MANAGEMENT FOR w - T O - S T O C K  F'IRMS 

5.1 Introduction 

In this chapter we will develop an integrated production-marketing framework which will 

allow profit-maximishg make-to-stock h s  to detexmine their optimal lead time taking 

into account the cos& and benefits associated with lead time reduction (Mode1 C of 

Chapter 1). In the first part of the chapter, we will focus on a general modelling 

fiamework that forms the basis of the latter part of the chapter where we develop specific 

models. 

Recent studies in such diverse fields as health care (Connor et al. 1998) and grocery 

industries (McGoldrick 1993) have shown that cost reduction initiatives by f ims have led 

to price reductions and, in hm, increased market share due to customers' pnce-sensitivity. 

Growth in the Japanese share of the US market in the automobile industry (Nanto, Cooper 

and Bass, 19951, and in electronic goods, long thought to be the domain of US 

manufacturers (Zipkui 1991), can be partly attributed to the lower Japanese pnces. The 

price advantage stemmed largely fiom lower production costs (Rao 2000a). For example, 

in the early 1980s, production costs of Japanese h s  were about 25% lower than their 

US counterparts. This ailowed the Japanese f ims  to charge a lower selling price and 

capture a larger market share (National Research Council Report 1983). 

Fisher (1997) contends that for any "fùnctional" product, one that has a reasonable Iife 

cycle and fairly stable demand, cornpetition is typically very hi&, Le., the profit margin is 

low and customer's pnce sençitivity is hi&. As we indicated in Chapter 1, these types of 

market charactenstics are noxmally seen in make-to-stock products. For such products, 

customers are prirnarily price-sensitive; hence, the fin-ns aim for cost leadership focusing 



on maximising efficiency and minimising costs in the supply chab (also refer to Chopra 

and Meindl 2001). 

Encouraged by the Japanese experience, many make-to-stock cornpanies have invested in 

process improvements to reduce costs, the most success ful improvement strategies 

involving capital investments (Zipkin 1991). Cachon and Fisher (1999) find that the 

benefits from cost-reducing process improvements can be significantly more valuable than 

those derived fÏom information sharing. 

Since inventory costs comprise a large portion of the total operating costs of many make- 

to-stock firms, they have focussed specifically on inventory cost reduction as a primary 

means of reducing operating costs. It is well known that reduction of either interna1 or 

supply lead t h e  can result in reduced inventory costs (Karmarkar 1993; Zipkin 2000; 

Chapter 4 of this thesis). There are several anecdotal exarnples in recent literature that 

show that one of the most popular process improvement techniques used by firms to 

reduce their inventory cost is lead time reduction (Suri 1998; Simchi-Levi et al. 2000). 

Note that while lead time reduction can yield many benefits, here we are focusing mainly 

on the effects of lead time reduction on inventory costs. 

Mark-up pricing is a strategy used for rnake-to-stock products in the manufacturing sector 

(Bloch and Oliver 1997), intemet pricing (Wilson 2000), apparel industry (San Francisco 

Fashion Industry Report 2000) and retail industry (Wang and Zhao 2000). In mark-up 

pricing, price is based on the unit operating cost plus a constant percentage mark-up (or a 

constant amount) which depends on factors such as the industry and the product type (US 

Department of Defense Contract Pncing Reference Guides 2000). 

Traditional economists contend that mark-up pricing is not consistent with market-based 

profit-maximisation pricing, Le., marginal analysis approach. However, the simplicity of 

cost-based pricing makes it a very appealing alternative for many firms. Empincal studies 

have revealed that very seldom do managers use the concept of equating marginal cost to 

that of marginal revenue in setting pnces. hther, most managers work in terms of mark- 



ups or profit rnargins as their basis for pricing (see number of references in Hay and 

Moms 1991). 

Despite this apparent inconsistency, it is not very difficult to relate the concept of mark-up 

pncing and profit-maximising pncing (Hay and Morris 1991). In profit-maximising 

pncing, we equate marginal revenue (MR) to marginal cost (MC). MR is given by: 

If MC is taken to be equal to a constant average cost, then the profit-rnaximising equality, 

MR = MC can be simplified to show that the optimal mark-up shouId be inversely 

proportional to the demand elasticity. This also makes intuitive sense. If there are close 

substitutes existing in the market, then fims cannot charge a high mark-up. However, for 

price-inelastic products the h cm extract a large pnce premium from customers. There 

is ample evidence that fïrrns Vary the mark-up inversely with the price elasticity for the 

product's demand (Bliss 1988; Hay and Moms 1991). Hence, the firms that use mark-up 

pncing Mplicitly strive for profit maximisation pncing. However, this implicit profit 

maximisation is done based on empirical evidence of the productts price elasticity and not 

explicitly through a marginal analysis approach. 

In environrnents where some make-to-stock firm has a cost advantage and knows that 

customers are price-sensitive, it might use mark-up pncing. Furthemore, the popularity of 

mark-up pncing is fikely to be sustained because of the recent trend of cost transparency. 

The cost of products is becoming more "transparent" nowadays due to widely available 

information on the intemet. This implies that firms now have less opportunity to extract a 

price premium. Sinha (2000) postulates that, under such circumstances, customers will 

pay the seller's achial costs and a "reasonable" premiurn, Le., that the pnce should be 

based on the cost and a "reasonable" mark-up. 



Keeping in muid its widespread use as a simple and etfective approximation to profit- 

maximising behaviour, we will assume in our research that a percentage mark-up is the 

pncing technique used by make-to-stock fïrms. For a particular product, the mark-up 

percentage will be fixed. However, the manager will decide on the constant percentage 

based on hermis experience pertaining to the product's pnce-elasticity. 

Hay and Morris (1991) highlighted the need to link profit margins to demand conditions 

facing the b. According to their work, fïrms which employ mark-up pricing estimate a 

unit cost based on nomal ranges of production, independent of actual output (Le., for 

pncing purposes they think of their average total cost curve to be horizontal). Ignoring the 

demand curve might generate substantial overestimation or underestimation of sales, 

which then might make the calculated average cost incorrect. But still this approximation 

is done largely to avoid the circularity that would othexwise develop of having to estimate 

demand (in order to detexmine output and associated unit costs) before the price denved 

fiom mark-up pncing is known. In our research, we show that even while using mark-up 

pricing it is possible to tackle the issue of "circularity". We develop models that, rather 

than assurning the operating cost to be constant, explicitly take into account how the 

demand affects average costs. 

If some make-to-stock finn uses mark-up pricing, it may try to reduce operating costs 

through sorne process-improving invesûnents. The firm then has a choice of either to 

reduce price to gain a greater market share or to keep the pnce constant and let the 

increased profits flow nght to the bottom line. We feel that this is a question of firm's 

strategy. For many make-to-stock h s ,  the focus of pncing is to improve market share 

rather than to maximise short-nui profit. If a fïrm has a cost advantage and its customers 

are pnce-sensitive, it makes sense for the fïm to cut pnce to gain market share (Rao et al. 

2000; Hay and Moms 1991) even if such cost advantage is short-lived (since the 

cornpetition will eventually catch up). The temporary advantage can be sustained within 

an overall strategy of "continuous improvement". 



As Likiexman (1981) points out, in cornpetitive markets, increasing market share is 

imperative for both cost competitiveness as well as market power. For exarnple, in the 

1980's Japanese £km used their lower cos& to under-pnce North American 

manufacturers. This created a perception among the customers that "Detroit" had been 

overcharging them and this perception of price unfairness is hurting North American 

manufacturers even to this day (Sinha 2000). Our setting is a profit-maxirnising firm that - 
deals in a make-to-stock product and has price-sensitive customers. The finri's strategy is 

to attain a cost advantage in the market through process-improving investments. Our 

assumption that the fhn  passes on its savings fkorn process improvements to the 

customers as a price reduction in order to irnprove its market share is thus reasonable. 

General Mode1 

Let us consider a price-setting retailedmanufacturer (henceforth termed firm) selling a 

single make-to-stock product for which customers are price-sensitive. The demand rate 

for the product, A (unitdunit time), depends on the unit selling price of the product, p 

($/unit) : 

The fimi may be a monopolist, or may be one of several competing firms that offer similar 

products. However, we do not explicitly mode1 the cornpetition between firms except to 

assume that demand is decreasing in price (Deng and Yano, 2000). 

The firm sets its pnce based on its total unit operating cost, rn ($/unit): 

so that: 



Note that mark-up pricing is a special case of (5.2.2) where h ( m )  = qm ( 7  > 1) and 

( q  - 1)*100 percent is the desired per unit contribution margin. Recall that for make-to- 

stock h s  operating costs consist mainly of relevant inventory costs (Chapter 1). Hence 

for us, the operating costs per unit will include set-up costs, purchase andior production 

costs and inventory costs (holding and backordering). The firm can invest in projects that 

will reduce operating costs, and so we dso include an investment cost per unit time in the 

total operating cost per unit: 

m = [(set-up cost + production anaor purchase cost + inventory holding cost + 
backordering cost + inveshnent cost) per unit tirne] / [demand per unit the] .  (5.2.4) 

We note that demand depends on pnce, which depends on unit operating costs, which in 

tum depends on demand. The fhm's objective is to maximise its profit per unit tirne, rr 

(P5.1) Maximise n= @ - m)A, 

subject to: 

p 2 m 2 O a n d A . 1 0 ,  

where rn is given by (S.SA), p by (5.2.2) and A. by (5.2.1). 

Theoretically, the following general procedure can be used to solve the optimisation 

problem: 

Step 1: Determine the relationship between A and m (as in (5.2.3)). 

Step 2: Substitute (5.2.3) into (5.2.4) and obtain an explicit expression for m in tems of 

the relevant decision variables, Le., 

Note that m  may, at least initially, appear in both the numerator and denominator 

of the nght-hand-side of the expression in (5.2.4), and thus writing (5.2.5) 

explicitly may or may not be possible. 

136 



Step 3: Substitute (5.2.5) into (5.2.3) to express A in tems of the decision variables: 

Step 4: Solve the following maximisation problem for the firm: 

(P5.2) Maximise z= ( p  - m)A, 

subject to: 

p 2 m 2 O a n d R  20, 

wherep, rn and A are given by (5.2.2), (5.2.5) and (5.2.6) respectively. 

In general, the above model can be used in situations where operating costs are reduced by 

investments in changing some operating parameters, demand depends solely on pnce and 

price is a known, detemunistic function of the operating costs. Obviously the complexity 

of the problem will Vary fiom case to case. In our research we will be concemed with 

using this model to guide decisions on investments in lead tirne reduction. Several 

exarnples where our model can be used to help firrns in making such decisions are: 

(a) A deterministic customer demand setting where an Economic Order Quantity (EOQ) 

policy is used. The fhm can then invest in reducing set-up time. If we assume the set- 

up time to be proportional to set-up cost, this is equivalent to investment in set-up cost 

reduction (Porteus 1985). As indicated in Chapter 2, Porteus (1985) showed that 

investments in reducing set-up costs can lead to decrease in relevant inventory costs 

per unit time. If the firm is using mark-up pricing, then reduction in inventory cost can 

reduce pnce and the reduced price will lead to increased demand fiom pnce-sensitive 

customers. However, the demand rate is aiso a parameter for the original cost 

minimisation problem. This implies that operating costs will be a Function of the 

operating variables, batch size (Q) and set-up cost (K), as will be both pnce and 

demand. Now the firm's profit maximisation problem will have an objective fiinction 

with only batch size and set-up cost as decision variables. In Section 5.3 we develop 

models to show how to determine the optimal set-up cost (tirne) for such investments; 



(b) A stochastic lead time demand setting where a (Q, r) policy is applied. The fim may 

decide to invest in reducing the mean andhr variability of the lead time demand by 

reducing the procurement lead time duration. In Chapter 4, we showed that such 

investrnents could also lead to a decrease in expected long-term inventory cost per unit 

time for the buyer, which in turn would affect the pnce and demand rate. In Section 

5.4 we formufate models to help fims in making optimal suppIy lead time decisions 

where the operating costs are a function of the operating variables, reorder point (r), 

batch size (Q) and lead tirne duration variability (a). Both price and demand, and 

hence the profit, will depend on the decision variables - batch size, reorder point and 

lead time duration (or demand) variability. 

Our Iiterature review shows that integrated inventory-marketing models like the ones we 

develop in this chapter have not been addressed thoroughly in the traditional operations 

management Iiterature. Based on Our review of previous research, we also observe that: 

a) Models that consider pnce as an independent decision variable do not explicitly 

account for the effect of operating costs on pnce and demand though price and 

demand are related by a demand function; 

b) Models that consider mark-up pncing, employ a mark-up over the production cost 

only and not the entire operating cost. In addition, these models do not take into 

account the investrnent required to affect process improvements. 

Our models in this chapter will address the above two issues and show that they will have 

considerable effect on the optimal decision of firms. 

Since we are d e a h g  with make-to-stock products, we assume that custorner demand is 

deterministic but price-sensitive (refer to Chapter 1). Also note that in the tradition of 

previous researchers (e.g., Porteus 1985; Hariga 2000 and references therein) we will use 

set-up cost as a surrogate for set-up time. 



5.3 Investments in Set-up Cost Reduction 

In Section 5.3.1 we develop models where no investment in reducing set-up cost is 

possibIe. These models will set the stage for Section 5.3.2 where we will deal with models 

in which investments can be done in reducing the set-up cost. 

53.1 EOQ Mode1 with Price-Sensitive Demand and Mark-up Pricing 

The basic mode1 setting in this section is sirnilar to that of Section 5.2, Le., a firm 

buying/producing a single make-to-stock item and selhg it directly to pnce-sensitive 

customers. We make the usual EOQ assurnptions (refer to Lee and Nahmias, 1993, pg 9) 

except that the demand rate, A, is a decreasing function of retail price per unit, p. We 

assume that the firm uses a constant percentage mark-up over the total operating cost per 

unit, m, to determine the pice. Operating costs include a set-up cost of K per order, a 

holding cost of h per unit per unit time and a purchase/production cost per unit, c. The 

holding cost is assumed to consist pnmarily of the cost of capital invested in the 

inventory. Each order is for a batch of Q units, and c is a decreasing hinction of Q, Le., the 

purchase/production cost exhibits economies of scale based on the batch size. The scale 

econornies rnight be due to a supplier quantity discount or economies of scale in 

transportation (Lee and Rosenblatt 1986; Chopra and Meindl 2001). Since the holding 

cost per unit, I r ,  equals ic, where i is the carrying cost per unit per unit time, it too will be a 

function of Q. The fkm's ordering or set-up cost per unit time is (KA / Q); the holding cost 

per unit time is (icQ / 2) and the purchase/production cost per unit time is (CA). From 

(5.2.4), the h ' s  total operating cost per unit, m, will be given by: 

where c is a fûnction of Q and h = ic. 



Since price depends on the operating costs and demand is a function of price, demand is 

also a function of the operating costs. Note that demand itself affects the unit operating 

costs. The objective of the fimi is to maximise its profit per unit time, as in problem P5.2 

in Section 5.2, where the only decision variable is the batch size, Q. The operating cost 

per unit, rn, will be obtained by solving (5.3.1) in tems of Q. A schematic representation 

of the proposed system is shown in Figure 5.3.1. 

Mark-up pricing 
- @ =  w> 

< CUSTOMER DEMAM) 

- 
m = Operating costlunit = (set-up cost + 
inventory holding cost 

(detenninistic, but 

price-sensitive) 

+ purchase/pro ction cost) / demand per unit t h e  

Figure 5.3.1: Supply Chain System for Section 5.3.1 

5.3.1. 1 Log-Zinear dernand funcfion, mark-up pricing and general non- 

increasing unir purchme cost 

Before analysing a general form of demand function, in this section we will assume a 

particular log-linear demand function so that we are able to get better insights. We initially 

choose a demand function of the fonn: 

where a higher value of a represents higher overall potential for demand. This function 

while having the desirable properties of constant demand elasticity is also analytically 

tractable. Since the price is a fixed mark-up over the total operating cost per unit, m, we 

have: 



P = V *  

We c m  now express A in terms of m as: 

The per unit purchase cost hc t ion ,  c(Q), is assumed to be a general, non-increasing 

function of Q. The profit fiinction for the firm will then be: 

Let 

and 

K 
v =  -+ c(Q). e 

Substituting (5.3.4) into (5.3.1) and solving for m we obtain: 

As long as the discriminant of (5.3.8) is positive, both roots wifl be real and positive. 

However, if we substitute the two roots of rn in the profit fûnction in (5.3.9, we can show 

that the root comesponding to the minus sign will always give a higher profit than the root 

corresponding to the plus sign (Appendix 5.1). Hence, we cm ignore the root 

corresponding to the plus sign for M e r  analysis. 



For each value of Q there will thus be a single relevant rn (and hence 13 and we want to 

find out the Q for which lrwill be maximiseci. Substituthg the root corresponding to the 

minus sign of (5.3.8) into (5.3.5) we have: 

The firm's probIem can be written as: 

20 rf2(q - l )u 
(P5.3) Maximisex = 

Q l - J G A  y 

subject to: 

Oc=4uvIl .  

We can show that under certain conditions the profit function will be serni-strictly 

quasiconcave in Q for feasible Q (Appendix 5.2). When lris semi-strictly quasiconcave, a 

local maximum will be the global maximum (Schaible 1981) and the optimum Q* will be 

given by the solution to the equation n~ = 0, and the optimal profit (n+) will be given by 

substituting Q* into (5.3.9). 

5.3.1.2 Log-linear &and funetion, mark-up pricing m d  constant unit 

purchase cost 

In this section, we will analyse the case when unit purchase cost is constant, Le., c(Q) = c 

V Q, and al1 other conditions remain the same as before. With this assumption, the 

condition O < 4uv s 1 implies that O < K I [(mf2)/2ic) - Qc] and we can prove an even 

stronger result about the profit function than just semi-strict quasiconcavity. 

Proposition 5.3.1: For constant unit purchasdproduction cost, the profit function (If) is 

concave in Q for feasible Q. 

Proof: Refer to Appendix 5.3. I 

142 



The equation for n~ = O will be a quadratic equation in Q - one solution will be negative 

and the other positive. Since batch size should be positive, the optimum Q will be given 

b y: 

Note that (5.3.10) requires only that K 5 ( ~ q ( - ~ ) / 2 i c )  which is less restrictive than the 

condition for 1 - 4uv 2 O and so will be satisfied by al1 feasible K. The explicit expression 

for Q* in (5.3.10) also allows us to investigate analytically the nature of the optimal batch 

size. 

Proposition 5.3.2: Q* is concave in K and reaches its maximum at K = arf2)/8ic. 

Proof: Differentiating Q*(K) of (5.3.10) twice with respect to K we can easily show that 

Q* is concave in K and by solving aQ*(K)/aK = O for K, we can show that Q*(K) reaches 

i ts maximum at K = a r7(-2)/8ic. rn 

The implication of Proposition 5.3.2 is interesting. In almost al1 types of cost minimisation 

inventory models, including stochastic ones, the optimal batch size is always monotone 

increasing concave in K. Our mode1 produces different results. Though Q* is still concave 

in K, it is not monotone increasing. This implies that for the type of firms we are 

modelling, managers must be carefûl about reducing batch size when set-up cost is 

decreased. The explanation iies in the inter-relationship between demand and the 

operating variable, batch size, itself (we will corne back to this issue later). 

There might be a tendency on the part of many firms to set price as a mark-up over only 

the production/purchase cost. Ladany and Sternlieb (1 974) analysed the profit-maximising 

batch size of such a firm where price is taken to be a mark-up over purchase cost only 

(Le., p = qc(Q)). In that case, the effects of set-up cost and holding cost on the price are 

not accounted for explicitly. When c(Q) = c (> O) V Q, then Ladany and Stemlieb's model 

will be equivalent to the traditional EOQ model where A. is the demand corresponding to 
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the price, qc (note that al1 other conditions remain the same as in our model). With this 

demand rate the profit maximishg batch size in their mode1 is given by: 

Comparing (5.3.10) and (5.3.1 l), it is clear that omitting set-up and holding cost from 

operating costs when detexmining price will lead to a different optimal batch size. 

Proposition 5.3.3: Q*Ls > Q* for positive K and 

increases andor c decreases. 

Proof: Q*u - Q* = - 2K . Hence, Q*= wiil always be 
C 

the difference will increase as K 

greater than Q* for any K > O. The 

difference is linear increasing in K and convex decreasing in c. I 

Since, in our model, demand and price are both fiinctions of batch size, we would expect 

that there would be such a clifference. However, from a managerial standpoint, it is 

important to note that if K is large andor c is small, the difference in the optima1 batch 

sizes might be substantial. As K increases we would expect the set-up cost to have a larger 

effect compared to purchase/production cost on the total cperating cost and hence in Our 

model the price and demand will be affected more, resulting in Iarger difference in 

optimal batch sizes. On the other hand, as  c increases the effect of purchase/production 

cost on the total unit operating cost will increase and hence the difference in the value of 

optimal batch sizes will decrease. Also note that Q*rn as expected, is monotone 

increasing concave in K. 

It is important to investigate the effect on the firm's profit if Q*= is used in our model 

instead of Q*. Since in our model demand itself is a function of the decision variable, Q, 

any type of cornparison should be based on a profit fûnction including the purchase cost 

(this is unlike in the traditional EOQ model where purchase cost is independent of Q and 

hence should be ignored). Comparing the profit functions we obtain: 



By definition, ~(Q*)/Z@*~) 2 I .  In fact, this ratio can be quite 

(5.3.12) 

large. If we plot 

n(Q*)/@ Q*& versus K, it appears to be increasing convex in K (refer to Figure 5.3.2 in 

page 147 for a plot of this ratio for Exarnple 5.3.1.1) with the ratio + 1 as K + O. This 

reason behind this intuitive result is same as we indicated before regarding the difference 

between Q*u and Q*. As K increases, the effect of set-up costs on the total operating cost 

will increase and hence it will be more harmful to use Q*= as the optimal batch size. 

However, as K + 0, purchase/production cost will be the defining element in the 

operating costs and hence it will be natural to base the pnce just on that cost. In the 

following numencal example we will show the detailed effect of using Q*u instead of 

Q *- 

Example 5.3.1.1: The parameter values are as follows: K = 1100, i = 0.3, q = 1.2, 

a = 6000, and c = 1 V Q. With our model Q* = 3327.71. In the Ladany and Stemlieb 

model, p = 1.2 (1.2*1), so A = 4166.67 and thus Q*rs = 5527.71. Table 5.3.1 shows the 

detailed cost and revenue elements with Q* and Q*= in our model. 



Tabie 5.3.1 : Cost and Revenue Elements with Q* and Q*Ls for Example 5.3.1.1 

1 B) Holding cost / time 1 499.16 I 829.16 1 
A) Set-up cost / time 

1 D) Total Operating Cost / t h e  (= A + B + C) 1 2508.35 1 2108.65 

! 

499.16 

C) Purchase cost / time 

/ E) Demand rate ( A  = op2) 1 1510.04 

2 12.36 

/ F) ûperating Cost per unit (m = DE) I 1.66 l 1.98 

1510.04 1067.13 

z 

G) Price / unit (p = qvn) 

H) Revenue (=PA) 

For this numencal experiment, Q*= is approximately 40% greater than Q* and the 

optimal operating cost per unit is larger if Q*Ls is used in our rnodel. The total operating 

costs are lower with Q*u; however, A. is also smaller with QfLS resulting in higher unit 

operating cost, m. The net result is that the profits are about 19% lower using QfLS in our 

model instead of Q*. With K = 1250, the difference in profit can be as large as 30%. 

I) Profit (x=  [p - m]A) 

In our model, the inventory costs (set-up + holding) depend on A which itself depends on 

the inventory costs (through m). This explicit circular dependence makes this model rnuch 

more complex and realistic than the noxmal EOQ model. The optimal batch size atternpts 

to minimise the unit operating cost rather than the absolute operating cost which is one of 

the reasons for the "apparently counter-intuitive" behaviour of Q* (for a somewhat related 

idea refer to Gerchak, Hassini and Ray 2000). 

1.99 

30 10.03 

2.37 

2530.37 

501.67 42 1.73 



Figure 5.3.2: Plot of z(Q*)/n(Q*rn) versus K for c(Q) = c VQ 
(i = 0.3, q = 1.2, c = 1, a = 6000) 

If we Vary K, then Q* is increasing up to K = 1736.1 1 (= atlt12/8ic) and then decreasing. If 

due to some reason K decreases fiom 1800 to 1750, the firm should not blindly decrease 

the batch size. Note that the Q* in our model can be thought of as the "modified" optimal 

EOQ (=\j2KA'Q*)), but A@*) itseif ,il be a cornplex function af Q*. In the following 
ic 

sub-section we will extend the model of this section by assurning a more general f o m  of 

decreasing unit purchase cost function. 

5.3. 1.3 Log-linear dent and func fion, mark-up pricing and non-increaFing rrn it 

purchase cmt function of power form 

Let us assume a more general form of unit purchase cost: c(Q) = c + (dlQ) (c, d > O), but 

the form of log-linear demand function remains the same as before. This type of unit 

purchase cost function has been used in the literature (Ladany and Stemlieb 1974; Lee and 

Rosenblatt 1986). With these assumptions, the profit function will be of the same form as 

(5.3.9), but with: 



and 

The optimisation problem for the firm will be similar to P5.3. 

We can now have the following proposition: 

Proposition 5.3.4: The profit function (4 is semi-strictly quasiconcave in Q for feasible 

e- 
Proof: From (5.3.13) and (5.3.14) it is clear that u is linear increasing in Q while V is 

decreasing convex in Q. Also uv is convex in Q. The rest of the proof is similar to 

Appendix 5.2. 

Note that Ladany and Stemlieb (1 974) did not prove the unimodality of their profit 

function even for this particular fhctional fonn of c(Q) niough we prove that n(Q) is 

unimodal, it is not possible to obtain an explicit solution for Q* nom q = O assuming 

c(Q) = c + (d/Q); however I ~ Q  = O can easily be solved using any standard mathematical 

package. The solution to 1 - 4uv = O (a quadratic, concave function in Q) will give the 

limits of feasible Q. At the smaller root, the discriminant will be increasing and at the 

larger root it will be decreasing. Since at both limits the profit function will be positive, 

then for feasible Q the profit wil1 be positive. This is intuitive since our price is a mark-up 

over the total operating cost. We will again use a numerical example to show the effect on 

n if Q*= (Le., the optimal batch size when the pnce is a mark-up over only c(Q)) is used 

in place of Q* for this model. 

Example 5.3.1.2: Let the parameters be: K = 1400, i = 0.1, 7 = 1.2, a = 6000, c = 2 and 

d = 100. The optimal batch size in our model, Q* = 2437.46 and IP = 256.93. For the 

Ladany and Stemlieb model, Q*= = 3745.72. In Table 5.3.2 we show the detailed effect 

of using Q *u in our model. 



Table 5.3.2: Cost and Revenue EIements with Q* and Q*= in Example 5.3.1.2 

Note that when pnce is a mark-up over just the purchase costs, unless the mark-up is 

"large" enough, profits rnay actually become negative. As in the last section, Q*u is much 

greater than Q* (about 35%) and profit is much lower (about 9.5%). The reasoning for the 

low profit will be similar to Example 5.3.1.1. However, when c is a function of Q, Q* 

might not be 2M'm as it was in Section 5.3.1.2. 

From our numencal experiments we observe that Q*s > Q*. However, the generality of 

the observation is difficult to prove anaiytically because of the complex nature of the fint 

order condition: 

= (uQ) + 2uv(uQ) - UQ + 2u2(vQ) = O, 

where u and v are given by (5.3.1 3) and (5.3.14) respectiveiy . 

Even for the specific demand and unit purchase cost function, equation (5.3.15) will be 

quite cornplex. This should not be surprishg since it is also difficult to prove the 

unimodality of Ladany-Stemlieb model. From our numerical experiments it also appears 

that Q *= - Q * # (2Klc(Q*)), in general. 

For this section, there is no explicit solution for Q*(K), though we c m  determine an 

explicit expression for the lower bound on its value. This lower bound will help to reduce 

the search space for Q*. Let us define Q, as the solution to Tp = O where T = 1 - J G 1 - 4 u v .  



Proposition 5.3.5: Ql is a lower bound on Q*. 

ProoE Q* is derived from the solution to IQ = uQT- TQU = O. Since UQ is non-negative, so 

Q* requires that T' 2 O. We can show that T is convex in Q. Therefore, the lower bound 

on Q* will be given by QI. rn 

For this section, the expression for QI is: 

To determine the behaviou. of Q* we have to resort to total differentiation. Total 

differentiation of n~ = O with respect to K gives us the following expression for 

aQ*(K)/aK (refer to Appendix 5.4): 

We have, upK = O, uep = O and UK = O. n i e  expression in (5.3.1 7) simplifies to: 

It can be easily shown that, TK 2 O and UQ > O and the expression for TQK will be: 

Since ( u v ) ~  I O, ( U V ) ~  2 O and ( u v ) ~  2 0, the sign of Tm and (5.3.1 8) c m  be either 

positive or negative. Our numencal experiments confim that Q* will not be necessarily 

monotone in K; as in Section 5.3.1.2, it will be concave in K. In Table 5.3.3, we show the 

values of Q*(K) for different vahes of d. h al1 cases, Q* is concave in K. To prove the 



concavity of Q* with respect to K we will have to detemiine the sign of #Q*(K)/&. This 

expression is quite complex (refer to Appendix 5.4). We leave the analysis for future 

research. 

From Table 5.3.3 we aIso note that while Q* might be monotone in d, the direction is not 

clear. It is increasing for srnailer K while decreasing for larger K. The behaviour of Q* 

with respect to d is intuitive. For smaller values of K, Q* increases with d to take 

advantage of lower production/purchase cost. But as K increases and the effect of d 

becomes less significant, Q* reduces to decrease the holding cost. Managers must thus be 

very careful when deciding about the optimal batch size even when the economies of scale 

Vary. For a profit-maximisation rnodel like ours, the expIicit relation between the demand 

and the operating variables can give results that run counter to most traditional cost 

minimisation rnodels. 

We can also have the following proposition for the rnodel of this section. 

Proposition 5.3.6: The condition JG 5 (1/3) is sufficient for the profit function (nj 

to be concave in Q for feasible Q. 

Proof: Refer to Appendix 5.5. 

The expression 4- is positive concave in Q and at the feasible limits of Q it will be 

equal to O (increasing at lower limit while decreasing at upper limit). So, we are sure that 

for Q sufficiently close to the feasible limits, z i s  concave in Q. Also for any Q, I Q < Q*, 

z i s  also concave in Q. However, it is difficult to analytically prove concavity of s for  al1 

feasible Q. 



Table 5.3.3: Qf(K) for DEferent Values of X and d (i = 0.3, 7 = 1.2, c = 1, a = 6000) 

General price-sensitive, decreusing demand function, mark-up pricing 

and general non-increasing unit purchase cos2 

In Sections 5.3.1.1 - 5.3.1.3 we showed that it is possible to detennine the profit- 

maximising batch size when demand is price sensitive and price is assumed to be a 

percentage mark-up over the operating costs. However, in al1 the three previous sub- 

sections we assumed specific form of the demand andior the unit production/purchase cost 

to obtain closed form solutions. In this section we will analyse the make-to-stock firrn's 

maximisation probIem assuming a more general demand function. 

Suppose we assume a general log-linear demand function of the fom: 

where a higher value of a represents higher overall potential for demand and <p (c 0) 

represents the constant price elasticity (So and Song 1998; Ladany and Stemlieb 1974; 

Lee and Rosenblatt 1986) whilep is equai to W. 



Substituting A into (5.3.1) and solving to obtain rn = g(Q) (al1 others parameters are 

assumed constant), the firm's profit c m  be written as: 

Differentiating (5.3.21) with respect to Q it is possible to arrive at the following 

conclusions: 

Observation 1: 

(i) For p > - 1, concavity of g in Q is sufficient (not necessary) for concavity of rr in Q 

while convexity of g in Q is necessary (not sufficient) for convexity of sr in Q and 

"11 have the same sign as g ~ .  

(ii) For g, c -1, convexity of g in Q is necessary (not sufficient) for concavity of lrin Q 

while concavity of g in Q is sufficient (not necessary) for convexity of rr in Q and 

IQ will have the opposite sign to g ~ .  

For p > -1, the profit will be increasing in Q if the operathg cost is increasing in Q, Le., as 

p tends towards zero, we can increase rn which will increasep, but the relative inetasticity 

of demand will resuIt in demand being almost fixed and hence srwill increase with m. For 

the special case of constant demand (i.e., p = 0) and c(Q) = c V Q, rrwill be convex in Q 

implying that the optimal Q fiom our mode1 is at either of the feasible limits. For g, = - 1, 

the profit function will be constant (=av'[q-11) for any Q. This behaviour is not 

unexpected. As is well known in microeconomics, when demand is inelastic in price (Le., 

O > q, 2 -1), a price increase will lead to non-decrease in the firmls revenue (So and Song 

1998; Pappas and Bngham 1979). Since our basic s e t h g  is an environment where 

demand is pnce-sensitive, assuming <p = -2 (Sections 5.3.1.1 - 5.3.1.3), Le., the demand is 

"sufficiently price-sensitive", is justified. However, with this general log-linear form of 

the demand function we do not obtain many managerial insights into the fim's optimal 

action. 



In Sections 5.3.1.1 to 5.3.1.4, we were able to develop a profit maximising mode1 for a 

make-to-stock firrn that determines its pnce as a constant percentage mark-up over the 

unit operating cost and sells its products to price-sensitive customers. We were able to 

prove the unimodaliîy of the profit function and detexmine easily-cornputable explicit 

expressions for optimal batch size or its bounds for practising managers. In these types of 

Grms it is important for managers to note that one of the most basic tenets of inventory 

models which specifies that the optimal batch size will aiways increase with set-up cost, 

does not hold. When operating cost, pnce and demand are explicitly related, then for 

profit-maximisation rnodels, the optimal batch size can behave quite differently. Aiso we 

show that using an EOQ batch size, or optimal batch size assuming price to be a mark-up 

over just the production cost, can result in substantial profit loss. Managers should be 

especially carefûl in choosing the batch size when the set-up cost is a major portion of the 

operating cost. 

5.3.2 EOQ Mode1 with Price-Sensitive Demand, Mark-up Pricing and Investments 

in Set-up Cost Reduction 

Though the models in Section 5.3.1 had no investment in lead time reduction, they are 

important since they provide us vaiuable insights and f o m  the basis of the models of this 

section where we incorporate investments in set-up cost reduction. We consider a firm in 

the same setting as in Section 5.3.1 except that now the firm has the option of investing in 

reducing its set-up cost, K. As indicated in the literature review, both practical experience 

and academic research (Porteus 1985; Cachon and Fisher 1999) has clearly proven the 

effectiveness of investment in set-up cost reduction. Following Porteus (1985, Section 2) 

and other research in this area, we assume that the investment fhction a(K) denotes the 

cost of fixing the set-up cost at level K. We peg the cost for fixing the set-up cost at a 

particular level rather than to a change in it. An opportunity cost of ia(K) is charged per 

unit time as part of the operating cost for the investment. Like in Porteus (1985), the 

investment cost can be thought of as either one-time irreversible investment cost or as a 

revocable lease that specifies a fee to be paid per unit time to maintain that set-up cost 



level. A schematic representation of the proposed physicai and conceptuai system will 

now look like as shown in Figure 5.3.3. 

Investrnent in set-up cost reduction 

rn = Operating cost per unit = (set-up cost 

+ inventory holding cost + purchaselproduction cost 

+ investment cost) / demand per unit time 

CUSTOMER DEMAND 

(deterministic, but 

pnce-sensitive) 

- - 

Figure 5.3.3: Supply Chain System for Section 5.3.2 

With the investment cost as a part of the operating cost, expression (5.3.1) take the fom: 

where, as in Section 5.3.1, the unit production cost, c, can be a constant or a h c t i o n  of Q, 

and h = ic. 

Now the profit maximisation model will have two explicit decision variables, K and Q. 

The basic model structure and the solution method of this section will be the same as in 

Section 5.3.1. However the investment cost will affect the operating cost and hence 

demand, which in turn will influence the operating cost and investment decision. 



The profit maximisation problem for the fim will now be: 

(P5 -4) Maximise lr; 
P. K 

subject to: 

where: 

and 

Note that in this section n; w and z are all fbnctions of Q and K. 

5.3.2.1 Profit m1~nimisation with respect 20 Q 

In this section we investigate the maximisation problern P5.4 with respect to the decision 

variable, Q, assuming K to be constant. 

We will concentrate on two cases: i) c(Q) = c V Q, and ii) c(Q) = c + (de). 
For both cases, T = 1 - JG will be convex in Q and the profit function will be 

semi-strictly quasiconcave in Q implying that the solution to nq = O will give the 

optimal Q, Q*. However, we cannot obtain closed f o m  results solving for Q in 

= O even for c(Q) = c V Q. 

For both cases we can use the concept of Proposition 5.3.6 to prove that 

41 - 4wr '; (1/3) is sufficient for concavity of x 

n i e  sign of aQ*(K)/i?K is not obvious. However, fiom numerical exarnples we can 

deduce that Q*(K) is not monotone in K but concave. In Table 5.3.4 we show Q*(K) 

as a function of K for different types of investrnent fûnctions, a(K): i) Power (a(K) = 



blK where b is a positive constant), and ii) Logarithmic (a(K) = j - bln(K) where both j 

and b are positive constants) and for both c(Q) = c V Q and c(Q) = c + (die). Note that 

since we would expect that successive reductions in K will require larger and larger 

investments per unit reduction it is plausible that a(K) should be decreasing convex in 

K. Both the forms of a(K) satisfi the condition and are the most fiequently used types 

of investment functions for this type of aualysis (Porteus 1985; Nye 1997). In al1 cases 

Q*(K) is not monotone, but concave in K. 

Table 5.3.4: Q*(K) versus K for Different a(@ (i = 0.1, q = 1.5, c = 2, a = 6000) 

5.3.2.2 ProPt marimisatiun with respect to K 

Power Investment 

a(K) = blK, 

b =  100,d=O 

In this section, we investigate the maximisation problem P5.4 with respect to the set-up 

cost, K, assuming the batch size to be a given parameter. Note that this investigation rnight 

be worthwhile in itself, if for some reason the firm has to fix the batch size at some 

Power Investment 

a(K) = blK, 

b =  100,d= 10 

Logarithmic lnvestment 

a(K) = j - bIn(K), 

j=lOO,b=lO,d=O 



particular value (e.g., a matend handling constraint) and hence the only option available 

to the £hm is to invest in reducing the set-up cost. 

In this section, we will again focus on power (a(K) = b/K, b > 0) and logarithmic (n(K) = j 

- bin(K), j, b > O) investment fùnctions. Before going into the details of the decreasing 

convex investment functions, we would like to examine what will happen for a linear 

investment firnction (say, b -jK, b, j > 0). 

For linear investment of the form b - jK (K I blJ3 we can show that wz is concave in K. 

Therefore, the range of feasible K might be continuous or discontinuous. Assuming that 

the range is continuous (Le., the maximum value of 4wj is 5 l), it can be shown that for 

c(Q) = c + (d/Q) or c(Q) = c V Q, the solution to the first order condition (WKT - TKW = O 

with T = 1 - JG) will give us P = (Qc(Q)/2J + (b//? 2 (blj). Hence, there is no 

optimal solution within the feasible range of K. The first differentiation of the profit 

function is either positive or negative within the feasible range. The profit function is thus 

monotone and can be either increasing or decreasing. This implies that either of the limits 

will be the optimum value. 

For the power investment function, a(K) > O is always satisfied. For the logarithrnic 

investment a(K)  > O requires that K < c ~ ' ~ ' .  For both investment functions and cost 

functions of the form c(Q) = c t, Q and c(Q) = c + (d/Q), wz will be convex in K. For 

logarithrnic investment function, convexity of (wz) requires that K 5 Qc(Q) and we will 

assume it to be true in the rest of the section. So we can tell that Twill also be convex in 

K. However, w is not concave in K; rather it is decreasing convex in K, and hence it is not 

necessary that zwill be semi-strictly quasiconcave in K. 

For both types of investment fùnctions, as K + O, wz + a. So, the lower limit for feasible 

K, KL, must be strictly positive. If we assume that the minimum of 4wz does not exceed 1 

and for the logarithmic investment function at the upper feasible limit of K (Ku), 4wr > 1 

and ( w z ) ~  > O, then there must be some feasible range of K and wz and T cannot be 



monotone within it. It is easy to show examples where lrwill not be concave in K for both 

power and logarithrnic investment functions (Figure 5.3.4). So, we have to try to prove the 

unimodality of awith respect to K. 

Figure 5.3.4(a): Plot of zas a Function of K for a(R) = j - bIn(K) and c(Q) = c VQ 
(i = 0.2, 1 = 1.5, c = 1, a = 5000, j = 100, b = 10, Q = 1000) 

Figure 5.3.4(b): Plot of nas a Function of K for a(R) = b/K and c(Q) = c + (dQ) 
(i = 0.2, q = 1.2, c = 1, a = 5000, b = 50, d = 10, Q = 2000) 



The first order condition (FOC) for rr with respect to K (m) will be of the fom wKT = 

TKw- Differentiating both sides of the FOC with respect to K we have: 

Differentiation of T yields: 

Proposition 5.3.7: = O will have either one or three solutions. 

ProoT: For both types of investment functions, as K + Kr, TK + -K. Since WK is negative 

and T is positive, the LHS of the FOC will always be negative. Though TK is unresûicted 

in sign (recall that T is convex in K), we are only interested in TK c O (for TK 2 O, n;r will 

be negative). Since w 2 O, WK I O, WKK 2 O, WKKK L O and TKK 2 O (for both investment 

functions), so for Th. e O we can show that the LHS will always be negative (finite 

negative as K + KL), increasing and concave. For T' e O it is possible to prove that 

5 O (Appendix 5.6). Then the RHS will also be increasing and concave. However, as 

K tends to its lower feasible Ihnit, the RHS will tend to - oc, increase in a concave manner 

up to TK = O and then become positive. If Tis not monotone, then for this type of RHS and 

LHS, it follows that ZK = O will have either one or three solutions. w 

As K + KL, lrwill be increasing at infinite rate and for TK > O, IT will be decreasing in K. 

If TSK = O has only one solution then z must be increasing up to that point and then 

decreasing, and so the unique solution to FOC will give us the profit-maximising K* If 

njj = O has three solutions, then the profit fiinction will be increasing fiom KL up to the 

first solution, then decreasing up to the second solution, again increasing up to the third 



solution and then finally decreasing up to Ku- It is obvious that the maximum value of ~r 

will be given by either the first or the third solution to the FOC and so K* can be 

detexmined easily by simple cornparison of the value of z at the first and the third 

solution. 

Though Proposition 5.3.7 shows that q = O can have three solutions, in al1 Our numencal 

expenments with both types of investments, the profit function was always unimodal in K. 

A sufficient condition that ZK = O wi11 have an unique solution is to prove that the slope of 

the M S  of the FOC is greater than the slope of the LHS of the FOC for TK I O, Le., 

(RHS)K > (LHS)K for TK 5 O. However, we can show by numerical examples that it is not, 

in general, tme. 

We can show that the optimal set-up cost, K*, must be I & (the solution to TK = 0) and so 

KI can be an upper bound on K*. For the power investment function we can even show 

that the upper bound is independent of Q (for logarithmic investment, KI will be a 

function of Q). The upper bound will help us reduce the search region for K*, especially 

for the power investment case when the upper bound is very easily cornputable. 

Proposition 5.3.8: In generd K* S Kl and, for a power investment fûnction, a(K) = b/K, 

K'S a. 
Proof The solution of the FOC requires that TK < O. As we have already said, T is convex 

in K, implying that K* must be I KI. From (5.3.28), the solution to TK = O Hill be given by 

the solution to ( w z ) ~  = O. For the power investment function the solution to ( ~ 2 ) ~  = O will 

sirnplify to ( 1 4  - (bK12) = O, irnplying that K* 5 J26. 

It is somewhat interesting that for the power investment function, the upper bound of K* 

is independent of Q of al1 parameters except 6. We would nonnally expect it to be 

dependent on parameters other than b as well. 



5.3.2.3 Joint Pm@ maximisation with respect tu Q and K 

In this section, we will investigate the maximisation of P5.4 jointly with respect to the 

decision variables, Q and K. We have already shown in Figure 5.3.4 that rr is not 

necessarily concave in K. However, the profit function can still be unimodal with respect 

to the two decision variables. One of the ways to prove unimodality in this case is to find 

Q*(K) and then try to prove the unimodality of n(Q*(K), K) with respect to K. Since we 

have already proved that zwill  be semi-sûictly quasiconcave in Q, the solution to wpT - 

wTp = O will give us the unique Q*(K). If we replace Q in (5.3.23) by this Q*(K) we will 

obtain IT (Q*(K), K). Now we have to prove the unimodality of n(Q*(K), K) with respect 

to K, Le., that 

has a unique solution within the feasible range of K (in (5.3.29) T represents 

1 - 41 - w(Q * ( K ) , K ) z ( Q  * ( K ) , K /  ). Since we are concemed with Q*(K) and we know 

that wQT - T , w  = O, thus we have to prove that WKT - TKW hzs a unique solution for 

feasible K. Before going W e r  we state the following proposition. 

Proposition 5.3.9: For the model of Section 5.3.1 -2, n(Q*(K), K) will be decreasing in K. 

Proof: For the model of Section 5.3.1.2, we can show that TK will be positive for feasible 

K and WK = O implying that rrdQ*(K), K) < O for feasible K. Hence, lris decreasing in K. 

The above proposition is rather intuitive since if there were no cost to reduce K, we would 

want it to be as low as possible. However, from our previous results, we know that T is 

convex in K and TK can be both positive and negative. Since w ~ i s  always negative, we are 

oniy concerned with TK 5 O (for T' 1 O, nwill be decreasing). Also as K + KL> TK + - OC 

but WK will be finite negative. So, as K + KL, we can say that IT will be increasing at 

infinite rate. But analyticaily it is difficult to prove that there will be unique solution to 
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wKT - TKw = O for feasible K. However, our extensive numerical experiments with power 

and logarithmic investment functions always resulted in a unique solution. Based on the 

fact that we know that n(Q*(K), K) will be increasing near the lower feasible limit and 

will be decreasing for any K for which TK 1 O and from our numencal experiments we are 

confident that, in general, m(Q*(K), K) will be unimodal in K. 

We performed numerical experiments to compare the optimal values of the decision 

variables and the profit fiom our model with two possible alternatives that a finn might 

employ : 

a) Alternative 1: If the fkm does not explicitly take into account that lower operating 

costs fkom investments in set-up cost reduction can be passed on to the customers 

so as to increase dernand. That is, it selects its price as a mark-up over a constant 

production/purchase cost, estirnate demand based on that pnce and then 

determines the optimal batch size and set-up cost based on the estimated demand. 

b) Alternative II: If the firm decides not to explicitly take into account the effect of 

lower operating costs on demand and chooses to use the decision variables 

resulting fiom solving a model assuming p and K to be independent decision 

variables. 

Our numerical experiments show that, as expected, the optimal batch size and set-up cost 

resulting f?om our model can be very different fiom those of either of the above 

alternatives. However, if the finn uses values of decision variables denved fiom the 

alternatives within our model, the "loss in profit" can be signifiant. 

Example 5.3.2.1: Let us assume that n(K) = blK. With the parameters: i = 0.35, 7 = 1.2, 

a = 350, b = 2600 and c = 0.5 V Q, the optimal decision variable values in our model are 

as follows: Q* = 386 and K* = 26.97. The optimal profit, N e * ,  K*) = 68.48. For 

Alternative 1, p = 0.6 and A = 972.22. The optimal decision variable values in this case 

will be KI* = 21.35 and QI* = 487 (refer to Sections 4 and 5 of Porteus 1985). For 

Alternative II, the optimal decision variable values are: K2 * = 34.41 and p * = 1.23. The 

163 



induced optimal batch size in this case will be Q2* = 302 (refer to Sections 6 and 7 of 

Porteus 1985). In Table 5.3.5 we show the effect on profit, demand, price and operating 

cost if we use either of the alternative optimal decision variable values in Our mode1 in pIace 

of Q* and K*. 

Table 5.3.5: Cost and Revenue Elements with K*/Q* , KI*/ QI* and &*/ Q2* 

for Example 5.3.2.1 

From the representative numencal experiment it is clear that the optimal batch size and 

set-up cost of our mode1 are very different nom those of Porîeus' model. Our optimal set- 

up cost is about 26% higher than Alternative 1 and about 22% lower than Alternative II 

while optimal batch size is about 21% lower than Alternative 1 and 28% higher than 

Alternative II. If the optimal decision variable values from either alternative are used in 

our model, the "Ioss in profit" c m  be significant. In our example it is a h o s t  3%, which is 

quite high for companies in competitive situations. Using the optimal decision variable 

values fi-om "wrong models" leads to larger operating costs per unit. Larger operating cost 

leads to higher price and hence lowers demand with the net result being that the profits are 

lower. If, in addition, there were economies of scale fiom batch size (e.g., c(Q) = c + 
[d/QJ) and if it is not taken into account (Le., assuming c(Q) = c V Q), it c m  have an even 

stronger efEect on the optimal decision variable values and hence on profit. Obviously as 

the economies of scale become more prominent, the detrimental effect on profit of 

ignonng them becomes more severe. 



5.4 Investments in Supply Time Reduction 

In Section 5.3 we developed models based on the idea that operating costs can be reduced 

by investments in set-up time (cost) reduction. In Chapter 4 we showed that investment in 

supply lead time reduction could also decrease inventory costs. In this section we develop 

models similar to those of Section 5.3 with the focus now on investment in supplier lead 

time reduction. 

5.4.1 Basic Mode1 

Assume a fum buying a single make-to-stock item fkom a supplier (intemal or external) 

and selling it directly to price-sensitive customers. However, unlike in Section 5.3, there is 

a supply lead time Eom the supplier to the buyer that is random. Though the final 

custorner demand is deterrninistic, because of the stochastic procurement lead time the 

lead tirne customer demand for the buyer witl also be stochastic. The buyer is following a 

(Q, I.> policy for its procurement control. 

The customer demand rate, A, is a decreasing function of price per unit charged to the 

customers, p. The firm sets its price, p, as a constant percentage mark-up over the 

operating cost per unit, m. Since the lead time demand is random, the firm might loose 

customers if it does not have sufficient safety stock. Hence, in addition to set-up cost, 

holding cost and purchaçe cost, the f i m  also i ncm a backordering penalty cost per unit 

per unit time of b. The holding cost is assumed to consist primarily of cost of capital 

invested in inventory. Since the buyer is using a (Q, r) policy, whenever the inventory 

position of the buyer reaches r, it orders Q units fiom the supplier. As in Section 5.3, c is a 

non-increasing fûnction of Q. 

The fim's total inventory cost is composed of ordering costs, holding costs, backordering 

costs and purchase costs per unit time and from Chapter 4 will be given by, 



K .  
C(Qy r)  = - + h E ( I )  + bE(B)  + CA, where E(I) and E(B) have been defmed in Chapter 

Q 
4. The firm's total operating cost per unit, rn, will be given by: 

where c is a function of Q and h = ic. 

Since customers are price-sensitive, the demand, A, will be a function of the pnce, p, and 

because the firm employs mark-up pricing, p = rpn where m is given by (5.4.1). The 

objective of the fim is to maximise its profit per unit time, similar to problern P5.2, where 

the decision variables are now both the batch size, Q and the reorder point, r. A schematic 

representation of the proposed system is shown in Figure 5.41. 

Mark-up pricing ab @ = T F )  

I I -  I I SUPPLIER 1 <-, 

m = Operating cost per unit = (set-up cost 

+ inventory holding cost + backordering cost 

+ purchase cost) / demand per unit time 

CUSTOMER 
DEMAND 

(deterrninistic, but 

price-sensitive) 

Figure 5.4.1: Supply Chain System for Section 5.4.1 



5.4.2 Mode1 with Investments in Supply Lead Time Reduction 

In this section we extend the general mode1 developed in Section 5.4.1 assuming that the 

firm invests in reducing supply lead tirne. Hence, the system is now similar to those 

considered in Chapter 4 except that customer demand, A, is deterministic with a price- 

sensitive rate. The pnce will be determined by the h n ' s  operating cost and so both p and 

A wil1 be fûnctions of the operating decision variables- 

In Chapter 4, we developed six different models based on the nature and fiequency of the 

investment type. For the present model, let us assume that the investment in supply lead 

time reduction is one-time with the Iife of the investment dependhg on the time it is being 

used. The total cost will be given by: 

( Y  /a) 
where G'(q y) = (h + b) F(x)dr + b(,u - bla}) and h = ic. 

O 

Note that now there are three operational decision variables - Q (batch size), r (reorder 

point) and a (refer to Chapter 4). The operating cost will now be given by: 

where c is a fûnction of Q and h = ic. 

The price charged by the firm wil1 be p = ~pn and the demand rate R. will be given by the 

relation in (5.2.1). However, the demand rate R itself will affect m and even the 

investment decision will be affected by the integration of the cost minimisation model 

with market demand. The problem for the £Üm can now be written as: 



(P5-5) Maximise n= @ - m)A, 
Q. r. a 

subject to: 

p 2 m 2 O a n d A . 1 0 ,  

where m is given by (5.4.3),p = p and I =fi@) (A is some decreasing function ofp). 

While the general procedure to solve this problem will be the same as shown in Section 

5.2, the analysis will be much more complex than in Section 5.3. The operating cost 

affects the pnce as well as the demand. The denand rate in turn will affect the lead time 

demand distribution. Hence, the operating variables - Q, r and a - wiIl aflect the lead time 

demand distribution, i.e., F(x). In this case obtaining a closed fom solution for rn in terms 

of the decision variables will be difficult Though we formulate the problem here, we 

leave the analysis for future research. 

5.5 Conclusions and Future Research Opportunities 

In this chapter, we set about to model a profit-rnaximising firm selling a single make-to- 

stock product to price-sensitive customers. The firm sets its price as a fixed percentage 

mark-up over its operating costs per unit, and is considenng investing in reducing its 

operating costs by optimal management of its lead time so that it can lower the price to 

gain a greater market share. For the case of deterministic @ut price-sensitive) demand and 

investment in set-up tirne (cost) reduction, we were able to formulate a mode1 where pnce 

and demand, and hence profit, are functions of the operating variables - batch size and set- 

up cost - of the h. We show that when there is explicit dependence of the demand on 

the operating variables in a profit maximisation model, some well known solution 

properties fkom classical inventory management do not hold hue anyrnore. In that case, 

managers have to be extra careful about choosing optimal operating variables. We were 

also able to show that investments in increasing efficiency (i.e., decreasing operating cost 

by some investrnent in set-up cost reduction) can be passed on as a pnce decrease to the 

customers which will increase the demand and the profit for the firm. If the firm does not 



take this effect into account, and detemiines the optimal decision variables assuming that 

the demand is constant or price is an independent decision variable, it will lead to sub- 

optimal results and the fïrm would be loosing substantial profit in a competitive market. 

We were also able to formulate the problem for the case when the fim is buying the stock 

fkom some supplier before selling it and the supply tead time is stochastic. In this case, the 

lead t h e  demand for the firm will be random and the fixm can invest in reducing the 

variability of the supply lead time either by making the uivestment itself or by paying the 

supplier for lead time reduction investments. Again the pnce and demand (and hence 

profit) wilI be functions of the operating variables of the fim. In this case the variables 

will be - batch size, reorder point and variability of supply lead time. However, the 

complexity of this problem makes fiutber analysis cumbersome and difficult. We leave 

this for future research. 

We feel that our model adequately captures the main features of make-to-stock firms in a 

competitive environment and how such fimis can use a time-based strategy to reduce costs 

and increase market share. The main contribution of this research lies in the fact that for 

the fint time in the literature we develop a model where the profit-maximising operational 

variables for a firm are determined by taking into account how efficiency improvements 

can explicitly impact the profitability of the firm. We were able to couple the cost 

reducing operations research based models with relevant microeconomic models to 

demonstrate how not taking such interactions into account can lead to sub-optimal results. 

In terms of scope for future research, further analysis of the mode1 formulated in Section 5.4 

with investments in supply lead time reduction would be worthwhile. As we indicated, most 

of the process-improvement models in operations management (discussed in Sections 2.5 and 

2.6) assumed demand to be constant or stochastic with the mean demand rate being constant. 

It might be usehl to use the general fi-amework developed in Section 5.2 to analyse some of 

those models with price-sensitive demand. Such integrated production-marketing modelling 

will help in establishing the overall contribution of investments in increasing efficiency. 



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Summary and Conclusions 

In this thesis, we investigated the issue of lead tirne management in supply chains in 

different cornpetitive environments. We took into account both the costs and benefits 

associated with lead tirne reduction in three analytical models. One model studied delivery 

lead tirne management for make-to-order nmis, and the other two models analysed supply 

lead time and set-up t h e  management for make-to-stock fïrms. 

The motivation for this research and some relevant background were presented in Chapter 

1. It showed the importance of effective lead tirne management in modem supply chains 

and discussed the various costs and benefits that fixms need to consider before deciding on 

the optimal lead time. We also discussed why it is necessary to have a different supply 

chah design and lead time reduction focus for make-to-order and make-to-stock supply 

chains. 

In Chapter 2 we identified several gaps in the current literature on lead time management 

in supply chains. 

Models investigating delivery lead tirne management for make-to-order supply chains 

did not analytically account for the possibility of a pnce premiurn from shorter 

delivery times or economies of scale fkom increased demand. 

Previous literature on investments in supply lead time reduction did not employ the 

state-of-the-art (Q, r) model or capture the different types of possible investments 

while determinhg the optimal supply lead time. 

Models investigating set-up timdsupply lead time management for make-to-stock 

supply chains either totally ignored or did not explicitly account for the effect of 

reduction of operating cos& on final customer demand. 
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In our research, we addressed the above gaps so as to develop more comprehensive 

models. This has led to many new insights into lead time management in supply chains. 

In Chapter 3, we dealt with delivery lead tirne management issues for make-to-order 

fïrms. We modelled a make-to-order supply chah  consisting of a firm and its customers 

where the mean demand rate is a fùnction of pnce and guaranteed delivery lead time and 

the market price is detennined by the length of the guaranteed delivery lead time. We then 

extended our model by incorporating econornies of scale where the unit operating cost is a 

decreasing convex h c t i o n  of the mean demand rate. The fïrm can invest in increasing 

capacity to guarantee a shorter delivery lead time but must be able to satisfjt the customers 

according to a specified reliability level. Our models explicitly accounted for "price- 

sensitive" and "lead-time-sensitivet1 customers. We showed how the firm could select the 

optimal length of the guaranteed delivery lead time and processing rate to maximise its 

profits by a relatively simple procedure. Our numerical examples clearly indicated that 

ignoring the dependence of market pnce on the Iead tirne offered and economies of scale, 

when they in fact exist, could lead to potentially large profit losses for the firrn. It is also 

important for f k n s  to take note of the inherent preference of customers for pnce or Iead 

time when making decisions. We also extended our model by explicitly accounting for 

WIP holding costs and penalty costs for the firm. In that case we were only able to 

foxmulate the problem without providing any analytical solutions. Some of the possible 

extensions to this model might include: 

a) Aflowing the mean demand rate to be a function of the senrice level in addition to 

pnce and guaranteed delivery time; 

b) Extending our model to a non-linear demand function; 

c) Analytical solution of the model developed in Section 3.6 taking holding costs and 

backordering costs into account. 

In Chapter 4, we developed models for investigating investrnents in supply lead time 

reduction for make-to-stock products. We used a continuous review "exact" (Q, r) model 

and captured the effects of investment in lead time duration reduction through investment 



in changing a single variable, a In practice, investments can be one-time or r e c d n g .  It 

might dso Vary depending on the nature of investment (e.g., per unit or per cycle or per 

unit tirne). Our six new trivariate models captured both the costs and benefits of lead time 

reduction for the different types of possible investment. Our analysis of the cost mode1 

illustrated the benefits of investments in supply lead time reduction in terms of inventory 

cost. It also highlighted the importance of taking into consideration the type of the 

investment made by the supplier and how it is being passed on to the buyer before 

deciding on the optimal strategy. Our extensive numericd comparative statics showed that 

the interdependency of the three decision variables could result in sorne seerningly 

counter-intuitive results. From this chapter, we can conclude that investments in supply 

lead time reduction can result in substantial reduction of inventory costs after accounting 

for dl the associated costs and benefits. However, it is important to consider the frequency 

and nature of the investment while developing models for supply lead time management. 

Some of the possible extensions to this model might include: 

a) Analytical proof that the cost function of the unit model is univalleyed; 

b) Analytical comparative statics. 

In Chapter 5, we developed models for detexmining the optimal lead time for make-to- 

stock h s .  In this chapter we considered a profit-maximising firm selling a single make- 

to-stock product to pnce-sensitive customers. The firm sets its price as a fixed percentage 

mark-up over its operating costs per unit and is considenng investing in reducing its 

operating costs by proper management of its lead tirne. Lower operating costs will allow 

the firm to reduce price and gain a greater market share. For the case of deteministic 

demand and investment in set-up time (cost) reduction, we were able to fomulate a model 

where price and demand, and hence profit, are functions of the operating variables - batch 

size and set-up cost - of the fim. We showed that when there is explicit dependence of the 

demand on the operating variables in a profit maximisation model, some of the best 

known solution properties fkom classical inventory management do not hold true 

anymore. In that case, managers have to be extra careful about choosing the optimal 

values of the operating variables. We were also able to show that in this case, if the firm 



ignores the explicit dependence by either assurning demand to be constant or price to be 

an independent decision variable, it will lead to sub-optimal results and the firm would be 

loosing substantial profit. For the case of stochastic lead time demand and investment in 

supply lead time reduction, we were also able to formulate the problem in terms of the 

operating variables of the fïxm - batch size, reorder point and variability of supply lead 

tirne. However, the complexity of the problem makes M e r  analysis cumbersome and 

difficult. Some possible extensions to this model wiH include: 

a) Analysis of the mode1 developed in Section 5.4 where investment is made in 

supply lead time reduction in a stochastic lead time demand environment; 

b) Utilising the general fkmework developed in Chapter 5 to extend a whole 

generation of process-improving-investment models that were developed ignonng 

the price-sensitivity of the customers (refer to Sections 2.5 and 2.6). 

From a technical standpoint, the main contribution of this research lies in the fact that we 

develop new models incorporating issues that were not accounted for in previous models 

both for make-to-stock as well as make-to-order finns. Our models are able to provide 

new insights into lead t h e  management issues in supply chahs. Specifically, we showed 

the importance of integrated operations-marketing modelling in making supply chain 

decisions. From a managenal standpoint, this research can help managers to determine the 

key issues they must focus upon, depending on their competitive environrnent, when 

making their lead time decisions. Our research shows that both make-to-order and rnake- 

to-stock firms can gain competitive advantage through lead time management. As e- 

commerce and outsourcing grows in popularity and customers becomes more demanding, 

the importance of price and speed as competitive prionties will only increase. 

Simultaneously, competition will make resources scarcer, necessitating their optimal use. 

We feel that the integrative nature of our research is a significant addition to the 

operations management literature on time-based competition. 

We would like to add here that as in most analytical research, the ability to use the models 

developed in this thesis is limited by the number of sirnplimg assumptions made. 



However, we believe that the qualitative insights drawn such as the risks of decision error 

and importance of integrated production-marketing modelling are app1icabIe for a wide 

variety of real-life manufacturing and service systems. 

6.2 Recommendations for Future Research 

The sumrnary and the conclusions presented in the previous section show our curent 

understanding of the lead time management issues for supply chains. However, the 

models developed in this research have significant potential for being extended and 

m e r  evolved. We have discussed some of the possible extensions to the models already 

developed. In this section we will present some ideas for new models. 

Assemble-to-Order Environment 

In recent years assemble-to-order production has become very popular. This approach 

combines the effectiveness of make-to-stock and make-to-order environments by 

producing components to stock and then assembling them as required by customer orders. 

Normally the result is &ter response than the traditional make-to-order approach, with 

fewer inventories than a make-to-stock approach (Hopp and Spearman 2000). This is the 

technique used, for example, by Del1 for manufacturing its cornputers. The models 

developed in Chapters 3, 4 and 5 can be integrated to develop models for an assemble-to- 

order environment where demand is random with the mean demand rate being sensitive to 

both price and delivery time. 

Assemble-to-order h s  have two options to increase demand through investment. One is 

to reduce the operating cost by investing in supply lead time reduction for suppliers of 

components (like in Chapters 4 and 5) so that prke can be reduced. The other way is to 

improve the length and accuracy of the delivery time by investing in increasing its own 

assembly capacity (like in Chapter 3). If there is lirnited budget available for investment, 

then the firm has to optimdly dlocate it to reduce supply lead time and/or delivery time. 

Though intuitively it appeais that the allocation will depend on the sensitivity of demand 
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rate to price and delivery tirne, the optimal allocation decision is not clear. Developrnent 

of models to analytically investigate the issue of optimal allocation of constrained 

resources to improve efficiency andjor responsiveness for an assemble-to-order 

environment can be a worthwhile endeavour. 

Lead Time and Price Based on Custorner Sensitivity 

In Chapter 3 we assumed that customers are homogeneous - either price-sensitive or lead- 

time sensitive. However, recent technology has made it possible to collect customer 

characteristics in more detail (Smith, Bailey and Brynjolfsson 2000). If some firm has 

such data then it is imperative to use it to make intelligent decisions. The firm then might 

quote lower prices and higher delivery times to customers who are more price-sensitive 

than time-sensitive and vice versa. We feel that pnority queueing techniques can be used 

to mode1 the case where, rather than giving "uniforni" delivery time guarantee to al1 

customers, the profit-maximising fimi can provide different delivery time (and so charge 

different price) to different customer niches depending on their pnce and lead time 

sensitivity. 

"Active" Supplier 

In our research, the issue of supply lead time reduction has been investigated assurning 

that the supplier has no information about the fmal customer demand and so it passes on 

part or whole of the invesûnent cost to the buyer (Le., the supplier is relatively passive). 

However, if the supplier is aware of the demand sensitivity of the final customers, then it 

might keep its pnce and delivery tirnes low by its own choice. Such an action will reduce 

the inventory cost for the buyer and probably result in increased demand. In case of sole 

supplier (like ours), this means increased order for the supplier also. Development of an 

integrated supply chah mode1 with a more "active" supplier that takes into account its 

pricing and lead time decisions' effect on the whole supply chain is an interesting future 

direction. 



Appendix 3.1 

Proof of Proposition 3.5.3 

From (3.4.9) and (3.5.9), we can Say that the RHS of (3.5.6) is always increasing in L, 

negative up to L = /r-;>.i - and then positive. Fmm (3.4.119, 

From (3.4.9) and assuming MW 2 O, we have (A3.1.1) is negative for L 5 - J& Md so 

the RHS of (3.5.6) is concave for L 5 (A3.1.2) 

Differentiating (A3.l. 1) with respect to L we have: 

From (3.4.9) and assuming that M,, 2 O and M ,  2 O, we see that only the third term of 

(A3.1.3) is negative while al1 others are positive. A sufficient condition for 
O' (RHS) 
OC 

t O 

be increasing is: 



W e  can show that condition (M. 1.4) implies that for any L 2 
a' (MS) 

i s 

If (A3.1.1) is positive for higher L (otherwise RHS will be throughout concave), fYom 

(M. 1.2) and (A3.1.5) it is clear that there is a unique solution of a' ( R H S I  = O ~3 
d ~ '  

and 
0' (RHS) is negative for L I Ls and positive for L > LI Also, Ls > 

aAC2 

that RHS will be concave tilI Ls and then it will be convex and at p, the RHS wiII be 

positive. 



Appendix 4.1 

Proof of Equivalence of Inventory Cost Function with the Transformations X = CLX 

and X = a X + ( l - a ) p  

With x =&, 

With 2 = a X + ( l - a ) ~ ,  

where J2(r) = [y 
s=r x=[s- (1 -a )p  J l a  

F(x)ds /d~.  

Let us define Z(x)  = IF(x) (for this Appendix only). 

Then, Jl(rmv) = lQ [ Im F ( x ) k ] < ~ s  ( r,,, is the reorder point for 2 = a;U ) 
s r  x n ( s / a )  

With s= t - (1 -a )p ,  

= J2(rv) (r, is the reorder point for X = a X  + (1 - a ) p  ) 

where rv = r,, + (1  - a)p . 



Q Q S e l a r l y ,  Jl(r, + Q) = J2(rv + Q )  and clearly h(- + r, - ap) = h + r,, - p) . 
2 

Therefore, from (A4.1.1) and (A4.1.2) we can Say that Q and C are same for 2 = QX as 

for 2 = a;Y + (1 - a)p, and r, = r, + (1 - a)p V a This proof is applicable for any 

distribution, as it does not use any particular property of F(x). 



Appendix 4.2 

Proof of Convexity for Mode1 2B (exact) 

To prove the convexity of "exact" Mode1 2B we must prove that the extra term (in this 

Appendk M will represent ~ " ( a ) ) ,  

[@M(a)i(l+ i) NC ] /KI+ i) Nc - 11 = A (for this Appendix only), 

is jointly convex in Q, r and a (dl the other terms are jointly convex). Since the extra term 

is independent of r, we need to prove the joint convexity of A in Q and a 

Let Bi = CI, (1 + i) = x, and 2% = C2 (for th is  Appendix ody). Then we have: 

It is not difficult to show that A, 2 0, App 2 O and AQ, 2 0. 



The principal determinant of the hessian matrix (A, A@ - ~ ~ 2 )  on simplification is, 

Since (x(c2)Q + 1)  t 1 ,  (MaJ(M) - (MJ' 2 O is sufficient for the hessian to be positive and 

hence for A to be jointly convex in Q and a. 



Appendix 4.3 

Proof of Convexity for Model 1B 

To prove joint convexity of Model 1B we have to prove the joint convexity of the term, 

E =  ' + OM1' , in Q and a (for this Appendix M will represent @'(a)). 
Q 

It is easy to see that EQp > O, Eaa è O and Epa è 0. 

The principal determinant of the hessian matrix (Eaa Epe - ~ ~ 2 )  on simplification is, 

It is then easy to show that 2(Maa)(A4) 2 (M=)* is a sufficient condition for the determinant 

to be positive and hence for the t em E to be jointly convex in Q and a 



Appendix 4.4 

Proof of Convexity for Models 1A and 2A with respect to a for Fixed Q and r 

The cost function for Models IA and 2A (for fixed Q and r) is given by: 

The only difference in the two models is that for Model 1A, c(a) is given by 

[C + &*(a)], while for Model 2A, =(a) is given by c + [0~'~(a)(i/A)]. However, this 

difference will not matter since our aim here is to prove the convexity of the cost function 

with respect to a for fixed Q and r and both i and A are constant parameters. 

On simplification C(a) can be written as: 

Since we have assumed that Q and r are constants and ~(a) is by assurnption convex in cq 

to prove the convexity of  C(a) in cr we need to prove that, 

M W 4  + b )  I:+Qf raJ F(x)dx]dy = T (for this Appendix only), 
8 

is convex in a, i.e., Tm 2 O. 



Then (h represents h(a)),  

and 

If  r is positive, it is easy to see that T,, 2 O (since ha 5 O and h ,  2 O). 



Appendix 4.5 

Condition under which Cost Functions of Models 1A and 2A will be "UnîvalIeyed" 

The cost fùnction for Mode1 1A is, 

We laiow that C is convex in Q and r for fixed a. Let Q * (a) and r * (a) be the optimal 

Q and r for a fixed cr This implies: 

KA. a rota I+Q"(a I ccQ * (a). r * (a), a) = Ma) A. 
Q*W + e * w  IL, Wa, y)dy + - 

i 

(A4.5.1) 

In the sequel, we suppress the argument of Q * (a) and r * (a). 

ac By design - and - are both equal to zero, implying that, 
* 3r * 



To prove that C is univalleyed, it is enough to show that (A4.5.2) = O has a unique (or no) 

solution for O 5 a _< 1. The condition will be similar for Mode1 2A with the only 

difference being that hf a) = i(c + BM '" (a)i 

A ). 



Appendix 4.6 

Optimal Lead Time Duration with Random Demand 

It is well h o w n  that when demand and lead tirne duration are both random, the mean and 

variance of the lead time demand are given by: 

and 

where p and d are the respective mean and variance of the lead time demand distribution, 

p and (0-l2 are the respective mean and variance of the lead time duration distribution and 

R. and ( 0 2 ) ~  are the respective mean and variance of the demand dishibution. 

When the demand is constant (Le., (q )' = O and A is just the demand rate) and p and 

o2 at statusquo are known, we can easily find pL and ( q  )2  at a = 1 . The optimal a, 

àC, gives us the optimal mean (pL *) and variance (c, *)2 of the lead time duration: 

and 

2 
(or *)2 = (a*)2 (a, at a = 1) . (A4.6.4) 

Suppose the demand is random but the reduction in lead tirne demand cornes solely f?om 

the reduction in lead tirne duration. n i e  mean and variance of the demand is presumed to 

be the same for any lead t h e  duration. Let the reduced lead time demand random variable 

be 2 = aK and there is m investment in reducing a. Like in the constant demand case, 

we can detexmine the optimal a* that minirnizes the buyer's cost. Since al1 our analytical 



and numerical results are based on LTD distribution and cost associated with changing 

x (i.e., a is our decision variable), al1 of them will still hold. 

If the rnean and variance of the lead time demand distribution and demand distribution at 

status-quo are known, we can determine the mean and variance of the lead time duration 

at status-quo. For random dernand, the optimal mean and variance of the lead time 

duration then will be given by: 

~ a * ) ~ ( a '  at a = 1)) - {(q)' at a = I)(pL *)) 
and (q*)' = 

A.* 
(A4.6 -6) 

From (A4.6.5) and (A4.6.6) it is clear that we can determine the optimal mean and 

variance of lead time duration for random demand case also. 



Appendix 4.7 

Analytical Comparative Statics of r  * (a) and { r * (a) + Q * (a) } with respect to a 

for Unit, Time and Cycle Models 

The FOCS for the time mode1 (recalling that al1 three models are jointly convex in Q and r 

for fixed a ) can be written as: 

where C(Q, r) =- + - J:+~  a. y)dy + cA + OM " . wiîh a as parameter. 
Q e 

In the following analysis, r  and Q represent r * (a) and Q * (a) respectively. 

We know from Zheng (1992) that b 2 (b + h)F(r /a). Total differentiation with respect 

to a of &(a, r )  = C(Q,r) - &M "' - CA at r and Q gives (recail that (X/ dQ) and 

(X / &) are by design equal to zero): 

Simplimng (A4.7.2) we have: 

where Z(y) = aG, (a, y )  + G(a, y)  and Gr (a, r)  = (b + h)F(r la) - b. 



Zb)  is a decreasing function of y. We can also show that Z(r + Q) 2 O if and only if 

b/(b+h) 2 [(f(r+Q)'a O xf(x)dr) /( & xf(x)dr)]. This condition will most probably hold 

for b » h, unless a = O,  but then (r + Q) will ais0 be n O and so (r  + Q)/a will probably 

still be finite. If we assume that Z(r + Q) > O ,  then both Z(r) and Z(r + Q) are positive and 

1 1 
we can show that - I r + Q ~ ( y ) d y  - ~ ( r )  S O and - ~ : " ~ ( ~ ) d ~  - Z(r + Q )  > O. So, fiom 

Q Q 
(A4.7.3), @r / a a )  > O since both the numerator and the denominator are negative. 

Using total differentiation with respect to a of &(a. r + Q )  = C(Q, r )  - &I,I RT - CA and 

recalling that Gr+p (a, r + Q) = ( b  + h)F - - b 2 O (Zheng 1992), we can similarly KQ) 
show that [(a / aa) + (dQ / aa)] 2 O. But we cannot analytically detennine the sign of 

(aQ / aa). 

For the unit model, the procedure will remain exactly the sarne as before with M R T  

replaced by M Ru and h replaced by h ( a )  = i[c + &M Ru] . In this case, though Z(y) is still 

a decreasing function, the condition for Z(r + Q) > O will be different. From our numerical 

experiments we can tell that Z(r + Q) will still be positive in alrnost al1 cases. Assurning 

that Z(r + Q) 2 O and following the same method as for time model, we can prove that 

(& / aa) 2 O and [(b / aa)  + (i3Q / aa) J 2 O.  

For the cycle model, Cp = O will be: 

Following the procedure as before (r  and Q representing r * (a)  and Q * (a)  respectively) 

we will have: 
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where Z(y) and G(a,  y) are as in the tirne model. 

As I"Q~(y )dy  - Z ( r ) ,  aGr (n,r) and e ~ P a r e  al1 negative, we can say that 
Q 

(dr / da) 2 O. But now, 

While the second part of RHS is positive, the first part is negative (since the numerator is 

negative while the denominator is positive). So, for the cycle model 

[(â / aa)  + (aQ/ aa)] can be positive or negative depending on the value of @MF. 



Appendix 5.1 

Proof that Profit with the Root with Minus Sign is Aigher 

The profit function is given by: 

R = @ - m)A = (a ?f2)(?p l))m("), 

and the two solutions to m are given by: 

where: 

and 

Substituting the two roots in (A5 1 -2) in (AS. 1.1) we have: 

Nnegative root of m) - Ir@ositive root of m )  

(AS. 1.4) 

(AS. 1 .S) 

If 41 - 4& > O, then (AS. 1.5) is strictly positive implying that the profit function with the 

negative root of rn will always be greater than the profit function with the positive root of 

m. 



Appendix 5.2 

Proof of Semi-Strict Quasiconcavity of n 

Reme~iiiiering that c is a h c t i o n  of (2, we can easily show that: 

i) K(cQQ) + QC(CQQ) + 2 ~ ( c ~ ) ~  + 4c(cQ) 2 O is sufficient for convexity of uv, 

and 

ii) 2cQ + Q(cQQ) O is sufficient for concavity of u. 

Hence, (1 - 4uv) is concave in Q and since (1 - 4uv) is positive for feasible Q, this irnpiies 

that 41 - 4uv is also positive concave. Since the denominator of (5.3.9) is convex in Q 

and the numerator is concave (both positive), we can conclude that n is semi-stnctly 

quasiconcave in Q (Schaible, 1 98 1). 

Both conditions will be satisfied when the unit purchase/production cost is constant, i.e., 

c(Q) = c (> O) V Q. nie  condition 2cQ + Q(cQQ) 5 0 is also satisfied by most of the 

cornmon non-increasing convex unit cost functions we expect to see in the literature - 
linear, power and logarithmic. These types of fûnctions, but under some additionat 

constraints, will ais0 satisQ the condition K(cQQ) + @(cQQ) + ~ Q ( c Q ) ~  + 4c(cQ) > 0. 



Appendix 5.3 

Proof of Proposition 5.3.1 

With 1 - J G  = T, ,in (5.3.9) can be written as: 

Differentiating (A5.3.1) twice with respect to Q, we get the following expression for lrpp 

which is a cubic equation in Q: 

For constant unit purchase/production cost, UQQ = O and TQQ 2 O. Of the three solutions to 

(A5.3.2), two will be complex and one wili be negative. So, for any positive Q, (A5.3.2) 

has the same sign. Note that T is increasing linear in Q, Le., Tp 1 0 V Q. It is now easy to 

prove that (A5.3.2) is negative for any feasible Q 5 Q* (solution to uQT - Tpu = O). Since 

we know that (A5.3.2) will have the sarne sign for any positive Q, it must be negative for 

al1 feasible Q. Therefore, xis concave for al1 feasible Q. 



Appendix 5.4 

Derivation of ZtQ*(R)lZtK and #Q*(K)/ dg2 

For Section 5.3.1.3, 

Differentiating (A5.4.1) with respect to K we have: 

Rearranging we have the expression in (5.3.1 7). 

Differentiating (5.3.17) with respect to K we have: 



Appendix 5.5 

Proof of Proposition 5.3.6 

The condition for concavity of lr is given in (A5.3.2) of Appendix 5.3. The condition cm 

be wrinen as (recalling that T = 1 - JI - 4uv ): 

Note that [l - ( l / J G ) ]  and - ( u [ ( u ~ ) ~ ] ~ ) / ( l  - 4uv) are negative since O c 4uv 1 for 

feasible Q. Then the sufficient conditions for concavity of rr are: i) JG< (113), and 

ii) ~ u ( u v ) ~ Q  + ~ U Q ( U V ) ~  è O .  It is possible to show that 

From (A5.5.2) it is possible to show that the condition ~ u ( w ) ~ Q  + ~ U Q ( U V ) ~  è 0 wiil 

always be satisfied for feasible Q. So, JI - 4uv S (113) is suficient for concavity of z 



Appendix 5.6 

Proof of T- < O for T'. I O 

Differentiation o f  Tm in (5.3.28) with respect to K after some simplification yields: 

- (+.OMWI, (A5.6.1) 

where X = and Z is the numerator of Tm in (5.3.28) (for this Appendix only). 

Noting that feasible K requires (1 - wz) 1 0, Le., X 2 0, and we are interested in T' I 0, 

fiom the expression of (5.3.28) we can tell that ( w z ) ~  I O. For both invesûnent fhctions 

we can show that (WZ)K 5 O, (WZ)KK 2 O, (w)- 5 O and Z 2 O. Then fiom (A5.6.1) we can 

prove that TKKK I 0. 
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