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Abstract

This thesis is on quantum algorithms. It has three main themes: (1) quantum walk
based search algorithms, (2) quantum rejection sampling, and (3) the Boolean function
hidden shift problem. The first two parts deal with generic techniques for constructing
quantum algorithms, and the last part is on quantum algorithms for a specific algebraic
problem.

In the first part of this thesis we show how certain types of random walk search al-
gorithms can be transformed into quantum algorithms that search quadratically faster.
More formally, given a random walk on a graph with an unknown set of marked ver-
tices, we construct a quantum walk that finds a marked vertex in a number of steps
that is quadratically smaller than the hitting time of the random walk. The main idea
of our approach is to interpolate the random walk from one that does not stop when
a marked vertex is found to one that stops. The quantum equivalent of this procedure
drives the initial superposition over all vertices to a superposition over marked vertices.
We present an adiabatic as well as a circuit version of our algorithm, and apply it to the
spatial search problem on the 2D grid.

In the second part we study a quantum version of the problem of resampling one
probability distribution to another. More formally, given query access to a black box
that produces a coherent superposition of unknown quantum states with given ampli-
tudes, the problem is to prepare a coherent superposition of the same states with differ-
ent specified amplitudes. Our main result is a tight characterization of the number of
queries needed for this transformation. By utilizing the symmetries of the problem, we
prove a lower bound using a hybrid argument and semidefinite programming. For the
matching upper bound we construct a quantum algorithm that generalizes the rejec-
tion sampling method first formalized by von Neumann in 1951. We describe quantum
algorithms for the linear equations problem and quantum Metropolis sampling as ap-
plications of quantum rejection sampling.

In the third part we consider a hidden shift problem for Boolean functions: given
oracle access to f (x + s), where f (x) is a known Boolean function, determine the hid-
den shift s. We construct quantum algorithms for this problem using the “pretty good
measurement” and quantum rejection sampling. Both algorithms use the Fourier trans-
form and their complexity can be expressed in terms of the Fourier spectrum of f (in
particular, in the second case it relates to “water-filling” of the spectrum). We also con-
struct algorithms for variations of this problem where the task is to verify a given shift
or extract only a single bit of information about it.
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tories America in Princeton. I would also like to acknowledge all my close friends—you
have taught me many lessons that are far more important than what I have learned at
university. I cherish the time we have spent together—it has shaped my personality in
significant ways. I would not have become who I am without you all.

iv



Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Semi-absorbing Markov chains and the extended hitting time 5

2.1 Classical random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Perron–Frobenius theorem . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Semi-absorbing Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Stationary distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Discriminant matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Principal eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Hitting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Extended hitting time . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Dependence on s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Adiabatic condition and the quantum hitting time of Markov chains 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Overview of the main result . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Interpolating Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The adiabatic condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The relevant subspace for adiabatic evolution . . . . . . . . . . . . 36

3.3.2 The quantum adiabatic theorem . . . . . . . . . . . . . . . . . . . . 37

3.4 Analysis of running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Choice of the schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Relation to the classical hitting time . . . . . . . . . . . . . . . . . . 40

3.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Finding is as easy as detecting for quantum walks 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Our approach and contributions . . . . . . . . . . . . . . . . . . . . 46

vi



4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Spatial search on graphs . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Quantum walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.4 Classical hitting time . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.5 Quantum hitting time . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Discrete-time quantum walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Szegedy’s construction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Quantum circuit for W(s) . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Quantum search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Algorithm with known values of pM and HT(P, M) . . . . . . . . . 57

4.4.2 Algorithms with approximately known pM . . . . . . . . . . . . . . 61

4.4.3 Algorithms with a given bound on pM or HT(P, M) . . . . . . . . . 66

4.4.4 Application to the 2D grid . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Quantum rejection sampling 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.3 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Query complexity of quantum resampling . . . . . . . . . . . . . . . . . . . 80

5.4 Quantum rejection sampling algorithm . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Intuitive description of the algorithm . . . . . . . . . . . . . . . . . 87

5.4.2 Amplitude amplification subroutine and quantum rejection sam-
pling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Strong quantum rejection sampling algorithm . . . . . . . . . . . . 91

5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vii



5.5.1 Linear systems of equations . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.2 Quantum Metropolis sampling . . . . . . . . . . . . . . . . . . . . . 99

5.5.3 Boolean function hidden shift problem . . . . . . . . . . . . . . . . 104

5.6 Conclusion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Quantum algorithms for the Boolean function hidden shift problem 108

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Hidden subgroup problem . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2 Hidden shift problem . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.3 Hidden shift problem for Zd-valued functions . . . . . . . . . . . . 111

6.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Notation and basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Boolean Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Quantum Fourier transform . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.4 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.5 Bent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Quantum algorithms for preparing the t-fold Fourier states . . . . . . . . . 120

6.3.1 Computing w · s in the phase to prepare |Φt(s)〉 . . . . . . . . . . . . 122

6.3.2 Computing w · s in the register to prepare |Ψt(s)〉 . . . . . . . . . . . 124

6.4 Quantum algorithms for finding a hidden shift . . . . . . . . . . . . . . . . 126

6.4.1 The PGM (Pretty Good Measurement) approach . . . . . . . . . . . 127

6.4.2 The “Grover” approach (quantum rejection sampling) . . . . . . . 134

6.4.3 The “Simon” approach (sampling and classical post-processing) . . 138

6.5 Quantum algorithms for related problems . . . . . . . . . . . . . . . . . . . 139

6.5.1 Parity extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5.2 Verification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Zeroes in the Fourier spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 146

viii



6.6.1 Undetectable shifts and anti-shifts . . . . . . . . . . . . . . . . . . . 146

6.6.2 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6.3 Zeroes in the t-fold Fourier spectrum . . . . . . . . . . . . . . . . . 153

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7.1 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDICES 157

A Water-filling vector is optimal for the SDP 158

References 162

ix



List of Tables

4.1 Summary of results on quantum search algorithms . . . . . . . . . . . . . . 57

5.1 Reduction from quantum algorithm for linear system of equations to a
quantum resampling problem . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Reduction from quantum Metropolis algorithm to a quantum resampling
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Summary of quantum query complexity upper bounds for the Boolean
function hidden shift problem . . . . . . . . . . . . . . . . . . . . . . . . . . 154

x



List of Figures

1.1 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Markov chain P and the corresponding graph . . . . . . . . . . . . . . . . 7

2.2 Summary of Markov chain properties . . . . . . . . . . . . . . . . . . . . . 8

2.3 Markov chain P and the corresponding absorbing chain P′ . . . . . . . . . 9

2.4 Rotation of |vn(s)〉 in a two-dimensional subspace . . . . . . . . . . . . . . 17

2.5 Region corresponding to the double sum . . . . . . . . . . . . . . . . . . . 20

2.6 Extended hitting time HT(s) as a function of s . . . . . . . . . . . . . . . . 27

4.1 Vectors |U〉, |M〉, and |vn(s)〉 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Classical rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Classes of quantum query complexity problems . . . . . . . . . . . . . . . 79

5.3 Symmetrized algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Quantum circuit for implementing Uε . . . . . . . . . . . . . . . . . . . . . 89

6.1 Quantum algorithm for preparing the t-fold Fourier sate |Φt(s)〉 . . . . . . 121

6.2 Quantum algorithm for preparing the t-fold Fourier sate |Ψt(s)〉 . . . . . . 125

6.3 SWAP test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Decision tree for function f10 . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xi



Chapter 1

Introduction

1.1 Overview

This thesis consists of six chapters that are grouped into three parts (see Fig. 1.1). All
three parts are self-contained and can be read independently from each other. The last
part uses a result from the previous part, but it is not essential to know the details of
this result to understand the application.

1. Introduction

2. Markov chains [KOR10, KMOR10]
3. Quantum search (adiabatic version) [KOR10]
4. Quantum search (circuit version) [KMOR10]

Part I

5. Quantum rejection sampling [ORR12]Part II

6. Hidden shift problemPart III

Figure 1.1: Structure of this thesis.

1.1.1 Part I

The first part of this thesis is on quantizing Markov chains and is based on joint work
with Hari Krovi, Frédéric Magniez, and Jérémie Roland. Most of the research for this
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part was done in the summer of 2009 during my internship at NEC Laboratories Amer-
ica, and it was completed during subsequent short visits to Princeton. It is based on pa-
pers [KOR10, KMOR10] and consists of three chapters (see Fig. 1.1). Chapter 2 is purely
classical, while Chapter 3 and Chapter 4 describe an adiabatic and a circuit-based ver-
sion of a quantum walk algorithm that finds a marked vertex in a graph quadratically
faster than any randomized classical algorithm.

Chapter 2 contains results on Markov chains which are common to papers [KOR10]
and [KMOR10]. Their proofs do not require any knowledge on quantum computing,
but use only linear algebra and probability theory. The main result of this chapter is the
formula

HT(s) =
p2

M
(1− s(1− pM))2 HT(P, M) (1.1)

from Theorem 2.22. It relates HT(P, M), the hitting time to Markov chain P, to the
extended hitting time HT(s). This formula is used to analyze the quantum algorithms
in Chapter 3 and Chapter 4, where it is important that HT(s) is monotonically increasing
as a function of s.

In Chapter 3 we describe an adiabatic quantum algorithm for finding a marked ver-
tex in a graph that has some set M of its vertices marked. A classical version of this
algorithm is a random walk with transition matrix P(s) = sP + (1− s)P′, where param-
eter s slowly changes from s = 0 to s = 1 as the walk proceeds. During this evolution
the transition matrix P(s) changes from initial matrix P to the absorbing matrix P′ which
has no outgoing transitions from marked vertices. The main result of Chapter 3 is The-
orem 3.6, which states that this algorithm finds a marked element with high probability
in time O(

»
HT(P, M)) where HT(P, M) is the corresponding time for the classical ran-

dom walk P′.

In Chapter 4 we use ideas from the previous chapter to design a search algorithm
in the quantum circuit model, which is based on eigenvalue estimation. This algorithm
also achieves a quadratic speed-up over the classical case, which is the main result of
this chapter (see Theorem 4.10). We also provide several variations of this algorithm
that relax the assumptions in the main theorem, as well as apply these results for the
spatial search problem on the 2D grid.

1.1.2 Part II

The second part of this thesis is on quantum rejection sampling. It consists of Chapter 5
and is almost identical to [ORR12], which is joint work with Martin Rötteler and Jérémie

2



Roland. This result originally came about as a byproduct of an algorithm for solving
the Boolean function hidden shift problem, which is discussed in the third part of this
thesis. I started to work on the hidden shift problem during my second internship at the
NEC Laboratories America in the summer of 2010, when we discovered a “Grover-like”
approach for solving this problem (see Sect. 6.4.2). The main ingredient in this approach
is an amplitude amplification subroutine, which uses an oracle to implement a certain
transformation between two unknown quantum states. This subroutine seemed to be
of independent interest, so we decided to deviate from the original problem and study
the abstract quantum state conversion problem solved by this subroutine. Only later
we came to realize that it is the quantum equivalent of a simple probabilistic procedure
known as rejection sampling which was studied by von Neumann [vN51].

Chapter 5 contains three main results: a query lower bound for the quantum resam-
pling problem (see Sect. 5.3), the quantum rejection sampling algorithm (see Sect. 5.4),
and applications for the linear systems of equations and quantum Metropolis sampling
problems (see Sect. 5.5).

1.1.3 Part III

The third part of this thesis is based on unpublished work together with Andrew Childs,
Martin Rötteler, and Jérémie Roland. It consists of Chapter 6 where we study a version
of the hidden shift problem for Boolean functions. We assume that the underlying func-
tion is known and consider upper bounds on quantum query complexity by construct-
ing quantum algorithms for this problem.

The most important part of Chapter 6 is Sect. 6.4 where three different approaches
for solving this problem are considered. The first approach is based on the “pretty good
measurement”—it corresponds to making all queries in parallel and performing a joint
measurement of the obtained states (see Sect. 6.4.1). The second approach is based on
quantum rejection sampling—it uses amplitude amplification and performs all queries
sequentially (see Sect. 6.4.2). The third approach is due to [Röt10, GRR11] and resembles
Simon’s algorithm [Sim94]—it makes independent queries, each immediately followed
by a measurement, and classically post-processes the obtained data (see Sect. 6.4.3).

We also consider the problem of extracting one bit of information about the hidden
shift, namely, determining the inner product with a given string (see Sect. 6.5.1) as well
as the problem of verifying a given shift (see Sect. 6.5.2). The idea of using decision trees
to construct Boolean functions that have large fraction of the Fourier spectrum equal to
zero was suggested by Dmitry Gavinsky (see Sect. 6.6.2).

3



1.2 Mathematical preliminaries

We assume that the reader is familiar with linear algebra and basics of quantum com-
puting (for an introduction to quantum computing see [KLM07, KSV02]; for a more
comprehensive overview see [NC10]). In particular, the reader should be familiar with
two basic tools for constructing quantum algorithms: quantum amplitude amplification
(see [KLM07, p. 163] or the original paper [BHMT00]) and eigenvalue estimation (see
[KSV02, p. 125], [KLM07, p. 125.], [NC10, p. 221], or the papers [Kit95, CEMM98]).
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Chapter 2

Semi-absorbing Markov chains and the
extended hitting time

Contents
2.1 Classical random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Perron–Frobenius theorem . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Semi-absorbing Markov chains . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Stationary distribution . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Discriminant matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Principal eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Hitting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Extended hitting time . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Dependence on s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter we study a special type of Markov chains that can be described by a
one-parameter family P(s) corresponding to convex combinations of some chain P and
the corresponding absorbing chain P′. Intuitively, P(s) has states that are hard to escape
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which is controlled by the interpolation parameter s. For this reason we call such chains
“semi-absorbing”. We will consider various properties of these chains as a function of
the interpolation parameter s.

We begin by discussing some preliminaries and defining basic concepts related to
Markov chains, such as ergodicity (Sect. 2.1). Next, we define the interpolated Markov
chain P(s) and consider various its properties, such as the stationary distribution and
reversibility (Sect. 2.2). We proceed by applying these concepts to define and study the
discriminant matrix of P(s) which encodes all relevant properties, such as eigenvalues
and the principal eigenvector of P(s), but has a much more convenient form (Sect. 2.3).
Finally, we define the hitting time HT and the extended hitting time HT(s) and relate
the two via Theorem 2.22, which is the main result of this chapter (Sect. 2.4).

Results from this chapter will be used in Chapter 3 and Chapter 4 to construct quan-
tum algorithms based on adiabatic evolution and discrete-time quantum walks, respec-
tively.

2.1 Classical random walks

2.1.1 Preliminaries

Let us consider a Markov chain1 on a discrete state space X of size n. Its transition
probabilities can be described by a row-stochastic matrix P, i.e., an n × n matrix whose
entries are real and non-negative and each row sums to one:

∀x ∈ X :
∑
y∈X

Pxy = 1. (2.1)

Here Pxy is the probability to go from state x to y.

A Markov chain P with state space X has a corresponding underlying directed graph
with n vertices labelled by elements of X, and directed arcs labelled by non-zero proba-
bilities Pxy (see Fig. 2.1).

We will represent probability distributions by row vectors whose entries are also real,
non-negative, and sum to one. If p is the initial probability distribution, then the prob-
ability distribution p′ after one step of P is obtained by multiplying p by the transition

1We will use terms “random walk”, “Markov chain”, and “stochastic matrix” interchangeably. The
same holds for “state”, “vertex”, and “element”.
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Ö
0.7 0.3 0
0 0 1.0
0 0.8 0.2

è
1

2

3

0.3 1.0

0.8

0.7 0.2

Figure 2.1: Markov chain P and the corresponding graph with transition probabilities.

matrix from the left hand side: p′ = pP. A probability distribution π that satisfies
πP = π is called the stationary distribution of P.

For more background on Markov chains see, e.g., [GS97, KS60, KS07].

2.1.2 Ergodicity

Definition 2.1. A Markov chain is called

• irreducible, if any state in the underlying directed graph can be reached from any
other by a finite number of steps (i.e., the graph is strongly connected);
• aperiodic, if there is no integer k > 1 that divides the length of every directed cycle

of the underlying directed graph;
• ergodic, if it is both irreducible and aperiodic.

Equivalently, a Markov chain P is ergodic if there exists some integer k0 ≥ 1 such that
all entries of Pk0 (and, in fact, of Pk for any k ≥ k0) are strictly positive. Some authors
call such chains regular and use the term “ergodic” already for irreducible chains [GS97,
KS60]. From now on we will almost exclusively consider only ergodic Markov chains.

Even though some of the Markov chain properties are independent from each other
(such as irreducibility and aperiodicity), usually they are imposed in a specific order
which is summarized in Fig. 2.2. As we impose more conditions, more can be said
about the spectrum of P as discussed in the next section.
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stochastic

irreducible

aperiodic

reversible

ergodic

Figure 2.2: The order in which Markov chain properties from Definition 2.1 are typically
imposed. Reversibility will be defined in Sect. 2.2.3.

2.1.3 Perron–Frobenius theorem

The following theorem will be very useful for us. It is essentially the standard Perron–
Frobenius theorem [HJ90, Theorem 8.4.4, p. 508], but adapted for Markov chains. (This
theorem is also known as the “Ergodic Theorem for Markov chains” [KS07, Theorem 5.9,
p. 72].) The version presented here is based on the extensive overview of Perron–
Frobenius theory in [Mey00, Chapter 8].

Theorem (Perron–Frobenius). Let P be a stochastic matrix. Then

• all eigenvalues of P are at most 1 in absolute value and 1 is an eigenvalue of P;
• if P is irreducible, then the 1-eigenvector is unique and strictly positive (i.e., it is of the

form cπ for some non-vanishing probability distribution π and c 6= 0);
• if in addition to being irreducible, P is also aperiodic (i.e., P is ergodic), then the remaining

eigenvalues of P are strictly smaller than 1 in absolute value.

If P is irreducible but not aperiodic, it has some complex eigenvalues on the unit
circle (which can be shown to be roots of unity) [Mey00, Chapter 8]. However, when
in addition we also impose aperiodicity (and hence ergodicity), we are guaranteed that
there is a unique eigenvalue of absolute value 1 and, in fact, it is equal to 1.
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2.2 Semi-absorbing Markov chains

2.2.1 Definition

Assume that a subset M ⊂ X of size m := |M| of the states are marked (throughout this
chapter we assume that M is not empty). Let P′ be the Markov chain obtained from P
by turning all outgoing transitions from marked states into self-loops (see Fig. 2.3). We
call P′ the absorbing version of P (see [KS60, Chapter III] and [GS97, Sect. 11.2]). Note
that P′ differs from P only in the rows corresponding to the marked states (where it
contains all zeros on non-diagonal elements, and ones on the diagonal). If we arrange
the states of X so that the unmarked states U := X \ M come first, matrices P and P′

have the following block structure:

P :=
Ç

PUU PUM
PMU PMM

å
, P′ :=

Ç
PUU PUM

0 I

å
, (2.2)

where PUU and PMM are square matrices of size (n−m)× (n−m) and m×m, respec-
tively, while PUM and PMU are matrices of size (n− m)× m and m× (n− m), respec-
tively.

U

M

U

M

Figure 2.3: Directed graphs underlying Markov chain P (left) and the corresponding
absorbing chain P′ (right). Outgoing arcs from vertices in the marked set M have been
turned into self-loops in P′.

Let us define an interpolated Markov chain that interpolates between P and P′:

P(s) := (1− s)P + sP′, 0 ≤ s ≤ 1. (2.3)

9



This expression has some resemblance with adiabatic quantum computation where sim-
ilar interpolations are usually defined for quantum Hamiltonians [FGGS00]. Indeed,
we will use the interpolated Markov chain P(s) in Chapter 3 to construct an adiabatic
quantum algorithm. Note that P(0) = P, P(1) = P′, and P(s) has the following block
structure:

P(s) =
Ç

PUU PUM
(1− s)PMU (1− s)PMM + sI

å
. (2.4)

Proposition 2.2. If P is ergodic then so is P(s) for s ∈ [0, 1). P(1) is not ergodic.

Proof. A non-zero transition probability in P remains non-zero also in P(s) for s ∈ [0, 1).
Thus the ergodicity of P implies that P(s) is also ergodic for s ∈ [0, 1). However, P(1) is
not irreducible, since states in U are not reachable from M. Thus P(1) is not ergodic.

Proposition 2.3. (P′ t)UU = Pt
UU.

Proof. Let us derive an expression for P′ t, the matrix of transition probabilities corre-
sponding to t applications of P′. Notice that

Ä
a b
0 1

äÄ
a b
0 1

ä
=
Ä

a2 ab+b
0 1

ä
. By induction we

get

P′ t =
(

Pt
UU

∑t−1
k=0 Pk

UUPUM
0 I

)
. (2.5)

When restricted to U, it acts as Pt
UU.

Proposition 2.4 ([GS97, Theorem 11.3, p. 417]). If P is irreducible then limk→∞ Pk
UU = 0.

Intuitively this means that the sub-stochastic process defined by PUU eventually
dies out or, equivalently, that the unmarked states of P′ eventually get absorbed (by
Prop. 2.3).

Proof. Let us fix an unmarked initial state x. Since P is irreducible, we can reach a
marked state from x in a finite number of steps. Note that this also holds true for P′.
Let us denote the smallest number of steps by lx and the corresponding probability by
px. Thus in l := maxx lx steps of P′ we are guaranteed to reach a marked state with
probability at least p := minx px > 0, independently of the initial state x ∈ U. Notice
that the probability to still be in an unmarked state after lk steps is at most (1 − p)k

which approaches zero as we increase k.

Proposition 2.5 ([KS60, Theorem 3.2.1, p. 46]). If P is irreducible then I − PUU is invertible.
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Proof. Notice that

(I − PUU) · (I + PUU + P2
UU + · · ·+ Pk−1

UU ) = I − Pk
UU (2.6)

and take the determinant of both sides. From Prop. 2.4 see that limk→∞ det(I − Pk
UU) =

1. By continuity, there exists k0 such that det(I − Pk0
UU) > 0, so the determinant of the

left-hand side is non-zero as well. Using multiplicativity of determinant, we conclude
that det(I − PUU) 6= 0 and thus I − PUU is invertible.

In the Markov chain literature (I − PUU)
−1 is called the fundamental matrix of P.

2.2.2 Stationary distribution

From now on let us demand that P is ergodic. Then according to the Perron–Frobenius
Theorem it has a unique and non-vanishing stationary distribution π. Let πU and πM
be row vectors of length n− m and m that are obtained by restricting π to sets U and
M, respectively. Then

π =
Ä
πU πM

ä
, π′ :=

Ä
0U πM

ä
(2.7)

where 0U is the all-zeroes row vector indexed by elements of U and π′ satisfies π′P′ =
π′.

Let pM :=
∑

x∈M πx be the probability to pick a marked element from the station-
ary distribution. In analogy to the definition of P(s) in Eq. (2.3), let π(s) be a convex
combination of π and π′, appropriately normalized:

π(s) :=
(1− s)π + sπ′

(1− s) + spM
=

1
1− s(1− pM)

Ä
(1− s)πU πM

ä
. (2.8)

Proposition 2.6. π(s) is the unique stationary distribution of P(s) for s ∈ [0, 1). At s = 1
any distribution with support only on marked states is stationary, including π(1).

Proof. Notice that

(π − π′)(P− P′) =
Ä
πU 0

ä Ç 0 0
PMU PMM − I

å
= 0 (2.9)

which is equivalent to
πP′ + π′P = πP + π′P′. (2.10)
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Using this equation we can check that π(s)P(s) = π(s) for any s ∈ [0, 1]:Ä
(1− s)π + sπ′

äÄ
(1− s)P + sP′

ä
(2.11)

= (1− s)2πP + (1− s)s(πP′ + π′P) + s2π′P′ (2.12)

= (1− s)2π + (1− s)s(π + π′) + s2π′ (2.13)

=
Ä
(1− s)π + sπ′

äÄ
(1− s) + s

ä
(2.14)

= (1− s)π + sπ′. (2.15)

Recall from Prop. 2.2 that P(s) is ergodic for s ∈ [0, 1) so π(s) is the unique stationary
distribution by Perron–Frobenius Theorem. Since P′ acts trivially on marked states, any
distribution with support only on marked states is stationary for P(1).

2.2.3 Reversibility

Definition 2.7. Markov chain P is called reversible if it is ergodic and satisfies the so-
called detailed balance condition

∀x, y ∈ X : πxPxy = πyPyx (2.16)

where π is the unique stationary distribution of P.

Intuitively this means that the net flow of probability in the stationary distribution
between every pair of states is zero. Note that Eq. (2.16) is equivalent to

diag(π) P = PT diag(π) =
Ä
diag(π)P

äT (2.17)

where diag(π) is a diagonal matrix whose diagonal is given by vector π. Thus Eq. (2.16)
is equivalent to saying that matrix diag(π)P is symmetric.

Proposition 2.8. If P is reversible then so is P(s) for any s ∈ [0, 1]. Hence, P(s) satisfies the
extended detailed balance equation

∀s ∈ [0, 1], ∀x, y ∈ X : πx(s)Pxy(s) = πy(s)Pyx(s). (2.18)

Proof. First, notice that the absorbing walk P′ is reversible2 since

diag(π′)P′ =
Ç

0 0
0 diag(πM)

åÇ
PUU PUM

0 I

å
=

Ç
0 0
0 diag(πM)

å
= diag(π′) (2.19)

2Strictly speaking, the definition of reversibility also includes ergodicity for the stationary distribution
to be uniquely defined. However, we will relax this requirement for P′ since, by continuity, π′ is the
natural choice of the “unique” stationary distribution.
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which is symmetric. Next, notice that

diag(π − π′)(P− P′) =
Ç

diag(πU) 0
0 0

åÇ
0 0

PMU PMM − I

å
= 0 (2.20)

which gives us an analogue of Eq. (2.10):

diag(π′)P + diag(π)P′ = diag(π)P + diag(π′)P′. (2.21)

Here the right-hand side is symmetric due to reversibility of P and P′, thus so is the
left-hand side. Using this we can check that P(s) is reversible:

diag
Ä
(1− s)π + sπ′

äÄ
(1− s)P + sP′

ä
(2.22)

= (1− s)2 diag(π)P + (1− s)s
Ä
diag(π)P′ + diag(π′)P

ä
+ s2 diag(π′)P′ (2.23)

where the first and last terms are symmetric since P and P′ are reversible, but the middle
term is symmetric due to Eq. (2.21).

2.3 Discriminant matrix

2.3.1 Definition

The discriminant matrix of a Markov chain P(s) is

D(s) :=
»

P(s) ◦ P(s)T, (2.24)

where the Hadamard product “◦” and the square root are computed entry-wise. This
matrix was introduced by Szegedy in [Sze04a, Sze04b]. We prefer to work with D(s)
rather than P(s) since the matrix of transition probabilities is not necessarily symmetric
while its discriminant matrix is.

Proposition 2.9. If P is reversible then

D(s) = diag
Ä»

π(s)
ä

P(s) diag
Ä»

π(s)
ä−1, ∀s ∈ [0, 1); (2.25)

D(1) =
(

diag
Ä√

πU
ä

PUU diag
Ä√

πU
ä−1 0

0 I

)
. (2.26)
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Here the square roots are also computed entry-wise and M−1 denotes the matrix
inverse of M. Notice that for s ∈ [0, 1) the right-hand side of Eq. (2.25) is well-defined,
since P(s) is ergodic by Prop. 2.2 and thus according to the Perron–Frobenius Theorem
has a unique and non-vanishing stationary distribution. However, recall from Prop. 2.6
that π(1) vanishes on U, so the right-hand side of Eq. (2.25) is no longer well-defined at
s = 1. For this reason we have an alternative expression for D(1).

Proof (of Prop. 2.9). For a reversible Markov chain P the extended detailed balance con-
dition in Eq. (2.18) implies that Dxy(s) =

»
Pxy(s)Pyx(s) = Pxy(s)

»
πx(s)/πy(s). This is

equivalent to Eq. (2.25).

At s = 1 from Eq. (2.24) we have:

D(1) =
»

P(1) ◦ P(1)T =

ÃÇ
PUU ◦ PT

UU 0
0 I

å
=

(»
PUU ◦ PT

UU 0
0 I

)
. (2.27)

In the same way one can use Eq. (2.24) to compute the upper left block of D(s) for any
s, and notice that it does not depend on s:

DUU(s) =
√

PUU ◦ PT
UU = DUU(0) = diag

Ä√
πU
ä

PUU diag
Ä√

πU
ä−1 (2.28)

where the last equality follows from Eq. (2.25) at s = 0. Together with Eq. (2.27) this
gives us the desired expression in Eq. (2.26).

2.3.2 Spectral decomposition

Recall from Eq. (2.24) that D(s) is real and symmetric. Therefore, its eigenvalues are real
and it has an orthonormal set of real eigenvectors. Let

D(s) =
n∑

i=1
λi(s)|vi(s)〉〈vi(s)| (2.29)

be the spectral decomposition of D(s) with eigenvalues λi(s) and eigenvectors3 |vi(s)〉.
Moreover, let us arrange the eigenvalues so that

λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s). (2.30)

3There is no need to use bra-ket notation at this point; nevertheless we adopt it since vectors |vi(s)〉
later will be used as quantum states.
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From now on we will assume that P is reversible (and hence ergodic) without ex-
plicitly mentioning it. Under this assumption the matrices P(s) and D(s) are similar
(see Prop. 2.10 below). This means that D(s) essentially has the same properties as P(s),
but in addition it also admits a spectral decomposition with orthogonal eigenvectors.
This will be very useful in Chapter 3, where we will find the spectral decomposition of
Hamiltonian H(s) in terms of that of D(s), and use it to relate properties of H(s) and
P(s).

Proposition 2.10. The matrices P(s) and D(s) are similar for any s ∈ [0, 1] and therefore have
the same eigenvalues. In particular, the eigenvalues of P(s) are real.

Proof. From Eq. (2.25) we see that the matrices D(s) and P(s) are similar for s ∈ [0, 1).
From Eq. (2.26) we see that D(1) is similar to P̃ :=

Ä PUU 0
0 I

ä
. To verify that P̃ and P(1) =Ä PUU PUM

0 I

ä
are similar, let M :=

Ä PUU−I PUM
0 I

ä
. One can check that MP(1)M−1 = P̃

where M−1 =
Ä
(PUU−I)−1 −(PUU−I)−1PUM

0 I

ä
exists, since PUU − I is invertible according

to Prop. 2.5. By transitivity, D(1) is also similar to P(1).

Proposition 2.11. The largest eigenvalue of D(s) is 1. It has multiplicity 1 when s ∈ [0, 1)
and multiplicity m when s = 1. In other words,

λn−1(s) < λn(s) = 1, ∀s ∈ [0, 1), (2.31)
λn−m(1) < λn−m+1(1) = · · · = λn(1) = 1. (2.32)

Proof. Let us argue about P(s), since it has the same eigenvalues as D(s) by Prop. 2.10.
From the Perron–Frobenius Theorem we have that ∀i : λi(s) ≤ 1 and λn(s) = 1. In
addition, by Prop. 2.2 the Markov chain P(s) is ergodic for any s ∈ [0, 1), so ∀i 6= n :
λi(s) < 1. Finally, note by Eq. (2.26) that for s = 1 eigenvalue 1 has multiplicity at least
m. Recall from Eq. (2.28) that DUU(1) and PUU are similar. From Prop. 2.5 we conclude
that all eigenvalues of PUU are strictly less than 1. Thus the multiplicity of eigenvalue 1
of D(1) is exactly m.

2.3.3 Principal eigenvector

Let us prove an analogue of Prop. 2.6 for the matrix D(s).

Proposition 2.12.
»

π(s)T is the unique (+1)-eigenvector of D(s) for s ∈ [0, 1). At s = 1
any vector with support only on marked states is a (+1)-eigenvector, including

»
π(1)T.

15



Proof. Since P(s) is row-stochastic, P(s) 1TX = 1TX where 1X is the all-ones row vector.
Thus we can check that for s ∈ [0, 1),

D(s)
»

π(s)T = diag
Å»

π(s)
ã

P(s) diag
Å»

π(s)
ã−1»

π(s)T (2.33)

= diag
Å»

π(s)
ã

P(s) 1TX (2.34)

= diag
Å»

π(s)
ã

1TX (2.35)

=
»

π(s)T. (2.36)

Uniqueness for s ∈ [0, 1) follows by the uniqueness of π(s) and Prop. 2.10. For the s = 1
case, notice from Eq. (2.26) that D(1) acts trivially on marked elements and recall from
Eq. (2.8) that π(1) = (0U πM)/pM.

According to the above Proposition, for any s ∈ [0, 1] we can choose the principal
eigenvector |vn(s)〉 in the spectral decomposition of D(s) in Eq. (2.29) to be

|vn(s)〉 :=
»

π(s)T. (2.37)

We would like to have an intuitive understanding of how |vn(s)〉 evolves as a function
of s. Let us introduce some useful notation that we will also need later.

Let 0U and 1U (respectively, 0M and 1M) be the all-zeros and all-ones row vectors of
dimension n−m (respectively, m) whose entries are indexed by elements of U (respec-
tively, M). Furthermore, let

π̃U := πU/(1− pM), π̃M := πM/pM (2.38)

be the normalized row vectors describing the stationary distribution π restricted to un-
marked and marked states. Let us also define the following unit vectors in Rn:

|U〉 :=
»
(π̃U 0M)T =

1»
1− pM

∑
x∈U

√
πx|x〉, (2.39)

|M〉 :=
»
(0U π̃M)T =

1
√

pM

∑
x∈M

√
πx|x〉. (2.40)

Then we can express |vn(s)〉 as a linear combination of |U〉 and |M〉.
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Proposition 2.13. |vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉 where

cos θ(s) =

Ã
(1− s)(1− pM)

1− s(1− pM)
, sin θ(s) =

√
pM

1− s(1− pM)
. (2.41)

Proof. By substituting π(s) from Eq. (2.8) into Eq. (2.37) we get

|vn(s)〉 =
»

π(s)T =

ÕÄ
(1− s)πU πM

äT
1− s(1− pM)

=

ÕÄ
(1− s)(1− pM)π̃U pMπ̃M

äT
1− s(1− pM)

(2.42)

which is the desired expression.

Thus |vn(s)〉 lies in the two-dimensional subspace span{|U〉, |M〉} and is subject to
a rotation as we change the parameter s (see Fig. 2.4). In particular,

|vn(0)〉 =
»

1− pM|U〉+
√

pM|M〉, |vn(1)〉 = |M〉. (2.43)

|U〉

|M〉 = |vn(1)〉

|vn(0)〉

Figure 2.4: As s changes from zero to one, the evolution of the principal eigenvector
|vn(s)〉 corresponds to a rotation in the two-dimensional subspace span{|U〉, |M〉}.

Proposition 2.14. θ(s) and its derivative θ̇(s) := d
ds θ(s) are related as follows:

2θ̇(s) =
sin θ(s) cos θ(s)

1− s
. (2.44)

Proof. Notice that
d
ds
Ä
sin2 θ(s)

ä
= 2θ̇(s) sin θ(s) cos θ(s). (2.45)
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On the other hand, according to Eq. (2.41) we have

d
ds
Ä
sin2 θ(s)

ä
=

d
ds

(
pM

1− s(1− pM)

)
=

pM(1− pM)

(1− s(1− pM))2 =
sin2 θ(s) cos2 θ(s)

1− s
. (2.46)

By comparing both equations we get the desired result.

2.3.4 Derivative

Proposition 2.15. D(s) and its derivative Ḋ(s) := d
ds D(s) are related as follows:

Ḋ(s) =
1

2(1− s)
¶

ΠM, I − D(s)
©

(2.47)

where {X, Y} := XY +YX is the anticommutator of X and Y, and ΠM :=
∑

x∈M |x〉〈x| is the
projector onto the m-dimensional subspace spanned by marked states M.

Proof. Recall from Eq. (2.24) that D(s) =
»

P(s) ◦ P(s)T. The block structure of P(s) is
given in Eq. (2.4). First, let us derive an expression for DMM(s), the lower right block of
D(s):

DMM(s) =
»

PMM(s) ◦ PMM(s)T (2.48)

=
√Ä

(1− s)PMM + sI
ä
◦
Ä
(1− s)PT

MM + sI
ä
. (2.49)

Let us separately consider the diagonal and off-diagonal entries of DMM(s). For x, y ∈
M we have

Dxy(s) =

(1− s)
»

PxyPyx if x 6= y,
(1− s)Pxx + s if x = y.

(2.50)

Thus we can write DMM(s) as

DMM(s) = (1− s)
√

PMM ◦ PT
MM + sI. (2.51)

Expressions for the remaining blocks of D(s) can be derived in a straightforward
way. By putting all blocks together we get

D(s) =
( »

PUU ◦ PT
UU

»
(1− s)(PUM ◦ PT

MU)»
(1− s)(PMU ◦ PT

UM) (1− s)
»

PMM ◦ PT
MM + sI

)
. (2.52)
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When we take the derivative with respect to s we find

Ḋ(s) =

Ñ
0 − 1

2
√

1−s

»
PUM ◦ PT

MU

− 1
2
√

1−s

»
PMU ◦ PT

UM I −
»

PMM ◦ PT
MM

é
. (2.53)

To relate Ḋ(s) and the original matrix D(s), observe that

ΠMD(s) + D(s)ΠM =

(
0

»
(1− s)(PUM ◦ PT

MU)»
(1− s)(PMU ◦ PT

UM) 2(1− s)
»

PMM ◦ PT
MM + 2sI

)
(2.54)

which can be seen by overlaying the second column and row of D(s) given in Eq. (2.52).
When we rescale this by an appropriate constant, we get

− 1
2(1− s)

{ΠM, D(s)} =
Ñ

0 − 1
2
√

1−s

»
PUM ◦ PT

MU

− 1
2
√

1−s

»
PMU ◦ PT

UM −
»

PMM ◦ PT
MM − s

1−s I

é
. (2.55)

This is very similar to the expression for Ḋ(s) in Eq. (2.53), except for a slightly different
coefficient for the identity matrix in the lower right corner. We can correct this by adding
ΠM with an appropriate constant: − 1

2(1−s){ΠM, D(s)}+ 1
1−s ΠM = Ḋ(s).

2.4 Hitting time

2.4.1 Definition

To define the hitting time of Markov chain P, let us consider a simple classical algorithm
for finding a marked element in the state space X using a random walk based on P.

Random Walk Algorithm
1. Sample a vertex x ∈ X according to the stationary distribution π of P.
2. If x is marked, output x and exit.
3. Otherwise, update x according to P and go back to step 2.

The hitting time of P is the expected number of applications of P during this al-
gorithm (notice that the algorithm stops as soon as a marked element is reached, thus
effectively it uses the absorbing Markov chain P′). Here is a more formal definition:
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Definition 2.16. Let P be an ergodic Markov chain, and M be a set of marked states.
The hitting time of P with respect to M, denoted by HT(P, M), is the expected number
of executions of the last step of the Random Walk Algorithm, conditioned on the initial
vertex being unmarked.

Proposition 2.17. The hitting time of Markov chain P with respect to marked set M is

HT(P, M) =
∞∑

t=0
〈U|Dt(1)|U〉. (2.56)

Proof. The expected number of iterations in the Random Walk Algorithm is

HT(P, M) :=
∞∑

l=1
l · Pr[need exactly l steps] (2.57)

=
∞∑

l=1

l∑
t=1

Pr[need exactly l steps] (2.58)

=
∞∑

t=1

∞∑
l=t

Pr[need exactly l steps] (2.59)

=
∞∑

t=1
Pr[need at least t steps] (2.60)

=
∞∑

t=0
Pr[need more than t steps] (2.61)

where the region corresponding to the double sum is shown in Fig. 2.5.

l

t

1 2 3 4

1

2

3

4

Figure 2.5: The region corresponding to the double sum in Eqs. (2.58) and (2.59).
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Hence, we can consider the probability that no marked vertex is found after t steps
starting from an unmarked vertex distributed according to π̃U = πU/(1− pM). Let us
find an explicit expression for this probability. The distribution of vertices at the first
execution of step 3 of the Random Walk Algorithm is (π̃U 0M), hence

Pr[need more than t steps] = (π̃U 0M)P′ t(1U 0M)T. (2.62)

Recall from Prop. 2.3 that (P′ t)UU = Pt
UU so we can simplify Eq. (2.62) as follows:

Pr[need more than t steps] = (π̃U 0M)P′ t(1U 0M)T (2.63)

=
πU

1− pM
Pt

UU1TU (2.64)

=
…

πU
1−pM

diag
Ä√

πU
ä
Pt

UU diag
Ä√

πU
ä−1
 

πT
U

1−pM
(2.65)

= 〈U|Dt(1)|U〉, (2.66)

where the last equality follows from the expression for the discriminant matrix D(1) in
Eq. (2.26). By plugging this back in Eq. (2.61) we get the desired result.

2.4.2 Extended hitting time

Let us define the following extension of the hitting time based on Eq. (2.56):

HT(s) :=
∞∑

t=0
〈U|
Ä
Dt(s)− |vn(s)〉〈vn(s)|

ä
|U〉. (2.67)

Note that HT(1) = HT(P, M) since 〈U|vn(1)〉 = 〈U|M〉 = 0. This justifies calling HT(s)
extended hitting time. We can use the similarity transformation between D(s) and P(s)
from Prop. 2.9 to obtain an alternative expression for HT(s):

HT(s) =
∞∑

t=0
(π̃U 0M)

Ä
Pt(s)−Q(s)

ä
(1U 0M)T (2.68)

where Q(s) := limt→∞ Pt(s) is a stochastic matrix whose all rows are equal to π(s).
Intuitively, HT(s) may be understood as the time it takes for P(s) to converge to its
stationary distribution π(s), starting from (π̃U 0M). For s = 1, the walk P(1) = P′

converges to the (non-unique) stationary distribution (0U π̃M), which only has support
over marked elements.
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Proposition 2.18. The extended hitting time can be expressed as

HT(s) = 〈U|A(s)|U〉, A(s) :=
∑

k: λk(s) 6=1

|vk(s)〉〈vk(s)|
1− λk(s)

. (2.69)

Proof. Rewrite Eq. (2.67) using the spectral decomposition of D(s) from Eq. (2.29):

HT(s) =
∞∑

t=0

∑
k 6=n

λt
k(s)〈U|vk(s)〉〈vk(s)|U〉 =

∑
k: λk(s) 6=1

|〈vk(s)|U〉|2

1− λk(s)
(2.70)

where we exchanged the sums and used the expansion (1− x)−1 =
∑∞

t=0 xt.

For technical reasons it will be important later that all eigenvalues of P(s) are non-
negative. We can guarantee this using a standard trick—we replace the original Markov
chain P with the “lazy” walk (P + I)/2 where I is the n× n identity matrix. In fact, we
can assume without loss of generality that the original Markov chain already is “lazy”,
since this affects the hitting time only by a constant factor, as shown below.

Proposition 2.19. Let P be an ergodic and reversible Markov chain. Then for any s ∈ [0, 1] the
eigenvalues of (P(s) + I)/2 are between 0 and 1. Moreover, if the extended hitting time of P is
HT(s), then the extended hitting time of (P + I)/2 is 2 HT(s).

Proof. Since P is reversible, so is P(s) by Prop. 2.8. Thus the eigenvalues of P(s) are real
by Prop. 2.10. If λk(s) is an eigenvalue of P(s) then λk(s) ∈ [−1, 1] according to Perron–
Frobenius Theorem. Thus, the eigenvalues of (P(s) + I)/2 satisfy (λk(s) + 1)/2 ∈ [0, 1].

Recall from Prop. 2.10 that P(s) and D(s) are similar. Thus, the discriminant matrix
of (P(s) + I)/2 is (D(s) + I)/2, which has the same eigenvectors as D(s). By Prop. 2.18
we see that the extended hitting time of (P(s) + I)/2 is given by

∑
k: λk(s) 6=1

|〈vk(s)|U〉|2

1− λk(s)+1
2

. (2.71)

Since 1− λk(s)+1
2 = 1−λk(s)

2 , the above expression is equal to 2 HT(s) as claimed.

The following property of A(s) will be useful on several occasions.

Proposition 2.20. A(s)|M〉 = − cos θ(s)
sin θ(s) A(s)|U〉.

Proof. Recall from Prop. 2.11 that λn(s) = 1, so A(s)|vn(s)〉 = 0 by definition. If we
substitute |vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉 from Prop. 2.13 in this equation, we get
the desired formula.
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2.4.3 Dependence on s

The goal of this section is to express HT(s) as a function of s and the hitting time
HT(P, M) of the original Markov chain. The main idea is to relate d

ds HT(s) to HT(s)
and then solve the resulting differential equation.

Lemma 2.21. The derivative of HT(s) is related to HT(s) as

d
ds

HT(s) =
2(1− pM)

1− s(1− pM)
HT(s) (2.72)

where pM is the probability to pick a marked state from the stationary distribution π of P.

Proof. Recall from Prop. 2.18 that HT(s) = 〈U|A(s)|U〉 where A(s) may be written as

A(s) = B(s)−1 −Πn(s) where B(s) := I − D(s) + Πn(s), Πn(s) := |vn(s)〉〈vn(s)|.
(2.73)

Recall from Sect. 2.3.2 that |vn(s)〉 is the unique (+1)-eigenvector of D(s) for s ∈ [0, 1),
thus B(s) is indeed invertible when s is in this range.

From now on we will not write the dependence on s explicitly. We will also often
use ḟ (s) as a shorthand form of d

ds f (s). Let us start with

d
ds

HT = 〈U|Ȧ|U〉 (2.74)

and expand Ȧ using Eq. (2.73). To find d
ds (B−1), take the derivative of both sides of

B−1B = I and get d
ds (B−1) · B + B−1 · d

ds B = 0. Thus d
ds (B−1) = −B−1ḂB−1 and

Ȧ = −B−1ḂB−1 − Π̇n. (2.75)

Notice from Eq. (2.73) that Ḃ = −Ḋ + Π̇n, thus Ȧ = −B−1(−Ḋ + Π̇n)B−1 − Π̇n and
d
ds HT = h1 + h2 + h3 where

h1 := 〈U|B−1ḊB−1|U〉, (2.76)

h2 := −〈U|B−1Π̇nB−1|U〉, (2.77)

h3 := −〈U|Π̇n|U〉. (2.78)

Let us evaluate each of these terms separately.
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To evaluate the first term h1, we substitute Ḋ = 1
2(1−s)

¶
ΠM, I − D

©
from Prop. 2.15

and replace I − D by B−Πn according to Eq. (2.73):

2(1− s)h1 = 〈U|B−1{ΠM, B−Πn}B−1|U〉 (2.79)

= 〈U|B−1Ä{ΠM, B} − {ΠM, Πn}
ä
B−1|U〉 (2.80)

= 〈U|{B−1, ΠM}|U〉 − 〈U|B−1{ΠM, Πn}B−1|U〉. (2.81)

Recall that ΠM =
∑

x∈M |x〉〈x| is the projector onto the marked states. Thus ΠM|U〉 = 0
and the first term vanishes. Note that B has the same eigenvectors as D. In particular,
B−1|vn〉 = |vn〉 and thus B−1Πn = Πn = ΠnB−1. Using this we can expand the anti-
commutator in the second term: B−1{ΠM, Πn}B−1 = B−1ΠMΠn + ΠnΠMB−1. Since all
three matrices in this expression are real and symmetric and |U〉 is also real, both terms
of the anti-commutator have the same contribution, so we get

2(1− s)h1 = −2〈U|B−1ΠMΠn|U〉. (2.82)

Recall from Prop. 2.13 that |vn〉 = cos θ|U〉 + sin θ|M〉, so we see that ΠMΠn|U〉 =
ΠM|vn〉 · 〈vn|U〉 = sin θ|M〉 · cos θ. Moreover, B−1 = A + Πn according to Eq. (2.73), so

2(1− s)h1 = −2 sin θ cos θ〈U|(A + Πn)|M〉. (2.83)

Recall from Prop. 2.20 that sin θ〈U|A|M〉 = cos θ〈U|A|U〉. To simplify the second term,
notice that 〈U|Πn|M〉 = 〈U|vn〉 · 〈vn|M〉 = cos θ · sin θ. When we put this together, we
get

2(1− s)h1 = 2 cos2 θ〈U|A|U〉 − 2 sin2 θ cos2 θ (2.84)

or simply

h1 =
cos2 θ

1− s
Ä
〈U|A|U〉 − sin2 θ

ä
. (2.85)

Let us now consider the second term h2 = −〈U|B−1Π̇nB−1|U〉. First, we compute
Π̇n = |v̇n〉〈vn| + |vn〉〈v̇n|. Using B−1|vn〉 = |vn〉 we get B−1Π̇nB−1 = B−1|v̇n〉〈vn| +
|vn〉〈v̇n|B−1. Since 〈vn|U〉 = cos θ we have

h2 = −2〈U|B−1|v̇n〉 cos θ (2.86)

where the factor two comes from the fact that all vectors involved are real and matrix
B−1 is real and symmetric. Let us compute

|v̇n〉 = θ̇
Ä
− sin θ|U〉+ cos θ|M〉

ä
. (2.87)
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Notice that 〈vn|v̇n〉 = 0 and thus Πn|v̇n〉 = 0. By substituting B−1 = A + Πn from
Eq. (2.73) we get

h2 = −2〈U|A|v̇n〉 cos θ. (2.88)

Next, we substitute |v̇n〉 and get

h2 = −2θ̇
Ä
− sin θ〈U|A|U〉+ cos θ〈U|A|M〉

ä
cos θ. (2.89)

Now we use Prop. 2.20 to substitute A|M〉 by A|U〉:

h2 = −2θ̇

(
− sin θ − cos2 θ

sin θ

)
〈U|A|U〉 cos θ = 2θ̇

cos θ

sin θ
〈U|A|U〉. (2.90)

Finally, we substitute 2θ̇ = sin θ cos θ
1−s from Eq. (2.44) and get

h2 =
cos2 θ

1− s
〈U|A|U〉. (2.91)

For the last term h3 = −〈U|Π̇n|U〉 we observe that 〈U|v̇n〉〈vn|U〉 = −θ̇ sin θ · cos θ
thus h3 = 2θ̇ sin θ cos θ where the factor two comes from symmetry. After substituting
2θ̇ from Eq. (2.44) we get

h3 =
cos2 θ

1− s
sin2 θ. (2.92)

When we compare Eqs. (2.85), (2.91), and (2.92) we notice that h2 = h1 + h3. Thus
the derivative of the hitting time is d

ds HT = h1 + h2 + h3 = 2h2. Recall from Eq. (2.69)
that HT = 〈U|A|U〉. Thus

d
ds

HT(s) = 2
cos2 θ(s)

1− s
HT(s). (2.93)

By substituting cos θ(s) from Eq. (2.41) we get the desired result.

Theorem 2.22. The extended hitting time HT(s) is related to HT(P, M), the hitting time of
Markov chain P with marked states M, as follows:

HT(s) =
p2

M
(1− s(1− pM))2 HT(P, M) (2.94)

where pM is the probability to pick a marked state from the stationary distribution π of P.
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Proof. We will prove this theorem by solving the differential equation from Lemma 2.21.
In particular, let us consider Eq. (2.93). Recall from Eq. (2.44) that 2θ̇ = sin θ cos θ

1−s , so we
can rewrite the coefficient in this equation as

2
cos2 θ

1− s
= 2 · sin θ cos θ

1− s
· cos θ

sin θ
= 4θ̇

cos θ

sin θ
= 4

d
ds (sin θ)

sin θ
. (2.95)

Now we can rewrite the differential equation as

d
ds HT(s)
HT(s)

= 4
d
ds (sin θ(s))

sin θ(s)
. (2.96)

By integrating both sides we get

ln|HT(s)| = 4 ln|sin θ(s)|+ C (2.97)

for some constant C. Recall from Sect. 2.4.2 that HT(1) = HT(P, M) and from Eq. (2.41)
that sin θ(1) = 1, so the boundary condition at s = 1 gives us C = ln|HT(P, M)|. Since
all quantities are non-negative, we can omit the absolute value signs. After exponenti-
ating both sides we get

HT(s) = sin4 θ(s) ·HT(P, M). (2.98)

We get the desired expression when we substitute sin θ(s) from Eq. (2.41).

In the next two chapters we consider several quantum search algorithms whose run-
ning time depends on HT(s) for some values of s ∈ [0, 1]. Theorem 2.22 is a crucial
ingredient in analysis of these algorithms, since it relates HT(s) to the usual hitting time
HT(P, M). In particular, it is important that HT(s) is monotonically increasing as a
function of s (some example plots of HT(s) are shown in Fig. 2.6).
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Figure 2.6: Extended hitting time HT(s) as a function of s for several values of pM.
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Chapter 3

Adiabatic condition and the quantum
hitting time of Markov chains
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3.1 Introduction

In Chapter 2, we studied semi-absorbing Markov chains which are of the form P(s) =
sP + (1− s)P′ where P′ is the absorbing version of P. This is very reminiscent of adia-
batic quantum computing, which is the main topic of this chapter.
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Adiabatic quantum computation is an approach for solving problems on a quan-
tum computer by performing a continuous-time evolution according to some time-
dependent Hamiltonian. It was introduced in 2000 by Farhi, Goldstone, Gutmann, and
Sipser [FGGS00]. Let us recall the basic idea. Suppose that the solution of a compu-
tational problem can be encoded in the ground state of a problem Hamiltonian HP. To
find this solution, we start in the ground state of some other Hamiltonian H0, known
as the initial Hamiltonian. Usually, H0 is much simpler than HP and does not depend
on the solution to the problem, so its ground state is easy to construct. Then we slowly
change the Hamiltonian from H0 to HP, say, by taking a convex combination of the two
Hamiltonians: H(s) = (1− s)H0 + sHP where 0 ≤ s ≤ 1. If this is done slowly enough,
the Adiabatic Theorem of quantum mechanics [Mes59] guarantees that the intermediate
state of the system stays close to the ground state of H(s) at all points in the evolution.
Thus, at s = 1 we will end up close to the ground state of HP and thus be able to recover
the solution of the problem.

In this chapter we study the similarities between semi-absorbing Markov chains and
adiabatic quantum evolutions. We carry over some of the classical concepts to the quan-
tum case by using results from the previous chapter. In particular, we define a quantum
version of the classical hitting time, and show how the two notions can be related using
the folk Adiabatic Theorem.

3.1.1 Overview of the main result

In this section we briefly summarize the main result of this chapter, explain how we
arrived at it and what is the intuition behind our approach.

Informally, our result can be described as follows. Given a Markov chain P that finds
a marked element from a set M in time HT(P, M), we construct an adiabatic quantum
algorithm that performs the same task in time

»
HT(P, M). The main idea of our ap-

proach is the following. Instead of considering a quantum analogue of either P or P′,
we use the semi-absorbing Markov chain P(s) and construct a quantum Hamiltonian
H(s) that adiabatically interpolates between the two cases. Let explain why this is a
reasonable thing to do and give some more details on how it works.

Recall from Sect. 2.4.1 that the original classical Random Walk Algorithm consists
in applying the absorbing walk P′ on the stationary distribution π of P. Since any sta-
tionary distribution of P′ has support only on marked elements, the initial distribution
π is far from being stationary, say, in the statistical distance. Intuitively this means that
initially the system is far from equilibrium. As the system evolves, the random walk P′
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damps any non-stationary contributions of the initial distribution until the final distri-
bution has most of its weight on marked states. However, a quantum walk based either
on P or P′ seems to have trouble with performing such irreversible task. Thus, it is not
immediately clear how to generalize the classical algorithm to the quantum case.

However, there is a situation in quantum mechanics where a similar phenomenon
does occur. Consider an adiabatic evolution based on Hamiltonian H(s), and assume
that the system is initialized close to the ground state of the initial Hamiltonian H(0). If
H(s) varies slowly, the folk Adiabatic Theorem ensures that contributions from excited
states will cancel out and the system will remain close to its ground state.

Therefore, our strategy is to first modify the classical Markov chain, so that the
system stays close to equilibrium throughout the evolution, and then translate it into
an adiabatic quantum algorithm. We will use the interpolated Markov chain P(s) =
(1 − s)P + sP′ from Section 2.2.1 to drive the stationary distribution from π to π′ by
slowly switching s from 0 to 1. Then the system at all times will remain close to the
stationary distribution π(s) of P(s). Intuitively, this modification of the Random Walk
Algorithm should not create too much overhead, so the new classical algorithm still
runs in time O(HT(P, M)). However, now the system remains close to equilibrium at
all times, so we are in a better shape for designing a quantum analogue that relies on
the Adiabatic Theorem.

To design a Hamiltonian H(s) that corresponds to the Markov chain P(s), we use
the construction by Somma and Ortiz [SO10], which is based on (and can be thought
of as a Hamiltonian equivalent of) the original construction due to Szegedy [Sze04a]. It
maps P(s) to a Hamiltonian H(s) that acts on the “edge space” of the transition graph
underlying P(s) (this will be discussed in more detail in Sect. 3.2.1). Intuitively, H(s)
implements a continuous-time quantum walk on the edges of the graph.

Here is how our Adiabatic Search Algorithm proceeds. First, we initialize the sys-
tem in state |π〉|0̄〉, where |π〉 is a quantum version of the stationary distribution π of P
and |0̄〉 is some reference state. Then we evolve it according to H(s) with some schedule
s(t), where time t varies from 0 to T. The Hamiltonian H(s) is constructed so that ac-
cording to the folk Adiabatic Theorem the intermediate state of the system remains close
to |π(s)〉|0̄〉, where |π(s)〉 is the quantum version of the stationary distribution π(s) of
P(s). In fact, the schedule s(t) is chosen so that |π(s(t))〉 rotates with constant angular
velocity from |π〉 to a superposition over marked elements |M〉 as t ranges from 0 to T.
Finally, we measure the first register of the resulting state in the standard basis to get a
marked element. Here is a summary of the algorithm:
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Adiabatic Search Algorithm
1. Prepare the state |π〉|0̄〉.
2. Apply a time-dependent Hamiltonian H(s) with sched-

ule s(t) from t = 0 to t = T.
3. Measure the first register in the standard basis.

The main result of this chapter is Theorem 3.6, which states that the above algorithm
finds a marked element with high probability if T = O(

»
HT(P, M)). This corresponds

to a quadratic speed-up over the classical case. While this result relies on the folk Adia-
batic Theorem, a similar statement can be made in the circuit-based model of quantum
computing, where no such condition is necessary—this will be the topic of Chapter 4.
Results in the present chapter are parallel to those in Chapter 4 and are not necessary
for constructing or understanding the circuit-based quantum algorithm. Nevertheless,
the intuition behind this algorithm originates from the adiabatic version presented here.

The rest of this chapter is structured as follows. In Sect. 3.2 we construct the in-
terpolating Hamiltonian H(s) and evaluate its spectrum. We determine the relevant
subspace for the adiabatic evolution in Sect. 3.3, as well as state a formal Adiabaticity
Requirement that captures the intuition behind the folk Adiabatic Theorem. In Sect. 3.4
we choose the evolution schedule s(t), impose the adiabatic condition, and determine
the running time of the resulting adiabatic quantum algorithm. At the end of this sec-
tion we prove Theorem 3.6, which is the main result of this chapter. It relates the clas-
sical hitting time of P and the running time of the adiabatic evolution, thus providing a
quadratic speed-up in the quantum case. Finally, we conclude in Sect. 3.5.

3.2 Interpolating Hamiltonian

3.2.1 Definition

Szegedy [Sze04a] proposed a general method to map a random walk to a unitary op-
erator that defines a quantum walk. Somma and Ortiz [SO10] showed how Szegedy’s
method may be adapted to build a Hamiltonian. We apply this method to the semi-
absorbing random walk P(s) introduced in Sect. 2.2.1.

The first step of Szegedy’s construction is to map the rows of P(s) to quantum states.
Let X be the state space of P(s) and H := span{|x〉 : x ∈ X} be a complex Euclidean
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space of dimension n = |X|with basis states labelled by elements of X. For every x ∈ X
we define the following state inH:

|px(s)〉 :=
∑
y∈X

√
Pxy(s)|y〉. (3.1)

Notice that these states are correctly normalized, since P(s) is row-stochastic. Following
Szegedy [Sze04a], we define a unitary operator V(s) acting onH⊗H as

V(s)|x, 0̄〉 := |x〉|px(s)〉 =
∑
y∈X

√
Pxy(s)|x, y〉, (3.2)

when the second register is in some reference state |0̄〉 ∈ H, and arbitrarily otherwise.
It will not be relevant to us how V(s) is extended from H ⊗ |0̄〉 to H ⊗H. The only
constraint we impose is that V(s) is continuous as a function of s, which is a reasonable
assumption from a physical point of view.

Let S : |x, y〉 7→ |y, x〉 be the gate that swaps the two registers and let Π0 := I⊗ |0̄〉〈0̄|
be the projector that keeps only the component containing the reference state |0̄〉 in the
second register.

Proposition 3.1. When restricted to |0̄〉 in the second register, operator V†(s)SV(s) acts as the
discriminant matrix D(s) introduced in Sect. 2.3.1:

Π0V†(s)SV(s)Π0 = D(s)⊗ |0̄〉〈0̄|. (3.3)

Proof. From Eq. (3.2) we have:

〈x, 0̄|V†(s)SV(s)|y, 0̄〉 = 〈x, px(s)|S|y, py(s)〉 (3.4)
= 〈px(s)|y〉〈x|py(s)〉 (3.5)

=
√

Pxy(s)Pyx(s) (3.6)

= Dxy(s) (3.7)

where last equality follows from Eq. (2.24).

Following Somma and Ortiz [SO10], we define the Hamiltonian H(s) onH⊗H as

H(s) := i
î
V†(s)SV(s), Π0

ó
(3.8)

where [A, B] := AB− BA is the commutator.
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3.2.2 Spectral decomposition

To understand the properties of the Hamiltonian H(s), let us find its spectral decompo-
sition. Our strategy will be to express the eigenvalues and eigenvectors of H(s) in terms
of those of D(s).

Recall from Eq. (2.29) that D(s) =
∑n

i=1 λi(s)|vi(s)〉〈vi(s)| is the spectral decomposi-
tion of D(s). Let us consider the following subspaces of H⊗H defined in terms of the
eigenvectors of D(s) and the operator V†(s)SV(s):

Bk(s) := span{|vk(s), 0̄〉, V†(s)SV(s)|vk(s), 0̄〉}, k ∈ {1, . . . , n− 1}, (3.9)

Bn(s) := span{|vn(s), 0̄〉}, (3.10)

B⊥(s) :=
Ä⊕n

k=1 Bk(s)
ä⊥. (3.11)

Normally the subspaces Bk(s) for k 6= n have dimension two, but in some special cases
they might have dimension one. To take care of this, we will impose continuity on Bk(s),
so that it is two-dimensional for any s ∈ [0, 1].

Assume that λk(s) 6= 1. Then by unitarity of V†(s)SV(s) and Prop. 3.1,

V†(s)SV(s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
»

1− λk(s)2|vk(s), 0̄〉⊥ (3.12)

for some unit vector |vk(s), 0̄〉⊥ orthogonal to |vk(s), 0̄〉 and lying in the subspace Bk(s).
Note that |vk(s), 0̄〉⊥ depends on how operator V(s), defined in Eq. (3.2), is extended to
the rest of the space H⊗H. The only case when |vk(s), 0̄〉⊥ is not well-defined is when
λk(s) = 1. By Prop. 2.11, this is exactly when s = 1 and n−m < k < n. Since V(s) is con-
tinuous, we can assume that so is |vk(s), 0̄〉⊥ and define |vk(1), 0̄〉⊥ := lims→1 |vk(s), 0̄〉⊥
and include this vector in the corresponding subspace Bk(1). This ensures that Bk(s)
remains two-dimensional for all s ∈ [0, 1] and k 6= n.

Let us also find how V†(s)SV(s) acts on |vk(s), 0̄〉⊥. If we apply V†(s)SV(s) to both
sides of Eq. (3.12), we get

|vk(s), 0̄〉 = λk(s)V†(s)SV(s)|vk(s), 0̄〉+
»

1− λk(s)2V†(s)SV(s)|vk(s), 0̄〉⊥. (3.13)

We regroup the terms and substitute Eq. (3.12):»
1− λk(s)2V†(s)SV(s)|vk(s), 0̄〉⊥ = |vk(s), 0̄〉 − λk(s)V†(s)SV(s)|vk(s), 0̄〉 (3.14)

= |vk(s), 0̄〉 − λk(s)
Å

λk(s)|vk(s), 0̄〉+
»

1− λk(s)2|vk(s), 0̄〉⊥
ã

. (3.15)
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After cancellation we get

V†(s)SV(s)|vk(s), 0̄〉⊥ =
»

1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (3.16)

Proposition 3.2. Subspaces B1(s), . . . ,Bn(s), and B⊥(s) are mutually orthogonal and invari-
ant under H(s) for all s ∈ [0, 1].

Proof. Clearly, B⊥(s) is orthogonal to the other subspaces. Vectors |vk(s), 0̄〉 are also
mutually orthogonal for k ∈ {1, . . . , n}, since they form an orthonormal basis ofH⊗ |0̄〉.
Finally, note from Prop. 3.1 that

〈vj(s), 0̄| ·V†(s)SV(s)|vk(s), 0̄〉 = 〈vj(s)|D(s)|vk(s)〉 = δjkλk(s), (3.17)

so V†(s)SV(s)|vk(s), 0̄〉 is orthogonal to |vj(s), 0̄〉 for any j 6= k. Thus all of the above
subspaces are mutually orthogonal.

Let us show that these subspaces are invariant under the Hamiltonian H(s). From
the definition of H(s) in Eq. (3.8) we see that it suffices to check the invariance of each
subspace under V†(s)SV(s) and Π0 separately.

First, let us argue the invariance under V†(s)SV(s). Since the swap gate S squares to
identity, then so does V†(s)SV(s) and hence Bk(s) is invariant under V†(s)SV(s) for any
k < n. Next, Bn(s) is invariant, since V†(s)SV(s) acts trivially on |vn(s), 0̄〉 by Prop. 3.1.
Finally, B⊥(s) is invariant, since it is the orthogonal complement of invariant subspaces.

Let us now show the invariance under Π0. First, let us argue that

〈vj(s), 0̄|vk(s), 0̄〉⊥ = 0, ∀j ∈ {1, . . . , n}. (3.18)

These vectors lie in subspaces Bj(s) and Bk(s) which are mutually orthogonal when j 6=
k. For j = k this holds by definition of |vk(s), 0̄〉⊥. Since span{|vk(s), 0̄〉}n

k=1 = H⊗ |0̄〉,
we conclude that

Π0|vk(s), 0̄〉⊥ = 0. (3.19)

From Eq. (3.12) we get

Π0V†(s)SV(s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉, (3.20)

hence Bk(s) is invariant under Π0 for k < n. Next, Bn(s) is invariant since Π0|vn(s), 0̄〉 =
|vn(s), 0̄〉. Finally, B⊥(s) is invariant by being the orthogonal complement of invariant
subspaces.
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Now we can find the eigenvalues and eigenvectors of H(s) by restricting its action
to each of the invariant subspaces. The following lemma is in the spirit of Jordan’s
lemma [NWZ09] and appears in the work of Somma and Ortiz [SO10] who consider the
same Hamiltonian. Later we will prove a unitary version of this result by finding the
eigenvalues of a product of two reflections (see Lemma 4.7 in Sect. 4.3.1, originally due
to Szegedy [Sze04a]).

Lemma 3.3 ([SO10]). H(s) has the following eigenvalues and eigenstates.

On Bk(s): E±k (s) := ±
»

1− λk(s)2, |Ψ±k (s)〉 :=
|vk(s), 0̄〉 ± i|vk(s), 0̄〉⊥√

2
. (3.21)

On Bn(s): En(s) := 0, |Ψn(s)〉 := |vn(s), 0̄〉. (3.22)

On B⊥(s): Fj(s) := 0, |Φj(s)〉. (3.23)

Here k 6= n and {|Φj(s)〉 : j = 1, . . . , (n− 1)2} is an arbitrary orthonormal basis of B⊥(s).

Proof. We consider the case s ∈ [0, 1); the case s = 1 follows by continuity. By Prop. 3.1,
V†(s)SV(s)|vn(s), 0̄〉 = D(s)|vn(s)〉 ⊗ |0̄〉 = |vn(s), 0̄〉, so |vn(s), 0̄〉 is an eigenstate of
H(s) with eigenvalue 0. For k 6= n, from Eqs. (3.12) and (3.19) we get

V†(s)SV(s)Π0|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
»

1− λk(s)2|vk(s), 0̄〉⊥, (3.24)

Π0V†(s)SV(s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉. (3.25)

Similarly, for |vk(s), 0̄〉⊥ we have

V†(s)SV(s)Π0|vk(s), 0̄〉⊥ = 0, (3.26)

Π0V†(s)SV(s)|vk(s), 0̄〉⊥ =
»

1− λk(s)2|vk(s), 0̄〉, (3.27)

where we used Eq. (3.16). By combining these expressions we get

H(s)|vk(s), 0̄〉 = i
»

1− λk(s)2|vk(s), 0̄〉⊥, (3.28)

H(s)|vk(s), 0̄〉⊥ = −i
»

1− λk(s)2|vk(s), 0̄〉, (3.29)

where the second line can be obtained directly, or from the fact that H(s) is Hermitian,
traceless and preserves Bk(s). If σy :=

Ä
0 −i
i 0

ä
is the Pauli y matrix, then H(s) acts as»

1− λk(s)2 σy in the basis {|vk(s), 0̄〉, |vk(s), 0̄〉⊥} of Bk(s). This yields Eq. (3.21).

Finally, H(s) restricted to B⊥(s) is equal to zero, since B⊥(s) ⊂ H⊗{|0̄〉}⊥ but H(s)
involves Π0. Hence, the remaining n2 − (2n − 1) = (n − 1)2 eigenvalues of H(s) are
zero.
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3.3 The adiabatic condition

In adiabatic quantum computing it is a common practice to associate the intermediate
state of the computation with the ground state (i.e., the lowest energy eigenstate) of the
Hamiltonian. However, from Lemma 3.3 we see that the spectrum of H(s) is symmetric
about zero and the state that we are interested in lies in the middle of the spectrum.
Hence, we will not use the ground state of H(s), which has negative energy, but instead
we will use the zero-eigenvector |Ψn(s)〉 = |vn(s), 0̄〉. Indeed, recall from Eq. (2.37) in
Sect. 2.3.3 that |vn(s)〉 =

»
π(s)T, so this state is closely related to π(s), the stationary

distribution of P(s). In particular, the problem of finding a marked vertex would be
solved if we can reach the state |Ψn(1)〉, as measuring the first register of this state yields
a vertex distributed according to π(1), which only has support on marked vertices.

3.3.1 The relevant subspace for adiabatic evolution

We initially prepare the system in the zero-eigenvector |Ψn(0)〉 of H(0) and then start to
change the Hamiltonian H(s) by slowly increasing the parameter s from 0 to 1 according
to some schedule s(t). If the schedule s(t) is chosen so that it satisfies certain conditions,
the system is guaranteed to stay close to the intermediate zero-eigenstate |Ψn(s)〉 of
H(s). Then, at s = 1, the state will be close to |Ψn(1)〉 = |vn(1), 0〉, where the first
register only has overlap over marked vertices, so that a measurement yields a marked
vertex with high probability.

Recall from Lemma 3.3 that the zero-eigenspace Bn(s) ∪ B⊥(s) of H(s) has a huge
dimension. Thus, before we apply the adiabatic condition, we have to make sure that
the non-relevant part B⊥(s) is totally decoupled from |Ψn(s)〉, the only zero-eigenvector
that is relevant for our algorithm. In particular, we want to show that

〈Φj(s)| ·
d
dt
|Ψn(s)〉 = 0 (3.30)

for any j ∈ {1, . . . , (n− 1)2}, since this would imply that during the evolution |Ψn(s)〉 is
not leaked into the subspace B⊥(s) spanned by states |Φj(s)〉. To see that this is indeed
the case, note that

|Φj(s)〉 ⊥ span{|Ψ±1 (s)〉, . . . , |Ψ±n−1(s)〉, |Ψn(s)〉} (3.31)
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for any j ∈ {1, . . . , (n− 1)2}, since the eigenvectors of H(s) form an orthonormal basis.
In particular, from Eq. (3.21) we get

|Φj(s)〉 ⊥ span{|Ψ+
1 (s)〉+ |Ψ

−
1 (s)〉, . . . , |Ψ+

n−1(s)〉+ |Ψ
−
n−1(s)〉, |Ψn(s)〉} (3.32)

= span{|v1(s), 0̄〉, . . . , |vn−1(s), 0̄〉, |vn(s), 0̄〉}. (3.33)

Recall from Eq. (3.22) that d
dt |Ψn(s)〉 = d

dt |vn(s)〉|0̄〉, so the inner product in Eq. (3.30)
indeed vanishes. Thus, we can safely apply the adiabatic condition only for the relevant
subspace

⊕n
k=1 Bk(s) in which the zero-eigenstate is not degenerate.

3.3.2 The quantum adiabatic theorem

To formalize the intuition behind the folk Quantum Adiabatic Theorem [Mes59], let us
state a specific adiabaticity requirement for Hamiltonian H(s).
Definition 3.4 (Adiabaticity Requirement). Assume a quantum system starts in the
zero-eigenstate |Ψn(0)〉 of Hamiltonian H(0) and evolves according to H(s) with sched-
ule s(t). We say that H(s) satisfies the adiabatic condition for ε > 0 if

∀t :
∑

σ=±1

n−1∑
k=1

∣∣∣〈Ψσ
k (s)| ·

d
dt |Ψn(s)〉

∣∣∣2Ä
Eσ

k (s)− En(s)
ä2 ≤ ε2. (3.34)

Moreover, if |ψ(t)〉 (the state of the system at time t) stays close to the intermediate
zero-eigenstate |Ψn(s(t))〉 throughout the evolution, more precisely,

∀t :
∣∣∣〈Ψn(s(t))|ψ(t)〉

∣∣∣2 ≥ 1− ε2, (3.35)

we say that the Adiabaticity Requirement is satisfied.

While the condition in Eq. (3.34) is known not to be sufficient in full generality (see,
e.g., the discussion in [JRS07]), we will assume that it can be applied in our setup. We
will discuss how this assumption may be suppressed in Sect. 3.5 and provide a quantum
algorithm that does not rely on it in Chapter 4.

Let us write the adiabatic condition for our Hamiltonian H(s) explicitly, by inserting
the eigenvalues and eigenvectors from Lemma 3.3 into Eq. (3.34):

∀t :
∑

k: λk(s) 6=1

∣∣∣〈vk(s)| · d
dt |vn(s)〉

∣∣∣2
1− λ2

k(s)
≤ ε2. (3.36)

Note that this condition is purely in terms of the eigenvalues and eigenvectors of the
discriminant matrix D(s).
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3.4 Analysis of running time

In this section we will analyze the running time of an adiabatic quantum algorithm
which evolves according to the Hamiltonian H(s). We will make a specific choice of
the evolution schedule s(t), plug it into the adiabatic condition from the Adiabaticity
Requirement, and derive a bound on the required running time T.

3.4.1 Choice of the schedule

Recall from Prop. 2.13 in Sect. 2.3.3 that

|vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉, (3.37)

so the evolution of the zero-eigenstate |Ψn(s)〉 = |vn(s), 0̄〉 corresponds to a rotation in
the two-dimensional subspace span{|U, 0̄〉, |M, 0̄〉}. Since the second register of |Ψn(s)〉
is always in the state |0̄〉, we will omit it from the analysis for simplicity. Let us choose
schedule s : [0, T] → [0, 1] so that |vn(s)〉 rotates with constant angular velocity from
|vn(0)〉 to |M〉 in time T.

Proposition 3.5. Let θ0 := arcsin
√

pM and ω := (arccos
√

pM)/T. If

s(t) :=
1

1− pM

(
1− pM

sin2(ωt + θ0)

)
(3.38)

then θ(s(t)) = ωt + θ0.

Proof. Recall from Eq. (2.41) that

sin θ(s) =
√

pM

1− s(1− pM)
= sin(ωt + θ0), (3.39)

where the second equality is what we desire. By solving for s we get Eq. (3.38). To find
the constants θ0 and ω, we use the boundary conditions at s = 0 and s = 1 (t = 0
and t = T, respectively). When we plug s = 0 and t = 0 in the above equation,
we get

√
pM = sin θ0. The other boundary condition gives us ωT + θ0 = π/2, so

ωT = π/2− θ0 = arccos
√

pM.
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3.4.2 Running time

In this section we will use the adiabatic condition from Eq. (3.36) to determine the run-
ning time of our algorithm when schedule s(t) from Eq. (3.38) is used.

First, we will find the derivative d
dt |vn(s)〉. Let

|v⊥n (s)〉 := − sin θ(s)|U〉+ cos θ(s)|M〉 (3.40)

be a unit vector such that {|v(s)〉, |v⊥n (s)〉} is an orthonormal basis of span{|U〉, |M〉}
for each s. Then from Eq. (3.37) and Prop. 3.5 we get

d
dt
|vn(s)〉 =

d
dt

θ(s) · |v⊥n (s)〉 = ω|v⊥n (s)〉 =
1
T

arccos
√

pM|v⊥n (s)〉. (3.41)

To slightly simplify things, notice that arccos
√

pM ≤ π
2 . Now we can rewrite the

adiabatic condition in Eq. (3.36) as follows:

∀s :
π2

4ε2

∑
k: λk(s) 6=1

|〈vk(s)|v⊥n (s)〉|
2

1− λ2
k(s)

≤ T2. (3.42)

If this condition is satisfied, then from the Adiabaticity Requirement it follows that at
time t = T we obtain a state |ψ(T)〉 which is close to |Ψn(1)〉 = |vn(1)〉|0̄〉 = |M〉|0̄〉. In
particular, measuring the first register of |ψ(T)〉 yields a marked vertex with probability
at least 1− ε2, according to Eq. (3.35).

Intuitively, we want to change the parameter s slowly for the evolution to be adi-
abatic. This corresponds to choosing T big enough so that the inequality in Eq. (3.42)
holds. Recall from Prop. 2.19 that we can replace P by (P+ I)/2 to ensure that λk(s) ≥ 0.
Thus, 1− λ2

k(s) =
Ä
1 + λk(s)

äÄ
1− λk(s)

ä
≥ 1− λk(s). Let us impose a slightly stronger

condition on T in Eq. (3.42) by replacing 1− λ2
k(s) with 1− λk(s). In addition, let us

choose the smallest T that still satisfies the inequality and use it as the running time of
our adiabatic algorithm:

T :=
π

2ε
max

0≤s≤1

Õ ∑
k: λk(s) 6=1

|〈vk(s)|v⊥n (s)〉|
2

1− λk(s)
. (3.43)

It turns out that there is a simple relationship between this quantity and HT(P, M), the
hitting time of the Markov chain P with marked states M (see Sect. 2.4.1 for definition).
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3.4.3 Relation to the classical hitting time

Theorem 3.6. Let P be an ergodic and reversible Markov chain with a set of marked vertices
M, and assume that the Adiabaticity Requirement holds for the Hamiltonian H(s). Then the
Adiabatic Search Algorithm finds a marked vertex with probability at least 1 − ε2 in time
T = π

2ε

»
HT(P, M), where HT(P, M) is the hitting time of the classical Markov chain P with

respect to the set of marked vertices M.

Proof. Let us first express the running time T from Eq. (3.43) in terms of the extended
hitting time HT(s) defined in Sect. 2.4.2. Recall from Prop. 2.18 that

HT(s) = 〈U|A(s)|U〉, A(s) :=
∑

k: λk(s) 6=1

|vk(s)〉〈vk(s)|
1− λk(s)

. (3.44)

Note from Eq. (3.43) that T can also be expressed using A(s):

T =
π

2ε
max

0≤s≤1

»
〈v⊥n (s)|A(s)|v⊥n (s)〉. (3.45)

To relate these two expressions, we should relate the way A(s) acts on |U〉 and
|v⊥n (s)〉. Recall from Prop. 2.20 that A(s)|M〉 = − cos θ(s)

sin θ(s) A(s)|U〉. Thus,

A(s)|v⊥n (s)〉 = − sin θ(s)A(s)|U〉+ cos θ(s)A(s)|M〉 (3.46)

=
1

sin θ(s)
Ä
− sin2 θ(s)− cos2 θ(s)

ä
A(s)|U〉 (3.47)

= − 1
sin θ(s)

A(s)|U〉. (3.48)

If we multiply both sides by 〈v⊥n (s)|, use the Hermiticity of A(s), and apply the same
equation again, we get

〈v⊥n (s)|A(s)|v⊥n (s)〉 =
〈U|A(s)|U〉

sin2 θ(s)
. (3.49)

Thus, we get the following relationship between T and HT(s):

T =
π

2ε
max

0≤s≤1

»
HT(s)

sin θ(s)
. (3.50)
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Finally, we express HT(s) in terms of HT(P, M) using Theorem 2.22 from Chapter 2.
In particular, recall from Eq. (2.98) that HT(s) = HT(P, M) sin4 θ(s). When we substi-
tute this in Eq. (3.50), we get T = π

2ε

»
HT(P, M) ·max0≤s≤1 sin θ(s). Now it only remains

to observe from the definition of sin θ(s) in Eq. (2.41) that the maximum is reached at
s = 1 and is equal to sin θ(1) = 1.

3.5 Conclusion and discussion

Our adiabatic quantum algorithm defines a new notion of quantum hitting time, which
is quadratically smaller than the classical hitting time for any reversible Markov chain
and any set of marked elements. Our algorithm only requires minimal assumptions,
while previous approaches were subject to various restrictions, e.g., the quantum al-
gorithm could only detect the presence of marked elements [Sze04a], did not always
provide full quadratic speed-up [MNRS07], or could only be applied for state-transitive
Markov chains with a unique marked element [MNRS12].

Indeed, let us argue why the only remaining condition, reversibility, is necessary.
Let us consider the Markov chain on a cycle P = (I + C)/2, where C implements a
clockwise shift, i.e., C|x〉 = |(x + 1) mod n〉. This Markov chain is ergodic but not re-
versible. While its classical hitting time is Θ(n), a simple locality argument implies that
any quantum operator acting locally on the cycle requires time Ω(n) to find a marked
vertex, so that a quadratic speed-up cannot be achieved. Magniez et al. [MNRS12] have
also shown that under reasonable conditions the quadratic speed-up is optimal. This
provides evidence that our result is both as strong and as general as possible.

While our result relies on the assumption that the folk adiabatic condition is suffi-
cient, this assumption could be suppressed in different ways. One option would be to
actually prove that the Adiabaticity Requirement holds in our setup, as was previously
done for the adiabatic version of Grover’s algorithm [JRS07]. Another option would
be to circumvent adiabatic evolution altogether, by using a sequence of measurements
or quantum Zeno effect as in [CDF+02]. Their technique provides a quantum circuit
realizing the same evolution as the adiabatic approach with a similar running time, but
without relying on the adiabatic condition. This leads to a quantum circuit algorithm
described in Chapter 4.

Finally, note that in order to design the schedule s(t), our algorithm requires knowl-
edge of pM and the order of magnitude of HT(P, M). These assumptions are standard
in other quantum algorithms for this problem. In particular, a similar issue arises in
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Grover’s algorithm when the number of marked elements is unknown. In Grover’s
case, there are techniques to deal with this issue [BBHT98], and similar techniques could
be applied in our case. While we do not provide a full answer to these questions here,
they do not present any new technical difficulty. More details are given in Chapter 4
where we consider a quantum circuit version of our adiabatic algorithm.
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4.1 Introduction

Many randomized classical algorithms rely heavily on random walks or Markov chains.
This technique has been extended to the quantum case and is called quantum walk.
Ambainis [Amb04] was the first to solve a natural problem—the element distinctness
problem—using a quantum walk. Following this, many other quantum walk algo-
rithms were discovered, for example, [MSS05, BŠ06, MN07].

A common class of problems that are typically solved using a random walk are the
so-called spatial search problems. In such problems, the displacement constraints are mod-
elled by edges of an undirected graph G, which has some desired subset of vertices M
that are marked. The goal of a spatial search problem is to find one of the marked ver-
tices by traversing the graph along its edges. Classically, a simple strategy for finding a
marked vertex is to perform a random walk on G, by repeatedly applying some stochas-
tic matrix P until one of the marked vertices is reached. This is exactly how the Random
Walk Algorithm that we discussed in Sect. 2.4.1 works. The expected running time of
this algorithm is called the hitting time of P and is denoted by HT(P, M).

Quantum walk algorithms for the spatial search problem were studied in [AA05].
This problem has also been considered for several specific graphs, such as the hyper-
cube [SKW03] and the grid [CG04a, AKR05]. The notion of the hitting time has been
carried over to the quantum case in [AKR05, Kem05, Sze04a, KB06, MNRS07, MNRS12,
VKB08] by generalizing the classical notion in different ways. Usually, the quantum
hitting time has a quadratic improvement over the classical one. However, until the
present work several serious restrictions were imposed for this to be the case. A quan-
tum algorithm could only solve the detection problem of deciding whether there are
marked vertices or not [Sze04a], but for being able to find them, the Markov chain had
to be reversible, state-transitive, and with a unique marked vertex [Tul08, MNRS12].
The detection algorithm is quite intuitive and well understood, whereas the finding al-
gorithm requires an elaborate proof whose intuition is not clear. This is due in part to a
modification of the quantum walk, so that the resulting walk is not a quantum analogue
of a Markov chain anymore.

Whether this quadratic speed-up for finding a marked element also holds for all re-
versible Markov chains and for multiple marked elements was an open question. In this
chapter we give a positive answer to this question by providing a quantum algorithm
for solving this problem.
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4.1.1 Related work

Inspired by Ambainis’ quantum walk algorithm for solving the element distinctness
problem [Amb04], Szegedy [Sze04a] has introduced a powerful way of constructing
quantum analogues of Markov chains which led to new quantum walk-based algo-
rithms. He showed that for any symmetric Markov chain a quantum walk could de-
tect the presence of marked vertices in at most the square root of the classical hitting
time. However, showing that a marked vertex could also be found in the same time
(as is the case for the classical algorithm) proved to be a very difficult task. Magniez et
al. [MNRS07] extended Szegedy’s approach to the larger class of ergodic Markov chains,
and proposed a quantum walk-based algorithm to find a marked vertex, but its com-
plexity may be larger than the square root of the classical hitting time. A typical example
where their approach fails to provide a quadratic speed-up is the 2D grid, where their
algorithm has complexity Θ(n), whereas the classical hitting time is Θ(n log n). Ambai-
nis et al. [AKR05] and Szegedy’s [Sze04a] approaches yield a complexity of Θ(

√
n log n)

in this special case, for a unique marked vertex. Childs and Goldstone [CG04b, CG04a]
also obtained a similar result using a continuous-time quantum walk.

However, whether a full quadratic speed-up was possible in the 2D grid case re-
mained an open question, until Tulsi [Tul08] proposed a solution involving a new tech-
nique. Magniez et al. [MNRS12] extended Tulsi’s technique to any reversible state-
transitive Markov chain, showing that for such chains, it is possible to find a unique
marked vertex with a full quadratic speed-up over the classical hitting time. However,
the state-transitivity is a strong symmetry condition, and furthermore their technique
cannot deal with multiple marked vertices. Recently [ABN+11] have suggested to mod-
ify the original [AKR05] algorithm in the case of the 2D grid with a single marked
element, by replacing amplitude amplification with classical search in a neighbour-
hood of the final vertex. This results in a

»
log n speed-up over the original algorithm

from [AKR05] and yields complexity O(
»

n log n) as in the case of [Tul08, MNRS12].

It seems implausible that one has to rely on involved techniques to solve the finding
problem under such restricted conditions, while the classical Random Walk Algorithm
is conceptually simple and works under general conditions. Recall from Sect. 2.4.1 that
it works as follows: starting with the stationary distribution π of P, we repeatedly apply
the absorbing walk P′ until most of the probability is absorbed in marked vertices, at
which point the state is close to a stationary distribution of P′.

Previous attempts at providing a quantum speed-up over this classical algorithm
have followed one of these two approaches:
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• Combining a quantum version of P with a reflection through marked vertices to
mimic a Grover operation [AKR05, Amb04, MNRS07].
• Directly applying a quantum version of P′ [Sze04a, MNRS12].

The problem with these approaches is that they would only be able to find marked
vertices in very restricted cases. We explain this by the different nature of random and
quantum walks: while both have a stable state, i.e., the stationary distribution for the
random walk and the eigenstate with eigenvalue 1 for the quantum walk, the way both
walks act on other states is dramatically different.

Indeed, an ergodic random walk will converge to its stationary distribution from
any initial distribution. This apparent robustness may be attributed to the inherent
randomness of the walk, which will smooth out any initial perturbation. After many
iterations of the walk, non-stationary contributions of the initial distribution will be
damped and only the stationary distribution will survive (this can be attributed to the
thermodynamical irreversibility1 of ergodic random walks).

On the other hand, this is not true for quantum walks, because in the absence of
measurements a unitary evolution is deterministic (and in particular thermodynami-
cally reversible): the contributions of the other eigenstates will not be damped but just
oscillate with different frequencies, so that the overall evolution is quasi-periodic. As a
consequence, while iterations of P′ always lead to a marked vertex, it may happen that
iterations of the quantum analogue of P′ will never lead to a state with a large over-
lap over marked vertices, unless the walk exhibits a strong symmetry (as is the case
for a state-transitive walk with only one marked element, which could be addressed by
previous approaches).

4.1.2 Our approach and contributions

The main result of this chapter is that a quadratic speed-up for finding a marked ele-
ment via quantum walk holds for any reversible Markov chain with multiple marked
elements. We provide several algorithms for different versions of the problem. Com-
pared to previous results, our algorithms are more general and conceptually clean. The
intuition behind our main algorithm is based on the adiabatic algorithm presented in
Chapter 3. However, the algorithms presented in this chapter are circuit-based and thus
do not suffer from the drawbacks of the adiabatic algorithm discussed in Sect. 3.5.

1Note that when we consider reversible Markov chains as defined in Sect. 2.2.3, this corresponds to a
different notion of reversibility than in the usual thermodynamical sense. Actually, even a “reversible”
Markov chain is thermodynamically irreversible.
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We choose an approach that is different from the ones described above: first, we
directly modify the original random walk P, and then construct a quantum analogue of
the modified walk. We choose the modified walk to be the interpolated Markov chain
P(s) = (1 − s)P + sP′ that interpolates between P and the absorbing walk P′ whose
outgoing transitions from marked vertices have been replaced by self-loops. Thus, we
can still use our intuition from the classical case, but at the same time also get simpler
proofs and more general results in the quantum case.

All of the quantum walk algorithms presented in this chapter are based on eigen-
value estimation performed on operator W(s), a quantum analogue of Markov chain
P(s). We consider the (+1)-eigenstate |Ψn(s)〉 of W(s) that plays the role of the sta-
tionary distribution in the quantum case. We use the interpolation parameter s to tune
the length of projections of |Ψn(s)〉 onto marked and unmarked vertices. If both pro-
jections are large, our algorithm succeeds with large probability in O

Ä»
HT(s)

ä
steps

(Theorem 4.10).

We also provide several modifications of the main algorithm. In particular, we show
how to make a suitable choice of s to balance the overlap of |Ψn(s)〉 on marked and un-
marked vertices even if some of the parameters required by the main algorithm are un-
known and the rest are either approximately known (Theorem 4.12 and Theorem 4.13)
or bounded (Theorem 4.14 and Theorem 4.15). In all cases a marked vertex is found in
O
Ä»

HT(P, M)
ä

steps. Finally, we use these results to make progress on an open problem
from [AA05, Tul08] related to the spatial search on the 2D grid (Corollary 4.16).

In Sect. 4.2 we introduce the spatial search problem and provide some preliminar-
ies on random and quantum walks and their hitting times. In Sect. 4.3 we describe
Szegedy’s method for constructing quantum analogues of Markov chains, and provide
a circuit for implementing the quantum walk operator W(s). Finally, Sect. 4.4 describes
our algorithms and contains the main results of this chapter.

4.2 Preliminaries

In this chapter we shift our focus from Markov chains to search algorithms on graphs.
In Chapter 2 and Chapter 3 our main objects of study were Markov chains, but their un-
derlying graphs of transition probabilities were only of a secondary importance. In this
chapter, however, we study the problem of traversing a given graph. Thus, our main
object of study is the given graph, whereas a particular Markov chain for traversing
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it is a derived concept. Another difference is that we put our results in a more gen-
eral algorithmic framework: we consider an abstract search algorithm, break it up into
elementary building blocks, and associate different costs to each of them.

4.2.1 Spatial search on graphs

Throughout this chapter, let us fix an undirected graph G = (X, E) with n := |X| ver-
tices and a set of edges E. As before, let M ⊆ X be a set of marked vertices of size
m := |M|. We insist that the current vertex is stored in a distinguished vertex register.
Our goal is to find any of the marked vertices in M using only evolutions that preserve
the locality of G on the vertex register, i.e., to perform a spatial search on G [AA05] (here
we define an even more restricted notion of locality than the ones in [AA05], but it is
more intuitive and sufficiently powerful for our purpose).

We allow two types of operations on the vertex register:

• static transformations, that can be conditioned on the state of the vertex register, but
do not modify it;
• SHIFT, that exchanges the value of the vertex register and another register.

To impose locality, we want to restrict the execution of SHIFT only to the edges of G.

Definition 4.1. Let

SHIFT : (x, y) 7→
(y, x), if (x, y) ∈ E,
(x, y), otherwise.

(4.1)

In the first case we say that SHIFT succeeds, but in the second case it fails (we assume that
SHIFT always succeeds if x = y).

Definition 4.2 (Search problems). Under the restriction that only static transformations
and SHIFT are allowed, consider the following problems:

• DETECT(G): Detect if there is a marked vertex in G;
• FIND(G): Find any marked vertex in G, with the promise that M 6= ∅.

Let us also define the following variations of the above problems:

• DETECT(k)(G): problem DETECT(G) with the promise that either m = 0 or m = k;
• FIND(k)(G): problem FIND(G) with the promise that m = k.

Similarly, let DETECT(≥k)(G) and FIND(≥k)(G) denote the corresponding problems with
equality m = k replaced by inequality m ≥ k.
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4.2.2 Random walks

A natural approach to searching on a graph consists in using a random walk. Intuitively,
a random walk is an alternation of coin flips and shifts. More precisely, a coin is flipped
according to the current state x ∈ X of the vertex register, its value describes the target
vertex y, and SHIFT performs a move from x to y. Let Pxy be the probability that x is
shifted to y. Then SHIFT always succeeds if Pxy = 0 whenever (x, y) /∈ E. In such case,
we say that P = (Pxy)x,y∈X is a Markov chain on graph G.

We assume from now on that P is an ergodic Markov chain (see Definition 2.1).
Therefore, by the Perron–Frobenius Theorem, P has a unique stationary distribution π.
We also assume that P is reversible: πxPxy = πyPyx, for all x, y ∈ X (see Definition 2.7).

To measure the complexity of implementing a random walk corresponding to P, we
introduce the following black-box operations:

• Check(M): check if a given vertex is marked;
• Setup(P): draw a sample from the stationary distribution π of P;
• Update(P): perform one step of P.

Each of these black-box operations have the corresponding associated implementation
cost, which we denote by C, S, and U, respectively.

4.2.3 Quantum walks

The setup in the quantum case is as follows. As in Chapter 3, the evolution will take
place in space H ⊗H where H := span{|x〉 : x ∈ X} is the n-dimensional complex
Euclidean space spanned by elements of set X. Let the first register be the vertex register
that stores the current vertex of the walk. We call a unitary transformation static if it is
controlled by this register, i.e., it is of the form

∑
x∈X |x〉〈x| ⊗Ux for some unitaries Ux.

The quantum version of the SHIFT operation is obtained by extending the expression in
Definition 4.1 by linearity.

A quantum walk on G is a composition of static unitary transformations and SHIFT.
In addition, we require that it respects the local structure of G, i.e., whenever SHIFT is
applied to a state, it must completely lie within the subspace of H⊗H where SHIFT is
guaranteed to succeed.

As in Eq. (3.2) in Chapter 3, let |0̄〉 ∈ H be a fixed reference state, and let V(P) be a
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unitary operation that satisfies

V(P)|x〉|0̄〉 = |x〉|px〉 = |x〉
∑
y∈X

»
Pxy|y〉 (4.2)

for all x ∈ X.

We will only consider quantum walks built from quantum analogues of reversible
Markov chains, so we extend the operations Check, Setup, and Update to the quantum
setting as follows.

• Check(M): map |x〉|b〉 to |x〉|b〉 if x /∈ M and |x〉|b⊕ 1〉 if x ∈ M, where |x〉 is the
vertex register and b ∈ {0, 1};
• Setup(P): construct the superposition |π〉 = ∑

x∈X
√

πx|x〉;
• Update(P): apply any of V(P), V(P)†, or SHIFT.

Implicitly, we also allow any controlled version of Check(M), Setup(P), and Update(P),
on which we access via oracle.

In terms of the number of applications of SHIFT, Update has complexity 1 while
Setup has complexity equal to the diameter of graph G. Nonetheless, in many algorith-
mic applications, the situation is more complex and the number of applications of SHIFT
is not the only relevant cost; see for instance [Amb04, MSS05].

4.2.4 Classical hitting time

Let P be a Markov chain with a set of marked elements M. Recall from Definition 2.16
that the classical hitting time of P with respect to M, denoted by HT(P, M), is the ex-
pected number of applications of P required to hit a marked vertex in M. We assume
that the initial vertex is distributed according to the stationary distribution π of P re-
stricted to unmarked vertices. This definition is based on the Random Walk Algorithm
from Sect. 2.4.1, which can be used to solve the DETECT and FIND problems classically.

Proposition 4.3. Let k ≥ 1. DETECT(≥k)(G) can be solved with high probability and classical
complexity of order

S+ T · (U+ C), where T = max
|M′|=k

HT(P, M′). (4.3)

FIND(G) can be solved with high probability and expected classical complexity of order

S+ T · (U+ C), where T = HT(P, M). (4.4)
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4.2.5 Quantum hitting time

Quantum walks have been successfully used for detecting the presence of marked ver-
tices quadratically faster than random walks. Nonetheless, only little is known on the
problem of finding a marked vertex. Below we illustrate the state of the art.

Theorem 4.4 ([Sze04a]). Let k ≥ 1. DETECT(≥k)(G) can be solved with high probability and
quantum complexity of order

S+ T · (U+ C), where T = max
|M′|=k

»
HT(P, M′). (4.5)

When P is state-transitive and there is a unique marked vertex z (i.e., m = 1),
HT(P, {z}) is independent of z and one can also find z:

Theorem 4.5 ([Tul08, MNRS12]). Assume that P is state-transitive. FIND(1)(G) can be solved
with high probability and quantum complexity of order

S+ T · (U+ C), where T =
»

HT(P, {z}). (4.6)

Using standard techniques, such as in [AA05], Theorem 4.5 can be generalized to any
number of marked vertices, with an extra logarithmic multiplicative factor. Nonethe-
less, the complexities of the corresponding algorithms do not decrease when the size of
M increases, contrary to the random walk search algorithm (Prop. 4.3) and the quantum
walk detecting algorithm (Theorem 4.4).

Corollary 4.6. Assume that P is state-transitive. FIND(G) can be solved with high probability
and quantum complexity of order

log(n) ·
Ä
S+ T · (U+ C)

ä
, where T =

»
HT(P, {z}), for any z. (4.7)

4.3 Discrete-time quantum walk

4.3.1 Szegedy’s construction

We follow the construction of Szegedy [Sze04a] and define a quantum analogue of a
reversible Markov chain P. Recall from Eq. (4.2) that V(P)|x〉|0̄〉 = |x〉|px〉 where |0̄〉 is
an arbitrary reference state inH. Let X := H⊗ span{|0̄〉} = span{|x〉|0̄〉 : x ∈ X} and

refX := 2
∑
x∈X
|x〉〈x| ⊗ |0̄〉〈0̄| − I = I ⊗ (2|0̄〉〈0̄| − I) (4.8)
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be the reflection in H⊗H with respect to the subspace X . The quantum walk operator
corresponding to Markov chain P is2

W(P) := V(P)† SHIFT V(P) · refX . (4.9)

Notice that W(P) requires 3 calls to Update(P).

We will choose an initial state that lies in subspace X . Thus, to simplify the analysis,
we will always restrict the action of W(P) to the smallest subspace that contains X and
is invariant under W(P). We call this subspace the walk space of W(P). In Lemma 4.7
below we show that this subspace is spanned by X and W(P)X , and that SHIFT is
guaranteed to succeed when W(P) is applied to a state in the walk space.

The goal of this section is to find the spectral decomposition of the quantum walk
operator corresponding to P(s):

W(s) := V(s)† SHIFT V(s) · refX (4.10)

where V(s) := V(P(s)). Recall from Sect. 2.3.2 that λk(s) and |vk(s)〉 are the eigenval-
ues and eigenvectors of the discriminant matrix D(s) of P(s). The following lemma by
Szegedy [Sze04a] is a unitary equivalent of Lemma 3.3. It provides the spectral decom-
position of W(s) in terms of that of D(s).

Lemma 4.7 ([Sze04a]). Let Bk(s) for k = 1, . . . , n be the subspaces defined in Sect. 3.2.2, and
let ϕk(s) ∈ [0, π] be such that

λk(s) = cos ϕk(s). (4.11)

Then W(s) has the following eigenvalues and eigenvectors.

On Bk(s): e±iϕk(s), |Ψ±k (s)〉 :=
|vk(s), 0̄〉 ± i|vk(s), 0̄〉⊥√

2
. (4.12)

On Bn(s): 1, |Ψn(s)〉 := |vn(s), 0̄〉. (4.13)

In particular,
⋃n

k=1 Bk(s) is the walk space of W(s) and the remaining eigenvectors of W(s) lie
in the orthogonal complement B⊥(s).

Proof. We would like to reuse results from Sect. 3.2.2. However, we have to argue that
they still hold if we replace the swap operator S : |x, y〉 7→ |y, x〉 with SHIFT, which is
defined in Eq. (4.1) and respects the local structure of the graph.

2In [Sze04a] the quantum walk operator corresponding to P is defined as
(
V(P)W(P)V(P)†)2 where

W(P) is defined in Eq. (4.9).
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First, let us show that V†(s)SV(s) and V†(s) SHIFT V(s) act in the same way on sub-
space X . For any x ∈ X we have

V†(s)SV(s) · |x, 0̄〉 = V†(s)S
∑
y∈X

√
Pxy(s)|x, y〉. (4.14)

Since P(s) is a Markov chain on G, Pxy(s) = 0 when xy is not an edge of G, so the
resulting state is the same if we replace S by SHIFT.

According to this observation, we can rewrite Eqs. (3.12) and (3.16) as

V†(s) SHIFT V(s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
»

1− λk(s)2|vk(s), 0̄〉⊥, (4.15)

V†(s) SHIFT V(s) · |vk(s), 0̄〉⊥ =
»

1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (4.16)

Clearly, refX |vk(s), 0̄〉 = |vk(s), 0̄〉, and recall from Eq. (3.19) that Π0|vk(s), 0̄〉⊥ = 0, so
refX |vk(s), 0̄〉⊥ = −|vk(s), 0̄〉⊥. Thus, Eqs. (4.15) and (4.16) give us

W(s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
»

1− λk(s)2|vk(s), 0̄〉⊥, (4.17)

W(s) · |vk(s), 0̄〉⊥ = −
»

1− λk(s)2|vk(s), 0̄〉+ λk(s)|vk(s), 0̄〉⊥. (4.18)

Recall from Prop. 3.2 that subspaces Bk(s) are mutually orthogonal. From Eqs. (4.17)
and (4.18) we also see that they are invariant under W(s). In fact, W(s) acts as(

λk(s) −
»

1− λk(s)2»
1− λk(s)2 λk(s)

)
(4.19)

in the basis {|vk(s), 0̄〉, |vk(s), 0̄〉⊥} of Bk(s). This is an orthogonal matrix whose eigen-
values are

λk(s)± i
»

1− λk(s)2 = e±iϕk(s). (4.20)

Finally, according to Prop. 3.1,

〈vn(s), 0̄| ·V†(s) SHIFT V(s) · |vn(s), 0̄〉 = 1, (4.21)

so |vn(s), 0̄〉 is an eigenvector of W(s) with eigenvalue 1.
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4.3.2 Quantum circuit for W(s)

Recall that Update(P) can be used to implement the quantum walk operator W(P).
However, we would also like to be able to implement the quantum analogue of P(s)
for any s ∈ [0, 1]. Recall from Eq. (4.10) that it is given by

W(s) = V(s)† SHIFT V(s) · refX . (4.22)

We know how to implement SHIFT and refX , so we only need to understand how to
implement V(s) using V(P). Recall from Eq. (4.2) that

V(s)|x〉|0̄〉 = |x〉|px(s)〉 = |x〉
∑
y∈X

√
Pxy(s)|y〉. (4.23)

In the following lemma, we assume that we know pxx for every x. This is reasonable
since in practice the probability of self-loops is known. In many cases, it is even inde-
pendent of x. For the rest of this chapter, we assume that this is not an obstacle (we can
assume that one call to Update(P) allows to learn pxx for any x).

Lemma 4.8. Assuming that pxx is known for every x, Interpolation(P, M, s) implements
V(s) with quantum complexity 2C+U. Thus, Update(P(s)) has quantum complexity of order
C+ U.

Proof. We explain only how to implement V(s) using one call to V(P) and two calls to
Check(M). The algorithm for V(s)† is obtained from the reverse algorithm.

Our algorithm uses four registers: R1, R2, R3, R4. The first two registers have under-
lying state spaceH each, but the last two store a qubit in C2 each. Register R3 is used to
store if the current vertex x is marked, but R4 is used for performing rotations. Let

Rα :=
Ç

cos α − sin α
sin α cos α

å
(4.24)

denote the rotation by angle α. An algorithm for implementing the transformation
|x〉|0̄〉 7→ |x〉|px(s)〉 is given below.
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Interpolation(P, M, s)
1. Let the initial state be |x〉|0̄〉|0〉|0〉.
2. Apply Check(M) to R1R3 (then R3 = 1 if and only if x ∈ M).
3. If R3 = 0, apply V(P) to R1R2 and get |x〉|px〉|0〉|0〉.
4. Otherwise:

(a) The state is |x〉|0̄〉|1〉|0〉 where x ∈ M.
(b) Apply Rα with α = arcsin

√
s on R4: |x〉|0̄〉|1〉(

√
1− s|0〉+

√
s|1〉).

(c) If R4 = 0, apply V(P) on R1R2. Otherwise, use CNOT to copy R1 to
R2 in the standard basis: |x〉(

√
1− s|px〉|1〉|0〉+

√
s|x〉|1〉|1〉).

(d) If R1 = R2, apply Rα with α = − arcsin
»

s/((1− s)Pxx + s) to R4.
Otherwise, do nothing: |x〉|px(s)〉|1〉|0〉.

5. Apply Check(M) to R1R3 to uncompute R3 and get |x〉|px(s)〉|0〉|0〉.

Recall from Eq. (2.3) that P(s) has the following block structure:

P(s) =
Ç

PUU PUM
(1− s)PMU (1− s)PMM + sI

å
. (4.25)

We will analyze the cases x ∈ M and x ∈ U separately. Then the general case will hold
by linearity.

If x ∈ U then the corresponding row of P(s) does not depend on s, so |px(s)〉 = |px〉.
In this case step 4 of the above algorithm is never executed and the remaining steps
effectively apply V(P) to produce the correct state.

When x ∈ M the algorithm is more involved. Let us analyze only step 4 where most
of the work is done. During this step the state gets transformed as follows:

|x〉|0̄〉|1〉|0〉 7→ |x〉|0̄〉|1〉(
√

1− s|0〉+
√

s|1〉) (4.26)

7→ |x〉
Ä√

1− s|px〉|1〉|0〉+
√

s|x〉|1〉|1〉
ä

(4.27)

7→ |x〉|px(s)〉|1〉|0〉. (4.28)

The first two transformations are straightforward, so let us focus only on the last one
which corresponds to step 4d. The state at the beginning of this step is

|x〉
Ä√

1− s|px〉|1〉|0〉+
√

s|x〉|1〉|1〉
ä

(4.29)

= |x〉
√1− s

∑
y∈X\{x}

»
Pxy|y〉|1〉|0〉+ |x〉|1〉

Å»
(1− s)Pxx|0〉+

√
s|1〉
ã. (4.30)
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Note from the second row of matrix P(s) in Eq. (4.25) that all its elements have acquired
a factor of 1− s, except the diagonal ones. Thus in step 4d we perform a rotation only
when R1 = R2. This rotation affects only the second half of the state in Eq. (4.30) and
transfers all amplitude to |0〉 in the last register:

|x〉
√1− s

∑
y∈X\{x}

»
Pxy|y〉+

»
(1− s)Pxx + s|x〉

|1〉|0〉 = |x〉|px(s)〉|1〉|0〉. (4.31)

Finally, step 5 uncomputes R3 to |0〉 and the final state is |x〉|px(s)〉|0〉|0〉 as desired.

4.4 Quantum search algorithms

In this section we provide several quantum search algorithms. They are all based on
a procedure known as eigenvalue estimation and essentially run it different numbers of
times with different values of parameters. Here is a formal statement of what eigenvalue
estimation does.

Theorem 4.9 (Eigenvalue estimation [Kit95, CEMM98]). For any unitary operator W and
precision t ∈ N, there exists a quantum circuit Eigenvalue Estimation(W, t) that uses 2t

calls to the controlled-W operator and O(t2) additional gates, and acts on eigenstates |Ψk〉 of W
as

|Ψk〉 7→ |Ψk〉
1
2t

2t−1∑
l,m=0

e−
2πilm

2t eiϕkl|m〉, (4.32)

where eiϕk is the eigenvalue of W corresponding to |Ψk〉.

By linearity, Eigenvalue Estimation(W, t) resolves any state as a linear combination
of the eigenstates of W and attaches to each term a second register holding an approxi-
mation of the first t bits of the binary decomposition of 1

2π ϕk, where ϕk is the phase of
the corresponding eigenvalue. We will be mostly interested in the component along the
eigenvector |Ψn〉 which corresponds to phase ϕn = 0. In that case, the second register
is in the state |0t〉 and the estimation is exact.

Our search algorithms will be based on Eigenvalue Estimation(W(s), t) for some
values of parameters s and t. The value of the interpolation parameter s ∈ [0, 1] will be
related to pM, the probability to pick a marked vertex from the stationary distribution
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Result pM HT(P, M)
Theorem 4.10 known known
Theorem 4.12 approximation known known
Theorem 4.13 approximation known not known
Theorem 4.14 bound known bound known
Theorem 4.15 not known bound known

Table 4.1: Summary of results on quantum search algorithms. Assumptions on pM and
HT(P, M) are listed in the last two columns.

π of P. Precision t ∈N, or the number of binary digits in eigenvalue estimation, will be
related to HT(P, M), the hitting time of P.

We consider several scenarios where different knowledge of the values of parame-
ters pM and HT(P, M) is available, and for each case we provide an algorithm. The list
of all results and the corresponding assumptions is given in Table 4.1.

4.4.1 Algorithm with known values of pM and HT(P, M)

For simplicity, let us first assume that the values of pM and HT(P, M) are known. In
this case we provide a quantum algorithm that solves FIND(G) (i.e., outputs a marked
vertex if there is any) with success probability and running time that depends on two
parameters ε1 and ε2.

Let us first recall how the classical Random Walk Algorithm from Sect. 2.4.1 works.
It starts with the stationary distribution π of P and applies the absorbing walk P′ until
most of the probability is absorbed in marked vertices and thus the state is close to a
stationary distribution of P′.

In quantum case a natural starting state is |π〉|0̄〉 = |vn〉|0̄〉 = |Ψn(0)〉, which is
the stationary superposition of W(P). By analogy, we would like to end in its projec-
tion onto marked vertices, namely |M〉|0̄〉, which is also the stationary superposition of
W(P′). However, at this point the analogy breaks down, since we do not want to apply
W(P′) to reach the final state. The reason is that in many cases, including the 2D grid,
every iteration of W(P′) on |π〉|0̄〉 may remain far from |M〉|0̄〉. Instead, our approach
consists in quantizing a new random walk, namely an interpolation P(s) between P and
P′. This technique is drastically different from the approach of [Tul08, MNRS12], and
up to our knowledge new.
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θ(s) |U〉

|M〉

|vn(0)〉

cos θ(s) ≥ √ε1

sin θ(s) ≥ √ε1

Figure 4.1: Vectors |U〉, |M〉, and |vn(s)〉 = cos θ(s)|U〉 + sin θ(s)|M〉. We want to
choose s so that 〈U|vn(s)〉 = cos θ(s) ≥ √ε1 and 〈M|vn(s)〉 = sin θ(s) ≥ √ε1.

Intuitively, our quantum algorithm works as follows. We fix some value of s ∈ [0, 1]
and map |U〉 to |vn(s)〉 using a quantum walk based on P(s), and then measure |vn(s)〉
in the standard basis to get a marked vertex. For this to work with a good probabil-
ity of success, we have to choose the interpolation parameter s so that |vn(s)〉 has a
large overlap on both |U〉 and |M〉 (see Fig. 4.1). Recall from Prop. 2.13 that |vn(s)〉 =
cos θ(s)|U〉 + sin θ(s)|M〉, so we will demand that cos θ(s) sin θ(s) ≥ ε1 for some pa-
rameter ε1. The second parameter ε2 controls the precision of phase estimation.

Theorem 4.10. Assume that the values of pM and HT(P, M) are known, and let s ∈ [0, 1],
T ≥ 1, and 1

2 ≥ ε1 ≥ ε2 ≥ 0 be some parameters. If

cos θ(s) sin θ(s) ≥ ε1 and T ≥ π√
2ε2

»
HT(s) (4.33)

then Search(P, M, s, dlog Te) solves FIND(G) with success probability at least

pM + (1− pM)(ε1 − ε2)
2 (4.34)

and complexity of order S+ T · (U+ C).

Proof. Let t = dlog Te be the precision in the eigenvalue estimation. Our algorithm
uses two registers: R1 and R2 with underlying state space H each. Occasionally we will
attach the third register R3 initialized in |0〉 ∈ C2 to check if the current vertex is marked.
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Search(P, M, s, t)
1. Prepare the state |π〉|0̄〉.
2. Attach R3, apply Check(M) to R1R3, and measure R3.
3. If R3 = 1, measure R1 (in the vertex basis) and output the outcome.
4. Otherwise, discard R3 and:

(a) Apply Eigenvalue Estimation(W(s), t) on R1R2.
(b) Attach R3, apply Check(M) to R1R3, and measure R3.
(c) If R3 = 1, measure R1 (in the vertex basis) and output the outcome.

Otherwise, output: No marked vertex.

Notice that step 1 has complexity S, but Eigenvalue Estimation(W(s), t) in step 4a
has complexity of the order 2t · (U+C) according to Theorem 4.9 and Lemma 4.8. Thus,
the total complexity is of the order S+ T · (U+ C), and it only remains to bound the
success probability.

Observe that the overall success probability is of the form pM + (1 − pM)q where
q is the probability to find a marked vertex in step 4. Thus, it remains to show that
q ≥ (ε1 − ε2)

2.

We assume that Search(P, M, s, t) reaches step 4a, otherwise a marked vertex is al-
ready found. At this point the state is |U〉|0̄〉. Let us expand the first register of this
state in the eigenbasis of the discriminant matrix D(s). From now on we will omit the
explicit dependence on s when there is no ambiguity. Let

αk := 〈vk|U〉 (4.35)

and observe from Eq. (4.12) that |vk〉|0̄〉 = 1√
2
(|Ψ+

k 〉+ |Ψ
−
k 〉). Then

|U〉|0̄〉 = αn|vn〉|0̄〉+
∑
k 6=n

αk|vk〉|0̄〉 = αn|Ψn〉+
1√
2

∑
k 6=n

αk
Ä
|Ψ+

k 〉+ |Ψ
−
k 〉
ä
. (4.36)

Recall from Lemma 4.7 that the eigenvalues corresponding to |Ψn〉 and |Ψ±k 〉 are 1
and e±iϕk , respectively. From Eq. (4.32) we see that Eigenvalue Estimation(W(s), t)
in step 4a acts as follows:

|Ψn〉 7→ |Ψn〉|0t〉, (4.37)

|Ψ±k 〉 7→ |Ψ
±
k 〉|ξ

±
k 〉, (4.38)
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where |ξ±k 〉 is a t-qubit state that satisfies

〈0t|ξ±k 〉 =
1
2t

2t−1∑
l=0

e±iϕkl =: δ±k . (4.39)

Thus, the state after eigenvalue estimation lies inH⊗H⊗C2t
and is equal to

|Φ〉 := αn|Ψn〉|0t〉+ 1√
2

∑
k 6=n

αk
Ä
|Ψ+

k 〉|ξ
+
k 〉+ |Ψ

−
k 〉|ξ

−
k 〉
ä
. (4.40)

Recall that q denotes the probability to obtain a marked vertex by measuring the first
register of |Φ〉 in step 4c. To lower bound q, we in addition require that the last register
of |Φ〉 is in the state |0t〉 (i.e., the phase is estimated to be 0). Then

√
q = ‖(ΠM ⊗ I ⊗ I)|Φ〉‖ (4.41)

≥ ‖(ΠM ⊗ I ⊗ |0t〉〈0t|)|Φ〉‖ (4.42)

≥ ‖αn(ΠM ⊗ I)|Ψn〉‖ −
1√
2

∥∥∥∥(ΠM ⊗ I)
∑
k 6=n

αk
Ä
δ+k |Ψ

+
k 〉+ δ−k |Ψ

−
k 〉
ä∥∥∥∥ (4.43)

≥ ‖αn(ΠM ⊗ I)|Ψn〉‖ −
1√
2

∥∥∥∥∑
k 6=n

αk
Ä
δ+k |Ψ

+
k 〉+ δ−k |Ψ

−
k 〉
ä∥∥∥∥. (4.44)

Recall from Eq. (4.13) and Prop. 2.13 that |Ψn〉 = |vn〉|0̄〉 = (cos θ|U〉 + sin θ|M〉)|0̄〉.
Hence, we find that αn = 〈vn|U〉 = cos θ and ‖(ΠM ⊗ I)|Ψn〉‖ = sin θ. Moreover,
recall from Lemma 4.7 that vectors |Ψ±1 〉, . . . , |Ψ±k 〉 are mutually orthogonal. Thus we
can simplify Eq. (4.44) as follows:

√
q ≥ cos θ sin θ −

Ã∑
k 6=n
|αk|2δ2

k (4.45)

where δk := |δ+k | = |δ
−
k | (note from Eq. (4.39) that δ+k and δ−k are complex conjuagtes).

Now we will bound the second term in Eq. (4.45).

Let us compute the sum of the geometric series in Eq. (4.39):

δ2
k =

∣∣∣∣∣∣ 1
2t

2t−1∑
l=0

eiϕkl

∣∣∣∣∣∣
2

=
1

22t

∣∣∣∣∣∣1− eiϕk2t

1− eiϕk

∣∣∣∣∣∣
2

=
1

22t

∣∣∣∣∣∣e
−i ϕk

2 2t − ei ϕk
2 2t

e−i ϕk
2 − ei ϕk

2

∣∣∣∣∣∣
2

=
sin2( ϕk

2 2t)

22t sin2( ϕk
2 )

. (4.46)
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We can upper bound the numerator in the final expression by one. To bound the de-
nominator, we use sin x

2 ≥
x
π for x ∈ [0, π]. Hence, we get

δ2
k ≤

π2

22t ϕ2
k
≤ π2

T2ϕ2
k

(4.47)

since we chose t = dlog Te.
Recall from Prop. 2.18 that the extended hitting time is given by

HT(s) =
∑

k: λk(s) 6=1

|〈vk(s)|U〉|2

1− λk(s)
. (4.48)

If we substitute 〈vk(s)|U〉 = αk(s) and λk(s) = cos ϕk(s) from Eqs. (4.39) and (4.11), and
omit the dependence on s, we get

HT(s) =
∑
k 6=n

|αk|2

1− cos ϕk
=
∑
k 6=n

|αk|2

2 sin2( ϕk
2 )
≥ 2

∑
k 6=n

|αk|2

ϕ2
k

(4.49)

since x ≥ sin x for x ∈ [0, π].

By combining Eqs. (4.47) and (4.49) we get

∑
k 6=n
|αk|2δ2

k ≤
∑
k 6=n
|αk|2

π2

T2ϕ2
k
=

π2

T2

∑
k 6=n

|αk|2

ϕ2
k
≤ π2

2
HT(s)

T2 . (4.50)

Thus, Eq. (4.45) becomes

√
q ≥ cos θ(s) sin θ(s)− π√

2

»
HT(s)

T
≥ ε1 − ε2, (4.51)

where the last inequality follows from our assumptions. Thus q ≥ (ε1 − ε2)
2.

4.4.2 Algorithms with approximately known pM

In this section we show that a good approximation p∗ of pM suffices to guarantee that
the constraint cos θ(s) sin θ(s) ≥ ε1 in Theorem 4.10 is satisfied. Our strategy is to make
a specific choice of the interpolation parameter s, based on p∗.
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Intuitively, we want to choose s so that cos θ(s) sin θ(s) is large (recall Fig. 4.1), since
this will increase the success probability according to Eq. (4.51), and make it easier to
satisfy the constraint on ε1 in Theorem 4.10. The maximal value of cos θ(s) sin θ(s) is
achieved when sin θ(s) = cos θ(s) = 1/

√
2, and from Eq. (2.41) we get that the optimal

value of s as a function of pM is

s(pM) := 1− pM

1− pM
. (4.52)

Thus, when only an approximation p∗ of pM is known, we will choose the interpolation
parameter to be

s∗ := s(p∗) = 1− p∗

1− p∗
. (4.53)

Since we want s∗ ≥ 0, we have to always make sure that p∗ ≤ 1/2. In fact, from now we
will also assume that pM ≤ 1/2. This is without loss of generality, since one can always
prepare the initial state |π〉 at cost S and measure it in the standard basis. If pM ≥ 1/2,
this yields a marked vertex with probability at least 1/2.

Proposition 4.11. If pM, ε1 ∈ [0, 1
2 ] and p∗ satisfy

2ε1pM ≤ p∗ ≤ 2(1− ε1)pM, (4.54)

then cos θ(s∗) sin θ(s∗) ≥ ε1 where s∗ := 1− p∗
1−p∗ .

Proof. To get the desired result, we will show that the two inequalities in Eq. (4.54) imply
that cos2 θ(s∗) ≥ ε1 and sin2 θ(s∗) ≥ ε1, respectively, where

cos2 θ(s∗) =
(1− pM)p∗

pM + p∗ − 2pM p∗
, sin2 θ(s∗) =

pM(1− p∗)
pM + p∗ − 2pM p∗

(4.55)

according to Eq. (2.41).

From Eq. (4.55), we have sin2 θ(s∗) ≥ ε1 if and only if

p∗ ≤ (1− ε1)pM

ε1 + pM − 2ε1pM
. (4.56)

Since pM, ε1 ≤ 1/2, the denominator is upper bounded as

ε1 + (1− 2ε1)pM ≤ ε1 +
1− 2ε1

2
=

1
2

. (4.57)
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Therefore, p∗ ≤ 2(1− ε1)pM implies Eq. (4.56), which is equivalent to sin2 θ(s∗) ≥ ε1.

Similarly from Eq. (4.55) we have cos2 θ(s∗) ≥ ε1 if and only if

p∗ ≥ ε1pM

1− ε1 − pM + 2ε1pM
, (4.58)

where the denominator is lower bounded as

1− ε1 − (1− 2ε1)pM ≥ 1− ε1 −
1− 2ε1

2
=

1
2

. (4.59)

Therefore, p∗ ≥ 2ε1pM implies Eq. (4.58), which is equivalent to cos2 θ(s∗) ≥ ε1.

4.4.2.1 Known HT(P, M)

Now we will use Prop. 4.11 to show how an approximation p∗ of pM can be used to
make a specific choice of the parameters ε1, ε2, s, and T in Theorem 4.10, so that our
quantum search algorithm succeeds with constant probability.

To be more specific, we assume that we have an approximation p∗ of pM such that

|p∗ − pM| ≤
1
3

pM, (4.60)

where the constant 1/3 is an arbitrary choice. Notice that

1
3

pM ≥ p∗ − pM ⇐⇒ 4
3

pM ≥ p∗, (4.61)

1
3

pM ≥ pM − p∗ ⇐⇒ p∗ ≥ 2
3

pM, (4.62)

so Eq. (4.60) is equivalent to
2
3

pM ≤ p∗ ≤ 4
3

pM. (4.63)

Theorem 4.12. Assume that an approximation p∗ of pM such that |p∗ − pM| ≤ pM/3 and
the value of HT(P, M) is known. If T ≥ 14

»
HT(P, M) then Search(P, M, s∗, dlog Te) solves

FIND(G) with probability at least 1/36 and complexity of order S+ T · (U+ C).
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Proof. We are given p∗ that satisfies Eq. (4.63). If we choose ε1 := 1/3, then this is
equivalent to Eq. (4.54). Without loss of generality pM ≤ 1/2, so from Prop. 4.11 we
get that cos θ(s∗) sin θ(s∗) ≥ ε1. Thus, the first condition in Eq. (4.33) of Theorem 4.10 is
satisfied.

Next, we choose ε2 := 1/6 somewhat arbitrarily. Recall from Theorem 2.22 that
HT(s∗) ≤ HT(P, M), thus

π√
2

1
ε2

»
HT(s∗) ≤ π 3

√
2
»

HT(P, M) ≤ 14
»

HT(P, M) ≤ T, (4.64)

so the second condition in Eq. (4.33) is also satisfied.

Hence, according to Theorem 4.10, Search(P, M, s∗, dlog Te) solves FIND(G) with
success probability at least

pM + (1− pM)(ε1 − ε2)
2 ≥ (ε1 − ε2)

2 =

(
1
3
− 1

6

)2

=
1
36

(4.65)

and complexity of order S+ T · (U+ C).

4.4.2.2 Unknown HT(P, M)

Recall from Theorem 4.12 in previous section that a marked vertex can be found if p∗, an
approximation of pM, and HT(P, M) are known. In this section we show that a marked
vertex can still be found (with essentially the same expected complexity), even if the
requirement to know HT(P, M) is relaxed.

Theorem 4.13. Given p∗ such that |p∗ − pM| ≤ pM/3, Incremental Search(P, M, s∗, 50)
solves FIND(G) with expected quantum complexity of order

log(T) · S+ T · (U+ C), where T =
»

HT(P, M). (4.66)

Proof. The idea is to repeatedly use Search(P, M, s∗, t) with increasing accuracy of the
eigenvalue estimation. We start with t = 1 and in every iteration increase it by one.
Once t is above some threshold t0, any subsequent iteration outputs a marked element
with probability that is at least a certain constant. To boost the success probability of the
Search(P, M, s∗, t) subroutine, for each value of t we call it k = 50 times.
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Incremental Search(P, M, s∗, k)
1. Let t = 1.
2. Call k times Search(P, M, s∗, t).
3. If no marked vertex is found, set t← t + 1 and go back to step 2.

Let t0 be the smallest integer that satisfies

14
»

HT(P, M) ≤ 2t0 . (4.67)

Assume that variable t has reached value t ≥ t0, but Incremental Search(P, M, s∗, 50)
has not terminated yet. By Theorem 4.12, each execution of Search(P, M, s∗, t) outputs
a marked vertex with probability at least 1/36. Let pfail be the probability that none of
the k = 50 executions in step 2 succeeds. Notice that

pfail ≤ (1− 1/36)50 ≤ 1/4. (4.68)

Let us assume that Incremental Search(P, M, s∗, 50) terminates with the final value
of t equal to t f . Recall from Theorem 4.10 that Search(P, M, s∗, t) has complexity of
order S+ 2t · (U+ C), so the expected complexity of Incremental Search(P, M, s∗, 50) is
of order

N1 · S+ N2 · (U+ C), (4.69)

where N1 is the expectation of t f , and N2 is the expectation of 2 + 4 + · · ·+ 2t f .

To upper bound N1, we assume that the first t0 − 1 iterations fail. Since each of the
remaining iterations fails with probability at most pfail, we get

N1 ≤ (t0 − 1) +
∞∑

t=t0

p1+(t−t0)
fail (4.70)

= (t0 − 1) +
pfail

1− pfail
(4.71)

≤ (t0 − 1) +
1/4
3/4

(4.72)

≤ t0. (4.73)
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We use the same strategy to upper bound N2:

N2 ≤
t0−1∑
t=1

2t +
∞∑

t=t0

p1+(t−t0)
fail 2t (4.74)

= (2t0 − 2) + pfail ·
∞∑

t=0
pt

fail2
t+t0 (4.75)

≤ (2t0 − 2) +
1
4
·

∞∑
t=0

Å1
4
· 2
ãt
· 2t0 (4.76)

= (2t0 − 2) +
1
4
· 2 · 2t0 (4.77)

≤ 2 · 2t0 . (4.78)

We plug the bounds on N1 and N2 in Eq. (4.69) and get that the expected complexity is
of order t0 · S+ 2t0+1 · (U+ C). Since t0 satisfies Eq. (4.67), this concludes the proof.

4.4.3 Algorithms with a given bound on pM or HT(P, M)

In previous section we considered the case when we know a relative approximation of
pM, i.e., a value p∗ such that |p∗ − pM| ≤ pM/3. In this section we consider the case
when we are given an absolute lower bound pmin such that pmin ≤ pM, an absolute upper
bound HTmax ≥ HT(P, M), or both. In particular, for problem FIND(G)(≥k) we can set
pmin := minM′ :|M′|=k pM′ and HTmax := maxM′ :|M′|=k HT(P, M′).

4.4.3.1 Assuming a bound on pM

Theorem 4.14. Given pmin such that pmin ≤ pM, FIND(G) can be solved with expected quan-
tum complexity of order»

log(1/pmin) ·
î
log(T) · S+ T · (U+ C)

ó
, where T =

»
HT(P, M). (4.79)

Moreover, if HTmax such that HTmax ≥ HT(P, M) is also given, then FIND(G) can be solved
with quantum complexity of order»

log(1/pmin) ·
î
S+ T · (U+ C)

ó
, where T =

√
HTmax. (4.80)
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Proof. We prove the first part of the theorem. The second part is similar except one has
to use Search(P, M, s∗, T) instead of Incremental Search(P, M, s∗, 50).

To apply Theorem 4.13, it is enough to obtain an approximation p∗ of pM such that
|p∗ − pM| ≤ pM/3. Recall from Eq. (4.63) that this is equivalent to finding p∗ such that

2
3

pM ≤ p∗ ≤ 4
3

pM. (4.81)

Let l be the largest integer such that pM ≤ 2−l. Then

1
2
· 2−l ≤ pM ≤ 2−l (4.82)

and hence
2
3

pM ≤
2
3
· 2−l =

4
3
·
(

1
2
· 2−l

)
≤ 4

3
pM. (4.83)

We can make sure that Eq. (4.81) is satisfied by choosing p∗ := 2
3 · 2−l. Unfortunately,

we do not know the value of l. However, we know that pmin ≤ pM and without loss of
generality we can assume that pM ≤ 1/2. Thus, it only suffices to check all values of l
from 1 to blog(1/pmin)c.

To find a marked vertex, we replace step 2 in the Incremental Search algorithm by
a loop over the blog(1/pmin)c possible values of p∗:

For l = 1 to blog(1/pmin)c do:

• Let p∗ := 2
3 · 2−l.

• Call k times Search(P, M, s(p∗), t).

Recall from Theorem 4.10 that the complexity of Search(P, M, s∗, t) depends only on t.
Hence, the analysis of the modified algorithm is the same, except that now the complex-
ity of step 2 is multiplied by a factor of order log(1/pmin). In fact, this is the only non-
trivial step of the Incremental Search algorithm, so the overall complexity increases
by this multiplicative factor. Finally, note that instead of trying all possible values of
p∗, we can search for the right value using Grover’s algorithm, following the approach
of [HMdW03], therefore reducing the multiplicative factor to

»
log(1/pmin).
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4.4.3.2 Assuming a bound on HT(P, M)

Theorem 4.15. Given HTmax such that HTmax ≥ HT(P, M), FIND(G) can be solved with
expected quantum complexity of order

log(1/pM) ·
î
S+ T · (U+ C)

ó
, where T =

√
HTmax. (4.84)

Proof. We use Search(P, M, s∗, t) with t =
†
log
√

HTmax
£

and perform a dichotomic
search for an appropriately chosen value of p∗. This dichotomic search uses backtrack-
ing, since the branching in the dichotomy is with bounded error, similarly to the situa-
tion in [FRFU94].

Initially we set a = 0 and b = 1. Then for testing the current value of p∗ = (a +
b)/2, we run Search(P, M, s(p∗), t) a constant number of times. If a marked vertex is
found we stop. Otherwise, if Eigenvalue Estimation(W(s(p∗)), t) outputs a minority
of 0s, we set a = p∗, otherwise we set b = p∗. The details of the analysis are given
in [FRFU94].

4.4.4 Application to the 2D grid

Consider a random walk on graph G which is a rectangular 2D grid (torus) of size√
n×
√

n with self-loops at each vertex. In this section we consider only the complexity
in terms of the number of uses of Check and SHIFT. The previous best known result on
quantum complexity of FIND(G)(k) and FIND(G)(≥k) was O

Ä√
n(log n)3/2

ä
, from Corol-

lary 4.6. Since the grid is a 5-regular graph (4 directions and 1 self-loop), P is symmet-
ric. Thus, the stationary distribution of P is uniform and we simply have pM = m/n.
Then Setup is realized with

√
n uses of SHIFT, and HT(P, {z}) = Θ(n log n), for any z.

Therefore we get the following corollary of Theorem 4.10 and Theorem 4.14, by upper
bounding HT(P, M) = O(n log n).

Corollary 4.16. Let G be the 2D grid of size
√

n ×
√

n, and let k ≥ 1. Then FIND(G)(k)

can be solved with expected quantum complexity O
Ä»

n log n
ä
, and FIND(G)(≥k) with expected

quantum complexity O
Ä»

n log n log(n/k)
ä
.
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Chapter 5

Quantum rejection sampling
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5.1 Introduction

We address the problem of preparing a desired target quantum state into the memory
of a quantum computer. It is of course unreasonable to try to find an efficient quan-
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tum algorithm to achieve this for general quantum states. Indeed, if any state could
be prepared efficiently such difficult tasks as preparing witnesses for QMA-complete
problems [KKR06] could be solved efficiently, a task believed to be impossible even if
classical side-information about the quantum state is provided [AD10]. On the other
hand, many interesting computational problems can be related to quantum state gen-
eration problems that carry some additional structure which might be exploited by an
efficient algorithm.

Among the most tantalizing examples of problems that are reducible to quantum
state generation is the GRAPH ISOMORPHISM problem [KST93] which could be solved
by preparing the quantum state |Γ〉 = 1√

n!
∑

π∈Sn |Γπ〉, i.e., the uniform superposition of
all the permutations of a given graph Γ. By generating such states for two given graphs,
one could then use the standard SWAP-test [BCWdW01] to check whether the two states
are equal or orthogonal and therefore decide whether the graphs are isomorphic or not.
Furthermore, it is known that all problems in statistical zero knowledge (SZK) can be
reduced to instances of quantum state generation [ATS03], along with gap-versions of
closest lattice vector problems [Reg04a, AR05] and subgroup membership problems for
arbitrary subgroups of finite groups [Wat00, Wat01, FIM+02]. Aside from brute-force at-
tempts that try to solve quantum state preparation by applying sequences of controlled
rotations (typically of exponential length) to fix the amplitudes of the target state one
qubit at a time, not much is known regarding approaches to tackle the quantum state
generation problem while exploiting inherent structure.

In this regard, the only examples we are aware of are:

1. A direct approach to generate states described by efficiently computable ampli-
tudes [GR02].

2. An approach via adiabatic computing [ATS03] in which a sequence of local Hamil-
tonians has to be found such that the desired target state is the ground state of a
final Hamiltonian and the overlap between intermediate ground states is large.

3. Quantum analogues of classical annealing processes [BKS09, SBBK08] and quan-
tum Metropolis sampling procedure [TOV+11, YAG10].

Conversely, for some problems a lower bound on the complexity of solving a corre-
sponding quantum state generation problem would be desirable, for instance to provide
further evidence for the security of quantum money schemes, see e.g. [Aar09, FGH+12].
Unfortunately, except for a recent result that generalizes the adversary method to a par-
ticular case of quantum state generation problems (see [LMR+11] and [AMRR11]), very
little is known about lower bounds for quantum state generation problems in general.
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5.1.1 Rejection sampling

The classical rejection sampling method1 was introduced by von Neumann [vN51] to
solve the following resampling problem: given the ability to sample according to some
probability distribution P, one is asked to produce samples from some other distribu-
tion S. Conceptually, the method is extremely simple and works as follows: let γ ≤ 1
be the largest scaling factor such that γS lies under P, formally, γ = mink(pk/sk). We
accept a sample k from P with probability γsk/pk, otherwise we reject it and repeat. The
expected number T of samples from P to produce one sample from S is then given by
T = 1/γ = maxk(sk/pk). See also [Dev86] for further details and analysis of the method
for various special cases of P and S. In a setting where access to the distribution P is
given by a black box, this has been proved to be optimal by Letac [Let75]. The rejec-
tion sampling technique is at the core of many randomized algorithms and has a wide
range of applications, ranging from computer science to statistical physics, where it is
used for Monte Carlo simulations, the most well-known example being the Metropolis
algorithm [MRR+53].

In the same way that quantum state preparation can be considered a quantum ana-
logue of classical sampling, it is natural to study a quantum analogue of the classical
resampling problem, i.e., the problem of sampling from a distribution S given the ability
to sample from another distribution P. We call this problem quantum resampling and de-
fine it to be the following analogue of the classical resampling problem: given an oracle
generating a quantum state |πξ〉 = ∑n

k=1 πk|ξk〉|k〉, where the amplitudes πk are known
but the states |ξk〉 are unknown, the task is to prepare a target state |σξ〉 = ∑n

k=1 σk|ξk〉|k〉
with (potentially) different amplitudes σk but the same states |ξk〉. Note that while both
the initial amplitudes πk and the final amplitudes σk are fixed and known, the fact that
the states |ξk〉 are unknown makes the problem non-trivial.

5.1.2 Related work

The query complexity of quantum state generation problems was studied in [AMRR11],
where the adversary method was extended to this model and used to prove a tight lower
bound on a specific quantum state generation problem called INDEXERASURE. The ad-
versary method was later extended to quantum state conversion problems—where the
goal is to convert an initial state into a target state—and shown to be nearly tight in the
bounded error case for any problem in this class, which includes as special cases state

1It is also known as the accept/reject method or “hit-and-miss” sampling.
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generation and the usual model of function evaluation [LMR+11]. In all these cases, the
input to the problem is classical, as the oracle encodes some hidden classical data. This
is where the quantum resampling problem differs from those models, as in that case the
oracle encodes unknown quantum states.

Grover [Gro00] considered a special case of the quantum resampling problem, where
the initial state

|π〉 = 1√
2n

∑
x
|x〉 (5.1)

is a uniform superposition and one is given access to an oracle that for given input x
provides a classical description of σx, the amplitude in the target state

|σ〉 =
∑

x
σx|x〉. (5.2)

We significantly extend the scope of Grover’s technique by considering any initial su-
perposition and improving the efficiency of the algorithm when only an approximate
preparation of the target state is required.

Techniques related to quantum resampling have already been used implicitly as a
useful primitive for building quantum algorithms. For instance, it was used in a paper
by Harrow, Hassidim, and Lloyd [HHL09] for the problem of solving a system of linear
equations Ax = b, where A is an invertible matrix over the real or complex numbers
whose entries are efficiently computable, and b is a vector. The quantum algorithm
in [HHL09] solves the problem of preparing the state |x〉 = A−1|b〉 by applying the
following three basic steps:

1. Use phase estimation on the state |b〉 = ∑
k bk|ψk〉 to prepare

∑
k bk|λk〉|ψk〉, where

|ψk〉 and λk denote the eigenvectors and eigenvalues of A.
2. Convert this state to

∑
k bkλ−1

k |λk〉|ψk〉 (up to normalization).
3. Undo the phase estimation to obtain the target state A−1|b〉 = ∑

k bkλ−1
k |ψk〉.

The second step of this procedure performs the transformation∑
k

bk|λk〉|ψk〉 7→
∑

k
bkλ−1

k |λk〉|ψk〉 (5.3)

which can be seen as an instance of quantum resampling. Note that other works, such
as [Chi08, SMM09], have used a similar technique—i.e., using phase estimation to sim-
ulate some function of an operator—to apply a unitary on an unknown quantum state,
rather than preparing one particular state.
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Temme et al. [TOV+11] have proposed a quantum Metropolis sampling algorithm
to solve the problem of preparing the thermal state of a quantum Hamiltonian. As
it is heavily inspired by the classical Metropolis algorithm, the main step uses an ac-
cept/reject rule on random moves between eigenstates of the Hamiltonian. The main
complication comes from reverting rejected moves, as the no-cloning principle prevents
us from keeping a copy of the previous eigenstate. We will show that this step actually
reduces to a quantum resampling problem, and that quantum rejection sampling leads
to an alternative solution which also provides a speed-up over the technique proposed
in [TOV+11].

Finally, another type of quantum resampling problem has been considered in a paper
by Kitaev and Webb [KW08] in which the task is to prepare a superposition of basis
states with Gaussian-distributed weights along a low-dimensional strip inside a high-
dimensional space. The authors solve this problem by applying a sequence of lattice
transformation and phase estimation steps.

For us, another important case in point are hidden shift problems over an abelian
group A. Here it is easy to prepare a quantum state of the form

|πξ〉 =
∑

w∈A
f̂ (w)χw(s)|w〉, (5.4)

where χw denotes the characters of A and f̂ denotes the Fourier transform of f (see, e.g.,
[vDHI03, Iva08, Röt10]). If we could eliminate the Fourier coefficients f̂ (w) from the
state |πξ〉, we would obtain a state

|σξ〉 = |A|−1/2 ∑
w∈A

χw(s)|w〉 (5.5)

from which the hidden shift s can be easily recovered by applying another Fourier trans-
form. Note that in this case the states |ξk〉 are actually just the complex phases χw(s).
We discuss an application of our general framework to the special case of the Boolean
function hidden shift problem in Sect. 6.4.2 in Chapter 6.

5.1.3 Our results

We denote the classical resampling problem mentioned above by SAMPLINGP→S, where
P and S are probability distributions on the set [n]. Note that in its simplest form, this
problem is not meaningful in the context of query complexity (indeed, if distribution S
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is known to begin with, there is no need to use the ability to sample from P). However,
there is a natural modification of the problem, that actually models realistic applica-
tions, which does not suffer from this limitation. In this version of the problem, there
is a function ξ that deterministically associates some unknown data with each sample,
and the problem is to sample pairs (k, ξ(k)), where k follows the target distribution.
Formally, the problem is therefore defined as follows: given oracle access to a black box
producing pairs (k, ξ(k)) ∈ [n] × [d] such that k is distributed according to P, where
ξ : [n]→ [d] is an unknown function, the problem is to produce a sample (k, ξ(k)) such
that k is distributed according to S. Note that in this model it is not possible to produce
the required samples without using the access to the oracle that produces the samples
from P, and the algorithm is therefore restricted to act as in Fig. 5.1.

P
ξ(k)

k A

ξ(k)
accept/reject

k

Figure 5.1: Classical rejection sampling: A black box produces samples k according to
a known probability distribution P and accompanied by some unknown classical data
ξ(k). The algorithm A either accepts or rejects these samples, so that accepted samples
are distributed according to a target distribution S.

The problem studied in this chapter is a quantum analogue of SAMPLINGP→S, where
probability distributions are replaced by quantum superpositions. More precisely, let
π, σ ∈ Rn be such that ‖π‖2 = ‖σ‖2 = 1 and πk, σk ≥ 0 for all k ∈ [n]. Let O be a uni-
tary that acts on a default state |0̄〉dn ∈ Cd ⊗Cn as O : |0̄〉dn 7→ |πξ〉 :=

∑n
k=1 πk|ξk〉|k〉,

where |ξk〉 ∈ Cd are some fixed unknown normalized quantum states. Given oracle ac-
cess to unitary black boxes O, O†, the QSAMPLINGπ→σ problem is to prepare the state
|σξ〉 :=

∑n
k=1 σk|ξk〉|k〉. Note that a special case of this problem is the scenario d = 1,

when ξk ∈ C are just unknown phases (complex numbers of absolute value 1).

The main result of this chapter is a tight characterization of the query complexity of
QSAMPLINGπ→σ for any success probability p:

Theorem 5.1. For p ∈ [pmin, pmax], the quantum query complexity of QSAMPLINGπ→σ with
success probability p is Q1−p(QSAMPLINGπ→σ) = Θ(1/‖εp

π→σ‖2), where pmin, pmax, and
ε

p
π→σ are given in Definition 5.8. For p ≤ pmin, the query complexity is 1, and for p > pmax,

it is infinite.
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The vector ε
p
π→σ , as well as the probabilities pmin and pmax, will be defined in Sect. 5.2

(intuitively, the vector ε
p
π→σ characterizes the amplitudes of the final state prepared by

the best algorithm having success probability p).

Let us note that when p = pmax = 1, the query complexity reduces to maxk(σk/πk)
in analogy with the classical case, except that amplitudes replace probabilities. The
lower bound comes from an extension of the automorphism principle (originally intro-
duced in the context of the adversary method [AMRR11, HLŠ07]) to our framework of
quantum state generation problems with quantum oracles. The upper bound follows
from an algorithm based on amplitude amplification that we call quantum rejection
sampling. We also show that a modification of this algorithm can also solve a quantum
state conversion problem, which we call strong quantum resampling (SQSAMPLING).

Next, we illustrate the technique by providing different applications. We first show
that the main steps in two recent algorithms, namely the quantum algorithm for solv-
ing linear systems of equations [HHL09] and the quantum Metropolis sampling al-
gorithm [TOV+11], consists in solving quantum state conversion problems which we
call QLINEAREQSκ and QMMOVEC . We then observe that these problems reduce to
SQSAMPLING, and can therefore be solved using quantum rejection sampling.

Theorem 5.2. For any κ̃ ∈ [1, κ], there is a quantum algorithm that solves QLINEAREQSκ

with success probability p = (wT · w̃)/(‖w‖2 · ‖w̃‖2) using an expected number of queries
O(κ̃/‖w̃‖2), where wj := bj/λj, w̃j := bj/λ̃j, and λ̃j := max{κ̃−1, λj}.

Theorem 5.3. There is a quantum algorithm that solves QMMOVEC with success probability
1 using an expected number of queries O(1/‖w(i)‖2).

Let us note that while the quantum algorithm for linear systems of equations was
indeed using this technique implicitly, this was not the case for quantum Metropolis
sampling, where quantum rejection sampling provides some speed-up over the original
algorithm.

Finally, quantum rejection sampling can also be used to solve the Boolean function
hidden shift problem. We give a short summary on this application in Sect. 5.5.3. For
more discussion on this see Sect. 6.4.2 in the next chapter.

5.2 Definition of the problem

In this section, we define different notions related to the quantum resampling problem.
It is important to note that this problem goes beyond the usual model of quantum query
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complexity, where the goal is to compute a function depending on some unknown clas-
sical data that can be accessed via an oracle (see [BdW02] for a comprehensive survey).
In the usual model, the algorithm is therefore quantum but both its input and output are
classical. A first extension of this model is the case were the output is also quantum, that
is, the goal is to generate a target quantum state depending on some unknown classical
data hidden by the oracle. The quantum adversary method has recently been extended
to this model by [AMRR11], where is was used to characterize the query complexity if a
quantum state generation problem called INDEXERASURE. In both the usual model and
this extension, the oracle acts as Ox : |b〉|i〉 7→ |b + xi〉|i〉, where x is the hidden classical
data. However, the quantum resampling problem corresponds to another extension of
these models, where the input is also quantum, in the sense that the oracle hides un-
known quantum states instead of classical data. Let us now define this extended model
more precisely.

Definition 5.4 (Quantum state generation problem). Let O := {Ox : x ∈ X} and
Ψ := {|ψx〉 : x ∈ X}, respectively, be sets of quantum oracles (i.e., unitaries) and target
quantum states labeled by elements of some set X . Then P := (O, Ψ,X ) describes the
following quantum state generation problem: given an oracle Ox for some unknown value
of x ∈ X , prepare a state

|ψ〉 = √p|ψx〉|0̄〉 + |errorx〉, (5.6)

where p is the desired success probability, |0̄〉 is a normalized standard state for some
workspace and |errorx〉 is an arbitrary error state with norm at most

»
1− p. The quan-

tum query complexity of P is the minimum number of queries to Ox or O†
x necessary to

solve P with success probability p and will be denoted by Q1−p(P).

Intuitively, we want the final state |ψ〉 to have a component of length at least
√

p in
the direction of |ψx〉|0̄〉. We can restate the condition ‖|errorx〉‖2 ≤

»
1− p as follows:

1− p ≥
∥∥∥|ψ〉 −√p|ψx〉|0̄〉

∥∥∥2

2
= 1 + p− 2 Re

î
〈ψ| · √p|ψx〉|0̄〉

ó
, (5.7)

or equivalently:
Re
î
〈ψ| · |ψx〉|0̄〉

ó
≥ √p. (5.8)

Note that the main difference of the above definition with the usual model of quan-
tum query complexity, and its extension to quantum state generation in [AMRR11], is
that the oracle is not restricted to act as Ox : |b〉|i〉 7→ |b + xi〉|i〉.

We now formally define QSAMPLINGπ→σ as a special case of the quantum state
generation problem. Throughout this article, we fix positive integers d, n and we assume
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that π, σ ∈ Rn are vectors such that ‖π‖2 = ‖σ‖2 = 1 and πk, σk ≥ 0 for all k ∈ [n].
We also use the notation |π〉 :=

∑n
k=1 πk|k〉 and |σ〉 :=

∑n
k=1 σk|k〉. For simplicity, we

assume that σk > 0 for all k ∈ [n], but the general case can easily be obtained by taking
the limit σk → 0.

Let ξ = (|ξk〉 ∈ Cd : k ∈ [n]) be an ordered list of normalized quantum states. Then
any unitary that maps a default state |0̄〉dn to |πξ〉 :=

∑n
k=1 πk|ξk〉|k〉 is a valid oracle

for QSAMPLINGπ→σ . Therefore, we will label valid oracles by a pair (ξ, u), where ξ
denotes the states hidden by the oracle, and u defines how the oracle acts on states that
are orthogonal to |0̄〉dn. More explicitly, we fix a default oracle O ∈ U(dn) as a unitary
that acts on |0̄〉dn as O|0̄〉dn = |0̄〉d|π〉, and arbitrarily on the orthogonal complement.
We then use O as a reference point to define the remaining oracles:

Oξ,u := Vξ O u, (5.9)

where u ∈ U(dn) is a unitary such that u|0̄〉dn = |0̄〉dn and Vξ is a unitary that acts
on |0̄〉d|k〉 as Vξ |0̄〉d|k〉 = |ξk〉|k〉 for any k ∈ [n], and arbitrarily on the orthogonal
complement of these states, so that

Oξ,u|0̄〉dn = Vξ O|0̄〉dn = Vξ

n∑
k=1

πk|0̄〉d|k〉 =
n∑

k=1
πk|ξk〉|k〉 = |πξ〉 (5.10)

(note that how O and Vξ are defined on the orthogonal complements is irrelevant as it
only affects the exact labeling, but not the set of valid oracles).

Definition 5.5 (Quantum resampling problem). Quantum resampling problem, denoted
by QSAMPLINGπ→σ , is an instance of quantum state generation problem (O, Ψ,X ) with

X :=
¶
(ξ, u) : ξ = (|ξ1〉, . . . , |ξn〉) ∈ (Cd)n, u ∈ S

©
, (5.11)

S :=
¶

u ∈ U(dn) : u|0̄〉dn = |0̄〉dn
© ∼= U(dn− 1). (5.12)

Oracles in O that are hiding the states |πξ〉 are defined according to Eq. (5.9) and the
corresponding target states are defined by |σξ〉 := Vξ |0̄〉d|σ〉 =

∑n
k=1 σk|ξk〉|k〉.

Let us note that the target states only depend on the index ξ, and not u. Moreover,
note that amplitudes πk and σk can be assumed to be real and positive without loss of
generality, as any phase can be corrected using a controlled-phase gate, which does not
require any oracle call since π and σ are fixed and known.

In [LMR+11], Lee et al. have proposed another extension of the query complex-
ity model for quantum state generation of [AMRR11] by considering quantum state
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conversion, where the problem is now to convert a given quantum state into another
quantum state, instead of generating a target quantum state from scratch. They have
extended the adversary method to this model and showed that it is approximately tight
in the bounded-error case for any quantum state conversion problem with a classical
oracle. Here, we define a model that combines both extensions (from classical to quan-
tum oracles as well as from state generation to state conversion), hence subsuming all
previous models (see Fig. 5.2).

Definition 5.6 (Quantum state conversion problem). Let O := {Ox : x ∈ X}, Φ :=
{|φx〉 : x ∈ X} and Ψ := {|ψx〉 : x ∈ X}, respectively, be sets of quantum oracles
(i.e., unitaries), initial quantum states and target quantum states labelled by elements
of some set X . Then P := (O, Φ, Ψ,X ) describes the following quantum state conver-
sion problem: given an oracle Ox for some unknown value of x ∈ X and a copy of the
corresponding initial state |φx〉, prepare a state

|ψ〉 = √p|ψx〉|0̄〉 + |errorx〉, (5.13)

where p is the desired success probability, |0̄〉 is a normalized standard state for some
workspace and |errorx〉 is an arbitrary error state with norm at most

»
1− p. Again,

Q1−p(P) will denote the quantum query complexity of P .

We also define a strong version of the quantum resampling problem, which is a spe-
cial case of the state conversion problem. Compared to the original resampling prob-
lem, it is made harder due to two modifications. First, instead of being given access to
an oracle that maps |0̄〉dn to |πξ〉, we are only provided with one copy of |πξ〉 and an
oracle that reflects through it, making this a quantum state conversion problem. The
second extension assumes that we only know the ratios between the amplitudes πk and
σk for each k, instead of the amplitudes themselves. More precisely, instead of vectors
π, σ ∈ Rn specifying the initial and target amplitudes, we fix a single vector τ ∈ Rn

such that τk ≥ 0 and maxk τk = 1, specifying the ratios between those amplitudes.
Let us now formally define the stronger version of the quantum resampling problem
(this definition is motivated by the applications that will be presented in Sect. 5.5.1
and Sect. 5.5.2).

Definition 5.7 (Strong quantum resampling problem). Let P := {π ∈ Rn : ‖π‖2 =
1, ∀k : πk > 0}. The strong quantum resampling problem SQSAMPLINGτ is a quantum
state conversion problem (O, Φ, Ψ,X ), where X := {(ξ, π) : ξ = (|ξ1〉, . . . , |ξn〉) ∈
(Cd)n, π ∈ P}, oracles inO are defined by Oξ,π := ref|πξ〉 = I− 2|πξ〉〈πξ |with the cor-
responding initial and target states being |πξ〉 and |σξ〉 = ∑n

k=1 σk|ξk〉|k〉, respectively,
where σ := π ◦ τ/‖π ◦ τ‖2 so that σk/πk ∝ τk.

78



Quantum state conversion

Quantum state generation

Classical oracles

Function evaluation

• SQSAMPLINGτ

• QSAMPLINGπ→σ

• INDEXERASURE

Figure 5.2: Comparison of different classes of problems in quantum query complex-
ity. The case of function evaluation has been extensively studied in the literature. The
extension to quantum state generation with classical oracles, as well as the problem
INDEXERASURE which belongs to that class, have been studied in [AMRR11]. The ad-
versary method has been extended to the case of quantum state conversion with clas-
sical oracles in [LMR+11]. The problems QSAMPLINGπ→σ and SQSAMPLINGτ studied
in this article use quantum oracles and therefore belong to yet another extension of the
quantum query complexity model.

The relationship between different classes of query complexity problems introduced
above, and strong and regular quantum rejection sampling as special instances of them
are summarized in Fig. 5.2. Our main result is that the quantum query complexities of
QSAMPLINGπ→σ and SQSAMPLINGτ for any success probability p depend on a vector
ε

p
π→σ defined as follows.

Definition 5.8. For any π, σ, let us define the following quantities

pmin := (σT ·π)2, γmin := min
k:πk>0

(πk/σk), (5.14)

pmax :=
∑

k:πk>0
σ2

k , γmax := max
k

(πk/σk). (5.15)

For any γ ∈ [γmin, γmax], let us define a vector ε(γ) and a scalar p(γ) by

εk(γ) := min{πk, γσk}, p(γ) :=
(

σT · ε(γ)
‖ε(γ)‖2

)2

. (5.16)

For p ∈ [pmin, pmax], let γ̄ ∈ [γmin, γmax] be such that p(γ̄) = p and define a vector
ε

p
π→σ := ε(γ̄).

To see that ε
p
π→σ is well-defined, note that ‖ε(γ)‖2 is monotonically increasing with

γ, while p(γ) is monotonically decreasing with γ. More precisely, for γ = γmin, the
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vector ε(γ) has components εk(γ) = γσk if πk 6= 0 or zero otherwise, and p(γ) = pmax.
For γ = γmax, we have ε(γ) = π and p(γ) = pmin. Between these extreme cases, p(γ)
interpolates from pmax to pmin, which means that for any p ∈ [pmin, pmax], there exists a
value γ̄ such that p(γ̄) = p, which uniquely defines ε

p
π→σ .

Intuitively, ε(γ) may be interpreted as a “water-filling” vector, where γ defines the
water level, and πk defines the height of “tank” number k. As γ increases from 0 to γmin,
we have εk(γ) = γσk, meaning that all tanks are progressively filled proportionally to
γ. When γ > γmin, some tanks are filled (γσk > πk) and cannot hold more water, while
others continue to get filled.

5.3 Query complexity of quantum resampling

Let us first show that ε
p
π→σ defines an optimal feasible point of a certain semidefinite

program (SDP). Afterwards we will show that the same SDP characterizes the quantum
query complexity of QSAMPLINGπ→σ .

Lemma 5.9. Let p ∈ [pmin, pmax], and ε = ε
p
π→σ . Then, the following SDP

maxM�0 Tr M s.t. ∀k : π2
k ≥ Mkk,

Tr
î
(σ · σT − pI)M

ó
≥ 0.

(5.17)

has optimal value ‖ε‖2
2, which is achieved by the rank-1 matrix M = ε · εT.

Proof sketch. We first show that M = ε · εT, where ε = ε
p
π→σ , satisfies the constraints of

SDP in Eq. (5.17) and therefore constitutes a feasible point. Therefore, the optimal value
of SDP in Eq. (5.17) is at least Tr M = ‖ε‖2

2. Secondly, we dualize the SDP, and provide a
dual-feasible point achieving the same objective value. The fact that this objective value
is feasible for both the primal and the dual then implies that this is the optimal value.
The details of the proof are given in Appendix A.

Let us prove that SDP in Eq. (5.17) provides a lower bound for the QSAMPLING
p
π→σ

problem. In Sect. 5.4, we will also show that this lower bound is tight by providing an
explicit algorithm.

Let us emphasize that a lower bound cannot be obtained from standard methods
such as the adversary method [Amb00, HLŠ07] (which has recently been proved to be
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tight for evaluating functions [Rei09, Rei11, LMR+11]), nor from its extension to quan-
tum state generation problems [AMRR11, LMR+11], because in this case the oracle is
also quantum, in the sense that it encodes some unknown quantum state rather than
some unknown classical data. To prove lower bounds it is useful to exploit possible
symmetries of the problem. We extend the notion of automorphism group [AMRR11,
HLŠ07] to our framework of quantum state generation problems:

Definition 5.10 (Automorphism group). We say that G is the automorphism group of
problem (O, Ψ,X ) if:

1. G acts on X (and thus implicitly also on O as g : Ox 7→ Og(x)).
2. For any g ∈ G there is a unitary Ug such that Ug|ψx〉 = |ψg(x)〉 for all x ∈ X .
3. For any given g ∈ G it is possible to simulate the oracles Og(x) for all x ∈ X , using

only a constant number of queries to the black box Ox.

While for the standard model of quantum query complexity, where the oracle en-
codes some unknown classical data, the automorphism group is restricted to be a per-
mutation group and is therefore always finite, in this more general framework the au-
tomorphism group can be continuous. For example, in the case of QSAMPLING

p
π→σ

it will involve the unitary group. Taking such symmetries into account might signifi-
cantly simplify the analysis of algorithms for the corresponding problem and is the key
to prove our lower bound.

Lemma 5.11. Any quantum algorithm for QSAMPLING
p
π→σ with p ∈ [pmin, pmax] requires

at least Ω(1/‖εp
π→σ‖2) queries to O and O†.

Proof. The proof proceeds as follows: we first define a subset of oracles that are suffi-
ciently hard to distinguish to characterize the query complexity of the problem. Exploit-
ing the automorphism group of this subset of oracles, we then show that any algorithm
may be symmetrized in such a way that the real part of the amplitudes of the final state
prepared by the algorithm does not depend on the specific oracle it was given. These
amplitudes define a vector γ̄ that should satisfy some constraints for the algorithm to
have success probability p. Moreover, we can use the hybrid argument to show that
the components of γ̄ should also satisfy some constraints for the algorithm to be able
to generate the corresponding state in at most T queries. Putting all these constraints
together in an optimization program, we then show that such a vector γ̄ cannot exist
unless T is large enough. This optimization program is then shown to be equivalent to
the semidefinite program in Lemma 5.9, which proves the theorem.
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Let us now give the details of the proof. For given π, σ ∈ Rn, let us choose a subset
of oracles O′π,σ ⊂ Oπ,σ that are hard to distinguish. We choose the states hidden inside
oracles to be of the form |ξk〉 = (−1)xk |0̄〉d, where phases are given by some unknown
string x ∈ Fn

2 . We also choose u so that any oracle in the subset acts trivially on the d-
dimensional register holding the unknown states. In that case, this register is effectively
one-dimensional, so we will omit it and write (−1)xk as a relative phase. More precisely,
we consider a set of oracles O′π,σ := {Ox,u : x ∈ Fn

2 , u ∈ S}, where

S := {u ∈ U(n) : u|0̄〉n = |0̄〉n} ∼= U(n− 1). (5.18)

As in the general case, we define the first oracle O0,I as a unitary that acts on |0̄〉n as
O0,I |0̄〉n = |π〉, and arbitrarily on the orthogonal complement, and we use O0,I as a
reference point to define the remaining oracles:

Ox,u := VxO0,Iu, where Vx :=
n∑

k=1
(−1)xk |k〉〈k|. (5.19)

The set of target states is Ψ′π,σ := {|σ(x)〉 : x ∈ Fn
2 , u ∈ S} where |σ(x)〉 := Vx|σ〉 =∑n

k=1(−1)xk σk|k〉. For the quantum state generation problem corresponding to the re-
stricted set of oracles O′π,σ , the automorphism group is G = Fn

2 ×U(n− 1) and it acts
on itself, i.e., X = G. Note that the target states depend only on x, but u is used for
parameterizing the oracles. Intuitively, the reason we need this parameter is that the
algorithm should not depend on how the black box acts on states other than |0̄〉n (or
how its inverse acts on states other than |πξ〉). To make this intuition formal, we will
later choose the parameter u for different oracles adversarially.

Let us consider an algorithm that uses T queries to the black box Ox,u and its inverse,
and let us denote the final state of this algorithm by |ψT(x, u)〉. If we expand the first
register in the standard basis, we can express this state as

|ψT(x, u)〉 =
n∑

k=1
(−1)xk |k〉|γk(x, u)〉. (5.20)

Here the workspace vectors |γk(x, u)〉 can have arbitrary dimension and are not neces-
sarily unit vectors, but instead satisfy the normalization constraint

∑n
k=1‖|γk(x, u)〉‖2

2 =
1. If the algorithm succeeds with probability p, then according to Eq. (5.8) for any x and
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1
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∫
v∈S
|y〉|v〉 dµ(v)

ß
v

v

Vy

y

V†
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v

V†
y

y

Figure 5.3: Symmetrized algorithm. We symmetrize the algorithm by introducing uni-
taries Vy and v, controlled by an extra register prepared in the uniform superposition
over all |y〉 and |v〉.

u we have
√

p ≤ Re
ï
〈σ(x)|〈0̄| · |ψT(x, u)〉

ò
(5.21)

= Re
[ n∑

k=1
σk · 〈0̄|γk(x, u)〉

]
(5.22)

= σT · γ(x, u), (5.23)

where γ(x, u) is a real vector whose components are given by

γk(x, u) := Re
ï
〈0̄|γk(x, u)〉

ò
. (5.24)

Note that ‖γ(x, u)‖2 ≤ 1.

Next, let us show that we can symmetrize the algorithm without decreasing its suc-
cess probability. We do this by replacing each oracle call by Ox+y,uv = VyOx,uv and
correcting the final state by applying V†

y (see Fig. 5.3). Let µ be the Haar measure on the
set S defined in Eq. (5.18). We define an operation that symmetrizes a set of states:

|φ(x, u)〉 := 1√
2n

∑
y∈Fn

2

∫
v∈S

ï
(V†

y ⊗ I)|φ(x + y, uv)〉
ò
|y〉|v〉dµ(v). (5.25)

If we symmetrize the final state |ψT(x, u)〉, we get

|ψT(x, u)〉 = 1√
2n

∑
y∈Fn

2

∫
v∈S

n∑
k=1

(−1)xk |k〉|γk(x + y, uv)〉|y〉|v〉 dµ(v). (5.26)

Note that the target state |σ(x)〉|0̄〉 is already symmetric, so symmetrization only intro-
duces an additional workspace register in a default state (uniform superposition):

|σ(x)〉|0̄〉 = |σ(x)〉|0̄〉 1√
2n

∑
y∈Fn

2

∫
v∈S
|y〉|v〉 dµ(v). (5.27)
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The success probability of the symmetrized algorithm is»
p̄ := Re

ï
〈σ(x)|〈0̄| · |ψT(x, u)〉

ò
(5.28)

=
n∑

k=1
σk ·

1
2n

∑
y∈Fn

2

∫
v∈S

Re
ï
〈0̄|γk(x + y, uv)〉

ò
dµ(v) (5.29)

= σT · γ̄, (5.30)

where, by changing variables, we get that γ̄ is the average of vectors γ(y, v) and thus
does not depend on x and u:

γ̄ :=
1
2n

∑
y∈Fn

2

∫
v∈S

γ(y, v) dµ(v). (5.31)

Note that ‖γ̄‖2 ≤ 1 by triangle inequality. Also, note that p̄ ≥ p, since the mean is at
least as large as the minimum. Thus without loss of generality we can consider only
symmetrized algorithms.

Let x, x′ ∈ Fn
2 and u, u′ ∈ S. The difference of final states of the symmetrized algo-

rithm that uses oracles Ox,u and Ox′,u′ is

∥∥∥∥|ψT(x, u)〉 − |ψT(x′, u′)〉
∥∥∥∥2

2
(5.32)

=

∥∥∥∥∥ n∑
k=1

1√
2n

∑
y∈Fn

2

∫
v∈S
|k〉
Ä
(−1)xk |γk(x + y, uv)〉 − (−1)x′k |γk(x′ + y, u′v)〉

ä
|y〉|v〉 dµ(v)

∥∥∥∥∥
2

2

=
n∑

k=1

1
2n

∑
y∈Fn

2

∫
v∈S

∥∥∥∥(−1)xk |γk(x + y, uv)〉 − (−1)x′k |γk(x′ + y, u′v)〉
∥∥∥∥2

2
dµ(v) (5.33)

≥
n∑

k=1

1
2n

∑
y∈Fn

2

∫
v∈S

Ä
(−1)xk γk(x + y, uv)− (−1)x′k γk(x′ + y, u′v)

ä2 dµ(v) (5.34)

≥
n∑

k=1

Ä
(−1)xk γ̄k − (−1)x′k γ̄k

ä2 (5.35)

=
∑

k:xk 6=x′k

Ä
2γ̄k
ä2. (5.36)

Here the two inequalities were obtained from the following facts:
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1. If |0̄〉 is a unit vector then for any |γ〉 we have:

‖|γ〉‖2
2 ≥ ‖|0̄〉〈0̄|γ〉‖

2
2 = |〈0̄|γ〉|2 ≥

Ä
Re[〈0̄|γ〉]

ä2. (5.37)

2. For any function γ(y, v) by Cauchy–Schwarz inequality we have:

1
2n

∑
y∈Fn

2

∫
v∈S

γ(y, v)2 dµ(v) ≥
Ñ

1
2n

∑
y∈Fn

2

∫
v∈S

γ(y, v) dµ(v)

é2

. (5.38)

Recall the hybrid argument of [BBBV97, Vaz98]. If O and O′ are unitary matrices, then
for any vectors |ψ〉 and |ψ′〉 it holds that∥∥∥O|ψ〉 −O′|ψ′〉

∥∥∥
2
=
∥∥∥O|ψ〉 −O′|ψ〉+ O′|ψ〉 −O′|ψ′〉

∥∥∥
2

(5.39)

≤
∥∥∥(O−O′)|ψ〉

∥∥∥
2
+ ‖O′(|ψ〉 − |ψ′〉)‖2 (5.40)

≤
∥∥∥O−O′

∥∥∥
∞
+
∥∥∥|ψ〉 − |ψ′〉∥∥∥

2
. (5.41)

By induction, we get the following upper bound:∥∥∥∥|ψT(x, u)〉 − |ψT(x′, u′)〉
∥∥∥∥

2
≤ T · ‖Ox,u −Ox′,u′‖∞, (5.42)

where ‖·‖∞ denotes the usual operator norm. Bounds from Eqs. (5.36) and (5.42) to-
gether imply that for any x, x′ ∈ Fn

2 and u, u′ ∈ S:

T ≥

…∑
k:xk 6=x′k

Ä
2γ̄k
ä2

‖Ox,u −Ox′,u′‖∞
. (5.43)

To obtain a good lower bound, we want to choose oracles Ox,u and Ox′,u′ to be as similar
as possible. First, let us fix u := I, x := 0 and x′ := el, where el is the l-th standard
basis vector. Then, the numerator in Eq. (5.43) is simply 2γ̄l. Let us choose u′ in order to
minimize the denominator. Recall that O0,I |0̄〉n = |π〉 and note that any unitary matrix
that fixes |π〉 can be written as O0,Iu′(O0,I)

† for some choice of u′ fixing |0̄〉n. Since
Ox′,u′ |0̄〉n = VelO0,Iu′|0̄〉n = Vel |π〉, we also have Ox′,u′(O0,I)

†|π〉 = Vel |π〉, and any
unitary matrix that sends |π〉 to Vel |π〉 can be expressed as Ox′,u′(O0,I)

† for some choice
of u′. Let us choose u′ so that Ox′,u′(O0,I)

† acts as a rotation in the two-dimensional
subspace span{|π〉, Vel |π〉} and as identity on the orthogonal complement. If θ denotes
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the angle of this rotation, then cos θ = 〈π|Vel |π〉 =
∑n

k=1 π2
k − 2π2

l = 1 − 2π2
l and

sin θ =
√

1− (1− 2π2
l )

2 = 2πl

√
1− π2

l . Then

‖O0,I −Ox′,u′‖∞ = ‖I −Ox′,u′(O0,I)
†‖∞ (5.44)

=

∥∥∥∥∥I −
Ç

cos θ − sin θ
sin θ cos θ

å∥∥∥∥∥
∞

(5.45)

= 2πl

∥∥∥∥∥∥
Ñ

πl

√
1− π2

l

−
√

1− π2
l πl

é∥∥∥∥∥∥
∞

(5.46)

= 2πl, (5.47)

where the singular values of the last matrix are equal to 1, since it is a rotation. By
plugging this back in Eq. (5.43), we get that for any l ∈ [n]:

T ≥ |γ̄l|
πl

. (5.48)

Thus any quantum algorithm that solves QSAMPLING
p
π→σ with T queries and suc-

cess probability p gives us some vector γ̄ such that

‖γ̄‖2 ≤ 1, σT · γ̄ ≥ √p, ∀l : |γ̄l| ≤ Tπl. (5.49)

To obtain a lower bound on T, we have to find the smallest possible t such that there
is still a feasible value of γ̄ that satisfies Eqs. (5.49) (with T replaced by t). We can state
this as an optimization problem:

T ≥ minγ̄ t s.t. ‖γ̄‖2 ≤ 1,
∀l : |γ̄l| ≤ tπl,
σT · γ̄ ≥ √p.

(5.50)

Finally, let us show that we can take a feasible solution γ̄ of problem in Eq. (5.50) and
modify its components, without increasing the objective value or violating any of the
constraints, so that ∀l : γ̄l ≥ 0 and ‖γ̄‖2 = 1. Clearly, making all components of γ̄ non-
negative does not affect the objective value and makes the last constraint only easier to
satisfy since σk ≥ 0 for all k. To turn γ̄ into a unit vector, first observe that not all of
the constraints γ̄l ≤ tπl can be saturated (indeed, in that case we would have γ̄ = tπ
with t < 1 since ‖γ̄‖2 < ‖π‖2 = 1, but the last constraint then implies σT · π >

√
p,

which contradicts the assumption p ≥ pmin). If ‖γ̄‖2 < 1, let j be such that γ̄j < tπj.
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We increase γ̄j until either ‖γ̄‖2 = 1 or γ̄j = tπj. We then repeat with another j such
that γ̄j < tπj, until we reach ‖γ̄‖2 = 1. Note that while doing so, the other constraints
remain satisfied. Therefore, the program reduces to

T ≥ minγ̄ t s.t. ‖γ̄‖2 = 1,
∀l : 0 ≤ γ̄l ≤ tπl,
σT · γ̄ ≥ √p.

(5.51)

Note that we need p ≤ pmax, otherwise this program has no feasible point. Setting
ε = γ̄/t, we may rewrite this program as in Eq. (A.1) in Appendix A:

1
T2 ≤ maxεk≥0‖ε‖2

2 s.t. ∀k : πk ≥ εk ≥ 0,
σT · ε ≥ √p‖ε‖2,

(5.52)

Finally, setting M = ε · εT, this program becomes the same as the SDP in Eq. (5.17), with
the additional constraint that M is rank-1. However, we know from Lemma 5.9 that the
SDP in Eq. (5.17) admits a rank-1 optimal point, therefore adding this constraint does
not modify the objective value, which is also ‖εp

π→σ‖2
2 by Lemma 5.9.

5.4 Quantum rejection sampling algorithm

In this section we describe quantum rejection sampling algorithms for QSAMPLINGπ→σ

and SQSAMPLINGτ problems. We also explain the intuition behind our method and
its relation to the classical rejection sampling. Our algorithms are based on amplitude
amplification [BHMT00] and can be seen as an extension of the algorithm in [Gro00].

5.4.1 Intuitive description of the algorithm

The workspace of our algorithm is Cd ⊗ Cn ⊗ C2, where the last register can be in-
terpreted as a quantum coin that determines whether a sample will be rejected or ac-
cepted (this corresponds to basis states |0〉 and |1〉, respectively). Our algorithm is
parametrized by a vector ε ∈ Rn (0 ≤ εk ≤ πk for all k) that characterizes how much of
the amplitude from the initial state will be used for creating the final state (in classical
rejection sampling ε2

k corresponds to the probability that a specific value of k is drawn
from the initial distribution and accepted).
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We start in the initial state |0̄〉d|0̄〉n|0〉 and apply the oracle O to prepare |πξ〉 in the
first two registers:

O|0̄〉dn ⊗ |0〉 = |πξ〉|0〉 =
n∑

k=1
πk|ξk〉|k〉|0〉. (5.54)

Next, for each k let Rε(k) be a single-qubit unitary operation defined2 as follows (this is
a rotation by an angle whose sine is equal to εk/πk):

Rε(k) :=
1

πk

Ñ√
|πk|2 − ε2

k −εk

εk

√
|πk|2 − ε2

k

é
. (5.55)

Let Rε :=
∑n

k=1 |k〉〈k| ⊗ Rε(k) be a block-diagonal matrix that performs rotations by dif-
ferent angles in mutually orthogonal subspaces. Then Id ⊗ Rε corresponds to applying
Rε(k) on the last qubit, controlled on the value of the second register being equal to k.
This operation transforms state from Eq. (5.54) into

|Ψε〉 := (Id ⊗ Rε) · |πξ〉|0〉 (5.56)

=
n∑

k=1
|ξk〉|k〉

Å…
|πk|2 − ε2

k |0〉+ εk|1〉
ã

. (5.57)

If we would measure the coin register of |Ψε〉 in the basis {|0〉, |1〉}, the probability
of outcome |1〉 (“accept”) and the corresponding post-measurement state would be

qε :=
∥∥∥ÄId ⊗ In ⊗ |1〉〈1|

ä
|Ψε〉

∥∥∥2

2
=

n∑
k=1

ε2
k = ‖ε‖

2
2, (5.58)

|ΨΠ,ε〉 :=
1
‖ε‖2

n∑
k=1

εk|ξk〉|k〉|1〉. (5.59)

Note that if the vector of amplitudes ε is chosen to be close to σ, then the reduced state
on the first two registers of |ΨΠ,ε〉 has a large overlap on the target state |σξ〉, more
precisely,

√
pε :=

Ä
〈σξ | ⊗ 〈1|

ä
|ΨΠ,ε〉 = σT · ε

‖ε‖2
, (5.60)

Depending on the choice of ε, this can be a reasonably good approximation, so our
strategy will be to prepare a state close to |ΨΠ,ε〉.

2For those k, for which πk = 0, operation Rε(k) can be defined arbitrarily.
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In principle, we could obtain |ΨΠ,ε〉 by repeatedly preparing |Ψε〉 and measuring its
coin register until we get the outcome “accept” (we would succeed with high proba-
bility after O(1/qε) steps). To speed up this process, we can use amplitude amplifica-
tion [BHMT00] to amplify the amplitude of the “accept” state |1〉 in the coin register of
the state in Eq. (5.57). This allows us to increase the probability of outcome “accept”
arbitrarily close to 1 in O(1/

√
qε) steps.

5.4.2 Amplitude amplification subroutine and quantum rejection sam-
pling algorithm

|0̄〉d
|0̄〉n
|0̄〉2

O

Rε(k)

k

Figure 5.4: Quantum circuit for implementing Uε.

We will use the following amplitude amplification subroutine extensively in all al-
gorithms presented in this paper:

SQRS(ref|πξ〉|0〉, ε, t) :=
Å

ref|Ψε〉 · refId⊗In⊗|1〉〈1|

ãt
, (5.61)

where reflections through the two subspaces are defined as follows:

refId⊗In⊗|1〉〈1| := Id ⊗ In ⊗
Ä

I2 − 2|1〉〈1|
ä
= Id ⊗ In ⊗ Z, (5.62)

ref|Ψε〉 := (Id ⊗ Rε) ref|πξ〉|0〉 (Id ⊗ Rε)
†. (5.63)

Depending on the application, we will either be given an oracle O for preparing |πξ〉|0〉
or an oracle ref|πξ〉|0〉 for reflecting through this state. Note that we can always use the
preparation oracle to implement the reflection ref|πξ〉|0〉 as

(O⊗ I2)
Ä

Id ⊗ In ⊗ I2 − 2|0̄, 0̄, 0〉〈0̄, 0̄, 0|
ä
(O⊗ I2)

†. (5.64)
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Amplitude amplification subroutine SQRS(ref|πξ〉|0〉, ε, t) for quantum rejec-
tion sampling
Perform the following steps t times:

1. Perform refId⊗In⊗|1〉〈1| by applying Pauli Z on the coin register.
2. Perform ref|Ψε〉 by applying R†

ε on the last two registers, applying
ref|πξ〉|0〉, and then undoing Rε.

The quantum rejection sampling algorithmAQRS(O, π, ε) starts with the initial state
|0̄〉d|0̄〉n|0〉. First, we transform it into |Ψε〉 defined in Eq. (5.57), by applying Uε :=
(Id⊗ Rε) · (O⊗ I2) (see Fig. 5.4). Then we apply the amplitude amplification subroutine
SQRS(ref|πξ〉|0〉, ε, t) with t = O

Ä
1/‖ε‖2

ä
. Finally, we measure the last register: if the out-

come is |1〉, we output the first two registers, otherwise we output “Fail”. To prevent the
outcome “Fail” we can slightly adjust the angle of rotation in amplitude amplification
so that the target state is reached exactly. More precisely, we prove that one can choose
ε = r · εp

π→σ for some bounded constant r, so that amplitude amplification succeeds
with probability 1 (i.e., the outcome of the final measurement is always |1〉). Moreover,
such algorithm is optimal as its cost matches the lower bound in Lemma 5.11.

Quantum rejection sampling algorithm AQRS(O, π, ε)

1. Start in initial state |0̄〉d|0̄〉n|0〉.
2. Apply Uε.
3. Apply the amplitude amplification subroutine SQRS(ref|πξ〉|0〉, ε, t) where

ref|πξ〉|0〉 is implemented according to Eq. (5.64) and t = O(1/‖ε‖2).
4. Measure the last register. If the outcome is |1〉, output the first two regis-

ters, otherwise output “Fail”.

Lemma 5.12. For any pmin ≤ p ≤ pmax, there is a constant r ∈ [1
2 , 1], so that the algorithm

AQRS(O, π, ε) with ε = r · εp
π→σ solves QSAMPLINGπ→σ with success probability p using

O
Ä
1/‖εp

π→σ‖2
ä

queries to O and O†.

Proof. By Definition 5.8, we have 0 ≤ εk ≤ πk for all k, therefore ε
p
π→σ is a valid choice

of vector ε for the algorithm. Instead of using ε
p
π→σ itself, we slightly scale it down by

a factor r so that the amplitude amplification never fails. Note that if we were to use
ε = ε

p
π→σ , the probability that the amplitude amplification succeeds after t steps would

be sin2
Ä
(2t + 1)θ

ä
, where θ := arcsin‖εp

π→σ‖2 (see e.g. [BBHT98, BHMT00] for details).
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Note that this probability would be equal to one at t = π
4θ −

1
2 , which in general might

not be an integer. However, following an idea from [BHMT00, p.10], we can ensure this
by slightly decreasing θ to θ̃ := π

2(2t̃+1) where t̃ := d π
4θ −

1
2e. This can be done by setting

ε := r · εp
π→σ with the scaling-down factor r := sin θ̃

sin θ . One can check that r satisfies
1
2 ≤ r ≤ 1 (this follows from 0 ≤ θ ≤ π

2 ).

Together with Eq. (5.60), Definition 5.8 also implies that for this choice, the algorithm

solves QSAMPLINGπ→σ with success probability σT·ε
‖ε‖2

= σT·εp
π→σ

‖εp
π→σ‖2

=
√

p. It therefore

remains to prove that the cost of the algorithm is O(1/‖ε‖2), which follows immediately
from its description: we need one query to implement the operation Uε and two queries
to implement ref|πξ〉|0〉, thus in total we need 2t + 1 = O

Ä
1/
√

qε

ä
= O(1/‖ε‖2) calls to

oracles O and O†.

We now have all the elements to prove Theorem 5.1.

Theorem 5.1. For p ∈ [pmin, pmax], the quantum query complexity of QSAMPLINGπ→σ with
success probability p is Q1−p(QSAMPLINGπ→σ) = Θ(1/‖εp

π→σ‖2), where pmin, pmax, and
ε

p
π→σ are given in Definition 5.8. For p ≤ pmin, the query complexity is 1, and for p > pmax,

it is infinite.

Proof. When p ≤ pmin, the state |πξ〉 is already close enough to |σξ〉 to satisfy the con-
straint on the success probability, therefore one call to O is sufficient, which is clearly
optimal. When p > pmax, the oracle gives no information about some of the unknown
states |ξk〉 (when πk = 0), but the target state should have some overlap on |ξk〉|k〉 to
satisfy the constraint on the success probability, therefore the problem is not solvable.

For the general case pmin ≤ p ≤ pmax, the upper bound comes from the algorithm in
Lemma 5.12, and the matching lower bound is given in Lemma 5.11.

5.4.3 Strong quantum rejection sampling algorithm

Let us now describe how the algorithm can be modified to solve the stronger problem
SQSAMPLINGτ . The first modification follows from the observation that in the previous
algorithm, the oracle is only used in two different ways: it is used once to create the state
|πξ〉, and then only to reflect through that state. This means that we can still solve the
problem if, instead of being given access to an oracle that maps |0̄〉dn to |πξ〉, we are
provided with one copy of |πξ〉 and an oracle that reflects through it.
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In order to solve SQSAMPLINGτ , we should also be able to deal with the case where
we only know the ratios between the amplitudes πk and σk for each k, instead of the
amplitudes themselves. As we will see, in that case we cannot use the algorithm given
above anymore, as we do not know in advance how many steps of amplitude ampli-
fication are required. There are different approaches to solve this issue, one of them
being to estimate qε, and therefore the required number of steps, by performing a phase
estimation on the amplitude amplification operator (this is sometimes referred to as
amplitude estimation or quantum counting, see [BBHT98, BHMT00]). Another option,
also proposed by [BBHT98, BHMT00], is to repeat the algorithm successively with an
increasing number of steps until it succeeds. One advantage of the first option would
be that it provides an estimation of the initial acceptance probability qε, which might
be useful for some applications. Since this is not required for SQSAMPLINGτ , we will
rather describe an algorithm based on the second option, as it is more direct. Note
that for both options, we need to adapt the algorithms in [BBHT98, BHMT00] as they
require to use a fresh copy of the initial state after each failed attempt, whereas for
SQSAMPLINGτ we only have one copy of that state. This issue can be solved by using
the state left over from the previous unsuccessful measurement instead of a fresh copy
of the state. More precisely, we can use the following algorithm.

Strong quantum rejection sampling algorithm ASQRS(|πξ〉, ε, c)
1. Append an extra qubit prepared in the state |0〉 to the input state |πξ〉,

and apply Id ⊗ Rε on the resulting state.
2. Measure the last register of the current state. If the outcome is |1〉, output

the first two registers and stop. Otherwise, set l = 0 and continue.
3. Let Tl := dcle and pick an integer t ∈ [Tl] uniformly at random.
4. Apply the amplitude amplification subroutine SQRS(ref|πξ〉|0〉, ε, t).
5. Measure the last register of the current state. If the outcome is |1〉, output

the first two registers and stop. Otherwise, increase l by one and go back
to step 3.

Lemma 5.13. For any α ≥ 1, there is a quantum algorithm that solves SQSAMPLINGτ with
success probability p(γ) using an expected number of queries O(1/‖ε(γ)‖2), where γ = α‖π ◦
τ‖2. In particular, for α = 1 the expected number of queries is O(1/‖π ◦ τ‖2) and the success
probability is equal to one.

Here the parameter α allows us to control the trade-off between the success probabil-
ity and the required number of queries. However, we cannot predict the actual values
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of both quantities, because they depend on π and τ, but only τ is known to us. The
only exception is α = 1, when the success probability is equal to one. Also, increasing α
above 1/(mink:τk>0 τk) will no longer affect the query complexity and success probabil-
ity of the algorithm.

Proof. We show that for some choice of c > 1 and ε the algorithm ASQRS(|πξ〉, ε, c)
described above solves the problem.

Let us first verify that we can actually perform all steps required in the algorithm.
We need one copy of the state |πξ〉, which is indeed provided as an input for the
SQSAMPLINGτ problem. Note that for applying Rε in step 1 it suffices to know only the
ratio εk/πk (see Eq. (5.55)), which can be deduced from τk as follows. Let ε := r · ε(γ) for
some r < 1, and recall from Definition 5.8 and Definition 5.7 that εk(γ) = min{πk, γσk}
and σk = πkτk/‖π ◦ τ‖2, respectively. Then

εk
πk

= r min
ß

1, γ
σk
πk

™
(5.65)

= r min
ß

1, γ
τk

‖π ◦ τ‖2

™
(5.66)

= r min{1, ατk}, (5.67)

where we substituted γ = α‖π ◦ τ‖2 from the statement of the Lemma. Note that once
r is chosen, the final expression in Eq. (5.67) is completely known. Finally, applying
SQRS(ref|πξ〉|0〉, ε, t) in step 4 also requires the ability to apply Rε, as well as ref|πξ〉|0〉,
which can be done by using one oracle query. Therefore, we have all we need to imple-
ment the algorithm.

We now show that the algorithm has success probability p(γ). Recall from Eq. (5.57)
that step 1 of the algorithm prepares the state

|Ψε〉 =
n∑

k=1
|ξk〉|k〉

Å…
|πk|2 − ε2

k |0〉+ εk|1〉
ã

(5.68)

= sin θ|ΨΠ,ε〉+ cos θ|Ψ⊥Π,ε〉, (5.69)

where θ := arcsin ‖ε‖2 and unit vectors

|ΨΠ,ε〉 :=
1

sin θ

n∑
k=1

εk|ξk〉|k〉|1〉, (5.70)

|Ψ⊥Π,ε〉 :=
1

cos θ

n∑
k=1

…
|πk|2 − ε2

k|ξk〉|k〉|0〉 (5.71)
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are orthogonal and span a 2-dimensional subspace. In this subspace refId⊗In⊗|1〉〈1| and
ref|ΨΠ,ε〉 act in the same way, so each iteration of the amplitude amplification subroutine
consists of a product of two reflections. Since both reflections preserve this subspace,
SQRS(ref|πξ〉|0〉, ε, t) corresponds to a rotation by angle 2tθ in this subspace. Measure-
ments in step 2 and step 5 either project on |ΨΠ,ε〉, when the outcome is |1〉, or on
|Ψ⊥Π,ε〉, when the outcome is |0〉. Therefore, the algorithm always outputs the first two
registers of the state |ΨΠ,ε〉, and by Eq. (5.60), the success probability is pε = p(γ), as
claimed. In particular, for α = 1 from Eq. (5.67) we get εk = rπkτk as τk ≤ 1. Thus,
ε = r(π ◦ τ) and since σ = (π ◦ τ)/‖π ◦ τ‖2, we get pε = (σT · ε/‖ε‖2)

2 = 1.

Let us now bound the expected number of oracle queries. We follow the proof of
Theorem 3 in [BHMT00], but there is an important difference: a direct analogue of the
algorithm in [BHMT00, Theorem 3] would use a fresh copy of |πξ〉 each time the mea-
surement fails to give a successful outcome, whereas in this algorithm we start from the
state left over from the previous measurement, since we only have one copy of |πξ〉.
Note that SQRS(ref|πξ〉|0〉, ε, t) in step 4 is always applied on |Ψ⊥Π,ε〉, since it is the post-
measurement state corresponding to the unsuccessful outcome. Therefore, the state
created by step 4 is sin(2tθ)|ΨΠ,ε〉+ cos(2tθ)|Ψ⊥Π,ε〉, and the next measurement will suc-
ceed with probability sin2(2tθ). Since t is picked uniformly at random between 1 and
Tl, the probability that the l-th measurement fails is

pl =
1
Tl

Tl∑
t=1

cos2(2tθ) (5.72)

=
1
2
+

1
2Tl

Tl∑
t=1

cos(4tθ) (5.73)

≤ 1
2
+

1
2Tl‖ε‖2

, (5.74)
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where the upper bound is obtained as follows:

T∑
t=1

cos(4tθ) = Re
(

ei4θ
T−1∑
t=0

ei4tθ
)

(5.75)

= Re
(

ei4θ · 1− ei4Tθ

1− ei4θ

)
(5.76)

= Re
(

ei2(T+1)θ · e−i2Tθ − ei2Tθ

e−i2θ − ei2θ

)
(5.77)

= cos
Ä
2(T + 1)θ

äsin(2Tθ)

sin(2θ)
(5.78)

≤ 1
sin(2θ)

≤ 1
sin θ

=
1
‖ε‖2

, (5.79)

where we forced the last inequality by picking r :=
√

3/2, so that sin θ = ‖ε‖2 ≤
√

3/2
and thus 0 ≤ θ ≤ π/3. Recall from the algorithm that Tl = dcle for some c > 1, so it is
increasing and goes to infinity as l increases. Let T̄ := 1/(2∆‖ε‖2) for some ∆ > 0 and
let l̄ be the smallest integer such that Tl ≥ T̄ for all l ≥ l̄. Then according to Eq. (5.74)
we get that pl ≤ 1/2 + 1/(2T̄‖ε‖2) = 1/2 + ∆ =: p̄ for all l ≥ l̄. Note that the l-th
execution of the subroutine uses at most 2Tl oracle queries, so the expected number of
oracle calls is at most 2T0 + p0(2T1 + p1(2T2 + . . .)). This can be upper bounded by

l̄∑
l=0

2Tl +
∞∑

d=1
2Tl̄+d p̄d =

l̄∑
l=0

2dcle+
∞∑

d=1
2dcl̄+de p̄d (5.80)

≤ 4

Ñ
l̄∑

l=0
cl + cl̄

∞∑
d=1

(cp̄)d

é
(5.81)

= 4

Ñ
cl̄+1 − 1

c− 1
+ cl̄ cp̄

1− cp̄

é
(5.82)

≤ 4cl̄+1

Ñ
1

c− 1
+

p̄
1− cp̄

é
(5.83)

≤ 2c2

∆‖ε‖2

Ñ
1

c− 1
+

p̄
1− cp̄

é
, (5.84)

where the first and last inequality is obtained from the following two observations, re-
spectively:
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1. dcle = cl + δ for some 0 ≤ δ < 1, so Tl = dcle < cl + 1 < 2cl as c > 1.
2. cl̄+1 ≤ c2dcl̄−1e = c2Tl̄−1 < c2T̄ = c2/(2∆‖ε‖2) by the choice of l̄.

Finally, we have to make a choice of c > 1 and ∆ > 0, so that the geometric series in
Eq. (5.81) converges, i.e., cp̄ < 1 or equivalently c < 2/(1 + 2∆). By choosing c :=
8/7 and ∆ := 1/4 we minimize the upper bound in Eq. (5.84) and obtain 128/‖ε‖2 =
O(1/‖ε(γ)‖2). In particular, for α = 1 this becomes O(1/‖π ◦ τ‖2).

5.5 Applications

5.5.1 Linear systems of equations

As a first example of application, we show that quantum rejection sampling was implic-
itly used in the quantum algorithm for linear systems of equations proposed by Harrow,
Hassidim, and Lloyd [HHL09]. This algorithm solves the following quantum state gen-
eration problem: given the classical description of an invertible d × d matrix A and a
unit vector |b〉 ∈ Cd, prepare the quantum state |x〉/‖|x〉‖2, where |x〉 is the solution
of the linear system of equations A|x〉 = |b〉. As shown in [HHL09], we can assume
without loss of generality that A is Hermitian. Similarly to classical matrix inversion
algorithms, an important factor of the performance of the algorithm is the condition
number κ of A, which is the ratio between the largest and smallest eigenvalue of A. We
will assume that all eigenvalues of A are between κ−1 and 1, and we denote by |ψj〉
and λj the eigenvectors and eigenvalues of A, respectively. We also define3 the ampli-
tudes bj := 〈ψj|b〉, so that |b〉 = ∑d

j=1 bj|ψj〉. Then, the problem is to prepare the state

|x〉 := A−1|b〉 = ∑d
j=1 bjλ

−1
j |ψj〉 (up to normalization).

We now show how this problem reduces to the quantum state conversion prob-
lem SQSAMPLINGτ . Since A is Hermitian, we can use Hamiltonian simulation tech-
niques [BACS05, Chi08, CK11] to simulate the unitary operator eiAt on any state. Using
quantum phase estimation [Kit95, CEMM98] on the operator eiAt, we can implement an
operator EA that acts in the eigenbasis of A as EA : |ψj〉|0̄〉 7→ |ψj〉|λj〉, where |λj〉 is a
quantum state encoding an approximation of the eigenvalue λj. Here, we will assume
that this can be done exactly, that is, we assume that |λj〉 is a computational basis state
that exactly encodes λj (we refer the reader to [HHL09] for a detailed analysis of the
error introduced by this approximation). Under this assumption, the problem reduces

3We choose the global phase of each eigenvector |ψj〉 so that bj is real and non-negative.
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to a quantum state conversion problem that we will call QLINEAREQSκ. Its definition
requires fixing a set of possible eigenvalues Λκ ⊂ [κ−1, 1] of finite cardinality n := |Λκ|.
Let us denote the set of d× d Hermitian matrices by Herm(d) and the eigenvalues of A
by spec(A).

Definition 5.14 (Quantum linear system of equations). QLINEAREQSκ, the quantum
linear system of equations problem is a quantum state conversion problem (O, Φ, Ψ,X )
with X := {(|b〉, A) ∈ Cd × Herm(d) : spec(A) ∈ Λd

κ}, oracles in O being pairs
(O|b〉,A, EA) where O|b〉,A := ref|b〉 and EA acts as EA : |ψj〉|0̄〉n 7→ |ψj〉|λj〉 where |ψj〉
are the eigenvectors of A, and the corresponding initial and target states being |b〉 and
A−1|b〉/‖A−1|b〉‖2.

Using Lemma 5.13 we can prove the following result.

Theorem 5.2. For any κ̃ ∈ [1, κ], there is a quantum algorithm that solves QLINEAREQSκ

with success probability p = (wT · w̃)/(‖w‖2 · ‖w̃‖2) using an expected number of queries
O(κ̃/‖w̃‖2), where wj := bj/λj, w̃j := bj/λ̃j, and λ̃j := max{κ̃−1, λj}.

Proof. Following [HHL09], the algorithm for this problem consists of three steps:

1. Apply the phase estimation operation EA on |b〉 to obtain the state
∑d

j=1 bj|ψj〉|λj〉.
2. Convert this state to

∑d
j=1 wj|ψj〉|λj〉/‖w‖2.

3. Undo the operation EA to obtain the target state
∑d

j=1 wj|ψj〉/‖w‖2.

We see that step 2 is an instance of SQSAMPLINGτ , where the basis states {|λ〉 : λ ∈
Λκ} of the phase estimation register play the role of the states |k〉 and the vector τ of
the ratios between the initial and final amplitudes is given by τλ := (κλ)−1 (here the
normalization factor κ is to make sure that maxλ τλ = 1). The rest of the reduction
is summarized in Table 5.1. Therefore, we can use the algorithm from Lemma 5.13 to
perform step 2.

If we set α := κ/κ̃ then from Table 5.1 we get

ελj(γ) = πλj min{1, ατλj} (5.85)

= bj min{1, (κ̃λj)
−1} (5.86)

=
bj

κ̃ max{κ̃−1, λj}
(5.87)

=
w̃j

κ̃
, (5.88)
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SQSAMPLINGτ QLINEAREQSκ

|k〉 |λ〉

πk πλ :=

bj if λ = λj ∈ spec(A)

0 if λ /∈ spec(A)

|ξk〉 |ξλ〉 :=

|ψj〉 if λ = λj ∈ spec(A)

n/a if λ /∈ spec(A)

τk τλ := (κλ)−1

Table 5.1: Reduction from step 2 in the linear system of equations algorithm to the quan-
tum resampling problem SQSAMPLINGτ .

thus ε(γ) = w̃/κ̃ and the expected number of queries is O(1/‖ε(γ)‖2) = O(κ̃/‖w̃‖2).
Recall that the amplitudes of the target state are given by σj = wj/‖w‖2, so σ =
w/‖w‖2 and the success probability is

p =

(
σT · ε(γ)
‖ε(γ)‖2

)2

=
wT

‖w‖2
· w̃
‖w̃‖2

(5.89)

as claimed.

Note that even though we have a freedom to choose κ̃, we cannot predict the query
complexity in advance, since it depends on w̃j = 〈ψj|b〉/λ̃j, which in turn is determined
by the lengths of projections of |b〉 in the eigenspaces of A, weighted by the correspond-
ing truncated eigenvalues λ̃j. Similarly, we cannot predict the success probability p.
However, by choosing κ̃ = κ we can at least make sure that p = 1 (since λ̃j = λj and
thus w̃ = w). In this case step 2 is performed exactly (assuming an ideal phase esti-
mation black box) and the expected number of queries is O(κ/‖w‖2). By noting that
λj ≤ 1 for all j, we see that ‖w‖2

2 =
∑d

j=1 b2
j λ−2

j ≥ 1 and thus we can put a cruder
upper bound of O(κ), which coincides with the bound given in [HHL09] for that step of
the algorithm. For ill-conditioned matrices, i.e., matrices with a high condition number
κ, the approach taken by [HHL09] is to ignore small eigenvalues λj ≤ κ̃−1, for some
cut-off κ̃−1 ≥ κ−1, which reduces the cost of the algorithm to O(κ̃), but introduces some
extra error. In our case, by choosing α = κ/κ̃ we obtained bound O(κ̃/‖w̃‖2), where
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‖w̃‖2 ≥ 1. Again, here w̃ depends on additional structure of the problem and cannot
be predicted beforehand.

In practical applications, we will of course not be given access to the ideal phase
estimation operator EA, but we can still approximate it by using the phase estima-
tion algorithm [Kit95, CEMM98] on the operator A. It is shown in [HHL09] that if A
is s-sparse, this approximation can be implemented with sufficient accuracy at a cost
Õ
Ä
log(d)s2κ̃/ε

ä
, where ε is the overall additive error introduced by this approxima-

tion throughout the algorithm. Therefore, the total cost of the algorithm is at most
Õ
Ä
log(d)s2κ̃2/ε

ä
(see [HHL09] for details).

5.5.2 Quantum Metropolis sampling

Since rejection sampling lies at the core of the (classical) Metropolis algorithm, it seems
natural to use quantum rejection sampling to solve the corresponding problem in the
quantum case. The quantum Metropolis sampling algorithm presented in [TOV+11]
follows the same lines as the classical algorithm by setting up a (classical) random walk
between eigenstates of the Hamiltonian, where each move is either accepted or rejected
depending on the value of some random coin. The main complication compared to the
classical version comes from the case where the move has to be rejected, since we can-
not keep a copy of the previous eigenstate due to the no-cloning theorem. The solution
proposed by Temme et al. [TOV+11] is to use an unwinding technique based on succes-
sive measurements to revert to the original state. Here, we show that quantum rejection
sampling can be used to avoid this step, as it allows to amplify the amplitude of the “ac-
cept” state of the coin register, effectively eliminating rejected moves. This yields a more
efficient algorithm as it eliminates the cost of reverting rejected moves and provides a
quadratic speed-up on the overall cost of obtaining an accepted move.4

Before describing in more details how quantum rejection sampling can be used to
design a new quantum Metropolis algorithm, let us recall how the standard (classical)
Metropolis algorithm works [MRR+53]. The goal is to solve the following problem:
given a classical Hamiltonian associating energies Ej to a set of possible configurations
j, sample from the Gibbs distribution p(j) = exp(−βEj)/Z(β), where β is the inverse
temperature and Z(β) =

∑
j exp(−βEj) is the partition function. Since the size of the

4Martin Schwarz has pointed out to us that this is similar to how [NWZ09] provides a speed-up
over [MW05], and that our technique can also be used to speed-up the quantum algorithm in [STV11]
for preparing PEPS.
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configuration space is exponential in the number of particles, estimating the Gibbs dis-
tribution itself is not an option, therefore the Metropolis algorithm proposes to solve
this problem by setting up a random walk on the set of configurations that converges to
the Gibbs distribution. More precisely, the random walk works as follows:

1. If i is the current configuration with energy Ei, choose a random move to another
configuration j (e.g., for a system of spins, a random move could consist in flipping
a random spin), and compute the associated energy Ej.

2. The random move is then accepted or rejected according to the following rule:
• if Ej ≤ Ei, then the move is always accepted;
• if Ej > Ei, then the move is only accepted with probability exp

Ä
β(Ei − Ej)

ä
.

It can be shown that this random walk converges to the Gibbs distribution.

The quantum Metropolis sampling algorithm by Temme et al. [TOV+11] follows the
same general lines as the classical algorithm. It aims at solving the equivalent problem
in the quantum case, where we need to generate the thermal state of a Hamiltonian H,
that is, we need to generate a random eigenstate |ψj〉 where j is sampled according to
the Gibbs distribution. The fact that the Hamiltonian is quantum, however, adds a few
obstacles, since the set of eigenstates |ψj〉 is not known to start with. The main tool to
overcome this difficulty is to use quantum phase estimation [Kit95, CEMM98] which,
applied on the Hamiltonian H, allows to project any state on an eigenstate |ψj〉, while
obtaining an estimate of the corresponding eigenenergy Ej. Similarly to the previous
section, we will assume for simplicity that this can be done exactly, that is, we have
access to a quantum circuit that acts in the eigenbasis of H as EH : |ψj〉|0̄〉 7→ |ψj〉|Ej〉,
where |Ej〉 exactly encodes the eigenenergy Ej. We will also assume that the eigenener-
gies of H are nondegenerate, so that each eigenenergy Ej corresponds to a single eigen-
state |ψj〉, instead of a higher dimensional eigenspace. The quantum Metropolis sam-
pling algorithm also requires to choose a set of quantum gates C that will play the role
of the possible random moves between eigenstates. In this case, a given quantum gate
Cl ∈ C will not simply move an initial eigenstate |ψi〉 to another eigenstate |ψj〉, but

rather to a superposition Cl|ψi〉 =
∑

j c(l)ij |ψj〉 where c(l)ij := 〈ψj|Cl|ψi〉.

We can now give a high-level description of the quantum Metropolis sampling al-
gorithm by Temme et al. [TOV+11]. Let |ψi〉|Ei〉 be an initial state, that can be prepared
by applying the phase estimation operator EH on an arbitrary state, and measuring the
energy register. The algorithm implements each random move by performing the fol-
lowing steps:
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1. Apply a random gate Cl ∈ C on the first register to prepare the state
Ä
Cl|ψi〉

ä
|Ei〉 =∑

j c(l)ij |ψj〉|Ei〉.
2. Apply the phase estimation operator EH on the |ψj〉 register and an ancilla register

initialized in the default state |0̄〉 to prepare the state
∑

j c(l)ij |ψj〉|Ei〉|Ej〉.
3. Add another ancilla qubit prepared in the state |0〉 and apply a controlled-rotation

on this register to create the state
∑

j c(l)ij |ψj〉|Ei〉|Ej〉
î»

fij|1〉+
»

1− fij|0〉
ó
, where

fij := min{1, exp(β(Ei − Ej))}.
4. Measure the last qubit. If the outcome is 0, reject the move by reverting the state

to |ψi〉|Ei〉 (see [TOV+11] for details) and go back to step 1. Otherwise, continue.
5. Discard the |Ei〉 register and measure the |Ej〉 register to project the state onto a

new eigenstate |ψj〉|Ej〉.

It is shown in [TOV+11] that by choosing a universal set of quantum gates for the set
of moves C, the algorithm simulates random walk on the set of eigenstates of H that
satisfies a quantum detailed balanced condition, which ensures that the walk converges
to the Gibbs distribution, as in the classical case.

For a given initial state |ψi〉|Ei〉, the probability (over all choices of the randomly
chosen gate Cl) that the measurement in step 4 succeeds is 1

|C|
∑

j,l fij|c
(l)
ij |

2. If we define

a vector w(i) whose components are

w(i)
jl :=

Ã
fij

|C| c(l)ij , (5.90)

then this probability is simply ‖w(i)‖2
2. Hence, after one execution of the algorithm

(step 1 – step 5) the initial state |ψi〉|Ei〉 gets mapped to state |ψj〉|Ej〉 with probability∑
l|w

(i)
jl |

2/‖w(i)‖2
2. We could achieve the same random move by converting the initial

state |ψi〉|Ei〉 to

∑
j,l

w(i)
jl

‖w(i)‖2
|l〉|ψj〉|Ei〉|Ej〉 =

1
‖w(i)‖2

∑
j

Ã
fij

|C|

[∑
l

c(l)ij |l〉
]
|ψj〉|Ei〉|Ej〉 (5.91)

and discarding the |l〉 and |Ei〉 registers and measuring the |Ej〉 register to project on the
state |ψj〉|Ej〉 with the correct probability. This implies that one random move reduces
to a quantum state conversion problem that we will call QMMOVEC . This problem
assumes that we are able to perform a perfect phase estimation on the Hamiltonian H.
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Therefore, similarly to the previous section, we fix a set of possible eigenenergies E of
finite cardinality n := |E |.
Definition 5.15 (Quantum Metropolis move). The quantum Metropolis move problem, de-
noted by QMMOVEC , is a quantum state conversion problem (O, Φ, Ψ,X ), where

X := {(H, i) ∈ Herm(d)× [d] : spec(H) ∈ E d}. (5.92)

Oracles in O act as EH : |ψj〉|0̄〉n 7→ |ψj〉|Ej〉, with the corresponding initial states |ψi〉,
the eigenvectors of H, and target states

∑
j,l w(i)

jl /‖w(i)‖2|l〉|ψj〉 where

w(i)
jl :=

Ã
fij

|C| c(l)ij , fij := min{1, exp(β(Ei − Ej))}, c(l)ij := 〈ψj|Cl|ψi〉. (5.93)

A critical part of the algorithm from [TOV+11] described above is how to revert a
rejected move in step 4. Temme et al. show how this can be done by using an unwinding
technique based on successive measurements, but we will not describe this technique
in detail, as we now show how this step can be avoided by using quantum rejection
sampling. Intuitively, this can be done by using amplitude amplification to ensure that
the measurement in step 4 always projects on the “accept” state |1〉. This also avoids
having to repeatedly attempt random moves until one is accepted, and the number of
steps of amplitude amplification will be quadratically smaller than the number of ran-
dom moves that have to be attempted until one is accepted. This leads to the following
statement:

Theorem 5.3. There is a quantum algorithm that solves QMMOVEC with success probability
1 using an expected number of queries O(1/‖w(i)‖2).

Proof. The modified algorithm follows the same lines as the original algorithm, except
that step 3 – step 4 is replaced by a quantum rejection sampling step. We use a quantum
coin to choose the random gate in step 1 in order to make it coherent. The algorithm
starts by applying the phase estimation oracle EH on the initial state to prepare the state
|ψi〉|Ei〉, and then proceeds with the following steps:

1. Prepare an extra register in the state 1√
|C|
∑

l |l〉. Conditionally on this register,

apply the gate Cl ∈ C on the eigenstate register to prepare the state

1»
|C|

∑
j

∑
l

c(l)ij |l〉
 |ψj〉|Ei〉. (5.94)
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2. Apply the phase estimation operator EH on the second register and an ancilla
register initialized in the default state |0̄〉n to prepare the state

1»
|C|

∑
j

∑
l

c(l)ij |l〉
 |ψj〉|Ei〉|Ej〉. (5.95)

3. Convert this state to the state given in Eq. (5.91):

1
‖w(i)‖2

∑
j

Ã
fij

|C|

∑
l

c(l)ij |l〉
 |ψj〉|Ei〉|Ej〉. (5.96)

4. Discard |Ei〉 and uncompute |Ej〉 by using one call to the phase estimation oracle
E†

H.

Note that step 3 is an instance of SQSAMPLINGτ , where the pair of basis states
|E〉|E′〉 of the phase estimation registers plays the role of the states |k〉, the initial ampli-

tudes πE,E′ are given by 1√
|C|

…∑
l|c

(l)
ij |

2 for (E, E′) = (Ei, Ej) or 0 for values (E, E′) that

do not correspond to a pair of eigenvalues of H, the states
ï∑

l c(l)ij |l〉
ò
|ψj〉/

…∑
l|c

(l)
ij |

2

play the role of the unknown states |ξk〉, and the ratio between the initial and target
amplitudes is given by τE,E′ =

»
min{1, exp(β(E− E′))} (the reduction is summarized

in Table 5.2). Therefore, this step may be performed using the algorithm in Lemma 5.13.
Here, we choose α = 1 since the full Quantum Metropolis Sampling algorithm re-
quires to apply a large number of successive random moves, therefore each instance
of QMMOVEC should be solved with high success probability. Choosing α = 1 ensures
that each random move will have success probability 1 (under our assumption that the
phase estimation oracle is perfect), using an expected number of phase estimation ora-
cles O(1/‖w(i)‖2).

Note that in this case it is critical that the algorithm only requires one copy of the
initial state, hence solving the quantum state conversion problem SQSAMPLINGτ (in
contrast, the quantum algorithm for linear systems of equations used a unitary to create
multiple copies of the initial state, which is allowed only in the weaker quantum state
generation problem QSAMPLINGπ→σ). Indeed, creating the initial state requires one
copy of the previous eigenstate |ψi〉, which cannot be cloned as it is unknown. Here,
the algorithm only requires to reflect through the initial state, which can be done by
inverting step 1 and step 2, applying a phase “−1” conditionally on the eigenenergy
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SQSAMPLINGτ QMMOVEC

|k〉 |E〉|E′〉

πk πE,E′ :=


1√
|C|

…∑
l|c

(l)
ij |

2 if (E, E′) = (Ei, Ej)
where Ei, Ej ∈ spec(H)

0 if E /∈ spec(H) or E′ /∈ spec(H)

|ξk〉 |ξE,E′〉 :=


1√∑
l |c

(l)
ij |

2

∑
l c(l)ij |l〉|ψj〉 if (E, E′) = (Ei, Ej)

where Ei, Ej ∈ spec(H)

n/a if E /∈ spec(H) or E′ /∈ spec(H)

τk τE,E′ :=
»

min{1, exp(β(E− E′))}

Table 5.2: Reduction from step 3 in the new quantum Metropolis sampling algorithm to
the quantum resampling problem SQSAMPLINGτ .

register being in the state |Ei〉 (which is possible since Ei is known), and applying step 1
and step 2 again.

Repeating the algorithm for QMMOVEC a large number of times will simulate the
same random walk on the eigenstates of H as the original quantum Metropolis sampling
algorithm in [TOV+11], except that we have a quadratic speed-up over the number of
attempted moves necessary to obtain an accepted move. In order to converge to the
Gibbs distribution, we need to take into account this quadratic speed-up in order to
decide when to stop the algorithm, effectively assuming that each move takes quadrat-
ically longer than it actually does. Another option would be to modify the algorithm
for QSAMPLINGπ→σ so that it also estimates ‖w(i)‖2 by using amplitude estimation or
quantum counting [BBHT98, BHMT00]. We leave the full analysis of these technical
issues for future work.

5.5.3 Boolean function hidden shift problem

Our final application of quantum rejection sampling is a new quantum algorithm for
the Boolean function hidden shift problem. Here we only give a brief overview of the
results. See Sect. 6.4.2 in Chapter 6 for more details.
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Definition 5.16. The Boolean function hidden shift problem (BFHSP) for function f , de-
noted by BFHSP f , is defined as follows. Let f : Zn

2 → Z2 be a Boolean function, which
is assumed to be completely known. Furthermore, we are given oracle access to shifted
function fs(x) := f (x + s) for some unknown bit string s ∈ Zn

2 , with the promise that
there exists x such that f (x + s) 6= f (x). The task is to find the bit string s.

In Sect. 6.4.2 we reduce this problem to solving the QSAMPLINGπ→σ problem for π
corresponding to the Fourier spectrum of f , and σ being a uniformly flat vector. This
leads to the following upper bound which expresses the complexity of our quantum
algorithm for BFHSP f in terms of the “water-filling” vector ε

p
π→σ (see Definition 5.8) of

the Fourier spectrum of f .

Theorem 5.17. Let f be a Boolean function and F̂ be its Fourier transform. For any success
probability p ∈ [pmin, pmax], we have Q1−p(BFHSP f ) = O(1/‖εp

π→σ‖2), where pmin, pmax,
and ε

p
π→σ are given in Definition 5.8, and components of π and σ are given by πw = |F̂(w)|

and σw = 1/
√

2n for w ∈ Zn
2 .

As special cases of this theorem we obtain the quantum algorithms for hidden shift
problem for delta functions, which leads to the Grover search algorithm [Gro96], and
for bent functions, which are functions that have perfectly flat absolute values in their
Fourier spectrum [Röt10].

In general, the complexity of the algorithm is limited by the smallest Fourier co-
efficient of the function. By ignoring small Fourier coefficients, we can decrease the
complexity of the algorithm, at the cost of a lower success probability. The final success
probability can nevertheless be amplified using either parallel queries or repetition. For
more details see Sect. 6.4.2 in Chapter 6.

5.6 Conclusion and open problems

We provide an algorithm for solving the quantum resampling problem. Our algorithm
can be viewed as a quantum version of the classical rejection sampling technique. It
relies on amplitude amplification [BHMT00] to increase the amplitude of some target
“accept” state, and its query complexity is given by a semidefinite program. The solu-
tion of this SDP and hence the cost of the algorithm depends on the ratio between the
amplitudes of the initial and target states, similarly to the case of the classical rejection
sampling where the cost is given by the ratio of probabilities. Using the automorphism
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principle over a unitary group, we derive an SDP for the lower bound that is identical to
the one for the upper bound, showing that our algorithm has optimal query complexity.

While the original adversary method cannot be applied as is for this quantum state
generation problem because the oracle encodes an unknown quantum state instead
of some unknown classical data, it is interesting to note that the query complexity of
this problem is also characterized by an SDP. Therefore, an interesting open question is
whether the adversary method [Amb00, HLŠ07], which has been shown to be tight for
evaluating functions [Rei09, Rei11, LMR+11] and nearly tight for quantum state gener-
ation or conversion problems with classical oracles [LMR+11], can always be extended
and shown to be tight for this more general framework of problems with quantum ora-
cles.

In Sect. 5.5, we illustrate how quantum rejection sampling may be used as a prim-
itive in quantum algorithm design by providing three different applications. We first
show that it was used implicitly in the quantum algorithm for linear systems of equa-
tions [HHL09]. By assuming a perfect phase estimation operator on the matrix of the
system, we show that this problem reduces to a quantum state conversion problem
which we call QLINEAREQSκ, which itself reduces to SQSAMPLINGτ . An open ques-
tion is how to combine the quantum rejection sampling approach with the variable time
amplitude amplification technique that was proposed by Ambainis [Amb10] to improve
on the original algorithm by Harrow et al. [HHL09]. In order to do so, we should “open”
the phase estimation black box since Ambainis’s main idea is to stop some branches of
the phase estimation earlier than others.

As a second application, we show that quantum rejection sampling can be used
to speed up the main step in the original quantum Metropolis sampling algorithm by
Temme et al. [TOV+11]. The general idea is to use amplitude amplification to increase
the acceptance probability of a move, and therefore quadratically reduce the number
of moves that have to be attempted before one is accepted. While this approach also
provides some type of quadratic speed-up, it is rather different from the “quantum-
quantum” Metropolis algorithm proposed by Yung and Aspuru-Guzik [YAG10]. The
main difference is that the approach based on quantum rejection sampling still simu-
lates the same classical random walk on the eigenstates of the Hamiltonian, whereas
the quantum-quantum Metropolis algorithm replaces it by a quantum walk. Note that
while random walks converge towards their stationary distribution from any initial
state, this is not the case for quantum walks as they are reversible by definition. There-
fore, while both the original quantum Metropolis sampling algorithm and our variation
can start from any initial state and run at a fixed inverse temperature β to converge to
the corresponding Gibbs distribution, the quantum-quantum Metropolis sampling al-
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gorithm works differently: it starts from a uniform superposition, which corresponds
to the Gibbs distribution at β = 0, and uses a series of measurements to project this
state onto superpositions corresponding to Gibbs distributions with increasingly large
β, until the desired value is reached.

Finally, as briefly discussed in Sect. 5.5.3, we can apply the quantum rejection sam-
pling technique to solve the hidden shift problem for any Boolean function f (for more
details see Sect. 6.4.2). In the limiting cases of flat or highly peaked Fourier spectra
we recover the quantum algorithm for bent functions [Röt10] or Grover’s algorithm for
delta functions [Gro96], respectively. For a general Boolean function the hidden shift
problem can be seen as lying somewhere between these two extreme cases. While our
algorithm is optimal for the extreme cases of bent and delta functions, its optimality for
more general cases remains an open problem.
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Quantum algorithms for the Boolean
function hidden shift problem
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6.1 Introduction

In this chapter we study the hidden shift problem for Boolean functions, and provide
several quantum algorithms for this problem and some variations of it. To motivate
this problem, we first review the related hidden subgroup and hidden shift problems,
and highlight connections between these problems and the Boolean hidden shift prob-
lem that we consider. For more information on the hidden subgroup and hidden shift
problems see the review by Childs and van Dam [CvD10].

6.1.1 Hidden subgroup problem

Many computational problems for which quantum algorithms can achieve superpoly-
nomial speedup over the best known classical algorithms are related to the so-called
hidden subgroup problem [NC10, KSV02, KLM07, CvD10, Lom04].
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Problem (Hidden subgroup problem). Given a finite group G and oracle access to a
hiding function f : G → X that is hiding some subgroup H of G, find a generating set
of H. The hiding function f takes values in some finite set X and is constant on cosets
of H in G, and distinct on different cosets.

Two early examples of algorithms for this type of problems are Deutsch–Jozsa algo-
rithm [DJ92] and Simon’s algorithm [Sim94]. Inspired by the latter, in 1994 Shor discov-
ered efficient quantum algorithms for factoring integers and computing discrete loga-
rithm on a quantum computer [Sho97]. In 1995 Kitaev [Kit95, KSV02] introduced the
Abelian stabilizer problem and derived an efficient quantum algorithm for this problem
that includes Shor’s factoring and discrete logarithm algorithms as special cases. Even-
tually it was observed that all of the above algorithms are solving special instances of
the same problem, the hidden subgroup problem [Joz98, ME99, Joz01].

This early success created a significant interest in studying various instances of the
hidden subgroup problem and led to discovery of many other interesting quantum al-
gorithms. For example, period finding over reals was used by Hallgren to construct an
efficient quantum algorithm for solving Pell’s equation [Hal07, Joz03]. Moreover, the
hidden subgroup problem over symmetric and dihedral groups are related to the graph
isomorphism problem [BL95, Bea97, Hø97, EH99] and certain lattice problems [Reg04a],
respectively, and constructing efficient algorithms for these problems are two major
open questions in quantum algorithms. Kuperberg has provided a subexponential-time
quantum algorithm for the dihedral subgroup problem [Kup05, Reg04b, Kup11], which
has been used by Childs, Jao, and Soukharev to show how elliptic curve isogenies can
be constructed in quantum subexponential time [CJS10].

6.1.2 Hidden shift problem

Hidden shift problem (also known as hidden translation problem) is a variant of the hidden
subgroup problem and is defined as follows.

Problem (Hidden shift problem, injective version). Let G be a finite group. Given oracle
access to injective functions f0, f1 : G → X with the promise that f0(x) = f1(x · s) for
some s ∈ G, determine s.

If G is Abelian, this problem is equivalent to the hidden subgroup problem in the
semidirect product group G o Z2, where the multiplication is defined by

(x1, b1) · (x2, b2) :=
Ä
x1 · x

(−1)b1

2 , b1 + b2
ä

(6.1)

110



and the hiding function f : G o Z2 → X is defined as

f [(x, b)] := fb(x). (6.2)

It is a simple calculation to show this. First, notice that the promise f0(x) = f1(x · s) is
equivalent to f1(x) = f0(x · s−1). We can summarize both equations as

fb(x) = fb+1
Ä
x · s(−1)bä

(6.3)

where b ∈ Z2. Using this we can check that

f
î
(x, b) · (s, 1)

ó
= f

î
(x · s(−1)b

, b + 1)
ó
= fb+1

Ä
x · s(−1)bä

= fb(x) = f [(x, b)]. (6.4)

In other words, f is constant on cosets of H := 〈(s, 1)〉. Moreover, f is distinct on
different cosets since f0 is injective. Thus, f is a hiding function for subgroup H in
G o Z2 in the sense described in the previous section.

Notice that if G = Zd then G oZ2 is the dihedral group. Ettinger and Høyer [EH00]
have shown that the dihedral hidden subgroup problem for general subgroup H can be
reduced to a subgroup of the form 〈(s, 1)〉. This means that the hidden shift problem in
Zd is equivalent to the dihedral hidden subgroup problem. This is one of the reasons
why the hidden shift problem has been studied for various groups [EH00, vDHI03,
FIM+02, MRRS07, CW07, Iva08, CvD10].

It is still open whether quantum computers can solve the dihedral subgroup prob-
lem efficiently. However, the study of hidden shift problems has resulted in quantum
algorithms that are of independent interest and have cryptographic applications. For
example, a quantum algorithm for the shifted Legendre symbol by van Dam, Hall-
gren, and Ip [vDHI03] can be used to break certain cryptosystems. In fact, negative
results potentially would also have cryptographic applications for designing classical
cryptosystems that are secure against quantum attacks [Reg04a].

6.1.3 Hidden shift problem for Zd-valued functions

For the rest of this chapter we will consider only non-injective hidden shift problems,
i.e., hidden shift problems where the hiding function f is not injective (recall that in
previous section injectivity was assumed as a part of the definition of the problem).
Such non-injective problems have been considered, for example, in [vDHI03].
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Moreover, we restrict our attention to functions of the form

f : Zn
d → Zd (6.5)

for some integers n ≥ 1 and d ≥ 2. For most part of this chapter we will be dealing
only with the Boolean (d = 2) case. However, often the generalization to arbitrary d
is straightforward, so we can relax this restriction. This type of problems have been
studied in [Röt09, Röt10, GRR11, Gha11].

Notice that to determine the hidden shift of an injective function f , it suffices to find
x0 and x1 such that f0(x0) = f1(x1). However, this is no longer true in the non-injective
case, so the problem of verifying a given shift becomes non-trivial (see Sect. 6.5.2). In
fact, sometimes the hidden shift cannot be uniquely determined in principle (for more
on this see Sect. 6.6.1). On the other hand, by considering functions with domain Zd we
have more structure than in the case of the hidden subgroup problem and the injective
hidden shift problem discussed earlier, where the domain was an arbitrary set. We will
exploit this structure by encoding the values of the function as phases and using Fourier
transform which will be an indispensable tool for design and analysis of our algorithms.

Here is a formal definition of the problem that we study in this chapter.

Problem (Hidden shift problem for Zd-valued functions). Given a complete description
of a function f : Zn

d → Zd and access to an oracle for shifted function fs(x) := f (x + s),
determine the hidden shift s ∈ Zn

d . Here x + s is computed entry-wise and modulo d.
When d = 2 we call this the Boolean function hidden shift problem for f and denote it by
BFHSP f .

Let us highlight the main differences between this problem and the one discussed in
the previous section. In the hidden shift problem for Zd-valued functions:

• the function f is not injective, and
• we are given complete description of the unshifted function f instead of having

only oracle access to f .

Moreover, we are interested only in the query complexity of the problem and do not
consider its time complexity. This means that we can pre-process the description of f at
no cost before we start querying the oracle.

To completely specify the problem, we need to formally define the oracles that we
are allowed to use. Let ω := e2πi/d. We consider two different kinds of quantum oracles:

• the phase oracle: O fs : |x〉 7→ ω f (x+s)|x〉,
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• the k-controlled-phase oracle: O fks
: |k〉|x〉 7→ ω f (x+ks)|k〉|x〉.

In classical case the oracles act in the same way, except the value of the function is
computed in a Zd-valued register instead of a phase. Note that the second oracle is
stronger, since it can be used to simulate the first oracle by setting k = 1. Also note that
in the Boolean case (d = 2) the ability to use the second oracle is equivalent to having an
oracle for the shifted function f (x + s) and the original unshifted function f (x). Hidden
shift problem for oracles that allow to perform arbitrary multiples of the shift s have also
been considered in [CvD07], however only for injective functions.

The motivation for studying this problem is similar to that of the hidden shift prob-
lem discussed in the previous section—we hope to shed some light on the interesting
cases of the hidden subgroup problem (in particular, the dihedral subgroup problem
which corresponds to the limiting case n = 1). It is also not excluded that our algo-
rithms might have cryptographic applications (especially, for the case of bent functions).
Finally, it is worth noting that the quantum algorithm for solving the Boolean hidden
shift problem discussed in Sect. 6.4.2 was the original inspiration that led to the discov-
ery of the quantum rejection sampling technique discussed in Chapter 5.

It would be desirable to have a complete characterization of the classical and quan-
tum query complexity of the hidden shift problem for any Boolean function (or more
generally, for any function f : Zn

d → Zd). In this chapter partially address this question
by providing several quantum query algorithms for this and related problems. How-
ever, it still remains an open problem to prove a lower bound on the quantum query
complexity for this problem or prove any non-trivial bounds in the classical case.

For Boolean functions there are two extreme cases, for which this problem has been
solved in the quantum case:

• If f is a delta function, i.e., f (x) := δx,x0 for some x0 ∈ Zn
2 , then the hidden shift

problem for f is equivalent to Grover’s search problem—finding x0 among the 2n

elements of Zn
2—so the quantum query complexity in this case is Θ(

√
2n) [Gro96,

BBBV97].
• If f is a bent function, i.e., it has a flat Fourier spectrum, then the quantum query

complexity is Θ(1) [Röt10].

Intuitively, the rest of the Boolean functions lie somewhere between these two extreme
cases. This is similar to the weighing matrix problem considered by van Dam [vD08],
which interpolates between two extreme cases: the Bernstein-Vazirani problem [BV97]
and Grover’s search [Gro96].
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Apart from delta and bent function, Boolean hidden shift problem has been consid-
ered also for several other families. Boolean functions that are quadratic forms or are
close to being quadratic have been considered in [Röt09]. Random Boolean functions
have been considered in [GRR11, Gha11].

6.1.4 Outline

In this chapter we give an overview of different approaches for solving the hidden shift
problem; we generalize the known approaches and provide several new ones. Our
main contributions are two quantum algorithms for solving the hidden shift problem.
The first algorithm is based on pretty good measurement (see Sect. 6.4.1), but the second
algorithm is based on quantum rejection sampling (see Sect. 6.4.2).

The rest of this chapter is organized as follows. First, in Sect. 6.2 we introduce
some notation and basic definitions such as Fourier transform, convolution, influence,
and bent functions. Next, in Sect. 6.3 we describe subroutines for preparing the t-fold
Fourier states |Φt(s)〉 and |Ψt(s)〉. They are used in Sect. 6.4, which is the most im-
portant part of this chapter, where we describe three different approaches (pretty good
measurement, and “Grover-like” and “Simon-like” algorithms) for solving the hidden
shift problem. In Sect. 6.5 we consider some variations of this problem, where we want
to learn only one bit of information about the hidden shift s, or verify if the oracle is
hiding a specified shift s (see Sect. 6.5.1 and Sect. 6.5.2, respectively). In Sect. 6.6 we
analyze the structure of zero Fourier coefficients of Boolean functions. We show how
to construct instances of the hidden shift problem with specific properties, as well as
how to modify the quantum rejection sampling algorithm discussed earlier, so that it
does not fail on these instances. Finally, Sect. 6.7 contains conclusions and a list of open
questions.

6.2 Notation and basic definitions

6.2.1 Boolean Fourier transform

Fourier analysis on the Boolean cube studies the 2n-dimensional vector space of all real-
valued functions defined on the n-dimensional Boolean cube Zn

2 . The main idea is that
the same vector can be expressed in two complementary bases—the standard basis and
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the Fourier basis—and both representations carry useful information about the corre-
sponding function. Intuitively, the standard basis captures local information such as
the value of the function at a specific point, but Fourier basis captures global informa-
tion such as the periodicity of the function. For a good overview of basic properties of
the Fourier transform of Boolean functions see [dW08].

First, let us define the Fourier transform of a real-valued function defined on the
Boolean hypercube.

Definition 6.1. The Fourier transform of F : Zn
2 → R is a function F̂ : Zn

2 → R defined as
follows:

F̂(w) :=
1√
2n

∑
x∈Zn

2

(−1)w·xF(x) (6.6)

where w · x =
∑n

i=1 wixi is the inner product modulo two.

Alternatively, we can encode the values of F : Zn
2 → R as amplitudes of a (non-

normalized) quantum state:
|F〉 :=

∑
x∈Zn

2

F(x)|x〉. (6.7)

Then the Fourier coefficient of F at w ∈ Zn
2 is

F̂(w) = 〈w|H⊗n|F〉 (6.8)

where H := 1√
2

Ä
1 1
1 −1

ä
is the Hadamard matrix. In particular, Fourier transform is linear:◊�F + G = F̂ + Ĝ. (6.9)

The set {F̂(w) : w ∈ Zn
2} of all Fourier coefficients is called the Fourier spectrum of F.

To define the Fourier transform of a Boolean function f : Zn
2 → Z2, we convert its truth

table to a normalized quantum state with amplitude at x ∈ Zn
2 given by

F(x) :=
1√
2n

(−1) f (x). (6.10)

Then the Fourier coefficient1 at w ∈ Zn
2 is

F̂(w) =
1
2n

∑
x∈Zn

2

(−1)w·x+ f (x). (6.11)

For d > 2 the definition of the Fourier transform is similar, except one has to use the
quantum Fourier transform QFTd instead of the Hadamard transform.

1Technically F̂ is the Fourier transform of the normalized (±1)-function F. However, we will also refer
to F̂ as the Fourier spectrum of the original Boolean function f .
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6.2.2 Quantum Fourier transform

Throughout this chapter we fix an integer d ≥ 2 and let ω := e2πi/d. The quantum Fourier
transform (QFT) for qudits is

QFT :=
1√
d

∑
x,y∈Zd

ωxy|y〉〈x|. (6.12)

Note that QFT is unitary and that QFT = H when d = 2. Also note that

QFT⊗n :=
1√
dn

∑
x,y∈Zn

d

ωx·y|y〉〈x|, (6.13)

where x · y =
∑n

i=1 xiyi is the inner product modulo d.

In analogy to Eq. (6.6), the Fourier transform of function F : Zn
d → C is a function

F̂ : Zn
d → C defined as

F̂(w) :=
1√
dn

∑
x∈Zn

d

ωw·xF(x). (6.14)

Alternatively,
F̂(w) = 〈w|QFT⊗n|F〉 (6.15)

where
|F〉 =

∑
x∈Zn

d

F(x)|x〉. (6.16)

As in the Boolean case, the canonical choice of F corresponding to f : Zn
d → Zd is

F(x) :=
ω f (x)
√

dn
. (6.17)

Proposition 6.2. We have: ˆ̂F(z) = F(−z). In particular, for d = 2 the Fourier transform is
self-inverse.
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Proof. We have:

ˆ̂F(z) =
1√
dn

∑
y∈Zn

d

ωz·y F̂(y) (6.18)

=
1
dn

∑
x,y∈Zn

d

ωz·y+y·xF(x) (6.19)

=
∑

x∈Zn
d

(
1
dn

∑
y∈Zn

d

ωy·(z+x)
)

F(x) (6.20)

=
∑

x∈Zn
d

δ0,z+xF(x) (6.21)

= F(−z). (6.22)

If d = 2 then −z = z and thus ˆ̂F = F. For d ≥ 3 Fourier transform has order four.

6.2.3 Convolution

Definition 6.3. Convolution of functions u, v : Zn
d → C is a function (u ∗ v) : Zn

d → C

which is defined as
(u ∗ v)(x) =

∑
y∈Zn

d

u(y)v(x− y). (6.23)

Note that convolution is commutative and associative, i.e.,

u ∗ v = v ∗ u and (u ∗ v) ∗ w = u ∗ (v ∗ w). (6.24)

The following is a standard result that relates Fourier transform and convolution via
entry-wise product.

Proposition 6.4. Fourier transform and convolution satisfy the following identities:

1√
dn

(û ∗ v̂) = ”uv,
1√
dn

(’u ∗ v) = ûv̂, (6.25)

where uv is the entry-wise product of functions u and v.
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Proof. For any x ∈ Zn
d we have:

1√
dn

(û ∗ v̂)(x) =
1√
dn

∑
y∈Zn

d

û(y)v̂(x− y) (6.26)

=
1√
dn

∑
y∈Zn

d

(
1√
dn

∑
z∈Zn

d

ωy·zu(z)
)(

1√
dn

∑
w∈Zn

d

ω(x−y)·wv(w)

)
(6.27)

=
1√
dn

∑
z,w∈Zn

d

(
1
dn

∑
y∈Zn

d

ωy·(z−w)

)
ωx·wu(z)v(w) (6.28)

=
1√
dn

∑
z∈Zn

d

ωx·zu(z)v(z) (6.29)

= (”uv)(x). (6.30)

The second identity follows from the first one by replacing u and v by û and v̂, respec-
tively, and taking the Fourier transform of both sides.

Proposition 6.5. The t-fold convolution satisfies the following identity:[
û√
dn

]∗t
=

ût
√

dn
. (6.31)

Proof. We prove this by induction. The base case t = 1 is trivial as f ∗1 = f by definition.
We assume that the desired relation holds for t− 1. Then[

û√
dn

]∗t
=

[
û√
dn

]
∗
[

û√
dn

]∗(t−1)

(6.32)

=

[
û√
dn

]
∗
[’ut−1
√

dn

]
(6.33)

=
ût
√

dn
(6.34)

according to the first relation in Eq. (6.25).

6.2.4 Influence

Let us consider the case d = 2, i.e., when f is an n-argument Boolean function.
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Definition 6.6. The influence of input w ∈ Zn
2 on f is

I f (w) := Pr
x

î
f (x) 6= f (x + w)

ó
(6.35)

=
1
2n

∑
x∈Zn

2

î
f (x)⊕ f (x + w)

ó
, (6.36)

where “⊕” denotes addition modulo two, but the terms in the sum indexed by x are
added as integers. The influence of function f is the minimum over the non-zero input
influences:

I f := min
w∈Zn

2\{0}
I f (w). (6.37)

Note that F(x) = (−1) f (x)/
√

2n satisfies the following identity:

(F ∗ F)(w) =
1
2n

∑
x∈Zn

2

(−1) f (x)+ f (x+w) (6.38)

=
1
2n

∑
x∈Zn

2

Å
1− 2

î
f (x)⊕ f (x + w)

óã
(6.39)

= 1− 2I f (w). (6.40)

6.2.5 Bent functions

Quantum algorithms for finding a hidden shift presented in Sect. 6.4 are particularly ef-
ficient for functions having a relatively flat Fourier spectrum, and therefore in particular
for bent functions [Dil72, Dil75, MS77, Dob95].

Definition 6.7. We say that a Boolean function f : Zn
2 → Z2 is bent if it has a flat Fourier

spectrum, i.e., all Fourier coefficients F̂(w) have the same absolute value.

From the normalization constraint
∑

w∈Zn
2
|F̂(w)|2 = 1 of the Fourier spectrum we

get that a Boolean function is bent if

∀w ∈ Zn
2 : |F̂(w)| = 1√

2n
. (6.41)

Recall from Eq. (6.11) that F̂(w) is always an integer multiple of 1/2n. Thus, from the
above equation it immediately follows that necessary condition for a bent function in n
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variables to exist is that n is even [Dil75, MS77]. Moreover, from |F̂(0)| = 1/
√

2n we get
that

∣∣∣∑w∈Zn
2
(−1) f (x)

∣∣∣ = √2n, so a bent function f is close to being balanced:

∣∣∣{x ∈ Zn
2 : f (x) = 1}

∣∣∣ = 2n ±
√

2n

2
. (6.42)

A simple example of a bent function is provided by the inner product function [Dil72].
The most simple instance is the two-argument function f (x, y) := xy where x, y ∈ Z2
which is equivalent to the logical AND. It is easy to verify that f is a bent function. This
can be generalized to 2n variables [MS77] and we obtain the inner product modulo two:

IPn(x1, . . . , xn, y1, . . . , yn) :=
n∑

i=1
xiyi. (6.43)

It is straightforward to check that IPn is bent.

While many other examples of bent functions have been constructed, see for in-
stance [MS77, Dil75, Dob95], no complete classification is known. Besides the flat-
ness of the Fourier spectrum, many equivalent characterizations of bent functions are
known [CS09, Dil72].

6.3 Quantum algorithms for preparing the t-fold Fourier
states

In this section we describe two similar quantum algorithms for preparing the following
states for any integer t ≥ 1:

|Φt(s)〉 =
∑

w∈Zn
d

ωs·w|F t
w〉|w〉, (6.44)

|Ψt(s)〉 =
∑

w∈Zn
d

|s · w〉|F t
w〉|w〉. (6.45)

Here s is the hidden shift, but the non-normalized vectors |F t
w〉 ∈ Cd(t−1)n will be de-

fined in the next section. We will use these algorithms in Sect. 6.4 as subroutines to solve
the hidden shift problem.

Informally we refer to the states in Eqs. (6.44) and (6.45) as the t-fold Fourier states,
since the norm of the vector |F t

w〉 can be interpreted as a t-fold generalization of the

120



t

1st phase 2nd phase

|0〉⊗n

|0〉⊗n
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O f−s
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O f−s

. . . . . .
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. . . . . .
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Figure 6.1: Quantum algorithm for preparing the t-fold Fourier sate |Φt(s)〉 in Eq. (6.44).
Definitions of the oracle and “controlled-plus” gates are given in Eqs. (6.46) and (6.47),
respectively. The state on the first wire at the end of the first phase is given in Eq. (6.53).

Fourier coefficient at w as discussed later. Here are a couple of differences between the
states |Φt(s)〉 and |Ψt(s)〉 that one should note:

• |Φt(s)〉 ∈ Cdtn but |Ψt(s)〉 ∈ Cd(tn+1).
• Φ-states cannot be used to detect hidden b-shifts (see Sect. 6.6). If s is a b-shift

then the Φ-states corresponding to s and 0 differ only by a global phase: |Φt(s)〉 =
ωb|Φt(0)〉.

• We can probabilistically convert a Ψ-state to the corresponding Φ-state by apply-
ing QFT on the first register and measuring it in the standard basis. With prob-
ability 1/d we get outcome 1 and the post-measurement state is |Φt(s)〉. If the
outcome is not 1, we can sometimes still recover the correct value of s at the end
of the algorithm. In particular, let ϕ be Euler’s totient function. Then with prob-
ability ϕ(d)/d we get outcome k ∈ Zd that has a multiplicative inverse modulo
d and the corresponding post-measurement state is |Φt(ks)〉. Since we know the
value of k, we can recover the original hidden shift s at the end of the algorithm if
we multiply the obtained value by k−1.
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6.3.1 Computing w · s in the phase to prepare |Φt(s)〉

6.3.1.1 Algorithm

Consider the phase oracle
O f−s : |x〉 7→ ω f (x−s)|x〉 (6.46)

that acts on n qudits. We will execute t copies of this oracle in parallel to prepare the state
|Φt(s)〉 given in Eq. (6.44). The circuit of our algorithm is given in Fig. 6.1. It consists
of two phases: the first phase prepares t identical copies of the same state by using one
oracle call between two quantum Fourier transforms on each wire independently. The
second phase entangles these states by applying a sequence of “controlled-plus” gates
that are defined as follows:

|x〉|y〉 7→ |x〉|y + x〉, (6.47)

where addition is modulo d.

6.3.1.2 Analysis

Let us analyze how the initial state evolves. During the first phase of the algorithm the
first wire evolves as follows:

|0〉⊗n 7→ 1√
dn

∑
x∈Zn

d

|x〉 (6.48)

7→ 1√
dn

∑
x∈Zn

d

ω f (x−s)|x〉 (6.49)

7→ 1
dn

∑
x,y∈Zn

d

ω f (x−s)+x·y|y〉 (6.50)

=
1
dn

∑
x,y∈Zn

d

ω f (x)+(x+s)·y|y〉 (6.51)

=
∑

y∈Zn
d

ωs·y
Ñ

1
dn

∑
x∈Zn

d

ω f (x)+x·y
é
|y〉 (6.52)

=
∑

y∈Zn
d

ωs·y F̂(y)|y〉. (6.53)
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Since the algorithm in Fig. 6.1 prepares t copies of the same state in parallel, the state at
the end of the first phase is given by the t-fold tensor product of the state in Eq. (6.53):

∑
y1,...,yt∈Zn

d

ωs·(y1+···+yt)
t⊗

i=1
F̂(yi)|yi〉. (6.54)

During the second phase of the algorithm, the “controlled-plus” gates transform this
state into

∑
y1,...,yt∈Zn

d

ωs·(y1+···+yt)

t−1⊗
i=1

F̂(yi)|yi〉
F̂(yt)|y1 + · · ·+ yt〉 (6.55)

=
∑

y1,...,yt∈Zn
d

ωs·yt

t−1⊗
i=1

F̂(yi)|yi〉
F̂
Ä
yt − (y1 + · · ·+ yt−1)

ä
|yt〉. (6.56)

We can rewrite this state as

|Φt(s)〉 :=
∑

w∈Zn
d

ωs·w|F t
w〉|w〉, (6.57)

where the non-normalized state |F t
w〉 on (t− 1)n qudits is given by

|F t
w〉 :=

∑
y1,...,yt−1∈Zn

d

F̂(y1) · · · F̂(yt−1)F̂
Ä
w− (y1 + · · ·+ yt−1)

ä
|y1〉 · · · |yt−1〉. (6.58)

The square of the norm of |F t
w〉 is

‖|F t
w〉‖

2
2 =

∑
y1,...,yt−1∈Zn

d

F̂(y1)
2 · · · F̂(yt−1)

2F̂
Ä
w− (y1 + · · ·+ yt−1)

ä2. (6.59)

Note that this is the t-fold convolution of F̂2 with itself, evaluated at w:

‖|F t
w〉‖

2
2 =

î
F̂2ó∗t(w). (6.60)

In particular, for t = 1 we have:

‖|F 1
w〉‖2 = |F̂(w)|, (6.61)

so ‖|F t
w〉‖2 can be interpreted as a t-fold generalization of the Fourier spectrum.
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6.3.1.3 The t-fold Fourier spectrum

The quantity ‖|F t
w〉‖2 will come up quite often in our discussion and play the role of

a generalized Fourier coefficient. Let us introduce special notation for it and provide
several alternative expressions.

Definition 6.8. The t-fold Fourier coefficient of f : Zn
d → Zd at w ∈ Zn

d is

F t(w) := ‖|F t
w〉‖2. (6.62)

We can express this quantity in many equivalent ways. For example, according to
Prop. 6.4 and Prop. 6.5 we have:î

F t(w)
ó2

=
î
F̂2ó∗t(w) (6.63)

=

[
1√
dn

Ä÷F ∗ F
ä]∗t
(w) (6.64)

=
1√
dn
⁄�(F ∗ F)t (w). (6.65)

When d = 2 we can use Eq. (6.40) to write the last expression in terms of the influence:î
F t(w)

ó2
=

1√
2n
¤�(1− 2I f )t (w). (6.66)

6.3.2 Computing w · s in the register to prepare |Ψt(s)〉

6.3.2.1 Algorithm

This time we will use a more powerful oracle. It is a controlled version of the phase
oracle, but we can also control how many times the hidden shift s is applied:

O fks
: |k〉|x〉 7→ ω f (x+ks)|k〉|x〉. (6.67)

It acts on n + 1 qudits and the value k ∈ Zd in the first register controls the number of
times the shift s is applied, but x ∈ Zn

d is the value that we are querying. The workspace
of our algorithm consists of tn + 1 qudits and its circuit is given in Fig. 6.2.
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Figure 6.2: Quantum algorithm for preparing the t-fold Fourier sate |Ψt(s)〉 in Eq. (6.45).
Definitions of the oracle and “controlled-plus” gates are given in Eqs. (6.67) and (6.47),
respectively. The state on the first two wires at the end of the first phase is given in
Eq. (6.73).

6.3.2.2 Analysis

Analysis of this algorithm is slightly more complicated, but otherwise very similar to
the previous algorithm. The state on the first two wires during the first phase evolves
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as follows:

|0〉|0〉⊗n 7→
(

1√
d

∑
k∈Zd

|k〉
)
⊗
(

1√
dn

∑
x∈Zn

d

|x〉
)

(6.68)

7→ 1√
d

∑
k∈Zd

|k〉 ⊗ 1√
dn

∑
x∈Zn

d

ω f (x+ks)|x〉 (6.69)

7→ 1
d

∑
k,l∈Zd

ωkl|l〉 ⊗ 1
dn

∑
x,y∈Zn

d

ω f (x+ks)+x·y|y〉 (6.70)

=
1
d

∑
k,l∈Zd

ωkl|l〉 ⊗ 1
dn

∑
x,y∈Zn

d

ω f (x)+(x−ks)·y|y〉 (6.71)

=
∑

y∈Zn
d

∑
l∈Zd

(
1
d
∑

k∈Zd

ωk(l−s·y)
)
|l〉 ⊗

(
1
dn

∑
x∈Zn

d

ω f (x)+x·y
)
|y〉 (6.72)

=
∑

y∈Zn
d

|s · y〉 ⊗ F̂(y)|y〉. (6.73)

When we execute t queries in parallel, the first term in Eq. (6.72) picks up a phase of
ω−k(s·yi) from the ith query. Thus the state on all t + 1 wires at the end of the first phase
is given by the following generalization of the state in Eq. (6.73):

∑
y1,...,yt∈Zn

d

|s · (y1 + · · ·+ yt)〉
t⊗

i=1
F̂(yi)|yi〉. (6.74)

Repeating essentially the same calculations as before, we see that final state at the end
of the second phase is

|Ψt(s)〉 :=
∑

w∈Zn
d

|s · w〉|F t
w〉|w〉, (6.75)

where |F t
w〉 was defined in Eq. (6.58).

6.4 Quantum algorithms for finding a hidden shift

In this section we consider how the two basic building blocks, circuits for preparing
states |Φt(s)〉 and |Ψt(s)〉, introduced in Sect. 6.3 can be used to construct quantum
algorithms for solving the hidden shift problem. In particular, we discuss three different
approaches which we loosely call:
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1. the pretty good measurement approach,
2. the “Grover-like” approach,
3. the “Simon-like” approach.

The first approach is based on the Pretty Good Measurement (PGM) which was in-
troduced by Hausladen and Wootters [HW94], and has also been used in the context
of the hidden subgroup problem [BCvD05, BCvD06, MR05]. The second approach
uses amplitude amplification and is based on quantum rejection sampling. In the spe-
cial case of delta functions this method reduces to Grover’s algorithm [Gro96], so we
call it the “Grover-like” approach. Finally, the third approach resembles Simon’s algo-
rithm [Sim94], as it first collects data using a simple quantum sampling procedure, and
the performs classical post-processing by solving a system of linear equations.

As an alternative to the “Simon-like” approach, Gharibi has recently proposed an
“injectivization” technique [Gha11]. It reduces the Boolean hidden shift problem to
Simon’s algorithm [Sim94] by making the hiding function injective.

6.4.1 The PGM (Pretty Good Measurement) approach

In this approach the main idea is to prepare the state |Φt(s)〉 for some value of t and
then extract the hidden shift s from it via PGM. The same measurement has been used by
Bacon, Childs, and van Dam [BCvD05] to efficiently solve the hidden subgroup problem
for semidirect product groups, including the Heisenberg group, and is also known to
be optimal for the dihedral subgroup problem [BCvD06].

Let us consider a set of mixed states {ρ(t)s : s ∈ Zn
d} where ρ

(t)
s is given with proba-

bility ps. The pretty good measurement [HW94] for discriminating these states is a POVM
with operators {Es : s ∈ Zn

d} ∪ {E∗} where

Es := E−1/2 psρ
(t)
s E−1/2, E :=

∑
s∈Zn

d

psρ
(t)
s , (6.76)

and E∗ := I −∑s∈Zn
d

Es.

In our case the states ρ
(t)
s and probabilities ps are given by

ρ
(t)
s := |Φt(s)〉〈Φt(s)|, ps :=

1
dn , (6.77)

where |Φt(s)〉 was defined in Eq. (6.57).
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To find the operators Es, let us first compute an expression for E:

E =
∑

s∈Zn
d

1
dn ρ

(t)
s (6.78)

=
∑

s∈Zn
d

1
dn

∑
w,w′∈Zn

d

ω(w−w′)·s|F t
w〉〈F t

w′ | ⊗ |w〉〈w′| (6.79)

=
∑

w∈Zn
d

|F t
w〉〈F t

w| ⊗ |w〉〈w| (6.80)

=
∑

w∈Zn
d

‖|F t
w〉‖

2
2 ·
|F t

w〉〈F t
w|

‖|F t
w〉‖

2
2

⊗ |w〉〈w|. (6.81)

Note that E is a sum of mutually orthogonal rank-1 operators whose eigenvalues are
‖|F t

w〉‖
2
2. Thus

E−1/2 =
∑

w∈Zn
d

1
‖|F t

w〉‖2
· |F

t
w〉〈F t

w|
‖|F t

w〉‖
2
2

⊗ |w〉〈w|. (6.82)

The POVM element Es is the outer product of vector |Es〉 with itself where

|Es〉 := E−1/2√ps|Φt(s)〉 (6.83)

=

Ñ ∑
w∈Zn

d

|F t
w〉〈F t

w|
‖|F t

w〉‖
3
2

⊗ |w〉〈w|
é

1√
dn

Ñ ∑
w∈Zn

d

ωw·s|F t
w〉|w〉

é
(6.84)

=
1√
dn

∑
w∈Zn

d

ωw·s |F t
w〉

‖|F t
w〉‖2

⊗ |w〉. (6.85)

Notice that vectors |Es〉 are orthonormal, so the PGM is just an orthogonal measurement
on these vectors (and the orthogonal complement of their span). Thus, our algorithm
can be summarized as follows:

PGM( f , t)
1. Prepare |Φt(s)〉 using the circuit shown in Fig. 6.1.
2. Recover s by performing an orthogonal measure-

ment with projectors {|Es〉〈Es| : s ∈ Zn
d} ∪ {E∗}.
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The success probability to recover the hidden shift correctly using PGM from the
t-fold Fourier state |Φt(s)〉 defined in Eq. (6.57) is given by

psuccess =
∣∣∣〈Es|Φt(s)〉

∣∣∣2 =

Ñ
1√
dn

∑
w∈Zn

d

F t(w)

é2

, (6.86)

where F t(w) = ‖|F t
w〉‖2 is the t-fold Fourier coefficient introduces in Sect. 6.3.1.3. We

can use Eq. (6.65) to get

psuccess =
1
dn

Ñ ∑
w∈Zn

d

√
1√
dn
⁄�(F ∗ F)t (w)

é2

. (6.87)

Note that for t = 1 we can use Eq. (6.61) to simplify Eq. (6.86) as follows:

psuccess =
1
dn

Ñ ∑
w∈Zn

d

|F̂(w)|
é2

. (6.88)

6.4.1.1 Boolean delta function

Let us check how well the PGM approach performs for the case of a Boolean delta func-
tion. We know that the quantum query complexity in this case should be Θ(

√
2n). One

can work out from Eq. (6.87) that the success probability is

psuccess =
1

22n

Ö
(2n − 1)

Ã
1−

Ç
2n − 4

2n

åt
+

Ã
1 + (2n − 1)

Ç
2n − 4

2n

åt
è2

. (6.89)

Since t is the total number of queries made by the algorithm, let us choose t =
√

2n. Un-
fortunately, then the success probability goes to 0 as n → ∞. In fact, the same happens
even if t = cn for any c < 2. Only if we take t = 2n, the success probability approaches
a positive constant 1− 1/e4 ≈ 0.98 as n→ ∞. This means that the PGM algorithm does
not give us the expected quadratic improvement of query complexity in the limiting
case of delta functions. Thus, the PGM algorithm is not optimal in general. However, it
performs extremely well in other cases that we discuss next.
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6.4.1.2 Bent functions

Let f be a Bent function (in particular, d = 2). Recall from Definition 6.7 that its Fourier
spectrum is flat: |F̂(w)| = 1/

√
2n for all w ∈ Zn

2 . Thus, from Eq. (6.88) we get that
psuccess = 1 when t = 1. Thus, we can find the hidden shift with certainty by measuring
|Φ1(s)〉 with the pretty good measurement (recall that preparing |Φ1(s)〉 requires only
one query to O fs). This was first observed by Rötteler in [Röt10].

Theorem 6.9 ([Röt10]). If f is a bent function then a quantum algorithm can solve the Boolean
hidden shift problem for f with success probability one using a single query to O fs . In particular,
this can be achieved using the PGM( f , 1) algorithm.

This result seems surprising, since we extract an n-bit string from the oracle by using
only a single query. On the other hand, we were given a very strong promise on the
oracle—namely, that its underlying function is bent. A similar phenomenon can be
observed also in the case of the Bernstein-Vazirani problem [BV97].

6.4.1.3 Random Boolean functions

Recall from Eq. (6.88) that PGM( f , 1) solves the hidden shift problem for Boolean func-
tion f with success probability

p( f ) =
1
2n

Ñ ∑
w∈Zn

2

|F̂(w)|
é2

. (6.90)

Let us show that if f is picked uniformly at random, then the expected success probabil-
ity is lower bounded by some constant that does not depend on n, where the expectation
is over the choice of f .

Theorem 6.10. Let p( f ) denote the success probability of PGM( f , 1) for solving BFHSP f for
an n-argument Boolean function f . When f is picked uniformly at random, the expected success
probability p̄ := E f

î
p( f )

ó
is lower bounded by a constant: p̄ ≥ 1/2.

Proof. We have:

p̄ =
1

22n

∑
f

p( f ) =
1
2n

1
22n

∑
f

Ñ ∑
w∈Zn

2

|F̂(w)|
é2

. (6.91)
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Since
∑N

i=1|vi|2 ≥ 1
N

Ä∑N
i=1|vi|

ä2 for any v ∈ CN, we get

p̄ ≥ 1
2n

(
1

22n

)2(∑
f

∑
w∈Zn

2

|F̂(w)|
)2

(6.92)

=
1
2n

Ñ
1

22n

∑
w∈Zn

2

∑
f

∣∣∣∣∣ 1
2n

∑
x∈Zn

2

(−1)w·x+ f (x)
∣∣∣∣∣
é2

, (6.93)

where we exchanged the two sums and substituted F̂(w) from Eq. (6.11). For each w
we can changes the order of summation over f by defining f ′(x) := w · x + f (x) and
summing over f ′ instead. Thus the value of the inner sum does not depend on w and
we get

p̄ ≥ 1
2n

Ö
1

22n

∑
f

∣∣∣∣∣∣ ∑x∈Zn
2

(−1) f (x)

∣∣∣∣∣∣
è2

. (6.94)

This can be written simply as

p̄ ≥ L(2n)2

2n (6.95)

where

L(N) :=
1

2N

∑
z∈{1,−1}N

∣∣∣∣∣∣
N∑

i=1
zi

∣∣∣∣∣∣ (6.96)

is the expected distance traveled by N steps of a random walk on a line (each step is of
size one and is chosen with equal probability to left or right). It remains to lower bound
L(N).

Let N = 2m for some integer m ≥ 1. Using standard identities for sums of binomial
coefficients, we compute that

L(2m) =
1

22m · 2
m∑

k=0
(2m− 2k)

(
2m
k

)
(6.97)

=
1

22m · 2m
(

2m
m

)
. (6.98)

Since the central binomial coefficient satisfies [Kos08, p. 48](
2m
m

)
≥ 4m
√

4m
, (6.99)
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we get that
L(2m) ≥

√
m. (6.100)

For N = 2n this gives L(2n) ≥
√

2n/2. We plug this in Eq. (6.95) and get p̄ ≥ 1/2.

In fact, according to Stirling’s formula (2m
m ) ∼ 4m/

√
πm as m → ∞. This means

that L(N) ∼
√

2N/π as N → ∞ and our lower bound on p̄ approaches 2/π ≈ 0.63
as n → ∞. We believe that taking t = 2 should suffice to get a lower bound on p̄ that
approaches 1 as n→ ∞.

Conjecture 1. For every ε > 0 there exists an integer n0 such that if n ≥ n0 then
PGM( f , 2) solves BFHSP f with expected success probability p̄ ≥ 1 − ε, where f is
an n-argument boolean function chosen uniformly at random.

6.4.1.4 Perturbed functions

In this section we show that the success probability of the PGM( f , 1) algorithm does not
change much if the truth table of the Boolean function is perturbed only at few locations.
Together with Theorem 6.9 this implies that we can solve the BFHSP f problem with
high success probability and a single query for any function that is sufficiently close to
a bent function.

Let us first show that if the truth table of a Boolean function f is perturbed at one
location, its Fourier spectrum does not change by too much. Let

δa(x) =

1 if x = a,
0 otherwise

(6.101)

be the Kronecker delta function.

Proposition 6.11. Let f and g be n-argument Boolean functions such that g(x) := f (x) +
δa(x) for some a ∈ Zn

2 . Then

Ĝ(w) = F̂(w)− 2√
2n

(−1)w·aF(a). (6.102)
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Proof. First, observe that the normalized (±1)-valued functions corresponding to f and
g are related as follows:

G(x) =
1√
2n

(−1) f (x)+δa(x) (6.103)

=
1√
2n

(−1) f (x)Ä1− 2δa(x)
ä

(6.104)

= F(x)− 2F(a)δa(x). (6.105)

By linearity of the Fourier transform,

Ĝ(w) = F̂(w)− 2F(a)δ̂a(w) (6.106)

where
δ̂a(w) =

1√
2n

∑
x∈Zn

2

(−1)w·xδa(x) =
1√
2n

(−1)w·a. (6.107)

We substitute this in Eq. (6.106) and get the desired result.

Let us consider how the success probability changes under one perturbation.

Lemma 6.12. Let f : Zn
2 → Z2 be an n-argument Boolean function and g(x) := f (x) + δa(x)

be a perturbed function where δa(x) is the Kronecker delta defined in Eq. (6.101). If PGM( f , 1)
solves BFHSP f with success probability p f , then PGM(g, 1) solves BFHSPg with success
probability pg such that

√
pg ≥

»
p f −

2√
2n

. (6.108)

Proof. From Eq. (6.88) and Prop. 6.11 we have:

√
pg =

1√
2n

∑
w∈Zn

2

|Ĝ(w)| (6.109)

=
1√
2n

∑
w∈Zn

2

∣∣∣∣∣F̂(w)− 2√
2n

(−1)w·aF(a)
∣∣∣∣∣ (6.110)

≥ 1√
2n

∑
w∈Zn

2

(
|F̂(w)| − 2√

2n
|F(a)|

)
(6.111)

=
»

p f − 2|F(a)| (6.112)

=
»

p f −
2√
2n

(6.113)
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as claimed.

As a corollary of the above lemma we get the following result that bounds the suc-
cess probability after k perturbations.

Corollary 6.13. If g(x) := f (x) +
∑k

i=1 δai(x) for some ai ∈ Zn
2 , then PGM(g, 1) solves

BFHSPg with success probability pg such that

√
pg ≥

»
p f −

2k√
2n

, (6.114)

where p f is the success probability of PGM( f , 1) for solving BFHSP f .

6.4.2 The “Grover” approach (quantum rejection sampling)

6.4.2.1 The basic algorithm

In this section we show how quantum rejection sampling can be used to solve the
Boolean hidden shift problem. In particular, we show how to reduce an instance of
BFHSP f to QSAMPLINGπ→σ for some π and σ, and thus prove an upper bound on
quantum query complexity of BFHSP f . The following theorem provides a trade-off
between the quantum query complexity and success probability of BFHSP f for any
Boolean function f .

Theorem 5.17. Let f be a Boolean function and F̂ be its Fourier transform. For any success
probability p ∈ [pmin, pmax], we have Q1−p(BFHSP f ) = O(1/‖εp

π→σ‖2), where pmin, pmax,
and ε

p
π→σ are given in Definition 5.8, and components of π and σ are given by πw = |F̂(w)|

and σw = 1/
√

2n for w ∈ Zn
2 .

Proof. Let us set d = 2 and t = 1 and use the quantum circuit from Sect. 6.3.1 to prepare
the state

|Φ1(s)〉 =
∑

w∈Zn
2

(−1)w·s F̂(w)|w〉. (6.115)

If we could eliminate the Fourier coefficients F̂(w) from this state, we would obtain a
state

|ψ(s)〉 :=
1√
2n

∑
w∈Zn

2

(−1)w·s|w〉 (6.116)
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from which the hidden shift s can be easily recovered by applying the Hadamard trans-
form H⊗n. Unfortunately, the operation diag

Ä
F̂(w)−1/

√
2n : w ∈ Zn

2
ä

that uncomputes
the Fourier coefficients is unitary only when f is a bent function (see Definition 6.7).
Thus, instead we first apply a diagonal unitary2 diag

Ä
F̂(w)/|F̂(w)| : w ∈ Zn

2
ä

which
corrects the phases of the Fourier coefficients and transforms |Φ1(s)〉 into∑

w∈Zn
2

(−1)w·s|F̂(w)||w〉. (6.117)

Note that we can perform this transformation, since we know the function f and there-
fore its Fourier transform F̂. Finally, observe that the problem of transforming the above
state to |ψ(s)〉 is a special case of QSAMPLINGπ→σ with

πw := |F̂(w)|, σw := 1/
√

2n, |ξw〉 := (−1)w·s|0〉. (6.118)

As a consequence, Theorem 5.1 immediately gives us a quantum algorithm for solving
this problem.

As is the case for classical rejection sampling, quantum rejection sampling can per-
form poorly if many amplitudes of the initial state are small. In particular, if we want the
success probability to be one, the complexity of our algorithm is limited by the smallest
Fourier coefficient of the function. If the smallest Fourier coefficient of f is zero, then
the resampling approach cannot provide a solution with arbitrary high probability of
success, since

pmax =
∑

w:πw 6=0
σ2

w =
∑

w:F̂(w) 6=0

1
2n =

|{w : F̂(w) 6= 0}|
2n . (6.119)

according to Definition 5.8. By ignoring small Fourier coefficients, one can decrease the
complexity of the algorithm at the cost of a lower success probability.

Nevertheless, it is possible to boost the success probability of this algorithm. We
show that this can be done either by using t ≥ 2 queries in parallel (see Sect. 6.4.2.2)
or by repetition (see Sect. 6.4.2.3). Note that the second strategy requires to construct
a procedure for verifying a candidate shift. We propose such procedure based on a
controlled-SWAP test in Sect. 6.5.2.

2If F̂(w) = 0, we can choose the corresponding entry to be 1.
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6.4.2.2 The t-fold algorithm

In this section we provide a generalization of the quantum algorithm described in the
previous section by considering general values of parameters d and t. That is, we show
how to solve the hidden shift problem for function f : Zn

d → Zd with any d ≥ 2 by
using quantum rejection sampling that performs t ≥ 1 queries in parallel. Instead of
|Φ1(s)〉, we use the t-fold Fourier state |Φt(s)〉 from Sect. 6.3.1 for some t ≥ 1. The
advantage of choosing t > 1 is that we can avoid the problems that arise when f has
small or zero Fourier coefficients. In particular, when t ≥ n, the t-fold Fourier spectrum
F t (see Sect. 6.3.1.3) is guaranteed to be non-zero as will be shown in Sect. 6.6. The
following result is a generalization of Theorem 5.17 for general values of t and d.

Theorem 6.14. Let f : Zn
d → Zd be a function. For any integer t ≥ 1 and success probability

p ∈ [pmin, pmax], we have Q1−p(BFHSP f ) = O(t/‖εp
π→σ‖2), where pmin, pmax, and ε

p
π→σ

are given in Definition 5.8, and components of π and σ are given by πw = F t(w), the t-fold
Fourier spectrum of f (see Sect. 6.3.1.3), and σw = 1/

√
dn for w ∈ Zn

d .

Proof. As in the t = 1 case, the main idea is to use quantum rejection sampling to drive
the states

|Φt(s)〉 =
∑

w∈Zn
d

ωw·s|F t
w〉|w〉 (6.120)

towards a carefully chosen orthonormal basis, from which the hidden shift can be re-
covered by a measurement. One possibility is to eliminate the dependence on w from
the second register of |Φt(s)〉 and obtain the states∑

w∈Zn
d

ωw·s 1√
dn
|0̄〉|w〉 (6.121)

from which the hidden shift s can be easily recovered by measuring the second register
in the Fourier basis. An alternative and equally good choice of the target states are the
PGM states

|Es〉 =
∑

w∈Zn
d

ωw·s 1√
dn

|F t
w〉

‖|F t
w〉‖2

⊗ |w〉 (6.122)

from Eq. (6.85), which can be transformed into states in Eq. (6.121) by a controlled uni-
tary operation. Thus, we have reduced the hidden shift problem to a quantum resam-
pling problem QSAMPLINGπ→σ where

πw := F t(w), σw :=
1√
dn

, |ξw〉 := ωw·s |F t
w〉

‖|F t
w〉‖2

. (6.123)

136



This generalizes the expressions for the t = 1 and d = 2 case in Eq. (6.118). The desired
result immediately follows from Theorem 5.1.

6.4.2.3 Boosting the success probability

When we want to find the hidden shift of f with success probability p close to one, the
basic algorithm with t = 1 described in Sect. 6.4.2.1 (see Theorem 5.17) might be quite
inefficient. In the special case p = 1, its complexity is limited by the smallest Fourier
coefficient of f . In particular, when some Fourier coefficients are zero, it is not possible
to achieve p = 1 using this algorithm.

One possible approach to deal with this problem is to choose t ≥ 2 and use t queries
in parallel as described in the previous section. As shown in Sect. 6.6.3, when t is chosen
sufficiently large, the t-fold Fourier spectrum F t is non-zero everywhere, so the hidden
shift can be recovered with certainty (see Corollary 6.28).

Another approach to find the hidden shift with near certainty is to choose a smaller
success probability p and repeat the algorithm until the right shift is obtained. How-
ever, this requires a procedure to check a candidate shift. Let us assume that we have
such a procedure and it has one-sided success probability q, i.e., it accepts the correct shift
with probability one and rejects a wrong shift with probability at least q (see Sect. 6.5.2
for more details). We can combine such imperfect checking procedure with the quan-
tum search algorithm with bounded-error inputs from [HMdW03] to get the following
result.

Proposition 6.15. Let f be a Boolean function. Assume that we have a quantum algorithm that
finds the hidden shift of f with complexity F and success probability p, and another algorithm
that can verify a given shift with complexity C and one-side success probability q. Then we
can combine these algorithms to solve BFHSP f with arbitrary high success probability and
complexity

O
(

1
√

p

(
F +

C
√

q

))
. (6.124)

Proof. First, we boost the probability of rejecting a wrong candidate shift arbitrarily
close to one using O(1/

√
q) steps of quantum amplitude amplification [BHMT00]. Thus,

the total checking cost is O(C/
√

q).

To boost the success probability p of the finding algorithm arbitrarily close to one, we
use the quantum search algorithm with bounded-error inputs from [HMdW03]. Note
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that we cannot apply the usual quantum amplitude amplification technique [BHMT00]
directly, since this would incur an additional factor of log(1/p) as the checking opera-
tion is imperfect. Therefore, the total complexity comes from repeating O(1/

√
p) times

the original algorithm with cost F and the checking operation with cost O(C/
√

q).

We will apply this result in Sect. 6.5.2 where we discuss specific procedures for veri-
fying a given shift.

6.4.3 The “Simon” approach (sampling and classical post-processing)

We describe this approach only very briefly (for more details see [Röt10, GRR11]). The
main idea is to use the quantum circuit from Sect. 6.3.2 to prepare the state

|Ψt(s)〉 :=
∑

w∈Zn
d

|s · w〉|F t
w〉|w〉 (6.125)

and measure it in the standard basis (the papers mentioned above consider only the
d = 2 and t = 1 case). This gives us a random string w ∈ Zn

d , each with probability
F t(w)2, and the corresponding inner product s · w. We can repeat this several times
until the vectors w that we have obtained span the whole space Zn

d . Then by solving
a system of linear equations we can obtain the hidden shift s. Below is a more formal
description of this algorithm.

Simon’s sampling(t)
1. Set k := 0.
2. While span{wi : 1 ≤ i ≤ k} 6= Zn

d do:
(a) Set k← k + 1.
(b) Prepare |Ψt(s)〉 with the circuit shown in Fig. 6.2 using t

calls to the oracle O fks
.

(c) Measure the first and last register of |Ψt(s)〉 and denote the
outcomes by bk ∈ Zd and wk ∈ Zn

d , respectively.
3. Solve the linear system of equations wi · s = bi (1 ≤ i ≤ k) over

Zd to obtain the hidden shift s.

Gavinsky, Roetteler, and Roland [GRR11] bound the expected running time of this
algorithm for any Boolean function f in terms of its influence I f .
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Theorem 6.16 ([GRR11]). Let f be an n-argument Boolean function. Simon’s sampling(1)
solves BFHSP f with success probability one and expected number of queries O(n/

√
I f ) to the

oracle O fks
where I f is the influence of f (see Sect. 6.2.4).

Moreover, [GRR11] use this result to shown an exponential separation between av-
erage case quantum and classical query complexities.

Theorem 6.17 ([GRR11]). Let f : Zn
2 → Z2 and s ∈ Zn

2 be chosen uniformly at random.
Simon’s sampling(1) can solve BFHSP f with bounded error using O(n) queries, whereas
any classical algorithm needs Ω(

√
2n) queries to succeed with probability at least 1/2.

6.5 Quantum algorithms for related problems

In this section we consider two variations of the Boolean hidden shift problem. We
provide a quantum algorithm for extracting only one chosen bit of information about
the hidden shift, as well as show how to verify if the oracle is hiding a specific shift.

6.5.1 Parity extraction

In this section we consider the problem of extracting only one bit of information about
the hidden shift—we want to determine the value of w · s for some specific w ∈ Zn

2 .
Our procedure uses only one query and succeeds with probability which depends on
the Fourier coefficient of f corresponding to w.

Lemma 6.18. Let f be a known Boolean function and w ∈ Zn
2 be a given input. Using one

query to the oracle O fks
, a quantum algorithm can determine the value of w · s with success

probability

p =
2F̂(w)2

1 + F̂(w)2
. (6.126)

Proof. Our algorithm is based on the procedure for preparing the state |Ψ1(s)〉 from
Sect. 6.3.2. The only difference is that we initialize the first register in an arbitrary super-
position that we optimize over later. To avoid repeating the analysis from Sect. 6.3.2.2,
we consider only two steps—the application of the oracle and the Fourier transform
right after it.
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We use two registers—the first register stores a qubit initialized in state α0|0〉+ α1|1〉,
but the second register stores n qubits initialized in the uniform superposition. Let us
consider the transformation implemented by the k-controlled-phase oracle which acts as
O fks

: |k〉|x〉 7→ (−1) f (x+ks)|k〉|x〉, followed by Fourier transform on the second register:

∑
k∈Z2

αk|k〉 ⊗
1√
2n

∑
x∈Zn

2

|x〉 7→
∑

k∈Z2

αk|k〉 ⊗
1√
2n

∑
x∈Zn

2

(−1) f (x+ks)|x〉 (6.127)

7→
∑

k∈Z2

αk|k〉 ⊗
1
2n

∑
x,y∈Zn

2

(−1) f (x+ks)+x·y|y〉 (6.128)

=
∑

k∈Z2

αk|k〉 ⊗
1
2n

∑
x,y∈Zn

2

(−1) f (x)+(x+ks)·y|y〉 (6.129)

=
∑

y∈Zn
2

∑
k∈Z2

αk(−1)k(s·y)|k〉 ⊗ 1
2n

∑
x∈Zn

2

(−1) f (x)+x·y|y〉 (6.130)

=
∑

y∈Zn
2

Ä
α0|0〉+ α1(−1)s·y|1〉

ä
F̂(y)|y〉. (6.131)

Next, conditioned on the first register being in state |0〉, we apply a transformation on
the second register. It acts as

∑
y∈Zn

2
F̂(y)|y〉 7→ |w〉 where w ∈ Zn

2 is the desired bit
string for which we want to determine the parity w · s. This gives us state

α0|0〉|w〉+ α1|1〉
∑

y∈Zn
2

F̂(y)(−1)s·y|y〉. (6.132)

If we measure the second register, we get outcome w with probability

p1 :=
∥∥∥α0|0〉+ α1(−1)s·w F̂(w)|1〉

∥∥∥2

2
= |α0|2 + |α1|2F̂(w)2, (6.133)

and a post-measurement state that depends on the value of w · s:

|ψw·s〉 :=
α0|0〉+ α1(−1)s·w F̂(w)|1〉√
|α0|2 + |α1|2F̂(w)2

. (6.134)

To determine the value of the bit w · s, we use an unambiguous discrimination proce-
dure for states |ψ0〉 and |ψ1〉. The best such procedure gives a conclusive outcome with
probability 1− |〈ψ0|ψ1〉|. In our case this is equal to

p2 := 1−

∣∣∣|α0|2 − |α1|2F̂(w)2
∣∣∣

|α0|2 + |α1|2F̂(w)2
, (6.135)
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so the total success probability is

p := p1p2 =

2|α1|2F̂(w)2 if |α0|2 ≥ |α1|2F̂(w)2,
2|α0|2 otherwise.

(6.136)

The optimal choice of amplitudes α0 and α1 in the initial state must satisfy

|α0|2 = |α1|2F̂(w)2 and |α0|2 + |α1|2 = 1. (6.137)

By solving these equations we get |α1| = 1/
»

1 + F̂(w)2. This gives us the desired
success probability in Eq. (6.126).

If we would not optimize the amplitudes α0 and α1 but just choose α0 = α1 = 1/
√

2,
the success probability would be equal to F̂(w)2. This is the same as the probability of
getting outcome w (and thus learning w · s) when measuring the state |Ψ1(s)〉 in each
iteration of the “Simon-like” algorithm in Sect. 6.4.3. Notice that for implementing the
“Simon-like” algorithm we do not need any knowledge about the function f , whereas
the algorithm discussed above requires knowledge of the Fourier spectrum of f to im-
plement the step for preparing the state in Eq. (6.132). This illustrates that the knowl-
edge of the function can be beneficial and how it can be used to increase the success
probability. On the other hand, if the “Simon-like” algorithm fails to produce outcome
w, it at least returns w′ · s for some w′ 6= w. This output still contains some informa-
tion about s, whereas our algorithm completely looses all information in case of failure.
Intuitively, we are gambling on “all or nothing”.

6.5.2 Verification algorithms

Recall from Sect. 6.4.2.3 that procedure for verifying if the oracle is hiding some specific
shift can be used to boost the success probability of a quantum algorithm that solves
the hidden shift problem. More formally, we consider the following problem: given a
candidate shift v and oracle access to the shifted function fs for an unknown value of s,
determine if s = v. Note that using an oracle for fs we can always simulate an oracle
for fs+v, so without loss of generality we can consider the following simplified version
of the problem: given an oracle for fs, decide if s = 0.
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6.5.2.1 Verification using SWAP-test

To verify classically that the oracle is hiding the unshifted function f0, a simple strategy
is to query the oracle on several inputs uniformly at random and see if all answers agree
with f0. This strategy has one-sides success probability equal to

min
w∈Zn

2\{0}
Pr
x

î
f (x) 6= f (x + w)

ó
= I f , (6.138)

the influence of f (see Sect. 6.2.4). Using O(1/I f ) repetitions of this procedure, we can
boost its success probability arbitrarily close to one.

Let us show that on a quantum computer one can check a candidate shift with
only O(1/

√
I f ) oracle calls. Our quantum procedure is a natural quantum generaliza-

tion of the above classical strategy and is based on a version of the SWAP-test [Wat00,
BCWdW01].

Proposition 6.19 (SWAP-test). Given access to quantum circuits for preparing some unknown
states |ψ〉 and |φ〉, a quantum algorithm can tell if |ψ〉 = |φ〉 with one-sided success probability
1
2

Ä
1− Re

î
〈ψ|ϕ〉

óä
by using each circuit once.

Notice that the error probability is sensitive to the global phase of the states and it
approaches one as the states approach each other.

Proof. Let V and W be unitaries corresponding to the quantum circuits for preparing
states |ψ〉 and |ϕ〉, respectively: V|0〉⊗n = |ψ〉 and W|0〉⊗n = |ϕ〉. We use the controlled
versions of these unitaries to apply the circuit shown in Fig. 6.3 and measure the first
qubit. If the outcome is 0, we accept the two states as equal, otherwise we reject them
as being different.

|0〉
|0〉⊗n

H H

V W

Figure 6.3: One-sided test for checking if states prepared by unitaries V and W are equal.

Let us analyze the success probability of this procedure. The final state at the end of
this circuit is given by

1
2

ï
|0〉
Ä
|ψ〉+ |ϕ〉

ä
+ |1〉

Ä
|ψ〉 − |ϕ〉

äò
. (6.139)
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If the first register is measured in the standard basis, we get outcome 0 (“accept”) with
probability

1
4
‖|ψ〉+ |ϕ〉‖2

2 =
1
2

Ä
1 + Re

î
〈ψ|ϕ〉

óä
. (6.140)

If |ψ〉 = |φ〉, we always get outcome 0 and accept the states as equal. Otherwise, we get
the correct outcome 1 with probability 1

2

Ä
1− Re

î
〈ψ|ϕ〉

óä
and reject the states.

Lemma 6.20. Let f be a known Boolean function. Using one query to the oracle O fs , a quantum
algorithm can verify if the hidden string is s = 0 with one-sided success probability I f , the
influence of f (see Sect. 6.2.4).

Proof. We are given access to oracle O fs for some unknown value of s ∈ Zn
2 and we want

to verify if s = 0. By applying the oracle to a uniform superposition over all strings we
can prepare the state

|φ f (s)〉 =
1√
2n

∑
x∈Zn

2

(−1) f (x+s)|x〉. (6.141)

Since we know the function f , we can prepare the state |φ f (0)〉 without using any
queries, since we know the action of the oracle O f0 . The inner product between these
two states is

〈φ f (s)|φ f (0)〉 =
1
2n

∑
x∈Zn

2

(−1) f (x+s)+ f (x) (6.142)

= (F ∗ F)(s) (6.143)
= 1− 2I f (s) (6.144)

where the last equality follows from Eq. (6.40).

If we use the circuits for preparing states |φ f (s)〉 and |φ f (0)〉 in the SWAP-test de-
scribed in Prop. 6.19, we can decide if s = 0 with one-sided success probability

1− 〈φ f (s)|φ f (0)〉
2

= I f (s). (6.145)

That is, we always accept if s = 0, and reject with probability at least I f otherwise.

According to Prop. 6.15, we can boost the success probability of the quantum algo-
rithm from Sect. 6.4.2.1 (see Theorem 5.17) using the imperfect checking procedure from
Lemma 6.20.
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Corollary 6.21. Let f be a Boolean function and F̂ be its Fourier transform. For any value
of parameter p ∈ [pmin, pmax], a quantum algorithm can solve BFHSP f with arbitrary high
success probability and complexity

O

Ñ
1
√

p

(
1

‖εp
π→σ‖2

+
1√
I f

)é
, (6.146)

where pmin, pmax, and ε
p
π→σ are given in Definition 5.8, and components of π and σ are given

by πw = |F̂(w)| and σw = 1/
√

2n for w ∈ Zn
2 .

6.5.2.2 Verification using SWAP-test with arbitrary weights

In this section we consider a slight generalization of the verification procedure from the
previous section, where we use an arbitrary superposition as the initial state instead of
the uniform superposition.

The classical equivalent of this procedure is as follows. We choose a probability dis-
tribution over Zn

2 and query the oracle O fs several times according to this distribution.
If no disagreement between f and fs is found on these inputs, we conclude that s = 0.

In the quantum case we start with an arbitrary normalized state
∑

x∈Zn
2

αx|x〉 with
amplitudes αx ∈ C that we will optimize over later. We use one query to O fs and the
knowledge of f to prepare states |φ f (s)〉 and |φ f (0)〉, respectively, where

|φ f (s)〉 :=
∑

x∈Zn
2

αx(−1) f (x+s)|x〉. (6.147)

Notice that the inner product between these two states is

〈φ f (0)|φ f (s)〉 =
∑

x∈Zn
2

|αx|2(−1) f (x)+ f (x+s). (6.148)

If we use the SWAP-test from Prop. 6.19 to compare these states, the probability of con-
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cluding that s 6= 0 is

p(s) :=
1
2

Ä
1− Re

î
〈φ f (0)|φ f (s)〉

óä
(6.149)

=
1
2

(
1−

∑
x∈Zn

2

|αx|2(−1) f (x)+ f (x+s)
)

(6.150)

=
∑

x∈Zn
2

|αx|2
1
2

Å
1− (−1) f (x)+ f (x+s)

ã
(6.151)

=
∑

x∈Zn
2

|αx|2
î

f (x)⊕ f (x + s)
ó
. (6.152)

This probability is zero if s = 0, so we never make a mistake in this case. However, if s 6=
0 we conclude so with probability p(s). To optimize the worst case success probability,
we have to maximize the minimal value of p(s) for s 6= 0. Note that it suffices to
perform the optimization over a probability distribution px := |αx|2. If we define a
Boolean matrix

Msx := f (x)⊕ f (x + s) (6.153)

and denote the worst case success probability by Pf , we obtain the following linear
optimization problem:

Pf := max
p∈R2n

q s.t.
∑

x∈Zn
2

Msx px ≥ q (∀s 6= 0), (6.154)

∑
x∈Zn

2

px = 1, px ≥ 0.

In general, Pf ≥ I f and there are examples where this inequality is strict. Thus, we
can strengthen Lemma 6.20 and Corollary 6.21 by replacing the influence I f with the
quantity Pf defined above.

Interestingly, the same linear program also characterizes the optimal success prob-
ability of the classical strategy described at the beginning of this section, where each
input x is queried independently with probability px. The difference between the quan-
tum and the classical case is that in the classical case we need O(1/Pf ) repetitions to
boost the success probability arbitrarily close to one, whereas in the quantum case only
O(1/

√
Pf ) repetitions suffice using amplitude amplification [BHMT00].
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6.5.2.3 Greedy classical verification procedure

Here is a simple greedy adaptive classical strategy for deciding if the hidden shift is 0.
Observe that a query x to the oracle eliminates those shifts s for which f (x + s) 6= f (x).
This is equivalent to Msx = 1, where M is the Boolean matrix defined in Eq. (6.153).
We can use a greedy strategy and choose the first query x1 ∈ Zn

2 so that it eliminates as
many values of s as possible. This is equivalent to choosing a column x1 of matrix M
that contains the most number of ones. Next, we consider a submatrix of M where we
remove column x1 and those rows s where Msx1 = 1, and repeat the same procedure.
When all rows apart from s = 0 have been eliminated, we are done, and the obtained
sequence x1, . . . , xm is a certificate for verifying that s = 0 using m queries.

6.6 Zeroes in the Fourier spectrum

Recall from Sect. 6.4.2 that the success probability of the quantum rejection sampling
approach for solving the Boolean hidden shift problem is limited when the function
f has zero Fourier coefficients. In this section we study the structure of zero Fourier
coefficients of Boolean functions and provide a way to resolve this problem. First, we
show that a Boolean function can have many zero Fourier coefficients if it is degenerate
(in the sense that it is invariant under some shifts). Next, we argue that there even for
non-degenerate Boolean functions it is possible to have Fourier spectrum that is equal to
zero almost everywhere. Finally, we show that for any non-degenerate Boolean function
f we can choose a sufficiently large value of t, the number of parallel queries, so that
the t-fold Fourier spectrum of f is guaranteed to be non-zero everywhere. Throughout
this section we consider only the Boolean case d = 2.

6.6.1 Undetectable shifts and anti-shifts

In some cases the Boolean hidden shift problem cannot be solved in principle, since
the function f is invariant under some shift, so the hidden shift cannot be uniquely
determined (an extreme case of this is a constant function which is invariant under
all shifts). In this section we consider functions with such property and analyze their
Fourier spectrum.

Definition 6.22. Let b ∈ Z2. We say that s is a b-shift for function f , if f has the following
property:

∀x ∈ Zn
d : f (x + s) = f (x) + b. (6.155)
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We refer to 0-shifts as undetectable shifts, since they cannot be distinguished from the
trivial shift s = 0. We also refer to 1-shifts as anti-shifts, since they negate the truth table.

The following result provides an alternative characterization of b-shifts. It relates the
maximal and minimal autocorrelation value of F to undetectable shifts and anti-shifts
of f , respectively (recall the definition of convolution from Sect. 6.2.3).

Proposition 6.23. String s ∈ Zn
2 is a b-shift for function f : Zn

2 → Z2 if and only if

(F ∗ F)(s) = (−1)b, (6.156)

where F(x) := (−1) f (x)/
√

2n for all x ∈ Zn
2 .

Proof. Let s be a b-shift of f . Then

(F ∗ F)(s) =
∑

x∈Zn
2

F(x)F(x + s) (6.157)

=
1
2n

∑
x∈Zn

2

(−1) f (x)(−1) f (x)+b (6.158)

=
1
2n

∑
x∈Zn

2

(−1)b (6.159)

= (−1)b. (6.160)

To prove the converse, note that all terms on the right hand side of Eq. (6.157) have
absolute value equal to 1/2n. Since in total there are 2n terms, |(F ∗ F)(s)| ≤ 1. If this
inequality is saturated, then all terms in Eq. (6.157) must have the same phase. Thus, s
is a b-shift for some b ∈ Z2.

If s′ and s′′ are undetectable shifts of f then so is s′ + s′′, since f (x + s′ + s′′) =
f (x + s′) = f (x) for any x. Hence, all undetectable shifts form a linear subspace of Zn

2 .
Also, if a′ and a′′ are anti-shifts, then a′ + a′′ is an undetectable shift. In particular, a
Boolean function with no undetectable shifts can have at most one anti-shift.

If we want to solve the hidden shift problem for function f that has an undetectable
shift s, we can apply an invertible linear transformation A on the input variables such
that A · 0 . . . 01 = s. In this way we simulate the oracle for function f ′(x) := f (A · x)
such that f ′(x + 0 . . . 01) = f ′(x). Notice that f ′ effectively is an (n− 1)-argument func-
tion, since it does not depend on the last argument. Similarly, if f has a k-dimensional
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subspace of undetectable shifts, it is effectively an (n− k)-argument function. Solving
the hidden shift problem for such function is equivalent to solving it for the reduced
(n − k)-argument function f ′ and picking arbitrary values for the remaining k argu-
ments. In this sense, Boolean functions with undetectable shifts are degenerate and we
can without loss of generality consider only functions with no undetectable shifts.

Similarly, if f has an anti-shift, we can use the same construction to show that it is
equivalent to a function f ′ such that

f ′(x1, . . . , xn−1, xn) = f ′′(x1, . . . , xn−1)⊕ xn (6.161)

where f ′′ is an (n− 1)-argument function. To solve the hidden shift problem for f ′, we
first solve it for f ′′ and then learn the value of the remaining argument xn via a single
query. In this sense, Boolean functions with anti-shifts are also degenerate. Thus, with-
out loss of generality we can consider the hidden shift problem only for non-degenerate
functions, i.e., ones that have no b-shifts for any b ∈ Z2.

Finally, let us show that such degenerate Boolean functions with b-shifts have at least
half of their Fourier coefficients equal to zero. Let S be an (n− 1)-dimensional subspace
of Zn

2 , and let us denote the two cosets of S in Zn
2 by Sb := S + br, where b ∈ Z2 and

r ∈ Zn
2 \ S is any representative of the coset for b = 1. The following result relates

the property of having a b-shift to the property of having zero Fourier coefficients with
special structure.

Lemma 6.24. Boolean function f has a b-shift if and only if there is an (n − 1)-dimensional
subspace S ⊂ Zn

2 such that F̂(w) = 0 when w /∈ Sb.

Proof. Assume that s is a b-shift of f . Then

F̂(w) =
1
2n

∑
x∈Zn

2

(−1)w·x+ f (x) (6.162)

=
1
2n

∑
x∈Zn

2

(−1)w·(x+s)+ f (x+s) (6.163)

=
1
2n

∑
x∈Zn

2

(−1)w·(x+s)+ f (x)+b (6.164)

= (−1)w·s+b 1
2n

∑
x∈Zn

2

(−1)w·x+ f (x) (6.165)

= (−1)w·s+b F̂(w). (6.166)
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Thus, F̂(w) = 0 when w · s 6= b. Let S be the (n − 1)-dimensional subspace of Zn
2

orthogonal to s. Then w ∈ Sb ⇔ w · s = b and thus F̂(w) = 0 when w /∈ Sb.

For the converse, assume that S is an (n − 1)-dimensional subspace of Zn
2 and

F̂(w) = 0 when w /∈ Sb. Let s ∈ Zn
2 be the unique non-zero vector orthogonal to S .

Then Sb = {w | w · s = b} and we have

F(x + s) = ˆ̂F(x + s) (6.167)

=
1√
2n

∑
w∈Zn

2

(−1)(x+s)·w F̂(w) (6.168)

=
1√
2n

∑
w∈Sb

(−1)(x+s)·w F̂(w) (6.169)

= (−1)b 1√
2n

∑
w∈Sb

(−1)x·w F̂(w) (6.170)

= (−1)bF(x). (6.171)

Hence, f (x + s) = f (x) + b and thus s is a b-shift of f .

6.6.2 Decision trees

In previous section we covered some degenerate cases of Boolean functions that have
many zero Fourier coefficients. However, there still remains a question whether there
are any interesting families of Boolean functions with many zero Fourier coefficients.
Recall that for such functions it is hard to solve the hidden shift problem using the
quantum rejection sampling approach. In this section we explain why such functions
indeed exist and how to construct them, and in Sect. 6.6.3 we show how the quantum
rejection sampling approach can be modified to deal with such functions.

Let us consider a specific way of defining Boolean functions using decision trees. A
decision tree is a binary tree whose vertices are labeled by arguments of f , but leaves
contain the values of f . To evaluate f (x) for given string x ∈ Zn

2 , we first look at the
value of bit xr where “xr” is the label of the root node. If xr = 0, we proceed to the left
subtree and apply the same procedure, otherwise we evaluate the right subtree. Once
we reach a leaf, its label is the value of f (x). Without loss of generality we can consider
only decision trees where on each path from the root to a leaf no argument appears more
than once, otherwise some parts of the tree would not be reachable. The length of the
longest path from the root to a leaf is the height of the tree.
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Figure 6.4: Decision tree for a 10-argument Boolean function f10. To compute the value
of the function for given input x1, . . . , x10 ∈ Zn

2 , proceed down the tree starting from
the root; move left if the corresponding argument is equal to 0 or right if it is equal to 1.
Once a leaf is reached, its label is the value of the function for the given input.

An example of a decision tree is given in Fig. 6.4. From this tree we see, for example,
that f10(x1, . . . , x10) evaluates to zero when x2 = x1 = x5 = x4 = x10 = 0, since the
leftmost leave has label zero. This tree has height five.

Lemma 6.25. If a Boolean function f is defined by a decision tree of height h, then all Fourier
coefficients of f with Hamming weight larger than h are zero: F̂(w) = 0 when |w| > h.

Proof. Since the Boolean function f is given by a decision tree, let {P1, . . . , Pm} be the set
of all paths that start at the root of this tree and end at a parent of a leaf labeled by 1. For
example, P1 = {x2, x1, x5, x4, x10} and P2 = {x2, x7, x1} are two such paths for the tree
shown in Fig. 6.4. We can write the disjunctive normal form of f as

f (x) =
m∨

i=1

∧
j∈Pi

Ä
b(i)j ⊕ xj

ä
(6.172)

where “∨” and “∧” represent logical OR and AND functions, respectively, and b(i)j ∈ Z2

is equal to one if and only if variable xj has to be negated on path Pi. For example, x10
is negated on P1, and x2 and x7 are negated on P2.

To prove the desired result about the Fourier coefficients of f , we want to switch
from Boolean functions to (±1)-valued functions with (±1)-valued variables. In partic-
ular, we want to replace f : Zn

2 → Z2 by a function F̃ : {1,−1}n → {1,−1} in variables
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Xi ∈ {1,−1} such that
F̃
Ä
(−1)xä = (−1) f (x) (6.173)

for all x ∈ Zn
2 .

Notice that the (±1)-valued versions of logical NOT, AND, and OR functions are
given by the following polynomials:

NOT(X) := −X, (6.174)

AND(X1, . . . , Xk) := 1− 2
k∏

i=1

1− Xi

2
, (6.175)

OR(X1, . . . , Xk) := −1− 2
k∏

i=1

1 + Xi

2
. (6.176)

We can use these polynomials and Eq. (6.172) to write F̃ as

F̃(X) = ORm
i=1 ANDj∈Pi(−1)b(i)j Xj, (6.177)

where ORm
i=1 Xi stands for OR(X1, . . . , Xm) and a similar convention is used for AND.

When we determine the value of f using a decision tree, each input x ∈ Zn
2 leads to

a unique leaf of the tree. Thus, when f (x) = 1, there is a unique value of i in Eq. (6.172)
for which the corresponding term in disjunction is satisfied. With this promise we can
simplify Eq. (6.176) to

OR(X1, . . . , Xk) :=
k∑

i=1
(Xi − 1) + 1. (6.178)

If we plug this in Eq. (6.177), we get

F̃(X) =
m∑

i=1

Å
ANDj∈Pi(−1)b(i)j Xj − 1

ã
+ 1, (6.179)

= 1− 2
m∑

i=1

∏
j∈Pi

1− (−1)b(i)j Xj

2
. (6.180)

Notice that this polynomial has degree at most maxi|Pi| ≤ h, the height of the tree. On
the other hand, Fourier transform is self-inverse (see Prop. 6.2), so

(−1) f (x) =
√

2nF(x) =
√

2n ˆ̂F(x) =
∑

w∈Zn
2

(−1)x·w F̂(w). (6.181)
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The (±1)-valued equivalent of this equation is

F̃(X) =
∑

w∈Zn
2

F̂(w)
∏

i : wi=1
Xi. (6.182)

By comparing this with Eq. (6.180) we conclude that F̂(w) = 0 when |w| > h.

According to this lemma, we can use the following strategy to construct Boolean
functions which have a large fraction of the Fourier coefficients equal to zero. We pick
a random decision tree with many variables but a small height, i.e., large n and small
h (notice that n ≤ 2h − 1). In this way we are guaranteed that the fraction of non-zero
Fourier coefficients does not exceed

1
2n

h∑
k=0

(
n
k

)
≤ 2H( h

n )n

2n =

(
1
2n

)1−H( h
n )

(6.183)

where H is the binary entropy function. In particular, if h ∼ log2 n then this fraction
vanishes as n goes to infinity, i.e., F̂ is zero almost everywhere.

However, notice that when the number of zero Fourier coefficients is large, it is also
more likely to pick a degenerate Boolean function (i.e., one that has a b-shift for some
b ∈ Z2) which is something we would like to avoid. Recall from Lemma 6.24 that f has a
b-shift if all its non-zero Fourier coefficients lie in a coset Sb of some (n− 1)-dimensional
subspace S ⊂ Zn

2 . Unfortunately, we do not know what is the probability that a random
decision tree with n variables and height log2 n corresponds to a Boolean function with
this property.

On the other hand, we succeeded in using the approach described above to numer-
ically find a Boolean function with the desired properties. In particular, we found a
10-argument Boolean function f10 whose decision tree is shown in Fig. 6.4. This func-
tion has no undetectable shifts or anti-shifts, while at the same time it has 928 (out of
210 = 1024) Fourier coefficients equal to zero.

Nevertheless, we also observed that by increasing the value of t we can very effi-
ciently eliminate zeroes from the t-fold Fourier spectrum F t. We computed that for f10
the fraction of non-zero values of F t for t = 1, 2, 3, 4 goes as 0.09, 0.61, 0.94, 1. In partic-
ular, F 4 is non-zero everywhere. This observation is the topic of the next section, and
the motivation why we constructed the t-fold quantum rejection sampling algorithm
for the hidden shift problem (see Sect. 6.4.2.2).
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6.6.3 Zeroes in the t-fold Fourier spectrum

Query complexity of the quantum algorithms discussed in previous sections of this
chapter in one or another way depends on the Fourier spectrum of the function f con-
sidered. Moreover, query complexity of algorithms that use the t-fold Fourier states
|Φt(s)〉 and |Ψt(s)〉 for some t > 1 (see Sect. 6.3) depends on the generalized Fourier
coefficients F t (see Sect. 6.3.1.3) which we call t-fold Fourier spectrum of f :

F t(w) =

…î
F̂2
ó∗t

(w). (6.184)

Note that in the limiting case t = 1 these are simply the absolute values of the Fourier
coefficients:

F 1(w) = |F̂(w)|. (6.185)

In this section we study the zeroes of the t-fold Fourier spectrumF t of f as a function
of t. The main result of this section is Lemma 6.27 which shows that unless f has an
undetectable shift, F t becomes non-zero everywhere when t is sufficiently large. This
means that even for functions with high density of zeroes in the Fourier spectrum, one
can boost the success probability of the basic quantum rejection sampling approach
discussed in Sect. 6.4.2.1 by using the t-fold generalization from Sect. 6.4.2.2.

Proposition 6.26. Let St := {w ∈ Zn
2 : F t(w) 6= 0} be the set of strings for which F t is

non-zero. Then St+1 = St + S1.

Proof. Note from Eq. (6.184) thatî
F t+1ó2 =

î
F tó2 ∗ îF 1ó2 (6.186)

and F t(w) ≥ 0 for any t and w. Assume that w0 ∈ St and w1 ∈ S1. Then F t(w0) > 0
and F 1(w1) > 0, henceî

F t+1ó2(w0 + w1) =
∑

x∈Zn
d

î
F tó2(x) ·

î
F 1ó2(w0 + w1 − x) (6.187)

≥
î
F tó2(w0) ·

î
F 1ó2(w0 + w1 − w0) > 0. (6.188)

Thus w0 + w1 ∈ St+1 and hence St + S1 ⊆ St+1. Conversely, if w cannot be written in
the form w0 + w1 for some w0 ∈ St and w1 ∈ S1 then F t+1(w) = 0, since all terms in the
sum in Eq. (6.187) vanish.
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Approach Section Functions:
delta bent random

PGM Sect. 6.4.1 O(2n) O(1) O(1)?
“Grover” (t = 1) Sect. 6.4.2 O(

√
2n) O(1) O(1)?

“Simon” (t = 1) Sect. 6.4.3 O(n
√

2n) O(n) O(n)
Lower bounds: Ω(

√
2n) Ω(1) Ω(1)?

Table 6.1: Summary of quantum query complexity upper bounds for the Boolean func-
tion hidden shift problem. Question marks indicate conjectured values.

From this result we can draw the following useful conclusion.

Lemma 6.27. If a Boolean function f does not have an undetectable shift, then there exists
t ∈ {1, . . . , n} such that F t is non-zero everywhere.

Proof. If S1 spans the whole space Zn
2 , we can inductively apply Prop. 6.26 to conclude

that St = Zn
2 for some sufficiently large t. In particular, it suffices to take t ≤ n (say, if

S1 is the standard basis). On the other hand, if S1 spans only a proper subspace of Zn
2 ,

then it is contained in some (n− 1)-dimensional subspace S0. Since F 1 = |F̂| vanishes
outside of S0, we conclude by Lemma 6.24 that f has an undetectable shift.

This result together with Theorem 6.14 implies that as long as f is a Boolean function
that does not have an undetectable shift, we can always use quantum rejection sampling
with some t ≤ n to recover the hidden shift s with certainty.

Corollary 6.28. Let f be an n-argument Boolean function. For any sufficiently large success
probability p there exists t ∈ {1, . . . , n} such that Q1−p(BFHSP f ) = O(t/‖εp

π→σ‖2), where
πw = F t(w) and σw = 1/

√
2n.

6.7 Conclusions

A comparison of the quantum query complexity upper bounds for solving the Boolean
function hidden shift problem for different classes of functions using the three ap-
proaches from Sect. 6.4 are given in Table 6.1. Entries with question marks indicate
conjectured values.
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If these conjectures hold, the “Grover-like” algorithm is optimal in all three cases.
However, we know that it performs very poorly when f has lots of zero Fourier coef-
ficients, which is the case, say, for decision trees (see Sect. 6.6.2). This suggests that the
“Grover-like” approach (with t = 1) might not be optimal in general. Nevertheless, the
t ≥ 1 case does not have these deficiencies (see Corollary 6.28) and could potentially be
optimal in general.

The “Simon-like” approach always has an overhead by a factor of order n, which is
related to the fact that we need at least n linearly independent equations to solve the
linear system. Finally, the PGM approach performs well in the “easy cases”, i.e., bent
and random functions, but fails to provide any speedup for delta functions. This can be
attributed to the fact that Grover’s algorithm is intrinsically sequential and cannot be
parallelized (by doing all queries in parallel and then post-processing the outcomes).

We conclude that none of the three basic algorithms considered above is optimal.
However, there is a hope that by combining these algorithms and possibly adding some
new ideas, one might be able to obtain an algorithm that is optimal for all Boolean
functions. In particular, the “Grover-like” approach with t ≥ 1 seems to be promising.

6.7.1 Open problems

The two main open problems are the following:

• Find a query-optimal quantum algorithm for the hidden shift problem for func-
tions of the form f : Zn

d → Zd.
• Prove a matching lower bound on the quantum query complexity of this problem

(say, using the adversary method).

Here are some presumably easier questions that might help to answer the harder ones:

1. Find new interesting classes of Boolean functions lying somewhere in the middle
between the two extreme cases of bent and delta functions (say, the decision trees
considered in Sect. 6.6.2), and characterize the quantum query complexity of the
hidden shift problem for these functions.

2. Understand the quantum query complexity of the hidden shift problem for ran-
dom functions (numerical evidence suggests that it is Θ(1) for both the “Grover-
like” as well as the PGM approach).

3. What is the quantum query complexity of verifying a given shift? (See Sect. 6.5.2).
4. What is the quantum query complexity of extracting one bit of information about

the hidden shift? (See Sect. 6.5.1).
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5. What is the classical query complexity of the hidden shift problem for functions?
6. Can we say anything non-trivial about the time complexity of the hidden shift

problem for f : Zn
d → Zd in the classical or quantum case?
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Appendix A

Water-filling vector is optimal for the
SDP

Lemma 5.9. Let p ∈ [pmin, pmax], and ε = ε
p
π→σ . Then, the following SDP

maxM�0 Tr M s.t. ∀k : π2
k ≥ Mkk,

Tr
î
(σ · σT − pI)M

ó
≥ 0.

(5.17)

has optimal value ‖ε‖2
2, which is achieved by the rank-1 matrix M = ε · εT.

Proof. We now show that the optimal value of the SDP in Eq. (5.17) can be attained by a
rank-1 matrix M. Imposing the additional constraint that M can be written as M = ε · εT
for some ε ∈ Rn, the optimization problem in Eq. (5.17) reduces to

maxεk≥0‖ε‖2
2 s.t. ∀k : πk ≥ εk ≥ 0,

σT · ε̂ ≥ √p,
(A.1)

where ε̂ := ε/‖ε‖2 denotes a unit vector in direction ε.

We show that the optimal value is attained by ε = ε
p
π→σ . Recall that according to

Definition 5.8, we have εk = min{πk, γσk} and

σT · ε̂ =
√

p, (A.2)

so that this vector satisfies the constraints of the problem in Eq. (A.1) and is therefore
a feasible point. As a consequence M = ε · εT is also a feasible point for the SDP in
Eq. (5.17), which implies that its objective value is at least Tr M = ‖ε‖2

2.
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We now want to find a feasible dual solution that gives the same objective value for
the dual of SDP in Eq. (5.17), which can be written as [VB96]

min
λk≥0, µ≥0

n∑
k=1

λkπ2
k s.t. Λ− I + µ(pI − σ · σT) � 0, (A.3)

where Λ := diag(λk | k = 1, . . . , n). Indeed, if an objective value is feasible for both the
primal and the dual, it implies that this is the optimal value.

We prove that the following solution is feasible for the dual:

λk = µ

(
σk
εk

n∑
l=1

σlε l − p
)
+ 1, (A.4)

µ =
1− ‖ε‖2

2

p−
Ä∑n

l=1 σlε l
ä
·
Ä∑n

k=1
σkπ2

k
εk

ä . (A.5)

This choice yields ‖ε‖2
2 as the dual objective value, so it remains to show that it satisfies

the constraints in Eq. (A.3). Let us first prove that µ ≥ 0, which is equivalent to( n∑
l=1

σlε l

)
·
( n∑

k=1

σkπ2
k

εk

)
≤ p. (A.6)

Let us decompose the vector π into two orthogonal parts such that π = π≤ + π>,
where π≤ corresponds to components πk such that πk ≤ γσk, and π> to the remaining
components. Decomposing σ and ε similarly, we have ε = π≤ + γσ>. The following
are straightforward

1 = ‖π≤‖2
2 + ‖π>‖2

2 (A.7)

‖ε‖2
2 = ‖π≤‖2

2 + γ2‖σ>‖2
2 (A.8)

εT · σ = πT
≤ · σ≤ + γ‖σ>‖2

2. (A.9)

Using these equalities, we obtain
n∑

k=1

σkπ2
k

εk
= πT

≤ · σ≤ +
1
γ
‖π>‖2

2 (A.10)

= πT
≤ · σ≤ +

1
γ

Å
1− ‖π≤‖2

2

ã
(A.11)

= εT · σ +
1
γ

Å
1− ‖ε‖2

2

ã
. (A.12)
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Therefore, the left hand side of Eq. (A.6) can be written as( n∑
l=1

σlε l

)
·
( n∑

k=1

σkπ2
k

εk

)
=
Ä
εT · σ

ä2
+

εT · σ
γ

(
1− ‖ε‖2

2

)
(A.13)

= p‖ε‖2
2 +

εT · σ
γ

(
1− ‖ε‖2

2

)
(A.14)

=

(
p− εT · σ

γ

)
‖ε‖2

2 +
εT · σ

γ
, (A.15)

where we have used Eq. (A.2). Since εk ≤ γσk, we have ‖ε‖2
2 ≤ γεT · σ, which, together

with Eq. (A.2) implies that εT·σ
γ ≤ p. Together with ‖ε‖2

2 ≤ ‖π‖
2
2 = 1, this implies

(
p− εT · σ

γ

)
‖ε‖2

2 +
εT · σ

γ
≤ p, (A.16)

which proves Eq. (A.6) and, in turn, µ ≥ 0.

We now show that λk ≥ 0 for all k ∈ [n]. From Eqs. (A.4) and (A.5) we see that this
is equivalent to showing

σk
εk

εT · σ − p ≥ −
p− εT · σ∑n

k=1
σkπ2

k
εk

1− ‖ε‖2
2

(A.17)

Note that 1 ≥ ‖ε‖2
2. By multiplying out everything with 1− ‖ε‖2

2 and expanding, we
get

σk
εk

εT · σ
Ä
1− ‖ε‖2

2
ä
+ p‖ε‖2

2 ≥ εT · σ
n∑

k=1

σkπ2
k

εk
. (A.18)

Note that p‖ε‖2
2 = (εT · σ)2, so after rearranging terms and dividing by εT · σ we get

σk
εk

Ä
1− ‖ε‖2

2
ä
+ εT · σ ≥

n∑
k=1

σkπ2
k

εk
. (A.19)

We apply Eq. (A.12) to the right hand side and get

σk
εk

Ä
1− ‖ε‖2

2
ä
+ εT · σ ≥ εT · σ +

1
γ

Ä
1− ‖ε‖2

2
ä
. (A.20)
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After simplification this yields εk ≤ γσk, which is true by definition of ε. Thus, we have
λk ≥ 0.

Finally, it remains to show that the following matrix is positive semidefinite:

Λ− I + µ(pI − σ · σT)=µ

( n∑
l=1

σlε l

)
· diag(σk/εk)− σ · σT

 . (A.21)

Since µ ≥ 0, it is the case if and only if

∀v ∈ Rn :
( n∑

l=1
σlε l

)
·
( n∑

k=1

v2
kσk

εk

)
≥
( n∑

k=1
vkσk

)2

. (A.22)

This follows by Cauchy–Schwarz inequality:

( n∑
l=1

σlε l

)
·
( n∑

k=1
v2

kσk/εk

)
≥
( n∑

k=1

√
σkεk ·

√
v2

kσk/εk

)2

(A.23)

which completes the proof.
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