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Abstract 

Requirements of ultra-low power for many portable devices have drawn increased attention to digital 

sub-threshold logic design. Major reductions in power consumption and frequency of operation 

degradation due to the exponential decrease of the drain current in the sub-threshold region has made 

this logic an excellent choice, particularly for ultra-low power applications where performance is not 

the primary concern. Examples include RFID, wireless sensor networks and biomedical implantable 

devices. Along with energy consumption, security is another compelling requirement for these 

applications. Power analysis attacks, such as Correlation Power Analysis (CPA), are a powerful type 

of side channel attacks that are capable of performing a non-invasive attack with minimum 

equipment. As such, they present a serious threat to devices with secret information inside. This 

research analyzes sub-threshold logics from a previously unexplored perspective, side channel 

information leakage. 

Various transistor level and RTL circuits are implemented in the sub-threshold region as well as in 

the strong inversion region (normally the standard region of operation) using a 65 nm process. 

Measures, such as Difference of Mean Energies (DME), Normalized Energy Deviation (NED) and 

Normalized Standard Deviation (NSD) are employed to evaluate the implemented architectures. A 

CPA attack is also performed on more complex designs and the obtained correlation coefficients are 

used to compare sub-threshold and strong inversion logics.  

This research demonstrates that sub-threshold does not only increase the security against side 

channel attacks, but can also decrease the amount of leaked information. This research also shows 

that a circuit operating at sub-threshold consumes considerably less energy than the same circuit 

operating in strong inversion and the level of its instantaneous power consumption is significantly 

lower. Therefore, the noise power required to cover the secret information decreases and the attack 

may be dramatically more difficult due to major increase in the number of required power traces and 

run time. Thus, this research is important for identifying sub-threshold as a future viable technology 

for secure embedded applications.  
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Chapter 1 
Introduction 

1.1 Objectives and Motivations 

In the mid 1990’s, power consumption limitations, especially for portable devices commenced a new 

era in sub-threshold circuit design. Specifically, all the transistors in a sub-threshold circuit operate in 

sub-threshold region. Applying a power supply voltage less than the threshold voltage of the MOS 

transistor ensures this functionality. The drain current of an MOS transistors illustrate an exponential 

dependence on the gate voltage in the sub-threshold region in contrast to the linear/quadratic 

dependency in the standard region of operation, also known as strong inversion.  

This exponential decrease of drain current with the gate voltage causes a major reduction in power 

consumption; however, it also degrades the frequency of operation. Therefore, sub-threshold logics 

are an excellent choice for ultra-low power applications where performance is not the primary 

concern. Despite the research efforts into sub-threshold circuits, sub-threshold chips have not yet been 

commercially available [1]. Some recent commercial chips utilize near-threshold circuitry [2] but sub-

threshold design and chips remain in academic and industrial labs. Some examples of research 

applications of sub-threshold include RFID[3], wireless sensor networks, biomedical implantable 

devices[4], and others [5][6][7]. Clearly security is an important aspect in these applications, yet 

limited research has been done in this area. 

Side channel analysis attacks utilizing the power measurement of circuits were published in 1999 

[8].  These attacks exploit the secret information of cryptographic devices by observing physical 

characteristics of the device, such as power consumption [8], electromagnetic radiation [9] and run 

time [10]. Power analysis attacks such as differential power analysis (DPA) and correlation power 

analysis (CPA) are an important type of side channel analysis attack. Instantaneous power 

consumption of a cryptographic device is recorded during its operation and subsequent analysis may 

reveal the secret information by exploiting the dependency of power consumption on the handled data 

within the device. In general the attacker does not need to know detailed information about the 

implementation of the cryptographic device in order to launch the attack. Hence, their capability to 

perform a non-invasive attack with minimum equipment and implementation knowledge has made 

them a serious threat for cryptographic devices. 

Security is a compelling requirement for most applications in which sub-threshold operation is 

necessary. A crypto-processor is a common component in many devices. Thus it is important to 

secure the secret key of crypto-processors against power analysis attacks, especially DPA and CPA 

attacks. However, side channel analysis of this logic scheme is generally an unexplored aspect. 

Previous research has either not launched a CPA on sub-threshold or focused on only a smaller sub-

circuit of a standardized cipher, known as AES [11]. 

The ultimate objective of this thesis is to study the estimated power analysis of a sub-threshold 

circuit. However, other side channel information leakage measures, such as difference of mean 

energies (DME), frequency of observation, normalized energy deviation (NED) and normalized 

standard deviation (NSD) are also used for comparison purposes. Simple architectures are 
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implemented at the transistor level and an AES core is implemented at the register transfer level.  An 

application-specific integrated circuits (ASIC) design methodology for sub-threshold design is used to 

implement and study such architectures. Preliminary simulations demonstrate the reduction of power 

consumption correlation with input data by lowering the supply voltage. In light of the above 

mentioned concerns, motivations and desirable preliminary results, a detailed study on the power 

analysis of sub-threshold logics is performed. 

In the first step, a power consumption analysis of an exclusive-or (XOR) gate is performed using 

DME measure to provide insight into the side channel information behavior in the sub-threshold 

region. Further investigation on basic gates is performed by analyzing averaged power consumption 

of NAND, NOR and XOR gates in various transitions by means of frequency of observation, NED 

and NSD measures. A final architecture designed at the transistor level, named parallel XORs is 

analyzed with DME and CPA measures. Afterward, measurements move to a more complex 

architecture, an important component of AES, the S-Box, and a crypto-AES processor. Correlation 

power analysis is performed on power consumption traces obtained from electronic design 

automation (EDA) tools. The challenges involved in a register transfer level (RTL) design for a sub-

threshold operation are also described. 

There is no default judgment about the side channel security of circuits operating at sub-threshold 

in this thesis. Moreover the purpose is not to prove that sub-threshold logic is either more secure or 

less secure, but to study the side channel information leakage in that region and compare it to strong 

inversion as the standard region of operation.  

1.2 Thesis Overview 

The thesis is organized as follows. Chapter 2 presents a literature survey on sub-threshold logics, side 

channel attacks and side channel resistant logics followed by an overview of previous research 

proposed on side channel analysis of sub-threshold logics. Methodologies used for sub-threshold 

circuits design is described in Chapter 3 which starts with an explanation of transistor level design 

and continues with details of RTL level design and digital ASIC design flow for sub-threshold. 

Chapter 4 introduces power analysis metrics used to evaluate the architectures proposed in Chapter 3. 

Simulation results and information leakage comparisons between strong inversion, sub-threshold and 

two side channel resistant logics is presented in Chapter 5. Finally, Chapter 6 summarizes and 

concludes the thesis and provides recommendations for future work.  
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Chapter 2 
Background and Previous Research 

The main components of this research are digital sub-threshold logic and side channel analysis. In this 

chapter, background information required to understand later chapters is described. The first section 

explains the behavior of a transistor operating in a sub-threshold region and introduces current and 

power models of a transistor at sub-threshold. Side channel analysis attacks are explained in section 

2.2, which begins with a brief review of simple power analysis and differential power analysis. The 

section continues with a correlation power analysis introduction and ends with a discussion on side 

channel analysis measures and proposed side channel resistant logics. Previous research work 

accomplished in the area of side channel analysis of sub-threshold circuits is investigated in the final 

section of this chapter.   

 

2.1 Digital Sub-threshold Logic 

In the mid 1960’s, microwatt power consumption limitations of electronic watches drew attention to 

an unexplored aspect of newly proposed CMOS technology- the sub-threshold current. In 1972, 

Barron [12] presented a model that showed the exponential dependent of the sub-threshold current on 

the surface voltage, but did not propose any simple relationship with the gate voltage [13]. In the 

same year, Swanson and Meindl [14] explained the relationship between surface voltage and gate 

voltage. They applied their model to find the transfer characteristic of a CMOS inverter in weak 

inversion and for the first time showed that CMOS logic circuits can operate at a supply voltage as 

low as 8kT/q [13]. 

Despite all of the research undertaken since the mid 1960’s, the application of sub-threshold 

circuits was completely ignored until the mid 1990’s, when power consumption limitations especially 

for portable devices initiated a new era in sub-threshold circuit design.  

A sub-threshold circuit is defined as a circuit in which all of the transistors operate in the sub-

threshold region. Applying a power supply voltage less than the threshold of the MOS transistor 

ensures this functionality. Nowadays, sub-threshold CMOS logic has made its way into applications 

for which energy consumption is the key-metrics. The exponential relationship between the drain 

current and the gate to source voltage of an MOS transistor in the sub-threshold region gives an 

exponential reduction in power consumption, but also exponentially increases the delay [15].  

Several research projects have tried to find the minimum energy point at which the energy 

consumption of a circuit is less than any other point of the parameter space [16-20]. Calhoun shows in 

[17] that the minimum energy operation occurs in the sub-threshold region and [19] proposes an 

analytical solution to find the optimum power supply voltage, VDD, and threshold voltage, VT, to 

minimize energy for a given frequency in the sub-threshold region. Figure 2.1 shows the energy per 

operation and delay as a function of VDD. The minimum energy point, quadratic decrease in energy 
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and exponential increase in delay can be observed in this figure. Choosing the operating point in a 

circuit is a trade-off between energy and delay that can also be observed in Figure 2.1. One can see 

that sub-threshold circuits minimize energy consumption at a cost of slower speed. 

 

 

Figure 2.1: Normalized energy per operation (top) and normalized delay (bottom) of a digital circuit as a 

function of VDD [1]. 

 

This section starts with a description of a transistor model at sub-threshold voltage and then 

provides a power consumption model based on the presented transistor model.  

2.1.1 MOS Transistor Model for Sub-threshold Operation 

Analyzing a circuit in a sub-threshold region requires an accurate MOS transistor model adapted for 

low-voltage and low-current applications. In 1995, Enz, Krummenacher and Vittoz presented a fully 

analytical MOS transistor model dedicated to the design and analysis of low-voltage and low-current 

analog circuits, known as EKV [21]. 

Figure 2.2 shows the cross section view and symbol of an n-channel MOS transistor. The value of 

drain and source voltages with respect to the pinch-off voltage divides the operation modes of the 

MOS transistor into four modes: conduction (strong inversion), blocked (weak inversion), forward 

saturation and reverse saturation. The pinch-off voltage, VP, is the gate to source voltage for which the 

channel width is reduced to zero.  
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Figure 2.2: Cross section view and symbol of an n-channel MOS transistor 

 

Figure 2.3 illustrates the aforementioned modes. If VD and VS are both less than VP, the channel is 

in strong inversion and the transistor works in conduction mode. Either forward saturation or reverse 

saturation occurs, depending on the sign of VD – VS, when the channel is pinched-off from the drain 

end or source end, respectively. If both VD and VS are larger than VP, the whole channel is pinched off 

and the device operates in blocked mode. If either of VD or VS is still close to the pinch-off voltage, 

the device is weakly inverted. 

 

 

Figure 2.3: Modes of operation of a MOS transistor [21]. 

 



 

6 

 

According to the EKV model, the drain current can be decomposed into a forward current, IF, 

which depends only on the difference voltage VP – VS, and a reverse current, IR, which depends only 

on VP – VD. Expression 2.1 shows the equation for ID. Equations 2.2 and 2.3 evaluate the expressions 

for the forward and reverse currents in strong inversion and weak inversion, respectively. Derivations 

of these formulas can be found in [21]. 

ID = IF - IR                                                                                                        (2.1) 

��  �  � � �
�  	
� � 

��    ���: 

 � 
�0                               ���: 

 � 
� �                                           (2.2) 

��  �  � � �2  	
� � 
���    ���: 
� � 
�0                               ���: 
� � 
� 
� 

�� � ��  β 
 !�  "#$%#&#'(                                                          (2.3) 

�� � ��  β 
 !�  ")$*)+)'(  

where: 

� � μ� -./0  12                                                             (2.4) 

� � 1 4 56578, n is called the sub-threshold slope factor                               (2.5) 

�� � 	� � 1� "9:%;<=#'(                                                          (2.6) 

Other parameters include µn is the mobility of electrons, C
’
ox is the gate oxide capacitance per unit 

area, W is the width and L is the length of transistor. Also, Vth is the thermodynamic voltage of MOS 

transistor, Ψ0 is the surface potential constant, and ΦF is the Fermi potential. Their expressions and 

definitions are not important for this work and can be found in [21]. 

An accurate model like EKV is necessary for careful analysis of analog circuits or gate level 

circuit design, especially when the circuit operates at the weak inversion edge. However, more basic 

models exist which are able to propose a reasonable estimate of circuit behavior. Since, in the sub-

threshold region, the sub-threshold current (which is a diffusion current) dominates other components 

of the drain current, such as gate leakage and Gate-Induced Drain Leakage (GIDL), the total drain 

current can be equated to the sub-threshold current. Equation 2.7 represents this model of a sub-

threshold current [13].  

�� � �>"#?&%#@A#'(                                                              (2.7) 



 

7 

 

where VT is the threshold voltage of MOS transistor and I0 is the drain current when VGS = VT, as 

given in Equation 2.8: 

�> �  � 	� � 1� 
 !�                                                           (2.8) 

To model low VDS roll-off and Drain-Induced Barrier Lowering (DIBL), Equation 2.7 can be 

upgraded to Equation 2.9.  

�� � �> "#?&%#@BC#+&A#'( 	1 � "%#+&#'( �                                                 (2.9) 

shere, η is the DIBL coefficient. The sub-threshold current derivation can be found in [22]. 

Figure 2.4 shows the drain current versus the gate to source voltage. As Equation 2.9 predicts and 

Figure 2.4 represents, the drain current, ID, varies exponentially with VGS in the sub-threshold region. 

As will be mentioned later, this exponential relationship in the sub-threshold region causes an 

exponential reduction in power consumption.  

 

 

Figure 2.4: ID versus VGS for a MOS transistor in 0.18µm process with nominal VDD of 1.8V [13]. 

 

Figure 2.5 compares the variation of ID with respect to VDS in strong inversion against a sub-

threshold. Sub-threshold curves show the exponential dependence on VGS, but they appear quite 
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similar to the strong inversion curves in their shape. The quasi-linear region comes from the roll-off 

of the current at low VDS. Unlike strong inversion, the onset of this roll-off depends only on VDS and 

not on VGS. In strong inversion, the VDS dependence on the velocity saturation region results from 

channel length modulation and is commonly modeled with the early voltage. Early voltage is the 

voltage where a tangent to ID-VDS curve intercepts the voltage axis. In sub-threshold, the VDS 

dependence in the quasi-saturation region results from DIBL and can be modeled with a DIBL 

coefficient. 

 

 

Figure 2.5: ID versus VDS for three values of VGS in a 0.18µm process. a. sub-threshold, b. strong inversion [13]. 

2.1.2 MOS Power Model for Sub-threshold Operation 

The total power consumption of a digital circuit is the sum of its dynamic, static and short-circuit 

power, as given in Equation 2.10 [23]. 

Ptotal � PDynamic 4 PStatic 4 PShort-Circuit                                                                      (2.10) 

The dynamic power is evaluated by Equation 2.11. 

PDynamic � α × f × Ceff × VDD2                                                  (2.11) 

Where α is activity factor, f is the switching frequency and Ceff is the effective capacitance.  

Decreasing VDD, lowers the dynamic power quadratically. Therefore, a circuit operating in the sub-

threshold region consumes much less power than the same circuit in strong inversion with an identical 

activity factor and frequency. For instance, in 65 nm technology with a VDD of 0.9 V, a 95% reduction 

in dynamic power results by moving the VDD to 0.2 V.  

Static or leakage power is the power consumed by the system while in steady state and is given by 

Equation 2.12. 
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PStatic � ILeakage × VDD                                                                (2.12)                                                                                      

With lower supply voltage during sub-threshold operation, VDS is less than the VDS in strong 

inversion which results in lower leakage current and therefore lower leakage power. Depending on 

the technology and VDD scaling, the leakage power is reduced by 4 to 90 times [23]. Since the 

frequency is lower in sub-threshold operation, leakage power is integrated over a larger time, which 

makes the leakage energy increase in  the sub-threshold region. Thus, dynamic energy, which is the 

dominant portion of the total energy in strong inversion is no longer dominant at sub-threshold. In 

fact, it is even less than the leakage energy close to the minimum energy point [19]. 

Short circuit power is the power dissipated by the short circuit that flows directly between VDD and 

VSS during a switching transition. Short circuit power is shown in Equation 2.13.  

PShort-Circuit � IShort-Circuit ×VDD                                                 (2.13) 

Due to slower operation at sub-threshold, the period of short circuit in CMOS cells is increased. 

Even so, the short circuit power is a factor of the supply voltage, and thus is reduced [23]. 

2.2 Side Channel Analysis Attacks 

Secret information hidden in cryptographic devices can be extracted by passive observation of the 

device’s functional behavior or active manipulation of the device to behave abnormally and extract 

secret information from the intentional abnormality. The first category is generally referred to as side 

channel attacks (SCA), and the latter as fault injection attacks. 

Side channel attacks break a cryptographic device by exploiting information from the physical 

characteristics of the device, such as power consumption [8], electromagnetic radiation [9] and run 

time [10]. Recording many samples of instantaneous power consumption (known as a power trace) of 

a device and analyzing it to exploit secret information, such as a key, is called a power analysis 

attack.  

Power analysis of side channel signals from smartcards was first presented in 1999 by Kocher et 

al. [8] on a DES algorithm. Instantaneous power consumption of a cryptographic device normally 

depends on the data it processes and the operation it performs. Power analysis attacks are based on 

exploiting these dependencies, and various methodologies are introduced to achieve this goal. Simple 

power analysis (SPA), differential power analysis (DPA) and correlation power analysis (CPA) are 

the most common types of power analysis methodologies.  

This section reviews SPA and DPA as the first proposed methods of power analysis attack. It then 

provides a brief introduction to CPA, as the method used in this research. Next, measures for 

analyzing the side channel information leakage are briefly listed. Finally, a few of the side channel 

resistant logics presented thus far will be introduced and SABL and WDDL (the ones which are 

employed in this research for comparison) are explained.  
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2.2.1 Overview of Simple Power Analysis and Differential Power Analysis 

SPA attacks exploit information by simply measuring the instantaneous power consumption of a 

device and correlating its fluctuations with the different rounds of cryptographic algorithms or 

operations and key values. In other words, an attacker tries to find the key by directly interpreting the 

single available trace to find patterns or matched templates. On the other hand, DPA attacks extract 

the key by performing statistical analysis on a large number of power traces to find out how power 

consumption, at fixed moments in time, depends on the processed data. DPA attacks are thus based 

on the data dependency of power traces [24]. 

While SPA attacks require detailed knowledge about the implementation of the cryptographic 

algorithm, DPA attacks only need to know the algorithm itself. Although several SPA attacks on 

algorithms like AES have been reported [25, 26], it is much easier to prevent the threat of these 

attacks compared to DPA attacks. However, SPA is the sole possible method when only one power 

trace is available. DPA attacks require a large number of traces and their runtime is significantly 

longer than that of SPA’s.  

DPA works based on the difference between power consumption of 0 to 1 and 1 to 0 transitions. It 

collects N power traces corresponding to N plaintexts, Pi (i = 1 … N), and chooses a selection 

function, f, which operates on Pi, Ks (the guess key), and bit b, the examined bit (e.g. a bit of the S-

Box output). The output of the selection function can be either 0 or 1. The next step is to compute a 

differential trace ∆f (b), which is the difference between the average of traces with f equals 1 and with 

f equals 0. Expression 2.14 summarizes the described methodology. W(Pi) is the power trace 

corresponding to the plaintext Pi.  

_̂	`� �  ∑ _	�b,d,ef� 1	�b�gbhi∑ _	�b,d,ef�gbhi  � ∑ 	j*_	�b,d,ef�� 1	�b�gbhi∑ 	j*_	�b,d,ef��gbhi                                       (2.14) 

If calculated bits during the cryptographic algorithm are uniformly distributed and the number of 

power traces are sufficient, ∆f (b) corresponding to a wrong Ks will be zero. Thus, the only ∆f(b) 

which gives the value of nonzero reveals the correct key [27]. 

In order to enhance DPA, extended attacks, such as higher order DPA (HO-DPA) [8, 28], multi-bit 

DPA [29, 30] and correlation power analysis (CPA) [31, 32], are proposed. The difference between 

these methods is mainly in the complexity of the statistical analysis. Correlation power analysis, as an 

effective and commonly used approach, is chosen as the attack methodology in this research.  

2.2.2 Correlation Power Analysis 

Correlation power analysis (CPA) attacks are based on the correlation between the power 

consumption of the cryptographic device and the Hamming weight or Hamming distance of the 

handled data. In power analysis attacks, it is necessary to have a power model that maps data values 

processed by the device to the power consumption traces. Specifically, in a DPA attack, the selection 

function performs the required mapping, which assumes dissimilar power consumption for 0 to 1 and 
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1 to 0 transitions. However, the power models used in CPA, Hamming weight [33] and Hamming 

distance [31] assume that 0 to 1 and 1 to 0 transitions contribute equally to power consumption and 

that 0 to 0 and 1 to 1 transitions also lead to the same power consumption. It is assumed in CPA that 

information leakage through power consumption depends on the number of bits switching from one 

state to another at a given time, not the type of transition. 

The Hamming weight of a vector input v0, HW(v0), is defined as the number of set bits in v0, and it 

is assumed that the power consumption is proportional to HW(v0). The Hamming distance of two 

vector inputs v0 and v1, HD(v0, v1), is the number of flipping bits to go from v0 to v1. In a Hamming 

distance model, the power consumption of the device is modeled with the number of bits switching 

from one state to either its preceding or succeeding state, while in a Hamming weight model the 

knowledge of the current state is sufficient. Therefore, a Hamming distance model requires more 

details of the device and may not be possible to mount in all applications.  

Brier et al. proposed a model for power consumption based on the Hamming distance model in 

[31]. The Brier’s model can be seen in Expression 2.15. 

W = a HD(D,R) + b                                                         (2.15) 

This model assumes a linear relationship between power consumption, W, and the Hamming 

distance between D, a uniform random variable, and a reference state, R. This model only represents 

the data-dependent part of power consumption, which does not seem unrealistic because the majority 

of a cell’s power is consumed within the bus lines [31]. Constant b models enclose offsets, time-

dependent components, and noise.  

The correlation factor ρWH between power consumption and the Hamming distance can be 

calculated as follows: 

k1l � m/n	1,l�
opoq                                                           (2.16) 

where σ
2
 is variance, we have:  

r1� � s� rl� 4 rd�                                                        (2.17) 

So, expression 2.15 can be further simplified to expression 2.18. 

k1l � toqop � toq
ut;oq;  v ow;

� t√y
uyt;v zow;

                                        (2.18) 

where m is the number of bits in D as a uniform random variable and m/2 is the mean and m/4 is the 

variance of HD(D+R) as a uniform random variable. The correlation factor is a value between -1 and 

+1, which ±1 means perfect correlation and the sign depends on the linear gain, a.  
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Expression 2.18 shows that a minimized noise variance, σb
2
, maximizes the correlation factor, 

which helps to determine the reference state, R. The process is to scan all possible values of R and 

rank them by the correlation factor. The one with the maximum correlation factor is the correct 

reference value.  

The above claim is proved in [31]. Suppose a correct reference, R, and an incorrect guess of the 

reference value, R’, which has k bits different from R. This would give, HD(R+R’)=k. Since b is 

independent from other variables, the correlation factor is: 

k1l{ � m/n	tlvd,l|�
opo{q � t

op
m/n	l,l|�

o{q � k1lkll{ � k1l  y*�}
y                      (2.19) 

Expression 2.19 shows that even a 1 bit difference between R and R’ reduces the correlation factor 

by 1/4.  

In summary, in order to perform a CPA attack, a power model based on the Hamming weight or 

Hamming distance must first be chosen. In the next step, the device needs to be run with all possible 

values of a reference state or input plaintext, and a power consumption trace has to be measured. In 

the final step, the correlation factors between the predetermined values from the power model and 

measured power traces are calculated and the maximum correlation factor corresponds with the 

correct key of the device.  

2.2.3 Measures for Side Channel information leakage 

Various measures exist to evaluate side channel information leakage of cryptographic devices. CPA 

can be considered as an effective and accurate measure that not only reveals the secret key but also 

analyzes the amount of information leakage using obtained correlation coefficients. Other than CPA, 

simpler measures are also introduced that can be employed to study the data and operation 

dependency of instantaneous or averaged power consumption of a device. The following paragraph 

gives a brief overview of some of most commonly used measures which will be discussed in further 

detail in Chapter 4. 

Difference of mean energies (DME), suggested by [34], is a measure which highlights the 

difference between power traces that process 1 compared to those that process 0. The frequency of 

observation measure used in [35] visualizes the closeness of average power consumption values for 

all possible inputs. This measure is based on the fact that attacking a system whose average power 

consumption values for various combinations of inputs are aggregated in a small range requires more 

effort and sample traces than a system with a wider range of averaged power consumption values. 

Normalized energy deviation (NED) and normalized standard deviation (NSD), first used by [35], 

form another type of measure that provides a simple yet effective security evaluation for many logic 

schemes. They quantize the previous measure, frequency of observation, and determine the dispersion 

of averaged power consumption values of a cryptographic device for various data transitions. 
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2.2.4 Side Channel Resistant Logics 

The important key to designing a secure cryptographic device is to eliminate data dependency and 

operation dependency of power consumption. A device which consumes constant energy in all clock 

cycles of an operation can be a perfectly secured design. A circuit with constant energy consumption 

and power trace for all types of transitions-0 to 1, 1 to 0, 1 to 1 and 0 to 0-satisfies our desired goal. 

 Figure 2.6 shows an Inverter in Static Complementary CMOS logic (scCMOS), which is the 

default logic scheme available in existing standard cell libraries. This cell consumes power from the 

power supply only during 0 to 1 and 1 to 0 transitions. Since the load capacitance is different in these 

two cases, the consumed power during these two transitions is different. No power is consumed 

during 0 to 0 and 1 to 1 transitions. Thus, this logic scheme leaks high amounts of information. A 

secure logic scheme must have output switching independent of input switching as well as constant 

load capacitance for all transitions [35].  

 

 

Figure 2.6: Output transitions in a static complementary CMOS logic [35]. 

Various logics are proposed to provide the above characteristic. Sense Amplifier Based Logic 

(SABL) [35], Wave Dynamic Differential Logic (WDDL) [36], Dynamic Current Mode Logic 

(DyCML) [37], Low-Swing Current Mode Logic (LSCML) [38] and Masked Dual-Rail Pre-charge 

Logic (MDPL) [39] are examples of the presented logics. Mace et al. summarizes the characteristics 

of mentioned logics in [40], as shown in Table 2.1. 

 

Logic styles Dual-Rail Masked Pre-Charged Standard Cell 

CMOS    � 

SABL �  �  

WDDL �  � � 

DyCML �  �  

LSCML �  �  

MDPL � � � � 

Table 2.1: Summary of characteristics for side channel resistant logics [40]. 
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According to Table 2.1, all side channel resistant logics are dual-rail and pre-charged. SABL, 

DyCML and LSCML are full custom logic styles, while WDDL and MDPL are compatible with 

standard cell libraries. In this research, SABL and WDDL are chosen for study and comparison. 

Following is a brief overview of these two logic schemes.  

Figure 2.7.a illustrates a differential network. This network provides true and false values of the 

output signal with the help of De-Morgan’s law. De-Morgan’s law generates a false output using false 

inputs. The truth table of this network is shown in Figure 2.7.a. Since both out and out’ signals flip in 

each transition of 1 to 0 and 0 to 1, the total power consumption of this differential network is the 

same for 1 to 0 and 0 to 1.  

Figure 2.7.b demonstrates a dynamic network. Here, the clock period is divided into two phases: 

pre-charge and evaluation. In the first phase, the output signal is pre-charged to the pre-charge value.  

In the latter phase, output is evaluated based on inputs. This modification in the circuit makes the 

output flip in 0 to 0 and 1 to 1 transitions; hence, it always consumes power. As the truth table of 

Figure 2.7.b demonstrates, power consumption for 0 to 1 and 1 to 1 transitions are identical, as is 

power for 0 to 0 and 1 to 0. 

Combining differential and dynamic schemes into one dynamic and differential logic scheme 

provides almost the same power consumption for all clock cycles. SABL and WDDL are two 

dynamic and differential logics. The implementation of NAND, NOR and XOR gates in these two 

schemes is explained in the following sections. 
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Figure 2.7: Power characteristics in the form of a truth table for a) Differential logic b) Dynamic logic [35]. 
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2.2.4.1 SABL 

A generic n-gate in SABL logic is shown in Figure 2.8. The differential pull-down network along 

with the output pre-charge circuit provides the same power consumption for all transitions. SABL is 

also designed to have a constant load capacitance for all transitions. Implemented NAND, NOR and 

XOR gates in the SABL logic scheme are shown in Figure 2.9. DPDN is designed such that the 

conducting path in all possible paths has the same resistance, which is ensured by having the same 

number of identical transistors in each conducting path of the DPDN network [24].  

SABL logic can only be used in custom design. It is impossible to use standard cell libraries and 

available digital design tools to design a SABL circuit. This issue, together with the significantly 

large power consumption caused by almost doubling the total number of transistors, is a major 

drawback of this logic scheme. 

 

 

 

Figure 2.8: Generic n-gate SABL logic [35]. 
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Figure 2.9: SABL gates a) NAND b) NOR b) XOR. 

  

2.2.4.2 WDDL 

Figure 2.10 represents NAND, NOR and XOR gates in a WDDL logic scheme. The first difference 

between WDDL and SABL is that available standard cell libraries can be employed in designing a 

circuit in WDDL logic. Therefore, this logic scheme provides the capability of an RTL design of a 

secure circuit in WDDL logic, using the available digital design tools.  

 

 

Figure 2.10: WDDL gates a) NAND b) NOR c) XOR. 
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The second difference is the pre-charging methodology. Figure 2.11 shows the pre-charge circuit 

for combinatorial WDDL gates. In WDDL, inputs are pre-charged and the pre-charge signals at 

inputs ripple all the way through the combinatorial circuit to the output, where they pre-charge the 

output. Having a pre-charge circuit for the inputs eliminates the necessity of having this circuit for all 

gates. Hence, the area and power consumption of a WDDL gate is lower than the area and power 

consumption of the same gate in SABL logic. 

 

 

Figure 2.11: WDDL pre-charge circuit [36]. 

2.3 Previous Side Channel Research of Sub-threshold Circuits 

Extensive research has been carried out in the area of sub-threshold circuits. However, side channel 

information leakage of this logic scheme is still relatively unexplored. To the best of our knowledge, 

only three papers, [41-43], all published in 2008, have focused on studying information leakage of 

sub-threshold against differential power analysis attacks. 

Alstad and Aunet implemented a static CMOS 8-bit ripple carry adder in [41] and a compact 4-

staged pipelined and asynchronous S-Box in [42]. Both circuits were simulated at the transistor level 

using 90 nm CMOS technology. They used normalized standard deviation of the supply current as the 

measure of security and claimed that sub-threshold operation reduces the standard deviation with a 

factor of 2500. Normalized standard deviation was introduced in section 2.2.3. It is not a very strong 

measure of security especially when it is used individually and it will be discussed in more detail later 

in Chapter 4.  

Haider and Nazhandali mounted a DPA attack on an S-Box in which SPICE-level simulation is 

performed on a transistor level design implemented in 45 nm technology [43]. Their focus is on the 

signal-to-noise ratio (SNR) of the sub-threshold circuit versus strong inversion. Figure 2.12 represents 

their simulation results, showing in part “a” the minimum average noise power that hides the secret 

key and defeats the DPA attack. According to their results, there are four orders of magnitude 

difference between the noise power required to cover the secret in sub-threshold and strong inversion. 

Figure 2.12.b demonstrates the SNR at which a DPA attack can be successful. Larger values of SNR 
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for sub-threshold mean that less noise is needed to cover the secret information at sub-threshold 

compared to strong inversion. 

 

 

Figure 2.12: Analysis of a secure circuit resistivity toward power analysis attacks [43]. 

  

In summary, side channel analysis of sub-threshold circuits has been previously studied in three 

papers, in which normalized standard deviation and signal-to-noise ratio of a transistor level AES S-

Box and an 8-bit ripple carry adder are the main focus. However, further studies on sub-threshold 

logics are required. A closer look into instantaneous power consumption of a circuit operating in a 

sub-threshold region can demonstrate the information leakage behavior of this logic scheme. 

Moreover, correlation power analysis attack is also a serious threat that sub-threshold logics 

vulnerability against this attack needs to be studied. Finally, side channel analysis of register transfer 

level implementation of sub-threshold circuits is another unexplored aspect of this logic that is 

considered in this research.  

The next chapter will study the circuits used for power analysis in this research and propose the 

design methodology for sub-threshold circuit in both transistor level and RTL. 
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Chapter 3 
Sub-threshold Circuits and Design Methodology 

This chapter discusses the methodology and challenges of designing a circuit for sub-threshold 

operation. In section 3.1 a list of challenges which a designer will confront in designing a circuit for 

sub-threshold operation is presented. In section 3.2, which focuses on transistor level design, the 

characteristics of an inverter gate at sub-threshold provide a basis for transistor level design which is 

used in the subsequent design of other gates, such as NAND, NOR and XOR. Afterwards, register 

transfer level design is presented in section 3.3. The digital design flow of a sub-threshold circuit is 

explained in that section followed by a performance analysis of standard cell libraries and the 

Advanced Encryption Standard (AES) crypto-processor used in this research. 

 

3.1 Design Challenges at Sub-threshold 

While a circuit operating in sub-threshold region consumes little power, low current level and an 

exponential dependence of current to voltage introduce a group of deficiencies and challenges which 

need to be considered by designers. This section briefly describes some of the more important design 

challenges.  

1. Performance 

The weak current flow in sub-threshold circuits results in longer delays due to the longer time 

required to charge and discharge capacitances in the circuit. As mentioned earlier in this section, there 

is a trade-off in choosing the value of VDD between delay and energy. Choosing the value of VDD 

higher than corresponding value for minimum energy point can benefit the performance at only a 

slight cost in energy. 

2. Minimum Operational Voltage  

The supply voltage of 3-4 Vth (Vth, the thermal voltage equal to kt/q) is the minimum possible VDD 

for circuits operating at sub-threshold [23]. The Voltage Transfer Characteristic (VTC) of a 

minimum-sized inverter at 25°C in a 65 nm TSMC process is sketched for different values of supply 

voltage in Figure 3.1.  

3. Variability 

Exponential I-V characteristics in a sub-threshold region can cause a large variance in transistor 

behavior, including process, voltage and temperature variability. Hence, a designer needs to use 

effective techniques to design more robust and reliable circuits [23, 44]. 
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Figure 3.1: VTC as a function of supply voltage [23] 

 

4. Device Optimization 

Devices optimized for strong inversion may not give optimal results for sub-threshold operation. 

The optimization of devices for sub-threshold operation can thus help to achieve higher frequencies 

[44]. 

5. Robustness of logic families 

Low VDD results in a reduced ION/IOFF ratio that can reduce robustness. Static CMOS gates function 

correctly at sub-threshold; however, other logic families may suffer from variations due to low 

ION/IOFF ratio [44].  

6. Standard Cell Libraries 

The simulation and synthesis of sub-threshold circuits is a great challenge due to the unavailability 

of standard cell libraries designed specifically for sub-threshold operation. Current standard cell 

libraries are characterized for a specific voltage which is in the strong inversion region. Thus, the 

synthesis of circuits at sub-threshold requires re-characterization and modification of libraries. 

3.2 Transistor Level Design 

This section describes the design methodology for transistor level sub-threshold circuits. An 

exponential dependency of the drain current on VDS alters the transistor’s behavior and introduces a 

new design methodology. This section studies the characteristics of an inverter circuit (e.g. sizing, 

speed, frequency of operation and minimum operational voltage) to provide a general idea of a 

transistor level circuit in a sub-threshold region. The section also provide a design explanation of the 

most important components of every digital circuit (NAND, NOR and XOR gates). All 

implementations and simulations are performed in Cadence Virtuoso Analog Environment using 65 

nm TSMC technology. The transistor level design flow used in this research is shown in Figure 3.2. 
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Figure 3.2: Sub-threshold transistor level design flow. 

3.2.1 Inverter Operation in Sub-threshold Region 

The first design element to be discussed is transistor sizing which can be studied from three points of 

view. One is, the ratio of PMOS width to NMOS width, at which the circuit operates with the 

minimum VDD. The ratio WP/WN that obtains the same current for both PMOS and NMOS transistors 

provides the minimum VDD operation. Reference [13] suggests the value of 12 for WP/WN to achieve 

the minimum voltage of 50 mV. However, based on the available transistor model for this research, 

which is the general purpose model of the 65 nm TSMC process, a lower WP/WN value gives better 

functionality in sub-threshold voltages. Therefore, a minimum supply voltage operation occurs for the 

equal width size of PMOS and NMOS. 
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The next factor that impacts sizing is the propagation delay. Based on experiments done in this 

research on inverters for different sub-threshold voltages in the range of 0.1 V to 0.3 V, the ratio of 

2.7 was observed as the best ratio of WP/WN to provide equal rising and falling propagation delay. 

Inverter sizing to achieve the minimum energy is the last criterion that occurs with minimum 

transistor sizing. Hence, the smallest sized NMOS transistor should be chosen and, depending on the 

application the ratio of PMOS to NMOS transistor can be set. 

The inverter delay in both strong inversion and sub-threshold, in case of symmetrical PMOS and 

NMOS transistors is given by Equations 3.1 and 3.2, respectively [13].  

td = 

e 5~)++	)++* )@��                                                               (3.1) 

td,sub = 

e 5~)++
�7�0� 	#++% #@A #'( �                                                           (3.2) 

As Equation 3.2 presents, an exponential decrease of Ion in the sub-threshold region leads to an 

exponential dependency of delay on VDD, which is a stronger dependency compared to the strong 

inversion delay presented in Equation 3.1. Figure 3.3 shows the normalized inverter speed across the 

full range of supply voltage. The inverter speed degrades slowly in strong inversion and drops fast for 

VDD below 0.4 V. 

 

Figure 3.3: Normalized inverter speed versus supply voltage. 
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Taking into consideration the minimum size for an NMOS transistor and the value of 2 for WP/WN, 

the inverter is tested for various supply voltages in the sub-threshold region. The output voltage of the 

inverter for VDD = 200 mV, 150 mV, 75 mV and 50 mV is shown in Figure 3.4. For supply voltages 

of 200 mV and 150 mV, the circuit maintains a full 10% - 90% output swing. Although this swing is 

degraded for VDD = 75 mV, the output voltage still covers the 10% - 90% swing. From a supply 

voltage of 60 mV, the output swing degrades drastically and the inverter can no longer be considered 

operational. The degraded output swing of the inverter for a supply voltage of 50 mV can be observed 

in Figure 3.4.d. Therefore, the minimum operational voltage using the available models in this 

research is 60mV. 

Now that the sizing, speed and minimum operational voltage are determined, the maximum 

frequency of operation can be obtained. The output voltages of the inverter for the frequencies of 10 

MHz, 33.33 MHz, 50 MHz and 66.67 MHz are shown in Figure 3.5. The operational voltage is 150 

mV. We can observe that the output voltage swing starts to degrade from 50 MHz and then cannot 

maintain the 10% - 90% swing at a frequency of 66.67 MHz (the period of 15 ns). Thus we can see 

that, the limited range of operational frequency is a significant drawback of sub-threshold circuits. 

Based on the available models in this research, the maximum frequency is around 70 MHz.  

 

Figure 3.4: Inverter output at the frequency of 10 MHz and supply voltages of a) VDD = 200 mV,  b) VDD = 150 

mV, c) VDD = 75 mV and d) VDD = 50 mV. 
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Figure 3.5: Inverter output for the supply voltage of 150 mV and frequencies of a) f = 10 MHz, b) f = 33.33 

MHz, c) f = 50 MHz and d) f = 66.67 MHz. 

 

3.2.2 NAND Gate Operation in Sub-threshold Region 

The architecture of the NAND gate is the same as the static CMOS architecture for strong inversion 

NAND gate, the only difference being the transistor sizing. In strong inversion, it is better to set the 

WP/WN ratio around two to equalize the low-to-high and high-to-low propagation delays. However, as 

mentioned in the previous section, this ratio has to be one to achieve the minimum operational 

voltage.  

Table 3.1 summarizes the characteristics of the NAND gate in the sub-threshold region. The 

minimum VDD at the frequency of 10 MHz is 100 mV, and the maximum frequencies of operation at 

voltages of 200 mV and 150 mV are 125 MHz and 40 MHz, respectively. The drastic decrease in 

speed with the reduction of the supply voltage can be observed in these results. 
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Minimum supply voltage @ 10 MHz 100 mV 

Maximum frequency @ 200 mV 125 MHz 

Maximum frequency @ 150 mV 40 MHz 

Table 3.1: Characteristics of a static CMOS NAND gate in sub-threshold. 

3.2.3 NOR Gate Operation in Sub-threshold Region 

Similar to a NAND gate, the architecture of a NOR gate in sub-threshold region is the same as a static 

CMOS NOR gate in strong inversion, transistor sizing being the only difference. The ratio of PMOS 

to NMOS width is minimized to obtain the minimum operational voltage.  

Table 3.2 summarizes the characteristics of a NOR gate in sub-threshold region. Maximum 

frequencies at 200 mV and 150 mV remain the same as for a NAND gate. However, the minimum 

supply voltage is a bit higher than for a NAND gate and occurs at 120 mV. 

 

Minimum supply voltage @ 10 MHz 120 mV 

Maximum frequency @ 200 mV 125 MHz 

Maximum frequency @ 150 mV 40 MHz 

Table 3.2: Characteristics of a static CMOS NOR gate in sub-threshold. 

3.2.4 XOR Gate Operation in Sub-threshold Region 

The XOR architecture used in this research is shown in Figure 3.6. Eight transistors are used to form 

the XOR gate. Following the aforementioned rule for WP/WN, this ratio is set to minimum. Table 3.3 

provides an overview of the XOR gate characteristics. Since this gate includes more transistors than 

the previous two gates and has a more complex architecture, the output voltage swing starts to drop 

sooner. The minimum supply voltage at which the 10% - 90% output swing is achieved is 130 mV. 

The maximum frequency at supply voltage of 200 mV is 90 MHz, which decreases to 40 MHz for a 

supply voltage of 150 mV. 

 

Minimum supply voltage @ 10 MHz 130 mV 

Maximum frequency @ 200 mV 90 MHz 

Maximum frequency @ 150 mV 40 MHz 

Table 3.3: Characteristics of a static CMOS XOR gate in sub-threshold. 
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Figure 3.6: Static CMOS XOR architecture. 

3.2.5 Parallel XORs 

Since XOR is one of the most important components of a cryptographic hardware, further 

investigations on this specific gate are provided. In addition to a single XOR, another architecture 

which is used in this research for side channel analysis is a set of eight parallel XOR gates that takes 

an 8-bit input and produces an 8-bit output using an 8-bit key. This architecture is shown in Figure 

3.7. Differential and correlation analysis of this gate is presented in Chapter 5. 

 

 

Figure 3.7: Parallel XORs architecture. 
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3.3 RTL Design 

Designing a complete crypto-processor for encryption algorithms, such as AES, at the transistor level 

that includes thousands of transistors requires an enormous effort. Computer Aided Design (CAD) 

tools have reduced both the design effort and time required for large designs. The design flow starts 

by describing the architecture using an HDL language, such as Verilog HDL. After simulating and 

verifying the functionality of the design, RTL design is synthesized to a gate level design using a 

logic-synthesis tool like Synopsys Design Compiler. The logic-synthesis tool utilizes a standard cell 

library to synthesize an RTL circuit into a gate level circuit and also provides timing information. The 

next step is post-synthesis simulation and timing analysis. Depending on the application, power 

measurements can be performed using a switching activity file and the gate level netlist. The last step 

involves placement, routing and post-layout simulation.  

Sub-threshold digital design flow, including the details on the tools, is discussed in section 3.3.1, 

followed by a discussion of the performance of standard cell libraries at a sub-threshold voltage in 

section 3.3.2. AES and S-Box architectures used in this research are explained in last two sections.  

3.3.1 Sub-threshold Digital Design Flow 

The digital design flow of a sub-threshold design is the same as the one for strong inversion. 

However, standard cell libraries used to synthesize RTL into gate level require some modifications. 

Figure 3.8 presents an overview of the sub-threshold digital design flow used in this research. 

The major difference of this flow with the strong inversion design flow is in the left branch of 

Figure 3.8. As standard cell libraries are characterized for a specific voltage which is in the strong 

inversion region, the operation voltage of these cells needs to be changed. The Cadence Encounter 

Library Characterizer (ELC) [45] is a tool that characterizes a standard cell library for user-defined 

setups. ELC inputs are: 

• A SPICE-format sub-circuit file which includes all the details of transistor devices, 

resistances and capacitances of each standard cell. 

• A SPICE-format device model file that describes the transistor device models. 

• A setup file which defines device parameters for different process corners, supply 

voltages, temperatures, input slew rates and output loads. 

• A configuration file (elccfg) which contains environment variables or setup directives 

which will be used during the run. 

ELC receives the mentioned inputs and analyzes the SPICE-format sub-circuit, recognizes the 

function or logic structure and generates the function or logic model. It then defines the 

characterization environment by user-defined parameters in the setup file. In the last step, it invokes 

and executes SPICE, summarizes the results, and generates an ALF file which can be converted to 

library formats. Following are the commands to perform the above steps. Additional details can be 

found in [46]. All italic names in this chapter represent user files. 
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Figure 3.8: Sub-threshold RTL design flow. 

 

 

 



 

29 

 

db_open foo          #opens a database 

db_prepare –force    #creates environment for running SPICE simulation 

db_gate         #recognizes the design and creates gate file 

db_spice -s spectre -p typical -keep_log     #SPICE simulation 

db_output –r foo.alf.rep –alf foo.alf –p subth    #outputs alf file 

db_verilog –r foo.v        #generates a Verilog logic description 

db_close 

alf2lib –alf foo.alf –lib subth.lib      #converts .alf to .lib file 

 

The output library database contains the timing, power, and noise model for each of the standard 

cells, based on the parameters defined in the setup file. Modification of the standard cell library 

occurs in this first step, and the setup file used has to be modified for the sub-threshold region. Next, 

the process corner, supply voltage, input slew rate and output load have to be defined for sub-

threshold voltage. 

Synopsys Design Compiler (DC) [47] is the logic-synthesis tool utilized in this research. DC’s 

inputs are standard cell library and behavorial description of the design in Verilog or VHDL. As will 

be seen in section 3.3.2, some cells in standard cell libraries do not exhibit acceptable performance in 

the sub-threshold region; hence, these cells need either to be avoided or modified to be able to work 

in a circuit operating in sub-threshold. The Design Compiler converts a behavioral Verilog file to a 

structural file using determined standard cells. Design Compiler is capable of using only some 

specified cells or avoid using some specified cells in conversion as long as the circuit is achievable 

with allowed cells.  

In order to forbid the Design Compiler from using Cell1 and Cell2, we can use the following 

commands. 

set_dont_use my_lib/Cell1 

set_dont_use my_lib/Cell2 

In order to authorize the Design Compiler to only use Cell3 and Cell4, we can use following 

commands. 

set_dont_use my_lib/* 

remove_attribute my_lib/Cell2 dont_use 

remove_attribute my_lib/Cell3 dont_use 

PrimeTime PX [48] is an add-on to Synopsys PrimeTime that obtains an accurate power 

dissipation analysis based on the circuit connectivity, switching activity, net capacitance and cell-

level power behavior data in the Synopsys database format (.db) library. PrimeTime PX supports two 

modes of power analysis: the averaged and the time-based. In this research, the latter mode is of 

interest.  

PrimeTime PX reads in the gate level netlist, Synopsys design constraint file, parasitic file, 

switching activity file and the defined testbench. Then it uses the technology library file to perform 
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power analysis and generate a power waveform. The power waveform can be used later for 

correlation power analysis. Following are commands used in PrimeTimw PX to obtain the power 

waveform.  

 

set power_enable_analysis TRUE 

set power_analysis_mode time_based 

 

####################################################################

# 

#       link design 

####################################################################

# 

set search_path    "search_path1 search_path2 search_path3" 

set link_library " * my_lib.db" 

 

read_verilog  gate_level_netlist.v 

current_design top_module 

link 

 

####################################################################

# 

#       set transition time / annotate parasitics 

####################################################################

# 

read_sdc   sdc_file.sdc 

read_parasitics parasitic_file.spef 

 

####################################################################

# 

#       check/update/report timing 

####################################################################

# 

check_timing 

update_timing 

report_timing 

 

####################################################################

# 

#       read switching activity file 

####################################################################

# 

read_vcd "switching_activity.vcd" -strip_path "testbench/DUT" 

 

####################################################################

# 
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#       check/update/report power 

####################################################################

# 

check_power 

set_power_analysis_options -waveform_format out -waveform_output    

Output_Waverform 

update_power 

report_power 

 

Mentor Modelsim [49] is used to generate a switching activity file. This file contains the switching 

activities on all nodes through the circuit and is a key file in the power estimation process. Following 

are commands used to generate this file. These commands should be called after a simulation is 

started in Modelsim.  

 

vcd file switching_activity.vcd 

vcd add -r  testbench/DUT/* 

run    Run_Time 

vcd2wlf -nocase  switching_activity.vcd switching_activity.wlf 

wlf2vcd -o Output_switching_activity.vcd switching_activity.vcd 

 

The last two commands are necessary due to incompatibilities between Synopsys and Mentor 

Graphics in naming signals. In order to resolve this issue, we can convert the vcd file to a wlf file and 

then convert the wlf file back to the vcd format. 

3.3.2 Standard Cell Library Performance in Sub-threshold 

As mentioned earlier, standard cell libraries are not specifically designed to operate in the sub-

threshold region. The characterization of libraries for sub-threshold was the first required 

modification described. Nevertheless, not all cells in a library perform well in sub-threshold. The 

authors in [13] evaluated the performance of a 0.18 µm standard cell library in a sub-threshold 

operation, as shown in Figure 3.9. It shows the lowest operational VDD for various cells in the library 

at typical, fast-slow and slow-fast corners.  

If all cells in a standard cell library function properly at sub-threshold, the functionality of a circuit 

synthesized using this library is guaranteed [13]. Thus, a cell that fails to operate at that region has to 

be isolated from the library used by the logic-synthesis tool to produce a functional circuit for sub-

threshold. This is the second required modification on standard cell libraries. Cells that exhibit the 

worst performance below the threshold voltage of a transistor are logic gates with a stack of series 

devices (e.g. And/Or/Invert (AOI)), logic gates with multiple devices in parallel, and flip-flops [13]. 

These cells have to be modified to be able to operate in sub-threshold region or be isolated from the 

list of synthesizable cells. 
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Figure 3.9: Standard cell functionality in synthesized FIR filter using normal cell selection over process corners 

(simulation) (© 2005 IEEE) [13]. 

 

3.3.3 AES Crypto-Processor 

An Advanced Encryption Standard [11] core used in this research is a compact 8-bit AES core 

proposed in [50]. The high-level architecture of this core is shown in Figure 3.10. All data paths are 

8-bit wide. This core is implemented in Verilog HDL and synthesized using 65 nm TSMC standard 

cell library. 

The interface unit provides the requisite handshake signals to enable the core to perform as a co-

processor. The control unit is responsible for producing control signals and clocking all registers at 

the proper time. The ShiftRows unit is a series of shift registers whose inputs are controlled by 

multiplexers. The MixColumn unit contains a few registers whose input is the XOR of the previous 

register and a multiple of the input. ShiftRows and MixColumn operate on one row and one column 

of data, respectively, which is 32 bits; however, the data path width of this architecture is 8 bit. 

Employing multiple-shift registers and a parallel to a serial converter introduces multiple layers of 

pipeline that enable the processor to receive 8-bit inputs at a time and to process them. 

The most complex block of this core is SubByte, which is also called S-Box. In order to reduce the 

area and achieve efficiency, elements of GF(2
8
) are mapped into a smaller field of GF(2

4
)

2
 and further 

mapped to GF(2
2
)

2
)

2
. The XOR gate is the most frequently used gate in this block and in other blocks 

of this design also studied individually in this work. 
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Figure 3.10: High-level architecture of the AES crypto-processor [50]. 

 

Figure 3.11 presents the data path of the AES core. The core is able either to encrypt or decrypt 

the input plaintext. Pipelining enables the core to receive 128-bit plaintext and key in 16 consecutive 

clock cycles through the input ports, data_in and key_in. After 10 rounds of AES encryption, which 

takes 160 clock cycles, the ciphertext comes out of the data_out port in 16 cycles. Thus, the total 

encryption period is 176 cycles. Moreover, due to the 16 levels of pipeline, a new plaintext and key 

can be uploaded into the cores in the last 16 cycles while the previous ciphertext is arriving at the 

output. This feature improves the performance of the design in long runs and decreases the number of 

total cycles from 176 to 160. 

During encryption, the key expands parallel to the encryption process. However, since AES is a 

symmetric key algorithm and the same key is used for decryption, the first 160 clock cycles of the 

decryption process is devoted to the key expansion. Once the fist byte of the expanded decryption key 

is produced, decryption starts and takes 176 clock cycles. Hence, the total decryption happens in 336 

clock cycles as opposed to 176 cycles of encryption. More detailed information about each block can 

be found in [50]. The CPA attack, which will be described in Chapter 4, occurs at the data_out node 

in the first round of the AES algorithm. 
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Figure 3.11: AES core data path [50]. 

3.3.4 S-Box Block 

The substitution block of AES is also studied individually. The architecture is shown in Figure 3.12. 

In this architecture, the 8-bit plaintext is first exclusive-ored with an 8-bit key and the result sent to an 

S-Box. The output of the S-Box is latched by the register, and the attack occurs at the output of the 

register.  

 

 

Figure 3.12: S-Box test architecture for attack. 
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Chapter 4 
Side Channel Information Leakage Measurements and Analysis 

In order to perform a successful side channel attack on a system, the attacker has to be able to exploit 

information about the secret key through side channel measurements and recover the secret key from 

the extracted information [51]. Power consumption is used in this research as the system 

characteristic that leaks information. The instantaneous power consumption of the design under study 

is assumed to be known by the attacker. The attacker’s job is to recover the secret key with possession 

of power traces and knowledge about the encryption algorithm.  

This chapter defines mathematically and illustrates the measures introduced briefly in section 

2.2.3, to evaluate the side channel information leakage of circuits proposed in Chapter 3. Section 4.1 

explains difference of mean energies (DME), highlighting the difference between power traces that 

process 1 compared to those that process 0. Frequency of observation is explained in section 4.2 to 

demonstrate how the security level of a circuit can be visualized in histograms. The chapter continues 

by providing more details about normalized energy deviation (NED) and normalized standard 

deviation (NSD), in section 4.3. As mentioned earlier these measures quantize the dispersion of 

average power consumption values of a cryptographic device for various data transitions. The last 

measure is correlation power analysis (CPA), which is an extension of the differential power analysis 

introduced by Kocher et al. [8]. This is the most effective measure that investigates the actual 

possibility of finding the secret key from the power trace using correlation analysis. Section 4.4 

describes the usage of CPA in this research. 

 

4.1 Difference of Mean Energies (DME) 

As mentioned earlier, power consumed in a circuit changes with respect to inputs due to variant 

current paths and output capacitance loads. This fact forms the basis of DME measure.  

Suppose that n different plaintexts are applied to the system shown in Figure 4.1 and their 

corresponding power traces, E0 to En, are recorded. The attacker chooses a partitioning function, f, in 

order to separate the recorded traces into two groups. The partitioning function might be the lsb of 

some expected intermediate data. However, an attacker does not have access to the key and the 

intermediate data value is calculated based upon a guess of the key. The parameters T0 and T1 shown 

in Expression 4.1 are generated using the partitioning function f. Values f0 to fn are the outputs of 

function f. 

�> � ���| �� � 0�                                                            (4.1) 

�j � ���| �� � 1� 
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Figure 4.1: Crypto-system with fixed key and n different plaintexts. 

 

Now that two sets of power traces, T0 and T1, are generated, the mean of each set has to be 

calculated. M0 and M1 are the means of T0 and T1, respectively. DME represented in Equation 4.2 is 

the difference between M0 and M1. Please note that DME itself is a trace over time. 

DME = | M0 - M1 |                                                          (4.2) 

For an ideally secure system, a DME signal must be always 0. The highest peak in this signal 

represents the point in time where the system’s behavior is most correlated to the key. Hence, having 

a group of DME signals obtained by various key guesses and consequently multiple partitioning 

function values, the DME signal with the highest peak corresponds to the correct key. 

In chapter 5, DME is used to evaluate the XOR gate and parallel XOR architecture (from Chapter 

3). In the case of XOR gate, power traces for input transitions of 0 to 1 and 1 to 0, having a fixed key 

of 0, are measured. The same experiment is repeated with a fixed key of 1. Obtained power traces 

from two cases of sub-threshold and strong inversion are used to compare the system correlation on 

input’s type of transition. For the parallel XORs architecture, 8-bit input varies from 0 to 255 and 

power traces are recorded having K0 (lsb of the key) equals to 0 once and again with K0 equal to 1. 

The mean of the traces in each group is measured to find M0 and M1 signals. Comparing the DME 

signal of sub-threshold against strong inversion is one way to compare their correlation to the secret 

key and results are presented in Chapter 5.  
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4.2 Frequency of Observation 

Frequency of observation is a visual measure that helps to observe the dispersion of average power 

consumption values generated by different inputs combinations. This measure is used in some papers, 

such as [35]. This measure is applied on three basic gates in chapter 5, NAND, NOR and XOR, in 

sub-threshold, strong inversion, SABL and WDDL logic schemes. They are provided with all 

possible combinations of inputs transitions that produce 0 to 1, 1 to 1, 1 to 0, and 0 to 0 transitions. 

For instance, for a 0 to 1 transition in a 2-input gate, there are four combinations of inputs transitions.  

Assuming each transition happens in one clock cycle, power consumption is averaged over each 

cycle. To obtain the frequency of observation histogram, averaged power consumption values 

corresponding to all possible combinations of inputs are obtained and the frequency of occurrence of 

the obtained values are plotted. Figure 4.2 demonstrates the frequency of observation for two systems, 

one completely secure and the other completely insecure. The horizontal axis shows the averaged 

power value and the vertical axis represents frequency of observation. It is assumed that the number 

of possible combinations of inputs is 10. For the insecure system, the averaged power value for each 

transition is different from other transitions, and hence the frequency of each averaged power value is 

one; such a system is easily breakable by analyzing power consumption. On the other hand, if a 

system consumes the same value of power in all clock cycles, the power consumption of this system 

does not reveal any information about the transition occurring inside the system and makes it 

impossible to break it. The system shown in grey in Figure 4.2 is an example of a secure system.   

Figure 4.3 shows frequency of observation for two real systems (to be detailed in Chapter 5). One 

can see that, for System 1, averaged power values are spread over a smaller range compared to 

System 2. Thus, power consumption of System 2 is more correlated to its input transitions, and 

observing its power consumption reveals more information about the secret key.  

Therefore, while frequency of observation is not a measure to accurately evaluate a system’s 

vulnerability against power analysis, it does provide a simple and effective visual tool to estimate the 

behavior of a system with a limited number of input transition combinations. This measure is 

effective for comparison of basic gates. 
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Figure 4.2: Frequency of observation, secure system vs. insecure system. 

 

 

Figure 4.3: Comparison between frequencies of observation of two real systems. 
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4.3 Normalized Energy Deviation (NED) and Normalized Standard Deviation 
(NSD) 

Formulating frequency of observation leads to the definition of normalized energy deviation and 

normalized standard deviation. As in the previous section, these two measures take averaged power 

consumption per cycle as input and indicate the variance of the power values. NED is defined in 

Formula 4.3. 

��� �  �t0	������/m�m���* ���	������/m�m���
�t0	������/m�m���                                                (4.3) 

NED produces a value between 0 and 1. The smaller the variation in power values, the smaller the 

value of NED. This makes the attack more complex and required more measurements. A narrow 

range of power values in the frequency of the observation diagram results in a small NED value. 

Although NED has been used in many papers thus far, it may result in an unfair comparison. Figure 

4.4 presents two systems with the same value of NED. However System 1 can be considered a more 

secure system, since its power values are located in a narrower range.  

 

Figure 4.4: Systems with same NED value but different levels of security. 

 

In order to address issues like the one in Figure 4.4, another measure, called NSD, is defined in 

Formula 4.4.  
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 t��t�� ��n�t �/�
��t�                                                          (4.4) 

NSD measures how averaged power values are located around their mean. If they are spread 

widely around the mean, NSD is larger, and if they are close to the mean, NSD is smaller. In the latter 

instance, the system is more secure. The NED value for both systems in Figure 4.4 is 0.83; however, 

the NSD value is 0.25 for System 1 and 0.47 for System 2, signaling the higher security level of 

System 1.  

NSD is not a completely accurate measure. Figure 4.5 shows two systems with the same level of 

power variation and thus the same level of security; however, NSD for System 1 is about half of the 

NSD for System 2. The reason is that while both systems have almost the same amount of standard 

deviation, the mean for System 1 is about twice that of System 2. NED is equal for both systems, so it 

provides a more precise measure in this situation.  

 

 

Figure 4.5: Systems with same level of security but different values of NSD. 

 

As a result, NED and NSD are two simple but effective measures that provide security evaluation 

of systems with limited number of input transition combinations. Although they have been used in 

various papers, they are not completely accurate and they must be used carefully. In this research, we 

have used these two measures along with frequency of observation to evaluate three basic gates, 

NAND, NOR and XOR, in sub-threshold, strong inversion, SABL, and WDDL logic schemes.  
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4.4 Correlation Power Analysis (CPA) 

Correlation power analysis is the most accurate measure among the presented measures. It not only 

provides correlation coefficients which can be used to compare various systems, but also reveals the 

secret key. We have used CPA to attack the S-Box block of the AES algorithm and the AES 

architecture itself. We have also used CPA to study the correlation between key and power 

consumption in the parallel XORs architecture shown in Figure 3.7.  

The CPA process is built in three stages: 1. Power consumption matrix acquisition; 2. Predicted 

power consumption matrix generation; and 3. Correlation matrix generation. Each step is described in 

detail in the following sections. 

4.4.1 Power Consumption Matrix Acquiring 

This stage includes writing a suitable testbench and running a simulation on the design under test to 

acquire all power traces corresponding to a fixed key and all possible plaintexts.  

An S-Box block under attack is shown in Figure 3.12. The key is fixed and the plaintext takes all 

possible values from 0 to 255. The testbench is written in such a way that the ciphertext Ci, 

corresponding to the plaintext Pi, is generated in one clock cycle. In the next clock cycle, output is set 

to 0. Figure 4.6 provides an overview of this testbench. 

 

 

Figure 4.6: S-Box testbench for generating power traces. 

 

The next step is producing power traces using the procedures described in Chapter 3. Generated 

power trace is a long file that has to be processed in MATLAB to extract 256 traces corresponding to 

256 different plaintexts. The final matrix is shown in Figure 4.7. Each row of this matrix is a power 

trace for one fixed plaintext, and each column shows instantaneous power consumption at time ti for 

all possible plaintexts.  
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Figure 4.7: Power traces matrix generated from simulation. 

 

The testbench for AES is different, because an encryption process takes 175 clock cycles rather 

than just one clock cycle in S-Box. Also, the plaintext and key are both 128-bit wide instead of 8-bit 

wide. The key in the AES testbench is fixed (the same as the S-Box testbench) but instead of varying 

the plaintext over the whole possible range (which includes 2
128

 different values) only the lowest 8 

bits of the plaintext vary from 0 to 255. Each plaintext remains unchanged for 175 clock cycles to let 

the output ciphertext appears, after which it proceeds to the next value. Thus, 256 encryption 

operations occur, consecutively. Applying PrimeTime PX to AES using the mentioned testbench 

generates a very long power trace that requires careful manipulation in MATLAB to generate the 

power trace matrix. The matrix is the same as that in Figure 4.7; however, total time, T, for AES is 

much longer than the one for S-Box. 

The same methodology is used for parallel XORs architecture to acquire the power traces for all 

256 possible plaintexts. Despite S-Box and AES, simulation and power measurements are performed 

at the transistor level in Cadence Virtuoso Analog Environment. The testbench runs the architecture 

with 256 plaintexts consecutively, which takes 256 clock cycles to complete. As with S-Box and 

AES, the rest of the procedure manipulates the long power trace obtained from Cadence to create a 

power traces matrix the same as the one in Figure 4.7. 

4.4.2 Predicted Power Consumption Matrix Generation 

In this stage, one needs to set up the attack point and generate a predicted power consumption matrix 

based on either the Hamming distance model or the Hamming weight model. As mentioned in 

Chapter 3, the attack point in AES architecture is at the Data_out node in the first round. The output 

of the register is also chosen for the attack point in the S-Box block. Hence, the Hamming weight of 
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the XORed value of plaintext and key can be used to generate the desired matrix. The matrix is a 

256×256 matrix, for which each element can be calculated using Expression 4.5. 

PredictedPoweri,j = Hamming_Weight(Pi + Kj)                                     (4.5) 

where Pi is the i
th

 plaintext and Kj is the j
th
 key. Both Pi and Kj are assumed to be 8-bit. Therefore, 

each element of the matrix can take a value between 0 and 8. The models used are Hamming weight, 

however, since the testbench of S-Box generates a 0 between each pair of plaintext, the Hamming 

distance model also has the same formula as the one in Expression 4.5. 

The attack point in the parallel XOR architecture is the output of XORs. The model used for this 

architecture is the Hamming distance one. Expression 4.6 presents the formula used to generate the 

predicted power matrix.  

PredictedPoweri,j = Hamming_Distance(Pi + Kj , Pi-1 + Kc)                        (4.6) 

where Kc is the correct key. It is assumed that the correct key is known because the purpose of this 

case is not revealing the secret key and we are interested in studying the correlation between the key 

and power consumption using the proposed model. 

4.4.3 Correlation Matrix Generation 

In this stage, the correlation between the power traces matrix obtained by simulation and the 

predicted power matrix generated in MATLAB will be calculated. The output correlation matrix’s 

size is 256×T, with each row corresponding to a correlation trace over time for a key guess. The 

MATLAB code to generate this matrix is as follows. 

for i=1:T 
    for j=1:256          

      Correlation=corrcoef(power_traces(:,i),predicted_power(:,j)); 

      Corr_trace(j,i)=Correlation(1,2); 
    end 
end 

The inner loop correlates column i of the power_trace matrix with all 256 columns of the 

predicted_power matrix and saves them in column i of the Corr_trace matrix. Since columns of 

power_trace represent time and columns of predicted_power represent keys, column i of Corr_trace 

contains the correlation coefficients of all keys at time i.  

After 256 iterations, when one time slot is completed in the inner loop, the outer loop moves to the 

next time slot in the power_trace matrix. This operation repeats for T iterations. At the end, each row 

in the Corr_trace matrix represents the correlation coefficients of a key over time. Figure 4.8 

illustrates the process showing one iteration of the outer loop at time 0. 
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Figure 4.8: One iteration of outer loop to calculate the correlation matrix. 

 

Once the correlation matrix is completed, we have 256 correlation traces. In order to find the 

correct key, the highest peak of each trace must be determined. If the maximum peak value occurs for 

the key k, it means that k has the highest correlation with obtained power traces; hence, the secret key 

of the system is k. 
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Figure 4.9 demonstrates an example of a correlation trace for a correct key compared to one for a 

wrong key. Electromagnetic radiation of a synthesized ASIC during a DES operation is measured in 

[27] and led to the traces in Figure 4.9. We can observe that the maximum peak occurs in a trace that 

corresponds to the correct key. 

 

 

 

Figure 4.9: Correlation traces for correct key and an example of a wrong key in a CPA attack on a DES 

operation [27]. 
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Chapter 5 
Simulation Results 

This chapter evaluates the architectures discussed in Chapter 3 based on the measures introduced in 

Chapter 4 and presents the simulation results. It also compares side channel information leakage in 

different logic schemes including SABL, WDDL, strong inversion and sub-threshold. The chapter 

opens by analysis of the power consumption behavior of an XOR gate in sub-threshold versus strong 

inversion in transition of output from 0 to 1 and 1 to 0, using the DME measure. This study is the first 

glance at differences between sub-threshold and strong inversion. In order to further highlight the 

difference between the behavior of power consumption in sub-threshold and strong inversion 

confronting various transitions, the parallel XORs architecture is evaluated based on the DME 

measure from Section 2. 

The chapter continues with comparisons of NAND, NOR and XOR gates in SABL, WDDL, sub-

threshold and strong inversion logic schemes. Frequency of observation is the first applied measure 

that provides a visual overview of the security performance of the various logic schemes. Then, NED 

and NSD are calculated to create a numeric scale for comparison. In the previous section, utilizing 

XOR and parallel XORs, instantaneous power consumption was employed; in this section, however, 

averaged power consumption per clock cycle is used for evaluation.  

In the last section, correlation power analysis is performed on parallel XORs, S-Box and AES. 

Comparison of correlation coefficients between sub-threshold and strong inversion is the area of 

interest for architectures in the last section. 

 

5.1 XOR Gate Analysis with DME Measure 

The power consumption behavior of an XOR gate in sub-threshold region is compared to the same 

gate in strong inversion in this section. First, power waveforms generated using different transitions 

are provided. Spikes in the power waveform which contain the main information hidden in the trace 

can be observed. In the next part, the difference between power traces generated during the transition 

of data from 0 to 1 and from 1 to 0 with either key value of 0 or 1 is studied. This difference forms the 

main tool to compare sub-threshold and strong inversion. In the last part of this section, the difference 

of mean energies measure is again used. However, difference signals in the last part come from the 

difference between power traces of identical data transitions but with different keys. 

5.1.1 Power Waveforms at Sub-threshold and Strong Inversion 

The XOR gate studied in this section is a two input gate, with one input called Key and the other 

called Data. Apart from minor changes in load capacitance, frequency and supply voltage, 

testbenches for sub-threshold and strong inversion are similar. The load capacitance is 10 fF in strong 
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inversion and 0.1 fF at sub-threshold. Frequency of operation is considered 1 GHz for strong 

inversion and 20 MHz for sub-threshold. The circuit is powered with a 1 V supply voltage in strong 

inversion and a 200 mV supply voltage at sub-threshold.  

The testbench keeps the Key fixed at 1 and raises Data to 1 from 0. It then drops it to 0 and repeats 

this operation with the Key fixed at 0. The testbench also performs this experiment with the reverse 

transition of Data, i.e. from 1 to 0 and 0 to 1. Figures 5.1 to 5.4 show the power waveforms for strong 

inversion in the left window and input and output signals in the right windows. Figures 5.5 to 5.8 

show the same signals for sub-threshold. 

 

 

 

 

 

Figure 5.1: Strong inversion power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=0 and Data=0->1->0. 
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Figure 5.2: Strong inversion power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=0 and Data=1->0->1. 

 

 

Figure 5.3: Strong inversion power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=1 and Data=0->1->0. 
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Figure 5.4: Strong inversion power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=1 and Data=1->0->1. 

 

 

Figure 5.5: Sub-threshold power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=0 and Data=0->1->0. 
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Figure 5.6: Sub-threshold power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=0 and Data=1->0->1. 

 

 

Figure 5.7: Sub-threshold power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=1 and Data=0->1->0. 
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Figure 5.8: Sub-threshold power waveform at left for XOR circuit, with plots on the right (top to bottom) of , 

key, input data and output data for Key=1 and Data=1->0->1. 

 

The presented power waveforms provide an overview of the XOR gate’s behavior in sub-threshold 

and strong inversion. Nevertheless, a closer look into the close range around the spike signals is 

necessary and provides a more realistic image. The main reason is that the period of signals in Figures 

5.1 to 5.4 is 1ns, while the period is 50 ns for sub-threshold in Figures 5.5 to 5.8. Power traces are 

sketched over sample numbers to provide the required view. Figure 5.9 shows power waveforms in 

each case of 0 to 1 and 1 to 0 Data transitions for Key equal to 1 and Key equal to 0. The same 

sketches are given in Figure 5.10 for sub-threshold.  

The first point to notice here is that the higher level of similarity in power traces of sub-threshold 

compared to strong inversion. As mentioned earlier, power traces for various transitions in an ideally 

secure system must completely match. Thus, although the XOR gate operating in sub-threshold 

illustrates a higher quality in power traces at first glance, later sections analyze these traces more 

precisely.  

Although side channel information leakage measurements may occur in instantaneous power 

traces, averaged power consumption per clock cycle can also be used to compare averaged power 

required for a 0 to 1 transition versus a 1 to 0 transition. Table 5.1 demonstrates the averaged power 

values for strong inversion and Table 5.2 shows these values for sub-threshold. Each transition takes 

two clock cycles. For instance, in the first row of Table 5.1, first two columns are the averaged power 

values to complete a 0 to 1 transition in two clock cycle and the last two columns show the values to 

complete a 1 to 0 transition. Values related to a 0 to 1 transition in output are highlighted in grey.  
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Figure 5.9: A Closer look at power spikes for strong inversion for a) key=1, 0-1 transition b) key=0, 0-1 

transition c) key=1, 1-0 transition d) key=0, 1-0 transition. 

 

Figure 5.10: A Closer look at power spikes for sub-threshold for a) key=1, 0-1 transition b) key=0, 0-1 

transition c) key=1, 1-0 transition d) key=0, 1-0 transition. 
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 Cycle 1 Cycle 2 Cycle 3 Cycle 4 

Key=1,Data=1→0→1 10.6 0.0811 0.5038 0.0144 

Key=1,Data=0→1→0 0.516 0.0158 10.45 0.0786 

Key=0,Data=1→0→1 0.487 0.0143 10.49 0.0838 

Key=0,Data=0→1→0 10.63 0.0871 0.4745 0.0146 

Table 5.1: Averaged power values for strong inversion (grey cells are related to 0 to 1 transition in output), with 

values in µW. 

 

 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 

Key=1,Data=1→0→1 564.5 151.2 484.7 117.3 

Key=1,Data=0→1→0 488.7 117.3 547.1 145.8 

Key=0,Data=1→0→1 440.2 130.8 528.5 226.0 

Key=0,Data=0→1→0 533.5 233.9 442.9 130.8 

Table 5.2: Averaged power values for sub-threshold (grey cells are related to 0 to 1 transition in output), with 

values in pW. 

  

Based on the values of Tables 5.1 and 5.2, the average power consumed in a 0 to 1 transition of 

the output is 5.31 µW for strong inversion and 366 pW for sub-threshold. The value for a 1 to 0 

transition on the output is 0.260 µW for strong inversion and 294 pW for sub-threshold. These values 

demonstrate that the average power consumed at sub-threshold region to raise the output signal to 1 

from 0 is almost the same as the power consumed to drop it back to 0. On the other hand, these 

average values for strong inversion are starkly different. The ratio of the average power for 1 to 0 

transition to the average power for 0 to 1 transition is 80% for sub-threshold but, only 5% for strong 

inversion. 

The level of the operation voltage is the most important factor that makes the situation worse for 

strong inversion. However, the frequency of operation and output load capacitance are also involved. 

The testbench has tested each circuit in its real operational point to make a judgment between sub-

threshold and strong inversion with the required characteristics of each region. Therefore, although 

testing a circuit in strong inversion with a very low frequency and low load capacitance may result in 

much better results, it would not be a fair experiment.  
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5.1.2  DME Signals for Fixed Keys 

Power traces for all combinations of fixed Key and 0-1-0 and 1-0-1 pulses on Data were obtained in 

the previous section. In this section, the difference between a power trace for a 0 to 1 transition and 1 

to 0 transition with a fixed Key of either 0 or 1 is studied. Expression 5.1 shows the calculation of 

DME signal in this section. 

 DME0 = | |power_0to1| - |power_1to0| |  for key = 0                   (5.1) 

DME1 = | |power_0to1| - |power_1to0| |  for key = 1 

Figures 5.11 to 5.14 show the difference signals of the same case for sub-threshold and strong 

inversion, plotted in one figure.  

 

 

Figure 5.11: DME0 signals for Key=0 and Data=0->1->0 for a) Strong Inversion b) Sub-threshold.  

 

Figure 5.12: DME0 signals for Key=0 and Data=1->0->1 for a) Strong Inversion b) Sub-threshold. 
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Figure 5.13: DME1 signals for Key=1 and Data=0->1->0 for a) Strong Inversion b) Sub-threshold. 

 

 

Figure 5.14: DME1 signals for Key=1 and Data=1->0->1 for a) Strong Inversion b) Sub-threshold. 

 

Since the absolute value is considered for DME, it is expected that difference signals for the Key 

of 0 will have reasonable similarity. Comparing Figures 5.11 and 5.12 confirms our expectation. The 

same similarity also exists between Figure 5.13 and Figure 5.14 for Key of 1.  

The first point to note in these signals is that the average of strong inversion’s DME is higher than 

the average of sub-threshold, which means that the difference signals for sub-threshold are closer to 

zero most of the time. Sub-threshold has either one or two spikes in DME, which results from the 

mismatched spike times in power traces. Since the power trace’s peaks for 0 to 1 and 1 to 0 

transitions are almost the same, matched timing could result in a closer to ideal DME signal. 
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The second point to note to be made in relation to the presented signals is peak value. Table 5.3 

summarizes the results using the ratio shown in Expression 5.2 for sub-threshold and strong 

inversion. The lower the value of PeakRatio, the better the security characteristics of the circuit.  

�"s��s��� �  �t0�y�y ��t} �� ���
�t0�y�y ��t} �� �/��� 5/���y� �/�                                  (5.2) 

It can be observed that PeakRatio of sub-threshold, for the Key equal to 1, is about half of the ratio 

for strong inversion, indicating fewer information leaks from the power trace at sub-threshold. The 

ratio for Key equals to 0 is almost the same for both logics with a slight advantage for strong 

inversion. Another interesting point in Table 5.3 is that all of the ratios for sub-threshold are almost 

equal. 

 

 Strong Inversion Sub-threshold 

Key=1,Data=1→0→1 17% 6.5% 

Key=1,Data=0→1→0 16% 6.7% 

Key=0,Data=1→0→1 3.8% 6.7% 

Key=0,Data=0→1→0 5.1% 6.8% 

Table 5.3: PeakRatio for strong inversion and sub-threshold in various cases. 

 

The third point is the absolute value of the peak. The maximum peak value for strong inversion is 

about 2×10
-4

, which is almost 300 times the maximum peak value for sub-threshold, 6×10
-6
. Since the 

level of the power is also an important factor in side channel analysis, where low current and power 

levels may lead a failed attack or may force the attacker to collect more traces, sub-threshold has an 

important advantage in this aspect.  

5.1.3 DME Signal for Fixed Data Transitions 

In this section the DME calculation method is different from the previous section. Here, the Data 

transition is fixed and DME is the difference between the power trace corresponding to Key of 0 and 

the power trace corresponding to the Key of 1. Expression 5.3 presents the mentioned method in 

formula. Figures 5.15 and 5.16 show this new set of DME signals for sub-threshold and strong 

inversion. 

 

       DME0to1 = | |power_key0| - |power_key1| |  for Data = 0→1                    (5.3) 

DME1to0 = | |power_key0| - |power_key1| |              for Data = 1→0 
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Figures 5.15 and 5.16 also propose a higher level of security for sub-threshold versus strong 

inversion. One can observe that the DME signal for sub-threshold is just one or two spikes, while it is 

a nonzero signal for most of the shown time window for strong inversion. A higher level of power 

consumption can also be seen in these figures.  

 

 

Figure 5.15: DME signals for Data = 0→1 for a) Strong Inversion b) Sub-threshold. 

 

 

Figure 5.16: DME signals for Data = 1→0 for a) Strong Inversion b) Sub-threshold. 
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5.2 Parallel XORs Architecture Analysis with DME Measure 

The parallel XORs architecture previously shown in Figure 3.7 is simulated with all 256 possible 

inputs (b) and fixed key (k) of 5C and 5D. An important fact about the choice of 5C and 5D is that 

one has the lsb of 0 and the other has the lsb of 1. After simulation, 256 power traces corresponding 

to the applied inputs are obtained. Mean signals, M0 and M1, are the average of signals in set T0 and 

T1, shown in Expression 5.4, respectively. DME is calculated using Formula 4.2. 

�> � ���| �̀ � 0�                                                            (5.4) 

�j � ���| `� � 1� 
Figure 5.17 shows DME signals for strong inversion and sub-threshold. Like the previous 

conclusions, two important advantages can be observed in sub-threshold signals. First, the DME of 

sub-threshold is, on average, closer to zero. Second, the similarity between difference signals of sub-

threshold for key of 0 and key of 1 is greater than the similarity between those for strong inversion. 

Hence, the parallel XORs architecture at sub-threshold demonstrates enhanced security performance 

in comparison to strong inversion.  

 

 

Figure 5.17: DME signals for parallel XORs architecture for a) Strong Inversion b) Sub-threshold. 
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5.3 NAND, NOR and XOR Gates Analysis with Frequency of Observation 
Measure 

The frequency of observation was introduced in section 4.2. In this section, averaged power 

consumption per clock cycle values for designs under investigation are obtained by simulation and 

used to plot the frequency of observation or frequency of occurrence of each power value. The test 

gates for this experiment are NAND, NOR and XOR, in all logic schemes of SABL, WDDL, sub-

threshold, and strong inversion. Each of the test gates, has two inputs, and each input experiences four 

transitions (0-0, 0-1, 1-0 and 1-1). Thus, there are 16 different possible combinations of transitions. 

These input transitions and the output transition for NAND, NOR and XOR gates are represented in 

Table 5.4 and are tested with all possible transitions and the averaged power consumption is 

measured for each.  

 

in1 in2 NAND-out NOR-out XOR-out 

0-0 0-0 1-1 1-1 1-1 

0-0 0-1 1-1 1-0 1-0 

0-0 1-1 1-1 0-0 1-1 

0-0 1-0 1-1 0-1 1-0 

0-1 0-0 1-1 1-0 0-1 

0-1 0-1 1-0 1-0 0-0 

0-1 1-1 1-0 0-0 1-0 

0-1 1-0 1-1 0-0 1-1 

1-1 0-0 1-1 0-0 1-1 

1-1 0-1 1-0 0-0 1-0 

1-1 1-1 0-0 0-0 0-0 

1-1 1-0 0-1 0-0 0-1 

1-0 0-0 1-1 0-1 1-0 

1-0 0-1 1-1 0-0 1-1 

1-0 1-1 0-1 0-0 0-1 

1-0 1-0 0-1 0-1 0-0 

Table 5.4: Testbench. 

 

The frequency of the clock signal in SABL, WDDL and strong inversion is chosen to be 1 GHz, 

which is a reasonable frequency for an individual gate. The frequency for the circuits at sub-threshold 

is chosen to be 20 MHz. The supply voltages for SABL, WDDL and strong inversion are 1 V, and the 

supply voltage at the sub-threshold is 200 mV. 

The results of each gate are presented individually in the following sections. 
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5.3.1 NAND Gate 

Figure 5.18 compares SABL with strong inversion. This histogram shows that while the observed 

energies are spread out in a broad range for strong inversion, they remain in a narrow band for SABL. 

However, the average power consumption of SABL is more than five times the power consumption 

of SE. 

Since both logic schemes are tested under the same testbench, the narrow band of the energies for 

SABL shows less correlation between power consumption and inputs. Thus, SABL is a more secure 

logic against power analysis attacks. 

 

 

Figure 5.18: SABL vs. strong inversion for the number of observed energies per cycle (NAND). 

 

Figure 5.19 demonstrates the same type of comparison between WDDL and strong inversion. It 

can be seen that the energies per cycles for WDDL remain in a narrow band while they spread out for 

strong inversion. As mentioned, this finding means that WDDL is more secure than strong inversion 

and that its power consumption is also significantly greater than strong inversion’s.  

Comparing SABL and WDDL can also prove useful. Figure 5.20 represents this comparison. As 

this histogram shows, the energies of SABL are closer than those of WDDL. Hence, SABL is a more 

secure logic scheme. It can also be seen that the power consumption of WDDL is less than SABL’s. 
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Figure 5.19: WDDL vs. strong inversion for the number of observed energy per cycle (NAND). 

 

 

Figure 5.20: SABL vs. WDDL for the number of observed energy per cycle (NAND). 
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Finally, Figure 5.21 demonstrates a comparison between sub-threshold and strong inversion. The 

power consumption of the sub-threshold is about 1000 times less than strong inversion’s, so, in order 

to compare the two, the power value of sub-threshold in this histogram is scaled by 1000. The 

histogram shows that the average power values of strong inversion are more widely spread out. 

Therefore, it can be concluded that sub-threshold schemes provide less correlation between power 

and inputs 

 

 

Figure 5.21: Strong inversion vs. sub-threshold for the number of observed energy per cycle (NAND). 

 

5.3.2 NOR Gate 

The same comparisons have been done for NOR gates. Figures 5.22 to 5.25 present the results. Here, 

the same conclusion as for the NAND gate can be made for the NOR gate. SABL’s histogram has the 

narrowest width, followed by WDDL’s. However, these two logic schemes consume substantially 

more power than strong inversion, which itself consumes 1,000 times more power than sub-threshold. 

Sub-threshold has also shown less variation in power compared to strong inversion, which means less 

correlation to inputs. 
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Figure 5.22: SABL vs. strong inversion for the number of observed energy per cycle (NOR). 

 

 

Figure 5.23: WDDL vs. strong inversion for the number of observed energy per cycle (NOR). 
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Figure 5.24: SABL vs. WDDL for the number of observed energy per cycle (NOR). 

 

 

Figure 5.25: Strong inversion vs. sub-threshold for the number of observed energy per cycle (NOR). 
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5.3.3 XOR Gate 

XOR gate has the same behavior as the previously described gates; however, in XOR the average 

power consumption for the transition from 0 to 1 is significantly larger than others. The reason can be 

found in the architecture of the XOR gate, which generates many glitches before the pull-up network 

is completely turned on. Figures 5.26 to 5.29 show the frequency of observation histograms for the 

XOR gate.  

 

Figure 5.26: SABL vs. strong inversion for the number of observed energy per cycle (XOR). 

 

Figure 5.27: WDDL vs. strong inversion for the number of observed energy per cycle (XOR). 
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Figure 5.28: SABL vs. WDDL for the number of observed energy per cycle (XOR). 

 

 

Figure 5.29: Strong inversion vs. sub-threshold for the number of observed energy per cycle (XOR). 
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5.4 NAND, NOR and XOR Gates Analysis with NED and NSD Measures 

NED and NSD were introduced in section 4.3. Averaged power values, presented in the histograms in 

the previous section, are used to calculate NED and NSD based on Expressions 4.3 and 4.4. Table 5.5 

demonstrates the mean, standard deviation, NED, and NSD for all three gates. The mean and STD are 

in µW for SABL, WDDL and strong inversion, and in nW for sub-threshold. 

 

 NAND NOR XOR 

    Logic 

Measure 
SABL WDDL S.I. Subth. SABL WDDL S.I. Subth. SABL WDDL S.I. Subth. 

Mean 2.41 2.13 0.34 0.17 2.41 2.13 0.63 0.31 2.4 6.57 2.87 0.377 

STD 0.03 0.09 0.58 0.14 0.03 0.09 0.88 0.29 0.02 0.22 4.62 0.152 

NED 0.03 0.17 1.00 0.95 0.03 0.16 1.00 1.00 0.02 0.10 1.00 0.79 

NSD 0.01 0.04 1.47 0.80 0.01 0.04 1.41 0.94 0.01 0.03 1.61 0.40 

Table 5.5: NED and NSD values for NAND, NOR and XOR gates. 

 

The first noticeable point in Table 5.5 is the extremely low values of NED and NSD for SABL and 

WDDL logic schemes. While these two logic schemes are the most secure ones, they consume 

noticeably more power. Among strong inversion and sub-threshold, the later one not only consumes 

about 1000 times less power, but also its power values have less variation. Lower values of NED and 

NSD for sub-threshold in comparison to strong inversion confirms that power traces of a circuit 

operating at sub-threshold leak less information.  

Lower levels of NED and NSD values for the XOR gate in sub-threshold compared to the same 

logic for NAND and NOR is most probably caused by the output load capacitance. The load 

capacitance for NAND and NOR gates are 1fF; however, this value for XOR is 0.1 fF. The reason is 

that in the XOR, the load capacitance value is a fraction of the load capacitance in strong inversion 

which the scaling value is the ratio of the operation frequency in strong inversion to the operation 

frequency at sub-threshold.  

5.5 Parallel XORs Architecture Analysis with CPA Measure 

As mentioned earlier, the parallel XORs architecture shown in Figure 3.7 is simulated with all 256 

possible inputs (b) and fixed key (k) of 5D and 5C. An important feature of 5D and 5C is that one has 

the lsb of 1 and the other has the lsb of 0. After simulation, 256 power traces corresponding to applied 
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inputs are obtained. The CPA methodology described in section 4.4 is used to obtain the correlation 

trace matrix (Corr_trace). The power model used here is Hamming distance.  

Various experiments are performed on the Corr_trace matrix. First, it is used to reveal the correct 

key. The absolute value of maximum peaks and their indexes of each of 256 traces are stored in other 

arrays. Let’s call the array containing the maximum peak values, Max_Corr_Coeff. The index 

corresponding to the maximum value of Max_Corr_Coeff gives the correct key. In simpler terms, the 

key containing the highest correlation peak compared to all other keys is the correct key. A CPA 

attack executed on the correlation matrices of both sub-threshold and strong inversion was able to 

detect the correct key for both 5C and 5D. Figure 5.30 demonstrates the Max_Corr_Coeff traces, 

arrays of maximum correlation values, for both strong inversion and sub-threshold. The correlation 

coefficient of the correct key, 5D, is shown. Figure 5.30.c represents the difference of two histograms 

shown in 5.30.a and 5.30.b. The same comparison for key of 5C is shown in Figure 5.31.  

 

 

 

Figure 5.30: Maximum Correlation Coefficients for correct key = 5D, for a) Strong Inversion b) Sub-threshold 

c) Difference of strong inversion and sub-threshold. 
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Figure 5.31: Maximum Correlation Coefficients for correct key = 5C, for a) Strong Inversion b) Sub-threshold 

c) Difference of strong inversion and sub-threshold. 

 

The maximum correlation values of both logics are almost the same, with slightly more weight on 

the strong inversion side. However, parts c of Figures 5.31 and 5.30 show that the correlation 

coefficients of strong inversion are generally more than the sub-threshold’s coefficients. Specifically, 

strong inversion’s correlation coefficients are on average about 0.05 greater than sub-threshold’s. 

Thus, we can deduce that the power consumption of the parallel XOR architecture at sub-threshold 

correlates less with its input. Nevertheless, the crucial factor that likely makes the attack harder (and 

is not possible to show in simulation) is the power level. Power consumption of this architecture at 

sub-threshold is 100 times less than strong inversion’s, which makes the power analysis attack much 

more difficult.  

Figure 5.32 presents the absolute value of the difference between the maximum correlation 

coefficients, Max_Corr_Coeff, of key 5C and key 5D for strong inversion and sub-threshold. The 

smaller this difference, the more secure the device. As can be seen in Figure 5.32, the difference is 

graeter for strong inversion. The maximum difference is 0.4 for strong inversion, but just 0.12 for 

sub-threshold. Also, the average of these differences is 0.019 for strong inversion versus 0.0058 for 

sub-threshold. 
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Figure 5.32: Difference of Max_Corr_Coeff traces for Key=5C and Key=5D, for a) Strong Inversion b) Sub-

threshold. 

The correlation trace of the correct key is shown in Figures 5.33 and 5.34 for keys of 5D and 5C, 

respectively.  

 

Figure 5.33: Correlation coefficient traces corresponding to the correct key, 5D, for a) Strong Inversion b) Sub-

threshold. 
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Figure 5.34: Correlation coefficient traces corresponding to the correct key, 5C, for a) Strong Inversion b) Sub-

threshold. 

The final point worth noting here is the time at which the power trace correlates with the acquired 

power model. Figures 5.35 and 5.36 illustrate the time of correlation for each key guess.  

 

Figure 5.35: Time of occurring correlation for each key guess and correct key of 5D, for a) Strong Inversion b) 

Sub-threshold. 
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Figure 5.36: Time of occurring correlation for each key guess and correct key of 5C, for a) Strong Inversion b) 

Sub-threshold. 

 

Figures 5.35 and 5.36 demonstrate that time steps for sub-threshold is more than those for strong 

inversion. Since the scaled time is actually the sample numbers, more time steps in strong inversion 

might have happened because of more glitches around the correlation time and, thus result in more 

recorded samples by the Cadence. When more samples are recorded, correlation time variations may 

increase.  

5.6 Correlation Power Analysis Attack 

So far, all mentioned measures were applied to the transistor level designs. Hence, the only required 

tool to extract power traces is Cadence Virtuoso Analog Design Environment. From here on, S-Box 

block and Advanced Encryption Standard core will be the focus of attacks and studied for their 

amount of information leakage. Since custom designing these architectures is a time consuming 

process, the goal of this project is to employ ASIC design methodologies, described in section 3.2, to 

implement these complex architectures and perform the power analysis study on them. 

Designs in strong inversion are successfully implemented and power consumption traces are 

obtained and studied by CPA. Indeed most challenging part of this research was setting up the tools 

required to synthesize designs at sub-threshold. Intense and continuous efforts were made to gather 

information as well as to set up and run the required tools. Despite the monumental efforts, various 
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bugs and difficulties, such as library issues and Spectre simulation failure challenged the setting up of 

the Cadence Encounter Library Characterizer. Issues and errors were referred to CMC Microsystems 

and Cadence. After a few months of follow-up, Cadence informed us that dp_spice commands fails 

due to some raw directory issues. A Cadence Change Request was submitted to the R&D team for 

troubleshooting, but unfortunately, this process took a long time. Therefore, we could not characterize 

the available standard cell library for sub-threshold operation and have not been able to attain any 

simulation result from sub-threshold logic at this time. Simulation results of strong inversion logic 

will be provided here and hopefully, in the near future, we will be able to add sub-threshold results to 

this research to complete the work. More details about the ELC issues are provided in Appendix A. 

The next section presents the strong inversion results of S-Box and AES results will follow in 

section 5.6.2. 

5.6.1 S-Box Analysis with CPA Measure 

The architecture of the S-Box block described in Section 3.3.4 is the second architecture attacked 

with CPA. The architecture simulated with the testbench presented in section 4.4.1 and the Hamming 

distance model is used to acquire the correlation trace, Corr_trace, as explained in section 4.4.3. 

Like the CPA attack on Parallel XORs architecture, the key with the highest peak value compared 

to other keys is the correct key. The CPA attack mounted successfully on S-Box and the detected key 

was exactly equal to the correct key for various tested keys. Figure 5.37 demonstrates the maximum 

correlation trace and shows, 5C as the correct key. Figure 5.38 shows the correlation trace 

corresponding to the correct key. 

 

Figure 5.37: Maximum Correlation Coefficients for correct key = 5C. 
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Figure 5.38: Correlation coefficient trace corresponding to the correct key, 5C. 

5.6.2 AES Analysis with CPA Measure  

The AES architecture described in section 3.3.3 is the last architecture attacked with CPA. The 

architecture simulated with the testbench presented in section 4.4.1 and Hamming weight model is 

used to acquire the correlation trace, Corr_trace, as explained in section 4.4.3. 

The first difference between the attack on S-Box and AES is the power model. For S-Box, the 

model is the Hamming distance, and for AES, the model is Hamming Weight. The second difference 

is the size of the power traces that is significantly larger for AES, so, the attack takes longer to 

complete compared to S-Box. Figure 5.39 demonstrates the maximum correlation trace. The correct 

key, 5C, is also determined. Figure 5.40 shows the correlation trace corresponding to the correct key. 

The difference in maximum correlation between S-Box and AES is also noticeable. It is 0.96 for 

S-Box while, it is about the half, 0.5, for AES. This shows that implementing an attack on a full AES 

core requires more measurements, traces and time. 

The MATLAB Code written for the CPA attack on AES is provided in Appendix B. Parallel 

XORs and S-Box’s codes are similar to AES’s Code, with a slight difference in the attack model, and 

the size of traces. There are also some differences in importing traces into MATLAB between AES 

and Parallel XORs, since AES traces come from PrimeTime PX while Parallel XORs traces come 

from Cadence. However, changes are easy to make and there is no need to provide an individual code 

for each architecture.   
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Figure 5.39: Maximum Correlation Coefficients for correct key = 5C. 

 

 

Figure 5.40: Correlation Coefficient trace corresponding to the correct key, 5C. 
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Chapter 6 
Conclusions and Future Works 

6.1 Summary and Discussion 

In this thesis, side channel information leakage of the sub-threshold logic scheme against power 

analysis attacks was explored and compared with strong inversion logic, as the standard logic of 

operation, and against Sense Amplifier Based Logic (SABL) and Wave Dynamic Differential Logic, 

as the two of most referenced side channel resistant logics. 

An XOR gate was analyzed with difference of mean energies (DME) measure to provide an 

overview of power consumption behavior at sub-threshold operation. Instantaneous power 

consumption waveforms in different transitions and with keys of 0 and 1 were obtained. Comparisons 

showed not only that the power level of a circuit at sub-threshold region is significantly lower than 

strong inversion’s, but also that its power traces are more similar in different transitions and have less 

variation. In order to provide more detailed comparisons, DME measure was applied on power traces 

in experiments with fixed data transitions and fixed keys. In nearly all cases, the XOR gate showed 

less power variation and hence, less information leakage in sub-threshold operation.  

NAND, NOR and XOR gates were also studied with frequency of observation, NED, and NSD 

measures. They were simulated with all possible input transitions to obtain the averaged power 

consumption for each transition. Despite the XOR gate measured with DME, instantaneous power 

trace was not used, but, the power consumption was averaged in each clock cycle to reflect the 

averaged power value for each transition. Frequency of observation was used as a visualized measure 

and showed the dispersion of averaged power values. As expected, SABL and WDDL presented 

small dispersion in power values in comparison to strong inversion and sub-threshold. However, they 

consume more energy which is their major drawback. Sub-threshold showed less dispersion in power 

values and hence, more security compared to strong inversion. Lower values of NED and NSD were 

obtained for sub-threshold compared to strong inversion, thus re-emphasizing its lower information 

leakage. Nevertheless, the sub-threshold cannot compete with SABL and WDDL.  

Parallel XORs architecture was the next architecture tested. It was first analyzed with DME 

measure, after which power consumption traces were separated based on the lsb of input plaintext 

into two groups. Difference between the mean of these groups demonstrated two points: that the 

DME of sub-threshold is closer to zero on average (which shows better security) and, that DME 

signals for a key of bit value 1 and a key of bit value 0 are more similar compared to strong inversion. 

Once again this result leads to lower leakage of key information.  

Subsequently, the correlation power analysis (CPA) attack was performed on parallel XORs 

architecture. The CPA attack was able to reveal the correct key in both sub-threshold and strong 

inversion; however, maximum correlation coefficients corresponding to the correct key and most of 

the guessed keys were lower for the circuit operating at sub-threshold. The experiment was executed 

with two key bit values, one with lsb of 0 and the other with lsb of 1. The difference between 



 

77 

 

maximum correlation coefficient traces for the lsb of key equals 0 and lsb of key equals 1 showed that 

strong inversion is about three times more than sub-threshold’s. Indeed, all experiments showed that 

although the simulated CPA attack breaks the device for both logics, the correlation between power 

consumption and inputs is less for sub-threshold than strong inversion.  

The final architectures, S-Box and AES, were implemented using RTL design methodologies and 

attacked by CPA. Both architectures had a successful attack and their secret key was successfully 

revealed while operating in strong inversion. In order to perform the same simulations for sub-

threshold logic, we needed to characterize the available standard cell library for sub-threshold 

operation. However, due to library issues and Spectre simulation failure in ELC, the characterization 

process was aborted. Consequently, implementation of the S-Box and AES could not be completed 

for sub-threshold and there were no result to compare with strong inversion. The ELC issues were 

investigated by Cadence, who announced they would have to resolve the issues in their R&D team, 

which would require some time. Hence, despite several months of effort, research, and follow-up, this 

part of the study remains open until the near future when updates from Cadence are available.   

This research tried to improve previous research on side channel analysis of sub-threshold circuits. 

The study of NSD in this research showed that although lowering the supply voltage down to the sub-

threshold region decreases the dispersion of averaged power consumption values and as a result, 

lowers the value of NSD, however, the observed reduction was not on the order of 2500, as claimed 

in [41, 42]. The standard deviation of each region of operation was normalized with the mean value of 

the same region to provide a fair comparison. NSD of studied gates in this research demonstrated 

30%- 75% decrease while the order of magnitude remained the same. Compared to previous research 

[43], we considered a CPA attack instead of a DPA attack and also employed ASIC design 

methodologies rather than full csutom circuit design. 

6.2 Conclusions and Future Works 

All experiments in this research illustrated improved power consumption behavior from the side 

channel information leakage aspect in lowering the operating voltage from strong inversion region 

down to sub-threshold. Various used measures, such as DME, NED and NSD, represented lower 

dependency of power consumption on handled data and executed operation. Correlation power 

analysis also demonstrated that power consumption traces of a device at sub-threshold are less 

correlated to its inputs and secret key.  

Sub-threshold circuits are also expected to show a great resistivity to power analysis attacks 

because of their current and energy level. As a circuit operating at sub-threshold consumes from 10 to 

1000 times less energy and the level of its instantaneous power consumption is significantly lower 

than the same circuit operating in strong inversion, extracting information from their power 

consumption trace will be dramatically harder. Even if an attack is possible, it will require a much 

larger number of traces and more run time to accomplish the attack. On the other hand, a low level of 

power consumption requires less noise power to hide the secret information. So, white noise which is 
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the same for strong inversion and sub-threshold has a stronger effect on the information leakage at 

sub-threshold.  

In summary, this research demonstrated that sub-threshold operation has improved security against 

side channel analysis, but also it can decrease the amount of leaked information. As sub-threshold 

circuits are of recent interest for their considerably lower energy consumption, especially for RFID 

and biomedical applications where security is a concern, their vulnerability against power analysis 

attacks must be explored. This research provides a first look at this unexplored area of sub-threshold 

circuits. 

Various topics can still be studied in power analysis of sub-threshold logics. Three possible future 

topics in this area are described next. 

Although it has been mentioned that low current level at sub-threshold leads to a dramatically harder 

or even impossible attack, a measure to quantize this statement based on available measurement 

equipment could not be found. Thus obtaining such a measure, as the first possible extension to this 

research, would be beneficial for a more precise evaluation of sub-threshold circuit.  

In order to further investigate the sub-threshold logic behavior against power analysis attacks, the 

dependency of information leakage on voltage in the sub-threshold region could be studied. It is also 

interesting to examine if there is any optimum voltage to achieve the least amount of information 

leakage. 

Finally, implementing proposed side channel resistant logics for sub-threshold operation could be 

an interesting topic of study. A major drawback of the previously proposed logics is their high 

amount of energy consumption. Therefore, a sub-threshold version of those logics is expected to 

demonstrate excellent side channel resistivity along with reasonably low energy consumption. 
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Appendix A 
Encounter Library Characterizer’s Issues 

 

This appendix provides more details about the issues in ELC that are reported to CMC Microsystems 

and a Cadence Change Request submitted to Cadence R&D team. 

First issue is with the 65 nm TSMC model library. This model library contains some include 

instructions that includes different section of the same file within the original file and causes re-

definition error. Commenting the include section was the first approach that we chose and succeed to 

resolve that problem; however, that is not a recommended approach and the problem has to be 

resolved by Cadence or TSMC. A related given error is as follows: 

� [ERROR(db_prepare)] spice syntax error: NMOS_RF : redefinition of 

the subckt [ file = crn65gplus_2d5_lk_v1d0.scs, #line = 3924 ] 

 => subckt nmos_rf d g s b inl=ne 

  

Next and more important error occurs during the SPICE simulation with Spectre, after db_spice 

command. The error is: 

� [WARNING(db_spice)]No spice simulation to do, please check the 

cell/process list for any error 

The db_prepare command works fine and creates the design and all vectors but db_spice cannot 

recognize the simulation. Unfortunately, ELC leaves the log folders empty in most run that makes the 

tracking impossible; however, the error is assumed to be as follows. 

There are some parameters declared in the model file but when the ELC extract the pch and nch 

models in the db_prepare command, it does not copy those parameters value into the pch and nch 

model files, so they remain undefined. This problem does not show itself until db_spice command in 

which the spectre cannot complete the simulation because of those undefined parameters. One of the 

errors is provided below and all other errors are the same. 

� ERROR (SFE-1999): 

"/home/username/ELC_Test/foo.ipdb/NCH.device/simulate/model" 4: 

model 

`nch.1': parameter `wmin': Unknown parameter name `dxwn' found in 

       expression. 



 80 

Appendix B 
MATLAB Code for Correlation Power Analysis Attack on AES 

 

% AES attack. Each plain text takes 3680ns and total is 942080ns 

  
% Workspace that provides S-Box LUT 
workspace = 'WS1.mat'; 
method = 'CPA'; 
load('-mat',workspace); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Importing power traces generated by PrimeTime PX & saved in a text 

file 
power_input_file='AESKey5C.txt'; 
power=0; 
data=0; 

  
% reading in the file 
data = importfile1(power_input_file); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Seperating power traces and creating power_traces matrix introduced in 
%%% Chapter 4 
disp('Loading data ...'); 

  
[m,n] = size(data); 

  
%%% Some error checking to make sure that the file is generated in the 
%%% format that we expect the PrimeTime PX to generate. The expected 

format is: 
%%% Time,1,power_atTime,2,power_atTime (for one point of power trace) 
error1=0;error2=0; 
for i=1:m 
    if (mod(i,5) == 2) 
        if (data(i,n) ~= 1) 
            error1 = error1 + 1; 
        end 
    end 

     
    if (mod(i,5) == 4) 
        if (data(i,n) ~= 2) 
            error2 = error2 + 1; 
        end 
    end 
end 

  
p1=0;error3=0; 
for i=1:m 
    if (mod(i,5)==3) 
        p1=data(i,1); 
    elseif (mod(i,5)==0) 
        if (p1 ~= data(i,1)) 
            error3 = error3 + 1; 
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        end 
        p1 = 0; 
    end 
end 
%%% end of error checking, error1,2,3 must be 0 

  
%%% Creating power_traces and then aligning them based on the time matrix. 
%%% power_trace is the time aligned version of power 
start_time = 0; 
end_time = 94208000; 
cycle_cnst = 368000; 
cycle = 0; 
plain=1;time=1;data_time=0; 
power_size = zeros(256,1); 

  
for i=1:m 
    if (mod(i,5) == 1) 
        data_time = data(i,1); 
    end 
    if (mod(i,5) == 3) 
        if (start_time <= data_time)                 
            if ((cycle<=data_time) && (data_time<(cycle+cycle_cnst))) 
                power(plain,time) = data(i,1); 
                time_trace(plain,time) = (data(i-2,1)) - cycle; 
                time = time + 1; 
                power_size(plain) = power_size(plain) + 1;                 
            else 
                cycle = cycle + cycle_cnst; 
                if ( end_time <= cycle) break; end 
                plain = plain + 1; 
                time = 1;                                          
            end 
        end 
    end 
end 

  
[m,n] = size(time_trace); 
time_values = 6320; 
Times = zeros(time_values,1); 
k=2; 

  
for i=1:m 
    for j=1:n 
        if (time_trace(i,j) ~= Times) 
            Times(k) = time_trace(i,j); 
            k = k + 1; 
        end 
    end 
end 
Times = sort(Times); 
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[m,n] = size(power); 
k=1; 
power_trace = zeros(256,time_values); 

  
for i=1:m 
    k=1; 
    for j=1:time_values 
        if (time_trace(i,k) == Times(j,1)) 
            power_trace(i,j) = power(i,k); 
            k = k + 1; 
        else 
            power_trace(i,j) = 0; 
        end 
    end 
end 

  
%%% End of power_traces creation. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Power model matrix (predicted_power) matrix generation based on 

Hamming 
%%% Weight model and Correlating it with power_trace to create Corr_trace 
%%% matrix that we know from Chapter 4. 

  
traces = power_trace; 

  
b=1; 
inputs = [0:255]; 

  
disp('Predicting intermediate values ...'); 
[m,n] = size(traces); 

  
key = [0:255];   
after_sbox = zeros(m,256); 

  
for i=1:m 
    after_sbox(i,:) = SubBytes(bitxor(inputs(i),key)+1); 
end 

  

  

  
Corr_trace = zeros(256,n); 

  
% predict the power consumption 

  
disp('Predicting the instantaneous power consumption ...'); 
predicted_power = byte_Hamming_weight(after_sbox+1); 

  
% correlate the predicted power consumption with the real power 
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% consumption 
disp('Generating the correlation traces ...'); 

  
for i=1:n 
    for j=1:m 
        cmatrix=corrcoef(traces(:,i),predicted_power(:,j)); 
        Corr_trace(j,i)=cmatrix(1,2); 
    end 
end 

  
%%% Finding the Key by finding the maximum correlation coefficient in 

Corr_trace 
disp('Finding the Key ...'); 

  
max = zeros(m,1); 
for i=1:m 
    for j=1:n 
        if (max(i,1) < abs(Corr_trace(i,j))) 
            max(i,1) = abs(Corr_trace(i,j)); 
        end 
    end 
end 

  
detected_key=0; 
max_value=0; 
for i=1:256 
    if (max_value < max(i,1)) 
        max_value = max(i,1); 
        detected_key = i-1; 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Plotting the results 
x=[0:255]; 
fprintf('Detected Key = %x\n',detected_key); 
fprintf('Max Corr = %d\n',max(max_CorrCoeff)); 
fprintf('Mean of Max Corr Coef = %d\n',mean(max_CorrCoeff)); 

  
% Plot maximum correlation coefficients trace and differnece of them 
figure; 
bar(x,max_CorrCoeff);       

  
% Plot Time at which maximum correlation of each key is happened 
figure; 
bar(x,CorrTime); 

  
% Plot correlation trace corresponding to the correct key 
figure;     
plot(key_trace(detected_key+1,:));  
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