
 

  

Model Refinement and Reduction for the 

Nitroxide-Mediated Radical Polymerization of 

Styrene with Applications on the Model-Based 

Design of Experiments 

 

 

by 
 

Mark Daniel Hazlett 
 

 

A thesis 
presented to the University of Waterloo 

in fulfillment of the 
thesis requirement for the degree of 

Master of Applied Science 
in 

Chemical Engineering 
 

Waterloo, Ontario, Canada, 2012 

© Mark Daniel Hazlett 2012 



 

  

  



 

iii 
 

Author’s Declaration 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners.  

I understand that my thesis may be made electronically available to the public. 

 

Mark Daniel Hazlett 

 

  



 

iv 
 

Abstract  

 
Polystyrene (PS) is an important commodity polymer.  In its most commonly used form, PS 

is a high molecular weight linear polymer, typically produced through free-radical 

polymerization, which is a well understood and robust process. This process produces a 

high molecular weight, clear thermoplastic that is hard, rigid and has good thermal and 

melt flow properties for use in moldings, extrusions and films. However, polystyrene 

produced through the free radical process has a very broad molecular weight distribution, 

which can lead to poor performance in some applications.  

To this end, nitroxide-mediated radical polymerization (NMRP) can synthesize materials 

with a much more consistently defined molecular architecture as well as relatively low 

polydispersity than other methods. NMRP involves radical polymerization in the presence 

of a nitroxide mediator.  This mediator is usually of the form of a stable radical which can 

bind to and disable the growing polymer chain. This will “tie up” some of the free radicals 

forming a dynamic equilibrium between active and dormant species, through a reversible 

coupling process.  

NMRP can be conducted through one of two different processes: (1) The bimolecular 

process, which can be initiated with a conventional peroxide initiator (i.e. BPO) but in the 

presence of a stable nitroxide radical (i.e. TEMPO), which is a stable radical that can 

reversibly bind with the growing polymer radical chain, and (2) The unimolecular process, 

where nitroxyl ether is introduced to the system, which then degrades to create both the 

initiator and mediator radicals.  

Based on previous research in the group, which included experimental investigations with 

both unimolecular and bimolecular NMRP under various conditions, it was possible to 

build on an earlier model and come up with an improved detailed mechanistic model.  

Additionally, it was seen that certain parameters in the model had little impact on the 

overall model performance, which suggested that their removal would be appropriate, also 

serving to reduce the complexity of the model.  Comparisons of model predictions with 
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experimental data both from within the group and the general literature were performed 

and trends verified.  

Further work was done on the development of an additionally reduced model, and on the 

testing of these different levels of model complexity with data. The aim of this analysis was 

to develop a model to capture the key process responses in a simple and easy to implement 

manner with comparable accuracy to the complete models.  Due to its lower complexity, 

this substantially reduced model would me a much likelier candidate for use in on-line 

applications. 

Application of these different model levels to the model-based D-optimal design of 

experiments was then pursued, with results compared to those generated by a parallel 

Bayesian design project conducted within the group.  Additional work was done using a 

different optimality criterion, targeted at reducing the amount of parameter correlation 

that may be seen in D-optimal designs. 

Finally, conclusions and recommendations for future work were made, including a detailed 

explanation of how a model similar to the ones described in this paper could be used in the 

optimal selection of sensors and design of experiments. 
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Chapter 1: Introduction  

 

Controlled radical polymerization (CRP) is amongst the most active areas of research in 

polymer science.  Nitroxide-mediated radical polymerization (NMRP) is one of the three 

most popular approaches towards controlled radical polymerization. Polymeric materials 

synthesized by NMRP can be used as coatings, adhesives, surfactants, dispersants, 

lubricants, gels, additives and thermoplastic elastomers, as well as materials for biomedical 

applications. Recently, it has been reported that block copolymers synthesized by NMRP 

are finding their first industrial use as dispersants in the area of pigments. 

 
The literature on NMRP is extensive and growing. The polymer chemistry aspects of NMRP 

are relatively well understood.  Kinetic models that describe polymerization rate and 

molecular weight development are available in the literature. Somewhat surprisingly 

though, very little has been done as far as validation and refinement of these models are 

concerned. 

 
In this work, the focus has been on modeling of the NMRP of styrene using 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO) and later 2,2,5-tri-methyl-4-phenyl-3-azahexane-3-

nitroxide  (TIPNO). The objectives were to: 

 

• Generate a complete mechanistic model (using the latest, state-of-the-art knowledge 

and information) for the NMRP process, using both unimolecular and bimolecular 

initiation systems with both TEMPO and TIPNO controller radicals. 

 

• Investigate the effect on the model of different polymerization conditions such as 

different temperatures, different controller to initiator molar ratios, and different 

initiating systems, on conversion, molecular weight averages and polydispersity. 
 

• Utilize a source of reliable experimental data for validation and improvement of the 

mechanistic mathematical model.  
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• Develop and assess a simplified model for the key process responses for this process 

that is significantly less onerous to implement.  Compare this simplified model with the 

higher-level models and experimental data in order to gain an understanding of its 

utility and limitations. 

 
• Implement the aforementioned models in mechanistic model-based non-linear 

experimental design schemes, which can further shed light on the most uncertain parts 

of our process understanding. 

 
• Discuss future applications of these models in the area of sensor selection and further 

experimental designs. 

 

In Chapter 2, a brief literature review on the topic of controlled radical polymerization 

(CRP), its characteristics, advantages, disadvantages, utility, and mechanisms of the 

different CRP variants is conducted.  Emphasis is placed on NMRP in this discussion. 

 
Chapter 3 details the reaction mechanism behind, and development of a fully mechanistic 

model for, the NMRP of styrene using TEMPO.  An analysis of this model’s performance 

using the bimolecular process compared with experimental data and across a variety of 

operating conditions is then performed, followed by further analyses using the 

unimolecular and TIPNO-initiated processes. 

 
In Chapter 4, a series of refinements are introduced to the fully mechanistic model (FMM), 

starting again with the bimolecular process, with the aim of improving its performance 

with respect to the experimental data.  Testing of these refinements is conducted, and then 

these changes are incorporated and tested using the unimolecular and TIPNO processes. 

The result of these refinements is termed the refined mechanistic model (RMM).  

 
Chapter 5 illustrates the development and testing of a simplified model, aimed at capturing 

only the key process responses rather than the fully mechanistic view presented by the 

FMM and RMM. 
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Chapter 6 details an application of these different model levels in the model-based optimal 

design of experiments, with comparisons made to a parallel effort using Bayesian 

experiment designs with linear models.  An analysis of the impacts of using the different 

model levels and changing the optimality criterion on the selection of experiments, is 

conducted along with the discussion of some case studies. 

 
Concluding remarks are made in Chapter 6 along with a presentation of interesting 

extensions to this work, including a detailed discussion of a potential application in the 

optimal selection of sensors using these models. The thesis includes two appendices. 

Appendix A contains tables of the experimental data used for the figures of Chapter 3, 4, 

and 5. Appendix B contains code samples and pseudo-code that highlight some of the key 

steps in the D-optimal design application, as well as information about the availability of 

the MATLAB Code used in these analyses.  The references for each chapter are located at 

the end of the chapter.  
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5 
 

Chapter 2: Literature Background on NMRP 

 

2.1 Brief Outline 

 
This chapter contains a brief description of polystyrene (PS); an outline of the traditional 

methods for its production and processing, as well as some common uses of PS.  This is 

followed by a more detailed discussion of some of the newer Controlled/Living Radical 

Polymerization (CRP) methodologies for PS (specifically, Nitroxide-Mediated Radical 

Polymerization (NMRP), Atom Transfer Radical Polymerization (ATRP) and Reversible 

Addition-Fragmentation (chain) Transfer polymerization (RAFT)), and also the material 

properties and potential applications of the polymer produced through these processes 

(typically having more controlled molecular weight (MW) with a desirable tunable 

molecular architecture (e.g., more side branching than traditional PS)), including possible 

commercial applications.  From this background discussion, some conclusions will be made 

regarding what was learned about the future outlook of these relatively recent processes 

and their implementation. 

 

2.2 Introduction 

 
Polystyrene (PS) is an important commodity polymer, which, in its most commonly used 

form is a high molecular weight linear polymer, consisting of approximately n = 1000 

repeat units [1].  A product of the polymerization of styrene (also known as vinyl benzene), 

the repeat unit of polystyrene is shown in Figure 2-1.   

 

Figure 2-1 - Repeat unit of PS 
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Styrene can be polymerized via each of four distinct mechanisms (anionic, cationic, free 

radical and with Ziegler-Natta catalysts), but is typically produced industrially through the 

free radical process [1].  Reasons include less stringent monomer purity requirements, and 

milder reaction conditions when compared to other polymerization techniques [2].  Free 

radical polymerization can be performed over a wide range of temperatures, in solution, in 

emulsion, or with other trace impurities of reagents, making it an appealing choice [3]. This 

process produces a high molecular weight, clear thermoplastic that is hard, rigid and has 

good thermal and melt flow properties for use in moldings, extrusions and films [1].  

However, polystyrene produced through the free radical process has a random molecular 

architecture and generally broad molecular weight distributions, which can lead to poor 

performance in some applications [3].  Thus, research is being conducted in order to find 

ways to make these polymers in a more controlled fashion. 

 
Well-defined polymers with precisely controlled structures are accessible by ionic living 

polymerization (anionic and cationic). However, ionic polymerizations have several 

practical disadvantages. The polymerization is extremely sensitive to impurities in the 

reagents; even minute traces of atmospheric gases or water can impact the process [1].  In 

addition to the level of care that must be taken to prevent impurities, the optimum reaction 

temperatures are often low, and the process will require excessive cooling. 

 
Newer techniques of controlled radical polymerization can produce materials with a much 

more consistently defined molecular architecture as well as relatively low polydispersity 

such as those produced via ionic polymerization, under less stringent reaction conditions 

more similar to those of free radical polymerization [4].   
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2.3 Traditional PS Production and Utility 

2.3.1 Production 

 
Free radical polymerization (FRP) consists of four main steps; initiation, propagation, 

termination and chain transfer [2].  In the initiation phase, primary radicals are generated 

through the decomposition of an initiator molecule such as benzoyl peroxide (BPO) and 

then the reaction of these primary radicals with monomer to produce radicals with chain 

length 1.  The next step is propagation, where the repeated addition of monomer molecules 

to the radicals formed during initiation takes place.  Each propagation reaction increases 

the length of the polymer chain by 1, and continued repetition of this step results in long 

polymer chains.  Eventually, the propagating polymer radical will stop growing and the 

radical will be destroyed either through coupling (combination) or disproportionation.  

Additionally, chain transfer to a smaller molecule can occur.  This causes polymer chains to 

stop growing, but does not decrease the overall radical concentration of the system, as a 

new smaller radical will be formed. Figure 2-2 details the reactions that take place in these 

steps. 
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                                                                                                 Initiation                                   

 

 

   

  

                                  

                                                                                                     Propagation                         

                                                                                                            

 

                                                                                                             

  

                                                                                                        Termination                             

 

                                                   

                                                                                         Chain transfer                     

Figure 2-2: General reaction scheme for FRP 

 
It is important to note that all these reaction steps occur concurrently in free radical 

polymerization, and that all of these steps occur within seconds [2].  This means that in 

order to proceed, a constant supply of radicals must be available.  This is typically provided 
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through a choice of an initiator with a sufficiently long half-life such that decomposition 

will continue throughout the reaction. 

A repercussion of these simultaneous reactions is that the instantaneous degree of 

polymerization over the course of the reaction will vary considerably, resulting in a 

relatively high polydispersity (PDI) [2]. Additionally, since all steps take place concurrently, 

it is very difficult to control chain end groups, composition or structure. Table 2-1 lists 

some of the advantages and disadvantages of traditional free radical polymerization, 

although the borderline between advantages and disadvantages can be somewhat grey.   

 
Table 2-1: Advantages and disadvantages of FRP 

Free Radical Polymerization (FRP) 

Advantages: Disadvantages: 

Robust process, can be used over wide 
range of operating conditions 

High PDI 

Low sensitivity to monomer impurities Diffusional effects significant at 
high conversion 

Fast propagation, so high MW’s can be 
reached in a timely manner 

Poor control of polymer 
structure/tacticity 

Well understood and used widely in 
industry 

Cannot be used for formation of 
block polymers 

 

2.3.2 Utility 

 
Typical polystyrene is produced and used in a wide variety of films, extrusions, foams and 

moldings, as it is a very inexpensive, light, strong and thermally stable plastic [1].  The uses 

of polystyrene can vary widely, as polystyrene can take a variety of forms.  Polystyrene can 

be injection molded to make a variety of objects, from toys to CD cases to plastic dining 

utensils to food packaging to petri dishes and other laboratory containers as an alternative 

to glass.  Further, PS foams can be used as thermal insulation in buildings or food packages, 

where it is appealing also due to its odorless and tasteless nature.  PS is also often used as a 
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shock dampener in the packaging of fragile objects, whether it is as solid foam blocks or 

pellets of expanded polystyrene.   

2.4 Newer Synthesis Methodologies 

 
There are several approaches to controlled radical polymerization (CRP) possible.  Current 

research has mainly concentrated around three of them, NMRP, ATRP and RAFT [4].  In 

general, these methodologies rely on a dynamic equilibrium between growing free radicals 

and dormant species [5]. 

 

2.4.1 Atom Transfer Radical Polymerization 

 
Since the discovery of ATRP in 1995, the technical literature on ATRP has been growing 

very rapidly [6]. Radical generation in ATRP involves an organic halide undergoing a 

reversible redox process catalyzed by a transition metal compound such as cuprous halide. 

The equation below shows the general mechanism of ATRP system catalyzed with copper 

bromide (CuBr (L)). The system consists of an initiator that has an easily transferable 

halide atom (R–Br) and a catalyst. The catalyst (or activator) is a lower oxidation state 

metal halide (CuBr (L)) with a suitable ligand (L). Polymerization begins when the halide 

atom transfers from the initiator to the catalyst and forms a free radical (R•) and metal 

halide of the higher oxidation state (CuBr2 (L)). This step is called activation or forward 

reaction. The deactivation step or backward reaction pushes the reaction back to form the 

dormant species (R–Br). 

 

  

 

Initiator choice is fairly important in ATRP. The carbon-halide bond must be relatively 

weak in order for the halogen atom to be reversibly moved from the dormant species to the 

catalyst. Common halides used are chlorides and bromides.  Also of great importance is the 

selection of which catalyst to use. Suitable ligands should complex with a metal halide to 

R Br R  + +CuBr (L)
ka

kd

CuBr2(L)
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form the ATRP catalyst. The metal halide should have at least two oxidation states and 

should have good affinity toward halogen atoms. Systems using Cu, Ru, Ni, Pd, and Fe 

transition metals in conjunction with suitable ligands have been used as catalysts. Table 2-

2 shows some ATRP initiators, metal halides and ligands [6]. 

 
Table 2-2: Some ATRP initiators, metal halides and ligands. 

 

 

2.4.2 Reversible Addition-Fragmentation Chain Transfer Polymerization 

 
Conventional free radical polymerization with the addition of thiocarbonylthio compounds 

that serve as RAFT agents for control has been of research interest since its discovery in 

the mid to late 80s [7]. Instead of the reversible termination of chains seen in the other CRP 

methods, RAFT controls chain growth through reversible chain transfer as per the reaction 

below, involving the reaction of polymeric radical species (
•
mR ,

•
nR ) and the reversible 

transfer of the chain transfer agent (Z) back and forth to each other.   

The structures of RmZ and RnZ are identical, except that the numbers of monomer repeat 

units present may be different.  A RAFT polymerization involves a conventional radical 
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initiator (i.e. BPO), and a chain transfer agent (Z), which is a compound containing a 

dithioester, dithiocarbamate, trithiocarbonate or xanthate moiety (See Figure 2-3) [8]. The 

key to the success of RAFT polymerizations lies in the high reactivity of the thiocarbonyl 

group towards the propagating radicals. 

 

 

The active species concentration must be kept low compared to that of the dormant species 

in order to provide good control of MW and therefore PDI [8].  To do this, one can limit the 

amounts of initiator and capping agent. 

 

 

 

 

2.4.3 Nitroxide-Mediated Radical Polymerization 

 
NMRP involves radical polymerization in the presence of a nitroxide mediator.  This 

mediator is usually of the form of a stable radical which can bind to and disable the 

growing polymer chain [9]. This will “tie up” some of the free radicals forming a dynamic 

equilibrium between the active and dormant species, through a reversible coupling 

process, as shown in Figure 2-4. This reaction must be carried out at elevated temperatures 

(100 – 140 °C) or else the reverse reaction will dominate and the dormant species will be 

stable, causing the nitroxide to act as an inhibitor [10].  

This type of CRP can be performed through either a unimolecular or bimolecular process.  

The bimolecular process can be initiated with a conventional initiator (i.e., BPO) but in the 

presence of a stable nitroxide radical (i.e., TEMPO), which is a stable radical that can 

reversibly bind with the growing polymer radical chain [9], as illustrated in Figure 2-4.   
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dithioester xanthate dithiocarbamate trithiocarbonate

Figure 2-3: General structures of RAFT chain transfer agents 
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Figure 2-4: Chemistry of key reaction in NMRP 

 

The key equilibrium reaction is the same for both the unimolecular and bimolecular 

processes, however they differ in the source of the initiator and controller.  In the 

unimolecular case, rather than adding both controller and initiator directly, nitroxyl ether 

is introduced to the system, which then degrades to create in-situ both initiator and 

mediator radicals, in a 1:1 ratio. The reaction involved with this process is outlined in 

Figure 2-5. 
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Figure 2-5: Chemistry of unimolecular initiation 

 

The primary advantage of the unimolecular process over the bimolecular process is that 

the structure of the polymers prepared can be controlled to a much greater extent. Since 

the unimolecular initiator contains the initiating radical and nitroxide radical in precisely 

the correct (1:1) stoichiometry, the number of initiating sites per polymerization is 

precisely known. As a result, the molecular weight can be more accurately controlled, since 

there is never an excess of either radical in the system (i.e., there is no opportunity for a 

slightly incorrect ratio when using a unimolecular process, as the initiator and controller 

come from the same reagent).  
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2.5 Material Properties and Applications of CRP 

2.5.1 Properties 

 
CRP can allow for a variety of structures to be produced that would be impossible under 

FRP, due to the more stringent control of molecular structure, composition and tacticity [5].  

Figure 2-6 shows some of the structures that are possible with CRP techniques. 

 

 

Figure 2-6 - Examples of structures made by CRP techniques 

 

Not all of these structures have been shown to be possible with polystyrene, however, 

though the potential ability to create these types of structures is one of the main driving 

forces behind research into CRP techniques.  One very promising utility of polystyrene 

produced through CRP is that of use in block copolymers which serve as an additional way 

to fine-tune the material properties of a polymer [11].  An important copolymer of 

polystyrene is styrene-butadiene rubber, used in many applications, including car tires and 

latex paints.   

Another very interesting use for CRP polystyrene is in the development of functionalized 

polymers, where blocks of polymer can be built with functional groups interspersed 

throughout.  In this way one can further modify the material properties of the polymer, as 

well as creating the ability for a specialized membrane (either through catalysis or 

facilitated transfer of an agent through the membrane).    
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2.5.2 Applications 

 
Among the first CRP-based products in production are acrylic block copolymers, brought to 

market in 2005 by Ciba Specialty Chemicals (now part of BASF), aimed to offer superior 

rheological performance and improved stabilization of pigment dispersions in coating 

applications [12]. These block copolymers were synthesized through NMRP using n-

butylacrylate, dimethylaminoethyl acrylate and styrene as monomers. 

Well-defined polymers such as those made using CRP, potentially including polystyrene, 

could be well suited for biomedical applications, controlled drug release/targeting, 

antimicrobial surfaces, or steering enzyme activity.  In the case of controlled drug release, 

the use of functionalized polymer immunonanoparticles containing drugs that need to be 

targeted to specific regions is being investigated by many groups [13]. 

There are many other exciting potential applications for CRP polystyrene including 

potential use in microelectronics, soft lithography, optoelectronics, specialty membranes, 

sensors, and components for microfluidics [11].  
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2.6 The Future of CRP PS 

 
As described previously, there are several exciting potential applications for synthesizing 

polymer of a well-defined nature, and although there is much research being undertaken in 

the field of CRP, the amount of industrial production of CRP polymers is only on the scale of 

about 10% of that of more traditional methods [11].  There are still some issues to be dealt 

with before CRP can be made more competitive as a practical polymerization technique.  

Some of the issues associated with CRP (and NMRP in particular) are [3, 4, 5, 10, 11] : 

• Slower polymerization than FRP 

• NMRP largely limited to styrenic monomers (TEMPO functions better 

with styrene) 

• Low molecular weights only 

• Narrow polydispersity can be undesirable in certain uses 

• Mediating agents can be inefficient or expensive to synthesize 

• Pressure vessels and/or heat exchange may be needed, so costs can be 

high (NMRP needs to operate at temperatures greater than the boiling 

point of water) 

Once some of these engineering challenges can be overcome, more widespread use of some 

of these techniques may be seen.  Until then, it is suspected that use of CRP PS will be 

limited to more specialized cases where the value added due to the application needs is of 

greatest impact. 
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Chapter 3: Development of a Fully Mechanistic Model 

 

3.1 Reaction Scheme 

 
This chapter is focused on detailing the mechanistic model used as the starting point for 

this research, as presented in the work of Nabifar [1] and Nabifar et al. [2].  The model 

described in [1] was a preliminary attempt, so several additions had to be made in order to 

render the model more complete.  The first such action was to add the material balance for 

the dimer species – which is among the material balances presented by Bonilla et al. when 

discussing a more detailed mechanism and model [3].  With this addition, the model can 

work for either unimolecular or bimolecular nitroxide-mediated radical polymerization, 

with reasonably good performance, especially at low to medium conversions. 

The reaction mechanism used as the basis for the derivation of the model is the one 

proposed by Bonilla et al. [3] and is summarized in Table 3-1 below. The mechanism 

includes the following reactions: chemical initiation, reversible nitroxyl ether 

decomposition (for the monomolecular process), monomer (Mayo) dimerization, thermal 

self-initiation, propagation, reversible monomeric and polymeric alkoxyamine formation 

(production of dormant species), alkoxyamine decomposition, rate enhancement, transfer 

to monomer and dimer, as well as conventional termination.  All rate constants are 

assumed to be independent of chain length.  
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Table 3-1 - Steps in the Reaction Mechanism 

Description of Step Reaction 

Chemical initiation 2 •→dk
inI R  

Nitroxyl ether decomposition 2

2

→
• •← +

ka

dE in xkNO R NO  

Mayo dimerization dim+ →kM M D  

Thermal initiation i • •+ → +akM D D M  

First propagation (primary radicals) 
1

• •+ →pk
inR M R  

First propagation (monomeric radicals) 
1

• •+ →pkM M R  

First propagation (dimeric radicals) 
1

• •+ →pkD M R  

Propagation 
1

• •
++ →pk

r rR M R  

Dormant living exchange (monomeric alkoxyamine) ←
• •+ →

ka

dax xkM NO MNO  

Dormant living exchange (polymeric alkoxyamine) ←
• •+ →

ka

dar x r xkR NO R NO  

Alkoxyamine decomposition → +decompk
x xMNO M HNO  

Rate enhancement reaction 3• •+ → +hk
x xD NO D HNO  

Termination by combination • •
++ →tck

r s r sR R P  

Termination by disproportionation • •+ → +tdk
r s r sR R P P  

Transfer to monomer • •+ → +fMk
r rR M P M  

Transfer to dimer • •+ → +fDk
r rR D P D  

 

Table 3-2 cites the kinetic rate constants used, most of which are presented as Arrhenius 

functions of activation energies and temperature [4].  The physical properties of the 

monomer, polymer and initiator as used in the calculations are listed in Table 3-3.  
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Table 3-2 - Rate Constant Values (T [K], R [cal mol-1 K-1]) [4] 

Rate Constant Units Bimolecular Unimolecular 

kd(BPO) s-1 15 300001.7 10 exp × − 
 RT

 - 

f  0.54-0.55 - 

kdim L mol-1 s-1 16185.1188.97exp
RT

 − 
 

 16185.1188.97exp
RT

 − 
 

 

kia L mol-1 s-1 12 36598.556.359 10 exp
RT

 × − 
 

 12 36598.556.359 10 exp
RT

 × − 
 

 

kp L mol-1 s-1 7 7769.174.266 10 exp
RT

 × − 
 

 7 7769.174.266 10 exp
RT

 × − 
 

 

kt0 L mol-1 s-1 10 3081.842.002 10 exp
RT

 × − 
 

 10 3081.842.002 10 exp
RT

 × − 
 

 

ktd/kt0  0.0 0.0 

kfM L mol-1 s-1 6 133729.376 10 exp
RT

 × − 
 

 6 133729.376 10 exp
RT

 × − 
 

 

kfD L mol-1 s-1 50 50 

ka2 s-1 0.0 13 296832.0 10 exp
RT

 × − 
 

 

kd2 L mol-1 s-1 0.0 9 37225.03 10 exp
RT

 × − 
 

 

kda L mol-1 s-1 9 37225.03 10 exp
RT

 × − 
 

 9 37225.03 10 exp
RT

 × − 
 

 

ka s-1 13 296832.0 10 exp
RT

 × − 
 

 13 296832.0 10 exp
RT

 × − 
 

 

kdecomp s-1 14 36639.65.7 10 exp × − 
 RT

 14 36639.65.7 10 exp × − 
 RT

 

kh3 L mol-1 s-1 0.001 0.001 
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In the previous tables, kd is the initiator decomposition rate constant, f the initiator 

efficiency (i.e., the fraction that participates in the reaction), kdim the Mayo dimerization 

rate constant, kia the rate constant of thermal initiation between monomer and dimer, kp is 

the propagation rate, kt0 the termination rate constant, kfM the rate constant for chain 

transfer to monomer, kfD the rate constant for chain transfer to dimer, ka2 the rate constant 

for nitroxyl ether decomposition, kd2 the rate of nitroxyl ether reforming from the active 

radical species, kda the rate constant for the nitroxide mediator radicals coupling with the 

living polymer radicals, ka the rate constant for the dormant species’ separation into the 

polymer and controller radicals,  kdecomp the rate constant of alkoxyamine decomposition, 

and finally, kh3 is the rate constant for the dimer’s reaction with the controller radical to 

produce a living dimer radical and a decomposed alkoxyamine (referred to as the rate 

enhancement reaction). 

Table 3-3 - Relevant Physical Properties (T [K]) [4] 

Property Units Value 

ρM kg L –1 ( )0.9193 0.000665 273.15T− −  

ρP kg L –1 ( )0.9926 0.000265 273.15T− −  

MWM g mol-1 104.12 

MWinit g mol-1 242.23 

TgM K 185.0 

TgP K 378.0 

 
In Table 3-3, ρ represents density and Tg the glass transition temperature for monomer (M) 

or polymer (P).  MW is molecular weight and subscript init denotes initiator. 

The reaction mechanism described in this section describes both the unimolecular and 

bimolecular initiating options.  The key differences are in the rate constants that differ 

between these processes (see Table 3-2) and either activate or deactivate reaction 

pathways (as depicted in Table 3-1).  For instance, the unimolecular case uses the 

decomposition of the nitroxyl ether as its source of both initiator and controller, rendering 
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those reactions/rate constants important, while making the ones used for BPO 

decomposition and controller efficiency less relevant.  The core parts of the process (i.e., 

the equilibrium between initiator and controller, and the polymerization itself) are the 

same for both of these pathways. 

 

3.2 Overall Mass Balances for the Different Species 

 

In order to be modeled, the system needed to be rearranged into a system of material 

balance differential equations. Based on the reaction mechanism outlined in Table 3-1, the 

following are the thirteen material balances for the different species present during the 

batch NMRP polymerization of styrene.  Equation 3-3, describing the mass balance of the 

dimer species was a new addition to the model presented in Nabifar [1]. 

 

𝑑[𝐼]
𝑑𝑡

=  −𝑘𝑑[𝐼] Eq. 3-1 

𝑑[𝑀]
𝑑𝑡

=  −2𝑘𝑑𝑖𝑚[𝑀]2 − 𝑘𝑖𝑎[𝑀][𝐷] − 𝑘𝑝[𝑀]([𝐷∙] + [𝑀∙] + [𝑅𝑖𝑛∙ ]) − 𝑘𝑝[𝑀][𝑅∙]

− 𝑘𝑓𝑀[𝑀][𝑅∙] + 𝑘𝑑𝑒𝑐𝑜𝑚𝑝[𝑀𝑁𝑂𝑥] 
Eq. 3-2 

𝑑[𝐷]
𝑑𝑡

=  𝑘𝑑𝑖𝑚[𝑀]2 − 𝑘𝑖𝑎[𝑀][𝐷] − 𝑘ℎ3[𝑁𝑂𝑥∙ ][𝐷] − 𝑘𝑓𝐷[𝐷][𝑅∙] Eq. 3-3 

𝑑[𝑁𝑂𝐸]
𝑑𝑡

=  −𝑘𝑎2[𝑁𝑂𝐸] + 𝑘𝑑2[𝑁𝑂𝑥∙ ][𝑅𝑖𝑛∙ ] Eq. 3-4 

𝑑[𝑀∙]
𝑑𝑡

=  𝑘𝑖𝑎[𝑀][𝐷] − 𝑘𝑝[𝑀][𝑀∙] − 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑀∙] + 𝑘𝑎[𝑀𝑁𝑂𝑥] + 𝑘𝑓𝑀[𝑀][𝑅∙] Eq. 3-5 
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𝑑[𝑅𝑖𝑛∙ ]
𝑑𝑡

= 2𝑓𝑘𝑑[𝐼] − 𝑘𝑝[𝑀][𝑅𝑖𝑛∙ ] + 𝑘𝑎2[𝑁𝑂𝐸] − 𝑘𝑑2[𝑁𝑂𝑥∙ ][𝑅𝑖𝑛∙ ] Eq. 3-6 

𝑑[𝐷∙]
𝑑𝑡

=  𝑘𝑖𝑎[𝑀][𝐷] − 𝑘𝑝[𝑀][𝐷∙] + 𝑘ℎ3[𝑁𝑂𝑥∙ ][𝐷] + 𝑘𝑓𝐷[𝐷][𝑅∙] Eq. 3-7 

𝑑[𝑁𝑂𝑥∙ ]
𝑑𝑡

=  −𝑘ℎ3[𝑁𝑂𝑥∙ ][𝐷] − 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑅∙] + 𝑘𝑎[𝑅𝑟𝑁𝑂𝑥] − 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑀∙]

+ 𝑘𝑎[𝑀𝑁𝑂𝑥] − 𝑘𝑑2[𝑁𝑂𝑥∙ ][𝑅𝑖𝑛∙ ] + 𝑘𝑎2[𝑁𝑂𝐸] 
Eq. 3-8 

𝑑[𝐻𝑁𝑂𝑥]
𝑑𝑡

=  𝑘ℎ3[𝑁𝑂𝑥∙ ][𝐷] + 𝑘𝑑𝑒𝑐𝑜𝑚𝑝[𝑀𝑁𝑂𝑥] Eq. 3-9 

𝑑[𝑀𝑁𝑂𝑥]
𝑑𝑡

= 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑀∙] − 𝑘𝑎[𝑀𝑁𝑂𝑥] − 𝑘𝑑𝑒𝑐𝑜𝑚𝑝[𝑀𝑁𝑂𝑥] Eq. 3-10 

𝑑[𝑅𝑁𝑂𝑥]
𝑑𝑡

=  𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑅∙] − 𝑘𝑎[𝑅𝑁𝑂𝑥] Eq. 3-11 

𝑑[𝑅∙]
𝑑𝑡

=  𝑘𝑝[𝑀]([𝐷∙] + [𝑀∙] + [𝑅𝑖𝑛∙ ]) − (𝑘𝑡𝑐 + 𝑘𝑡𝑑)[𝑅∙]2 − 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝑅∙]

+ 𝑘𝑎[𝑅𝑟𝑁𝑂𝑥] − 𝑘𝑓𝑀[𝑀][𝑅∙] − 𝑘𝑓𝐷[𝐷][𝑅∙] 
Eq. 3-12 

𝑑[𝑃]
𝑑𝑡

=  𝑘𝑓𝑀[𝑀][𝑅∙] + 𝑘𝑓𝐷[𝐷][𝑅∙] + 𝑘𝑡[𝑅∙]2 Eq. 3-13 

 

The rates of initiator decomposition, monomer, dimer, and nitroxyl ether consumption are 

given in Equations 3-1 through 3-4. Next, Equations 3-5 through 3-8 are the corresponding 

rate equations for monomeric, primary, dimeric, and stable nitroxyl radicals, respectively. 

The material balances for hydroxylamine species, monomeric and polymeric alkoxyamines 

(dormant species) are given next.  Finally, Equations 3-12 and 3-13 represent the material 

balances for polymeric radicals and dead polymer species, respectively. 
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3.3 Moment Equations for Molecular Weight Prediction 

 
In order to follow the molecular weight development, in terms of number and weight 

average molecular weights, the method of moments is used. There are three polymer 

populations in this system: “living” polymer radicals, dead polymer molecules, and 

dormant species. The moments for “living” radical, dormant and dead species are defined 

in Equations 3-14, 3-15 and 3-16, as follows.  

 

rr
i

i Rr∑=λ  Eq. 3-14 

xrr
i

i ONRr∑=δ  Eq. 3-15 

rr
i

i Pr∑=µ  Eq. 3.16 

 

Once the mass balance equations for polymer molecules of the three types and for all 

lengths are derived, based on the reaction mechanism outlined above, the application of the 

method of moments produces the following equations for moments zero, one and two, 

respectively, of living polymer radicals (Equations 3-17 through 3-19), dormant polymer 

(Equations 3-20 through 3-22), and dead polymer (Equations 3-23 through 3-25). 

 

 
𝑑(𝜆0)
𝑑𝑡

=  𝑘𝑝[𝑀]([𝐷∙] + [𝑀∙] + [𝑅𝑖𝑛∙ ]) − 𝑘𝑡[𝜆0]2 − 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆0] + 𝑘𝑎[𝑅𝑟𝑁𝑂𝑥]

− 𝑘𝑓𝑀[𝑀][𝜆0] − 𝑘𝑓𝐷[𝐷][𝜆0]  + 𝑘𝑎[𝛿0] 
Eq. 3-17 

𝑑(𝜆1)
𝑑𝑡

=  𝑘𝑝[𝑀]([𝐷∙] + [𝑀∙] + [𝑅𝑖𝑛∙ ] + [𝜆0]) − 𝑘𝑡[𝜆0][𝜆1]− 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆1]

− 𝑘𝑓𝑀[𝑀][𝜆1]− 𝑘𝑓𝐷[𝐷][𝜆1] + 𝑘𝑎[𝛿1] 
Eq. 3-18 
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𝑑(𝜆2)
𝑑𝑡

=  𝑘𝑝[𝑀]([𝐷∙] + [𝑀∙] + [𝑅𝑖𝑛∙ ] + [𝜆0] + 2[𝜆1]) − 𝑘𝑡[𝜆0][𝜆2]

− 𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆2] − 𝑘𝑓𝑀[𝑀][𝜆2] − 𝑘𝑓𝐷[𝐷][𝜆2] + 𝑘𝑎[𝛿2] 
Eq. 3-19 

𝑑(𝛿0)
𝑑𝑡

=  𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆0]−𝑘𝑎[𝛿0] Eq. 3-20 

𝑑(𝛿1)
𝑑𝑡

=  𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆1] − 𝑘𝑎[𝛿1] Eq. 3-21 

𝑑(𝛿2)
𝑑𝑡

=  𝑘𝑑𝑎[𝑁𝑂𝑥∙ ][𝜆2] + 𝑘𝑎[𝛿2] Eq. 3-22 

𝑑(𝜇0)
𝑑𝑡

=  
1
2
𝑘𝑡𝑐[𝜆0]2 + 𝑘𝑡𝑑[𝜆0]2 + 𝑘𝑓𝑀[𝑀][𝜆0] + 𝑘𝑓𝐷[𝐷][𝜆0] Eq. 3-23 

𝑑(𝜇1)
𝑑𝑡

=  𝑘𝑡𝑐[𝜆0][𝜆1] + 𝑘𝑡𝑑[𝜆0][𝜆1] + 𝑘𝑓𝑀[𝑀][𝜆1] + 𝑘𝑓𝐷[𝐷][𝜆1] Eq. 3-24 

𝑑(𝜇2)
𝑑𝑡

=  𝑘𝑡𝑐([𝜆0][𝜆2] + [𝜆1]2) + 𝑘𝑡𝑑[𝜆0][𝜆2] + 𝑘𝑓𝑀[𝑀][𝜆2] + 𝑘𝑓𝐷[𝐷][𝜆2] Eq. 3-25 

 

Finally, calculation of the number average (given by Equation 3-26) and weight average 

(given by Equation 3-27) molecular weights can be done based on the moments of the 

polymer populations, using the expressions shown below. The definition of the 

polydispersity index (PDI) as discussed in this thesis is given by Equation 3-28. 

 

𝑀𝑛 = 𝑀𝑊𝑚 �
𝜇1 + 𝜆1 + 𝛿1
𝜇0 + 𝜆0 + 𝛿0

� 

 

Eq. 3-26 

𝑀𝑤 = 𝑀𝑊𝑚 �
𝜇2 + 𝜆2 + 𝛿2
𝜇1 + 𝜆1 + 𝛿1

� 

 

Eq. 3-27 

𝑃𝐷𝐼 = �
𝑀𝑤

𝑀𝑛
� 

Eq. 3-28 
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3.4 Solution of System of Equations in MATLAB  

 
Mathworks’ MATLAB® was the software used in the computational solution of this system 

of equations. Gear’s method was implemented for the solution, as the system is stiff.  The 

model (prediction) profiles for the batch nitroxide-mediated radical polymerization of 

styrene were generated for a variety of different operating conditions, and compared 

against empirical data in the group as well as from elsewhere in the literature.   

 

3.4.1 Comparison to Data – Bimolecular Case 

 
The model profiles produced from the solution of the equations of the fully mechanistic 

model (FMM) of sections 3.2 and 3.3 were then compared to experimental data from 

Nabifar ([1], [5]) in our group.  The data used for the generation of this plots is available in 

Appendix A. Figure 3-1 shows the modeled bimolecular conversion profile compared with 

data at reaction conditions T = 130 °C, and R = [TEMPO]/[BPO] = 1.1, which will be 

considered the base case for this discussion. 

 

Figure 3-1 – Comparison of model conversion profile with experimental data (T= 130 °C; R = 1.1) 
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It is seen from Figure 3-1 that the FMM model slightly underestimates conversion in the 

earlier stages, but then crosses and overestimates the data after about 9h or 70% 

conversion.  This is in agreement with prior work utilizing a similar model, including that of 

Roa-Luna et al. [5].   Looking now at Figure 3-2, which shows the predicted ln([M0]/[M]) 

versus what was obtained experimentally, again, under-prediction (even if slight) is seen in 

the early reaction stages, followed by larger overpredictions later. However, the simulated 

profile emulates better the expected theoretical shape that the graph should take (a 

straight line) in the event of instantaneous initiation and no termination. This may suggest 

that the model inaccurately provides for the initiation and termination steps of the process 

as actually occurred in the experimental cases, overestimating the impact of initiation to a 

small degree, and underestimating that of termination by a much larger one, when 

compared to the data. 

 

Figure 3-2 – ln([M0]/[M]) versus time profile compared to experimental data (T= 130 °C; R = 1.1) 
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Figure 3-3 Number average molecular weight vs. conversion profile compared to experimental data (T= 130 °C; R 
= 1.1) 

 

Figure 3-3 shows the predicted versus actual number average molecular weight (Mn) at the 

same reaction conditions.  From this it is seen that the FMM prediction that is made for Mn 

is substantially lower, and grows less quickly, than the data. The simulated Mn actually 

begins to decrease at very high conversions, according to the profile, which should not be 

the case.  From here on, the symbols Mn and Mw, used to represent number average and 

weight average molecular weights, respectively, refer to cumulative (accumulated) 

molecular weight averages (and not instantaneous ones). 
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Figure 3-4 PDI vs. conversion profile compared to experimental data (T= 130 °C; R = 1.1) 

 

The PDI prediction (Figure 3-4) is somewhat more acceptable when compared to the data, 

though it appears to be near the top of the data range, with the majority of points below.  
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the anomalous decrease in number average molecular weight, seen at high conversion, is 

also echoed here in the PDI profile. 
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profiles were then examined to ensure that the model behaved as expected.  Figure 3-5 

shows the simulated versus experimental conversion for T = 120 °C, and [TEMPO]/[BPO] = 

1.1, compared with experimental data.  From this it is seen that the model still provides a 

similar fit, as in the case with T= 130 °C; R = 1.1, with an underestimation at lower 

conversion, shifting to an overestimation at higher conversion. 

 

Figure 3-5 - Conversion vs. Time for T =120 °C, R = 1.1 

 

The generated polydispersity index (PDI) profile, illustrated in Figure 3-6, again shows 
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Figure 3-6 - PDI vs Conversion for T = 120 °C, R = 1.1 
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Figure 3-7 - Impact of change in temperature on simulated profiles, R = 1.1 

 

Figure 3-8 - Impact of change in temperature on Mn profiles, R = 1.1 
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Figure 3-9 - Impact of change in temperature on Mw profiles, R = 1.1 
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Figure 3-10 – Effects of changing T on PDI profiles, R = 1.1 
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Figure 3-11 - Conversion vs. Time profile for T = 130 °C and R = 0.9 
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Figure 3-12 - PDI vs. Conversion for T = 130 °C and R = 0.9 
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Figure 3-13 – Effect of varying R on conversion-time profile, T = 130 °C 

 

Figure 3-14 - Effect of varying R on Mn-conversion profile, T = 130 °C 
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Figure 3-15 - Effect of varying R on Mw-conversion profile, T = 130 °C 

 

Figure 3-16 Effect of varying R on PDI-conversion profile, T = 130 °C 
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3.5 Unimolecular Case 

 
The simulation for the unimolecular case was then compared with data from another 

researcher in our group, Michelle Zhou [6].  Figure 3-17 illustrates the simulated 

conversion versus time profile against experimentally obtained data using a unimolecular 

initiator (an alkoxyamine made by combining BPO and TEMPO) at 120 °C with initial 

initiator concentration of 0.050 mol/l.  As in the bimolecular case, good prediction at low to 

medium conversion gives way to overestimation at later stages.  In this particular profile, 

the divergence appears to occur around 60% conversion or after about 10 hours of 

reaction, which is similar to the crossover point in the bimolecular case (See, for example 

Figure 3-1). 

 

Figure 3-17 - Conversion vs. time profile compared with experimental data; Unimolecular case, T = 120 °C 
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Figure 3-18 - Unimolecular Mn vs. conversion profile compared with experimental data; Unimolecular case, T = 
120 °C 
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Figure 3-19 - Unimolecular PDI vs. conversion profile compared with experimental data, T = 120 °C 
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3.6 Use of a Different Nitroxide Radical (TIPNO) 

 
There has been interest in recent literature as far as comparing the use of additional 

controller types for styrene NMRP ([7], [8]).   One such initiator, 2,2,5-tri-methyl-4-phenyl-

3-azahexane-3-nitroxide, or TIPNO, was selected for such a comparison. TIPNO is 

important, because it allows for the NMRP of a wider range of monomers than TEMPO, as 

well as leading to faster polymerizations [7]. 

To this end, an investigation was conducted into the efficacy of the fully mechanistic model 

for this different controller radical.  Some comparisons between the results and literature 

values (as well those obtained experimentally by other members of our group) are 

presented.  

 

3.6.1 Changes Required 

 
In order to use the FMM to model NMRP with TIPNO, some parameters needed to be 

established.  The rate constants pertaining to BPO and styrene would not be impacted, 

however those for the very important steps involving the nitroxide controller would be.  A 

literature search was conducted, and these values were obtained.  The case involving the 

use of a TIPNO nitroxide radical is a unimolecular case, and so the results are most 

comparable to the unimolecular case as discussed in Section 3.5.  The impacted rate 

constants are presented in Table 3-4, as calculated from the obtained equilibrium constant, 

K (defined as ka2/kd2), and activation rate constant, ka2, values provided by Drache et al. [7]. 

Table 3-4 – Parameter changes required for use of FMM with TIPNO as controller, T = 120 °C [7] 

Parameter TEMPO Value TIPNO Value 

ka , ka2 6.165 x 10-4 3.2 x 10-3 

kda , kd2 4.278 x 107 4.3 x 105 
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The differences in these values would suggest that the polymerization rate using the TIPNO 

mediator would be higher, as the ratio between the activation and deactivation rates (ka 

and kd) is greater.  

 

3.6.2 Preliminary Assessment 

 
Once these values were obtained, it was simply a matter of substitution into the FMM and 

solving.  Preliminary results of this model are seen in Figure 3-20, which uses conversion 

data from the same paper where these parameter estimates were obtained from [7]. 

 

Figure 3-20 - Conversion vs. time profile compared with data from Drache et al. [7]. 
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This figure shows relatively close agreement in trends between this model and the data 

upon which these parameter estimates were based, with somewhat higher conversion 

values being predicted than were obtained experimentally.  

 

Figure 3-21 - Number average MW vs. Conversion profile compared with data from Drache et al. [7] 

 

Figure 3-21 shows relatively good agreement between the Mn estimates obtained with this 

model and those provided by Drache et al. [7].  These results, however, are only for a quite 

narrow conversion range, so data over a wider range of values should be sought out for use 

in further analyses. 
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3.6.3 Comparison to More Experimental Data 

 
Fortunately, more extensive data sets were available within our group, and therefore 

comparisons between model predictions and experimental data over a wider data range 

were possible.  The results obtained from the solution of the FMM with these parameter 

changes were compared to experimental data using the TIPNO controller radical from 

Nabifar [9].   The profiles generated by the model show relatively good agreement with the 

experimental data, under relatively typical conditions for NMRP.  The conversion profile 

generated by the FMM is shown compared to the experimental data in Figure 3-22. 

 

Figure 3-22 – Conversion profile versus experimental data for TIPNO, T = 120 °C  
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From this figure, it can be seen that the FMM’s predictions are in reasonably good 

agreement with the experimental data when it comes to the conversion versus time profile 

for this case, however the conversion is estimated somewhat higher than the data supports 

throughout the time range. 

 

Figure 3-23 - Number Average MW profile versus experimental data for TIPNO, T = 120 °C 
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3.6.4 TIPNO vs. TEMPO 

 
Certain differences were noted between the results from the TIPNO and TEMPO processes, 

and these will be discussed below.  In general, and as was expected (due to the higher 

activation and deactivation rates), the rate of polymerization was seen to be higher than 

that when using TEMPO. 

 

Figure 3-24 - Conversion profiles for unimolecular TIPNO and TEMPO cases, 120 °C 

 

Figure 3-24 illustrates the conversion profiles predicted for both unimolecular TEMPO and 

TIPNO at 120 °C.  From this, it can be seen that TIPNO is predicted to result in a faster rate 

of conversion (i.e., the monomer is consumed faster).  The results predict that the TIPNO 

process will consume the entirety of the monomer significantly more quickly than the 

TEMPO process (after approximately 30 hours versus a significantly greater time of 70 or 

more hours).  The overall trends of the profiles are seen to be in general agreement. 
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Figure 3-25 – Number average MW profiles for unimolecular TIPNO and TEMPO cases, 120 °C 

 

Figure 3-25 illustrates the generated number average molecular weight profile for TIPNO 

versus that for TEMPO.  As can be seen, the molecular weight develops more quickly for the 

modeled TIPNO process, which is to be expected as the monomer is being consumed much 

more rapidly.  The same decrease in MW at very low and high conversions is seen in both 

cases, and the general trends are in agreement.  In general, these differences were to be 

expected, as the equilibrium constant (K) when TIPNO is used is larger than when TEMPO 

is employed (see again Table 3-4). 
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3.7 Concluding Remarks 

 
At this point, we have a functioning fully mechanistic model that captures the overall 

trends of styrene NMRP, with unimolecular and bimolecular TEMPO as well as 

unimolecular TIPNO controllers.   

There is evident room for improvement as far as the model’s ability to fit the obtained data. 

This is a very complex and difficult to solve model, involving a large, stiff system of 

differential equations that must be solved together with numerous Arrhenius equations for 

the various rate constants.  What makes matters worse is the fact that many of these rate 

constant values are highly uncertain, as they are arrived at usually by guessing rather than 

formal parameter estimates based on experimental data.  Overall, however, the model 

trends upon first use seem quite satisfactory.   

Therefore, from this point, two main priorities are clear: model refinement and model 

reduction – that is improving the predictive power and reducing the amount of 

computation required to generate model profiles.  Chapter 4 will deal with the first goal, of 

model refinement – seeking to improve the agreement between these models and the 

experimental data.  The goal of a more simplified model will be addressed in Chapter 5. 
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Chapter 4: Mechanistic Model Refinements and Updates 

 
This chapter will focus on the details of the various efforts that were taken in an attempt to 

improve the mechanistic model outlined in Chapter 3.  As was noted in section 3.4, the 

trends seen were overall satisfactory, and the model made generally reasonable 

predictions in many cases, but there was definite room for improvement. 

 

4.1 Efficiency Factors 

 
An investigation into the impact of radical efficiency was conducted.  The previous 

modeling effort incorporated the typical efficiency factor (f) for the initiator, but it was felt 

that the implementation of an analogous factor for the controller would likely make sense, 

and that the tuning of these factors could improve model fit. 

 

4.1.1 Investigation of Controller Efficiency (fc) 

 
Experimentalists in the literature have alluded to the controller participating in side 

reactions other than coupling with the initiator radical and forming the dormant species.  

Through the introduction of a controller efficiency factor, fc – analogous to the well-

accepted initiator efficiency, f – which can be defined as the controller fraction able to 

produce dormant species, improvements to model fit can be made.  Murari et al. [1] 

analyzed different combinations of these f and fc values, concluding that the optimal 

combination is f = 0.37 and fc = 0.70 (giving better model fits). This combination as well as 

others were investigated.  Figure 4.1 illustrates the impact of these optimal settings from 

Murari et al. on the conversion profile against our bimolecular base case from section 3.4 – 

T = 130 °C and R = 1.1.  As in Chapter 3, the experimental data from Nabifar [2] are used for 

the bimolecular process.  For the purposes of this effort, the data is assumed to be accurate, 

as the experimentation was well-designed with many replicates.   



 

52 
 

As can be seen from this Figure, there is little impact on the conversion profile from the 

implementation of this parameter.  The conversion profile still follows the same shape, just 

slightly lagging the curve of the profile without the fc term. 

 

Figure 4-1 - Effect of fc on conversion profile (T = 130 °C and R = 1.1) 

 

However, much more important gains are seen in the average molecular weights, Mn and 

Mw, as shown in Figures 4-2 and 4-3, respectively.  The generated number average 

molecular weight, Mn, profile is seen to be substantially closer to the experimental data 

with the introduction and optimization of this factor, though still retains the decrease at 

high conversions, deviating from the data points.  The weight average molecular weight, 

Mw, sees a similar gain in fit to the data, though some more nonlinearity is now seen to be 

present in the profile. 
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Figure 4-2 - Effect of fc on number average molecular weight profile (T = 130 °C and R = 1.1) 

 

Figure 4-3 - Effect of fc on weight average molecular weight profile (T = 130 °C and R = 1.1) 
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There is a small increase of the PDI prediction with the implementation of this parameter, 

as shown in Figure 4-4.  However, this is just due to the fact that the relative gain in the Mw 

is greater than that in the Mn. Overall, based on the new picture revealed in Figures 4-1 to 

4-4 , there is a net gain for the model’s predictive capabilities. 

 

Figure 4-4 – Effect of fc on weight polydispersity index profile (T = 130 °C and R = 1.1) 

 
These trends can be verified in the unimolecular case, as well.  The plots for this case and 
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the conversion profile of increased initial values of these efficiencies coupled with 

decreasing them at higher conversion values.  From this profile, it is seen that improved 

agreement is seen at low conversion values, whereas the higher conversion range deviates 

little from the previous case.  Table 4-1 provides the changes to the f and fc values that were 

made with respect to conversion. 

Table 4-1 – Changing f and fc values with conversion 

Parameter Initial Value Value for Conversion > 0.5 

f 0.4 0.37 

fc 0.7 0.35 

 

 

Figure 4-5 - Impact of varying f and fc profiles on conversion profile (T = 130 °C and R = 1.1) 
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Figure 4-6 illustrates the impact of these changes on the number average molecular weight 

profile, where the values predicted are seen to increase.  This had the result of an overall 

improvement and better agreement with experimental data – though the decrease of the 

predicted values as was seen earlier at high conversion values is still present.  Figure 4-7 

shows the impact on the weight average molecular weight profile, where an increase in the 

model’s predicted values is also seen – bringing the profile into better agreement with the 

experimental data. 

 

 

Figure 4-6 - Impact of varying f and fc profiles on Mn profile (T = 130 °C and R = 1.1) 
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Figure 4-7 – Impact of varying f and fc profiles on Mw profile (T = 130 °C and R = 1.1) 

 

Figure 4-8 shows the resultant PDI profile, where, due to the relatively greater increases 

seen in the Mn compared to the Mw profile, the generated PDI profile is seen to decrease 

initially, bringing it into better agreement with the experimental data.  Due to the decrease 

of the Mn profile at high conversion, the PDI profile is still seen to increase at high 

conversion values – causing deviation from the experimental data.   
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Figure 4-8 - Impact of varying f and fc profiles on PDI profile (T = 130 °C and R = 1.1) 

 

In general, the adoption of these changes to the f and fc parameters were seen to greatly 

improve model fit for these important profiles, and will be carried forward in the future 

steps for model refinement. 
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4.2 Parametric Sensitivity 

 
At this point, a more detailed investigation into the impact of perturbations of some of the 

parameters deemed more important in the mechanism on the modelling 

trends/predictions was conducted.  The specific investigations of this (parametric) 

sensitivity analysis and their resultant effects on the modelled process will be discussed in 

this section of the thesis. 

 

4.2.1 Investigation of Rate of Dimerization (kdim) 

 
Bonilla et al. [3] and Belincanta-Ximenes et al. [4] performed sensitivity analyses 

suggesting that both conversion and molecular weight estimates from a mechanistic model 

of this process were highly sensitive to changes in kdim, the rate constant governing the rate 

of dimerization.  This makes sense, as the dimerization not only consumes monomer, but 

also the dimer produced takes part in some of the reactions as described in the full 

mechanistic model.  Therefore, it seemed prudent to investigate the impact of changes to 

the rate of dimerization on our model.   Table 4-2 shows the impact of the reduction of kdim 

on some of the more important process responses. 

Table 4-2 - Impact of changes to dimerization rate to key estimates (T = 130 °C and R = 1.1) 

Parameter Value at 130 °C 
Time for 

Conversion = 0.75 

Mn at conversion 

= 0.75 

Mw at conversion 

= 0.75 

𝑘𝑑𝑖𝑚 = 𝑘𝑑𝑖𝑚,0 3.14x10-7 8.10 hours 1.814x104 2.269x104 

𝑘𝑑𝑖𝑚 =
𝑘𝑑𝑖𝑚,0

2
 1.57x10-7 10.32 hours 1.971x104 2.362x104 

𝑘𝑑𝑖𝑚 =
𝑘𝑑𝑖𝑚,0

4
 7.85x10-8 12.95 hours 2.088x104 2.417x104 
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Reduction of the rate of dimerization resulted in an improvement in model fit in several 

interesting ways.  First, in the bimolecular case, an improvement was seen in fit of the 

conversion vs. time profile generated by the model, as well as in the number and weight 

average molecular weight estimates (and therefore PDI estimation).  These trends are 

shown in Figures 4-9 to 4-12, and a discussion of the impacts on each particular trend 

follows. 

 

Figure 4-9 – Impact of reduction of dimerization rate on conversion profile (T = 130 °C and R = 1.1) 

 

Figure 4-9 illustrates the impact of reducing the amount of dimerization that occurs on 

conversion. Decreasing kdim slows the rate of increase seen in the conversion profile, such 

that it underestimates the conversion at earlier reaction times, but still eventually the 

predictions exceed the conversions obtained experimentally.  It could be argued that the 

overall fit of the conversion profile is improved with a modest decrease in kdim, but worsens 

with larger reductions to this value. 

0h 10h 20h 30h 40h 50h
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
on

ve
rs

io
n

 

 

kdim
kdim/2
kdim/4
Experimental data



 

61 
 

Figure 4-10 shows the impact of the change in dimerization rate on the number average 

molecular weight profile.  Decreasing the amount of dimerization is seen to have a positive 

impact on the fit of this profile, moving the prediction from the extreme low end of the 

experimental data range up to somewhere in the middle. Figure 4-11 shows similar gains in 

accuracy for the generated weight average molecular weight profile, though the magnitude 

of this shift is seen to be somewhat smaller. 

 

 

Figure 4-10 Impact of reduction of dimerization rate on Mn profile (T = 130 °C and R = 1.1) 
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Figure 4-11 Impact of reduction of dimerization rate on Mw profile (T = 130 °C and R = 1.1) 

 

Figure 4-12 shows the impact of the reduction of kdim on the PDI profile.  It lowers the 

predicted profile, and therefore the overall picture becomes more accurate with respect to 

the data points.  This makes sense as the predicted number average molecular weight was 

seen to have increased by a greater amount than the weight average molecular weight, as 

mentioned previously.   
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Figure 4-12 Impact of reduction of dimerization rate on PDI profile (T = 130 °C and R = 1.1) 

 

These trends were also verified in the case of the unimolecular process. Figure 4-13 shows 

the impact of the reduction of kdim on the conversion profile, which, as in the bimolecular 

case, substantially decreases conversion rate. In Figure 4-14, the impact of this change on 

the number average MW is improving the profile’s agreement with the experimental data.  

The downward curvature of this profile at high conversion was seen to lessen with 

decreasing kdim, leading to better predictions at these high conversion values.  The 

improvements seen in these MW profiles as well as the PDI profile (Figure 4-15) due to the 

reduction of kdim are significant, suggesting that reactions involving the dimer may be 

contributing to some of the poor fit that has been observed in earlier modelling efforts. 
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Figure 4-13 – Impact of reducing kdim on conversion for unimolecular process (T = 120 °C) 

 

Figure 4-14– Impact of reducing kdim on Mn for unimolecular process (T = 120 °C) 
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Figure 4-15 illustrates the impact of decreasing kdim on the generated PDI profile.  In this 

figure, the generated profile is seen to get closer to the bulk of the data points, with the 

upward curvature at high conversion values diminishing as well. 

 

Figure 4-15– Impact of reducing kdim on PDI for unimolecular process (T = 120 °C) 

 

Based on the impact that the decrease of the rate constant kdim, and therefore the resultant 
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4.2.2 Contribution of Transfer to Dimer (kfD) 

 
The impact of changes to the dimerization rate led to questions regarding the specific 

contributions of some of the reactions that the dimer is involved in, such as the chain 

transfer to dimer.  Some investigation has already been discussed in the literature, and 

there is some disagreement as to how significant this chain transfer is in the overall 

reaction scheme.  Grezta and Matyjaszewski [5] reported that high amounts of transfer to 

dimer are necessary in this process; however, Belincanta et al. [4] disagreed – even 

suggesting that it may be altogether unnecessary.  Removal of the transfer to dimer 

reaction from the model (i.e., rate constant kfD=0) led to some interesting results as will be 

discussed in this section. 

Figure 4-16 shows the effects on the conversion profile of first halving the dimerization 

rate, followed by eliminating the transfer to dimer term.  In the case of the conversion 

profile, almost no effect is seen from this removal versus the reduced dimerization case, 

which makes sense, theoretically.   
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Figure 4-16 - Impacts of removal of kfD on conversion profile (T = 130 °C and R = 1.1) 

 

Where the impact of the removal of this chain transfer reaction is even more evident is in 

the generated number average molecular weight profile.  Figure 4-17 shows the impact of 

this change on the Mn profile, including both improved fit through the centre of the data, as 

well as the elimination of the large inaccuracies that were previously seen as the model 

reaches high conversion.  The generated Mn profile is seen to finally produce a profile that 

is in good agreement with our data across the whole conversion range. 
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Figure 4-17 - Impact of removal of kfD on Mn profile (T = 130 °C and R = 1.1) 

 

This change is also seen to improve the weight average MW estimate, as depicted in Figure 

4-18, though changes in this profile are to a smaller extent than those to the number 

average MW.  The changes in both these MW estimates are echoed in the PDI profile, shown 

in Figure 4-19, where the generated profile is now in excellent agreement with the 

experimental data. Therefore the omission of this term from the model is considered to be 

a success and will be adopted in future simulation steps. 
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Figure 4-18 - Impact of removal of kfD on Mw profile (T = 130 °C and R = 1.1) 

 

 

Figure 4-19 – Impact of removal of kfD on PDI profile (T = 130 °C and R = 1.1) 
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4.2.3 Contribution of Transfer to Monomer (kfM) 

 
As we were able to achieve good performance results via the removal of the contribution of 

the transfer to dimer reaction (kfD=0) which was seen to improve model performance, 

especially of the molecular weight estimates, it made sense that the transfer to monomer 

term (kfM=0) might also be a good candidate for sensitivity studies.  Figure 4-20 shows the 

impact of the removal of this term on the generated conversion profile.  As can be seen, this 

term has negligible impact on conversion, as no visible difference is seen between the 

conversion profiles generated. 

 

Figure 4-20 - Impact of removal of kfM on conversion profile (T = 130 °C and R = 1.1) 
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The effects of this term’s removal on the molecular weight average profiles are seen to be 

more substantial.  Figure 4-21 shows the generated Mn profiles, where it is seen that the 

removal of this term further improves the predicted profile. Figure 4-22 shows a similar 

trend with the Mw profile.  Figure 4-23 indicates an improvement in the PDI profile’s 

accuracy, which makes sense as the increase seen in the values predicted for Mn is larger 

than that for Mw. 

 

Figure 4-21 - Impact of removal of kfM on Mn profile (T = 130 °C and R = 1.1) 

 

From this it appears that not only can one remove these chain transfer reactions from the 

model without significant losses in predictive power, but in fact, the model’s performance 

improves with the removal of the terms for chain transfer. 
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Figure 4-22 - Impact of removal of kfM on Mw profile (T = 130 °C and R = 1.1) 

 

 

Figure 4-23 - Impact of removal of kfM on PDI profile (T = 130 °C and R = 1.1)  
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4.3 Impact on the Unimolecular Case 

 
At this point, we have a very well-fitting model for the experimental data available for the 

bimolecular process.  It seems prudent that the impact of some of these changes on the 

model should be evaluated for the unimolecular case in order to decide if they should be 

adopted in that case as well.  Again, experimental data from within our group is utilized for 

comparisons ([2], [6]). 

4.3.1 Efficiency Factors 

 
Application of the efficiency factors f and fc as discussed in Section 4.1 to the unimolecular 

case yielded several interesting results.  Figure 4-24 illustrates the impact that the 

introduction of the fc term has on the conversion profile for the unimolecular case. 

 

Figure 4-24 - Impact of introducing fc on the unimolecular conversion profile (T = 120 °C) 
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As can be seen from this figure, unlike in the bimolecular case, the effect of this change is 

negligible.  For comparison, the impact of the same change to the model for the bimolecular 

case was shown in Figure 4-1.  Figure 4-25 illustrates the effect on the cumulative number-

average molecular weight profile (Mn). 

 

Figure 4-25 - Impact of introducing fc on the unimolecular Mn profile (T = 120 °C) 

 

Again, this change is seen to be negligible compared to the impacts seen in the bimolecular 

case, illustrated by Figure 4-2, previously.  As would be expected given the negligible 

impacts on conversion and molecular weights, the PDI similarly sees little impact from the 

addition of the fc term.  This is shown in Figure 4-26, whereas the equivalent bimolecular 

case can be seen in Figure 4-4.   
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Figure 4-26- Impact of introducing fc on the unimolecular PDI profile (T = 120 °C) 

 

These figures have demonstrated an overall negligible impact of the addition of the 

controller efficiency term on the overall model performance in the unimolecular case.   It 

then follows that the variation of f and fc with conversion, as discussed in Section 4.1.2 for 

the bimolecular case, will similarly have negligible impact on the reaction profiles, as 

demonstrated in Figures 4-27 through 4-29. The f and fc changes implemented are the 

same as those from the bimolecular approach, and are described in Table 4-1. 
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Figure 4-27 - Impact of varying f and fc profiles on unimolecular conversion profile (T = 120 °C) 

 

Figure 4-28 - Impact of varying f and fc profiles on unimolecular Mn profile (T = 120 °C) 
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Figure 4-29 - Impact of varying f and fc profiles on unimolecular PDI profile (T = 120 °C) 

 
As seen in these figures, there is no practical upside or downside to introducing a controller 

efficiency term or implementing these variations with conversion as far as model fit, 

therefore they will be included in future stages, so as to maintain consistency with what 

was done in the bimolecular case, as well as to facilitate greater simplicity in the 

mechanistic model. 

 

4.3.2 Rate of Dimerization 

 
The next step that was taken in the unimolecular case was the reduction of the rate of 

dimerization, kdim.  The impact of this change should be similar to that seen in the 

bimolecular case, as discussed in Section 4.2.1.  Figure 4-30 illustrates the effect of this 

change on the conversion profile for the unimolecular case. The rate of conversion is 

modestly lowered, which was also seen in the bimolecular case. 
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Figure 4-30 – Impact of reducing kdim on the unimolecular conversion profile, T = 120 °C 

 

Figure 4-31 – Impact of reducing kdim on the unimolecular Mn profile, T = 120 °C 
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Figure 4-32 – Impact of reducing kdim on the unimolecular PDI profile, T = 120 °C 

 

Figure 4-31 shows the impact of these changes on the number-average molecular weight 

profile, which is seen to grow more quickly when the rate of this dimerization is reduced.  

In Figure 4-32, the predicted polydispersity index is seen to lower with kdim as well – 

indicating that the weight-average molecular weight has seen less of an increase than Mn.  

These trends all agree with what was seen in the bimolecular case. 
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Figure 4-33 – Impact of the removal of kfD and kfM on the unimolecular conversion profile, T = 120 °C 

 

As can be seen, the impact of the removal of these chain transfer terms is insignificant in 

this case, which is consistent with the results of the bimolecular case, as discussed in 

Sections 4.2.2 and 4.2.3.  Figure 4-34 shows the results of these removals on the number-

average molecular weight profile, where a more pronounced straightening of the profile is 

seen, and the line takes on more of the shape that it should.  Worth noting is that at high 

conversion values, the data values are actually lower than those predicted by the model, as 

a slight nonlinearity is seen in the molecular weight development of this dataset.  Figure 4-

35 illustrates the impact of these removals on the predicted PDI profile, where much 

greater agreement is seen with the experimental data, and the erroneous upswing in PDI at 

high conversion is no longer predicted. 
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Figure 4-34 – Impact of the removal of kfD and kfM on the unimolecular Mn profile, T = 120 °C 

 

Figure 4-35 – Impact of the removal of kfD and kfM on the unimolecular PDI profile, T = 120 °C 
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From these results, one can conclude that there is now a very well-fitting model for the 

unimolecular case as well, across the full conversion range. The adoption of the changes as 

implemented for the bimolecular case were generally positive for this case, and facilitated 

much improvement in model fit when it came to prediction of molecular weight values. 

 

4.4 Impact on the TIPNO Case 

 
In Section 3.6 of this thesis, use of the model with a different nitroxide controller radical, 

TIPNO, was discussed.  Rate constants for the new nitroxide were determined from a 

literature survey and ultimately rate constants for the impacted reactions were selected 

[7].  Model predictions were obtained, and were similar in accuracy as the predictions in 

the unrefined TEMPO case, therefore also leaving some room for improvements to be 

made. In this section, some parameter sensitivity and improvements will be investigated, 

taking a look at the effects of some of the changes that have been made in the TEMPO case 

on the TIPNO modeling effort in order to evaluate whether or not they should be adopted 

in this case.   

 

4.4.1 Efficiency Factors  

 
An investigation into the impact of the efficiency factors for initiator and controller radicals 

on the model for the TIPNO case was performed.  Using the efficiency factors as determined 

for the TEMPO case, f = 0.37 and fc = 0.7, Figures 4-36 through 4-38 illustrate the impact of 

these efficiencies being implemented into the model for the TIPNO case.  Figure 4-36 shows 

the impact of these changes on the conversion profile – a minor increase in the rate of 

conversion that causes the predicted profile to show a slightly worse fit to the data.  This is 

the opposite of what was seen in the bimolecular TEMPO case, and in the unimolecular 

TEMPO case, a negligible impact was seen. 
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Figure 4-36- Conversion profile incorporating the controller efficiency term for TIPNO, T = 120 °C 

 

This impact is not seen to be great however, so judgment as to whether this change is 
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profile.  The molecular weight is seen to be higher for a given conversion, bringing it into 

somewhat better agreement with the experimental data.  Figure 4-38 illustrates the effect 

on the weight-average MW profile, which sees similar gains as those of the number-average 

MW profile.  This leads one to conclude that there will be a minimal impact on the PDI 

profile, as the ratio between these values appears more or less unchanged. 
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Figure 4-37 Mn profile incorporating the controller efficiency term for TIPNO, T = 120 °C 
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Figure 4-38 Mw profile incorporating the controller efficiency term for TIPNO, T = 120 °C 
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Figure 4-39 - Impact of changing f and fc on conversion profile, TIPNO case, T = 120 °C 

 

The number-average molecular weight profile was more positively impacted in this case, 

showing a straighter growth trend and somewhat improved model fit.  This is illustrated in 

Figure 4-40.  The weight-average molecular weight profile, Figure 4-41, saw similar gains - 

though it is now showing more significant curvature as it reaches higher conversion values.  

This curvature would adversely impact the PDI profile at higher values, as the curvature 

would be reflected.   
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Figure 4-40 – Impact of changing f and fc on Mn profile, TIPNO case, T = 120 °C 

 

Figure 4-41 - Impact of changing f and fc on Mw profile, TIPNO case, T = 120 °C 
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Again, the gains in predictive power for the MW estimates may make the minor losses as 

far as fit of the conversion profile worthwhile.  To facilitate consistency with what was 

done in the earlier cases, these changes will be carried forward as we investigate the other 

changes to the model. 

 

4.4.2 Rate of Dimerization 

 
Next, the impact of reducing the rate of dimerization in this case is investigated.  Figure 4-

42 shows the conversion profile as affected by the reduction of kdim as discussed earlier for 

the unimolecular and bimolecular cases.  In this profile, one can see that there is a 

negligible impact. 

 

Figure 4-42 – Impact of the reduction of dimerization rate on the conversion profile, TIPNO case, T = 120 °C 
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MW profile, with increased predicted values, especially at higher conversion, and without 

the downward curvature to this profile.  However, a slight upward curvature is seen to 

have formed at high conversion with the largest reduction in kdim. 

 

Figure 4-43 – Impact of the reduction of dimerization rate on the Mn profile, TIPNO case, T = 120 °C 

 

Figure 4-44 shows the results with the weight-average molecular weight profile, which 

shows a similar trend; modest increases to predicted molecular weights and some 

additional curvature introduced to the profile’s overall shape as high conversions are 

reached. 
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Figure 4-44 – Impact of the reduction of dimerization rate on the Mw profile, TIPNO case, T = 120 °C 

 

Overall, these changes have resulted in a slightly better agreement with data, which is 
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the controller and initiator radicals will make the conversion less sensitive to adjustments 

in the other rate constants.  The changes seen here are very small, and possibly not 

significant, but it has been demonstrated that the gains in the other cases are more 

substantial – the adoption of this reduced kdim going forward is planned, in order to ensure 

greater consistency between what was done in these different cases. 
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4.4.3 Transfer to Dimer and Transfer to Monomer (kfD and kfM) 

 

Finally, the removal of the chain transfer to monomer and chain transfer to dimer reactions 

will be investigated for the TIPNO case.  It is expected that the profiles will be impacted in a 

manner consistent to the previously discussed cases.  Figure 4-45 illustrates the 

conversion-time profiles generated by the model for this case, with the previous reduction 

to kdim, the removal of the chain transfer to dimer reaction, and then finally the removal of 

the chain transfer to monomer reaction as well again plotted with relevant experimental 

data for comparison.   

 

Figure 4-45 – Impact of the removal of kfD and kfM terms for the conversion profile, TIPNO case, T = 120 °C 
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From this profile, it can be seen that the removal of these reactions has a negligible impact 

on the conversion profile.  This is consistent with what was seen in the unimolecular case 

with TEMPO.  The impacts on the cumulative number-average molecular weight profiles 

are more promising, with increases in these values, bringing them more in line with the 

data values.  Figure 4-46 illustrates the number-average molecular weight profile for this 

case, where there is a modest gain in predicted MW values, bringing them somewhat closer 

to the data values.  A similar result is seen in the weight-average MW profile illustrated in 

Figure 4-47. 

 

Figure 4-46  – Impact of the removal of kfD and kfM terms for the Mn profile, TIPNO case, T = 120 °C 
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Figure 4-47 – Impact of the removal of kfD and kfM terms for the Mw profile, TIPNO case, T = 120 °C 
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high level of predictive power, especially when it comes to molecular weight data.  More 

modest gains to model performance were seen in the TIPNO case; however the model still 

provides fairly good predictions across the full conversion range.   

Table 4-3 provides a summary of the changes to the parameter values between the initial 

model from Chapter 3 (referred to in future chapters as the FMM) and the model 

incorporating all the changes as discussed in this chapter (referred to in future chapters as 

the RMM). 

 
Table 4-3 - Summary of the changes to parameter values made in Chapter 4 

Parameter FMM Value RMM Value 

f 0.54-0.55 
If conversion <= 0.5, f = 0.4 

If conversion > 0.5, f = 0.37 

fc Nonexistent (essentially, fc = 1) 
If conversion <= 0.5, fc = 0.7 

If conversion > 0.5, fc = 0.35 

kh3 0.001 L mol-1 s-1 0 (i.e., reaction removed from model) 

kdim 16185.1188.97exp
RT

 − 
 

 L mol-1 s-1 16185.1188.97exp
RT

 − 
 

/4 L mol-1 s-1 

kfD 50 L mol-1 s-1 0 (i.e., reaction removed from model) 

kfM 6 133729.376 10 exp
RT

 × − 
 

 L mol-1 s-1 0 (i.e., reaction removed from model) 

 

The next chapter (Chapter 5) will attempt a much more significant model reduction, which 

will lead to a simplified model, which will hopefully capture the main process effects but 

with highly simplified equations. If the predictions prove satisfactory, these simplified 

equations, will be easier to use for process design of experimental scenarios and other 

process optimization applications. 
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Chapter 5: Model Reduction 

 

5.1 Rationale 

 
At this point, we have developed a quite accurate, though still very complex, fully 

mechanistic model (FMM).  The FMM consists of thirteen differential mass balances (for all 

of the different species present in the batch NMRP of styrene), nine moment equations (for 

moments zero, one, and two of each of the living polymer radicals, dormant polymer, and 

dead polymer species), and several algebraic equations (e.g., to use the moment equations 

for the formulation of average molecular weights and polydispersity index).  This full 

model could prove too complex for use in certain optimization and design situations, as it 

requires a non-trivial effort to evaluate numerically/computationally.   

To this end, a substantially reduced model was developed by returning to elementary rate 

expressions, as discussed by Fukuda and Goto [1].  This section will discuss the 

development of this model, as well as comparisons to experimental data and to the 

predictions of the fully mechanistic models from Chapters 3 and 4.   

 

5.2 Substantially Reduced Modelling Effort  

 
The guiding idea for developing the reduced model is to try and describe with 

mathematical equations the minimum number of responses one is interested in from a 

typical polymerization (i.e., the ones one can measure/quantify), namely, conversion, 

average molecular weights and polydispersity.  Hence, the fully mechanistic model of 

Chapters 3 and 4 represents one extreme of the spectrum: detailed and comprehensive but 

complex. It can give information about the main variables of interest (e.g., conversion 

molecular weights, etc.) and also about intermediate variables that may not be measured or 

tracked easily experimentally (e.g., concentration profiles of dormant species, moments of 

molecular weight distribution, concentration profiles of initiator and controller, etc.). 

However, the numerical computations using the FMM may be prohibitive, if one would like 

to use the model on-line or for design purposes, since so many higher order derivatives and 
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sensitivity functions may have to be evaluated over time, with some of these functions 

being highly non-linear, hence often resulting in numerically unstable or 

infeasible/impractical solutions. 

The substantially reduced model lies on the other end of the spectrum: highly simplified; 

covers the minimum key process variables; gives sufficient information about main effects 

(hence, loss of detail and often loss of generality); easy to manipulate, it leads to simpler 

solutions numerically or computationally, whether efforts for on-line applications or off-

line design calculations (or the derivation and evaluation of other optimal trajectories). 

If one can show that the reduced (simplified) model can capture not only the main trends 

but also the trajectories of the main responses quantitatively, then one could use the two 

extreme mathematical model types interchangeably and in a highly complementary way.  

In addition, since the highly reduced model is still based on mechanistic first principles, it 

will be at any time superior to any simpler empirical model. 

 

5.3 Derivation of Substantially Reduced Model 

 
In the derivation of the reduced model, we consider systems where:  

1) The quasi-equilibrium is reached so fast that the main body of polymerization 

occurs in the time range of quasi-equilibrium and the pre-equilibrium stage has no 

significant effect on the polymerization kinetics. 

2) The cumulative number of dead chains by termination and initiated chains by 

initiation are sufficiently small compared with the number of dormant chains. 

3) The initiation rate (Ri) is constant. 

4) All possible reactions other than those indicated in what follows are neglected.  

5) All the rate constants are assumed to be independent of chain length. 

 

The analysis below will follow the developments in [1, 2, 3, 4]. Translating the above 

statements into equations, we have the following two differential equations [2]: 
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]][X[RkX][Rk
dt

]d[X
da ••

•
−−=  Eq. 5-1 

2
tida ][RkR]][X[RkX][Rk

dt
]d[R

•••
•

−+−−=  Eq. 5-2 

where ][X•  is the concentration of active controller radicals, ][R• is the growing 

polymer radical concentration, and ]X-[R • is the concentration of the dormant 

species formed by the coupling of the two radicals. 

The sum of these Equations, 5-1 and 5-2,  gives [3]: 

 
2

ti ][RkR
dt

]d[X
dt

]d[R
•

••
−+=  Eq. 5-3 

 

The quasi-equilibrium (      ≈ 0) with negligible fraction of dead chains is represented by 

the following, where I0 = [R–X]0 [4].  

 
0IKX][RK]][X[R =−=••  Eq. 5-4 

 

where 

 
Since it usually holds that ][R• << ][X• , we may neglect             as compared with   in 

the above two equations, giving [1]:  

 

2

2
i

2
0

2
t

][X
][XRIKk

dt
]d[X

•

•• −
=  Eq. 5-5 

 

This can then be solved to provide radical concentrations and subsequently the rate of 

polymerization. However, only the case of stationary-state systems (systems with Ri >>0) 

will be discussed here. 

 

dt
]d[X•

d

a

k
k

K =

dt
]d[R•
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]d[X•
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When Ri is sufficiently large, the stationary state (      =   = 0) is reached at an 

early stage of polymerization and we obtain [2]: 

 
2

tti ][RkRR •==  Eq. 5-6 

 

Therefore, the following equations can be used to describe the system.  

 

[𝑅 ∙] = (
𝑅𝑖
𝑘𝑡

)1/2 Eq. 5-7 

𝑅𝑝 = 𝑘𝑝[𝑀](
𝑅𝑖
𝑘𝑡

)1/2 Eq. 5-8 

[𝑋 ∙] = 𝐾𝐼0(
𝑘𝑡
𝑅𝑖

)1/2 Eq. 5-9 

ln�
[𝑀]0
[𝑀] � = 𝑘𝑝(

𝑅𝑖
𝑘𝑡

)1/2𝑡 Eq. 5-10 

 

From these equations, the following expressions, Equations 5-11 and 5-12, can be obtained 

for conversion and rate of initiation: 

 

𝑥 = 1 − exp(−𝑘𝑝(
𝑅𝑖
𝑘𝑡

)
1
2 𝑡) Eq. 5-11 

𝑅𝑖 = kiakdim(−[𝑀0](1− 𝑥)3 𝑡) + 2𝑓𝑘𝑑𝐼0 exp (𝑘𝑑𝑡) Eq. 5-12 

 
Coupled with Arrhenius expressions – as previously discussed in Chapter 3, and reiterated 

here in Table 5-1 – for the rate constants involved, it is then possible to solve the system of 

equations 5-7 to 5-12.  

 
 
 
 
 
 

dt
]d[R•

dt
]d[X•



 

99 
 

 
Table 5-1 - Arrhenius expressions and values for rate constants required for simplified model 

Rate Constant Units Bimolecular Unimolecular 

kd s-1 15 300001.7 10 exp × − 
 RT

 15 300001.7 10 exp × − 
 RT

 

f  0.54-0.55 1 

kdim L mol-1 s-1 16185.1188.97exp
RT

 − 
 

 16185.1188.97exp
RT

 − 
 

 

kia L mol-1 s-1 12 36598.556.359 10 exp
RT

 × − 
 

 12 36598.556.359 10 exp
RT

 × − 
 

 

kp L mol-1 s-1 7 7769.174.266 10 exp
RT

 × − 
 

 7 7769.174.266 10 exp
RT

 × − 
 

 

kt L mol-1 s-1 10 3081.842.002 10 exp
RT

 × − 
 

 10 3081.842.002 10 exp
RT

 × − 
 

 

 

 
Combining this solved conversion profile with the expression for number-average 

molecular weight (Equation 5-13), predictions for this key process response can also be 

obtained. 

 

 
 

𝑀𝑛 =
𝑀𝑊𝑆𝑡𝑦[𝑀0]
[𝑇𝐸𝑀𝑃𝑂]0

× (𝑥) 
Eq. 5-13 

 

Estimates for the polydispersity index (PDI) for the final conversion can be determined 

using the following expression obtained from Grezta and Matyjaszewski, labeled Equation 

5-14 [5]. 

 

𝑃𝐷𝐼 =
𝑀𝑤

𝑀𝑛
= 1 +

𝑘𝑝[𝐼]0
𝑘𝑑[𝑇𝐸𝑀𝑃𝑂]0

 Eq. 5-14 
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From these, we can now estimate four of the most important process responses for any 

polymerization process; conversion, number-average molecular weight, weight-average 

molecular weight, and polydispersity index.  However, it is worth noting that the values 

obtained for PDI and Mw (as calculated from known values using Equation 5-14) are only 

valid for the final conversion, so profiles cannot be generated for these responses. 

 

5.4 Evaluating the Reduced Model 

 
Now that a simplified model has been proposed, it only makes sense to evaluate its 

performance.  To this end, some comparisons with experimental data, the full mechanistic 

model (FMM) and the refined mechanistic model (RMM) – as defined in Chapter 4’s 

conclusions – will be discussed here.  Also, some investigation into how well this model 

captures temperature and ingredient (i.e., TEMPO/BPO ratio) changes is needed in order to 

evaluate this model’s performance.   

 

5.4.1 Comparison with Experimental Data 

First, for some preliminary results, the simplified model will be solved and compared with 

some of the experimental data that is available for this process.  The data used in this case 

is for the unimolecular case, taken from Zhou [6] and is the same as was used in earlier 

chapters when discussing unimolecular initiation. 
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Figure 5-1 – Conversion profile generated by simplified model, T= 120 °C, unimolecular case 

 

Figure 5-1 illustrates the conversion profile generated by this modeling effort, compared 

with the experimental data for the unimolecular case.  The profile generated provides a 

generally acceptable trend, with a reasonably good fit.  The conversion values predicted by 

this model are seen to be somewhat lower than those obtained experimentally, but the 

overall shape is good, with slightly better agreement seen at low and high conversion. 
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Figure 5-2- Mn profile generated by simplified model, T = 120 °C, unimolecular case 

 

Figure 5-2 depicts the Mn profile generated using this simplified model.  Again, general 

trend agreement is seen, and the predicted values fit the experimentally obtained values 

very well until high conversion, where the predicted values are seen to somewhat exceed 

those of the data.  
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In the bimolecular case, comparing with data from Nabifar [7], similar results are seen, 

with Figure 5-3 depicting the conversion profile generated by the simplified model for this 

case.   As can be seen, the rate of conversion is again somewhat underestimated, with 

predicted conversion values being slightly lower than the experimental data throughout 

the conversion range, and the largest disagreement in the middle of the time range. 

 

Figure 5-3 Simplified model conversion profile, bimolecular case, T = 130 °C, R = 1.1 

 

Figure 5-4 illustrates the number-average molecular weight profile generated for this case, 

where generally good agreement is seen with the data, though instead of the predicted 

values seen to be at the high end of the data range, the predicted values are toward the low 

end.  This compares favourably with the results of the fully mechanistic model prior to its 

refinement, where similarly low predictions were seen (refer to figure 3-3), however the 
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current reduced model has the major advantage of not exhibiting the erroneous curvature 

at high conversion values. 

 

Figure 5-4 – Simplified model Mn profile, bimolecular case, T = 130 °C, R = 1.1 

 

5.4.2 Temperature Effects 

 
At this point, now that the reduced model has been shown to be satisfactory at predicting 

values for both the unimolecular and bimolecular cases, some brief analysis of how the 

model is impacted by changes to temperature is in order.   Figure 5-5 illustrates the profiles 

generated by this model with temperatures set at 120 °C and 130 °C.  As expected, the 

conversion rate is seen to be considerably higher with the higher temperature setting, 

which is comparable to the trend that was seen in the earlier discussion with temperature 

variation of the FMM, as shown in Figure 3-7.  Figure 5-6 shows the impact of changing 
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temperature on the generated molecular weight profile, which is seen to be mostly 

negligible.

 

Figure 5-5 – Temperature effects on simplified model conversion profile, bimolecular case, R = 1.1 
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Figure 5-6 – Temperature effects on simplified model Mn profile, bimolecular case, R = 1.1 

 

5.4.3 Ratio Effects 

 
The impacts of changes to the TEMPO/BPO ratio, R, on the simplified model are also of 

interest.  Figure 5-7 illustrates the negligible impact of this ratio on the generated 

conversion profile.  Contrary to what was seen with the FMM earlier (see Figure 3-13), 

where lower values of R were seen to greatly slow down the rate of reaction, especially 

early on in the reaction, the change in ratio is seen to have a negligible impact on the 

conversion profile generated by the simplified model.  This should be noted as a 

disadvantage of the reduced model. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

4

Conversion

M
n

 

 

T = 130 C
T = 120 C



 

107 
 

 

Figure 5-7 Effect of variation of TEMPO/BPO ratio on simplified model conversion profile, T = 130 °C 

 

Figure 5-8 illustrates the impact of changes to R on the molecular weight profile generated 

using the simplified model.  As was seen in the earlier discussion involving the FMM (and 

as shown in Figure 3-14), the molecular weight prediction is seen to substantially increase 

with a reduction in the TEMPO/BPO ratio.  This is also in line with what was seen with the 

data, in the discussion of Section 3.4.3, which leads us to believe that the model is again 

performing satisfactorily. 
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Figure 5-8 – Effect of variation of TEMPO/BPO ratio on simplified model Mn profile, T = 130 °C 
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5.5 Concluding Remarks 

 
The efforts to create a much simpler, easier to implement, yet still mechanistic model of the 

process have been largely successful.  The simplified model as presented in this chapter has 

been demonstrated to provide a good picture of the trends of the key measurable 

responses of such a polymerization; namely, the number-average molecular weight and 

conversion.   

This model appears to be a reasonably effective option for capturing main trends, and as 

such, can be used interchangeably and in conjunction with the more complex fully 

mechanistic or refined mechanistic models in a variety of applications – for instance, with 

the simplified model providing on-line estimates of molecular weight averages and 

conversion while the FMM is used off-line to verify or to estimate those responses that are 

not easily measureable.  If used in cases where only these main process responses are of 

interest, the simplified model could suffice. 
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Chapter 6: D-Optimal Design of Experiments 

 
An application of these models was their use in the D-optimal design of experiments.  D-

optimal design of experiments is a method for choosing a set of experiments to run that are 

most valuable (i.e., maximize the information obtained by running them) [1].  Chemical 

engineering applications of these experimental designs have been discussed in the 

literature since the 1960’s [2], [3], but with the ever improving state of computers, can be 

performed much more easily and with more complex models than ever before.  Some more 

recent work has been done with the design of experiments related to polymerizations, 

including that done by Nabifar et al. [4], [5], [6] as well as others by Dube et al. [7] and 

Vivaldo-Lima et al. [8].   

 

6.1 Background on the Statistical Design of Experiments 

 
Statistical designs of experiments have become increasingly common in order to maximize 

the information content about the process [2].  This is important, as without properly 

selected experiments, there is a good likelihood that experimental data might be highly 

correlated or imprecise. Once such data are collected, no amount of statistical analysis can 

correct this [3].  To this end, a properly selected experimental design can be instrumental 

in avoiding these kinds of shortcomings. 

Further, in the majority of polymerization processes, mathematical models do exist – albeit 

often with a good deal of uncertainty in their parameter values, and sometimes even in 

their mechanistic bases [4]. In the cases of complex polymerizations, or those for which less 

research has been performed (i.e., newer technologies like the different CRP variants) this 

problem can be even more significant [5]. Hence, the idea of applying methods from the 

statistical design of experiments to help clarify polymerization kinetics appears of interest, 

in order to help decrease these amounts of uncertainty.  Figure 6-1 shows the overall 

scheme for an experimental design. 
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Figure 6-1: Guidelines for Designing an Experiment [1] 
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6.1.1 Factorial Designs 

 
Full and fractional factorial designs are probably the most commonly used types of 

experimental designs in science and engineering [1].  However, quite often these elegant 

and very useful techniques cannot satisfy several practical needs. For instance, most of the 

experiments are strictly limited in the time and material resources that are available.  

These types of experimental designs do provide fractional factorial experiments to 

economize on effort but often the resources available do not match the number of trials 

which must be run for a specific fraction.   

Further practical difficulties involve impractical treatment combinations, experiments 

which go astray because of missing observations, redefinition of factor levels as the 

experiment proceeds, factors which require different numbers of levels, and 

dropping/adding factors [4]. Several of these very practical needs simply cannot be 

accommodated by standard factorial designs. While some of the above issues have 

solutions which are known to experts in the design of experiments, it often happens that 

the practicing scientist or engineer cannot handle them and gives up on the use of 

statistical designs. 

Finally, and more importantly, in the standard experimental designs minimal amount of 

prior knowledge is taken into account [4]. Most of the time, if experiments are to be 

conducted, there is some prior knowledge available about the process under study and the 

purpose of the statistical analysis is to strengthen/clarify a hypothesis already present. 

Ignoring the prior information, which can often lead to wasted experimental resources (i.e., 

time and materials), does not sound like a correct or reasonable thing to do! 

 

6.1.2 Bayesian Designs 

 
Bayesian design is a powerful experimental design method, which can accommodate 

practical limitations encountered in conventional factorial designs. This approach 

incorporates prior knowledge about a process into the design in order to suggest a set of 

future experiments in an optimal, sequential, and iterative fashion. Thus, it can be used to 
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determine the relative importance of different operating factors and also to identify 

optimal experiments [4].  

In addition, Bayesian design allows the use of a nonlinear (fully mechanistic) model along 

with experimental information.  It is essentially an optimal model-based design of 

experiments. Hence, this approach can shed light on the most uncertain parts of our 

process understanding, identify the least reliable parameters (e.g., uncertain values of 

kinetic rate constants), and further guide sensitivity analysis studies focusing on key 

uncertain parameters in one’s model [6]. 

The Bayesian design of experiments combines both prior and new experimental data with 

modeling information, thus leading to model parameter updates and the selection of 

optimal experimental conditions aimed at achieving a certain goal [9]. There is not a large 

volume of literature dealing with the Bayesian design of experiments applied to 

polymerizations. Dube et al. [7] were the first to present a systematic study of emulsion 

terpolymerization using the Bayesian design technique. Subsequently, Vivaldo-Lima et al. 

[8] used this technique to determine the relative importance of process factors in 

suspension copolymerization.  

Nabifar et al. ([4], [5], [6]), investigated the Bayesian design of experiments as applied to 

the case of nitroxide-mediated radical polymerization (NMRP).  The papers discuss the 

application of the Bayesian design methodology to both the unimolecular and bimolecular 

NMRP processes.  They also consider several case studies, where, for instance, four optimal 

runs are designed and contrasted with two sequences of 2-trials each. Comparisons are 

offered with fractional factorial designs and different ways of incorporating prior 

knowledge are discussed. These case studies exhibit significant advantages of Bayesian 

design over standard experimental design techniques and illustrate the application of the 

Bayesian design framework in order to enhance our understanding of important process 

characteristics.  Of course, since the technique is general, it could potentially be applied to a 

wide variety of other polymerization and chemical engineering processes [9].  The basic 

procedure for the Bayesian design of experiments is outlined in Figure 6-2, where α is the 

vector of prior parameters (estimates), U is the parameter variance/covariance matrix, and 

θ is the vector of the unknown parameters of interest. 
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Figure 6-2: Procedure for the Bayesian Design of Experiments [9] 

 
From this figure, Bayesian designs may seem relatively simple and straightforward, 

however, results are highly dependent on prior knowledge as well as the selection of 

responses and their levels.  Therefore, extended thought or “brainstorming” must be put 

into the design’s selection and implementation [5].  Additionally, the steps that require 

iteration each require a good deal of time, effort and sophisticated thought/analysis, which 

combined with the need for considerable thought about the early steps,  make this type of 

experimental design more onerous to implement than it may at first seem [9]. 
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6.1.3 Model-Based D-Optimal Designs 

 
Traditional experimental designs (i.e., Full Factorial Designs, Fractional Factorial Designs, 

and Response Surface Designs) are appropriate for calibrating linear models.  In some 

cases, however, models are necessarily nonlinear. D-optimal designs are model-specific 

designs that address these limitations of traditional designs [1].  A D-optimal design is 

generated by an iterative search algorithm and seeks to minimize the covariance of the 

parameter estimates for a specified model. This is equivalent to the maximization of the 

determinant described in Equation 6-1.  

 
𝐷 = |𝑋′𝑋| Eq. 6-1 

 
Henceforth this determinant will be referred to as the D-optimality criterion, where X is the 

design matrix of model terms (the columns) evaluated at specific treatments in the design 

space (the rows). Unlike traditional designs, D-optimal designs do not require orthogonal 

design matrices, and as a result, parameter estimates may be correlated [1]. Parameter 

estimates may also be locally, but not globally, D-optimal.   

A key component of implementing a D-optimal design is the determination of the design 

matrix (X).  For a nonlinear system of equations, the X matrix is described in Equation 6-2 

[1]. 

𝑋 =

⎣
⎢
⎢
⎢
⎢
⎡𝜕𝑓(𝑥1 ,𝜃�)

𝜕𝜃1
⋯

𝜕𝑓(𝑥1,𝜃�)
𝜕𝜃𝑗

⋮ ⋱ ⋮
𝜕𝑓(𝑥𝑖, 𝜃�)
𝜕𝜃1

⋯
𝜕𝑓(𝑥𝑖,𝜃�)
𝜕𝜃𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

 Eq. 6-2 

 

This is the matrix of the partial derivatives of the responses f(xi ,θ) for the required levels of 

the  factors/variables (x’s) (i.e., a full factorial of the possible combinations) with respect to 

the j parameters (θ’s).  Given a nonlinear model of any real complexity (i.e., our RMM has 

18 parameters, many possible variables, and several possible measurable responses), this 
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quickly becomes mathematically quite intensive to determine – however, with the ready 

availability of computational power, it is possible.  

Once the X matrix has been determined, it is simply a matter of performing the row 

exchange of the rows pertaining to the combinations of experiments of interest (i.e., how 

many experiments, other restrictions), evaluating the determinant |X’X|, and comparing the 

results to the other possible permutations.  Selecting the maximum value of the 

determinant gives you the optimal set of experiments. 

Therefore, it is a reasonable extension to perform an optimal design of experiments using a 

complex nonlinear model using the D-optimal design criterion.  This involves a great deal of 

computational effort, replacing some of the extended thought that was necessary in the 

aforementioned Bayesian designs using a linear model, with a more “brute force” 

computational approach.  In this type of design, prior knowledge is not incorporated in the 

prior parameters vector (α) and the prior variance/covariance matrix (U), but rather in 

that a more complex, or mechanistic model is used in the computation of the design, rather 

than a linear empirical one.   

 

6.2 D-optimality Using the Substantially Reduced Model 

 
The model-based D-optimal design of experiments can be quite a computationally intensive 

and mathematically onerous task.  Therefore it was decided that starting with the most 

simplified model, as discussed in Chapter 5, would be ideal, in order to obtain some 

preliminary results on these experimental designs before the more onerous task of designs 

using the fully mechanistic models of Chapters 3 and 4 was taken on.   

The greater level of simplicity of this model makes it possible to compute the X matrix 

analytically, rather than relying on a numerical method.  This will save significant 

computational power, as the one-time analytical solution saves the numerical computation 

of the matrix of partial derivatives upon each of the program’s iterations.  In order to help 

validate the results of this analysis, work was done to replicate some of the Bayesian design 

case studies from Nabifar et al. [5].   
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6.2.1 Preliminary Results 

 
In order to get a preliminary idea, a simple, straightforward situation was considered 

initially. Using a starting set of experiments, the next optimal experiments to be run were 

selected.  Additionally, visual interpretations of this data were created – Figure 6-3 shows a 

contour plot generated via this process, showing the relative information content (i.e., D-

optimality) for the number-average molecular weight responses that are provided by 

measurements across the viable data range for conversion and [TEMPO]/[BPO] ratio. The 

inputted experiments (i.e., levels) that were used in this case can be found in Table 6-1. 

 

Table 6-1- Input experiments for preliminary results using simplified model to generate Figure 6-3 

Experiment Conversion Ratio 

1 0.538 0.9 

2 0.536 1.1 

3 0.688 1.1 

4 0.489 1.2 

 

The values were selected to be of a moderate conversion level, the same temperature, and 

varying yet typical controller/initiator ratios.  As expected, the program suggested that 

data from experiments outside of this preliminary data range would be more informative, 

as indicated by higher values of the D-optimality criterion.  The simulation was run across a 

range of conversion values, varied from 27% to 90% and controller/initiator ratios 

between 0.9 and 1.65.   

The ideal next experiment according to the program would be that run at the two highest 

extremes, which can be seen in the upper right corner of Figure 6-3, corresponding to 

values of approximately 90% conversion and a ratio of 1.65 (i.e., maximizing both ratio and 

conversion within the possible range).  This behavior makes sense, intuitively, as that is the 

furthest from the area where the preliminary experiments were located. 
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Figure 6-3 - Contour plot of |X'X| across viable conversion and Ratio ranges for Mn response, T = 120 °C 

 
Because of results like these, there was reasonable confidence that the program was 

performing adequately.  Therefore, it was deemed appropriate to perform further tests of 

this design program, comparing it with some case studies performed with a Bayesian 

design framework [5]. 

 

6.2.2 Case Study 1: Selection of a Sequence of Two Experiments 

 
From here, the D-optimal design was compared with a case presented by Nabifar et al. [5, 

6].  In this case, the FMM is used to generate the prior information for a Bayesian design 

scheme using a linear model as described in [4] with the 23 factorial design for the levels 

shown in Table 6-2, where T is the temperature, [I] is the initiator concentration, and [N] 

the nitroxide concentration.  
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Table 6-2 - Selected factors and their levels [5] 

Level T (°C) [I] 0 (M) [N] 0 (M) 

Low 120 0.0305 0.0324 

High 130 0.036 0.0396 

 
 

The Bayesian design scheme was then used to suggest a set of two experimental trials. In 

this case, a single response was selected, that of the reaction time required to reach 75% 

conversion.  Applications of this approach in cases with other and more responses are 

indeed possible [9], however the cases discussed all involve the conversion time response.  

Nabifar et al. [6] suggested that four 2-trial sets were equally desirable for the first 

sequence of experiments.  These sets are shown in Table 6-3, where -1 represents the low 

level and 1 represents the high level.  As can be seen, the only change between the two runs 

for each set is that of the temperature level, and the nitroxide and initiator levels were 

maintained from the first to second chosen run.   

 
Table 6-3 - Possible 2-trial experiments selected by Bayesian design for Case 1 [6] 

Set Number T [I]0 [N]0 

1 -1 -1 -1 

 1 -1 -1 

2 -1 -1 1 

 1 -1 1 

3 -1 1 -1 

 1 1 -1 

4 -1 1 1 

 1 1 1 

 

The results of this indicate that the previous Bayesian design methodology had placed the 

most importance on temperature.  The results from the D-optimal design program do also 

suggest this temperature change, but in addition suggest changing the value of the initiator, 

and therefore the controller to initiator ratio.  This suggests that the variation of this ratio 
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is seen to be of similar importance by our simplified model using the D-optimality criterion.  

These results are displayed in Table 6-4. 

6-4 – Trials selected by D-optimal design program using simplified model for Case 1 

Experiment T [I]0 [N]0 

1 1 1 1 

2 -1 -1 1 

 

6.2.3 Case Study 2: Selection of Two Additional Experiments 

 
The next case from Nabifar et al. [6] was a continuation of the first case, where a further 

two experiments were chosen from where Case 1 left off.  Now, a second set of experiments 

is to be calculated, given one of the first sets as an input.  This time, the Bayesian design 

was able to settle on only one optimal pair of experiments, switching the controller levels 

from high to low.  The chosen experiments are shown in Table 6-5.  From this it can be 

concluded that the Bayesian design viewed the controller level of the next importance after 

the temperature, with the third variable, initiator level, of the least importance of the three. 

 
Table 6-5 - Four trials selected for Case 2 by the Bayesian design [6] 

Sequence T [I]0 [N]0 

1 -1 1 -1 

 1 1 -1 

2 -1 1 1 

 1 1 1 

 
 
The experiments used as inputs for our D-optimality comparison will be those selected by 

the Bayesian design. The D-optimality program incorporating the simplified model was 

run, given this first set of experiments, and returned the following plot, Figure 6-4.  As can 

be seen by the values with the highest peaks, the two additional experiments chosen were 

not the same two as were selected in the Bayesian design; however the chosen trials do 

follow the general trend of selecting a change to both the controller/initiator ratio and 

temperature levels. 
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Figure 6-4 - Contour plot of |X'X| for simplified model, Case 2 

 

The values selected by the D-optimal design are presented in Table 6-6 below.  The key 

difference between these results and those of the Bayesian design is that these suggest 

changing the initiator level as well, which would serve to help in isolating that effect.  Also, 

this is consistent with the different experiments that were chosen for Case 1 in that [I]0 was 

changed.  Again, this suggests that the simplified model places a higher value on the 

information gained by varying the initiator level than the linear model as used in the 

Bayesian design does. 
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6-6 - Trials selected by D-optimal design program using simplified model for Case 2 

 T [I]0 [N]0 

2 -1 -1 1 

 1 -1 -1 

 

6.2.4 Change of Constraints 

 
In Section 6.2.3, the levels available to the Bayesian design were simply the high and low 

values for each factor.  This was done to more exactly match the conditions of the sample 

case.  An analysis was performed using this case as a basis, but allowing more levels to be 

evaluated.  Instead of only high and low values, the range was incremented into ten levels. 

Some interesting results were found.  A new constraint was added, that the ratio must be 

maintained at a more reasonable level, not higher than 1.2.  Table 6-7 shows the results 

from this analysis, which resulted in the maintenance of the Ratio chosen by the Bayesian 

design, but chose new temperatures and controller and initiator amounts.  It is interesting 

to note that the signs of the respective values were maintained (i.e., high and low levels are 

basically maintained). 

 

Table 6-7 - Results of permitting more levels to be considered in Case 2, D-optimal design, simplified model 

 

Bayesian Design  D-Optimal Design  

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -1  1  -1  0.81  -1  1  -1  0.81  

2  1  1  -1  0.81  1  1  -1  0.81  

Second Sequence  
of Two Runs  

3  -1  1  1  1.19  -0.6  1  1  1.19  

4  1  1  1  1.19  0.2  0.6  0.4  1.19  
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This appears to make sense with what was seen in the earlier case, as the D-optimal design 

of experiments using the simplified model still seeks to vary both initiator and controller 

designs as with the previous cases, but now was seen to seek out the controller/initiator 

ratio that the Bayesian design did. 

 

6.3 D-optimality Using the Refined Mechanistic Model 

6.3.1 Implementation 

 
Due to the larger, more complex nature of the RMM when compared to the simplified 

model used in Section 6.2, the implementation of this model was a more difficult 

undertaking.  First of all, the design matrix for this model is rather intensive to compute, as 

the nonlinear system of differential equations is quite large, and there is no analytical 

solution to the system (this will be discussed in more detail in Section 6.4.2).  Therefore, 

finite differences must be used to compute the partial derivatives required to populate the 

X matrix as described in Equation 6-2 previously.  This means that the model must be 

solved for both high and low values of each of the parameters (θ’s), for each combination of 

variable levels to be evaluated, and then the values used in the following finite difference 

equation, Equation 6-3. 

𝜕𝑥𝑖
𝜕𝜃𝑗

≅
𝑓�𝑥𝑖,𝜃𝑗 + ℎ� −  𝑓�𝑥𝑖 ,𝜃𝑗�

ℎ
 Eq. 6-3 

 
where f(xi, θj) is the value of the response of interest, xi, is the variable level, θj is the 

parameter being perturbed for the finite difference, and h is the increment between the 

high and low values for the parameter (i.e., degree of this perturbation).  The value of h 

must be tuned for each parameter so as to provide for a stable solution. A representative 

sample of the MATLAB code (and some pseudo-code) used to compute these derivatives for 

the X matrix is available as described in Appendix B. 

Once these finite differences are computed for each of the variable levels that are of 

interest, the X matrix can be constructed as was shown in Equation 6.1 in Section 6.1.3.  

From here it’s simply a matter of combining these variable levels and finding which yield 
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the optimal result , indicated by the maximization of the D-optimality criterion (i.e., max(D 

= |X’X|).   

 

6.3.2 Comparisons with Bayesian Design Results 

 
From here, as with the earlier investigation of the D-optimal design program using the 

simplified model, the D-optimal design program using our refined (fully) mechanistic 

model will be compared with the Bayesian design case studies mentioned earlier in Section 

6.2, as well as others from the literature [4, 5, 6]. 

 

6.3.3 Case Study 1 – Selection of two experiments 

 
This first case study is the same as was discussed in Section 6.2.2, where a sequence of two 

experiments was chosen by the Bayesian design.  In this case, the chosen sequence of 

experimental runs did not match those suggested with the simplified model.  The results 

are shown in Table 6-8.  

 
Table 6-8 - Trials selected by D-optimal design using RMM for Case Study 1 

 

Bayesian Design  D-Optimal Design  

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -1  1  -1  0.81  -1  1  -1  0.81  

2  1  1  -1  0.81  1  1  1  1.19  

 

Interestingly, the D-optimal design chose one of the two runs suggested by the Bayesian 

design, -1 1 -1, but on the other run varied the controller level in addition to the 

temperature level.  The second experiment chosen by the D-optimality program is in fact 

one of the ones that was selected for the second set of  two experiments using the Bayesian 

design, as discussed in Section 6.2.3.   
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That the results differ is reasonable, as the two designs are based on completely different 

models and are therefore not necessarily expected to yield the same results.  This 

difference in selected sequence of runs could suggest that the model-based design using the 

RMM and the D-optimality criterion places a higher importance on the controller to 

initiator ratio than the Bayesian design did.  This is in line with what was seen in Section 

6.2.2, where this case study was investigated using the simplified model, in that both of 

these model-based designs seem to place a higher importance on the variation of the 

controller/initiator ratio than the model in the Bayesian design did. 

 

6.3.4 Case Study 2 – Selection of four experiments 

 
Next, the case study where an additional two experiments were selected is considered.  

This case was previously discussed using the simplified model in Section 6.2.2.  Initially, the 

set of experiments chosen by the D-optimal design was seen to be different from that 

chosen by the Bayesian design, however once the second sequence of runs was selected, 

three of the four experiments were seen to have been chosen to be the same, albeit in a 

different order.  The key difference in the results from the D-optimal design in this case is 

seen to be that it places a larger importance on changing the initiator level (and therefore 

having another, higher TEMPO/BPO ratio). 

 
Table 6-9 - Trials selected by D-optimal design using RMM for Case Study 2 

 

Bayesian Design  D-Optimal Design  

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -1  1  -1  0.81  -1  1  -1  0.81  

2  1  1  -1  0.81  1  1  1  1.19  

Second Sequence  
of Two Runs  

3  -1  1  1  1.19  -1 1 1 1.19  

4  1  1  1  1.19  1 -1 1 2.39 
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However, this does not shed light into how the D-optimal design behaves given the same 

inputs as the Bayesian Case Study 2.  Using the first sequence that was selected using the 

Bayesian design from Nabifar et al. [6] yielded some interesting results.  In fact, when using 

the first set of two experiments chosen by the Bayesian design as the inputs for the D-

optimal design to select the second sequence, the results are seen to agree completely (i.e., 

in both additional experiments chosen and their sequence).  Table 6-10 shows the results 

from this analysis. 

 
 

Table 6-10 - Trials selected by D-optimal design using RMM for Case Study 2, and first sequence from Bayesian 
design 

 

Bayesian Design  D-Optimal Design  
(Fixing 1st sequence) 

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -1  1  -1  0.81  -1  1  -1  0.81  

2  1  1  -1  0.81  1  1  -1  0.81  

Second Sequence  
of Two Runs  

3  -1  1  1  1.19  -1 1 1 1.19  

4  1  1  1  1.19  1 1 1 1.19  

 

Interesting to note here is that three of the four runs selected in these last two D-optimal 

designs are the same, with the less constrained model-based D-optimal design (results 

shown in Table 6-9) choosing to run an experiment with a much higher controller to 

initiator ratio instead of investigating the effect of the temperature level on the lower ratio 

as in the Bayesian case. 

 

6.3.5 Case Study 3 – Changing variable levels 

 
Similar to the previous case, using the trials selected by the Bayesian design as past 

experiments and adding two new experiments, this time with an expanded range for 

temperature, also yielded interesting results.  Table 6-11 shows the results generated by 
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the D-optimal design for this case. There is perfect agreement with the sequence of runs 

chosen by the Bayesian design.  This is consistent with both of the observed behaviours in 

previous cases discussed with this model – the tendency to vary the controller/initiator 

ratio in chosen runs, and choosing the same runs when given the first two runs from the 

Bayesian design. 

 
Table 6-11 - Trials selected by D-optimal design using RMM for Case Study 3 

 

Bayesian Design  D-Optimal Design  

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -0.33 1  -1  0.81  -0.33  1  -1  0.81  

2  0.33 1  -1  0.81  0.33 1  -1  0.81  

Second Sequence  
of Two Runs  

3  -1  -1  -1  1.61 -1 -1 -1 1.61  

4  1  -1  -1  1.61  1 -1 -1 1.61  

 

Figure 6-5 shows the contour plot of the determinants (D = |X’X|) for the combinations of 

two experiments, where it is seen that the chosen combination of experiments is indeed the 

best by this criterion, by quite a substantial margin.  It does indicate, interestingly, that 

there is another set of experiments that stands out from the bulk of the combinations, that 

of -1 1 1 and 1 -1 -1, which similarly seek to test the new temperature extremes, but also 

want to investigate another [TEMPO]/[BPO] ratio, of 1.19.  These second-best choices also 

follow one of the trends we have seen in this analysis – that of suggesting changes to the 

controller/initiator ratio to investigate in the experiments. 
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Figure 6-5 - Using RMM for Case Study 3 
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6.4 Comparisons Between Model Levels 

6.4.1 Results and Trends 

 

There were some differences seen between the recommendations made when using the 

simplified model and when using the RMM, though the trends largely seemed to agree.  In 

general, the RMM is expected to provide more accurate and informative results since it 

takes more of what is truly going on in the process into consideration. In a practical 

application, the speed and simplicity of the simplified model makes it a likely candidate for 

on-line applications where delays could mean lost productivity, whereas off-line 

verification using the RMM could be quite appealing in cases where time allows.   

Interestingly, when making comparisons between our designs and the Bayesian design, it 

was worth noting that both the simplified model and RMM displayed the tendency to place 

a higher importance on varying the controller/initiator ratio than the Bayesian design did.  

This trend could suggest a good deal of agreement between the model levels. 

 

6.4.2 Practical Considerations 

 
The much more complex nature of the RMM/FMM makes for a considerably more 

computationally intensive design of experiments where it is used.  For the relatively simple 

comparisons that were made with the cases in the previous sections, runtime of the 

FMM/RMM was in the order of 5 minutes compared with the nearly instantaneous returns 

from the simplified model. 

However, when designs considering more variables or levels are considered, the amount of 

computation required grows exponentially.  For instance, a design that considered 3 

variables with ten levels using the RMM had a runtime of nearly four hours.  Similar 

designs with the simplified model took a fraction of the time, as the simpler solution does 

not require the solution of the large system of equations repeatedly.  When the design 

program was given multiple responses, variables, and levels to evaluate, runtimes could be 

even longer still.  The longest run of the D-optimality program that has been made to date, 
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looking for the impact on both the conversion time and number-average molecular weight 

responses using the RMM with 10 levels of three variables took approximately 8 hours to 

complete. 

Despite this greater time investment, the use of the higher-level model may be worthwhile, 

as it takes a much more complete, mechanistic view of what is going on in the process, and 

provides more process information (i.e., can predict information about species 

concentrations, Mw, and PDI) than the simplified model can.   

 

6.5 Changes to the Optimality Criterion 

6.5.1 Rationale and Methodology for Implementation 

 

Model parameter correlations can prevent the solution of experimental design calculations, 

make parameter isolation/identification more difficult, and even decrease the statistical 

validity of the design of experiments and the resulting models [10, 11].  In order to try to 

combat this more aggressively than in a D-optimal design, Fransceshini and Macchietto 

proposed some anticorrelation criteria for model-based experiment design [10, 11, 12].  

One of their proposed anticorrelation criteria was adopted for comparison with our D-

optimal designs using the RMM.  The criterion is given by the following, Equation 6-4 [10]. 

 

min
𝜑∈𝛷

��𝐶𝑖𝑗2 (𝜃, �𝜑)|𝑖≠𝑗

𝑝

𝑗=2

𝑝−1

𝑖=1

 Eq. 6-4 

 

In the above, φ is the design vector, Φ is the design space, θ is the vector of the best 

currently available parameter estimates and Cij is the correlation matrix given by Equation 

6-5 [11]. 
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𝐶𝑖𝑗 =  
𝑉𝑖𝑗

 �𝑉𝑖𝑖 �𝑉𝑗𝑗
 Eq. 6-5 

 
 

In equation 6-5, V is the variance-covariance matrix, which is the inverse of X’X.  

Substituting this in gives us the following expression for Cij, Equation 6-6. 

 

𝐶𝑖𝑗 =  
(𝑋′𝑋)𝑖𝑗

−1

 �(𝑋′𝑋)𝑖𝑖𝑗
−1

 �(𝑋′𝑋)𝑗𝑗
−1

 Eq. 6-6 

 

That is, the criterion is the minimization of the sum of the squared values of all of the 

correlation coefficients given by Equation 6-6.  Implementing this criterion into the design 

of experiments program in MATLAB was relatively simple, and just involved the 

replacement of the final evaluation of the D-optimality criterion for the chosen sets of 

experiments with the new anticorrelation criterion. 

 

6.5.2 Comparison with Case 2 

 

The implementation of this criterion had some interesting effects on the results of the 

design of experiments.  Often the same combinations of experiments would not be selected 

for the two criteria. 

Comparisons were made with one of the case studies discussed previously in this Chapter, 

namely Case 2, as originally discussed in Sections 6.2 and 6.3 for the simplified and refined 

mechanistic models, respectively. The results of the anticorrelation design are compared 

with those from the D-optimal design (which matched the earlier Bayesian design) in Table 

6-12.   
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Table 6-12 - Trials selected using anticorrelation criterion and RMM for Case 2 

 

D-Optimal Criterion (RMM) Anticorrelation Criterion 

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -1  1  -1  0.81  -1  1  -1  0.81  

2  1  1  -1  0.81  1  1  -1  0.81  

Second Sequence  
of Two Runs  

3  -1  1  1  1.19  1 -1 1 2.39 

4  1  1  1  1.19  -1 -1 1 2.39 

 

As can be seen, the anticorrelation criterion did not choose the same additional 

experiments as the D-optimal criterion using the RMM (and therefore the Bayesian design), 

as discussed in Section 6.3.4. The difference is that the anticorrelation design suggests the 

lowering of the initiator level along with the increase of the nitroxide level, or rather, that 

this design chose the experiments with both extremes of the controller/initiator ratio.  This 

is illustrated in Figure 6-6, where the best set of experiments is indicated by the smallest 

(i.e., largest downward) peak.   

Interestingly, when not constrained by being made to use the first two experimental inputs 

from the Bayesian case, the D-optimality-based design chose to recommend all three of 

these initiator/controller ratio values (i.e., 0.81, 1.19 and 2.39).  Also interesting to note is 

that the next best or second-best choice peak contains one of the experiments contained in 

the other (Bayesian/D-optimal) design, namely 1 1 1, but the second chosen experiment 

opts to test the impact of the low initiator value as well with the chosen values of 1 -1 -1, 

which would correspond to an initiator/controller ratio of 1.61. 
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Figure 6-6 - Anticorrelation results for the conditions of Case Study 2 using RMM 

 

6.5.3 Comparison with Case Study 3 

 

Another analysis using this criterion was made in comparison with Case Study 3 as was 

discussed earlier for the D-optimality criterion using the RMM in Section 6.3.5.  The results 

are displayed in Table 6-13, where it can be seen that the two approaches are in perfect 
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agreement.  Since the D-optimal design was in agreement with the Bayesian design in this 

case as well, it can be said that all three experimental designs were in agreement for this 

case.  This suggests that the increase in information content gained by the evaluation of 

these new temperatures and ratios is able to overcome that obtained in the previous case 

(Section 6.5.2) by changing both the initiator and controller levels.  A possible explanation 

is that changing all three variable levels would provide less insight into the parameter 

interactions/correlation than leaving one constant. 

 

Table 6-13 - Trials selected using anticorrelation criterion and RMM for Case 3 

 

D-Optimal Criterion  Anticorrelation Criterion 

Run T [I]0  [N]0  Ratio  T  [I]0  [N]0  Ratio  

First Sequence  
of Two Runs  

1  -0.33  1  -1  0.81  -0.33  1  -1  0.81  

2  0.33 1  -1  0.81  0.33  1  -1  0.81  

Second Sequence  
of Two Runs  

3  -1 -1 -1 1.61  -1 -1 -1 1.61  

4  1 -1 -1 1.61  1 -1 -1 1.61  

 

Figure 6-7 shows the pictorial results of this experimental design, where the selected 

combination of experiments (-1 -1 -1 and 1 -1 -1) is seen to stand out from the group as the 

lowest value of the optimality criterion (i.e., the deepest valley).  The second choice as was 

identified in Figure 6-5 for the D-optimality approach, -1 1 1 and 1 -1 -1, is not seen to 

stand out in this case, suggesting that perhaps it failed to address the problem of parameter 

correlation that this criterion seeks to reduce. 
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Figure 6-7 - Anticorrelation results for the conditions of Case Study 3 using RMM 
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6.6 Concluding Remarks 

 

We have studied three different model-based optimal experiment designs, all with quite 

reasonable results.  Comparisons of these different designs to each other and a previously 

explored Bayesian design have yielded some interesting results.  

The D-optimality-based experiment designs using both the RMM and the simplified model 

are seen to select similar sets of experiments under similar conditions, however some of 

the results were seen to differ between the two (as were highlighted in the discussion).  

Therefore, in practical applications, one could use the simplified model when the 

computation time is a factor (i.e., on-line applications) and the higher-level mechanistic 

models when time permits (i.e., off-line applications).  Also, it may be worth using the 

different model levels in conjunction – for instance, using the simplified model on-line or 

for quick estimates and the higher level model for off-line verification.   

Implementation of the anticorrelation criteria discussed by Franceshini and Macchieto [10, 

11] was then completed, and applied to the case studies using the RMM.   Comparable 

(although not always identical) results were seen to when the D-optimal designs were 

used.  In cases where there is a suspicion that parameters may be correlated, the use of this 

criterion could be of benefit, as it is aimed at the reduction of such correlations.   

Finally, comparisons between results obtained from using the regular D-optimality 

criterion and those from using the anticorrelation criterion could be of value, as any 

differences in these results could help clarify the role of parameter correlations in the 

process model. 
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Chapter 7: Concluding Remarks, Main Contributions, and 

Recommendations for Future Work 

 

7.1 Concluding Remarks 

 
As per Chapter 3, we have a fully functioning mechanistic model that captures the overall 

trends of styrene NMRP, with unimolecular and bimolecular TEMPO as well as 

unimolecular TIPNO controllers.  There is evident room for improvement as far as the 

model’s fit, and this is a very complex and difficult to solve model, involving a large, stiff 

system of differential equations.  This system must be solved together with numerous 

Arrhenius expressions for the various rate constants contained within it.  On top of all this, 

further calculations must be done in order to generate the cumulative molecular weight 

averages and polydispersity index.   

Therefore, from this point, two main priorities are clear: model refinement and model 

reduction – that is, improving the predictive power and reducing the amount of 

computation required to generate model profiles.  

Chapter 4 of this discussion examined the first goal, model refinement – seeking to improve 

the agreement between these models and experimental data.  In essence, this sensitivity 

study not only revealed interesting trends in the model responses (and improved model 

performance versus experimental data), but also generated a mechanistic model reduction 

approach.  The model at this level is still fully mechanistic, but with fewer terms, hence 

somewhat reduced, and it still provides good predictions over the full conversion range 

and over a wide range of operating conditions for the bimolecular process.   

Implementing these reductions and changes in the unimolecular TEMPO and TIPNO cases 

yielded similarly interesting results.  The unimolecular case was very successful in 

mirroring the high level of predictive power, especially for the molecular weights.  More 

modest gains to model performance were seen in the TIPNO case; however, the model still 

provides fairly good predictions across the full conversion range. 
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Chapter 5 attempted a much more significant model reduction, which led to a simplified 

model, which captured the main process effects but with highly simplified equations 

(which are easier to use, if the model predictions are satisfactory, for process design of 

experiments scenarios). 

The efforts to create a much simpler, easier to use model of the process have been largely 

successful.  The simplified model as presented in Chapter 5 has been demonstrated to 

provide a good picture of the trends of the key measurable responses of such a 

polymerization; namely, the number-average molecular weight and conversion.   

This model appears to be a reasonably effective option for capturing main trends, and as 

such, can be used interchangeably and in conjunction with the more complex fully 

mechanistic or refined mechanistic models in a variety of applications. For instance, with 

the simplified model providing on-line estimates of MW and conversion with the FMM used 

off-line to verify or to estimate those responses that are not (easily) measureable.  If used 

in cases where only these main process responses are of interest, the simplified model 

could suffice. 

An application of these models – that of their use in the design of experiments, was 

investigated in Chapter 6. The work in this chapter yielded 3 different model-based optimal 

experiment designs, all with quite reasonable results.  Comparisons of these different 

designs to one another and a previously explored Bayesian design have yielded some 

interesting results.  

When comparing the D-optimality-based experiment designs using both the RMM and 

simplified model – both performed adequately, however some of the results differed 

between the two.  It therefore makes sense to potentially use the simplified model when 

the computation time is a factor (i.e., on-line applications) and the higher-level mechanistic 

models when time permits (i.e., off-line applications). Additional work was done, 

implementing another optimality criterion with and anti-correlation component, aimed at 

reducing the impact of model parameter correlation. 

 These experimental designs can be used in a variety of situations, for a variety of 

responses and can be compared with one another when questions such as the role of 

parameter correlations or the results yielded from the use of the simplified model are 
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suspected to be less accurate (i.e., the use of the higher-level model for off-line verification 

when primarily using the simplified model could then be of interest). 

 

7.2 Main Contributions 

  

• A working, fully mechanistic model for the NMRP of styrene, with an analysis of its 

performance compared to experimental data, with both unimolecular and 

bimolecular initiation options and both TEMPO and TIPNO as controller radicals. 

This work is detailed in Chapter 3. 

 

• A refined, yet still fully mechanistic model for the NMRP of styrene, shown to work 

with two different nitroxides and both the unimolecular and bimolecular options 

was developed and analyzed in Chapter 4. 

 

• A substantially reduced model derived and tested in Chapter 5, which captures the 

main trends, and while still nonlinear, much simpler than the fully mechanistic 

model. 

 
• Computer code and programs in Chapter 6, to perform model-based D-optimal 

design of experiments using these models with comparisons to other experimental 

designs as well as between levels. 

 
• In Section 6.5, modifications to the optimal design criterion using a different 

criterion, tailored to further reduce correlation between parameters. 

 

• In Section 7.3.2, a detailed discussion of work that can be done using these or 

similar models in the optimal selection of sensors for CRP, including a basic strategy 

for implementation of various measures of information content. 
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7.3 Recommendations for Future Work 

7.3.1 Bayesian Designs using FMM 

 
A logical extension to this work would be to use a non-linear model in the Bayesian design 

to replace the linear model that was used. Initially, and for practical purposes, one can start 

with the simplified non-linear model, as discussed in Chapter 5, in order to begin with a 

simpler case.   

Eventually, incorporating the fully mechanistic model into this design could capture the 

benefits of both the Bayesian design process and the more complex models used in the 

designs from this thesis.  Further, the Bayesian design methodology using the refined 

(fully) mechanistic model could be used with the anticorrelation criterion, which would be 

expected to provide advantages to the selection of experiments with the downside of 

lengthening runtimes further.  

Once the step on nonlinear Bayesian designs is completed, comparisons between the 

different model levels (linear, RMM, and simplified) and design types (D-optimal, 

anticorrelation, and Bayesian) warrant further study as well.  This could lead to greater 

model refinements (through improvement of parameter estimates and better data).   

 

7.3.2 Applications to Sensor Selection 

 

Another interesting use of these models would be their use in the selection and placement 

of sensors for these process measurements.  Quality control is of the utmost importance in 

any industrial process. However, plants experience disturbances from numerous sources 

which often are not possible to anticipate and can impact the final product’s quality [1].  To 

combat this, accurate and complete measurements must be taken to monitor the output 

variables and identify when and if these disturbances are impacting the process.  These 

measurements can be used in a process control scheme to dictate the required adjustments 

to ensure that the final product meets or exceeds quality requirements. 
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The performance of any process monitoring or control system is strongly dependent on the 

available measurements, and the absence of sufficient measurements can significantly 

complicate any attempt to control an industrial process [2].  It is therefore important to 

ensure that the appropriate sensor configuration is in place to maximize the information 

content of the gathered measurements.   

One way of performing such a sensor selection was suggested by Penlidis and Duever for a 

styrene/methyl methacrylate copolymerization process, using a Kalman Filter approach 

[1].  Consider the process model in a linearized, discretized form, given by Equations 7-1 

and 7-2 [1]: 

𝑋𝑘+1 = 𝛷𝑘𝑋𝑘 + ∆𝑘𝑢𝑘 + 𝑤𝑘 

 
Eq. 7-1 

𝑦𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘  Eq. 7-2 

 

Xk is the (n x 1) state variable vector at time k, uk the (r x 1) manipulated input variable 

vector, yk the (m x 1) measurement vector, Hk the measurement matrix and wk and vk are 

independent Gaussian white noise vectors with zero mean representing the process and 

measurement noises, respectively. 

First the deterministic and stochastic state vectors are predicted by Equations 7-3 and 7-4 

[1]:  

𝑋�𝑘+1/𝑘
𝑑 = 𝑋�𝑘/𝑘

𝑑 + � 𝑓�𝑋�𝑑(𝑡),𝑢(𝑡), 𝑡�𝑑𝑡
𝑡𝑘+1

𝑡𝑘
 

 

Eq. 7-3 

𝑋�𝑘+1/𝑘
𝑠 = 𝛷𝑠𝑋�𝑘/𝑘

𝑠  Eq. 7-4 

 

𝑋�𝑘+1/𝑘
𝑑  and 𝑋�𝑘+1/𝑘

𝑠  are the one step ahead predictions for the deterministic and stochastic 

state vectors, respectively.  𝑋�𝑘/𝑘
𝑑  and 𝑋�𝑘/𝑘

𝑠  are the corresponding filtered estimates from the 

prior step, and 𝑓�𝑋�𝑑(𝑡),𝑢(𝑡), 𝑡� is the right hand side of the general nonlinear state 

differential equation description of the process.  The inclusion of stochastic states in the 

Kalman Filter formulation is necessary to eliminate offset in the state estimates when 
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chemical processes experience nonstationary stochastic disturbances.  The augmented 

state vector, composed of both the deterministic and stochastic states, is then used in 

Equations 7-5 through 7-8 [1]. 

 

𝑃𝑘+1/𝑘 = 𝛷𝑘𝑃𝑘/𝑘𝛷𝑘
𝑇 + 𝑅𝑤 

 

Eq. 7-5 

𝑋�𝑘+1/𝑘+1 = 𝑋�𝑘+1/𝑘 + 𝐾𝑘(𝑦𝑘+1 − ℎ�𝑋�𝑘+1/𝑘, 𝑡�) 

 

Eq. 7-6 

𝑃𝑘+1/𝑘+1 = 𝑃𝑘+1/𝑘 − 𝐾𝑘𝐻𝑘+1𝑃𝑘+1/𝑘 

 

Eq. 7-7 

𝐾𝑘 = 𝑃𝑘+1/𝑘𝐻𝑘𝑇(𝐻𝑘𝑃𝑘+1/𝑘𝐻𝑘𝑇 + 𝑅𝑣)−1 Eq. 7-8 

 

𝑃𝑘+1/𝑘 is the covariance matrix for 𝑋�𝑘+1/𝑘, 𝑃𝑘+1/𝑘+1 is the covariance matrix for 𝑋�𝑘+1/𝑘+1, 

𝐾𝑘 the Kalman gain matrix, 𝑅𝑤 the process noise covariance matrix, 𝑅𝑣 the measurement 

noise covariance matrix, and ℎ(𝑋, 𝑡) the nonlinear measurement model. 

Competing sensor designs can be evaluated by their effect on the computed covariance 

matrices, which give a measure of the quality of information in the corresponding state 

estimates, much as the optimality criteria served as indicators of the quality of information 

gained from a set of experiments.  Equations 7-5 through 7-8 are independent of the 

process observations (yk) and can therefore be calculated iteratively until the covariance 

matrices converge.   

For completely observable systems with positive definite 𝑃0/0, both 𝑃𝑘+1/𝑘 and 𝑃𝑘+1/𝑘+1 

will converge to unique, steady-state positive definitive matrices denoted by 𝑃𝑘+1/𝑘
∞  and 

𝑃𝑘+1/𝑘+1
∞ .  The optimal sensor design, then, is that which minimizes a scalar function of P.  

The square root of the determinant of P is the scalar function chosen, as it is scale invariant 

and proportional to the hypervolume of the approximate joint confidence region of the 

state estimates [1]. The D-optimality criterion for this design is defined as follows in 

Equation 7-9 [1]: 
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min�𝐷𝑖 = �det (𝑃𝑖∞)� , 𝑖 = 1, 2 Eq. 7-9 

 

where 𝑃1is 𝑃𝑘+1/𝑘
∞  and 𝑃1is 𝑃𝑘+1/𝑘+1

∞ . 

A model of a process like the RMM developed for the NMRP of styrene could be used as the 

basis for such a sensor selection/design program.  As with the design of experiments, this 

criterion can be used to evaluate sets of measurements that maximize the information 

content (minimize the criterion) for a given set.  This criterion is quite similar to the D-

optimality and anticorrelation criteria for design of experiments that were discussed in 

Chapter 6 of this thesis.   

Implementation of such a program would take a similar form to the work of Chapter 6, but 

with the responses (i.e., f(x, θ)’s) being the rows that are exchanged in the formulation of 

the X matrices being compared, rather than the process conditions (i.e., x’s).  Therefore one 

could compare the impact on information content of different combinations of 

measurements by comparing the values obtained for the derivative.  For example, an X 

matrix constructed for the responses of number-average molecular weight and controller 

concentration could be compared with one for monomer conversion and initiator 

concentration responses.  The set of responses evaluated that optimizes this criterion could 

then be said to provide the optimal sensor configuration. 

Another approach proposed by Duever and Penlidis [1] was that of maximizing the 

observability of the system.  The observability of a system is a measure of the degree to 

which a transition of states impacts measured responses [3].  The observability matrix (n x 

mn) is given by Equation 7-10 [1]: 

 
𝑄 = (𝐻𝑇 ,𝛷𝑇𝐻𝑇 , (𝛷𝑇)2𝐻𝑇, … , (𝛷𝑇)𝑛−1𝐻𝑇) Eq. 7-10 

 

Using this matrix, one can tell if a system is mathematically observable if and only if it has 

rank equal to n [1].  From this viewpoint, whether or not a system is observable is a yes or 

no question, but there has to be a way to quantify the degree to which an observable 
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system is in fact observable.  In this case, one could use this degree of observability to 

evaluate competing experiment designs. 

For a system to be observable, the columns of Q must be linearly independent [3].  That is, 

any measure of how far the matrix Q is from singularity can be taken as a degree of 

observability for the system.  The optimal set of sensors would therefore be the one that 

maximizes this observability [1].  Penlidis and Duever [1] went on to suggest a number of 

criteria to use as measures of observability, which are to be maximized by an optimal 

sensor design, as given in Equations 7-11 through 7-14 [1]. 

 

𝜇1 = 𝑐𝑜𝑛𝑑(𝑄) =
𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

 Eq. 7-11 

𝜇2 = 𝜆𝑚𝑖𝑛(𝑄𝑄𝑇) Eq. 7-12 

𝜇3 =
𝑛

𝑡𝑟𝑎𝑐𝑒((𝑄𝑄𝑇)−1)
 Eq. 7-13 

𝜇4 = �𝑑𝑒𝑡(𝑄𝑄𝑇)𝑛  Eq. 7-14 

 

𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the maximum and minimum square roots of the eigenvalues of the 

product of Q and QT.  The condition number approaches infinity as Q becomes singular, 

thus the expression in Equation 7-11 is to be minimized for an optimal selection.  The 

expressions in Equations 7-12 through 7-14 are to be maximized by the optimal choice of 

sensor design. 

Again, sensor selection studies could be performed through using a model like the RMM to 

generate the information required for these measures for different sets of measured 

responses, and selecting the optimal set of sensors.  The approach to take in such a case 

would be similar to that with the optimal designs in Chapter 6, however instead of 

changing which parameter values are being evaluated, one would change the subset of 

potential responses that are to be measured.  Results would then be compared between 

different sets of responses, and the one resulting in the maximized criterion of choice 

would then be called the optimal configuration. 
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Appendix A: Experimental Data Used for Comparisons 

 
Table A-1- R = 0.9, T = 120 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.5 0.237 0.27 10,213 10.21 16,747 16.75 1.64 

1 0.289 0.34 12,318 12.32 17,713 17.71 1.44 

1.25 0.326 0.39 11,775 11.78 17,817 17.82 1.51 

1.5 0.350 0.43 13,976 13.98 19,648 19.65 1.41 

2 0.389 0.49 14,973 14.97 19,731 19.73 1.32 

2 0.389 0.49 14,446 14.45 19,488 19.49 1.35 

2.53 0.435 0.57 16,517 16.52 21,556 21.56 1.31 

3 0.466 0.63 16,517 16.52 22,064 22.06 1.25 

4 0.538 0.77 19,597 19.60 23,493 23.49 1.20 

5 0.595 0.90 20,842 20.84 24,888 24.89 1.19 

5 0.600 0.92 21,075 21.08 25,052 25.05 1.19 

10 0.787 1.55 27,551 27.55 31,074 31.07 1.13 

15 0.853 1.92 29,541 29.54 33,571 33.57 1.14 

20 0.891 2.22 31,696 31.70 35,383 35.38 1.12 

20 0.886 2.17 31,168 31.17 35,112 35.11 1.13 

34 0.919 2.52 31,360 31.36 35,364 35.36 1.13 

50 0.937 2.77 31,547 31.55 35,887 35.89 1.14 

70 0.944 2.88 32,598 32.60 36,669 36.67 1.13 

 

Table A-2 - R = 0.9, T = 120 C, Bimolecular Process, Replicates 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.5 0.237 12,766 13 19,273 19 1.51 

34 0.919 32,315 32 36,924 37 1.14 

70 0.944 33,010 33 36,530 37 1.125 
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Table A-3 - R = 1.1, T = 120 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

2 0.153 0.166 4,990 4.99 6,084 6.08 1.219 

3 0.238 0.272 7,256 7.26 8,595 8.60 1.184 

6 0.384 0.485 12,056 12.06 13,509 13.51 1.121 

9 0.536 0.767 17,412 17.41 19,286 19.29 1.108 

14 0.688 1.166 20,613 20.61 23,223 23.22 1.127 

24 0.802 1.618 24,450 24.45 27,537 27.54 1.126 

40 0.893 2.239 24,857 24.86 28,516 28.52 1.147 

9 0.555 0.810 17,358 17.36 19,166 19.17 1.104 

 

Table A-4 - R = 1.1, T = 120 C, Bimolecular Process, Replicates 

Time (hr) Conversion ln[M]0/[M] 

1 0.037 0.037 

2 0.108 0.114 

3 0.225 0.255 

4 0.269 0.314 

6 0.392 0.497 

9 0.535 0.765 

14 0.659 1.077 

19 0.779 1.511 

24 0.801 1.617 

29 0.848 1.882 

40 0.894 2.242 

50 0.898 2.282 
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Table A-5 - R = 1.2, T = 120 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

1.00 0.0091 0.009 1,016 1.02 3,139 3.14 3.143 

1.33 0.0154 0.016 1,480 1.48 2,556 2.56 1.727 

1.67 0.0122 0.012 1,906 1.91 2,272 2.27 1.195 

2.00 0.0330 0.034 2,134 2.13 2,363 2.36 1.108 

2.33 0.0544 0.056 2,192 2.19 2,543 2.54 1.160 

2.33 0.0551 0.057 2,291 2.29 2,630 2.63 1.148 

2.67 0.1157 0.123 4,060 4.06 4,636 4.64 1.142 

3.00 0.0913 0.096 3,460 3.46 3,967 3.97 1.147 

3.33 0.1059 0.112 3,986 3.99 4,591 4.59 1.152 

3.67 0.1818 0.201 6,598 6.60 7,300 7.30 1.107 

4.00 0.2077 0.233 7,230 7.23 8,013 8.01 1.109 

5.00 0.2117 0.238 7,842 7.84 8,583 8.58 1.095 

6.00 0.3356 0.409 11,661 11.66 12,533 12.53 1.075 

8.00 0.3780 0.475 14,691 14.69 14,691 14.69 1.081 

10.00 0.4886 0.671 17,046 17.05 18,156 18.16 1.066 

14.00 0.6301 0.995 21,125 21.12 23,105 23.11 1.094 

14.00 0.6588 1.075 22,212 22.21 23,755 23.75 1.070 

18.00 0.7435 1.361 24,236 24.24 26,326 26.33 1.086 

22.00 0.7988 1.603 26,789 26.79 28,553 28.55 1.066 

26.00 0.8314 1.780 27,800 27.80 30,274 30.27 1.089 

40.00 0.8930 2.235 29,193 29.19 31,104 31.10 1.066 

49.00 0.9023 2.326 29,355 29.35 31,884 31.88 1.086 

72.00 0.9192 2.516 29,358 29.36 32,458 32.46 1.108 
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Table A-6 - R = 1.2, T = 120 C, Bimolecular Process, Replicates 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

3.67 0.1818 6,771 6.77 7,637 7.64 1.128 

22.00 0.7988 27,955 27.95 30,001 30.00 1.073 

72.00 0.9192 31580 31.58 33480 33.48 1.06 

 

Table A-7 - R = 0.9, T = 130 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.52 0.281 0.33 9,734 9.73 13,785 13.78 1.42 

1 0.346 0.42 12,083 12.08 15,198 15.20 1.26 

1.5 0.444 0.59 14,821 14.82 18,037 18.04 1.22 

2 0.489 0.67 17,021 17.02 20,014 20.01 1.18 

3 0.587 0.88 19,429 19.43 22,972 22.97 1.18 

3 0.601 0.92 21,077 21.08 23,939 23.94 1.14 

4 0.656 1.07 22,369 22.37 25,560 25.56 1.14 

4.95 0.705 1.22 23,159 23.16 26,637 26.64 1.15 

8 0.802 1.62 26,872 26.87 30,078 30.08 1.12 

8 0.834 1.80 29,191 29.19 32,279 32.28 1.11 

10.1 0.852 1.91 29,870 29.87 33,450 33.45 1.12 

10.1 0.870 2.04 29,366 29.37 33,425 33.43 1.14 

24.05 0.901 2.31 29,110 29.11 33,689 33.69 1.16 

24.05 0.916 2.48 30,070 30.07 35,236 35.24 1.17 

15 0.876 2.09 27,908 27.91 33,082 33.08 1.19 

15 0.876 2.08 27,894 27.89 33,333 33.33 1.20 

30.02 0.908 2.39 27,185 27.18 33,108 33.11 1.22 

50 0.929 2.65 28,263 28.26 33,972 33.97 1.20 

50 0.930 2.67 29,565 29.56 34,791 34.79 1.18 
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Table A-8 - R = 0.9, T = 130 C, Bimolecular Process, Replicates 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

1 0.346 12,064 12.06 15,202 15.20 1.260 

3 0.587 20,141 20.14 23,175 23.18 1.151 

8 0.802 26,395 26.39 29,872 29.87 1.132 

8 0.802 26,564 26.56 29,772 29.77 1.121 

30.02 0.908 27,906 27.91 33,165 33.17 1.189 

50 0.929 27,767 27.77 33,327 33.33 1.201 
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Table A- 9 - R = 1.1, T = 130 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.50 0.129 0.14 3,492 3.49 5,146 5.15 1.47 

1.00 0.158 0.17 5,168 5.17 6,058 6.06 1.17 

1.25 0.203 0.23 6,759 6.76 7,651 7.65 1.13 

1.50 0.274 0.32 8,845 8.84 9,861 9.86 1.12 

2.00 0.350 0.43 10,552 10.55 11,856 11.86 1.12 

2.00 0.276 0.32 9,129 9.13 9,960 9.96 1.09 

2.50 0.402 0.51 12,389 12.39 13,711 13.71 1.11 

3.00 0.423 0.55 13,623 13.62 14,846 14.85 1.09 

4.17 0.508 0.71 18,071 18.07 19,138 19.14 1.06 

5.00 0.598 0.91 19,194 19.19 20,698 20.70 1.08 

5.00 0.591 0.89 18,816 18.82 20,372 20.37 1.08 

10.18 0.799 1.61 25,798 25.80 27,902 27.90 1.08 

15.08 0.850 1.90 26,120 26.12 28,604 28.60 1.10 

19.23 0.877 2.10 26,105 26.11 28,733 28.73 1.10 

20.27 0.897 2.28 26,503 26.50 30,256 30.26 1.14 

20.27 0.888 2.19 28,284 28.28 30,868 30.87 1.09 

21.72 0.896 2.27 28,447 28.45 30,921 30.92 1.09 

23.15 0.894 2.24 27,656 27.66 30,827 30.83 1.12 

29.98 0.913 2.44 27,573 27.57 31,231 31.23 1.13 

50.00 0.924 2.58 28,251 28.25 31,709 31.71 1.12 

71.93 0.934 2.72 29,715 29.72 32,374 32.37 1.09 
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Table A- 10 - R = 1.1, T = 130 C, Bimolecular Process, Replicates 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

2 0.331 0.40 8,293 8.29 10,669 10.67 1.29 

4 0.532 0.76 12,765 12.77 16,765 16.77 1.31 

7 0.711 1.24 17,158 17.16 22,038 22.04 1.28 

10 0.778 1.51 19,016 19.02 23,989 23.99 1.26 

13 0.823 1.73 22,359 22.36 25,149 25.15 1.13 

16 0.857 1.95 21,950 21.95 26,255 26.26 1.20 

22 0.880 2.12 21,058 21.06 26,519 26.52 1.26 

28 0.900 2.31 22,917 22.92 26,485 26.49 1.16 

34 0.909 2.40 23,120 23.12 26,863 26.86 1.16 

40 0.912 2.43 23,050 23.05 27,356 27.36 1.19 

50 0.917 2.49 25,255 25.26 28,010 28.01 1.11 
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Table A-11- R = 1.2, T = 130 C, Bimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

1 0.027 0.028 1,147 1.15 2,105 2.11 1.84 

2 0.084 0.088 3,404 3.40 3,768 3.77 1.11 

3 0.162 0.177 6,440 6.44 6,955 6.96 1.08 

4 0.246 0.282 9,016 9.02 9,844 9.84 1.09 

5 0.323 0.390 12,650 12.65 13,473 13.47 1.07 

5(rep) 0.335 0.407 12,120 12.12 13,120 13.12 1.08 

6 0.432 0.566 15,528 15.53 16,489 16.49 1.06 

7 0.490 0.673 18,040 18.04 19,164 19.16 1.06 

8 0.566 0.834 19,269 19.27 20,992 20.99 1.09 

8(rep) 0.543 0.782 19,345 19.35 20,990 20.99 1.09 

9 0.622 0.972 21,106 21.11 22,990 22.99 1.09 
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Table A-12 - R = 1.2, T = 130 C, Bimolecular Process, Replicates 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.5 0.021 0.02 748 0.75 2,254 2.25 3.01 

1 0.034 0.03 1,839 1.84 2,398 2.40 1.30 

1.25 0.034 0.03 2,134 2.13 2,585 2.59 1.21 

2.72 0.148 0.16 5,227 5.23 5,646 5.65 1.08 

3.58 0.252 0.29 8,070 8.07 8,675 8.67 1.07 

5.5 0.405 0.52 12,638 12.64 13,702 13.70 1.08 

6.5 0.468 0.63 15,032 15.03 16,210 16.21 1.08 

8 0.579 0.87 17,723 17.72 19,348 19.35 1.09 

15.2 0.783 1.53 23,749 23.75 26,336 26.34 1.11 

15.2 0.779 1.51 23,218 23.22 26,173 26.17 1.13 

18.03 0.810 1.66 24,728 24.73 27,825 27.82 1.13 

18.03 0.823 1.73 25,243 25.24 27,941 27.94 1.11 

20 0.841 1.84 26,258 26.26 28,730 28.73 1.09 

22 0.857 1.95 25,200 25.20 28,085 28.08 1.11 

22 0.862 1.98 24,711 24.71 27,080 27.08 1.10 

25 0.872 2.06 25,150 25.15 28,406 28.41 1.13 

25 0.875 2.08 24,503 24.50 27,438 27.44 1.12 

25.52 0.869 2.03 26,163 26.16 29,408 29.41 1.12 

25.52 0.881 2.13 25,762 25.76 28,409 28.41 1.10 

30 0.891 2.22 26,185 26.19 29,573 29.57 1.13 

41.47 0.913 2.44 25,548 25.55 29,581 29.58 1.16 

48.05 0.914 2.45 24844.5 24.84 28073.5 28.07 1.13 

66.03 0.921 2.54 25820 25.82 30511.5 30.51 1.1815 

72.5 0.928 2.63 24937.5 24.94 28818.5 28.82 1.156 

72.5 0.926 2.61 26386 26.39 30032 30.03 1.1385 
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Table A-13- T = 120 C, Unimolecular Process 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

0.55 0.052 0.054 955 0.96 1,031 1.03 1.08 

1.00 0.094 0.099 1,751 1.75 1,956 1.96 1.12 

3.03 0.231 0.263 5,000 5.00 5,368 5.37 1.07 

6.05 0.354 0.438 8,423 8.42 8,818 8.82 1.05 

8.03 0.502 0.697 9,486 9.49 10,048 10.05 1.06 

24.73 0.735 1.329 13,567 13.57 14,522 14.52 1.07 

15.00 0.648 1.044 12,053 12.05 12,828 12.83 1.06 

20.07 0.705 1.221 12,884 12.88 13,847 13.85 1.07 

20.07 0.707 1.229 12,598 12.60 13,809 13.81 1.10 

40.50 0.795 1.586 14,747 14.75 15,743 15.74 1.07 

30.12 0.758 1.418 14,161 14.16 15,157 15.16 1.07 

60.12 0.831 1.775 13,913 13.91 15,850 15.85 1.14 

50.22 0.822 1.724 13,854 13.85 15,706 15.71 1.13 

 

Table A-14 - T = 120 C, Unimolecular Process, Replicates 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

5 0.376 0.471 7,910 7.91 8,310 8.31 1.05 

7.27 0.465 0.626 9,869 9.87 10,243 10.24 1.04 

10.07 0.556 0.812 11,048 11.05 11,914 11.91 1.08 

24.45 0.722 1.281 14,030 14.03 15,110 15.11 1.08 

20 0.696 1.190 14,131 14.13 14,673 14.67 1.04 
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Appendix B: MATLAB Code Availability 

 

Code used for the generation of these simulations, designs, results, and figures is available 

with Professor Alexander Penlidis of the Department of Chemical Engineering at the 

University of Waterloo.   

Some samples of key routines (code and pseudo-code) are provided in what follows. 

 
Fully Mechanistic Model (FMM): 

function dy = FUNps(t,y) 
%mass balances of Tempo mediated radical polymerization 
%   Legend of Y's 
% Material Balances 
% y(1)  [I] 
% y(2)  [M] 
% y(3)  [NOE] 
% y(4)  [M*] 
% y(5)  [Rin*] 
% y(6)  [D*] 
% y(7)  [NOx*] 
% y(8)  [HNOx] 
% y(9)  [MNOx] 
% y(10) [RNOx] 
% y(11) [R*] 
% y(12) [P] 
% y(13) [D] 
% Moment Equations 
% y(14) lambda0 
% y(15) lambda1 
% y(16) lambda2 
% y(17) delta0 
% y(18) delta1 
% y(19) delta2 
% y(20) mu0 
% y(21) mu1 
% y(22) mu2 
  
global kd f0 fc0 kdim kia kp0 ktc ktd kfM kfD ka2 kd2 kda ka kdecomp kh3; 
  
dy = zeros(22,1);  
% balances 
dy(1) = - kd*y(1); 
dy(2) = - 2*kdim*y(2)^2 - kia*y(2)*y(13) - kp0*y(2)*(y(6)+y(4)+y(5)) - 
kp0*y(2)*y(11) - kfM*y(2)*y(11) + kdecomp*y(9); 
dy(3) = - ka2*y(3) + fc0*kd2*y(7)*y(5); 
dy(4) = kia*y(2)*y(13) - kp0*y(2)*y(4) - fc0*kda*y(7)*y(4) + ka*y(9) + 
kfM*y(2)*y(11); 
dy(5) = 2*f0*kd*y(1) - kp0*y(2)*y(5) + ka2*y(3) - fc0*kd2*y(7)*y(5); 
dy(6) = kia*y(2)*y(13) - kp0*y(2)*y(6) + kh3*y(7)*y(13) + kfD*y(13)*y(11); 
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dy(7) = - kh3*y(13)*y(7) - fc0*kda*y(7)*y(11) + ka*y(10) - fc0*kda*y(7)*y(4) 
+ ka*y(9) -fc0*kd2*y(7)*y(5) + ka2*y(3); 
dy(8) = kh3*y(7)*y(13) + kdecomp*y(9); 
dy(9) = fc0*kda*y(7)*y(4) - ka*y(9) - kdecomp*y(9); 
dy(10) = fc0*kda*y(7)*y(11) - ka*y(10); 
dy(11) = kp0*y(2)*(y(6)+y(4)+y(5)) - (ktc+ktd)*y(11)^2 - fc0*kda*y(7)*y(11) + 
ka*y(10) - kfM*y(11)*y(2) - kfD*y(11)*y(13); 
dy(12) = kfM*y(11)*y(2) + kfD*y(11)*y(13) + (ktc+ktd)*y(11)^2; 
dy(13) = kdim*(y(2)^2) - kia*y(2)*y(13) - kh3*y(7)*y(13) - kfD*y(13)*y(11); 
  
%MW method of moments 
dy(14) = kp0*y(2)*(y(5)+ y(4)+y(6)) - (ktc+ktd)*y(14)^2 - kfM*y(14)*y(2) - 
kfD*y(13)*y(14) - fc0*kda*y(7)*y(14) + ka*y(17);%lambda0 
dy(15) = kp0*y(2)*(y(5)+y(4)+y(6)+y(14)) - (ktc+ktd)*y(14)*y(15) - 
kfM*y(15)*y(2) - kfD*y(13)*y(15) - fc0*kda*(y(7)*y(15)) + ka*y(18); %lambda1 
dy(16) = -fc0*kda*(y(7)*y(16)) + ka*y(19) - (ktc+ktd)*y(14)*y(16) + 
kp0*y(2)*(y(5)+y(4)+y(6)+y(14)+2*y(15)) - kfM*y(16)*y(2) - kfD*y(13)*y(16); 
%lambda2 
dy(17) = kda*fc0*y(7)*y(14) - ka*y(17); %delta0 
dy(18) = kda*fc0*y(7)*y(15) - ka*y(18); %delta1 
dy(19) = kda*fc0*y(7)*y(16) - ka*y(19); %delta2 
dy(20) = 0.5*ktc*(y(14)^2) + ktd*(y(14)^2) + kfM*y(14)*y(2) + 
kfD*y(14)*y(13); %mu0 
dy(21) = ktc*(y(14)*y(15)) + ktd*(y(14)*y(15)) + kfM*y(15)*y(2) + 
kfD*y(15)*y(13); %mu1 
dy(22) = ktc*(y(14)*y(16)+ y(15)^2) +ktd*y(14)*y(16) + kfM*y(16)*y(2) + 
kfD*y(16)*y(13); %mu2 
end 
 
 
Solution of FMM: 

%Definition of Parameters 
global R T kd f0 fc0 kdim kia kp0 kt0 ktc ktd kfM kfD ka2 kd2 kda ka kdecomp 
kh3 MWm Keq Mn Mw M0 I0 TEMPORatio NOE0 TEMPO0 unibiresponse plotsresponse 
conv; 
R = 1.9859; %gas constant in cal/mol/k 
T = 120.00 + 273.15; %temperature in K, can be changed 
kd = 1.7e15*exp(-30000/R/T); %1/s 
f0 = 0.54; %from AN thesis, 0.54 to 0.55 
fc0 = 1; %<=1, controller efficiency 
kdim = 188.97*exp(-16185.1/R/T); %L/mol/s 
kia = 6.359e12*exp(-36598.55/R/T); %L/mol/s 
kp0 = 4.266e7*exp(-7769.17/R/T); %L/mol/s 
kt0 = 2.002e10*exp(-3081.84/R/T); %L/mol/s 
ktd = 0; %L/mol/s or rather am told that ktd/kt0 = 0.0 
ktc = kt0-ktd; %L/mol/s 
kfM = 9.376e6*exp(-13372/R/T); %0 or 9.376e6*exp(-13372/R/T); %L/mol/s 
kfD = 50; %0 or 50 L/mol/s 
kda = 5.03e9*exp(-3722/R/T); %L/mol/s 
ka = 2.0e13*exp(-29683/R/T); %1/s 
kdecomp = 5.7e14*exp(-36639.6/R/T); %1/s 
kh3 = 0.1*0.001; %L/mol/s 
MWm = 104.12; %g/mol 
Keq = ka/kda; 
M0 = 8.7; %mol/L 
conv = 0; 
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TEMPORatio = 1.1; 
 
%Ask if is the unimolecular or bimolecular process, default = bimolecular 
unibiresponse = input('Unimolecular or bimolecular process? u/b [b]: ', 's'); 
if isempty(unibiresponse) 
    unibiresponse = 'b'; 
end 
 
if strcmp('b', unibiresponse) == true 
    ka2 = 0; %if unimolecular 2.0*10^13*exp(-29683/R/T);, bi: 0; %%%1/s 
    kd2 = 0; %if unimolecular 5.03*10^9*exp(-3722/R/T);, bi: 0 %%%L/mol.s 
    I0 = 0.036; 
    NOE0 = 0; 
elseif strcmp('u', unibiresponse) == true 
    ka2 = 2.0e13*exp(-29683/R/T); 
    kd2 = 5.03e9*exp(-3722/R/T); 
    I0 = 0; 
    NOE0 = 0.050; 
else 
    error('Invalid input for unimolecular/bimolecular process'); 
end 
  
TEMPO0 = fc0*TEMPORatio*I0; 
 
%Make a vector of the initial conditions for the system of DE’s 
 
y = [I0 M0 NOE0 0 0 0 TEMPO0 0 0 0 0 0 0 1e-7 1e-5 1e-3 1e-7 1e-5 1e-3 1e-7 
1e-5 1e-3]; 
  
time_interval = [0 300000]; % time interval  
options = odeset('RelTol',1e-9,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 
1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9 1e-
9],'InitialStep',1,'BDF','on'); %ode solver options 
 
% run an ode solver, in this case set up to use Gear's method (for stiff 
ODEs), to solve the set of ODEs provided in FUNps 
[t,y] = ode15s('FUNps', time_interval, y, options);  
 
Mn = MWm.*((y(:,15)+y(:,18)+y(:,21))./(y(:,14)+y(:,17)+y(:,20))); 
Mw = MWm.*((y(:,16)+y(:,19)+y(:,22))./(y(:,15)+y(:,18)+y(:,21))); 
PDI = Mw./Mn; 
lnm0m = log(M0./y(:,2)); 
conversion = (M0-y(:,2))./M0; 
 
 
Optimal design, calculation of X matrix using RMM: (pseudo-code) 

choose the high and low levels for each of the (i = 18) parameters 
for (each set of experiments to evaluate (i.e., potential row of X), j) 

for (each parameter, i)  
Solve RMM for high and low levels, store results 
% Use finite difference method to use these high and low values to 
populate the X matrix 
X(j, i) = [(f(high, i)-f(low, i))/(theta(high, i)- theta(low, i))]; 

      end 
end 
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Determination of optimal sets of experiments: (pseudo-code) 

for (each combination of possibly evaluated sets  
construct the relevant X matrix % (i.e., row exchange using the 
corresponding rows of x) 

 compute the derivative |X’X| 
 record the value 
end 
compare recorded values 
select maximum value 
the set of experiments corresponding to this maximum is the optimal choice 
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