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Abstract

In previous research on pricing mortality-linked securities, the no-arbitrage approach

is often used. However, this method, which takes market prices as given, is difficult

to implement in today’s embryonic market where there are few traded securities. In

particular, with limited market price data, identifying a risk neutral measure requires

strong assumptions. In this thesis, we approach the pricing problem from a different

angle by considering economic methods. We propose pricing approaches in both

competitive market and non-competitive market.

In the competitive market, we treat the pricing work as a Walrasian tâtonnement

process, in which prices are determined through a gradual calibration of supply and

demand. Such a pricing framework provides with us a pair of supply and demand

curves. From these curves we can tell if there will be any trade between the counter-

parties, and if there will, at what price the mortality-linked security will be traded.

This method does not require the market prices of other mortality-linked securities

as input. This can spare us from the problems associated with the lack of market

price data.

We extend the pricing framework to incorporate population basis risk, which arises

when a pension plan relies on standardized instruments to hedge its longevity risk ex-

posure. This extension allows us to obtain the price and trading quantity of mortality-

linked securities in the presence of population basis risk. The resulting supply and

demand curves help us understand how population basis risk would affect the behav-

iors of agents. We apply the method to a hypothetical longevity bond, using real

mortality data from different populations. Our illustrations show that, interestingly,

population basis risk can affect the price of a mortality-linked security in different

directions, depending on the properties of the populations involved.

We have also examined the impact of transitory mortality jumps on trading in

a competitive market. Mortality dynamics are subject to jumps, which are due to

events such as the Spanish flu in 1918. Such jumps can have a significant impact

on prices of mortality-linked securities, and therefore should be taken into account

in modeling. Although several single-population mortality models with jump effects
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have been developed, they are not adequate for trades in which population basis

risk exists. We first develop a two-population mortality model with transitory jump

effects, and then we use the proposed mortality model to examine how mortality

jumps may affect the supply and demand of mortality-linked securities.

Finally, we model the pricing process in a non-competitive market as a bargaining

game. Nash’s bargaining solution is applied to obtain a unique trading contract.

With no requirement of a competitive market, this approach is more appropriate for

the current mortality-linked security market. We compare this approach with the

other proposed pricing method. It is found that both pricing methods lead to Pareto

optimal outcomes.
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Chapter 1

Introduction

1.1 Background

The payouts from life insurers and pension providers depend on mortality rates, which

are difficult to predict. One source of future uncertainty is the random fluctuations

around the underlying survival distribution. According to the law of large numbers,

this uncertainty can be diversified away by selling a large number of policies. The

other source arises from the occurrence of unexpected events, such as wars, pandemics

or medical breakthroughs. This risk is systematic, as it usually affects most of the

policies in the same way. Therefore, the risk cannot be diversified and we require

other methods to mitigate it. In the thesis, we focus on this risk.

When a war or pandemic breaks out, mortality rates are higher than expected

and life insurers pay more life insurance benefits and thus suffer a loss. This is called

mortality risk. Mortality risk features low frequency and high severity. When medical

breakthrough happens, mortality rates are lower than expected, which means annuity

and pension providers pay longer periods of annuity or retirement benefits. This is

called longevity risk.

To hedge against the systematic uncertainty in mortality rates, several methods

can be employed. Firstly, insurers may retain the risk and rely on a natural hedge

1



formed with their books of life insurances and annuities. This might work, because

mortality movements have opposite effects on these two blocks of business. However,

natural hedging can be ineffective and cost prohibitive in many circumstances as Cox

and Lin (2007) point out. For example, the maturities of the two blocks of business

may differ significantly, prohibiting an insurer to form an effective natural hedge. It

might also be impractical for an insurer to adjust its business composition to support

an effective natural hedge.

Secondly, the insurer may transfer the risk to reinsurers utilizing traditional life

reinsurance on a quota share or surplus basis. Unfortunately, reinsurers have capacity

constraints. Taking too much risk impairs the solvency of reinsurers, and increases

their possibilities of default. To protect insurers, credit derivatives, such as credit

default swaps, might be written on the renisurers. However, as the probability of

reinsurers’ default increases, credit derivatives become more expensive. The cost of

reinsurance becomes less affordable or prohibitively high. Therefore, credit derivatives

may not completely solve the capacity constraints problem.

Thirdly, the insurers may transfer their risk to investors in capital market through

securitization. Investors may long mortality or longevity risk exposures to diversity

their portfolios or to purely earn risk premium. Investors can also be insurers bearing

the opposite risk and acquiring the missing line of business to optimize its natural

hedge. Securities traded for these purposes are called mortality-linked securities.

Mortality-linked securities are financial derivatives with payments linked to cer-

tain mortality or longevity indexes. They allow market participants to either take

or hedge exposure to the longevity and mortality experience of a given population of

individuals. Mortality-linked securities can be divided into two categories, mortality

derivatives and longevity derivatives, which differ in their purposes. Mortality deriva-

tives are usually short-term contracts that are designed to hedge against catastrophic

mortality risk for life insurers. In contrast, longevity derivatives are usually long-term

contracts with payments reflecting unexpected mortality improvements. They pro-

vide protection for annuity and pension providers against an unexpected increase in

their policyholders’ life expectancy. They may have different payout structures. For

example, a q-forward has only one single payout, while a longevity bond has multiple
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payouts over time.

The first mortality derivative was issued by Swiss Re in 2003 through a Special

Purpose Vehicle (SPV) called Vita Capital. The term of the bond is three years and

the principal payment is related to the mortality index that is based on a weighted

average of mortality of the populations of the US, UK, France, Italy and Switzer-

land. The principal is at risk, should the mortality index exceed 130% of the 2002

level. No principal will be paid, should the mortality exceed 150% of the 2002 level.

Since mortality has been improving consistently over recent decades, a situation that

breaches the low end of this range (130-150% of 2002) is very rare. In other words,

the investors have great chances to obtain full principal payment. This mortality

bond was very successful and Swiss Re issued a series of Vita Capital after that.

At the same time, the market of longevity derivative has been taking off slowly.

The first longevity bond, designed in 2004 for UK life insurance companies and pen-

sion funds, was developed by BNP-Paribas and European Investment Bank (EIB).

It is a 25-year bond providing coupons linked to a survival index, which is based

on the mortality experience of a cohort of males in England and Wales aged 65 in

2003. Unfortunately, this new product has never reached the market. Nevertheless,

longevity derivatives still receive strong interest from pension sectors. Credit Suisse

First Boston (CSFB) announced the release of the Credit Suisse Longevity Index in

2005, the first index designed specifically to enable the structuring and settlement

of longevity risk transfer instruments. In 2007, JP Morgan launched the LifeMetrics

Index, an “international index designed to benchmark and trade longevity risk”. In

2008, we saw the first transaction for longevity risk management executed by Lucida

plc and Canada Life in the UK. In this transaction, Lucida plc entered a mortality

forward rate contract called a “q-forward”, the payoff of which was linked to the Life-

Metrics longevity index for England and Wales. In 2010, Swiss Re Kortis launched

the first successful Longevity Bond. This bond provides coverage to Swiss Re against

the increase in the difference between mortality improvement for older UK males

(England and Wales), ages 75-85, and younger US males, ages 55-65. Buyers of the

bond receive fixed quarterly coupons and principal repayment at maturity. The prin-

cipal repayment will be reduced when the difference between mortality improvements

3



exceeds a predetermined value. Recently, the Life and Longevity Markets Association

(LLMA) has been set up to promote the development of a liquid traded market in

longevity and mortality related risk.

1.2 Issues in the Current Market

Although mortality-linked securities have received great interest from investors, in-

surers and pensioners, the market is still embryonic and growing slowly. Few products

are available in the market and few transactions have taken place. Illiquidity has been

the concern for potential players in the market and impedes the growth of the market.

One typical example is the failure of BNP/EIB longevity bond in 2004. To improve

liquidity, consistent standards, methodologies and benchmarks should be established

for the market.

To date, most long-term longevity securities traded are bespoke (or indemnity

trigger) securities. By a bespoke longevity security we mean the payoffs from the

security are based on the actual number of survivors in the hedger’s portfolio. Thus,

bespoke deals have very low liquidity. Securities linked to standardized indexes have

potentially higher liquidity. The LifeMetrics Index launched by JP Morgan is one

of such standardized indexes designed to develop a liquid market for mortality and

longevity hedging. Standardized indexes may be favored by investors because they

involve no moral hazard, and are more transparent and liquid. However, hedgers who

use standardized securities are subject to population basis risk, since the mortality

experience of the standardized index and the underwritten population of insurers

or pensioners are different. Hedge effectiveness can be significantly compromised in

some circumstances. Therefore, there is a need to conduct a comprehensive study of

population basis risk involved in standardized hedges. Some work has been done in

this area. For example, Coughlan et al. (2011) proposed a framework for analyzing

hedge effectiveness and basis risk.

Pricing mortality-linked securities poses another challenge to the development

of this market. Most researchers use no-arbitrage method to price mortality-linked
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securities. For example, Cairns et al. (2006) obtained risk neutral measures by adding

market prices of risk parameters into a two factor mortality model; Lin and Cox

(2005) applied the Wang transform; Li and Ng (2011) used a method called canonical

valuation to identify a risk neutral measure. However, these methods require prices

of other mortality-linked securities. In today’s embryonic market, these prices are

often unavailable. Even if some market price data are available, finding a risk neutral

measure is still not trivial, because in an incomplete market, one needs to pick a

risk-neutral measure out of many possible risk-neutral measures.

In addition, the accuracy of future mortality forecasting also concerns the market.

Mortality model directly affects the pricing results of mortality-linked securities. If

investors and hedgers cannot agree on it, the liquidity will certainly be jeopardized.

Therefore, it is necessary to develop a mortality model suitable for the mortality-

linked security market. In the past, mortality models are mostly designed for one

population, such as the Lee-Carter model proposed by Lee and Carter (1992) and the

CBD model proposed by Cairns et al. (2006). However, when standardized index is

used in mortality-linked security, it is very possible that the population associated

with hedger’s exposure is different from that associated with the index. If a one-

population model is used for each population separately, the correlation between the

two populations cannot be modeled. The ignorance of the correlation will underes-

timate hedging effectiveness significantly and mislead hedgers. Two-population or

multi-population mortality models that take into account correlation between popu-

lations are necessary in this case. Some multi-population models have been proposed

recently. Carter and Lee (1992) introduced the joint-k model for two populations.

Li and Lee (2005) proposed the augmented common factor model. Li and Hardy

(2010) discussed the co-integrated Lee-Carter model. Cairns et al. (2011a) built a

model based on two age-period-cohort models. Nevertheless, there is still room for

improvement. Current multi-population models do not incorporate mortality jumps,

which are caused by disruptive events, for example, wars and epidemics. They con-

tribute significantly to the variations of mortality rates. Examples of mortality jumps

are discussed in Chapter 4. It is important not to ignore mortality jumps in mod-

eling and forecasting, because otherwise we can seriously understate the uncertainty
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surrounding a central mortality projection.

1.3 Existing Pricing Methods

In previous research on pricing mortality-linked securities, the no-arbitrage approach

is often used. Generally speaking, to implement the no arbitrage approach, the first

step is to estimate the distribution of future mortality rates in the real-world prob-

ability measure. Then the real-world distribution is transformed to its risk-neutral

counterpart, on the basis of the actual prices of mortality-linked securities we observe

in the market. Finally, the price of a mortality-linked security can be calculated by

discounting, at the risk-free interest rate, its expected payoff under the identified risk-

neutral probability measure. Note that this approach takes actual prices as given.

As we will see from the following discussion, the need of market prices makes the

approach difficult to implement in today’s embryonic market.

One way to implement the no arbitrage approach is to use a stochastic mortality

model, which is, at the very beginning, defined in the real-world measure and fitted

to past data. The model is then calibrated to market prices, yielding a risk-neutral

mortality process from which security prices are calculated. For instance, Cairns

et al. (2006) calibrate a two-factor mortality model to the price of the BNP/EIB

longevity bond, which is, as of this writing, the only long-term longevity security

with pricing information available in the public domain. The resulting risk-neutral

mortality process contains two market prices of risk, λ1 and λ2, one for each stochastic

factor. With only one longevity bond price, they cannot be uniquely identified. As

a result, an arbitrary assumption, for example, λ1 = λ2, must be made before any

pricing work can be performed.

We may also make use of a distortion operator such as the Wang transform (Wang,

1996, 2000, 2002) to create a risk-neutral measure, under which mortality-linked

securities can be priced. The Wang transform was first applied to mortality-linked

securities by Lin and Cox (2005), and subsequently by other researchers including

Denuit et al. (2007) and Dowd et al. (2006). Unless a very simple mortality model
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is assumed, parameters in the distortion operator are not unique if we are not given

sufficient market price data. For example, when Chen and Cox (2009) used their

extended Lee-Carter model with transitory jump effects to price a mortality bond,

they were required to estimate three parameters in the Wang transform. To solve for

the three parameters, Chen and Cox (2009) assumed that they were equal, but such

an assumption is not easy to justify.

Recently, some researchers, for example, Li (2010) and Li and Ng (2011), have

implemented the no arbitrage approach by a method called canonical valuation. This

method identifies a risk-neutral measure by minimizing the Kullback-Leibler informa-

tion criterion, subject to market price constraints. It can be applied without making

the arbitrary decisions needed in the aforementioned methods, even if we are given

only the market price of the BNP/EIB bond. However, a few problems still remain.

In particular, using a product that is very much bond-like is prone to distortions in

the identification of pure longevity risk premia. One may doubt if the resulting risk-

neutral measure is appropriate for pricing products with different liquidity profiles.

For similar reasons, one may also question if the identified risk-neutral measure is

applicable to securities that are linked to other reference populations.

1.4 Objectives and Outlines of the Thesis

This thesis establishes economic pricing approaches for mortality-linked securities.

An advantage of the economic approaches is that they do not require market prices

of other mortality-linked securities. We consider the pricing in both competitive

and non-competitive markets. The effect of introducing population basis risk and

transitory mortality jumps on the trading of mortality-linked securities is studied in

a competitive market. A comparison of security pricing in the two markets is provided

and analyzed.

Chapter 2 develops an approach to price mortality-linked security in a competitive

market. The method approaches the pricing problem from the fundamental economic

concepts, supply and demand. The pricing works as a Walrasian tâtonnement pro-
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cess. Specifically, an imaginary auctioneer matches supply and demand by gradually

adjusting the price of the security being traded. Supply and demand from the eco-

nomic agents in the market are determined through maximizing their own expected

utility at a certain future time. The pricing framework is first set up for one-period

mortality-linked securities and is then extended to multi-period mortality-linked se-

curities by utilizing a Markov decision process. Both settings are illustrated with a

hypothetical mortality-linked security and mortality data from the US population.

Chapter 3 extends the tâtonnement approach to allow a mismatch between the

population associated with the hedger’s risk exposure and that of the security being

priced. Combining the extension with the two-population age-period-cohort mortality

model proposed by Cairns et al. (2011a), we examine the effect of population basis

risk on the price and trades of a hypothetic longevity bond. The major driving forces

of the behavior of hedgers and investors are identified. They are then used to explain

how the effect of population basis risk is formed. The hedging strategy implied by

the tâtonnement approach is also examined.

Chapter 4 proposes a two-population mortality model with transitory jump effects

and studies the impact of incorporating mortality jumps on the trading of mortality

risk in a competitive market. The proposed model takes mortality jumps into account.

The incorporation of jumps allows us to better estimate the probability of having

a catastrophic mortality deterioration. This is particularly important for pricing

securities for hedging extreme mortality risk. The impact of mortality jumps on

trading is examined through a numerical illustration. The pair of demand and supply

curves provided by the pricing framework is studied to help us understand the effect

of introducing mortality jumps on the behaviors of the counterparties.

Chapter 5 models a trade of mortality-linked securities by a Nash bargaining game.

Compared to the pricing framework proposed in Chapter 2 and Chapter 3, it is more

suitable for the current mortality/longevity risk market, since it does not require the

assumption of a competitive market. We numerically compare the pricing result from

the Nash bargaining game with that from the competitive equilibrium. A common

property of these two solutions, Pareto optimality, is also investigated to gain further

insights.
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Chapter 6 concludes and discusses plans for future research.
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Chapter 2

Pricing in a Competitive Market

2.1 Introduction

A fundamental question in the study of mortality-linked securities is how to place a

value on them. Risk-neutral methods, which are often used in past research, require

market prices of other similar securities, making them difficult to implement in today’s

embryonic market.

In this chapter, we approach the pricing problem from a different angle by consid-

ering a tâtonnement approach, an approach that is based on the most fundamental

economic concept: demand and supply. The idea of tâtonnement in an exchange

economy was first proposed by Walras (1874).1 A Walrasian tâtonnement process

assumes that there exists a fictitious Walrasian auctioneer who matches supply and

demand from different economic agents in a market with perfect information and no

transaction costs. The agents’ behaviors emerge from utility maximization, subject

to budget constraints. The auctioneer cries a price, and the agents act to the price

by determining how much they would like to offer (supply) or purchase (demand).

Transactions only take place at equilibrium price, which equilibrates supply and de-

1This seminal work of Walras (1874) was translated to English by William Jaffe in 1954. The

translated version is cited as Walras (1954).
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mand. Otherwise, the price is lowered if there is an excess supply, or raised if there

is an excess demand, until an equilibrium price is reached.

The tâtonnement approach is highly transparent, since by working on the demand

and supply from different economic agents, we know where the price of a mortality-

linked security comes from. It also spares us from an arbitrary choice of a risk-neutral

probability measure and other problems associated with the no-arbitrage approach

when there is a lack of market price data. The tradeoff is that we need to impose more

structure than in the no-arbitrage approach. For example, we have to specify a utility

function for each party involved in the trade of a mortality-linked security. Another

limitation is that the tâtonnement approach was developed under the assumption of

a competitive market in Walras (1874). This criterion is not met by the current mor-

tality/longevity market, which is still in its infancy. Nevertheless, prices calculated

with the tâtonnement approach can at least be used as a benchmark, particularly in

situations when standard no-arbitrage methods are difficult to implement.

In more detail, the method we propose models the trade between two economic

agents2 , one of which suffers mortality or longevity risk and issues a mortality-linked

security to offset the risk, and the other of which invests in the mortality-linked

security, possibly for earning a risk premium. It is assumed that, given a price, both

agents maximize their expected terminal utility by altering their demand or supply of

the security. The estimated price of the security is the price at which the demand and

supply are equal, that is, the market clears. On top of the estimated price, our pricing

framework provides us with a pair of demand and supply curves. These curves can

tell us the optimal quantity of a mortality-linked security to be traded. They also

indicate how the supply and demand of the security will evolve with respect to a

change in price. This piece of information is particularly useful when we analyze a

new security that has never been traded.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

the idea of a tâtonnement process. Given this idea, we set up our pricing framework

2In a competitive market, there should exist many agents on both supply and demand sides.

We assume that there is a group of homogeneous agents on each side. We then use one agent to

represent each group, and model the trade between the two representative agents.
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in a single-period setting, and then extend it to a multi-period one. In Section 2.3, we

use our proposed framework to price a hypothetical mortality-linked security. The

assumed mortality model, the resulting prices, and a comparison with the results

from the work of Chen and Cox (2009) are presented. In Section 2.4 we perform

sensitivity tests on different assumptions we have made in the pricing process. In

Section 2.5, we further generalize our pricing framework by allowing trades between

the counterparties before the mortality-linked security matures. We detail in this

section the required sequential decision process and an algorithm for implementing

the process. In Section 2.6, we study how the results would be different if the agents

maximize their expected life time utilities instead of their expected terminal utilities.

Finally, in Section 2.7, we conclude this chapter.

2.2 A Tâtonnement Approach

2.2.1 The Idea

A Walrasian tâtonnement process assumes that there exists a fictitious Walrasian

auctioneer who matches supply and demand from different economic agents in a

market with perfect information and no transaction costs. Transactions only take

place at equilibrium price, which equilibrates supply and demand. Otherwise, the

price is lowered if there is an excess supply, or raised if there is an excess demand,

until an equilibrium price is reached.

The theory of tâtonnement has different interpretations. Some economists view it

as a dynamic theory of the equilibrating behavior of real competitive markets, while

some treat it as a mathematical solution to the equations of general equilibrium.

We refer interested readers to Goodwin (1951), Jaffé (1981) and Walker (1987) for

extensive discussions on how a tâtonnement may be interpreted. Note that in a

tâtonnement process, the equilibrium price might not exist, and if it exists, it might

not be unique. The existence and uniqueness of a tâtonnement equilibrium price have

been studied by researchers including Arrow and Hurwicz (1958, 1960) and Arrow
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et al. (1959). Recently, the idea of tâtonnement has received much attention in the

areas of operations research and computer science. For example, Cole and Fleischer

(2008) analyzed fast-converging tâtonnement algorithms for one-time and ongoing

market problems.

In what follows, we will formulate the pricing of a mortality-linked security as a

tâtonnement process. We will first present the formulation in a single-period set-up,

in which we assume that there is only one payout from the mortality-linked security

in question. The single-period set-up is quite restrictive, but it allows the readers

to capture the basic ideas behind our pricing framework. We will then extend it

to a multi-period set-up, which is applicable to a wide variety of mortality-linked

securities.

2.2.2 A Single-Period Set-up

We use a Walrasian tâtonnement process to model the trade of a mortality-linked

security between two economic agents, Agents A and B. Suppose that Agent A has a

life contingent liability that is due at time 1. We denote this amount by f(q1), which

is a deterministic function of q1, the mortality index for a certain reference population

at time 1. In this connection, Agent A can be a life insurer which has some death

benefits due at time 1, or a pension plan provider which has some living benefits due

at time 1. At time 0, q1 is not known and is governed by an underlying stochastic

process.

To mitigate its exposure to mortality (or longevity) risk, Agent A buys (or sells)

a mortality-linked security maturing in one year. The payout from one unit of this

security at time 1 is g(q1), which is also a deterministic function of q1. The payout may

also be related with q0, the mortality index of the reference population at time 0. Since

it is known at time 0, we suppress it in the notation for brevity. The mortality-linked

security and the life contingent liability are associated with the mortality experience

of the same reference population. The other economic agent, Agent B, is an investor

who might issue (or purchase) the mortality-linked security, possibly for earning a risk

premium. We assume that Agent A and Agent B have homogeneous beliefs about
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the stochastic evolution of the mortality index.This assumption is made throughout

this thesis.

The quantities Agent A and B are willing to purchase or sell at time 0 are θA and

θB, respectively. Following the specification of a tâtonnement process, we suppose

that there exists an imaginary auctioneer who cries a arbitrary price, say P , at the

beginning. Given this price, Agents A and B then decide values for θA and θB ,

based on a certain criterion. θA and θB can be either positive or negative. A positive

quantity means that the agent purchases the security, while a negative quantity means

the agent sells the security. In this chapter, we assume that Agent A issues the

mortality-linked security. Thus, θA ≤ 0 and θB ≥ 0. We also assume that the agents

will choose a supply or demand of the security that will maximize their expected

terminal utilities.

Let ωA and ωB be the initial wealths of Agents A and B, respectively. It is

assumed that the wealth of each agent can only be used be invested in either the

mortality-linked security or a bank account which yields a continuously compounding

risk-free interest rate of r per annum. In the real world, the agents often have many

more different types of assets to choose from. It will be interesting to add more asset

types and analyze the diversification effect of mortality-linked securities for investors.

However, the main purpose of this chapter is to develop pricing framework. Therefore,

we consider the simplest case of only two asset types. We allow a negative wealth,

which means that the agent borrows money from a bank account and pays an interest

rate of r to the bank. Other than the bank account, the mortality-linked security and

the life contingent liability, there is no other sources of income or payout.

We denote the utility functions for Agents A and B by UA and UB, respectively.

At time 0, Agent A sells |θA| units of the mortality-linked security and deposit the

proceeds and its initial wealth together into its bank account. On the other hand,

Agent B uses part of its initial wealth to purchase |θB| units of the security and

deposits the rest of its wealth into the bank account. At time 1, the terminal wealth

for Agent A would be the amount in its bank account less the payout arising from

the mortality-linked security and its life contingent liability, while that for Agent B

would be the amount in its bank account plus the payout from the mortality-linked
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security sold by the other agent.

As mentioned earlier, at time 0, each agent chooses a supply or demand of the

security that maximizes its expected terminal utility. In terms of the notation defined

above, given a price P , the chosen supply and demand, θ̂A and θ̂B, can be formulated

as follows:

θ̂A = argsup
θA

E[UA((ωA − θAP )er + θAg(q1)− f(q1))] (2.1)

θ̂B = argsup
θB

E[UB((ωB − θBP )er + θBg(q1))] (2.2)

Note that θ̂A and θ̂B are functions of the price P . We suppress the argument of these

functions for simplicity. Trades only take place at a price P at which θ̂A + θ̂B = 0.

We call this price equilibrium price, and denote it by P ∗.

Usually, the first guess of the price does not clear the market. If the market does

not clear, the auctioneer has to adjust the price. It is obvious that the price needs to

be raised if demand exceeds supply (i.e., θ̂A+θ̂B > 0), and vice versa. Mathematically,

the (i+ 1)th update of the price can be expressed as

P (i+1) = P (i) + di, i = 0, 1, . . . , (2.3)

where P (0) is the initial guess of the price, and di is the adjustment function that

always has the same sign as the excess demand, θ̂A + θ̂B.

In our calculations, it is assumed that the auctioneer adjusts the price in a way

linear to the excess demand. Specifically, we assume that P (i+1) = P (i) +ϑ|P (i)|(θ̂A +

θ̂B), where ϑ is a positive real constant. Such a linear function is intuitive and is

also considered by, for example, Katzner (1999), Kitti (2010) and Uzawa (1960). The

constant ϑ has to be chosen carefully. If ϑ is too large, the changes in P , θ̂A, and θ̂B

in each iteration tend to be large. This may lead us to missing the equilibrium. In

contrast, if ϑ is too small, the adjustment process tends to be slow. Hence, there is

a tradeoff between speed and accuracy. Some experiments have been done to find an

appropriate value of ϑ. We will revisit this problem in Section 2.4.

It is interesting to note that we are essentially solving the equation Z(P ) = θ̂A +

θ̂B = 0 for P . If Newton’s method is used to solve the equation, then the update of
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P will be have the same form as equation (2.3), with

di =

(
−∂θ̂

A

∂P |P=P (i)
− ∂θ̂B

∂P |P=P (i)

)−1

(θ̂A + θ̂B).

Since we have ∂θ̂A

∂P
≤ 0 and ∂θ̂B

∂P
≤ 0, di always has the same sign as θ̂A+ θ̂B.3 We have

experimented this alternative method and found that it works for the pricing process

we present in this section. Nevertheless, it is no longer applicable to the generalized

pricing process which we will present in Section 2.5, as that θ̂A and θ̂B are confined

to a set of discrete values.

Summing up, the tâtonnement process for pricing a mortality-linked security can

be carried out by the algorithm below:

Algorithm 1

1. Guess a price P (0).

2. Determine the demand, θ̂B, and supply, θ̂A, on the basis of the current estimate

of the price and the optimizing criteria specified by equations (2.1) and (2.2).

3. Stop if |θ̂A + θ̂B| is less than a tolerance level, say 10−4. Otherwise, adjust the

price using equation (2.3).

4. Repeat Steps 2 and 3.

We set the convergence tolerance value to 10−4. Smaller tolerance values have

also been experimented and the difference they make on the pricing is neglectable.

Therefore, 10−4 is chosen considering the convergence speed.

The equilibrium price P ∗ is the price at which the algorithm terminates. There

are two possible situations. We may obtain P ∗ > 0 and θ̂A + θ̂B = 0, which means

3The law of demand and supply implies that ∂θ̂A

∂P ≤ 0 and ∂θ̂B

∂P ≤ 0. To have Newton’s method

work, we require that the partial derivatives are not both zero.
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Figure 2.1: Possible situations when Algorithm 1 converges.

that the market attains equilibrium and trade happens between the economic agents

(see Figure 2.1, the left panel). However, it is also possible that trade will not occur.

Examples of such a situation are illustrated in the middle and right panels of Figure

2.1.

2.2.3 A Multi-period Set-up

We now extend the tâtonnement process for pricing a mortality-linked security to

a multi-period set-up. In this set-up, we allow payments to be made before the

mortality-linked security matures at time T . Denote Qt = (q0, q1, . . . , qt), where qt is

the mortality index for a certain reference population over the period of t−1 to t. At

time 0, the values of qt for t > 0 are not known and are governed by an underlying

stochastic process.

Again we model the trade of a mortality-linked security between two economic

agents, Agents A and B. Agent A has life contingent liabilities that are due at t =

1, 2 . . . , T . The amount due at time t is ft(Qt), where ft is a deterministic function

of Qt. To hedge the liabilities, Agent A issues a mortality-linked security, per unit of
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which pays an amount of gt(Qt) at time t, where gt is a deterministic function of Qt.
4

Agent B is an investor who may invest in the mortality-linked security. It receives at

time t an amount of gt(Qt) per unit of the mortality-linked security invested.

The supply from Agent A is θA and the demand from Agent B is θB. At this

stage, we do not allow the agents to trade the mortality-linked security during the

term of the security. This assumption will be relaxed in the generalization we present

in Section 2.5.

We keep all other assumptions in the single-period set-up. Let WA
t and WB

t be

the time-t wealths for Agents A and B, respectively. Given the assumptions we made,

the wealth process for each agent can be represented as follows:

Agent A

WA
0 = ωA

WA
1 = (WA

0 − θAP )er + θAg1(Q1)− f1(Q1)

WA
2 = WA

1 e
r + θAg2(Q2)− f2(Q2)

...
...

...

WA
T = WA

T−1e
r + θAgT (QT )− fT (QT ) (2.4)

Agent B

WB
0 = ωB

WB
1 = (WB

0 − θBP )er + θBg1(Q1)

WB
2 = WB

1 e
r + θBg2(Q2)

...
...

...

WB
T = WB

T−1e
r + θBgT (QT ) (2.5)

Given a price P , each agent choose a demand or supply that maximizes its ex-

4We assume that ft and gt are functions of Qt rather than qt because the payouts can be path

dependent.
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pected terminal utility, as specified below,

θ̂A = argsup
θA

E[UA(WA
T )] (2.6)

θ̂B = argsup
θB

E[UB(WB
T )] (2.7)

Of course, in general, the initial guess of the price will not lead to θ̂A+ θ̂B = 0. We

may adjust the price by using Algorithm 1, with equations (2.1) and (2.2) replaced

by (2.6) and (2.7), respectively.

2.3 An Illustration

2.3.1 The Mortality Model

Before we implement the tâtonnement process, we need a stochastic process to model

the randomness of the mortality index. We consider the Lee-Carter family, which is

quite well-known in the insurance industry. The Lee-Carter model in its original form

(Lee and Carter, 1992) can be expressed mathematically as

ln(mx,t) = β(0)
x + β(1)

x κt + εx,t, (2.8)

where mx,t denotes the central death rate at age x and in year t, β
(0)
x is the average

level of mortality (in log scale) over time, β
(1)
x is the age-specific sensitivity to the

time-varying factor, κt, which governs the dynamics of central death rates at all ages.

The error term εx,t, which captures all remaining variations, is assumed to have no

trend over both age and time dimensions. To forecast future mortality, we need to

further model κt by a time-series process. Usually, a random walk with drift, that is,

κt+1 = κt + µ+ σZt+1,

where µ and σ are constants, and {Zt} is a sequence of iid standard normal random

variables, is used.
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As shown in the work of Li and Chan (2005, 2007), the series of κt may be con-

taminated with outliers, which correspond to events such as wars and pandemics.

The outliers should not be neglected in pricing mortality-linked securities, especially

those for hedging extreme mortality risk. Ignoring these outliers may lead to overes-

timating the probability of having a catastrophic event, which may bring us a large

pricing error. Therefore, rather than the original Lee-Carter model, we use an ex-

tension proposed by Chen and Cox (2009). The extension has the same structure as

the specification in equation (2.8), but permits transitory jumps in the evolution of

κt. In particular, it models the time-varying factor κt as the sum of two components.

The first component, denoted by κ̃t, is a time-varying factor that is free of any jump

effect, while the second component, denoted by NtYt, is designated for measuring

jump effects.

It is assumed that, in each year, there is at most one jump event with probability

p; that is,

Nt =

{
1, with probability p,

0, with probability 1− p,
(2.9)

where Nt denotes the number of jumps occurring in year t. It is also assumed that

the jump severity variable, Yt, at time t is a normal random variable with mean m

and standard deviation s, and that Yt is independent of the jump frequency variable

Nt. In effect, the entire stochastic process for κt can be expressed as follows:{
κ̃t+1 = κ̃t + µ+ σZt+1,

κt+1 = κ̃t+1 +Nt+1Yt+1,
(2.10)

where µ and σ are constants, and Zt is a standard normal random variable that is

independent of both Yt and Nt.

Chen and Cox (2009) fitted the extended Lee-Carter model to US mortality data

from 1900 to 2003, which were provided by the National Center for Health Statistics

(NCHS). The data contain age-specific death rates for age 0, age group 1-4, 10-year

age groups from 5-14 to 75-84, and age group 85 and over. The resulting estimates

of the parameters in equation (2.10) are displayed in Table 2.1. The fitted values of

β
(0)
x and β

(1)
x can be found on p.734 of Chen and Cox (2009).

20



Parameter Estimate

µ −0.2173

σ 0.3733

m 0.8393

s 1.4316

p 0.0436

Table 2.1: Estimates of parameters in the Lee-Carter model with transitory jump

effects. (Source: Chen and Cox (2009).)

In what follows, we will price an illustrative mortality-linked security. We assume

that this security is linked to the population from which the NCHS data were ob-

tained. The extended Lee-Carter model, with parameters shown in Table 2.1, will be

used in the tâtonnement pricing process.

2.3.2 Pricing a Mortality-Linked Security

We assume that the illustrative mortality-linked security is linked to a mortality index

qt, which is defined by the average of the mortality rates for different age groups. The

weights are based on the 2000 US standard population: 0.013818 for age under 1 year,

0.055317 for ages 1-4, 0.145565 for ages 5-14, 0.138646 for ages 15-24, 0.135573 for

ages 25-34, 0.162613 for ages 35-44, 0.134834 for ages 45-54, 0.087247 for ages 55-64,

0.066037 for ages 65-74, 0.044842 for ages 75-84, and 0.015508 for age 85 and over.5

The mortality index we use is exactly the same as that in Chen and Cox (2009).

Assume further that Agent A has sold life insurance policies which pay a total

benefit ft(Qt) = 1000qt at time t. To hedge its exposure to mortality risk, Agent

A issues a mortality-linked security with a face value of $1. The security is fairly

similar to the mortality bond issued by Swiss Re in December 2003. In particular,

the security pays a coupon at the end of each year at a rate of r+1.5%, where r is

5Source: NCHS report GMWK293R (http://www.cdc.gov/nchs/nvss/mortality/gmwk293r.htm).
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the risk-free interest rate, which is assumed to be 3% in our baseline calculations.

The principal repayment at maturity depends on the values of qt over the term of the

security. Specifically, the principal repayment is specified as follows:

Principal Repayment = max

(
1−

3∑
t=1

losst, 0

)
,

where losst is defined by

losst =
max(qt − 1.1q0, 0)−max(qt − 1.2q0, 0)

0.1q0

.

In using Algorithm 1 to obtain the price of the mortality-linked security, there is

a need to evaluate the expected terminal utility for each agent. The expectation can

be calculated by Monte Carlo simulations as follows:

1. simulate 50 000 paths for Nt, Zt, and Yt;

2. calculate κt and qt using the simulated paths;

3. calculate the terminal utility for each path;

4. take arithmetic average of all the simulated terminal utilities as the expected

terminal utility.

We assume an exponential utility function, U(x) = 1 − e−kx, for each agent.

Note that the assumption of exponential utility functions ensures a downward sloping

demand curve6. In the utility function, parameter k is the absolute risk aversion for

all wealth levels. A larger k means that the agent is more conservative and risk averse.

6In the theory of consumer choice, price effect is a sum of income effect and substitution effect.

Substitution effect means that the rate of consumption falls as the price of the good rises. It is always

negative. Income effect means that as the wealth of the individual rises, demand increases, shifting

the demand curve higher at all rates of consumption. Under the exponential utility function, there

is no income effect. This will be shown later in the sensitivity test for initial wealths. Adding the

substitution effect and income effect together, price effect is negative, and thus produces a downward

sloping demand curve.
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In a study of an insurer’s optimal premium strategy, Emms and Haberman (2009)

assume k = 1.0 for an insurer. We also assume in our baseline calculations that Agent

A, an insurer, has an absolute risk aversion of kA = 1.0. It is reasonable to assume

that Agent A is more conservative than Agent B, because Agent A wants to hedge

its mortality risk exposure while Agent B is willing to take mortality risk in return

of a risk premium. Moreover, there is a good chance that Agent B is a hedge fund,

which should have a low absolute risk aversion (see, e.g., Zhu (2009)). In our baseline

calculations, the assumed value of k for Agent B is kB = 0.5.

Using Algorithm 1, the estimated price of the mortality-linked security is $1.0319

and the optimal quantity of the security traded is 1.86 units. For each price level,

we can calculate the demand θ̂B and supply θ̂A. This allows us to plot a curve of θ̂B

against P (the demand curve) and a curve of θ̂A against P (the supply curve). The

resulting demand and supply curves are shown in Figure 2.2. We observe that the

curves intersect at one single point, giving a unique price of the security.

We also observe that the supply is 0 when price is less than $1.0131, indicating

that Agent A is not willing to sell any mortality-linked security for less than $1.0131.

When the price exceeds $1.0131, the supply increases strictly with price. The demand

has an opposite trend. It decreases with the price of the security until $1.0361, after

which it remains at 0.

2.3.3 The Choice of Utility Function

Exponential utility functions are used in this thesis. Though power utility and other

utility functions exhibiting a decreasing absolute risk aversion is considered more

plausible, exponential utility is particularly convenient for many calculations. For

example, it allows the agents’ wealth to be negative. In contrast, power utility func-

tions require both agents to have positive wealths at all times. This condition is not

satisfied, because with uncertain future mortality, the payouts from mortality-linked

security and life-contingent liability are also uncertain. Later in this chapter, we will

also see that exponential utility functions facilitate the optimization problem.
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Figure 2.2: Supply and demand curves at time 0.

Linear utility functions are more tractable than exponential utility functions.

However, they should not be used here, because the resulting equilibrium would not

be meaningful. Using linear utility functions implies that the agents are risk-neutral.

Mathematically, if linear utility function is assumed, we have

E[UA(WA
T )]

= E[WA
T ]

= θAE

[
T∑
t=1

gt(Qt)e
−rt − P

]
.

The expected terminal utility function is a linear function of θA. Assuming Agent A

is the supplier, i.e. θA ≤ 0, we have

θ̂A =


0, if P < E[

∑T
t=1 gt(Qt)e

−rt];

−∞, if P > E[
∑T

t=1 gt(Qt)e
−rt];

(−∞, 0], if P = E[
∑T

t=1 gt(Qt)e
−rt].
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Similarly, we can obtain that

θ̂B =


∞, if P < E[

∑T
t=1 gt(Qt)e

−rt];

0, if P > E[
∑T

t=1 gt(Qt)e
−rt];

[0,∞), if P = E[
∑T

t=1 gt(Qt)e
−rt].

The equilibrium can only be achieved at P ∗ = E[
∑T

t=1 gt(Qt)e
−rt]. However, the

trading at P ∗ makes no difference on the expected terminal wealths of the agents.

This market will end up with no trade.

2.3.4 Initial Price Selection

In theory, the initial price P (0) can be an arbitrary value. However, an arbitrary

P (0) may lead the price adjustment process to a dead end. Examples of this case are

shown in the following discussion. To make sure that P (0) lies within a reasonable

range, the lower bound and upper bound of price need to be determined.

Let vL and vH respectively be the accumulated values of the life contingent liabil-

ities and the payouts from one unit of mortality-linked security at a future time T .

Both vL and vH are positive real numbers. The terminal wealths for Agents A and B

can be expressed as follows:

WA
T = ωAerT − vL + θA(vH − PerT ),

WB
T = ωBerT + θB(vH − PerT ).

Agent A and Agent B make decisions in order to maximize their own expected

terminal utilities. Recall that we work under the assumption of exponential utility

functions for both agents. Through simple calculations, we can rewrite equation (2.6)

and equation (2.7) as below,

θ̂A = argsup
θA

E[UA(WA
T )] = arginf

θA
E
[
e−k

A[−vL+θA(vH−PerT )]
]

(2.11)

θ̂B = argsup
θB

E[UB(WB
T )] = arginf

θB
E
[
e−k

BθB(vH−PerT )
]

(2.12)
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The expectations involved are evaluated by Monte Carlo simulations. We simulate

50 000 mortality paths and thus there are 50 000 simulated values for vH and vL.

If PerT is smaller than all simulated values of vH , vH − PerT in equation (2.11)

and (2.12) is always positive. In this case, the terminal utilities for Agent A and B

are increasing functions of θA and θB. The expected terminal utilities for Agent A

and Agent B are maximized when θA and θB take their maximum values respectively.

If Agent A is the supplier and Agent B is the demander, the optimal supply and

demand are θ̂A = 0 and θ̂B = ∞. If Agent A is the demander and Agent B is the

supplier, the optimal demand and supply are θ̂A = ∞ and θ̂B = 0. No trade will

take place if PerT is less than or equal to the minimum value of all simulated vH .

Therefore,

P ∗ >
min (simulated vH)

erT
≥ min (vH)

erT
.

Similarly, if PerT is larger than all the simulated values of vH , then vH − PerT

is always negative. The expected terminal utilities for Agent A and Agent B are

maximized when θA and θB take their minimum values respectively. If Agent A is the

supplier and Agent B is the demander, the optimal supply and demand are θ̂A = −∞
and θ̂B = 0. If Agent A is the demander and Agent B is the supplier, the optimal

demand and supply are θ̂A = 0 and θ̂B = −∞. Therefore, no trade will happen if

PerT is larger than or equal to the maximum value of all simulated vH . Therefore,

P ∗ <
max (simulated vH)

erT
≤ max (vH)

erT
.

Note that vH , the accumulated value of mortality-linked security payouts, is often

bounded. Its upper and lower bounds may be attained. As the number of simulated

paths increase, the minimum and maximum of the simulated values of vH may be

very close or even equal to the theoretical minimum and maximum of vH .

The lower bound and upper bound can also be understood intuitionally. If the

price of a security is lower than the present value of its all possible future payments,

there exists an arbitrage opportunity because agents in the market can earn free
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money by longing the security. Therefore, the demand will be infinitely large and no

one is willing to supply. If the price of a security is larger than the present value of

its all possible future payments, there also exists an arbitrage opportunity because

agents in the market can earn free money by shorting the security. Therefore, the

supply will be infinitely large and no one is willing to purchase.

Consider the case that P (0) is a value lower than the lower bound. Assuming

Agent A is the supplier and Agent B is the demander, we have θ̂A = 0 and θ̂B =∞,

given P (0). Using equation 2.3, we will obtain P (1) = ∞, P (2) = −∞, P (3) = ∞, . . ..
No convergence will be achieved. Therefore, P (0) needs to be higher than the lower

bound to ensure the convergence. Due to the same reason, P (0) needs to be smaller

than the upper bound. In fact, when P (i) is out of the bounds for any i = 0, 1, 2, . . .,

there is no convergence. As a result, we shall use a small enough ϑ that will not cause

P (i) to be out of the bounds in the implementation of Algorithm 1.

2.3.5 Comparing with an Alternative Method

What price would an existing pricing method give to our illustrative mortality-linked

security? To answer this question, we reprice the security using the pricing method

in Chen and Cox (2009), which is based on a mortality model that is completely

identical to what we assume in our tâtonnement pricing process. However, rather

than an economic approach, Chen and Cox use the Wang transform to identify a

risk-neutral probability measure, from which the price of the mortality-linked security

can be calculated.

More specifically, Chen and Cox apply the Wang transform to random variables

Zt, Yt, and Nt in equation (2.10) individually to obtain the following jump mortality

process in a risk-neutral probability measure:{
κ̃∗t+1 = κ̃∗t + µ+ σZ∗t+1,

κ∗t+1 = κ̃∗t + µ+N∗t+1Y
∗
t+1,
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λ1 5.1449 0 1.5000

λ2 0 3.4808 1.5000

λ3 0 0 1.5000

Price $0.1318 $0.9384 $0.4976

Table 2.2: Prices of the illustrative mortality-linked security implied by different

market prices of risk. (The values of λ1, λ2 and λ3 are obtained from Chen and Cox

(2009).)

where Z∗t ∼ N(λ1, 1), Y ∗t ∼ N(m+ λ2s, s
2),

Ñt =

{
1, with probability p∗,

0, with probability 1− p∗,

and p∗ = 1 − Φ(Φ−1(1 − p) − λ3). Here, Φ is the cumulative distribution function

(cdf) for a standard normal random variable and Φ−1 is the inverse of the cdf for a

standard normal random variable.

In the above, the unknown constants λ1, λ2, and λ3 may be viewed as the market

prices of risk associated with Zt, Yt, and Nt, respectively. Chen and Cox solve the

unknowns by equating the actual price of the Swiss Re mortality bond and the price

of the bond implied by the risk-neutral jump mortality process. As there are three

unknowns but only one equation, there exists infinitely many possible combinations

of λ1, λ2, and λ3. In their calculations, Chen and Cox assume that the market prices

of risk are equal. They also show in their paper the value of λ1 when λ2 = λ3 = 0

and the value of λ2 when λ1 = λ3 = 0, but these two sets of values are not used in

their pricing work. The first three rows of Table 2.2 display the market prices of risk

calculated in the work of Chen and Cox.

We calculate, with Monte Carlo simulations, the expected payoff from the illus-

trative mortality-linked security on the basis of the jump mortality process in the

identified risk-neutral measure. By discounting the expected payoff at the assumed

risk-free interest rate, we obtain the estimated price of the security. The prices un-
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der different assumed market prices of risk are shown in the last row of Table 2.2.

Assuming λ1 = λ2 = λ3, the method of Wang transform would give a price of $0.4976.

The simulated results depicted in Table 2.2 clearly suggest the estimated price of

the security is highly sensitive to the assumed values of λ1, λ2, and λ3. For instance,

if we assume λ2 = λ3 = 0, the estimated price would be as small as $0.1318. The

range of arbitrage-free prices is huge, and the method of Wang transform leaves us

no clue to choose a price from this range.

Among the three prices in Table 2.2, the price based on the assumption λ1 =

λ3 = 0 is the closest to the price estimated by our proposed method ($1.0319). This

is rather intuitive, as λ2 is associated with jumps in mortality, which is exactly the

risk that the security intends to hedge. It would also be interesting to see how the

estimated price would change if λ1 = λ2 = 0 is assumed, as λ3 is also associated with

jumps. However, this set of market prices of risk is not provided by Chen and Cox

(2009).

2.4 Sensitivity Tests/Comparative Statics

A few assumptions have been made in our tâtonnement pricing process. In this

section, we examine how changes to these assumptions may affect the estimated price

of the security in question.

2.4.1 Initial Wealths

Recall that we allow both agents to borrow money from the bank. This means that

the initial wealth does not limit the quantity of the mortality-linked security that

Agent B can purchase at time 0. Moreover, if we assume exponential utility functions

for both agents, the initial wealth of each agent has no effect on the estimated price

of the security. This convenient property of exponential utility functions was proven

by Pratt (1964). Here, we verify that this property also holds in our set-up.
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Proposition 1. If exponential utility functions are assumed, ωA and ωB have no

effect on the estimated price.

Proof. We aim to prove that ωA and ωB do not affect the demand and supply curves

for the security. It is easy to prove by induction that

WA
T = (WA

0 − θAP )erT +
T−1∑
i=0

e(T−i−1)r[θAgi+1(Qi+1)− fi+1(Qi+1)],

and that

WB
T = (WB

0 − θBP )erT +
T−1∑
i=0

e(T−i−1)rθBgi+1(Qi+1).

For convenience, we let

G1(θA, Q1, Q2, . . . , QT ) = −θAPerT +
T−1∑
i=0

e(T−i−1)r[θAgi+1(Qi+1)− fi+1(Qi+1)]

and

G2(θB, Q1, Q2, . . . , QT ) = −θBPerT +
T−1∑
i=0

e(T−i−1)rθBgi+1(Qi+1).

Given a price P , the trading quantity that maximizes the terminal utility of Agent

A is given by

θ̂A = argsup
θA

E[UA(WA
T )]

= argsup
θA

E[e−k
AWA

T ] (2.13)

= argsup
θA

E[e−k
AWA

0 e
rT

e−k
AG1(θA,Q1,Q2,...,QT )]

= argsup
θA

E[e−k
AG1(θA,Q1,Q2,...,QT )],

which is free of WA
0 and hence ωA. Similarly, given P , the trading quantity that

maximizes the terminal utility of Agent B is

θ̂B = argsup
θB

E[UB(WB
T )]

= argsup
θB

E[e−k
BG2(θB ,Q1,Q2,...,QT )],
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kA kB Price Units traded

1 0.25 $1.0337 2.31

1 0.5 $1.0319 1.86

1 1 $1.0289 1.35

1 2 $1.0250 0.87

0.5 0.5 $1.0331 1.41

2 0.5 $1.0306 2.23

4 0.5 $1.0299 2.44

Table 2.3: Prices and numbers of unit traded when different risk aversion parameters

are assumed.

which is free of WB
0 and hence ωB. Since both initial wealths have no effect on the

demand and supply curves, they do not affect the estimated price of the security.

2.4.2 Risk Aversion Parameters

In the baseline calculations, we assume that the risk aversion parameters for Agents

A and B are kA = 1.0 and kB = 0.5, respectively. We now reprice the illustrative

mortality-linked security using different combinations of kA and kB. In order to

examine the impact of kB on the price and trading quantity, we consider four cases

in which kA is fixed at 1 and the base value of kB is multiplied by 1
2
, 1, 2 and 4,

respectively. The comparison of the four cases helps us understand the impact of kB.

We use a similar approach to examine the impact of kA on the trading. The estimated

prices and the corresponding numbers of unit traded are displayed in Table 2.3.

Recall that a larger risk aversion parameter means that the agent is more risk

adverse. From Table 2.3 we observe that at a higher kA, more units would be sold at

time 0 and the price at which the security would be sold is lower. This is because if

Agent A is more risk adverse, it would have a greater intention to reduce its mortality

risk exposure, leading to a higher supply of the mortality-linked security and hence a

lower price, other things equal. On the other hand, at a higher kB, less units would
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Figure 2.3: Supply and demand curves under different values of kA.

be sold at time 0 and the price at which the security would be sold is lower. This is

because if Agent B is more risk adverse, it would have a smaller intention to invest

in the risky security, resulting in a smaller demand and hence a lower price. From

another viewpoint, if Agent B is more risk adverse, it would demand a higher risk

premium for the same amount of risk. Consequently, the price of the security must be

lowered. Figure 2.3 and 2.4 show how the supply and demand curves move when we

change the value of risk aversion parameters. In Figure 2.3, we keep kA unchanged.

Therefore, the supply curve does not move. Similarly, the demand curve does not

move in Figure 2.4 because kB is unchanged.These two graphical illustrations are in

line with the results shown in Table 2.3.

32



1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045
0

2

4

6

8

10

12

14

Price

Q
ua

nt
ity

 

 

Supply (kA=0.5, kB=0.5) 
Demand

Supply (kA=1, kB=0.5)

Supply (kA=2, kB=0.5)

Figure 2.4: Supply and demand curves under different values of kB.

2.4.3 The Price Adjustment Process

In Section 2.2.2, we highlighted the role of ϑ in the price adjustment process. The

value of ϑ has to be small enough. Otherwise, the price adjustment might be too big

so that the equilibrium price will be missed. If ϑ is sufficiently small, then its value

merely affects how fast the tâtonnement pricing process would converge.

To illustrate, let us consider two different values of ϑ. If we set ϑ = 0.001, the

price of mortality-linked security can be found in 13 iterations. In contrast, it we set

ϑ = 0.005, the algorithm does not converge but goes into a dead loop. The price

adjustment processes on the basis of these two values of ϑ are illustrated graphically

in Figure 2.5.
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Figure 2.5: The price adjustment processes when ϑ = 0.001 and ϑ = 0.005.

2.4.4 The Risk-free Interest Rate

The risk-free interest rate plays two roles. It affects the coupons paid (the coupon rate

is assumed to be r+1.5%) and also the rate at which the economic agents’ wealths are

accumulated. In Table 2.4 we show the estimated prices of the illustrative mortality-

linked security under different assumed risk-free interest rates.

Table 2.4 indicates that the equilibrium price and quantity traded are not quite

sensitive to the risk-free interest rate. This is possibly because when the risk-free

interest rate increases, both the coupon rate of mortality bond and the return on

a risk-free investment would increase. As both investment vehicles become more

attractive, the increase in the demand of the mortality bond would tend to be modest.

The supply and demand curves with assumptions of different risk-free interest rates
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r 0.03 0.04 0.05 0.06

Price $1.0319 $1.0303 $1.0285 $1.0264

Units traded 1.86 1.88 1.90 1.92

Table 2.4: Prices and numbers of unit traded when different risk-free interest rates

are assumed.

are shown in Figure 2.6. This figure is consistent with the results in Table 2.4.

2.5 Allowing Trades after Time 0

At any time point, the optimal position of a mortality-linked security depends on

the expectation of future mortality rates. As mortality experience is unfolded, the

expectation of future mortality rates at t > 0 can be different from that at t = 0. As

a result, at t > 0, the agents may be able to attain a higher expected terminal utility

by adjusting their positions of the security.

The set-up presented in Section 2.2.3 does not permit the economic agents to trade

the mortality-linked security after time 0. In this section we will generalize that set-

up to allow the economic agents to sell or purchase the mortality-linked security at

discrete time-steps before the security matures. This generalization may be treated

as a sequential decision process.

2.5.1 Sequential Decision Processes

First, let us introduce a special type of sequential decision processes called Markov

decision processes. In discrete Markov decision problems, decisions are made at t =

0, 1, . . . , T−1. At time t, the system occupies a state. We denote the set of all possible

states at time t by St. If, at time t, the system is in state st ∈ St, the decision maker

may choose an action at from Ast , the set of allowable actions in state st. At time t,
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Figure 2.6: Supply and demand curves when different risk-free interest rates are

assumed.

the system’s state at t+ 1 is unknown and follows a certain probability distribution,

which depends on st and at.

As ‘Markov’ indicates, the decision depends on the current state st only. The

decision is made according to a deterministic decision rule, which specifies an action

selection procedure in each state st at time t. As a result of choosing action at ∈ Ast ,
the decision maker receives an immediate reward, rt(st, at), which is a real-valued

function of st and at. At maturity (time T ), the decision maker receives a terminal

reward of rT (sT ).

Since the rewards received by the decision maker are not known before any action

is taken, the reward sequence is random. The decision maker’s objective is to choose

a sequence of actions so that the corresponding random reward sequence is as ‘large’
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as possible. This necessitates a method for finding an optimal action sequence, which

we will investigate in Section 2.5.2.

Some mortality-linked securities make payments that depend not only on the

current but also the past values of the underlying mortality index. For such securities,

a simple Markov decision process is not adequate, but we may use a less restrictive

sequential decision process, which we now detail.

To explain this sequential decision process, we first represent the history of the

system by the sequence of previous states and actions. The system’s history, which we

denote by ht = (s0, a0, . . . , st−1, at−1, st), follows the recursion ht = (ht−1, at−1, st). We

let Ht be the set of all possible histories. Note that H0 = S0, H1 = S0×AS0×S1, and

Ht = S0×AS0×S1×AS1×. . .×St.7 Note also that the recursion Ht = Ht−1×ASt−1×St
holds. Here, the decision is a function of ht and the reward function is a function of

ht and at. The allowable action set for each ht ∈ Ht is Aht . The decision process is

no longer ‘Markov,’ because the decision rule dt maps the entire history Ht to AHt .

Nevertheless, the less restrictive sequential decision process can be transformed

into a Markov decision process. Specifically, if we set a new state variable ŝt = ht,

then the sequential decision process on the basis of the new state variable would have

the same form as a Markov decision process. The set of all possible states at time t

would become Ŝt = Ht. As such, the theorems and algorithms developed for Markov

decision processes can still be applied to transformed sequential decision processes as

well.

2.5.2 An Optimal Action Sequence

Bellman (1957) provides us a simple principle to find an optimal action sequence.

Bellman’s principle of optimality: An optimal policy has the property that

whatever the initial state and initial decision are, the remaining decisions

7For sets C and D, C ×D denotes the Cartesian product of C and D; that is, C ×D = {(c, d) :

c ∈ C, d ∈ D)}.
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must constitute an optimal policy with regard to the state resulting from

the first decision.

Suppose that the objective is to maximize the sum of rewards from time 1 to

T , that is,
∑T−1

i=1 ri(si, ai) + rT (sT ). For a Markov sequential decision process, the

principle of optimality implies that (a0, a1, . . . , aT−1) is the optimal action sequence

if

at = argsup
a∈Ast

{rt(st, a) + E[vt+1(st+1)|st, a]},

where

vt(st) =

{
supa∈Ast {rt(st, a) + E[vt+1(st+1)|st, a]} , t = 0, 1, . . . , T − 1,

rT (sT ), t = T.

When ASt is finite, we can replace the ‘sup’ in the equation above by ‘max.’ A

mathematical definition of the principle of optimality and a detailed proof of the

results above can be found in Puterman (2005).

According to the results above, we work backward from t = T to find the optimal

actions. At time T , we calculate all possible values of vT (sT ). We then proceed to

time T − 1. For each possible state sT−1 ∈ ST−1, we obtain vT−1(sT−1) and the

optimal action aT−1 by maximizing the expected value of vT . Having completed the

calculations for time T − 1, we proceed to times T − 2, . . . , 0 in order. In general, the

optimal action at and vt(st) at t = 0, 1, . . . , T − 1 can be expressed as

at = argsup
a∈Ast

{rt(st, a) + E[vt+1(st+1)|st, a]} (2.14)

and

vt(st) = rt(st, at) + E[vt+1(st+1)|st, at], (2.15)

respectively. The above procedure can be conveniently summarized by the following

algorithm:

Algorithm 2
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1. Evaluate vT (sT ) for each sT ∈ ST . Set t = T .

2. Find the optimal action at−1 and vt−1(st−1) by equations (2.14) and (2.15). Set

t = t− 1.

3. Repeat Step 2. Stop when t = 0.

Algorithm 2 can also be applied to the less restrictive sequential decision process

in which the distribution of st+1 depends not only on st but also the history of the

states and actions. Specifically, we replace st in the procedure above by ŝt = ht and

the evaluation is done for each ŝt ∈ Ŝt. The amount of information we include in the

state variable determines the computation power we need to solve the problem. It is

therefore more computationally demanding to work on the less restrictive sequential

decision process.

2.5.3 The Generalized Pricing Process

Let θAt be Agent A’s position in the mortality-linked security immediately before

trade at time t. Denote by aAt the action taken by Agent A at time t; that is, −aAt is

the number of units of the security sold at time t. It is easy to see that θA0 = 0 and

θAt = θAt−1 + aAt−1.

We define similar notation for Agent B. We let θBt be Agent B’s position in the

security immediately before trade at time t, and let aBt be the number of units of the

security purchased at time t. We have θB0 = 0 and θBt = θBt−1 + aBt−1.

If the time-t payment from the security depends only on the mortality index qt at

time t, we may set the state variable as st = (qt, θt). However, more generally, if the

payment at time t also depend on values of the index before time t, then we have to

use ŝt = ht as the state variable.

Again we assume that the mortality-linked security and the bank account are the

only investment choices. Let Pt(ŝt) be the price of the mortality-linked security at

time t and at state ŝt. Suppose that the price process P0(ŝ0), P1(ŝ1), . . . , PT−1(ŝT−1)
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is known. Then the wealth processes for the two economic agents can be written as

follows:

Agent A

WA
0 = ωA

WA
1 = (WA

0 − aA0 P0(ŝ0))er + (θA0 + aA0 )g1(Q1)− f1(Q1)

WA
2 = (WA

1 − aA1 P1(ŝ1))er + (θA1 + aA1 )g2(Q2)− f2(Q2)
...

...
...

WA
T = (WA

T−1 − aAT−1PT−1(ŝT−1))er + (θAT−1 + aAT−1)gT (QT )− fT (QT ) (2.16)

Agent B

WB
0 = ωB

WB
1 = (WB

0 − aB0 P0(ŝ0))er + (θB0 + aB0 )g1(Q1)

WB
2 = (WB

1 − aB1 P1(ŝ1))er + (θB1 + aB1 )g2(Q2)
...

...
...

WB
T = (WB

T−1 − aBT−1PT−1(ŝT−1))er + (θBT−1 + aBT−1)gT (QT ) (2.17)

As before, we assume that, given a price process, the agents choose their actions

by maximizing their expected terminal utility. We can model this with a sequential

decision process by setting rt(st, at) to 0 for t = 0, 1, . . . , T − 1 and rT (sT ) to the

terminal utility of the agent in state sT . We assume that agents have exponential

utility functions UA(x) = 1− e−kAx and UB(x) = 1− e−kBx.

We identify vt(st) in equation (2.15) for Agents A and B by vAt (st) and vBt (st),

respectively. Note that vAT (sT ) = UA(WA
T ) and vBT (sT ) = UB(WA

T ).

Taking Agent A as an example, its optimal actions are given by

argsup
a0,a1,...,aT−1

E[UA(WA
T )].
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Its optimal action at time T − 1 is

aAT−1 = argsup
a∈AŝT−1

E[UA((WA
T−1 − aPT−1(ŝT−1))er + (θAT−1 + a)gT (QT )− fT (QT ))|ŝT−1]

= arginf
a∈AŝT−1

E[e−k
A(−aPT−1(ŝT−1)er+(θAT−1+a)gT (QT )−fT (QT ))|ŝT−1],

which means the optimal action aAT−1 depends on the past information only through

QT−1 and θAT−1. If we write down the equations for t = T −1, T −2, . . . , 0, we will see

that the optimal action aAt only depends on Qt and θAt as well. Therefore, we may

reduce the state variable to ŝt = (Qt, θ
A
t ), because that would reduce the content of

the state variable and hence reduce the computational effort needed.

With Algorithm 2 and the wealth processes specified by equations (2.16) and

(2.17), the optimal actions for both agents can be found if we know the price process.

However, the price process is not known at the outset. If we plug an arbitrary price

process into Algorithm 2, the actions taken by Agents A and B are not likely to agree

with each other and the market is not likely to clear. To make the market clear,

we have to adjust the price process, and this can be accomplished by a tâtonnement

approach, which we introduced and used in Section 2.2. The tâtonnement approach

can be combined with a sequential decision process to solve the pricing problem.

The basic idea is to find the equilibrium price at each state successively. We

begin with time T − 1. For each possible state ŝT−1 ∈ ŜT−1, the market clearing

price PT−1(ŝT−1) can be found by using Algorithm 1 and the optimality criterion of

maximizing the expected terminal utility. At the same time, we obtain the actions

aAT−1 and aBT−1 and the values of vAT−1(sT−1) and vBT−1(sT−1). Then, we repeat the

procedure for times T − 2, T − 3, . . ., 0 in order. Since there is only one state at time

0, we would be able to obtain a unique time-0 price and the corresponding optimal

actions for both agents. The above procedure can be summarized by the following

algorithm:

Algorithm 3

1. Evaluate vAT (ŝT ) and vBT (ŝT ). Set t = T .
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2. For each possible state ŝt−1 ∈ Ŝt−1 at time t−1, use Algorithm 1 and equations

(2.14) and (2.15) to find Pt−1(ŝt−1), aAt−1, aBt−1, vAt−1(ŝt−1), and vBt−1(ŝt−1). Set

t = t− 1.

3. Repeat Step 2. Stop when t = 0. The time-0 price of the mortality-linked

security is given by P0(ŝ0).

2.5.4 A Multinomial Mortality Tree

In the sequential decision process, the system occupies a state st ∈ St at time t.

Optimal actions are determined for each state. For computational reasons, we need

to keep the state space St discrete and finite. This means that the stochastic mortality

model in Section 2.3.1 cannot be applied directly here, as it allows the mortality index

qt to take any non-negative real value.

To solve this problem, we construct in this section a mortality tree that is based on

the stochastic mortality model in Section 2.3.1. The tree, which models the evolution

of κt over time, is composed of two smaller multinomial trees, one for κ̃t and the other

for NtYt. Given κt, the mortality rates mx,t and hence the mortality index qt for t > 0

can be calculated straightforwardly.

First of all, note that the sequence {κ̃t+1 − κ̃t} is independent and identically

distributed with mean µ and variance σ2. We discretize the state space for κ̃t+1 by

assuming that in state i, where i ∈ {. . . ,-2,-1,0,1,2,. . . }, the value of κ̃t+1 given κ̃t is

κ̃t+1(i) = κ̃t+µ+ iσ. The discretization is illustrated diagrammatically in Figure 2.7.

We then assign a probability mass to each state. Specifically, the probability mass

assigned to state j is the probability that, given κ̃t, κ̃t+1 lies within the interval of

[κ̃t + µ+ (i− 0.5)σ, κ̃t + µ+ (i+ 0.5)σ]. It follows that the probability mass assigned

to state i is

Pr[κ̃t+1 = κ̃t+1(i)|κ̃t] = Φ(i+ 0.5)− Φ(i− 0.5).
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Time = t Time = t+ 1
...

κ̃t+1(3) = κ̃t + µ+ 3σ

κ̃t+1(2) = κ̃t + µ+ 2σ

κ̃t+1(1) = κ̃t + µ+ σ

κ̃t κ̃t+1(0) = κ̃t + µ

κ̃t+1(−1) = κ̃t + µ− σ
κ̃t+1(−2) = κ̃t + µ− 2σ

κ̃t+1(−3) = κ̃t + µ− 3σ
...

Figure 2.7: The discretized state space for κ̃t+1 given κ̃t.

We then turn to Nt+1Yt+1. Note that the sequence {Nt+1Yt+1} is also independent

and identically distributed. If Nt+1 = 0, we have Nt+1Yt+1 = 0; if Nt+1 = 1, we have

Nt+1Yt+1 = Yt+1, which follows a normal distribution with mean m and variance s2.

We discretize the state space for Yt+1 by assuming that in state j, where j ∈ {. . . ,
−2,−1, 0, 1, 2, . . .}, the value of Yt+1 is Yt+1(j) = m + js. The probability mass

assigned to state j is the probability that Yt+1 lies within the interval of [m+(j−0.5)s,

m+ (j+ 0.5)s]. Hence, the state space for Nt+1Yt+1 contains a state that corresponds

to Nt+1 = 0 and states that correspond to Nt+1 = 1 and Yt+1 = Yt+1(j), where

j ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. The probability mass assigned to the state Nt+1 = 0 is

Pr[Nt+1 = 0] = 1− p,

whereas the probability mass assigned to the state Nt+1 = 1 and Yt+1 = Yt+1(j) is

Pr[Nt+1 = 1, Yt+1 = Yt+1(j)] = p(Φ(j + 0.5)− Φ(j − 0.5)).

The discretization of Nt+1Yt+1 is illustrated diagrammatically in Figure 2.8.

Combining the trees in Figures 2.7 and 2.8, we obtain a tree for κt+1. If κ̃t+1 =

κ̃t+1(i), Nt+1 = 1 and Yt+1 = Yt+1(j), then we have κt+1 = κ̃t+1(i) + Yt+1(j). The
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Time = t+ 1

Nt+1 = 0
...

Nt+1 = 1, Yt+1(3) = m+ 3s

Nt+1 = 1, Yt+1(2) = m+ 2s

Nt+1 = 1, Yt+1(1) = m+ s

Nt+1 = 1, Yt+1(0) = m

Nt+1 = 1, Yt+1(−1) = m− s
Nt+1 = 1, Yt+1(−2) = m− 2s

Nt+1 = 1, Yt+1(−3) = m− 3s
...

Figure 2.8: The discretized state space for Nt+1Yt+1.

probability mass assigned to this state is

Pr [κt+1 = κ̃t+1(i) + Yt+1(j), Nt+1 = 1|κ̃t]
= p(Φ(i+ 0.5)− Φ(i− 0.5))(Φ(j + 0.5)− Φ(j − 0.5)).

On the other hand, if κ̃t+1 = κ̃t+1(i) and Nt+1 = 0, then we have κt+1 = κ̃t+1(i). The

probability mass assigned to this state is

Pr [κt+1 = κ̃t+1(i), Nt+1 = 0|κ̃t] = (1− p)(Φ(i+ 0.5)− Φ(i− 0.5)).

The computational burden can be reduced by using a small (finite) number of

states at each time step. Specifically, at each time step, we set the maximum and

minimum states for κ̃t+1 to M and −M , and the maximum and minimum states

for Yt+1 to N and −N , respectively. The probability masses beyond the truncation

points M , −M , N and −N are assigned to the respective truncation points. This

means that the total number of states at each time step is (2M + 1)(2N + 2).
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2.5.5 An Example

Let us revisit the illustrative mortality-linked security in Section 2.3.2. We now study

how the price of the security may change if we allow trades between the economic

agents after time 0. As in Section 2.3.2, it is assumed here that r = 3%, kA = 1, and

kB = 0.5. The tâtonnement pricing process is implemented with a sequential decision

process and the multinomial mortality tree in Section 2.5.4.

For computational reasons, the agents’ positions in the mortality-linked security

can only take a finite number of values. In this example, we require θAt , θ
B
t ∈ {0, 0.05,

0.1, . . . , 3.9, 3.95} for all t.8 Since θAt = θAt−1 + aAt−1, aAt must lie within the interval

(−3.95, 3.95) for all t. The same interval also applies to aBt .

Using 56 states (with M = 3 and N = 3), the estimated price of the mortality-

linked security is 1.0343. At this price, 2.1 units of the security would be traded.

Figure 2.9 shows the demand and supply curves at time 0. They are derived from the

generalized pricing process. We observe that the supply is 0 when the price is below

$1.0268, indicating that Agent A is not willing to sell the security for any price lower

than $1.0268. Then the supply curve is strictly increasing until the price reaches

$1.0359, after which the supply remains constant at 3.95 units. The upper limit of

3.95 units is because we require θAt ∈ {0, 0.05, 0.1, . . . , 3.9, 3.95} in our calculations.

The demand curve has an opposite trend. It is decreasing until the price reaches

$1.0359, beyond which the demand is 0.

We then examine how the choice of M and N would affect the equilibrium. First,

we set N = 2 and examine the impact of M . In Table 2.5 we show the estimated

prices and numbers of unit traded for different choices of M with N fixed at 2. As

we increase M , the values do not vary significantly, and we obtain a convergence at

M = 3. Note that we need more computational power if we choose a larger M .

8In Section 2.3.2, we demonstrated that if trades beyond time 0 are not allowed, then 1.86 units

of the illustrative security will be traded at time 0. Of course, when we allow trades after inception,

a different quantity will be traded at time 0, but this quantity should not be too far from 1.86. Using

1.86 as a starting point, we believe that the range of [0, 3.95] should be wide enough to encompass

the equilibrium quantity in the case when trades beyond time 0 are permitted.
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Figure 2.9: Demand and supply curves at time 0.

Next, we set M = 3 and examine the impact of N . In Table 2.6, we show the

estimated prices and numbers of unit traded for different choices of N with M fixed at

3. As we increase N , the values do not vary significantly, and we obtain a convergence

at N = 3. Again, more computational power would be required if a larger N is used.

2.6 Maximizing Expected Lifetime Utility

Instead of maximizing each agent’s expected terminal utility, one may be interested

in maximizing each agent’s expected lifetime utility based on a discount factor.

Proposition 2. Under the assumption of exponential utility functions, maximizing

each agent’s expected terminal utility and maximizing each agent’s expected lifetime

utility would lead to the same equilibrium price and quantity traded.
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M 2 3 4

Price 1.0354 1.0352 1.0352

Units traded at time 0 2.2 2.25 2.25

Table 2.5: Estimated prices for different choices of M when N = 2.

N 2 3 4

Price 1.0352 1.0343 1.0343

Units traded at time 0 2.25 2.1 2.1

Table 2.6: Estimated prices for different choices of N when M = 3.

Proof. We consider an alternative set-up that is based on the agents’ lifetime utilities.

We let cAt , t = 0, 1, . . . , T , be Agent A’s consumption at time t. No constraint is

imposed on the amounts of consumption. We define the lifetime utility for Agent A

by

T∑
t=0

e−ρtUA(cAt ) + e−ρTUA(WA∗
T ),

where ρ is the rate at which future utilities are discounted, WA∗
T is the terminal

wealth, and e−ρTUA(WA∗
T ) is the bequest valuation function.

We assume again exponential utility functions. For now, we do not permit trades

after time 0. If each agent’s goal is to maximize its expected lifetime utility, then the

optimization problem for Agent A can be formulated as

sup
θA,cA0 ,c

A
1 ,...,c

A
T

E

[
T∑
t=0

e−ρtUA(cAt ) + e−ρTUA(WA∗
T )

]
,

and that for Agent B can be formulated in a similar fashion.

The equilibrium resulting from this alternative set-up is identical to that from the

set-up described in the main text (which is based on the terminal utility only). To
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see why, we first examine the relation between WA∗
T and WA

T , the terminal wealth of

Agent A in the set-up described in the main text. We have

WA∗
T = (ωA + θAP )erT −

T∑
t=0

cAt e
r(T−t) − θA

T∑
t=1

gt(Qt)e
r(T−t) −

T∑
t=1

ft(Qt)e
r(T−t),

and

WA
T = (ωA + θAP )erT − θA

T∑
t=1

gt(Qt)e
r(T−t) −

T∑
t=1

ft(Qt)e
r(T−t),

which implies that WA∗
T = WA

T −
∑T

t=0 c
A
t e

r(T−t). Then, the supply from Agent A in

the alternative set-up can be written as

argsup
θA

E

[
T∑
t=0

e−ρtUA(cAt ) + e−ρTUA(WA∗
T )

]

= argsup
θA

E

[
T∑
t=0

e−ρtUA(cAt ) + e−ρT
(

1− e−kA(WA
T −

∑T
t=0 c

A
t e

r(T−t))
)]

= argsup
θA

E

[
T∑
t=0

e−ρtUA(cAt )− e−ρT ekA
∑T
t=0 c

A
t e

r(T−t)
e−k

AWA
T

]

= argsup
θA

{
T∑
t=0

e−ρtUA(cAt ) + e−ρT ek
A
∑T
t=0 c

A
t e

r(T−t)E
[
−e−kAWA

T

]}
= argsup

θA
E
[
−e−kAWA

T

]
= argsup

θA
E
[
UA(WA

T )
]
,

which is exactly the same as Agent A’s supply in the set-up described in the main

text.9 Similarly, we can prove that Agent B’s demands in both set-ups are the same.

As a result, both set-ups yield the same tâtonnement equilibrium.

This interesting result also holds when we permit trades after time 0. In this case,

if each agent’s goal is to maximize its expected lifetime utility, then the optimization

9The second last step in the above calculations follows from the assumption that cAt , t = 0, 1, . . . ,

T , are not constrained. This assumption implies that for any t, cAt does not depend on θA.
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problem for Agent A can be formulated as

sup
cA0 ,c

A
1 ,...,c

A
T ,a

A
0 ,a

A
1 ,...,a

A
T−1

E

[
T∑
t=0

e−ρtUA(cAt ) + e−ρTUA(WA∗
T )

]
,

and that for Agent B can be formulated in a similar fashion. When trades are allowed

after time 0, we have

WA
T = ωAerT +

T−1∑
t=0

aAt Pt(ŝt)e
r(T−t) −

T∑
t=1

θAt gt(Qt)e
r(T−t) −

T∑
t=1

ft(Qt)e
r(T−t),

and

WA∗
T = ωAerT+

T−1∑
t=0

aAt Pt(ŝt)e
r(T−t)−

T∑
t=0

cAt e
r(T−t)−θA

T∑
t=1

gt(Qt)e
r(T−t)−

T∑
t=1

ft(Qt)e
r(T−t),

which also implies WA∗
T = WA

T −
∑T

t=0 c
A
t e

r(T−t). Given a price process, the optimal

actions for Agent A can be written as

argsup
aA0 ,a

A
1 ,...,a

A
T−1

E

[
T∑
t=0

e−ρtUA(cAt ) + e−ρTUA(WA∗
T )

]
.

Using the fact that WA∗
T = WA

T −
∑T

t=0 c
A
t e

r(T−t), we can show easily that the optimal

actions can also be expressed as

argsup
aA0 ,a

A
1 ,...,a

A
T−1

E
[
UA(WA

T )
]
,

which are exactly the optimal actions resulting from the set-up described in the main

text. As Agent A’s optimal actions are unchanged, its supply is also unchanged.

Similarly, we can prove that Agent B’s demands in both set-ups are the same. As a

result, both set-ups yield the same tâtonnement equilibrium, even if we permit trades

after time 0.

We emphasize that, however, if other utility functions are assumed and/or con-

sumptions at different time points are subject to some constraints, then this property

may no longer hold. The optimization entailed in the alternative set-up would then

become a lot more complex.
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2.7 Concluding Remarks

In this chapter, we proposed an economic method for pricing mortality-linked securi-

ties. We discussed two versions of the method. The first version, which we described

in Section 2.2, is simple and straightforward to implement. It is highly suitable for

today’s market in which hedgers and investors may not find the liquidity to unwind

their positions in a mortality-linked security. The second version, which was detailed

in Section 2.5, permits the counterparties to unwind their positions in discrete time

steps before maturity. Nevertheless, it requires more computational resources to im-

plement, particularly if we divide the time-to-maturity into a large number of time

steps.

Our work drills down into the very fundamental economic concepts: demand and

supply. The pricing framework we contribute yields a pair of demand and supply

curves (Figures 2.2 and 2.9), from which we can predict if there will be any trade

between the counterparties. We demonstrated empirically that, for the mortality-

linked security we consider, a tâtonnement equilibrium exists and the price of the

security is unique.

The method we propose does not take actual market prices as given, therefore

sparing us from the problems related to a lack of market price data. The advantage

of not requiring market prices as input is particularly important when we price long-

term longevity securities. It is not clear if annuity prices offer an adequate starting

point, as it is difficult, if not impossible, to infer a pure longevity risk premium from

an annuity contract. As of this writing, the BNP/EIB bond is the only long-term

longevity security with pricing information available in the public domain. However,

the bond did not actually trade, so the reliability of its announced price is quite

questionable.

To date, most long-term longevity securities traded are bespoke securities. By

a bespoke longevity security we mean the payoffs from the security are based on

the actual number of survivors in the hedger’s portfolio. An example is the longevity

swap agreed between Babcock International and Credit Suisse in 2009. Some financial

analysts believes the dominance of bespoke securities will continue in the longevity risk
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market over the next year or two.10 Our pricing framework is ideal for pricing bespoke

deals, as the payoff functions, ft and gt, and other parameters can be adapted readily

to suit the actual situations of the counterparties. Further, it does not require the

pricing information of other mortality-linked securities, which are most likely based

on different reference populations. Moral hazard often appears in the bespoke deals,

because the agents have asymmetric information. However, our pricing framework

does not take moral hazard into account. It will be interesting to incorporate it in

the framework and analyze its impact on the trading in the future research.

For pension plans and annuity providers, the reason for trading mortality-linked

securities is to hedge their longevity risk exposures. In an incomplete market like the

current longevity risk market, a perfect hedge cannot be formed, but an approximate

hedging strategy may be constructed on the basis of a hedging objective. For example,

one may construct a hedging strategy to stabilize the variability of net cash flows over

a certain period of time (Cairns et al., 2008; Coughlan, 2009; Li and Hardy, 2010). If

one’s hedging objective is to maximize the expected utility at a certain future time,

then the quantity θA in Section 2.2 can be viewed as the corresponding static hedging

strategy. Further, if trades are permitted after time 0, then we may regard the actions

aA0 , a
A
1 , . . . , a

A
T−1 in Section 2.5 as the corresponding dynamic hedging strategy.

In using the tâtonnement approach, we require the absolute risk aversion param-

eters for the agents involved. The absolute risk aversion for a firm depends heavily

on the firm’s characteristics. For instance, Cozzolino and Kleinman (1982) suggest

that the absolute risk aversion for an insurance company is inversely related to the

sum of its capital funds and new premium income. In our numerical illustrations,

both agents (the life insurer and the hedge fund) are hypothetical, and therefore it is

impossible to estimate their risk aversion parameters. Note also that, other than the

risk aversion parameters, we require other information, such as the insurer’s liability

structure, in order to derive a realistic price. As a price taker, the insurer decides sup-

ply/demand according to a given price and certain criterion. The liability structure

of the insurer affects this decision, and thus affects the equilibrium.

10See “Pensions Ready for Longevity Solutions,” InsuranceERM, May 2009.
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In practice, when the identities of the parties involved in the trade are known,

we can estimate their risk aversion parameters. Cox et al. (2010) propose a method

for estimating the absolute risk aversion of an annuity provider from the prices of

annuities it sells. We believe that a similar approach can also be used to estimate

the risk aversion parameter for a life insurer. Other information required may also be

found from, for example, the annual reports of the parties involved. The study of a

specific trade is beyond the scope of this chapter. In future research, it is warranted

to conduct a case study of a public known deal, and compare the results from our

pricing framework with the actual price and number of units traded.

In this chapter, we assumed that the two agents have homogeneous beliefs about

future mortality dynamics. If this assumption is relaxed, our pricing framework can

still be used. The only change is that each agent uses its own mortality model to

determine supply or demand.
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Chapter 3

Incorporating population basis

Risk

3.1 Introduction

In Chapter 2, we introduced an economic approach for pricing mortality-linked secu-

rities. This new pricing method is developed from an idea called tâtonnement, which

was first proposed by Walras (1874) to model trades in an exchange economy. It

models the actual trade between the hedger and investor. It is therefore more trans-

parent relative to standard no-arbitrage approaches, in which the price of a security

is estimated by extrapolating prices of other similar securities available in the market.

On top of the estimated price, the economic pricing method provides us with a pair of

demand and supply curves, from which we can infer the quantity of a mortality-linked

security to be traded in equilibrium. Further, by examining the response of the de-

mand and supply curves to changes in, for example, the volatility of mortality rates,

we can have a better idea about how and why the price of a security will change in

different circumstances. Another appealing feature of the economic pricing method is

that, as opposed to no arbitrage approaches, it works when there are no market prices
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of other mortality-linked securities1. This can spare us from the problems associated

with the lack of market price data.

However, the pricing framework proposed in Chapter 2 assumes that the pop-

ulation of individuals associated with the hedger’s risk exposure is identical to that

associated with the security being priced. This simple set-up is appropriate for pricing

bespoke mortality-linked securities, from which the payoffs are linked to the actual

number of survivors in the hedger’s own portfolio. Nevertheless, this set-up may not

be adequate for valuing standardized mortality-linked instruments, which are usually

based on broad population mortality indexes rather than the hedger’s own mortality

experience. More specifically, the mismatch in mortality movements would create

what is referred to as population basis risk. In this chapter, we relax this assumption

and extend the economic pricing method so that it can be applied in the presence of

population basis risk. To achieve this objective, we integrate the two-population age-

period-cohort mortality model proposed by Cairns et al. (2011a) into the economic

pricing framework.

The existence of population basis risk may have a significant impact on the demand

and/or supply of a mortality-linked security. The problem of population basis risk

has recently been considered by some academics, including Cairns et al. (2011a),

Coughlan et al. (2011), and Li and Hardy (2010). Their studies focus mainly on the

measurement of basis risk, but have made no attempt to investigate how population

basis risk may affect the trade and hence the price of a mortality-linked security. This

chapter fills in this gap. Given the proposed extension, we can readily estimate how

the time-0 price of a security would change if the hedger’s exposure and the security

under consideration are tied to different populations.

Besides prices, we also investigate the impact of population basis risk on the behav-

iors of hedgers and investors in the longevity risk market. For a deeper understanding

of population basis risk, we drill down into its fundamental components:

1This pricing method produces a partial equilibrium, where the clearance on this market is

obtained independently from prices and quantities in other markets. When the market prices of

other mortality-linked securities are available, a general equilibrium that takes all the market prices

into account should be used.
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1. the difference in the magnitude of mortality rates between the two populations

involved in the pricing framework;

2. the volatility of the mortality-linked cash flows associated with the hedger’s

liability relative to that associated with the security being priced;

3. the (imperfect) correlation between the mortality-linked cash flows associated

with the hedger’s liability and the security being priced.

We shall examine the influence of these three components of population basis risk on

the trading of mortality-linked securities.

Another focus of this chapter is the hedging strategy implied by the tâtonnement

pricing process. In an incomplete market like today’s longevity risk market, a perfect

hedge cannot be formed, but an approximate hedging strategy may be constructed

according to a pre-defined hedging objective. Specifically, if the hedger’s objective is

to maximize its expected utility at a certain future time, then the quantity traded

in the tâtonnement equilibrium can be regarded as the corresponding static hedging

strategy. We shall examine how such a hedging strategy would change when popu-

lation basis risk is taken into account. Using the two-population age-period-cohort

mortality model, we also evaluate the effectiveness of the hedging strategy implied by

the tâtonnement pricing process, with and without population basis risk.

We illustrate our ideas with a hypothetical mortality-linked security, which is de-

signed to help pension funds and annuity providers hedge their exposures to longevity

risk. The security is similar to the first ever longevity bond jointly announced by the

European Investment Bank and BNP Paribas in November 2004. The illustrations

are based on mortality data from UK male population and two of its sub-populations,

Scottish male population and UK male insured lives. The data for the two national

populations are obtained from the Human Mortality Database (2010), while the in-

sured lives data are provided by the Continuous Mortality Investigation (CMI) Bureau

of the Institute and Faculty of Actuaries.

The rest of this chapter is organized as follows. In Section 3.2, we extend the

tâtonnement pricing process to incorporate population basis risk and describe two
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possible methods, one numerical and one analytic, for implementing the pricing pro-

cess. In Section 3.3, we detail the two-population age-period-cohort mortality model

and fit the model to the populations under consideration. We also provide a fore-

casting method for the two-population mortality model. In Section 3.4, we use the

hypothetical longevity bond to illustrate the effect of population basis risk on secu-

rity prices, static hedging strategies, and the behaviors of the counterparties involved.

Finally, in Section 3.5, we conclude this chapter.

3.2 The Extended Tâtonnement Pricing Process

3.2.1 The Set-up

The tâtonnement approach proposed in Chapter 2 is limited to the case that the

hedger’s risk exposure and the security being priced must be linked to the same

population of individuals. In this subsection, we relax this assumption and describe

a tâtonnement process for modeling the trade of a mortality-linked security between

two economic agents, Agents A and B, when population basis risk is involved.

Suppose that Agent A has life contingent liabilities that are due at times 1, 2,

..., T . The amount due at time t is ft(Q
L
t ), which is a deterministic function of QL

t ,

where QL
t = (qL0 , q

L
1 , . . . , q

L
t ) is a vector of mortality indexes up to and including time

t. We allow ft to be a function of QL
t rather than just qLt because the liability payouts

can be path-dependent.

The index qLt contains information about the mortality of the population associ-

ated with Agent A’s liability over the period of t−1 to t. Depending on the structure

of the liability, qLt can be a scalar or a vector. For example, if the liability is the

annuity payments to a single cohort of annuitants, then qLt would be a scalar, rep-

resenting the mortality rate of the cohort from time t − 1 to t. On the other hand,

if the liability is associated with multiple cohorts of individuals, then qLt would be a

vector, which contains mortality rates at various ages. At time 0, the values of qLt for

t > 0 are not known and are governed by an underlying stochastic process.
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To mitigate its exposure to mortality or longevity risk, Agent A sells (or purchases)

a mortality-linked security maturing at time T . At time t, the security makes a payout

of gt(Q
H
t ), which is deterministic function of QH

t , where QH
t = (qH0 , q

H
1 , . . . , q

H
t ) is

a vector of mortality indexes up to and including time t. The index qHt contains

information about the mortality of the population associated with the security over

the period of t − 1 to t. As with qLt , qHt can be a scalar or a vector, and its value is

not known at time 0. We emphasize that, due to population basis risk, qHt and qLt
are not necessarily the same.

Agent B is an investor who trades the mortality-linked security with Agent A, in

order to earn a risk premium. At time t, Agent B receives (or pays) an amount of

gt(Q
H
t ) per unit of the mortality-linked security purchased (or sold).

Following the specification of a tâtonnement process, we suppose that there exists

an imaginary auctioneer who cries an arbitrary price, P , at the beginning. Given

this price, each agent will trade a quantity that will maximize its expected terminal

utility.

Let ωA and ωB be the initial wealths of Agents A and B, respectively. We assume

that the wealth of each agent can only be invested in either the mortality-linked

security or a bank account which yields a continuously compounded risk-free interest

rate of r per annum. We allow a negative wealth, which means that the agent borrows

money from a bank account and pays an interest rate of r to the bank. Other than

the bank account, the mortality-linked security and the life contingent liability, there

is no sources of income or payout. We assume r = 3% in our numerical illustrations.

We let θA and θB respectively be the quantity that Agents A and B are willing to

trade at time 0. As defined in Chapter 2, a positive quantity means that the agent

purchases the security, while a negative quantity means the agent sells the security.

At time 0, Agent A trades θA units of the mortality-linked security and deposits

the rest of its wealth into its bank account. At time t = 1, 2, . . . , T , it receives (or

pays) an amount of |θAgt(QH
t )| for the mortality-linked security it traded, pays its life

contingent liability ft(Q
L
t ), and deposits the rest of its wealth into its bank account.

Let WA
t be the time-t wealth of Agent A. Then the wealth process for Agent A can
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be expressed as follows:

WA
0 = ωA

WA
1 = (WA

0 − θAP )er + θAg1(QH
1 )− f1(QL

1 )

WA
2 = WA

1 e
r + θAg2(QH

2 )− f2(QL
2 )

...
...

...

WA
T = WA

T−1e
r + θAgT (QH

T )− fT (QL
T ).

At time 0, Agent B trades θB units of the mortality-linked security and deposits

the rest of its wealth into its bank account. At time t = 1, 2, . . . , T , it receives

(or pays) an amount of |θBgt(QH
t )| for the mortality-linked security it traded, and

deposits the rest of its wealth into its bank account. Let WB
t be the time-t wealth of

Agent B. Then the wealth process for Agent B can be expressed as follows:

WB
0 = ωB

WB
1 = (WB

0 − θBP )er + θBg1(QH
1 )

WB
2 = WB

1 e
r + θBg2(QH

2 )
...

...
...

WB
T = WB

T−1e
r + θBgT (QH

T ).

We denote the utility functions for Agents A and B by UA and UB, respectively.

As mentioned earlier, given a price P , each agent trades a quantity that maximizes

its expected terminal utility, as specified below,

θ̂A = argsup
θA

E[UA(WA
T )]; (3.1)

θ̂B = argsupθB E[UB(WB
T )]. (3.2)

Note that both θ̂A and θ̂B are functions of the price P . In the pricing process, the

price P is adjusted until the market has reached equilibrium, that is, θ̂A + θ̂B = 0.

We use P ∗ to denote the resulting tâtonnement equilibrium price.
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We assume an exponential utility function, U(x) = 1 − e−kx, for each agent. In

the utility function, parameter k is the absolute risk aversion for all wealth levels. It

is reasonable to assume that Agent A is more conservative than Agent B, because

Agent A wants to hedge away its mortality or longevity risk exposure while Agent B

is willing to take the risk in return of a risk premium. In our numerical examples,

the assumed value of k for Agent A is kA = 1.0 and for Agent B is kB = 0.5.

It is interesting to note that, when an exponential utility function is assumed,

the initial wealth of each agent has no effect on the estimated price and the quantity

traded in the tâtonnement equilibrium. A proof of this property can be found Chapter

2.

3.2.2 Solving by a Numerical Procedure

The tâtonnement equilibrium can be solved numerically similarly with Chapter 2.

We begin with a first guess of the price. If the market does not clear, we adjust

the price. In particular, the price needs to be raised if demand exceeds supply (i.e.,

θ̂A + θ̂B > 0), and vice versa. Mathematically, the (i + 1)th update of the price can

be expressed as

P (i+1) = P (i) + di, i = 0, 1, . . . , (3.3)

di = ϑ|P (i)|(θ̂A + θ̂B) (3.4)

where P (0) is the initial guess of the price, and di is a function that always has the

same sign as the excess demand, θ̂A + θ̂B. ϑ is set to 0.001 after some experiments

considering a suitable balance between speed and accuracy.

Summing up, a numerical solution to the tâtonnement equilibrium can be obtained

with the algorithm below:

1. Guess a price P (0).

2. Determine θ̂A and θ̂B, on the basis of the current estimate of the price and the

optimizing criteria specified by equations (3.1) and (3.2).
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3. Terminate the algorithm if |θ̂A + θ̂B| is less than a tolerance level, 10−4. Other-

wise, adjust the price using equation (3.3).

4. Repeat Steps 2 and 3.

The expected terminal utility involved in the algorithm above can be calculated

by Monte Carlo simulations, as detailed in Chapter 2.

3.2.3 Solving by an Approximate Analytic Formula

Alternatively, if we were to impose some assumptions on the contingent cash flows

involved in the wealth processes, we can solve for the tâtonnement equilibrium ana-

lytically.

Let vL and vH respectively be the accumulated values of the life contingent liabil-

ities and the payouts from the mortality-linked security at a future time T . Both vL

and vH are positive real numbers.

As the initial wealths, ωA and ωB, has no effect on the tâtonnement equilibrium

under the assumed utility function, we may set ωA = ωB = 0 without loss of generality.

In this case, the terminal wealths for Agents A and B can be expressed as follows:

WA
T = −vL + θA(vH − PerT ),

WB
T = θB(vH − PerT ).

We can obtain an analytical formula for the tâtonnement equilibrium price if we

assume that (vH , vL)′ follows a bivariate normal distribution. The validity of this

assumption will be checked later in this chapter. In particular, we assume that (vH ,

vL)′ follows a bivariate normal distribution with mean vector (µH , µL)′ and variance-

covariance matrix

Σ =

(
σ2
H ρσHσL

ρσHσL σ2
L

)
,
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where −1 ≤ ρ ≤ 1 is the correlation coefficient between the random variables vH and

vL. It is easy to show that, under this assumption, the terminal wealths WA
T and WA

T

are normally distributed. Specifically,

WA
T ∼ N

(
−µL + θA(µH − PerT ), σ2

L + (θAσH)2 − 2ρσLσHθ
A
)
,

WB
T ∼ N

(
θB(µH − PerT ), (θBσH)2

)
,

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2.

Recall that, given a price, each agent trades a quantity that maximizes its expected

terminal utility. Assuming exponential utility functions, we have the following result:

Proposition 3. Assume that (vH , vL)′ follows a bivariate normal distribution and that

the utility functions for Agents A and B are exponential with respective parameters

kA and kB. At a given price P , Agent A will trade

θ̂A =
ρσLσHk

A + µH − PerT

kAσ2
H

(3.5)

units of the security, while Agent B will trade

θ̂B =
µH − PerT

kBσ2
H

(3.6)

units of the security.

Proof. For Agent A, the trading quantity that maximizes its expected terminal utility
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given a price P is

θ̂A = argsup
θA

E
[
UA(WA

T )
]

= argsup
θA

E
[
1− e−kAWA

T

]
= arginf

θA
E
[
e−k

AWA
T

]
= arginf

θA
e−k

A(−µL+θA(µH−PerT ))+ 1
2

(kA)2(σ2
L+θA

2
σ2
H−2ρσLσHθ

A)

= arginf
θA

e
1
2

(
kAσH

(
θA−

ρσLσHk
A+µH−Pe

rT

kAσ2
H

))2

= arginf
θA

(
θA − ρσLσHk

A + µH − PerT

kAσ2
H

)2

=
ρσLσHk

A + µH − PerT

kAσ2
H

.

In the above, the third step follows from the moment generating function of a normal

distribution.

Similarly, for Agent B, the trading quantity that maximizes its expected terminal

utility given a price P is

θ̂B = argsup
θB

E
[
UB(WB

T )
]

= argsup
θB

E
[
1− e−kBWB

T

]
= arginf

θB
E
[
e−k

BWB
T

]
= arginf

θB
e−k

BθB(µH−PerT )+ 1
2

(kBθBσH)2

= arginf
θB

e
1
2

(
kBσH

(
θB−µH−Pe

rT

kBσ2
H

))2

= arginf
θB

(
θB − µH − PerT

kBσ2
H

)2

=
µH − PerT

kBσ2
H

.
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Recall that in the tâtonnement equilibrium, we have θ̂A + θ̂B = 0. Substituting

θ̂A and θ̂B into this equation, we can solve for the tâtonnement equilibrium price P ∗

readily.

Proposition 4. Assume that (vH , vL)′ follows a bivariate normal distribution and that

the utility functions for Agents A and B are exponential with respective parameters

kA and kB. The tâtonnement equilibrium price of the security is given by

P ∗ =
(kA + kB)µH + kAkBρσLσH

(kA + kB)erT
. (3.7)

It is not surprising that we are able to find an analytic solution under the as-

sumption of normally distributed terminal wealths and exponential utility functions.

Freud (1956) shows that the combination of these two assumptions can significantly

simplify the maximization problem. In more detail, under these two assumptions,

maximizing expected terminal utility is equivalent to maximizing a linear function of

the mean and variance of terminal wealth.

To evaluate θ̂A, θ̂B, and P ∗, we need the parameters in the bivariate normal

distribution which (vH , vL)′ follows. These parameters can be estimated with the

algorithm below:

1. simulate 10000 mortality paths from a stochastic mortality model;

2. for each of the simulated mortality paths, calculate (vH , vL)′;

3. take the sample mean vector of the simulated values of (vH , vL)′ as an estimate

of (µH , µL)′;

4. take the sample variance-covariance matrix of the simulated values of (vH , vL)′

as an estimate of Σ.

The analytic solution requires a rather restrictive assumption on (vH , vL)′, but, as

we will demonstrate in Section 4, it allows us to understand the impact of population

basis risk on the tâtonnement equilibrium more easily.
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3.3 Mortality Models

3.3.1 Data

Recall that the generalized pricing process involves two populations, one is associated

with the hedger’s exposure and the other is linked directly to the security being priced.

To illustrate the pricing process, we consider the following two pairs of populations:

1. UK male population and Scottish male population.

2. UK male population and the population of UK male insured lives (thereafter

called the CMI population for brevity).

In both pairs, the second population is a subset of the first one. We believe that such

an arrangement would maximize the resemblance of our illustrations to actual trades,

because, for example, in forming a longevity hedge with a standardized instrument, a

UK pension plan would naturally choose one that is linked to the national population

of UK, if that is available.

The data (death and exposure counts) for the two national populations are ob-

tained from the Human Mortality Database (2010), while that for the insured lives are

provided by the CMI Bureau of the Institute and Faculty of Actuaries. For all three

populations, we consider a sample period of 1947 to 2005 and a sample age range of

60 to 89. Hence, the estimated models cover 88 years of birth (1858 to 1945).

In Figure 3.1 we compare the mortality of the two subpopulations with that of the

UK population. We observe that the mortality of Scottish males is higher than that

of UK males, while the mortality of CMI males is the opposite. It is not surprising

that the CMI population has a lighter mortality, as people who are willing and able to

buy insurance are generally wealthier and healthier. In Sections 3.4, we will demon-

strate that the difference in the magnitude of mortality rates between the populations

involved in the trade would have an effect on the tâtonnement equilibrium.
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Figure 3.1: Ratios of central death rates in 2005: Scottish males to UK males; CMI

males to UK males.

In addition, the difference in the volatility of mortality rates has also an impact on

the equilibrium price and quantity traded. We will give a deeper account of volatility

in Section 3.3.3 where we estimate the volatility parameters in the assumed model.

3.3.2 Model Specification

Previous studies have shown empirically that the mortality rates of a population and

its subpopulation are correlated. For instance, Coughlan et al. (2011) found a stable

long-term relationship between the mortality of English & Welsh population and UK

insured lives. From a statistical viewpoint, it is more sensible to model the mortality

of each pair of populations jointly rather than in isolation.

There are two other reasons for using a joint model. First, using two independent
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mortality models is likely to result in an increasing divergence in life expectancy in the

long run, counter to the expected and observed trend towards convergence (see, e.g.,

Li and Lee (2005), White (2002), Wilson (2001)). Second, given that the populations

involved in the trade are related, the use of two independent models will overstate

the underlying population basis risk. This may lead us to overestimating the agents’

reaction to population basis risk, and consequently misestimating the tâtonnement

equilibrium.

We implement the generalized pricing process with the two-population age-period-

cohort model proposed by Cairns et al. (2011a). The model is built from two classical

age-period-cohort models, one for each population:

ln(m
(1)
x,t) = β(1)

x +
1

na
κ

(1)
t +

1

na
γ

(1)
t−x; (3.8)

ln(m
(2)
x,t) = β(2)

x +
1

na
κ

(2)
t +

1

na
γ

(2)
t−x, (3.9)

where m
(i)
x,t, i = 1, 2, is the central death rate at age x and in year t for population

i, and na is a constant which equals the total number of ages in the sample age

range. In the model, the base age-pattern of mortality for population i, i = 1, 2, is

characterized by an age-specific parameter β
(i)
x . For each population, the variation of

mortality over time is captured by two indexes: a period effect index κ
(i)
t and a cohort

effect index γ
(i)
t−x. Note that t− x is the year of birth for an individual who is aged x

in year t. Projections of future mortality can be made by extrapolating the indexes.

In both models we are estimating, population 1 refers to UK male population. This

larger population is assumed to have a dominant effect on the mortality improvements

for populations 1 and 2. Following Cairns et al. (2011a), we model κ
(1)
t with a random

walk with drift,

κ
(1)
t = µκ + κ

(1)
t−1 + Zκ(t), (3.10)

where µκ is a constant, and model γ
(1)
t−x with a second order autoregressive model,

AR(2), with a deterministic trend,

γ(1)
c = µγ + φγ,1γ

(1)
c−1 + φγ,2γ

(1)
c−2 + δγc+ Zγ(c), (3.11)
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where c = t− x, and µγ, φγ,1, φγ,2, and δγ are constants.

The indexes for population 2 may deviate from those for population 1. However,

to ensure that the resulting forecasts are biologically reasonable, there is a need to

avoid a divergence of death rates in the two populations over time. The conditions

for non-divergence are:

1. ∆κ(t) = κ
(1)
t − κ

(2)
t is mean-reverting;

2. ∆γ(c) = γ
(1)
c − γ(2)

c is mean-reverting.

Following Cairns et al. (2011a), we model ∆κ(t) and ∆γ(c) with an AR(1) process

and an AR(2) process, respectively. That is,

∆κ(t) = µ∆κ + φ∆κ∆κ(t− 1) + Z∆κ(t), (3.12)

and

∆γ(c) = µ∆γ + φ∆γ,1∆γ(c− 1) + φ∆γ,2∆γ(c− 2) + Z∆γ (c), (3.13)

where µ∆κ , φ∆κ , µ∆γ , φ∆γ,1 , and φ∆γ,2 are constants. These two time-series processes

are stationary, ensuring that both ∆κ(t) and ∆γ(c) will revert to their long-term

means.

Other than mean-reversions, as indicated in the empirical results of Coughlan et

al. (2011), we might also expect to see some correlations between the year-on-year

changes in both the period and cohort effects. For instance, a flu epidemic may have

similar effects on populations 1 and 2. To incorporate these potential correlations, we

treat both (Zκ(t), Z∆κ(t))′ and (Zγ(c), Z∆γ (c))
′ as zero-mean bivariate normal random

vectors, with variance-covariance matrices Vκ and Vγ, respectively.

3.3.3 Fitting the Model

In Cairns et al. (2011a), the two-population model is fitted by a single-stage es-

timation procedure based on Markov Chain Monte Carlo (MCMC). The procedure
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estimates the parameters in the age-period-cohort models, equations (3.8) and (3.9),

and the time-series processes, equations (3.10) to (3.13), simultaneously. According

to Cairns et al. (2011a), this single-stage Bayesian approach can handle missing data

easily, and can provide measures of parameter risk.

While we fully agree with its advantages, the single-stage approach is not partic-

ularly suitable for our applications. A problem of this approach is that it will yield

different parameter estimates for UK males, when the other population involved in

the model is different. In our analysis, however, we require both models under con-

sideration to generate a consistent mortality forecast for UK males. To circumvent

this problem, we use a two-stage estimation procedure, which has been considered

extensively by researchers such as Cairns et al. (2006), Lee and Carter (1992) and Li

et al. (2009).

In the first stage, we estimate the parameters in the age-period-cohort models

by the method of maximum likelihood. Let us define D
(i)
x,t by the number of deaths

in population i at age x from in year t, and E
(i)
x,t by the corresponding exposures to

the risk of death. To construct the likelihood function, we treat D
(i)
x,t as independent

Poisson responses, that is,

D
(i)
x,t ∼ Poisson(E

(i)
x,tm

(i)
x,t),

where the product E
(i)
x,tm

(i)
x,t is the expected number of deaths in population i at age

x and in year t. This gives the following log-likelihood:

l(i) =
∑
x,t

(
D

(i)
x,t ln(m

(i)
x,t)− E

(i)
x,tm

(i)
x,t

)
+ e,

where e is a constant.

Parameter estimates for population i can be obtained by maximizing the likeli-

hood function, l(i). The maximization can be accomplished by an iterative Newton-

Raphson method, in which parameters are updated one at a time.

The age-period-cohort model has an identifiability problem. To stipulate param-

eter uniqueness, three constraints are needed for each population. The constraints
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Figure 3.2: Estimated parameters in the age-period-cohort models.

used here are the same as those used by Cairns et al. (2009). They are applied at

the end of each iteration of the Newton-Raphson algorithm.

The first stage estimation gives us estimates of β
(i)
x , κ

(i)
t , and γ

(i)
t−x for i = 1, 2,

t = 1947, . . . , 2005, and x = 60, . . . , 89. The estimates are displayed graphically in

Figure 3.2.

In the second stage, the parameters in the time-series processes are estimated.

We first fit equations (3.10) to (3.13) as if κ
(1)
t is independent of ∆κ(t) and γ(1)(c) is

independent of ∆γ(c). This would give estimates of all parameters in the time-series
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Parameters UK and Scottish males UK and CMI males

µκ −0.3564 −0.3564

µγ −0.0098 −0.0098

δγ −0.0427 −0.0427

φγ,1 0.6232 0.6232

φγ,2 0.3430 0.3430

µ∆κ 0.0152 −0.0295

φ∆κ 0.8822 0.9692

µ∆γ −0.0660 0.1155

φ∆γ,1 0.7953 0.2060

φ∆γ,1 0.0674 0.7177

Vκ(1, 1) 1.1287 1.1287

Vκ(1, 2) 0.1409 0.2543

Vκ(2, 2) 0.3317 0.4053

Vγ(1, 1) 0.4844 0.4844

Vγ(1, 2) 0.1258 0.1218

Vγ(2, 2) 0.5731 0.8220

Table 3.1: Estimates of the parameters in the time-series processes for κ
(1)
t , γ

(1)
c ,

∆κ(t), and ∆γ(c).

processes, except the variance-covariance matrices Vκ and Vγ. We then estimate Vκ

with the sample variance-covariance matrix for the residuals in fitting κt and ∆κ(t).

Similarly, we estimate Vγ with the sample variance-covariance matrix for the residuals

in fitting γc and ∆γ(c). The estimates of the parameters in the time-series processes

are shown in the Table 3.1.

From the estimates of Vκ and Vγ, we can calculate the volatilities of the year-on-

year innovations for the period and cohort effects associated with each of the three

populations. The results, which we summarize in Table 3.2, indicate that Scottish
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Population Period effect Cohort effect

UK males 1.062 0.696

Scottish males 1.086 0.897

CMI males 1.013 1.031

Table 3.2: Volatilities of the year-on-year innovations for the period and cohort effect

indexes.

males have the most volatile period effect index, while CMI males have the most

volatile cohort effect index. As we will see in Section 3.4, the knowledge on the

sources of volatility can help us better understand the tâtonnement equilibria formed

with different pairs of populations.

3.3.4 Simulating Mortality Paths

A naive way to simulate mortality paths for the three populations is to first simulate

from the mortality model for UK and Scottish males, and then simulate from the

mortality model for UK and CMI males. However, this method would produce two

different collections of sample paths for UK males. The inconsistency would create

two (slightly) different supply (or demand) curves for a security, even though all

pricing parameters remain unchanged.

To ensure a consistent collection of mortality paths is produced for UK males, we

use the following procedure to conduct the necessary simulations:

1. generate 10 000 sample paths for Zκ(t) on the basis of its marginal distribution,

N(0, Vκ(1, 1));

2. generate 10 000 sample paths for Zγ(c) on the basis of its marginal distribution,

N(0, Vγ(1, 1));
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3. based on the simulated values of Zκ(t) and Zγ(c) in Steps 1 and 2, obtain 10 000

sample mortality paths for UK males;

4. for each value of Zκ(t) in Step 1, find the distribution of Z∆κ(t)|Zκ(t) for Scottish

males, and simulate a value of Z∆κ(t) from the conditional distribution;

5. for each value of Zγ(c) in Step 2, find the distribution of Z∆γ (c)|Zγ(c) for Scot-

tish males, and simulate a value of Z∆γ (c) from the conditional distribution;

6. based on the 10 000 simulated paths of Zκ(t), Z∆κ(t), Zγ(c), and Z∆γ (c), obtain

10 000 sample mortality paths for Scottish males;

7. repeat Steps 4 to 6 for CMI males to obtain 10 000 sample paths for CMI males.

Following from the assumption that (Zκ(t), Z∆κ(t))′ follows a bivariate normal

distribution with a zero mean vector and a variance-covariance matrix of Vκ, we have

Z∆κ(t)|Zκ(t) ∼ N

(
Zκ(t)

Vκ(1, 2)

Vκ(1, 1)
,

det(Vκ)

Vκ(1, 1)

)
, (3.14)

where det(v) denotes the determinant of a matrix v. Similarly, we have

Z∆γ (c)|Zγ(c) ∼ N

(
Zγ(c)

Vγ(1, 2)

Vγ(1, 1)
,

det(Vγ)

Vγ(1, 1)

)
. (3.15)

A proof for the above is provided in the Appendix A.

Samples of the simulated mortality paths are displayed in Figure 3.3. The mor-

tality paths enable us to evaluate expressions (3.1) and (3.2), which are involved in

the numerical procedure for solving the tâtonnement equilibrium. They also allow

us to calculate the sample mean and sample variance-covariance matrix for (vH , vL)′,

which are involved in the approximate analytic formula for the tâtonnement equilib-

rium price of the security.
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Figure 3.3: Sample Paths of mx,t, x = 65, 75, 85, t = 2006, . . . , 2025, simulated from

the two-population age-period-cohort models.

3.4 An Illustration

3.4.1 Specification of the Security

In this section, we illustrate the generalized tâtonnement pricing process with a hypo-

thetical security. The security we consider is a 25-year annuity bond (a bond without

principal repayment), which is similar to the longevity bond jointly announced by the

European Investment Bank and BNP Paribas in November 2004.2

2More details on this bond are given in Blake et al. (2006, 2008).
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Figure 3.4: Cash flows involved in the hypothetical longevity bond.

The coupon payments are linked to the realized mortality rates of individuals in

the reference population who are aged 65 at time 0 (the beginning of year 2006).

They can be specified by using the notation defined in Section 5.2. Specifically, we

set the mortality index qHt to the time-t value of the central death rate for the cohort

of individuals. Let QH
t = (qH1 , . . . , q

H
t ) be the vector of mortality indexes up to and

including time t. The coupon payment at time t = 1, 2, . . . , 25 is given by

gt(Q
H
t ) =

t∏
i=1

(1− qHi ),

which is the (approximate) realized survival rate to time t.3

If the realized survival rates are larger than expected, then pension payments,

on the whole, will last longer, which means larger pension liabilities. Therefore, a

pension plan wishing to hedge longevity risk may purchase the longevity bond, which

will pay out to the pension plan, at time t = 1, 2, . . . , 25, an amount that increases

with the realized survival rate to offset the correspondingly higher value of pension

liabilities.

In the absence of credit risk, the cash flows involved are simple to specify (see

Figure 3.4). The investor makes an initial payment of $P (i.e., the issue price) and

receives in return an annual mortality-dependent payment of gt(Q
H
t ) in each year t

for 25 years.

3It is approximate because it is based on central death rates rather than death probabilities.
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3.4.2 The Trade

We assume that the longevity bond is sold by Agent B, which could possibly be an

investment bank attempting to earn a longevity risk premium. The bond is sold to

Agent A, a pension plan provider having an exposure to longevity risk.

We assume that Agent A is obligated to pay each of its pensioner an amount of

$0.01 at the end of each year. The pension payment ceases if the pensioner dies or

reaches age 90, whichever occurs earlier. At time 0 (the beginning of year 2006),

the plan contains 1000 pensioners, who are distributed over the age range of 65 to

89. The age distribution of the pensioners is shown in Figure 3.5. For simplicity, we

assume that the plan is closed, that is, there are no new entrants to the plan.

It is obvious that Agent A’s financial obligation is linked to the mortality of its

pensioners. In particular, it is linked to an index qLt , which contains the realized death

rates of 25 cohorts of pensioners (with years of birth ranging from 1916 to 1940) at

time t. We permit population basis risk in our pricing process so that qLt and qHt are

not necessarily associated with the same population.

If qLt and qHt are positively correlated, then an increase in the pension liability will

be accompanied with an increase in the coupon payments from the longevity bond.

Hence, by purchasing the bond, Agent A can reduce its risk exposure.

As mentioned earlier, our illustrations are based on two different pairs of popu-

lations. Each pair is composed of UK males and one of its subpopulation, which is

either Scottish males or CMI males. For each pair of populations, the following three

cases are examined:

• Case 1

Both the pension liability and the longevity bond are linked to the mortality of

UK males.4 There is no basis risk involved in this case.

4By saying the pension liability is linked to a certain population, we mean the realized mortality

rates for members in the pension plan and individuals in that population are the same.
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Figure 3.5: Age distribution of the pensioners in Agent A’s plan.

• Case 2

The bond is linked to the mortality of UK males, while the pension liability is

linked to the subpopulation. Basis risk is involved in this case.

• Case 3

Both the pension liability and the longevity bond are linked to the mortality of

the subpopulation. There is no basis risk involved in this case.
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Figure 3.6: Scatter plot of (vH , vL)′, Case 1.

3.4.3 Validating the Bivariate Normal Approximation

Before describing the details about pricing, we validate the bivariate normal approx-

imation of (vH , vL)′. Consider Case 1, in which both the pension liability and the

longevity bond are linked to the mortality of UK males. Using the 10 000 simulated

mortality paths, we calculate (vH , vL)′ corresponding to each path. Its values are

shown on the scatter plot in Figure 3.6. Figure 3.6 shows that all the simulated val-

ues of (vH , vL)′ fall on a line that is almost linear. The pattern of the dots slopes from

lower left to upper right. This suggests that vH and vL have high positive correlation.

To examine the normality of vH and vL, we draw the Q-Q plots for them respec-

tively. In Figure 3.7, the upper panel presents the Q-Q plot of vH and the lower panel

presents the Q-Q plot of vL. Both Q-Q plots show that the left tail and the right tail

have quartiles lower than standard normal distribution. This pattern suggests that

vH and vL are slightly left skewed.

77



The Q-Q plots only examine the normality of marginal distributions. We still need

to test the multivariate normality for (vH , vL)′. Henze-Zirkler’s multivariate normality

test is used for this purpose here. According to Henze-Wagner (1997), the Henze-

Zirkler test is based on a nonnegative function that measures the distance between

the characteristic function of the multivariate normal distribution and the empirical

characteristic function. If the data come from a multivariate normal distribution, the

test statistic is approximately lognormally distributed. It proceeds to calculate and

lognormalize the mean and variance. Finally, the p-value is estimated.

Due to the limited computer memory, we are only able to test 8 000 sets of simu-

lated values. The p-value is 0.1354, which means we cannot reject the null hypothesis

that (vH , vL)′ follows bivariate normal distribution at a significance level of 5%. The

approximation is therefore reasonable.

3.4.4 UK and Scottish Males

Let us suppose here that the subpopulation is Scottish males. For each of the three

cases, we calculate the exact tâtonnement equilibrium price of the longevity bond by

using the algorithm presented in Section 3.2.2. The estimated prices are displayed in

Table 3.3. Also shown in Table 3.3 are the quantities traded in each case.

To know how the prices are formed, we need to examine the demand and supply

curves, which can be derived by evaluating expressions (3.1) and (3.2) at different

price levels.

The upper panel of Figure 3.8 depicts the demand and supply curves for Cases 1

and 2. The supply curves for both cases are the same, but the demand curve shifts

downwards when the population to which the pension liability is linked is changed

from UK males to Scottish males. This leads to a reduction in the price of the security.

The lower panel of Figure 3.8 depicts the demand and supply curves for Cases

2 and 3. As we change the population to which the longevity bond is linked, the

demand curve shifts downwards, but the supply curve shifts upwards. This results in

a reduction in the price of the security.
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Figure 3.7: Q-Q plots of vH and vL, Case 1

What constitutes the shifts in the supply and demand curves? The analytic for-

mulas in Section 3.2.3 may help us answer this question. In the current application,

Agent B is the supplier, so we have θ̂B ≤ 0 and hence θ̂A ≥ 0. Using equations (3.5)

and (3.6), at a price P , the (approximate) demand of the security from Agent A is

|θ̂A| = max

(
ρσLσHk

A + µH − PerT

kAσ2
H

, 0

)
, (3.16)

while the (approximate) supply of the security from Agent B is

|θ̂B| = max

(
PerT − µH
σ2
Hk

B
, 0

)
. (3.17)
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Figure 3.8: Demand and supply curves for the hypothetical longevity bond, UK and

Scottish males.
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Case 1 Case 2 Case 3

Populations

Longevity bond UK males UK males Scottish males

Pension liability UK males Scottish males Scottish males

Prices and units traded in equilibrium

Time-0 price $13.0989 $13.0753 $12.3295

Units traded 4.3981 4.1245 4.2883

Parameters in the distribution of (vl, vh)
′

µH 26.8379 26.8379 25.1402

σH 0.6684 0.6684 0.6981

σL 4.4571 4.5728 4.5728

ρ 0.9804 0.9237 0.9807

Effectiveness of the static hedge

Variance reduction 85.8% 75.0% 85.6%

Table 3.3: Results of the pricing process, UK and Scottish males.

We observe that both |θ̂A| and |θ̂B| are linear functions of price P when they are

greater than zero. Their slopes and intercepts are determined by parameters µH ,

σH , σL, and ρ. The effects of these parameters on the supply and demand of the

security are summarized in Table 3.4. In the table, ‘↑’ means an increase, ‘↓’ means

an decrease, and ‘−’ means there is no change.

The relations are rather intuitive. First, consider the supply, |θ̂B|, from Agent B.

Recall that vH is the accumulated value of the payouts from the longevity bond at

maturity, and that µH is its expectation. Therefore, the difference PerT − µH is the

reward to Agent B for accepting a longevity risk exposure. As a result, when µH

increases, the reward to Agent B is smaller, and hence it will supply less. On the

other hand, when σH increases, the longevity bond becomes more risky. If the reward

is held constant, Agent B must supply less.

Next, we consider the demand, |θ̂A|, from Agent A. It is quite obvious that Agent
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µH ↑ σH ↑ σL ↑ ρ ↑
Demand, |θA| ↑ ↓ ↑ ↑
Supply, |θB| ↓ ↓ − −

Table 3.4: The effects of µH , σH , σL, and ρ on the supply and demand of the hypo-

thetical longevity bond.

A will demand more if its pension liability is more volatile (i.e., σL is larger). It

will also demand more if less compensation to Agent B is needed (i.e., µH is higher).

Moreover, the demand from Agent A is dependent on ρ, which is a positive number

in this application. When ρ increases (becomes closer to one), the bond becomes a

more effective hedging instrument, and therefore Agent A will demand more. Finally,

Agent A will demand less when σH is large relative to σL, as in this situation fewer

units of the bond will be needed for the same amount of risk reduction.

In Table 3.3 we show the estimates µH , σH , σL, and ρ when the pension liability

and the longevity bond are linked to the mortality of either UK or Scottish males.

Recall that the longevity bond is related only to the cohort born in 1940 and that

the pension liability is related only to cohorts born between 1916 and 1940. These

years of birth are covered by the data sample, so when we project vH and vL, future

values of the cohort indexes are not required. Consequently, the values of σH and

σL depend entirely on the variability in the period indexes. As the period index for

Scottish males is more volatile (see Table 3.2), the value of σH in Case 3 is higher

than that in Cases 1 and 2, and the value of σL in Cases 2 and 3 is higher than that

in Case 1.

Recall also that the payouts from the longevity bond are proportional to the

realized survival rates. Since Scottish males have heavier mortality than UK males

(see Figure 3.1), the value of µH in Case 3 is smaller than that in Cases 1 and 2.

Finally, ρ is the lowest (closest to zero) in Case 2, since in this case the longevity

bond and the pension liability are linked to different populations.
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Using equation (3.7), the approximate prices in Cases 1, 2 and 3 are 13.1372,

13.1219 and 12.3683, respectively. They are quite close to the corresponding prices

obtained by the numerical procedure, indicating that the bivariate normal approxi-

mation is reasonable.

Now, let us revisit the supply and demand curves in Figure 3.8. The supply

curves for Cases 1 and 2 are the same, as µH and σH remains unchanged when we

alter the population to which the pension liability is linked. Nevertheless, the change

in the hedger’s population would lead to an increase in σL and a decrease in ρ.

These changes, according to Table 3.4, have offsetting effects on the demand. In this

example, the effect of ρ outweighs that of σL, and therefore the demand curve shifts

downwards.

Similar arguments can explain the shifts in the curves when we move from Case 2

to Case 3. As the bond’s reference population is changed from UK males to Scottish

males, µH decreases, σH increases, and ρ increases. According to Table 3.4, a lower

µH and a higher σH have opposite effects on the supply. In this example, the effect

of µH is more significant and therefore the supply curve shifts upwards. On the other

hand, the changes in µH and σH will exert pressure on the demand. Although a

higher ρ will bring the demand up, its effect is not as great as the combined effect of

µH and σH . Overall, the demand curve shifts downwards.

Recall that if the hedger’s objective is to maximize its expected utility at a certain

future time, then the quantity traded in the tâtonnement equilibrium can be regarded

as the corresponding static hedging strategy. From Table 3.3 we observe that, in the

presence of population basis risk, the hedger tends to use fewer longevity bonds to

static hedge its risk exposure.

We also evaluate the effectiveness of this static hedging strategy over a horizon of

25 years. The measure we use is the reduction in the variance of Agent A’s terminal

wealth, that is, the wealth at t = 25.5 From Table 3.3 we observe that the static

5The terminal wealth is the accumulated value of the initial wealth and all subsequent net cash

flows over the hedging horizon. In some other studies, for example, Li and Hardy (2010), the

evaluation of hedge effectiveness is based on the present value of the cash flows instead.
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Case 1 Case 2 Case 3

Populations

Longevity bond UK males UK males CMI males

Pension liability UK males CMI males CMI males

Prices and units traded in equilibrium

Time-0 price $13.0989 $12.9500 $14.5588

Units traded 4.3981 2.7394 4.7396

Parameters in the distribution of (vl, vh)
′

µH 26.8379 26.8379 30.3435

σH 0.6684 0.6684 0.4744

σL 4.4571 3.4242 3.4242

ρ 0.9804 0.8517 0.9749

Effectiveness of the static hedge

Variance reduction 85.8% 62.5% 84.9%

Table 3.5: Results of the pricing process, UK and CMI males.

hedge is fairly effective, even though it is composed of one single instrument only. In

Cases 1 and 3, more than 80% of the variance is elimiated. In Case 2, the population

basis risk involved brings down the hedge effectiveness to about 63%.

3.4.5 UK and CMI Males

In this subsection, we repeat the same analysis by assuming that the subpopulation is

CMI males. Again we use the algorithm in Section 3.2.2 to solve for the tâtonnement

equilibrium in each of the three cases. The prices and the quantities traded are

summarized in Table 3.5.

The upper panel of Figure 3.9 shows the demand and supply curves for Cases 1

and 2. The supply curves for both cases are the same, but the demand curve shifts

downwards when the population to which the pension liability is linked is changed
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from UK males to CMI males. This leads to a reduction in the price of the security.

Note that the reduction is more dramatic than that observed in the previous example.

The lower panel of Figure 3.9 shows the demand and supply curves for Cases

2 and 3. As we change the population to which the longevity bond is linked, the

demand curve shifts upwards, while the supply curve shifts downwards. This results

in an increase in the price of the security. It is noteworthy that the changes here are

exactly opposite to the corresponding changes in the previous example.

Again we use the analytic formulas in Section 3.2.3 to explain the changes. In

Table 3.5 we show the estimates µH , σH , σL, and ρ when the pension liability and

the longevity bond are linked to the mortality of either UK or CMI males.

As the period index for CMI males is less volatile (see Table 3.2), the value of σH

in Case 3 is smaller than that in Cases 1 and 2, and the value of σL in Cases 2 and 3

is smaller than that in Case 1. Also, since CMI males have lighter mortality than UK

males (see Figure 3.1), the value of µH in Case 3 is higher than that in Cases 1 and

2. Further, the difference between the hedger’s population and the bond’s reference

population makes ρ in Case 2 the lowest (closest to zero) among the three cases.

Using equation (3.7), the approximate prices in Cases 1, 2 and 3 are 13.1372,

12.9945 and 14.5909, respectively. By comparing them with the corresponding values

in Table 3.5, we find that the bivariate normal approximation is also reasonable in

this example.

With the information above, the explanation to the changes becomes straightfor-

ward. First, let us focus on Cases 1 and 2. As all parameters in equation (3.17)

are unaffected, there is no change to the supply curve. However, the change in the

hedger’s population will reduce σL and ρ. Both reductions will both exert pressure

on the demand, causing the demand curve to shift downwards.

Next, we focus on Cases 2 and 3. As the bond’s reference population is changed

from UK males to CMI males, µH increases, σH decreases, and ρ increases. According

to Table 3.4, these changes will all lead to a higher demand, bringing the demand

curve up. On the other hand, the changes in µH and σH have opposite effects on the
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Figure 3.9: Demand and supply curves for the hypothetical longevity bond, UK and

CMI males.
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supply. In this example, the effect of µH is more significant, and therefore the supply

curve shifts downwards.

As in the previous example, when population basis risk exists (Case 2), the hedger

uses fewer longevity bonds to statically hedge its risk exposure, and the effectiveness

of the hedge becomes lower.

3.5 Concluding Remarks

While hedgers may prefer bespoke securities, investors and intermediaries may favor

more standardized instruments which are easier to analyze and more conductive to

the development of liquidity. Recently, the Life and Longevity Markets Association

(LLMA) has been setup to promote the development of a liquid traded market in

longevity and mortality related risk. Part of LLMA’s work is to develop standardized

longevity indexes, upon which securities with a secondary market can be written.

The use of standardized instruments, as we mentioned at the outset, would expose

hedgers to population basis risk. According to Coughlan (2010), the lack of knowledge

in population basis risk is a major challenge to market development. In this chapter,

we addressed this issue by introducing a tâtonnement process for pricing mortality-

linked securities when population basis risk exists. The proposed method is highly

transparent, allowing us to understand how population basis risk would affect security

prices and hedging strategies.

From the solution to the tâtonnement pricing process, we can conclude that, on

top of correlations, the magnitude and volatility of mortality rates play a critical

role in determining the impact of population basis risk on security prices. As these

factors are different among different pairs of populations, the effect of the risk varies.

Our illustrations have shown empirically that, interestingly, population basis risk can

affect the price of a mortality-linked security in different directions, depending on the

properties of the populations involved.

It might be difficult to conduct a similar analysis with a no-arbitrage approach.

Technically speaking, we could construct a risk-adjusted two-population mortality
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model by introducing market prices of risk to the stochastic factors, κ
(1)
t , γ(1)(c),

∆κ(t), and ∆γ(c). However, in today’s market where market price data are very

limited, it is difficult, if not impossible, to estimate that many market prices of risk,

which are associated with multiple reference populations. Even if we have such a

model, a no-arbitrage approach does not give us information such as demand and

supply, which would help us better understand how population basis risk and its

components are involved in the pricing process.

One reason for using standardized instruments is that they potentially have better

liquidity. In our presentation, liquidity was not given much attention, as we assumed

that the agents will hold their positions until the security matures. This assumption

can be relaxed by employing a sequential decision process, which is detailed in Chapter

2. This extension allows both agents to unwind their positions at discrete time points

before maturity. However, as decisions (optimizations) are made at multiple time

points, this extension demands significantly more computational resources, adding

an extra challenge in the pricing process.
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Chapter 4

The Impact of Mortality Jumps on

Trading

4.1 Introduction

As discussed in Chapter 3, the trading of mortality or longevity risk often involves

two populations, one of which is associated with the hedger’s portfolio, and the other

of which is associated with the hedging instrument. Taking the mortality bond issued

by Swiss Re in December 2003 as an example, the index to which the bond is linked is

based on the realized mortality rates for some national populations, but the exposure

of the hedger (Swiss Re) is associated with some insured lives. To adequately model

trades involving more than one populations, a multi-population mortality model is

necessary.

Multi-population mortality models take account of the potential correlations across

different populations, and more importantly, they are structured in such a way that

the resulting forecasts are biologically reasonable. In particular, they ensure that the

forecasted life expectancies of two related populations do not diverge over the long

run. Other than pricing, multi-population mortality models enable us to evaluate pop-

ulation basis risk, which arises from the difference in mortality experience between
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the hedger’s population and the population associated with the hedging instrument.

In recent years, a few two-population mortality models have been proposed. These

include the joint-k model (Carter and Lee, 1992), the augmented common factor

model (Li and Lee, 2005), the co-integrated Lee-Carter model (Li and Hardy, 2011),

the gravity model (Dowd et al., 2011), and the model proposed by Cairns et al.

(2011a). These models, which are adapted from well-known single-population models,

differ in the way in which the relation between the period/cohort effect indexes of the

two populations is modeled. For example, Cairns et al. (2011a) fit a classical age-

period-cohort model to each of the two populations in question, and use stationary

time-series processes to model the difference between the period effect indexes and

that between the cohort effect indexes.

Another factor that should be taken into account is mortality jumps, which are due

to interruptive events such as the Spanish flu epidemic in 1918. It is important not

to ignore mortality jumps in modeling, because otherwise we can seriously understate

the uncertainty surrounding a central mortality projection. The incorporation of

jumps is particularly important when pricing securities for hedging extreme mortality

risk, because this allows us to better estimate the probability of having a catastrophic

mortality deterioration. Models incorporating mortality jumps include those proposed

by Biffs (2005), Chen and Cox (2009), Cox et al. (2010) and Deng et al. (2012).

Nevertheless, to date, there is no two-population model that incorporates mortal-

ity jumps. In this chapter, we fill this gap by developing a two-population mortality

model with transitory jump effects. This extension is not straightforward, because

the correlations between jump times and jump severities of the two populations in

question have to be carefully modeled. Moreover, to construct the likelihood function

on which parameter estimation is based, a careful conditioning on the jump counts

is required. The jump model we develop allows practitioners to more accurately esti-

mate prices of mortality-linked securities and the population basis risk in index-based

mortality/longevity hedges.

Based on the proposed mortality model, we examine the impact of mortality

jumps on the trading of mortality/longevity risk. We consider the pricing framework
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proposed in Chapter 3. This pricing framework allows the trade of a mortality-

linked security between two counterparties, whose portfolios can be related to different

populations. Besides the estimated price, this pricing framework provides us with a

pair of demand and supply curves, which helps us better understand the effect of

introducing mortality jumps on the behaviors of the counterparties. We find that,

interestingly, the inclusion of mortality jumps does not always increase the estimated

price of a mortality securitization. The effect on the estimated price is very much

dependent on the structure of the security.

The rest of the paper is organized as follows. In Section 4.2, we review the

basic two-population mortality model on which our proposed extensions are built.

In Section 4.3, we incorporate concurrent transitory mortality jumps into the basic

two-population model, and illustrate this extension with data from US total and US

male populations. In Section 4.4, we further extend the model to permit nonconcur-

rent mortality jumps, and illustrate this extension with data from Swedish male and

Finnish male populations. In Section 4.5, we examine the impact of mortality jumps

on the trading of mortality-linked securities through the economic pricing framework.

Finally, we conclude this chapter in Section 4.6.

4.2 A Two-Population Model without Jump Ef-

fects

We construct a two-population mortality model from two classical Lee-Carter models,

one for each population. This basic model does not take mortality jumps into account.

Thereafter, we call it the no-jump model for simplicity.

The no-jump model can be expressed as follows:

ln(m
(i)
x,t) = α(i)

x + β(i)
x κ

(i)
t , i = 1, 2, (4.1)

where m
(i)
x,t denotes the central death rate for population i at age x and in year t, κ

(i)
t

is the period effect index for population i in year t, α
(i)
x measures the average level
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of mortality for population i at age x, and β
(i)
x measures the sensitivity to the period

effect index κ
(i)
t for population i at age x.

It is reasonable to expect the death rates for two related population not to diverge

in the long run (see, e.g., White, 2002; Wilson, 2001; United Nations, 1998). The

necessary conditions for non-divergence are:

1. β
(1)
x = β

(2)
x for all x;

2. κ
(1)
t and κ

(2)
t do not diverge over the long run.

Accordingly, we set β
(1)
x = β

(2)
x = βx, and model the difference between κ

(1)
t and

κ
(2)
t with a stationary first order autoregressive process. In more detail, the dynamics

of κ
(1)
t and κ

(2)
t are specified as follows:

κ
(1)
t+1 = κ

(1)
t + µκ + Zκ(t+ 1),

∆κ(t) = κ
(1)
t − κ

(2)
t ,

∆κ(t+ 1) = µ∆κ + φ∆κ∆κ(t) + Z∆κ(t+ 1),

where |φ∆κ| < 1 and {(Zκ(t), Z∆κ(t))′} is a sequence of independent and identically

distributed (i.i.d.) bivariate normal random vectors with mean zero and variance-

covariance matrix vZ . The specification above implies that ∆κ(t) will revert to a

constant µ∆κ/(1− φ∆κ) over the long run.

We use a two-stage approach to fit the no-jump model. In the first stage, we

estimate parameters α
(1)
x , α

(2)
x , βx, κ

(1)
t and κ

(2)
t by the method of maximum likeli-

hood. Let [x0, x1] and [t0, t1] be the sample age range and sample period, respectively.

Assuming Poisson death counts, the log-likelihood function can be expressed as

x1∑
x=x0

t1∑
t=t0

2∑
i=1

(
D

(i)
x,t(α

(i)
x + βxκ

(i)
t )− E(i)

x,t exp(α(i)
x + βxκ

(i)
t )
)

+ c,

where c is a constant that does not depend on the model parameters, D
(i)
x,t is the

observed number of deaths for population i at age x and in year t, and E
(i)
x,t is the cor-

responding number of persons at risk. The log-likelihood function can be maximized
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by an iterative Newton-Raphson method, in which parameters are updated one at a

time.

In the second stage, we estimate the parameters in the time-series processes for

κ
(1)
t and ∆κ(t). We let

St = (κ
(1)
t+1 − κ

(1)
t ,∆κ(t+ 1)− φ∆κ∆κ(t))

′.

Since {(Zκ(t), Z∆κ(t))′} is a sequence of i.i.d. bivariate normal random vectors, {St}
is also a sequence of i.i.d. bivariate normal random vectors. The mean and variance-

covariance matrix of St are (µκ, µ∆κ)′ and VZ , respectively. It follows that the log-

likelihood function for the processes can be expressed as

ln f (S1, S2, S3, . . . , ST−1|µκ, µ∆κ , φ∆κ , VZ)

=

t1−1∑
i=t0

ln f (Si|µκ, µ∆κ , φ∆κ , VZ)

=

t1−1∑
i=t0

ln bvnpdf(Si, (µκ, µ∆κ)′, VZ),

where bvnpdf(s, µ, v) is the probability density function of a bivariate random vector

with mean µ and variance-covariance v. The estimates of µκ, µ∆κ , φ∆κ and VZ can

be obtained by maximizing the log-likelihood function.

Alternatively, we can fit the entire model by using the one-stage Bayesian approach

considered by Cairns et al. (2011a). As Cairns et al. (2011a) mentioned, this one-

stage method have several advantages, for example, it can effectively handle missing

data. We stay with the two-stage approach, mainly because it allows us to save some

computational effort. Specifically, it avoids the need to re-estimate parameters in

equation (4.1) when mortality jumps are introduced to the time-series processes for

κ
(1)
t and ∆κ(t) later in this paper.
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4.3 Concurrent Transitory Jumps

4.3.1 Mortality Data

In this section, we use US total and US male populations to illustrate the necessity

and appropriateness of incorporating concurrent transitory jumps. Note that the

latter population is a subset of the former. For both populations, we consider a

sample period of 1900 to 2006 and a sample age range of 25 to 84. The data, which

are obtained from the Nation Center for Health Statistics, are provided by decennial

age groups.1

4.3.2 An Outlier Analysis

In Figure 4.1 we show the estimated values of the period effect indexes κ
(1)
1 (for US

total population) and κ
(2)
1 (for US male population). In both indexes, we observe

several jumps, most notably the one that corresponds to year 1918. To better under-

stand the jumps in the period effect indexes, we herein perform a statistical outlier

analysis.

We consider two types of outliers:

1. Additive Outliers

An additive outlier (AO) affects only one single observation.

2. Temporary Changes

A temporary change (TC) affects a series at a given time, and its effect decays

at an exponential rate.

There are other types of outliers (see, e.g., Chen and Tiao, 1990; Tsay, 1988).

However, since the focus of this paper is on short-term catastrophic mortality risk,

we consider outliers that have short-term effects only.

1The required data (death and exposure counts) for years 1900 to 1998 are available at

http://www.cdc.gov/nchs/nvss/mortality historical data.htm, while those for years 1999 to 2006

are available from CDC WONDER at http://wonder.cdc.gov/cmf-ICD10.html.

94



1900 1920 1940 1960 1980 2000
0

1

2

3

4

5

6

7

8

9

Year (t)

κ t(i)

 

 
US Total (i=1)
US Male (i=2)

Figure 4.1: Estimates of the period indexes for US total and US male populations.

We use Chen and Liu’s (1993) procedure to identify outliers in the period effect

indexes κ
(1)
1 and κ

(2)
1 . The procedure can be implemented with standard statistical

software for time-series analysis, such as AUTOBOX, SAS/ETS and SCA.

In Table 4.1 we show the outliers identified in the period effect indexes for the two

populations. Note that a negative outlier stands for an improvement in mortality,

whereas a positive one means a deterioration. The identified outliers are broadly in

line with the results produced by Li and Chan (2007).2 We refer interested readers to

Li and Chan (2007) for a discussion of the events that may have caused the outliers

2Li and Chan (2007) performed an outlier analysis on the Lee-Carter period effect index for US

total population. They considered two additional types of outliers and used data up to year 2000

only.
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Population Year Magnitude Type

US Total

1907 0.431 AO

1918 1.828 AO

1921 −0.764 TC

1927 −0.356 AO

1936 0.406 TC

US Male

1907 0.503 AO

1918 2.056 AO

1921 −0.737 TC

1927 −0.337 AO

1936 0.419 TC

Table 4.1: Outliers detected in the period effect indexes for US total and US male

populations.

found.

Five outliers are detected for both populations. Moreover, the locations of the

detected outliers are the same for both populations. The results of this outlier analysis

suggest that if the two populations being modeled are closely related to each other, we

may assume that the two populations have identical frequency and timing of jumps.

Such an assumption can make the resulting model more parsimonious and easier to

estimate.

4.3.3 Modeling Concurrent Transitory Jumps

We now present a two-population model that permits concurrent mortality jumps.

This model has the same structure as equation (4.1), but the period effect indexes

are modeled in a different manner.

We let κ
(i)
t , i = 1, 2, be the observed period effect index for population i at time t.

As seen from Figure 4.1, the process {κ(i)
t }, i = 1, 2, is subject to transitory jumps.

96



We decompose κ
(i)
t into a sum of two components, κ̂

(i)
t +NtY

(i)
t . The first component,

κ̂
(i)
t , is time-t value of an unobserved period effect index that is free of jumps, and the

second term, NtY
(i)
t , represents the jump effect at time t. Specifically, Nt denotes the

jump count at time t, while Y
(i)
t denotes the jump severity for population i at time t.

As in the no-jump model, we assume that κ̂
(1)
t follows a random walk with drift and

that the difference ∆̂κ(t) = κ̂
(1)
t − κ̂

(2)
t follows a stationary first order autoregressive

process. The latter assumption ensures that mortality rates for the two populations

do not diverge over the long run.

Summing up, the period effect indexes are modeled by the following set of equa-

tions:

κ̂
(1)
t+1 = κ̂

(1)
t + µκ + Zκ(t+ 1),

κ
(1)
t+1 = κ̂

(1)
t+1 +Nt+1Y

(1)
t+1,

∆̂κ(t) = κ̂
(1)
t − κ̂

(2)
t ,

∆̂κ(t+ 1) = µ∆κ + φ∆κ∆̂κ(t) + Z∆κ(t+ 1),

κ
(2)
t+1 = κ̂

(2)
t+1 +Nt+1Y

(2)
t+1.

The error terms Zκ(t) and Z∆κ(t) jointly follow a zero-mean bivariate normal distri-

bution with a variance-covariance matrix VZ . They have no serial dependence and

are independent of the jump counts and jump severities.

We assume that there is at most one jump in a year and that the jump frequency p

is constant over time. It follows that Nt, the jump count at time t, follows a binomial

distribution with Pr(Nt = 1) = p and Pr(Nt = 0) = 1− p. The jump counts are not

serially correlated.

We allow both positive and negative jumps. The jump severities Y
(1)
t and Y

(2)
t can

be different from each other, but they are correlated. Specifically, we assume that the

jump severity vector (Y
(1)
t , Y

(2)
t )′ follows a bivariate normal distribution with mean

µY and variance-covariance matrix VY . We further assume that the jump severities

are not serially correlated and that they are independent of the jump counts.

As the introduction of transitory jumps does not affect equation (4.1), there is

no need to re-estimate the parameters in equation (4.1). We do, however, need to
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estimate the parameters in the processes for the period effect indexes. This can be

accomplished by the method of maximum likelihood. The derivation of the likelihood

function for the period effect processes is presented in Appendix B.

We fit the concurrent-jump model to US total and US males populations. To

evaluate the benefit from introducing concurrent jumps, we also fit the no-jump model

to this pair of populations. Estimated parameters in the concurrent-jump model

and the no-jump model are shown in the second and third columns of Table 4.2,

respectively.

Since the two models are nested, we can use the likelihood ratio test to examine if

the more complex model gives a significantly better fit. The test statistic is 2(l2− l1),

where l1 and l2 are the maximized log-likelihood values for the null model (the no-

jump model) and the alternative model (the model with jump effects). We have

l1 = 147.7368 and l2 = 218.5685. The test statistic is 141.6633 and the degree of

freedom, which equals the difference in the number of parameters, is six. This gives a

p-value of zero, which means the model with jump effects gives a significantly better

fit than the no jump model.

4.4 Nonconcurrent Transitory Jumps

4.4.1 Mortality Data

In the previous example, one population is a sub-population of the other. As the

two populations are closely related to each other, we expect that they are subject to

mortality jumps at the same time. A model that permits concurrent transitory jumps

is used for this pair of populations.

What if the relation between the two populations being modeled is not that ob-

vious? For instance, sometimes one may need to model two populations that are

geographically farther apart. In this situation, the assumption of concurrent jumps

might be too stringent.
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Parameters Transitory jumps No jump

µκ −0.0695 −0.0745

µ∆κ −0.0105 −0.0075

φ∆κ 0.9807 0.9874

VZ(1, 1) 0.0253 0.0946

VZ(1, 2) −0.0005 −0.0088

VZ(2, 2) 0.0012 0.0030

µ
(1)
Y −0.0863 N/A

µ
(2)
Y −0.2423 N/A

VY (1, 1) 1.8023 N/A

VY (1, 2) 2.0278 N/A

VY (2, 2) 2.2816 N/A

p 0.0404 N/A

Table 4.2: Estimated parameters in the processes for the period effect indexes, US

total and US male populations. (We use X(i, j) to denote the (i, j)th element in a

matrix X.)

In what follows, we further generalize the no-jump model to a model that permits

nonconcurrent transitory jumps. We illustrate this generalization with historical mor-

tality data from Swedish male and Finnish male populations. For both populations,

we consider a sample period of 1900 to 2006 and a sample age range of 25 to 84.

The required data (death and exposure counts) are obtained from Human Mortality

Database (2011).

4.4.2 An Outlier Analysis

We first estimate the period effect indexes for Swedish males and Finnish males.

The estimates are shown graphically in Figure 4.2. Similar to the previous example,

the period effect indexes are subject to several jumps. However, as opposed to the

previous pair of populations, the jump patterns for Swedish males and Finnish males
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Population Year Magnitude Type

Swedish Males 1918 28.837 AO

Finnish Males

1918 49.033 AO

1939 18.006 TC

1940 31.655 TC

1941 17.602 AO

1944 25.307 AO

Table 4.3: Outliers detected in the mortality indexes for Swedish male and Finnish

male populations.

are quite different from each other.

To have a deeper understanding of the jump patterns, we perform an outlier

analysis for these two populations. The identified outliers are displayed in Table 4.3.

In sharp contrast to the previous example, these two populations have very different

timing and frequency of jumps. For Finnish males, five outliers are detected, but for

Swedish males, only one outlier is identified. For both populations, an outlier is found

in 1918 when the Spanish flu epidemic occurred. On the other hand, there are outliers

that affect one population only. For Finnish males, outliers are found in 1939, 1940,

1941 and 1944. These outliers may be attributed to Finland’s participation in the

Second World War, which lasted from 1939 to 1945. Similar outliers are not found in

the period effect index for Swedish males, possibly because Sweden remained neutral

in the war.

For this pair of populations, the assumption of concurrent jumps no longer holds.

A model that permits the two populations to have different timing and frequency of

jumps seems necessary.

4.4.3 Modeling Nonconcurrent Jumps

To introduce nonconcurrent jumps, we modify the way in which the period effect

indexes are modeled. As before, we let κ
(i)
t , i = 1, 2, be the observed period effect
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Figure 4.2: Estimates of the period effect indexes for Swedish male and Finnish male

populations.

index for population i at time t. The observed index κ
(i)
t is decomposed into the sum

of two components, κ̂
(i)
t +N

(i)
t Y

(i)
t , where κ̂

(i)
t is time t value of an unobserved period

effect index that is free of jumps, and N
(i)
t Y

(i)
t is the jump effect at time t. In this

generalization, the jump count N
(i)
t depends on the population, thereby allowing the

two populations to have different timing and frequency of jumps.

As in the concurrent-jump model, we assume that κ̂
(1)
t follows a random walk

with drift and that ∆̂κ(t) = κ̂
(1)
t − κ̂

(2)
t follows a stationary first order autoregressive

process. Summing up, the period effect indexes in this generalization are modeled by
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the following set of equations:

κ̂
(1)
t+1 = κ̂

(1)
t + µκ + Zκ(t+ 1),

κ
(1)
t+1 = κ̂

(1)
t+1 +N

(1)
t+1Y

(1)
t+1,

∆̂κ(t) = κ̂
(1)
t − κ̂

(2)
t ,

∆̂κ(t+ 1) = µ∆κ + φ∆κ∆̂κ(t) + Z∆κ(t+ 1),

κ
(2)
t+1 = κ̂

(2)
t+1 +N

(2)
t+1Y

(2)
t+1.

The error terms Zκ(t) and Z∆κ(t) jointly follow a zero-mean bivariate normal distri-

bution with a variance-covariance matrix VZ . They have no serial dependence and

are independent of the jump counts and severities.

For both populations, we assume that there is at most one jump in a given year,

since we are using annual data and we consider only transitory mortality jumps . It

follows that the joint probability mass function for N
(1)
t and N

(2)
t can be specified as

follows:

Pr(N
(1)
t = 1, N

(2)
t = 1) = p1,

Pr(N
(1)
t = 1, N

(2)
t = 0) = p2,

Pr(N
(1)
t = 0, N

(2)
t = 1) = p3,

Pr(N
(1)
t = 0, N

(2)
t = 0) = 1− p1 − p2 − p3,

where p1, p2 and p3 are non-negative constants. The jump counts in different years

are independent of one another. Notice that the concurrent-jump model is a special

case of the nonconcurrent-jump model. Specifically, we recover the concurrent jump

model if we set p1 = p and p2 = p3 = 0.

The jump severities Y
(1)
t and Y

(2)
t jointly follow a bivariate normal distribution

with mean µY and variance-covariance matrix VY . It is assumed that the jump

severities are independent of the jump counts and are not serially correlated.

As before, we estimate the processes for the period effect indexes by the method

of maximum likelihood. The derivation of the log-likelihood function is presented in

Appendix B.
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Parameters Nonconcurrent jumps Concurrent jumps No jump

µκ −0.6372 −0.6539 −0.8057

µ∆κ −0.1269 −0.2244 −0.9803

φ∆κ 0.9184 0.9094 0.8486

Vκ(1, 1) 4.1752 4.2403 17.3162

Vκ(1, 2) 1.0633 1.1018 −11.0413

Vκ(2, 2) 2.7786 3.0961 38.1830

µ
(1)
Y 3.5824 2.7746 N/A

µ
(2)
Y 12.4430 13.2352 N/A

VY (1, 1) 116.3952 96.3418 N/A

VY (1, 2) 184.9353 161.5611 N/A

VY (2, 2) 293.8356 422.0060 N/A

p N/A 0.0907 N/A

p1 0.0622 N/A N/A

p2 0 N/A N/A

p3 0.0496 N/A N/A

Table 4.4: Estimated parameters in the processes for the period effect indexes,

Swedish male and Finnish male populations. (We use X(i, j) to denote the (i, j)th

element in a matrix X.)

We fit the nonconcurrent-jump model to the period effect indexes for Swedish

males and Finnish males. The parameter estimates are depicted in the second column

of Table 4.4. Recall that in the outlier analysis, we cannot identify any outlier affecting

Swedish males but not Finnish males. It is therefore not surprising that the estimate

of p2 is zero. As a matter of fact, the estimates of other parameters remain the same

if we impose the constraint that p2 = 0.

We also fit the concurrent-jump model and the no-jump model to the period

indexes for Swedish males and Finnish males. The estimates of the parameters in

these two more restrictive models are displayed in the third and fourth columns of

Table 4.4. We can then perform likelihood ratio tests to compare the three models
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we fitted.

First, we compare the no-jump model with the concurrent-jump model. The

log-likelihood for the null model (the no-jump model) is −634.1980, while that for

the alternative model (the concurrent-jump model) is −506.9093. The value of the

likelihood ratio test statistic is 2 × (−506.9093 − (−634.1980)) = 127.2887 and the

degree of freedom is 6. This results in a p-value of 0, indicating that the concurrent-

jump model gives a significantly better fit than the no-jump model.

Next, we evaluate the benefit from permitting the two populations to have different

timing and frequency of jumps. The log-likelihood for the null model (the concurrent-

jump model) is −506.9093, while that for the alternative model (the nonconcurrent-

jump model) is −503.0726. The value of the likelihood ratio test statistic is 2 ×
(−503.0726− (−506.9093)) = 7.6734 and the degree of freedom is one.3 This gives a

p-value of 0.0056, which means that at a significance level of 1%, the nonconcurrent

jump model is significantly better than the concurrent jump model.

One may wonder if permitting nonconcurrent jumps would also improve the fit to

the period indexes for US total and US male populations. When the nonconcurrent-

jump model is fitted to these two populations, the estimates of p2 and p3 are both

zero, and the estimates of the other parameters are exactly the same as those when

only concurrent jumps are permitted. Hence, the allowance of nonconcurrent jumps

does not improve the fit at all. The more parsimonious concurrent-jump model is

adequate for this particular pair of populations.

4.5 The Impact on Mortality Risk Securitization

4.5.1 An Illustrative Trade

Transitory mortality jumps can result in significant losses to life insurers. At the same

time, they affect payouts from securities that are designed for hedging mortality risk.

3We imposed the constraint that p2 = 0. Hence, the nonconcurrent jump model has one more

parameter than the concurrent jump model.
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In this section, we use a hypothetical trade to illustrate how the incorporation of

transitory jumps may affect the estimated price of a mortality-linked security.

We consider a trade between two economic agents, Agent A and Agent B. Agent

A is a life insurer that holds a portfolio of 10,000 life insurance policies. These policies

are issued to Finnish males and are uniformly distributed over the age range of 25 to

44. For each policy, the death benefit is $0.01 payable at the end of the year of the

policyholder’s death. For simplicity, we assume that this portfolio is stationary, by

which we mean the age composition does not change over time.

It is obvious that Agent A’s financial obligation is linked to the mortality of Finnish

males at ages 25 to 44. Assuming no small sample risk, the insurance liability due at

time t is Lt = 5
∑44

x=25 q
(2)
x,t , where q

(2)
x,t is the death probability of Finnish males at age

x and in year t. We calculate q
(2)
x,t by assuming a constant force of mortality between

integral ages, which means q
(2)
x,t = 1− e−m

(2)
x,t .

To mitigate its exposure to catastrophic mortality risk, Agent A sold in 2006 a

mortality bond maturing in three years.4 For liquidity considerations, the bond is

linked to a mortality index that is based on Swedish male population, which is larger

than the population associated with the insurance liability. The index is the simple

arithmetic average of the central death rates for Sweden males aged between 25 to

44. Mathematically, the time-t value of the index is given by

It =
1

20

44∑
x=25

m
(1)
x,t .

As of the mortality bond was traded, the values of It for t = 2007, 2008, . . . were not

known.

The security pays a coupon at the end of each year at a rate of r+1.5%, where

r is the risk-free interest rate, which is assumed to be 3% in our calculations. The

principal repayment at maturity depends on the values of It over the term of the

4The last year in the sample period we consider is 2006.
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security. Specifically, the principal repayment is specified as follows:

Principal Repayment = max

(
1−

2009∑
t=2007

losst, 0

)
,

where losst is defined by

losst =
max(It − aI2006, 0)−max(It − bI2006, 0)

(a− b)I2006

,

and a and b are the attachment and exhaustion points. If the mortality index ever

exceeds aI2006, then the principal repayment will be reduced, and if the mortality

index ever exceeds bI2006, the principal repayment will be exhausted.

We illustrate the trade with two sets of attachment and exhaustion points: (i)

a = 1.3, b = 1.4; (ii) a = 1.2, b = 1.3. The erosion of capital by an increase in the

mortality index is demonstrated in Figure 4.3.

Agent B is an investor who traded the mortality bond with Agent A in 2006 for

earning a risk premium. At t = 2007, 2008, 2009, Agent B receives payouts from the

mortality bonds purchased.

4.5.2 Pricing the Mortality Bond

We use the pricing framework proposed in Chapter 3 to price the mortality bond.

The framework models the trade between Agents A and B. It is assumed that, given

a price, both agents would maximize their expected terminal utility by altering their

demand or supply of the security. The price of the security is adjusted iteratively to

match the supply and demand, and finally, the estimated price is the price at which

the demand and supply are equal, that is, the market clears.

We assume an exponential utility function, U(x) = 1 − e−kx, for each agent.

Parameter k in the utility function is the absolute risk aversion for all wealth levels.

As before, we assume that k = 1.0 for Agent A and that k = 0.5 for Agent B.

To estimate the price of the mortality bond, we first simulate 10,000 mortality

paths from a two-population mortality model. Given the simulated paths, we can use
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Figure 4.3: Reduction in principal repayment at different index levels.
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Model
a = 1.3, b = 1.4 a = 1.2, b = 1.3

Price Quantity traded Price Quantity traded

No-jump 1.0178 0.2249 0.9748 0.1748

Nonconcurrent-jump 1.0087 0.1699 0.9930 0.1455

Table 4.5: Prices and quantities traded in equilibrium when different mortality models

are assumed.

the iterative procedure provided in Chapter 3 to find the price and quantity traded in

equilibrium. On the basis of the no-jump model and the nonconcurrent-jump model

we fitted in Section 4.4.3, we obtain two sets of bond prices. The estimated prices

are displayed in Table 4.5.

As expected, the price of the mortality bond is lower if the attachment and de-

tachment points are smaller. This is because in this case it is more likely that the

index It will exceed the attachment and detachment points, reducing the expected

principal repayment and consequently the price of the bond.

A more interesting observation is that the effect of introducing transitory jumps

depends on the attachment and detachment points. The no-jump model produces the

highest price when a = 1.3 and b = 1.4, but the opposite is true when a = 1.2 and

b = 1.3. We will explain the reasons underlying this observation later in this section

when we analyze the demand and supply of the mortality bond.

4.5.3 Determinants of Supply and Demand

The economic pricing method we consider is more transparent relative to standard

no-arbitrage approaches, in which the price of a security is estimated by extrapolating

prices of other similar securities available in the market. On top of the estimated price,

the economic pricing method provides us with a pair of demand and supply curves.

By examining the response of the demand and supply curves to changes in different

factors, we can have a better idea about how and why the price of a mortality-linked

security will change under different circumstances.
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Let vL and vH be the accumulated values (when the bond matures) of the insurance

liabilities and the payouts from one unit of the bond, respectively. According to

Chapter 3, the supply and demand of the mortality bond depend heavily on the

following four factors:

• µH , the expected value of vH

At a given price, when µH increases, Agent B (the buyer) is expected to receive

more payouts from the mortality bond, while Agent A (the seller) is expected

to make more payouts. Hence, an increase in µH would lead to an increase in

the demand from Agent B and a reduction in the supply from Agent A.

• σH , the volatility of vH

When σH increases, the security becomes less attractive to Agent B, as he/she

needs to take more risk for the same expected payoff from the bond. On the

other hand, when σH increases, Agent A can achieve the same amount of risk

reduction by selling fewer units of the mortality bond. As a result, an increase

in σH would lead to a reduction in both supply and demand.

• σL, the volatility of vL

A higher σL means that Agent A is subject to more mortality risk. Therefore,

it has a stronger need to sell the mortality bond, leading to a greater supply.

However, because Agent B’s behavior depends only on the mortality bond, a

change in σL would not affect the demand from Agent B.

• ρ, the correlation between vL and vH

When |ρ| is higher, the mortality bond becomes a more effective hedging in-

strument. Therefore, at a given price, Agent A is willing to supply more. Same

as σL, ρ does not affect Agent B’s behavior. Hence, a change in ρ would not

affect the demand from Agent B.

The effects of these four factors on the supply and demand of the mortality bond

are summarized in Table 4.6. In the table, ‘↑’ means an increase, ‘↓’ means an

decrease, and ‘−’ means there is no change.
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µH ↑ σH ↑ σL ↑ |ρ| ↑
Supply ↓ ↓ ↑ ↑

Demand ↑ ↓ − −

Table 4.6: The effects of µH , σH , σL, and ρ on the supply and demand of the hypo-

thetical mortality bond.

These four factors can be estimated from mortality paths simulated from a two-

population mortality model. For each simulated mortality path, we calculate the

value vH and vL. This gives a joint empirical distribution of vH and vL, from which

we can readily obtain estimates of µH , σH , σL and ρ.

In the rest of this section, we study how the introduction of transitory jumps may

affect these four factors and consequently the equilibrium price of the mortality bond.

4.5.4 The Supply and Demand Curves when a = 1.3 and b =

1.4

The demand and supply curves when a = 1.3 and b = 1.4 are displayed in Figure 4.4.

When transitory mortality jumps are introduced, the supply curve shifts upwards,

while the demand curve shifts downwards. This leads to a reduction in the equilibrium

price of the mortality bond.

To understand the changes in the demand and supply curves, we examine the four

factors we just described. We first estimate them using the no-jump model and the

nonconcurrent-jump model. The estimates are presented in Table 4.7.

The quantity µH represents the accumulated value of the expected payouts from

the mortality bond, which is subject to a principal reduction when the mortality

index exceeds the attachment point. The value of µH is therefore heavily dependent

on the right tail of the distribution of the mortality index. In Figure 4.5 we plot the

kernel smoothed density functions for I2007/I2006 when different models are assumed.
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Figure 4.4: Supply and demand curves based on different mortality models, a = 1.3

and b = 1.4.

The upper panel of Figure 4.5 depicts the entire density functions, while the lower

panel gives a closer shot of their right tails.

Recall that the principal repayment of the mortality bond is reduced if the mor-

tality index is higher than 1.3I2006, and exhausted if it is higher than 1.4I2006. We

observe from Figure 4.5 that beyond the attachment point a = 1.3, the value of the

density function for I2007/I2006 under the no-jump model is always lower than that

under the nonconcurrent-jump model. This means that the no-jump model implies a

smaller probability (and magnitude) of principal reduction and hence a higher value

of µH .

The quantity σL depends heavily on the volatility of Lt, the insurance liability due

in year t, for t = 2007, 2008, 2009. In Figure 4.6 we show the kernel smoothed density

functions for L2007, based on the no-jump model and the nonconcurrent jump model.
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Model µH σH σL ρ

No-jump 1.0198 0.1258 0.1102 −0.3829

Nonconcurrent-jump 1.0110 0.1573 0.0677 −0.5832

Table 4.7: Estimates of µH , σH , σL and ρ when a = 1.3 and b = 1.4.

The no-jump model produces a significantly more dispersed (but less heavy-tailed)

distribution, because it incorporates the variations caused by the jump process into

its volatility term. As a result, the no-jump model gives a higher value σL.

The quantity σH depends on the volatility of the principal repayment. Because the

principal repayment is always 100% unless the index exceeds the attachment point,

the value of σH depends more heavily on the index’s variability in the (right) tail

than the overall volatility of the index. The dependence of σH on the tail volatility

increases with the value of the attachment point. In this example, σH is higher when

jumps are considered.

The quantity |ρ| is related to the correlation between the mortality rates for the

two populations. In the no-jump model, the correlation between the mortality of the

two populations is driven entirely by the joint distribution of the innovations, Zκ(t)

and Z∆κ(t), whereas in the concurrent-jump model, the correlation is driven addi-

tionally by the jump count process and the joint distribution of the jump severities,

Y
(1)
t and Y

(2)
t . Hence, the introduction of jumps alters the correlation structure, and

in this example, it increases |ρ|.

Now let us revisit the demand and supply curves. The introduction of transitory

jumps increases σH and |ρ| but reduces µH and σL. According to Table 4.6, a lower

µH and a higher σH both exert pressure on the demand, causing the demand curve

to shift downwards. On the other hand, the changes in µH and |ρ| would lead to

an increase in supply, while the changes in σH and σL would lead to a reduction.

Here, the combined effect of µH and |ρ| is stronger, causing the supply curve to shift

upwards. Overall, the shifts in the demand and supply curves result in a smaller price

and a lower quantity traded in equilibrium.
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Figure 4.5: Kernel smoothed density functions for I2007/I2006 under the no-jump model

and the nonconcurrent-jump model.

4.5.5 The Supply and Demand Curves when a = 1.2 and b =

1.3

Here we repeat the analysis for the case when a = 1.2 and b = 1.3. The resulting

supply and demand curves are shown in Figure 4.7. When mortality jumps are intro-

duced, the supply curve shifts downwards, while the demand curve shifts upwards.

This leads to an increase in the equilibrium price of the mortality bond. It is note-

worthy that the changes in the demand and supply curves are exactly opposite to

those in the previous example, which is based on higher attachment and exhaustion
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Figure 4.6: Kernel smoothed density functions for L2007 under the no-jump model

and the nonconcurrent-jump model.

points.

We examine again the four determinants of supply and demand. The estimates of

the four factors are shown in Table 4.8. Note that there is no change to the estimates

of σL, because the insurance liability is not affected by the changes in the attachment

and exhaustion points. Also, as in the previous example, the nonconcurrent-jump

model implies a higher value of |ρ|.

However, in this example, the value µH is lower when mortality jumps are not

taken into account. The reason behind can be seen from Figure 4.5, which shows

the density functions of I2007/I2006 under the two mortality models. We observe from

the diagram that in most of the interval between the attachment point a = 1.2 and

the exhaustion point b = 1.3, the value of density function based on the no-jump

model is higher. This means that the no-jump model implies a higher probability
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Figure 4.7: Supply and demand curves based on different mortality models, a = 1.2

and b = 1.3.

(and magnitude) of principal reduction and thus a smaller value of µH .

When the attachment point is lower, the value of σH is less dependent on the

index’s variability in the (right) tail but more dependent on the overall volatility of

the index. The overall volatility of the index is higher when jumps are not taken

into account, because, as we mentioned earlier, the no-jump model incorporates the

variations caused by the jump process into its volatility term. As a result, in this

example, the value of σH is lower when jumps are considered.

Now let us revisit the supply and demand curves in Figure 4.7. The introduction

of transitory jumps increases µH and |ρ| but reduces σH and σL. According to Table

4.6, a higher µH and a lower σH both have a positive effect on the demand, causing

the demand curve to shift upwards. On the other hand, the changes in σH and |ρ|
would lead to an increase in supply, while the changes in µH and σL would lead to
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Model µH σH σL ρ

No-jump 0.9792 0.2112 0.1102 −0.4980

Nonconcurrent-jump 0.9960 0.1906 0.0677 −0.6034

Table 4.8: Estimates of µH , σH , σL and ρ when a = 1.2 and b = 1.3.

a reduction. Here, the combined effect of µH and σL is stronger, causing the supply

curve to shift downwards. Overall, the shifts in the demand and supply curves result

in a higher price and a lower quantity traded in equilibrium.

4.6 Concluding Remarks

Standardization is a goal of many participants in the market for mortality-related risk.

Standardized mortality-linked securities are based on broad-based populations, which

are generally different from populations associated with hedgers’ portfolios. There-

fore, when we evaluate a hedge that is constructed with a standardized instrument,

a two-population mortality model is necessary.

Nevertheless, existing two-population models do not incorporate mortality jumps,

which could have a significant impact on the securitization of mortality-related risk.

In this paper, we generalized a simple two-population model to incorporate transitory

jump effects. We proposed two new models, one of which is more parsimonious, ap-

plicable to two closely related populations, while the other of which is less restrictive,

suitable for modeling populations that are not so closely related to each other.

To study the impact of introducing transitory jumps, we considered a trade of a

hypothetical mortality bond between a life insurer and an investor who is willing to

take mortality risk for earning a risk premium. The principal repayment of the bond is

reduced if the index to which it is linked exceeds a pre-determined attachment point.

When jumps are introduced, the distribution of the index becomes less dispersed but

heavier-tailed. Consequently, the impact on the estimated bond price depends heavily

on the value of the attachment point. If the attachment point is low, then the model

116



without jumps would imply a greater probability of principal reduction and hence a

smaller bond price, but if the attachment point is high, the opposite is true.
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Chapter 5

Modeling Trades as Nash

Bargaining Problems

5.1 Introduction

In Chapter 2 and Chapter 3, we proposed a pricing approach that is applicable to a

competitive market. We modeled the pricing problem as a Walrasian tâtonnement

process and computed the competitive equilibrium. This approach is based on the

most fundamental economic concept: demand and supply. It is highly transparent,

since by working on the demand and supply from different economic agents, we know

where the price of a mortality-linked security comes from. It also spares us from an

arbitrary choice of a risk-neutral probability measure and other problems associated

with the no-arbitrage approach when there is a lack of market price data.

However, this approach requires the assumption of a competitive market. A per-

fectly competitive market exists when every participant is a “price taker”, and no

participant can influence the price of the product it buys or sells. The competitive-

ness assumption may not always be satisfied in today’s market. For example, the

deals in today’s longevity market are often customized. The price of the trades are

negotiated by the participants. The competitive equilibrium obtained may not be ac-
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curate in this case. Nevertheless, we can at least use it as a benchmark in situations

when standard no-arbitrage methods are difficult to implement. We may also use it

to predict what would happen when the market becomes more mature in future.

In this chapter, we relax the assumption of market competitiveness by modeling

the trade of mortality-linked securities as a two-player bargaining game and apply

Nash’s bargaining solution to obtain a unique pair of trading price and quantity. A

bargaining game involves a limited number of players. Each player may influence

the pricing results through the bargaining process. The assumption of a competitive

market is not required, and this alternative approach may better resemble the current

market for mortality-linked securities. Furthermore, the bargaining game preserves

the advantages of the tâtonnement approach. It gives a unique solution and does not

take the market prices of other products as given. A two-player bargaining game is a

starting point for modeling trades of mortality-linked securities with game theoretic

methods.

Nash’s bargaining solution suppresses many details of the decision making process

and explains outcomes by identifying conditions that any outcome arrived at by

rational decision makers should satisfy. These conditions are treated as axioms, from

which the outcome is deduced using set-theoretical arguments. Nash’s bargaining

solution has been applied in insurance problems by several researchers. Borch (1974)

applied it to reciprocal reinsurance treaties and determined the quota ceded by each

player. Kihlstrom and Roth (1982) studied the insurance contracts reached through

Nash bargaining and investigated the effect of the insureds’ risk aversion on the

outcome of bargaining about the terms of an insurance contract.

Boonen et al. (2011) developed a bargaining solution for over-the-counter risk

redistribution and applied it to the hedging of longevity risk. They first examined

the Pareto optimality of risk redistribution, and then obtained a unique risk redistri-

bution in a Nash bargaining game. They found that proportional risk redistribution

is Pareto optimal, when either exponential, power or quadratic utility functions is

assumed and players have homogeneous belief about the probability distribution of

risk. Proportional risk redistribution may be attained when a fully customized hedge

is used. However, it may not be possible to attain proportional risk redistribution by
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using other hedging instruments. The results of Boonen et al. (2011) are no longer

applicable, for example, when the players consider standardized instruments, such as

q-forwards.

In this chapter, we model a trade between two counterparties. Counterparty A is a

life insurer or pension plan sponsor who wants to hedge its mortality or longevity risk,

and Counterparty B is an investor who invests in mortality-linked securities to earn

a risk premium. In our set-up, risk is redistributed through trading a pre-specified

mortality-linked security, permitting non-proportional risk redistributions.

We illustrate the application of Nash’s bargaining solution through pricing a hy-

pothetical mortality bond. We also compare the pricing results with those from a

competitive market. Interestingly, we find that the trading quantities obtained in the

two approaches are equal. This is because Nash’s bargaining solution and the com-

petitive equilibrium are both Pareto optimal under our settings, and all the Pareto

optimal outcomes under our settings have the same trading quantity.

The remainder of this chapter is organized as follows. In Section 5.2, we describe

the trade under consideration. In Section 5.3, we introduce Nash’s bargaining solu-

tion, and explain how it can be applied to the pricing of mortality-linked securities.

In Section 5.4, we revisit the pricing of mortality-linked securities in a competitive

market. In Section 5.5, we structure a hypothetical mortality bond, and price this

bond with the methods we introduced. In Section 5.6, we investigate the Pareto

optimality of a trading contract. In Section 5.7, we conclude.

5.2 Setting up the Trade

Here, we set up the same trade used in Chapter 4. Recall that there are two counter-

parties involved in the trade. Counterparty A has life contingent liabilities that are

due at times 1, 2, ..., T . The amount due at time t is ft(Q
L
t ). To mitigate its expo-

sure to mortality or longevity risk, it sells (or purchases) a mortality-linked security

maturing at time T . At time t, the security makes a payout of gt(Q
H
t ). Counterparty

B is an investor who trades the mortality-linked security with Player A, in order to
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earn a risk premium. At time t, Counterparty B receives (or pays) an amount of

gt(Q
H
t ) per unit of the mortality-linked security purchased (or sold).

We let P and θ be the price and quantity that they agree for trading. θ is positive

when Counterparty A sells the security, and negative when Counterparty A purchases

the security. We call (P, θ) a trading contract.

Let WA
t and WB

t be the time-t wealth of Counterparties A and B, respectively. It

is easy to see that

WA
T (P, θ) = WA

0 e
rT − θerT (

T∑
t=1

gt(Qt)e
−rt − P )−

T∑
t=1

ft(Qt)e
r(T−t),

WB
T (P, θ) = WB

0 e
rT + θerT (

T∑
t=1

gt(Qt)e
−rt − P ),

where WA
T (P, θ) and WB

T (P, θ) indicate that WA
T and WB

T are functions of (P, θ).

In the following, we let

G =
T∑
t=1

gt(Qt)e
r(T−t), and F =

T∑
t=1

ft(Qt)e
r(T−t),

for brevity.

Again, we denote the utility functions for Counterparties A and B by UA and

UB, respectively. We assume an exponential utility function, U(x) = 1 − e−kx, for

each player. The two counterparties are assumed to be expected terminal utility

maximizers. In our numerical examples, the assumed value of k for Counterparty A

and Counterparty B are kA = 1 and kB = 0.5, respectively.
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5.3 Modeling the Trade in a Non-Competitive Mar-

ket

5.3.1 Bargaining Problems

In a non-competitive securities market, participants are not price takers. Each par-

ticipant has an influence on the price of the security being traded, possibly through

bargaining. In this section, we model the trade of a mortality-linked security between

two counterparties as a Nash bargaining problem (Nash, 1950). Mathematically, a

Nash bargaining problem is a pair 〈S, d〉, where S ⊂ <2 is a compact and convex set,

d ∈ S, and for some s = (s1, s2) in S, si > di for i = 1, 2.

The set S is the set of all feasible expected utility payoffs to the counterparties,

while the vector d = (d1, d2) represents the disagreement payoff; that is, if the coun-

terparties do not come to an agreement, then they will receive utility payoffs of d1 and

d2, respectively. We require d ∈ S, so that the counterparties can agree to disagree.

We also require there exists s = (s1, s2) in S such that si > di for i = 1, 2, so that the

counterparties have an incentive to reach an agreement (via bargaining).

What we are interested in, of course, is which point in S the bargaining process

will lead to. Nash (1950) modeled the bargaining process by a function ζ : B → <2,

where B is the set of all bargaining problems. The function ζ, which assigns a unique

element in S to each bargaining problem 〈S, d〉 ∈ B, is referred to as a bargaining

solution.

Rather than explicitly modeling the underlying bargaining procedure, Nash (1951)

used a purely axiomatic approach to derive a bargaining solution. In more detail, he

specified, as axioms, the following four properties that it would seem natural for a

bargaining solution to have.

1. Pareto optimality

If ζ(S, d) = (z1, z2) and yi ≥ zi for i = 1, 2, then either yi = zi for i = 1, 2 or

(y1, y2) /∈ S.
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2. Symmetry

If (S, d) is a symmetric bargaining problem (i.e., d1 = d2 and (x1, x2) ∈ S ⇒ (x2,

x1) ∈ S), then ζ1(S, d) = ζ2(S, d), where fi(S, d) denotes the ith entry in ζ(S, d).

3. Independence of irrelevant alternatives

If (S, d) and (T, d) are bargaining problems such that S ⊂ T and ζ(T, d) ∈ S,

then ζ(S, d) = ζ(T, d).

4. Independence of equivalent utility representatives

If (S ′, d′) is related to (S, d) in such a way that d′i = aidi + bi and s′i = aisi + bi

for i = 1, 2, where ai and bi are real numbers and ai > 0, then ζi(S
′, d′) = aiζi(S,

d) + bi for i = 1, 2.

Properties 1 and 3 are particularly related to bargaining. Specifically, Property 1

implies that if the counterparties agreed on an inferior outcome, then will renegotiate

until the Pareto optimal outcome is reached. Property 3, on the other hand, resembles

a gradual elimination of unacceptable outcomes. Eliminated outcomes (i.e., those in

T but not in S) have no effect on the bargaining solution. We refer readers to Osborne

and Rubinstein (1990) for a fuller discussion of these properties.

Nash showed that there is one and only one bargaining solution that satisfies the

four axiomatic properties.

Theorem 1. There is a unique solution which possesses Properties 1-4. The solution,

ζN(S, d) : B → <2, takes the form

ζN(S, d) = arg max(s1 − d1)(s2 − d2),

where the maximization is taken over (s1, s2) ∈ S, and is subject to the constraint

si > di for i = 1, 2.

In other words, Nash’s unique bargaining solution selects the utility pair in S that

maximizes the product of the counterparties’ gain in utility over the disagreement

outcome (d1, d2). We call (s1 − d1)(s2 − d2) the Nash product.
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5.3.2 The Underlying Bargaining Strategy

Although the derivation of Nash’s bargaining solution does not require knowledge on

the details of underlying bargaining strategy, one may still wonder how the actual

bargaining takes place. A possible underlying strategy is the one proposed by Zeuthen

(1930), which we now describe.

At the kth round of the bargaining process, Player 1 proposes an agreement with

a payoff vector y1,k = (y1,k
1 , y1,k

2 ), while Player 2 proposes another agreement with a

payoff vector y2,k = (y2,k
1 , y2,k

2 ). If they fail to agree, then they receive disagreement

payoff d = (d1, d2).

Assume that di < yj,ki < yi,ki , where i = 1, 2, j = 1, 2 and i 6= j. At round k + 1,

player i can take one of the following actions:

• accept Player j’s offer, leading to an agreement;

• make a concession by counter-proposing yi,k+1 such that yi,kj < yi,k+1
j < yj,kj ;

• repeat his last offer.

Let

pi,k =
yi,ki − y

j,k
i

yi,ki − di
,

where i = 1, 2, j = 1, 2, and i 6= j. Zeuthen’s bargaining strategy can be summarized

as follows:

• if p2,k < p1,k, then Player 2 makes a concession;

• if p1,k < p2,k, then Player 1 makes a concession;

• if p1,k = p2,k, then both players make a concession.

This process above will continue until the two players agree on a solution. Harsanyi

(1956) proved that Zeuthen’s bargaining strategy leads to the Nash’s bargaining so-

lution.
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5.3.3 Applying Nash’s Bargaining Solution to Mortality-linked

Securities

Now, let us turn our focus back to mortality-linked securities. Following the set-up

in Section 5.2, the expected utility payoffs to the counterparties are their expected

terminal utilities. The utility possible set S is the set of feasible expected utility pairs(
E
[
UA(WA

T (P, θ))
]
,E
[
UB(WB

T (P, θ))
])

arising from all possible values of P and θ.1 Note that the structure of the mortality-

linked security is assumed to be fixed. The players are only allowed to bargain over

the price and quantity. The disagreement utility payoffs are the expected terminal

utilities when there is no trade (i.e., θ = 0). It follows that

d =
(
E
[
UA(WA

T (0, 0))
]
,E
[
UB(WB

T (0, 0))
])
.

It is obvious that d ∈ S. For now, we assume that there exists s = (s1, s2) in S such

that si > di for i = 1, 2. In Section 5.6, we will discuss under what conditions this

assumption will hold.

We can then use Nash’s bargaining solution to find the price P and the trading

quantity θ upon agreement between the two counterparties:

argmax
(P,θ)

(
E
[
UA(WA

T (P, θ))
]
− E

[
UA(WA

T (0, 0))
])

×
(
E
[
UB(WB

T (P, θ))
]
− E

[
UB(WB

T (0, 0))
])

subject to E
[
UA(WA

T (P, θ))
]
− E

[
UA(WA

T (0, 0))
]
≥ 0

E
[
UB(WB

T (P, θ))
]
− E

[
UB(WB

T (0, 0))
]
≥ 0

θ ≥ 0 (or θ ≤ 0, depending on which counterparty is the seller)

P > 0

1We assume exponential utility functions, which are concave. The use of concave utility functions

implies that S is a convex set (see, e.g. Kihlstrom and Roth, 1982; Boonen et al., 2011).
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The above may be viewed as a non-linear constrained optimization problem. The

solution, which we denote by (P̂ , θ̂), can be solved numerically by technical software

such as MATLAB. The trading of θ̂ units of the security at a price of P̂ makes

both counterparties better off relative to the situation when there is no trade, and

maximizes the product of the counterparties’ expected utility gains.

5.4 Modeling the Trade in a Competitive Market

To see the impact of bargaining on the price and trading quantity, we need to know

how the trade would happen if the security market is perfectly competitive. In a

competitive market, all participants are price takers. Given a price, each participant

decide their supply or demand of the security on the basis of a certain criterion.

Again, we follow the set-up specified in Section 5.2. We assume that the coun-

terparties will choose a supply or demand of the security that will maximize their

expected terminal utilities. Let θ̂A and θ̂B respectively be the quantities that Coun-

terparty A and Counterparty B are willing to trade at a given price P .2 At equilibrium

when the market clears, we have θ̂A + θ̂B = 0. In previous chapters, we postulate

this trade as a Walrasian auction, and numerically obtain the equilibrium price and

trading quantity by gradually adjusting the price until the excess demand |θ̂A + θ̂B|
becomes zero.

In what follows, we push the results in previous chapters further by deriving a

analytic relation between the price and trading quantity at equilibrium. We first

formulate the objectives of the counterparties mathematically as follows:

Counterparty A: θ̂A = argsup
θA

E
[
UA(WA

T (P,−θA))
]

Counterparty B: θ̂B = argsup
θB

E
[
UB(WB

T (P, θB))
]
.

Proposition 5. Suppose that Counterparties A and B have exponential utility func-

tions with absolute risk aversion parameters kA and kB, respectively. The competitive

2The quantity for the buyer is positive, while that for the seller is negative.
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equilibrium (P ∗, θ∗) should satisfy

P ∗ =
E[ek

Aθ∗G+kAFG]

erTE[ekAθ∗G+kAF ]
=

E[e−k
Bθ∗GG]

erTE[e−kBθ∗G]
. (5.1)

Proof. Recall that the terminal wealth of Counterparty A is given by WA
T (P,−θA) =

θA(G−erTP )−F . Given a price P , Counterparty A will trade θ̂A units of the security

so that E
[
UA(WA

T (P, θ̂A)
]

is the maximum. This means

∂

∂θA|θA=θ̂A

E
[
UA(WA

T (P,−θA))
]

= 0,
∂2

∂θA2
|θA=θ̂A

E
[
UA(WA

T (P,−θA))
]
< 0.

Assuming that Counterparty A has an exponential utility function with risk aversion

parameter kA, the first order condition can be written as

E
[
kA(G− erTP )e−k

Aθ̂A(G−erTP )+kAF
]

= 0,

which implies

P =
E[e−k

Aθ̂AG+kAFG]

erTE[e−kAθ̂AG+kAF ]
.

The second order condition is easy to verify.

On the other hand, the terminal wealth of Counterparty B can be written as

WB
T (P, θB) = θB(G− erTP ). Given a price P , Counterparty B will trade θ̂B units of

the security such that E
[
UB(WB

T (P, θ̂B))
]

is the maximum. This means

∂

∂θB|θB=θ̂B

E
[
UB(WB

T (P, θB))
]

= 0,
∂2

∂θB2
|θB=θ̂B

E
[
UB(WB

T (P, θB))
]
< 0.

Assuming that Counterparty B has an exponential utility function with risk aversion

parameter kB, the first order condition can be written as

E
[
kB(G− erTP )e−k

B θ̂B(G−erTP )
]

= 0,

which implies

P =
E[e−k

B θ̂BGG]

erTE[e−kB θ̂BG]
.
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The second order condition for counterparty B is also easy to verify.

At equilibrium, θ̂A+θ̂B = 0. Letting θ̂B = θ∗ and θ̂A = −θ∗, the result follows.

To find the competitive equilibrium, we first solve the second part of equation

(5.1) for θ∗ numerically, and then substitute θ∗ back to equation (5.1) to obtain P ∗.

Note that equation (5.1) may not have a solution, which happens where there is no

trade between the two counterparties.

5.5 Numerical Illustrations

5.5.1 Mortality Data and Model

We illustrate the pricing methods with historical mortality data from Swedish male

and Finnish male populations. We consider the same data used in Chapter 4. The

mortality rates of the two populations are modeled by the two-population mortality

model with transitory jump effects proposed in Chapter 4. Such a two-population

model incorporates mortality jumps is ideal for pricing short-term catastrophe bond

in the presence of population basis risk. The parameter estimates and forecasting

procedure can also be found in Chapter 4.

5.5.2 Pricing a Hypothetic Mortality Bond

We now price the hypothetic mortality bond considered in Chapter 4. We assume

that the attachment and exhaustion points of this mortality bond are 1.3 and 1.4,

respectively.

Table 5.1 summarizes the outcomes under the two different models for the trade.

The strictly positive utility gains indicate that both counterparties will benefit from

the trade of the hypothetical security, no matter if the market is competitive or not.

The benefit to Counterparty A (the hedger) is higher if the market is competitive,

whereas the opposite is true for the other counterparty.
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Method Competitive Equilibrium Nash’s Bargaining Solution

Trading Price 1.008669 1.007971

Trading Quantity 0.169848 0.169848

Utility Gain for A 7.965399× 10−4 5.832860× 10−4

Utility Gain for B 1.124217× 10−4 1.772784× 10−4

Nash Product 8.954836× 10−8 1.034040× 10−7

Table 5.1: Trading prices, trading quantities and utility values under Nash’s bargain-

ing solution and the competitive equilibrium.

According to the first axiomatic property in Section 5.3.1, Nash’s bargaining so-

lution is Pareto optimal. It is also well known that, under idealized conditions, any

outcome resulting from a competitive equilibrium must be Pareto optimal. An out-

come is said to be Pareto optimal if there is no other outcome that makes every

counterparty at least as well off and at least one counterparty strictly better off. In

other words, a Pareto optimal outcome cannot be improved without hurting at least

one counterparty. Therefore, the permission of bargaining can only improve the utility

gain of one counterparty, but not both. In this example, Counterparty B benefits.

In this example, the trading price under Nash’s bargaining solution is lower than

that under the competitive equilibrium. This difference suggest that whether or not

market participants are price takers does have an impact on the trading price. Given

that the current market for mortality-linked security is not even close to competitive,

practitioners should be cautious when they interpret prices estimated from pricing

methods that require the assumption of market competitiveness.

By contrast, in this example, the trading quantities under Nash’s bargaining so-

lution and the competitive equilibrium are the same. This equality, as we are going

to demonstrate in Section 5.6, is not a coincidence, but always true provided that

certain conditions are satisfied.
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5.6 Conditions for Pareto Optimality

In this section, we discuss the conditions under which the trade between the two

counterparties will be Pareto optimal. As both Nash’s bargaining solution and the

competitive equilibrium are Pareto optimal, knowing the conditions for Pareto opti-

mality may give us some insights about the trading prices and quantities under the

two market models.

To obtain the condition for Pareto optimality, we first need to derive the conditions

for the equation

H(θ) =
E[ek

AθG+kAFG]

E[ekAθG+kAF ]
− E[e−k

BθGG]

E[e−kBθG]
= 0. (5.2)

to have a unique non-zero solution.

Proposition 6. Equation (5.2) has a unique non-zero solution if and only if

• E[ek
AFG]−E[ek

AF ]E[G] < 0 when Counterparty A is the seller of the mortality-

linked security;

• E[ek
AFG]−E[ek

AF ]E[G] > 0 when Counterparty A is the buyer of the mortality-

linked security.

Proof. We first show that H(θ) is a strictly increasing function of θ. Differentiating

the first term of H(θ) with respect to θ, we have

∂

∂θ

E[ek
AθG+kAFG]

E[ekAθG+kAF ]

= kA
E[ek

AθG+kAFG2]E[ek
AθG+kAF ]−

(
E[ek

AθG+kAFG]
)2

(
E[ekAθG+kAF ]

)2 .

Using Hölder’s inequality, we have

E[ek
AθG+kAFG2]E[ek

AθG+kAF ]−
(
E[ek

AθG+kAFG]
)2

≥ 0.
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The equality holds if and only if ek
AθG+kAFG2 = ek

AθG+kAF almost everywhere. This

condition, which is equivalent to G2 = 1 almost everywhere, is obviously not satisfied

here. Therefore,

∂

∂θ

(
E[ek

AθG+kAFG]

E[ekAθG+kAF ]

)
> 0.

Similarly, we can prove that

∂

∂θ

(
−E[e−k

BθGG]

E[e−kBθG]

)
> 0.

As a result, ∂
∂θ
H(θ) > 0 for all θ. Since H(θ) is a strictly increasing function of θ, the

solution to equation (5.2) is unique if it exists.

Now, let us focus on the case that Counterparty A is the seller of the security.

Since θ ∈ [0,+∞), equation (5.2) has a unique non-zero solution if and only if

1. H(θ) < 0, when θ = 0;

2. H(θ) ≥ 0, when θ → +∞.

When θ = 0,

H(0) =
E[ek

AFG]− E[ek
AF ]E[G]

E[ekAF ]
,

which is negative if and only if E[ek
AFG]− E[ek

AF ]E[G] < 0.

Condition 2 is satisfied if

lim
θ→+∞

E[ek
AθG+kAFG]

E[ekAθG+kAF ]
= sup{G}, (5.3)

and

lim
θ→+∞

E[e−k
BθGG]

E[e−kBθG]
= inf{G}. (5.4)

131



For brevity, we let M = sup{G} and N = inf{G}. Since G ≥ 0, we have 0 ≤ N <

+∞.

We now prove equation (5.3). Suppose that M < +∞. For any ε > 0, fix δ < ε
2
.

We have ∣∣∣∣∣∣
E
[
ek

AθG+kAFG
]

E
[
ekAθG+kAF

] −M
∣∣∣∣∣∣

=
E
[
ek

AθG+kAF |G−M |
]

E
[
ekAθG+kAF

]
=

E
[
ek

AθG+kAF |G−M |I|G−M |≤δ
]

E
[
ekAθG+kAF

] +
E
[
ek

AθG+kAF |G−M |I|G−M |>δ
]

E
[
ekAθG+kAF

]
≤ δ +

E
[
ek

AθG+kAF |G−M |I|G−M |>δ
]

E
[
ekAθG+kAF

]
= δ +

E
[
ek

AθG+kAF |G−M |I|G−M |>δ
]

E
[
ekAθG+kAF I|G−M |≤ δ

2

]
+ E

[
ekAθG+kAF I|G−M |> δ

2

]
≤ δ +

E
[
ek

AθG+kAF |G−M |I|G−M |>δ
]

E
[
ekAθG+kAF I|G−M |≤ δ

2

]
< δ +

E
[
ek

Aθ(M−δ)+kAF |G−M |I|G−M |>δ
]

E
[
ek

Aθ(M− δ
2

)+kAF I|G−M |≤ δ
2

]
<

ε

2
+
e−k

Aθ δ
2E
[
ek

AF |G−M |I|G−M |>δ
]

E
[
ekAF I|G−M |≤ δ

2

] ,

where IA is the indicator function for event A. When θ ≥ − 2
kAδ

ln
εE
[
ek
AF I|G−M|<δ2

]
2E[ekAF |G−M |I|G−M|>δ]

,

we have∣∣∣∣∣∣
E
[
ek

AθG+kAFG
]

E
[
ekAθG+kAF

] −M
∣∣∣∣∣∣ < ε
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for any ε > 0. Therefore, equation (5.3) holds when M < +∞.

Suppose that M = +∞. For any δ > 0, we have

E
[
ek

AθG+kAF (G− δ)
]

= E
[
ek

AθG+kAF (G− δ)IG≤δ
]

+ E
[
ek

AθG+kAF (G− δ)Iδ<G≤2δ

]
+ E

[
ek

AθG+kAF (G− δ)IG>2δ

]
> E

[
ek

AθG+kAF (G− δ)IG≤δ
]

+ E
[
ek

AθG+kAF (G− δ)IG>2δ

]
> −δE

[
ek

Aθδ+kAF IG≤δ
]

+ δE
[
e2kAθδ+kAF IG>2δ

]
= δek

Aθδ
(
−E

[
ek

AF IG≤δ
]

+ ek
AθδE

[
ek

AF IG>2δ

])
.

When θ ≥
lnE

[
ek
AθF IG≤δ

]
−lnE

[
ek
AθF IG≥2δ

]
kAδ

, we have E
[
ek

AθG+kAF (G− δ)
]
> 0 and hence

E
[
ek

AθG+kAFG
]

E
[
ekAθG+kAF

] − δ > 0

for any δ > 0. Therefore, equation (5.3) also holds when M = +∞. We conclude

that equation (5.3) holds in general.
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We then prove equation (5.4). For any ε > 0, fix δ < ε
2
. We have∣∣∣∣∣∣

E
[
e−k

BθGG
]

E
[
e−kBθG

] −N
∣∣∣∣∣∣

=
E
[
e−k

BθG|G−N |
]

E
[
e−kBθG

]
=

E
[
e−k

BθG|G−N |I|G−N |≤δ
]

E
[
e−kBθG

] +
E
[
e−k

BθG|G−N |I|G−N |>δ
]

E
[
e−kBθG

]
≤ δ +

E
[
e−k

BθG|G−N |I|G−N |>δ
]

E
[
e−kBθG

]
= δ +

E
[
e−k

BθG|G−N |I|G−N |>δ
]

E
[
e−kBθGI|G−N |≤ δ

2

]
+ E

[
e−kBθGI|G−N |> δ

2

]
≤ δ +

E
[
e−k

BθG|G−N |I|G−N |>δ
]

E
[
e−kBθGI|G−N |≤ δ

2

]
< δ +

E
[
e−k

Bθ(N+δ)|G−N |I|G−N |>δ
]

E
[
e−k

Bθ(N+ δ
2

)I|G−N |≤ δ
2

]
<

ε

2
+
e−k

Bθ δ
2E
[
|G−N |I|G−N |>δ

]
E
[
I|G−N |≤ δ

2

] .

When θ ≥ − 2
kBδ

ln
εE
[
I|G−N|<δ2

]
2E[|G−N |I|G−N|>δ]

, we have∣∣∣∣∣∣
E
[
e−k

BθGG
]

E
[
e−kBθG

] −N
∣∣∣∣∣∣ < ε

for all ε > 0. Therefore, equation (5.4) holds.

The proof for the case that Counterparty A is the buyer is similar.
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Having proved proposition 6, we are now ready to derive the conditions for Pareto

optimality.

Proposition 7. Assume that Counterparties A and B have exponential utility func-

tions with risk aversion parameters kA and kB, respectively.

1. Suppose that Counterparty A is the seller of the mortality-linked security.

When E[ek
AFG]−E[ek

AF ]E[G] ≥ 0, the outcome (P̃ , θ̃) is Pareto optimal if and

only if θ̃ = 0.

When E[ek
AFG]−E[ek

AF ]E[G] < 0, the outcome (P̃ , θ̃) is Pareto optimal if and

only if H(θ̃) = 0.

2. Suppose that Counterparty A is the buyer of the mortality-linked security.

When E[ek
AFG]−E[ek

AF ]E[G] ≤ 0, the outcome (P̃ , θ̃) is Pareto optimal if and

only if θ̃ = 0.

When E[ek
AFG]−E[ek

AF ]E[G] > 0, the outcome (P̃ , θ̃) is Pareto optimal if and

only if H(θ̃) = 0.

Proof. In the trade of the security under consideration, an outcome (P̃ , θ̃) is Pareto

optimal if there does not exist any pair of (P ′, θ′) that satisfy the following conditions:

1. E[UA(WA
T (P ′, θ′))] ≥ E[UA(WA

T (P̃ , θ̃))];

2. E[UB(WB
T (P ′, θ′))] ≥ E[UB(WB

T (P̃ , θ̃))];

3. one of the above two inequalities is strict.

Condition (1) can be rewritten as follows:

E[UA(WA
T (P ′, θ′))] ≥ E[UA(WA

T (P̃ , θ̃))]

E[ek
Aθ′G+kAF ]e−k

AP ′θ′erT ≤ E[ek
Aθ̃G+kAF ]e−k

AP̃ θ̃erT

ek
AerT (P̃ θ̃−P ′θ′) ≤ E[ek

Aθ̃G+kAF ]

E[ekAθ′G+kAF ]

P ′θ′ − P̃ θ̃ ≥ lnE[ek
Aθ′G+kAF ]− lnE[ek

Aθ̃G+kAF ]

kAerT
.
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Condition (2) can be rewritten as follows:

E[UB(WB
T (P ′, θ′))] ≥ E[UB(WB

T (P̃ , θ̃))]

E[e−k
Bθ′G]ek

BP ′θ′erT ≤ E[e−k
B θ̃G]ek

BP̃ θ̃erT

ek
BerT (P ′θ′−P̃ θ̃) ≤ E[e−k

B θ̃G]

E[e−kBθ′G]

P ′θ′ − P̃ θ̃ ≤ lnE[e−k
B θ̃G]− lnE[e−k

Bθ′G]

kBerT
.

There does not exist any (P ′, θ′) meeting the three conditions above if and only

if (P̃ , θ̃) satisfies one of the following conditions:

i. lnE[ek
Aθ′G+kAF ]−lnE[ek

Aθ̃G+kAF ]
kAerT

≥ lnE[e−k
Bθ̃G]−lnE[e−k

Bθ′G]
kBerT

for any (P ′, θ′);

ii. P ′θ′ − P̃ θ̃ < lnE[ek
Aθ′G+kAF ]−lnE[ek

Aθ̃G+kAF ]
kAerT

for any (P ′, θ′);

iii. P ′θ′ − P̃ θ̃ > lnE[e−k
Bθ̃G]−lnE[e−k

Bθ′G]
kBerT

for any (P ′, θ′).

Condition (ii) cannot be satisfied, because we can always choose an arbitrary θ′

and then pick a value of P ′ from the interval[
lnE[ek

Aθ′G+kAF ]− lnE[ek
Aθ̃G+kAF ]

kAerT θ′
+
P̃ θ̃

θ′
,+∞

)
.

By using a similar argument, we can easily see that Condition (iii) cannot be satisfied,

too. All then that remains is Condition (i).

Condition (i) is equivalent to(
lnE[ek

Aθ′G+kAF ]

kAerT
+

lnE[e−k
Bθ′G]

kBerT

)
−

(
lnE[ek

Aθ̃G+kAF ]

kAerT
+

lnE[e−k
B θ̃G]

kBerT

)
≥ 0,

for all θ′, which is satisfied if and only if the function

V(θ) =
lnE[ek

AθG+kAF ]

kAerT
+

lnE[e−k
BθG]

kBerT
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attains its minimum value at θ̃.

It is easy to show that ∂
∂θ
V(θ) = H(θ). Also, in the proof for proposition 6, we

showed that ∂2

∂θ2
V(θ) = ∂

∂θ
H(θ) > 0 for all θ.

We now focus on the case that Counterparty A is the seller of the mortality-linked

security, that is, θ ∈ [0,+∞).

When E[ek
AFG]−E[ek

AF ]E[G] < 0, according to proposition 6, ∂
∂θ
V(θ) = H(θ) = 0

has a unique non-zero solution. It follows that V(θ) is minimized at θ = θ̃ such that

H(θ̃) = 0.

When E[ek
AFG]− E[ek

AF ]E[G] ≥ 0, we have

∂

∂θ |θ=0
V(θ) = H(0) =

E[ek
AFG]− E[ek

AF ]E[G]

erTE[ekAF ]
≥ 0.

Also, because ∂
∂θ |θ=0

V(θ) ≥ 0 and ∂2

∂θ2
V(θ) > 0 for all θ, we have ∂

∂θ
V(θ) > 0 for all

θ ∈ (0,+∞). It follows that V(θ) is a strictly increasing function of θ for θ ∈ (0,+∞),

and that it attains minimum at θ = 0.

This completes the proof for the case that Counterparty A is the seller. The proof

for the remaining case is largely similar.

Proposition 7 states explicitly the conditions under which an outcome (P, θ) is

Pareto optimal. Depending on the position of Counterparty A in the trade and the

sign of the expression E[ek
AFG] − E[ek

AF ]E[G], Pareto optimality is attained either

when there is no trade or when θ̃ units of the security is traded, where θ̃ is the solution

to the equation H(θ) = 0, which, according to proposition 6, has a unique non-zero

solution.

Suppose that a trade between the two counterparties occurs. Then there is one

and only one trading quantity that would lead to Pareto optimality. Because both

Nash’s bargaining solution and the competitive equilibrium are Pareto optimal, they

must yield the same trading quantity. This fact explains why the estimated trading
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quantities in Table 5.1 are identical. The Pareto optimality conditions, however,

do not depend on the trading price P . This means that even though the trading

quantities in Nash’s bargaining solution and the competitive equilibrium must be the

same, the trading prices may not.

Furthermore, proposition 7 provides us with an alternative way to obtain Nash’s

bargaining solution for the trade under consideration. Specifically, we can first find θ̃

that solves the equation H(θ) = 0. Because θ̃ is the only trading quantity that leads

to Pareto optimality, the trading quantity in Nash’s bargaining solution must be θ̃.

We can then obtain the trading price in Nash’s bargaining solution by maximizing the

Nash product evaluated at θ = θ̃. This boils down to solving the first order condition,

kAE[ek
Aθ̃(G−erTP )+kAF ]− kBE[ek

AF ]E[e−k
B θ̃(G−erTP )]

+(kB − kA)E[ek
Aθ̃(G−erTP )+kAF ]E[e−k

B θ̃(G−erTP )] = 0,

for P .

Given the role of Counterparty A, whether or not a trade will occur depends

entirely on the sign of the expression E[ek
AFG] − E[ek

AF ]E[G], which is precisely

cov(ek
AF , G), the covariance between the random variables ek

AF and G, where F

and G are the accumulated values of the cash flows arising from the liability being

hedged and the security under consideration, respectively. This condition is highly

intuitive. To illustrate, let us consider the situation when Counterparty A hedges its

mortality risk exposure by buying a mortality-linked security from Counterparty B.

In this situation, if cov(ek
AF , G) ≤ 0, which implies ek

AF and G are not positively

correlated with each other, then Counterparty A has no reason to purchase the se-

curity, as holding the security will increase but not reduce her risk exposure. This is

completely in line with Proposition 7, which says that if Counterparty A is the buyer

and cov(ek
AF , G) ≤ 0, then no trade will occur.

Nash’s bargaining solution requires the assumption that there exists s = (s1, s2)

in the utility possible set S such that si > di for i = 1, 2. In Section 5.3.3, we made

this assumption without specifying when it is satisfied and when it is not. Here,

we demonstrate that the satisfaction of this assumption is dependent on the sign of

cov(ek
AF , G).
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Proposition 8. Assume that Counterparties A and B have exponential utility func-

tions with risk aversion parameters kA and kB, respectively. A necessary and sufficient

for satisfying the assumption that there exists s = (s1, s2) in S such that si > di for

i = 1, 2 is

1. cov(ek
AF , G) < 0, if Counterparty A is the seller of the mortality-linked security;

2. cov(ek
AF , G) > 0, if Counterparty A is the buyer of the mortality-linked security.

Proof. We focus on the case that Counterparty A is the seller of the mortality-linked

security.

First, we prove the necessity. The existence of s = (s1, s2) in S such that si > di

for i = 1, 2 implies that d = (d1, d2) is not a Pareto optimal outcome, or equivalently

speaking, θ = 0 does not lead to Pareto optimality. According to proposition 7, we

must have cov(ek
AF , G) < 0. Therefore, cov(ek

AF , G) < 0 is a necessary condition.

Next we prove the sufficiency. If cov(ek
AF , G) < 0, then according to propositions

6 and 7, any outcome with θ = 0 is not Pareto optimal. It follows that we can always

find (P, θ) that leads to expected utility payoffs (y1, y2) ∈ S, where y1 ≥ d1, y2 ≥ d2

and at least one of the two equalities does not hold.

If y1 > d1 and y2 > d2, then obviously there exists s ∈ S such that si > di for

i = 1, 2.

If y1 = d1 and y2 > d2, we can write y2 = d2 +ε for some ε > 0. Given a fixed θ, y1

is a continuous increasing function of P , while y2 is a continuous decreasing function

of P .3 We can always find another price P̂ > P that leads to expected utility payoffs

(ŷ1, ŷ2), where d2 < ŷ2 < d2 + ε and that ŷ1 > d1. Therefore, there exists s ∈ S such

that si > di for i = 1, 2. Using a similar argument, we can verify the existence of

such a point in S when y1 > d1 and y2 = d2.

3It is assumed here that Counterparty A is the seller. Given a fixed θ, the expected utility payoff

for Counterparty A is higher if she can sell the security for a higher price. On the other hand, the

expected utility payoff for Counterparty B is lower if she has to purchase the security at a higher

price.
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This completes the proof for the case that Counterparty A is the seller. The proof

for the other case is similar.

Proposition 8 has significant implications. It says that as long as the security

under consideration is an effective hedging instrument (in the sense that cov(ek
AF , G)

takes the desired sign), the bargain between the two counterparties will always lead

to a trade of the security. The trade will benefit both counterparties, as it will bring

expected utility payoffs that are strictly greater than those when there is no trade.

5.7 Conclusion

In this chapter, we model the mortality-linked security trade as a two-player bar-

gaining game and obtain the security price using Nash’s bargaining solution. Nash

bargaining assumes that the two players cooperate and maximize the product of their

utility gains from a trade agreement. In the bargaining game, each player can exert

influence on the trade.

The two-player bargaining game resembles most of the trades in current mortality-

linked security market, for example, the buy-in deal in December 2010 between the

Dutch food manufacturer Hero and the Dutch insurer Aegon, the longevity swap in

February 2011 between J. P. Morgan and the Pall (UK) pension fund, and the first

life book reinsurance swap since the Global Financial Crisis between Atlanticlux and

institutional investors in June 2011. For such trades, the requirement of competitive

market in the tâtonnement approach is not satisfied. Therefore, the Nash bargaining

solution is more suitable for the current market than the tâtonnement approach.

Like the tâtonnement approach proposed in previous chapters, the application of

Nash bargaining solution has several advantages over no arbitrage approaches. It does

not require market price data, which are scarce in today’s embryonic mortality-linked

security market.
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Our illustrations show that the permission of bargaining has an impact on the

trading price, but has no effect on the trading quantity. This follows from the facts

that both competitive equilibrium and Nash’s bargaining solution are Pareto optimal.

Pareto optimality is one of the four properties that defines Nash’s bargaining solution.

The first theorem in the welfare economics says that any competitive equilibrium

or Walrasian equilibrium leads to a Pareto efficient allocation of resources. In this

paper, we proved that, under the assumption of exponential utility functions, Pareto

optimality can be attained only if a unique specific quantity of the security is traded.

Therefore, the permission of bargaining does not affect the trading quantity.
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Chapter 6

Concluding Remarks and Future

Research

Due to the lack of market price data in today’s embryonic market, it is difficult to

implement any no arbitrage approach for pricing mortality-linked securities. In this

thesis, we propose economic pricing approaches for use in both competitive and non-

competitive markets. These pricing approaches do not require prices of other similar

securities.

We model the trade between two counterparties, one of which suffers mortality or

longevity risk and issues a mortality-linked security to offset the risk, and the other

of which invests in the mortality-linked security, possibly for earning a risk premium.

It is assumed that both counterparties are expected terminal utility maximizer.

We first develop a pricing approach for use in a competitive market. This approach

utilizes a Walrasian tâtonnement process to describe the equilibrium formulation. It is

based on the most fundamental economic concept: demand and supply. We present

two versions of the approach. The first version, which assumes no trade during

the term of security, aims to illustrate the basic principles of the pricing method.

The second version is less restrictive, allowing multiple trades by applying sequential

decision process. Both versions are illustrated with a hypothetical mortality-linked

security.
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This approach is then extended to allow for population basis risk. Given the

proposed extension, the time-0 price of a standardized mortality-linked security can

be readily estimated. Moreover, the trading quantity can be viewed as the quantity

of the security required in forming a static longevity hedge, provided that hedger’s

objective is to maximize his/her expected utility at some future time. Based on the

extended pricing approach, we investigate the impact of population basis risk on the

behaviors of hedgers and investors in the longevity risk market. We also examine how

the hedging strategy would depend on the properties of the populations involved in

the trade.

Besides population basis risk, mortality jumps are another important factor when

extreme mortality risk is hedged using a standardized mortality-linked security. In

order not to underestimate the probability of a catastrophic mortality deterioration,

mortality jumps should be taken into account in a multi-population mortality model.

We propose a two-population mortality model with transitory jump effects. We

then examine the impact of introducing mortality jumps on the trading of mortal-

ity/longevity risk, based on the extended pricing approach in a competitive market.

Finally, we model the pricing problem as a bargaining game, which does not

require the competitive market assumption, an assumption that is not satisfied in

today’s market. We apply a two-player Nash bargaining game to pricing mortality-

linked securities and compare the results with those derived from the competitive

equilibrium. We also examine the Pareto optimality of a trading contract, in order

to gain some further insights.

Along the lines of this thesis, the following research ideas can be explored in future.

• The impact of small sample risk on pricing mortality-linked securities. In this

thesis, we assume that there is no small sample risk (or sampling risk), that

is, the risk that the realized mortality experience is different from the true

mortality rate. Small sample risk is diversifiable, so it does not matter much

for a large population, say one with more than 100,000 lives. However, for

smaller populations, the risk may be significant. We may examine the impact

of small sample risk on the trading of mortality-linked securities. To achieve
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this, we may incorporate small sample risk by treating the hedger’s population

as a random survivorship group, and by modeling the number of deaths in the

population with a death process, possibly a Poisson or binomial.

• A comparison of two-population mortality models. Recently, Dowd et al. (2011)

proposed a gravity model of mortality rates for two populations. We can perform

serious validation work, similar to the recent contributions by Cairns et al.

(2009) and Dowd et al. (2010a,b), for various two-population mortality models,

including Dowd et al. (2011), Cairns et al. (2011a) and the model proposed in

Chapter 4.

• Developing a multi-population mortality model. The two-population mortality

models listed above cannot accommodate three or more populations. It would

be interesting to develop an extension that can handle more than two popula-

tions simultaneously. Such an extension would have a wide range of applications,

including the modeling of a trade involving more than two counterparties, each

of which is associated with a different population.

• Examining trading prices from Nash’s bargaining game and the competitive equi-

librium. In Chapter 5, we find that the trading quantities from Nash’s bargain-

ing game and the competitive equilibrium are the same. This can be explained

by the Pareto optimality of a contract. However, we have not found theoretic

evidence to support the order of trading prices. It will be interesting to look

into the trading prices and analytically answer the question which counterparty

will benefit from the competitiveness.

• Modeling a trade with multiple counterparties. A real-world trade may involve

more than two counterparties. An investigation of the Pareto optimality of such

a trade may help us understand possible results of the trade. We may apply

multi-player Nash bargaining game in this case to find a unique trading contract

and examine how the risk is redistributed among counterparties.

• Optimal trading contract. In Chapter 5, we assume that there is only one type of

trading contract available to the players. The structure of the mortality-linked
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security is fixed. It will be interesting and more realistic to give the players a

set of contracts with different structures, and allow players to bargain which

structure to be traded, in addition to price and quantity. This extension is

different from Boonen et al. (2011) in that it does not allow a fully customized

trading contract.

• Other game theoretic methods. Nash bargaining solution suppresses the details

of the decision process. To understand how bargaining process takes place, we

shall consider noncooperative bargaining games. Noncooperative games cor-

respond to particular bargaining processes, and the outcome depends on the

process we choose. Some realistic features can be imposed on these bargaining

processes, for instance, information asymmetry and delay cost. Through exam-

ining these processes, we may get more realistic and accurate pricing results.
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Appendix A

Derivation of the Distributions of

Z∆κ(t)|Zκ(t) and Z∆γ(t)|Zγ(t)

Let (X, Y )′ be a bivariate normal random vector with mean (µX , µY )′ and variance-

covariance matrix S, where S is a symmetric nonnegative-definite 2-by-2 matrix. The

probability density function for (X, Y )′ is

fX,Y (x, y) =
1

2π
√

det(S)
e−

1
2

(X−µX ,Y−µY )′S−1(X−µX ,Y−µY ),

where

S−1 =

 S(2,2)
det(S)

− S(1,2)
det(S)

− S(1,2)
det(S)

S(1,1)
det(S)

 .

is the inverse of S.
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The conditional distribution of Y given X = x is given by

fY |X=x(y) =
fX,Y (x, y)

fX(x)

∝ fX,Y (x, y)

∝ e−
1
2 [(y−µY )2S−1(2,2)+2(y−µY )(x−µX)S−1(1,2)]

∝ e−
1
2{S−1(2,2)y2−2[µY S−1(2,2)−(x−µX)S−1(1,2)]y}

∝ e
− 1

2/(S−1(2,2))

[
y−µY S

−1(2,2)−(x−µX )S−1(1,2)

S−1(2,2)

]2
.

Therefore, Y |X = x ∼ N
(
µY S

−1(2,2)−(x−µX)S−1(1,2)
S−1(2,2)

, 1
S−1(2,2)

)
. Substituting S−1 into

the expression, we obtain

Y |X = x ∼ N

(
µY S(1, 1) + (x− µX)S(1, 2)

S(1, 1)
,

det(S)

S(1, 1)

)
.

Since (Zκ(t), Z∆κ(t))′ and (Zγ(c), Z∆γ (c))
′ are zero-mean bivariate normal vectors

with variance-covariance matrices Vκ and Vγ, respectively, we have

Z∆κ(t)|Zκ(t) ∼ N

(
Zκ(t)

Vκ(1, 2)

Vκ(1, 1)
,

det(Vκ)

Vκ(1, 1)

)
,

and

Z∆γ (c)|Zγ(c) ∼ N

(
Zγ(c)

Vγ(1, 2)

Vγ(1, 1)
,

det(Vγ)

Vγ(1, 1)

)
.
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Appendix B

Deriving the Likelihood Function

for the Transitory Jump Process

B.1 Likelihood Function for the Concurrent Jump

Model

Define ∆κ(t) = κ
(1)
t − κ

(2)
t . We can rewrite κ

(1)
t+1 as

κ
(1)
t+1 = κ

(1)
t + µκ + Zκ(t+ 1)−NtY

(1)
t +Nt+1Y

(1)
t+1,

and ∆κ(t+ 1) as

∆κ(t+1) = φ∆κ∆κ(t)+µ∆κ +Z∆κ(t+1)−φ∆κNt(Y
(1)
t −Y

(2)
t )+Nt+1(Y

(1)
t+1−Y

(2)
t+1).

Let ξt = κ
(1)
t+1 − κ

(1)
t and ςt = ∆κ(t + 1) − φ∆κ∆κ(t). We can express ξt and ςt as

follows:

ξt = µκ + Zκ(t+ 1)−NtY
(1)
t +Nt+1Y

(1)
t+1;

ςt = µ∆κ + Z∆κ(t+ 1)− φ∆κNt(Y
(1)
t − Y (2)

t ) +Nt+1(Y
(1)
t+1 − Y

(2)
t+1).

The likelihood function for the concurrent-jump model is built upon the joint distri-

bution of ξt and ςt.
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Suppose that the sample period is [t0, t1]. We let f1 be the conditional density

function for the random vector (ξt+1, ςt+1)′ given (ξt, ςt)
′, for t ∈ {t0, . . . , t1 − 1}, and

let f2 be the density function for the random vector (ξt0 , ςt0)
′. Then the log-likelihood

can be written as

ln f2 ((ξt0 , ςt0)
′) +

t1−1∑
t=t0

ln f1 ((ξt+1, ςt+1)′|(ξt, ςt)′) .

First, we evaluate f1. It is easy to see that for t ∈ {t0, . . . , t1 − 1}, (ξt+1, ςt+1)′

given (ξt, ςt)
′, Nt, Nt+1 and Nt+2 follows a bivariate normal distribution. Let f3, M3

and S3 be the density function, the mean vector and the variance-covariance matrix

of this bivariate normal distribution, respectively. The specifications of M3 and S3

depend on the value of Nt+1. In what follows, we use W (i) to denote the ith element

in a vector W and X(i, j) to denote the (i, j)th element in a matrix X.

If Nt+1 = 0, (ξt+1, ςt+1)′ does not depend on (ξt, ςt)
′. In this case, we have

ξt+1 = µκ + Zκ(t+ 2) +Nt+2Y
(1)
t+2,

ςt+1 = µ∆κ + Z∆κ(t+ 2) +Nt+2(Y
(1)
t+2 − Y

(2)
t+2),

and the specifications of M3 and S3 are as follows:

M3(1) = µκ +Nt+2µY (1),

M3(2) = µ∆κ +Nt+2(µY (1)− µY (2)),

S3(1, 1) = VZ(1, 1) +Nt+2VY (1, 1),

S3(1, 2) = VZ(1, 2) +Nt+2(VY (1, 1)− VY (1, 2)),

S3(2, 2) = VZ(2, 2) +Nt+2(VY (1, 1)− 2VY (1, 2) + VY (2, 2)).

If Nt+1 = 1, (ξt+1, ςt+1)′ depends on (ξt, ςt)
′ through Y

(1)
t+1 and Y

(2)
t+1. In this case,

we have

ξt+1 = −ξt + 2µκ + Zκ(t+ 1) + Zκ(t+ 2)−NtY
(1)
t +Nt+2Y

(1)
t+2,

ςt+1 = −φ∆κςt + (1 + φ∆κ)µ∆κ + φ∆κZ∆κ(t+ 1) + Z∆κ(t+ 2)

−φ2
∆κ
Nt(Y

(1)
t − Y (2)

t ) +Nt+2(Y
(1)
t+2 − Y

(2)
t+2),
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and the specifications of M3 and S3 are as follows:

M3(1) = −ξt + 2µκ − (Nt −Nt+2)µY (1),

M3(2) = −φ∆κςt + (1 + φ∆κ)µ∆κ − (φ2
∆κ
Nt −Nt+2)(µY (1)− µY (2)),

S3(1, 1) = 2VZ(1, 1) + (Nt +Nt+2)VY (1, 1),

S3(1, 2) = (1 + φ∆κ)VZ(1, 2) + (φ2
∆κ
Nt +Nt+2)(VY (1, 1)− VY (1, 2)),

S3(2, 2) = (1 + φ2
∆κ

)VZ(2, 2) + (φ4
∆κ
Nt +Nt+2)(VY (1, 1)− 2VY (1, 2) + VY (2, 2)).

Using the results above, we can compute f1 by using the following formula:

f1 ((ξt+1, ςt+1)′|(ξt, ςt)′)

=
1∑

i1,i1,i3=0

f3 ((ξt+1, ςt+1)′|(ξt, ςt)′, Nt = i1, Nt+1 = i2, Nt+2 = i3)

Pr(Nt = i1) Pr(Nt+1 = i2) Pr(Nt+2 = i3).

Next, we evaluate f2. We can express ξt0 and ςt0 as follows:

ξt0 = µκ + Zκ(t0 + 1)−Nt0Y
(1)
t0 +Nt0+1Y

(1)
t0+1,

ςt0 = µ∆κ + Z∆κ(t0 + 1)− φ∆κNt0(Y
(1)
t0 − Y

(2)
t0 ) +Nt0+1(Y

(1)
t0+1 − Y

(2)
t0+1).

Given Nt0 and Nt0+1, the random vector (ξt0 , ςt0)
′ follows a bivariate normal distribu-

tion with a density function f4, a mean vector M4 and a variance-covariance matrix

S4. The elements in M4 and S4 are as follows:

M4(1) = µκ − (Nt0 −Nt0+1)µY (1),

M4(2) = µ∆κ − (φ∆κNt0 −Nt0+1)(µY (1)− µY (2)),

S4(1, 1) = VZ(1, 1) + (Nt0 +Nt0+1)VY (1, 1),

S4(1, 2) = VZ(1, 2) + (φ∆κNt0 +Nt0+1)(VY (1, 1)− VY (1, 2)),

S4(2, 2) = VZ(2, 2) + (φ2
∆κ
Nt0 +Nt0+1)(VY (1, 1)− 2VY (1, 2) + VY (2, 2)).

We can then calculate f2 using the following formula:

f2 ((ξt0 , ςt0)
′) =

1∑
i1,i2=0

f4 ((ξt0 , ςt0)
′|Nt0 = i1, Nt0+1 = i2) Pr(Nt0 = i1) Pr(Nt0+1 = i2).
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Finally, with the expressions for f1 and f2, we can calculate the log-likelihood

straightforwardly.

B.2 Likelihood Function for the Nonconcurrent Jump

Model

As before, we let ξt = κ
(1)
t+1 − κ

(1)
t and ςt = ∆κ(t + 1)− φ∆κ∆κ(t). It is easy to show

that

ξt = µκ + Zκ(t+ 1)−N (1)
t Y

(1)
t +N

(1)
t+1Y

(1)
t+1;

ςt = µ∆κ + Z∆κ(t+ 1)− φ∆κ(N
(1)
t Y

(1)
t −N (2)

t Y
(2)
t ) +N

(1)
t+1Y

(1)
t+1 −N

(2)
t+1Y

(2)
t+1.

The log-likelihood for the nonconcurrent-jump model is given by

ln f2 ((ξt0 , ςt0)
′) +

t1−1∑
t=t0

ln f1 ((ξt+1, ςt+1)′|(ξt, ςt)′) ,

where f1 is the conditional density function for the random vector (ξt+1, ςt+1)′ given

(ξt, ςt)
′, for t ∈ {t0, . . . , t1 − 1}, and f2 is the density function for the random vector

(ξt0 , ςt0)
′.

First, we evaluate f1. It is easy to see that for t ∈ {t0, . . . , t1 − 1}, (ξt+1, ςt+1)′

given (ξt, ςt)
′, N

(1)
t , N

(2)
t , N

(1)
t+1, N

(2)
t+1, N

(1)
t+2 and N

(2)
t+2 follows a bivariate normal dis-

tribution. Let f3, M3 and S3 be the density function, the mean vector and the

variance-covariance matrix of this bivariate normal distribution, respectively. The

specifications of M3 and S3 depend on the values of N
(1)
t+1 and N

(2)
t+1.

If N
(1)
t+1 = 0 and N

(2)
t+1 = 0, then (ξt+1, ςt+1)′ does not depend on (ξt, ςt)

′. In this

case, we have

ξt+1 = µκ + Zκ(t+ 2) +N
(1)
t+2Y

(1)
t+2,

ςt+1 = µ∆κ + Z∆κ(t+ 2) +N
(1)
t+2Y

(1)
t+2 −N

(2)
t+2Y

(2)
t+2,
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and the specifications of M3 and S3 are as follows:

M3(1) = µκ +N
(1)
t+2µY (1),

M3(2) = µ∆κ +N
(1)
t+2µY (1)−N (2)

t+2µY (2),

S3(1, 1) = VZ(1, 1) +N
(1)
t+2VY (1, 1),

S3(1, 2) = VZ(1, 2) +N
(1)
t+2VY (1, 1)−N (1)

t+2N
(2)
t+2VY (1, 2),

S3(2, 2) = VZ(2, 2) +N
(1)
t+2VY (1, 1)− 2N

(1)
t+2N

(2)
t+2VY (1, 2) +N

(2)
t+2VY (2, 2).

If N
(1)
t+1 = 0 and N

(2)
t+1 = 1, then ξt+1 does not depend on ξt, while ςt+1 depends on

ςt. In this case, we have

ξt+1 = µκ + Zκ(t+ 2) +N
(1)
t+2Y

(1)
t+2,

ςt+1 = −φ∆κςt + (1 + φ∆κ)µ∆κ + φ∆κZ∆κ(t+ 1) + Z∆κ(t+ 2)

−φ2
∆κ

(N
(1)
t Y

(1)
t −N (2)

t Y
(2)
t ) +N

(1)
t+2Y

(1)
t+2 −N

(2)
t+2Y

(2)
t+2,

and the specifications of M3 and S3 are as follows:

M3(1) = µκ +N
(1)
t+2µY (1),

M3(2) = −φ∆κςt + (1 + φ∆κ)µ∆κ − φ2
∆κ

(N
(1)
t µY (1)−N (2)

t µY (2)) +N
(1)
t+2µY (1)

−N (2)
t+2µY (2),

S3(1, 1) = VZ(1, 1) +N
(1)
t+2VY (1, 1),

S3(1, 2) = VZ(1, 2) +N
(1)
t+2VY (1, 1)−N (1)

t+2N
(2)
t+2VY (1, 2),

S3(2, 2) = (1 + φ2
∆κ

)VZ(2, 2) + φ4
∆κ

(N
(1)
t VY (1, 1)− 2N

(1)
t N

(2)
t VY (1, 2) +N

(2)
t VY (2, 2)),

+N
(1)
t+2VY (1, 1)− 2N

(1)
t+2N

(2)
t+2VY (1, 2) +N

(2)
t+2VY (2, 2).

If N
(1)
t+1 = 1 and N

(2)
t+1 = 1, then ξt+1 depends on ξt and ςt+1 depends on ςt. In this

case, we have

ξt+1 = −ξt + 2µκ + Zκ(t+ 1) + Zκ(t+ 2) +N
(1)
t+2Y

(1)
t+2 −N

(1)
t Y

(1)
t ,

ςt+1 = −φ∆κςt + (1 + φ∆κ)µ∆κ + φ∆κZ∆κ(t+ 1) + Z∆κ(t+ 2)

−φ2
∆κ

(N
(1)
t Y

(1)
t −N (2)

t Y
(2)
t ) +N

(1)
t+2Y

(1)
t+2 −N

(2)
t+2Y

(2)
t+2.
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and the specifications of M3 and S3 are as follows:

M3(1) = −ξt + 2µκ + (N
(1)
t+2 −N

(1)
t )µY (1),

M3(2) = −φ∆κςt + (1 + φ∆κ)µ∆κ − φ2
∆κ

(N
(1)
t µY (1)−N (2)

t µY (2)) +N
(1)
t+2µY (1)

−N (2)
t+2µY (2),

S3(1, 1) = 2VZ(1, 1) + (N
(1)
t+2 −N

(1)
t )VY (1, 1),

S3(1, 2) = (1 + φ∆κ)VZ(1, 2) +N
(1)
t+2VY (1, 1)−N (1)

t+2N
(2)
t+2VY (1, 2)

+φ2
∆κ

(N
(1)
t VY (1, 1)−N (1)

t N
(2)
t VY (1, 2)),

S3(2, 2) = (1 + φ2
∆κ

)VZ(2, 2) + φ4
∆κ

(N
(1)
t VY (1, 1)− 2N

(1)
t N

(2)
t VY (1, 2) +N

(2)
t VY (2, 2)),

+N
(1)
t+2VY (1, 1)− 2N

(1)
t+2N

(2)
t+2VY (1, 2) +N

(2)
t+2VY (2, 2).

Using the results above, we can compute f1 by using the following formula:

f1 ((ξt+1, ςt+1)′|(ξt, ςt)′)

=
1∑

ij=0,j=1,...,6

f3

(
(ξt+1, ςt+1)′|(ξt, ςt)′, N (1)

t = i1, N
(2)
t = i2, N

(1)
t+1 = i3, N

(2)
t+1 = i4,

N
(1)
t+2 = i5, N

(2)
t+2 = i6

)
Pr(N

(1)
t = i1, N

(2)
t = i2) Pr(N

(1)
t+1 = i3, N

(2)
t+1 = i4)

Pr(N
(1)
t+2 = i5, N

(2)
t+2 = i6).

Next, we evaluate f2. We can express ξt0 and ςt0 as follows:

ξt0 = µκ + Zκ(t0 + 1)−N (1)
t0 Y

(1)
t0 +N

(1)
t0+1Y

(1)
t0+1,

ςt0 = µ∆κ + Z∆κ(t0 + 1) +N
(1)
t0+1Y

(1)
t0+1 −N

(2)
t0+1Y

(2)
t0+1 − φ∆κ(N

(1)
t0 Y

(1)
t0 −N

(2)
t0 Y

(2)
t0 ).

Given N
(1)
t0 , N

(2)
t0 , N

(1)
t0+1 and N

(2)
t0 , the random vector (ξt0 , ςt0)

′ follows a bivariate

normal distribution with a density function f4, a mean vector M4 and a variance-
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covariance matrix S4. The elements in M4 and S4 are as follows:

M4(1) = µκ − (N
(1)
t0 −N

(1)
t0+1)µY (1),

M4(2) = µ∆κ + (N
(1)
t0+1 − φ∆κN

(1)
t0 )µY (1)− (N

(2)
t0+1 − φ∆κN

(2)
t0 )µY (2),

S4(1, 1) = VZ(1, 1) +N
(1)
t0 VY (1, 1) +N

(1)
t0+1VY (1, 1),

S4(1, 2) = VZ(1, 2) + φ∆κ(N
(1)
t0 VY (1, 1)−N (1)

t0 N
(2)
t0 VY (1, 2)) +N

(1)
t0+1VY (1, 1)

−N (1)
t0+1N

(2)
t0+1VY (1, 2),

S4(2, 2) = VZ(2, 2) +N
(1)
t0+1VY (1, 1)− 2N

(1)
t0+1N

(2)
t0+1VY (1, 2) +N

(2)
t0+1VY (2, 2),

+φ2
∆κ

(N
(1)
t0 VY (1, 1)− 2N

(1)
t0 N

(2)
t0 VY (1, 2) +N

(2)
t0 VY (2, 2)).

We can then calculate f2 using the following formula:

f2 ((ξt0 , ςt0)
′)

=
1∑

ij=0,j=1,...,4

f4

(
(ξt0 , ςt0)

′|N (1)
t0 = i1, N

(2)
t0 = i2, N

(1)
t0+1 = i3, N

(2)
t0+1 = i4

)
Pr(N

(1)
t0 = i1, N

(2)
t0 = i2) Pr(N

(1)
t0+1 = i3, N

(2)
t0+1 = i4).

Finally, with the expressions for f1 and f2, we can calculate the log-likelihood

straightforwardly.
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