
Atomic Force Microscopy Study of

Model Lipid Monolayers

by

Tamara Rozina

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Science

in

Physics

Waterloo, Ontario, Canada, 2012

c© Tamara Rozina 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder that is prevalent among the

elderly population. Aβ protein has been heavily implicated in the pathogenesis of AD.

This protein in its fibrillar form is a major component in the senile plaques that form on

neuronal cellular membranes during the course of AD. Despite substantial efforts the exact

mechanism of Aβ toxicity towards a cell membrane is not well-understood. The determina-

tion of this mechanism, however, is of utmost importance, since the membrane presents the

first site of Aβ interaction with neurons, which in turn maybe the origin of Aβ neurotoxic-

ity. The purpose of this study was to find a lipid composition that can be used as a model

of neuronal membrane for subsequent studies of the role of topographical heterogeneity

(domain formation) on Aβ-membrane interaction as related to AD. The lipids used in

the study were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphoglycerol (POPG), cholesterol (Chol), sphingomyelin (SM) and

ganglioside GM1 (GM1). These lipids were combined in different proportions and deposited

on a mica substrate to form supported monolayers. They were then imaged with an atomic

force microscope (AFM) to determine if any of them exhibited domain formation. Three

of the studied samples: POPC/POPG/SM 40:40:20 +5%Chol, POPC/SM/Chol 75:20:5

and POPC/SM/GM1/Chol 74:2:1:23 were found to possess interesting topography, rich in

structural features: pores and domains. The average height difference between the domain

features for each sample was found to be 0.58 ± 0.15 nm, 0.61 ± 0.12 nm and 0.27 ± 0.07

nm.
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Chapter 1

Introduction: Amyloid β Protein in Alzheimer’s

Disease

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder that is the most com-

mon form of dementia[1–9]. AD is mostly prevalent among the elderly population[6, 7, 9].

Reports show that 37 million people worldwide are affected by this disorder[7, 10]. Pa-

tients suffering from AD exhibit severe memory loss and mental degradation[2, 6, 8, 9, 11].

It has been shown that the clinical impairment in AD correlates with an early synaptic

dysfunction[12].The dysfunction is then followed by more severe neuronal changes, in-

cluding increased synaptic loss, widespread neuritic dystrophy, intracellular neurofibrillary

tangles, extracellular neuritic (senile) plaques, and neuronal death[5–10, 12, 13]. Previous

studies have shown that the general feature in the cellular pathology of AD is the distur-

bance of membrane-related events. The abnormalities in the cellular membrane structure

and function include changes in brain phospholipid metabolism, disordering of cortical

myelin and alterations in the molecular dynamics of hippocampal membranes[13].

The senile plaques, mentioned above, are believed to be one of the central hallmarks of

the AD pathology[2, 5, 12, 14]. It is widely accepted that the major component of these

plaques is the amyloid β-peptide (Aβ)[2–8, 10–19]. It has been shown that the sites in the

brain of AD patients where neurodegeneration has occurred are associated with increased
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Aβ deposits[15]. This observed correlation between AD pathology and Aβ presence has led

to formation of the so-called “Aβ hypothesis”, which states that formation of the toxic Aβ

along with its excess deposition is the early step in the pathogenesis of AD that triggers

its characteristic neurodegenerative changes[3, 5, 15].

The Aβ peptide is composed of 39-42 amino acid residues[1, 3, 4, 7, 8, 13, 14, 17,

18, 20]. An example of amino acid sequence for Aβ that has 42 residues is shown in

Figure 1.1. Aβ originates naturally from cleavage of the larger transmembrane protein

known as amyloid precursor protein (APP)[1–8, 11–16, 18, 20, 21]. Aβ is an amphiphilic

peptide having a hydrophilic and a hydrophobic part. The hydrophilic part corresponds to

the extracellular part of APP, while the hydrophobic part forms from APP’s membrane-

spanning domain[4, 5, 21]. There are two forms in which Aβ can exist: soluble and

fibrillar[13]. The soluble form of Aβ is a part of normal product of APP cleavage. It is

present in nanomolar concentrations in the cerebrospinal fluid and blood circulation under

physiological conditions in healthy individuals and AD patients[12, 13, 22]. On the other

hand, the insoluble Aβ fibrils are the main constituents found in the AD senile plaques[8, 13,

14]. In vitro studies have shown that formation of Aβ fibrils requires concentration of the

soluble Aβ to be 4-5 orders of magnitude greater than the physiological concentration[14,

22, 23], although lower concetrations could be required for in vivo fibril formation[23]. It

has been suggested that the conversion of soluble Aβ into its fibrillar form is a critical step

in the onset of AD[15].

The soluble Aβ exists in α-helical form, while the insoluble Aβ is rich in β-sheet

structures[3, 5, 8, 11, 14, 22, 24]. Formation of the β-sheets results from mis-folding of

the α-helices. Unfortunately, causes for this mis-folding remain unknown[11]. The conver-

sion process of the α-helical Aβ into fibrils involves formation of intermediate nonfibrillar

oligomers. Current evidence suggests that these oligomers are even more toxic than the

Aβ fibrils they mature into[1, 5, 8, 11, 14].

Figure 1.1 summarizes the above information regarding the origin of Aβ and its struc-

tural conversion from an α-helix to a β-sheet. The figure shows APP being cleaved by

the enzymes β- and γ-secretases[1, 4, 5, 20, 25]. The β-secretase enzyme is responsible for
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production of the hydrophilic part of the Aβ protein, while the γ-secretase produces the

hydrophobic part[1, 5]. The amyloidogenic processing of APP results in a normal soluble

form of Aβ which then mis-folds into the β-sheets[26]. It has been shown that lipid raft

sections of cell membrane tend to be the binding sites for Aβ and its subsequent aggre-

gation into fibrils[2, 5, 10, 22, 27]. The current hypothesis is that the Aβ fibril formation

is a nucleation-dependent polymerization mechanism in which the Aβ monomers assemble

into micelles (as a sort of ordered nuclei)[1, 5, 13, 14, 21]. Once the concentrations reach a

level that is above the critical micelle concentration the fibrils nucleate within the micelles.

The lipids that constitute lipid rafts act as the seed that initiates this polymerization[1, 5].

Figure 1.1: Formation and structural conversion of Aβ. Adapted from[5]. a) An exam-

ple of Aβ peptide that has 42 residues. b) The cleavage of APP by β- and γ-secretase

and subsequent production of soluble Aβ, which is later converted into insoluble β-sheet

structure. Here for illustrative purposes the micelle formation is not shown. Instead the

polymerization is shown taking place after one monomer acts as a seed.

The Aβ senile plaque formation is strongly associated with the cellular membrane

of neurons[11]. The leading hypothesis for molecular basis of Aβ toxicity states that

aggregated (fibrillar) Aβ interacts with the cell membrane and disassembles the lipid bilayer

structure, thus altering the physiochemical properties of the neuronal membranes[4, 5, 21].

However, the majority of research up to now has been focused on investigating the behavior

of Aβ in solution, therefore the exact mechanism of Aβ membrane interaction and toxicity
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is still unknown[1, 2, 4, 11, 21, 28]. Various studies conducted over the past several years

point to several ways in which Aβ is affecting the membrane. The most prominent effect of

Aβ appears to be the formation of ion channels[2–4, 11, 14, 17, 28]. These channels allow

uncontrolled flow of ions, mostly Ca+2, into the cell. This leads to excessive calcium influx

and disrupts the normal cellular calcium homeostasis, leading to cell death[10, 12, 14, 17,

24]. Other effects of Aβ on the cellular membrane include increased fluidity[1, 10, 11, 28],

induced thinning[11, 14, 16], reduced conductance[11, 12], and amyloid peptide channel

formation (or activation)[4, 10]. Aβ may also be responsible for generation of reactive

oxygen species (free radicals)[4, 5, 10, 22, 28]. Some of these effects are summarized in

Figure 1.2.

Figure 1.2: During conversion into its insoluble form, Aβ forms intermediate nonfibrillar

oligomers, which then aggregate to form the Aβ fibrils implicated in AD. Aβ toxicity has

been shown to manifest itself in various ways: I) altering signal transduction, II) causing

pore and free radical formation, and III) ion-channel formation[10].

Despite all the recent efforts, the exact mechanism of Aβ toxicity towards a cell mem-

brane is not well-understood[9]. The determination of this mechanism, however, is of

utmost importance, since the membrane presents the first site of Aβ interaction with neu-

rons, which in turn maybe be the origin of Aβ neurotoxicity. Knowing how Aβ behaves can

be of great future benefit, since analogous amyloidogenic proteins have been implicated not

only in AD, but also in Parkinson’s disease, type 2 diabetes, and prion disease[14, 24, 27].
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A good place to begin the study of Aβ-membrane behavior is to consider Aβ interaction

with a well-defined model system that mimics the neuronal membrane[1, 2, 4].

In this work I present the results of a preliminary study of several lipid monolayers. The

purpose of the study was to use atomic force microscopy imaging to find a lipid composition

that can be used as a model of neuronal membrane for subsequent studies of Aβ interaction

as related to AD.

In my research I was looking for a model membrane that would possess heterogeneous

topography, i.e. exhibit structural domains, while incorporating the lipids most commonly

found in neuronal membranes. The existence of domains was crucial, since we would like to

later test a hypothesis that the membrane heterogeneity plays an important role in binding

and fibrillization of Aβ. I was also looking for such a model that could illustrate if there is

a difference in topography of a healthy membrane and a membrane affected by AD. The

hypothesis being that a healthy membrane will have a smooth topography with smaller

domains, which will get bigger and more prominent in a diseased membrane.
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Chapter 2

Theoretical Background

Experimental studies of lipid membranes generally have three main components associated

with them: membrane of choice, sample preparation and sample imaging or analysis[3, 4,

12, 21, 22, 28]. In this chapter I will outline the theoretical background behind these com-

ponents as it pertains to my project. I will give an introduction to biological membranes,

the theory behind Langmuir-Blodgett deposition technique, as well as the theory behind

atomic force microscopy.

2.1 Introduction to Biological Membranes

The cellular (or biological) membrane is the “envelope” that surrounds every cell and, in

the case of eukariotic cells, the organelles inside. The main functions of the membrane

include defense against harmful species, molecular transport to and from the cell, chemi-

cal signaling to neighboring cells and interior organelles, cellular adhesion, and structure

maintaining[29–33].

2.1.1 Phospholipid Bilayer

The membrane exists in a form of a bilayer - two layers of molecules. The molecules

making up the bilayer are called lipids. The major class of membrane lipids is known
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as phospholipids[34]. They are a type of complex lipids that consist of a polar head

group joined to a phosphate, which in turn is attached via a glycerol molecule to two

hydrocarbon (fatty acid) chain tails[29, 32, 35]. The structure of a phospholipid is given

in Figure 2.1. The head group of a phospholipid is polar, hence hydrophilic, while the two

tails are nonpolar, hence hydrophobic. Therefore phospholipids are classified as amphiphilic

molecules, i.e. molecules possessing both hydrophilic and hydrophobic parts.

Figure 2.1: A space-filling and schematic diagram of a phospholipid[36]. The hydrocarbon

tails are attached to the phosphate headgroup.

When in a solution, such as the physiological conditions for cells and organelles, phos-

pholipids spontaneously form the bilayer membrane in the process know as hydrophobicity-

driven self-assembly[24, 29]. Due to their amphiphilic nature the molecules have a specific

orientation in the bilayer - the hydrophobic tails are pointing inward and the hydrophilic

heads outward facing the extracellular fluid. This orientation is shown in Figure 2.2.

A useful concept for visualizing some of the characteristics of the bilayer is its lateral

pressure profile, an example of which is given in Figure 2.3. Such a profile illustrates

the forces parallel to the plane of the lipid membrane as a function of distance from the

centre of the bilayer[24]. There are three forces shown in the profile (Figure 2.3): (i)
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a steric repulsion between the lipid headgroups, (ii) entropic repulsion due to thermal

motion of the phospholipid tails inside the bilayer, (iii) the cohesive force arising from

the interfacial tension due to the hydrophobic effect[24]. Naturally, when the system is

stable (in equilibrium), the net force acting on it is zero. This is achieved by having

the interfacial tension balanced by the combination of the headgroup and chain repulsion.

Therefore, at equilibrium the membrane is tension free. The packing density of the lipids

then correspond to an equilibrium lateral pressure, a value of 30-35 mN/m for biological

membranes[24, 28, 37, 38].

Figure 2.2: The assembled phospholipid bilayer with the tails on the inside and heads on

the outside[39]. The entire bilayer acts as a two-dimensional liquid[40].

There are many different phospholipids that can make up the bilayer membrane. They

are defined by the nature of the polar group attached to the phosphate. For example,

phosphatidylcholine has a choline head group, and phosphatidyllethanolamine has an

ethanolamine head group. The head group nature affects the interactions between the

membrane and other molecules[35]. The degree of saturation of the hydrocarbon chains of

the tails can also vary between different phospholipids. For example, dipalmitoylphospho-

choline (DPPC) has no double bonds on the two hydrocarbon tails[41] and dioleoylphos-

phocholine (DOPC) has a double bond on each of its hydrocarbon chains[42]. The degree of

saturation determines if the tails are “straight” (no double bonds) or “bent” (some double
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bonds) which has a direct effect on the fluidity and packing density of the membrane[35].

It is important to note that, since there is a wide variety of phospholipids, the composition

of the inner and outer leaflet of the membrane is not necessarily the same[35].

Figure 2.3: An example of a lateral pressure profile for a phospholipid bilayer[24]. The

graph illustrates the forces that are parallel to the plane of the lipid membrane as a function

of distance from the bilayer center.

2.1.2 Fluid Mosaic Model and Lipid Rafts

The Fluid mosaic model is the current model for the membrane structure. It was proposed

by Singer and Nicolson in 1972[7, 10, 30, 32]. In this model the membrane is treated as a

two-dimensional liquid formed by the phospholipid bilayer with globular proteins floating

in it. The proteins that span the entire membrane and in some cases project on one or both

sides of it are known as integral proteins. The proteins that are attached to one side of the

bilayer are known as peripheral proteins[30, 32]. The model is illustrated in Figure 2.4.

The integral proteins form channels for passage of specific molecules under specific

conditions. They also form receptors whose function is to sense exterior conditions and ion

pumps that pull certain ions across the membrane. The peripheral proteins communicate

information from the receptors to the interior of the cell[29, 32, 33].
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Figure 2.4: A graphical representation of the fluid mosaic model of cell membranes.

Adapted from [43].

The fluid mosaic model, although still preferred by most scientist, does not allocate any

functional significance to physical heterogeneities in the lipid organization[31]. These het-

erogeneities result from both lipid-lipid and lipid-protein interactions and tend to manifest

dynamic fluctuations on different time scales (i.e. both long and short term heterogeneities

are possible)[24]. In 1997, Simon and Ikonen proposed the “lipid raft” hypothesis that

can complement the fluid mosaic model[38, 44, 45]. Lipid rafts are structural dynamic

microdomains in the membrane that are enriched in cholesterol and glycosphingolipids

(especially sphingomyelin)[2, 6, 7, 10, 27, 37, 38, 40, 45–50]. The rafts are characterized

by tight packing of lipid acyl chains but high mobility of the individual lipids[37, 51]. The

ordered phases a bilayer can exhibit are classified by conformational degrees of freedom of

the hydrocarbon chains. In the absence of cholesterol, the bilayer may exist in two phases:

the gel at low temperature and the liquid disordered (Ld) state at high temperature[10].

The latter is the state that is found in physiological conditions[10, 31]. Increasing amounts

of cholesterol cause the formation of a third state: liquid-ordered (Lo), which can be

thought of as an intermediate state between the Ld phase and the gel phase[10]. This

new phase effectively creates the so-called raft surrounded by the bulk of the liquid disor-

dered state[7, 10, 27, 37, 52]. This is shown in Figure 2.5. The formation of the Lo due

to the presence of cholesterol can be explained by cholesterol’s flat and rigid molecular
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structure[40, 51], as shown in Figure 3.1. This structure is able to impose conformational

ordering on tail chains of a neighboring phospholipid, without causing a corresponding

reduction of the translational mobility of the lipid[7, 10, 24, 40].

Figure 2.5: Diagram of the lipid raft model. Adapted form [10]. The presence of cholesterol

induces the transition from the liquid disordered (Ld) to the liquid-ordered (Lo) phase.

Sphingomyelin is not shown here, although it is usually also present in lipid rafts.

Lipid rafts are still an area of active study[40, 50, 53–57], since they have been im-

plicated in a number of important membrane functions. Theses function include: sig-

nal transduction[2, 21, 27, 31, 44, 52, 58, 59], sorting of proteins and other membrane

components[21, 31, 44, 52, 59], protein trafficking[2, 21, 27, 52], membrane fusion[58], and

virus release[31, 58]. It was also shown that lipid rafts are the binding and transport sites

for several pathogens and toxins, such as HIV-1[8, 27, 31, 52, 59]. In addition, as was

mentioned in Chapter 1, lipid rafts appear to play a role in the toxicity mechanism of the

Aβ protein[2, 5, 10, 22, 27] and, as such, are important to the research of the pathogenesis

of Alzheimer’s disease.
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2.1.3 Membrane Composition

The overall composition of the membrane has three components: lipids, proteins and

carbohydrates. On average, lipids are the most prominent one, constituting approximately

50% of the membrane[60]. The second largest component is proteins (45%), leaving 5%

for carbohydrates[60–62]. In a eukaryotic membrane (eg. rat[61], mice[49], human[63])

there are three principal types of lipids: phospholipids (eg. DPPC, POPC, etc.), sterols

(eg. cholesterol) and sphingolipids (eg. sphingomyelin)[60]. Phospholipids have the highest

relative molar concentration: 40-60%[10, 60]. Sterols, mainly cholesterol, are a close second

with a concentration of 30-40%, which leaves sphingolipids with 10-20%[10, 60]. An average

eukariotic cell can be expected to contain on the order of tens of thousands of different

phospholipids, with different types of cell and cellular organelles having their own specific

composition. These compositions are highly dynamic and tend to adapt on different time

scales to both physiological and pathological changes happening in the organism[24].

The cell type that is most relevant to my research project and to subsequent studies

related to Alzheimer’s disease is the neuron. However, the exact composition of neu-

ronal cell membrane remains undetermined, largely because neurons are also divided

into a diverse array of classes and types[61, 63, 64]. The available information shows

that in general the neuronal membrane at least contains phosphatidylcholine (PC), phos-

phatidylethanolamine (PE), cholesterol, sphingomyelin, gangliosides, and different proteins

in various proportions[6, 8, 49, 60, 61, 63].

2.1.4 Model Membrane

Since cellular membranes are not only structurally complex, but also differ from each

other in several aspects that relate to their composition, it is very common to use models

to study them[14]. These model membranes are artificially created to be structurally and

compositionally simpler than real ones. The distinct advantage of model membranes is

that they allow for systematic manipulation of the chemical composition and monitor the

effects on structure, fluidity, etc[14]. Naturally, the models lack the complexity of biological
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membranes, since they don’t usually incorporate integral membrane proteins and polysac-

charides, althought it is possible to do so[65]. This leads to the main disadvantage of using

models: the impossibility of discovering the complete picture of the biochemical processes

(for example, of Aβ interaction with the membrane). However, the model membranes are

very useful tools in providing a platform for hypotheses that can later be tested in more

rigorous biological settings[14].

The model membrane systems are generally unilamellar vesicles (small, large or giant),

monolayers or bilayers[10, 14, 40, 46, 52, 66]. In the context of my project, I am mostly

concerned with the lipid monolayers as models for cellular membrane of neurons. A model

lipid monolayer is a single row (layer) of molecules. A model monolayer has the advantages

of being simple and quick to prepare and manipulate. There are two common methods of

preparing synthetic monolayers (or bilayers, for that matter). The first method is to create

them in solution in form of vesicles which are then adsorbed onto a substrate for imaging.

The second method is called Langmuir-Blodgett deposition in which a substrate is dipped

into a monolayer (or bilayer) formed at the air-water interface. This method is discussed in

the following section. Lipid monolayers that have been adsorbed to a substrate are referred

to as supported monolayers[35].

2.2 Langmuir-Blodgett Deposition Technique

The Langmuir-Blodgett (LB) technique is among a number of methods used to deposit

an organic thin film (monolayer) on a solid substrate[67, 68]. It offers precise control

of the film thickness, homogeneous deposition over large areas, the possibility of creating

multilayer structures (e.g. bilayers) with varying layer composition, and, finally, the ability

of deposition on almost any solid substrate available[67].
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2.2.1 Langmuir Films

The term Langmuir film is used to describe a floating monolayer composed of surfactants

trapped between two phases (usually liquid and gas)[67, 68]. A surfactant is a surface active

agent that can reduce the surface tension at the interface between the two phases[40, 69].

The easiest way of demonstrating the surface chemistry behind Langmuir films is to

consider a water-air (liquid-gas) interface. The water molecules possess a certain degree of

attraction to each other (cohesion). In the bulk of water these interactions are balanced

by equal attractive forces in all directions. The molecules at the water surface (i.e. the

air-water interface), however, experience an imbalance: larger attraction towards the liquid

phase than the gas phase. This leads to a net attractive force in the direction of the bulk

of water, causing the air-water interface to minimize its area (contract). This is illustrated

in Figure 2.6. The net effect of the situation is the presence of free energy at the water

surface. The presence of this surface free energy (in J/m2) is essentially equivalent to water

surface having a line (or surface) tension (in N/m). Thus, surface tension can be described

as a measure of cohesive energy present at the interface[67].

Figure 2.6: A schematic illustration of the molecular interaction at the air-water interface

and in water bulk. It is clear that the attractive forces felt by the water molecules are

balanced in the bulk but not at the interface, causing the presence of free energy at the

water surface. Adapted from [67].

14



As was mentioned earlier, surfactants are capable of reducing the surface tension at

the interface by lowering the intermolecular attraction at the surface and increasing the

entropy[67]. Surfactants are amphiphilic molecules (e.g. phospholipids) - they have a hy-

drophobic tail group and a hydrophilic head group. A surfactant can be deposited at an

air-water interface by first dissolving it in non-aqueous volatile solvent. Once deposited

on the water surface, the solvent evaporates, leaving the surfactant behind[67–69]. Surfac-

tant’s amphiphilic nature is responsible for its orientation at the air-water interface: polar

hydrophilic head group is pulled into the water bulk and the nonpolar hydrophobic tail

(or tails) points up in the air[67, 68]. Sweeping a barrier over the water surface causes the

surfactant molecules to compress into an ordered monolayer, forming a Langmuir film[68].

This is shown in Figure 2.7.

Figure 2.7: A diagram showing the orientation of the surfactant molecules at the air-water

interface: the hydrophilic head is in the water and the hydrophobic tail is in the air.

Reducing the surface area available to the molecules using a movable barrier results in

formation of a compressed floating monolayer known as Langmuir film.

When surfactant is deposited on the water surface it spreads out to cover all the avail-

able area. If this area is large the distance between adjacent molecules is also large, which

means that their interactions between themselves are weak. In this case the monolayer

behaves as a two-dimensional gas and has little effect on the surface tension of water.

However, when the available area is reduced using the barriers, the surfactant molecules
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begin to have a repulsive effect on each other. This effect is a two-dimensional analogue

of pressure known as surface pressure, Π. The expression for surface pressure is given by

Equation 2.1[32, 67–69],

Π = γo − γ (2.1)

where γo is the surface tension without the surfactant and γ is the surface tension with the

surfactant present.

2.2.2 Langmuir-Blodgett Trough

The Langmuir-Blodgett (LB) trough, also known as the LB surface balance[32, 67], consists

of a trough, a movable barrier (or barriers) and a pressure sensor. A schematic diagram

of a generic LB trough is given in Figure 2.8. The trough usually contains an aqueous

subphase (water-based or pure water), onto which the surfactant is deposited to form a

monolayer. The surface area of the trough can be varied using the movable barriers.

Figure 2.8: A schematic diagram of a generic Langmuir-Blodgett trough. The subphase

with the surfactant monolayer is contained in a trough. The movable barriers allow for

control of surface area covered by the monolayer. The pressure sensor uses a Wilhelmy

plate to monitor the surface pressure (reduction in surface tension[68]). Adapted from [67].
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The surface pressure of the monolayer is monitored using the pressure sensor equipped

with a Wilhelmy plate. The measurement of the pressure is obtained by determining the

force due to surface tension on a plate suspended above and partially immersed in the

subphase. The force is then converted into surface tension using the dimensions of the

plate[67, 68]. The plate can be made of a variety of material, such as chromatography

paper, glass, quartz, platinum, or mica[67, 68]. Figure 2.9 shows the dimensions (width w,

length l, thickness t) of a plate partially immersed to a depth h.

Figure 2.9: The Wilhelmy plate partially immersed in the subphase[67]. The plate has

width w, length l, thickness t and is immersed in water to a depth h. The angle θ represents

the liquid-to-plate contact angle.

The forces acting on the plate consist of gravity, upthrust (buoyancy) and surface

tension (downward)[67, 68]. Let ρp be the density of the plate material and ρL - the

density of the liquid subphase. Let θ be the contact angle of liquid to plate, as shown

in Figure 2.9. Then the expression for net force on the plate in the downward direction

is[67, 68]:

F = (ρplwt)g + 2γL(t+ w)cosθ − (ρLtwh) (2.2)

where g is the acceleration due to gravity and γL is the surface tension of the liquid. The

first term in Equation 2.2 represents the gravitational pull on the plate, the second term
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is the downward acting surface tension and the third term is the upthrust that pushes

the plate up. The pressure is usually zeroed prior to start of any experiment, thereby

eliminating the gravity term. The upthrust is eliminated by keeping the plate at constant

level by the pressure sensor, regardless of the value of the surface tension. When paper

plates (e.g. chromatography paper) are used, they become completely wetted after some

time, resulting in the contact angle of 0o[67, 68]. Therefore, Equation 2.2 reduces to:

F = 2γL(t+ w) (2.3)

Preforming a very simple rearrangement of Equation 2.3 gives the expression for surface

tension:

γL = F/2(t+ w) (2.4)

As was mentioned in the previous section, the surface pressure is equal to the change

in surface tension that results from addition of a surfactant (Equation 2.1.). Therefore,

the value of the surface pressure is obtained from the change in γL once the surfactant is

introduced onto the subphase.

Surface pressure monitoring is very important during a deposition process. The LB

trough can be used to create highly organized multilayers of the surfactant. This is accom-

plished by successive dipping of a solid substrate up and down through the Langmuir film

(floating monolayer) while simultaneously keeping the surface pressure constant through

a computer controlled feedback loop[67, 68]. During this process the floating monolayer

is adsorbed to the solid substrate forming a structure known as Langmuir-Blodgett film.

Depending on the number of times the substrate is dipped into the subphase, the produced

LB films can be as many as hundreds of layers thick[67].

The solid substrate used for deposition can be hydrophobic or hydrophilic. For a

hydrophobic substrate the first layer is deposited by lowering it into the subphase through

the monolayer, such that the tails of the surfactant will adhere to the substrate (refer to

Figure 2.7 for surfactant orientation at the interface). In the case of a hydrophilic substrate,
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the first layer is deposited by raising it from the subphase through the monolayer, such that

the surfactant heads adsorb on it, leaving the tails pointing in the air. For the purposes of

my project, it is the latter case that I’m concerned with: the deposition of a single layer

of surfactant onto a hydrophilic substrate (mica). The process is shown in Figure 2.10:

first the substrate is lowered into the subphase, then the surfactant is introduced, then the

substrate is raised through the surfactant monolayer.

Figure 2.10: Schematic diagram of deposition of surfactant molecules onto a hydrophilic

solid substrate (such as mica) to form a monolayer. a) First, the substrate is lowered into

the subphase. b) The surfactant molecules are then introduced onto the subphase. c) The

movable barriers are used to maintain a constant deposition surface pressure. The substrate

is slowly raised out of the subphase. As the substrate passes through the monolayer, the

heads of surfactant molecules adsorb onto it leaving tails pointing into the air. A thin layer

of water (not shown here) usually remains trapped between the hydrophilic substrate and

the headgroup.

2.2.3 Pressure-Area Isotherms

Aside from monolayer deposition, the LB trough can be used to study monolayer charac-

teristics on a subphase surface using a pressure-area isotherm (where “pressure” refers to

surface pressure, as defined in Equation 2.1). This isotherm shows the changes in surface

tension that take place during a monolayer compression[68]. As was already mentioned in
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the previous section, the change in the surface tension is equivalent to the surface pressure.

A pressure-area isotherm is collected at constant temperature (hence, the name “isotherm”)

by compressing the surfactant monolayer film using the movable barriers at a constant

rate, while continuously monitoring the surface pressure by means of the Wilhelmy plate

balance[67–69]. The shape of the isotherm is a unique characteristic of the surfactant

molecules[32, 68, 69]. A schematic pressure-area isotherm is shown in Figure 2.11. The

distinct regions on the isotherm are the phases that the monolayer exhibits during com-

pression. The exact phase behaviour of a given surfactant depends on its physical and

chemical properties, as well as, subphase temperature and composition[67].

Figure 2.11: A schematic diagram of a pressure-area isotherm. The distinct regions rep-

resent the phases that the surfactant monolayer exhibits during compression: Gas: a-b,

Liquid: b-c, Solid: c-d. The orientation of monolayer molecules is shown for each corre-

sponding phase. The highest pressure to which the monolayer can be compressed before it

collapses is designated as πc. Adapted form [66–68].
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On average, the pressure-area isotherms of various surfactants consist of three distinct

regions: gas, liquid and solid region (see Figure 2.11). After the initial spreading of surfac-

tant onto the subphase, before any compression was done, no external pressure is applied

to the monolayers. Therefore, the molecules behave as a two-dimensional ideal gas[68, 69].

During compression some ordering is imposed on the molecules causing them to undergo

a phase transition from gas to liquid (two-dimensional). Continued compression increases

the density of the monolayer until it reaches the solid phase. If the monolayer is further

compressed after reaching the solid phase, it will collapse into a three dimensional struc-

ture. The collapse occurs when the exerted force (from the compression barriers) becomes

too great causing molecules to be ejected from the plane of the monolayer into either the

subphase or the air[68]. The highest pressure to which a monolayer can be compressed

without a detectable movement of the molecules in the Langmuir film to form a new phase

is known as the collapse pressure, πc [32, 66–69]. The magnitude of the πc is related to the

nature of the surfactant and it’s interaction with the subphase[66].

2.3 Atomic Force Microscopy

The samples prepared using LB deposition technique can be studied using various methods.

The method that I used in my project is atomic force microscopy. Since learning how to

operate such a microscope was by far the biggest challenge I had faced, I will elaborate on

its operational principles in great detail.

Atomic force microscope (AFM) is an imaging technique which is able to achieve nano-

scale (atomic) resolution of surface structures of various samples[70]. The AFM was in-

vented in 1986 by Binning, Quate and Gerber[71–73]. In the original paper, Binnig et al.

(1986) presented AFM as a combination of the scanning tunneling microscope (STM) and

the stylus profilometer that can be used to study conductors and insulators on an atomic

scale. The principle of AFM operation, as explained by Binnig et al. (1986) is shown

in Figure 2.12. A cantilever with a sharp tip at the end is at the heart of the AFM. It

moves over the sample surface in a raster (line-by-line) scan pattern and bends in response
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to the force of interaction between the tip and the surface. This vertical bending of the

cantilever is then translated into information about the sample topography[72, 74]. Since

1986 AFM has evolved into a highly versatile and very popular scientific tool. Some of the

characteristics of modern AFMs include high force sensitivity (ability to measure forces

in the pico-Newton range[70, 74]), high positioning accuracy (on the order of 0.01nm[70])

and the ability to provide 3D images of unprecedented resolution[74, 75].

AFM can be used to investigate virtually any sample surface (insulating, non-conducting

or conducting[70]) of interest[76]. One of the main benefits of AFM that makes it a

very popular tool for various biological studies is that the sample does not require ex-

tensive preparations - there is no need for sample dehydration, embedding, metal coat-

ing, etc[77]. Another attraction of AFM is that samples can be studied under their

physiological conditions[70]: in air, in liquid or gas environments over a wide range of

temperatures[78, 79].

Figure 2.12: The adapted illustration of the basic principle of operation of an AFM as was

presented by Binnig et al. (1986) in their original paper. The sharp tip is moved along

the contour B in such a way as to maintain a constant force of interaction between the tip

and the sample[71].

As was already mentioned above, in an AFM the probing tip is attached to a cantilever.

The attractive and repulsive forces between the tip and sample surface cause the cantilever

to bend (deflect away or towards the surface), as shown in Figure 2.13. The images are

created by scanning either the tip or the surface[35] in an x- and y-direction. The deflection
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of the cantilever (observed with a detector) as a function of the lateral (x,y) position is

then digitized to produce the image[80]. The sample itself is mounted on a scanner that

regulates it’s 3D positioning with high precision[74]. A feedback system is used to monitor

the cantilever response and make the necessary adjustments depending on the imaging

mode[81]. This basic outline of the principle of operation of an AFM is schematically

illustrated in Figure 2.14a. It is clear that the main components of an AFM setup are

the scanner, the detector, the cantilever, and the tip[73, 74]. The sample holders are

important depending on the type of imaging environment required: air/gas or liquid. The

function and properties of these components, as well as, operation modes of an AFM will

be elaborated on in the following sections.

Figure 2.13: The interaction forces between the tip and the sample surface cause the

cantilever deflection. This deflection is measured and used to form a 3D image of the

sample[81].

The actual AFM setup is fairly compact. It requires a connection to an electronic con-

troller, a computer and two screens (usually). The latter enables simultaneous monitoring

of sample image and experimental parameters[82]. An example of such a setup is shown

in Figure 2.14b.
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a) b)

Figure 2.14: The AFM setup. a) Schematic representation of the basic principle operation

of an AFM. The probe tip is mounted on the cantilever. The sample is mounted on the

piezo scanner. The deflection sensor (detector) monitors cantilever deflections caused by

the tip-sample interaction force. The feedback loop can be used to keep the deflection

constant if necessary[80]. b) An example of an AFM setup. The electronic controller is not

shown. The AFM depicted in this picture is a JPK instruments NanoWizard AFM that

has an inverted optical microscope integrated into the setup[83].

2.3.1 AFM Components: Scanner

The sample position in an AFM is controlled by the piezoelectric scanner that moves the

sample in three dimensions (x,y,z) with respect to the cantilever. Alternatively, in some

AFMs it is the cantilever, instead of the sample, that is mounted on the scanner[35, 73].

In both cases, the scanner is made from piezoelectric material. As the name suggests,

this material relies on piezoelectric effect - generation of a potential difference across the

opposite faces of certain ceramics or crystals as a result of applied mechanical stress.

In an AFM, a potential difference is applied to the scanner material that results in its

elongation or contraction (depending on the voltage polarity)[35, 84]. This effect is shown

in Figure 2.15.
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Figure 2.15: The effect of applied voltage on piezoelectric material[84].

Modern AFMs use so-called piezo tubes that are constructed by combining indepen-

dently operated piezo electrodes for each of the 3 dimensions[84], as shown in Figure 2.16a.

The tube is moved in the z-direction by applying a voltage between the inner and all the

outer electrodes to induce contraction or elongation. Applying a voltage to just one of the

outer electrodes induces bending of the tube, i.e. the movement in the x- and y-direction.

It is this motion in (x,y) that produces the raster scan pattern (Figure 2.16b).

a) b)

Figure 2.16: a) Schematic representation of a piezo tube scanner with the x-y-z configu-

rations. b) Piezo movement during a raster scan. The scan pattern is produced due to

application of voltage to the x- and y-axes[84].

2.3.2 AFM Components: Detector

As was already mentioned, the first detection technique used by Binnig et al (1986) was

based on electron tunneling[71, 80]. Since then a number of other detection methods have
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been developed[35, 80]. The optical beam deflection (OBD) is the detection method that

is most commonly used in modern AFMs[73, 78, 84–86]. In the OBD a light from a laser

source is reflected off the back of the cantilever and is directed into a position sensitive

detector (PSD). The PSD is usually a photodiode - a semiconductor device which turns

light incident on it into an electrical signal (the brighter the incident light - the higher the

electrical current)[35]. Changes in the laser beam reflection angle result from the cantilever

deflection and cause the beam to fall on different parts of the photodiode. The principle

of OBD is shown in Figure 2.17a.

a) b)

Figure 2.17: Optical Beam Deflection (OBD) Detector. The laser beam is reflected from

the back of the cantilever and onto a photodector. a) Graphical representation of OBD.

b) Schematic representation of OBD[81].

The photodiode is sometimes made of two quadrants, but most of the current AFMs

have a four-quadrant photodiode[81] (Figur 2.17b). The deflection signal equation in Fig-

ure 2.17b represents the direct measurement of the vertical deflection of the cantilever: the

difference between “top” (A+B) and“bottom” (C+D) intensities divided by the total in-

tensity (A+B+C+D)[80, 81]. The vertical deflection is the measure of the interaction force

between the tip and the sample surface. The lateral deflection (twisting) of the cantilever

represents the frictional force acting on the tip and can be calculated in a similar manner

by comparing the “right” (B+D) and “left” (A+C) sides of the photodiode[81].

26



2.3.3 AFM Components: Cantilever and Tip

AFM cantilevers are usually made from silicon (Si) or silicon nitride (Si3Ni4), with alu-

minum or gold coating at the back for added reflectivity.

Figure 2.18: Scanning electron microscope image of AFM cantilevers. Two types of can-

tilever geometry (beam and V-shape) are clearly seen[87].

Cantilever dimensions range from 50 to 500 µm in length, 0.5 to 5 µm in thickness and

10 to 50 µm in width[75, 78, 81, 82]. Figure 2.18 shows an example of cantilever sizes and

geometries.

The behavior of the cantilever is usually modeled as a spring that obeys Hooke’s law[35,

70, 79, 81]:

F = −kx (2.5)

where F is the force acting on the cantilever tip, k is the spring constant and x is the

deflection of the cantilever. The negative sign indicates that force and deflection are acting

in opposite directions. Currently, there is a wide variety of cantilevers available with

spring constants ranging between 0.005 and 100N/m[81, 82, 84]. Some applications, such

as biological imaging, call for soft (low-k) cantilevers, while others require stiffer (high-k)

ones.

The tip is attached to the end of the cantilever (Figure 2.19) , but since it is only a few

(∼3 µm) microns long and often less than 10nm in diameter[75], it cannot be seen without

a microscope. The tip is usually made of the same material as the cantilever.
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Figure 2.19: The AFM tip. The cantilever is mounted on a chip (of the same material).

The tip is located at the cantilever end. Adapted from [88].

The shape of the tip can have a significant effect on the acquired imaged. This is

illustrated in Figure 2.20. It is important to note that the image will always be a convolu-

tion between the sample surface topography and tip geometry[35, 81]. The tip might also

become contaminated or chipped over time, which will also affect the resultant image.

Figure 2.20: The effect of the tip shape on the resultant image. Note that none of the tips

produce the exact image of the rectangular step on the sample surface[81].

2.3.4 AFM Components: Sample Holders

The little sample preparation that is required for an AFM study involves, among other

things, mounting the sample to be imaged. When imaging in air, some samples can be

simply attached to a small metal disk with double sided conducting adhesive tape[35].

However, in biological applications of AFM the samples cannot be simply taped to the

base of the microscope. In imaging biological samples it is customary to deposit them onto

a solid substrate or use liquid cells (when imaging in liquid is required).
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There are a few requirements that the substrate has to meet to be “eligible” for sample

deposition. It must have an appropriate affinity for the sample - allowing adsorption,

but keeping the sample partially functional at the surface[86]. The substrate should be

relatively smooth at the atomic level, so as not to interfere with the topography of the

sample[82]. The common substrates are glass, graphite and mica.

Glass has irregularities on the nanometer range, however, it is a good substrate for

imaging larger samples (e.g. cells) where a nanometer resolution is not required. It also

has the advantage of allowing cultures to grow directly on it. The cover slips require careful

cleaning to avoid contaminants. Glass has a negative charge in aqueous conditions[35, 82,

89].

Graphite is a nonpolar hydrophobic conducting substrate that consists of hexagonally

ordered carbon atoms[89]. It is a poor candidate for experiments with samples that are

deposited from aqueous solutions, since the sample will spread poorly on it. However,

graphite is still a very popular tool among biological researchers[35, 89, 90].

Mica is the most popular substrate used in AFM experiments[35, 86]. Mica consists of

thin, flat crystalline plates that can be cleaved using scotch tape[74]. It provides a surface

that is atomically flat over large (micron-scale) areas making it possible to achieve atomic

resolution[35, 90]. Mica has a polar surface that makes it highly hydrophilic[82, 89].

2.3.5 Modes of Operation: Contact

Modern AFMs have a number of operating modes that can be selected depending on

the experimenter’s needs. The contact mode, also known as the dc mode or constant-force

mode[86], is the original AFM imaging mode[78]. The cantilever tip and the sample surface

are brought into direct contact, while the surface is scanned by the tip[35, 73], as shown in

Figure 2.21. The force between the tip and the surface is held constant using a feedback

loop. The scanner moves vertically to maintain a constant “setpoint” cantilever deflection

as the surface topography changes[75, 84]. The “setpoint” is the measure of the desired

constant force that is chosen by the experimenter.

29



Figure 2.21: Contact mode of operation. The tip of the probe is in contact with the

sample surface. The height of the cantilever is adjusted to keep the deflection (i.e. the

force) constant[81].

The contact mode can be used in air and in liquid imaging environments[78, 84]. It

has the advantage of being simple to operate, however the resultant topographical image

is strongly influenced by the tip geometry. It is also not an ideal mode for studying soft

biological samples as it can be potentially damaging to the surface[81].

2.3.6 Modes of Operation: Tapping

The tapping mode, also called intermittent contact mode, was invented in 1993[73, 75, 86].

In this mode the surface is scanned by the tip attached to a cantilever that is being oscillated

at or near its resonance frequency[84]. The oscillation amplitude of the cantilever is high

(20-100nm[84, 91]), which causes the tip to bounce up and down (tap) on the surface

(see Figure 2.22)[35, 84]. The repulsive force experienced by the tip causes a reduction in

the oscillation amplitude[73]. The feedback loop detects the variation in amplitude and

corrects to constant “setpoint” value during the scan. The image is then produced by

mapping the vertical distance the scanner moves to maintain the constant amplitude at

each (x,y) point[78, 92]. Thus in the tapping mode the amplitude is altered due to the

tapping of the surface[91].
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Figure 2.22: The tapping mode of operation. The oscillating cantilever causes the tip to

gently bounce on the sample surface[81].

Tapping mode can be used in air and in liquid environments[78, 84]. It requires hard

(high force constant) cantilevers that are shorter and thicker and have a high resonant

frequency[81, 84]. Tapping mode is well suited for imaging delicate samples, since it has

the advantage of a much smaller lateral force (potentially damaging side-to-side pulling)

than present in contact mode[81].

2.3.7 Modes of Operation: Phase Imaging

The interaction between the tip and the surface depends not only on topography of the

sample but also on its mechanical characteristics (e.g. hardness, elasticity, etc.)[78]. During

imaging in tapping mode oscillation of the cantilever is being driven at some frequency.

However, when the tip strikes the surface it transfers a small amount of energy to it.

The exact amount of energy depends on the sample mechanical characteristics[35, 81].

This energy transfer causes a shift in the phase of cantilever oscillation as compared to

the driving signal[82]. Phase images are produced by recording this phase shift during

a tapping mode scan[78]. Phase imaging allows different areas to be distinguished on a

topographically flat surface, an example is given in Figure 2.23. The topographical imaging

with tapping mode and the phase imaging can be performed during the same scan[78].
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Figure 2.23: An example of the benefit of phase imaging. The topographical (height) image

does not show well defined features, probably due to very gentle variation of the height

that was not picked up by the topographical imaging. The phase image, however, shows

the sharply contrasting regions that could be detected by measuring the phase shift they

induced[81].

2.4 Fluorescence Microscopy

Fluorescence microscopy is another method that could be used to image supported monolayers[2,

12, 21, 37, 47]. In fluorescence microscopy, the images are obtained by attaching a fluores-

cent label (fluorophore[93]) to the sample and then measuring the distribution of fluores-

cence intensity within the illuminated area[32, 94]. Fluorophores are naturally fluorescent

chemical compounds that act as stains and can attach themselves to the sample. They

are excited by a specific wavelength of irradiating light and emit light of different (longer)

wavelength[93, 94]. In the fluorescent microscope, a filter is used to make sure that only

the emitted light reaches the eye (or a detector), resulting in the fluorescent structure being

superimposed with high contrast against a dark background.

Fluorescence imaging was part of my original research plan, however, after very careful

consideration it was decided not to include any fluorescence experiments into my project.

The plan was to use a fluorescently labeled sphingomyelin (SM) to visualize possible do-

mains (topographical features) formed in the sample. In order to prepare for this part

of the project, a literature search was performed which revealed several interesting points
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about the way SM behaves. The structure of SM is given in Figure 2.24.

Figure 2.24: General structure of sphingomyelin. The different types of sphingomyelin are

distinguished by the number of carbons in the Acyl residue (the R value). The figure is

adapted from [95].

When cholesterol (Chol) is present in the sample mixture, SM is located in the liquid-

order (Lo) phase domains[96–98], similar to lipid rafts (as was previously mentioned).

Bar et al. used a number of techniques to show that on its own SM tends to be in

gel phase at room temperature[99], a finding confirmed by other studies[96–98, 100, 101].

However, they also discovered that different types (depending on the R value) of SM exhibit

slightly different phase behavior (manifesting in different types of gel phase)[99]. It has

also been shown that SM resembles DPPC in its behavior, specifically showing similarities

in head group structure, chain length (R16-SM), transition temperature, and orientation

in bilayers[95, 102]. Figure 2.25 shows the structure of R18-SM (used in my project) and

DPPC for comparison.

The behavior of a fluorescently-labeled SM, however, appears to be different from pure

SM. Baumgart et al. conducted an extensive study of phase preferences of fluorescently

labeled species[103]. They demonstrated that Bodipy-labeled SM prefers the fluid phase.

In addition, they showed that, in general, when the label is attached to the carbon chain

(the tail) of a lipid, it will prefer to be in fluid phase[103]. They hypothesized that addition

of the label to the tail adds bulk to the structure, thus reducing the packing order of the

lipids. This hypothesis was confirmed by Shaw et al. when they showed that SM labeled
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with Bodipy and NBD prefers to be in fluid phase[101]. They demonstrated that addition

of a label reduces the affinity of the lipid for more ordered domains[101]. The phase altering

effect of fluorescent labels are not unique to SM. The studies mentioned here all caution

against using labels for experiments that depend on lipid phases, as the labeled species do

not retain the original phase characteristics of the pure ones[47, 96, 97, 101, 103, 104].

Figure 2.25: Structure of R18-SM vs structure of DPPC[41]. It has been shown that SM

and DPPC exhibit a number of behavioral similarities[95, 102].

These facts are very important in terms of relevance to my project. It was originally

decided to use Topfluor (a type of Bodipy[105]) to label SM in my samples. Topfluor

attaches to the tail of SM, which would most likely cause SM to be in fluid phase instead

of gel phase. This posed a problem for my project. The purpose of my study was to find

a combination of lipids, such that, while mimicking neuronal membrane composition, they

will produce a monolayer rich in topographical domains for further study with relation

to Aβ. The domains are produced due to the nature of phase behavior of the lipids. It

was expected that the presence of SM will encourage domain formation, which depends on

the phase of SM. Since fluorescent labeling appears to alter the domain-forming property

of lipids (namely, the phase), it was decided not to proceed with fluorescent microscopy

experiments.
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Chapter 3

Experimental Methods

3.1 Choice of Lipids

For the purposes of my project, I selected five lipids that seemed the most relevant to

mimicking neuronal membrane, as well as the studies of Aβ behavior and membrane het-

erogeneities due to domain formation. These lipids are: 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), choles-

terol (Chol), sphingomyelin (SM), and ganglioside GM1 (GM1). The structures of these

lipids are shown in Figure 3.1. I chose POPC because it appears to be the most common

lipid in neuronal membrane[106]. In addition, POPC was used in a number of studies

of lipid rafts and Aβ binding[3, 4, 21, 28, 48, 62, 107], which are both related to the fu-

ture applications of this project. I decided to include POPG in my samples, because it

has been shown that the presence of POPG in the sample leads to accelerated Aβ fibril

formation[14]. To my knowledge, POPG was not yet incorporated into any atomic force

microscopy studies of model lipid monolayers, however, several studies did use it with re-

lation to amyloidogenic peptide behavior[3, 14, 28]. The choice to include Chol into my

sample set is explained by the fact that Chol is one of the prominent components of neu-

ronal membranes[5, 8, 49, 60, 61, 63]. Additionally, it is one of the key components of lipids

rafts, the importance of which to Aβ fibrillization was detailed in the introductory Chapter
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1 and the theoretical Chapter 2. Chol has also been shown to strengthen the Aβ - mem-

brane interaction[5, 19]. Chol was used in a number of studies that looked into raft and

domain formation[22, 45, 51, 52, 107]. SM is the other key components in raft composition

and is also present in neuronal membrane[5, 6, 9, 49, 60, 61, 63, 108]. Several studies of

lipid rafts and Aβ behavior incorporate SM[22, 37, 38, 45, 46, 48, 52, 62, 107]. I chose to use

GM1 to represent the presence of gangliosides in neuronal membrane[6, 10, 49, 61]. GM1

in particular has been shown to promote binding of Aβ to the membrane[6, 8, 14, 27]. GM1

has also been used in modeling the composition of lipid rafts[44]. This particular ganglio-

side appears to be the most popular choice for investigations of Aβ behavior[1, 5, 21, 22].

It has been shown that GM1 in combination with Chol enhances the interaction between

Aβ and the membrane[5].

Table 3.1 summarizes the samples that I investigated during my project. The table

also lists the proportions (by weight) in which the lipids were combined and the references

on which the proportions were based.

3.2 Experimental Procedure

Three of the lipids used for the project, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), ganglioside GM1 (GM1)

were purchased from Avanti Polar Lipids (Alabaster, AL) in powder form. The other two

lipids, cholesterol (Chol) and sphingomyelin (SM) were purchased from Sigma-Aldrich (St.

Louis, MO), also in powder form. The lipids were dissolved in chloroform with 1 mg/mL

concentration. The sample mixtures where then prepared with the proportions given in

Table 3.1, by weight.

Samples with the model monolayers were prepared on a Langmuir-Blodgett trough

(NIMA 601M, Coventry, UK) using Milli-Q water as the subphase. The lipid solutions

in chloroform were spread on the subphase surface with a syringe. After 10 minutes the

solvent (chloroform) evaporated and the lipids had time to spread out on the surface. The

monolayers were compressed to the target pressure of 35 mN/m and deposited on a freshly
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cleaved mica using vertical deposition with the dipping speed of 10 mm/min. Prior to

deposition, pressure-area isotherms were collected for every sample mixture to ensure that

the collapse pressure exceeds the deposition target pressure, eliminating the possibility of

the monolayer collapse during deposition process.

AFM imaging was carried out on the JPK NanoWizard II (JPK Instruments AG, Ger-

many) mounted on Olympus 1X71 inverted optical microscope, as shown in Figure 2.14b,

in intermittent contact mode in air. Several tips were tried, with the best results given

by the silicone AIST-NT fpN11 tips (spring constant in 2.6-9.8 N/m range, resonant fre-

quency in 118-190 kHz range). Images (512×512 pixels) were scanned at a line rate of

0.5 Hz. Imaging parameters were optimized for the best possible quality, unique to each

sample. When not in use, all samples were stored in a glass desiccator in individual petri

dishes sealed with Parafilm.

Images were processed using JPK Data Processing software version spm-4.0.23 (JPK In-

struments AG, Germany). Images were leveled using the Linefit function of Degree 2 from

the software: each scan line was fitted with a polynomial fit, which was subsequently sub-

tracted from the data. This was done to correct for the “background” height changes[109].

Occasionally, the Remove Lines operation was used to replace streaks in the image with

the average between the neighboring scan lines. The streaks are usually caused by the tip

sticking and then pulling off the surface[109]. A Gaussian smoothing was performed using

the Low-pass function (Sigma: 1.000) in order to enhance the features on the images and

reduce the noise. Statistical data was obtained using the Cross-Section tool and collecting

100 measurements for pore depth and domain height. The average value and standard

deviation were then calculated.

Further statistical analysis of the images that exhibited pore formation was done using

SPIP software version 5.1.6 (Image Metrology). The images were leveled using Line-wise

correction option, where LMS fit method of order 2 was used. Sometimes specific cross-

sections were corrected to eliminate streaks between lines. The Histogram function was

then used to determine the height distributions of topographical features and the area (per-

centage) occupied by pores. A Gaussian smoothing with standard deviation of 1 was then
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performed to reduce the noise and enhance the features in the images[110]. Subsequently,

Particle and Pore Analysis function was used to detect pores and determine their length

and breadth (width). The step-by-step procedure outlined here is given in the Appendix.

Table 3.1: The list of samples under investigation during the course of the project. Included

are the references on which the sample compositions and proportions were based.

Sample Proportion Reference

POPC Pure (100% ) [3, 4, 21, 28, 60]

POPG Pure (100% ) [3, 14, 28]

POPC Pure+20% Chol [4, 5, 19, 60, 63]

POPG Pure+20% Chol [5, 19, 63]

POPC/POPG 60:40 [2, 3, 28]

POPC/POPG 60:40+5% Chol [3, 5, 19, 28, 63]

POPC/POPG 60:40+20% Chol [3, 5, 19, 28, 63]

POPC/POPG/SM 40:40:20 [3, 6, 63]

POPC/POPG/SM 40:40:20+5% Chol [3, 5, 6, 19, 63]

POPC/POPG/SM 40:40:20+20% Chol [3, 5, 6, 19, 63]

POPC/SM/Chol 75:2:23 [5, 6, 19, 33, 37, 38, 46, 48, 49, 52, 60,

62, 63, 107]

POPC/SM/Chol 75:20:5 [5, 9, 19, 37, 38, 46, 48, 52, 62, 63, 107,

108]

POPC/SM/GM1/Chol 74:2:1:23 [5, 6, 8, 10, 19, 21, 22, 27, 33, 38, 44,

61, 63]
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a) POPC b) POPG c) SM d) Chol

e) GM1

Figure 3.1: The structures of the lipids used in my project: a) POPC[111], b) POPG[112],

c) SM[113], d) Chol[114], and e) GM1[115].
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Chapter 4

Experimental Results and Discussion

4.1 Langmuir-Blodgett Experiment: Pressure-Area Isotherms

The purpose of collecting pressure-area isotherms is to determine if the collapse pressure for

sample monolayers is greater than the deposition pressure of 35 mN/m. If collapse pressure

exceeds the deposition pressure then the monolayer will collapse during the deposition

process. The deposition pressure of 35 mN/m was chosen because it corresponds to the

pressure found in natural lipid membranes, as was mention in Chapter 2. Therefore, the

isotherms are used to check if a given lipid combination can be used as a monolayer sample

for my project. Fortunately, all of the samples have a collapse pressure well above 35

mN/m. The collected isotherms are given in Figure 4.1.

A far more comprehensive isotherm for the purposes of studying properties of the

monolayers is a pressure-molecular area isotherm[68]. A molecular area isotherm is a

unique characteristic of the molecules making up the monolayer film, hence would be very

useful for the purposes of comparing my isotherms to those available in literature. However,

according to the manufacturer[116], it is impossible to construct such an isotherm for a

mixture of more than two lipids using the L-B trough available to us. If it was attempted,

then no real meaningful information could be extracted from it. Therefore, for the sake of

consistency, I decided to collect only pressure-area isotherms for all my samples.
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Figure 4.1: Pressure-area isotherms collected for the sample mixtures given in Table 3.1:

a) Control sample mixtures; b) POPC/POPG mixture with 5% and 20% Chol, c)

POPC/POPG/SM mixture with 5% and 20% Chol, d) POPC/SM/Chol in different pro-

portions with added GM1. Note that all the collapse pressures are well above 35 mN/m.

It appears that an addition of 20% Chol to POPC and POPG results in the isotherm

shifting, as seen in Figure 4.1a. The same trend is observed in Figure 4.1b, when 20%

Chol is added to a mixture of POPC/POPG. However, it is not seen for the case of

POPC/POPG/SM in Figure 4.1c. It seems that for both systems in Figure 4.1c and Fig-

ure 4.1d addition of Chol or changing quantity of other lipids does not have any significant

effect, resulting in isotherms that closely resemble each other.

In terms of literature comparison, I could not find any isotherms for mixtures of the
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same composition as my samples. The isotherms available for pure POPC and POPG

all confirm that the collapse pressure of these lipids is well above 35 mN/m[117–121].

Note that the bump, which is not seen in literature[118, 119], in the POPG isotherm in

Figure 4.1a is most likely due to leakage of the trough, rather than to anomalous behavior

of the lipid. The isotherms available for the mixture of POPC/SM/Chol confirm the trend

seen in Figure 4.1d, that changing the amount of SM and Chol and adding GM1 does

not have a significant effect on the shape of the isotherms[122]. However, it is difficult to

draw any more concrete comparison since the proportions of lipids used in [122] are very

different than those in this project.

Collecting the pressure-area isotherms revealed that, based on comparing POPC and

POPG results with literature, the obtained graphs can be trusted, which is crucial for

the mixtures for which the literature comparison is not possible. Isotherms were obtained

to characterize new sample mixtures, such as POPC/POPG/SM ones. Additionally, the

isotherms served as a test to ensure that the no anomalies occur at 35 mN/m and this

pressure can be reached for all mixtures, making it possible to proceed with the AFM part

of the project.

4.2 Atomic Force Microscopy Experiments

Atomic force microscopy was used to investigate a number of mixtures (listed in Table 3.1)

to determine if they could be used as a model for neuronal membrane for further studies of

the effect of topographical heterogeneity on Aβ behavior. During AFM imaging two types

of topographical features were observed: domains and pores. It is important to clarify

the distinction between them. Domains are topographical features that are formed due to

the sample properties, such as phase, composition, etc. Pores are an experimental artifact

and do not represent any information about the topography of the sample surface. This is

illustrated in Figure 4.2. The domain height values that are quoted further on in this section

refer to the height difference between lower and higher domains, as shown in Figure 4.2

(similarly the depth values for pores). The goal of the experiment was to determine a lipid
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composition that, while mimicking neuronal membrane, exhibits formation of prominent

domains.

Figure 4.2: A schematic diagram of a supported monolayer exhibiting both domains and

pores. The dotted line represents the sample cross-section.

4.2.1 Control Samples

In order to understand heterogeniety formation in lipid mixtures, first the topography

of the lipids should be investigated. For that purpose there are four control samples

in my project: pure POPC monolayer, pure POPG monolayer, POPC+20% Chol, and

POPG+20% Chol. The addition of cholesterol is required to test its effects on the pure

lipids. The representative 2µm × 2µm topographical images of results obtained for POPC

and POPC+20% Chol are given in Figure 4.3, also included are examples of phase images.

The 2µm × 2µm topographical images of POPG and POPG+20% Chol are shown in

Figure 4.4. It is clear from Figure 4.3a and Figure 4.4a that both POPC and POPG tend

to form a porous topography, rather than a uniform one that was expected for the case

of single-lipid monolayer. Aside from the pores, the POPC and POPG monolayers also

exhibit some roughness.

In the case of pure POPC, calcucations revealed that the average depth of the pores

is approximately 2.20 ± 0.56 nm. This number suggests that the pores in the images

extend through the entire thickness of the monolayer. According to Kepczynski et al.

the theoretical size of a POPC bilayer is around 3.49 nm, which would mean that the
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size of a monolayer is approximately 1.75 nm[123]. This value seems to be roughly on

the same order as the depth of the holes in the POPC monolayer that I observed in my

samples. A more thorough comparison is not possible since Kepczynski et al.’s study was a

theoretical simulation of a hydrated bilayer, which is different from the environment of my

sample. Unfortunately, they did not provide any uncertainty for their value of the bilayer

thickness. The POPC monolayer exhibits some roughness, with the features mesuread to

be approximately 0.21 ± 0.10 nm in height and 32.35 ± 11.06 nm in widht.

Addition of 20%Chol to POPC appears to result in a more uniform surface coverage

with no pore formation. However, even though the cross-section in Figure 4.3f does not

look flat, the features that are formed are very small with a height of 0.17 ± 0.07 nm,

which is barely above the expected height deviations from background noise, and a width

of 35.81 ± 14.78 nm.

The pure POPG monolayer revealed a topography similar to the POPC one, only with

less-pronounced pores. The average depth of the pores was found to approximately be

1.05 ± 0.35 nm. This value suggests that the pores visible on the image do not extend

all the way to the mica substrate. Kucerka et al. showed that the thickness of a POPG

bilayer is 3.67 ± 0.07 nm, which gives a monolayer thickness of 1.835 ± 0.035 nm[124].

The pore depth from my sample is approximately half of this thickness value. The surface

features observed for POPG have an approximate height of 0.36 ± 0.14 nm and width of

69.25 ± 14.32 nm. This suggests that POPG forms more prominent features than POPC

does. As with POPC, addition of 20%Chol appears to provide a smooth uniform coverage

with no pores. The features in POPG+20%Chol are slightly higher and thinner than

those for POPC+20%Chol having a height of 0.20 ± 0.18 nm and a width of 27.77 ± 8.51

nm. However, the height difference between the high and low features seem to be varying,

producing the large value for standard deviation.
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Figure 4.3: The AFM images of the control sample of pure POPC and POPC+20%Chol.

a) The topographical image of pure POPC monolayer. b) The topographical image of

POPC+20%Chol monolayer. c) The phase image of POPC monolayer. d) The phase

image of POPC+20%Chol. e) A cross-section of POPC monolayer along the line in image

a). f) A cross-section of POPC+20%Chol along the line in image b).
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Figure 4.4: The AFM images of the control sample of pure POPG and POPG+20%Chol.

a) The topographical image of pure POPG monolayer. b) The topographical image of

POPG+20%Chol monolayer. c) A cross-section of POPG monolayer along the line in

image a). d) A cross-section of POPG+20%Chol along the line in image b).

The possible reasons for the pore formation observed in the case of both POPC and

POPG monolayers are elaborated on in the Discussion section later on. Let it be noted that

the pores appear very pronounced on the images in Figure 4.3a and Figure 4.4a because the

images are taken on such a small scale (2µm×2µm). Figure 4.5 provides the 10µm×10µm

images of the POPC and POPG monolayers for comparison.
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Figure 4.5: The 2µm× 2µm and 10µm× 10µm AFM images of the control sample of pure

POPC and POPG. The pores are less pronounced on a larger scale, specially in the case of

POPG. a), b) The topographical image of pure POPC monolayer. c), d) The topographical

image of pure POPG monolayer.
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4.3 POPC/POPG 60:40

The combination of POPC/POPG 60:40 does not exhibit the same porous topography

as its separate constituents, as can be seen in Figure 4.6a. Domain formation is visible,

specially in the phase image (image not shown). Unfortunately phase images cannot be

used to draw conclusions regarding sample topography, but it does serve to confirm the

presence of domains. Their average height was found to be approximately 0.26± 0.08 nm,

which is less than those of either POPC or POPG reported in the previous section. The

average width, however, is on par with that observed for POPG: 61.28 ± 9.88 nm. The

lack of higher domain formation could be possibly attributed to the fact that both POPC

and POPG have the same fluid phase[62, 119], however, that appears to contradict the

above finding that separately they do form slightly higher structural features. Another

possible explanation is that both POPC and POPG are very similar in height, as was

mentioned in the previous section, therefore when combined together they are difficult to

distinguish with a tool designed for height measurements (AFM). This would also explain

why domains are visible in the phase image (image not shown), as phase imaging does not

depend on the height of the samples (see Chapter 2, section 2.3.7).

More pronounced domains, however, appeare to be forming when 5% Chol is added to

the sample (Figure 4.6b). Their average height and width was found to be approximately

0.36 ± 0.09 nm and 64.51 ± 11.93 nm, respectively. A few pores are also observed to be

forming when 5% Chol is added, but not enough to make a proper statistical calculations.

The 10µm × 10µm image given in Figure 4.7 shows the topography on the larger scale,

where both pores and domains are not prominent.
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Figure 4.6: The AFM images (topographical and cross-section) of the POPC/POPG 60:40

(a, d) with 5% (b, e) and 20% Chol (c, f), respectively.
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Consistent with results from the control samples, addition of 20% Chol caused formation

of smooth topography (Figure 4.6c) with no pores. The surface features appear to be very

small with the height of 0.26±0.007 nm and width of 28.30±7.42 nm. The height values are

the same as value as for the POPC/POPG 60:40 sample, but the widths are a lot smaller

than in the case of POPC/POPG 60:40 sample. Therefore, the addition of such a quantity

of Chol does not seem to result in formation of more pronounced features than those seen

without the 20%Chol in terms of height, the width of the features is less pronounced than

in the case with no Chol.

Figure 4.7: The comparison between 2µm × 2µm (a) and 10µm × 10µm (b) AFM images

of POPC/POPG 60:40 with 5% Chol.

4.4 POPC/POPG/SM 40:40:20

Results for the POPC/POPG/SM 40:40:20 with 5% and 20% Chol are given in Figure 4.8,

examples of representative phase images are also included. Similarly to POPC/POPG

60:40 system, POPC/POPG/SM 40:40:20 mixture does not display very prominent topo-

graphical features. Their existence, however, is confirmed with the phase image, which does

reveal more features as it did for POPC/POPG 60:40, as can be seen in Figure 4.8b. The
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features have an average height of approximately 0.21± 0.05 nm and width of 36.68± 6.33

nm. No pores are observed in the case of this sample.

Addition of 5% Chol to POPC/POPG/SM 40:40:20 results in formation of well-defined

and prominent domains, as seen in Figure 4.8c,d. It appears that addition of only SM

to a mixture of POPC and POPG is not enough to cause formation of high domains,

but combined with 5% Chol domains are more pronounced than the features for the case

of POPC/POPG 60:40+5%Chol. Their average height was approximately measured as

0.58 ± 0.15 nm and width as 69.79 ± 10.07 nm. The depth of the observed pores is

1.14 ± 0.17 nm. The pores are sufficiently small to be barely noticeable on a larger scale,

as shown in Figure 4.9.

Adding 20% Chol caused the pores to break up, leaving a uniform topography (Fig-

ure 4.8e,f), similar to that observed in the previous samples. However, the height deviations

on the features of this sample is comparable with the background noise, therefore the pres-

ence of domains cannot be fully confirmed by looking only at the topographical image.

The phase image reveals some structures that could be domains, which would mean that

they are formed but are simply too small to be distinguishable.
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Figure 4.8: The AFM images (topograhical, phase and cross-section) of the

POPC/POPG/SM 40:40:20 (a, b, g) with 5% (c, d, h) and 20% Chol (e,f,i), respectively.
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Figure 4.9: The comparison between 2µm × 2µm (a) and 10µm × 10µm (b) AFM images

of POPC/POPG/SM 40:40:20 with 5% Chol.

4.5 POPC/SM/Chol

The mixture of POPC/SM/Chol 75:2:23 does not exhibit very prominent features, as seen

in Figure 4.10a,b. The average height of the features is approximately 0.16± 0.06 nm and

width is 30.60 ± 4.46 nm. Addition of SM seems to produce features that, even though

still small, can be distinguished from background noise. It appears though that there is

not enough SM in this mixture to counteract the tendency of larger quantities of Chol to

produce features of very small height, as was observed in the control samples. In order

to test this hypothesis, the proportions were changed to POPC/SM/Chol 75:20:5. The

resulting images, given in Figure 4.10c,d, confirm this assumption. Domains and clearly

visible on the images. Their average height is approximately 0.61± 0.12 nm, which means

these are the highest domains observed so far. Their average width was measured as

63.21± 12.24 nm. Pores are also produced in this sample, which is very clearly seen in the

phase image. This appears to be consistent with previous observation of pore formation at

similar Chol concentration for the POPC/POPG 60:40 and POPC/POPG/SM 40:40:20.
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The average depth of the pores is approximately 1.33 ± 0.22 nm. These pores are big

enough to be very noticeable on a larger scale, as can be seen in Figure 4.11.

The addition of GM1 to the original combination (POPC/SM/GM1/Chol 74:2:1:23)

results in formation of very pronounced pores (Figure 4.10e,f1). It appears that the presence

of a large quantity of Chol this time is insufficient and does not produce smooth pore-less

topography. The average depth of the pores was measured as approximately 2.30 ± 1.07

nm, which means that the pores in the sample extend all the way to the mica surface.

The pores are very pronounced even on a larger scale image, as shown in Figure 4.12. The

height of the features on the surface of this sample is approximately 0.27± 0.07 nm, which

is slightly greater than for POPC/SM/Chol 75:2:23, but still not very pronounced. The

width of the features is 28.87 ± 5.10 nm. The feature’s heights and widths for all samples

are summarized in Table 4.1.

The existence of pores in some of the samples does not have any bearing on conclusions

regarding the topographical domain formation that are outlined in the Discussion section.

However, the pores were an unexpected observation and therefore warrranted some addi-

tional attention. The Appendix section summarizes the statistical analysis and its results

performed in order to determine the approximate size of the pores (length and width) and

how much of the sample area they occupy.

1Please note that the bright high areas in Figure 4.10e are just an artifact of imaging and do not

represent the real sample topography.
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Figure 4.10: The AFM images (topographical, phase and cross-section) of the

POPC/SM/Chol 75:2:23 (a, b, g), POPC/SM/Chol 75:20:5 (c, d, h) and

POPC/SM/GM1Chol 74:2:1:23 (e, f, i), respectively.
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Figure 4.11: The comparison between 2µm× 2µm (a) and 10µm× 10µm (b) AFM images

of POPC/SM/Chol 75:20:5.

Figure 4.12: The comparison between 2µm× 2µm (a) and 10µm× 10µm (b) AFM images

of POPC/SM/GM1/Chol 74:2:1:23.
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Table 4.1: The list of heights and widths of observed topographical features, respectively.

Sample Height (nm) Width (nm)

POPC 0.21 ± 0.10 32.35 ± 11.06

POPG 0.36 ± 0.14 69.25 ± 14.32

POPC +20% 0.17 ± 0.07 35.81 ± 14.78

POPG +20% 0.20 ± 0.18 27.77 ± 8.51

POPC/POPG 60:40 0.26 ± 0.08 61.28 ± 9.88

POPC/POPG 60:40+5%Chol 0.36 ± 0.09 64.51 ± 11.93

POPC/POPG 60:40+20%Chol 0.26 ± 0.07 28.30 ± 7.42

POPC/POPG/SM 40:40:20 0.21 ± 0.05 36.68 ± 6.33

POPC/POPG/SM 40:40:20+5%Chol 0.58 ± 0.15 69.79 ± 10.07

POPC/POPG/SM 40:40:20+20%Chol - -

POPC/SM/Chol 75:2:23 0.16 ± 0.06 30.60 ± 4.46

POPC/SM/Chol 75:20:5 0.61 ± 0.12 63.21 ± 12.24

POPC/SM/GM1/Chol 74:2:1:23 0.27 ± 0.07 28.87 ± 5.10

4.6 Discussion

4.6.1 Pore Formation

The pore formation in 6 of the samples (see Table 6.1) was a very unexpected observation.

There could be several explanations for the occurrence of this experimental artifact. The

pores could be caused by defects in the mica surface that could result from uneven removal

of cations from the surface while cleaving it. This would produce an uneven charge distri-

bution on the surface and, as such, repel the lipids in places that are seen as pores on the

images.

A charge on lipids could potentially impede their adsorption to mica, causing pores.
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However, I do not believe this to be the case for my results. According to [82], mica carries

a negative charge in an aqueous solution. The only charge lipid that I am using in this

project is POPG, which also carries a negative charge. The repulsion between POPG and

mica can explain the pore formation for the case of pure POPG and POPC/POPG 60:40

+5%Chol, but those are not the instances when the more prominent pores are observed.

On the contrary, among the porous samples, the ones containing POPG exhibit smaller

and shallower pores than most. If charge (on mica or lipid) is what’s causing the pores,

then that could potentially be solved by modifying the mica surface to promote binding or

adding cations into solution to act as intermediates, as suggested in [82]. The pores could

also be due to the presence of both positive and negative charges on the head group of

POPC and SM (see Figure 3.1). The polarity of the head groups could be interfering with

adsorption to mica surface.

Another hypothesis for the pore formation stems from the structure of POPC and

POPG (see Figure 3.1). Both these lipids have a double bond in one the middle of one

of their tail chains. This bond creates a kink in the tail. It is possible that this kink is

interfering with the packing and mixing of the lipids creating the pores in monolayers even

before their are transferred to mica. If that is the case and structure is what’s causing the

pores, then that could explain why the bigger and more pronounced pores are observed

in the POPC/SM/GM1/Chol 74:2:1:23 sample. GM1 is the biggest species I use in the

project. It could be that the bulk of GM1 prevents it from mixing well with the rest of

the sample lipids in the mixture. This is supported by the fact that the pores appear to

be unevenly distributed in the 10µm × 10µm shown in Figure 4.12.

It appears though that addition of approximately 20% of Chol solves the pore formation

issue, whether by facilitating the lipid adsorption to mica or by inducing more order and

promoting mixing, or possible for some other reason that I have not considered. This,

however, poses a problem for the goal of my project - addition of so much Chol does not

seem to result in formation of well-defined domains. In order to reduce the occurrence

of pores, it could be beneficial to attempt this experiment with model bilayers instead of

monolayers. If it is the adsorption issue, then with a bilayer only one of its leaflets is
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attached to mica, leaving the other one free. Another possibility is to use graphite as the

substrate, rather than mica. Graphite is hydrophobic and will have the non-polar tails

adsorb to it, not the polar heads that could be causing mica-adsorption problem. Using

graphite, though, presents a number of drawbacks: the head groups will have to be in

solution so that the imaging could not be done in air, which will increase the difficulty

level and required time for imaging.

4.6.2 Model Membrane

The POPC/SM/Chol 75:2:23 mixture follows the lipid proportions of neuronal cells found

in a mouse[49]. However, for the purposes of studying the effect of surface heterogeneity

on Aβ behavior this sample cannot be used, since it exhibits some of the smaller do-

mains observed. After performing an additional literature search it was found that the

level of SM in cell membranes tends to increase during the progress of Alzheimer’s Disease

(AD)[9, 108]. Unfortunately, it was not possible to determine the percentage value of this

increase. This information, combined with the observation of formation of higher domains

in previous samples with addition of 5%Chol, leads to the change in proportions in the

new POPC/SM/Chol 75:20:5 mixture. I believe it is possible to use this mixture in further

Aβ studies as a model for neuronal membrane at the end of the AD course. However, it

is my opinion that an even better model for diseased membrane is the POPC/POPG/SM

40:40:20+5%Chol sample. The topographical features that this sample exhibits are slightly

more pronounced than those of POPC/SM/Chol 75:20:5, with the domains being more

well-defined and greater in width (see Table 4.1). It has been shown that POPG is impor-

tant in Aβ binding to the membrane surface[14], therefore it should be present in a model

that is used to investigate this process.

GM1 was added to the original POPC/SM/Chol 75:2:23 sample because it is a well-

known component of neuronal membrane[6, 8, 27, 49, 61]. Additionally, the level of GM1

tends to decrease until it disappears as AD progresses[8, 27], therefore GM1 was not in-

cluded into the POPC/SM/Chol 75:20:5 sample. As such, the POPC/SM/GM1/Chol
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74:2:1:23 can be used as a model for the neuronal membrane in the early states of AD.

Similarly, the original mixture of POPC/SM/Chol 75:2:23 can also be used as a model for

healthy membrane. As a possible next step to this project, I believe it would be beneficial

to slightly change the proportions in this sample so that they maintain the trend but also

reflect the fact that such quantities of Chol do not produce very pronounced domains. This

would mean lowering the amount of Chol and increasing the amount of SM. It could also

be interesting to add GM1 into the diseased-membrane model (POPC/SM/Chol 75:20:5 or

POPC/POPG/SM 40:40:20+5%Chol) in reduced quantities to simulate the effect of GM1

content decrease during AD.

The hypothesis of increased topographical features during the progress of AD is con-

firmed with the model membranes developed during this project. The two compositions

that can represent healthy membrane (POPC/SM/Chol 75:2:23 and POPC/SM/GM1/Chol

74:2:1:23) exhibit topographical features that are not very pronounced, while the two com-

positions that model diseased membrane (POPC/SM/Chol 75:20:5 and POPC/POPG/SM

40:40:20+5%Chol) possess a strong topographical heterogeneity with large and well-defined

domains (see Table 4.1).

This project was an attempt at modeling neuronal membrane, however, a lot of things

were not taken into account. Due to the time constraints, only a few lipids and their

combinations could be studied, but these lipids are by no means the sole constituents of a

true cellular membrane. The lipids included here were deemed to be the most important

ones in relation to membrane composition and Aβ-membrane interactions. I believe that,

should a further study be undertaken, other lipids should be included. Among these

potential additions is POPE (a less-prominent membrane component[60, 61]) and a number

of other gangliosides (GM3, GD1a, GD1b[6, 8, 27, 61]) that have been implicated in Aβ

behavioral mechanisms. Another matter that was not taken into account, due to being

outside the scope of this investigation, is the fact that AD does not affect all areas of the

brain equally and not all areas of the brain have the same types of neurons[8, 9, 61, 108].

Therefore it is impossible to come up with a generic model that could simulate all neuronal

membranes. It would be of great benefit for future AD research if separate specialized
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models could be developed.
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Chapter 5

Conclusion

This was a preliminary study with the purpose of determining a suitable model for a

neuronal cell membrane that could later be used to investigate the effects of topographical

heterogeneity on the binding and subsequent behavior of Aβ, a protein heavily implicated

in the pathogenesis of Alzheimer’s Disease (AD). Several samples composed of lipids usually

found in neuronal membrane were tested during the course of the study, but very few of

them exhibited any kind of domain (feature) formation.

The study revealed that a number of the mixtures do not bind well to mica resulting

in formation of pores in the sample, which means that either a more suitable substrate or

configuration (e.g. bilayer) need to be considered.

This project confirmed the hypothesis that topography of a cell membrane changes due

to AD. The healthy membrane presents a smooth topography with small features, while a

diseased membrane exhibits pronounced topographical domains that are bigger than the

structures in the healthy membrane. A suitable model for a cell membrane composition

during the early onset of AD is POPC/SM/GM1/Chol 74:2:1:23. The composition of this

sample was modeled based on a study of a mouse brain composition, with GM1 being

added to represent its presence in human neuronal membranes. This sample demonstrated

potential for domain formation, which could probably be improved by slightly varying the

proportions of SM and Chol. A more advanced stage of AD can be represented by either
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POPC/SM/Chol 75:20:5 or POPC/POPG/SM 40:40:20+5%Chol mixtures. Both of these

samples exhibit heterogeneous topography and have a higher SM content, consistent with

published findings regarding SM level increase during AD. These samples do not include

GM1 in their composition due to GM1 not being present in membranes during further

stages of AD.

These three samples represent a very crude basic model that can provide a stepping

stone in the studies of Aβ behavior. However, it is my strong belief that more work

is required to develop a more accurate model for a neuronal membrane. Such a model

should potentially account for the presence of other components not included here (such as

other gangliosides, for example). A more sophisticated model should also not overlook the

presence and role of proteins in a membrane, as well as, account for possible differences in

composition of inner and outer leaflets of a bilayer membrane.

In conclusion, during my study I determined three possible basic models for a neuronal

membrane at different stages of AD, but a more comprehensive study is required should a

more complex model be needed.
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Chapter 6

Appendix

The purpose of this Appendix is to illustrate the step-by-step process performed during

statistical analysis of the AFM images using SPIP software. This analysis was done to

determine the dimensions of the pores observed in six samples, see Table 4.1. The pro-

cessing of images is largely subjective and depends on an individual’s opinion about which

function produces the “best-looking” image possible. In order to eliminate some of the

subjectivity, I used the same procedure for all of my images.

Figure 6.1: A .jpk image before (a) and after (b) plane correction.

The first step in any AFM image processing is a plane correction. It is designed to

eliminate unwanted tilt in the image caused by non-linear coupling between the lateral
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plane and the Z-axis[110]. Figure 6.1a shows what the raw .jpk image looks like before any

processing is done on it. I chose to do a Line-wise Correction, LMS Fit of Degree 2. An

example of the image with this correction applied to it is given in Figure 6.1b.

Next, I adjusted the z-range to exclude the bright features that are seen in Figure 6.1b.

These features are an artifact of imaging and do not represent the real topography of the

sample, therefore, I wanted to eliminate them from being included in any further analysis.

This process is shown in Figure 6.2.

Figure 6.2: The z-correction of image to eliminate unwanted features. a) Selecting the

features that need to be excluded. b) The image after the features are excluded. Note the

change in the z-range.

In order to determine the average depth of pores and to find the percentage of area

covered by them I used the Histogram function. The height histogram for the image in

previous figures is given in Figure 6.3. Once the histogram was generated I used the

cursor function to select two values (M1 and M2), the difference between which would be

the depth value of the pores, shown in Figure 6.4. I found the depth values purely for the

purposes of checking if they agreed with those obtained using a different method of analysis

that produced values in Table 4.1. The SPIP generated values are listed in Table 6.1 and

appear to be in agreement with those from Table 4.1.
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Figure 6.3: The histogram of height values distribution for the same image as in previous

figures.

Figure 6.4: Using the cursor function to select the range of desired heights. The resultant

depth and area coverage measurement are circled in green.

The six samples that exhibit pore formation were then subjected to further analysis.

Their features were well-defined enough for me to use Particle and Pore (P&P) analysis on

them to determine the dimensions of the pores. However, there was still much noise in the

samples, which interfered with the P&P analysis. In order to eliminate the noise I used

the Gaussian smoothing function with standard deviation of 1. The benefit of Gaussian

smoothing is illustrated in Figure 6.5, which shows the sample and its cross-section before

and after smoothing.
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Figure 6.5: The sample and its cross-section before (a) and after (b) Gaussian smoothing.

After the image was smoothed, I was able to use the P&P analysis. I used Advanced

Threshold option with Automatic detection (to minimize the subjectivity in selecting the

threshold). An example of pore detection is given in Figure 6.6. This option allowed me to

find an average value for the length and width (breadth) of the pores. It is important to

note that the length and width are not the x- and y-dimensions of the pores. For a given

pore, the software calculates these values based on the axis of momentum[110], as shown

in Figure 6.7.
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Figure 6.6: The Particle and Pore analysis function detecting the pores in the sample.

Figure 6.7: An illustration of the meaning of length and width in the SPIP software[110].

The pores in the control samples of POPC were found to cover 8.10 ± 2.52% of the

sample area, which corresponds to 0.32 ± 0.10 µm2 for a 2µm × 2µm image. In POPG

samples the pores occupy a smaller area of 4.28± 3.15%, which corresponds to 0.17± 0.13
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µm2 for a 2µm × 2µm image. However, the POPG pores showed a greater variability in

how much area they occupy from image to image, which is reflected in the large value for

standard deviation. The POPG pores were also found to be shallower (in agreement with

the values quoted in the Results section) and smaller in size, as can be seen from Table 6.1.

The pores observed for the POPC/POPG 60:40+5%Chol sample appear to occupy a

greater area than those of POPC or POPG with the coverage of 10.81±4.82 % (0.43±0.19

µm2 for a 2µm× 2µm image). These pores also exhibited an uneven distribution resulting

in the larger standard deviation value.

In case of the POPC/POPG/SM 40:40:20+5%Chol sample the pores were found to

cover 25.11± 8.59% or 1.00± 0.34 µm2 for a 2µm× 2µm image. This represents one of the

worst cases of pore coverages observed during the project. The average length and width

of the pores are also one of the greatest in all samples, as seen in Table 6.1. The large

uncertainty values are a result of the pores all being of different sizes, with length and

width varying between approximately 130 nm to 40 nm and 90 nm to 25 nm, respectively.

The pores in the POPC/SM/Chol 75:20:5 sample cover 12.60±5.29% of the area, which

corresponds to 0.50 ± 0.21 µm2 for a 2µm × 2µm image. Similarly to POPC/POPG/SM

40:40:20+5%Chol, the large uncertainty values for the pore dimensions (see Table 6.1)

result from the pores being of inconsistent size ranging from approximately 140 nm to 18

nm in length and 87 nm to 11 nm in width. Same variability in sizes is also seen in the

POPC/SM/GM1/Chol 74:2:1:23 sample. The pores here occupy the largest area of all

samples with a coverage of 26.28 ± 5.63% or 1.05 ± 0.23 µm2 for a 2µm × 2µm image.

All of the above results are summarized in Table 6.1, along with the depth values found

using the SPIP. These values appear to be in agreement with those quoted in the Results

section (see Table 4.1). This analysis was performed in an attempt to characterize the

pores observed in six of the samples. I would like to reiterate that the image analysis

carries in it a lot of inherent subjectivity. Therefore the values quoted here should be

viewed as approximate and not absolute.
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Table 6.1: Dimensions of the pores observed in all the samples investigated in this study.

The area column lists the % of sample area covered by the pores.

Sample Depth (nm) Area (%) Length (nm) Width (nm)

POPC 2.14 ± 0.15 8.10 ± 2.52 53.56 ± 3.55 36.05 ± 2.75

POPG 1.11 ± 0.23 4.28 ± 3.15 36.19 ± 5.09 20.91 ± 3.03

POPC +20% - - - -

POPG +20% - - - -

POPC/POPG 60:40 - - - -

POPC/POPG

60:40+5%Chol

- - - -

POPC/POPG

60:40+20%Chol

- - - -

POPC/POPG/SM

40:40:20

- - - -

POPC/POPG/SM

40:40:20+5%Chol

1.37 ± 0.27 25.11 ± 8.59 85.48±40.84 53.02±27.37

POPC/POPG/SM

40:40:20+20%Chol

- - - -

POPC/SM/Chol 75:2:23 - - - -

POPC/SM/Chol 75:20:5 1.41 ± 0.14 12.60 ± 5.29 68.86±51.98 40.33±30.40

POPC/SM/GM1/Chol

74:2:1:23

2.15 ± 0.61 26.28 ± 5.63 94.44±35.09 50.98±18.07
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