
Kinetic Modeling of Pyruvate Recycling

Pathways in Pancreatic β-Cells.

by

Rahul Rahul

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2012

© Rahul Rahul 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

A variety of signaling mechanisms are employed to maintain healthy levels of glucose in the

blood stream. The hormone insulin is one of the primary regulators of glucose homeostasis.

Insulin, which activates glucose uptake, is released from pancreatic β-cells in a bi-phasic

manner. The �rst phase is triggered by increased ATP levels in the cell. The second release

phase is triggered by the so-called amplifying pathway [37, 80], which has not been fully

characterized. Recent experimental evidence indicates that pyruvate-recycling pathways

are key components of the amplifying pathway. The fuel intermediates from these pathways

may be the signaling factors that couple insulin-release to glucose availability. The co-factor

nicotinamide adenine dinucleotide phosphate (NADPH) has been identi�ed as a putative

coupling factor. In this work we develop a kinetic model for the tricarboxylic acid cycle

and pyruvate recycling pathways, building on the previous modeling e�orts of Westermark

et al. [110]. and Yugi and Tomita [116]. We successfully validated the model against

recent experimental observations. Analysis of the model provides predictions of the �ux

distributions in the pyruvate recycling pathways. Moreover, model simulations provides

hypotheses to guide further experimental investigation, and suggest potential drug targets

for treatment of type 2 diabetes.
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Chapter 1

Introduction

Type 2 diabetes is characterized by the functional failure of pancreatic β-cells to regulate

insulin secretion. β-cells function as glucose sensors; they release the hormone insulin

into the blood stream when the glucose level increases above a threshold value. Insulin

promotes glucose uptake in peripheral tissue and suppresses the release of stored lipids

from adipose tissue. In type 2 diabetes, patients develop insulin resistance. That is, the

release of insulin does not activate any cellular response. Another symptom is the failure of

β-cells to synchronize insulin release with changing levels of glucose; insulin release by β-

cells becomes irregular. In the later stages of the disease, both impaired insulin release and

insulin resistance are typically observed. This leads to partial loss of β-cell mass, making

the disease chronic. Type 2 diabetes is predominant in adults, especially those who are

obese and exhibit sedentary behavior. The prevalence of the disease has lead to a major

thrust for the development of drugs to treat type 2 diabetes. An in depth understanding

of the complexity of insulin signaling would be helpful in identifying the candidate drug
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targets.

The functional failure of β-cells in type 2 diabetes a�ects these cells ability to properly

regulate insulin secretion when the glucose level is elevated in the blood stream. This

glucose-derived signaling, which is the primary regulator of insulin secretion by β-cells, is

called glucose-stimulated insulin-secretion (GSIS). Any related molecules that are down-

stream products of glucose metabolism are de�ned as glucose-derived potentiators of insulin

secretion.

The mechanisms by which elevated glucose levels trigger the release of insulin have

not been fully characterized. It has been observed that GSIS is bi-phasic. The initial

release phase involves a sequence of processes known as the KATP-dependent pathway:

increased glucose metabolism increases the ratio of cytosolic adenosine triphosphate (ATP)

to adenosine diphosphate (ADP) causing closure of ATP-dependent potassium (KATP)

channels; depolarization of the cell membrane follows, causing an in�ux of Ca2+, which

triggers insulin vesicle exocytosis [81, 82]. This �rst phase of insulin release, known as

the triggering signal, occurs within ten minutes following glucose stimulation [37, 76].

The second release phase follows after the �rst, and is more sustained. It is prompted

by the KATP-independent pathway, also known as the amplifying pathway [37, 80]. The

initial discovery that the two pathways are independent [37] prompted a search for non-

ATP-related metabolic responses to increased glucose availability. A full understanding of

glucose-stimulated insulin-secretion will require characterization of the metabolic signaling

mechanisms responsible for both release phases.
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Initial studies of the amplifying pathway focused on the metabolism of pyruvate in

the mitochondria. In most cell types, pyruvate feeds the tricarboxylic acid (TCA) cy-

cle via the enzyme pyruvate dehydrogenase (PDH), which generates acetyl-CoA. β-cells

are one of the few cell-types that express signi�cant quantities of the enzyme pyruvate

carboxylase (PC), which provides an alternative route from pyruvate to the TCA cycle

(producing mitochondrial oxaloacetate (OAA) from pyruvate, see Figure 1.1). In β-cells,

pyruvate �ows into mitochondrial pathways through these enzymes in approximately equal

proportion [63, 99, 56, 64, 7, 11, 45]. Pyruvate that enters the TCA cycle via pyruvate

carboxylase can readily be recycled back to pyruvate, either directly from OAA (via PC)

or after further metabolism of OAA in the TCA cycle, possibly involving both metabolic

and cytosolic enzyme activity [65]. The experiments of Lu et al. [63] revealed that GSIS is

related to PC-catalyzed pyruvate recycling, while PDH-catalyzed conversion of pyruvate to

acetyl-coA does not play a signi�cant role in GSIS. PC-based pyruvate recycling involves

regeneration of pyruvate from TCA cycle intermediates via three distinct pathways (Figure

1.1): the pyruvate/malate cycle, the pyruvate/citrate cycle, and the pyruvate/isocitrate

cycle [66]. Each cycle begins with the conversion of mitochondrial pyruvate to mitochon-

drial oxaloactetate and ends with the conversion of malate to pyruvate by malic enzyme.

(Malic enzyme is active in both the mitochondria and the cytosol; in β-cells, the cytosolic

form carries the vast majority of the pyruvate recycling �ux.)

The pyruvate/malate cycle involves conversion of mitochondrial OAA to malate, via

mitochondrial malate dehydrogenase. Mitochondrial malate then follows one of two routes:

it can be directly converted to pyruvate by mitochondrial malic enzyme (MEm), or it can
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be transported to the cytosol via the dicarboxylate carrier (DIC) and then converted back

to pyruvate by cytosolic malic enzyme (MEc).

The pyruvate/citrate cycle also begins with OAA following its normal route through

the TCA cycle: it combines with Acetyl-CoA to form citrate (via citrate synthase (CS)).

This mitochondrial citrate can then be converted to isocitrate by mitochondrial aconitase

(ACOm). Mitochondrial citrate and isocitrate are transported into the cytosol by the

citrate-isocitrate carrier (CIC). The cytosolic form of aconitase (ACOc) can then convert

isocitrate to citrate. Cytosolic citrate lyase (CLc) converts citrate to oxaloacetate (releasing

Acetyl-CoA). This cytosolic OAA can then be converted to malate by the cytosolic form of

malate dehydrogenase (MDHc). Finally malate is converted to pyruvate by malic enzyme,

thus completing the cycle. (This last step is shared with the pyruvate/malate cycle.)

Like the pyruvate/citrate cycle, the pyruvate/isocitrate cycle also starts with oxaloac-

etate being converted to citrate and isocitrate and the subsequent exit of these metabolites

from the mitochondria through the citrate/isocitrate carrier (CIC). In the cytosol, citrate

is converted to isocitrate by ACOc. Isocitrate is then converted to α-ketoglutarate (α-KG)

by cytosolic NADP-dependent isocitrate dehydrogenase enzyme (ICDc). α-KG is then

transported back into the mitochondria by the oxoglutarate carrier (OGC). Once in the

mitochondria, α-KG follows the normal TCA reaction chain to be converted to malate,

which can then be converted back to pyruvate by malic enzyme. (Again, this last step is

shared with the other cycles.)
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Figure 1.1: Pyruvate recycling pathways and the and amplifying signal for insulin release.
The yellow arrows in the metabolic pathway indicate pyruvate carboxylase and malic en-
zyme, which are shared by all the three pyruvate recycle pathway. The brown arrows are
for pyruvate-malate cycle, green arrows are for pyruvate-citrate cycle, and blue arrows are
for pyruvate-isocitrate cycle. The red arrows shows the alternative possibility of completing
the pyruvate-isocitrate cycle.

In recent years, studies have focused on the identi�cation of metabolic coupling factors

(MCF) which may act as signals in the amplifying pathway. These studies, provide growing

evidence that the pyruvate-recycling pathways generate a metabolic factor that couples in-

creased glucose consumption to insulin release [49, 88, 50, 58, 87]. A number of MCFs have

been proposed, including NADPH, α-ketoglutarate (or its derivatives), and guanosine-5'-

triphosphate (GTP) (generated by the succinylCoA dehydrogenase (SCS) [66, 76]. Recent

observations suggest that NADPH is a key signaling molecule [88, 65]. NADPH is a byprod-
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uct of all of the pyruvate recycling pathways [64]; it is generated by malic enzyme (a step

shared by all three cycles), and, in the pyruvate/isocitrate pathway, by isocitrate dehy-

drogenase; this enzyme has recently received signi�cant attention because its silencing was

found to a�ect GSIS [88].

When addressing a complex metabolic network like the TCA cycle, it can be di�cult to

predict the e�ects of individual genetic or biochemical perturbations on the entire system.

Kinetic modeling provides a framework for addressing the network in a systematic and

quantitative manner. Furthermore, kinetic modeling provides a mathematical framework

for analysis of temporal, genotypic and phenotypic changes associated with the metabolic

pathway. Analysis of kinetic models aids in the interpretation of experimental data and

can help in designing further experiments to elucidate the underlying biological process.

A number of computational models have been developed to describe aspects of the TCA

cycle and GSIS. Westermark et al. [110] developed a model of mitochondrial nicotinamide

adenine dinucleotide (NADH) shuttling (involving 10 metabolites and 19 enzymatic reac-

tions). They validated the model against the �ndings of Eto et al. [23] which characterize

the NADH shuttle in β-cells. The TCA cycle has been the subject of many modeling

studies. A detail model of mitochondrial metabolism was recently developed by Yugi and

Tomita [116]. Their model describes 58 enzymatic reactions involving 117 metabolites, and

incorporates four pathways: the respiratory chain, the TCA cycle, fatty acid β oxidation,

and the inner membrane transport system. Jiang et al [47] developed a detailed model of

GSIS that describes 44 enzymatic reactions and 59 metabolic state variables. Their model
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describes �ve metabolic pathways: glycolysis, the TCA cycle, the respiratory chain, NADH

shuttling, and the pyruvate cycle. While these studies involve validation against a range of

experimental �ndings, a systematic corroboration with experimental results on pyruvate

recycling has not been attempted.

In this study, we build on these previous e�orts by developing a mathematical model

of β-cell metabolism that describes pyruvate recycling. Our model describes the TCA cy-

cle, the pyruvate/malate shuttle, the pyruvate/citrate shuttle, and the pyruvate/isocitrate

shuttle, as shown in Figure 1.1. The model describes 24 metabolites involved in 30 enzy-

matic reactions; it draws elements from the models of Yugi and Tomita [116], Westermark

et al. [110] and Sweet and Matschinsky [108]. The model involves 123 parameters; 89 were

taken directly from the literature, 34 were calibrated by �tting to the experimental obser-

vations of Ronnebaum et al. [88]. We tested the model's accuracy by comparing model

predictions to qualitative and quantitative observations of system behavior as reported in

the literature on β-cell metabolism [49, 50, 63, 45]. Once we had con�rmed the validity

of the model, we carried out local and global sensitivity analysis to identify the important

control points in the pyruvate recycling pathways. The analysis reveals that the Vmax

values of dicarboxylate carrier (DIC), pyruvate carboxylase (PC), pyruvate dehydrogenase

(PDH), cytosolic malic enzyme cytosolic (MEc), pyruvate transporter (PYC) and citrate

synthase (CSm) are important control points in the pathway.
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Chapter 2

Biology of Pyruvate Recycling Pathways

Chapter Outline In this chapter we describe the basic physiology associated with pan-

creatic β-cells and experiments related to β-cells metabolism. We �rst summarize the

basic physiology of pancreatic β-cells. Next, we report the �ndings which lead to the

conclusion that insulin is released into the blood stream in a bi-phasic manner, by the

triggering and amplifying pathways. Then, we illustrate the 13C-isotopomer-based �ux-

quanti�cation analysis that established the correlation between glucose stimulated insulin

secretion (GSIS) and pyruvate recycling �ux. Finally, we will summarize the series of

gene knock-down experiments of enzymes associated with pyruvate recycling. Finally, we

discuss plausible metabolic coupling factors.
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2.1 Introduction to β-Cell Physiology

Pancreatic β-cells Pancreatic β-cells are found in the Islet of Langerhans. Pancreatic

β-cells constitutes 75-85% of the Islet of Langerhans. Pancreatic β-cells are the place where

insulin is expressed and released into blood stream. The signaling mechanism of insulin re-

lease into the blood stream is a well regulated and controlled mechanism which is in�uenced

by many factors. In recent years research has indicated that fuel intermediates stimulate

insulin secretion primarily by co-ordination of their metabolism in the mitochondria and

cytoplasm of β-cells [76, 82, 66].

Mitochondria Most eukaryotic cells contain many mitochondria, which occupy up to

25 percent of the volume of the cytoplasm. Mitochondria are among the largest organelles,

generally exceeded in size only by the nucleus, (and by the plant organelles � vacuoles,

and chloroplasts). Mitochondria contain two very di�erent membranes, an outer one and

an inner one, separated by the inter-membrane space (Figure 2.1). The outer membrane,

composed of about half lipid and half protein, contains proteins that render the membrane

permeable to molecules having molecular weights as high as 10,000 a.m.u. The inner mem-

brane, which is much less permeable, is about 20 percent lipid and 80 percent protein.

The surface area of the inner membrane is greatly increased by a large number of infold-

ings, or cristae, that protrude into the matrix, or central space. In eukaryotic cells, the

mitochondrion is the place where ATP is generated through the degradation of glucose

and fatty acids. Aerobic metabolism of glucose and fatty acids generates ATP and other

intermediates that are exchanged with the cytoplasm for various bio-synthetic and secre-
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Figure 2.1: Schematic diagram of mitochondria.

tory processes. In the pancreatic β-cell, glucose and its intermediates are channeled to

the mitochondria, where signals for the initiation and potentiation of insulin secretion are

generated [88, 51]. Normal mitochondrial activity appears to be equally important in the

action of insulin on its target tissues [66]. Insulin resistance in the elderly and in relatives

of type 2 diabetic patients have also been associated with mitochondrial dysfunction [111].

Figure 2.2: Structure

of insulin. Figure from

www.rcsb.org. PDB.ID

1AI0. Figure generated

using Jmol http://jmol.

sourceforge.net/

Insulin Insulin is a peptide hormone and is expressed in

pancreatic β-cells (Figure 2.2). The synthesis of insulin be-

gins at the translation of the insulin gene, which resides on

chromosome 11. During translation, two introns are spliced

out of the mRNA product, which encodes a protein of 110

amino acids in length. This primary translation product is

called proinsulin and is inactive. It contains a signal peptide

of 24 amino acids in length, which is required for the peptide

to cross the cell membrane. After a series of modi�cations

in the endoplasmic reticulum and Golgi apparatus it becomes

active insulin.

Exocytosis (the process through which cells release
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molecules into the outside environment) of the insulin granules (insulin is stored in β-

cells in the form of small clusters, called granules) is triggered by the entry of glucose

into the β-cells. The rise in blood glucose following a meal is detected by the pancreatic

β-cells, which respond by releasing insulin. The secretion of insulin has a broad impact on

metabolism. The e�ects of insulin are re�ected in an increase in gene transcription, and

enzyme synthesis during its activity period.

Type 2 Diabetes Diabetes mellitus is the physiological state in which glucose home-

ostasis in the blood stream malfunctions. In the healthy condition, when the amount of

glucose increases in the blood (e.g after a meal), the hormone insulin is released from the

pancreas into the blood stream. This initiates a sequence of cellular events: insulin ac-

tivates muscle and fat cells to remove glucose from the blood, and activates the liver to

metabolize glucose, thus regulating glucose homeostasis in the blood.

In diabetic patients, the blood glucose level remains high, due to the failure of glucose

homeostasis. One reason for this malfunction is the mis-regulation of insulin secretion into

the blood stream. Moreover, there are multiple reasons why insulin might not carry out

its action: insulin might not be properly produced in the β-cells, or may not be properly

secreted into the blood stream. This situation leads to di�erent types of diabetes classi�ed

according to the type of failure. The two most predominant types of diabetes are type

1 diabetes (5% of cases), which is an autoimmune disorder, and type 2 diabetes (95% of

cases), which is associated with the failure of the insulin signaling mechanism (and is linked

to obesity). Type 1 diabetes mainly a�ects children. In contrast, type 2 diabetes mostly

a�ects adults. There is a high correlation between the life style of a person (e.g. obesity)
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and type 2 diabetes. Other forms of diabetes are uncommon, such as gestational diabetes

that occurs during pregnancy, or diabetes caused by a single gene mutation.

There are several factors underlying the malfunction of glucose homeostasis in type 2

diabetes. Two important factors are the body's resistance to insulin (i.e. the failure of cells

to respond properly to insulin) and de�cient production of insulin by the β-cells. In type

2 diabetes, one can su�er from a combination of de�cient secretion and de�cient action of

insulin. The de�cient secretion of insulin might be due to a failure of the glucose stimulated

insulin secretion (GSIS) pathway in β-cells.

2.2 Glucose Stimulated Insulin Secretion

Insulin resistance can manifest out of many factors in type 2 diabetes. Studies done in

animal models and humans suggest that the initializing factor is β-cell failure, which in-

volves a reduction in β-cell mass and malfunctioning of important β-cell functions such

as glucose stimulated insulin secretion (GSIS). β-cells ensure regulation of insulin by re-

sponding to multiple factors, including metabolites (glucose and other nutrients), neural

signals, hormones, and sometimes pharmacological agents. The study of stimulated insulin

secretion led to three important discoveries. First, glucose must be metabolized by β-cells

to induce insulin secretion. The supporting evidence for this conclusion was found when

glucose metabolism was interfered with in the cells. This led to failure of insulin release,

which was restored only by the addition of external metabolized sugars [13, 29]. Second,

Ca2+ is a signi�cant regulator of insulin secretion. This was established by the fact that

in the absence of Ca2+, glucose failed to initiate insulin secretion [28, 72]. Third, β-cells
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can be excited electrically [16].

In the present work we focus on the glucose-initiated signal, which is bi-phasic. That

is, insulin released in two phases [26, 115]. The �rst phase is triggered by the so-called

triggering pathway and the second, more sustained, phase is initiated by the so-called

amplifying pathway. Next, we review the bi-phasic release of insulin secretion in response

to increases in glucose concentration.

Before we start our discussion on bi-phasic release of insulin initiated by glucose metabolism,

we emphasize that there are many other potentiators of insulin secretion which do not

involve glucose mediation (Figure 2.3). Signi�cant among non-glucose potentiators are in-

cretin hormones glucagon-like peptide-1 (GLP1) and gastrointestinal inhibitory polypep-

tide (GIP), which are released by the enteroendocrine cells of the small and large intestine

(L cells) during the process of food digestion [3]. These hormones trigger the activity of

adenylate cyclase and cyclic AMP in the β-cell. It is signi�cant to note that GLP1 mod-

ulates the activity of the three ion channels in the β-cell: the KATP channels, the voltage

gated Ca2+ channels and voltage dependent K+ (Kv channels). Kv also plays an important

role in the triggering pathway of GSIS. Finally, there is evidence in support of the amino

acids arginine and leucine as insulin potentiators. Arginine modulates the K+ channels

whereas leucine is known to be an allosteric modi�er of important enzymes (like glutamate

dehydrogenase) which may have a role in generating potentiators [20, 105]. A schematic

�gure of this complex insulin signaling network is provided in Figure 2.3.

The Triggering Pathway Glucose metabolism in β-cells contributes to the tight regula-

tion of the Ca2+ concentration and voltage-operated Ca2+ channels, which have subsequent
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Figure 2.3: Schematic of insulin secretion phases and potentiators.

roles in insulin signaling (Figure 2.4).

As the glucose concentration rises, β-cell metabolism increases, generating more ATP.

Consequently, ATP-sensitive K+ channels (KATP channels) close, which results in the mod-

ulation of the K+ conductance. This results in membrane depolarization (charge reversal

across the plasma membrane). One of the primary physiological regulators of these channels

which is derived from glucose is the ATP:ADP ratio, however there may be other regu-

lators. Once a threshold value of membrane depolarization is reached, voltage-operated

Ca2+ channels are activated. These channels open, allowing an in�ux of Ca2+ into the

β-cell (down the electrical gradient). This opening of Ca2+ channels occurs at regular
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intervals, which oscillate together with membrane potential. This results in oscillation of

Ca2+, which in turn triggers insulin secretion.

The signi�cant role of KATP channels is demonstrated through agents that open or close

channels without interfering with glucose metabolism. It has been shown that when mouse

islets are stimulated with 15 mmol/g glucose, β-cells display typical electrical activity:

Ca2+ oscillates and insulin secretion is stimulated. However, the opening of K+ channels

with diazoxide causes membrane re-polarization, which results in lowering of Ca2+ and

subsequent inhibition of insulin secretion. Moreover, addition of tolbutamide, which closes

the channels, restores the depolarization and resumption of electrical activity. This results

in rise of Ca2+ and increase in insulin secretion [36].
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Plasma Membrane
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Figure 2.4: Schematic illustration of glucose initiated triggering pathway of insulin secre-
tion.
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In summary the GSIS mediated trigger signal follows the following steps:

� Glucose enters the β-cells through facilitated di�usion.

� Glucose is metabolized through oxidative metabolism which increases the ATP:ADP

ratio. The increase in this ratio initiates the closure of K+ channels.

� Voltage operated Ca2+ channels are opened.

� Ca2+ in�ux increases.

� As a result plasma membrane depolarization happens and there is subsequent acti-

vation of the exocytotic mechanisms.

The Amplifying Pathway Evidence for a second phase of insulin secretion emerged in

two independent experiments by Gembal et al. and Sato et al. [26, 94]. This second phase

of activity is initiated by the so-called amplifying pathway.

Glucose stimulated insulin secretion occurs by membrane depolarization mediated by

KATP channels. The activity of KATP channels can be modulated by diazoxide, which

opens the channel without interfering with the insulin secretion process. By adding extra

K+, membrane depolarization can be initiated, which subsequently initiates the insulin

secretion. However, when the function of KATP channels was removed through diazoxide,

glucose was still able to increase insulin secretion where the cells depolarized by KCl [26, 94].

Moreover, experiments were carried out using sulfonylureas, which closes the KATP channels

instead of opening. When the activity of KATP channels is inhibited by sulfonylureas,

glucose was still able to increase insulin secretion. Both these results suggest that there
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is a mechanism through which glucose potentiates insulin secretion that is independent of

KATP channel regulation. This pathway is termed the amplifying pathway. Subsequently,

K+-induced depolarization in the presence of diazoxide was used to show that glucose can

increase insulin secretion independently of KATP channels in rodent islets [55, 25, 48, 10, 70],

human islets [107], perfused rat pancreas [1], and insulin secreting cell lines [41].

Hierarchy between the triggering and amplifying pathways Its has been shown

that the two pathways trigger insulin secretion in a �xed order: the amplifying pathway

follows the triggering pathway. The manipulation of KATP channels by diazoxide at low

concentration of glucose showed that the amplifying pathway tends to amplify the trigger

signal [37].

The glucose-derived second messenger that signals the amplifying pathway has not been

conclusively identi�ed; it is the subject of current studies. In the subsequent discussion we

summarize recent evidence that has emerged about the second messenger.

2.3 NMR Experiments

In this subsection we summarize the rat INS-1 derived cell lines that are used to study

the metabolic pathways of β-cells. Then we describe the 13C-isotopomer analysis of these

cell lines that showed that pyruvate recycling through the enzyme pyruvate carboxylase

enzyme (and not through pyruvate dehydrogenase) is correlated with GSIS.
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INS-1 derived cell lines In order to gain better understanding of the biochemical reg-

ulation involved in insulin secretion, Hohmeier et al. [41] derived robust ATP-sensitive K+

channel-dependent and independent cell lines from rat INS-1 cell lines, as follows. First,

rat INS-1 cell lines were transfected by plasmids containing the human proinsulin gene.

Subsequently, three kinds of cell lines were developed based on the glucose-derived insulin-

secretion response: responsive cell lines, moderately responsive cell lines, and less respon-

sive cell lines. The analysis of strongly responsive cell lines was carried out. These cell

lines showed stable glucose response for longer period of time (approximately 7.5 months)

and successful secretion of insulin in response to potentiators like isobutyl-methylxanthine,

and oleate/palmitate. Studies of the KATP channels were carried out using the pharmaco-

logical agents diazoxide, to inhibit the insulin secretion, and sulfonylurea, to potentiated

glucose-induced insulin secretion. These validating the cell lines against the prevailing

hypothesis about the role of the KATP channels. Next, comparison between the poorly re-

sponsive cell lines and the responsive cell lines revealed that the responsive cell lines were

able to increase the insulin secretion in the KATP channel independent manner whereas for

poorly responsive cell lines the insulin secretion was almost identical for both dependent

and independent cases. This validated the presence of the amplifying pathway.

13C-NMR analysis of INS-1 derived cell lines Lu et al. [63] used 13C-NMR istopomer

analysis of glutamate to show that pyruvate recycling is correlated with the GSIS. The

study was carried out in four clonal cell lines: two highly glucose-responsive cell lines (num-

bered 832/13 and 834/40), and two less glucose-responsive cell lines (832/1 and 832/4).

The response characteristics of these cell lines is robust for long periods of tissue culture
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which allowed e�ective 13C istopomer analysis. Here we summarize the important aspect

of the 13C isotopomer model. In all the subsequent discussion the following de�nition of

the pyruvate recycling ratio will be used:

Pyruvate Recycling Ratio =
Pyruvate Carboxylase Flux

TCA cycle �ux

The 13C istopomer analysis starts by incubating cell lines in the [U-13C6]glucose, iso-

lation of glutamate and �nally analysis of 13C istopomer using 13C-NMR spectroscopy.

The spectra was generated for two di�erent models (Figure 2.5): pyruvate dehydroge-

nase (PDH) catalyzed conversion of [U-13C3]pyruvate to [U-
13C2]acetyl-CoA and pyruvate

carboxylase catalyzed (PC) conversion of [U-13C3]pyruvate to [1,2,3-
13C3]oxaloacetae (con-

version of pyruvate to [U-13C3]lactate via lactate dehydrogenase (LDH) is common for both

the models). For these two models the glutamate carbon spectra (C2, C4 carbon positions)

will show distinct peaks. If [U-13C3]pyruvate is converted only to [U-13C2]acetyl-CoA then

the peaks in the spectra of glutamate will show uniformity. However, for the second model

there will be di�erent levels of peaks in the (C2, C4 carbon positions) NMR spectra.

The NMR spectra revealed larger peaks in the C4 component glutamate in the respon-

sive cell lines compared to the less responsive cell lines. This is possible only if pyruvate

is derived from TCA cycle intermediates. Signi�cantly, acetyl-CoA showed a similar trend

of percentage increase in concentration in all the four cell lines as the glucose concentra-

tion was raised (approximately ≈40, ≈70, and ≈85% at 3, 6, and 12 mM glucose level).

Therefore, it can be concluded that PDH-catalyzed conversion of pyruvate to acetyl-CoA

is not signi�cant for the glucose-responsiveness of cell lines. Next, the pyruvate recycling
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Figure 2.5: Schematic illustration of two models of 13C istopomer analysis of pyruvate
recycling rate.

ratio was measured in the two glucose-responsive cell lines and two unresponsive cell lines.

The results were consistent with the hypothesis that the ratio was increased signi�cantly

in the two responsive cell lines when glucose concentration was increased from 3 to 12 mM

concentration. In contrast, less responsive lines did not show any signi�cant rise in the

pyruvate recycling ratio when the glucose concentration was increased. The dose response

curve of the pyruvate recycling ratio showed a linear relationship with insulin release. This

further con�rmed the involvement of pyruvate recycling in insulin secretion.

Finally, the activation and inhibition of pyruvate recycling were studied. Glucose-

responsive cell lines were treated with DMM, which is an analogue of malate and so is

expected to increase the conversion of TCA intermediates to pyruvate. The isotopomer

analysis revealed that DMM increased pyruvate recycling by 40%. Further, insulin secretion
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nearly doubled at 12mM glucose. This established a further correlation between pyruvate

recycling and insulin secretion. Next, these cell lines were treated with PAA, which is an

inhibitor of PC. The result was inhibition of insulin secretion at 12mM glucose, con�rming

that PC is important for GSIS.

Having con�rmed that pyruvate recycling is linked to insulin secretion, studies turned

to the identi�cation of important target points in the pyruvate recycling pathway and

possible metabolic coupling factors (MCF).

2.4 siRNA Gene Knock Down

Recent studies related to β-cell metabolism have focused on identifying control points

and MCFs in the recycling pathway using short interfering RNA (siRNA) mediated gene

silencing technique. siRNA is a double stranded RNA molecule approximately 20-25 base

pairs in length. One of the important roles of siRNA is in RNA interference (RNAi). RNAi

is a process of targeted gene silencing at the mRNA level.

The gene silencing mechanism is initiated by the RNAse enzyme called Dicer, which

breaks down double stranded RNA (dsRNA) into siRNA. In the next step, these siRNAs are

incorporated into a silencing complex called the RNA-induced silencing complex (RISC).

RISC functions to identify complementary messenger RNA (mRNA) and subsequently

inhibit its expression. The process is illustrated in the Figure 2.6.

siRNAs are easily available and have very high e�ciency of delivery inside cells, which

makes them ideal for gene knock-down studies.
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Figure 2.6: Schematic illustration of siRNA mediated gene silencing. In the �rst step the
RNase-III-like enzyme Dicer processes the long dsRNA and miRNA into siRNA/miRNA
duplexes. Next, these siRNAs are assembled into a complex called RISC, which carries out
RNA cleavage (and possibly other modi�cations).
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2.5 Gene Knockdown of Pyruvate Recycling Pathways

The 13C-NMR based isotopomer analysis revealed the role of pyruvate carboxylase (PC)

in pyruvate recycling and established correlation between pyruvate recycling and GSIS.

However, these studies do not identify the speci�c control points in the pathway that

contribute to insulin release. To gain this understanding, a series of studies were done using

siRNA-mediated gene silencing of enzymes involved in pyruvate recycle. In this section we

describe the important insights developed through these knock-down experiments.

A note on the terminology about experiments: all the comparisons considered below

are drawn between two cell lines: control cell lines and knock-down cell lines. The control

cell lines are transfected with random siRNA and thus there is no genetic manipulation

in these cell lines. Therefore these cell lines can be considered as the wild-type case.

The experimental cell lines involve transfection with complementary siRNA to silence the

corresponding gene; this is the knock-down case.

Isocitrate Dehydrogenase (ICDc) Ronnebaum et al. [88] studied the role of ICDc in

GSIS using siRNA gene silencing experiments in glucose responsive rat insulinoma (INS-

1-derived) cell lines and in primary rat islets. There are three isoforms of ICD which

are expressed in pancreatic β cells. First, is the TCA cycle (mitochondrial) β-cells NAD-

dependent ICD (EC 1.1.1.41). The other two enzymes are NADP dependent (EC 1.1.1.42)

(ICDc). These NADP-dependent enzymes are expressed predominantly in the cytosol

23



where they participate in pyruvate recycling. The reaction catalysed by ICDc is :

ICIT (cytosolic) +NADP 
 α-KG (cytosolic) +NADPH

The injection of complementary siRNA targeting ICDc in the cell lines led to a 39±%

decrease in ICDc activity, whereas the mitochondrial isoform was una�ected. To study the

ICDc-silencing e�ect on non-fuel mediated insulin release, cells where stimulated with a

membrane depolarizing concentration of K+. The stimulation resulted in approximately

3-fold increase in insulin secretion (at 2.8mM glucose) in both control cell lines and ICDc-

silenced cell lines. This result indicates that ICDc suppression does not a�ect the fuel-

independent release of insulin. However, the knock-down of ICDc caused inhibition in

GSIS and reduced glucose-induced pyruvate recycling.

After establishing the validity of silencing the enzyme, its e�ect on metabolism was stud-

ied. The authors showed that when the glucose concentration was increased, there is a cor-

responding increase in insulin secretion and the NADPH:NADP ratio, thereby establishing

a correlation between GSIS and the NADPH:NADP ratio. Furthermore, ICDc suppression

a�ected the NADPH concentration. The experiments showed that the NADPH:NADP

ratio increases by approximately 3-fold when glucose is increased from 3mM to 12mM in

control cell lines. Signi�cantly this ratio did not show the same increase for the ICDc

knock-down case. Next, a small decrease in total concentration NADPH was observed

at high glucose compared to low glucose, both in the control and silenced cell lines, but

overall less concentration was observed in the ICDc-silenced cell lines. This implies that
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the ICDc knock-down a�ects NADPH at both low glucose and high glucose. Also, the

glycolytic rate was una�ected by the ICDc knock-down, but measurement of the pyruvate

recycling using 13C-NMR isotopomer analysis revealed a decrease in the pyruvate recycling

ratio. Finally, the e�ect of ICDc silencing on di�erent TCA cycle intermediate was stud-

ied. The concentration of seven TCA cycle metabolite (pyruvate, citrate, α-KG, succinate,

fumarate, malate, lactate) was measured. Comparisons between the control and silenced

cell lines at 3mM and 12mM glucose were carried out. There was no signi�cant variation

in the levels of pyruvate, malate, citrate, succinate and fumarate in control and silenced

cell lines. However, lactate levels were increased by 2.8 fold at 12mM glucose concentration

in silenced cell lines compared to control cell lines, whereas α-KG was decreased. Also,

citrate levels were elevated at 3mM glucose in silenced cell lines compared to the control

case. Putting all the information together, these experiments suggest that ICDc has a

signi�cant role to play in GSIS.

citrate isocitrate carrier (CIC) Joseph et al. [51] studied the role of mitochondrial

CIC in regulation of GSIS. CIC is a transport enzyme that reversibly transports mitochon-

drial citrate (or mitochondrial isocitrate) to the cytosol in exchange for cytosolic malate:

CIT (cytosolic) +MAL (mitochondrial) 
 CIT (mitochondrial) +MAL (cytosolic)

This study was carried out in the INS-1 derived 832/13 cells and primary rat islets. The

inhibition of CIC was carried out by the substrate analogue 1,2,3-benzenetricarboxylate

(BTC) and CIC-speci�c siRNA (Ad-siCIC). Inhibition by BTC in INS-1 derived 832/13
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cells and primary rat islets resulted in signi�cant reduction in the both phases (triggering

and amplifying) of insulin secretion, thereby establishing the role of CIC in regulation of

GSIS. Next, the e�ect of genetic manipulation using Ad-siCIC was studied. Transfection

with Ad-siCIC resulted in 53±8% reduction in CIC protein level. The silencing of CIC

did not a�ected the glycolytic rate nor the nutrient-independent release of insulin. The

cytosolic citrate level was reduced by 54±2% in Ad- siCIC treated cells (in comparison

to control cells). Also, the total cellular concentration of citrate in the knock-down case

was reduced by 37±3%, while the mitochondrial citrate was una�ected (again, compared

to the control case). Furthermore, silencing of CIC resulted in a signi�cant decrease in

NADPH:NADP ratio compared to control cell lines. CIC is an important participant in

the pyruvate recycle pathway, as it is one of the co-transporters of isocitrate, which is a

substrate of ICDc enzyme, which is know to have signi�cant role in GSIS. The results

con�rmed that CIC has an important role to play in GSIS.

citrate lyase (CL) Joseph et al. [52] investigated the roles of citrate lyase enzyme (CL)

and fatty acid synthase (FAS) in GSIS. Citrate lyase converts cytosolic citrate into cytosolic

oxaloacetate with cytosolic acetyl-CoA as a by-product.

CIT (cytosolic)+CoA (cytosolic) 
 OAA (cytosolic)+Acetyl-CoA (cytosolic)

FAS catalyzes conversion of acetyl-CoA and malonyl-CoA into long-chain fatty acids with

NADPH as one of the co-factors. This series of reaction steps is believed to be one of

the potential generators of metabolic coupling factor (MCF) for GSIS. To investigate the
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role of these two enzymes siRNA-mediated gene silencing was carried out in INS-1 derived

832/13 cells and primary rat islets.

First we describe the �ndings reached by silencing CL. Two complementary siRNA

were built for CL silencing: Ad-siCL2 and Ad-siCL3. Treatment with Ad-siCL2 resulted in

92±6% reduction in mRNA of CL and resulted in 75±4% reduction in CL protein compared

with a control cell lines. Neither of these silencing treatments a�ected GSIS compared to

control cell lines. The CL silencing reduced the cytosolic oxaloacetae by 54±7% , inhibited

the glucose incorporation into lipid by 43±4% and reduced malonyl-CoA by 83±4%. All

these �ndings are expected outcomes of CL suppression.

Next, complementary siRNA for FAS Ad-siFAS was generated. The treatment of Ad-

siFAS in the cell lines reduced the FAS mRNA by 81±2% . Furthermore glucose incorpo-

ration into lipid was reduced by 59±4% with respect to control cell lines. Interestingly this

reduction did not a�ect GSIS. Similarly, treatment of cell lines by Ad-siCL3 and Ad-siFAS

reduced the mRNA level of CL by 65±4% and FAS mRNA by 52±3% but did not a�ect

GSIS. Putting the results together it can be concluded that CL and FAS are not required

for GSIS.

Malic Enzyme Ronnebaum et al. [89] studied the e�ects of silencing the cytosolic

NADP-dependent Malic enzyme (MEc) and the mitochondrial NADH-dependent malic

enzyme (MEm), in INS-1 derived 832/13 cell lines and primary rat insulinoma cells. MEc

catalyzes the conversion of cytosolic malate to cytosolic pyruvate with NADPH is one of the

co-factors, whereas MEm catalyzes the same conversion for mitochondrial species but with
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NADH as co-factor. Together these two enzymes are part of pyruvate-malate pathway.

MAL (mitochondrial) + NAD (mitochondrial) 
 PYR (mitochondrial)+ NADH (mitochondrial)

MAL (cytosolic) + NADP (cytosolic) 
 PYR (cytosolic) + NADPH (cytosolic)

First the cells were treated with two siRNA complementary to MEm: Ad-siMEm1

and Ad-siMEm2. The treatment of cells with Ad-siMEm1 lead to reduction of mRNA by

46±5% while Ad-siME2 decreased the mRNA by 87±1%. The control cell lines showed

5.7±1% fold increase in the insulin release when glucose concentration was increased from

2.5mM (basal) to 12mM (stimulatory). However, the AdsiMEm1 and Ad-siMEm2 treated

cells exhibited only 3.5±0.7% and 2.6±0.5% fold increases respectively: a signi�cant reduc-

tion. This result may be confounded by the fact MEm suppression a�ects β-cells growth;

signi�cant GSIS in INS-1 cell lines requires con�uent cell cultures. Furthermore, silencing

of MEm in rat insulinoma cell lines had no e�ect on the GSIS.

Next the knock-down experiments of MEc was studied. The silencing of MEc in 832/13

cell lines lead to 76±7% decrease in MEc mRNA. In control cell lines the insulin release

showed 6.1±1.2% fold increase from basal to stimulatory glucose concentration, while in

silenced cell lines a 3.3±1% fold increase was observed: a signi�cant decrease. Furthermore

in rat insulinoma cell lines MEc silencing lead to 82±3% reduction in MEc mRNA, but

did not a�ect insulin release. Suppression of MEc did not a�ect the cell growth in 832/13

cell lines nor did it a�ect the TCA cycle metabolite concentrations. However, silencing did

a�ect the NADPH concentration. Furthermore, MEc silencing did not a�ect the pyruvate
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recycling rate. These results show that the pyruvate-malate cycle might not be playing an

important role in GSIS.

Pyruvate Carboxylase (PC) Jensen et al. [46] investigated the e�ect of silencing

pyruvate carboxylase (PC) on GSIS. PC catalyzes the conversion of pyruvate to oxaloac-

etate.

PYR (mitochondrial) + ATP (mitochondrial) + CO2 (mitochondrial) 


OAA (mitochondrial) + ADP (mitochondrial) + Pi (mitochondrial)

This is an alternative pathway of pyruvate entry into the TCA cycle. The standard

pathway involves pyruvate dehydrogenase catalyzing the conversion of pyruvate to acetyl-

CoA. PC activity is very high in β-cells compared to other cells; in β-cells PC carries

roughly half of the pyruvate �ux. It has been shown that the PC-catalyzed reaction is

correlated with GSIS, but the PDH-catalyzed reaction is not [63].

The siRNA gene silencing experiments were carried out in INS-1 derived 832/13 cell

lines and primary rat islets. A complementary Ad-siPC siRNA was constructed to silence

the PC gene. The treatment of the 832/13 cell by Ad-siPC led to an 83% reduction in

mRNA and a 64% decrease in PC protein level. Similarly, transfection of primary rat

islet led to 56% and 35% reduction in PC mRNA and protein level respectively. The Ad-

siPC treatment of the 832/13 cell lines did not a�ect the glycolytic or glucose oxidation

rates. Interestingly the Ad-siPC treatment did not a�ect the pyruvate levels either at basal

(2.5mM) or stimulatory (12mM) glucose levels. However, there was an approximately 60%
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increase in the lactate level at 12mM glucose concentration compared to control cell lines.

13C-NMR istopomer analysis revealed that, in Ad-siPC cells, there was no e�ect on the

pyruvate recycling ratio when glucose is raised from basal to stimulatory level. Since,

the pyruvate level is unchanged due to Ad-siPC treatment there might be two possibilities:

either the activity of the remaining PC enzyme is proportionally increased or PDH activity

has gone up. It is known that acetyl-CoA is an allosteric activator of the PC enzyme.

To analyze the allosteric e�ect of acetyl-CoA on PC acetyl carnitine level was measured

using quantitative MS/MS technique. acetyl-carnitine is in equilibrium with acetyl-CoA.

Interestingly the acetly-carnitine concentration went up in the Ad-siPC treated cell lines.

This explains the mechanism through which PC speci�c activity might increase, since PDH

generates acetyl-CoA, while PC does not.

Next the e�ect on di�erent metabolites was studied in Ad-siPC cells with respect to

control cell lines. The silencing of PC did not e�ect the NADPH:NADP ratio. Furthermore,

PC silencing did not e�ect the glucose oxidation rate, but there was an approximately

36% decrease in the ATP level in Ad-siPC-treated cells. Finally, the e�ect on the TCA

cycle intermediate was studied. Compared to control cell lines, only α-KG was decreased

in the knock-down case, when glucose is raised from 2.5mM to 12m. Other TCA cycle

intermediates (succinate, fumarate and malate) were una�ected. Therefore, it seems that

β-cells are fairly robust to genetic perturbations in PC.

ARNT Pillai et al. [85] investigated the role of the transcription factor Aryl hydrocarbon

nuclear receptor nuclear translocator (ARNT)/hypoxia-inducible factor(HIF)-1β. To carry

out silencing of ARNT/HIF-1β in INS derived 832/13 cell lines, two complementary siRNA
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were constructed: siARNT1 and siARNT2. The treatment of 832/13 with siARNT1 re-

sulted in 78±4% reduction in ARNT/HIF-1β mRNA while siARNT2 resulted in 56±5%

reduction of mRNA. To measure the e�ect on insulin release, the comparison between

control cell lines (siControl) and cell lines treated with siARNT1 and siARNT2 was done

at basal (2mM) and stimulatory (16.7mM) glucose concentration. siARNT1 treated lines

showed a 60±10% reduction in insulin release at stimulatory glucose concentration with

respect to siControl cells. Similarly, siARNT2 treatment resulted in 52±17% decrease.

Glycolytic �ux was una�ected at basal glucose level in siARNT1 transfected cells, but

showed 31±6% reduction at stimulatory glucose level with respect to siControl. However,

there was no signi�cant change in glucose oxidation both at basal and stimulatory glucose

concentration. The immediate consequence of this is that a glucose induced change in the

ATP:ADP ratio does not occur.

Next, to further investigate the role of ARNT/HIF-1β in GSIS, metabolic pro�ling of

the glycolytic, pentose phosphate, TCA cycle, free fatty acid, and amino acid pathways in

both siControl and siARNT1 cell lines were carried out. Here we summarize the e�ect on

glycolytic and TCA cycle pathways, since these pathways are subject of interest in current

work. This comparative analysis revealed that glycolytic intermediates were signi�cantly

reduced in siARNT1 cell lines. Interestingly, glucose-6-phosphate level was not a�ected

by the knock-down, indicating that the activity of glucokinase is una�ected in siARNT1

treated cells. This observation is consistent with the result that glycolytic �ux is una�ected

in siARNT1 treated cells. However, other glycolytic intermediates, dihydroxyacetone phos-

phate, 3-phosphoglycerate, pyruvate, and lactate are signi�cantly reduced both at basal

and stimulatory glucose concentration in siARNT1 treated cell lines. The TCA cycle in-
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termediates also showed marked decrease in metabolites concentration in siARNT1 cells

compared to siControl cells. At stimulatory glucose concentration there was signi�cant re-

duction in α-ketoglutarate (90±5%), succinate (68±2%), fumarate (67±1%), and malate

(65±2%). Citrate showed less marked reduction of 49±8%. These metabolites are known

to be important participants in pyruvate recycling which is known to be correlated with

the amplifying pathway.

To further investigate the e�ect of ARNT/HIF-1β silencing, gene pro�ling of several

genes involved in diabetes, glucose metabolism and pyruvate recycling was carried out.

Here we outline the e�ect on ARNT/HIF-1β silencing on the pyruvate recycling pathway.

Pyruvate carboxylase and pyruvate dehydrogenase were signi�cantly reduced in response

to ARNT/HIF-1β silencing. Moreover, the transport proteins DIC and OGC were signif-

icantly reduced in siARNT1 treated cells. Other important enzymes involved in pyruvate

recycling, MEc and ICDc, were pro�led. Out of the two, only MEc expression was reduced

in response to ARNT/HIF-1β silencing; ICDc was una�ected. All these components are

proposed to be important participants in the amplifying pathway. Putting all the infor-

mation together we can conclude that ARNT/HIF-1β plays an important role in GSIS.

2.6 Possible Metabolic Coupling Factors

Several metabolic coupling factors (MCFs) have been proposed as potential activators of

the second phase of insulin release (the amplifying pathway). Recent studies suggest that

NADPH is the most important signaling molecule. Here we review the evidence supporting

this hypothesis.
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As discussed in the previous section, 13C-isotopmer analysis of INS-1 derived cell lines

revealed that recycling of pyruvate across the mitochondrial membrane correlates well

with glucose responsiveness. Two enzymes of the pyruvate recycle pathway, ICDc and

MEc are producers of NADPH. Evidence emerged from the siRNA studies showing that

the NADPH:NADP ratio correlates with insulin secretion [88]. Furthermore, PC activity

in β-cells is high (approximately 40-50% of pyruvate enters the TCA cycle through PC),

and PC converts pyruvate into oxaloacetae, which can be subsequently converted into

malate through reactions catalyzed by malate dehydrogenase (MDH). Malate participates

in a number of reactions involved in pyruvate recycle(Figure 2.7). Signi�cant among them

is the transport of malate to the cytosol, by the malate-Pi antiporter (DIC), where it

can be converted to pyruvate via cytosolic malic enzyme with CO2 and NADPH as by-

products. Pyruvate can then be transported back into the mitochondria via a pyruvate-

H+ symporter (PYC) from which the cycle continues. Furthermore, NADPH reducing

equivalents can also be exported from the mitochondria as citrate and isocitrate. Finally,

NADPH participates with enzymes outside the pyruvate recycle pathway which are known

to be insulin potentiators [82]. For example, nitric oxide synthase, which is known to

directly participate in insulin secretion, uses NADPH [77].
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Figure 2.7: Schematic illustration of MCFs generated through the pyruvate recycling path-
way. Red crossed ovals show enzymes whose silencing a�ects glucose stimulated insulin se-
cretion (GSIS); green crossed ovals show enzymes whose silencing had not e�ect on GSIS.
The red boxed region highlights the fact that knock-down of ICDc, which produces NADPH
as co-factor, signi�cantly a�ected GSIS.
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Chapter 3

Kinetic Modeling and Model Analysis

Chapter Outline In this chapter we present a brief summary of the procedures used to

build kinetic models. Firstly, we describe how to develop kinetic models from available in-

formation about metabolic pathways. Second, we introduce stoichiometric analysis, which

is relevant for addressing basic properties of kinetic models (and can provide a useful con-

sistency check). Finally, we conclude by presenting methods for local sensitivity analysis

(LSA) and global sensitivity analysis (GSA) of kinetic models.

3.1 Development of Kinetic Models

Metabolism is a highly organized and regulated cellular process, involving thousands of

enzyme-catalyzed reactions. A series of reactions in which one metabolite is transformed

into another is known as a metabolic pathway; for modelers the dynamics of these pathways

is of particular interest. Modeling allows the identi�cation of control points in pathways,
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and describes the dynamic behavior of pathway metabolites. The development of a ki-

netic model involves the identi�cation of the metabolic pathway, the determination of the

associated enzyme kinetics (including regulation), and the construction of a system of dif-

ferential equations. These equations can be used to investigate properties of the system

using methods such as local sensitivity analysis (LSA) or global sensitivity analysis (GSA).

Every modeling task starts with some assumptions. The �rst basic assumption we

make in kinetic modeling is that each organelles is a di�erent compartment, and each com-

partment is well mixed. Reaction rates can then be assumed to follow the law of mass

action, according to which the �reaction rate is proportional to the probability of collision

of reactants, which, in turn, is proportional to the concentration of reactants to the power

of their molecularity�. We then formulate rate equation as follows,

d[X]

dt
= Rate of production of [X]− Rate of consumption of [X]

Here [X] designates any compound involved in either a metabolic pathway or in transcrip-

tion or translation processes.

Pathway Identi�cation To construct a kinetic model, the �rst task is to identify the

biochemical pathway which will be the subject of investigation. This task is facilitated by

a series of well-curated databases, like KEGG [54], Reactome [68, 109], UniPathway [75]

and many more. (A comprehensive list of biology-related databases is published every year

in Nucleic Acid Research Database issue.) These databases provide detailed descriptions

of the biochemical reactions in each pathway, through which we get the details of the
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molecular mechanism (e.g., enzyme catalytic cycle). These details include

� The identity of all components of the metabolic pathway.

� The intracellular location and components of each reaction (e.g. all the possible

states of the proteins involved).

� The kinetic mechanism of action of each reaction in the pathway.

Once the details of the metabolic network have been identi�ed, the next task is to assign

values to the kinetic parameters involved in the pathway reactions. There are curated

databases that catalog the kinetic data of enzymes and biochemical reactions. Brenda [95,

98] and EMP database [102] are the two databases which have the most comprehensive

enzymological data related to kinetic description of enzymes. SABIO-RK [112, 113] is

database that catalogues information about biochemical reactions, their kinetic equations

(with parameter values), and the experimental conditions under which these parameters

were measured.

Once these details are collected the details of mechanism of action (i.e. rate expressions)

of each reaction can be incorporated into the model. We next review the basics of enzyme

kinetics, which provide a foundation for describing the rates of metabolic reactions.

3.1.1 Introduction to Enzyme Kinetics

Enzymes are the house-keepers of biological processes. The mechanisms through which they

catalyze biochemical reactions demand special mathematical treatment. Enzyme catalysis
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involves multiple stages of enzyme-substrate interaction; to formulate the mechanism en-

zyme catalysis we will make some simplifying assumptions. These assumption enable us to

take into account the diversity of dynamic and regulatory properties of di�erent enzymes.

The main features of these approaches are described below [17, 14, 30].

In 1902 Adrian Brown [43] proposed that an enzyme-catalyzed reaction is composed

of two elementary reactions in which substrate forms a complex with the enzyme, which

subsequently decomposes into product and enzyme:

[E] + [S]
 [ES]→ [P ] + [E] (3.1)

Here, [E], [S], [ES], [P ] symbolize the enzyme, substrate, enzyme substrate complex and

products respectively. Let k1 be the rate of the forward reaction and k−1 be the rate of the

backward reaction for the �rst stage (that is, for the reaction [E] + [S] 
 [ES]). Let k2

be the rate of the forward reaction for the second step of the reaction (that is, for reaction

[ES]→ [P ]+[E]). The time-course of the individual reactant concentrations are expressed

by the di�erential equations,

d[S]

dt
= −k1[S][E] + k−1[ES] (3.2)

d[E]

dt
= −k1[S][E] + (k−1 + k2)[ES] (3.3)

d[ES]

dt
= k1[E][S]− k−1[ES]− k2[ES] (3.4)

v =
d[P ]

dt
= k2[ES], (3.5)

where the last equation describes the rate equation for the product formation, also called
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the reaction velocity v. This reaction rate is directly proportional to [ES], the concentration

of the enzyme substrate complex. In practice, we need to express the reaction rate v in

terms of the concentration of [S] because [ES] is not known. We make two simplifying

assumptions based on the characteristics of the system dynamics (Figure 3.1).

[P][S]

[S]

[E]

Time
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o
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c
e
n
tr

a
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d[ES]

dt = 0

[E]
T

0
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Figure 3.1: Time-course for the components of a simple Michaelis-Menten reaction. After
the initial transient, the slopes of [ES] and [E] are essentially zero so long as [S]� [E]T [30]
(as represented by the box).

To simplify this system, Lenor Michaelis and Maude Menten, building on the previous

work of Victor Henri, proposed in 1913, the idea of using a rapid-equilibrium assumption.

They assumed that if k1 � k2, then the �rst step of the reaction achieves equilibrium

quickly, so that,

KS =
k−1

k1

=
[E][S]

[ES]
. (3.6)

Here KS is dissociation constant.

In 1925 G. E. Briggs and J. B. S. Haldane [8] provided an alternative mechanism, called

the quasi-steady state assumption, to solve the system. Referring to Figure 3.1 we observe

39



that for reasonable length of time concentration of [ES] is nearly constant, since formation

and consumption of the [ES] complex keeps in balance. So we can assume that,

d[ES]

dt
= 0 (3.7)

Based on the above quasi-steady state assumption we present the derivation of reaction

rate v as follows,

Conservation equation [E]T = [E] + [ES] (3.8)

so that

[E] = [E]T − [ES] (3.9)

Combining steady state assumption of equation 3.7 and this conservation equation we
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substitute for [E] in 3.4. We then get,

k1([E]T − [ES])[S] = (k−1 + k2)[ES] (3.10)

Which on rearrangement becomes (3.11)

[ES](k−1 + k2 + k1[S]) = k1[E]T [S] (3.12)

Dividing both sides by k1 gives (3.13)

[ES](
k−1 + k2

k1

+ [S]) = [E]T [S] (3.14)

Rearranging the terms, we have (3.15)

[ES] =
[E]T [S]

KM + [S]
(3.16)

(3.17)

Here KM is called the Michaelis constant, de�ned as

KM =
k−1 + k2

k1

(3.18)

(3.19)
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Now, reaction rate (from equation 2.4), is

v =

(
d[P ]

dt

)
= k2[ES] =

k2[E]T [S]

KM + [S]
(3.20)

We now de�ne the limiting rate (maximal velocity) of the reaction as follows. (3.21)

Vmax = k2[E]T (3.22)

Now the expression for reaction rate becomes

v =
Vmax[S]

kM + [S]
(3.23)

Referring to Figure 3.2, the Michaelis constant Km represents the concentration at which

the reaction velocity is half maximal. Therefore enzymes with small Km values will achieve

maximum catalytic e�ciency at low concentration of substrate. The limiting rate of the

reaction, Vmax, occurs at high substrate concentrations, when enzyme is saturated. The

units of the Michaelis constant Km are concentration; Vmax has units of concentration per

time.

Estimation of kinetic data To estimate the values of parameters Vmax and Km for

an enzyme, one measures the initial rates for di�erent initial substrate concentrations.

Since the rate is non-linear, one has to determine the parameters by non-linear regression.

Another approach is to transform to a linear relation between variables and then apply

linear regression.

To illustrate the process consider the Lineweaver-Burk plot [62], as follows. The
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Figure 3.2: Illustrative plot of the turnover rate v0 of Michaelis-Menten reaction versus the
substrate concentration [S].

Michaelis-Menten equation can be rearranged as:

1

v
=

(
KM

Vmax

)
1

[S]
− 1

Vmax
(3.24)

Now, the equation is linear in terms of 1
v
and 1

[S]
. When we plot 1

[S]
vs 1

v
, the slope is

given by KM
Vmax

, the 1
v
intercept is 1

Vmax
, and the 1

[S]
intercept is − 1

KM
. A disadvantage with

this plot is that most experiment occurs at high substrate concentration so the data tend

to clutter in one region, which can cause a large error when �tting the line. Eadie and
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Figure 3.3: A Lineweaver-Burk plot. Note the crowding of points at large [S].

Hofstee [21] and Hanes and Woolf [31] have proposed alternative way of linearizing the

rate expression, but they are also not free of limitations. More details can be found in the

book by Cornish-Bowden [14]

Derivation of Fumarase Enzyme Kinetics The derivation in the previous section

described the idealized case of an irreversible, one-substrate reaction. To illustrate a more

complex catalytic mechanism, we next derive the rate expression of the fumarase enzyme.

The reaction is assumed to be reversible, with one substrate (fumarate) and one product

(malate). The reaction is competitively inhibited by citrate, ATP, ADP, GTP, and GDP.

First we will derive the mechanism for single inhibition by ATP and then generalize the

formula to include the rest of the inhibitors.

Let K1 and K−1 be the forward and backward reaction for the enzyme (E) binding to

fumarate (FUM).
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Figure 3.4: Fumarase Mechanism

Similarly let K2 and K−2 be the rates for EFUM dissociating to E and MAL and re-

associating, and let K3 and K−3 be the rates of formation/dissociation of the inhibited

complex E − ATP .

The enzyme and enzyme-substrate concentrations are then described by

d[E]

dt
= K−1[EFUM ]−K−2[E][MAL] +K−3[EATP ]−K1[E][FUM ]−K3[E][ATP ]

d[EFUM ]

dt
= K1[E][FUM ] +K−2[E][MAL]−K2[EFUM ]−K−1[EFUM ]

Applying a quasi-equilibrium assumption in the second equation gives the [E] in terms of

[EFUM ]:

[E] =
(K−1 +K2)[EFUM ]

K1[FUM ] +K−2[MAL]
(3.25)
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Using conservation, we have

[E] + [EATP ] + [EFUM ] = [E]t (3.26)

where [E]t is the total enzyme concentration, presumed �xed. The binding of inhibitor is

also assumed to be in equilibrium. The dissociation constant for ATP is given by,

KiATP =
[E][ATP ]

[EATP ]
=
K−3

K3

(3.27)

This gives [EATP ] as

[EATP ] =
[E][ATP ]

KiATP

(3.28)

Substituting this equation back into the conservation equation we have,

[E](1 +
[ATP ]

KiATP

) + [EFUM ] = [E]t (3.29)

Now combining the value of [E] from the steady state assumption and the conservation

equations, we get the value of [EFUM ] as

[EFUM ] =
[E]t(K1[FUM ] +K−2[MAL])

(K−1 +K2)α +K1[FUM ] +K−2[MAL]
(3.30)

Let α = 1 + [ATP ]
KiATP

The reaction rate v is given as

v = −d[FUM ]

dt
= K1[E][FUM ]−K−1[EFUM ] (3.31)
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Substituting the value of [E] and [EFUM ] and rearranging, we arrive at

v =
[E]tK1K2[FUM ]− [E]tK−1K2[MAL]

(K−1 +K2)α +K1[FUM ] +K−2[MAL]
(3.32)

Now let Vmf = K2[E]t and Vmr = K−1[E]t.

Then,

v =
K1Vmf [FUM ]− VmrK−2[MAL]

(K−1 +K2)α +K1[FUM ] +K−2[MAL]
(3.33)

Now de�ne KmFUM = K−1+K2

K1
and KmMAL = K−1+K2

K−2
.

Multiplying and dividing by K−1 +K2 we get

v =

Vmf [FUM ]

KmFUM
− Vmr[MAL]

KmMAL

α + [FUM ]
KmFUM

+ [MAL]
KmMAL

(3.34)

Discussion This equation 3.34 describes the turnover rate of fumarase. It can be ob-

served that when α = 1, equation 3.34 reduces to the case of un-inhibited reversible

Michaelis-Menten kinetics. As α increases (Figure 3.6) it a�ects the KM value, but does

not a�ect the Vmax. In other words, the larger the value of α, the greater the substrate con-

centration needed to approach Vmax. If there are multiple inhibitors, then only α changes;

the rest of the constants remains the same [14]. If we assume equilibrium binding for all
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Figure 3.5: Illustration of e�ect of inhibition coe�cient α on Km. α = 1; Km, α = 2; Km',
α = 3; Km''

inhibitors of fumarase, the dissociation constants are de�ned as,

KiADP =
[E][ADP ]

[EADP ]

KiGDP =
[E][GDP ]

[EGDP ]

KiGTP =
[E][GTP ]

[EGTP ]

KiCIT =
[E][CIT ]

[CIT ]

In this case α is given as:

α = 1 +
[ATP ]

KiATP

+
[ADP ]

KiADP

+
[GTP ]

KiGTP

+
[GDP ]

KiGDP

+
[CIT ]

KiCIT

(3.35)
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3.1.2 Cooperativity

Many proteins, including enzymes, have multiple binding sites where a molecule, generically

called a ligand, can bind; these binding processes may cause interactions between the

binding sites themselves. Consider the simple case where one ligand molecule (S) binds to

a protein (E) with one binding site:

[E] + [S]
 [ES]

The binding constant KB is de�ned as:

KB =
[ES]

[E] · [S]
(3.36)

The dissociation constant KD is de�ned as the reciprocal of KB. The total number of

binding sites that have bound ligands, divided by the total number of sites is called the

fractional saturation, Y , given by:

Y =
[ES]

[E]total
=

[ES]

[ES] + [E]
=

KB · [S]

KB · [S] + 1
(3.37)

Given that [E]total = [ES]+ [E] and using equation 3.36 [E] = [ES]
KB ·[S]

. The plot of Y vs S is

hyperbola (Figure 3.6). Now, if the the protein has several binding sites, then interaction

between these sites may occur: the a�nity to further ligands may change after binding

of one or more ligands. This phenomena is called cooperativity. Positive cooperativity

increases the a�nity of ligand to bind to the site whereas negative cooperativity decreases
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the a�nity of further ligands to bind on the sites.

Next we derive the expression for a dimeric protein with two identical binding sites

exhibiting cooperativity. We start with the assumption that binding of the �rst ligand

increases the binding of the second ligand:

[E2] + [S]
slow−−→ [E2][S] (3.38)

[E2][S] + [S]
fast−−→ [E2][S]2

where [E] is a monomer and [E2] is dimer. The fractional saturation Y is de�ned as:

Y =
[E2][S] + 2[E2][S2]

2[E2,total]
=

[E2][S] + [E2][S2]

2[E2] + 2[E2][S] + 2[E2][S2]
(3.39)

Let us put further assumption that the a�nity to the second ligand is strongly increased

by binding to the �rst ligand, then [E]2[S] will react with [S] as soon as it is formed, and

the concentration of [E2][S] can be neglected. This assumption of complete cooperativity

(i.e every protein is either empty or fully bound) leads to:

[E2] + 2[S]→ [E2][S2] (3.40)

Then binding constant is given by:

KB =
[E2][S2]

[E2] · [S]2
(3.41)
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and the fractional saturation Y is:

Y =
2[E2][S2]

2[E2,total]
=

[E2][S2]

[E2] + [E2][S2]
=

KB[S]2

1 +KB[S]2
(3.42)

Under these assumptions, for a protein with n binding sites, one can derive an expression

of the form

v = VmaxY =
VmaxKB[S]n

1 +KB[S]n
(3.43)

Where n is referred to as the Hill coe�cient. This is referred to as a Hill function [38].

It implies that the binding to a certain ligand in�uences the a�nity of the protein to

further ligands. In the current study cooperativity can found in the TCA cycle enzymes

n=1
n=1.5
n=2
n=0.2
n=.5

Substrate

R
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ct
io

n 
R
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e

Hill Equation

Figure 3.6: Plot of hill kinetics. n < 0 < 1 is cooperative inhibition; n > 1 is cooperative
activation; n = 1 is Michaelis-Menten rate.

mitochondrial isocitrate dehydrogenase enzyme and succinyl-CoA dehydrogenase.
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3.1.3 Allosteric Enzymes

Allosteric (Greek allos, other + stereos solid or space) enzymes are the class of enzyme

which have extra binding sites other than the active (catalytic site). At these additional

sites, small molecules such as metal ions can bind; this binding event has a regulatory

e�ect on the catalytic activity of enzyme. The binding can induce the enzyme to catalyze

more e�ciently, or can have an inhibitory e�ect, where the catalytic e�ciency of enzyme

is reduced (Figure 3.7). Furthermore allosteric enzymes can incorporate cooperative reg-

ulation. Therefore, the kinetics of allosteric enzymes requires special treatment, since the

complete mechanism cannot be explained just by Michaelis kinetics or the Hill equation.

Here we review the Monod et al. [73] model of allosteric regulation. We will not derive

the expression but discuss the properties of the rate expression. The Monod model is based

on the assumptions that:

� All the n enzyme sites are identical.

� Each sites belongs to a sub-unit. These sub-units have two conformational states:

active (R) or inactive (T).

� All the sub-units change their conformations at the same time.

� The equilibrium constant between R and T conformations is called the allosteric

constant and de�ned as follows:

L =
T0

R0

(3.44)

The index i for Ti and Ri denotes the number of bound substrate molecules.
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Figure 3.7: Schematic illustrate of allosteric enzymes and e�ect of allosteric modi�er.
Binding of the allosteric modi�er to the allosteric site modi�es the active site making the
enzyme inactive. This is allosteric inhibition . Similarly, allosteric activation is possible.

Next, binding constants for the active conformations are given by KR and for inactive

conformation by KT . Let us assume that substrate molecules can bind only to the active

form, implying KT = 0. The rate expression according to Monod et al. [73] is de�ned as:

V =
VmaxKR[S]

1 +KR[S]

1

1 + L
(1+KR[S])n

(3.45)
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where the factor VmaxKR[S]
1+KR[S]

corresponds to the Michaelis-Menten kinetics, while 1
1+ L

(1+KR[S])n

is a allosteric regulatory factor.

For L = 0 the plot V vs S is a hyperbola as in Michaelis-Menten kinetics; For L > 0

one gets a sigmoid curve shifted to the right.

For the general case where substrate can also bind to the inactive state (that is KT 6= 0)

the rate expression is de�ned as follows:

V =
VmaxKR[S]

1 +KR[S]

KR +KTL
(

1+KT [S]
1+KR[S]

)n−1

1 + L
(

1+KT [S]
1+KR[S]

)n (3.46)

So far we discussed positive regulation involving cooperativity. Now we discuss allosteric

activation and inhibition. For that we need to modify the L . Consider the case in which

an activator [A] binds only to the active conformation and an inhibitor [I] binds only to

the inactive conformation. This will shift the equilibrium to the respective conformation.

So our modi�ed allosteric constant is given by:

L′ =
(1 +KI [I])n

(1 +KA[A])n
(3.47)

KI and KA denote binding constants. An activator molecule decreases the sigmoidity while

an inhibitor molecule increases the sigmoidity. The plot of the rate expression for di�erent

cases is shown in �gure 3.8.

In the current study there are many allosteric enzymes, such as Pyruvate dehydroge-

nase and Succinyl-CoA dehydrogenase. However, the allosteric e�ects are primarily due
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Figure 3.8: The plot of equation 3.45 for di�erent values of L. Parameters are Vmax = 1, n =
4, KR = 2, KT = 0. Values of L are shown in legend. We can observe that increasing the
value of L causes strong sigmoidity. Also, shown are the e�ect of activators and inhibitors,
with dashed and dotted line respectively. The value of L = 104 for this case and KI [I] = 1
in equation 3.47 for inhibition and KA[A] = 1 for activation.

to ions (Ca2+) or the ATP:ADP ratio; when these species are treated as constants, the

allosteric terms reduce to single parameters. In the model described in Chapter 5, allosteric

regulation is only implicitly present in the model (as a parameter rather than a complete

rate expression).
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3.1.4 Transporters

Transporter proteins are a special class of membrane-embedded enzymes that selectively

transport metabolites across the plasma membrane without any chemical modi�cation to

the molecule. Transporters are of two types: active and passive. Active transporters require

energy to transport the molecule, while passive transporters require no energy expenditure.

In the current study only passive transporters are involved. Passive transporters can be

modeled in the same way as enzyme-catalyzed reaction, with substrate and product being

the same metabolite but in di�erent compartments. For all the four transporters in the

model in chapter 5, the pyruvate transporter, citrate-isocitrate carrier, dicarboxylate carrier

and the oxaglutarate carrier, the transporter kinetics is described by the rapid equilibrium

random-bi-bi enzyme kinetics, as previously modeled in Yugi and Tomita [116]. There

are two sub-types of transporters: antiporters, which transport the two metabolites in

opposite directions, and symporters, which transport the two metabolites in the same

direction (Figure 3.9).

The overall reaction scheme of the rapid equilibrium random-bi-bi enzyme kinetics is

shown in �gure 3.10. The derivation of rate expression follows the same steps as outlined

for the fumarase kinetics. These complex rate expression need not be manually derived

,as there are many software tools available to carry out the derivation automatically such

as SBMLsqueezer [18]. The kinetic expression for this mechanism is described in equa-

tion 3.48.

[A]·[B]·vmf
α·KiA·KiB −

[P]·[Q]·vmr
β·KiP·KiQ

1 + [A]
KiA

+ [B]
KiB

+ [P]
KiP

+ [Q]
KiQ

+ [A]·[B]
α·KiA·KiB + [B]·[P]

γ·KiB·KiP + [Q]·[B]
δ·KiB·KiQ + [A]·[P]

ξ·KiA·KiP + [P]·[Q]
β·KiP·KiQ

(3.48)
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Figure 3.9: Schematic illustration of antiporter and symporter transporters across the
plasma membrane

where v{·} are the forward and reverse turnover rates of the enzyme and Ki{·} are the

Michaelis constants and α, β, γ, δ, ξ are dissociation constant.
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Figure 3.10: The overall reaction scheme for a rapid equilibrium random Bi-Bi kinetic
reaction

3.2 Structural Analysis of Metabolic Pathways

We next review some properties of kinetic models that can be understood by analysis of the

stoichiometry matrix. These are sometimes known as structural properties of the metabolic

pathway. These analyses are valuable as a consistency check of the model, by identifying
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metabolite conversation in the pathway. Conservation analysis can lead to simpli�cation

of the system of ODEs which can lead to more e�cient solution.

Stoichiometry coe�cients are de�ned as the �proportion of substrate and product

molecules involved in a reaction�. For example, consider the simple reversible reaction

A 
 B where A and B are two chemical species. For this reaction, the stoichiometric

coe�cient of A is -1 and for B is 1. The stoichiometry matrix is constructed from the

stoichiometric coe�cients of all reactions within a pathway. This matrix is organized in

such a way that every column corresponds to a reaction and every row corresponds to a

compound. The stoichiometric matrix for above reaction is simply [1,−1]T . It is impor-

tant to note is that the assignment of the stoichiometric matrix is not unique, since the

ordering of the species and reaction can be re-arranged. For a metabolic pathway having

m metabolites and r reactions, the stoichiometric matrix is a matrix N of size m× r.

Systems Equations Consider a metabolic pathway consisting of m species and r reac-

tions. The system dynamics is described by:

dSi
dt

=
r∑
j=1

nijvj for i = 1, ....m (3.49)

where nij is the stoichiometric coe�cient of metabolite i in reaction j and vj is the j
th

reaction rate.

Now, we build a stoichiometric matrix N from stoichiometric coe�cients nij assigned
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to the substance Si and the reactions vj as:

N = nij for i = 1, ...,m and j = 1, ..r (3.50)

Here, each column belongs to a reaction and each row to a substance.

Let us de�ne a metabolic pathway with concentration values vector as S = (S1, .....Sn)T ,

reaction rates vector v = (v1, ...vr)
T and a parameter vector p = (p1, .....pm)T with the

stoichiometric matrix N . If the system is in steady state, we can also consider the vector

J = (J1, J2, ....Jr)
T containing the steady state �uxes. With this notation putting the

information together the balanced equations can be represented as:

dS

dt
= Nv(p) (3.51)

Properties of the Stoichiometric Matrix N Analysis of the matrix N can reveal

important information about the structural properties of the pathway. Analysis of the

stoichiometric matrix can identify which combinations of individual �uxes are attainable

in steady state. Moreover, dead-ends and un-branched reaction pathways can easily be

calculated from stoichiometric matrix. Furthermore, we can discover the conservation

relations in the pathway.

Supposing that equation 3.51 is in steady state, we have:

dS

dt
= Nv = 0 (3.52)
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The product Nv is a linear system of equations that constrains the reaction rates v. This

equation has nontrivial solutions only for rank N < r. Next, we de�ne the kernel matrix

K such that

NK = 0 (3.53)

Equation 3.53 describes linear dependencies among the reaction rates. The kernel matrix

K is not unique. Equation 3.53 can be solved using, e.g. Gaussian elimination [86]. Every

possible set of steady-state �uxes can be expressed as a linear combination of the columns

ki of K:

J =

r−rank(N)∑
i=1

αi · ki (3.54)

The coe�cients must have appropriate units (M · s−1 or mol ·L−1 · s−1 ). Now we can

analyze following properties of the metabolic pathway

1. If the entries in a certain row are zero in all basis vectors, we have found an equilibrium

reaction. In any steady state, the net rate of the respective reaction must be zero.

2. If all basis vectors contain the same entries for a set of rows, this indicates an un-

branched reaction path. In each steady state, the net rate of all respective reactions

is equal.

In the previous analysis all the reactions are considered to be reversible reactions. If

a reaction is irreversible then extra constraints are to be put on the kernel matrix K, but

the stoichiometric matrix N remains unchanged. Extra conditions can be placed on the

set of vectors belonging to K such that some values may not become negative or positive

depending upon the way �ux direction is de�ned.
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Identi�cation of Conservation Relation from Null Space of NT Now we explain

the derivation of conservation relations in metabolic pathways. If the total concentration

of substance remains constant, which can be the case where substance is neither added or

removed from the reaction system then the substance is conserved in the reaction system.

The conservation will be preserved even if the substance interacts with the other substance

and forms a complex.

To identify conservation in metabolic pathway we start by de�ning a matrix G such

that:

GN = 0 (3.55)

Substituting in equation 3.51, we have

GṠ = GNv = 0 (3.56)

Integrating this equation we have the conservation relations:

GS = const (3.57)

where, n is the number of metabolites in the system. Furthermore, the number of

linearly independent rows of G is equal to n − rank(N). GT is the kernel matrix of NT ,

having properties similar to kernel matrix K. The matrix G can also be calculated using

Gaussian elimination [86]. Matrix G is not unique, since every linear combination of its

rows is again a valid solution.

Conservation analysis is very important in the context of kinetic modeling, as identi�ca-
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tion of conservation relations will lead to simpler ODE system. To carry out the reduction

�rst the rows of the stoichiometric matrix N and its concentration vector S are reordered

in such a way that all the independent rows are at the top and dependent rows are at

the bottom. This way of splitting the matrix into a linearly independent part N0 and a

dependent part N ′ can be carried out. Therefore, the system of equation can be written

as follows:

N = (N oN ′) = LN o = (Irank, NL
′)N o (3.58)

where, L is called the Link matrix

Where, Irank(N) is the identity matrix of size rank(N). The system of di�erential equation

becomes:

Ṡ = (Ṡindep Ṡdep) = (Irank(N)L′)N
ov (3.59)

and the dependent concentration satis�es

Ṡdep = L′ · Ṡindep (3.60)

Integration leads to

Sdep = L′ · Sindep + const (3.61)

This relation holds true for the entire time course. Thus we may replace the original

system by a reduced equation system

Ṡindep = Nov (3.62)
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This equation together with the set of algebraic equations describes the complete system

dynamics. These elementary stoichiometric analyses are useful to identify conservation if

present in the model which might not be implicit in the model structure and to check the

system of di�erential equations.

3.3 Local Sensitivity Analysis

To study the e�ect of individual parameter perturbation on the model output, the method

of local sensitivity analysis is used (LSA). In this section we summarize steady state LSA

of kinetic models.

Consider quantity y(x) which depends on another quantity x. The local e�ect of a

change Mx on y can expressed in terms of a sensitivity coe�cient:

Cy
x =

(
x

y

My
Mx

)
Mx→0

(3.63)

For example, Mx might be e.g. a one percent change of x. The normalization factor x/y

makes the coe�cient independent of units and of the magnitudes of x and y. The advantage

of having unit-independent coe�cient is that sensitivities can be compared across di�erent

reactions. However, normalization is not possible if y = 0, which may happen for certain

parameter combinations. In the limiting case M→ 0 the coe�cient can be de�ned as:

Cy
x =

x

y

∂y

∂x
(3.64)
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Which can be restated mathematically as:

Cy
x =

(
∂ ln(y)

∂ ln(x)

)
(3.65)

We next review two interpretations of the LSA coe�cient: the �ux control coe�cients and

response coe�cients of metabolic control analysis (MCA). For a comprehensive description

of MCA, readers are referred to excellent texts by Fell [24], Klipp et al. [60], and Heinrich

and Schuster [35].

3.3.1 Sensitivity Coe�cients

Flux Control Coe�cients Before we de�ne the sensitivity coe�cients of MCA it is

important to emphasize that all this analysis has the strict condition that the metabolic

pathway is operating at a stable steady state. Let us consider the steady state concentration

S = S(p) and steady state �uxes J = v(S(p), p) of the pathway. In the limit of a very

small perturbation of an individual reaction rate by a parameter change vk → vk+ M vk,

we drive the system to a new steady state with J → J + ε1J and S → S + ε2S. The �ux

control coe�cient for the control of rate vk over �ux Jj is de�ned as

Cj
k =

vk
Jj

∂Jj
∂vk

(3.66)

whereas the concentration control coe�cient of concentration Si with respect to vk reads

Ci
k =

vk
Si

∂Si
∂vk

(3.67)
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The control coe�cients measure the control that a given reaction vk applies on the steady

state �ux J or on the steady state concentration Si, respectively. It is assumed that the

change εvk is caused by change in a parameter pk that has a direct e�ect only on vk. Thus

it holds that

∂vk
∂pk
6= 0 and

∂vl
∂pk
6= 0 (l 6= k) (3.68)

This parameter might be the enzyme concentration, a kinetic constant or the concentration

of a speci�c inhibitor or e�ector. Hence, we can de�ne the �ux control coe�cient is:

Cj
k =

vk
Jj

∂Jj/∂pk
∂vk/∂pk

(3.69)

Response Coe�cients To understand the e�ect of generic kinetic parameter pm other

than enzyme concentration (i.e. Vmax) Kascer and Burns [53] de�ned the Response Coe�-

cient. They assumed that the parameter in�uences the behavior of the system, but can be

held constant after it has been altered while the system reaches a new steady state. The

response coe�cients are de�ned as:

Rj
m =

pm
Jj

∂Jj
∂pm

and Ri
m =

pm
Si

∂Si
∂pm

(3.70)

where the �rst coe�cient expresses the response of the �ux to a parameter perturbation

while the latter describes the response of a steady state concentration.
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3.4 Global Sensitivity Analysis

As more and more experimental data become available, the size of published kinetic models

also increases. Often, many parameters are derived from di�erent cell types and exhibit

signi�cant experimental error. Furthermore, a subset of these parameters are not �t directly

to data, but instead are calibrated to reproduce experimental observations of the system

for which the kinetic model is developed. As a consequence, kinetic parameters often have

signi�cant uncertainty associated with their values. Furthermore, biochemical regulation

is a very complex mechanism, exhibiting multiple ways of regulating biochemical process.

Thus, the study of interaction between parameters can lead to important identi�cation of

model behavior. In other words, a individual parameter might not have a signi�cant e�ect

on model behavior in isolation, but in combination with certain parameters, could lead to

important change in model behavior. Through local sensitivity analysis, we cannot study

model behavior that can account for these e�ects, as local sensitivity is limited to individual

parameter perturbations. So, we need new analysis methods through which we can study

the associated uncertainty with parameters and interaction e�ects among parameters. For

this purpose, global sensitivity analysis (GSA) is a very e�ective analysis method.

One de�nition of GSA, according to Salteli et al., is: �The study of how uncertainty in

the output of a model (numerical or otherwise) can be appropriated to di�erent sources

of uncertainty in the model input�. For model analysis, we made use of the Partial rank

correlation coe�cient (PRCC), the variance-based GSA method; the extended Fourier

amplitude sensitivity test (eFAST), and Sobol's method. The reason for using multiple

sensitivity analysis is that the GSA sensitivity measures depend on the method used, and
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comparative study of the sensitivity measures of di�erent methods can lead to identi�cation

of important model behavior. Details about the mathematical background of the methods

is provided in Chapter 4. The computational set-up for GSA for the model is provided in

the appendix A.2.3.
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Chapter 4

Computational Techniques

Chapter Outline In this chapter we will present the brief overview of mathematical

methods used in the project. First, we summarize the dynamic parameter identi�cation

using the simplex algorithm and the simulated annealing algorithm (SA). Then we will

discuss the steady state calculation using a combination of an ODE solver and nonlinear-

equation solvers. Second, we summarize the methods of derivative approximations used

during the project. Third, we summarize the methods of global sensitivity analysis (GSA)

used in the project. Finally, we conclude with a proposal to use a surrogate modeling

frame work for parameter identi�cation in large kinetic models.

4.1 Parameter Identi�cation

In this section we will describe parameter identi�cation procedures for ordinary di�erential

equation (ODE) kinetic models. We used two optimization algorithms: Nelder-Mead [79]
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and simulated annealing algorithm (SA) [59] for the purpose of parameter identi�cation.

Here, we will summarize the these two algorithms. Next, we describe the MATLAB®

ODE15s function algorithm which was used to solve the ODE. Finally, we explain the

MATLAB® fsolve function algorithm which was used to achieve a steady state solution.

Objective Function Let us �rst describe the mathematical frame-work for an ODE

based kinetic models. A Kinetic model of a metabolic pathway can be described by the

following continuous ordinary di�erential equations:

ẋ = f(x(t), u(t), p), (4.1)

x(t0) = x0,

y(t) = g(x(t))

Where x ∈ Rn is the systems state vector (metabolite) for a metabolic pathway, p ∈ Rk is

the system parameter vector, u(t) ∈ Rp is the system input, y ∈ Rm denotes the measured

data, and x0 is the initial state. f(·) is a set of functions describing the dynamical properties

of a biological system like rate expressions. Finally, g(·) represents a measurement function

such that if all the states are known then g(·) becomes an identity matrix. Otherwise,

corresponding rows are deleted from In whose experimental values are unknown.
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To identify the parameters of the ODE cost function can be stated as follows:

OBJ0 : minp̂,x̂0

N−1∑
j=0

n∑
i=1

wij||yi(tj)− ŷi(tj|p̂)||l, (4.2)

such that


ˆ̇x(tj) = f(x̂(tj|p̂), u(t), p̂), x(t0) = x̂0,

ŷ(tj) = g(x̂(tj|p̂)), j = 1, 2, ......N − 1

pl ≤ p̂ ≤ pu

OBJ0 measures the �tness of the model with respect to given experimental data, where

p̂ ∈ Rk is the set of parameters to be identi�ed, || · ||l denotes the l-norm with l > 0, x̂0 is

the estimated initial condition, x̂ ∈ Rk is the estimated system states x̂(tj|p̂) represents the

estimated variable at tj with parameter p̂ and initial condition x̂0, wij are the weighting

coe�cients, ŷ is the estimated measured data. Finally, pl and pu are lower and upper

bounds on the parameters and are also referred to as box constraints.

To minimize OBJ0 a number of optimization algorithms can be used. Special attention

needs to be paid to the fact that the derivative of the cost function is not easily available

and accuracy is limited since derivatives needs to be evaluated at each iteration. In the

concluding section of this chapter we will discuss ideas about solving the problem more

e�ciently.

The objective function de�ned in equation 4.2 is the generalized statement of kinetic

model parameter estimation. The objective function used to estimate the parameter in the

current study is discussed in Appendix A.2.2.
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4.1.1 Optimization Algorithm

Here we describe two algorithms which we used to estimate parameters as described

Press [86] and implemented in SBTOOLBOX2 [97].

Simplex Algorithm Nelder and Mead [79] in their pioneering work developed a deriva-

tive free optimization algorithm for multidimensional unconstrained (box constraints can

easily be included) optimization. Since the method does not require derivative informa-

tion, the method is suitable for problems involving non-smooth functions and parameter

estimation problems of ODEs.

We use the notation of the Conn et al. [12]. The Nelder-Mead [79] algorithm is designed

for classic nonlinear unconstrained minimization of a nonlinear function f : Rn → R.

Nelder-Mead [79] is simplex based method where a simplex S in Rn is de�ned as the

geometrical �gure consisting in N dimension of N+1 points and all their interconnecting

line segments [86]. For example, in two dimension simplex is a triangle, in three dimension

it is tetrahedron, not necessarily a regular tetrahedron. In other words a simplex S in R

is the convex hull of N + 1 points (vertices's) y0, . . . , yn ∈ Rn [12]

A simplex based method begins with a set of N + 1 points y0, . . . , yn ∈ Rn that are

considered as the vertices's of a working simplex S, and the corresponding set of function

values at the vertices's fi = f(yi) for i = 0, . . . , n given constrain that working simplex

S is non-degenerate that is the points y0, . . . , yn must not lie in the same hyperplane. With

in these mathematical constraints the algorithm performs a sequence of transformations

of the working simplex S, in order to decrease the function values at its vertices's. At
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Figure 4.1: Simplex in 2 and 3 dimensions.

each iteration a series of test points are calculated together with function values, and then

function values are compared based on which transformation is determined.

Description of Algorithm The initial simplex S is generally constructed by generating

n+1 points around y0, . . . , yn around a given input point yin ∈ Rn. Press [86] recommends

that this point be chosen to be y0 = yin since this can allow proper restart of the algorithm.

The remaining n points are then constructed based on:

� S is right angled at y0 based on coordinate axes, or

yi = y0 + δiei, i = 1, . . . , n (4.3)
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where δi is the step size in the direction of unit vector ei ∈ Rn

� S is a regular simplex, where all edges have the same speci�ed length.

Next, the Nelder-Mead method takes series of steps or transformations in order to

move the points of the simplex such that function value is lowest among all simplex point.

These steps transformations are called re�ections and to maintain non-degeneracy they

are constructed in such a way to preserve the volume. Under this assumption, the method

expands the simplex in one or another directions to take larger steps. Next, depending

on the function value the method contracts itself: in the transverse direction if encounters

valley or contracts itself in all direction if the function value is decreasing sharply.

Stopping Criteria Termination criteria in any multidimensional minimization routine

should be decided with signi�cant care. Two set of criteria usually works best for the

optimization. First, optimization can be terminated when the vector distance moved in

the current step is fractionally smaller in magnitude than some tolerance tol. Second, we

could require that the decrease in function value in the terminating step be fractionally

smaller than some tolerance ftol. Press [86] recommended that tol should not usually be

smaller than the square root of the machine precision, but it is perfectly appropriate to let

ftol be of order the machine precision.

In derivative free methods like the Nelder-Mead stopping criteria can easily return

wrong solutions or stop prematurely before reaching actual minima. Nevertheless, the

stopping criteria in derivative-free methods are an active area of research. The simplest

work around to overcome this problem is to restart a multidimensional minimization routine
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at a point where it claims to have found a minimum. Press [86] suggests that for this

restart re-initialization can be done through any ancillary input quantities. For example,

the downhill simplex method can be reinitialized at any of N of the N+1 vertices's of the

simplex again by equation 4.3 y0 being one of the vertices's of the postulated minimum.

Convergence The convergence analysis of the Nelder-Mead method is a nontrivial prob-

lem and is currently actively pursued. The details of the convergence properties of the

Nelder-Mead method can be found in the book by Conn [12].

Simulated Annealing (SA) The method of SA is inspired from the thermodynamics

process called annealing. In the annealing process, liquids are heated and cooled slowly.

In statistical physics the annealing process is modeled using the Boltzmann probability

distribution de�ned as,

Prob(E) ∼ exp(
−E
kT

) (4.4)

where, k is Boltzmann's constant, E is the energy of the state and T is the temperature.

The physical meaning of the Boltzmann equation is that a system in thermal equilibrium

at temperature T has its energy probabilistically distributed among all di�erent energy

states E. In the transitions the system looks for the minimum energy states or in other

words this to minimize its energy. Metropolis et al. [71] used these principles to simulate a

thermodynamic system such that the system makes transitions from energy E1 to energy

E2 with probability p = exp[− (E2−E1)
kT

] with the condition that if E2 < E1 then p = 1 (since

in this case probability is greater tha 1). Now, a thermodynamic system makes both high

energy transitions and low transitions eventually �nding its minimum energy state. This
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is called the Metropolis algorithm.

Kirkpatrick et al. [59] using same idea introduced a minimization algorithm for non-

thermodynamic systems which is known as simulated annealing algorithm (SA). In the

Kirkpatrick et al. paper this algorithm was used to solve a discrete problem, however the

SA can easily be extended to continuous system with the some re�nements. Consider, the

continuous function f(x) such that x ∈ Rn. To minimize f we have to reformulate SA as

follows:

� The f is the objective function.

� The system state is now x.

� The control parameter T is like a temperature with an annealing schedule by which

it is gradually reduced and there must be a generator of random changes in the

con�guration that is the procedure for taking a random step x to x+ M x

Implementation of SA The SA algorithm is implemented as the simplex algorithm with

the di�erence that the next simplex move is decided by the SA algorithm. The algorithm

includes the box constraints. Complete details of the computational implementation can

be found in Press [86]. The method is implemented in SBTOOLBOX2 [97] with box

constrained (that is bounds on x) which was used for parameter estimation in the current

study.

It is important to discuss the annealing schedule of SA algorithm, since the success

of SA depends signi�cantly on the type of annealing schedule used. Next, we discuss an

annealing schedule tried during parameter optimization as recommended in Press [86]:
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1. The decrease in T is scheduled in such a way that T reduces by (1− ε)T after every

m moves, where ε/m is determined by heuristics.

2. T is assigned a value using T = T0(1− k
K

)α after everym moves, where α is a constant

values that can be chosen between 1 and 4, k is the cumulative numbers of moves

thus far, K is preassigned total number of temperature reductions. While choosing

the value of α it should be considered that a larger value of α implies larger spent

time at lower temperature.

3. Finally, schedule T reduction in T after m moves such that T reduces by the factor

of β · f1 − fb, where β is constant between 0 and 1, f1 is the smallest function value

of the current simplex, and fb is the best function so far achieved by the algorithm.

Important restriction is that the T should not be reduced more than some fraction

γ at a time.

Stopping Criteria and Convergence of SA The stopping criteria of the algorithm

in this implementation of SA is the same as discussed for Nelder-Mead algorithm. The

convergence results for SA algorithm are not yet available, however some discussion can

be found in the book by Laarhoven et al. [61].

SA o�ers many advantages suitable for kinetic model parameter estimation. First the

algorithm is not greedy that it is not tricked by the quick payo� achieved by falling into

unfavorable minima. Provided that su�ciently general recon�guration are given, it wanders

freely among local minima of depth less than about T. As T is lowered the number of

such minima qualifying for frequent visit is gradually reduced. Second, the con�guration
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decisions tend to proceed in a logical manner. Changes that cause the greatest energy

di�erence are shifted over when the control parameter T is large. These decisions become

more permanent as T is lowered and attention then shifts more to smaller re�nements in

the solution.

4.1.2 Solving the Model for Steady State

ODE solver In this section we discuss the backward di�erentiation formula (BDF) for

solving a sti� set of ordinary di�erential equation (ODE).

The method can be used to solve an initial value problem of the type,

y′ = F (t, y) (4.5)

on a time interval [t0, tf ], given initial condition y(t0) = y0. More broadly these methods

can be used to �nd solutions of the problem:

M(t)y′ = f(t, y) (4.6)

With a mass matrix M(t) that is non singular and sparse. However, our focus is on the

solution of equation 4.5

Implicit formulas for sti� systems The BDF are very popular for solving sti� ODE

problems. When the step size is a constant h and backward di�erences are used, the
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formula of order k, BDFk, for a step from (tn, yn) to (tn+1, yn+1) is

k∑
m=1

1

m
∇myn+1 − hF (tn+1, yn+1) = 0 (4.7)

The simpli�ed Newton method (chord) is used to solve the algebraic equation for yn+1.

The iteration is started with the predicted value:

y0
n+1 =

k∑
m=0

∇myn. (4.8)

The truncation error of the BDFk leading term is given by:

1

k + 1
hk+1y(k+1) ≈ 1

k + 1
∇k+1yn+1 (4.9)

This is the general formula for BDFs. In MATLAB® ODE15s the above formula is

implemented in a slightly modi�ed form. Details about the implementation can be found

in Shampine and Reichelt [104]. We used the order 2 that is, k = 2, to solve the system of

ordinary di�erential equations, since the order 2 o�ers maximum stability for the solver.

Next, The non-linear equation solver fsolve was used to check for the steady state reached

by the ODE solvers. Since, many times the solution returned by the ODE solver was

not the actual steady state so this check pointing was necessary for a consistency check

of the steady state. We used the �Trust-region-dogleg� method for solving the system of

non-linear equations. The details of the solver settings are documented in appendix A.2.1.

Since these methods are well established and not the subject of focus in the current work,

we will not discuss these methods in detail. The detailed description of the MATLAB®
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ODE suite and fsolve algorithm can be found elsewhere in [104, 83].

4.2 Derivative Computation

Numerical approximation of derivatives is required for sensitivity analysis, and for Jacobian

estimation for ODE and nonlinear equations simulation algorithms (and for derivative-

based optimization routines). In this section we outline three methods for approximation

of derivatives: di�erence approximation, automatic di�erentiation (AD), and symbolic dif-

ferentiation. In the current study, di�erence approximation methods were used to evaluate

local sensitivity coe�cients, while AD and symbolic di�erentiation were used for Jacobian

estimation for the implicit simulation of the ODE system.

4.2.1 Numerical Approximation of Derivatives

In this subsection we will review numerical approximation of derivatives, using the notation

of Elden et al. [22]. Let the function f be continuous and di�erentiable. Suppose function

value is known for points x − h, x and x + h where h is a small number. Our goal is to

approximate the derivative f ′(x), that is, the slope of the tangent of the curve y = f(x) at

the point x. We can obtain a forward di�erence, denoted D+(h), by approximating f by

the line through the points (x, f(x)) and ((x+ h), f(x+ h)) as follows (Figure 4.2),

f ′(x) ' D+(h) =
f(x+ h)− f(x)

h
. (4.10)
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Alternatively, we can de�ne the central di�erence approximation, D0(h), as the slope of

straight line through the points ((x− h), f(x− h)) and ((x+ h), f(x+ h)) (Figure 4.2),

f ′(x) ' D0(h) =
f(x+ h)− f(x− h)

2h
(4.11)

x

y

x+hxx-h

central difference forward difference

function f(x)

Figure 4.2: Schematic illustration of di�erence approximations.
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Approximation Error Next we present the error analysis of the di�erence approxima-

tion. The di�erence approximation has truncation error RT which can be approximated by

Taylor series approximation. Let f be a twice continuously di�erentiable function, whose

�rst derivative is approximated by forward di�erence. Then:

RT = D+(h)− f ′(x) =

(
1

h
(f(x+ h)− f(x)

)
− f ′(x)

=
1

h
(f(x) + hf ′(x) +

1

2
h2f ′′(ξ)− f(x))− f ′(x)

=
1

2
hf ′′(ξ)

(4.12)

where ξ denotes point in the open interval (x, x+h). ξ and f ′′(ξ) are unknown, but we can

observe that the truncation error is O(h) as h→ 0. This implies that if f ′′(x) is constant

for values close to x, then RT will be halved if the value of h is halved.

Let us keep the higher order terms of Taylor expansion then we get:

RT = D+(h)− f ′(x) =
1

2
f ′′(x)h+

1

3!
f (3)(x)h2 +

1

4!
f (4)(x)h3 + ...

= a1h+ a2h
2 + a3h

3 + ...

(4.13)

Where ak = f (k+1)(x)
(k+1)!

. Similarly, for central di�erence approximation we have:

D0(h)− f ′(x) = b1h
2 + b2h

4 + b3h
6 + .... (4.14)

We observe given b1 6= 0 and bk
b1

is not very large then we have RT ' b1h
2 provided h is

very small. It can be further observed that D0(h) gives better approximation compared to

D+(h) with exception for the case when a1 � |b1| .
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Richardson Extrapolation Since, the di�erence approximation was used to perform

the steady state local sensitivity analysis, we re�ned the results using the Richardson

Extrapolation method. Through this extra evaluation we can check for error in di�erence

approximation due to ODE solver failure and if any discontinuity is present in the result.

This practice can increase our faith in the results especially for the large kinetic models.

We explain the Richardson Extrapolation using central di�erence method 4.11 as de-

scribed in Elden et al. [22]. Consider the central di�erence approximation

F (h) =
f(x+ h)− f(x− h)

2h
(4.15)

The idea behind Richardson extrapolation is that if the function F is well behaved as

h→ 0 and have computed the value of F for two di�erent values of h then a good estimate

of F (0) can be computed. From the expression for the truncation error 4.14, it can be

generalized that the truncation error between two arguments h and qh is proportional to

hp, given this Richardson extrapolation de�nition as quoted from Elden et al. [22] is:

De�nition Richardson Extrapolation: If

F (h) = F (0) + chp +O(hr), r < p, (4.16)

with a known p and a unknown c, which are independent of h, then

F (h) +
1

qp − 1
(F (h)− F (qh)) = F (0) +O(hr) (4.17)
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Practical Implementation Now we provide the procedure for practical implementation

of Richardson extrapolation. The idea is to perform repeated Richardson extrapolation.

Consider the expansion:

F (h) = F (0) + a1h
p1 + a2h

p2 + ..... (4.18)

Now, let us assume that we know the exponents p1, p2, ....., but a1, a2, ...... are unknown.

Finally, we assume that F has been computed for arguments ....q3h, q2h, qh, h.

Next, let F1(h) = F (h), then we have:

Fk+1(h) = Fk(h) +
1

qpk − 1
(Fk(h)− Fk(qh)) k = 1, 2, ... (4.19)

Now, eliminate the hpk-term from the expansion we get.

Fk+1(h) = F (0) + ˜ak+1h
pk+1 + ˜ak+2h

pk+2 + .... (4.20)

The above expansion can be arranged in the matrix form as follows:

F1(q
3h)

F1(q
2h) F2(q

2h)

F1(qh) F2(qh) F3(qh)

F1(h) F2(h) F3(h) F4(h)

... . . . . . .
... . . .

. . .

Using this arrangement the values of function are calculated row by row and extrapolations
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are done till consecutive values in the same column achieves desired accuracy. This rear-

rangement has advantage that di�erence between two adjacent values of the same columns

provides an upper bound for the truncation error provided h is very small. In practice

values of p and q are determined through experiments.

Conclusion Numerical approximations of derivatives are good substitutes for exact deriva-

tives, which may not be available in many cases. We used forward di�erence approxima-

tion to estimate the local sensitivity coe�cients which was further checked for accuracy

using the Richardson extrapolation method. We used the MATLAB® implementation of

Richardson extrapolation provided by Elden et al. [22].

4.2.2 Automatic Di�erentiation (AD)

In AD the function is broken down into the composition of elementary arithmetic operations

to which the chain rule (di�erentiation chain rule) can be applied. AD has two basic modes

of operations, the forward mode and the reverse mode. In the forward mode the derivatives

are propagated throughout the computation using chain rule. The reverse mode computes

the derivatives for all variables backwards (i.e. reverse order) through the computation.

The reverse mode requires saving the entire computation trace since the propagation is

done backwards through the computation. Hence the reverse mode can be prohibitive for

certain problems due to memory requirements.

Jacobian Calculation The m × n Jacobian matrix of function f : Rn → Rm can be

evaluated in forward mode by n sweeps of forward accumulation, such that each sweep
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yields a column vector of the Jacobian matrix. Alternatively, in the reverse mode, m

sweeps are needed; each sweep yields a row vector of the Jacobian.

AD and �nite di�erence Next we compare the key di�erence between automatic di�er-

entiation and �nite di�erences. The most signi�cant advantage of AD is that it computes

the derivatives exactly up to machine precision whereas �nite di�erences incur truncation

errors. Furthermore, the accuracy of �nite di�erence depends on the step-size, which in

many problem settings is di�cult to best determine. In AD there is no need for selecting

step size. It is important to note that if the function computation itself is not accurate

(e.g. if the function evaluation incurs round-o� errors), then these errors will appear in

the AD process as well.

AD is also traditionally faster than �nite di�erence since AD can take advantage of the

problem structure. For the discussion on this topic see Griewank [27].

Current Limitations Although, automatic di�erentiation has proved to be useful tech-

nique for calculating accurate derivatives, its application is limited. For example, the

evaluation of functions that depends on �oating point arithmetic will involve truncation

error τ . That is we have f̂(x) = f(x) + τ(x), where ˆf(·) is the computed value of f(·) and

τ(·) is the truncation error. Although, |τ(x)| is small, its derivative τ ′(x) might not be

small quantity, so the error in the computed derivative f̂ ′(x) might be large. Error can also

arise in the way the function evaluation is implemented in the automatic di�erentiation

code. A frequent practice is to have branching in the code to improve the speed or accu-

racy of function evaluations in certain domains. For further discussion and an approach to
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dealing with this issue readers can check into Griewank [27].

We conclude that automatic di�erentiation is a useful technique and can be used to

solve many practical problems. Automatic di�erentiation facilitates interpretations of the

computed optimal solutions, allowing the modeler to extract more information from the

results of the computation. However, care should be taken while calculating derivatives as

automatic di�erentiation has certain limitations.

4.2.3 Symbolic Di�erentiation

Symbolic di�erentiation involves the technique of computer algebra. In this method, a

function f is decomposed into algebraic speci�cation which is then manipulated by sym-

bolic manipulation tools to produce a new algebraic expression for each component of the

function gradient. A detailed discussion on the topic is beyond the scope of the present

work; for more details, readers are referred to Pavelle et al. [84]. There are many packages

available for symbolic computation, e.g. Mathematica, Maple, Mupad and many more.

We used the MATLAB® symbolic computation tool (Mupad) implemented in SBTOOL-

BOX2 [97] to calculate the symbolic Jacobian of our ODE system. The use of the symbolic

jacobian makes the ODE solver highly e�cient, but care should be taken in using the

expression since for certain values the expression might lead to a computer arithmetic

problem. Especially, in the case of kinetic models, certain �ux expressions might lead to

NAN for certain initial conditions or parameter combinations.
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4.3 Global Sensitivity Analysis (GSA): Introduction to

PRCC, eFAST and Sobol's method

As discussed in chapter 3 section 3.4 GSA is an analysis method for exploring the e�ect

of uncertainty in the parameters values. In this section we discuss three GSA methods:

PRCC, eFAST method and Sobol's method. The basic assumption is that each input

parameter is viewed as a random variable, with an associated probability density function

(PDF) and a cumulative density function (CDF). These methods explore the e�ect of

parameter variations on the model output. That is, they determine which parameters

produce maximum variance in the output (4.3). The general procedure of the GSA method

involves: assignment of a PDF to each input parameter, sample generation through a

selected sampling method in the parameter space, evaluation of model output on each

sample point, and �nally a method to de�ne the sensitivity measure.

4.3.1 Sampling Methods

For illustration let us consider a single output model de�ned as:

y = f(p) (4.21)

where p = (p1, ....pN) is the input parameter, with each coe�cient assumed to lie in interval

pi ∈ [αi, γi]. The output function is then evaluated on M samples generated from a selected

PDF. The construction of appropriate sample is signi�cant in determining the output's
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perceived uncertainty as well as the input's relative importance.

Reference Model

y

x

z

Multivariate 
Sampling Region

Local Sensitivity Analysis

y direction

x direction

Figure 4.3: Schematic illustration of global sensitivity analysis (GSA). While local sen-
sitivity analysis (LSA) is restricted the point at which analysis is done, a GSA measure
scans the entire parameter space.

Random Sampling The most common approach is to select uniform random samples

of numbers x in the interval [0, 1]. For the chosen number x, we determine the associated
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sample value pi, in the interval [αi, γi], by �nding the inverse of cumulative density function

(CDF) that is p = CDF−1(x). This sampling method has two main advantages: it is easy

to implement, and for large samples, it produces unbiased estimates of the mean and

variance of output y. However, in the case where the sample interval [αi, γi] is subdivided

into a large number of equally sized sub-intervals then we need to take large number of

samples which might be computationally very intensive.

Strati�ed Sampling A more elaborate sampling strategy is strati�ed sampling. In this

method �rst the input parameter interval is divided into sub-intervals. Then, a random

sample is chosen from each of the sub-intervals. The idea behind strati�ed sampling is to

ensure that we obtain samples from each particular interval.

Latin Hyper-cube Sampling (LHS) is another commonly used strati�ed sampling method.

LHS sampling can be viewed as a square with M equally divided rows and columns such

that in each row and column one and only one cell is occupied. The motivation behind

this strategy is to replace the concept of a particular cell being occupied with getting a

sample from the particular associated sub-intervals. Further constraints are imposed on

the sampling so that the distributions of samples will be evenly distributed from the sample

sub-spaces.

Latin hyper-cube sampling is slightly easier to implement compared to other types of

strati�ed sampling like orthogonal sampling. LHS methods return a sample that gives a

good representation of variability, as well as reduces the variance in the output's evaluation.

The signi�cant advantage of using LHS is that we can can work with smaller samples sizes
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without a major subsequent loss of quanti�cation of the output's variance.

4.3.2 Regression based GSA Method

Partial Rank Correlation Coe�cient (PRCC) analysis with Latin hyper-cube

sampling The method of PRCC is useful for the nonlinear models where the relation-

ship between input and output appears to be monotonic [19]. The input data is ranked

in increasing order and the associated output is rearranged accordingly. Next, regression

analysis on the ranked data is carried out to calculate the Pearson rank coe�cients. Hence,

these measures produce a sensitivity measure of how strong a correlation there is in the

monotonicity between input and output. It is important to note that the method assumes

that the input variables are independent of each other, i.e. the parameters are not corre-

lated. Attention needs to be given to this assumption, otherwise erroneous results will be

produced.

For software implementation we used the PRCC implemented in SBTOOLBOX2 [97].

The implementation uses the Pearson correlation coe�cient measurement as described by

Blower and Dowlatabadi [5]. The LHS sampling method was used as explained in the

Mckay et al. [69]. The calculated sensitivity measures, which range between [−1, 1], can

be compared among di�erent parameters.

4.3.3 Variance-Based GSA method

The limitations of PRCC can be overcome by using model-independent GSA methods.

Variance-based GSA method are suitable for model-independent calculation of sensitivity
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measures and are well established in the analysis community [93]. Variance based methods

are useful for the following model analysis [93]:

� Parameter Prioritization: identifying parameters which will lead to maximum output

variation.

� Parameter Fixing: identifying parameter variation range in which output variance

will not vary beyond set threshold.

� Variance Cutting: identifying a set of parameters to reduce output variance below a

certain threshold.

� Parameter Mapping: identi�cation of parameter range for which desired output can

be realized.

We used Sobol's method and eFAST for GSA which we describe next.

Sobol's Method In Sobol's method [42], the model output function y = f(p) is decom-

posed into a unique sum of orthogonal functions of increasing dimension. The decomposi-

tion is as follows

D =

∫
f 2(p)dp− (

∫
f(p)dp)2 (4.22)

=
m∑
i=1

Di +
∑

1≤i≤j≤m

Dij + · · ·+D1,2,··· ,m (4.23)

where m is the number of parameters, D is the overall variance of the model output, and

Di1....is(1 ≤ i1....is ≤ m) denotes the partial variance contributed by parameter combination

92



{i1, i2....is}. First order sensitivities are then de�ned as:

Si =
Di

D

and the total sensitivity index (i.e. sensitivity coe�cient) as:

Sti =
Dtot
i

D

where Dtot
i is the total variance due to ith parameter.

For example, consider a single output, two input function:

y = f(p1, p2)

Then this function can be decomposed into orthogonal components:

y = F (p1) + F (p2) + F (p1, p2)

Then variance according to Sobol's method can be estimated as:

D = D1 +D2 +D1,2

According to Sobol's method �rst order sensitivity for p1, p2 are then de�ned as,

S1 =
D1

D
, S2 =

D2

D
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Next, the total sensitivity index for p1 is de�ned as,

Dtot
1 = D1 +D1,2, Stot1 =

Dtot
1

D

Similarly, the total sensitivity index for p2 is de�ned as,

Dtot
2 = D2 +D1,2, Stot2 =

Dtot
2

D

The signi�cant computational challenge in Sobol's method is estimating the integral

in 4.22, which Sobol [42] suggested to be estimated by Monte Carlo integration of the

output functions on the random sampling basis. Sensitivity measure are then de�ned

based upon the fraction of related partial variances in the overall variances. First order

sensitivity measure indicates the impact of individual parameters on the model output,

whereas the total e�ect sensitivity measure describes the e�ect of parameter interactions

on the model output.

Interpreting Sobol's Sensitivity Index Let Si be �rst order index and Sti be total

sensitivity index.

� Si indicates by how much one could reduce, on average, the output variance if input

parameter pi could be �xed. Hence it is a measure of main e�ect of the parameter.

� Si1...is indicates how much the output variance could be reduced, on average, if one

could �x pi1 ......pis . Sti ≥ Si if parameter pi is not involved in any other interactions.
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� Sti−Si is a measure of how much parameter pi is involved in interactions with other

input parameters. Sti ' 0 implies pi is non in�uential. 1 −
∑
i

Si is an indicator of

the presence of interactions in the model.

eFAST The eFAST method developed by Saltelli et al. [92], which is an extension of

the Fourier Amplitude Sensitivity Test (FAST) [15], has the advantage that it is possible

to calculate total sensitivity measures in addition to �rst order sensitivity measure. In

the eFAST method each uncertain input parameter p̂i is sampled along curves de�ned by

transformation 4.24 in the normalized unit m-dimensional parameter space, where m is

the total number of parameters.

p̂i =
1

2
+

1

π
arcsin(sin(ωis+ ϕi)) (4.24)

where each parameter varies periodically at an angular frequency ωi and random phase

shift ϕi, with a scalar variable s ∈ (−π, π). Using this transformation 4.24, the model

output function is expressed as a Fourier series with respect to s. Then, the properties

of Fourier expansion can be applied, by which the overall variance of the output function

D is decomposed into the square of Fourier series coe�cients. Finally, using Monte Carlo

integration on the sampled parameter space, these Fourier series coe�cients are estimated,

based on which the eFAST sensitivity measures are de�ned. A detailed discussion on the

implementation method of eFAST can be found in Saltelli et al. [93]. The interpretations

of the measure are the same as discussed previously for Sobol's method.
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Interpreting Sensitivity Measure The interpretations of variance based sensitivity

measure is same as illustrated in the example 4.3.3. Only the method of estimating the

�rst order and total e�ect sensitivity measure di�ers between Sobol's method and eFAST.

The PRCC sensitivity measure can be considered equivalent to total e�ect sensitivity

measure of variance based method [93] provided the assumptions of PRCC holds for the

model output (monotonicity relationship between input and output).

Implementation of the Variance Methods Both Sobol's method and the eFAST

method are implemented in the SBTOOLBOX2 [97]. The toolbox implementation is based

on the discussion of Zhang and Rundell [118]. For our model analysis, we calculated both

the �rst order sensitivity measures and total e�ect measures. Details of our GSA analysis

are documented in the appendix A.2.3. The sensitivity measures are analyzed in chapter

5.

Implementation of the Variance Methods Both the variance based methods are

implemented in the SBTOOLBOX2 [97] and toolbox implementation is based on the dis-

cussion of Zhang and Rundell [118]. We calculated both the �rst order sensitivity measure

and total e�ect measure. The details of GSA simulation is documented in appendix A.2.3

and the sensitivity measures are analyzed in chapter 5.
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4.4 Dynamic Numerical Optimization using Surrogate

Models

Parameter identi�cation in large scale kinetic models is not trivial. The standard opti-

mization procedure of parameter identi�cation (described in Section 4.1) does not return,

in many cases, the required solution. These optimization processes are in�uenced by many

factors apart from quality of data, such as the choice of parameters and stability of ODE

solvers. In addition, while the choice of parameters to be �t is often identi�ed through

sensitivity analysis, their degree of in�uence might vary during the optimization process,

potentially causing the optimization algorithm to fall into the wrong local minimum. Fur-

thermore, many times the system is undetermined, especially if parameter identi�cation

is based solely on steady state data. These shortcomings led us to explore alternative

methods for parameter identi�cation of the kinetic models.

In engineering there is a frequent practice to use a surrogate modeling framework to

optimize functions whose evaluation is computationally expensive. In this surrogate mod-

eling framework we look for a surrogate function sm(x) of true function f(x), such that

sm(x) is simpler to evaluate but reproduces the behavior of the true function f(x). Next,

we optimize over sm(x) instead of f(x) with the constraint that sm(x) is able to faithfully

reproduce the behavior of f(x) throughout the optimization process. Consider the cost

97



function:

minimize f(x),

subject to x ∈ B ≡ {x|a ≤ x ≤ b},

If the cost function shows any of these behaviors: evaluation of f(x) is very expensive,

evaluation of derivative is impossible or costly, evaluation of f(x) is not possible by the

x returned by optimization algorithm (like in case where, to evaluate f(x) ODE needs

to be solved), or evaluation of f(x) returns few correct digits, then in any of these cases

surrogate modeling framework can prove useful for optimization of cost function [6].

Surrogate models are of two types: physical surrogate models and functional surrogate

models. Physical surrogate models are built from physical or numerical simpli�cation

of the true functions. Physical surrogate models are based on some knowledge of the

physical system or phenomena being modeled. So, physical surrogate models are problem-

dependent. However, there are some rigorous methods that have been developed to build

physical surrogate models, such as the space mapping [4] method, which uses the gradient

information of the true function f(x) to build a simpli�ed surrogate model.

Since all the kinetic models follow from a �xed set of physical laws, building a physical

surrogate model holds signi�cant potential. We are exploring the options of space mapping

method for building surrogate models.

Functional Surrogate model Functional surrogate models are algebraic representa-

tions of the true problem functions. In general, functional models are based on the follow-
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ing components: a class of basis functions, a procedure for sampling the true functions,

a regression or �tting criteria, and some deterministic or mathematical technique to com-

bine them all. It is important to note that functional surrogate models are mathematical

in nature di�erent from true, original functions. However, the coe�cients of the func-

tional model are tuned to reproduce the behavior of the true function f(x). This has

the signi�cant advantage that functional surrogate models are generic and empirical and

not restricted to certain classes of problems as physical surrogate models are. Functional

surrogate models are strongly dependent on samples of the true function.

Among many available methods for building functional surrogate models: radial basis

functions and Kriging models [91] are popular choices. We have used the DACE tool-

box [106] to build functional surrogate models based on the Kriging approximation. For a

detail discussion on surrogate models readers are directed to the book by Conn et al. [12].

In this section we brie�y discussed the possible problems in parameter identi�cation

of the kinetic model and possible solutions. We are actively pursuing the idea to build a

rigorous surrogate modeling framework for the parameter identi�cation problem for kinetic

models.
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Chapter 5

Model of Pyruvate Recycling Pathways

In this chapter we describe our model of pyruvate recycling in β-cells, and use the model

to draw insights into system behaviour.

5.1 Model Description

The ordinary di�erential equation (ODE)-based model describes the kinetics of 30 enzyme-

catalyzed reactions in β-cell metabolism (Figure 5.1). The model state variables are the

dynamically independent concentrations of 24 metabolite species in two compartments�

mitochondrial matrix and the cytosol (the mitochondrial inter-membrane space is ne-

glected). One additional species concentration is determined through conservation. The

concentrations of seventeen additional species are held constant as model parameters. De-

tails of the model kinetics and parameter values are included in the Appendix A.1.
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Figure 5.1: Pyruvate recycling in β-cells. Pyruvate is converted to oxaloacetate by PCm.
Oxaloacetate is converted to citrate and isocitrate, both of which are transported between the cy-
tosol and the mitochondrial matrix. Citrate is converted into isocitrate by ACOc. Isocitrate can be
converted to α-ketoglutarate (αKG) via ICDc. Isocitrate is then converted into αKG through ICDc
then αKG may enter the mitochondria for conversion to malate by TCA cycle enzymes, and subse-
quent conversion to pyruvate by MEm or MEc, thus completing the pyruvate cycle. Abbreviations. In-
�ux model: GLC:Glucose, F6P:Fructose-6-phosphate, FBP:Fructose-1,6-bisphosphate, GAP:Glyceraldehyde 3-phosphate, DPG:1,3-bisphospho-
D-glycerate, PEP:Phosphenol Pyruvate, GT:Glucose Transporter, GK:Glucokinase, PFK:6-phosphofructokinase, FBA:fructose-bisphosphate
aldolase, GAPD:glyceraldehyde 3-phosphate dehydrogenase, PGP: bisphosphoglycerate phosphatase, PK:Pyruvate kinase, LDHc:Lactate de-
hydrogenase, ACOm:Aconitase Mitochondrial, ACOc:Aconitase Cytosolic, CIC:Citrate Carrier, DIC:Dicarboxyrate Carrier, CLc:Citrate Lyase
Cytosolic, CSm:Citrate Synthase, FMm:Fumarase, IDHm:Isocitrate Dehydrogenase Mitochondrial, IDHc:Isocitrate Dehydrogenase (NADP+)
Cytosolic, MDHm: Malate Dehydrogenase Mitochondrial MDHc: Malate Dehydrogenase Cytosolic, OGC:Oxoglutarate Carrier, PCm:Pyruvate
Carboxylase PDCm:Pyruvate Dehydrogenase Complex, PYC:Pyruvate Carrier, AKDm:α-Ketoglutarate Dehydrogenase, SCS:Succinyl-CoA syn-
thetase, SDHm:Succinate Dehydrogenase, MEm:Malic Enzyme Mitochondrial, MEc:Malic Enzyme Cytosolic.
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The network input is extra-cellular glucose, which enters the cytosol via the high-

capacity, low-a�nity glucose transporter-2 (GLUT2). This transport step is modeled as

previously reported by Sweet and Matschinsky [108]. Glucose is converted to pyruvate by

the six-step glycolysis pathway [47]. The kinetics of all glycolytic reactions were drawn

from the SABIO-RK database [112], with some adjustments (details in the Appendix A.1).

The glycolytic pathway is treated as a �xed in�ux module, and is not included in the

subsequent model analysis (Section 5.3). The end-product of glycolysis, cytosolic pyruvate,

is either converted to lactate (by lactate dehydrogenase (LDH)) or transported into the

mitochondrial matrix. (The former process carries much less �ux than the latter; LDH

activity is weak in β-cells [110].) The TCA cycle operates within the mitochondrial matrix.

All components of the three pyruvate recycling processes�the pyruvate/malate cycle, the

pyruvate/citrate cycle, and the pyruvate/isocitrate cycle�are included in the model.

Simulation Method The system was simulated using mass conservation laws for each

of the dynamically independent species. The reaction kinetics and model equations are

included in the Appendix A.1.4. Simulations were carried out in MATLAB (function

ode15s). Models steady-state concentrations is con�rmed by the application of Trust-

region-dogleg method to the long-time simulation outputs (MATLAB function fsolve).

The details of simulations are provided in Appendix A.2.1.

Parameterization Approach The reaction kinetics, as well as the bulk of the param-

eters, were derived from the previous models of Yugi and Tomita [116] and Westermark

et al. [110]. After formulating the model, we performed a preliminary global sensitivity
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analysis to identify parameters that could be adjusted to provide better �ts to recent data.

We selected parameters whose values are not well-characterized and that had a signi�cant

contribution to the overall sensitivity, but did not impact the crucial measures of (i) the

ratio of metabolic to cytosolic malice enzyme activity, and (ii) the ratio of pyruvate dehy-

drogenase to pyruvate carboxylase activity. We arrived at a set of 34 model parameters to

be �t. Fixing the values of the other 89 parameters as found in the literature, we calibrated

the values of the 34 adjustable parameters by �tting to the experimental observations of

Ronnebaum et al. [88]. That paper provided 32 steady state metabolite concentration

measurements (8 species in 4 conditions) against which to �t the model. This data will be

referred to as the training set. Parameter values were estimated using the simplexSB and

simannealSB algorithm provided by SBTOOLBOX2 software package [97]. The param-

eters values were identi�ed by minimizing least-squares error, weighted by variability in

the data. Details of the calibration routine, including the bounds used for the parameter

search, are presented in the Appendix A.2.2.

Having found a best-�t to the training set, we then veri�ed the model by comparing

model predictions against a range of experimental results on β-cells metabolism [49, 50,

63, 45], as described in the next section. None of this test set data was used for �tting.
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5.2 Model Validation

5.2.1 Model Training

The model was parameterized against a training set provided by the experiments (gene

knock-down via short interfering RNA (siRNA)) in Ronnebaum et.al. [88], in which siRNAs

speci�c for the mRNA of the ICDc enzyme were used to reduce the activity of ICDc. To

simulate the e�ect of the siRNA treatment, we reduced the Vmax parameter of ICDc by the

measured decrease in enzyme activity (39.1%). Ronnebaum et al. collected steady-state

metabolite measurements of eight metabolites in each of four cases: control and knock-

down at low glucose (3mM) and high glucose (12mM). Simulating these cases to steady

state, we calibrated the model by minimizing a least-squares measure of error. The best-�t

model behavior is shown in Figure 5.2. The best-�t model parameters are reported in the

Appendix A.3, along with the values of the 89 parameters that were taken directly from

the literature.
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Figure 5.2: Best-�t model �tting to data from Ronnebaum et.al. experiments. Panel
A. Low glucose, control. Panel B. High glucose, control. Panel C. Low glucose, ICDc
knock-down. Panel D. High glucose, ICDc knockdown.
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Figure 5.3: Simulation Comparison with Observed values for NADPH Ronnebaum et.al.
data. 5.3a 3mM glucose input control case. 5.3b 3mM glucose input knock down case. 5.3c
12mM glucose input control case. 5.3d 12mM glucose input Knock down case.

5.2.2 Model Testing

To validate the model we compared model predictions against a test data set gathered

from the literature. (None of this test-set data was used in parameter �tting.)
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Lactate Dehydrogenase Activity We found that the model corroborates the experi-

mental observation by Sekine et al. [101] that, in comparison with other cell types, β-cells

exhibit signi�cantly reduced lactate dehydrogenase (LDH) activity. In the model network,

glucose-derived pyruvate is either converted to lactate by LDH or is transported into the

mitochondria by the pyruvate transporter (PYC). We compared the �ux through these re-

actions over a wide range of glucose levels (2.5mM to 22mM) and found that LDH exhibits

between 2-4% of the PYC �ux.

Malic Enzyme Activity It has been shown that in β-cells, the cytosolic form of malic

enzyme (MEc) contributes approximately 90% of the total malic enzyme activity in the

cell, at glucose concentrations ranging from 3mM to 20mM [32]. Simulations of the model

predict that roughly 95% of malic enzyme �ux is carried by MEc, for glucose levels ranging

between 2.5mM and 22mM.

Pyruvate Carboxylase Activity Radio-isotopic experiments have revealed that in β-

cells approximately 40% of glucose-derived pyruvate enters the TCA cycle via PC-catalyzed

conversion to OAA, with the remainder metabolized to acetyl-CoA via pyruvate dehydroge-

nase (PDH) [57, 100, 67, 65]. The model predicts that over the range of 12-20mM glucose,

approximately 40% of pyruvate enters the TCA cycle through pyruvate carboxylase. This

percentage increases to above 50% at low glucose (3mM).

Pyruvate Recycling Using a 13C NMR isotopomer method, Lu et al. [63] measured

the rate of pyruvate recycling, which they de�ned as the ratio of PC �ux to the overall
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TCA cycle �ux. This study was carried out in a set of clonal cell lines derived from

rat insulinoma INS-1 cell lines; these cells exhibit a broad range of GSIS sensitivity and

are thus useful for investigating the amplifying pathway response. They found that the

anapleurotic �ux catalyzed by PCm is correlated with GSIS, while pyruvate dehydrogenase

(PDHm)-mediated entry of pyruvate into the TCA cycle is not signi�cantly a�ected by

changes in glucose abundance. Their results are shown in �gure 5.4a, along with the model

predictions. While the model underestimates the recycling rate, it correctly captures the

increase in recycling rate with glucose availability. The experiments of Lu et al. revealed

that the acetyl-CoA does not increase linearly with glucose availability, but saturates by

about 13.5mM glucose concentration. Figure 5.4b shows our model predictions of this

saturation trend.
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Figure 5.4: 5.4a Simulation result of pyruvate recycling at di�erent glucose level. The
comparison is done against glucose responsive cell lines 5.4b Percentage increase in Acetyl-
CoA as glucose concentration is increased showing saturation.
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Ronnebaum et al. made measurements of the pyruvate recycling rate in wild-type and

ICDc knock-down strains. We calculated the pyruvate recycling ratio from model simula-

tion. We found that at 3mM glucose for the control case the ratio is .3483 while for ICDc

knock down it is .1498 (at 12mM glucose simulation there is little variation in the ratio;

control case is .3485 and ICDc knock down is .1499). This data shows the e�ect of the

ICDc knock-down on pyruvate recycling.

ATP Citrate Lyase Knockdown Joseph et al. [52] conducted siRNA-mediated sup-

pression of citrate lyase (CL). They estimated that CL activity was reduced by 75±4%; this

resulted in a 52± 7% reduction in cytosolic oxaloacetate, and no signi�cant impact on the

NADP:NADPH ratio (steady state, at 16.7mM glucose). We simulated this experiment by

reducing the V max value for CL by 75%. At steady state, for 16.7mM glucose, the resulting

change in the NADP:NADPH ratio is .01%; the cytosolic oxaloacetate concentration drops

by 62.8%. (The model predicts a more modest drop in OAAc at lower glucose levels, e.g.

54.4% at 3mM).

Pyruvate Carboxylase Knock Down Jensen et al. [46] conducted an siRNA-mediated

knock-down of pyruvate carboxylase. In their knock-down strain, PC activity was reduced

by 65%, but there was a minimal e�ect on the glucose-dependence of the NADPH:NADP

ratio (Figure 5.5c). The model predictions con�rm that a 65% decrease in PC activity

(i.e. in the corresponding Vmax parameter) has a negligible e�ect on this glucose-dependence.
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Figure 5.5: Low Glucose 2.5mM, High Glucose 12mM 5.5a Comparison of Pyruvate Recy-
cling for the case of PC knock down. 5.5b Concentration trends of metabolites for PC knock
down. 5.5c No e�ect on NADPH:NADP ratio due to PC knock down. 5.5d Comparison
between simulation and e�ect of PC knock down on metabolites and �uxes.

Jensen et al. also analyzed the e�ect of their PC knockdown on the concentrations

of TCA cycle intermediates. In the control case, they found that the concentrations of

succinate, malate, α-KG and citrate increased 2-30 fold when glucose was increased from
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2.5mM to 12mM (Figure 5.5b). When PC activity was suppressed no changes were observed

in the glucose-response of succinate, fumarate and malate; however, the glucose-response

of α-KG was signi�cantly reduced (Figure 5.5b). The model successfully predicts these

e�ects (Figure 5.5b, 5.5d). Figure 5.5d shows that the model captures the e�ect of PC

suppression on acetyl-CoA and lactate that is increment in there concentration when PC

is suppressed compared to control case.

Malic Enzyme Cytosolic Knock Down To investigate the role of the pyruvate/malate

cycle, Ronnebaum et al. [89] conducted siRNA-mediate knock-down experiment of cytosolic

and mitochondrial malic enzyme. They found that knock-downs of either enzymes by 75%

had no e�ect on the pyruvate recycling rate at either 2.5mM or 12mM glucose. Figure5.6a

shows the data along with model prediction for cytosolic malic enzyme, the result for

mitochondrial malic enzyme is similar. Actually there is nothing to compare relevant to

model and all the study is done using MEc knock down. However, their experiments showed

that the NADPH concentration was reduced by the MEc knock-down . We simulated these

experiments by reducing the Vmax of MEc by 75%. The simulation results are shown in

Figure 5.6.
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Figure 5.6: Low Glucose 2.5mM, High Glucose 12 mM. 5.6a E�ect of MEc knock down on
Pyruvate Recycling. 5.6b E�ect of MEc knock down on NADPH concentration.

Aryl Hydrocarbon Knock Down Pillai et al. [85] investigated the metabolic e�ect

of an siRNA-mediated knock-down of the transcription factor aryl hydrocarbon receptor

nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1β, which regulates expres-

sion of ICDc, MEc, CL, PC, AKD, CIC, and DIC. In their experiments, they found that

a knock-down of ARNT down-regulates glycolysis, anaplerosis and glucose-induced fatty

acid production, all of which are known to be important events in GSIS. Pillai et al. mea-

sured the steady-state concentrations of several TCA intermediates at both low and high

glucose levels, in the control and knock-down cases (Figure 5.7). The control cases are

directly comparable with the control cases from our training data (from Ronnebaum et

al. [88]).
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Figure 5.7: Simulation Comparison with Observed values for Pillai et.al. data (not
scaled). 5.7a The model simulation is compared to 2.8mM glucose input with the Pil-
lai et.al. data for the control case. 5.7b The model simulation is compared to 16.7mM
glucose input with the Pillai et.al. data for the control case. 5.7c The model simulation
is compared to 2.8mM glucose input with the Ronnebaum et.al. data for ARNT1 Knock
down case. 5.7d The model simulation is compared to 16.7mM glucose input with the
Pillai et.al. data for ARNT1 Knock down case.

However, because these experiments were carried out in di�erent conditions, the quan-

titative measurements are not entirely consistent. In order to arrive at a prediction that is
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consistent with the training set, we introduced a set of scaling factors. The scaling factor

is decided by scaling the Pillai et al. [85] low glucose control data to that of Ronnebaum

et al. [88] low glucose control data. We added a correction factor by measuring the fold

increase of metabolite in model simulation when glucose is raised from 2.8mM to 3mM

and for high glucose 12mM to 16.7mM since the Pillai et al. [85] experiments are done

at this glucose concentration. Pillai et al. Pillai et al. report that their siRNA results

in the following decreases in enzyme activity: ICDc: 89.29%, MEc:54.76%, CLc:54.17%,

PCm:46.43%, AKDm:63.10%, CIC:94.05% and DIC:60.71%. Simulation of the model with

the corresponding decreases in Vmax values are compared with the experimental �ndings in

Figure 5.7.

Model Trends of NADPH concentration pro�le In addition to the measurements of

NADPH concentration reproduced in �gure 5.3, Ronnebaum et al. [88] also made measure-

ments of the NADPH/NADP ratio at a range of glucose concentrations. The model accu-

rately predicts these �ndings, as follows. Ronnebaum et al. found that the NADPH/NADP

ratio increases by 33.33% when the glucose concentration is increased from 3mM to 4mM;

the model simulation shows an increase of 49.00%. The experiments showed that the ratio

increased 35.71% when glucose was increased from 4mM to 6mM; simulation predicts a

64.25% increase. Finally, Ronnebaum et al. report a 50% increase in the NADPH/NADP

ratio when glucose was increased from 6mM to 12mM; simulation of this comparison pre-

dicts a 95.12% increase in the ratio. When compared to siICDc knock down we found that

NADPH/NADP ratio decreases by approximately 42% at 3mM while simulation shows de-

crease of .0013%, similarly at 12mM glucose observed decrease is 17.11% while simulation
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is .00032% (Figure 5.8a).

Table 5.1: NADPH percentage increase in concentration when glucose concentration is
raised

Glucose increment (mM) Observed Simulation
3 to 4 3.33e+01 4.90e+01
4 to 6 3.57e+01 6.42e+01
6 to 12 5.00e+01 9.51e+01
3 to 12 1.25e+02 5.80e+02

Sener et.al. [103] hypothesized that the NADPH:NADP ratio can be inferred from the

pyruvate:malate ratio or the citrate:α-KG ratio. Our model prediction of this result, which

is consistent with this prediction, is shown in �gure 5.8a.

Finally, Hedeskov et.al. [33] found that the NADPH/NADP ratio increases 125% when

glucose is increased from 3mM to 20mM. The model predicts an increase of 71.461%.
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Figure 5.8: 5.8a Comparison between simulation and observed percentage increase in
NADPH:NADP ratio. 5.8b Comparison of NADPH:NADP ratio with PYR: MAL and
ICIT:AKG ratio
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5.3 Model Analysis

To identify important control points in the pathway we performed local sensitivity and

global sensitivity analysis. These analyses were carried out as described in sections 3.3,

3.4, 4.3.

Properties of Sensitivity Measure Variance-based GSA methods allow us to calcu-

late both �rst-order and total-e�ect sensitivity rankings. First-order sensitivity re�ects the

e�ect of variations in single parameters on the model output, whereas total-e�ect sensi-

tivity describes the dependence of the model output on the parameters in combination.

Comparisons between the �rst-order and total-e�ect sensitivity predictions can provide

insight into interactions among parameters.

For Sobol's method we only report the total e�ect measure, since the �rst order e�ect

measures have many negative values. The design of Sobol's method allows to have neg-

ative values but comparison with eFAST is not possible as eFAST method design allows

only positive values. The complete discussion on this topic can be found elsewhere [93].

Therefore, all the comparison between eFAST and Sobol's method will be done for total

e�ect measure. To identify the interaction among parameters, eFAST rankings of �rst

order e�ect and total e�ect measure will be used.

As a generic model output, we consider overall output as the sum of the squared

deviation in all metabolite levels (See appendix for details A.2.3). Parameters that show

the largest sensitivity rankings with respect to this over all measure (by either the �rst-

order or total-e�ect approach) are the most in�uential in setting model behavior. The
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overall sensitivity rankings provided by for Sobol's method and the eFAST method were

found to be consistent (A.4.1).

5.3.1 Sensitivity Results

GSA Measure with respect to steady state cytosolic pyruvate and NADPH

Figures 5.9 and 5.10 show the ranked sensitivities with respect to two model outputs: the

steady-state concentration of cytosolic pyruvate and the steady-state NADPH concentra-

tion.
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Figure 5.9: Global sensitivity ranking with respect to cytosolic pyruvate. Panel A eFAST
total e�ect, Panel B eFAST �rst order, Panel C Sobol's total e�ect and Panel D PRCC.
For parameters description refer to Tables A.8,A.7 and A.6
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Figure 5.10: Global sensitivity ranking with respect to NADPH. Panel A eFAST total
e�ect, Panel B eFAST �rst order, Panel C Sobol's total e�ect and Panel D PRCC. For
parameters description refer to Tables A.8,A.7 and A.6

Local Sensitivity of cytosolic Pyruvate and NADPH The top ten sensitivity co-

e�cients for cytosolic pyruvate and NADPH are shown in �gure 5.11.
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Figure 5.11: Local sensitivity parameter ranking with respect to cytosolic pyruvate and
NADPH. Panel A cytosolic pyruvate and Panel B NADPH. For parameters description
refer to Tables A.8,A.7 and A.6

E�ect of Pyruvate Carboxylase In order to understand the e�ect of perturbations

in the concentration of pyruvate carboxylase (PC) on the pyruvate recycle pathways; the

sensitivity measures have been reformulated such that ranking of �uxes are done based on

the e�ect caused by the perturbation in PC. Figure 5.12 shows the degree of e�ect of PC

Vmax on di�erent �uxes of the pathway. The ranking shows the �ve most a�ected �uxes

and the �ve least a�ected �uxes.
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Figure 5.12: E�ect of perturbation of PC, Vmax on �uxes. Five most sensitive �uxes and
�ve least sensitive �uxes are plotted . Panel A: local sensitivity. Panel B: PRCC ranking,
Panel c: eFAST total e�ect and Panel D: eFAST �rst order. Sobol's total e�ect ranking
is same as that of eFAST total e�ect ranking. For �ux description refer to Tables A.8,A.7
and A.6
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5.3.2 Analysis of Pathway Properties

Given the highly non-linear nature of the model, it is valuable to compare results of di�erent

sensitivity analyses in order to gain insight of model behavior. By comparing di�erent GSA

rankings and local sensitivity coe�cients, we can identify important regulatory properties

of the metabolic pathway.

Analyzing the �rst-order and second-order overall sensitivity rankings reveals that the

Vmax of LDH is the most in�uential parameter in the model. However, comparison between

the �rst and second order rankings reveals that the Vmax's of fumarase, DIC and MDHm

are the most signi�cant in terms of interactions among all model parameters. These three

enzymes are known to be important participants in pyruvate recycling pathways.

Next we consider the GSA sensitivity index for the model output of steady state cy-

tosolic PYR concentration. The analysis of sensitivity of PYR reveals that the Vmax's of

pyruvate transporter (PYC) and citrate synthase (CSm) are the most in�uential param-

eter (in terms of both �rst-order and total-e�ect). This implies that PYC and CSm has

a dominant e�ect on the PYR concentration, regardless of perturbations to the rest of

pathway. However, the comparison between �rst-order and total-e�ect sensitivities re�ects

important variance in ranking for other model parameters.

Considering the sensitivities with respect to both PYR and steady-state ICDc �ux A.4.2

(the latter of which is the main produced of NADPH), we �nd that, consistent with the

result that the Vmax of CIC, DIC, PC and MEc have the most in�uence over parameter

interactions, their �rst-order rankings are low, while the total e�ect rankings are high.

These parameters are thus involved in parameter interactions that in�uence PYR and
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ICDc �ux.

We next consider the sensitivities with respect to the steady state NADPH level. First

order sensitivity rankings indicate that the NADPH consumption rate (characterized by

v14_1 and v14_2) is the most in�uential reaction; this is consistent with the model struc-

ture. Total sensitivity index ranks the Vmax of CIC, DIC, PCm and MEc as, again, the

most in�uential parameters.

It is interesting to note that the sensitivity rankings by local sensitivity analysis and

GSA di�er. These di�erences reveal the extent to which interactions among the param-

eters in�uence the model. For example, the Vmax of ICDc enzyme ranked lower in the

local analysis than in the global analysis (with respect to the ICDc �ux). This implies

that in�uence of the enzyme on ICDc �ux is sensitive to the action of other parameters.

However, in the local domain of parameter variation the Vmax of ICDc enzyme is robust to

external perturbations.

Comparison between overall measure sensitivity ranking of total-e�ect and �rst-order

analyses reveals the highly interacting parameters. We found that the Vmax of LDH, MDHc,

MDHm and fumarase are the most highly interacting parameters of the model. These

parameters are fairly non-in�uential individually but combined with other parameters exert

signi�cant in�uence on the model output.

Comparison of the local sensitivity rankings (5.12) of PC Vmax perturbation with the re-

spective global sensitivity rankings reveals that MEc and ICDc are robust to perturbations

to PC, at least locally. This is consistent with the observation that the PC knockdown

did not a�ected the NADPH:NADP ratio nor the pyruvate recycling ratio (section 2.5).
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However, the global sensitivity results show active interactions. The PRCC ranking is

di�erent from eFAST total e�ect, implying loss of monotonicity of the input-output rela-

tions. Signi�cantly, the di�erence in ranking of eFAST �rst-order e�ect and total-e�ect

ranking imply strong impact of PC on the pyruvate �uxes due to interactions in the path-

way. The impact on lactate dehydrogenase �ux is maximum in the total e�ect ranking,

providing a reason why lactate concentration goes high in the case of PC knock down

(section 2.5). Comparison in these two rankings reveals that MEc, PYC, and DIC are

robust to PC perturbation, providing a plausible reason why perturbations to PC do not

impact the pyruvate recycling rate. Finally, we note that ICDc �ux is not signi�cantly im-

pacted by the PC perturbation, explaining why NADPH concentrations are not sensitive

to perturbations in PC level.

Based on our comparative analysis, sensitivity ranking of the model predicts that the

Vmaxs of the pyruvate transporter (PYC) and citrate synthase (CSm) have the most signif-

icant impact on the pyruvate recycling rate. However, Vmaxs of PYC and CSm don't show

interaction with other parameters in the pathway. Therefore, perturbations in Vmaxs of

PYC and CSm might lead to loss of robustness of the pyruvate recycling rate. In contrast,

the Vmaxs of transport enzymes citrate isocitrate carrier (CIC) and dicarboxylate carrier

(DIC) exhibit maximum interaction among the remaining parameters of the model. This

interaction can compensate perturbations in the other parameters. Knock-down of CIC

and DIC has been shown to inhibit the glucose stimulated insulin secretion [51] (Section

2.5).

Taking these results together, the model predicts that combined perturbations (e.g,

of both PYC and CIC, or CSm and DIC) can have the double-e�ect of a signi�cant and
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robust impact. The model suggest that these combined perturbations show the greatest

promise as drug targets for modulation of the pyruvate recycling rate and NADPH:NADP

ratio (and hence insulin secretion). This proposal could be addresses by experiments that

address knock-downs of CSm, PYC, and combinations of PYC or CSm with CIC or DIC.
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Chapter 6

Conclusion

In the current work we developed a detail model of pyruvate recycling and validated the

model against known results regarding pyruvate recycling components. As described, the

model con�rms a number of relevant experimental �ndings. We successfully trained the

model to the data from Ronnebaum et al. [88]. Next we successfully tested the model

against observations of β-cells metabolism. Our model reproduces most of the properties

of the GSIS investigation done by 13C istopomer analysis and siRNA mediated knock down

studies.

We performed the local and global sensitivity analysis to identify the important control

points in the pathway. The analysis reveals that the pyruvate level is most in�uenced

by the Vmax of PYC and is robust to external perturbation. From within the pyruvate

recycling pathways, the Vmax of DIC, MEc and PCm have the most signi�cant in�uence

over the pyruvate level, indicating that these are important control points in the TCA

126



cycle anaplerosis. Similarly NADPH is in�uenced most by these parameters, establishing

a further correlation between pyruvate recycling and GSIS.

The current model can serve as a template model for future addition of extra pathways

and an integrated study of triggering signals and the amplifying pathway. By conducting

global sensitivity analysis and local sensitivity analysis we identi�ed the important con-

trol points in the pathway. The model predicts that study of combine gene knock down

experiments of pyruvate transport, and citrate isocitrate carrier (CIC) or citrate synthase

(CSm) and dicarboxylate carrier (DIC) can modulate the behavior of pyruvate recycling

rate and hence will have signi�cant impact on glucose induced insulin secretion.

We propose that any future extension of the model should be trained with additional

data sets or produce better data �t than current model. The possible extensions of the

model are discussed in next section.

6.1 Future Work

Biological modeling o�ers a powerful approach to decipher the complex regulatory mech-

anisms underlying basic biological processes. At the same time it raises interesting math-

ematical challenges for solving these problems.

Model Extensions In principle, the the β-cells action is very simple to explain: they

sense the glucose levels in the blood and secrete insulin into the bloodstream to maintain

glucose homeostasis. However, to carry out this simple task β-cells use complex regula-

tory mechanisms involving multiple levels of regulation. The experimental data for the
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metabolism in the β-cells show distinct mechanisms of regulation. The model presented in

this study is the �rst pyruvate recycling model to be corroborated against the experimental

data in β-cells. However, the model was focused solely on the pyruvate recycling pathway.

The immediate extension of the current model would be to incorporate the dynamics of

ATP, ADP, and Ca2+ molecules and the regulatory e�ect on the enzymes. These molecules

are known to be allosteric modi�ers of many enzymes in the insulin pathway. This will

allow the analysis of coupling between the ATP:ADP ratio and the NADPH:NADP ra-

tio, and thus provide an avenue for addressing the correlation between the triggering and

amplifying signals. Another valuable extension would be integration of detailed models of

glycolysis, pyruvate recycle, and TCA cycle pathways. This will allow the study of citrate

feedback on the glycolytic enzyme phosphofructokinase (PFK) (citrate is an inhibitor of

PFK). Moreover, in the current model we did not consider the role of GTP as a potential

metabolic coupling factor. In a future extension of the model, enzymes involved in GTP

generation could be included.

Computational Challenges in Developing Large Scale Kinetic Models One of

the challenges in developing large scale kinetic models is that simulation of the systems of

di�erential equations and parameter identi�cation are not trivial. Often ODE solvers fails

to return solution for certain sets of parameters; similarly, optimization algorithms can fail

to return satisfactory solutions. Recent mathematical developments might prove useful in

addressing some of these challenges [9, 78, 44, 90, 74].

Solving kinetic model involves the use of ODE solvers. Most kinetic models are very

sti�, with signi�cant variations in the eigenvalues of the Jacobian matrix. This puts restric-
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tion on the stability and e�ciency of the sti� ODE solvers. Frequently, approximation of

the Jacobian approximated via �nite di�erence introduces truncation errors. Improvements

in the accuracy of Jacobian approximation can thus lead to a signi�cant improvement in the

performance of ODE solvers. Symbolic di�erentiation is either not always available, or, due

to the complexity of the rate expression, the expression returned through symbolic tools

might have singularities. These limitations can be easily be improved by using automatic

di�erentiation (AD) [9]. AD is underused in the kinetic modeling community. It holds

signi�cant potential for improvements in �nding the solutions of ODE. Furthermore, AD

can signi�cantly improve the e�ciency of the ODE solver in the Newton iterations (many

sti� solvers involve Newton iteration which relies on �nite di�erence approximation).

Recent improvements in interval arithmetic have led to a new class of ODE solvers

which use interval arithmetic to solve the ODE [90, 74]. The advantage of using these

solvers is that the uniqueness of solution is guaranteed [78, 44]. Testing interval arithmetic

solvers in large scale kinetic model has yet to be done and holds signi�cant potential.

One of the major challenges in developing large kinetic model is that all the kinetic

data is not readily available. As a result parameters are empirically identi�ed in order

to successfully reproduce the experimental results. Since this scenario is unavoidable for

large scale kinetic model, developing rigorous surrogate optimization frameworks will lead

to a signi�cant improvement in the identi�cation process [6]. Attempts have been made to

build simpli�ed representations of ODE systems using spline approximation [117]. Using

surrogate models to replace expensive function evaluations has been found to be a pow-

erful approach for solving engineering problems, [4, 2, 6], but this approach has yet to be

implemented for �tting kinetic models. Building a rigorous framework for kinetic model
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parameter identi�cation can lead to a better parameter estimation in the large scale kinetic

models. Furthermore, kinetic models are built on speci�c physical laws. Therefore, �nd-

ing a surrogate model based on these physical laws can guide the optimization algorithm

in the correct direction to �nd unique global minima of objective function. Such, func-

tional surrogate model will improve the parameter identi�cation signi�cantly. Following

this procedure will ensure better prediction by the large kinetic models and will increase

the accuracy of the modeling.
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Appendix A

Supplementary Material

A.1 Kinetic Mechanism Details

A.1.1 Abbreviation

Subscript c and m on state variables or on �ux expression denotes cytoplasmic and mito-

chondrial compartments respectively.

132



Table A.1: Abbreviations for metabolites/Enzymes

Abbreviation Substance name Compound/EC number
GT Glucose Transporter
GK Glucokinase E.C.2.7.1.2
PFK 6-phosphofructokinase E.C.2.7.1.11
FBA fructose-bisphosphate aldolase E.C.4.1.2.13
GAPD glyceraldehyde 3-phosphate dehydrogenase E.C.1.2.1.12
PGP bisphosphoglycerate phosphatase E.C.5.4.2.1/E.C.5.4.2.4
PK Pyruvate kinase E.C.2.7.1.40
LDH Lactate dehydrogenase E.C.1.1.1.27
ACO Aconitase EC4.2.1.3
CIC Citrate Carrier
DIC Dicarboxylate Carrier
CS Citrate Synthase EC4.1.3.7
FM Fumarase EC4.2.1.2
IDHm Isocitrate Dehydrogenase Mitochondrial EC1.1.1.41
IDHc Isocitrate Dehydrogenase (NADP+) Cytoso-

lic
EC1.1.1.42

MDH Malate Dehydrogenase EC1.1.1.37
OGC Oxoglutarate Carrier
PC Pyruvate Carboxylase EC6.4.1.1
PDC Pyruvate Dehydrogenase Complex EC1.2.4.1
PYC Pyruvate Carrier
AKD α-Ketoglutarate Dehydrogenase EC1.2.4.2 etc.
SCS Succinyl-CoA synthetase EC6.2.1.4
SDH Succinate Dehydrogenase EC1.3.5.1
MEm Malic Enzyme Mitochondrial EC1.1.1.39
MEc Malic Enzyme Cytosolic EC1.1.1.40
Pi Phosphate C00009
Q Ubiquinone C00399
QH2 Ubiquinol C00390
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Table A.2: Abbreviations for metabolites/Enzymes

Abbreviation Substance name Compound/EC number
GLC_c Glucose C00267
F6P_c Fructose-6-phosphate C00085
FBP_c Fructose-1,6-bisphosphate C00354
GAP_c Glyceraldehyde 3-phosphate C00118
DPG_c 1,3-bisphospho-D-glycerate C00236
PEP_c Phosphenol Pyruvate C00074
LAC_c Lactate C00186
PYR_c Pyruvate C00022
MAL_c Malate C00149
CIT_c Citrate C00158
ICIT_c Isocitrate C00311
AKG_c α−keto-Glutarate C00026
OAA_c Oxaloacetate C000036
NADPH_c Nicotinamide Adenine Dinucleotide Phos-

phate
C00005

NADP_c Nicotinamide Adenine Dinucleotide Phos-
phate (Oxidized)

C00006

PYR_m Pyruvate C00022
ACOA_m Acetyl-CoA C00024
CIT_m Citrate C00158
ICIT_m Isocitrate C00311
AKG_m α−keto-Glutarate C00026
SCOA_m Succinyl-CoA C00091
SUC_m Succinate C00042
FUM_m Fumarate C00122
MAL_m Malate C00149
OAA_m Oxaloacetate C000036
CO2 Carbon Dioxide C00011
ATP Adenosine Triphosphate C00002
ADP Adenosine Diphosphate C00008
NAD+ Nicotinamide Adenine Dinucleotides (Oxi-

dized)
C00003

NADH Nicotinamide Adenine Dinucleotides C00004
CoA Coenzyme A C00010
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A.1.2 Model Reactions

Table A.3: Model Reactions

Flux Enzyme Reaction
J0entry_s GT InputGlucose 
 GLC_c
J1gk_c GK GLC_c + ATP→ F6P_c + ADP

J2pfk_c PFK F6P + ATP→ FBP + ADP

J3fba_c FBA FBP
 2GAP

J4gapd_c GAPD GAP + NAD→ DPG + NADH

J5pgp_c PGP DPG + ADP
 PEP + ATP

J6pk_c PK PEP + ADP→ PYR + ATP

J9pyr_s PYC PYR_c + H_m
 PYR_m + H_c
J10cit_s CIC CIT_c + MAL_m
 CIT_m + MAL_c
J11icit_s CIC ICIT_c + MAL_m
 ICIT_m + MAL_c
J12akg_s OGC AKG_c + MAL_m
 AKG_m + MAL_c
J13malh_s DIC MAL_c + Pi_m
 MAL_m + Pi_c
J7ldh_c LDH PYR_c
 LAC_c
J14nad_c NADPH_c→ φ
J15citl_c CITL CIT_c→ OXA_c
J16mdh_c MDH MAL_c + NAD
 OXA_c + NADH

J17acon_c ACO CIT_c
 ICIT_c
J18isod_c IDHb ICIT_c + NADP
 AKG_c + NADPH

J19me_c MEb MAL_c + NADP
 PYR_c + NADPH

J20pdh_m PDC PYR_m + NAD + CoA→ ACO_m + NADH + CO2
J21pc_m PC PYR_m + ATP_m + CO2 
 OXA + ADP + Pi

J22cs_m CS OXA_m + ACOA_m→ CIT_m + CoA

J23ac_m ACO CIT_m
 ICIT_m
J24icd_m IDHa ICIT_m + NAD→ AKG_m + NADH

J25akg_m OGDC AKG_m + NAD + CoA→ SCOA_m + NADH + CO2

J26sco_m SCS SCOA_m + GDP + Pi
 SUC_m + CoA + GTP

J27sdh_m SDH SUC_m + Q
 FUM_m + QH2
J28fum_m FM FUM_m
 MAL_m
J29mdh_m MDH MAL_m + NAD
 OXA_m + NADH

J30me_m MEa MAL_m + NAD
 PYR_m + NADH
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A.1.3 Species which are held at constant concentration

Table A.4: Species concentration which are held at constant value and constant Parameters

Species Constant value
COA_m 3.0 × 10−3 M [114]
Qm 9.5 × 10−4 M [114]
QH2_m 4.1 × 10−4 M [114]
CO2 3.0 × 10−6 M [114]
pH 8.0 [88]
NAD_m 2.0 × 10−4 M [110]
NADH_m 1.0 × 10−4 M [110]
NAD_c 5.0 × 10−5 M [34]
NADH_c 2.0 × 10−7 M [34]
ATP_c 5.0 × 10−3 M [114]
ADP_c 5.0 × 10−5 M [108]
Pi_c 1.0 × 10−3 M [108]
ATP_m 1.0 × 10−2 M [114]
ADP_m 5.0 × 10−3 M [114]
Pi_m 1.010−3 M [114]
inglc Input Glucose varies from 2.5mM to 22mM
Vr 20.0 [110]
NADPtot 5.0 × 10−4 M [88]

A.1.4 Rate Expressions

Kinetic Expression Simpli�cation The model is divided into two sub parts: (i) the

glycolysis model, and (ii) TCA cycle model, including pyruvate recycling. The glycolysis

model is treated as in�ux model for pyruvate recycling and is not included in the model

analysis. The glycolysis model is built as six step pathway generating pyruvate as described
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earlier in Jiang et.al. [47]. The kinetic mechanism and parameters are taken from SABIO-

RK [112] Details are provided in Table A.5.

The TCA cycle model and pyruvate recycle enzyme kinetics (Tables A.6, A.7 and

A.8) are adapted from Yugi and Tomita [116] and Westermark et.al. [110], with the

exceptions of lactate dehydrogenase (adapted from Hoefnagel et.al. [40]), malic enzyme

(mitochondrial and cytosolic), and pyruvate dehydrogenase for both of which we developed

our own kinetics. Parameters for these kinetics were taken from Brenda database [96].

Furthermore, we re�ned the cytosolic isocitrate dehydrogenase kinetics by removing CO2

from the kinetics and taking new parameters from the Brenda database [96].

Since the goal of the model was to understand the role of pyruvate recycling we held

the concentrations of ions and some metabolites constant, thus simplifying some kinetic

expressions. As an example of this procedure, consider the pyruvate transport rate expres-

sion of Yugi and Tomita [116]. The original model includes transport of hydrogen (as an

antiporter); in our model the hydrogen concentration in both compartments is held �xed,

so we reduced the expression by combining the constant concentration with the kinetic

parameters of original expression, as follows. The original expression is

[PYR_c]·[H_m]·v9_mf−[H_c]·[PYR_m]·v9_mr

1+
[PYR_c]

v9_KiA
+

[PYR_m]

v9_KiB
+

[H_c]

v9_KiP
+

[H_m]

v9_KiQ
+

[PYR_c]·[H_m]

v9_KiA·v9_KiQ
+

[PYR_m]·[H_c]

v9_KiB·v9_KiP
+

[PYR_m]·[H_m]

v9_KiB·v9_KiQ
+

[PYR_c]·[H_c]

v9_KiA·v9_KiP

Since [H_c] and [H_m] are constant we can combine the concentration values with kinetic

parameters to give
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[H_m] · v9_mf = v9_1

[H_c] · v9_mr = v9_2

similarly for the denominator we have

[H_c]

v9_KiP

[H_m]

v9_KiQ
are constant terms say this terms are temp0 and temp1 respectively.

Now we have terms like this [PYR_c]·[H_m]

v9_KiA·v9_KiQ
in which the hydrogen concentration has been

�xed. These can be combined to give

[H_m]

v9_KiA·v9_KiQ
= temp2

Carrying out similar reduction for other similar terms we have the denominator as

[PYR_c]

v9_KiA
+ [PYR_m]

v9_KiB
+ [PYR_c] · temp2 + [PYR_m] · temp3 + temp0 + temp1 + 1

Combining all the pyruvate terms and factoring out the constant term from the denomi-

nator we have the reduced expression

v9_1·[PYR_m]−v9_2·[PYR_c]

1+v9_3·[PYR_m]+v9_4·[PYR_c]

Similar reductions were carried out for the other rate expressions.
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Table A.5: Glycolysis kinetics. Glycolysis is modeled as a six-step reaction pathway gener-
ating pyruvate. These reactions are treated as in�ux to the pyruvate recycling pathways.

Reaction Flux expression Reference

J0entry_s v0_1·(inglc−[GLC_c])

1+v0_2·(inglc+[glc_c])+inglc·[glc_c]
Sweet and Matschin-
sky [108]

J1gk_c v1_1·[glc_c]v1_2

v1_3v1_2+[glc_c]v1_2 SABIO-RK [112, 113]
SABIO Reaction ID 793.

J2pfk_c v2_1·[F6P_c]v2_2

v2_3v2_2+[F6P_c]v2_2 SABIO-RK [112, 113]
SABIO Reaction ID 24.

J3fba_c v3_1·[FBP_c]

v3_2+[FBP_c]
SABIO-RK [112, 113]
SABIO Reaction ID 1338.

J4gapd_c v4_1·[GAP_c]v4_2

v4_3v4_2+[GAP_c]v4_2 SABIO-RK [112, 113]
SABIO Reaction ID 7844.

J5pgp_c v5_1·[DPG_c]

v5_2+[DPG_c]
SABIO-RK [112, 113]
SABIO Reaction ID 8953.

J6pk_c v6_1·[PEP_c]v6_2

v6_3v6_2+[PEP_c]v6_2 SABIO-RK [112, 113]
SABIO Reaction ID 10478.
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Table A.6: Transporter rates. All the kinetics are described by Rapid Equilibrium
Random Bi Bi kinetics

Reaction Flux expression Reference

J9pyr_s v9_1·[PYR_m]−v9_2·[PYR_c]

1+v9_3·[PYR_m]+v9_4·[PYR_c]
Yugi and Tomita [116]

J10cit_s [CIT_c]·[MAL_m]·v10_1−[MAL_c]·[CIT_m]·v10_2

denom

denom = 1 + [CIT_c]

v10_3
+ [MAL_m]

v10_4
+ [MAL_c]

v10_5
+

[CIT_m]

v10_6
+ [CIT_c]·[MAL_m]

v10_3·v10_4
+ [MAL_c]·[CIT_m]

v10_5·v10_6
+ [MAL_m]·[CIT_m]

v10_4·v10_6
+

[CIT_c]·[MAL_c]

v10_3·v10_5

Yugi and Tomita [116]

J11icit_s [ICIT_c]·[MAL_m]·v11_1−[MAL_c]·[ICIT_m]·v10_2

denom

denom = 1 + [ICIT_c]

v10_3
+ [MAL_m]

v10_4
+ [MAL_c]

v10_5
+ [ICIT_m]

v10_6
+

[ICIT_c]·[MAL_m]

v10_3·v10_4
+ [MAL_c]·[ICIT_m]

v10_5·v10_6
+ [MAL_m]·[ICIT_m]

v10_4·v10_6
+

[ICIT_c]·[MAL_c]

v10_3·v10_5

Yugi and Tomita [116]

J12akg_s [AKG_m]·[MAL_c]·v12_1−[MAL_m]·[AKG_c]·v12_2

denom

denom = 1 + [AKG_m]

v12_3
+ [MAL_c]

v12_4
+ [MAL_m]

v12_5
+

[AKG_c]

v12_6
+ [AKG_m]·[MAL_c]

v12_3·v12_4
+ [MAL_m]·[AKG_c]

v12_5·v12_6
+ [MAL_c]·[AKG_c]

v12_4·v12_6
+

[AKG_m]·[MAL_m]

v12_3·v12_5

Yugi and Tomita [116]

J13malh_s v13_1·[MAL_m]−v13_2·[MAL_c]

1+v13_3·[MAL_m]+v13_4·[MAL_c]
Yugi and Tomita [116]
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Table A.7: Cytosolic Fluxes

Reaction Flux expression Reference

J7ldh_c
v7_1·([PYRc_m]− [LAC_c]

v7_eq
)

1+v7_2·[PYR_c]+v7_3·[LAC_c]
Modeled as re-
versible Michaelis
Menten Kinetics all
parameters from
Hoefnagel et.al. [40]

J14nad_c v14_1·[NADPH_c]

v14_2+[NADPH_c]
Phenomenological
model

J15citl_c v15_1·([CIT_c]−v15_2·[OAA_c])

1+v15_3·[CIT_c]+v15_4·[OAA_c]
Westermark et.al. [110]

J16mdh_c v16_1·([MAL_c]−v16_2·[OAA_c])

1+v16_3·[MAL_c]+v16_4·[OAA_c]
Yugi and Tomita [116]

J17acon_c v17_1·[CIT_c]−v17_2·[ICIT_c]

v17_3·[ICIT_c]+v17_4·[CIT_c]+1
Yugi and Tomita [116]

J18isod_c v18_1·
(

[ICIT_c]·[NADP_c]

v18_3·[ICIT_c]·[NADP_c]+v18_4·[NADP_c]+v18_5·[ICIT_c]+1

)
−

v18_2·
(

[AKG_c]·[NADPH_c]

v18_6·[AKG_c]·[NADPH_c]+v18_7·[NADPH_c]+v18_8·[AKG_c]+1

) Yugi and Tomita [116]

J19me_c
v19_1·[NADP_c][MAL_c]·− [PYR_c]·[NADPH_c]

v19_eq
)

denom

denom = 1 + [MAL_c]

v19_2
+ [NADP_c]

v19_3
+ [PYR_c]

v19_4
+ [NADPH_c]

v19_5
+

[MAL_c]·[NADP_c]

v19_2·v12_3
+ [PYR_c]·[NADPH_c]

v19_4·v19_5
+ [MAL_c]·[PYR_c]

v19_2·v19_4
+

[NADP_c]·[NADPH_c]

v19_3·v19_5

Modeled as Rapid
Equilibrium Random
Bi Bi. All parameters
from Brenda[96].
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Table A.8: Mitochondrial Fluxes

Reaction Flux expression Reference

J20pdh_m v20_1·[PYR_m]

v20_2·
“
1+

[ACO_m]

v20_3

”
+[PYR_m]

Modeled as irreversible
product inhibition. All the
parameters from Brenda[96]

J21pc_m v21_1·(v21_2·[PYR_m]−[OAA_m])

1+v21_3·[PYR_m]+v21_4·[OAA_m]
Yugi and Tomita [116]

J22cs_m v22_1·[ACO_m]·[OAAm_m]

[ACO_m]·[OAA_m]+v22_2·[OAA_m]+v22_3·[ACO_m]+1
Yugi and Tomita [116]

J23ac_m v23_1·[CIT_m]−v23_2·[ICIT_m]

v23_3·[ICIT_m]+v23_4·[CIT_m]+1
Yugi and Tomita [116]

J24icd_m
v24_1·([ICIT_m]2+v24_2·[ICIT_m])
v24_3[ICIT_m]2+v24_4·[ICIT_m]+1

Yugi and Tomita [116]

J25akg_m v25_1·[AKG_m]

1+v25_2·[AKG_m]+V25_3·[SCOA_m]+v25_4·[AKG_m][SCOA_m]
Yugi and Tomita [116]

J26sco_m v26_1·(v26_2·[SCOA_m]−[SUC_m])(v26_3·[SUC_m]+1)

denom

denom = 1+v26_4 · [SCOA_m] + v26_5 · [SUC_m]+
v26_6 · [SUC_m]2 + v26_7 · [SCOA_m][SUC_m]

Yugi and Tomita [116]

J27sdh_m v27_1·([SUC_m]−[FUM_m]·v27_2)

1+v27_3·[SUC_m]+v27_4·[FUM_m]+V27_5·[SUC_m][FUM_m]
Yugi and Tomita [116]

J28fum_m v28_1·[FUM_m]−v28_2·[MAL_m]

v28_3·[MAL_m]+v28_4·[FUM_m]+1
Yugi and Tomita [116]

J29mdh_m v29_1·[MAL_m]−v29_2·[OAA_m]

1+v29_3·[MAL_m]+v29_4·[OAA_m]+v29_5·[OAA_m][MAL_m]
Yugi and Tomita [116]

J30me_m
v30_1·([MAL_m]− [PYR_m]

v30_eq
)

1+v30_2·[MAL_m]+v30_3·[PYR_m]
Modeled as Reversible
Michaelis Menten. All the
parameters from Brenda[96]

142



A.1.5 State Di�erential Equations

d[PEP_c]

dt
= J5pgp_c− J6pk_c

d[LAC_c]

dt
= J7ldh_c− lacsink_c

d[PY R_c]

dt
= J6pk_c− J7ldh_c+ V r ∗ J9pyr_s+ J19me_c

d[MAL_c]

dt
= −J16mdh_c+ V r ∗ (J13malh_s+ J10cit_s− J12akhmal_s+ J11icit_s)

− J19me_c

d[CIT_c]

dt
= −J17acon_c− J15citl_c− V r ∗ J10cit_s

d[ICIT_c]

dt
= −J18isod_c+ J17acon_c− V r ∗ J11icit_s

d[AKG_c]

dt
= J18isod_c+ V r ∗ J12akhmal_s− akgflow_c

d[OAA_c]

dt
= J15citl_c+ J16mdh_c

d[NADPH_c]

dt
= J18isod_c+ J19me_c− J14nadph_c

d[PY R_m]

dt
= −J21pc_m+ J30me_m− J9pyr_s− J20pdh_m

d[ACO_m]

dt
= J20pdh_m− J22cs_m

d[CIT_m]

dt
= J22cs_m− J23ac_m+ J10cit_s

d[ICIT_m]

dt
= J23ac_m− J24icd_m+ J11icit_s

d[AKG_m]

dt
= J24icd_m− J25akg_m− J12akhmal_s

d[SCOA_m]

dt
= J25akg_m− J26sco_m

d[SUC_m]

dt
= J26sco_m− J27sdh_m
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d[FUM_m]

dt
= J27sdh_m− J28fum_m

d[MAL_m]

dt
= −J29mdh_m+ J28fum_m− J10cit_s

− J11icit_s− J13malh_s+ J12akhmal_s− J30me_m

d[OAA_m]

dt
= −J22cs_m+ J29mdh_m+ J21pc_m

A.1.6 ODE Initial Conditions

The initial condition is �xed by integrating the system from 0 initial condition till 4hrs

(7200s) under appropriate glucose conditions.

A.2 Computational Settings for Solvers

A.2.1 Steady State Calculation

To calculate the steady state we used the ode15s and fsolve functions of MATLAB®. The

di�erential equation was �rst integrated up to 107 seconds. This point was then passed to

fsolve to con�rm the steady state conditions had been achieved,. In order to increase stabil-

ity and robustness of solvers, we generated symbolic Jacobians using SBTOOLBOX2 [97].

Since only 18% of the Jacobian coe�cients were non-zero, we utilized the sparse storage

mechanism as described in the ode15s and fsolve manual in order to increase the e�ciency

of solvers. We �xed the relative tolerance of ode15s at 1e-3 and the absolute tolerance at

1e-6 except for F6P and G6P which were �xed at 1e-12. For fsolve we choose the default

values of TolX and TolF (1e-6).
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A.2.2 Parameter Optimization

Parameter optimization proceeded in two steps. To begin, we �tted the glycolysis pa-

rameters to appropriate levels of the output pyruvate. In the second phase of parameter

estimation some of the parameters were manually adjusted and then second subset of pa-

rameters were optimized. The least-squares objective function is de�ned as follows.

f(x) = 1
N

n∑
i

1
σi

xobs(x)i−xsim(x)i
xobs(x)i

where N is the number of experimental time-points, xobs(x)i is the observed value of ith

state, xsim(x)i is the corresponding ith simulated state and σi is the standard error of

mean (SEM) of the ith state. If the error is unknown then it was assumed to be 10%.

The parameters were optimized in the range .01pnom ≤ pnom ≤ 100pnom, where pnom is

the nominal parameter values.We used a combination of simplexSB and simannealSB of

system biology toolbox for parameter optimization [97].

A.2.3 Global Sensitivity Analysis Settings

We used the variance-based Global Sensitivity Analysis (GSA) Sobol's Method, extended

Fourier amplitude sensitivity test (eFAST) and partial rank correlation method (PRCC)

implemented in SBTOOLBOX2 [97]. The analysis treated all model parameters expect

for the glycolysis parameters. The relative parameter range variation was selected to be

100%. For the total sensitivity analysis, the objective function was de�ned as the sum of
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the squared errors between the observed and perturbed system output values:

fobj =
n∑
i

(xinom − xipert)2

where xnom is the steady state nominal model output and xpert is the steady state perturbed

model output,n is the number of varaibles. In addition we calculated the sensitivities of

individual variables. This can simply be de�ned as a squared error of each variable without

any extra model evaluation.

f iind = (xinom − xipert)2 for i=1..n

The Total number of model simulations was selected to be 105, based on the suggestion of

Saltelli [93] (N = 2 ∗ 512 ∗ total number of parameters).

The system output was taken as all the state variables and �uxes participating in

TCA cycle and pyruvate recycling pathways (none from the glycolysis pathway). Similarly,

parameters was choosen excluding glycolysis. The total numbers of parameters for analysis

was 100.

Integration Settings for Global Optimization For simulating the model for global

sensitivity analysis we used the SUNDIALS [39] package (MATLAB® interface) in order to

reduce the simulation time [97]. The �nal value was checked for steady-state as described

previously using fsolve. The function was integrated using a relative tolerance of 1e-4 and

an absolute tolerance of 1e-14 for all the species. With this setting the integrator output

is the same as MATLAB® ode15s solver.
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A.3 Parameters

Parameter Classi�cation We classi�ed the parameters as follows

Table A.9: Classi�cation of di�erent parameters

Class De�nition Example
Class 0 Literature values v1_3
Class 1 Optimized around the experimen-

tal values or estimated to �t the
training data

v0_1 or ? ≤ v14_1 ≤?

Table A.10: Model parameters. This model contains 123 global parameters. Units: Mo-
larity (M) Seconds (s)

Name Value Units Class Name Value Units Class
v0_1 2.7271 · 10−6 M·s−1 1 v6_3 2.9 0
v0_2 101.0544 M 1 v7_1 29.0969 M·s−1 1
v1_1 1.3424 · 10−4 M·s−1 1 v7_eq 21.121 0
v1_2 3.0118 · 10−4 M 1 v7_2 448491.0 M 1
v1_3 1.34 0 v7_3 449.0936 M 0
v2_1 3.16667 · 10−5 M·s−1 0 v9_1 3.7674 · 10−8 M·s−1 1
v2_2 0.0089 M 0 v9_2 0.004 M·s−1 1
v2_3 0.9 0 v9_3 49.2637 M 1
v3_1 7.97833 · 10−5 M·s−1 0 v9_4 187.3789 M 1
v3_2 4 · 10−6 M 0 v10_1 32514.0 M·s−1 0
v4_1 0.001 M·s−1 0 v10_2 84267.0 M·s−1 0
v4_2 3.2 · 10−4 M 0 v10_3 1.3 · 10−4 M 0
v4_3 1.5 0 v10_4 4.4 · 10−4 M 0
v5_1 3.33 · 10−5 M·s−1 0 v10_5 3.3 · 10−4 M 0
v5_2 8 · 10−6 M 0 v10_6 4.18 · 10−5 M 0
v6_1 5.33 · 10−5 M·s−1 0 v12_1 5811.9 M·s−1 0
v6_2 1.5 · 10−4 M 0 v12_2 6739.9 M·s−1 0
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Table A.11: Model parameters. This model contains 123 global parameters. Units: Mo-
larity (M) Seconds (s)

Name Value Units Class Name Value Units Class
v12_3 3 · 10−4 M 0 v20_1 1.417 · 10−7 M·s−1 0
v12_4 7 · 10−4 M 0 v20_2 3.5 · 10−5 M 0
v12_5 .0014 M 0 v20_3 2 · 10−5 M 0
v12_6 1.7 · 10−4 M 1 v21_1 0.1057 M·s−1 1
v13_1 0.8512 M·s−1 0 v21_2 0.54 M 1
v13_2 0.2721 M·s−1 0 v21_3 4424100.0 M 1
v13_3 1388.9 M 0 v21_4 4.8528 · 107 M 1
v13_4 1111.1 M 0 v22_1 50.85 M·s−1 1
v14_1 0.0025598 M·s−1 1 v22_2 2.5 · 1010 M 1
v14_2 0.98653 M 0 v22_3 295000.0 M 0
v15_1 4.0008 · 10−7 M·s−1 1 v22_4 120000.0 M 1
v15_2 1.2 · 10−4 M 1 v23_1 0.0518 M·s−1 0
v16_1 .0036 M·s−1 0 v23_2 0.1104 M·s−1 0
v16_2 5000 M·s−1 0 v23_3 9090.9 M 0
v16_3 8 · 10−6 M 0 v23_4 2000.0 M 0
v16_4 16667 M 0 v24_1 0.1126 M·s−1 0
v17_1 0.0518 M·s−1 0 v24_2 0.0148 M·s−1 0
v17_2 0.1104 M·s−1 0 v24_3 2777.5 M 0
v17_3 9090.0 M 0 v24_4 0.63969 M 0
v17_4 2000.0 M 0 v25_1 0.0311 M·s−1 1
v18_1 1152100.0 M·s−1 0 v25_2 1.456 · 109 M 1
v18_2 5482500.0 M·s−1 0 v25_3 1.4546 · 109 M 1
v18_3 2.3042 · 1010 M 0 v25_4 24691.0 M 1
v18_4 142857.1 M 0 v26_1 3.32 · 10−5 M·s−1 1
v18_5 161290.3 M 0 v26_2 6.4 M 1
v18_6 1.0965 · 1011 M 0 v26_3 4.1876 M 1
v18_7 416666.7 M 0 v26_4 37.5348 M 1
v18_8 263157.9 M 0 v26_5 1478.2 M 1
v19_1 913070.0 M·s−1 0 v26_6 9509.6 M 1
v19_eq 1000 0 v26_7 236.7114 M 1
v19_2 1.2 · 10−4 M 0 v27_1 2.941 M·s−1 1
v19_3 1.39 · 10−6 M 0 v27_2 11.5344 M 1
v19_4 0.0048 M 0 v27_3 449.6613 M 1
v19_5 5.3 · 10−6 M 0 v27_4 199130.0 M 1
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Table A.12: Model parameters. This model contains 123 global parameters. Units: Mo-
larity (M) Seconds (s)

Name Value Units Class
v27_5 1.7921 · 108 M 1
v28_1 13.9024 M·s−1 1
v28_2 13.9024 M·s−1 1
v28_3 4000000.0 M 1
v28_4 880000.0 M 1
v29_1 .0016 M·s−1 1
v29_2 2.5563 · 10−10 M·s−1 1
v29_3 33263.0 M 1
v29_4 14.0754 M 1
v29_5 2742900.0 M 1
v30_1 157.8125 M·s−1 1
v30_eq 1000 1
v30_2 500 M 1
v30_3 227.2727 M 0
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A.4 Supplementary Sensitivity Plots

A.4.1 Sensitivity Rankings: Overall Measures
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Figure A.1: Global Sensitivity Rankings of Overall Measures across di�erent methods.
Panel A eFAST total e�ect, Panel B eFAST �rst order, Panel C Sobol's total e�ect and
Panel D PRCC. For parameters description refer to Tables A.8,A.7 and A.6
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A.4.2 ICDc e�ect

We perturbed the Vmax of ICDc and measured the e�ect on the pyruvate recycle �uxes.

As expected the transport �uxes are more e�ected and there is no signi�cant e�ect on PC

and MEc or MEm. The result is shown in �gure A.2.
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Figure A.2: A.2a E�ect of perturbation in Vmax forward on �uxes. A.2b E�ect of pertur-
bation in Vmax reverse on �uxes.
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Figure A.3: Global Sensitivity Rankings of ICDc across di�erent methods. Panel A eFAST
total e�ect, Panel B eFAST �rst order, Panel C Sobol's total e�ect and Panel D PRCC.
For parameters description refer to Tables A.8,A.7 and A.6
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A.4.3 Mitochondrial Pyruvate Sensitivity
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Figure A.4: Global Sensitivity Rankings of mitochondrial pyruvate across di�erent meth-
ods. Panel A eFAST total e�ect, Panel B eFAST �rst order, Panel C Sobol's total e�ect
and Panel D PRCC. For parameters description refer to Tables A.8,A.7 and A.6
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