
 

 

 

Examining the Role of Apoptotic Cell Signalling and Mitochondrial  

Fission During Skeletal Muscle Differentiation 
 

 

 

by 

 

 

Darin Bloemberg 

 

 

 

A thesis 

presented to the University of Waterloo  

in fulfillment of the  

thesis requirement for the degree of  

Master of Science  

in  

Kinesiology 

 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

 

 

 

© Darin Bloemberg 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 

Darin Bloemberg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 

Cellular maturation (differentiation) and cell death (apoptosis) are two vital processes 

shared by virtually all mammalian cells types. Although these two events have disparate 

outcomes, recent evidence indicates their execution may involve similar cellular mechanisms. 

Considered the primary effectors of apoptosis, a family of proteolytic enzymes known as 

caspases become activated in response to upstream apoptotic signalling, and are responsible for 

cleavage of structural and regulatory proteins, nuclear degradation and DNA fragmentation, and 

cell blebbing. While these enzymes have a well-defined role in death, current research suggests 

their activity is necessary during the differentiation of several cell types including skeletal 

muscle. However, it is currently unknown how this pro-apoptotic environment is regulated to 

promote differentiation. A long known mediator of apoptotic signalling, the mitochondria, has 

recently been shown to affect apoptosis through changes to its morphology. Mitochondrial 

division (fission) and fusion are necessary for maintaining normal cellular function, although 

fission contributes to apoptotic signalling. In this study, we examined the mechanisms which 

lead to caspase activation during skeletal muscle differentiation, and determined the importance 

of mitochondrial fission to this process. It was hypothesized that typical mitochondrial-mediated 

apoptotic signalling would be responsible for activating caspases during myogenesis, partly due 

to increased fission. C2C12 mouse skeletal myoblasts maintained in culture were induced to 

differentiate by switching to low growth-factor media and collected at various time points during 

the differentiation process. Activity levels of caspases-2 and -3 transiently increased 51% and 

2.5-fold, respectively, 1.5 days after inducing differentiation (p<0.05). No changes were 

observed in the activity levels of caspases-8 and -9. Although whole-cell levels of Bax and 

PUMA increased 16% and 21% (p<0.05), respectively, prior to the spike in caspase activity, 
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levels of mitochondrial-Bax were matched by Bcl-2, resulting in no change to the mitochondrial 

Bax:Bcl-2 ratio early during differentiation. This ratio indicates the susceptibility of the 

mitochondria to release pro-apoptotic factors, and was associated with decreased cytosolic levels 

of Smac and cytochrome c by 63% and 75%, respectively, early during differentiation (p<0.05). 

Levels of the anti-apoptotic proteins Bcl-2 and ARC increased (p<0.05) as caspase activity 

diminished, possibly supporting their role in ensuring temporary caspase activation. 

Pharmacological inhibition of caspase-3 resulted in reduced differentiation as indicated by 

decreased myotube development and cell fusion events. These morphological changes were 

associated with decreased protein expression levels of the myogenic transcription factor 

myogenin (p<0.05), and the mature-muscle marker myosin (p<0.05). Likewise, chemical 

inhibition of caspase-2 activity impaired myotube development, cell fusion, as well as expression 

of myogenin (p<0.05) and myosin (p<0.05) similar to the inhibition of caspase-3. Finally, 

reducing mitochondrial fission with a chemical inhibitor of Drp1 function (mdivi-1) also 

prevented myotube development, resulting in undetectable levels of myosin expression and a 

94% drop in cell fusion events. However, these effects were not due to decreased caspase 

activation. In contrast to our hypothesis, these results support the notion that mitochondrial 

apoptotic signalling is likely not responsible for inducing caspase activity during myogenesis. 

Furthermore, we report that mitochondrial fission is necessary for proper skeletal muscle 

differentiation, likely through its contribution to mitochondrial network morphological changes 

associated with myotube formation. 
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Introduction 

Cellular Specialization 

A healthy, functional organism is dependent on the ability of its cells to perform a 

multitude of extremely varied functions. As such, cell populations have evolved which are tailor-

made to serve very specific purposes. Since the vast numbers of different cell types are derived 

from the same two sex cells, a process allowing for efficient cellular transformation has also 

evolved: this is referred to as differentiation (1-3). While the exact structural/biochemical 

changes which occur during this process are diverse across cell types, it is generally considered 

that differentiation is a process wherein cellular alterations result in phenotypic maturation that is 

advantageous for the organism as a whole (3). In many cells, such as keratinocytes, erythrocytes, 

and monocytes, differentiation occurs in a population of precursor cells present in the adult 

organism (reviewed in 2). These cells have a high rate of turnover, and the organism’s ability to 

maintain a healthy number of mature/differentiated cells is dependent on the maintenance of the 

undifferentiated precursor population. For other cells, such as lens epithelial cells, neurons, and 

muscle cells, differentiation occurs during embryogenesis, with minimal turnover of the mature, 

functional cells during adulthood (2).  

Myogenic Determination 

The cells comprising mature muscle are highly specialized, unique for their ability to 

contract and therefore produce movement. Specifically, mature skeletal muscle cells are 

characterized as large, multinucleated fibers with extensive contractile apparatus composed of 

overlapping repeats of actin and myosin proteins. Differentiation of skeletal muscle occurs 

during embryonic development, whereby single-nucleated myoblasts withdraw from the cell 

cycle and fuse to form multinucleated myotubes (4, 5). During embryogenesis, myogenic 
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precursor cells first become evident in the dermomyotome, a somitic structure of mesodermal 

origin containing a mixture of myogenic and dermal progenitors from which the myotome 

develops (6, 7). At this stage, appearance of the paired box transcription factors PAX3 and PAX7 

is considered to identify cells as myoblasts, as their activation induces cells to follow a myogenic 

lineage (7-9). These two transcription factors are important regulators of skeletal muscle 

development and are upstream of myogenic genes in skeletal muscles (10-13). Mice with PAX3 

mutations lack limb muscles although trunk skeletal muscle development still takes place (14, 

15). Conversely, mice without PAX7 still express skeletal muscle markers in a normal spacial 

pattern within the developing myotome, although these animals die shortly after birth due to a 

defect in neural crest formation (16). These studies suggest a level of functional redundancy 

exists between these two myogenic regulators. However, in mice lacking both PAX3 and PAX7, 

major defects in skeletal muscle formation occur, although myoblasts are still generated via a 

PAX-independent mechanism (10). Once formed, myoblasts undergo a period of extensive 

proliferation, resulting in somite production that extends dorsally along the embryo. Signals from 

the adjacent developing notochord and neural tube progressively instruct these dividing 

myoblasts to differentiate by exiting cell cycle and fusing with each other, producing structures 

known as myotubes (4). 

Skeletal Muscle Differentiation 

Myotubes begin to develop characteristics of mature skeletal muscle, such as production 

of myosin and formation of myofibrils, development of the sarco-endoplasmic reticulum (SR), 

and gain the ability to contract (17, 18). In response to the combined effects of PAX3/7 and other 

molecular signals from the surrounding developing neural tube (Shh, WNT, BMP, etc.), a 

specific family of myogenic transcription factors become activated (4). These myogenic 
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regulatory factors (MRFs), most notably those of the MyoD family of skeletal muscle specific, 

basic helix-loop-helix (bHLH) transcription factors, are known to control and initiate skeletal 

muscle differentiation (19-21). The myogenic bHLH proteins bind to DNA as heterodimers with 

other bHLH factors called E-proteins (21). Targeted activation of E-proteins is necessary for 

expression of several skeletal muscle-specific genes such as muscle creatine kinase (MCK), 

myosin light chain (MLC), desmin, and the acetylcholine receptor (AChR) (18). When expressed 

in several non-myogenic cell types, bHLH transcription factors initiate the skeletal muscle 

differentiation program (22-24). The four main members of the MRF family control skeletal 

myogenesis in a temporally-dependent manner. MyoD and Myf-5 are present in proliferating, 

undifferentiated myogenic cells, myogenin expression begins at the induction of differentiation, 

and MRF-4 is found in mature skeletal muscle (5). With appropriate environmental stimulation, 

MyoD and Myf-5 activate the myocyte enhancement factor (MEF) family of transcription 

factors, which are necessary to initiate transcription of effector MRFs (myogenin and MRF-4), as 

well as other muscle-specific genes (5, 18 (Figure 1)). Because myogenin can reciprocally 

activate MEF2, a positive feedback regulatory loop ensures that high levels of both MEF2 and 

myogenin will be maintained in differentiated skeletal muscle (18). In this way, myogenin/MRF-

4 expression and coincident skeletal muscle differentiation exist down-stream in a regulatory 

cascade from MyoD and Myf-5 activation (although this traditional paradigm has come into 

question (10). The generation of specific MRF knock-out mice has provided insight into this 

hierarchal relationship. Myf-5 deficient mice undergo normal skeletal muscle development but 

die before birth due to severe rib defects (25). Interestingly, introduction of the myogenin 

construct into the Myf-5 locus of these animals results in healthy offspring but does not fully 

compensate for the absence of Myf-5 during skeletal muscle differentiation (5, 26). Mice lacking 
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MyoD display an apparently normal skeletal muscle phenotype but with a four-fold increase in 

Myf-5 expression, suggesting a redundancy in the activity of these two initiator MRFs (27). 

However, mice without both Myf-5 and MyoD die at birth and are absent of any myoblasts and 

skeletal muscle development (28). This phenomenon has been shown occur through alterations 

to MRF-4, as its replacement in Myf-5/MyoD double knock-outs actually restores the presence 

of skeletal muscle (29). Myogenin knock-out mice possess a normal number of myoblasts but die 

during fetal development due to a complete absence of myotube production (30). Finally, 

deletion of MRF-4 results in viable mice with apparently normal skeletal muscles but a four-fold 

increase in myogenin expression (31, 32).  

Because MyoD and Myf-5 are found in myoblasts, there must be mechanisms which 

inactivate their myogenic functions in proliferating cells. The inhibitors of DNA 

Figure 1: MRF control of skeletal muscle differentiation. During development, signals from the 

neural tube initiate expression of MyoD and Myf-5 in a population of cells with myogenic 

potential, committing them to become muscle. This leads to activation of secondary MRFs 

myogenin and MRF-4, which are responsible and required for transcription of mature skeletal 

muscle-related genes. 
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binding/differentiation (Id) family of proteins are able to inhibit MRF myogenic activity through 

their non-basic HLH domains (33, 34). As Id levels fall and are redistributed during 

differentiation, E-proteins E12 and/or E47 are free to form functionally active heterodimers with 

MyoD, which promote the expression of muscle-specific proteins, such as MCK, by binding to 

their gene promoter regions (33, 34). The protein Twist has been shown to similarly segregate E-

proteins, preventing MRF/MEF-DNA binding, as well as inhibit MyoD activity through direct 

protein-protein interaction (35, 36). Similar to Id proteins, Twist levels decrease upon the 

induction of differentiation, allowing pro-myogenic MRF-DNA binding. MyoD is also 

negatively regulated in myoblasts by Mist1, another bHLH factor, resulting in heterodimers 

which do not bind to E-box-containing muscle-specific promoter regions (37). Finally, the TGF-

b myostatin prevents differentiation by inhibiting both MyoD activity and expression (38, 39). 

Additionally, as myotubes have withdrawn from cell cycle, there must also be a connection 

between regulation of these transcription factors and cell cycle obstruction. Hypophosphorylated 

retinoblastoma protein (pRb) promotes cell cycle arrest at the G1-S phase by associating with 

MyoD (40, 41). Induction of differentiation results in up-regulation of the cell cycle inhibitors 

p21 and p16, and the gene encoding p21 is activated by MyoD (40, 42). Furthermore, cyclin D1 

and Cdk4, cell cycle checkpoints at the G1-S transition, are able to inhibit MyoD activity and 

subsequent activation of myogenic genes (43, 44).  

These molecular signalling cascades result in very specific morphological and 

biochemical changes, eventually generating mature skeletal muscle fibers. Although muscle is a 

very unique cell type, many other differentiation processes are characterized by noticeable 

alterations to cell morphology. In fact, the initial connection between cellular differentiation and 

apoptosis stemmed from the observation that for keratinocytes, lens epithelial cells, and 
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erythrocytes, differentiation involves complete removal of the nucleus; an occurrence normally 

associated with apoptosis (45). A number of phenotypic alterations typical of apoptosis also 

occur during the differentiation of skeletal muscle. Cytoskeletal filaments reorganize during 

myoblast fusion, a phenomenon which also happens during the packaging of apoptotic cells (46). 

Second, activity of matrix metalloproteinases is required for membrane fusion associated with 

both differentiation and apoptosis (47, 48). Lastly, the exposure of phosphatidylserine residues to 

the extracellular surface typical of apoptotic cells is an integral component of cell fusion during 

myotube formation (49). 

Typical Apoptotic Signalling Mechanisms 

Because of these similarities, it was hypothesized that the execution of differentiation and 

apoptosis could involve similar molecular signalling mechanisms (50). The class of proteins 

which display the most promising biochemical link between these two divergent cellular 

processes is that of the caspases. Caspases are a family of proteolytic enzymes with structural 

homology that cleave specific substrates between cysteine and aspartic acid residues. Their 

activation usually represents the next-to-last step in several cell death signalling pathways 

resulting in apoptosis (51, 52). Caspases are generally separated into two broad categories: 

initiator and effector. Both classes exist as inactive zymogens (procaspases), and are activated by 

proteolytic cleavage, removing their pro-domain and leaving a truncated, enzymatically active 

form (53). Initiator caspases, such as caspases-8 and -9, are typically activated on large, enzyme-

specifc, multi-subunit scaffold platforms (53). The effector class, including caspases-3, -6, and -

7, are activated by initiator caspases and are responsible for the cleavage of >300 cellular 

substrates (54). Cleavage of these numerous substrates results in the cellular degradation, DNA 

fragmentation, and blebbing typical of apoptosis. This includes: breakdown of cytosolic and 



7 

 

nuclear structural proteins such as actin and lamin; inactivation of the DNArepair enzyme PARP, 

and activation of the DNA-fragmenting enzyme ICAD; activation of pro-death kinases MEKK 

and PKC; and activation of additional pro-apoptotic effectors such as Bid (54). 

Apoptosis is a tightly, genetically controlled physiological process that typically results in 

removal of abnormal, damaged, and/or unnecessary cells. It is characterized by 

compartmentalization of cellular material into membrane-bound “blebs” which are phagocytized 

by surrounding immune cells (53). This contrasts death by necrosis, which produces a much 

larger immune response in order to clean up cellular debris (53). Apoptosis is typically studied 

from induction to completion, implying a requirement for cell elimination. However, it is 

important to note that incomplete apoptosis can occur from apoptotic signalling mechanisms not 

intense enough to result in total cell death. Two main signalling pathways regulate the apoptotic 

process: the death receptor (extrinsic) and the mitochondrial mediated (intrinsic) pathways (53).  

The extrinsic pathway involves activation of a death-receptor from the tumor necrosis factor 

(TNF) receptor super-family through their respective ligand (TNF-a, Fas-L, TRAIL) (55).  This 

stimulates assembly of protein scaffolds such as the death-inducing signalling complex (DISC) 

through interaction of regulatory molecules including TRADD/FADD and procaspase-8 (55). 

This results in caspase-8 activation leading to cleavage-activation of procaspase-3, and 

ultimately caspase-3 activation (56). The intrinsic pathway is regulated through the mitochondria 

and can be induced by toxic stimulants, growth-factor exhaustion, or reactive oxygen species 

(ROS) (53).  These stimuli disrupt electron transport and ATP production, alter mitochondrial 

membrane polarization, and cause release of proteins such as apoptosis-inducing factor (AIF) 

and cytochrome c (57). In the cytosol, cytochrome c joins with apoptotic protease activating 

factor (Apaf-1) and procaspase-9, forming a molecular structure known as the apoptosome (51). 
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The apoptosome cleavage-activates caspase-9, which in turn activates effector caspases (51). 

This process is endogenously inhibited by a family of cytosolic proteins known as inhibitors of 

apoptosis (IAPs), which act on caspases-9 and -3 (58). However, another mitochondrial protein, 

the second mitochondrial activator of caspases (Smac), is also released into the cytosol which 

can lead to caspase-3 mediated apoptosis by blocking x-linked-IAP (XIAP) (59). AIF, once 

released, translocates to the nucleus and results in DNA fragmentation independent of caspase 

activation (60).  A number of accessory proteins are involved in the signalling process. The Bcl-

2 protein family (which share common BH3 domain(s)) consists of both activators (Bax, Bak, 

PUMA) and inhibitors (Bcl-2, Bcl-XL) of apoptosis, and function to regulate the release of pro-

apoptotic factors such as cytochrome c, AIF, and Smac from the mitochondria (60, 61). Bax 

translocation from the cytosol to the mitochondria, for example, is considered a typical 

apoptosis-inducing event which results in depolarization of the mitochondrial membrane and 

release of caspase-activating molecules (57). Another Bcl-2 protein, Bid, links the extrinsic 

pathway to the mitochondria, as its cleavage by activated caspase-8 induces the release of 

cytochrome c (62). Bid can also be cleaved by caspase-2, although its affinity is much lower than 

that of caspase-8 (63, 64). The classification of caspase-2 as initiator vs. effector has been 

debated, as it shares substrate specificity with caspases-3 and -7 but is activated through a 

dimerization mechanism catalyzed by a large multi-protein complex similar to caspases-8 and -9 

(65-69). The caspase-2 activating platform, known as the PIDDosome, consists of the proteins 

PIDD and RAIDD, which bind to each other via their death domains and recruit caspase-2 (68, 

70). Additionally, it has been suggested that caspase-2 can directly activate caspase-3 through 

binding of their pro-domains (71). A final protein expressed at high levels in muscle is apoptosis 

repressor with caspase recruitment domain (ARC), unique for its ability to interact with both 
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death-receptor and mitochondrial mechanisms (72). ARC exerts its anti-apoptotic effects on 

death-receptor signalling through inhibition of DISC assembly by directly binding to death 

domains of adaptor molecules (such as FADD) (73). At the level of the mitochondria, ARC can 

similarly bind several pro-apoptotic BH3-containing proteins (PUMA, Bax, Bad), thus 

preventing mitochondrial outer membrane permeablization (MOMP) and subsequent release of 

cytochrome c, Smac, and other pro-apoptotic factors (73-76). Another important regulator of 

apoptosis is p53, popularly known as a powerful tumor suppressor. Many cell-death inducing 

signals converge on p53, which promotes apoptosis through direct protein-protein interactions 

and by acting as a transcription factor. This multi-functional protein can upregulate transcription 

of several pro-apoptotic factors such as PUMA, Bax, and PIDD, bind to Bcl-2 at the 

mitochondria, stimulate ROS production, and shuttle Fas receptor to the cell surface (77-85). 

Finally, sufficient stress to the endoplasmic reticulum (ER) can lead to Ca
2+

-induced apoptosis. 

Here, accumulation of damaged proteins in the ER results in a  cellular stress response, leading 

to Ca
2+

 release and activation of caspase-12 and a class of Ca
2+

-induced proteases known as 

calpains (86, 87). 

Caspases Link Apoptosis and Differentiation 

Despite a definitive role for caspases in cell death, evidence suggests that these proteases 

may also regulate cellular differentiation. For example, inhibition of caspase-3 activity limits 

DNA fragmentation and nucleus removal in lens epithelial cells, keratinocytes, and erythrocytes, 

preventing differentiation in these cell types (88-91). These studies have led researchers to adopt 

the hypothesis that cellular differentiation may be an abbreviated form of cell death (92). 

Skeletal muscle differentiation shares many apoptotic similarities and is critically dependent on 

the activity of caspase-3. In this seminal paper, it was observed that in cultured myoblasts taken 
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from caspase-3 null mice, as well as in response to chemical inhibition of caspase-3 activity, 

myotube formation and differentiation were inhibited (50, 93). This finding has since been 

confirmed by a number of researchers, and is now considered as characteristic of skeletal muscle 

differentiation as myosin expression (92). The initiator caspases-8, -9 and -12 have also been 

implicated in skeletal muscle differentiation, and, importantly, these effects are always attributed 

to their effects on caspase-3. Chemical inhibition of caspase-8 as well as forced expression of 

dominant-negative FADD greatly reduced myosin and MyoD expression associated with 

differentiation (94). It was observed that forced reduction in caspase-9 levels prevented transient 

increases in caspase-3 activity and subsequent differentiation measured by cell fusion events in 

cultured myoblasts (95). Furthermore, overexpression of Bcl-XL had a similar effect, indicating 

that typical mitochondrial-mediated apoptotic mechanisms may be responsible for inducing 

caspase activation during differentiation (95). Likewise, overexpression of ARC in cardiac 

muscle cells inhibited caspase-3 activity and differentiation (96). Finally, caspase-12 activity 

associated with endoplasmic reticulum stress has been shown to result in caspase-3 activation 

and an increase in myotube development (97, 98). Although unrelated to skeletal muscle, several 

studies have attributed a role for caspase-2 during cell cycle obstruction. It was observed that 

caspase-2 deficient fibroblasts proliferate at a higher rate and that irradiation-induced growth 

arrest was partially reduced (99, 100). While the mechanism of caspase activation during skeletal 

muscle differentiation has not been definitively determined, typical caspase-activating signals 

such as mitochondrial release of cytochrome c and activation of PUMA have been implicated 

(101, 102). However, these phenomena are not observed by all researchers (50, 95). 

The choice between differentiation and apoptosis in response to caspase activation may 

be due to the timing, intensity, and location of enzyme activity. In cell types that implicate the 
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mitochondrial apoptotic pathway in differentiation, cytochrome c release occurs slowly, 

eventually resulting in caspase-3 activation (103, 104). Furthermore, the manner of caspase 

activation during differentiation has repeatedly been shown to happen transiently (50, 95, 103, 

105, 106). In skeletal muscle in vitro, a spike in caspase activity is normally observed 1-2 days 

following the induction of differentiation, with activity returning to the levels observed in 

myoblasts by days 3-4 (50). These observations are in stark contrast to the pattern of caspase 

activity typical during apoptosis, which occurs more rapidly and intensely (61, 107). In addition, 

the quantity of stimuli also likely plays a role in determining whether an apoptotic or 

differentiation response follows. Treatment of cells with staurosporine (a common inducer of 

mitochondrial-mediated apoptotic cell death) resulted in the controlled release of cytochrome c 

that did not lead to apoptosis, indicating that the level of caspase activity required to induce 

differentiation may be lower than to induce apoptosis (104). These researchers point out that this 

is a particularly important issue in that complete mitochondrial depletion of cytochrome c would 

result in an inability to generate ATP, a signal that itself could stimulate cell death-promoting 

apoptotic signalling (92). 

Mechanistic Overlap of Caspases During Skeletal Muscle Differentiation 

A possible mechanism that could explain how caspase activation results in differentiation 

and apoptosis is substrate specificity. In this way, a population of substrates would, when 

cleaved, result in a “death” response, and a separate set of substrates would produce a 

“differentiation” response (92). The large number of caspase substrates (>300, (54)) suggest that 

differentiation- and death-specific pools may exist, although such a comprehensive examination 

has yet to be performed. Interestingly, typical phenotypic effects of caspase activity during 

apoptosis such as DNA fragmentation and cleavage of the DNA-repair enzyme PARP have been 
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observed during skeletal muscle differentiation, although the importance of these two events has 

not been determined (50, 93, 101). Nevertheless, existing data indicate that caspases may target 

an overlapping substrate population when inducing differentiation or apoptotic signals, in 

addition to targeting fate-specific substrates (92).   

An example of parallel signalling is the caspase activation of protein kinases. Caspase-3 

can activate several protein kinases, normally through cleavage of their C-terminal regulatory 

domain (108, 109). In the study demonstrating decreased muscle differentiation in caspase-3 null 

myoblasts, caspase-3 was shown to cleavage-activate mammalian sterile 20-like kinase 1 

(MST1) in wild-type cells, and replacement of the activated protein in null myoblasts restored 

the differentiation program (50). However, MST1 has also been shown to promote apoptosis in 

response to caspase activation (50, 110). Non-kinase caspase substrates which appear to have 

“differentiation only” effects have also been reported. The bHLH protein Twist, which can 

prevent myogenic transcriptional activity of MyoD, has been identified as a caspase-3 substrate, 

and its cleavage leads to loss of function followed by proteasome-mediated degradation (35, 111, 

112). Twist expression is associated with blockade of differentiation and apoptosis in 

mesodermal cell lines, suggesting that caspase cleavage-inactivation of this protein is 

prerequisite for execution of either program (111). Caspase activation of these targets provides 

some indication of the similarity between the differentiation and death signals, yet these proteins 

represent only a small number of the caspase substrates identified to date.  

The mechanisms through which the degree of apoptotic signalling activation is controlled 

is currently unknown. Interestingly, p53 also promotes skeletal muscle differentiation as 

indicated by increased mRNA, protein, and transcriptional activity levels during differentiation 

(40, 113, 114). Replacement of wild-type with dominant-negative p53 inhibited differentiation 
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independent of cell cycle withdrawal and this was due to lack of transcriptional activity (114). In 

these cells, although pRb is hypophosphorylated (stopping proliferation), levels of pRb are not 

upregulated, preventing its association with MyoD and resultant activation of the muscle-specific 

MEF promoters (115). Recently, an interaction between caspase-2 and p53 was reported, a 

phenomenon resulting in indirect p53 stabilization (116). Using various cell lines with differing 

p53 expression patterns, these researchers describe a model where caspase-2 cleaves Mdm2, a 

protein responsible for p53 degradation, resulting in a positive feedback loop of increased p53 

activity and hence production of PIDD. 

Together, these experiments lead to an appealing conclusion that both the death-receptor 

and mitochondrial-mediated apoptotic pathways are involved with normal skeletal muscle 

differentiation, and that caspase activation during this process is a mechanism through which 

differentiation is actively promoted. 

Importance of Mitochondrial Dynamics 

A further possible mechanism relating caspase activation and muscle differentiation is 

through the regulation of mitochondrial morphology. Mitochondria are typically viewed as static, 

oval-shaped organelles, due to their normal depiction in electron micrographs and textbook-style 

cartoons. However, mitochondria are highly dynamic, continually undergoing division (fission) 

and fusion within cells (117). These processes have many important physiological functions, and 

are necessary for maintenance of mitochondrial homeostasis and normal cellular functioning 

(118). Regulation of mitochondrial fission and fusion is critically dependent on a relatively small 

number of genes, the products of which are all large GTPases (118). Fusion relies on the activity 

of mitofusins 1 and 2 (Mfn1, 2), which are bound to and responsible for fusion of outer 

mitochondrial membranes, and optic atrophy protein-1 (OPA1), which is bound to and 
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responsible for fusion of inner mitochondrial membranes (118). Fission, meanwhile, seems to 

depend on the function of a single gene, dynamin-related protein 1 (Drp1), a mainly cytosolic 

protein which binds to and wraps around mitochondria (by oligomerizing) at fission locations 

(118). 

Alterations to mitochondrial morphology are beneficial to cell health in many ways. An 

obvious role for mitochondrial fission and fusion is mitochondrial transport (118, 119). Since 

microtubule transport is much quicker than generating new mitochondria, this allows for on-

demand mitochondrial recruitment, as well as redistribution during cellular development (118). 

Mitochondria must also be appropriately separated in preparation for proliferation, as they are 

necessary organelles that must be inherited during cell division. Correspondingly, Drp1 

activation and production of fragmented (daughter) mitochondria are observed prior to 

cytokinesis in several cell types (119, 120). Fission is also crucial to the process of mitochondrial 

biogenesis. Here, large networks divide into smaller, fully functional mitochondria, which can 

then expand and grow into individual networks, resulting in increased mitochondrial mass (118). 

These principles may be of great importance in the development of skeletal muscle as not only 

does cell morphology change drastically, but large increases in mitochondrial content occurs 

during the transition from single-nucleated myoblast to contracting myotube (121). 

Mitochondrial fusion allows for the transfer/sharing of vital regulatory molecules, 

including membrane proteins, enzymes, and/or matrix components (122, 123). Perhaps most 

importantly, this includes mitochondrial DNA (mtDNA). In several intriguing experiments both 

in vitro and in vivo, researchers demonstrated that healthy mitochondria can transfer mtDNA to 

cells containing mutated mtDNA, resulting in the presence of mitochondria with normal mtDNA 

and functional gene products (124-126). Furthermore, if a section of a mitochondrial network is 
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functioning at a lesser capacity, or is at increased risk for damage, fission can selectively target 

the “bad” portion for degradation by autophagy (127). Interestingly, these researchers observed 

that, after fission events, fragmented mitochondria were preferentially chosen for degradation 

when they possessed lower membrane potential (indicating permeablization), and lower levels of 

OPA1 (indicating less ability to fuse back into the mitochondrial network). As a result, fission 

and fusion can serve as quality control for mitochondrial health and stability. 

Mitochondrial Fission and Apoptosis 

Notably, fission is also associated with being pro-apoptotic, typically occurring just prior 

to caspase activation (128, 129). In response to appropriate stressors, Drp1 translocates to and 

fragments mitochondria, implicating fission as part of the apoptotic phenotype (129-131). 

However, fission has also been observed to actively promote the release of pro-apoptotic factors 

from the mitochondria, such as cytochrome c, primarily through its association with Bax (131-

134). Bax is commonly observed to colocalize with both Drp1 and Mfn2 at fission sites, and this 

is thought to contribute mechanistically to Drp1 function (129). Several experiments show that 

Drp1 participates in the development of MOMP, as the drop in membrane potential and 

subsequent release of cytochrome c are diminished in cells with mutant or inhibited Drp1 (130, 

134, 135). Importantly, these results indicate that not only is fission associated with apoptosis, 

but it is a necessary step in the apoptotic process. Drp1 translocation is primarily controlled 

through post-translational modifications such as phosphorylation and sumoylation. 

Dephosphorylation induced by Ca
2+

-stress activation of calcineurin (136, 137), as well as by 

staurosporine-induced inhibition of PKA (137), has been shown to promote fission by increasing 

mitochondrial translocation of Drp1. Similarly, mitochondrial-associated Drp1 was observed to 

by sumoylated in a Bax/Bak dependent manner (131).  Accumulation of Drp1 in the 
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mitochondria is also dependent on the pro-apoptotic Bcl-2 family member PUMA for proper 

translocation (138), implicating p53 and typical apoptotic effectors in the control of 

mitochondrial fission as well. Interestingly, amplified ARC expression resulted in inhibition of 

Drp1 mitochondrial accumulation and resulting fission; effects dependent on ARC’s interaction 

with PUMA (138). In another study, mitochondrial release of Smac associated with fission was 

also inhibited by over-expressing ARC in cardiomyocytes (76).  

Given the pro-apoptotic association of mitochondrial fission, upregulation of this process 

during early differentiation events may be a mechanism of inducing caspase activity. Terminal 

differentiation of muscle involves generation of large mitochondrial networks (121, 139), and 

was recently observed to require inhibition of Drp1 (140). However, these researchers did not 

examine the time course of this occurrence. Although mitochondrial content definitely increases 

during muscle development to meet the energy demands of its mature form, changes to 

mitochondrial morphology during the transition from myoblast to myotube may require an 

elevated level of fission. 
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Purpose 

The contribution of typical apoptotic signalling to skeletal muscle differentiation has not 

been fully characterized. Furthermore, it is unknown how mitochondrial dynamics influence this 

process. Due to the drastic changes in cell and mitochondrial morphology that occur during 

muscle differentiation, it is possible that mitochondrial-mediated apoptotic signalling resulting 

from transient mitochondrial fission is responsible for activating apoptotic signalling in this 

context.  

 

Therefore, the purpose of my thesis project was to:  

1) Characterize the major apoptotic pathways/molecules during differentiation of 

skeletal muscle  

2) Examine the role caspase-2 during skeletal muscle differentiation, and  

3) Determine the importance of mitochondrial fission during skeletal muscle 

differentiation. 

Experiment 1: Apoptotic signalling during skeletal muscle differentiation 

An in vitro model of skeletal muscle differentiation was used to examine apoptotic 

signalling during this process. Mouse skeletal myoblasts (C2C12 cells) can be kept in an 

undifferentiated, proliferative state with appropriate subculturing. Upon incubation in media low 

in growth factors, these cells spontaneously fuse and differentiate into contracting myotubes. 

Cells were removed from culture after various lengths of time spent in low growth-factor media, 

from 6 hours to 15 days, and used for experimental analyses. The degree of differentiation 

(measured using fluorescent microscopy as well as immunoblotting for MyoD, myosin, and 

myogenin), cell cycle profile, and several major apoptotic signalling pathways/molecules (AIF, 
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ARC, Bax, Bcl-2, cytochrome c, PUMA, Smac, XIAP, and caspases 2, 3, 8, 9) were assessed 

during the differentiation process. 

Experiment 2: The role of caspase-2 during skeletal muscle differentiation 

The effect of caspase-3 inhibition on muscle differentiation is well documented. 

Preliminary results in our lab show that activation of caspase-2 also occurs during the 

differentiation process. For this experiment, C2C12 cells were differentiated while being 

incubated with chemical inhibitors of caspases-2 and -3. For each inhibitor, two concentrations 

were used: one designed to result in complete enzyme inhibition and one at roughly half this 

concentration. Cells were collected at various time points as in Experiment #1, and similar 

immunoblotting, fluorometric enzyme evaluation, cell cycle analysis, and fluorescent 

microscopy techniques were performed for measuring select markers of differentiation and 

apoptosis. 

Experiment 3: Mitochondrial dynamics during skeletal muscle differentiation 

Mitochondrial fission and fusion were assessed by immunoblotting (Drp1 and Mfn2) and 

fluorescent microscopy in C2C12 cells at various time points of differentiation. The importance 

of fission during differentiation was tested by incubating cells with two concentrations of mdivi-

1, a chemical inhibitor of mitochondrial fission, followed by selective analysis of apoptotic 

signalling and differentiation as mentioned in Experiment #2.  

Hypothesis 

It was hypothesized that:  

1) Typical pro-apoptotic signalling would be activated early during differentiation, 

proceeding with an increase in anti-apoptotic signalling. This included: 
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a. Early mitochondrial translocation of Bax 

b. Early release of AIF, cytochrome c, and/or Smac 

c. Transient spike in caspase activity 

d. This will be followed  by increases in ARC and Bcl-2 as pro-apoptotic signalling 

diminishes 

2) Inhibition of caspase-2 would partially prevent myogenesis due to an inability to activate 

caspase-3. This would be characterized by: 

a. Decreased/absent transient caspase-3 activity 

b. Decreased markers of differentiation: cell fusion, myosin 

3) Chemical inhibition of fission would attenuate apoptotic signalling also resulting in 

decreased differentiation: 

a. Decreased transient caspase activity 

b. Decreased cell fusion, myosin expression 
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Methods 

Cell Culture 

C2C12 mouse skeletal myoblasts (ATCC) were cultured in growth media (GM) 

consisting of low-glucose Dulbecco’s Modified Eagles Medium (DMEM; Hyclone, 

ThermoScientific) containing 10% fetal bovine serum (FBS; Hyclone, ThermoScientific) with 

1% penicillin/streptomycin (Hyclone, ThermoScientific) in 35mm, 100mm, and/or 6-well 

polystyrene cell culture dishes (BD Biosciences). Cells used were between passages 2-5, and 

seeded at a density of 650/cm
2
. At 1-2 day intervals, culture dishes were aspirated of media, 

washed with warmed phosphate buffered saline (PBS), and fresh media was replaced. Cells were 

allowed to proliferate until they reached 70-80% confluence, at which point they were induced to 

differentiate by replacing GM with differentiation media (DM) consisting of DMEM 

supplemented with 2% horse serum  (Hyclone, ThermoScientific) and 1% 

penicillin/streptomycin. Cells were isolated and utilized for various biochemical analyses 

immediately prior to the induction of differentiation (Day 0), and at several following time points 

(6 hrs, 12 hrs, Day 1, Day 1.5, Day 2, Day 3, Day 5, Day 7, Day 11, Day 15). For cell cycle 

analyses, subconfluent cells were also collected one day before differentiation was induced (Day 

-1).  

Inhibition of Caspases and Mitochondrial Fission 

Chemical inhibition of caspase-2 and caspase-3 activities was performed using the small 

peptide inhibitors Ac-VDVAD-CHO and Ac-DEVD-CHO, respectively (Enzo Life Sciences) 

(66, 67). Inhibition of Drp1 activity and subsequent mitochondrial fission was achieved using 

mdivi-1 (141, 142) (Enzo Life Sciences). All chemicals were diluted in DM prior to their 

addition to cells, and were added in place of regular DM during differentiation. For these 



21 

 

experiments, control cells were given DM with the chemical dilution vehicle dimethyl sulfoxide 

(DMSO). 

Isolation, Fractionation, and Determination of Protein Content 

Cells in culture were washed twice with warmed PBS, isolated via trypsinization (0.25% 

trypsin with 0.2g/L EDTA; ThermoScientific), centrifuged at 1000g for 5 min, resuspended in 

PBS, and centrifuged once more at 1000g. Whole-cell lysates were generated by adding muscle 

lysis buffer (MLB; 20mM HEPES, 10mM NaCl, 1.5mM MgCl, 1 mM DTT, 20% glycerol, and 

0.1% Triton-X100, pH 7.4) with protease inhibitors (Complete Cocktail; Roche Diagnostics) 

followed by sonication for 20 seconds.  

Additional cells were separated into cytosolic-, mitochondrial-, and nuclear-enriched 

fractions using differential centrifugation (143-145). Briefly, after trypsinization and washing, 

cells were incubated in digitonin buffer (PBS with 250mM sucrose, 80mM KCl, and 5mg/mL 

digitonin) (Sigma-Aldrich) for 5 min on ice. Cells were centrifuged at 1000g for 10 min, the 

supernatant was collected and centrifuged at 16,000g for 10 minutes to pellet any mitochondrial 

contamination, and the supernatant from this spin was kept as a pure cytosolic fraction. The 

remaining pellet (P1) from the 1000g spin was washed in PBS, centrifuged at 1000g for 5 min, 

resuspended in MLB, and allowed to incubate on ice for 5 min. This was centrifuged at 1000g 

for 10 min, resulting in a pellet (P2) containing nuclei, and a supernatant (S2) containing 

mitochondria and other membrane-bound organelles. S2 was centrifuged at 1000g for 10 min to 

pellet nuclear contamination, with the resulting supernatant kept as the mitochondrial-enriched 

fraction. The P2 pellet was resuspended in MLB, centrifuged at 1000g for 10 min, resuspended 

again in MLB, sonicated on ice for 20 seconds, and kept as a nuclear fraction.  



22 

 

Protein content of whole cell lysates and fractions was determined using the BCA protein 

assay method. Fraction purity was validated by immunoblotting for CuZnSOD (cytosol), 

MnSOD (mitochondria), and histone H2B (nucleus).  

Immunoblotting 

As previously performed (143), equal amounts of protein were loaded and separated on 

7-12% SDS-PAGE gels, transferred onto PVDF membranes (Bio-Rad Laboratories), and 

blocked for 1 hr at room temperature or overnight at 4°C with 5% milk-Tris-buffered saline-

Tween 20 (milk-TBST). Membranes were then be incubated either overnight at 4°C or for 1 hr at 

room temperature with primary antibodies against AIF, ARC, ANT, Bcl-2, Bax, cytochrome c, 

Mfn2, MyoD, p53 (Santa Cruz), CuZnSOD, histone H2B, MnSOD, Smac, XIAP (Enzo Life 

Sciences), myosin, myogenin, (Developmental Studies Hybridoma Bank), procaspase-3, Drp1 

(Cell Signaling), or PUMA (Abcam). Membranes were then washed with TBST, incubated with 

the appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies (Santa Cruz 

Biotechnology) for 1 hr at room temperature, washed with TBST, and bands visualized using 

enhanced chemiluminescence western blotting detection reagents (GE Healthcare) and the 

ChemiGenius 2 Bio-Imaging System (Syngene). The approximate molecular weight for each 

protein was estimated using Precision Plus Protein WesternC Standards and Precision Protein 

Strep-Tactin HRP Conjugate (Bio- Rad Laboratories). Equal loading and quality of transfer was 

confirmed by staining membranes with Ponceau S (Sigma-Aldrich). Unless otherwise indicated, 

all immunoblotting was performed and quantified in duplicate. 
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Fluorometric Caspase Activity Assay 

Enzymatic activity of caspase-2, caspase-3, caspase-8, and caspase-9 was determined in 

cells using the substrates Ac-VDVAD-AMC, Ac-DEVD-AMC, Ac-IETD-AMC, and Ac-LEHD-

AMC (Enzo Life Sciences), respectively (143). These fluorogenic substrates are weakly 

fluorescent but yield highly fluorescent products following proteolytic cleavage by their 

respective active caspase enzyme. Cells were isolated as mentioned above (using MLB without 

addition of protease inhibitor cocktail) and incubated in duplicate in black 96-well plates 

(Costar) with the appropriate fluorogenic substrate at room temperature. Fluorescence was 

measured using a SPECTRAmax Gemini XS microplate spectrofluorometer (Molecular Devices) 

with excitation and emission wavelengths of 360 nm and 440 nm, respectively. Caspase activity 

was normalized to total protein content and expressed as fluorescence intensity in arbitrary units 

per milligram protein. 

Fluorescent Microscopy 

Immunofluorescent microscopy was used to visualize nuclei, expression of myosin, and 

mitochondrial morphology. Cells grown on glass coverslips in culture dishes were removed at 

appropriate time points and washed 2 x 5min with PBS. Cells were fixed by incubating in 4% 

formaldehyde-PBS for 10 min, and washed 2 x 5 min with PBS. Next, cells were then 

permeablized with 0.5% Triton-X100 for 10 min, and washed 2 x 5 min in PBS. Cells were 

blocked with 10% goat serum (in PBS) for 30 min, incubated with primary antibodies diluted in 

blocking solution for 1 hr, and washed 2 x 5 min with PBS. Fluorescent-conjugated secondary 

antibodies (Molecular Probes, Invitrogen Life Technologies) were diluted in blocking solution 

and incubated with cells for 1 hr, washed 2 x 5 min in PBS, counterstained with DAPI nuclear 

stain (Molecular Probes) for 5 min, washed 2 x 5 min in PBS, and mounted with Prolong Gold 
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Antifade Reagent (Molecular Probes). For visualization of mitochondria, live cells were 

incubated with MitoTracker Green FM (100nM in GM/DM; Molecular Probes) for 30 min at 

37
o
C prior to formaldehyde fixation, and counterstained with DAPI as outlined above. Cells 

were visualized with an Axio Observer Z1 structured-illumination fluorescent microscope 

equipped with standard Red/Green/Blue filters, an AxioCam HRm camera, and AxioVision 

software (Carl Zeiss). 

Cell Fusion Index 

Using immunofluorescent images stained with myosin and DAPI, the degree of myoblast 

fusion was determined by counting all nuclei in ten random microscopic fields. The number of 

nuclei in multi-nucleated cells was divided by the total number of nuclei to give a fusion 

percentage per field. 

Flow Cytometry Analysis of Cell Cycle 

Cells were washed with PBS, harvested by trypsinization as described above, centrifuged 

at 1000g for 5 min, resuspended in PBS, and centrifuged once more at 1000g for 5 min. The 

supernatant was aspirated, leaving approximately 100μL, and the pellet was resuspended in this 

volume. While vortexing, 1mL of ice-cold reagent-grade 70% ethanol was slowly added to fix 

the cells. Following 24 hr fixation, cells were centrifuged at 1000g for 5 minutes. The 

supernatant was removed and cells were washed twice with PBS. 100μL of RNAase was then 

added along with 400μL of propidium iodide (PI) solution (50μg/mL in PBS containing 0.1% 

TritonX) and incubated in the dark at room temperature for 30 minutes.  Following this, PI 

fluorescence was measured using flow cytometry (FACSCalibur, BD Biosciences) and analyzed 

using Cell Quest Pro software (BD Biosciences). 



25 

 

Cell Counting/Size Analysis  

Cell counts were performed to ensure accurate seeding densities as well as assessing the 

number of apoptotic cells contained in culture media. Using the Z2 Coulter Counter (Beckman-

Coulter), cells between 12-19 μm were counted as viable cells and plated at appropriate densities. 

The number of dead cells was determined by collecting media and PBS washes of cells in culture, 

and events between 5-12 µm were counted as apoptotic cells.  

Statistical Analyses 

Unless otherwise stated, all results shown are means ± standard error of the mean (SEM). 

Data were analyzed using 1-way ANOVA. In experiment #1, post-hoc comparisons were made 

between day 0 and each subsequent time point using Tukey analysis with p<0.05 considered 

statistically significant. For caspase and mitochondrial fission inhibition experiments, post-hoc 

comparisons were made between treatment groups within individual time points using Tukey 

with p<0.05 considered statistically significant. Statistical analyses were performed using 

Microsoft Excel and SPSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

Results 

Characterization of Skeletal Muscle Differentiation 

Switching 70-80% confluent C2C12 cells to differentiation media induced spontaneous 

myoblast fusion and generation of myotubes. Preliminary experiments were performed to 

determine the appropriate amount of time for proper differentiation to occur in vitro. Cells were 

harvested between 1 and 15 days after addition of differentiation media, and analyzed for 

terminal differentiation markers through immunoblotting as well as fluorescent microscopy. On 

day 0, myosin expression and myotube development were undetectable, but both reached their 

maximum levels after 7 days in differentiation media (Appendix Figure 1). For subsequent 

experiments, the day 5 and/or 7 time point was considered fully differentiated. The induction of 

differentiation was associated with an immediate and consistent decrease in the expression level 

of MyoD protein, with an 87% reduction by day 7 (p<0.05, Figure 2A & 2B). Conversely, 

myogenin protein expression was quickly induced, as its levels on day 2 were 18-fold higher 

than day 0 (p<0.05, Figure 2A & 2B). However, this increase in expression was transient, as 

myogenin levels decreased by 78% between days 2 and 7, reaching a level similar to day 0 

(p>0.05, Figure 2A & 2B). Myosin expression, measured to indicate the extent of differentiation, 

was undetectable on day 0 and increased exponentially until day 7 (Figure 2A). Cell cycle 

progression as measured using flow cytometry detection of PI fluorescence indicated almost 

complete growth arrest by day 1 of differentiation (Figure 2C & 2D). The day prior to the 

induction of differentiation, 56.2% of cells were in Go/G1 phase, indicating they were not 

currently proliferating, and the remaining 43.8% of cells were in S and/or M/G2 (Figure 2C & 

2D). While a moderate level of cell cycle withdrawal was observed as cells became more 

confluent, 30.5% of cells were still in a proliferative phase (S and/or M/G2) on day 0 (Figure 2C  
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Figure 2: Expression of differentiation 

markers and cell cycle analysis during C2C12 

myoblast differentiation. A) Representative 

whole-cell lysate immunoblots of myosin, 

myogenin, and MyoD. Maximum myosin 

expression was found to occur on day 7 of 

differentiation. B) Quantification of myogenin 

and MyoD protein expression relative to day 0 

(myogenin) or day 7 (MyoD) (mean ± SEM 

from 3 independent experiments). C) 

Representative histograms of cell cycle 

analyzed using flow cytometry detection of 

propidium iodide (PI) fluorescence. D) 

Graphical representation of histograms shown in 

(C), highlighting the growth arrest of C2C12 

cells by day 1 of differentiation. *p<0.05 

compared to day 0.  
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Figure 3: Cell morphology during C2C12 

myoblast differentiation. A) Fluorescent 

microscopy was used to visualize cells at 

various time points of differentiation. DAPI 

stains nuclei blue, while myosin expression is 

shown in red. Bar represents 50mm. B) Cell 

fusion index was calculated by dividing the 

number of nuclei contained in multi-nucleated 

cells by the total number of nuclei in ten 

random microscopic fields (mean ± SD). 
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& 2D). However, cell cycle was shown to be arrested in almost all cells by da y 1 as 94% existed 

in Go/G1 leaving only 6% in an actively dividing phase (Figure 2C & 2D). Measurement of cell 

cycle was discontinued at this time point as flow cytometry analyses are complicated by multi- 

nucleated cells such as myotubes. Cell morphology visualized using immunofluorescent 

microscopy detection of myosin showed dramatic myotube development during differentiation 

which appeared to peak on day 7 (Figure 3 & Append ix Figure 1). Assessment of cell fusion 

events by measuring the percentage of nuclei contained in multi-nucleated cells also 

demonstrated a progressive increase until day 7 (Figure 3B). On this day, 56.7% of nuclei were 

located in multi-nucleated cells. 

Caspase Activity 

As discussed above, caspases have been observed to be temporarily activated during 

skeletal muscle differentiation (92). The activities of caspases-8 and -9 did not change during 

differentiation (p>0.05, Figure 4). However, caspase-2 activity began increasing 12 hrs after 

inducing differentiation, and remained increased by 45-51% until day 1.5 (p<0.05, Figure 4). 

Likewise, a progressive elevation in caspase-3 activity was observed, reaching a 2.5-fold 

increase above day 0 levels by day 1.5 (p<0.05). For both caspase-2 and -3, activity returned to 

the levels observed on day 0 once cells became fully differentiated (Figure 4).  
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Pro-Apoptotic Signalling 

The mechanism of this characteristic transient spike in caspase activity has not yet been 

determined, with some researchers observing increases in typical upstream apoptotic signalling 

while others have not. To further elucidate potential causes, the expression level and subcellular 

localization of several pro-apoptotic signalling proteins was measured during differentiation. In 

whole-cell lysates, the expression levels of Bax and PUMA were increased by 16% and 23% 

respectively, on day 1 compared to day 0 (p<0.05, Figure 5A & 5B). After this initial increase, 

Bax levels stabilized near those observed on day 0, with moderate, statistically insignificant 

fluctuations observed on subsequent days (<8%, p>0.05). Levels of procaspase-3 similarly 

Figure 4: Caspase activity during C2C12 myoblast differentiation. Caspase activity was 

measured using specific fluorogenic substrates. Activity for each enzyme has been expressed 

relative to protein content and normalized to levels observed on day 0. *p<0.05 compared to 

day 0 (mean ± SEM from 3 independent experiments). 
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Figure 5: Pro-apoptotic protein expression during C2C12 myoblast differentiation. A) 
Representative immunoblots of whole-cell protein expression of Bax, procaspase-3, and 

PUMA. B) Quantification of Bax, procaspase-3, and PUMA protein expression levels 

expressed relative to day 0. C) Representative immunoblots of whole-cell protein expression of 

AIF, Smac, cytochrome c (Cyt-c), ANT, and MnSOD. D) Quantification of mitochondrial-

located apoptotic protein expression levels expressed relative to day 0. Although expression of 

these proteins increased dramatically during differentiation, this is likely due to increased 

mitochondrial content as demonstrated by parallel increases in ANT and MnSOD shown 

graphically in (E). *p<0.05 compared to day 0. (mean ± SEM from 3 independent 

experiments). 
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increased slightly on day 1 by 21%, although this change did not achieve statistical significance 

(Figure 5A & 5B). Unlike Bax, whose expression seemed to stabilize as differentiation 

continued, both PUMA and procaspase-3 decreased progressively after their day 1 peak by 54% 

and 74% by day 7, respectively (Figure 5A & 5B). Whole-cell protein expression levels of the 

mitochondrial-located factors AIF, Smac, and cytochrome c (Cyt-c) gradually increased during 

differentiation (Figure 5C & 5D). From day 0 to day 7, this resulted in a 4.1-fold increase in AIF, 

a 2.3-fold increase in Smac, and a 5.8-fold increase in cytochrome c (Figure 5C & 5D). While 

these changes are very dramatic, they are most likely due to an increase in total mitochondrial 

content, as expression of the mitochondrial proteins ANT and MnSOD were observed to increase 

in a similar manner (Figure 5C & 5E). 

Anti-Apoptotic Signalling 

Expression of the anti-apoptotic proteins XIAP, ARC, and Bcl-2 were analyzed in whole-

cell lysates at various time points during differentiation. Levels of XIAP decreased progressively 

from day 0, with an 86% drop observed by day 7 (p<0.05, Figure 6A & 6B). Conversely, ARC 

expression rose progressively during differentiation, undergoing a 5.6-fold increase between 

days 0 and 7 (p<0.05, Figure 6A & 6B). Whole-cell Bcl-2 levels also increased during 

differentiation, however, a peak was observed on day 2, when expression was 2.5-fold higher 

compared to day 0 (p<0.05, Figure 6A & 6B). 
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Cellular Translocation of Apoptotic Factors 

As the apoptosis-inducing role of many of these proteins depends on their cellular 

location, additional C2C12 cells were separated into subcellular fractions at various time points 

during the differentiation process. Mitochondrial translocation of Bax, mentioned above to 

precede membrane permeablization, was progressively increased during differentiation (Figure 

7A & 7B). Importantly, a 2.6-fold increase was observed on day 1.5 (p<0.05, Figure 7A). 

However, mitochondrial levels of Bcl-2, a protein which opposes the pro-apoptotic functions of 

Bax, similarly increased 2.8-fold by day 1.5 (p<0.05, Figure 7A & 7B). As a result, the 

mitochondrial Bax:Bcl-2 ratio, considered a marker of apoptotic susceptibility, did not 

significantly change during early differentiation events (< 2 days, before the spike in caspase 

activity (p>0.05, Figure 7C). However, similar to analyses performed in whole-cell lysates, 

mitochondrial Bcl-2 levels peaked on day 2 with a 3.5-fold increase above day 0 (p<0.05), 

followed by a decrease as differentiation continued (Figure 7A & 7B). This led to a significantly 

increased Bax:Bcl-2 ratio on subsequent days of differentiation (p<0.05, Figure 7C). 
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Figure 6: Anti-apoptotic protein expression during C2C12 myoblast differentiation. A) 
Representative immunoblots of whole-cell protein levels of XIAP, ARC, and Bcl-2. B) 

Quantification of protein expression levels relative to day 0. *p<0.05 compared to day 0. 

(mean ± SEM from 3 independent experiments). 
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Figure 7: Translocation/subcellular location of apoptotic factors during C2C12 myoblast 

differentiation. A) Representative immunoblots of Bcl-2 and Bax in mitochondrial-enriched 

subcellular fractions. B) Quantification of mitochondrial Bax and Bcl-2 relative to day 0.       

C) Quantification of the Bax:Bcl-2 ratio relative to day 0. D) Representative immunoblots of 

cytosolic levels of mitochondrial pro-apoptotic factors AIF, Smac, and cytochrome c (Cyt-c). 

The 57kDa AIF band corresponds to its activated form (see discussion for details). E) 

Quantification of cytosolic protein expression levels relative to day 0. *p<0.05 compared to 

day 0. (mean ± SEM from 3 independent experiments). 
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The mitochondria’s role in promoting apoptosis culminates in its release of several 

factors into the cytosol. During differentiation, cytosolic levels of AIF rose slightly, although this 

measurement was highly variable and was not significant (Figure 7C & 7D). Perhaps most 

notably, cytosolic Smac and cytochrome c significantly decreased 12 hours after induction of 

differentiation (p<0.05, Figure 7C & 7D). This response lasted 36-48 hours as cytosolic Smac 

levels were reduced 55-63% between day 0.5 and 1.5 (p<0.05), while cytosolic cytochrome c 

levels were reduced 67-75% between day 0.5 and 2 (p<0.05) (Figure 7C & 7D).  Surprisingly, 

this response was transient and cytosolic levels of both proteins returned to those observed on 

day 0 once cells became fully differentiated (Figure 7C & 7D). 

Mitochondrial Dynamics 

To analyze the molecular control of mitochondrial fission and fusion during 

differentiation, immunoblotting was performed for mitofusin 2 (Mfn2) and Drp1. Mfn2 levels 

decreased by 65% in whole-cell lysates during differentiation from day 0 to day 7 (p<0.05, 

Figure 8A & 8B). On the other hand, Drp1 expression was increased 2.4-fold above day 0 levels 

by day 7 (p<0.05, Figure 8A & 8B). Notably, 49% of this change was observed between days 1 

and 2 (Figure 8A & 8B). Because Drp1 is mainly cytosolic and must translocate to the 

mitochondria to induce fission, immunoblotting was also performed on mitochondrial fractions 

during differentiation. Mitochondrial levels of Drp1 increased by 2.6-fold by day 2 of 

differentiation (p<0.05, Figure 8C & 8D). By day 3, mitochondrial Drp1 levels returned to those 

observed on day 0 (p>0.05, Figure 8C & 8D). 
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Figure 8: Regulation of mitochondrial dynamics during C2C12 myoblast differentiation. 

A) Representative immunoblots of whole-cell protein expression of Mfn2 and Drp1. B) 

Quantification of protein expression levels expressed relative to day 0. C) Representative 

immunoblot of Drp1 in mitochondrial-enriched fractions. D) Quantification of mitochondrial 

Drp1 levels. *p<0.05 compared to day 0. (mean ± SEM from 3 independent experiments). 
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Caspase-3 Inhibition Results in Decreased Skeletal Muscle Differentiation 

As other researchers have demonstrated a requirement for caspase-3 activity during 

skeletal muscle differentiation, we first characterized the differentiation of our C2C12 cells in the 

presence of a chemical inhibitor of caspase-3 activity, Ac-DEVD-CHO. Cells were induced to 

differentiate upon reaching 70-80% confluence by switching to differentiation media with 30µM 

Ac-DEVD-CHO (casp-3 inh 30µM), 75µM Ac-DEVD-CHO (casp-3 inh 75µM), or DMSO 

(control). Control cells underwent significant myotube development between day 0 and day 5, 

similar to what we previously observed (Figure 9A). However, this process was progressively 

inhibited in myoblasts incubated with caspase-3 inhibitor (Figure 9A). With respect to cell fusion 

events, administration of 30µM Ac-DEVD-CHO resulted in a 44% and 12% decrease on days 2 

and 5, respectively, compared to control cells (Figure 9B). This effect was more pronounced at 

75µM, with a 72% and 54% reduction in cell fusion observed on days 2 and 5, respectively, 

compared to control cells (Figure 9B). 

Both concentrations of caspase-3 inhibitor significantly reduced the activities of 

caspases-2 and -3 (Figure 10A). Similar to our previous data, caspase-2 activity transiently 

increased 50% above day 0 levels in control cells during the first 2 days of differentiation (Figure 

10A). After 12 hours, caspase-2 levels were 49% and 50% lower in cells given 30µM and 75µM 

caspase-3 inhibitor, respectively (p<0.05, Figure 10A). Caspase-2 levels remained significantly 

decreased 31-55% in both treatment groups compared to control cells until day 3 (p<0.05, Figure 

10A). Once cells reached full differentiation (day 5), caspase-2 activity levels in cells receiving 

caspase-3 inhibitor were no longer different than control (p>0.05, Figure 10A). Not surprisingly, 

caspase-3 activity levels were dramatically decreased in response to Ac-DEVD-CHO treatment. 

Similar to our previous data, caspase-3 activity transiently increased ~2.2-fold in control cells  
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Figure 9: Inhibition of caspase-3 results in decreased myotube development. A) 

Fluorescent microscopy was used to visualize cells at various time points of differentiation. 

DAPI stains nuclei blue, while myosin expression is shown in red. Bar represents 50mm. B) 

Cell fusion index was calculated by dividing the number of nuclei contained in multi-nucleated 

cells by the total number of nuclei in ten random microscopic fields (mean ± SD). Increasing 

concentrations of caspase-3 inhibitor led to a progressive drop in myotube development and 

cell fusion. 
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early during differentiation (Figure 10A). After 24 hours, caspase-3 activity levels were 70% and 

71% lower in cells given 30µM and 75µM Ac-DEVD-CHO, respectively, compared to control 

cells (p<0.05, Figure 10A). Caspase-3 activity remained significantly decreased in both treatment 

groups compared to control until day 3 (p<0.05, Figure 10A). By day 5, caspase-3 activity levels 

returned to those observed on day 0 and were not different between groups (p>0.05, Figure 10A). 

A dramatic reduction in myogenic markers measured using immunoblotting was also 

observed in response to caspase-3 inhibition. In control cells, expression of myosin and 

myogenin changed in similar patterns to what we previously observed (Figure 10B & 10C). 

Administration of 30µM caspase-3 inhibitor led to 39% and 34% reduction of myosin expression 

by days 3 and 5, respectively, compared to control cells (p<0.05, Figure 10B & 10C). Likewise, 

myosin levels were 74% and 58% reduced in cells that received 75µM caspase-3 inhibitor 

compared to control cells on days 3 and 5, respectively (p<0.05, Figure 10B & 10C). The 

induction of myogenin expression was not affected by 30µM caspase-3 inhibition, as levels were 

not different from control cells on days 1-3 (p>0.05, Figure 10B & 10C). However, in these cells 

myogenin expression did not decrease during terminal differentiation, and were 2.6-fold higher 

than control cell levels on day 5 (p<0.05, Figure 10B & 10C). Conversely, the induction of 

myogenin was prevented by 75µM caspase-3 inhibitor, as expression levels were 50% and 46% 

reduced on day 1 and day 2, respectively, compared to control cells (p<0.05, Figure 10B & 10C). 
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Figure 10: Changes to caspase activity and differentiation markers with caspase-3 

inhibition. A) Caspase-2 and -3 activity relative to day 0 levels. B) Representative whole-cell 

lysate immunoblots of myosin and myogenin. C) Quantification of myosin and myogenin 

protein expression. $p<0.05 from control within a time point. (mean ± SEM from 3 

independent experiments) 
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Caspase-2 Inhibition Results in Decreased Skeletal Muscle Differentiation 

The involvement of caspase-2 during skeletal muscle differentiation has not been 

investigated. To examine this, we pharmacologically inhibited caspase-2 activity with the 

chemical Ac-VDVAD-CHO during C2C12 differentiation. Cells were induced to differentiate 

upon reaching 70-80% confluence by switching to differentiation media with 30µM Ac-

VDVAD-CHO (casp-2 inh 30µM), 75µM Ac-VDVAD-CHO (casp-2 inh 75µM), or DMSO 

(control). Similar to our previous experiments, control cells underwent significant myotube 

development between day 0 and day 5 (Figure 11A). However, this process was progressively 

inhibited in cells incubated with caspase-2 inhibitor (Figure 11A). Administration of 30µM Ac-

VDVAD-CHO resulted in a 38% and 31% decrease in cell fusion on days 2 and 5, respectively, 

compared to control cells (Figure 11B). This effect was more prominent at 75µM, with a 58% 

and 48% reduction in cell fusion observed on days 2 and 5, respectively, compared to control 

cells (Figure 11B). 

Both concentrations of Ac-VDVAD-CHO led to reductions in the activities of caspases-2 

and -3 early during differentiation (Figure 12A). Similar to our previous data, caspase-2 activity 

transiently increased ~50% in control cells during the first 2 days of differentiation (Figure 12A). 

After 24 hours, caspase-2 levels were 25% and 33% lower in cells given 30µM and 75µM 

caspase-2 inhibitor, respectively (p<0.05, Figure 12A). Caspase-2 levels remained significantly 

decreased 23-36% in both treatment groups compared to control cells until day 1.5 (p<0.05, 

Figure 12A). On days 2-5, caspase-2 activity was not different between groups, as the levels in 

control cells returned to those observed on day 0 (p>0.05, Figure 12A). Similar to previous 

experiments, caspase-3 activity transiently increased ~2.2-fold in control cells early during 

differentiation (Figure 12A). After 24 hours, caspase-3 activity levels were 32% and 35% lower  
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Figure 11: Inhibition of caspase-2 results in decreased myotube development. A) 

Fluorescent microscopy was used to visualize cells at various time points of differentiation. 

DAPI stains nuclei blue, while myosin expression is shown in red. Bar represents 50mm. B) 

Cell fusion index was calculated by dividing the number of nuclei contained in multi-nucleated 

cells by the total number of nuclei in ten random microscopic fields (mean ± SD). Increasing 

concentrations of caspase-2 inhibitor led to a progressive drop in myotube development and 

cell fusion. 

Days of Differentiation 

F
u

si
o

n
 I

n
d

ex
 

(%
 t

o
ta

l 
n

u
cl

ei
) 

B 



43 

 

in cells given 30µM and 75µM Ac-VDVAD-CHO, respectively, compared to control cells 

(p<0.05, Figure 12A). Caspase-3 activity was similarly decreased in both treatment groups on 

day 2 (p<0.05, Figure 12A). On days 3-5, caspase-3 activity levels returned to those observed on 

day 0 and were not different between groups (p>0.05, Figure 12A). 

A reduction in myogenic markers measured using immunoblotting was also observed in 

response to caspase-2 inhibition. In control cells, expression of myosin and myogenin changed 

similar to what we previously observed (Figure 12B & 12C). Administration of 30µM caspase-2 

inhibitor led to a 35% reduction in myosin expression on day 5 compared to control cells 

(p<0.05, Figure 12B & 12C). Likewise, myosin levels were 71% and 70% reduced in cells that 

received 75µM Ac-VDVAD-CHO compared to control cells on days 3 and 5, respectively 

(p<0.05, Figure 12B & 12C). Myogenin expression was not affected by 30µM caspase-2 

inhibition, as levels were not different from control on any day of differentiation (p>0.05, Figure 

12B & 12B). However, the induction of myogenin was prevented by 75µM caspase-2 inhibitor, 

as expression levels were 51% and 58% reduced on day 1 and day 2, respectively, compared to 

control cells (p<0.05, Figure 12B & 12C). 
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Figure 12: Changes to caspase activity and differentiation markers with caspase-2 

inhibition. A) Caspase-2 and -3 activity relative to day 0 levels. B) Representative whole-cell 

lysate immunoblots of myosin and myogenin. C) Quantification of myosin and myogenin 

protein expression. $p<0.05 from control within a time point. (mean ± SEM from 3 

independent experiments) 

Caspase-2 Caspase-3 

Days of Differentiation 

E
n

zy
m

e 
A

ct
iv

it
y
 

(A
F

U
/m

g
 p

ro
te

in
) 

A 

Myosin 
220kDa 

0 1 2 3 5 Day 

B control casp-2 inh 30 µM 

0 1 2 3 5 

casp-2 inh 75 µM 

0 1 2 3 5 

Myogenin 
34kDa 

Ponceau 

$ 
$ $ $ 

$ 



45 

 

Mitochondrial Fission is Required for Skeletal Muscle Differentiation 

To investigate the importance of mitochondrial fission during skeletal muscle 

differentiation, cells were induced to differentiate in the presence of the chemical inhibitor of 

Drp1, mdivi-1. As fission is known to promote apoptotic signalling, the efficacy of this chemical 

was originally tested by examining its ability to inhibit the cellular apoptotic response to 

treatment with staurosporine (141). In COS cells, the ID50 of mdivi-1 was determined to be 

50µM (141). We performed similar testing in C2C12 cells by assessing the ability of mdivi-1 to 

inhibit mitochondrial fission and apoptosis in response to staurosporine (Appendix Figure 2). 

Treatment with staurosporine alone led to immediate and complete apoptotic cell death 

(Appendix Figure 2). The addition of mdvi-1 led to a concentration dependent inhibition of 

mitochondrial fragmentation and cell blebbing (Appendix Figure 2), from which we selected two 

concentrations to use during differentiation. C2C12 cells were induced to differentiate upon 

reaching 70-80% confluence by switching to differentiation media with 20µM mdivi-1, 50µM 

mdivi-1, or DMSO (control). As in previous experiments, control cells underwent significant 

myotube development between day 0 and day 5 (Figure 13A). However, this process was 

inhibited in myoblasts given mdivi-1, and was almost absent at a concentration of 50µM (Figure 

13A). With respect to cell fusion events, administration of 20µM mdivi-1 resulted in a 50% and 

37% decrease on days 2 and 5, respectively, compared to control cells (Figure 13B). This effect 

was quite severe at 50µM, with a 94% and 93% reduction in cell fusion observed on days 2 and 

5, respectively, compared to control cells (Figure 13B). 

Both concentrations of mdivi-1 led to dramatic increases in the activities of caspases-2 

and -3, although this response was greater in cells given 50µM (Figure 14A). Similar to our 

previous data, caspase-2 activity transiently increased ~35% in control cells early during  
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Figure 13: Inhibition of mitochondrial fission results in decreased myotube development. 

A) Fluorescent microscopy was used to visualize cells at various time points of differentiation. 

DAPI stains nuclei blue, while myosin expression is shown in red. Bar represents 50mm. B) 

Cell fusion index was calculated by dividing the number of nuclei contained in multi-nucleated 

cells by the total number of nuclei in ten random microscopic fields (mean ± SD). Increasing 

concentrations of mdivi-1 led to a progressive drop in myotube development and cell fusion. 

A 

Days of Differentiation 

F
u

si
o

n
 I

n
d

ex
  

(%
 t

o
ta

l 
n

u
cl

ei
) 

B 



47 

 

differentiation (Figure 14A). After 12 hours, caspase-2 levels were 91% and 93% higher in cells 

given 20µM and 50µM mdivi-1, respectively (p<0.05, Figure 14A). On day 1, activity levels in 

20µM cells began to decline, but were still 45% higher than control cells (p<0.05, Figure 14A). 

However, caspase-2 activity continued to increase in cells given 50µM mdivi-1 on day 1, 

reaching levels 2.4-fold higher than control cells, and 63% higher than 20µM (p<0.05, Figure 

14A). By day 2, caspase-2 activity levels in all groups returned to those observed on day 0 and 

were not different between treatments (p>0.05, Figure 14A). Similar changes were observed for 

caspase-3 activity in response to mdivi-1 treatment. Again, caspase-3 activity transiently 

increased ~2.4-fold in control cells early during differentiation (Figure 14A). After 12 hours, 

caspase-3 levels were 2.8- and 3.1-fold higher in cells given 20µM and 50µM mdivi-1, 

respectively, compared to control cells (p<0.05, Figure 14A). On day 1, activity levels in 20µM 

cells began to decline, but were still 65% higher than control cells (p<0.05, Figure 14A). 

However, caspase-3 activity continued to increase in cells given 50µM mdivi-1 on day 1, 

reaching levels 3.2-fold higher than control cells, and 92% higher than 20µM (p<0.05, Figure 

14A). By day 3, caspase-3 activity levels returned to those observed on day 0 and were not 

different between treatment groups (p>0.05, Figure 14A). 
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A dramatic reduction in myogenic markers measured using immunoblotting was also 

observed in response to mdivi-1 treatment. In control cells, expression of myosin and myogenin 

changed in similar patterns to what was previously observed (Figure 14B & 14C). 

Administration of 50µM mdivi-1 almost completely prevented the induction of myosin, and its 

expression was significantly lower than control cells on days 2-5 (p<0.05, Figure 14B & 14C). 

While myosin was produced in cells given 20µM, its levels on day 5 were significantly lower 

compared to control cells (p<0.05, Figure 14B & 14C). Likewise, 50µM mdivi-1 also prevented 

the induction of myogenin, as levels did not increase above day 0, and were lower than control 

cells at every subsequent time point (p<0.05, Figure 14B & 14C). Although myogenin 

expression did increase 3.6-fold by day 3 in cells given 20µM, its levels were 67% and 53% 

lower than those observed in control cells on days 2 and 3, respectively (p<0.05, Figure 14B & 

14C). 
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Figure 14: Changes to caspase activity and differentiation markers with inhibition of 

mitochondrial fission. A) Caspase-2 and -3 activity realtive to day 0 levels. B) Representative 

whole-cell lysate immunoblots of myosin and myogenin. C) Quantification of myosin and 

myogenin protein expression. $p<0.05 from control within a time point. (mean ± SEM from 3 

independent experiments). 
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Discussion 

That interplay exists between cellular signals regulating both apoptosis and 

differentiation is not surprising, nor is it a recently discovered phenomenon. Indeed, the ability of 

extracellular signals such as hormones to produce either response has been known for some time 

(146-148). In fact, even typically pro-death ligands such as TNF-a have long been implicated in 

promoting cellular functions other than apoptosis (149). Often, these overlapping effects are due 

to variations in receptor activation, resulting in differential responses from complex, multi-

functional cellular signalling families such as NF-kB, p38/MAPK, and/or JNK (150-153). 

However, the observation that apoptotic effectors, such as caspases, not only play an important 

role but are vitally important to immune cell activation and proliferation came as somewhat of a 

surprise (154-156). Since then, it has become apparent that caspases are necessary for the 

differentiation of several cell types, including muscle (157). This thesis aimed to better 

characterize the biological effectors of apoptosis during skeletal muscle differentiation in order 

to determine a molecular cause for temporary caspase activation during this process. In this study 

we tested the hypothesis that activation of caspase-2 as well as mitochondrial fission contribute 

to transient increases in caspase-3 activity which are necessary for proper skeletal muscle 

differentiation. 

 Measurement of caspase-2 activity has not been performed in previous studies examining 

apoptotic signalling during skeletal muscle differentiation (50, 93-96, 98, 101, 102, 158-160). 

Our results indicated caspase-2 was actually activated first, starting 6 hours after differentiation 

was induced and reaching statistical significance in only 12 hours (Figure 4). In agreement with 

these earlier studies, caspase-3 activity in our C2C12 cells peaked early during the differentiation 

process: before most cell fusion events and the appearance of mature skeletal muscle markers. 
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Importantly, this response was observed after the induction of caspase-2 and was maintained at 

this increased level for 36 hours longer than that of caspase-2 (Figure 4). Caspase-3 is considered 

the primary executioner caspase (53), and most studies examining apoptotic regulation during 

skeletal muscles differentiation attribute their observations to alterations in the activity of this 

key enzyme. Several initiator caspases are known to exert their pro-apoptotic effects through 

activation of caspase-3 (53). While its identity has been debated (69) caspase-2 has been shown 

to initiate caspase-3 activation directly through pro-domain interactions (71) and indirectly 

through the mitochondria (63, 64). Our observation that caspase-2 activity was increased before 

caspase-3 during differentiation suggests it may be responsible for caspase-3 activation in this 

context. The other initiator caspases we measured, caspases-8 and -9, are well-characterized in 

their ability to activate caspase-3. However, while roles for caspases-8 and -9 have been 

identified by other researchers, activity levels of these enzymes were not observed to 

increase/change during skeletal muscle differentiation (Figure 4). These discrepancies may be 

due to methodological differences of caspase activity measurements (94, 95, 102) or the cell 

lineage used (50, 94, 101, 102, 158). As a result, it is possible that these two caspases are 

relevant in the differentiation of myogenic cell lines other than C2C12.  

 Although the several studies mentioned above implicate caspase activation as an 

important occurrence during skeletal muscle differentiation, canonical cellular causes of this, 

such as translocation of signalling molecules, association of enzyme activating platforms, and 

mitochondrial disturbance are not often investigated. Instead, most analyses involve comparing 

the attenuation of apoptotic signalling through chemical caspase inhibition to the effects caused 

by experimental increases/decreases to the expression of anti/pro-apoptotic genes. These results 

could be misleading as amplifications to protein expression may affect biological phenomena 
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irrelevantly. Therefore, identifying the physiologically-relevant cause of caspase activation 

during skeletal muscle differentiation is warranted. Some investigations of typical pro-apoptotic 

signalling mechanisms have been performed, however results have been conflicting. Release of 

cytochrome c from the mitochondria has been detected by some (102, 159) but not others (95) 

during differentiation. In one study, this was shown to be dependent on the expression of PUMA, 

which was induced during differentiation (102). In fact, these researchers later indicated that 

PUMA can be upregulated by MyoD in this context (101). During apoptosis, cytochrome c 

release occurs in response to mitochondrial outer membrane permeablization (MOMP) (57). 

Assessment of mitochondrial membrane depolarization has been performed, however it was 

found to not decrease significantly during skeletal muscle differentiation, particularly compared 

to the change induced by staurosporine (95). Similar to Weyman and colleagues (101, 102), we 

observed increased whole-cell protein expression levels of PUMA, as well as Bax, after 1 day of 

differentiation (Figure 5). These two pro-apoptotic BH3 proteins are induced by p53 (77, 85, 

161), so their increase is not surprising given the concomitant increases in p53’s transcriptional 

activity typical of skeletal muscle differentiation (40, 114, 115). Furthermore, these increases 

occurred before/during the rise in caspase activity, supporting their potential role in the 

activation of caspases during skeletal muscle differentiation. Importantly, these elevated protein 

levels were temporary, as expression of both Bax and PUMA decreased after day 1.  

The changes observed in anti-apoptotic proteins also support the contribution of 

canonical apoptotic signalling to the control of caspase activity during skeletal muscle 

differentiation. Caspase-3 activity was shown to progressively decrease between days 1.5 and 7, 

while levels of Bcl-2 reached their maximum on day 2 (Figure 4 & Figure 6). Transient 

expression of Bcl-2 during muscle differentiation has been observed previously and was 
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necessary for formation of normal-sized myotubes (162). Bcl-2 possesses various, highly 

effective anti-apoptotic properties, and is known as “the prototype of anti-apoptotic proteins” 

(57). Since the time point of its highest expression coincides with the beginning of the decline in 

caspase-3 activity, it is possible that Bcl-2 is instigating this event. In accordance with this, 

overexpression of the anti-apoptotic Bcl-2 family member Bcl-XL led to a reduction in transient 

caspase activity and significantly delayed C2C12 differentiation as measured by cell fusion (95). 

However, these authors point out that expression of myogenin and myosin was not affected by 

increased Bcl-XL content, implying that attenuation of apoptotic signalling affected cell fusion 

independently of the appearance of myogenic markers (95). Another anti-apoptotic protein, the 

caspase inhibitor XIAP, decreased progressively during differentiation (Figure 6). This reduction 

implies it may be partly responsible for causing temporarily increased caspase activity. In fact, 

XIAP function has been shown to be more efficient in fully differentiated myotubes due to 

concurrent decreases in the pro-apoptotic factor Apaf-1 (163), which is normally required to 

overcome basal IAPs. Importantly, levels of the anti-apoptotic protein ARC were shown to 

dramatically rise during differentiation (Figure 6). While the members of Bcl-2 and IAP families 

are potent cellular protectors, their functions are more “down-stream” in the apoptotic signalling 

cascade, with Bcl-2 members exerting their function during mitochondrial pore formation and 

IAPs involved with directly inhibiting caspases (57). On the other hand, ARC can interrupt 

preceding apoptotic events by binding procaspases-2 and -8, preventing DISC formation, 

inhibiting Bax activation, and blocking PUMA and Bad (164). Hence, the drop in XIAP and 

subsequent rise in ARC during skeletal muscle differentiation suggests these proteins possibly 

contribute to caspase activity regulation during skeletal muscle differentiation, and that ARC 

presence may reduce the requirement for other anti-apoptotic proteins (165). 
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As mentioned above, the apoptosis-inducing functions of many proteins depend on their 

subcellular localization. Previous studies have not examined the mitochondrial localization of 

factors involved with pore formation such as Bax and Bcl-2. Consequently, we observed that 

protein levels of Bax rose 2.5-fold in mitochondrial-enriched subcellular fractions during the first 

24 hours of differentiation (Figure 7). This reinforces its potential role in promoting 

mitochondrial-mediated apoptotic signalling. However, mitochondrial Bcl-2 levels increased in a 

similar manner, resulting in no change to the Bax:Bcl-2 ratio, considered a measure of apoptotic 

susceptibility (166), during early differentiation events (Figure 7). This indicates that although 

Bax expression is induced and localizes to mitochondrial early during differentiation, its pro-

apoptotic functions are likely inhibited by concomitant increases in mitochondrial Bcl-2. 

Ultimately, mitochondria regulate apoptotic signalling through the release of several factors 

whose cellular localization prompts association with and activation of various apoptosis-inducing 

mechanisms (57). AIF release results in its nuclear translocation and leads to chromatin 

condensation and DNA fragmentation (60). Mitochondrial AIF release as measured in cytosolic-

enriched subcellular fractions changed insignificantly during differentiation, however this 

response was highly variable (Figure 7). In these fractions, immunoblotting revealed the 

detection of two separate bands, one at ~60 kDa and one at ~57 kDa. Prior to its release, 

mitochondrial-bound AIF is cleaved, resulting in a pro-apoptotic, truncated form of AIF that 

migrates more quickly in SDS-PAGE (167, 168). Quantification of just the ~57 kDa band also 

did not show meaningful trends (data not shown); implying AIF is not involved during skeletal 

muscle differentiation. Correspondingly, primary skeletal muscle cultures from AIF-deficient 

mice displayed no reduction in proliferation and differentiation capacities (169). This suggests 

that caspase-independent mechanisms are not a major player in skeletal muscle differentiation; 
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however, other caspase-independent cell death factors such as EndoG and Omi1 have not been 

studied. Cytochrome c release is considered a key event of mitochondrial apoptotic signalling, 

coordinating with Apaf-1 and dATP in the cytosol to activate caspase-9 (51). Likewise, Smac 

release results in inactivation of endogenous inhibitors of apoptosis proteins (IAPs), such as 

XIAP, which bind to and inhibit caspases (59). Somewhat surprisingly, cytosolic levels of these 

two proteins dramatically and immediately decreased upon the induction of differentiation 

(Figure 7). After 12 hours, cytosolic Smac dropped 55%, reaching its lowest after 36 hours while 

cytosolic cytochrome c similarly decreased 67% in 12 hours, reaching its lowest level on day 2 

(Figure 7). These two time points are, in fact, the same time points during which we observed the 

highest level of caspase-3 activity (Figure 4). Equally as surprising, the decreases in cytosolic 

Smac and cytochrome c were transient, as both returned to the levels observed on day 0 by day 5 

(Figure 7). These results are contrary to our hypothesis, which was to detect more of these pro-

apoptotic signalling molecules in the cytosol during early-differentiation events. Instead, it was 

during this time that cytosolic levels were lowest. Previously, Smac release was not detected in 

differentiating C2C12 cells as measured using immunoblotting of subcellular fractions (95). 

Likewise, these researchers were unable to detect cytochrome c in cytosolic fractions early 

during differentiation (>2 days) (95). However, a temporary increase in cytosolic cytochrome c 

has been observed by others (102). An important methodological variation made by these 

researchers is the inclusion of cells which die during differentiation into their biochemical 

analyses, a distinction they term apoptosis associated with skeletal muscle differentiation (101, 

102, 158). Certainly, many myoblasts undergo cell death by apoptosis during this process, and 

this is a well-recognized and characterized phenomenon (158, 170, 171). We similarly observe 

accumulation of dead and/or dying cells during the first 1-2 days of C2C12 differentiation 
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(qualitative observations). For our analyses, this cellular debris was washed away, as we were 

interested in the caspase activity and apoptotic cell signalling that occurred in the cells which 

remained healthy and continued to differentiate. Interestingly, cytochrome c-dependent caspase 

activity has been observed during the differentiation of other cell types such as lens epithelial 

cells (104) as well as macrophages (103). Importantly, a drop in mitochondrial membrane 

potential occurred prior to cytochrome c release during lens cell differentiation (104), a 

phenomenon which was not observed during skeletal muscle differentiation (95).  

When considered together, these results support the theory that mitochondrial apoptotic 

signalling is not responsible for inducing caspase activity during skeletal muscle differentiation. 

A lack of mitochondrial release of pro-apoptotic factors, combined with absence of increased 

caspase-9 activity, suggests some other mechanism must be responsible for activating caspase-3 

in this context. As previously mentioned, an interaction between caspase-2 and p53 was recently 

described (116). The transcriptional activity of p53 is temporarily increased and is required for 

proper skeletal muscle differentiation (40, 114, 115). In this newly proposed model, caspase-2 

was shown to cleave and inactivate Mdm2, a protein responsible for p53 degradation (116). 

Since p53 is a transcription factor for the caspase-2 activator PIDD, this led to a positive-

feedback loop resulting in increased p53 stability. In addition, caspase-2 promotes the function 

of PKCd (172), a kinase with significant pro-apoptotic links (173), and proper activation of 

PKCd is required for the induction of caspase-3 (174, 175). To examine the role of caspase-2 in 

myogenesis, we assessed the effects that inhibition of caspase-2 and caspase-3 has during 

skeletal muscle differentiation. 

We first assessed the ability of C2C12 cells to undergo differentiation in the presence of a 

chemical inhibitor of caspase-3. Capase-3 inhibition reduced cell fusion and myotube formation 
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in a concentration-dependent manner (Figure 9). Similarly, these changes were associated with 

delayed myosin expression as measured using immunoblotting (Figure 10). These observations 

indicate that caspase-3 activity is required for proper skeletal muscle differentiation. Myogenin 

was induced normally in C2C12 cells incubated with 30µM Ac-DEVD-CHO, although its 

expression did not drop later during differentiation (Figure 10). This supports a pro-myogenic 

effector role for caspase-3 activity, as myogenin expression was maintained in response to its 

inhibition. However, a higher concentration of caspase-3 inhibitor reduced maximal myogenin 

protein levels (Figure 10). These results suggest that caspase-3 activity may also be required for 

adequate myogenic gene expression. Curiously, even though the two concentrations of Ac-

DEVD-CHO affected makers of skeletal muscle differentiation differently, each inhibited the 

activities of both caspases-2 and -3 equally (Figure 10). This would imply that caspase-2 is 

“downstream” of caspase-3. On the other hand, the typical mechanism of caspase-2 activation is 

dependent on its associated with the PIDDosome (68, 69). Caspase inhibitors such as Ac-DEVD-

CHO are designed to be enzyme-specific based on preferred substrate cleavage sites. However, 

there is overlap in substrate preference between caspases (176), meaning that each concentration 

of Ac-DEVD-CHO we utilized could have also inhibited the enzymatic activity of caspase-2 as 

well as other caspases. With respect to caspase-3, it is possible that both concentrations inhibited 

enzyme activity at levels which were indistinguishable with our analysis method. 

 Several examinations have previously reported a supporting role for caspase-3 activity 

during skeletal muscle differentiation (50, 93, 95, 160). These studies conclude that adequate 

activation of caspase-3 is necessary for morphological changes and induction of pro-myogenic 

genes. While these researchers attribute functional relevance for caspase activity in the cells 

which achieve differentiation, others have concluded that the role of caspases during this process 
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is simply to remove unnecessary cells through apoptosis (101, 102, 158, 159). Indeed, apoptosis 

is involved during the development of many tissues including skeletal muscle (170, 171, 177). 

However, Fernando et al (2002) observed activated caspase-3 in cells which became myosin-

positive, and reported that administration of active caspase-3 was able to induce differentiation 

even in high-serum conditions (50). Furthermore, they showed that caspase-3-dependent 

cleavage of MST1 was required for proper expression of myogenic factors. Additionally, the 

activity of p53, a gene containing many pro-apoptotic associations, has been reported in cells 

which differentiate, but not myoblasts which undergo apoptosis during myogenesis (113). 

Regardless of its role, inhibition of caspase-3 has repeatedly been shown to impair skeletal 

muscle differentiation. 

Based on our observation that caspase-2 is the first caspase to increase after inducing 

differentiation, we conducted a similar experiment by assessing the ability of C2C12 cells to 

undergo differentiation while in the presence of a chemical inhibitor of caspase-2. Capase-2 

inhibition reduced cell fusion and myotube formation in a concentration-dependent manner 

(Figure 11). Likewise, these changes were associated with delayed myosin expression measured 

using immunoblotting (Figure 12). These observations indicate that caspase-2 activity is required 

for proper skeletal muscle differentiation and the effects of its inhibition are akin to those of 

caspase-3. Myogenin was induced normally in C2C12 cells incubated with 30µM Ac-VDVAD-

CHO, although at 75mM this response was significantly inhibited (Figure 12). These results 

suggest that caspase-2 activity may also be required for adequate myogenic gene expression. 

Similar to caspase-3 inhibitor experiments, both concentrations of Ac-VDVAD-CHO affected 

markers of skeletal muscle differentiation differently, although each inhibited the activities of 

caspases-2 and -3 equally (Figure 12). As mentioned above, caspase inhibitors such as Ac-
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VDVAD-CHO are designed to be enzyme-specific based on preferred substrate cleavage sites. 

However, due to the overlap in substrate preference between caspases (176), the higher 

concentration may have differentially affected myogenesis by inhibiting non-specific caspases. 

Administration of Ac-VDVAD-CHO did not reduce caspase-3 levels to the same level as Ac-

DEVD-CHO, but did result in similar reductions to myogenic development. Therefore, the 

effects that Ac-VDVAD-CHO had on differentiation are due to its distinctive influences on the 

activation of caspase-2 and/or possibly other caspases. 

The most logical role for caspase-2 during skeletal muscle differentiation is in the 

activation of effector caspases such as caspase-3. However, its best understood mechanism of 

apoptotic induction is through Bid-cleavage-dependent mitochondrial permeablization and 

subsequent release of apoptotic factors such as AIF, Smac, and cytochrome c (63, 64). Our 

examination of mitochondrial apoptotic signalling indicates this pathway is not active during 

differentiation. Furthermore, although caspase-2 shares structural homology and activation 

mechanisms with other initiator caspases, unlike caspases-8 and -9 it does not cleave effector 

procaspases, therefore excluding it from the caspase cascade (63). Consequently, even if a novel 

caspase-2 activation method was identified, it is unlikely that this would lead to direct activation 

of other caspases. Interestingly, caspase-2 has been shown to contribute to cell cycle arrest in 

response to DNA damage (100, 178). Activation of p53 is a well-known response to DNA 

damage (179, 180), and as mentioned above, p53’s regulatory and transcriptional activities are 

required for skeletal muscle differentiation (40, 113-115). Due to the presence of a positive 

feedback loop between caspase-2 activity and p53 (116), its purpose may be to temporarily 

maintain p53 function early during differentiation. Although this is a possibility, a 

comprehensive examination of caspase-2 cleavage substrates has not been performed, so its 
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function during skeletal muscle differentiation may be activating/inactivating a yet unidentified 

factor.  

One of our original hypotheses was that mitochondrial fission is partly responsible for 

caspase activation during skeletal muscle differentiation, as it is known to contribute to the 

release of pro-apoptotic factors into the cytosol (129). Although myotube development is 

associated with production of large mitochondrial networks (139, 140), we postulated that fission 

could be increased transiently during this process. Results showed that protein expression of 

Drp1 increased, while Mfn2 decreased during differentiation (Figure 8). However, these changes 

were progressive, and are consistent with a “pro-fission” phenotype upon terminal differentiation 

instead of prior to caspase activity. As Drp1 must translocate to the mitochondria to induce 

fission (118), immunoblotting in mitochondrial-enriched fractions was also performed. Here, a 

transient mitochondrial localization of Drp1 occurred mid-way during the skeletal muscle 

differentiation timeline (Figure 8). These results somewhat contradict previous examinations of 

mitochondrial dynamics during myogenesis. Zorzano and colleagues (139) observed increased 

Mfn2 levels in myotubes compared to proliferative myoblasts. Furthermore, this study showed 

that Mfn2 was required to maintain mitochondrial network architecture and metabolic function 

(139). However, the effect that alterations to Mfn2 levels had on the ability to differentiate was 

not examined (139). Building on this work, other researchers demonstrated that nitric oxide 

(NO)-induced inhibition of fission must occur during myogenesis in order to generate large 

mitochondrial networks typical of myotubes (140). Nitric oxide synthase (NOS) activity does in 

fact transiently increase and is required for myotube production during skeletal muscle 

differentiation (181). In this recent study, researchers demonstrated that NO inhibited Drp1 

through G-kinase-dependant phosphorylation (140). However, Drp1 activity is both positively 
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(120, 182) and negatively (137) regulation by phosphorylation. Furthermore, the primary 

myocytes used in this study expressed myosin on day 0 (140), and as a result, these observations 

may represent changes occurring later during the differentiation timeline than the transient 

increase in fission that we observed. In addition, NO has commonly been shown to actually 

induce mitochondrial fission in neuronal cells (183, 184), and functional Drp1 is necessary for 

proper neuronal development (119, 185). Given our observation that mitochondrial-mediated 

apoptotic signalling is not responsible for activating caspases during skeletal muscle 

differentiation, the involvement of mitochondrial fission during this process must lie someplace 

else. Instead, as increased mitochondrial Drp1 was observed after the peak in caspase activity, it 

is more likely responsible for mitochondrial transport during the extreme changes to cell 

morphology which occur during the transition from myoblast to myotube. Similar conclusions 

were realized during the examination of neuronal development in the absence of Drp1. While 

mitochondria were still formed and maintained a level of metabolic function, the network did not 

extend into dendritic processes, resulting in blunted synapse and neurite formation (119). 

No work has been published regarding the relationship between apoptotic signalling and 

mitochondrial fission during skeletal muscle differentiation. To examine this, we inhibited 

mitochondrial fission using mdivi-1, a chemical inhibitor of Drp1 function (141). As with 

caspase inhibitors, the effects of mdivi-1 administration on myogenesis were dose-dependent. At 

a low concentration, a reduction in myotube development and cell fusion was observed, while 

these two events were almost completely abolished at the higher concentration (Figure 13). 

Particularly at 50µM mdivi-1, myosin-positive single-nucleated cells were found instead of 

myotubes. These morphological observations imply that mitochondrial fission is required for 

myotube formation. Due to the pro-apoptotic association of mitochondrial fission, our hypothesis 
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was that transiently increased fission contributes to the release of apoptosis-inducing factors and 

hence to the activation of caspases. Contrary to this, inhibition of mitochondrial fission resulted 

in dramatic dose-dependent increases in the activities of caspases-2 and -3 during differentiation 

(Figure 14A). Almost all previous research supports a pro-apoptotic role for mitochondrial 

fission (129), so this observation was rather surprising. At first glance, this seems due to the 

toxic nature of the chemical. However, mdivi-1 administration alone did not produce obvious 

apoptotic changes during concentration tests (Appendix Figure 2), the total number of adhered 

cells (from fusion index calculations) and dead cells present in culture media (data not shown) 

were not different between control and 20µM mdivi-1 groups, and, importantly, the increase in 

caspase activity remained transient. If in fact mdivi-1 was inducing caspase-dependent apoptosis 

due to acute toxicity, we should have observed more dead cells, less adhered cells, and caspase 

activity would have increased until all myoblasts were eliminated from culture dishes. Instead, 

the number of dead and adhered cells was similar between control and 20mM groups, and 

caspase activities remained transient in both mdivi-1 treatment conditions. It appears as though 

mdivi-1 prevented the function of caspases during differentiation, as if fission was “down-

stream”, and caspases were activated to a higher degree in response. This paradigm is difficult to 

reconcile however, as no mechanism of caspase-induced changes to mitochondrial morphology 

have been observed. The most likely explanation is that long-term administration of mdivi-1 

resulted in stress-induced apoptotic signalling due to the prolonged inability of these cells to 

undergo proper mitochondrial fission. Although it is well documented that inhibition of 

mitochondrial fission reduces the short-term apoptotic response to an appropriate stressor (129, 

(Appendix Figure 2)), there is evidence that prolonged inhibition leads to increased cell stress 

and apoptosis (186-188). Again, this explanation does not clarify why the increases in caspase 
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activity we observed with mdivi-1 treatment occurred in an identical timeline to that observed in 

control cells. 

Regardless, these morphological observations and alterations to caspase activity were 

associated with changes in the expression pattern of myogenic markers. While myogenin 

expression increased slightly in myoblasts given 20µM mdivi-1, its induction was delayed and 

the peak expression levels were significantly less than in control cells (Figure 14). Similarly, this 

treatment led to reduced myosin levels once control cells fully differentiated (Figure 14), which, 

combined with decreased cell fusion, indicates that fission is required for regulating changes to 

cell morphology and the expression of myogenic-specific proteins. A high concentration of 

mdivi-1 completely prevented myogenin and myosin levels from increasing (Figure 14), 

supporting evidence that changes to mitochondrial morphology provide feedback in order to 

regulate transcription and complete expression of skeletal muscle-specific genes (189, 190). 

However, given the unexpected observation that inhibition of mitochondrial fission resulted in 

dramatically increased transient caspase activity, it is unclear whether mdivi-1 administration 

influenced myogenesis through its effects on mitochondrial morphology, or whether myogenic 

development decreased in response to excessive proteolytic activity during early differentiation 

events.  

These results provide evidence that the functional relevance of mitochondrial fission 

during skeletal muscle differentiation is not in the promotion of apoptotic signalling, but we 

suggest it likely contributes to morphological changes to the mitochondrial network associated 

with myotube formation. As mentioned above, researchers examining neuronal differentiation in 

the absence of Drp1 came to a similar conclusion (119). Given the remarkable changes to cell 

morphology which occur during both muscle and neuron development, this is not surprising. 
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There are several mechanisms controlling mitochondrial fission which may be relevant during 

skeletal muscle differentiation. Regulation of Drp1 translocation has frequently been examined, 

and one important mediator of this event is its phosphorylation status. Phosphorylation of Drp1 

by CamK (182), cdk1/cyclin B (120) and dephosphorylation by calcineurin (136, 137), have 

been shown to increase mitochondrial fission, while phosphorylation by PKA (137) has been 

shown to inhibit mitochondrial fission. These studies demonstrate that fission can be induced 

during cell proliferation and in response to Ca
2+

 signalling. As differentiation is associated with a 

withdrawal from cell cycle, this mechanisms is likely not as relevant. However, the ability of 

calcium to act as both a transcription factor and enzyme regulator is vitally important during 

skeletal muscle differentiation (191-193). In accordance with this, reduced cellular calcium (194) 

and inhibition of calcineurin activity (195, 196) restricted myotube development, although it is 

unknown if these interventions affected mitochondrial morphology. In addition to Ca
2+

-induced 

mitochondrial fission, experiments have also shown that cytosolic calcium handling is affected 

during manipulations to mitochondrial morphology (197, 198). Therefore, it is possible that 

mdivi-1 treatment led to altered calcineurin/NFAT signalling, proper activation of which is 

necessary for myogenin expression and skeletal muscle differentiation (199, 200). 

Summary and Conclusions 

This thesis serves as the most comprehensive examination of apoptotic signalling during 

skeletal muscle differentiation. Several novel findings were observed: 1) caspase-2 is activated 

very early during the differentiation process, 2) the mitochondrial Bax:Bcl-2 ratio does not 

change during early differentiation events, 3) cytosolic Smac and cytochrome c levels decrease 

prior to and during the spike in caspase activity, 4) differentiation is associated with 

progressively increased and decreased expression of the anti-apoptotic proteins ARC and XIAP, 
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respectively, and 5) Drp1 transiently locates to the mitochondria after caspase activity peaks. 

When considered together, these results provide evidence supporting the notion that 

mitochondrial-mediated apoptotic events are not responsible for activating caspases during 

skeletal muscle differentiation.  

This study is also the first to evaluate contribution of caspase-2 activity to skeletal muscle 

differentiation. In response to pharmacological inhibition of caspase-2, cells displayed reduced 

myotube formation and markers of terminal differentiation. Importantly, these myogenic changes 

were similar to those observed in response to chemical inhibition of caspase-3. 

Finally, we demonstrate that mitochondrial fission is necessary for skeletal muscle 

differentiation. Although this agrees with our hypothesis, we initially thought this would be due 

to fission promoting the release of pro-apoptotic factors into the cytosol. Instead, it appears that 

fission may be more important after caspase activity in the differentiation timeline, leading us to 

the conclusion that it participates in altering mitochondrial network morphology. Possibly, these 

changes may affect skeletal muscle differentiation through mitochondrial retrograde signalling 

and/or Ca
2+

 myogenic transcriptional gene regulation. Regardless, these data highlight another 

physiological function that requires specific control of mitochondrial dynamics. 

Limitations 

As already mentioned, the chemicals used in this study to inhibit caspase activity such as 

Ac-DEVD-CHO and Ac-VDVAD-CHO are designed to be enzyme-specific based on preferred 

substrate cleavage sites. However, due to the overlap in substrate specificity between caspases, 

these chemicals are not perfectly exclusive for their respective enzyme. As a result, the effects of 

their administration may be due to influences on additional, un-intended caspases.   
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A distinction should be made between what was examined in this study and apoptosis 

associated with myoblast differentiation. As discussed above, several researchers attribute the 

transient increase in caspase activity observed during skeletal muscle differentiation to early-

apoptotic events occurring in cells which are adherent but currently undergoing cell death 

processes. Although care was taken during cell isolations to remove dead and/or dying cells by 

washing culture dishes with PBS, the contribution of these destined-to-die cells cannot be 

excluded. Even so, inhibition of caspases has repeatedly been shown to impair skeletal muscle 

differentiation, supporting a role for apoptotic control of this process. Furthermore, caspase-

dependent activation of pro-myogenic factors has been established, and the consensus is that 

these enzymes have regulatory functions during differentiation and proliferation of several other 

cell types through their interactions with proteins involved with cell cycle, cytokine maturation, 

cell adhesion, immunity, G-protein activation, etc. (54, 157).  

While we did not detect involvement of initiator caspases-8 and -9 during C2C12 

differentiation, other researchers using similar methods have indicated contribution of these 

enzymes during the differentiation of other skeletal myogenic cell lines such as L6E9 and 23A2. 

Therefore, it is possible that these caspases have relevance in skeletal muscle culture models 

other than C2C12. Additionally, although immortalized myoblasts capable of in vitro 

differentiation allow examination of this process under controlled conditions, the mechanisms 

controlling myogenesis in vivo may be different than those observed during cell culture 

experiments. In agreement with this, experiments performed with primary cell cultures also 

display conflicting findings (50). 
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Future Directions 

The results of this thesis suggest mitochondrial pro-apoptotic signalling does not 

contribute to caspase activation during skeletal muscle differentiation. Although evidence for 

canonical mitochondrial release of pro-apoptotic factors has been observed during apoptosis 

associated with myoblast differentiation, these events have never been confirmed in 

differentiating cells. The activation of caspases from other apoptotic pathways has also been 

detected, but similar to mitochondrial-mediated mechanisms, causes of their activation have not. 

As a result, how caspases become activated in this context is still unknown. While complex 

signalling pathways such as NF-kB, p38/MAPK, and JNK are implicated in controlling the fate 

of many cells including skeletal muscle, their effects on apoptotic signalling must still culminate 

in caspase activation. Therefore, although these upstream signalling mechanisms are likely 

responsible for regulating the decision between cell differentiation and cell death, there are only 

so many ways to activate caspases, and one of them must be occurring during skeletal muscle 

differentiation. 

Research has shown that some features typical of apoptosis (actin fiber dis/re-assembly, 

extracellular phosohpatidylserine expose) also occur during skeletal myogenesis, indicating that 

caspase targets may overlap during these two processes. Furthermore, although some direct pro-

myogenic roles for caspases have been identified, definitive, indispensable functions for caspase-

dependent cleavage events have not been thoroughly investigated. Therefore, a more complete 

examination of the exact substrates cleaved by caspases and their purpose during skeletal muscle 

differentiation is warranted. 

Due to the potential non-specific effects that chemical caspase inhibition involves, an 

assessment of caspase-2 function during myogenesis through genetic manipulation of its 
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expression would provide more concrete evidence of its role. Although caspase-2 null mice seem 

to develop normally (201), the effects of its deficiency during skeletal muscle differentiation may 

be concealed due to redundancies in caspase substrate specificity. 

Finally, we reasoned that anti-apoptotic proteins such as Bcl-2 and ARC were responsible 

for ensuring caspase activity remained transient. This hypothesis could be examined by 

inhibiting the function or expression of these factors and observing the effects that this has on 

caspases and the extent of differentiation.   
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Appendix Figure 1: Determination of appropriate in vitro differentiation timeline. C2C12 

cells were induced to differentiate upon reaching 70-80% confluence and were harvested after 

spending indicated amounts of time in differentiation media. As can be seen in A), myotube 

development increases until day 7, but drops significantly thereafter. B) These morphological 

changes were associated with progressive increases in myosin and mitochondrial content as 

indicated by cytochrome c expression until day 7, after which levels of both decline. 
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Appendix Figure 2: Determination of working mdivi-1 concentrations. The ability of 

mdivi-1 to inhibit mitochondrial fission resulting from an apoptotic stress (2µM staurosporine, 

STS, for 2 hours) was tested by incubating C2C12 cells with increasing concentrations of 

mdivi-1. Mitochondria were visualized using MitoTracker and nuclei with DAPI. Incubation 

with mdivi-1 alone resulted in elongated networks of mitochondria, whereas incubation in STS 

alone resulted in nuclear condensation and cell blebbing typical of apoptotic cell death. As can 

be seen in lower panels, mitochondrial fragmentation and apoptotic changes to cell 

morphology induced with STS were progressively inhibited by increasing concentrations of 

mdivi-1. 
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Appendix Figure 3: Validity of subcellular fractionation procedure to detect appropriate 

molecular response to apoptotic stress. A) Fraction purity confirmation in myoblasts and 

myotubes. B) C2C12 cells were left untreated (Con) or incubated with 2µM staurosporine for 2 

hours (+STS) and then subjected to subcellular fractionation. Mitochondrial release of AIF, 

Smac, and cytochrome c is apparent in STS-treated cells. Likewise, STS induced mitochondrial 

translocation of Drp1 and Bax. 
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