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Abstract

Peculiar velocities are possibly the most powerful probes of very large-scale mass density

fluctuations in the nearby Universe. When coupled with a density field they also can

constrain the growth factor of the universe by measuring the proportionality constant

between observed velocities and linear theory predicted velocities. In this thesis, I measure

a bulk flow of SN within 20,000 km s−1 of 197 ± 56 km s−1 in direction l = 295◦ ± 16◦,

b = 11◦ ± 14◦, which is consistent with predictions of ΛCDM for large scale mass density

fluctuations. Using the IRAS Point Source Catalog Redshift survey (PSCz) galaxy density

field and the SNe peculiar velocities I calculated Ω0.55
m σ8,lin to be 0.40 ± 0.07 which is in

excellent agreement with the results of WMAP7 [1]: Ω0.55
m σ8,lin = 0.39±0.04. By combining

my measured value of β with results from other studies, I measure the growth factor γ to be

= 0.621 ± 0.08 which is consistent with ΛCDM’s prediction of 0.55. I conclude by exploring

some of the systematic errors that could have affected my measurements of β. I find that

when β is measured using a reconstruction method the result can be underestimated by

between 7 and 15 %.
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Chapter 1

Introduction to Cosmic Flows

1.1 Testing Gravity and ΛCDM with Peculiar Veloc-

ities and the Growth of Structure

The universe is not perfectly uniform. Some regions are packed densely with planets,

stars, galaxies and black holes and others so sparse that volumes the size of breadboxes

can be reasonably said to contain no atoms at all. This difference in density is driven

by and drives gravitational collapse. Regions with even the slightest advantage in density

pull matter from less dense regions around them. This added mass then compounds the

density differences and thus accelerates the rate at which mass drains out of the voids

into the denser regions. On small scales (atoms, people, planets, and galaxies) velocities

of objects can be affected by countless factors and many conflicting forces, while on large

scales only two forces are thought to be significant: the expansion of the universe and

gravitational collapse towards massive structures. The understanding and the models of

the universe allow for predictions of what these velocities should be at these larger and

simpler scales. The study provides the opportunity to test this understanding and these

models by measuring large scale velocities and comparing the predictions to observations.
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Given that the universe is isotropic and is thought to be homogeneous on the largest

scales, the average velocity of sampled volumes on the largest scales should be 0. However,

the root mean square (rms) of the velocity distribution need not be be zero, but it should

trend towards zero for larger volumes. In ΛCDM, one of the things that can be can

predicted for a volume of a given shape is the rms that would be observed if one sampled

the average velocity of many such volumes independently. Given a defined volume ΛCDM

can be used to calculate the probability that all objects contained within that volume

would have a given mean velocity. Conversely, if the mean velocity of objects in a given

volume is known, then ΛCDM can be tested by calculating the associated probability of

finding a volume moving at that minimum velocity. If the resulting probability were very

low, that would suggest some component of the ΛCDM models could be in conflict with

reality.

The tests of gravity and the growth of structure are slightly more complicated. The part

of large scale velocity that comes from gravitational collapse depends not only on gravity,

but also on the differences between the densities of the regions involved and how long those

differences have been established. A very strong contrast in density between regions would

establish the same resulting velocity considerably faster than a smaller contrast would.

This ambiguity between ‘slow’ and ‘quickly growing’ contrasts and velocities cannot be

resolved easily by looking at the contrast and velocities at one snapshot in time. Instead,

the change in the relationship between large scale velocities density contrasts over cosmic

time must be studied. If gravity where to differ at large scales from the relationship known

at smaller scales, then this it could be revealed by the study of the growth of structure and

the change in this velocity-density contrast relation.

1.2 Large Scale Structure (LSS) Definition

While the universe is thought to be close to uniform at the very largest scales, it certainly

is not uniform on the scale of people, planes and planets. Between these two extremes is

2



Table 1.1: Features of large scale structure.

Structure name mass range (M�) size range (Mpc) Additional Notes

Galaxies 1012 − 1013 10−3 − 10−1 lower limit for LSS

Groups ' 1013 � 1 Contain up to ∼50 galaxies

Clusters 1014 − 1015 1− � 10 Between ∼50 and ∼1000 galaxies

Super-clusters up to 1015 10− 50 Not gravitationally bound

a large host of structurally self-similar features, such as galaxies, galaxy groups, clusters,

Super-clusters and voids. The units most frequently used in the discussion of Large Scale

Structure (LSS) are the solar mass (1 M� being the mass of the Sun, ' 2 × 1030kg) and

the Megaparsec (1 Mpc ' 3 × 1022 meters). Velocities are measured in km/s. Table 1.1

gives the names, mass ranges, and sizes for an assortment of structures which populate the

universe between the scales of planes and people, and the universe as a whole. In addition

to the listed structures, are: ‘filaments’ which extend between super-clusters and range

between 50 and 110 Mpc long, ‘sheets’ which extend between ‘filaments’, and ‘voids’ which

can extend between 5.8 and 16 h−1 Mpc in radius1.

1.2.1 ΛCDM, Matter, and Gravitational Collapse

The standard model of Cosmology today is the ΛCDM cosmological model. According

to ΛCDM the universe is populated with: regular matter and radiation, which can be

1Where a void is defined as a region containing no halos with masses larger than of 5 × 1012 solar

masses [6]. Note: the size of a ‘typical void’ depends on the threshold mass of halos that a void is defined

to contain no halos larger than that limit. [6] quote void sizes for different halo mass thresholds, I report

at 5 × 1012, both because it is close to the middle or the range of masses which I worked with in this

thesis, and simultaneously because that is the in the range of the typical masses of the tracers used in

observations.
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seen; dark matter and dark energy, which can be only detected via their effects on matter

and radiation. While there are many interesting and complicated questions and interplays

between the features of the model in general, the scope of relevant features decreases

dramatically when one focuses on large scale velocities.

It has been observed that the visible matter in the universe is not uniform, and the

degree of this contrast between high and low density regions can be measured. The matter

which can be seen is not all the matter that exists. Measurements of virial theorem

[7],the power spectrum [8], galactic rotation curves [9–12], strong and weak lensing [13, 14]

amongst others clearly indicate that some additional matter, i.e. ‘dark matter’, exists and

that there is more of it then visible matter.

For the purposes of this thesis I will make the simplifying assumption that fluctuations

of matter map to fluctuations of observables such as galaxies in a linear relationship (δtr =

btrδm where δm is the density perturbations of matter, δtr is the density perturbations of

given observable tracer such as galaxies, and btr assumed linear bias between the two)[15].

It is important to note that this is a relationship between the fluctuations (or deviations

from uniformity) as measured by a given tracer and the fluctuations as measured in all

density. It is expected that this relationship would break down where either δtr or δm

approach 1 or -1, and the relationship is expected to be more accurate at larger scales

because of that.

For the purposes of large scale flows, the most important feature of dark matter is that

it gravitates in the same way as regular matter. The remainder of the universe is filled with

a substance which is simply called ‘dark energy’. This ‘dark energy’ causes the universe to

expand at an increasingly rapid rate [16], but since the observed expansion is consistent

with uniform expansion, its effect on velocity is well understood. Any more complicated

effects of dark energy are beyond the scope of this thesis.
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Perturbation Theory

For the study of large scale velocities the sensitivity to physics, relevant in this thesis,

comes in the interplay between the measurable fluctuations in the density contrast and the

velocities which result from gravitational collapse from low density regions into high density

regions. First order (linear) perturbation theory gives a relationship between velocity and

density. A full treatment of perturbation theory for cosmology is outside of the scope of

this investigation; for a more detailed review beyond the summary contained here refer to

any intermediate or higher level cosmology text.

The zeroth order perfectly uniform density field has only trivial expanding and con-

tracting velocity field solutions. Since I am examining the non - uniform behaviors I define

a perturbation parameter δm (which I write as δ where it can not easily be confused with

δtr) as the perturbations about uniformity in matter density

δ = (ρ− ρ̄)/ρ̄ (1.1)

Taking the standard equations of force, gravitation, and conservation of matter in an

expanding universe and expanding those equations to first order in δ, dropping the zeroth

order terms, and substituting the results into each other leaves the equation

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
= 4πGρoδ (1.2)

where a(t) is the scale factor of the universe, G is the gravitational constant, and ρo is

the uniform density being perturbed. The equation is a second order temporal differential

equation with a drag term 2ȧ
a
∂δ
∂t

. However, only one of the two resulting solutions is relevant,

given that the other one is a decaying mode and is therefore negligible. Substituting the

growing mode solution (D(t)) back into the first order version of the continuity equation

yields

∇ · v = −aδ Ḋ(t)

D(t)
(1.3)

where ∇ · v comes from the mass continuity equation ∂ρ
∂t

+ ∇ · (ρv) = 0 as the scalar

divergence of the velocity field. Simplifying
˙D(t)

D(t)
to H0

d lnD(t)
d ln a

and expressing it as H0f
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where

f =
d lnD(t)

d ln a
' Ωγ

m (1.4)

where the approximation f ' Ωγ
m comes from [17] and is valid for flat ΛCDM models, in

such models γ = 0.55.

Re-inspecting 1.3, it is apparent that this is a divergence of a vector field driven by a

scaler field, which is perfectly analogous to gravitational acceleration, i.e.

v(r) =
H0f

4π

∫ ∞
0

δ(r′) ˆ(r′ − r)d3r′

(r′ − r)2
(1.5)

1.2.2 Peculiar Velocities and the Peculiar Velocity Field

In section 1.2.1, I dropped the zeroth order term which corresponds to the uniform expan-

sion or contraction of the universe; which I will examine in slightly more detail in subsection

1.3.1. The first order solution corresponds to a means of transforming a known density

field into a predicted velocity field. This predicted field is called the peculiar velocity field

and represents the velocities relative to the ‘co-moving’ frame of reference of the zeroth

order solution 2, hence ‘peculiar’ in this case meaning individual. The resulting velocity

field is populated with flows that direct outwards from under-dense regions and towards

over-dense regions, from which the name ‘gravitation collapse’ originates.

The resulting peculiar velocity field can being derived from a background density field

which on the largest scales is thought to be very close to uniform, and must itself trend

towards uniformity, specifically zero, as it is smoothed over larger and larger areas 3. This

provides one of the principle tests of ΛCDM which I present in Chapter 2; if the average

peculiar velocity of a volume or the bulk flow of that volume is measured, then it can be

compared to the analytically derived rms average velocities for volumes of that size and

2The frame is referred to as the co-moving frame because it is expanding with the universe
3The expectation velocity of would always be zero, but the rms around zero also tends to zero as you

average over larger volumes in a manner which is predictable using ΛCDM
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shape. Previous studies have explored testing ΛCDM with this approach, specifically this

segment of my research is an extension of the works of [3].

1.2.3 Sensitivity to Cosmological Parameters

The real δm is unmeasurable. Only δtr, the density perturbations of some tracer, which will

be biased as discussed in 1.2.1, can be measured. Given δtr = btrδm equation 1.5 becomes

v(r) =
H0f

btr4π

∫ ∞
0

δtr(r
′)(r′ − r)d3r′

|r′ − r|3
(1.6)

btr is not necessarily compatible between experiments since it is dependent upon the tracer

used, which can differ between surveys. To resolve this I extend the analysis one step

further by noting that if the tracer density is linearly biased then a larger scale average of

that density field will be similarly biased, i.e.

σ8,tr = btrσ8 (1.7)

where σ8 is the r.m.s. fluctuation of density in an 8 h−1 Mpc top hat sphere, which is one

of the fundamental constants of cosmology; and σ8,tr is similar for any given tracer used in

the survey, which can be directly measured. Given that substitution I then define

β =
f

b
=
fσ8

σ8,tr

=
Ωγ
mσ8

σ8,tr

(1.8)

β is thus a parameter composed of a degenerate coupling of three cosmological parameters

Ωm, γ and σ8 and one measurable parameter from each respective survey. The three

cosmological parameters can be measured in other surveys and with other techniques for

comparisons.
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1.3 Observables

1.3.1 Redshifts

In subsection 1.2.2, I introduced peculiar velocities and the peculiar velocity field. Un-

fortunately these full velocities are not directly observable for objects outside the Galaxy.

The reason is that velocities that are transverse to the line of sight are much to small too

cause detectable displacements even given thousands of years. Only the component of the

velocity which is directly towards or away from an observer can be detected. This radial

component of the velocity is detected by comparing the frequency of observed spectral

lines to their rest-frame frequencies. If the object is receding from the observer, then the

observed spectral lines will be Doppler shifted to redder frequencies (redshift) when com-

pared to their rest frame frequencies (conversely, approaching motions result in shifts to

bluer frequencies or blue-shifts). In addition, each object picks up a redshift or a radial

velocity from the zeroth order term of the linear perturbation expansion, as explained in

section 1.2.1. The universal expanding or contracting solution results in the Hubble law,

v = H0r. 4 The Hubble law is very useful because it allows for the distance to an object

to be determined by simply measuring its redshift (its velocity) if that object has no radial

peculiar velocity. The two sources of redshift combine when measuring the redshift of an

object in the universe. The peculiar velocity signal mixes with the distance signal slightly

obscuring both which results in

cz = H0r + vpec (1.9)

where z is the redshift, c is the speed of light, thus cz is a distance measured in km s−1, H0r

is the velocity induced by the expansion of the universe, and vpec is the radial component

(from the observer) of the real space velocity of the observed object. In order to break

the degeneracy between Hubble distance and peculiar velocity, one needs to independently

measure the distance to a given object. This is the subject of the next section.

4At very large distances H changes as one goes back before Λ domination and the law must be adjusted,

but for this work the large distance effects can be neglected.
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1.3.2 Distance Indicators

Given that distance cannot be determined from redshift alone other methods must be

found. The current best alternatives are standard candles and standard rulers. The basic

idea behind standard candles and rulers is more fully explained in [18], however in summary:

A standard candle gives off a known luminosity which in a flat universe would be spread

uniformly over the surface of concentric spheres centred at the source. When observing a

standard candle, or a standardized candle with a source luminosity that can be derived

from some other feature, one need only measure the observed flux to derive the distance

to the source, since the observed flux drops off as the square of the distance over modest

distances. However, additional complications arise over cosmological distances where the

travel time is sufficient that the universe has changed over the duration between emission

and absorption. Specifically, as the universe expands: every photon contained within it

is stretched, resulting in a loss of energy; and the distance between successive photons

increases, further decreasing the observed flux. Finally if the universe is not completely

flat, more or less of the flux will be directed to a distant observer. Both of first two

complications contributed a factor of 1
(1+z)

where z is the redshift to the observed standard

candle to the observed flux and needs to be taken into account for modestly large z. In

principle the universe could be closed, which would result in the light being diluted over

a smaller volume in the real sphere than predicted in a flat universe, or conversely large

volume than predicted if the cosmology were open. However, the universe is known to be

quite flat and thus the third complication does not contribute significantly[8].

In contrast, a standard ruler is an object of known size. If the object is observed to

extend a given angular separation, simple trigonometry can reveal its distance from the

observer. As with the standard candle, complications can arise with cosmological distances.

If the universe is not flat, again the curvature contributes. Similarly, if the universe has

significantly expanded since emission, then the standard ruler took up a larger fraction

of the whole sky at the time of emission. This complication contributes a factor of 1 + z

which must be taken into account for distant sources.
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Supernovae (SN)

Supernovae are amongst the largest explosive forces in the universe and they can be more

luminous than their host galaxies. They occur when the central core of a star collapses

catastrophically under its own gravitational attraction. This occurs when either a massive

star expends the last of its fuel and cools until it can no longer support its mass, or when

an otherwise stable, cooled, late life star accretes sufficient mass to undergo heavy element

fusion, specifically carbon fusion.

This second cause of supernovae occur under very specific circumstances and thus have

very self consistent luminosities. This type of supernovae is called a Type Ia supernova and

it occurs in binary star systems where a white dwarf slowly strips gases and mass off of its

companion until it reaches the Chandrasekhar mass limit of about 1.38 solar masses (see

Fig 1.1). When this mass limit is reached, then the pressure provided by electrons of the

stellar plasma can no longer compete with gravitation and the star collapses. The pressures

and temperatures inside the star quickly mount and become high enough to fuse carbon

within the core of the star. The rapid conversion of a large quantity of carbon releases

a staggering quantity of energy, some of which gets converted into light. The mass limit

at which this occurs is consistent from supernova to supernova, resulting in luminosities

which are also consistent. Some variation does exist which is why Type Ia supernovae

are referred to as ‘standardizeable’. For this reason Type Ia supernovae are the primary

distance indicators used in this thesis.
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Figure 1.1: Artistic rendition of a binary star pair where gas is stripped from the one stellar

body to its more compact partner. Image credit NASA sourced from Wikipedia

A full explanation of the standardization methods for Type Ia supernova would be

beyond the scope of this thesis and a detailed methodology can be found in [19]. In

general, Type Ia SN take ∼17 days to reach full intensity and reach an absolute luminosity

of approximately -19.6 mag in the B band [20]. The primary goal in Type Ia SN fitting is to

identify the time of maximum luminosity and the value of the maximum luminosity. One

additional important feature is the ‘decline rate’ (the change in magnitude over 15 days)

usually measured in the B band which correlates well with peak luminosity. The primary

challenges of SN fitting is finding them in time and correcting for the host galaxy. Finding

the SN before the peak luminosity requires frequently checking and rechecking of galaxies

to look for sudden luminosity changes. Even if a SN is detected after peak luminosity, light
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curve templates can be fit to the observed data to extract good estimates for the missed

max flux, and such light curve fitting methods can be applied for data collected starting

as late as one week after the peak [19]. The host galaxy continues to give off luminosity

while the SN shines, thus it is important to have a baseline template to subtract off the

observed luminosity. Also the host galaxy can contain dust which absorbs and re-radiates

the SN’s radiation causing frequency shifts to lower frequency bands. In many new SN

observations, enough data is taken at a variety of wavelengths to estimate this host galaxy

reddening. The effect of this host galaxy reddening is further explored in Section 2.3.

Tully Fisher and Fundamental plane

There are other distance indicators which work on galaxies such as, Tully Fisher for spirals,

and fundamental plane for ellipticals. The resulting distance is less precisely determined

for each sample than with SN, but significantly more samples can be made without waiting

for hundreds of years for a sufficient number density of local SN to occur.

The Tully Fisher relation exploits the fact that both the luminosity of a spiral galaxy

and its rotation velocity are relatively monotonic functions of mass. Thus by measuring

the rotational velocity of a spiral galaxy one can predict its rest frame luminosity and

use that as a standard candle. The fundamental equation for the Tully Fisher relation is

L(Vrot)αV
α

rot where, L() is the luminosity Vrot is the rotational velocity of the spiral and α

is in the range ∼ (2-4), depending on how the rotational velocity was measured[20].

The fundamental plane is a three part relation where the effective radius Re is a function

of the surface brightness within that radius Ie and velocity dispersion σe

Re = σαe I
β
e (1.10)

where α ∼ 1.4 and β ∼ 0.9 [20]. Here the relation uses velocity dispersion as a proxy

for mass which in turn determines how the galaxy’s stars will be distributed, which then

allows elliptical galaxies to be used as standard rulers.
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1.4 Constraints on the Cosmic Parameters

1.4.1 Bulk Flow

In section 1.2, I introduced δ and σ8 as the density function and a smoothed measure

of fluctuations of the density function. The variance of these quantities can be related

to another important function in cosmology known as the power spectrum of fluctuation.

The power spectrum is the Fourier space expansion of the distribution of matter and is

measurable from Cosmic Microwave Background experiments.

The variance of δ can be calculated from the power spectrum by

〈δ2〉 = V

∫
P (k)k2dk

2π2
(1.11)

where V is the assumed periodic box with which the Fourier modes are contained, and

P(k) is the power spectrum.

The variance of σ8 can be similarly derived as

〈σ2
8〉 = V

∫
P (k)|W (k)2|k2dk

2π2
(1.12)

where W (k)2 is the smoothing filter which for a 8 h−1 Mpc top hat sphere is

W (k) = 3

(
sin(krs)

(krs)3
− cos(krs)

(krs)2

)
(1.13)

where rs is the radius of the sphere or 8 h−1 Mpc.

It is notable that the observable σ8 is mainly sensitive to fluctuations with a wavelength

∼ 8 Mpcs.

However if one looks at the relationship between velocities and density fluctuations

vk =
−iHfaδk

k
(1.14)
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Table 1.2: A short list of recent bulk flow measurements.

Size Flow (km/s) Galactic Direction (l,b) Data source Ref

50 h−1 Mpc 533 ± 263 (324 ± 27,-7 ± 17) kSZ of CMB 1

∼ 500 h−1 Mpc less than 470 Not given kSZ of CMB 1

∼ 100 h−1 Mpc 416 ± 78 (282 ± 11,6 ± 6) TF FP SN and other 2

∼ 170 h−1 Mpc ∼ 120 Not given SDSS Galaxy groups 3

∼ 150 h−1 Mpc 188 ± 100 (290 ± 30,20 ± 30) SN 4

< 150 h−1 Mpc 0 Not given SN 4

∼ 800 h−1 Mpc 600 to 1000 (283 ± 14,12 ± 14) kSZ of CMB 5

(1) [21]; (2) [22]; (3) [23]; (4) [24]; (5) [4]

it can be seen that the variation of velocities in a given volume, equation 1.15, becomes

〈σ2
v,8〉 = V

H2
0f

2a2

2π2

∫
P (k)|W (k)2|dk (1.15)

The main difference being two powers of k are removed, thus significantly greater sensitivity

to smaller k or longer wavelength fluctuations.

I present a summarized list of recent bulk flow measurements in Table 1.2.

1.4.2 Introducing β

In section 1.2.3, I outlined what β is and how it is derived. In brief, it is the free normal-

ization parameter between observed peculiar velocities and the linear theory predictions.

The measured value of β cannot be directly compared between surveys because β depends

on the bias of the tracers used to map out the density field. I fit β and make comparisons

to other published results in Chapter 2.
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Table 1.3: A short list of recent γ measurements.

γ σγ Data source Ref

0.547 0.088 6dfGS + WMAP7 1

0.661 0.302
−0.203 SN +CMB +BAO +linear growth factors 2

0.653 0.372
−0.363 Same as above + Gamma-Ray Bursts 2

0.64 0.05 CMASS anisotropic clustering + CMB 3

0.546 0.072
−0.071 ROSAT + Chandra + CMB + Wigglez + 6dFGS + SDSS 4

0.586 0.079
−0.074 6dF + WiggleZ 5

(1) [25]; (2) [26]; (3) [27]; (4) [28]; (5) [29]

1.4.3 Introducing γ

I concluded section 1.2.3 by demonstrating that β is a degenerate coupling of Ωm, γ and

σ8. In the paper upon which Chapter 3 is based, the degeneracy between all three of these

parameters is partially resolved, however in this thesis I focus on the extraction of the value

of γ. γ itself was proposed as a model independent parametrization of growth[17]. The full

expression is γ = 0.55 + 0.05[1 +w(z = 1)][17], where w is the equation of state parameter

of dark energy, and the parametrization is equivalent to within 1% of the analytical exact

growth solution (as long as Ωm is larger than 0.01 and w(z) = −1) for all z, as such

a significant deviation from γ = 0.55 would in turn imply a significant deviation from

established cosmology. I present a brief list of some recent γ measurements in Table 1.3.

1.5 Outline of primary topics

In Chapter 2, I present my first paper from my work at Waterloo. The resulting paper

is [30]. I also present a comparison between data sets, various bulk flows which can be
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extracted from the data, and finally a measurement of β. In Chapter 3, I present a

shortened version of [31], a paper of which I was a co-author. I further present constraints

made on the growth factor γ. Chapter 4 is the precursor of a third paper which I am

currently writing. Here I present the application of N-body results to test the processes

that are applied in the measuring of β from redshift surveys, specifically the process of

reconstructing real space locations for tracers (such as galaxies) from their redshift space

locations. I also present measurements of bias as a function of chosen tracers, the smoothing

length applied to those tracers, mass threshold cuts, and the β value that can be extracted

from and N-body halo catalog when converting between redshift space and real space

iteratively (assuming perfect knowledge of real space halo positions and velocities). In

Chapter 5, I will draw conclusions.

1.6 Statement of Contributions

Chapter 2 of this thesis is a reproduction of [30], a paper published in Monthly Notices

of the Royal Astronomical Society, of which I was the first author. For this paper Mike

Hudson provided a base list of SN list with distances, redshifts, peculiar velocities, and

uncertainties to which I added the supernovae from [19]. I completed the top hat sphere

bulk flow tests for all of the data sets. The Minimum Variance results were computed by

Hume Feldman. The predicted peculiar velocities used in the measuring of β were provided

by Hudson. The computation of β was completed by myself.

Chapter 3 of this thesis is based heavily upon the first draft of a paper published in

The Astrophysical Journal Letters. The first draft was written by myself, although some of

the paper was re-written by Mike Hudson, before being published as Hudson and Turnbull

2012. The results presented in this thesis are not the full results of the paper but rather

the results that were generated by myself.

Chapter 4 is based upon my completed works since the completion of the second paper.

Guilhem Lavaux provided the N-body results, the remainder of the results are my own.
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The remaining Chapters are my original works.
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Chapter 2

Cosmic flows in the nearby universe

from Type Ia Supernovae.

Peculiar velocities are one of the only probes of very large-scale mass density fluctuations in

the nearby Universe. I present new “minimal variance” bulk flow measurements based upon

the “First Amendment” compilation of 245 Type Ia supernovae (SNe) peculiar velocities

and find a bulk flow of 197 ± 56 km s−1 in direction l = 295◦ ± 16◦, b = 11◦ ± 14◦. The

SNe bulk flow is consistent with the expectations of ΛCDM. However, it is also marginally

consistent with the bulk flow of a larger compilation of non-SNe peculiar velocities [3]. By

comparing the SNe peculiar velocities to predictions of the IRAS Point Source Catalog

Redshift survey (PSCz) galaxy density field, I find Ω0.55
m σ8,lin = 0.40 ± 0.07, which is in

agreement with ΛCDM. However, I also show that the PSCz density field fails to account

for 150± 43 km s−1 of the SNe bulk motion.

2.1 Introduction

In the standard cosmological model, gravitational instability causes the growth of structure

and peculiar velocities. In the regime where the perturbations are linear, there is a simple
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relationship between density and peculiar velocity [32]

v(r) =
f

4π

∫ ∞
0

d3r′δ(r′)
r′ − r

| r′ − r |3
(2.1)

where the growth factor f is equal to Ω0.55
m in flat ΛCDM models [17], δ is the normalized

mass density fluctuation field, δ = (ρ− ρ̄)/ρ̄, and r are coordinates in units of km s−1. A

brief derivation can be found leading up to eq. 1.5.

Given set of peculiar velocities, one can define a bulk flow as their average velocity;

ideally the peculiar velocity tracers are dense and numerous enough that the resulting

average is representative of the velocity of the volume. The bulk flow is then primarily due

to structures on scales larger than the volume over which the bulk flow is measured (see

Appendix A of [33] for a derivation). Hence, bulk flows are probes of the large-scale power

spectrum of matter density fluctuations.

The ΛCDM model, once normalized by WMAP7 [1] observations of the Cosmic Mi-

crowave Background (CMB), fully specifies the r.m.s. fluctuations of δ on all scales, and

hence the cosmic r.m.s. of bulk flows [3]. While most studies of bulk flows agree on the

general direction of the flow, there is some disagreement as to the amplitude and scale. [3]

applied a “Minimal Variance” (MV) weighting scheme to a compilation of 4481 peculiar

velocity measurements. Their results correspond to a sample with an effective Gaussian

window of 50 h−1 Mpc and show a bulk flow of 407 ± 81 km s−1 towards l = 287◦ ± 9◦,

b = 8◦ ± 6◦, which is in conflict with ΛCDM + WMAP7 at the 98 percent confidence

level. The most controversial bulk flow result is the kinetic Sunyaev-Zeldovich flow dipole

reported by [4], who found a bulk flow on the order of 1000 km s−1 in the direction of

l = 296◦ ± 28◦, b = 39◦ ± 14◦ over a scale of at least 800 h−1Mpc. If correct, this result

would strongly conflict with ΛCDM + WMAP7.

Another approach to understanding large-scale motions is to try to reconstruct the

motion of the LG with respect to the CMB [627 ± 22 km s−1 towards l = 276◦ ± 3◦,

b = 30◦ ± 2◦; 34] by measuring the distribution of galaxies and calculating the peculiar

velocity of the Local Group (LG) using Eq. (2.1). Given the gravitational instability model

19



of linear theory, the predicted velocity should converge to the measured CMB dipole for

a sufficiently large survey volume. The application of Eq. (2.1) is difficult in practice

because there are few redshift surveys that are both all-sky and deep. For example, [35]

found that the predicted dipole from the IRAS Point Source Catalog Redshift survey [36,

hereafter PSCz] converged to 13.4 degrees of the CMB dipole by 30,000 km s−1. However,

[37] reanalyzed the same data set and found that significant power was required on large

scales, which was missed by the original analysis. Other studies have been based on the

Two Micron All-Sky Survey Redshift Survey [38, hereafter 2MRS]: [39] and found probable

convergence, but [40] concluded that convergence was not obtained by 12,000 km s−1, and

may not be until well beyond 20,000 km s−1. In another study, using only the infrared

fluxes [41] concluded that even at an effective distance ∼ 300h−1 Mpc (Ks < 13.5) the flux

dipole had not converged.

In this paper, I use Type Ia SNe for peculiar velocity tracers. SNe have also been used

as peculiar velocity probes by a number of authors [24, 42–49].

An outline of this chapter is as follows: In section 2, I introduce the data sets that I

used. Section 3 presents the bulk flow of the SNe, using both simple weighting schemes as

well as the “Minimal Variance” scheme of [3]. Section 4 compares individual SNe peculiar

velocities to the predictions of the IRAS PSCz density field. I discuss the implications of

these results in Section 5, and present these conclusions in Section 6. Throughout, I adopt

Ωm = 0.3, ΩΛ = 0.7, and quote distances in units of km s−1.

2.2 Data and Calibration

In this study, three primary data sets of nearby SNe (with distances less than 20,000km s−1)

are combined.

I refer to the first of these data sets as the ‘Old’ sample and it contains 106 SN the

youngest being from 2002, drawn from two sources: [50] and [2]. Of the SNe in the ‘Old’

sample, 34 are from [50]. The remaining 72 SN in ‘Old’ are from [2]. The second data set,
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which I refer to as ‘Hicken’, contains the remaining 113 SNe from [2] after cutting objects at

distances larger than 20,000 km s−1 and cutting two more objects (sn2007bz and sn2007ba)

because they deviated by more than 3σ after the first round of fitting (as described below).

The last set is the recently released data set from ‘The Carnegie Supernova Project’ [19,

hereafter CSP], containing 28 SNe. Two of these objects were discarded due to the 20,000

km s−1 distance cut, leaving 26 usable SNe. The CSP’s reported uncertainties only reflected

the derived distance modulus residual spread. A second intrinsic uncertainty (σSN) in the

magnitude of the SNe was added in quadrature by fitting a flow model and reducing the

reduced chi-squared fit to 1.00. The intrinsic uncertainty was found to be 0.107 mag

(slightly smaller than the 0.12 mag found by the CSP due to cuts and the additional free

parameters of bulk flow). For further discussion of the light curve fitting, and consequences

there of, for the ‘Old’ and ‘Hicken’ data sets see Section 2.3.

I combine these three sets to create a new sample, that I dub the ‘First Amendment’

(A1) compilation which I consider to be an extension to the ‘Constitution’ data set1.

Where the observed SNe in the data sets were known to be contained within a cluster of

galaxies, the redshift of the cluster was used for the observed velocity distance rather than

the redshift of the supernova itself. Substituting cluster velocities for supernova velocities

removes a significant source of thermal noise as objects in clusters can have a velocity rms

of thousands of km s−1 . This process was applied to all three data sets. For galaxies

not in clusters, the redshift of the host galaxy was used if the host galaxy redshift was

recorded in NED, which occurred in all but two cases. For the remaining two cases I used

the redshifts of the SNe. Galactic longitudes and latitudes for the Carnegie set were also

taken from NED.

The A1 data set has a characteristic or uncertainty-weighted depth of 58 h−1Mpc, where

1The ’Old’ and ’Hicken’ sets combined resemble very closely the ‘Constitution’ set from [2] in terms

of which supernovae are included. The light curve fitter used here (MLCS2k2) differs from that of the

‘Constitution’ data set (SALT2).
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Figure 2.1: An Aitoff projection of the data with circles (asterisks) representing SNe with

peculiar velocities towards (away from) the LG. Larger symbols represent larger peculiar

velocities in accordance with the scale shown top and bottom left. Also plotted in triangles

are the direction motion of the LG with respect to the CMB, the [3] bulk flow direction,

the kinetic Sunyaev-Zel’dovich bulk flow direction of [4, labeled KAEEK], and the new

results (labeled SNBF for the bulk flow results from Section 3 and SNRF for the residual

flow discussed in Section 4).

I define the characteristic depth to be

r∗ =
Σ r/σ2

Σ 1/σ2
(2.2)

where σ is the total uncertainty in each SNe’s peculiar velocity and r is the coordinates in

units of km s−1.

In Fig. 2.1, I present the results, the raw data, and the bulk flow directions that

other surveys have found in an Aitoff projection. In Fig. 2.2, I present the A1 data set

in a Hubble Diagram divided into its three subsets. For all three data sets the intrinsic

uncertainty of SNe brightness is the dominant source of error. Thus, for all the SNe the

percent error is approximately 6 percent of the measured distance, with the scatter for the

‘Old’ and ‘Hicken’ subsets being larger.
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Figure 2.2: A Hubble diagram showing the three subsets that make up the A1 data set:

‘Old’ (red filled circles), ‘Hicken’ (Blue stars) and ‘Carnegie’ (green triangles). The error

bars can be seen to be approximately constant in the log log diagram or increasing pro-

portionally to the distance, as to be expected with the dominant error in most cases being

the intrinsic uncertainty in the luminosity of SNe.
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Table 2.1: Results for 162 SNe from [2] fit with the MLCS2k2 light curve fitter either with

RV = 1.7 or RV = 3.1.

Number Mag l◦ b◦ VX VY VZ

ML Thermal noise=250 km s−1 km s−1 km s−1 km s−1

RV = 1.7 162 220±70 298±18 9±14 103±68 -191±73 35±52

RV = 3.1 162 175±70 310±25 14±18 108±70 -131±75 43±53

2.3 Light curve parameter comparisons

The A1 data set is composed of three different SNe catalogs; this complicates the descrip-

tion of the light curve fitting procedures used because the catalogs used different methods.

In the ‘Old’ sample are 34 SNe from [50], most of the SNe are fit using the MLCS2k2 light

curve fitter with a reddening law parameter RV of 3.1 (for SN with high extinction, RV

was a free fit parameter with a tight prior of 3.1). The remaining 72 SN in ‘Old’ are from

[2] and are also fit using MLCS2k2, but with a reddening law parameter RV of 1.7. The

second data set, which I refer to as ‘Hicken’, contains the remaining 113 SNe from [2] and

are all fit with MLCS2k2 with a reddening law parameter RV of 1.7. The ‘Carnegie’ set

containing 28 SNe were fit with a RV as a free variable. The light curve fitter used for the

‘Carnegie’ set is described in detail in the original paper [36].

For SNe fit by [2], four distances were reported for each SN. I use the distances reported

using the MLCS2k2 fitting procedure rather than either of the SALT procedures for mul-

tiple reason. To start the MLCS2k2 process determines host reddening on a case-by-case

basis. Furthermore, of the two published MLCS2k2 methods I use the results with a red-

dening law parameter RV of 1.7 instead of 3.1 since [2] show that the Hubble residuals

for high-extinction SNIa’s using RV =3.1 are systematically negative, (suggesting that the

extinction is overestimated). I study the effect the choice of RV parameter has upon bulk

flow measurements to explore systematics. [2] provide distances to 162 SNe using both RV

= 1.7 and RV = 3.1.
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I fit both of these data sets for bulk flows using the ML method to investigate the

systematics. The results of this comparison can be seen in table 2.1. Although the results

for the two light curve fitters agree to less than one σ in each of the 3 degrees of freedom,

the data sets are fit to the same light curves, so they are not independent. This result

highlights how large the systematic errors are for bulk flow surveys, in part reflected by

the large σSN , which in most cases dominates the uncertainty budget for peculiar velocity

surveys.

2.4 Bulk Flow

In this section, I discuss the bulk flow, which is the simplest statistic that can be derived

from a peculiar velocity survey.

2.4.1 Methods

I use two methods to measure the bulk flow. The first is a Maximum Likelihood (ML)

method that minimizes the measurement uncertainties. The ML method is the traditional

method used and I apply it in order to compare new results with previous ML results.

However, ML methods have the disadvantage of returning the bulk flow of a specific sparse

sample of peculiar velocity tracers rather than the bulk flow of a regular volume. Com-

parisons between ML results are complicated by the different spatial sampling. Instead,

what is of greater interest is the bulk flow of a standardized volume. To estimate this, a

“minimum variance” (MV) bulk flow was calculated as first introduced by [3].

Maximum Likelihood

I fit a simple flow model (vpred) to the SNIa peculiar velocity data. In the case of the bulk

flow V in the CMB frame, this flow model reduces to the radial component of the bulk
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flow vector for each SNe, i. e.

vpred,i = (V · r̂i) (2.3)

where r̂i is the unit vector pointing to each supernova.

In the maximum likelihood method, the weights are simply determined by the total

uncertainty on the peculiar velocity of each object. Uncertainties in the observed peculiar

velocity can be approximated well by a Gaussian, in which case the Maximum-Likelihood

solution can be approximated by the following χ2

χ2 =
∑
i

[czobs,i − (ri + vpred,i)]
2

σ2
i

(2.4)

where czobs is the observed redshift in km s−1, ri is the distance converted from the reported

distance modulus in km s−1, vpred,i is the model velocity I am trying to measure, as

predicted for SNe i, and σi is the total uncertainty on the peculiar velocity of object i in

units of km s−1. This total uncertainty is the quadrature sum of the measurement error

σ2
m,i, the intrinsic uncertainty on SNe magnitude σSN (both converted from magnitudes to

km s−1) and a “thermal noise” term (σth) in units of km s−1 due to uncertainties in the

flow model, such that

σ2
i = σ2

m,i + σ2
SN + σ2

th (2.5)

Note that since the σ2
SN term is converted from an uncertainty on magnitude, it is pro-

portional to the distance to the SN. σ2
SN is often the dominant source of uncertainty since

the thermal term is only important in nearby supernovae where the σ2
m,i and σ2

SN terms

are small. The results are only weakly dependent upon the precise value chosen. Here,

where the flow model is a simple bulk flow, I set the thermal noise to 250 km s−1, which is

consistent with previous work. The impact of this choice for the thermal noise is discussed

in the results below.

I let each sub-sample of the A1 data set have a freely-varying independent Hubble term

to identify degeneracies, to avoid underestimating final uncertainties, and to account for

the fact that each subset may have slightly different calibration. None of the fits preferred
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a Hubble value that varied by more than 1 percent from the value drawn from the original

sources.

Minimum Variance Method

While the ML method described above is the best estimator of the bulk flow of a sparse

sample, it is restricted in that it can only really characterize a particular survey, that will

have its own errors and a specific and somewhat ill-defined geometry. The ML method is

also, in a sense, density sampled, with higher density regions being more likely to contain a

SN than voids. Most importantly, because the weights in the ML method are determined

by the uncertainty on position in km s−1, ML methods can be dominated by nearby SN

that have smaller distance uncertainties.

To better approximate a volume-weighted bulk flow, the prescription described in [3]

to estimate the volume flow was applied. Each SN is weighted so as to minimize the

variance between the bulk flow measured in the real sample and the bulk flow as it would

be measured in a perfectly-sampled 3D Gaussian. A Gaussian with an “ideal” radius of

RI = 50h−1 Mpc was adopted. Effectively, weights are assigned to each SN based on their

proximity to other SNe in the data set, and on how they compare with an ideal uniform

sampling. This weighting scheme is specifically designed to maximize sensitivity to large

scales. The MV weighting scheme has been tested using mock catalogs drawn from N-body

simulations by Agarwal et al. (in preparation), who demonstrate that the recovered MV

bulk flows are unbiased and have errors within the range expected from linear theory.

2.4.2 Consistency of SNe Subsamples

Before analysis of the combined SNe sample is undertaken, it is important to confirm that

the data subsamples agree with one another. A χ2 statistic for each pair of subsamples was

calculated, following the analysis of [3], which accounts for sparse sampling effects. The
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Table 2.2: χ2 for 3 DoF for the surveys for Ωm = 0.258. If the χ2 value is greater than

7.8, the two surveys disagree at a greater than 95% confidence level. The probabilities

resported are the χ2 test probability of agreement between the two.

RI = 50h−1Mpc

Survey χ2 Probability

Old vs Hicken 0.173 98.2

Old vs Carnegie 2.293 51.4

Hicken vs Carnegie 1.369 71.3

χ2 statistic used is given by the equation

χ2 =
∑
i,j

(∆Vi)(Ci,j)
−1(∆Vj). (2.6)

where ∆~V is the bulk flow vector, and C is the covariance matrix taking into account the

window functions of both surveys and the power spectrum, (see in equations 21 - 23 of

[3]). The results are shown in Table 2.2. In summary, all three subsamples are found to

be consistent with each other.

2.4.3 Results

In Table 2.3, I present a summary of the results from the bulk flow, subdivided by data set

and by weighting scheme. The ML bulk flow for the A1 sample was found to be 197 ± 56

km s−1 in direction l = 295◦ ± 16◦, b = 11◦ ± 14◦. This is significantly different from zero

at the 99.9% confidence level.

As discussed above, the ML method gives most weight to SNe with the lowest errors in

units of km s−1, i.e. the nearest SNe. In order to reduce the impact of these nearby SNe,

it is interesting to redetermine the bulk flow excluding nearby objects. The middle section
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of Table 2.3 shows the bulk flow using only SNe with 6000 km s−1 < d < 20000 km s−1.

This subsample indicates a slightly higher amplitude flow, albeit with larger error bars:

330± 120 km s−1 towards l = 321◦, b = 20◦.

Finally, the MV results shown in the third section of Table 2.3 should give the most

robust estimates of the flow of a Gaussian volume of radius 50 h−1Mpc. For the entire A1

sample, the MV flow is 248 ± 87 km s−1 in the direction l = 319◦ ± 25◦, b = 7◦ ± 13◦.

These values are lower than the LG’s motion in the CMB frame, indicating that some

of the LG’s motion must come from structures within the survey volume (such as the Virgo

and Hydra-Centaurus superclusters).

To investigate the sensitivity of these results to the value of the thermal noise I adjusted

it by ± 100 km s−1; When so tested, the final magnitude of the A1 sample MV flow only

changed by ± 31 km s−1.

2.4.4 Bulk Flow: Cosmology and Comparisons

It is interesting to compare this ML bulk flow result to that of [48], who apply a maximum

likelihood bulk flow fit to the Union2 catalogue of Type Ia SNe [51]. The Union2 catalogue

contains 557 SNe, of which 165 are within 30,000 km s−1. [48]’s analysis yields a bulk flow

velocity of 260 ± 150 km s−1 based on SNe within 18000 km s−1. The A1 sample yields a

ML result of 196 ± 55 km s−1, which is consistent with theirs. It must be noted that the

agreement between these results is not as significant as might at first be assumed because

there is significant overlap between the data sets. However, Union2 uses SALT2 rather

than MLCS2k2 (RV =1.7) to obtain SN distances from the light-curve data.

[24] also analyzed the Union2 catalog, spliting it into two subsets. They defined a

nearby set with 132 SNe at z < 0.05 for which they found a bulk flow of 188+119
−103 km s−1

towards l = 290+39
−31
◦, b = 20+32

−32
◦ which also agrees well with these results. The remaining

425 high-z SNe show no significant bulk flow. This is expected since the peculiar velocity
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Table 2.3: Bulk flow for all three SNIa data subsets and the combined First Amendment

set. For comparison the MV50 result from [3] are also included. Note the uncertainties

quoted for the ML method are the propagated uncertainties from measurements. The

uncertainties for the MV method also include the additional noise due to non-uniform

sampling.

Number Mag l◦ b◦ VX VY VZ

ML Thermal noise=250 km s−1 km s−1 km s−1 km s−1

Old 106 226±76 307±21 4±15 136±76 -180±81 -35±59

Hicken 113 142±85 283±41 30±37 27±94 -120±96 71±78

Carnegie 26 260±140 330±170 76±38 54±182 -35±230 250±150

A1 245 196±55 300±17 15±14 94±55 -165±58 50±44

ML Thermal noise=250 km s−1, d > 6, 000 km s−1

Old 45 450±190 331±26 6±21 390±200 -210±190 44±160

Hicken 76 280±180 313±33 27±25 170±170 -180±190 130±110

Carnegie 15 1132±850 117±14 16±20 -490±540 970±810 310±300

A1 136 330±120 321±20 16±15 250±120 -200±130 94±84

MV Weighting RI = 50h−1 Mpc Thermal noise=250 km s−1

Old 113 240±110 318±26 -4±21 180±110 -160±110 -16±86

Hicken 113 250±110 310±25 5±20 160±110 -190±110 20±85

Carnegie 28 250±150 0±340 81±43 40±190 0±240 250±150

A1 254 249±76 319±18 7±14 186±75 -162±77 32±59

[3] 4481 407±81 287±9 8±6 114±49 -387±53 57±37
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errors are typically 6% of the distance to the source, and for this distant sample the errors

per SNe measured in km s−1 are extremely large.

Another interesting recent analysis of all peculiar velocities is by [3], who studied pe-

culiar velocities mostly from Tully-Fisher, Fundamental Plane and SNe. They found that

those subsamples had bulk flows consistent with each other2. They combined the individ-

ual peculiar velocity samples into a “Composite” sample of 4481 peculiar velocity tracers,

which was found to have a MV50 bulk flow of 407 ± 81 km s−1 towards l = 287◦ ± 9◦,

b = 8◦ ± 6◦. This result is inconsistent with ΛCDM at the 98% CL. However, their sample

is not independent of ours. 103 of the 108 SNe which make up the “Old” subset of A1 are

common to both A1 and Composite, although the latter takes SNe distances from [53].

When all SNe data are removed from the ‘Composite’ data set, the two surveys become

completely independent, and can be compared using the same formalism described in Sec-

tion 3 of this paper and Section 5.1 of [3]. it was found that the ‘Composite excluding

SNe’ MV50 bulk flow and the A1 MV50 results are consistent with each other, although

the agreement is marginal: χ2 of 6.4 for 3 directional degrees of freedom yields a 9 percent

probability that the two results are consistent.

Lastly, these results can be compared directly to the expectations for a ΛCDM universe.

A plot showing the expectations of the one dimensional rms for perfectly sampled Gaussian

sphere can be found in the top three plots of figure 5 from [22]. The expectation for the

one dimensional rms for a perfect Gaussian is 80 km s−1. When you take into account the

sparse sampling of the real A1 data set, this rises slightly to 91.2 km s−1 assuming a σ8 of

0.8 and Ωm of 0.258.3. If you then include the propagation of measurement uncertainties

the total expected rms for surveys equivalent to ours at different locations in space is 121

km s−1. This prediction leads to χ2 of 3.70 for 3 directional degrees of freedom yielding a

70 percent probability that the A1 data set is consistent with ΛCDM.

2Except for the BCG sample of [52], which was excluded from further analysis.
3In the rest of the paper, because SN distances are insensitive to the value of Ωm I used Ωm = 0.3.

The predicted one dimensional rms drops slightly to 88.4 if this slightly higher value of Ωm is used in the

prediction
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2.5 Predicted gravity field

2.5.1 Introduction

The MV weighting scheme discussed above is designed to suppress the effects of small-scale

flows that would otherwise “alias” power into the bulk-flow statistic. An alternate method

for removing the effects of small-scale structure on flow measurements is to assume grav-

itational instability and linear perturbation theory Eq. (2.1) and to predict the peculiar

velocities using a model of the density field (derived from an all-sky galaxy redshift sur-

vey). The result is a model-dependent correction to measured peculiar velocities which can

separate local effects from large-scale density waves from outside the survey volume.

Consider an all-sky redshift survey that extends to a distance Rmax. The peculiar

velocity of a given SN, located at position r, can be modeled by setting vpred,i of Eq. (2.4)

to a function with two terms

vpred(r) =
β

4π

∫ Rmax

0

d3r′δg(r
′)

r′ − r

| r′ − r |3
+ U (2.7)

where β = f/b, b is the linear bias between galaxy density and mass density, U is the

residual bulk flow of the volume being driven by mass structure beyond Rmax. In principle,

the residual velocities have tidal (shear) and higher order terms. [22] measured the the

tidal and higher order terms for the “Composite” sample of [3], but found them to be

small. I neglect these terms here and model the residual as a simple bulk flow U.

The first term of vpred is the predicted peculiar velocity induced by structure within the

redshift survey volume (r < Rmax). The model is scaled by β to match the observed peculiar

velocities of the SNe tracers. The peculiar velocity data therefore yields information about

Ωm and b. The residual bulk flow U is the additional velocity of the entire redshift survey

volume in the CMB reference frame, and is presumably due to sources beyond Rmax. In

an ideal survey, U would be completely independent of any structure within Rmax. This

de-coupling of U from β means that U can be used to test consistency with ΛCDM +

WMAP7 on large scales and β can do so on smaller scales.
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2.5.2 Data and Method

The PSCz is both all-sky and deeper than, for example, the 2MRS [38]. Here the PSCz

density field reconstructed by [54] was used. For this study I applied the same 20,000

km s−1 limit to the PSCz as was applied to the SNe. The PSCz density field in the

Supergalactic Plane is shown in Fig. 2.3.

I fit the SNe data using the same method as in Section 2.4.1, but now with a new

model as given by Eq. (2.7). Since the integral is specified by the PSCz density field, the

free parameters are β and the three components of U. Since the PSCz plus bulk flow is a

better flow model than a simple bulk flow, I reduce the thermal component to 150 km s−1,

which is consistent with previous studies [55].

2.5.3 Results

The results of the fits to each subset are given in Table 2.4. I find that the results from

independent subsets are consistent with each other. For the A1 sample, the magnitude

of the residual bulk flow was found to be 150 ± 43 km s−1 in direction l = 345◦ ± 20◦,

b = 8◦ ± 13◦. This is significantly different from 0 at the 99.6% CL.

The value of β was found to be 0.53 ± 0.08, and is shown in Fig. 2.4. The fit is sensitive

to a single outlier, sn1992bh, for which the PSCz prediction is rather high (1719 km/s).

Excluding this SN, I found β = 0.57 ± 0.08.

Again I investigated the sensitivity of these results on the thermal noise term by chang-

ing it by ± 100 km s−1. Again the magnitude off the flow only changed by ± 20 km s−1,

and the β changed by ± 0.03.

2.5.4 Gravity field: cosmology and comparisons

As noted above, the residual bulk flow U is significantly different from zero at the 99.6%

confidence level. This means that there are structures not found in the PSCz catalogue
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Figure 2.3: The Supergalactic Plane. The PSCz galaxy density field is shown by the con-

tours, predicted peculiar velocities as small black arrows, and measured supernova positions

as “tadpoles” with dots showing measured positions and tails showing the magnitude of

the measured radial peculiar velocity. The thick black contour corresponds to a δ = 0

(or contours where the density is the mean universal density). The red (filled circles) SNe

have peculiar velocities away from the LG and the blue (open circles) SNe have peculiar

velocities towards the LG.
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Figure 2.4: The observed peculiar velocity minus the measured bulk flow as a function of the

linear-theory-predicted peculiar velocity for each SN, assuming β = 1. The circular symbol

diameter scales with the inverse of the uncertainty (hence symbol area is proportional to

weight). Representative error bars are shown in the top left. The slope is the fitted

β = 0.53.
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Table 2.4: Results from all three data subsets and the A1 full set with a linear perturbation

theory model fit with a known matter distribution to find β and the residual flow U . Fit

with β as a free parameter and with a thermal noise of 150 km s−1. Note the uncertainties

quoted for the this method are the propagated uncertainties from the measurements.

# of SN Mag l◦ b◦ UX UY UZ β χ2 Dof

km s−1 km s−1 km s−1

Old 106 190±59 349±22 0±14 187±60 -36±73 0±46 .45±.11 139 101

Hicken 113 86±77 347±54 9±41 84±87 -19±83 13±66 .62±.13 102 108

Carnegie 26 290±150 347±41 31±26 240±170 -50±190 151±130 .82±.33 21 21

A1 245 150±43 345±20 8±13 144±44 -38±51 20±35 .53±.08 270 238

that contribute significantly to the total peculiar velocity of the LG. As discussed in detail

in [55] these structures could be missing from the PSCz because they are (i) outside the

survey volume (ii) in the Zone Of Avoidance, or (iii) present but underrepresented. The

latter scenario may arise because the IRAS (far-infrared) selection on which PSCz is based

is sensitive to dusty spirals, but less so to the mostly dust-free early types. [56], using

the 6dF [57] survey of 2MASS-selected galaxies, showed that the Shapley and Horologium-

Reticulum superclusters generate significantly more peculiar velocity than predicted by the

PSCz, even allowing for a different β for 2MASS galaxies.

I found that, for IRAS-selected galaxies, β = 0.53 ± 0.08. This value of βI is in good

agreement with the IRAS average of 0.50± 0.02 reported by [45],and with the SNIa-based

result βI = 0.55 ± 0.06 of [44]. Comparing fitted values of β between redshift surveys of

different galaxy types is complicated by the fact that the bias factor b need not be the

same because different galaxy types may trace the underlining mass density differently.

This problem can be alleviated by noting that in linear theory the r.m.s. fluctuation of

the survey galaxies, say in an 8 h−1 Mpc top hat sphere (σ8,gal) is proportional to the true

matter r.m.s. fluctuations in a volume of the same size (i.e. σ8,gal = bσ8,mass). Thus with

the measured βI and the known σ8,I from the IRAS PSCz of 0.80±0.05 [58], I can calculate
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the degenerate parameter pair fσ8 (where I dropped the subscript ‘mass’). This value of

β corresponds to fσ8 = 0.424± 0.069.

I can then compare this fσ8 to other studies. [5] compared the 2MRS density field and

the SFI++ peculiar velocity data, and derived fσ8 = 0.31 ± 0.05. This is lower than the

result found in this study, but not significantly so (1.5σ).

The fσ8 parameter can also be derived from WMAP7 results. Recall that WMAP

is observing fluctuations at an early epoch, when the perturbations were still well in the

linear regime. To compare to WMAP7, I can convert the non-linear σ8 measured in this

work into the equivalent linear value using the prescription of [59]. If I assume an Ωm of

0.272, the resultant σ8,lin becomes 0.814 compared to its non-linear value of 0.867. Using

this value of σ8,lin, fσ8,lin drops to 0.40 ± 0.07, which is in excellent agreement with the

results of WMAP7 [1]: fσ8,lin = 0.39± 0.04.

2.6 Discussion

Attempts to determine the sources of the LG’s motion amount to determining the factors

in Eq. (2.1). While early studies focussed on simple toy infall models, more recent studies

have concentrated on models of the density field with the two free parameters β and U.

For a single object, such as the LG itself, there is a trade-off between these parameters.

Lower values of β lead to larger values of U, which are required in order to match the

same v on the left-hand side of equation 2.7. This degeneracy can be broken with more

than one measurement. I have shown that the PCSz does not account for all of the motion

of the LG, although it is plausible that some of the missing signal comes from within the

survey volume in the form of extra infall into the highest-density superclusters.

An alternative explanation for the bulk flow has been proposed, namely that the CMB

temperature dipole, or part thereof, is intrinsic and does not represent the peculiar ve-

locity of the LG [A “tilted” Universe: 60–62]. This would lead to an illusory “bulk flow”

which would extend well beyond the local volume, indeed to the horizon. The apparent
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1005 ± 267 km s−1 bulk flow of z < 0.25 clusters claimed by [4], which is well outside the

expectations of ΛCDM bulk flows, might be explained by such an effect. In such a scenario,

there is an additional “bulk flow” Utilt which never vanishes no matter how deep a redshift

survey Rmax is used in Eq. (2.7). This measured U thus provides an upper limit on the

Utilt. The amplitude of the bulk flow found by [4] is inconsistent with this new measure-

ment of U = 150 ± 43 km s−1. However, amplitude of the [4] bulk flow is systematically

uncertain. If I compare only the direction of the A1 fit l = 345◦ ± 20◦, b = 8◦ ± 13◦and

the [4] direction l = 296◦ ± 29◦, b = 39◦ ± 15◦, the results are marginal: they disagree at

approximately the 90% CL. Thus these results do not support the high amplitude bulk

flow found by [4].

2.7 Conclusion

The peculiar velocities of a 245 SNe dataset, dubbed the “First Amendment”, was analyzed.

This new compilation is in marginal agreement with previous bulk flow results and with

ΛCDM + WMAP7 predictions. The First Amendment compilation yields a bulk flow of

248 ± 87 km s−1 in the direction l = 319◦ ± 25◦, b = 7◦ ± 13◦.

I have compared the peculiar velocities to the predictions from the IRAS PSCz and

have found Ω0.55
m σ8,lin of 0.40 ± 0.07, which is in excellent agreement with the ΛCDM +

WMAP7 predictions and other previous measurements.

A residual flow of 150 ± 43 km s−1 l = 345◦ ± 20◦, b = 8◦ ± 13◦ was found for the

IRAS Point Source Catalog as normalized with the First Amendment SNe. This may

suggest that the IRAS PSCz undersamples massive dense superclusters such as the Shapley

Concentration. Nevertheless, the small amplitude of the residual flow is in conflict with

“tilted Universe” scenarios such as might be favoured by the kSZ analysis of [4].

As its name suggests, the First Amendment compilation is readily extendible as new

SNe are found and their distances are published. Ongoing surveys such as CfA4 (95 SNe,

Hicken, private communication), LOSS [63], Palomar Transit Factory [64], and CSP [65,
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50 more distances expected soon], and upcoming surveys such as SkyMapper [100 SNe

per year with z < 0.085, 66], Pan-Starrs, and LSST will eventually provide sufficient SNe

to reduce the 20,000 km s−1 bulk and residual flow uncertainties to the systematic limits.

Future results on fσ8,lin are expected based on predicted peculiar velocities from the 2M++

redshift compilation [56]. Additionally, although individually less precise, Fundamental

Plane distances and peculiar velocities can contribute significant precision to bulk flow

surveys by sheer numbers. I wish to re-analyze the full ‘Composite’ data set from [67] after

replacing the 103 SNe currently contained in that data set with the 245 SNe of A1, as well

as to add the Fundamental Plane peculiar velocities from NFPS [68] and 6dF [69] when

they become available. For now the results are data-limited, but the future promises many

fruitful results from many promising surveys, and I await them eagerly.
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Chapter 3

Measuring γ using fσ8 at low and

high redshifts

Peculiar velocities are an important probe of the growth rate of mass density fluctuations

in the Universe. Most previous studies have focused exclusively on measuring peculiar ve-

locities at intermediate (0.2 < z < 1) redshifts using statistical redshift-space distortions.

Here I emphasize the power of peculiar velocities obtained directly from distance measure-

ments at low redshift (z ∼< 0.05), and show that it can be used to constrain the growth

index γ, with the strongest constraints coming from peculiar velocity measurements in the

nearby Universe. I find γ = 0.621±0.08, which is consistent with ΛCDM. Current peculiar

velocity data already strongly constrain modified gravity models and will be a powerful

test as data accumulate.

3.1 Introduction

The leading cosmological model is cold dark matter (CDM) combined with a cosmological

constant. While the existence of dark matter is supported by a number of dynamical tests

as well as the fluctuations in the CMB, the evidence for a cosmological constant is primarily
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geometric (standard candles, standard rulers) and from measures of the expansion history

of the Universe [for example 70, hereafter WMAP7+BAO+H0]. Other modified gravity

theories can mimic the expansion history of the ΛCDM model. [17] has emphasized that

it is essential to measure the growth of structure as a function of cosmic time as this

allows one to break this degeneracy. He also shows that for many models, the logarithmic

derivative of the growth of structure can be parametrized as

f(z) ≡ d lnD

d ln a
= Ωm(z)γ (3.1)

where z is the redshift, D is the linear perturbation growth factor, a = 1/(1 + z) is the

expansion factor and γ is 0.55 for ΛCDM [71]. In contrast, for example, γ = 0.68 in the

[72, hereafter DGP] braneworld modified gravity model [73].

There are several ways to measure the amplitude of the dark matter power spectrum

at redshifts lower than that of the CMB, including cosmic shear from weak gravitational

lensing and the abundance of rich clusters. Another promising way to probe the growth rate

of structure is via peculiar velocities [74, 75]. Peculiar velocities are directly proportional

to the derivative of the growth factor, i.e. proportional to f . In this work, f is degenerate

with σ8, so the measured result is the degenerate combination f(z)σ8(z).

There are two ways to measure peculiar velocities. The first method is statistical: given

a galaxy redshift survey, the distortion of the power spectrum or correlation function in

redshift space depends on β = f/b, where b is a galaxy bias parameter [15]. On large

scales, I assume that linear biasing holds, i.e. b = σ8,g/σ8, where σ8 is the root-mean-

square density contrast within an 8 Mpc/h sphere, h is the Hubble parameter in units

of 100 km/s/Mpc, and the subscript “g” indicates the fluctuations in the galaxy density,

whereas no subscript indicates fluctuations in the mass density contrast. Galaxy redshift

surveys also allow one to measure σ8,g directly, so one can combine the observables to obtain

the combination fσ8 = βσ8,g. By combining redshift-space distortion (RSD) measurements

of fσ8 at different redshifts, one can study the growth of linear structures over a range of

redshifts [74, 76–78].
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A second method is to measure peculiar velocities directly by measuring distances to

individual galaxies (via standard candles or standard rulers), and comparing these distances

to their redshifts. I refer to this method as “measured distance” (MD). Combining these

MDs with an independently derived density field (such as a redshift survey) and applying

linear perturbation theory fσ8 can be measured as described in Chapter 2.

The two peculiar velocity probes are complementary: RSDs require large volumes,

driving one to surveys at higher redshifts. MDs have errors which are a constant fraction

of distance. Hence the error in peculiar velocity in units of km s−1 increases linearly with

distance and so MD surveys are necessarily restricted to low redshifts. However, as I

will show it is the lowest redshift data that have the most “lever arm” for constraining

the cosmological parameters considered here. The important point is that by combining

high and low redshift measurements of f(z)σ8(z), many degeneracies in the cosmological

parameters can be broken.

An outline of this Chapter is as follows. In Section 2, I present the data used in

this analysis. In Section 3, I varied γ, but use CMB data to constrain the amplitude of

σ8(zCMB). I conclude and summarize in Section 4.

3.2 Data

In this study, I combine results for fσ8 from two distinct methods. The majority of the data

are from redshift-space distortion measurements of growth of structure. The redshift-space

distortion technique assumes that if you stack enough galaxies their real-space total shape

will be spherical, however the observed stack will not be spherical due to infall of matter

into those galaxies. This infall will make the total shape appear flattened in redshift space.

The radial width of the observed stack of galaxies is reduced while the transverse width is

not the observed flattening can the be measured and converted into fσ8. From the WiggleZ

survey [77], I got the following data points: (z,fσ8) = (0.22,0.390 ± 0.078),(0.41, 0.428 ±
0.044), (0.60, 0.403 ± 0.036), ( 0.78, 0.493 ± 0.065). [77] quote three further data points,
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also from redshift space distortion measurements: (z,fσ8) = (0.77,0.490 ± 0.180) from

the VIMOS-VLT Deep Survey(VVDS), (0.17,0.51 ± 0.06) from the 2 degree field galaxy

red-shift survey (2dFGRS), and lastly (0.35,0.44 ± 0.05) from the SDSS LRG catalogue.

This last SDSS point I replaced with two data points from [78] (0.25, 0.351 ± 0.058), and

(0.37, 0.460 ± 0.038) to bring the set up to date with more recent measurements with

tighter precision.

The final two data points are from direct measurements of peculiar velocities. The first

data point is the result from chapter 2 (0.02 , 0.398 ± 0.065).The second low-z peculiar

velocity measurement is from [5], who analyzed 2830 Tully-Fisher peculiar velocities at

z < 0.03 and compared these to the predictions from the galaxy density field derived from

43,000 galaxy red-shifts from the Two Micron All-Sky Survey Redshift Survey [38, called

2MRS from here on]. Rather than the simple fit used above, [5] applied a sophisticated

spherical harmonic decomposition method and found a fσ8 of 0.314 ± 0.048.

I stress the important point that these two peculiar velocity determinations are com-

pletely independent: they have different peculiar velocity samples, different density fields

and different reconstruction methods. The two peculiar velocity measurements are consis-

tent with each other: the difference is 0.084± 0.08.

These data are summarized in Table 3.1. The RSD and MD measurements are shown

in Figure 3.1.

3.3 Constraints on γ

In the ΛCDM model, γ = 0.55 but it is possible that the real value of γ differs from

this model value. With high and low-z measurements of fσ8 it is possible to measure

the growth rate index γ. However, γ is very degenerate with the other two parameters of
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Figure 3.1: Growth parameter fσ8(z) as a function of z. The data and errorbars are labelled

as in Table 1. The ΛCDM model with WMAP7+BAO+H0 parameters Ωm,0 = 0.275,

σ8,0 = 0.816 is shown by the solid magenta curve. Note that the high-redshift RSD points

assume the ΛCDM redshift-distance relation to correct for the AP effect and hence the

appropriate value of fσ8(z). The black dashed curve shows a reference result with Ωm = 1,

σ8 = 0.63, and h= 0.702. The curve is γ independent, by construction, and fits the redshift-

distortion measurements, but not the low-z peculiar velocity measurements (highlighting

the importance of low-z measurements).
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Table 3.1: Measurements of fσ8 from the literature.

Label Survey name z fσ8 Ref

THF The First Amendment SN catalog 0.02 0.398± 0.065 1

DNM SFI++ and 2MASS 0.02 0.314± 0.048 2

2dF 2 degree field 0.17 0.510± 0.060 3

LRG1 Sloan Digital Sky Survey 0.25 0.351± 0.058 4

LRG2 Sloan Digital Sky Survey 0.37 0.460± 0.038 4

WZ1 WiggleZ 0.22 0.390± 0.078 5

WZ2 WiggleZ 0.41 0.428± 0.044 5

WZ3 WiggleZ 0.6 0.403± 0.036 5

WZ4 WiggleZ 0.78 0.493± 0.065 5

VVDS VIRMOS-VLT Deep Survey 0.77 0.490± 0.180 6

(1) [30]; (2) [5]; (3) [76]; (4) [78]; (5) [79]; (6) [74, 76]

fσ8 over short spans of z. These degeneracies can be broken when one notes that at high

redshifts (z ∼ 1000), Ωm is very close to 1. With Ωm equal to 1 the growth of perturbations

are independent of γ since 1γ = 1. Thus one fixes the amplitude of fluctuations at high

redshift which can then be projected using the ΛCDM model, with γ as a free parameter,

to the redshifts measured. As a fixed point at high redshift I used the WMAP7+BAO+H0

parameters Ωm,0 and σ8,0, noting that Ωm,0 quoted in WMAP7 assumes that γ = 0.55.

To get the true measured WMAP7 amplitude of fluctuations I used ΛCDM (γ = 0.55)

to calculate σ8(zCMB) from which other values of γ could be used to predict later times

self consistently[following 78, Section 4.5]. Since the WMAP7 parameters have non trivial

uncertainties I then use the WMAP7+BAO+H0 Monte Carlo Markov chains to marginalize

over Ωm,0 and σ8,0. A representative sampling of growth curves of increasing γ are plotted

overlaying the same data from Fig. 3.1 to indicate the effect of increasing γ’s with 0.50 as

the top most curve increasing by 0.05 with each subsequent curve is shown in Fig. 3.2.

The model allows the prediction the value of f(z) = Ωm(z)γ and σ8(z) at any redshift,
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Table 3.2: Measurements of γ from combinations of the data

Sample γ σCMB σtot

RSD+THF 0.589+0.043
−0.041 0.071 0.083

RSD+DNM 0.65+0.042
−0.040 0.072 0.084

All RSD 0.605+0.048
−0.045 0.075 0.088

All 0.621+0.039
−0.036 0.070 0.080

assuming their values at any fixed redshift such as z = zCMB.

For the fits, I use a simple χ2 statistic with the following form:

χ2 =
∑
i

[fσ8(meas)i − fσ8(pred)i]
2

σ2
i

(3.2)

where the first term is the measured value and the second term is the model, and σ2
i is the

uncertainty for each measured value.

In Fig 3.3, I show the fits of γ; The four curves differ only in what data points are

fit. The dotted curve shows the constraints without any low-z data with a best fit γ

of 0.605+0.089
−0.087. The solid curve with data points shown curve shows the constrains with

only the [5] data point at low-z with a best fit of 0.630+0.084
−0.083. The solid curve shows the

constraints with only the [30] low-z data point with a best fit of 0.598+0.083
−0.082. The dashed

curve shows the constraints with both low-z data point simultaneously with a best fit of

0.621+0.080
−0.079. In all four curves, the colours red, green and blue reflect the 68,95, and 99 per

cent confidence intervals. The black arrows indicate the values of γ predicted by ΛCDM

and DGP braneworld gravity with brane tension respectively. The curves as drawn do not

take into account the WMAP7+BAO+H0 Monte Carlo Markov chains marginalization

over Ωm,0 and σ8,0.

Table 3.2 gives the derived γ measurements for different combination of the fσ8 mea-

surements. Also listed are the uncertainties in γ arising from fσ8, from the CMB determi-

nations of Ωm,0 and σ8,0, and the total error. Note that the errors from WMAP+BAO+H0
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Figure 3.2: Data and symbols are the same as in Fig. 3.1, where the black dashed curve is

replaced with dotted curves of different possible γ values. All 5 additional curves are fixed

at σ8(zCMB) from WMAP7+BAO+H0 measurements. The topmost of the 6 projections

has a γ of 0.50 and each subsequent curve downwards adds 0.05.
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Figure 3.3: 4 χ2fits for γ for 4 different data subsets. The first data (dashed) set contains

all of the data from Table 1.1. The second (dotted) set omits both nearby data points. The

third (solid with data points shown) set uses only the [5] low-z data point. The final (solid)

fits with only my Chapter 2 results at low -z. The colours represent the different confidence

intervals about each minimum solution; the red, green and blue regions corresponding to

the 68, 95, and 99 per cent confidences respectively.
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are not independent (between one fσ8 measurement and another), are weakly dependent

on z, and dominate the total error budget when all data are combined. The full combined

fit yields 0.621± 0.080, consistent with ΛCDM.

Although for purposes of illustration I have focused on a constant scale-independent

γ, peculiar velocity data would also allow one to test more complicated modified gravity

scenarios [see e.g. the review by 80].

3.4 Conclusion

I have shown that by combining measurements of fσ8(z) at different redshifts, and in

particular by including results at z ∼ 0 from MD surveys, I can break the degeneracy

between Ωm,0, σ8,0 and γ and thus measure γ by comparing measurements of fσ8(z) at

low z, after fixing their values at zCMB. The strongest leverage on γ arises from peculiar

velocity measurements at the lowest redshifts. By including these measurements, I derive

γ = 0.621 ± 0.080, consistent with ΛCDM. The Planck mission plus upcoming peculiar

velocity and redshift surveys will tighten these constraints further.
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Chapter 4

Calibrating and Measuring

Systematic Errors in Calculating β

In the next generation of peculiar velocity catalogs the number of tracers is going to grow

by a factor of ten or more. Such an increase could reduce the measurement precision due

to noise to the level where systematic uncertainties in the methodologies become dominant

over random noise. To improve accuracy further, a clear understanding of systematic errors

in the methodologies in necessary for calibration and corrections. In this chapter, I therefore

systematically explore several avenues by which systematic errors can be introduced by the

common tools used in reconstructing β.

4.1 Outline

In Chapter 2, peculiar velocity tracers from SN were compared to predicted peculiar ve-

locities from a pre-existing density reconstruction, mainly the IRAS Point Source Catalog

Redshift survey (PSCz) density field reconstructed by [54]. For this Chapter, the goal is

to explore and verify the steps taken in measuring β from a peculiar velocity catalog and

a redshift-space halo catalog. The limitations of β measuring methods are explored with
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N-body simulation where position and velocity are known, and thus reconstructions and

predictions can be compared to this ‘ideal’ sample.

This is not the first time the limits of β reconstruction techniques have been tested

with N-body simulations [81, 82], however this work uses a larger simulation box, more

particles than previously used and is more comprehensive in the exploration of possible

sources of systematic error.

There are many steps in the measurement of β in real data that can accumulate sys-

tematic errors. In observations, the redshift catalog used to map the density field is often

significantly more densely sampled than the peculiar velocity tracer catalog. One possi-

bility that is commonly overlooked is that the peculiar velocity catalog might introduce

systematic error into the measurement of β. Observational redshift catalogs often have

a halo mass threshold set by the luminosity limit. To compare N-body results with real

observations, it is therefore necessary to extract a group or halo catalog to test for any ef-

fects that this observational limitation could have on β measurements. Lastly, the β fitting

method itself requires the transformation of a redshift-space halo catalog into a real-space

halo catalog, and this ‘reconstruction’ process may introduce systematic errors of its own.

In this chapter, I first introduce the N-body data set and the basic tools of this analysis:

density fields, smoothing, halo catalogs, linear theory predicted peculiar velocity fields, and

linear regressions (to quantify agreement between N-body and predicted peculiar veloci-

ties); these will be touched upon in subsections 4.2.1, 4.2.2, 4.2.3, and 4.2.4 respectively.

In section 4.3, I explore systematic errors that can exist in the ideal case where the real

distances to all objects are known. Specifically, I probe whether or not varying subsets

of peculiar velocity tracers can introduce systematic error in subsection 4.3.1. In the fol-

lowing subsection, I look at the more direct problem of density tracer systematic error,

specifically in the effects of smoothing and halo mass thresholds. I then introduce the

distortions caused by switching into redshift space in section 4.4. First, I focus on the raw

results in redshift space in subsection 4.4.1, and then I look at the results obtained by

iteratively reconstructing real space positions from redshift space positions. Finally I draw
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conclusions in section 4.5.

4.2 The N-body Data

To complete this testing I used an N-body simulation, kindly provided by Lavaux, of 5123

particles in a 500 h−1 Mpc periodic box. The simulation is a Ωm = 0.266 , ΩΛ = 0.734,

h = 0.71, where H0/h ≡ 100 km s−1/Mpc, and each particle represents 6.83 × 1010 h−1

solar masses. The simulation provided the following: particle position and velocity lists,

a halo catalog of 693948 halos between 5.5× 1011 and 2.2× 1015 h−1 solar masses (8 and

31809 particles), as well as a 2563 grid velocity field.

In figure 4.1, I present a slice of the particle density field. This view is useful for

visualizing large scale structure. The largest deep red spots are centers of superclusters

and the smaller red spots are clusters. A few filaments can also be seen where they happen

to travel within the plane rather than directly traversing it. The darkest blue spots are

voids.
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Figure 4.1: A slice from the centre of the particle density field. The density field has

been normalized to show density fluctuations: Cells devoid of any particles have the value

δ = −1, cells with exactly 8 particles have the value δ = 0, and the whole data set has an

overall total of δ = 0. The lack of smoothing permits very high contrast against which large

scale structure can be easily identified. Clusters and super-clusters are solid red regions

with densities near and above 72 particles per cell (δ = 9) with filaments visible between

them.

4.2.1 Smoothed Density Field

There are two problems with figure 4.1. First, the contrast is artificial and the regions which

are shown as perfectly void would not be in the real universe1. Second, linear perturbation

1Consider a center of a large void, and its corresponding peak in the potential energy field. Near the

location of the peak, the gradient of the potential field (i.e. the gravitational acceleration or linear theory

velocity) will be close to zero. Assuming a near uniform density before the growth of structure, such a
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theory breaks down at small scales (σr ∼ 〈δ2〉 ∼> 1, where σr is a generalization of σ8

for spherical top hat radii other than 8 h−1 Mpc). Both problems can be addressed with

Gaussian smoothing. In figure 4.2, I show the same slice of this particle density field after

it has been smoothed with a 4 h−1 Mpc Gaussian2. This figure represents all of the mass

in the simulation and is the base density field against which all others are compared. As

with figure 4.1, the density field has been re-normalized in units of mean density ρ̄.

Figure 4.2: The particle density field smoothed with a 4 h−1 Mpc Gaussian filter and

re-normalized to have an average density contrast, δ = ρ−ρ̄
ρ̄

, of 0.

region would have its density decreased only by the expansion of the universe (plus higher order effects

from initial momentum and subsequent heating, which would cause individual molecules to be pushed in

and out of the region under consideration).
2The reason for choosing 4 h−1 Mpc is explained in subsection 4.3.2
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4.2.2 Halos: Number and Mass Weighting

In real observational data, individual particles are not observable. Rather, galaxies are

observed, and these are usually grouped into groups and clusters (referred to collectively

as halos). Halos are important in considering density fields because halos contain the

additional dark matter of the halo in which the observable galaxies(and associated dark

matter halos) are embedded, thus halo are believed to be better tracers of the underlying

total matter distribution than galaxies alone. This grouping into halos has an additional

feature of removing the ‘finger of god’ effect of massive structures which is caused by

redshift distances being susceptible to line of sight smearing.

The N-body halo catalog contains a mass for each halo. The smallest halos are of

8 particles or masses of 5.5 × 1011h−1M�
3. In real data halos will be larger then some

threshold but not necessarily 5.5 × 1011h−1M� so I introduce a threshold in this work

which I can vary and explore the results as a function of. A halo mass threshold can be

applied in two subtly different ways: it can be applied to those halos used as velocity

tracers (for which I will use the symbol MV
TH) or it can be set independently when choosing

halos to include for constructing the density field (for which I will use the symbol Mδ
TH).

Once Mδ
TH is chosen I also have to choose between two possible weighting schemes: using

the mass and weighting each halo proportionately (mass weighting) or ignoring the mass

and weighting by number density of halos (number weighting).

In Figure 4.3, I present side-by-side the full particle density field (left) and the halo

density field where each halo is weighted according to its mass. For ease of interpretation

I set Mδ
THto 1013 h−1M� in this figure, so only halos with masses larger than 1013 h−1M�

are included. The halo density field shown is also smoothed with a 4 h−1 Mpc Gaussian

filter and normalized in the same way as the particle field. The single most dense cell of

the mass-weighted density field has a δ = 136, which is 4.3 times larger than the highest

relative density cell in the particle density field. Figure 4.4 is identical in construction to

3That is 1.8× 1017h−1 times the mass of the earth for each halo. Each particle is 6.83× 1010 h−1M�

(2.2× 1016h−1 earths, 1.4× 1041h−1 kg, or 7.6× 1067 h−1Gev/c2 (VERY cold dark matter indeed)
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figure 4.3 except that the halos are number weighted rather than mass weighted. The single

highest relative density cell of the mass weighted density field has a δ = 20.8, which is 0.65

times that of the highest relative density cell in the particle density field4. It can clearly

be seen that the mass weighting scheme makes the peaks much more prominent than in

the particle density field, and that both halo models underpopulated voids as expected.

Figure 4.3: On the left: a slice of density field derived with Mδ
TH = 1013 h−1M� where each

halo is weighted with a mass proportional to the number of particles in the halo (mass

weighted). This is to be compared to figure 4.2 (reproduced on the right). Both fields have

been smoothed with a 4 h−1 Mpc Gaussian filter and are plotted in density contrast.

4The number weighted density field and the all particle density field was not maximized in the same cell

(i.e. the cell index for the cell with the largest density fluctuation was different for the two density fields).

Comparing the cell index by the highest number weighted density field gives a factor of 1.40. Comparing

at the cell index by the highest particle density field gives a factor of 0.26.
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Figure 4.4: Based on the same halos as the figure 4.3 and using the same process. The

only difference is that the halos are number weighted rather than mass weighted. Mδ
TH

remains at 1013 h−1M� in this figure.

4.2.3 N-body and Predicted Peculiar Velocity Fields

Once the density fields are derived, linear theory can be applied to produce the correspond-

ing velocity fields using equation 1.5. In Figure 4.5, I show two slices of velocity fields.

The left field is the N-body velocity field5. The field has been binned but not smoothed

after binning. The right field is one of the linear perturbation theory velocity fields. This

figure is derived from the full particle density field and smoothed with a 4 h−1 Mpc Gaus-

sian. The slices show the y-component of the velocity of a slice taken at constant x, the

y-index increasing down the figure, and is transition from positive y-velocity (red, above

dense patches from 4.2) to negative y-velocity (blue below), and is consistent with the

expectations of gravitational collapse onto the most dense patches. Again many velocity

fields were generated for x-, y-, and z-components, different smoothing lengths, and for

both mass weighting and number weighting; however the resulting figures do not differ

5This figure is included purely for ease of visualization and qualitative comparisons, it is not used in

any fits or quantitative analysis
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significantly.

Figure 4.5: Two selected slices of velocity fields for visual comparison. On the left: the

velocity field calculated with linear perturbation theory applied to the full particle density

field and smoothed with a 4 h−1 Mpc Gaussian. On the right: the velocity field directly

from the N-body simulation without smoothing after binning. The slice is extracted from

the cube at the same x as 4.3 for easy comparison. Both figures are coloured with positive

y-velocity shown in red and negative y-velocity shown in blue. Note: the y-index increases

from top to bottom in the figure thus the velocities are converging to the high density

patches shown in 4.2.

4.2.4 Quantifying the Differences

It is clear that the linear theory and N-body velocity maps in figure 4.5 do not agree

perfectly. Specifically, it can be seen that the linear theory map is reaching deeper colours

than the N-body velocity map and that the N-body velocity map is not smoothed (thus it is

more structured than the linear theory prediction). In order to draw any conclusions, I need

to quantify the differences between N-body known velocities and prediction. As mentioned

above the N-body velocity map from 4.5 is a visual aid; however in general measured

peculiar velocities are not smoothed onto a grid when measuring β or reconstructing density
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fields. Instead, N-body ‘measured’ peculiar velocities are compared to the cloud-in-cell

predicted peculiar velocity for the corresponding particle location. In these comparisons,

I am interested in two quantities: the slope of the linear regression of ‘measured’ velocity

onto predicted velocity (a β estimator), and the scatter around that linear regression. The

interpretation of the slope depends on the density field used to predict the velocity field.

In figure 4.6, I present a direct comparison between the N-body particle velocities and

the linear theory predictions for the full particle density field smoothed with a 4 h−1 Mpc

Gaussian. If linear theory were perfect then the best fit line would be unity with no scatter.

The red line is a best fit to this data and has a regression slope of 0.950. When the slope

of the best fit line differs from unity the deviation, this is attributed to systematic errors

in the method stemming from differing smoothing lengths. Similarly, in figure 4.7,

I present the comparison using halos instead of particles. Specifically in this second

comparison, the underlying density field is the density field derived with Mδ
TH = 5.5× 1011

h−1M�
6 and the comparison is made with MV

TH also equal to 5.5×1011 h−1M�
7. When halo

density tracers are used, the slope is interpreted slightly differently as being 1
btr

, where btr is

the linear bias factor between the tracers used to predict the velocity and the true density

(as discussed in the comparisons section of Chapter 2 and the introduction of Chapter 3).

In this case the slope was 0.9686, which corresponds to a btr of 1.038.

It is worth noting that the scatter for the peculiar velocity tracers sampled at halo

locations is significantly smaller than the tracers sampled at all particle locations. The

particle peculiar velocity tracers scatter is greater by approximately 180 km s−1added in

quadrature.

6This choice of Mδ
TH corresponds to all halos in the halo catalog

7This means that the velocities of all the N-body halos are compared to the predictions
8It should be noted that when all particles are used it is equivalent to using a Mδ

TH of 6.8×1010 h−1M�.

At this lower Mδ
TH the slope was 0.950. If one considers the full particle field to be unbiased by definition

(Mδ
TH = 6.8× 1010 h−1M� ∼ Mδ

TH =0 ) then the bias is 0.9686
0.950 or 1.020. For simplicity I shall neglect the

factor of 1
0.950 , to compensate increase all quoted biases by 5.3%
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Figure 4.6: A regression of the N-body particle velocities onto predicted velocities derived

from linear theory and the complete particle density map, smoothed with a 4 h−1 Mpc

Gaussian. The least squared line of best fit is plotted and in this figure the slope was

found to be 0.9501. In similar figures where the full particle density field is used but the

smoothing length is varied, the deviation from unity is attributed to the systematic errors

due to linear theory and smoothing.
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Figure 4.7: Same as 4.6 above except here both Mδ
TH and MV

TH have been changed to

5.5 × 1011 h−1M�. The observed N-body velocities are plotted on the y-axis and the

predictions for the same halos are predicted from the halo density field shown in figure 4.3

(which is smoothed with a 4 h−1 Mpc Gaussian, and the halos are number weighted). Here

the resulting regression slope was found to be 0.9686. The interpretation of the slope is

different from 4.6 because a halo catalog is being used to generate the predictions. In this

situation the slope is equal to 1
bth

, meaning that b = 1.03 for this density tracer.
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4.3 Real Space Systematic Error Sources

With N-body simulations the real distances to particles and halos are known which means

that the density field is accurate, unlike in observational data where the real distances must

be reconstructed from redshift distances. As a first step, it is important to identify what

sources of systematic error can exist even when the true distances to objects are known.

In this section, I test for systematic errors in the peculiar velocity tracers (by changing

mass MV
TH while keeping Mδ

TH fixed), error due to different smoothing lengths (keeping

Mδ
TH fixed), and error due to changing Mδ

TH (keeping the MV
TH fixed).

4.3.1 Peculiar Velocity Tracers

In real data, the halos used to trace the peculiar velocity field will all be above a given

MV
TH. A higher MV

TH means fewer sampling tracer points for comparisons. One might

expect that a lower mass MV
TH (for a fixed Mδ

TH) would allow for more peculiar velocity

sampling points, which in turn should reduce the uncertainty of the final measured slopes

by a factor of
√
N . This is only true when the sampling points are uncorrelated, which is

untrue for predictions for pairs of tracer points that are in close proximity. Further, the

N-body velocities from the same close proximity particles may have very different values

if the particles in question are in a halo where non-linear effects dominate9. The fact that

the predictions can be correlated while the N-body results are uncorrelated, for given pair

of particles or halos, leaves room for systematic errors which change as a function of MV
TH.

Clearly this peculiar velocity tracer sensitivity to correlations will affect the scatter

around a regression fit, but it is less clear what effect it would have on the slope of the

regression fit. There are two possibilities that I would like to present. Firstly, if one

assumed that the largest halos were precisely at the centre of their respective potential

9See Figures 4.6 and 4.7 where the scatter changes significantly with the change of tracer, noting that

the underlying density field is also changed so not all the scatter change is necessarily due to a change in

chosen tracers
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wells then one would conclude that such a collection of tracers would have no scatter

or systematic deviation from linear theory since they would not experience the effects of

small-scale power where linear theory breaks down. Peculiar velocity halos chosen over a

given MV
TH will not be precisely at the bottom of their respective wells and thus they are

somewhat susceptible to the tendency for linear theory to over-prediction of velocities in

high density regions, although one would expect this effect to be quite small. Secondly, for

large halos there is a second implicit smoothing length given by the halo mass which should

be considered. A halo of a given mass can be thought of as having collapsed from a much

larger volume of uniform density. Thus halos have a smoothing length associated with this

volume of uniform density material before it collapsed. If this implicit smoothing length

is larger than the smoothing length applied to the density field used in the predictions

of the velocity field, then systematic errors in measuring the slope and scatter can result.

Theses two possible sources of systematic error would be difficult to differentiate and to

do so would require changing both the MV
TH and the density field smoothing length; a test

which was not performed.

In Figure 4.8, I test the effect of peculiar velocity halo sampling on the scatter about

the linear regression fits of N-body halo velocities onto predicted velocities derived from the

all particle density field smoothed with a 4 h−1 Mpc Gaussian. A clear trend of decreasing

scatter with higher MV
TH can be seen except at the very highest MV

TH where it starts to rise

again. In Figure 4.9, I present the corresponding slopes as a function of mass calculated

from the same regressions as the results in Figure 4.8. There is a slight trend at MV
TH 1012

h−1M�, which gets quite steep beyond 1013 h−1M�, towards lower measured slopes. It

is unclear what the dominant cause for this steepening is, see the previous paragraph for

discussion of possibilities.
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Figure 4.8: The scatter in velocity about the regression between N-body observed peculiar

velocities sampled at locations of halos (above an increasing MV
TH) and the linear theory

predictions based on the all particle density field smoothed with a 4 h−1 Mpc Gaussian.
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Figure 4.9: Using the same process as figure 4.8 above, I present the slope of the same

regressions shown in figure 4.8.

4.3.2 Density Tracers

In this section, I will explore the result of changing the density field from which the pre-

dicted peculiar velocities are derived.

In subsection 4.2.1, I introduced smoothing and explained why it was necessary. In this

section, I will define what smoothing length is best for β studies by charting the change in

the resulting slopes and scatters from the comparison of N-body velocities against linear

theory predictions as a function of the smoothing length. Too small a smoothing length
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permits excess non-linear “noise” and sensitivity to the breakdown of linear theory at small

scales, while too long a smoothing length and the smoothed density field becomes much

more uniform (lower δ) than the real data and predicted velocities become suppressed.

The other possible source of systematic error is to change Mδ
TH (rather than MV

TH,

which was explored above). I extract slopes and scatters for density fields derived for Mδ
TH

between 5.5 × 1011 and 1014 h−1M�. I also check for the side effects of under-sampling a

density field by holding Mδ
TH constant but re-sampling the field randomly and keeping only

some of the halos. If Mδ
TH is too high, then the density field becomes randomly sampled,

and this can increase scatter and noise.

Effect of Smoothing

The next goal is to confirm Berlind’s work on comparing smoothed peculiar velocity pre-

dictions to unsmoothed measurements [82]. To do so, I generate a velocity field from the

particle data and then smooth it with a progressively larger Gaussian smoothing kernel.

In figure 4.10, I plot the recovered linear regression slopes from plots similar to Fig. 4.6

(the N-body velocities on the vertical axis and the theory predicted velocities from the

full particle field on the horizontal axis) as a function of smoothing length. The square

symbols are derived by comparing N-body velocity to predicted velocity at every particle

position and the circular symbols are compared at N-body halo velocities and locations (

MV
TH of 5.5 × 1011 h−1M�). Both curves reach a slope of 1, ie. unbiased, at a smoothing

length of ∼4.5 - 4.750 h−1Mpc.
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Figure 4.10: The slopes of the regression between N-body observed peculiar velocities

and the linear theory predictions based on the full particle field smoothed at increasing

Gaussian smoothing lengths. The square symbols are derived by comparing results for

every particle and the circular symbols are comparing results for each halo from the halo

catalog (MV
TH of 5.5× 1011 h−1M�).

In figure 4.11, I plot the recovered scatter about the linear regression line from the plot

similar to 4.6 as a function of smoothing length. The circular symbols compare results

for each halo from the halo catalog (MV
TH of 5.5 × 1011 h−1M�) and the square symbols

compare results at the location of all particles (MV
TH of 6.8 × 1010 h−1M� or 1 particle).

The resulting curves have a minimal scatter between 3.5 and 4.0 h−1Mpc (halo results

nearer to 3.5, particle results nearer to 4.0).
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Figure 4.11: Using the same process, symbols, and colours as figure 4.10 above; I present

the scatter in velocity about the best fit line as a function of Gaussian smoothing length.

In summary, I find that for both halo and particle position peculiar velocity tracers,

the recovered slope is unity between ∼4.5 and 4.75 h−1 Mpc and that the scatter also

minimizes between ∼3.5 and 4.0 h−1 Mpc. To accommodate both an unbiased slope and a

slow scatter I use a smoothing length of 4.0 h−1 Mpc as the “default” smoothing length in

all figures unless otherwise stated.
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Table 4.1: Confirming the effect of Mδ
TH on the linear bias

Mass (h−1M�) Slope Bias Scatter Halo Count

6.8 ×1010, all Particles 0.950 1.05 232 5123

5.5 ×1011, Nmbr. weighting 0.969 1.03 142 693948

1.0 ×1012, Nmbr. weighting 0.963 1.04 152 359557

5.5 ×1012, Nmbr. weighting 0.738 1.36 159 92508

1.0 ×1013, Nmbr. weighting 0.629 1.59 160 53066

5.5 ×1013, Nmbr. weighting 0.329 3.04 176 8147

1.0 ×1014, Nmbr. weighting 0.223 4.49 192 3576

5.5 ×1011, mass weighting 0.510 1.96 140 693948

1.0 ×1012, mass weighting 0.489 2.04 141 359557

5.5 ×1012, mass weighting 0.418 2.39 146 92508

1.0 ×1013, mass weighting 0.379 2.64 150 53066

5.5 ×1013, mass weighting 0.229 4.36 177 8147

1.0 ×1014, mass weighting 0.166 6.02 196 3576

Effect of Mδ
TH

In subsection 4.3.1 above, I discuss the first of two possible effects of a halo mass thresholds.

The second possible effect of a mass threshold comes from applying the halo mass threshold

cut when generating the density field (adjusting Mδ
TH). Here the different Mδ

TH reflect the

different tracers being used, thus the change in slope is actually a change in the effective

linear biasing parameter bth since the tracers are being changed. To judge the effect that

Mδ
TH has on the recovered slope, I calculate the density field and predicted velocity fields

with several different Mδ
THs. I also repeat this with halos weighted with number weighting

and with mass weighting. In all results in this section and all following sections MV
TH is

held fixed at 5.5× 1011 h−1M�. The results are summarized in table 4.1.

In table 4.1, three properties are changing at once, despite the fact that changes are only
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made to two properties: the Mδ
TH parameter and the weighting scheme (number weighting

or mass weighting). Changing Mδ
TH actually changes two properties of the density field:

the underlying linear bias and the halo tracer number density. Consider the extreme case

where Mδ
TH is raised until only one halo remains. In that case, the resulting ‘density field’

would have some ‘true’ bias from the full particle density field but the regression would be

incapable of measuring that bias due to the noise induced by insufficient spacial sampling.

To explore the halo tracer number density problem independently of Mδ
TH, I re-sampled

each halo catalog, and randomly remove at each Mδ
TH some of the halos from the catalog.

At each re-sampling I retain the same number of halos as the next higher Mδ
TH. The net

effect is that the underlying bias does not change, since the Mδ
TH has been held fixed, and

the effect of the increased noise from decreased sampling can be explored directly10.

In table 4.2, I summarize these results; note that no re-sampling of the 1.0×1014 h−1M�

was performed as no higher Mδ
TH existed and the re-sampling of the particle field was also

not performed. Each line of table 4.2 has the same underlying bias as the equivalent line

in table 4.1 but with only as many density tracers as the subsequent line. To see what

fraction of the increase between two mass Mδ
TH lines of table 4.1 is due to insufficient

tracers, compare the slope to the slope of the next lower Mδ
TH of table 4.2 11.

For both tables 4.1 and 4.2 the tests were performed with MV
TH fixed to isolate the

effect of changing the density tracers.

10Note this re-sampling is to be taken as an approximation. Ideally the re-sampling process would be

repeated several times and averaged in a form of bootstrapping, especially in the mass weighting cases

where dropping the heaviest halos could significantly alter the resulting density field given the low halo

count
11For example: at Mδ

TH of 1013 h−1M� the bias has increased from 1.35 to 1.58 in table 4.1. but in

table 4.2, the Mδ
TH of 5.5× 1012h−1M� has a similar number of tracers as table 4.1’s line for 1013 which

has a bias of 1.48. Thus of the 0.23 change in slope, ∼0.13 is due to loss of resolution, and the remainder

is due to the underlying change in bias
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Table 4.2: Exploring the effect of reduced sampling at a fixed Mδ
TH.

Mass (h−1M�) Slope Bias Biassparse
Biasfull

BiasHi.Thres.
BiasSameThres.

Scatter Halo Count

5.5 ×1011, Nmbr. W. 0.945 1.06 1.03 1.01 147 359539

1.0 ×1012, Nmbr. W. 0.813 1.23 1.18 1.31 177 92374

5.5 ×1012, Nmbr. W. 0.677 1.49 1.10 1.17 177 53106

1.0 ×1013, Nmbr. W. 0.303 3.30 2.08 1.92 237 8199

5.5 ×1013, Nmbr. W. 0.215 4.65 1.53 1.48 221 3555

5.5 ×1011, mass W. 0.403 2.48 1.27 1.04 182 ∼359557

1.0 ×1012, mass W. 0.248 4.04 1.98 1.17 224 ∼92508

5.5 ×1012, mass W. 0.329 3.04 1.27 1.10 183 ∼53066

1.0 ×1013, mass W. 0.125 8.00 3.03 1.65 250 ∼8147

5.5 ×1013, mass W. 0.130 7.69 1.76 1.38 230 ∼3576

4.4 Redshift Space and its Systematic Errors

These tests are necessary because peculiar velocities are added with real-space positions

which results in redshift positions, and from these redshift positions real-space positions

must be reconstructed. To test the reconstruction method I constructed a redshift catalog.

The redshift catalog was generated by assuming a fixed observer with no co-moving velocity

at the center of the simulated volume. In Figure 4.12, I present the real space and redshift

space densities of halos extracted from the center plane of the data cube (all the distortions

are radial and thus most visible along the central axis). The halos here are number weighted

rather than mass weighted and the field has been smoothed with a 4 h−1 Mpc Gaussian

filter. Since the differences are subtle, for clarity I include figure 4.13 which shows the

difference between the two figures in 4.12.
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Figure 4.12: A side-by-side halo density comparison of co-moving locations and resulting

redshifts. On the left is the co-moving density field using number weighting (i.e. with all

halos at their correct distances H0r). On the right are the same halos and weights after

being moved to their respective redshift positions as observed by a stationary observer

(zero co-moving velocity) at the center of the simulation(i.e. with all halos at their redshift

distances cz).
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Figure 4.13: The difference between the left and right images of figure 4.12 is presented

here for more easy identification. Note: The scale has been reduced to the range -3 to 3.

4.4.1 Fits in Redshift Space

In Figure 4.14, I present the real space and redshift space linear regression fits derived from

a density field of all halos over 5.5 × 1010 h−1M� with number weighting. On the left is

the fit in real space positions and on the right is the same fit in ‘redshift space’ where the

location of each halo is updated with the projection of its N-body velocity. In real space,

the slope is very close to unity ( 1
bth

= 0.975 or bth = 1.03), but in redshift space the slope

decreases significantly ( 1
bth

= 0.762 or bth = 1.31). The scatter changes from 141 km s−1in

real space to 172 km s−1 in redshift space. The slope increases when objects move into
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‘redshift space’ because the velocity of halos is falling towards nearby structure, which puts

those halos closer to the structure when moved into redshift space. This shift closer to large

structure increases the density of those large structures and increases the contrast, which

in turn increases the predicted velocities and corresponding bias. The scatter increases

firstly because halos have been displaced from their proper locations, but even more so

when halos are near enough to a large structure to have a velocity high enough that in

redshift space they appear to be on the other side of the attracting body.

Figure 4.14: A side-by-side comparison of a regression from N-body halo velocities onto

predicted peculiar velocities before and after the density field tracers are moved into redshift

space. On the left is the fit derived from the co-moving density field with a Mδ
TH of 5.5×1010

h−1M� and number weighting. On the right are the same halos and weights after being

moved to their respective redshift positions as observed by a stationary observer (zero

co-moving velocity) at the center of the simulation.

4.4.2 Systematic Error in Iterative Reconstructions

In this section, I will first introduce and explain the iterative method for reconstructing

a real density field from the redshift space density field. I will then briefly present the

motions which halos undergo during the reconstruction process. I will draw attention
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to the evolution of scatter and slope of linear regression fits with a Mδ
TH of 5.5 × 1010

h−1M� and number weighting density field as it is reconstructed, and explore the sources

of systematic error that result. I will conclude this section explaining why the first three

points of the reconstructions have to be done with a higher resolution, and discuss briefly

the resolution requirements of the reconstruction method.

Method of Reconstruction

The heart of this reconstruction process is the iterative position correction introduced first

by Yahil et. al.[83]. Looking at equation 1.9, it is easy to see that it can be re-arranged to

H0r = cz − vpec(r) (4.1)

where cz is the redshift distance, r is the real distance which I would like to recover, and

vpec(r) is the predicted velocity at a given location and for a given density field. If the

location of the halo in question changes or the density field changes, then vpec(r) also

changes. However, as shown in figure 4.14 and 4.12, the density and bias rise when shifting

into redshift space, so the result is that the predicted vpec(r) term will be too large and

the halos overshoot their original locations. One could re-apply equation 4.1 repeatedly

but there is no guarantee that the solutions will converge. Instead one can alter equation

1.6 from Chapter 1 to

v(r, T )tns =
THof

4π

∫ ∞
0

d3r′
δtr(r

′)(r′ − r)

|r′ − r|3
(4.2)

where T is a ‘transition factor’ between redshift space position and reconstructed real space

position (which starts at 0 and increases adiabatically to f
bth

over subsequent iterations12).

Then alter equation 4.1 to

H0rn = cz − vpec(rn−1) (4.3)

12In observational experiments, β = f
bth

, is unknown so v(r, β)tns is iterated instead of v(r, T )tns, and

the resulting predicted velocity maps for each iteration step are compared to a peculiar velocity catalog
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where at each iterative step n the new positions are calculated from the observed redshift

cz and the predictions derived from the density field resulting from the n− 1 iteration. I

introduce the ‘transition factor’ T so that any systematic error introduced by the iterative

process can be explored and calibrated. I also extend T to beyond 1
bth

in my plots to

observe any pathologies that could affect observational experiments where f
bth

is not known

from a N-body simulation. The iterations are performed by calculating predicted peculiar

velocities from the redshift catalog, projecting those velocities onto the lines of sight for

each halo, and then applying equation 4.3 to get a new redshift catalog. At each step, the

value of T is increased slightly. This new redshift catalog has different distances (r) for each

halo, thus vpec(rn−1) will be slightly different and need recalculating. At each iteration step,

I calculate the slope, 1
bth

, and the scatter by linear regression onto the predicted velocities

given the adjusted density field at that iteration step. It is worth noting here that I hold

f fixed at its true N-body value when calculating vpec, and use the measured real space

value of bth to define the ‘stopping point’ for T .

I have explored two ways the iterative procedure could introduce systematic error. Since

observational experiments determine β by finding which value of βtransition minimize the

fit scatter, a sharply varying or noisy regression (near T = 1
bth

)could cause βtransition to

minimizes at the wrong value. Additionally, the measured slope of the regression fit may

differ from f
bth

when T = 1
bth

. If the measured ‘stopping point’ slope systematically differed

from f
bth

, studies which apply this methodology would have to compensate by correcting

their measured slope of best agreement.

Motion of Halos During Reconstruction

In this brief aside, I present the radial positions of halos as a function of the iteration steps

of the reconstruction. This may help the reader visualize the slow motion of halos from

their redshift space positions to their real space positions. In figure 4.15, I introduce the

three basic cases which individual galaxies can follow during the reconstruction iterations.

All three curves of figure 4.15 were generated by calculating the radial distance from the
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origin to the halo in question at each iteration. The horizontal line for each panel shows the

real-space location of the halo, for easy visual reference. The red vertical line is included

for interest only and indicates which iteration had the smallest squared difference between

initial position and calculated position for that iteration summed over all halos13. The blue

vertical line is at T = 1
bth

where properly reconstructed halos have returned to their true

N-body simulation distances. The iterations extend from T = 0 to T = 1
bth

in 150 steps.

A halo which is distant from any significant neighbors will not move substantially when

put into redshift space. For halos which are close to large scale structure, however, peculiar

velocities can be significant, and large jumps between real and redshift location can occur.

If the shift into redshift space leaves a halo on the correct side of a massive structure, it

will follow a curve like the top left panel of figure 4.15, approaching its original position as

the iterations increase (‘T’ increases) and beyond as ‘T’ exceeds f
bth

(where bth is measured

using the N-body known distances and the appropriate halo catalog).

If a given halo is close to a very large structure, the gravitational attraction to that deep

potential well can accelerate the halo to such high velocities that the halo can appear (in

redshift space) to be on the opposite side. For example, a halo between the observer and

a large mass is accelerating away from the observer towards the mass, adding additional

radial peculiar velocity. When you add that additional peculiar velocity to its real distance,

the halo appears more distant than the large mass. The large mass is relatively fixed in

redshift space because it is at the bottom of its own potential well (thus not significantly

accelerating itself) which permits nearby objects to “overshoot” it. In such a case, where

the initial redshift space distortion puts a halo on the “far side” of a larger structure,

it will diverge away from the true solution, such as in the second curve of figure 4.15.

Unfortunately there is no known way to detect this correction error in real (non-simulated)

13It should be noted that this is a halo-by-halo position displacement which is being minimized here.

This is substantively different from observational experiment minimization where real space locations are

unknown. When finding β, predicted velocities are compared to observed peculiar velocities and the

difference between the two are minimized. In that situation, halos of similar mass can switch locations

without affecting predictions.
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data.

It is also possible to end up in a situation where the iterations are unstable, jumping

back and forth between two or more “solutions”, as shown in the third curve of figure 4.15.

As T gets larger, the areas around massive structures (which cause this unstable jumping)

expand. As a result, many halos will move smoothly in T up to a limit and then become

unstable.
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Figure 4.15: Three curves following the radial distance to three different halos during the

iteration process. The curves trace the radial distance from the origin to the halo at each

iteration. The horizontal line is for easy visual reference; it extends from the real-space

location of the halo. The red vertical line shows where the squared difference between

initial positions and reconstructed positions summed over all halos is minimal. Note that

this is not the “fit” value for the reconstruction since the real reconstruction methods

minimize peculiar velocities not distances. The blue vertical line at T = 1
bth

is the value

of T at which, if the reconstruction worked perfectly, each halo would return to its initial

position. The iterations extend from T = 0 to T = 1
bth

in 150 steps.
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Regression Scatter as a Function of Transition Factor.

In figure 4.16, I present the effect of the transition from redshift space to reconstructed

real space on the scatter about the linear regression fit for a density field of all halos over

5.5 × 1010 h−1M� with number weighting. Additionally two lines have been included for

clarity: the first vertical line highlighting T = 1
bth

, and the horizontal line that is fixed to

the real space value of the scatter. Note that the scatter is still decreasing slowly beyond

the final data point, however its rate of decline is quite small and negligible compared to the

change in scatter which occurs when v(r, β)transition is iterated instead of v(r, T )transition,

which is what is usually done when β is unknown.
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Figure 4.16: Scatter about the linear regression of N-body halo velocities onto predicted

velocities, assuming f to be fixed and using all halos (5.5×1011 h−1M�) to form the density

field (number weighting) as a function of the transition factor T . The horizontal line shows

the scatter in real space and the vertical line indicates where T = 1
bth

.

Slope as a Function of Transition Factor.

In figure 4.17, I present the effect of the transition from redshift space to reconstructed real

space on the slope from the same iteration process as 4.16. Note that this is a regression

of N-body velocity to predicted velocity rather than the position-position comparison of

the brief aside in the previous section. Again, two lines have been included for clarity:

the first vertical line highlighting T = 1
bth

and the horizontal line is fixed to the real space
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value of the slope. Note that the reconstructed slope differs significantly from its known

real space value. This difference corresponds to a real slope to fit slope ratio of 1.07 for

halos over 5.5× 1010 h−1M� with number weighting and 16 steps to the iteration between

T = 0 and T = 1
bth

. Note however that 20 iterations between T = 0 and T = 1.25
b

were

calculated to show the trend beyond the ‘stopping point’ and that the first three points

are sampled closer together than the remaining 17. The necessity of this is explained in

the final subsection of this section.

Figure 4.17: Slope of the linear regression of N-body halo velocities onto predicted veloci-

ties, assuming f to be fixed and using all halos (5.5×1011 h−1M�) to form the density field

(number weighting) as a function of the transition factor T . The horizontal line shows the

slope in real space and the vertical line indicates where T = 1
bth

.
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Table 4.3: Summery of systematic error at different Mδ
TH. Note however that most redshift

catalogs have a Mδ
TH of between 5.5× 1011h−1M� and 1.0× 1013h−1M�

Mass (h−1M�) Slope Real Slope Reconstructed Ratio

5.5 ×1011 0.969 0.904 1.07

1.0 ×1012 0.963 0.900 1.07

5.5 ×1012 0.738 0.688 1.07

1.0 ×1013 0.629 0.582 1.08

5.5 ×1013 0.329 0.293 1.12

1.0 ×1014 0.222 0.194 1.15

Iteration Regression Slope as a Function of Mδ
TH

In table 4.3, I present the results of measuring the bias of the reconstruction method at

different values of Mδ
TH. The first column is is the mass, the second is the same slopes from

table 4.1, the third is the recovered slope at T = 1
bth

, and the final column is the resulting

systematic error that must be corrected for in observations reconstructions / measurements

of β.

Different Values of ‘n’; How Many Steps is Enough?

As with most iterative processes there is the potential for a trade-off between accuracy of

the results and the time necessary to calculate the results. One can save time by applying

only one step to the iteration by jumping directly from redshift space to ‘reconstructed’

space in one calculation of predicted velocities. This iterative method was developed

because the one step solution was too prone to systematic error. When I initially fit

with n = 16 I observed a modest drop in the fit slope in the first steps. I ran a second

reconstruction of halos over 5.5 × 1011 h−1M� with number weighting using 150 steps

between T = 0 and T = 1.05 14. Again the first step decreased the fit slope, but due

14The same run was used in the aside segment on the motion of halos during reconstruction
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to the smaller step in T the overall decrease was much less significant. If this occurs,

the subsequent iterations do not fully correct the overestimated first step decrease and

additional systematic error is introduced. In subsequent runs, I reverted to n = 16, but

with higher sampling frequency at low T to prevent this problem. It is unclear if this

is a general feature or an artefact of this realization of N-body simulation15. The net

effect is that a more coarsely graduated reconstruction can be slightly inaccurate due to

an overestimation of the slope decrease from that first step. However after that first step,

both curves evolve quite similarly. This indicates that although a coarse reconstruction is

acceptable in general, a more fine reconstruction is advised at very low T . In figure 4.18, I

show two slope curves as a function of T : on the left is the n = 16 curve with the first three

points having a smaller step-size than the remaining points, and on the right n = 150 and

a constant step-size throughout. Even with the first three steps in T reconstructed with

a finer resolution, it is notable that the final ratio for the 150 point fit is 1.077, whereas

the 16 point reconstruction ratio is 1.072. This slight difference suggests that there may

be further room for optimizing the choice of n.

15In principle, such a decrease should not occur since the reconstruction pushes all halos out of gravi-

tational wells, thus making the wells more shallow. However, a rapidly varying gravitational field could

introduce some artefacts
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Figure 4.18: A side by-side-comparison of a 16 step reconstruction and a 150 step re-

construction. The resulting reconstruction curves are very similar in part because the 16

step reconstruction has a higher initial sampling density to prevent a low T large slope

decrease. However, the final reconstructed bth ratios do differ slightly with the 16 point

reconstruction having a final ratio of 1.072 and the 150 step reconstruction having a ratio

of 1.077.

4.5 Discussion and Conclusions

The goal of this chapter was to shed light upon the reconstruction process by which redshift

space catalogs are converted into proper distance catalogs and to point out where system-

atic errors could enter into the observational measurements of β (β can be measured by

comparing linear theory predictions derived from the proper distance density tracer cat-

alog to observed peculiar velocity tracers). An N-body simulation was used to provide

the known distances and peculiar velocities of a particle while a halo catalog was used for

reconstructions as the results could be compared to this ‘ideal’ sample.

With the N-body simulation I have access to a peculiar velocity catalog and a density

tracer catalog of equal size; this is not the case in observational measurements. This large
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peculiar velocity catalog gave me the opportunity to explore whether there was any system-

atic error in measuring bias from the peculiar velocity tracers in subsection 4.3.1. I found

that there is a slight trend at high and low MV
TH towards underestimating the regression

slope. At low halo MV
TH the systematic slope suppression is likely a by-product of excess

noise, as many halos in large structures are physically quite close together but have their

velocities randomized by non-linear effects. At high MV
TH the systematic slope suppression

could be due to slight displacements of the largest halos from the very bottom of their

respective potential wells where linear theory is least accurate, thus assigning velocities

higher than are seen in more accurate non-linear models. The suppression could also be

due to the implicit smoothing associated with large halos, where these large halos are com-

pressed remnants of considerably larger primordial co-moving volumes. If this is the case,

then this is simply the reverse effect of smoothing error discussed in the next paragraph

(the velocity field is being smoothed, rather than the density field being smoothed).

In 4.3.2, I looked for systematic errors which could be attributed to the effects of

smoothing and Mδ
TH. First, I confirmed Berlind et. al.’s result on the necessity of carefully

choosing smoothing lengths when comparing peculiar velocity predictions to unsmoothed

measurements [82]. I concluded that a 4 h−1Mpc Gaussian smoothing kernel is the best size

to use to minimize noise and systematic error in linear regressions between N-body results

and predicted peculiar velocities. In the following section, I varied Mδ
TH and was surprised

to see the fit bias, slope = 1
bth

, increase faster than expected. From theory, I would expect

the bth to be just over 1 at Mδ
TH = 1013 h−1M� and should not be over 2 until Mδ

TH exceeds

1014 h−1M� [84]. To understand this excess over theory, I recalculated the density fields

after artificially reducing their number density. By statistically reducing the data set at

each Mδ
TH, I estimated what fraction of the increase in measured bias between two Mδ

TH

was due to changes in spacial number density.

In section 4.4, I focused upon the iterative reconstruction method by converting the

N-body observed distances and velocities into a N-body redshift catalog and then applying

the reconstruction method to attempt to “return back” to the true distances. Since I am

concerned with systematic errors of the methodology, rather than varying β, I introduced a
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new factor T which I varied from 1 to 1
bth

. This was to show whether or not the measured

scatter and slope are susceptible to systematic error from the reconstruction process, even

when β is known.

In conclusion, I found that the scatter around the regression fit (from N-body peculiar

velocities onto the step-by-step reconstructed predicted velocities) varied smoothly. In real

observational measurements of β, it is important that the scatter from the reconstruction

vary smoothly since the scatter in varying T would also be present when varying β directly,

If the scatter as a function of T had a strong minimum near T = 1
bth

, then this could lead

to systematic inaccuracies. In the T reconstruction, I did find a significant systematic

error: the measured value of the linear regression slope was less than f
bth

when T = 1
bth

(the

‘stopping point’ where the reconstruction is complete). This implies that when β = f
bth

is measured in real observational experiments the value is being underestimated by 7 (to

15)% by this reconstruction method. This source of systematic error was not taken into

account in Chapter 2 when fitting β. Taking it into account would boost the measured

value of β by around 7%, depending on the halo mass Mδ
TH of the PSCz catalog.
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Chapter 5

Discussion and Conclusion

Each of the central chapters (2, 3, and 4) have discussions and concluding remarks which I

will not repeat here. Instead in this brief concluding chapter I will focus on how the results

between the chapters are interrelated and what could have been improved in each chapter.

I will then outline direct next steps which could follow up on this work, and conclude with

prospects for the future of measurements of ΛCDM, gravity, and the growth of structure

as illuminated by further studies of peculiar velocities and large scale flows.

5.1 Summary of Overall Results: Interplay Between

Chapters

In the first subsection of 4.4.2, I explain how the redshift equation (equation 1.9) can be

inverted to reconstruct proper distances to objects in a redshift catalog. This reconstruction

process has a free parameter β = f
btr

= Ωγmσ8
σ8,tr

upon which most of this thesis is focused.

Three of the four parameters which make up β are fundamental parameters of cosmology

(Ωm, γ, and σ8; see the introductory section 1.4) and the fourth is a measurable property

of the chosen tracer field. It is by this connection to cosmological parameters that redshift
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surveys and peculiar velocity measurements (distance indicator surveys) can help form a

better understanding of the Universe.

Chapter 4 is dedicated to quantifying the limitations of redshift to real space recon-

struction. I applied the processes of reconstruction on an N-body simulation to test for

biases and other sources of systematic error. I concluded that the peculiar velocity trac-

ers themselves can introduce some (less than 10%) systematic error as they become more

and more associated with larger and larger halos (see 4.3.1). I also found a stronger than

anticipated dependency on the halo mass thresholddensity. In eight out of the ten cases

where I recalculated the slope with fewer points, the resulting slope was shallower (the

measured bias greater) than the higher thresholddensity result with the same number of

data points (see the last subsection of 4.3.2). This strong dependency on the number of

halos sampled as density tracers suggests that much of the observed increase in bias from

one thresholddensity level to the next can be attributed to the decrease in the number den-

sity of density tracers. It is likely that this amounts to a smoothing problem, where the

peculiar velocity tracers are very densely sampled and being compared to a very sparse

density field with an average inter-tracer distance considerably larger than the smoothing

length. Finally, I also found that the reconstruction method itself fails to properly recon-

struct a known β again at the 7-15 % level (see table 4.3 for this bias as a function of

mass thresholddensity). The biases uncovered in this section should be taken into account

when measuring β using real space reconstruction from redshift catalogs such as was done

in Chapter 2. Doing so would raise the measured β.

Chapter 2 was divided into two parts. The first was a direct test of large scale power in

ΛCDM, exploiting the fact that peculiar velocities are more sensitive to large scale power

than density fluctuations (see 1.4.1 an explanation). Unfortunately for those who might

desire to find flaws in ΛCDM, the result was consistent with expectations with a 70 %

probability that the data set is consistent with ΛCDM (see 2.4.4). The second component

of Chapter 2 was a fit of β which was found to be 0.53± 0.08. More importantly, for the

work continued in Chapter 3, the σ8,tr for the IRAS survey is known, so the β measurement

could be converted to a fσ8 of 0.424 ± 0.069. For comparisons of these results to other
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results in the field, see 2.5.4. Taking into account the results of Chapter 4, the measured

value of the residual flow would drop slightly1 and be in better agreement with ΛCDM.

The measured values of fσ8 would also increase which would slightly change the results of

chapter 3.

In Chapter 3, I combined the fσ8 measurement from Chapter 2 with other fσ8 mea-

surements at different redshifts to unravel γ from the triple degeneracy. In 1.8, I showed

that fσ8 = Ωγmσ8
σ8,tr

. The equality f ∝ Ωγ
m is only an approximation to the growth function of

the universe; however, it is very sensitive to deviations from standard gravity and concor-

dance cosmology which makes it an important tool. The results of this fit were consistent

with ΛCDM’s prediction of γ = 0.55 with the measured γ being 0.621 ± 0.080. Taking

into account the increased value of fσ8 due to the results of Chapter 4 would bring the

fit results into better agreement with ΛCDM. As discussed in Chapter 4, it is the lowest

redshift data points which place the most constraining power on γ. Thus even the slight

motion upwards would bring my datum point closer to the 0.55 prediction, and bring it

away from the other low-z datum point[5], which would also add more uncertainty in the

final result. Both of these changes would cause the overall agreement to improve.

5.2 What Could be Improved on for Future Work

As with any large work there are further steps that may be taken as well as room for

improvement. In this section, I shall briefly explore some of these options for my work

presented here. I will then touch on the extension of the work to applying the reconstruction

code to a real observed data set, thus re-creating a prediction catalog to use with the code

developed for Chapter 2.

1 The residual flow can be thought of as the bulk flow minus an amount calculated with local density

× β, thus a larger β results in less bulk flow to be detected as residual.
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5.2.1 Improvements to Chapter 2

In performing the analysis for the bulk flow motions and β measurements, I generated an

analysis code capable of handling new data subsets with little additional work. This is

important because more and more supernovae data is being collected and new peculiar

velocity catalogs will be published. It would be useful to couple that already-prepared

software to an online accessible database so that new peculiar velocity catalogs could be

remotely uploaded and processed. It would also be useful to extend the current code which

only performs maximum likelihood analysis to include the minimum variance weighting

and ΛCDM prediction procedures. The code for this exists but was not integrated into

the analysis code that I wrote. Finally, now that the systematic error analysis for the

redshift-to-real-space reconstruction method has been performed, it would be good to apply

what was learned to these measurements by including a redshift catalog in the online

database and performing the redshift reconstruction on site rather than using a published

reconstruction.

5.2.2 Improvements to Chapter 3

As mentioned in the Statement of Contributions section of the Introduction, Chapter 3 is

a segment of a larger published work. The published work fit for γ and also independently

fit σ8 and Ωm based on the same data set. However, in that paper the σ8 and Ωm fits were

performed holding γ fixed at 0.55. It is unlikely that a triple free parameter fit would have

been significantly constraining on any of the three parameters, however performing such a

fit would have been interesting and I would like to attempt it in the future.

5.2.3 Improvements to Chapter 4

The task of identifying all of the possible sources of systematic error for a given procedure

is a large one. In Chapter 4, I focused on the more prominent and obvious sources of
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systematic errors in the reconstruction method for measuring β. However, with a large

N-body simulation there are many additional options that could still be explored. In

this section, I will very briefly touch upon some of these options. In all cases, the linear

regressions I performed were based on all three velocity components, x y and z, however,

in observational data only velocity projections onto the line of sight are measurable. This

projection could be a source of error or excess noise. In the shift to redshift space of the N-

body catalog, I assumed that the observer was stationary with respect to the CMB, which

is not the case for the Local Group. Calculating the velocity of the observer with respect

to the CMB at each iteration step and adjusting the redshift catalogs to match would be

a simple improvement for the future to further match observational experiments. In the

conclusions regarding subsection 4.3.2, I concluded that the high halo mass thresholdsdensity

were likely suffering from a smoothing problem due to a mean inter-tracer distance which

was larger than the smoothing length. Redoing the analysis with a Gaussian smoothing

length that is the larger of 4 h−1 Mpc and the mean inter-density tracer distance may

partially correct this source of error. The N-body simulation peculiar velocities were known

exactly, but this is never the case in observational data (which can be susceptible to

Malmquist and similar bias); adding noise to the N-body catalogs would help estimate this

source of error. Additionally, the conclusions of chapter 4 were drawn from only one N-body

simulation which makes it difficult to assess if any of the observed features were artifacts of

this N-body field rather than generally true for all N-body simulations. Here I specifically

remind the reader of the slight decrease of 1
btr

at low values of T which required the first

reconstruction steps to be at a higher frequency. Running multiple N-body simulations, or

multiple lines of sight (specifically origins consistent with the Local Group in local density)

would allow an assessment of the stability of these observed conclusions.

5.2.4 Application to Real Data

In chapter 2, I used the PSCz density field reconstructed by Branchini et al.[54] as the

density field from which peculiar velocities were derived. In testing for sources of systematic
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errors of reconstruction methods, I have generated much of the code necessary to perform a

real reconstruction on real data. In the near future I would like to apply these methods to

the recently released 2M++ catalog [56]. Such a conversion to real data processing would

require a significant number of changes to my code and its currently available functionality,

however Guilhem Lavaux has already developed a standalone package of codes for doing

many of the key conversions and pre-processing that is necessary for working with real data

rather than ’perfect’ N-body data. I look forward to integrating this existing software into

my algorithms and updating my results from Chapters 2 and 3 with a 2M++ reconstructed

data field of my own in the near future.

5.3 Future Prospects in the Field of Bulk Flows and

Large Scale Structures.

Predicting the future progress in any field is a challenge. There will always be more and

better data, such as data from the 6df Galaxy survey [25] (125,000 galaxies, 10,000 Fun-

damental Plane measurements), the Wallaby survey (600,000 galaxies) [25], the TAIPAN

survey (400,000 galaxies) [25], and ongoing SN searches, such as Pan-STARRS, Skymap-

per, CFA, and several others. All of these surveys combined could contribute as many

as an additional 100,000 peculiar velocity measurements and redshift surveys approaching

a million objects. Additionally, kinetic Sunyaev−Zel’dovich surveys (which are directly

sensitive to peculiar velocities) are improving; G. Lavaux et. al. predicts that the next

generation of kinetic Sunyaev−Zel’dovich surveys will have sensitivity to bulk flows at the

5.4 σ level[21]. Such a substantial increase over the 1000s of available tracers to analyse

today would substantially decrease the stochastic component of the uncertainties budget

for measurements of β and related cosmological parameters. In this section, I would like to

focus on changes that could occur which would improve how this abundant data is treated.
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5.3.1 Improved supernovae

One important benefit would be to find a second feature of Type Ia supernovae that

also correlates well with maximum luminosity. Modern SN surveys are now more often

multi-spectral, and this additional spectral information, especially for nearby SN for which

distances can be determined with other methods, may reveal another calibration param-

eter (in addition to the light curve decay time, relativistic stretching, and host galaxy

reddening). This would reduce the inherent scatter of Type Ia supernovae. Improving the

intrinsic scatter is important for Type Ia supernovae distance indicators because the scat-

ter is in magnitudes. This translates to a fixed relative uncertainty on the final measured

distance (i. e. the measured distance uncertainty increases linearly with the distance to the

supernovae). Such a reduction of inherent scatter would improve resolutions at all depths

and push the maximum SN observation depth deeper.

5.3.2 Solving the Triple Value Problem

As mentioned above, one of the larger problems with the reconstruction method is that

it is not always possible from redshift information alone to determine which side of a

large structure a given observed galaxy is on. However, if a characteristic feature could

be identified for observed galaxies behind massive structures rather then in front of them

(for example from gravitational lensing or absorption), then that information could be

incorporated into the redshift catalogs. A redshift catalog constructed with known ordering

of galaxies could significantly improve reconstruction methods.

5.3.3 Improving the Reconstruction Technique

There are also two systematic weaknesses of the reconstruction methodology used in this

paper: firstly the assumption of linear bias is likely overly simplified. Halo mass abundance

matching algorithms are a good option for adding extra sophistication and accuracy to the
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density fields from which the peculiar velocities are derived. Secondly, there are nonlinear

reconstruction techniques, such as the Lagrangian approach pioneered in part by [85–87]

that is currently being worked on by Lavaux and many others.
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W. Krzeminski, N. Morrell, M. Roth, F. Salgado, B. F. Madore, D. Murphy, P. Wyatt,

W. Li, A. V. Filippenko, and N. Miller. The Carnegie Supernova Project: Analysis of

the First Sample of Low-Redshift Type-Ia Supernovae. AJ, 139:120–144, jan 2010.

[20] M. A. Strauss and J. A. Willick. The density and peculiar velocity fields of nearby

galaxies. Physics Reports, 261:271–431, 1995.

[21] G. Lavaux, N. Afshordi, and M. J. Hudson. First measurement of the bulk flow of

nearby galaxies using the cosmic microwave background. ArXiv e-prints, July 2012.

[22] H. A. Feldman, R. Watkins, and M. J. Hudson. Cosmic flows on 100 h−1 Mpc scales:

standardized minimum variance bulk flow, shear and octupole moments. MNRAS,

407:2328, jul 2010.

[23] H. Wang, H. J. Mo, X. Yang, and F. C. van den Bosch. Reconstructing the cosmic

velocity and tidal fields with galaxy groups selected from the Sloan Digital Sky Survey.

MNRAS, 420:1809–1824, February 2012.

[24] D.-C. Dai, W. H. Kinney, and D. Stojkovic. Measuring the cosmological bulk flow

using the peculiar velocities of supernovae. JCAP, 4:15–+, apr 2011.

98



[25] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Camp-

bell, Q. Parker, W. Saunders, and F. Watson. The 6dF Galaxy Survey: z \approx 0

measurement of the growth rate and sigma 8. ArXiv e-prints, apr 2012.

[26] F. Y. Wang. Current constraints on early dark energy and growth index using latest

observations. A&A, 543:A91, July 2012.

[27] L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, L. Lom-

briser, M. Manera, R. C. Nichol, D. P. Schneider, D. Bizyaev, H. Brewington,

E. Malanushenko, V. Malanushenko, D. Oravetz, K. Pan, A. Simmons, A. Shelden,

S. Snedden, J. L. Tinker, B. A. Weaver, D. G. York, and G.-B. Zhao. The Clustering

of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Testing

Deviations from $\Lambda$ and General Relativity using anisotropic clustering of

galaxies. ArXiv e-prints, June 2012.

[28] D. Rapetti, C. Blake, S. W. Allen, A. Mantz, D. Parkinson, and F. Beutler. A

combined measurement of cosmic growth and expansion from clusters of galaxies, the

CMB and galaxy clustering. ArXiv e-prints, May 2012.

[29] S. Basilakos. The $\Lambda$CDM growth rate of structure revisited. ArXiv e-prints,

February 2012.

[30] S. J. Turnbull, M. J. Hudson, H. A. Feldman, M. Hicken, R. P. Kirshner, and

R. Watkins. Cosmic flows in the nearby universe from Type Ia supernovae. MN-

RAS, 420:447–454, feb 2012.

[31] M. J. Hudson and S. J. Turnbull. The Growth Rate of Cosmic Structure from Peculiar

Velocities at Low and High Redshifts. ApJL, 751:L30, June 2012.

[32] P. J. E. Peebles. Principles of Physical Cosmology. Princeton University Press, 1993.

[33] R. Juszkiewicz, N. Vittorio, and R. F. G. Wyse. Local gravity and large-scale structure.

ApJ, 349:408–414, feb 1990.

99



[34] A. Kogut, C. Lineweaver, G. F. Smoot, C. L. Bennett, A. Banday, N. W. Boggess,

E. S. Cheng, G. de Amici, D. J. Fixsen, G. Hinshaw, P. D. Jackson, M. Janssen,

P. Keegstra, K. Loewenstein, P. Lubin, J. C. Mather, L. Tenorio, R. Weiss, D. T.

Wilkinson, and E. L. Wright. Dipole Anisotropy in the COBE Differential Microwave

Radiometers First-Year Sky Maps. ApJ, 419:1–+, dec 1993.

[35] M. Rowan-Robinson, J. Sharpe, S. J. Oliver, O. Keeble, A. Canavezes, W. Saunders,

A. N. Taylor, H. Valentine, C. S. Frenk, G. P. Efstathiou, R. G. McMahon, S. D. M.

White, W. Sutherland, H. Tadros, and S. Maddox. The IRAS PSCz dipole. MNRAS,

314:375–397, may 2000.

[36] W. Saunders, W. J. Sutherland, S. J. Maddox, O. Keeble, S. J. Oliver, M. Rowan-

Robinson, R. G. McMahon, G. P. Efstathiou, H. Tadros, S. D. M. White, C. S. Frenk,
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