NOTE TO USERS

The diskette is not included in this original
manuscript. Itis available for consultation at the
author’s graduate school library.

This reproduction is the best copy available.

UMI

DEVELOPMENT, ANALYSIS AND COMPARISON
OF CONNECTIONIST MODELS FOR

REAL TIME OPTIMISATION

Khairiyah Mohd-Yusof

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Chemical Engineering

Waterloo, Ontario, Canada, 2001

©Khairiyah Mohd-Yusof, 2001

i~

Your Ne Votre réidcance

Our lig Notre réidrance

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wetiington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése m1 des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-65597-0

Canadi

The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below, and give address and date.

ABSTRACT

This research investigates the development of different types of artificial neural
networks (ANN) and grey-box ANN models for real time optimisation (RTO) of
chemical processes. Therefore, must be easily computed, stable, and easily updated and
maintained. Due to this, the models have a predominantly connectionist structure. All
the models were developed and simulated under MATLAB environment.

Initial investigations were focused on a methanol-water flash system, which is
simple, yet realistic in representing the non-linearity of multivariable chemical
processes. Following this, ANN models were then developed for a crude oil distillation
column, which is a more complex industrial process. Training and testing data for the
network models were generated using steady state process models simulated i the
Aspen Plus steady state process simnulator. The sensitivity analysis feature in Aspen
Plus was utilised to generate a large amount of data in a single simulation run.

Three standard ANN models were developed for the M-W flash system: multi-
layer perceptrons (MLP) using backpropagation training with variable learning rate,
MLP using Levenberg-Marquadt, and radial basis function networks (RBFN). Of the
three standard ANN models. the RBFN was found to give the best result, and was thus
selected as the base case for comparison with other models.

The RBFN models were able to model the M-W flash system well, except for y,
the composition of methanol in the vapour outlet stream. Different combmations of
output variables affect the predictions of the model In general, grouping suitable
output variables combinations in a network model gave better predictions.

More complex models were required for better prediction of y because of the

discontinuity in y that exists in the change between the single-phase and the two-phase

iv

region. Three groups of models were developed: hierarchically structured neural
network (HSNN), serial network models and hybrid ANN-first principles models
(FPM). The models in all the three groups managed to improve the prediction of the
base model.

Among all the models, the output-tuned HSNN model that was designed in series
with a serial RBFN model provided the best prediction of y. Moreover, the structure of
the output-tuned HSNN provided means for incorporating constraints into the network.
The constraints used are simple and readily known information. The completely driven
HSNN, was also able to perform as well, when there is an input variable that directly
and strongly influenced y. In both types of HSNN, prior knowledge embedded into the
network structure allowed for significant improvements over the base case.

The results of the hybrid ANN-FPM also showed a significant improvement over
the base case in predicting y. Performance of the hybrid model, however, depended on
the availability of accurate parameters needed by the FPM. Therefore, a hybrid ANN-
FPM would require extensive prior information.

For the crude oil distillation tower, a standard RBFN was able to provide a highly
satisfactory model. Proper grouping of related variables not only improved predictions,
but also allowed for the complex, multivariable model to be more manageable while
avoiding the "curse of dimensionality”. The RBFN model for one of the crude tower
sections was also able to give good predictions when tested for range and dimensional
extrapolation. Since standard RBFN gave sufficiently accurate predictions, developing
more complex models was deemed to be unnecessary.

This study showed that ANN and grey box ANN models have the potential to
model chemical processes for RTO. Various methods exist to take advantage of readily
available information that can be utilised to overcome modelling difficulties. Most
significantly, since these models can be easily developed and updated, they are suitable

for practical industrial applications.

ACKNOWLEDGEMENTS

First and foremost, I thank God Almighty for giving me the strength to complete my

research. [would also like to thank the following people who assisted me in my

research:

¢ Prof. Peter Douglas and Prof. Fakhri Karray for their advice and encouragement.

® Assoc. Prof. Dr. Hishamuddin Jamaluddin of Universiti Teknologi Malaysia for his
assistance in helping me understand the HSNN algorithm.

e Engineers and plant personnel at PETRONAS Penapisan Melaka refinery for

helping me learn about the crude distillation tower.

I would also like to thank my parents, Norashikin and Mohd. Yusof, for their
constant support and prayers. Last but not least, I would like to thank my husband,
Helmi, and my children, Rugayyah, Sofwan and Muhammad, for their love, prayers,
sacrifice and encouragement. May God protect and guide all of you.

CONTENTS

ABSTRACT iv
ACKNOWLEDGEMENTS vi
LIST OF TABLES xii
LIST OF FIGURES xiii
1. INTRODUCTION 1
LI Background ... |
1.2 ANN in Chemical Engineering coooiiiiiiiiiiiiiieneeaes 4
L3ObJective ..o 7
1.4 Significance of Research ... 9
1.5 Thesis Outhinecooiiiiiiiiiiii i e re e 10
2. LITERATURE SURVEY 12
2.1 Introduction ... 12
2.2 Real Time Optimization (RTO) ...v..vovoeeeeeeerereeseeeeeeeree 13
2.2.1 Introduction ... 13
222 PreviousResearch ... 16
2.3 Artificial Neural Networks cooooiiiiiiiiiiiiiie 17
2.3.1 [Introduction to Artificial Neural Networks 18
2.3.2 Network Topologies c.ocoooiiiiiiiiiiiiiiii e 21
2.3.3 Developing ANNModelsooooiiiiiiiiiiiiiiiiiae 22
2.3.4 Multilayer Perceptrons ooiiii 25

vii

2.3.5 Radial Basis Function Network (RBFN)
2.4 Hybrid FPM-ANN Models ...

24.1 Background ...

2.4.2 Structures of Semi-

mechanistic Models ... R

2.4.3 Other Forms of Hybrid Models ...
244 FPM for Training ANN ...

2.5 Modular Neural Networks

2.5.1 Background

2.5.2 Classes of Modular Neural Networks cocooviiiiinnan.

2.6 Summary

. PROCESS DESCRIPTIONS

3.1 Introduction

...

3.2 Simple Process, The M-W Flasho

3.3 Industrial Process

3.4 Data Genperation e e

3.5 Summary ...l

4.1 Introduction

..

. DEVELOPMENT OF CONNECTIONIST MODELS

4.2 Multi-layer Perceptrons (MLP) oiiiiiiii,
4.3 Radial Basis Function Networks (RBFN) ...,
4.4 Hierarchically Structured Neural Networks (HSNN)
44.1 Linear-nonlinear HSNN
442 Nonlinear-nonlinear HSNN ...
443 Output-tuned HSNN ...

4.5 Serial Network Models
4.6 Hybrid Network Models

...

26
29
29
30
33

35
35
36
42

N

49
53
57

58
58

S 8

3

65
68
71
73

4.7 SUMIMATY oottt e 76

. RESULTS AND DISCUSSIONS 77
5.1 OVEIVIEW ottt e 77
52Standard ANN ..o 80

5.2.1 Base Case Model Selection 80
5.2.2 RBFN Models for M-W System 81
5.2.3 RBFN Models for B-T System 82
5.2.4 RBFN Models for Two-Phase Region 84
525 Predictingy ..o 86
5.3 Completely Driven HSNN ... 87
5.3.1 Linear-nonlinear HSNN ... 87
5.3.2 Nonlinear-nonlinear HSNN ... 90
5.4 Serial Network Models o 91
5.4.1 Serial RBFN-RBFNModelso 91
5.4.2 Serial RBFN-RBFN - Output-tuned HSNN 92
5.5 Hybrid Network Models ... 94
5.5.1 Hybrid RBFN-FPM ... 94
55.2 Hybrid RBFN-FPM-RBFN ... 95
5.6 Comparison of the Predictionof y 96
5.7 Crude Distillation TOWercoooiiiiiiiiiiiiniiiiiiineinns 107
5.7.1 Sections of the Crude Tower ... 107
5.7.2 Comparison between RBFNand MLP 108
5.7.3 Grouping of Variables 108
5.7.4 OverallPrediction ..ot 110
5.7.5 Simple Range and Dimensional Extrapolation 111
5.7.6 Objective Function for RTO 112
S.BSUMIMATY .oeninnintien it 114

6. CONCLUSIONS 117

6.1 ConCluSIONS ooiiiiiiiiiii i 117
6.2 Contributions coiuiiiiiii i 118
6.3 Recommendations coceiiiiiiiii 119
REFERENCES 120
A Background on Neural Networks 133
A.1 Neurons and Neural Networks 133
A.2 Developing ANN Models ... 135
A.3 Multilayer Perceptrons ... 137
A.4 Radial Basis Function Network (RBFN) 141
B Update Equations Derivation for HSNN 147
B.1 Update Equations for Linear-Nonlinear HSNN 147
B.2 Update Equations for Nonlinear-nonlinear HSNN 149
B.3 Update Equations for Output-tuned HSNN ... 155
C Training and Testing Data 161
C.1 Training and Testing Data for the Flash Systems 161

C.2 Training and Testing Files for the Crude Distillation Tower 176

D MATLAB Programs 178
D.1 Sample Program for Standard RBFN 178
D.2 Sample Program for MLP ... 180
D.3 Sample Program for Hybrid RBF-FPM-RBF 183
D.4 Sample Program for Linear-nonlinear HSNN 188

D.5 Sample Program for Nonlinear-nonlinear HSNN

D.6 Sample Program for Output-Tuned HSNN

Xi

3.1
32

5.1
5.2

5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

5.14

5.15
5.16

LIST OF TABLES

Product specifications and manipulated variables of the crude tower

Input and output variables for each section of the crude distillation

column.

Prediction of V using 150 and 300 training data points

models.

Results of RBF networkmodels ...
Results of the B-T systemusing RBFN models
Results of standard RBFN model for M-W systeminthe

two-phase region.

Results of linear-nonlinear HSNN models,
Results of nonlinear-nonlinear HSNN models

Results of serial RBF networkmodels cooiiiiiiiiiiiiiiiint

Results of serial RBFN - RBFN - output-tuned HSNN models

Results of Type 1 hybrid structure

Results of hybrid structure

RMS errors for prediction of y using the different models ...

Overall results for the top section of the main crude distillation
column using RBFN and feedforward network with BP.

RMS errors of variables in top and HN sections of the crude
tower.

Overall results for all sections in the crude distillation tower

RMS errors for range and dimensional extrapolation

...

Comparison of the best results obtained with RBFN and two MLP

...........

.53
. 56

79

. 81

82
84
85

108

109

110

2.1
22
23
24
25
2.6
27
2.8

29

2.11
2.12
3.1
32
33
4.1
42
43
4.4
45
4.6
47
4.8
49

LIST OF FIGURES

General configuration of a real time optimiser 15
Schematic diagram of a three-layer feedforward network 22
Schematic diagram of a recurrent network ... 23
General structure of a radial basis function network 27
Serial ANN-FP hybrid model ... 30
Parallel ANN-FP hybrid model ... 32
Combination of parallel and serial ANN-FPM hybrid model 32
An alternative form of serial hybrid FP-ANN model 33
Structure of hierarchical network fromChangand 38
Mavrovouniotis [1992].

Mixture of experts partitioned by gating networkas 39
proposed by Jordan and Jacobs [1995].

Hierarchically structured master and slave networks 40
Structure for stacked networks ... 42

Schematic diagram of a general two-component flash column ... 46

A general two-component phase diagram ... 47
Crude tower flow diagram ..., 50
General structure of linear-nonlinear HSNN ... 62
Structure of linear-nonlinear HSNN for M-W system 61
A nonlinear-nonlinear HSNN ... 66
Output-tuned HSNN ... 69
Serial network model ... 71
Serial RBFN - RBFN - output-tuned HSNN ... 72
Type 1 serial hybrid model with K-value (Model 1) 73
Type 1 serial hybrid model with component balance (Model2) 75
Type 2 hybrid model Model 2) ... 75

4.10
4.11
5.1
52

5.3
54

5.8

59
5.10

5.11
5.12

Al
A2
A3

Type 2 hybrid model (Model 3) ... 75
Type 2 hybrid model (Model4) ... 76
Plot of normalised actual V versus normalised predicted V. 86
Plot of y predicted using standard RBFN (base case) 98
(RMS =0.0119).

Plot of y in the two-phase envelope only (RMS =0.0065) 98
Plot of y predicted using linear-nonlinear HSNN (F slave) 100
(RMS = 0.0885).

Plot of y predicted using linear-nonlinear HSNN ... et 100
(K-values with errors as slave input) (RMS = 0.0857).

Plot of y predicted using linear-nonlinear HSNN 101
(K-values with errors as slave input) (RMS = 0.0864).

Plot of y predicted using linear-nonlinear HSNN (K-values 101
without errors as slave input) (RMS = 0.0344).

Plot of y predicted using nonlinear-nonlinear HSNN (z slave) 102
(RMS = 0.0820).

Plot of y predicted using serial RBFN-RBFN (RMS =0.1031) 104
Plot of y predicted using serial RBFN-RBFN - 104
output-tuned HSNN (FPM) (RMS = 0.0074).

Plot of y predicted using hybrid RBFN - FPM (RMS =0.0346) 106
Plot of y predicted using hybrid RBF-FPM-RBF (with 106
K-values without errors as FPM input) (RMS = 0.0202).

Schematic diagramof aneuron ... 135
General structure of a radial basis function network 142
Gaussian basis function eeeeeiiiiiiiiieiii e 143

Xiv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Real time optimisation (RTO), or on-line optimisation, is the continuous evaluation and
adjustment of process operating conditions to maximise economic productivity subject
to constraints. It is generating much interest in industry because of the increasingly
competitive environment of the current global economy. Traditionally, execution of
RTO requires rigorous plant models.

Good process models are critical for a successful implementation of RTO.
Currently, most RTO implementation uses rigorous first principles mathematical
models, which are not only complex and costly to develop, but also cumbersome and
difficult to maintain because of the skill and time requirements [Naysmith, 1997]. The
high computation time required in solving the models is also a major problem for on-
line applications. In fact, developing reliable models for a chemical process is a major
obstacle in implementing advanced control and optimisation because of the complexity
and cost involved [Hussain, 1999]. This leads to the quest for finding other types of
suitable models, such as off-the-shelf commercial simulation packages or purely black
box models like artificial neural networks (ANNs).

In a previous work, Naysmith [1997] successfully developed and executed
complete RTO loops on stabilizer-splitter distillation columns using two commercial

simulation packages, Aspen Plus and Speedup. Both packages use rigorous first

principles (FP) mathematical models to simulate chemical processes. Nevertheless,
Naysmith found out that models developed using both packages were not practical for
industrial use because of large computation times, convergence difficulties and failures.
For example, in Naysmith's work, the total CPU time in minutes taken for data
reconciliation and economic optimisation using an Aspen Plus model for a stabiliser-
splitter process in a refinery calculated on IBM RS 6000 Model 530H computer was
506.3 minutes.

FP based models, or white box models, requires in-depth knowledge of material,
energy and momentum conservation, as well as thermodynamics and kinetics, of the
process. These models are also called mechanistic or physical models. A complete
chemical process mode! can result in thousands of equations. As a consequence, the
model is complex and requires a high level of expertise to develop and maintain.
Solving these equations is equally difficult and computationally time-consuming. Thus,
both mode! development and maintenance are expensive. Nevertheless, good FP
models can extrapolate well and are extremely useful for understanding and analysing
processes. There are commercial packages available to assist in modelling and
simulation of chemical operations or plants. These packages are much easier to use
than building a model from scratch. Moreover, most of the steady-state simulation
packages also have good graphical user interface. Unfortunately, computation using
these packages is slow, making on-line implementation impractical.

An alternate approach to model a process is to use artificial neural networks
(ANN). ANNs have generated much interest in the chemical engineering community
for more than a decade and many industrial applications have since been reported
[Nascimento, et al., 2000; Gontarski, et al., 2000; Elkamel, et al., 1999; Meghlaoui, et
al., 1998; Tumner, et al., 1996; Baratti, et al., 1995; Cheung, et al., 1992; Thibault and
Grandjean, 1991]. Thompson et al. [1996] and Thompson and Kramer [1994]
suggested the use of ANN as the process model for RTO. In another work, an

(5]

important variable was estimated using an ANN model as part of a large rigorous model
for use in on-line supervisory optimisation [Sabharwal, 1997].

ANN, a connectionist-based black box model, consists of layers of nodes with
non-linear basis functions and weighted connections that link the nodes. Using the
nodes and weights, the inputs are mapped to the outputs after being trained with a set of
data known as training data. Multilayer feedforward ANNs have been mathematically
proven to be a universal approximator [Homik, et al., 1989]. However, since ANNs are
data driven, the resulting model can only be as good as the data provided to the network
for testing and training. Therefore, unlike FP models, ANNs are poor extrapolators.

A third approach of modelling pertains to construct a mixture of white box and
black box models. A hybrid model involving white box and black box models is used
to overcome the weaknesses while utilising the strength of both approaches. While
most published works defined the combination of FP and ANN models as hybrid
models, te Braake, et al. [1998] classified them as semi-mechanistic models and grey
box models. The starting point of a semi-mechanistic model is a white box model, with
certain parameters or variables calculated from black box medels or empirical
correlations. The starting point of a grey box model is a black box model, with prior
knowledge being used to provide additional information.

Grey box models can also be defined to include models with structures designed
to incorporate prior knowledge. Several methods of integration that were successful to
certain applications had been proposed, but there were no specific proven rules. Some
of the methods use a direct hybrid of ANN and FP models. Modular neural networks
(MNN), which represent another class of ANN, break down large models into sub-
systems that cooperate with each other to come up with the model outputs [Gallinari,
1995]. The architecture of MNN is usually designed based on prior knowledge of the
process. Another class of network, Hierarchically Structured Neural Networks (HSNN)
[Bittanti and Saveresi, 1998), uses prior knowledge of the output variable behaviour to

divide the input variables into “‘master” and ‘“slave” units. The outputs of the master

network are parameters for the slave network. Based on this, the slave network
calculates the predicted output variables of the system. In this work, grey box ANN
models will be used in a generic sense to cover hybrid ANN-FP models, MNN models,

HSNN models and combinations of the models.

1.2 ARTIFICIAL NEURAL NETWORKS IN
CHEMICAL ENGINEERING

Artificial neural networks (ANNSs) are widely applied in chemical industries, especially
in the area of fault diagnosis, process modelling, process control and process
optimisation. Applications in chemical engineering include those in petroleum refineries
[Elkamel, et al., 1999; Cheung, et. al., 1992; Thompson et. al, 1996; Zhao et. al., 1997],
chemical plants {Turner, et. al, 1996; Baratti et. al., 1995; MacMurray and
Himmelblau, 1995; Bulsari, et. al., 1994], polymerisation processes [Nascimento, et al.,
2000; Zhang et. al, 1995], microelectronics fabrication [Fakhr-Eddine, 1996],
biotechnology [Thibault, et. al, 2000; Latrille, et. al., 1994; Schubert, et. al., 1994},
metallurgical processes [Meghlaoui, et. al, 1998; Reuter, et. al., 1993}, wastewater
treatment [Gontarski, et al., 2000; Syu and Chen, 1998}, and oil recovery [Elkamel,
1998; Elkamel, et. al, 1996].

There are several advantages of using ANN models in chemical engineering.
These include:
1. ANN models are simpler to develop than FPM because a detailed knowledge of the

process is not required. This directly translates into savings in time and money.

2. ANN models can be easily used, updated and maintained, making them the

preferable form of models for plant engineers.

3.

A large amount of data may be required to train the network. However, this is not a
big problem as most chemical plant engineers are “data rich and information poor”
[Venkatasubramanian and McAvoy, 1992}.

Once trained, execution of ANN based models are very fast, even though large
networks may take longer training times. ANN models are thus particularly suitable

for use in on-line applications that repeatedly evaluates the model, like in RTO.

While ANN models have gained many proponents among engineers in the

chemical industries, there are also some that are sceptical of the ability of ANN because
of their structural weaknesses. The disadvantages of ANNs include:

1.

To develop ANN models, there is no guidance for picking suitable structures and
training algorithms.

Large number of parameters that may be used in ANN models makes it easy to
overfit the data, causing poor generalisation. ANN models are also known to be
poor extrapolators.

Training algorithms that use steepest descent methods to compute the connection
weights tend to be trapped in local minima. This results in inconsistent solutions
that are highly dependent on the initial values, which is especially apparent in large
networks that are very common in chemical engineering.

Incorporating prior knowledge into an ANN is also difficult. Once trained, ANN
models do not carry physical significance and therefore cannot yield any insight to
the process.

ANN models are poor extrapolators. They are usually only reliable within the range
of data that they had been trained for.

Lately, there have been several studies that reported a preference using ANN

models even though rigorous FP models for the processes are available {Nascimento, et

al., 2000; Altissimi, et al., 1998]. The FP models were used to generate data to develop

ANN models. ANN models are especially suitable for on-line applications because of
the relatively short computational time to solve the model and its ability to accurately
represent the model. In optimisation, this is especially advantageous since the model
must be accessed by the optimiser and computed repeatedly. Altissimi, et al. [1998]
successfully applied ANN models of a gas separation unit in RTO. The ANN model
was developed from data generated by the plant model simulated in Aspen Plus.
Successive quadratic programming (SQP) was then used to optimise the profit of the
process unit. Replacement of the rigorous FP model with the ANN model reduced
computation time by at least 60 folds. Nascimento, et al. [2000] successfully optimised
the operating conditions of a nylon-6,6 polymerisation process. The pure ANN model
for the process was developed using data generated from a rigorous semi-mechanistic
model that had been fitted to the plant data. Optimisation was performed off-line by
mapping all the possible solutions within the region of interest using the ANN model
and locating the optimum using a grid-search method. Nevertheless, both works did not
study different types of ANN structures to best model the processes; the ANN models
used in both works are feedforward multi-layer perceptrons (MLP).

Hybrid FP and ANN models have also been widely applied in chemical
engineering applications. Several methods of integration that were successful in certain
range of applications had been proposed, but there were no specific proven rules.
Published studies on this type of models included those carried out by Thibault et al.
[2000], te Braake et al. [1998], Wilson and Zorzetto [1997], Thompson and Kramer
(1994], Schubert et al. [1994], and Psichogios and Ungar [1992]. There even is less
published work in chemical engineering on models that imbed prior knowledge into the
system structure. A published work on this type of model has been done by Chang and

Mavrovouniatis [1992].

1.3 OBJECTIVE

ANN models developed for RTO are different from those developed for process control
or other off-line applications. RTO requires steady-state models that can yield all
output variables required by the optimiser [Naysmith, 1997]. For large, multivariable
processes, there can be more than 100 variables to compute. Since the application is
on-line, the models must also have short computation times.

As mentioned previously, simple ANN models have successfully been used for
RTO. However, there was no discussion on the choice or development of the
multivariable ANN based models. There is a need to study the various types of ANN
models to determine which are suitable for RTO, especially since there are difficulties
to model chemical processes that may not be modelled using simple multi-layer
perceptrons or can be more efficiently represented by other types of ANN. Different
types of ANN models that had been studied in chemical engineering thus far were not
developed for RTO applications; in fact, more complex models were mostly developed
for control purposes. In addition, there has been very little work on imbedding prior
information of a process in the structure of the network model.

The main objective of this research was to investigate, develop, and analyse
different connectionist models that are appropriate for RTO applications. Because of
time limitations, this research work concentrates specifically on exploring and
developing suitable types of standard ANN and grey-box ANN models, without
completing the whole RTO loop. In addition, there has been a previous work by
Altissimi et al. [1998] that applied a standard ANN model in a complete RTO loop,
where a reduction in computation time by at least sixty times was obtained. However,
they did not explore the use of different types of grey box ANN structures, which is
deemed to be necessary because there are chemical processes that cannot be modelled
using standard ANN models. A grey box ANN structure is preferred over semi-
mechanistic model because grey box ANN models would preserve the structure of ANN

models, which can be easily and efficiently solved. Even if a complex process had a
series of grey box ANN models, ihe model would be solved in a straightforward
manner, and would require much smaller computation time compared to models that
were mechanistic in structure. For ease of investigation, the connectionist models were
first developed for a simple but realistic flash process, followed by development for a
complex crude oil distillation column.

This work is also meant to study the possibility of using different configurations
of Hierarchically Structured Neural Network (HSNN) for modelling chemical
processes. Prior information is imbedded into the HSNN structure to allow better
modelling. So far, HSNN models have never been reported for modelling chemical
processes. There have also been fewer studies on embedding simple and readily
available prior information in the model network structure in chemical engineering
applications.

The pure ANN models form the basis of comparison for the grey box ANN
models that were developed. The grey box ANN models were imbedded with prior
knowledge in the form of the architecture of the models. In addition, FP models were
included in the hybrid ANN-FPM models. The models have mostly dominant ANN
structure, which means that they have the desired characteristics that are suitable for
implementation in RTO. The charactenstics are:

1. Short execution time (inexpensive computation).

2. Good generalisation capabilities.

3. Robust (does not fail and has good convergence) and stable.
4

. Easy to develop, update and maintain.

14 SIGNIFICANCE OF RESEARCH

This research presents the design of different types of ANN and grey-box ANN models
with the desired characteristics for implementation in RTO. Coming up with a suitable
model is important because this is usually the major stumbling block for on-line
implementation. Although there has been some work done on implementing an ANN
model in RTO, there has been no work done on developing and evaluating different
ANN models in the literature. This work would therefore provide alternatives for other
types of ANN and grey box ANN models, especially when simple ANN models are not
suitable, or when prior information can be added to yield a better model.

Using grey box ANN models will provide options and possibilities of utilising
existing information that can aid in increasing the accuracy of the model. Prior
information that can be imbedded does not have to be in the form of equations as is
currently performed in most research for modelling chemical processes. Information
about suitable output variable combinations, or which of the output variables should be
predicted first in a series of network models, can aid in increasing the accuracy of a
model. This information is usually readily available, but not normally exploited in
model development. In addition, incorporation of prior information can be achieved
without involving complex procedures, and this is especially important for industrial
implementation.

One of the grey box ANN models, the Hierarchically Structured Neural Networks
(HSNN) based models, can be utilised when to imbed simple prior information into the
structure. Completely driven HSNN can be used in the presence of an input variable
that has a strong influence on a particular output variable of a system. Output-tuned
HSNN can be used to imbed simple constraints that are usually known for chemical
processes. This type of network, which has not been used to model chemical processes,
has the potential to handle discontinuities in a system. This is an advantage over most

ANN models because some chemical systems are known to exhibit discontinuities.

10

Developing ANN models for the simple, non-linear process and the industrial
process served as an illustration of the different strategies in handling muitiple input and
output variables in different chemical systems. The ANN models developed here were
for the complete processes, rather than for just specific variables, which is mostly the

case in most published works.

1.6 THESIS OUTLINE

The following is the outline of the thesis.

Chapter 2 presents a literature review on the current research and general
backgrounds on ANN and grey box ANN models that may be applied to chemical
processes. Some of the different model structures have been applied to chemical
processes, while others, with possible potential for future applications, have not. This
chapter also provides a brief review on connectionist modelling.

Chapter 3 presents a description of the two processes (simple and industrial),
modelled in this work. The simple but realistic system, a methanol-water flash drum,
was used to study different ANN and grey box ANN models. The industrial process, a
crude oil distillation column, is a practical candidate for RTO due to variations in feed
and operating conditions, as well as having a complex physical model.

Chapter 4 presents the different ANN and grey box ANN models developed and
tested in this work. There are two types of standard ANN models and three types of
grey box ANN models investigated. Brief descriptions of the algorithms and structure
of the models are also given in this chapter.

Chapter S presents the results and discussions of the different models described in
Chapter 4. The models were tested on the flash systems and the crude oil distillation
column. A comparison between the models and between the two different chemical

processes was also made.

11

We conclude in Chapter 6 with comments on the current study and
recommendations for possible future enhancements of the techniques developed here.

Major contributions of this research are also given in this chapter.

CHAPTER 2

LITERATURE REVIEW

21 INTRODUCTION

Mathematical models are very important in chemical engineering, both in the design
and operation of chemical plants. In plant operations, models are required for analysis,
control (especially advanced control) and optimisation. Developing a reliable model for
a chemical process is a major obstacle in implementing advanced control and
optimisation because of the complexity and cost involved [Hussain, 1999].
Consequently, there is much research in developing different process modelling
techniques.

Real time optimisation (RTO), which is the continuous evaluation and adjustment
of a process operating conditions to optimise the economic productivity subject to
constraints, traditionally requires rigorous steady-state plant models. These models are
difficult and expensive to develop and maintain because of the skill and time
requirements [Naysmith, 1997]. Currently, there are efforts to seek other types of
suitable models, such as off-the-shelf commercial simulation packages or purely black
box models like artificial neural networks (ANNs). A previous work found using
commercial simulation packages for RTO to be impractical [Naysmith, 1997]. Several
works suggested the use of ANN as the process model for RTO [Thompson, et al.,
1996; Thompson and Kramer, 1994). In one work, an important variable was estimated

using an ANN model as part of a larger rigorous model for use in on-line supervisory

13

optimisation {Sabharwal, 1997]. In the works of Altissimi, et al. [1998] and
Nascimento and Giudici [1998], rigorous FPMs were used to generate training and
testing data to develop ANN models for a chemical process to be used for optimisation.
In both studies, the ANN modeis were found to be accurate and were able to cut down
computation time, which is very important for on-line applications.

The current work aims at exploring an alternative approach for the process model
of RTO. Because of setbacks in using purely FP models, this work concentrated on
ANN models, and grey-box ANN models that are able to incorporate prior knowledge
into neural network models in the form of hybrid neural networks — FP models, or
modular neural networks, or a combination of the two.

In this chapter, a review of RTO is presented to understand the problems and
requirements in implementing RTO, especially on the role of the process model. A
review on the previous work on RTO is also given. Then, an overview of ANN is
presented to provide the basis of ANNs along with their strengths and their weaknesses.
Different types of the networks that have the potential to be used in RTO are also
described. Background information on ANN is given in Appendix A. Next, different
hybrid ANN-FP models reported in chemical engineering applications are surveyed.
Finally, modular neural network architectures with potential applications to RTO are

presented.

2.2 REAL TIME OPTIMIZATION

2.2.1 Introduction

Real-time optimisation (RTO) or on-line optimisation is the periodic update of process

operating conditions, such as flowrate, temperature and pressure setpoints, so that the

process is operating at its economic optimum, while at the same time fulfilling the

14

process and production constraints [Jang, et al, 1987]. RTO can be applied to a single
unit operation, or even to a whole plant. There is great interest in RTO in industry
because of stiff competition and increasingly stringent product requirements [Cutler and
Perry, 1983]. In addition, advancements in computing power have enabled cost-
effective implementation of RTO.

RTO is most beneficial for processes with a wide range of operating conditions.
In industrial operations, variations in the operating conditions are quite common due to
varying feedstocks, product specifications and prices, and economic trade-off
[Naysmith and Douglas, 1995]. For example, in an oil refinery, the atmospheric
distillation tower receives varying qualities of crude oil. Temperature set points in the
column, which determine the cut points for the side draws, varies with different assays.
This leads to complications in determining the desirable operating conditions. As such,
implementation of RTO can lead to significant improvement.

Figure 2.1 illustrates the general structure for RTO based on the simulated
implementation studied by Naysmith [1997]. Referring to this general configuration,
the steps in a complete RTO implementation cycle are:

1. Steady state detection: this is where the plant data are monitored for a pseudo-
steady state condition before allowing for optimisation to take place. Once an
approximate steady state is detected, the measured process variables are relayed

to the optimiser.

[

Data reconciliation: this part consists of gross error detection and data
reconciliation. Gross error detection filters out overly erroneous data, while the
rest of the data are reconciled with mass and energy balances from the process
model.

3. Parameter estimation: the reconciled data are used to update model

parameters, which are then used in the optimiser process model.

15

PARAMETER |Lgg

ESTIMATION Reconciled data
+ Estimated unmeasured
variables
P:ggEEf_S P geggNCIUATION
Calculated data

Y

Economics Measured Variables
—t OPTIMISATION (g at ‘Steady State”
Set Points
Optimised
et Points
PROCESS STEADY STATE
CONTROL DETECTION
; Measured
Manipulated ‘ °
variagles * Variables A
—
PROCESS

Figure 2.1: General configuration of a real time optimiser.

4. Process model: this is the most crucial component of the RTO. The process
model calculates changes in the manipulated variables due to the updating of set
points by the optimiser. The model is also needed in reconciling the measured
plant data.

5. Optimisation: the optimum set points are searched subject to an economic
objective function taking into account process constraints. The set points are
iterated between this optimisation routine and the process model. Once
optimised, the set points are passed on to the process control uait of the plant to
be updated.

In general, industrial RTO is difficult to develop and maintain. The process

models commonly used in RTO are rigorous first principles steady-state models, which

16

require extensive knowledge not only to develop, but also to numerically solve, and
finally optimise. Consequently, developing RTO applications is extremely time-
consuming and requires highly skilled and specialised staff. Maintenance of RTO

applications is required when there are process modifications [Naysmith, 1997].

2.2.2 Previous Research

Naysmith [1997] successfully simulated the implementation of real-time optimisation

(RTO) of a stabiliser column and a splitter column in commercial simulation packages.

Using commercial packages to develop and hold the process model for RTO was

investigated as a possible method to reduce the complexity of developing and

maintaining RTO. Two simulation packages with different modelling and simulation
approaches were compared: sequential modular (Aspen Plus) and equation oriented

(Speedup).

Naysmith [1997] found several advantages and disadvantages in executing RTO
with both the packages. These include but not restricted to:

o Developing and debugging the model. The Aspen Plus model is simpler to
develop and debug compared to the Speedup model. Aspen Plus provides a
graphical user interface and useful messages in debugging the simulation. Speedup
is difficult to use and does not provide useful messages in debugging, especially in
the event of convergence failure.

o [Execution time. Speedup is computationally more efficient than Aspen Plus
because all the model equations are solved simultaneously while Aspen Plus solved
each module in a sequence. In the event of convergence failure, however, Aspen
Plus is able to give more realistic results than Speedup because of the different

algorithmic approaches in the simulation in the packages. Nevertheless, simulations

are

23

in both packages are computationally expensive, which limits the suitable choice of
the optimisation method.

Optimisation. Both packages use successive quadratic programming (SQP) as the
optimisation method. Aspen Plus utilises the feasible path approach, while Speedup
utilises the infeasible path approach. Consequently, optimisation with Aspen Plus is
more conservative and takes more steps to reach the same optimum reached by
Speedup. Nevertheless, in the event of convergence failure, the result given by
Speedup may be completely meaningless because it does not occur in the feasible

region of the process.

Naysmith [1997] concluded that process simulation packages currently available
not practical for use in RTO. This is mainly due to the following:
Convergence failure (either because of the simulation model failing to converge or
SQP failing to find an optimum) would occur and disrupt the RTO cycle.
Consequently, the RTO cycle had to be restarted.
Very high computation resource requirements, making the model unsuitable for

repeated on-line evaluations.

ARTIFICIAL NEURAL NETWORKS

Due to the problems encountered in Naysmith's work, an alternative form of model is

sought. A viable option is to use artificial neural network (ANN) models. This section

provides a review of the background on ANN.

18

2.3.1 Introduction to Artificial Neural Networks

Artificial neural networks (ANNs) have been designed on the premises of mimicking
the complexities of the brain functions in an effort to capture (or at least partially
capture) the amazing learning capabilities of the brain. ANN is a sort of parallel
computer/processor designed to imitate the way the brain accomplishes a certain task
[Willis, et al, 1991]. The smallest processing element of ANN is a neuron (also called
node) which performs simple calculations. Using the nodes collectively with massive
connections among them results in a network that is able to process and store
information for mapping the network inputs to its outputs. With this capability, there
are widespread interests due to on-going and potential applications in solving complex
problems particularly in the fields of pattern recognition (especially in speech and
image processing), classification, control, forecasting, systems identification and
optimisation.

ANNSs are not a solution for all modelling problems. Therefore, it is necessary to
understand the strengths and limitations of ANN to determine their applicability for a
particular problem. Baughman and Liu [1995] lists the following strengths of neural
networks:

1. Distribution of information over a field of nodes. This feature allows greater
flexibility and robustness because a slight error or failure in certain sections of the
network will not cause the whole system to collapse.

2. Ability of ANN to learn. ANN is able to adjust its parameters in order to adapt
itself to changes in the surrounding systems, for example by using an error-
correction training algorithm.

3. Extensive knowledge indexing. This means ANN is able to store a large amount
of information and access it easily when needed. Knowledge is kept in the network

through the connection between nodes and the weights of the connections.

19

. Suitable for noisy and inconsistent data. This is possible because each neuron in
the network encodes a minute feature of the input-output pattern, and thus
minimising the effects of inaccurate data. The overall feature is mapped only when
the nodes are assembled and co-ordinated together into a single network.

. Imitation of the human learning process. The network can be trained iteratively,
and by tuning the strengths of the parameters based on observed results. After
repeated training and adjustments, the network can develop its own knowledge base
and determine cause and effect relations.

. Potential for on-line use. Once trained, ANN can yield results from a given input

relatively quickly, which is a desired feature for on-line use.

Baughman and Liu [1995] also lists the following limitations of ANN:

. Long training times. Training times for ANN can take too long, especially for
large networks, to make the ANN impractical.

. Large amount of training data. ANN needs large amount of input-output data for
proper knowledge extraction. Therefore, if there are only a small amount of input-
output data available, ANN may not be suitable for modelling the system.

. No guarantee to optimal results and reliability. Although the network contains
parameters that can be tuned by the training algorithm, there is no guarantee that the
resulting model is perfect for the system. The tuned model may be accurate in one
region and inaccurate in another. In addition, there is also the problem of getting
trapped in local minima during training, resulting in less than optimal results.

. Difficulty in selecting good sets of input variables. Selection of input variables is
difficult because too many input variables will lead to large networks with too many
parameters, which can in turn cause overfitting and poor generalisation. Too little

or inappropriate input variables will lead to poor mapping of the system.

The origin of ANN can be first traced to the early 1940’s in a paper by McCulloch

and Pitts on the modelling of neurons [Venkatasubramanian and McAvoy, 1992].

20

Current research in ANN comes from diverse fields, such as the more traditional

engineering fields (e.g. electrical engineering, computer engineering, etc.), mathematics

and the sciences (physics, chemistry, and biology), to medicine, psychology, and
business management.

In chemical engineering, while there have been numerous successful applications
of neural networks, there are also those who claim neural networks to be nothing more
than a class of nonlinear parameter estimation techniques. While the criticisms were
sometimes well founded, there is a need to remember that drawbacks, extreme
expectations and negative reactions are the norm in the exploration of an emerging field
[Venkatasubramanian and McAvoy, 1992]. Hence, there is a need to find suitable roles
that can best exploit the capabilities of neural networks in the chemical engineering
field.

Currently, works in chemical engineering on ANN are mostly in process fault
diagnosis, dynamic process modelling and process control. Compared to the large
number of literature found on dynamic modelling, there are fewer papers on steady-
state ANN process models. Nevertheless, there has been lately an increasing trend for
diverse application of ANN to model steady-state processes. Among them are:

e Pollock and Eldridge [2000] and Whaley et al. {1999] fitted ANN models to
experimental data for prediction of height equivalent of a theoretical plate (HETP)
and pressure drop for columns with structured packing. Compared to a traditional
semi-empirical method, the ANN models were found to give more accurate
predictions of experimentally determined HETP values.

e Elkamel, et al. [1999] developed an ANN model for a hydrocracking unit in an oil
refinery was using plant data. The model was used for prediction of product flow
and quality.

e Mandlischer et al. [1999] fitted ANN to experimental data to predict the enthalpy of
vaporisation. The model was found to be just as accurate as two physical models,

and was slightly more accurate at critical temperatures.

21

® Sharma et al. [1998] fitted ANN to vapour-liquid equilibrium (VLE) data. They
found that ANN was able to model the VLE phase envelope better than existing
equations-of -state, especially for highly polar mixtures.

® Altissimi, et al. {1998] developed ANN models for a hydrocracker outlet gas
separation unit, which consisted of four distillation columns in series, for use in
RTO.

® Sabharwal [1997] estimated contaminant composition in a xylene distillation
column in a refinery in Japan using ANN models trained by both plant and
simulated data, and then used in off-line process optirnisation.

® Cheung, et al. [1992] used steady-state ANN models as soft-sensors to provide
inferential measurement of two variables of a refinery fractionator.

e Baratti, et al. [1995} used ANN as soft-sensors for predicting product compositions

for a butane splitter and a gasoline stabiliser in a refinery in [taly.

2.3.2 Network Topologies

Neurons (also called nodes) can be connected in several different topologies, the most
common being feedforward and recurrent networks. The nodes are arranged in layers.
As such, the network may contain a single layer, or more than one layer, in which case
it becomes a multilayer network. Appendix A contains detailed descriptions of a

neuron.

Mulitilayer Feedforward Networks. There are three types of layers: input layer,
hidden layers, and output layer (Figure 2.2). There can be more than one hidden layer.
The hidden layer extracts higher order information from the data. Inputs to the neurons
in a layer come from the neurons in the preceding layer. In a standard multilayer

feedforward network, all connections are weighted.

™~
(85)

Output
layer

Hidden
layer

Input
layer

Figure 2.2: Schematic diagram of a three-layer feedforward network.

Recurrent Networks. A recurrent network is distinct from a feedforward network in
that it has at least one feedback loop, as illustrated in Figure 2.3. Self-feedback, which
is when the output of a neuron is fed back to its input, can also occur. Addition of unit
delay systems or zero-order holds (denoted by z') in recurrent networks, is very

common in dynamic modelling.

2.3.3 Developing ANN Models

[n general, developing ANN can be summarised into the following steps:

él X2
B 2

Inputs

J

Figure 2.3: Schematic diagram of a recurrent network.

I

[

Pre-processing. Some pre-processing must be performed on the data. Although
ANN is able to handle noisy data, industrial data that are very noisy should be
filtered as much as possible. This is because data with too much noise can mask
weak non-linearities [Cheung, et al, 1992]. Input/output data must also be scaled
between 0 and 1 or ~1 and 1 depending on the type of activation function used. This
is very important to avoid saturating the activation function of the neurons. In
addition, scaling the data will smooth out highly convoluted dimensions, making it
easier for the network to learn the function surface [van der Walt and van Deventer,
1993].

Training/learning phase. Learning is the process of adjusting weight factors based
on systematic and efficient trial and error. Training is the process of adjusting

weight factors until the output patterns reflect the desired relationship [Baughman

and Liu, 1995]. To do this, the network is repeatedly presented with a set of known
input/output data. The network learns the input/output response behaviour, and
subsequently undergoes further training. This is the longest and most time-
consuming step. It is also the most important to the success of the network.
Common types learning algorithms are described in Appendix A.

3. Recall phase. The network is tested with the training data. Further adjustments on
the weights are made, if needed.

4. Generalisation. The network is tested with data that it was not trained with before.
This phase will determine the interpolation/generalisation capability of the network.
Different numbers of nodes are tested because there is a possibility for the network

to overfit and badly generalise.

Selection of suitable input variables is extremely important to properly map the
relationship with the output variables. For large multivariable systems such as those
encountered in chemical engineering, this is a difficult task. A major deterrent in using
neural networks in chemical engineering is when the number of input variables is large,
primarily due to what is called the “curse of dimensionality” [Wang, et al. 1995]. This
is due to the fact that as the number of input variables increases, memory storage and
computational cost increase exponentially. The number of parameters to be estimated
will also increase, leading to poor generalisation capabilities [Sridhar, et al, 1998].

There have been a number of research activities on designing methods to select
relevant inputs and thereby reducing the input dimension. In one of their works, Bhat
and McAvoy [1992] built a network including all the input variables, and then started to
prune them out one by one until all irrelevant inputs were eliminated. In another work,
the opposite strategy was taken by growing the network size starting with an input
pattern that is considered to be the most important {Sridhar, et al, 1998]. In these
works, however, the network must be designed and trained before the relevant inputs

can be chosen. A method put forward by Sridhar et al. [1998] enables the identification

25

of important variables before the ANN model is developed. The method, which is
known as Information Theoretic Subset Selection (ITSS), is based on information
theory. The ITSS method allows the estimation of the percentage of total information
in a subset with respect to the entire input vector. Input vectors with large percentage of

information can then be selected to develop the ANN model.

2.3.4 Multilayer Perceptrons

Multilayer perceptrons are feedforward multi-layered networks that are capable of
performing just about any linear or nonlinear computation and can approximate any
reasonable function arbitrarily well. Back propagation learning algorithm is one of the
earliest and most common method for training multilayer perceptrons. It is used to train
nonlinear, multi-layered networks to successfully solve difficult and diverse problems
such as perform function approximation, pattern association and pattern classification,
non-linear system modelling, time-series prediction and image compression and
reconstruction [Hassoun, 1995]. Refer to Appendix A for a detailed description of
backpropagation learning.

Leonard and Kramer [1990] showed that the backpropagation algorithm is
inefficient and has poor convergence on serial processing machines (ie. computers).
Backpropagation learning is generally slow because of the characteristics of the error
surface that is characterised by numerous flat and steep regions and has many troughs
that are flat in the direction of search. In addition, there are local minima at error levels
above the levels of the global minima of the surfaces. This causes the back propagation
learning to become stuck at the local minima and converge very slowly {Lin and Lee,
1995]. To speed up the performance of backpropagation many enhancements and
modifications have been proposed [Lin and Lee, 1995]. Details of the recommended

modifications are given in Appendix A.

Other than backpropagation algorithm, there are currently many other techniques
that can be used to train MLP. Among them are the Levenberg-Marquardt and the
conjugate gradient training algorithms.

2.3.5 Radial Basis Function Network (RBFN)

RBFN is based on the concept of the locally tuned and overlapping receptive fields that
exist in the cerebral and the visual cortex [Moody and Darken, 1989]. The receptive
fields of the network are radial basis functions, which can be adaptively tuned to
provide sufficient overlapping for smooth mapping, but sharp enough for good
approximations.

Well known for its fast, localised training, simplicity and generality, the network
attracted much research, especially in the late eighties and in the nineties. The network
performs very well for classification and multidimensional curve-fitting
(approximation) problems. RBFN is also suitable for on-line applications because it
can be rapidly trained [Freeman and Saad, 1997]. Among the applications are speech
recognition, image processing, fault diagnosis, process control, time series analysis and
general function approximation.

RBFN has a feedforward structure (Figure 2.4). It differs in terms of operation
from the standard feedforward neural network in the following aspects:

1. The first layer connections to the second layer are not weighted.
2. The hidden layer has J nodes, usually with Gaussian density function:
by (x) = expl-||x - cjI* / (26)) .1
where ¢;, j = 1,....J are the RBF centers, and 0j is the RBF width parameter. ¢;
determines the location and O; determines the span of the activation region of the
nodes in the hidden layer. Each node in the hidden layer corresponds to a unique

local neighbourhood in the input space. Within the region of activation, the closer

the input, x;, is to the centre of the receptive field, c;, the higher the activation level,

with the maximum being one when x; is at c;.

Learning for RBFN is divided into two parts. The first part is on the synthesis of
the hidden layer, while the second part is on getting the weights of the output layer.
The separate training scheme exploits the localised presentation ot the hidden layer

units, since only the nodes activated by an input needs updating.

X1 X2 Xi

Figure 2.4: General structure of a radial basis function network.

The first part of RBFN training is to get the receptive fields parameters, which are
the centers, c;, and the width of the receptive fields, g; Several learning schemes exist
for determining c;. The different approaches are discussed further in Appendix A. A
single value of o is sufficient to be used for all the receptive fields. RBFN with the
same O for each receptive field in the hidden layer was theoretically proven as universal
approximator [Hassoun, 1995].

The second part of RBFN training pertains to the task of finding the weights of the
output layer, and is fairly straightforward. The works surveyed used linear regression,
singular value decomposition or one of the backpropagation algorithms, like the delta
learning rule [Hassoun, 1995; Haykin, 1994, Leonard, et al., 1992].

Chen et al [1991] came up with the orthogonal least squares (OLS) algorithm,
which has node-growing capability. The OLS algorithm provides a systematic method
to select RBF centers. The centers are selected one at a time such that the
approximation errors of the network are effectively reduced at each step. This recursive
procedure is terminated once the errors have reached below a prescribed value. The
MATLAB neural networks toolbox uses this algorithm to find the centers of RBF
networks. An advantage of this method includes a smaller number of nodes in the
hidden layer than that of RBF with randomly selected centers. Another advantage is the
avoidance of numerical ill-conditioning frequently encountered in RBF with randomly
selected centers.

Leonard et al [1992] introduced the validity index network (VI net), which is an
extension of RBFN. In addition to the network output, the VI net indicates when the
network is extrapolating. The network is able to indicate any extrapolation based on the

estimation of the local training data density.

24 HYBRID ANN-FP MODELS

24.1 Background

Hybrid ANN-FP models were developed to overcome the disadvantages, while utilising

the advantages of both approaches. They are designed with the aim to enable these two

approaches to complement each other so that accurate and efficient models can be

realised. In the literature surveyed, advantages of a hybrid model includes:

e Good generalisation and extrapolation capabilities [van Can et al., 1996}.

e Easier and consume less time to develop than their rigorous FP models counterparts
[Suetal, 1992].

e Able to extract physical interpretation from the model [Psichogios and Ungar,
1992].

e Accurate and reliable even when data is sparse and noisy [Thompson and Kramer,
1994).

te Braake et al. [1998] classified models with a mixture of FP (or white box)
models and black box models (usually ANN) into two categories: semi-mechanistic
models and grey box models. Semi-mechanistic models are based on FP models, with
certain parameters or variables calculated from black box models or empirical data. The
models are of the same form as the white box models. Grey box models are based on
black box models, with prior knowledge being used to provide additional mformation.
The models are of the same form as the black box model. Nevertheless, this definition
serves only as a general guideline of notation for classification of these models, and is
not necessarily used in other works that had been published. For example, Zorzetto et
al. [2000] defined semi-mechanistic models to be the same as grey box modeis, which
could also be called hybrid models. There are also models that can also fall into either
category, like the model used by Nascimento et al. [1999]. On the whole, though, most

30

published works used the term hybrid model to generally indicate a model that is a
mixture of FP models and black box (usually ANN) models.

Most applications of hybrid ANN-FP models found in the literature are designed
for dynamic models, which are used for control and scheduling. Thompson and Kramer
[1994] recommended steady-state hybrid models for RTO because of their potential
advantages over traditional FPM and traditional ANN.

2.4.2 Structures of Semi-mechanistic Models

The most common structure of semi-mechanistic models found in the literature is the
serial configuration, shown in Figure 2.5. In this configuration, the input variables, X,
is fed to the ANN, which is used to estimate one or more parameters, O, that are
difficult to obtain from a mathematical model. The outputs from the ANN, O, from the
ANN are then used along with the inputs, X, in a FPM to calculate the process outputs,
Y. The ANN models can be trained with either O or Y. An inherent assumption of this
configuration is that other than the parameters estimated, the rest of the FP model is
accurate. This is the most common hybrid structure seen in the literature. Examples in

the literature include:

¢ microbial growth rate for a batch beer production [Zorzetto et al., 2000],

——> ——oﬁ —b>
N ANN o FPM Y

Figure 2.5: Serial ANN-FP hybrid model.

3

® specific reaction rates for a continuous stirred tank reactor [te Braake et al., 1999],

e concentration gradient, specific cake resistance and cake interface concentration for
crossflow microfiltration [Piron et al. 1997],

e heat and mass transfer coefficients [Cubillos et al, 1996},

e microbial growth rate for a fedbatch bioreactor {Psichogios and Ungar 1992].

There are also variations in the application of the serial ANN-FPM structure.
Schubert et al. [1994] added a fuzzy logic (FL) pre-processor to determine the different
phases of a batch fermentation process when using ANN to predict the value of specific
substrate consumption rate. Input data enters the FL pre-processor, which then directs
the data to the proper ANN for the corresponding phase.

Fu et al. [1996] used a modification of the serial configuration. In all the previous
serial semi-mechanistic models, supervised learning was used to train the network
models. However, in the work by Fu et al., reinforcement learning was used. The
performance evaluation unit (PEU), a knowledge-based tool, served as a critic that
monitored the output of the hybrid model and gave evaluations based on an
experimental database.

Additional variations found in the literature includes:

e Thibault et al. [2000] modified the traditional approach slightly by training the ANN
model with the error of the output variables instead of the error of the parameters
being modelled with ANN.

e Gupta et al. [1999] developed a two-leve!l serial ANN for the prediction of several
variables and parameters before finally feeding them to the FP model.

e Wilson and Zorzetto [1997] used a serial semi-mechanistic configuration as the

model for a Kalman filter, which is a state estimator.

Other than the serial structure, there had also been work on a parallel
configuration, shown in Figure 2.6. In this structure, the ANN is trained to predict the

residual between FPM and actual plant data [Su et al., 1992). In this way, the combined
hybrid model is able to accurately predict the process output. A major advantﬁge of this
configuration is that a less accurate and simple model is sufficient because the ANN can
make up for the model discrepancies.

Thompson and Kramer [1994] proposed a combination of parallel and serial
hybrid configuration, shown in Figure 2.7. The network in parallel to the default model
estimates the residue in the absence of a good FPM. Beyond the range of the ANN
training data, only the FPM is considered. In this configuration, the parametric output

model enforces the process constraints upon the output variables.

FPM

— <:>__.
X Y

L

ANN

Figure 2.6: Parailel ANN-FPM hybrid model.

FPM
Parametric
—_p Output >
X Model Y

’ ANN

Figure 2.7: Combination of parallel and serial ANN-FPM hybrid model.

33

In most of the literature surveyed, the semi-mechanistic models were able to yield
models that gave better results than the pure ANN models and other types of models.
van Can et al. [1996] compared serial and parallel hybrid structure, as well as models
with pure FPM and pure ANN for modelling and control of a pressure vessel. Using
ANN models developed from experimental data, they found the serial configuration
yielded the best results. They also showed that the serial configuration had better range
and dimensional extrapolation capabilities than parallel configuration. On the other
hand, Shene et al. [1999]} found the ANN model more accurate than the serial semi-
mechanistic model in modelling Zymomonas mobilis CP4 batch fermentation using

experimental data.

2.4.3 Other Forms of Hybrid Models

Nascimento et al. [1999] developed a hybrid FP-ANN model for an industrial Nylon-6,6
polymerisation process to calculate the product relative viscosity, Y. The structure of
the model is shown in Figure 2.8. Other than the input variables from industrial data, X,
the hybrid model also had amine end-groups and carboxyl end-groups concentrations
calculated from FP models, O, as inputs to the ANN model.

ANN

Figure 2.8: An alternative form of serial hybrid FP-ANN model.

34

The difference between this hybrid model and the serial semi-mechanistic model
is that in this model, the final modei is an ANN model, which receives additional
information in the form of two additional input variables from the FP models.
Furthermore, the FPM is used to calculate two output variables (the outlet
concentrations), instead of a process or therrnodynamic parameter. In a serial semi-
mechanistic model, the final model is the FP model, which receives values of

parameters predicted by ANN models.

2.4.4 FPM for Training ANN

There are several manners in which FPM has been used to train ANN to generate a
black box model. In a sense, the FPM is integrated into the ANN model, but the
resulting model is a purely black box model.

Thompson et al. [1996] suggested several ways to incorporate simulated data from

FPM into ANN.

* Models of Models. The ANN is trained on data simulated using a simulation
package. The main advantages are the fast and clean (i.e. noiseless) training, as well
as fast on-line execution. Implementation on an actual plant was also reported.

¢ Combining Models. ANN models of different units in a plant that was trained on
the simulated data are easier to combine than the actual physical models. The

combined models are called a “metanet”. This is useful for plant-wide RTO.

Sabharwal et al. [1997] used an accurate steady-state plant simulation to generate
additional training data outside the range of available plant data for training an ANN
model to be used for optimisation of a xylene distillation unit in a refinery in Japan.
The range of applicability of the ANN model is therefore increased by the data
generated through FPM simulations.

35

In another approach, Tsen et al. [1996] generated an augmented data set to train
ANN. The augmented data are data interpolated and extrapolated using gradient
information from FPM at actual experimental data This procedure is advantageous
when plant data for training are scarce.

Altissimi et al. [1998] generated data from a rigorous model simulated in Aspen
Plus to develop steady state ANN models for a hydrocracker outlet gas separation unit,
which consisted of four distillation columns in series. A reduction in computation time
of at least 60 times was achieved when they replaced a rigorous FP model with the
ANN model in the RTO loop of the gas separation process.

In a similar approach, Nascimento et al. [2000) generated data from a rigorous FP
model to develop ANN models for an industrial nylon-6,6 polymerisation process in a
twin-screw extruder reactor to be used for optimisation. The models were then used to
map out the objective functions to execute a detailed grid search for finding the

optimum in a specific region.

2.5 MODULAR NEURAL NETWORKS

2.5.1 Background

Theoretically, artificial neural networks (ANNs) are capable of learning complex and
high-level systems, which are typical of chemical processes. Nevertheless, using a
single, large ANN to solve large problems is prohibitive because of the computational
complexities involved. One way to make the problem manageable is by using modular
neural networks (MNN).

In general, MNN is based on the concept of divide and conquer [Jordan and
Jacobs, 1994]. Large problems are divided into simpler, smaller and more manageable
problems, solved (or conquered) using ANN, and are then combined to yield the

solution. There exist different architectures of dividing, solving and combining MNN,

36

with various names like hierarchical networks, committee machines, stacked networks,

and mixtures of local experts. In this work, MNN is used in a general context for

systems of ANN that co-operate in an appropriate manner and the outputs combined to

solve a complex system.

The design and use of MNN is motivated by the following setbacks in traditional

large ANN [Chen et al, 1997]:

A large network causes difficulties in training, such as difficulties in convergence
and the problem of local minima.

Slow training.

No a priori orientation about the likely kinds of relationship between the input
variables themselves and between input and output variables.

Structure of ANN is unrelated to physical system even after training, providing no
insight to the actual process.

A large number of inputs causes a large number of parameters to be estimated,

reducing the generalisation capability of the ANN.

The advantages of MNN compared to traditional ANN are [Gallinari, 1995]:
Reduce model complexity, resulting in a more efficient model.
Incorporate existing qualitative and/or quantitative knowledge into the network.
Possible to decipher the relationship between the variables involved through
connections among and within the network modules.

Increase in robustness and flexibility.

2.5.2 Classes of Modular Neural Networks

Gallinari [1995] divided MNN into three classes, listed as follows:

37

1. Partitioning of the input space. The input data is partitioned into several subspaces.
This class of MNN is the most commonly encountered in the literature. Each

module of the network specialises in a section of the input space or in a task-specific

function.

[

Successive processing. The whole complex problem is decomposed into specialised

modules that are carried out successively.

W)

Combining decision. Several different network models are used to process the input

data and the outputs are combined to give a better overall model.

Several studies carried out in the area of MNN classes are briefly outlined in the
following sections. However, in many instances, there has been an overlap between the
classes of MNN. More detailed information on some of the algorithms is given in

Appendix B.

Input Space Partition. The input variables are divided into groups, where each
module would consist of small networks that are experts on a specific task or in a

specific range of the inputs. Lu and Ito [1997] divided problem decomposition into

three categories:

1. Explicit decomposition. In this type of decomposition, sufficient prior knowledge is
needed about the domain and decomposition of the system. Jenkins and Yuhas
[1993] used this concept and embedded prior information to efficiently control a
truck to back-up a dock. Mavrovouniotis and Chang {1992] also decomposed the
input space into subspaces that represent a specific small portion of a process, a
particular phenomenon or a constraint, or a single time instant within a time
interval. The subsets, therefore, are localised spatially, temporally, or conceptually.
As in Figure 2.9, subsets are then combined to form subnets, which are further
combined to form a hierarchy leading to the output of the network. The overall

network is trained as a whole, based on its final outputs.

38

2. Class decomposition. The problem is decomposed into subproblems according to
inherent relations among the training data. Developed for classification [Lu and Ito,
1997], this method needs only common knowledge about the training data.

3. Automatic decomposition. The decomposition takes place as the learning process
progresses. This is the most computationally complex method, and as such, it is not
very suitable for large-scale problems. However, this is the most general method

since no previous knowledge of the system is needed. Most decomposition methods

Top
Subnet Subnet
:
[]
[]
Layer 2 of ”
Layer 1 of
Suﬁ; .’ Subnet 1 Subnet 2 wee Subnet L1
aes T T ase T T asa T
N—— e’
—

X

Figure 2.9: Structure of hierarchical network from Chang and Mavrovouniotis [1992].

39

fall into this category. For example, Chen et al. {1997] and Jacobs and Jordan
[1994, 1995; Busson et al., 1998] used tree-structured architecture. Chen et al.
[1997] used hyperplanes to partition the training data set into subsets. Soft
partitioning was used so that there may be overlapping between adjacent partitioned
input data subsets. The hyperplane is determined heuristically through a criterion, so
that the resulting feedforward network can deal with two less complex subproblems
with less computational cost. Jordan and Jacobs [1994, 1995] also utilised tree-like
structure and soft partitioning for their mixture of expert networks, as shown in
Figure 2.10. However, a gating network, which performed as the partitioning
mechanism, was added to determine the degree of contribution from the outputs of
the various local experts. The mixture of experts can also be arranged in a
hierarchical manner. This algorithm had so far been applied for classification
[Busson et al., 1998].

y
. g1 '
Galing 82 »
Network /
s /]
Expert Expert Expert
Network 1 Network 2 Network N

T T °) e |

|
Figure 2.10: Mixture of Experts partitioned by a gating network as proposed by Jordan
and Jacobs [1995].

40

Successive Processing. In this class of MNN, each successive layers of NN correspond
to a specific processing of the data. This effectively breaks down the global system into
successive tasks to be solved. In one work, Bittanti and Savaresi [1998] introduced two
types of Hierarchically Structured Neural Networks (HSNN), which are divided into
slave network and master network as illustrated in Figure 2.11. The first type, the
Linear-Nonlinear HSNN, is characterised by the slave function being a linear
combination of the slave inputs, with the network parameters provided by the master
outputs, which are nonlinear. The output of the HSNN corresponds to the slave
network output. This type of HSNN is completely driven, and is especially suitable for
functions with discontinuity (i.e. where one of the variables has a switching effect), or
for zeroing of functions due to certain variables. The second type, the Output-Tuned
HSNN, is characterised by the master network providing only the gain and the offset at

the output of the slave network.

_—>
(Xyd 5| Master Netwark
'_’.
X A
s
———— EEEEE——
\ Xs : Slave Network : Y

Figure 2.11: Hierarchically structured master and slave networks.

41

The network output is the sum of the slave output and one of the master outputs,
multiplied by the other master output. This type of HSNN is partially driven and is
especially suitable for tulfilling constraints in the form of a function. The hierarchical
network proposed by Mavrovouniotis and Chang [1992] previously described may also
be considered to belong to this class of MNN, because the subnets in each layer of the
network represents a certain feature of the system, which at the end predicts the output
of the MNN.

Decision Combination. The performance of networks can be improved by combining

the outputs of independent modules. This may allow the network to have a larger range

and lower prediction errors than a single large network. Examples of this type of MNN
described in the literature are:

e Stacked networks. In stacked neural networks [Wolpert 1992; Sridhar et al.,
1996], differeat independent networks, called level-0 models, are individually
trained using part of the original data from the training set (Figure 2.12). The
outputs of the level-0 models are then combined in a level-1 model to generate the
network output. Sridhar et al. [1996] showed in their work that stacked networks
were able to yield better results than traditional ANN models. Lanouette et al
[1999] found stacked networks to be useful for modelling processes when the
number of data available for training and testing is small. Yang et al. [1999]
successfully used stacked networks in the most difficult part of a muiti-stage model
of a semi-batch styrene polymerisation reactor. In another work, Zhang et al. [1999]
uses stacked networks for predicting fouling in a batch reactor for the
polymerisation of methyl methacrylate. The only setback is the large training time

required for training for the individual network.

42

Y
Level-1
Model (Stacked
Generalization)
Level-0 Network Network . Network
Models Model 1 Model 2 Modet K
Xl X-_. xK

Figure 2.12: Structure for stacked networks.

e Static committee machines. Ensemble averaging networks is one of the static
committee machines described by Haykin [1999]. The outputs of several
independent networks trained with different initial conditions were combined,

allowing an overall MNN with a larger range of initial conditions.

26 SUMMARY

For practical implementation of RTO, a process model must not only be accurate, but
robust, easily maintained, and have short execution time. The use of pure FP models
results in complexities in the development, maintenance and computation of RTO. Pure
neural network models, on the other hand, are simple to develop and have fast execution

of the model. However, using ANN may compromise accuracy, especially when

43

extrapolation is needed. ANN models also do not provide any of the process insights.
In addition, large multivariable systems that are typical of chemical processes ultimately
lead to neural network models that are too complex in terms of topology and training
due to the “curse of dimensionality”. Therefore, since models of chemical processes for
RTO are multivariable, care must be taken when ANN based models are used for RTO
to counter this problem.

Hybrid ANN-FP models combines both approaches of modelling to eliminate the
weaknesses described and to take advantage of the strengths of both techniques.
Several configurations exist in the literature, mostly in the form of simple parallel or
serial structures. The configurations given are also mostly tested on dynamic models.
Although Leonard et al. [1994] mentioned the possibility of using hybrid ANN-FP
steady-state models for RTO, none has ever been reported in the literature.

Modular neural networks (MNN) models provide a possible solution to break up
the multi-dimensional problem of chemical process models. In MNN, prior knowledge
is incorporated into MNN models in the form of the structure, or by hard-wiring the
network connection, although none of the works surveyed combined FP models with
MNN. Nevertheless, algorithms for automatically decomposing the input space, which
are mainly used for classifications, may not be necessary because of the extensive prior
knowledge that is available on chemical processes.

The next chapter describes the two processes (simple and industrial) modelled in
this research. The simple but realistic system, a methanol-water flash drum, is used to
study different ANN and grey box ANN models. The industrial process, a crude oil
distillation column, is a practical candidate for RTO due to varations in feed and

operating conditions, as well as for having a complex physical model.

CHAPTER 3

PROCESS DESCRIPTION

3.1 INTRODUCTION

To develop and test different ANN and grey-box ANN models, two chemical processes
were studied. The first process is a methanol-water (M-W) flash and the second process
is a crude oil distillation column. From a practical point of view, the flash system can be
solved accurately and quickly using existing FPMs. However, the M-W flash is as an
ANN test case chosen because it is simple, yet realistic in representing non-linear,
discontinuous, multi-variable chemical processes. This would enable a thorough
evaluation and analysis of ANN models necessary to model this class of processes.

A flash drum splits the M-W feed into two outlet streams, a vapour and a liquid
stream, with the vapour stream being richer in the more volatile component (methanol)
than the liquid stream. A M-W system was chosen because the chemicai non-ideality of
the vapour-liquid equilibrium and heat of vaporisation of the mixture will add to the
mathematical non-linearity of the system, which would be suitable to develop and test the
models. At the same time, the M-W flash will be simple enough for studying different
grey box models within a limited amount of time.

A crude oil distillation tower separates crude oil into many hydrocarbon products
suitable for sale or further processing. A distillation column is actually a series of flash

units stacked on top of one another. The crude oil distillation tower is an actual column

45

in the Petronas Penapisan Melaka refinery in Malaysia. The tower is suitable because it
is a practical candidate for RTO, due to variations in operating conditions and has a very
complex and large physical model. The feed to the column, crude oil, consists of
hundreds of components and therefore, thousands of balance equations can be written for
each tray of the columa.

In this chapter, the methanol-water flash system and the Aspen Plus model
developed for data generation are described. A detailed description of the crude

distillation column and the Aspen Plus model are also presented.

3.2 SIMPLE PROCESS, THE
M-W FLASH

A two-component flash column is a single stage separator, which splits the feed into a
vapour, V, and liquid, L, product, as shown in Figure 3.1. Referring to the figure, z, y,
and x are the compositions of the more volatile component, methanol, in the feed, vapour,
and liquid streams, respectively. For a methanol-water flash, the vapour stream is richer
in methanol because methanol is more volatile than water, and the liquid stream is richer
in water for the same reason. A methanol-water mixture is non-ideal in the sense that the
equilibrium constant, K, and the heat of vaporisation are functions not only of
temperature, T, and pressure, P, as ideal solutions are, but are also a function of
composition, x and y. This is a complicating factor.

In chemical processes, the complexity of a process model does not only depend on
the physical equipment, but also on the chemical components involved. Although a
process may use the same unit operation, the behaviour and thus the model of the process
is different when different chemical components are involved because of the different

thermodynamic behaviour of the mixture. Often, the unavailability of thermodynamic

\"
| y’
F T
z > P
A
lo >
Q

Figure 3.1: Schematic diagram of a general two-component flash column.

data of the components involved will make it difficult to develop good mathematical
models even for a simple process.

With regards to vapour-liquid equilibrium for a two-component mixture, which is
the simplest possible case, Figure 3.2 illustrates a so-called T-x-y phase diagram at
constant P. T, and Tg are the boiling point of components A and B respectively, where
A is the more volatile component and therefore has the lower boiling point. The
compositions plotted in the diagram are the composition of A. If a mixture with a
composition of A, z;, at T,, then the mixture exists only in the liquid phase. A liquid
mixture in this region below the solid bold line is known as sub-cooled. If the
temperature of the same mixture is raised to Ty, the first bubble of vapour will appear.
Temperatures along this solid, bold line are the bubble point temperatures. A liquid
mixture at the bubble point is called a saturated liquid. If the temperature of the mixture
is raised to T, the mixture is now in the two-phase envelope. The mixture splits into a
vapour phase with composition y; and a liquid phase with composition x, along the
horizontal tie-line. As the temperature is raised to Tgew, the mixture will continue to

47

T] » 4— Vupour
Ts
Tocw Vapour
'o-ph: Region
T Liquid Two-phase g
Region Region
T, N
2 X,
Touw
T
' Liquid Ta
0 4 |
X, ¥, 2

Figure 3.2: A general two-component phase diagram.

vaporise and at Ty will exist only as a saturated vapour. Temperatures along this line
are the dew point temperatures, at which the last drop of liquid exist. If the temperature
of the mixture is raised to T3, then the mixture exists only in the vapour phase. A vapour
mixture in this region above the saturated vapour line is superheated. Consequently, as
temperature is increased throughout the single-phase liquid region to the two-phase
vapour- liquid equilibrium region and finally to the single-phase vapour region, there is a
sharp discontinuity in the quantity and composition of vapour and liquid.

In this work, the process was simulated in Aspen Plus, a commercial steady-state
process simulator. For data generation, feed stream temperature and pressure were kept
constant at 1 bar and 60C, while the feed flow rate, F, feed composition, z, flash

temperature, T, and flash pressure, P, were varied over the following ranges:

48

e F(110-250 kmol/hr)
e z(0.0909-0.6)

e T (70C-90C)

e P (0.7-1.1 bar).

The FLASH2 model in Aspen Plus can be used to model vapour-liquid flashes,
evaporators, knock-out drums and many other two-phase single-stage separators.
FLASH2 determines the thermal and phase conditions of a mixture of one or more inlet
streams, when the outlet conditions are specified. The outlet conditions of the flash can
be specified using two of four variables, which are, temperature, pressure, vapour fraction
and heat duty. FLASH2 accepts any combination except vapour fraction and heat duty.
In addition, it allows variation in the condition (e.g. flowrate, temperature etc.) of the
feed stream to the column. Aspen Plus also has an extensive databank of physical and
thermodynamic properties called Properties Plus. If the properties of certain components
are not in Properties Plus, there are various estimation techniques in Aspen Plus which
can be used in a process simulation.

To illustrate the non-linearity of the system, a general mathematical model of an
isothermal flash is presented. The following equation relates the compositions to the

flowrates of the system:

v z(-K) _
f&) ,z.;lw(x,.-l)' (3.1)

where

z; is the feed composition for component i,

K; = yi/x;, is the equilibrium constant for component i,

y = V/F is the fraction of the feed that goes to the vapour stream.
The equation can be iteratively solved using a root finding technique. However, for the
methanol-water system, since K; = f(x,y,T,P), solving Equation 3.1 becomes more

difficult because an initial guess or estimate of x and y will have to be made and matched

49

at each iteration. This problem can be solved by simultaneous iteration on (x,y) and y, or

by having separate nested loops on (x,y) and ¥ [Seader and Henley, 1998].

3.3 INDUSTRIAL PROCESS

The crude distillation tower chosen as the industrial process in this study was designed to
process sweet crude oil (ie. crude oil with low sulfur content) and condensate. This
process faces problems brought about by the varying composition of the crude oil and
condensate feed. Crude oil composition varies from shipment to shipment, even if they
come from the same well Once in the storage tanks, the composition is not
homogeneous because the oil is not mixed. Oil at the bottom of the tank would contain
heavier components (ie. high boiling point and molecular weight) compared to oil at the
top of the tank. Accurate feed composition measurement is almost impossible, even with
off-line measurements. No on-line composition sensors exist for crude oil. For the
chosen crude tower, the off-line measurements are inaccurate because the oil sample
contains a high percentage of light components. Therefore, during sampling and
analysis, the light components vaporise. Consequently, operators always have to adjust
the set points for the operating condition of the process to meet the product specifications
and yield. For instance, there are two different types of feed going to the crude tower, the
condensate stream and the crude oil stream, which can be adjusted to keep the average
feed composition at the approximate desired level. In addition, product quality is only
measured in the laboratory once every twelve hours. This requires the operators to rely
on past experience by observing the temperature and pressure profiles from the column to
estimate whether the products are within specifications. Therefore, a good grey box
model of the process, even one that is not used in RTO, will be very useful. This is
because such models would be able to estimate the cold properties from the operating

conditions, such as temperature profile of the column, and the average feed composition.

g

e > DISTILLATE

Y b _____-_-1} (Medium
and above)

al 1 Overhead
5| ________F p/a
2L ‘ HN p/a
1] I -
1 ettt — HN
4y __ __ ____ P Side-stripper
o - .
26 _____.___1 T
27[CCTTTITC E 1 ___]

10 --- !
a2 ___] < Kerosene HEAVY
. Diesel T Side-stripper NAPHTHA

““““““ p/a STEAM EROSENE
4] L
< L . F 1h---
N Diesel
Y < Side-stripper
41
___________ AGO ‘L—DDIESEL
Pa | sTEAM
a2f--------; i] —
Y 5 AGO
.EE_E_I_)L Flash 8----1 Side-stripper
57 zone
___________ —p AGO
STEAM
, —_—
STEAM | RESIDUE (LSWR)

Figure 3.3: Crude tower flow diagram.

50

51

Figure 3.3 illustrates a simplified flow diagram of the crude tower. There are four
side strippers: heavy naphtha (HN) stripper, kerosene stripper, diesel stripper and
atmospheric gas oil (AGO) stripper. Except for the HN stripper, which has a reboiler, all
other strippers including the main column has medium pressure steam injected into the
bottom of the column. Steam injected into the column reduces the partial pressure of the
hydrocarbon, lowering the vaporisation temperature. The side strippers return the light
ends that are withdrawn with the products in the side streams back to the main column.
As such, the stripping rate in the side strippers can be used to manipulate the initial
boiling point (IBP) of the product.

Feed entering the crude tower, which is a mixture of Bintulu condensate and Tapis
crude, flashes into the flash zone, carrying over a small amount of LSWR, which is called
overflash. This overflash allows some fractionation to occur on the trays just above the
flash zone by providing internal reflux in excess of the sidestream withdrawal. At the
same time, a slight amount of LSWR that enters the AGO side draw (also called run
down) is desirable because of the resulting increase in AGO yield, as long as the quality
is within specifications. Overflash is controlled by manipulating the coil outlet
temperature (COT), which is the temperature of the oil leaving the furnace used for
preheating, and AGO withdrawal. At constant COT, increasing AGO withdrawal will
decrease overflash, while decreasing AGO withdrawal will increase overflash An
increase in COT will increase overflash and vice versa. There is a minimum overflash
requirement of 3%. Other than AGO quality constraint, a high overflash will increase
energy consumption in the form of heating fuel and pumping rate of the column
pumparounds. Nevertheless, a low overflash will result in a dry AGO tray.

There are four pumparounds (p/a) in the tower: overhead p/a, HN p/a, diesel p/a and
AGO p/a. In addition to providing liquid reflux and reducing the vapour loading on the
upper part of the column, pumparounds also provide cooling to the tower. Thus,
pumparounds can be used to control column temperatures, which affect product purity.
Under normal operation, though, pumparounds are not used to control product quality or

52

column temperature, except for the occasional fine-tuning. An exception is the top
column temperature, which is controlled by manipulating the top pumparound and reflux
flow. Heat in the pumparound and product streams is recovered by heating the feed
stream in the preheat train.

Product from the side draws must meet certain specifications. Operators obtain
these specifications from the production planning section and adjust the tower operating
conditions (ie. set points) to ensure on-spec products. The quality specifications are
checked off line once during each shift - twice a day - at 06:00 and 18:00, and are thus
called “‘cold” properties. Table 3.1 lists the specifications and the corresponding products
and manipulated variables. It is important to take note of the cold properties because
these are the values that would be predicted in the model output.

A reconciled steady state simulation of the crude tower has been developed in
Aspen Plus using PETROFRAC, a rigorous tray by tray equilibrium based distillation
column model designed specifically for petroleum applications. The main column, side
strippers, pumparounds and condenser were all modelled as part of the column with
PETROFRAC.

To obtain an accurate feed composition for the simulation, the products of the crude
tower section were back-mixed and analysed. The feed assay information given to Aspen
Plus were the true boiling point (TBP) curve, light ends analysis, stream specific gravity
and average molecular weight. In Aspen Plus, the feed stream compositions were
approximated with seven conventional components ranging from C2 to CS, and at least
50 pseudo-components. The Peng-Robinson equation of state, which is recommended
for refinery applications [Aspen Technologies, 1995], was used to calculate all
therrnodynamic properties.

Table 3.1: Product specifications and manipulated variables of the crude tower.

Specifications/ Manipulated Variables
Properties
Heavy Naphtha IBP Top temperature or Q
FBP HN draw
Kerosene Flash Point / IBP HN draw
SS
Freeze Point / FBP Kerosene draw
Diesel Pour Point / Colour Diesel draw
IBP Kerosene draw
FBP Diesel draw
AGO Pour Point / Colour AGO draw
IBP Diesel draw
FBP AGO draw
LSWR Pour Point AGO draw

Note: IBP is initial boiling point
FBP is final boiling point
Q is reboiler duty
SS is stripping steam rate

34 DATA GENERATION

53

For both the flash system and the crude distillation tower, data were generated using the

sensitivity analysis feature in Aspen Plus.

specified were varied one at a time within the lower and upper limits. For example, if

In this feature, the independent variables

temperature, T, and pressure, P, were the independent variables, T was held at a constant

value while P was varied. Once P reached the specified upper bound, T was incremented

54

to the next value and held constant while P was again varied. This procedure was
repeated until the upper bound for T was reached.

Although the sensitivity analysis feature in Aspen Plus is convenient in generating a
large number of data, the spread of data obtained is very poor for training neural
networks, and the data is clustered around certain temperatures or other independent
variables. To overcome the problem, a large number of data (at least three times the
estimated amount that will be used for training) was generated. From this set, data
collected at a certain fixed interval from the original data file were taken to be in the
training set. This enables the training data to be sequentially ordered and have a better
spread over the desired range. The orthogonal least squares (OLS) algorithm used to
train the RBF networks performs better with sequentially ordered training data. Training
data for all the models developed in this work are in sequential order, except for MLP
models, which performs better with randomly ordered data. The same technique was
repeated for generating testing data, but at independent variable values that were different
from the training set. For example, for the M-W flash system, a total of 792 data points
were generated, out of which 150 data points were selected for training. Another set of
data was generated at different independent variable values, out of which 70 were
selected for testing. The selection of the number of training data points was based on
several trial runs meant to find the number that gave the best resuit in terms of the
prediction errors and training times. A small number of the test data gave a poor
estimation, while too many data points a large number led to a model overfit. As stated
by Haykin [1994] on page 178 of his book:

"When, however, a neural network learns too many specific input-output
relations (i.e., it is overtrained), the network may memorise the training data and

therefore be less able to generalise between similar input-output patterns”

55

Similar to the M-W flash system, the sensitivity analysis feature in Aspen Plus was
also used to generate data for training and testing for the crude tower. Input variables for
the ANN or grey box ANN models include the feed flow rates for the two feed streams,
and the specified variables of a particular section for the tower operation. The output
variables are the dependant variables that were needed by the optimiser and were
calculated due to changes in the input variables. Ranges for the variables are within the
operating region of the column. Within this region, the variables in each section of the
colummn have negligible influence on other sections in the column, except the sections that
are immediately above and below it. This allowed data to be generated one section at a
time. Since the sensitivity analysis feature of Aspen Plus can only allow a maximum of
five independent variables, any section with more than five independent variables were
simulated one at a time for the different values of the sixth independent variable.

Table 3.2 lists the input and output variables of the network models for each section
of the crude distillation column. Only variables associated with the particular section are
included in the network model. Note that for the LSWR section of the column, the
LSWR draw off was originally indicated as an output variable. This stream is considered
as a waste stream; so, there was no strict specification or control. However, after
generating data for the section, there was no significant change in the LSWR draw off
rate (less than 0.001%). Therefore, the draw off rate was not modelled since it was
essentially a constant.

The following lists the nomenclature of the input variables used in Table 3.2:
¢ Bintolt is the Bintulu condensate feed from the storage tank.
¢ Htfeed is the Tapis crude feed from the storage tank.

e HNdraw, Kerodraw, Diesdraw and AGOdraw are heavy naphta (HN), kerosene,
diesel and AGO product draw off respectively.

¢ Qreb is the reboiler duty of the HN side stripper.

o SSK, SSD, and SSA are the stripping steam rates for the kerosene, diesel, and AGO

side strippers respectively, and SSM is the main column stripping steam rate.

Table 3.2: Input and output variables for each section of the crude distillation colurmm.

56

Crude tower Input variables Qutput variables

section

Top of main Bintolt, Hifeed, HNdraw, Ttop, Ovhd, RR, Qcond, PAT

column Kerodraw, Qreb

HN stripper Bintolt, Htfeed, HNdraw, TtopH, TbotH, PAH, IBPH,
Kerodraw, Qreb FBPH, RhoH

Kerosene stripper

Bintolt, Hifeed, HNdraw,
Kerodraw, Diesdraw, SSK

TtopK, TbotK, FPKero, IBPK,
FBPK

of main column)

SSM

Diesel stripper Bintolt, Htfeed, Kerodraw, TtopD, TbotD, IBPD, FBPD,
Diesdraw, AGOdraw, SSD PourD, PAD

AGO stripper Bintolt, Htfeed, Diesdraw, TtopA, TbotA, IBPA, FBPA,
AGQdraw, SSA PourA, PAA

LSWR (Bottom Bintolt, Hifeed, AGOdraw, TBot, Pourl

The following lists the nomenclature of the output variables used in Table 3.2:

¢ TtopH, TtopK, TtopD and TtopA are the top temperatures of the HN. kerosene, diesel

and AGO strippers and Ttop is the top temperature of the main column.
o TbotH, TbotK, TbotD and TbotA are the bottom temperatures of the HN, kerosene,

diesel and AGO strippers and Tbot is the bottom temperature of the main column.
e PAT, PAH, PAD, and PAA are the p/a at the top of the main column, and the HN,
diesel and AGO strippers respectively.
e Ovhd is the overhead draw off rate.
¢ RRis the reflux ratio.

¢ Qcond is the condenser duty of the main column.

o [BPH, IBPK, IBPD and IBPA are the initial boiling point of HN, kerosene, diesel and

AGO produced respectively.

57

o FBPH, FBPK, FBPD, FBPA are the final boiling point of HN, kerosene, diesel and
AGO produced respectively.

e RhoH is the density of HN.

¢ FPKero is the flash point of kerosene.

e PourD, PourA and PourL are the pour points of diesel, AGO and LSWR produced
respectively.

All the training and testing data for the M-W flash are given in Appendix C. Training

and testing data for crude distillation tower are included in the enclosed diskette.

3.5 SUMMARY

The two processes studied to develop and test different types of ANN and grey-box ANN
models are described in detail in this chapter. Method of data generation and the
nomenclature used in both processes are also explained.

In Chapter 4, the ANN and grey-box ANN models developed and tested are
presented. There are two types of standard ANN models and three types of grey box
ANN models investigated. Brief descriptions of the algorithms and structure of the

models are also given in Chapter 4.

CHAPTER 4
DEVELOPMENT OF ANN AND GREY BOX

ANN MODELS

4.1 INTRODUCTION

In this chapter, the ANN and grey box ANN models developed and tested in this
research are described. Brief descriptions of the algorithms and structure of the models

are also included. All model simulations were performed in MATLAB using the neural

network toolbox.

The models developed can be classified into two classes:
e standard ANN models
e grey box ANN models.

Two types of standard ANN models were compared to see which one is better as
the base case:

e multi-layer perceptron (MLP),
o radial basis functions (RBF) network.

Three types of grey box ANN models were developed:
¢ hierarchically structured neural networks (HSNN),

58

59

e serial networks,

¢ hybrid network-FPM.

4.2 MULTI-LAYER PERCEPTRONS (MLP)

As mentioned in the literature review section, MLP are multi-layer feedforward
networks. The MLP networks used here have an input layer, one or two hidden layers
and an output layer. For all the models used here, the sigmoid function is chosen as the
activation function of the networks because the training and testing data are normalised
between zero and one. Two different types of feedforward training algorithms were
used from the Neural Networks Toolbox of MATLAB: backpropagation with adaptive
learning rate and the Levenberg-Marquardt algorithm. For both training algorithms, the
number of layers in the network, the number of nodes in each layer, and the maximum
sum of squared error that can be tolerated during training must be specified.

Traditional backpropagation algorithm uses the standard steepest descent
algorithm with a fixed learning rate, W, to find the optimal weights. The performance of
the algorithm is highly dependent upon the value of n. A value of M that is too small
will converge very slowly, while a value of u that is too large will cause osctllations and
instability. There is no single optimal value for u because this depends upon the current
position on the error surface that is being searched. Therefore, allowing W to vary
according to the error would improve the performance of the backpropagation
algorithm. The adaptive learning rate algorithm in Matlab increases U by 5% if the
present error is less than the previous error. On the other hand, if the present error is
more than the previous error by 4%, the present network parameters are discarded and p
decreased by 30%.

The Levenberg-Marquardt algorithm is well known for fast traming. It has close

to second-order convergence, without computing the Hessian matrix. Instead, the

Hessian matrix is estimated from the Jacobian matrix, which is much easier to compute
than a Hessian matrix. Once a minimum is approached, the Levenberg-Marquardt
algorithm in Matlab has a scalar parameter that is adjusted to smaller values, to increase

the convergence rate of the algorithm.

4.3 RADIAL BASIS FUNCTION NETWORKS (RBFN)

The RBFN training algorithm in Matlab uses the orthogonal least squares (OLS)
algorithm to iteratively select the centers of the radial basis receptive fields that will
lower the network error the most. Unlike some RBFN training algorithms the number
of centers (and thus hidden nodes) obtained using this training algorithm is less than the
number of input vectors because the addition of the centers is stopped once the training
error is less than a specified sum of squared error.

Other than specifying an error goal, the spread constant, &, which determines the
width of the receptive fields must also be specified. o should be large enough for the
receptive fields to overlap one another to amply cover the whole input range.
Nevertheless, it should not be too large that there is no distinction between the output of

different nodes in the same area of the input space. More detailed description of RBFN
is in Appendix A.

4.4 HIERARCHICALLY STRUCTURED NEURAL
NETWORKS (HSNN)

HSNN [Bittanti and Saveresi, 1998), uses prior knowledge of the output variable
behaviour to divide the input variables into “master” and “slave” units. Both types of
HSNN proposed by Bittanti and Savaresi were tested: completely driven and output

61

tuned HSNN. Two types of completely driven HSNN were developed: linear-nonlinear
HSNN and nonlinear-nonlinear HSNN. A priori knowledge on the general relationships
of the input variables with respect to the output vanables, y, is needed to determine the

master (Uy) and slave (Us) inputs for all types of HSNN.

4.4.1 Linear-nonlinear HSNN

The master network for the linear-nonlinear HSNN is nonlinear, while the slave
network is linear, as shown in the general structure illustrated in Figure 4.1. In this
case, the variable chosen as the slave input should be approximately linear with respect
to the output variable. Referring to the figure, VIM and V2M are the weights of the
first and second layer of the master network respectively, and CIM and C2M are the
biases. V1S and C18S, which are also outputs of the master network, are the weights and
bias of the slave network. Also note that in Figure 4.1, ovals represent a standard
neuron, while the output of a square neuron is the summation of the input multiplied by
the weights. The network parameters are updated using equations that are derived
based on backpropagation update formulas. Unfortunately, the update formulas given
by Bittanti and Savaresi [1998] were ambiguous in some of the notations and had
several errors.

The following update equations are based on a model with two output nodes in the
master network as shown in Figure 4.2, which is the structure of linear-nonlinear HSNN
that were mostly used in this work. The equations can be easily extended to have more
or less nodes in the output layer of the master network.

The output of the HSNN (which is also the output of the slave network) is

calculated as in Equation 4.1.

62

VIM

CIM

CIS

ViSg,

VM

C2M

Figure 4.1: General structure of linear-nonlinear HSNN.

VIM

CIM

V2M

Cc2M

Us

Figure 4.2: Structure of linear-nonlinear HSNN for M-W system.

63

y= Z[(VIS)[Us)] +CIS 4.1)
where V1S = slave network weights and output of master network
CI1S = slave network bias and output of final node of master network

Us = slave input.

The update equations were derived based on the backpropagation algorithm. The
weights in the second layer of the master network are updated using equation 4.2.
V2Moew = V2M - p[2e (Us) (a")] (4.2)
where W = learning rate
Us = "extended"” slave input
a= T{Z[(VIM) (Uwi+ CIM}
I'(f) = sigmoid activation function

e =error=(y -)’desimd)z

Us is a vector with a size of K+1 that consists of Us except the last element is 1,
where K is the number of output nodes in the master network. In this case, K would be
2. The biases of the output nodes in the master network are updated using equation 4.3.

C2Mpew = C2M - uf(2¢) (Us)] (4.3)

The weights for the first layer in the master network are updated from equations
4.410 4.6.

ViMw = (VIM1 + VIM2) 2 (4.4)
where VIMI = VIM ~ u[(2e)(Us)(V2M(,1) ® a)](Um) 4.5
VIM2 = VIM - u[(2e)(V2M(,2) @ a)J(Unw) (4.6)

The symbol ® is for element-wise matrix product where the weights in column j of

V2M are multiplied by the element in row j of a', and then summed together. The

biases of the hidden nodes in the master network are updated using equations 4.7 to 4.9.
CiM,.. = (CIM1 + CIM2) 12 4.7

65

where CIMI1 = CIM - pu[(2e)(Us). (V2M(,1) ® a)] 4.8)
CIM2 =CIM - u[(2e) (V2M(j,2) ® a)] (4.9)

Detailed derivations of the update equations can be seen in Appendix B.

4.4.2 Nonlinear-nonlinear HSNN

For the nonlinear-nonlinear HSNN, both the master and the slave networks are non-
linear, as shown in Figure 4.3. As seen in the figure, the slave network now has a
hidden layer. The variable chosen as the slave input should have a direct, strong and
non-linear relationship to the output variable compared to other input variables. The
number of outputs of the master network is the same as the number of parameters of the
slave network. Therefore, if there were three nodes in the hidden layer, the master
network would have ten outputs. The following update equations are based on three
hidden nodes in the slave network. The equations can be easily extended to have more
or less hidden nodes. Detailed derivations are given in Appendix B.

In the update equations, it is important to note that the weights of the first layer of
the slave network, V1S, corresponds to by, b, and b, which are the first three outputs of
the naster network. The bias of the hidden nodes, C1S, corresponds to by, bs and bs,
which are the fourth to sixth output of the master network. The weights of the second
layer, V28, corresponds to bs, bg and by, which are the seventh to ninth outputs of the
master network. Finally, the bias of the output node, C2S, corresponds to byg, which is
the last output of the master network.

The output of the nonlinear-nonlinear HSNN is calculated as in Equation 4.10.

y= Z[(V2S) (@] +C28 4.10)
where g =T[(V1S) (Us) + C1S]
The weights on connections ending at the first three outputs of the master network are

updated using equation 4.11.

C28

C18 V28

1S

v

Figure 4.3: A nonlinear-nonlinear HSNN.

67

V2Mieu(J, 1-3) = V2M(, 1-3) - u[(2e)(Us)(V2S ® g") (a)] 4.11)
where a= [{Z [(VIM) (Uu)]+ CIM}
j = the subscript for all the nodes in the hidden layer of the master network.
The weights on connections ending at the fourth to sixth outputs of the master
network are updated using equation 4.12.
V2Meu(j, 4-6) = V2ZM(j, 4-6) - 1 [(2e) (V2S @ g') (a)] 4.12)
The weights on connections ending at the seventh to ninth outputs of the master
network are updated using equation 4.13.
V2M,ew(J, 7-9) = V2M(, 7-9) - u[(2e) (g) (a)} (4.13)
The weights on connections ending at the tenth output of the master network are
updated using equation 4.14.
V2Mpew(j, 10) = V2M(j, 10) - uf(2e).(a)] (4.14)
The biases of the first three output nodes of the master network are updated using
equation 4.15.
C2M;ew(j, 1-3) = C2M (j, 1-3) - u [(2e)(Us) (V2S @ g")] (4.15)
The biases of the fourth to sixth output nodes of the master network are updated using
equation 4.16.
C2Macu(jy 4-6) = C2M (i}, 4-6) - 1 [(2e) (V2S @ g)] (4.16)
The biases of the seventh to ninth output nodes of the master network are updated using
equation 4.17.
C2Mae(j, 7-9) = C2M (j, 4-6) - u((2e)(g)] 4.17)
The bias of the tenth output node of the master network is updated using equation 4.18.
C2M;ew(j, 10) = C2M (j, 10) - 4[2e] (4.18)
The update equations for the master network weights in the first layer are as
follows:
ViMpew = (VIML + VIM2+ VIM3 + VIM4)/4 4.19)
where VIM1=VIM - u [(2e) (Us)(V2S ® g) (V2M(},1-3) ® a)] (Uy) (4.20)
VIM2 =VIM - i [(2e) (V2S @ g) (V2M(},4-6) @ a)](Unm) (4.21)

68

VIM3 = VIM - u[(2e) (g) (VZM(],7-9) ® a)](Unm) (4.22)
VIM4 = VIM - u[(2e) (VZM(],10) @ a)](Unm) (4.22)
The update equations for the master network biases in the first layer are as
follows:
CIM;ew = (CIM1 + CIM2+ CIM3 + C1M4)/4 (4.23)
where CIMI = CIM - u[(2e)(Us)(V2S ® g") (V2M(j,1-3) ® a)] (4.23)
CIM2=CIM - u[(2e) (V2S @ g") (V2ZM(},4-6) ® a)] (4.24)
CIM3 =CIM - n[(2e) (g)(V2M(},7-9) ®)] (4.25)
CIM4 = CIM - u[(2e) (V2M(],10) ® a")} (4.26)

4.4.3 Output-tuned HSNN

The output-tuned HSNN has a different structure than the completely driven HSNN.
Figure 4.4 illustrates a schematic diagram of an output-tuned HSNN. The master
network has two outputs, which is a gain, by, and a bias, b,, for the output of the slave
network. This type of network is recommended for zeroing the network output, y, at
certain values of an input variable; in this case, the input variable which causes the
output to be zero is the master input, Uy. Output-tuned HSNN is also recommended
when there is a constraint to be met; in this case, the output of the whole constraint
equation is Um.
The output of the output-tuned HSNN is calculated as in Equation 4.27.

y=(y () +b; 4.27)
where y;= Z[(V2S) ()] +C2S

g = I{[(V1S) (Us)] + C1S}
The output of the master network, B, is:

B = [bl b2]'= Z[(V2M) (a)] + C2M (4.28)
where a=T{{(VIM) (Uw] + CIM}.

VIM

CiM

V2M

c2M

SO

VIS CI1S V2§ C28

Figure 4.4: Output-tuned HSNN.

69

70

The weights on connections ending at the first output of the master network are
updated using equation 4.29.

V2Miew(), 1) = VZM(), 1) - _I(2eX(ys) (a)] (4.29)
where j = the subscript for all the nodes in the hidden layer of the master network.
The weights on connections ending at the second output of the master network are
updated using equation 4.30.

V2Mieu(), 2) = V2M(, 2) - ni(2e)(a)] (4.30)

The bias of the first output node of the master network is updated using equation
4.31.

C2Mueu(y 1) =C2ZM , 1) - 1I2e)(ys)] (4.31)
The bias of the second output node of the master network is updated using equation

4.32.
C2Myen(jy 2) = C2M (j, 2) - uf2e] (4.32)

The update equations for the master network weights in the first layer are as

follows:
ViMpew = (VIML + VIM2)/2 (4.33)
where VIMI = VIM - pnj(2e)(ys) (V2M(j,1) @ a)|(Uw) (4.34)
VIM2 = VIM - u[(2e) (V2M(j,2) ® a)](Uw) (4.35)
The update equations for the master network biases in the first layer are as follows:
CiM;ew = (CIM1 + CIM2)2 (4.36)
where CIM1 = CIM - u[(2eX(ys) (V2ZM(],1) @ a)] (4.37)
CIM2 = CIM - uf(2e) (V2M(j,2) ® a)] (4.38)

Unlike the completely driven HSNN, the slave network parameters must also be
calculated with update equations. The weights in the second layer of the slave network
are updated using equation 4.39.

V2Suew = V28 - pu[(2e)(by) ()] (4.39)

The bias of the output node of the slave network is updated using equation (4.40).

71

C28pew = C2S - u(2e)(by)] (4.40)
The weights in the first layer of the slave network are updated using equation
4.41.

V1Spew = VIS — u[(2e)(by) (V2S ® g)]Us (4.41)
The biases of the first layer of the slave network are updated using equation (4.42).
ClSpew = C1S — uf(2e)(by) (V2S @ g)] (4.42)

4.5 SERIAL NETWORK MODELS

Two types of serial network models were developed:
o serial RBFN-RBFN
® serial RBFN-RBFN- output-tuned HSNN

Figure 4.5 illustrates the general structure of the serial RBFN-RBFN model, where
I represents the input variables and y represents the output variables. Referring to
Figure 4.5, Network 1 may have 1 to 3 outputs. Network 1, a RBFN, was determined
from the previously performed single network runs. The inputs of Network 2 are the

original inputs, I, and the outputs, O, of Network 1. Network 2 is a RBFN.

RBFN (0] p»| RBFN

Figure 4.5: Serial network model.

According to the definition of grey box models used in this thesis, the serial
network model is considered a grey box model because the selections of the
intermediate variables, O, are based on prior knowledge. Intermediate variables are
variables that are easier for the network to predict than the final output variable. At the
same time, the intermediate variables are strong functions of the final output, and can
therefore provide more information for Network 2 to better predict the final output
variable.

In serial RBFN-RBFN - output-tuned HSNN models, output-tuned HSNN is used
in series with a serial RBFN-RBFN model, as shown in Figure 4.6. Two types of
constraints were tried in different models for the prediction of y for the M-W flash

system. The first is:

y=0at V=0 (4.43)
A second constraint is from the mass and component balances:
y=0a [(B@) - LY/ V-yi=0 (4.44)
RBFN RBFN Output-tuned
-— 1> 1 5 ¥ 2 Vi P HssN [
] —» i y

Figure 4.6: Serial RBFN - RBFN - output-tuned HSNN.

73

4.6 HYBRID NETWORK MODELS

In the hybrid network, network models are coupled with first principles models or
mechanistic equations. There are undoubtedly many ways to do this. However, in this
work, since the models are going to be used for RTO, the mechanistic models
incorporated must be simple and straightforward to solve. Similarly, although
previously introduced models may seem to be more difficult to train compared to a
standard ANN model, once trained, all of them can be easily solved like any standard
ANN model

The hybrid models can be divided into two types. The first type is the serial
network - FP model, much like the serial semi-mechanistic model. The only difference
here is that the network model output is not a process parameter, but a process output
variable. Two different models were tested in this category. Model 1 (Figure 4.7) uses
FPM 1, which is the equilibrium relation:

y =(K) (x) (4.43)

where y = vapour composition of methanol in stream V,

Lo

[Network 0 FPM
’ 1 1

<V

Figure 4.7: Type 1 serial hybrid model with K value (Model 1).

74

K = equilibrium constant,

x = liquid composition of methanol in stream L.

The value for K was obtained from Aspen Plus at the corresponding state, but it is
also possible to calculate K from correlations. Another option would be to have a
separate network to correlate K to the corresponding input conditions.
Model 2 for Type 1 category (Figure 4.8) uses FPM 2, the component balance:
y=[(F)@) - L)X}/ V (4.44)

For this hybrid model to be used, the intermediate output, O, must be both L and x or V
and x, or V, L and x. Conditional statements were added in all hybrid models to filter
out negative values from intermediate variables predicted by Network 1. An additional
condition was also added in the models that used Equation 4.44 to set y at zero if V is
less than or equal to zero. These conditions were added not because of the process or
the inaccuracy of the specific model structure, but because an inherent weakness of all
standard ANN models for function mapping is that the models are not able to provide
exact zeroing.

Type 2 of the hybrid model is similar to Type 1, except models in this category
have an additional network at the end of the model. Therefore, there are three levels in
Type 2 models. The network in the third level is a RBFN.

Four different models were developed for this category. Models 1 and 2 both used
FPM 1 and had very similar configuration, which is shown in Figure 4.9. The only
difference is that in addition to the model input, I, and the output of FPM 1, Model 1
had the intermediate output, O, going to the network in the third level as an input. The
structure of Model 3 is shown in Figure 4.10. This model used FPM 2 in the second
level. The structure of Model 4 is shown in Figure 4.11. This model used both FPM 1
and FPM 2 in the second level.

I Network

Figure 4.8: Type 1 serial hybrid model with component balance (Model 2).

—>» FPM
KLH
i
_l__.___ L » Net\;fork &__’ FPIrI > Nen;ork
—P
Figure 4.9: Type 2 hybrid model (Model 2).
I. > 0 ; Network
] Net\;rork — FP;M y2 2 y >
—>

T

Figure 4.10: Type 2 hybrid model (Model 3).

75

76

» FPM
KL’ M1 |ty
| O ¥ Network |
I Net\;vork , 2 —)-,—b
2
| FPM2 —P¥ T

Figure 4.11: Type 3 hybrid model (Model 4).

4.7 SUMMARY

[n this chapter, detailed descriptions of the models developed are presented. Brief
descriptions of the algorithms and structure of the models are included. Update
equations for the three HSNN-type models are also given.

Chapter 5 presents the results of the different models described in this chapter.
The models were tested on the flash systems and the crude oil distillation column. A
comparison between the models and between the two different chemical processes is

also discussed.

CHAPTER 5

RESULTS AND DISCUSSIONS

51 OVERVIEW

The models described in Chapter 4 were developed and simulated under the MATLAB
environment. The numerical results obtained are presented here.

Two standard ANN models, multi-layer perceptrons (MLP) and radial basis
function networks were tested first to determine a base case for comparison. Models
were developed for the methanol-water (M-W) system, which is a thermodynamically
non-ideal mixture.

More complex model structures were used for variables that were difficult to
predict. A simple model that could sufficiently predict output variables is preferred.
More complex models were tested only if a variable was unsatisfactorily predicted by
standard ANN models as these models were more difficult to develop and train. For
exampie, developing HSNN models are more involved because changes in the number
of variables and in certain model structures require more adjustment and tuning
compared to a standard ANN model. HSNN models also require longer training times
because of the complexity of the model structure and the backpropagation algorithm
used to train the network which was used by Bittanti and Savaresi (1998). In addition,

as a consequence of its architecture, HSNN models are only suitable for single output

)

78

variable prediction. Therefore, it is not practical to develop more complex models for
all variables when simpler models are sufficient.
Results for the different models are presented in the following order:
e standard MLP and RBFN models,
e completely driven HSNN models,
e serial network models,
¢ hybrid network models, and

e crude oil distillation tower models.

For the M-W system, all models are trained with the same batch of 150 training
data and 70 testing data, which are described earlier in Chapter 3. The standard ANN
models were initially tested with different numbers of training data ranging from 70 to
400, and the data set with 150 points was found to give the best results in terms of
prediction and training time.

To determine the number of training data points, both the RBFN and MLP models
were trained with different training data sets. Both models used the same maximum
acceptable sum of squared error (MSSE) during training and the default number of
allowable of iterations in MATLAB, which is 10,000. As described in Chapter 4, once
the spread constant, o, and MSSE were specified, the OLS algorithm used to train the
RBFN automatically selects the centers, and thus the number of nodes for the model.
For MLP, different numbers of hidden layers and nodes were tested.

For example, Table 5.1 shows the prediction of V with 150 and 300 training data
points. In the table, "CPU s" represents the time in CPU seconds taken for training the
network on a personal computer with a Pentium 200 MHz micro-processor. The RMS
error for the RBFN model trained with 300 training data points was slightly lower than
the RMS error trained with 150 data points. However, the training time when 300 data
points were used was almost ten times more than when 150 data points were used.

Similarly, the MLP network trained with the higher number of training data gave better

79

predictions. The structure with two hidden layers (30 and 15 nodes) gave better
predictions than the structure with a single hidden layer (30 nodes). Unfortunately, the
two-hidden layer structure trained with 300 data points took such a long time to train
that it is not practical to use for other variables as well. Therefore, the 150 data points
were chosen as the training set.

The training and testing data for the crude distillation tower depends on the
different sections of the column, and as described in the crude tower results section in
Chapter 3. Similar to the M-W system, different sets of training data were tested to find
the training set that gave the best results.

Evaluations of the models are based on root mean squared (RMS) error for each
model prediction. Error is defined as the difference between desired (or actual value
provided by the testing data) output value and the predicted output value. Training time
will also be taken into consideration, mainly because of the convenience in developing
models with short training cycle. The training time will only be a major concern when
the model is periodically updated on-line. For all the models, the results presented in
this chapter are the best ones obtained after numerous trials of different training error
tolerance, spread constant, number of nodes and layers, and learning rates, whichever

parameters that were applicable for the different models.

Table 5.1: Prediction of V using 150 and 300 training data points.

RBFN MLP (1 layer) MLP (2 layers)
No. of data 150 300 150 300 150 300
RMS error 0.0360 |0.0313 | 0.0565 | 0.0443 0.0434 | 0.0380
CPUs 26.4 244 415 833 772 16,790

80

5.2 STANDARD ANN

5.2.1 Base Case Model Selection

There are three types of standard ANN models: two MLP and one RBFN. All the
models have T, P, F and z as the input variables with the same training and testing data.
The models also use the same MSSE and the default maximum number of iteration to
avoid long training times. The MLP models were developed with two different training
algorithms, which were backpropagation (BP) with variable learning rate, W, and
Levenberg-Marquardt (L-M) training. Models with one and two hidden layers were
tested. The number of nodes in each hidden layer was also varied. The best MLP
models for both training methods had two hidden layers with 30 and 15 nodes in the
first and the second hidden layers respectively. For the RBFN model, the OLS
algorithm used in MATLAB iteratively selected the centers (or nodes) that yielded the
least error. Therefore, only the MSSE and the spread constant had to be changed to find
the best RBFN model.

Table 5.2 shows the RMS error of the test data prediction for each output variable
of the M-W flash system. As seen in Table 5.2, RBFN gave the smallest RMS errors
for all the variables. The predictions of both MLP models yielded similar results for all
output variables, except for q where the MLP trained with the L-M algorithm had an
RMS error that is about half of the RMS error of the MLP trained with BP. The model
trained with the L-M algorithm predicted three out of five variables better than the
model trained with BP. Both models use a random initialisation algorithm for the
weights and biases; this initial value could also influence the model prediction. The
training times for the RBFN models are ten to twenty times shorter than for the MLP
models. Comparing the two MLP models, the L-M algorithm had three to five times
shorter training times than the BP algorithm with variable u. Based on these results,

RBFN were taken as the base case for comparison with other models.

81

Table 5.2: Comparison of the best results obtained with RBFN and two MLP models.

RBFN model MLP w/BP & var. u MLP with L-M
Output RMS CPUs | RMS Error CPUs |[RMSErmor | CPUs
Error
\Y 0.0360 26.41 0.0434 772.0 0.0572 185.9
y 0.1119 12.63 0.2421 852.3 0.2581 3184
L 0.0267 11.36 0.0321 809.5 0.0314 237.4
X 0.0309 19.38 0.0427 822.0 0.0410 251.1
q 0.0325 21.59 0.0702 614.3 0.0357 279.6

Since all models are compared against the base case, model predictions that
yielded an improvement relative to the base case are deemed as satisfactory. No
standard error limits are found in the literature, mainly because acceptable or
satisfactory predictions are somewhat subjective, depending on the process and the

objective of the model.

5.2.2 RBFN Models for M-W System

Table 5.3 provides the complete results of the standard RBF models for the M-W
system. The first section of the table gives the RMS error of each output variable that
was individually predicted. The second section gives the RMS error when two output
variables were predicted together with a single RBFN. The third, fourth and fifth
sections give the RMS error when three, four and five output variables were predicted
together respectively. MSSE listed in the second columm is the maximum allowable
sum of squared error for the training set (that is, during identification). Total RMS
errors in the third column of Table 5.3 is the sum of the RMS error of all the output
variables of the model. Individual RMS error, in the third colurmm, is the RMS error of

Table 5.3: Results of RBF network models.

Outputs MSSE Total RMS Individual RMS

(yl.y2,y3.y4.y5) Error Error

\Y% 0.05 0.0360

y 0.15 0.1119

L 0.01 0.0267

X 0.01 0.0309

q 0.05 0.0376

V,y 0.01 0.1478 0.0354,0.1124

V,x 0.03 0.0599 0.0297, 0.0302

V.L 0.01 0.0528 0.0264, 0.0264

V.q 0.10 0.0533 0.0290, 0.0243

Y, X 0.10 0.1625 0.1324, 0.0301

V,y, x 0.20 0.1782 0.0434, 0.1032, 0.0316

V,y,L 0.03 0.1666 0.0267, 0.1132, 0.0267

V,L,x 0.01 0.0828 0.0257, 0.0257, 0.0314

V,.x,q 0.01 0.1047 0.0498, 0.0313, 0.0236

V,y,L,x 0.10 0.1993 0.0279,0.1123
0.0279, 0.0312

V.y,L,x.q 0.03 0.2188 0.0269, 0.1134, 0.0269,
0.0311, 0.0205

each variable in the respective order given in the first column. For the purpose of
simplicity, plots of the output variables are not shown here because there are too many
variables and combinations of variables predicted. However, plots are shown in a later
section that discusses comparisons of the results obtained.

From Table 5.3, although the total RMS error may seem to increase as the number
of output variables are increased, the individual RMS error showed otherwise for most
of the variables. In fact, suitable variable combinations are found to decrease the RMS
error of most of the variables. For example, when only V was predicted, the RMS error
was 0.0360; however, the RMS error of V when predicted in the output variables
combination of [V, x], and [V, L, x] were 0.0297 and 0.0257 respectively. The same

trend in prediction error could be seen with the rest of the variables, except for x and y,

83

the composition of methanol in the liquid and vapour streams respectively. The RMS
errors of x and y in different output combinations are almost the same. However, the
results obtained using RBFN show that y is the most difficult variable to predict.

The results in Table 5.3 are the best obtained using RBF networks, after trying
several different spread constants, o, and the maximum allowable sum of squared error,
MSSE. Determining the suitable G for the RBFN models was fairly easy, as o for the
same data would be almost the same even for different variable predictions since the
data were normalised. For all the RBFN models developed, 6 was either 0.15 or 0.20.
The MSSE, however, varied depending on the behaviour of the variable being
modelled. The variables that had good predictions could be modelled tightly, with
small MSSE. For example, for the predictions of V, L, x and q, shown in Table 5.3, the
MSSE are 0.05, 0.01, 0.0! and 0.05 respectively. For the prediction of y, however, the
MSSE is 0.15. This is because y is not only highly non-linear, but also discontinuous.
A tightly tuned model for y will not be able to generalise well because the surface for

convergence has been strictly limited by the requirements of a small MSSE.

5.2.3 RBFN Models for B-T System

To ensure that the unsatisfactory result obtained for the prediction of y was not due to
the non-ideal behaviour of the M-W mixture, the same output variables were predicted
with a benzene-toluene (B-T) flash system, which is thermodynamically ideal. As
the M-W system, the range modelled covered the single-phase liquid, two-phase and
single-phase vapour regions. The training and testing data were generated in Aspen
Plus by varying T (88-100 °C), P (0.85-1.05 bar), F (70-170 kmoVhour), and z (0.28-
0.71). Since a B-T mixture is thermodynamically ideal, the results would indicate if the

84

non-ideality of the M-W mixture were a major factor in the difficulty of predicting the
system.

From the results given in Table 5.4, it can be seen that the RMS errors for all
output variables are only slightly lower that those of the M-W system, except for L and
x. The prediction for the vapour composition of benzene, y, is still not satisfactory.
After testing with the B-T system, it can be concluded that y for any flash system that
covers single-phase liquid, single-phase vapour and two-phase vapour-liquid regions
would be difficult to predict. Therefore, a more complex structure is needed to get a

better prediction of y in this range of data.

5.2.4 RBFN Models for Two-Phase Region

To determine that the RBF network is indeed able to model the flash system in the two-
phase region, all zeroes and ones in the original pool of training and testing data
generated from the M-W Aspen Plus simulation were discarded. The data that are left
are therefore points in the two-phase region, where both liquid and vapour are present.
100 data points from the original training data and 70 data points from the original

testing data were then selected at approximately equal intervals. The 100 training data

Table 5.4: Results of the B-T system using RBFN models.

Variables M-W system B-T system
\' 0.0360 0.0264
y 0.1119 0.1034
L 0.0267 0.0270
X 0.0309 0.0612
q 0.0325 0.0160

85

set was found to be the best after trying several different numbers of training data. This
two-phase region is actually the practical operating region for flash systems.

The results of the model predictions are shown in Table 5.5. As seen in the table,
the results obtained are much better than for the model that spans the single and two-
phase regions. The predictions are very good especially for y, x and q, where the RMS
errors were an order of magnitude lower than the predictions of the base case. V and L,
however, had only slight improvements; this is most probably because the RBFN was
able to distinguish the linear relationship between F and V and L even in the original
data range. Consequently, the improvement seen in the prediction of V and L are pot as
substantial as for the three other output variables. The good results obtained proves that
the RBF network is indeed able to model the non-linearity of the system, but is unable
to account for the discontinuity at the edge of phase envelope where the mixture is in
the single-phase region. Fortunately, in practical industrial applications, the operation
of a flash system is limited within the two-phase region. Nevertheless, if a wider region

was desired, a more complex model should be used, especially to predict y.

Table 5.5: Results of standard RBFN model for M-W system in the two-phase region.

Outputs M-W system (Base case) M-W system (2-phase only)

v 0.0360 0.0114
y 0.1119 0.0065
L 0.0267 0.0108
X 0.0309 0.0074
q 0.0325 0.0095

86

5.2.5 Predicting y

The problem in predicting y stems from the abrupt change in composition from the two-
phase region to the single-phase liquid region. There may be conditions that can be
given to overcome this problem; however, since this is a test case, a generalised
approach is preferred because similar problems may also occur in other processes. For
example, Yang et al. [1999] reported that straightforward standard ANN was not able to
model sharp changes in monomer and initiator concentrations for styrene
polymerisation. In addition, simple conditions like setting y to zero when V is zero
cannot work because of the inherent weakness of all standard ANN models that cannot
give exact zeroing for function mapping. Figure 5.1 shows the plot of normalised actual
V versus normalised predicted V. Out of six points where the actual y were zero, four

were predicted to be slightly positive (about 0.06) and two were predicted to be slightly

Actual V
o
(4]

T

-0.2 0 0.2 04 0.6 0.8 1
Predicted V

Figure 5.1: Plot of normalised actual V versus normalised predicted V.

87

negative (about -0.02). Consequently, the prediction of V cannot be directly used as a
condition.

Therefore, to have a generalised approach in handling this problem, more complex
network models must be used. The following section discusses the results of more

complex ANN models in predicting y.

5.3 COMPLETELY DRIVEN HSNN

Bittanti and Savaresi [1998] reported that completely driven Hierarchically Structured
Neural Networks (HSNN) was able to handle discontinuities, especially when the
discontinuity depends on a specific input variable. HSNN would therefore be a suitable
network model to test. Two types of completely driven HSNN models were developed
for the prediction of y: linear-nonlinear HSNN and nonlinear-nonlinear HSNN. Output-
tuned HSNN was not developed for predicting y as a single model on its own because
no clear-cut constraint could be given from the input variables. This type of HSNN,
however, could be used in the serial model, which will be described in a later section.
Both models use the same training and testing data file for the M-W system as in
the base case. Similar to the base case, the inputs to the HSNN models are also T, P, F
and z. However, for HSNN, the input variables are further divided into slave and

master inputs.

5.3.1 Linear-nonlinear HSNN

Figure 4.2 illustrates the best linear-nonlinear HSNN structure used for prediction for
the M-W system. The master network was kept as a single hidden layer, but the number
of nodes was varied to find the best model. The lowest RMS error is found when the

88

master network has six hidden nodes and two output nodes. The outputs of the master
network provided values for the weight and bias of the slave network. As mentioned in
Chapter 4, for linear-nonlinear HSNN, the slave input should have a direct influence
and is approximately linear to the output of the HSNN. The input variables to the
network are T, P, F and z. If F was the slave input, then the three remaining input
variables were the master input. Different slave input and number of hidden nodes for
the master network were tested to find the best configuration. The best configuration
found had six nodes in the hidden layer of the master network.

Table 5.6 gives the best results obtained for single output predictions with HSNN
and standard RBFN. The second column of the table gives the slave input variable used
in the linear-nonlinear HSNN model. For example, F was the slave input for the
prediction of V, and four different slave inputs, z, F, K and T were individually tested
for the prediction of y. Two different K-values data were used. In the tirst model, the
K-values being used are taken directly from Aspen Plus. Aspen Plus estimates K-
values from physical property methods, without taking into account whether both liquid
and vapour phases are actually present at a particular state. Therefore, the K-values are
incorrect when the M-W mixtures only exist in a single phase because equilibrium
constants are valid only within the two-phase region. The K-values used in the second
model are modified to indicate when there is only a single vapour or liquid phase.

Referring to Table 5.6, among the three output variables predicted, V had the
lowest RMS error. The result for V is also better than the base case. This is an
expected outcome because from mass balance, since V has a linear relationship with F.
The RMS errors of the first three models used to predict y were close. Even though z
and F are not linearly related to y, both linear-nonlinear HSNN models are able to give
a better prediction of y than standard RBFN. When F was used as the slave input to
predict y, the RMS error obtained is only slightly higher than when z was used as the
slave input. This is reasonable because from mass and component balances, F and z are

both strong, but slightly non-linear functions of y. Using K-values with errors as the

89

Table 5.6: Results of linear-nonlinear HSNN models.

Output | Slave Input MSSE | RMS Error for RMS Error for
Standard RBFN | Linear-nonlinear HSNN

\% F 0.03 0.0360 0.0240
y z 0.07 0.1119 0.0893
F 0.07 0.0885
K(Error in K) 0.07 0.0857
K (correct K) 0.04 0.0344
T 0.16 0.1593
X z 0.027 0.0325 0.0362
F 0.035 0.0311

slave input yielded similar results as the first two models because the errors in the K-
values would give misleading information in the single-phase region. As expected, the
best result in predicting y was obtained when the correct K-values were used as the
slave input. When T was the slave input, the model prediction is worse than the
prediction of the RBFN model. This has most probably occurred because the
relationship between y and T is not only highly non-linear, but is also not direct one.
As seen in Chapter 3, T influences the value of y through the equilibrium constant K.
The RMS errors using RBFN and linear-nonlinear HSNN for the prediction of x,
are close. None of the input variables were suitable as a slave input for predicting x; F
was found to be the best choice. Using z as a slave input yielded a RMS error that is
also slightly higher than when F was used as the slave input. Therefore, when a suitable
slave input is not available, using a simple standard RBFN model is sufficient. Also,
simple models that can yield acceptable predictions are better because of the short
training time for developing the model. The training times for predicting y with z and F

90

as the slave input are 29,826 CPU seconds and 21,504 CPU seconds respectively, which

are much greater than the training time of about 13 CPU seconds for the base case.

5.3.2 Nonlinear-nonlinear HSNN

The structure for the nonlinear-nonlinear HSNN model is illustrated in Figure 4.3. Both
the master and slave networks have one hidden layer. The best model developed has 20
nodes in the hidden layer and 10 nodes in the output layer of the master network. The
master network outputs are the parameters of the slave network, which has three nodes
in the hidden layer. The variable chosen as the slave input can be non-linear, but should
also be directly a function of the output variable. The complexity of nonlinear-
nonlinear HSNN makes it suitable for modelling difficult-to-predict variables like y.
Other output variables are not modelled because the results obtained with simpler
models are deemed to be satisfactory.

From the results of the nonlinear-nonlinear HSNN shown in Table 5.7, the RMS
error for both models are less than that using standard RBFN, but the training times
were much longer mainly because of the complex structure and the backpropagation
algorithm. The training times for the two models with F and z as the slave inputs are
28,790 CPU seconds and 10,681 CPU seconds respectively. Nevertheless, once

training is completed and the model is obtained, the execution of the model is very fast.

Table 5.7: Results of nonlinear-nonlinear HSNN models.

Output Slave RMS Error for Training Time
Input MSSE Nonlinear-nonlinear HSNN (CPU s)

y F 0.05 0.0884 28,790

y z 0.06 0.0820 10,681

91

54 SERIAL NETWORK MODELS

All the serial network models basically have the same structure as shown in Figure 4.5.
The first network for all the serial models is an RBF network that is used to calculate
intermediate output variables that had good predictions, based on the results shown in
Table 5.3. All models were used to predict y as the final output. Two different types of

networks were tested as the second network model: RBFN and output-tuned HSNN.

5.4.1 Serial RBFN-RBFN Models

In developing models in this category, several different intermediate variables were
tested. Since the 6 and MSSE for Network 1 were already known, only the parameters
for Network 2 need to be systematically searched. The O used for Network 2 for the
different models ranged from 0.15 to 0.3. The MSSE for Network 2 for the prediction
of y range from 0.05 to 0.30.

The results of the serial RBFN-RBFN models are listed in Table 5.8. Referring to
the first column in Table 5.8, x?y indicates that the output of Network [is x, which is
then included with the original input variables, I, as an input to Network 2 to predict y,
since it is the most difficult variable to predict using standard networks. The third
column in Table 5.8 provides the total RMS error for the prediction of all variables from
the serial model, while the fourth column provides the individual RMS error of the first
and second networks. Note that although the total error may seem large, the actual
RMS error of each individual variable is not. The individual RMS error of the
intermediate variables can be seen in Table 5.3.

The RMS error for the prediction of y, shown in column 4of Table 5.8 (RMS error
for ANN 2), all gave slightly better results than prediction with a single RBFN, except
for V,.L < y. The additional information provided by the intermediate variables for the

S

Table 5.8: Results of serial RBF network models.

Output MSSE Total RMS RMS Error
(ANN 1/ANN 2) Error (ANN 1/ANN 2)
XDy 0.01/0.15 0.1397 0.0329/0.1067
V,L2>y 0.01/0.05 0.1368 0.0804/0.1123
V,L.x2y 0.01/0.30 0.1392 0.0983 /0.1031
V,x2y 0.03/0.15 0.1172 0.0620/0.1088
V.x,q=2y 0.01/0.10 0.1455 0.0835/0.1090

prediction of y allowed tighter training. Among the runs performed for the serial RBF
networks, the runs with V,L,x = y and V,x = y gave satisfactory results, with both
yielding the RMS error for prediction of y at 0.1031 and 0.1088 respectively. The
variables involved in predicting y in both groups are strong functions of y. These are

the variables needed in 2 material balance to solve for y.

5.4.2 Serial RBFN - RBFN - Output-tuned HSNN

Bittanti and Savaresi [1998] recommended that the output-tuned HSNN be used for
implementing constraints. Referring to the structure of the output-tuned HSNN shown
in Figure 4.4, an intermediate output is predicted by the slave network and the
constraint is met by the master network. To predict y, the output-tuned HSNN is not
used on its own because from previously tested models, it can be deduced that the slave
network, which is actually an MLP, will not be able to properly predict y. In addition,
the input variables available are not suitable as constraints, and there is not enough
information to use the mass and component balance. Two output-tuned HSNN were
developed. As presented in Chapter 4, the master input of the first model was V and the

second was the component balance.

93

For all the models developed, the master network has six hidden nodes and one
output node. The slave network has one hidden layer, but the number of nodes varies
from one model to another. The master network has only one output, which is the gain
that is multiplied to the output of the slave network. There is no bias added to the
output of the slave network. From the paper by Bittanti and Savaresi [1998], the bias is
normally used to set the output of the network to a specific constant value when a
constraint is met. For the first constraint, when V is zero, y is also zero, and thus
eliminates the need for a bias. For the second constraint, the value of y varies according
to the constraint, and thus would also eliminate the need for a bias. Nevertheless, there
were several models developed with a bias. The results were very poor, with the RMS
errors for the prediction of y being greater than 0.3 for all models. Therefore, the rest of
the models were developed with one output for the master network.

Table 5.9 presents the results of the serial RBFN-RBFN-output-tuned HSNN
model. All models have the same intermediate outputs. The serial RBFN-RBFN model
was chosen to have V, L and x as the intermediate outputs because this model has the
best prediction of y; (RMS error 0.1031) and can also be used to estimate the component
balance. Referring to Table 5.8, the second and third columns list the master and slave
inputs respectively. RMS errors of all models are lower than the serial RBFN-RBFN
models. This shows that the output-tuned RBFN were able to act as a filter and

implement the constraints to improve the prediction of y.

Table 5.9: Results of serial RBFN - RBFN - output-tuned HSNN models.

Intermediate | Master | Slave Input | MSSE of | Hidden nodes | Final output, y,
Output Input HSNN in slave RMS error
V,L,x2y \Y V,vi L, x 0.02 12 00114
V,L,x2vy, | Eq. 444 | V,y, L x 0.04 18 0.0074

94

From Table 5.9, there was an improvement in the prediction of y between the first
and the second models. The first model used the constraint in Equation 4.43, while the
second model used the constraint in Equation 4.44. The RMS error of the second
model, 0.0074, is the lowest one so far. The training time, at 212 CPU seconds, is also
acceptable. Predictions of y from the models shown in Table 5.9 are all highly
satisfactory compared to other models developed.

5.5 HYBRID NETWORK MODELS

There are two types of hybrid network models: hybrid RBFN-FPM (Type 1) and hybrid
RBEFN-FPM-RBFN (Type 2). Recalling the definition given in Chapter 4, FPM1 is the
equilibrium relations equation (Equation 4.43) and FPM2 is the component balance
equation (Equation 4.44). The hybrid models are arranged in a series of levels as

discussed in Chapter 4.

5.5.1 Hybrid RBFN-FPM

There are two different kinds of hybrid RBFN-FPM models. As described in Chapter 4,
Model | uses FPM 1 and Model 2 uses FPM 2. Figures 4.7 and 4.8 illustrate the
schematic of Model 1 and Model 2 respectively. In this type of model, the output
variable prediction comes directly from a FPM.

Table S.10 presents the results obtained from Type | models. Al models in Table
5.10 have V, L, and x as the intermediate outputs. In these models, the values of V and
L are normalised so that the sum of V and L is F. FPM 1 is used to calculate the output
variable, y, for both the first and second model; similar to the linear-nonlinear HSNN

models, the difference in these two models are the K-values being used to calculate y

95

Table 5.10: Results of Type 1 hybrid structure.

Intermediate Model Total RMS
Output RMS (ANN 1/FPM)
V,L,x 1(error in K-values) 0.2263 0.0983/0.1280
V,L, x 1(correct K-values) 0.1329 0.0983 /0.0346
V,L, x 2 0.1855 0.0983 /0.0872

using FPM1. The first models used the K-values taken directly from Aspen Plus, which
had erroneous values when the M-W mixture only exist in a single phase, that is, K-
value is not zero even though there is only one phase (either x or y is zero). The second
model used the corrected K-values. The third model does not use any K-values because
Model 2, which is the component balance, does not need the K-values.

The predictions of y from the second and third models are satisfactory, but the
prediction from the first model is not. This is expected because some of the K-values
being used to calculate y have errors, which would worsen and in certain cases amplify
the errors of the intermediate variables. The second model, which used accurate K-
values, has the smallest RMS error (0.0346) of all the three models. This is due to the
fact that better K-values would enable y to be calculated accurately based on the value
of x predicted by RBFN 1.

§.5.2 Hybrid RBFN-FPM-RBFN

There are four kinds of models under Type 2 hybrid models. Configurations of the
models are illustrated in Figures 4.9 to 4.11.

The results for the four models, given in Table 5.11, are all satisfactory; all RMS
errors for the prediction of y (ANN 2) are less than the base case. All models have

RBFN as ANN 2. The slave input variables of this model are y calculated from either
FPM 1 or FPM 2 or both. On the whole, the additional network added after the FPM in
all the models successfully functioned as a filter for picking out and correcting the value
of y calculated by the FPM.

Comparing the two hybrid models, the addition of an RBFN after the FPM in
Type 2 models is generally beneficial. For example, comparing Model | of Types 1
and 2, the RMS errors for the Type 2 models were lower. An exception is Model 2 of
Type 1 (RMS error = 0.0872) and Model 4 of Type 2 (RMS error = 0.0874), which is
essentially the same model, except for the additional RBFN. Among the models tested,
all models with the correct K-values used in the FPM had very good predictions.

5.6 COMPARISON OF THE PREDICTIONS OF Y
Table 5.12 lists the RMS error of the best of the different models used to predict y. All

RMS errors shown in the table represent the prediction of y in the original range that

covers both the single and two-phase regions, except for the second in the list, which is

Table 5.11: Results of hybrid structure.

Intermediate Model # Total RMS
Qutput RMS (ANN 1/ANN 2)
V,L, x 1 (error in K-values) 0.1988 0.0983 /0.1005
V,L,x 1 (correct K-values) 0.1185 0.0983 /0.0202

V.x 2 (error in K-values) 0.1595 0.0620/0.0975
V., x 2 (correct K-values) 0.0855 0.0620 /0.0235
V,x 3 (correct K-values) 0.0847 0.0620 /0.0227
X 3 (error in K-values) 0.1807 0.0983/ 0.0824
,L, x 4 0.1857 0.0983/ 0.0874

Table 5.12: RMS error for prediction of y using the different models.

Model RMS error
Standard RBFN (single-phase and two-phase regions) 0.1119
Standard RBFN (two phase region only) 0.0065
Linear-Nonlinear HSNN (F) 0.0885
Linear-Nonlinear HSNN (error in K-values) 0.0857
Linear-Nonlinear HSNN (correct K-values) 0.0344
Nonlinear-nonlinear HSNN 0.0820
Serial RBFN-RBFN 0.1031
Serial RBFN - Output-tuned HSNN (V) 0.0114
Serial RBFN - Output-tuned HSNN (Component Balance) 0.0074
Hybrid RBFN - FPM (correct K-values) 0.0346
Hybrid RBFN-FPM-RBFN (correct K-values) 0.0202

the prediction of y in the two-phase envelope. The results shown in Table 5.12 are

divided into four groups:

e standard RBFN

e completely driven HSNN
e serial networks

¢ hybrid networks

The result of the base case, which is the prediction of y over the original region

97

using standard RBFN, had the highest RMS error (0.1119) among the groups of models.

The RBFN model for the two-phase region, on the other hand, had the lowest RMS
error (0.0065) among all models. Figures 5.2 and 5.3 illustrate the plots of actual y
versus predicted y for both models. In the plots, the diagonal line is where the test data

points should be when the predicted y is the same as the actual or desired y. As seen in

Actual y
o
(6]

2 04 06 08 1
Predicted y

Figure 5.2: Plot of y predicted using standard RBFN (base case) (RMS = 0.1119).

0.6

Actual y
o
n

0.2
4
0.(1) —

o~

-t

-02 0 02 04 06 0.8 1
Predicted y

Figure 5.3: Plotof y in the two-phase envelope only (RMS = 0.0065).

Figure 5.2 for the base case, the six points in the test set where the actual y is zero are

far off, with the largest difference at about 0.7. The rest of the points, which are in the

two-phase region, are scattered near the diagonal. As seen in Figure 5.3 for the model
for the two-phase region, almost all the test points are on the diagonal. This shows that
the addition of points in the single-phase region "confused” the RBFN during training.

Consequently, the network failed to perform even in predicting the points in the two-

phase region.

All the completely driven HSNN models yielded better results than the base case.

Four models were tested in this group:

1. Linear-nonlinear HSNN with F as the slave input. This model had a more than
20% reduction in RMS crror. Referring to Figure 5.4, the six points where the
actual y is zero were all predicted closer to zero than the standard RBF model. The
largest difference is about 0.66. The points in the two-phase region are also closer
to the diagonal than the base case.

2. Linear-nonlinear HSNN, with K-values that had errors in the single-phase
regions, as the slave input. This model had similar results to the first model, as
seen in Figure 5.5. The prediction of this model for test data in the two-phase
region, however, is slightly off-diagonal, with the predicted values being slightly
higher than the actual y. However, this is not a trend because different learning
rates and initial values of the weights and biases yield slightly different predictions.
For example, Figure 5.6 illustrates the results obtained using the same learning rate
as the prediction in Figure 5.5, but would have different initial values of weights and
biases because these values were randomly generated by an initialisation algorithm.

3. Linear-nonlinear HSNN, with the correct values for K used as the slave input.
This model yielded the lowest RMS error (0.034) among all the models in this
group. As seen in Figure 5.7, the six test data in the single-phase region were

predicted close to zero, which effectively lowered the RMS error.

0.7
06

Actual y
o O o
W s O

0.2 ,/
0.1 vt
0 ———ooé > r — T
-02 0 0.2 0.4 06 08
Predicted y

100

Figure 5.4: Plotof y predicted using linear-nonlinear HSNN (F slave) (RMS = 0.0885).

0.2
0.1 2

& e
v

0 +—eo / .

-0.2 0 02 04 06
Predicted y

0.8

Figure 5.5: Plot of y predicted using linear-nonlinear HSNN (K-values with errors as

slave input) (RMS = 0.0857).

1’\

o
v

i

e

0.2

04

Predicted y

101

Figure 5.6: Plot of y predicted using linear-nonlinear HSNN (K-values with errors as

slave input) (RMS = 0.0864).

va

0.1
0 {:, -

-0.2 0 02 04 06
Predicted y

0.8

Figure 5.7: Plot of y predicted using linear-nonlinear HSNN (K-values without errors

as slave input) (RMS = 0.0344).

102

4. Nonlinear-nonlinear HSNN, with z as the slave input. From Figure 5.8, the
prediction of this model is better than the first and second model. In fact, in the
two-phase region, the results seemed slightly better than or at least comparable to
the third model. Unfortunately, the model could not give good predictions for the

test data in the single-phase region, resulting in a RMS error of 0.0820.

The predictions obtained from the completely driven HSNN models were more
satisfactory than the base case. Unlike standard RBFN, the hierarchical structure of the
models were able to eliminate the "confusion” of predicting y in the two-phase region
even in the presence of data in the single phase region. Nevertheless, only the third

model, which had correct K-values used as the slave input, were able to satisfactorily

1
0.9 ,
08 9—6/
0.7
> 06
3 05
< 04
0.3 Z/
0.2
0.1 <
0 W —Te r T
02 0 02 04 06 08 1
Predicted y

Figure 5.8. Plot of y predicted using nonlinear-nonlinear HSNN (z slave)
(RMS=0.0820).

103

predict the test data in the single-phase region. The failure of the three other models to

predict reasonably well in the single-phase region are most probably because of the

absence of a more suitable slave input variable. Otherwise, in the two-phase region, all

models were able to predict very well.

The predictions of the serial models are also better than the base case. Two types

of serial models were tested:

1.

Serial RBFN-RBFN. The best model prediction are plotted it Figure 5.9. The
predictions are satisfactory in the two-phase region, but unsatisfactory in the single-
phase region. The largest error, about 0.7, is from the prediction in the single-phase
region.

Serial RBFN - RBFN - output-tuned HSNN. Both models developed under this
structure had very good predictions. The lowest RMS errors for the prediction of y
were 0.0114 and 0.0074 when the master inputs were V and the component balance
respectively. Figure 5.10, which shows the plot when the component balance was
the master input, clearly illustrates that all the test data were either on or very close
to the diagonal line. The same can be said about the data in the single-phase region.
The one point in the single-phase region where the predicted y is slightly greater
than zero is most probably because of slight inaccuracies in the predicted values of
the variables used in the constraint that was fed to the master network. Otherwise,
the master network of the output-tuned HSNN managed to effectively eaforce the
constraint given by the master input. The results found using this model structure

was the best among all other models developed.

The predictions from the serial RBFN-RBFN - output-tuned HSNN were

surprisingly very good, even when a simple constraint of [V = 0 at y=0] was given. The

master network was actually trained with a suitable constraint to provide the

corresponding output that could effectively enforce the constraint on the output of the

slave network. As seen from the results, the master network was also effective in

Actual y
o
[4)]

0 0

2 04 086

Predicted y

o
v

0.8

Figure 5.9: Plotof y predicted using serial RBFN-RBFN (RMS = 0.1031).

Actual y
o
(4]

e

e

<

0 0.

v

2 04 06
Predicted y

08

104

Figure 5.10: Plot of y predicted using serial RBFN-RBFN - output-tuned HSNN (FPM)

(RMS =0.0074).

105

zeroing the output. This is because the master network is trained so that when the input

is zero, the master output and thus the gain for the slave output is zero, and thus

effectively zeroing the final output. The output-tuned HSNN was not implemented on
its own because of the unavailability of a suitable constraint.

The predictions of the hybrid models are also better than the base case. Two
hybrid model structures were tested:

1. Hybrid RBFN-FPM. The best result obtained is from a model that used the
equilibrium relations with the correct X-value to predict y. This is expected since
having a correct K value would enable the correct calculation of y if the value of x
predicted by RBEN is correct. Figure 5.11 shows that except for one point, all other
test data are either on or very close to the diagonal. The point that is far from the
diagonal is most probably caused by an error in the value of x (an intermediate
variable) which would be amplified by K when y is calculated using the equilibrium
relations.

2. Hybrid RBFN-FPM-RBFN. Similar to the previous model, the best result
obtained is from a model that also used the equilibrium relations as the FPM with

the correct K-value. The model was able to predict y well, as shown in Figure 5.12.

Overall, the serial RBFN-RBFN-output-tuned structure gave the best predictions
of y. The addition of the output-tuned HSNN reduced the error in the prediction of y
from 0.1031 (from the serial RBFN-RBFN) to about 0.01. The structure uses simple
constraints that are easily available common knowledge for chemical processes. No
complex parameter or thermodynamic estimation is needed. In addition, the training
time for the output-tuned HSNN is much shorter than completely driven HSNN.

In general, almost all the models developed managed to improve the predictions of
the standard RBFN models, especially for those in the two-phase region. A good
prediction in the two-phase region is obtained when the RMS errors of the models in
predicting y are between 0.08 and 0.09. The only way to reduce the RMS errors is by

&

0.7
>06

ERE };‘
< 04

L 3

0.3 L

02 /

0.1 Z

0 B —

-0.2 0 02 04 06 08
Predicted y

Figure 5.11: Plot of y predicted using hybrid RBFN-FPM (RMS = 0.0346).

02 p

e

o— <<
0 02 04 06
Predicted y

-

0.8

106

Figure 5.12: Plot of y predicted using hybrid RBF-FPM-RBF (K-values without errors

as FPM input) (RMS = 0.0202).

107

improving the prediction of the six test data in the single-phase region, which many of
the methods are unable to do so unless additional information is given. The additional
information provided by the correct K-values managed to provide the information

needed to properly predict the test points in the single-phase region.

5.7 CRUDE DISTILLATION TOWER
5.7.1 Sections of the Crude Tower

Changes within the operating range for a section in the crude distillation tower affect
only the sections that are immediately above and below the section. This allows the
crude tower model to be divided into sections where the variables that are related are
grouped together, and thus make the model more manageable. In addition, as shown in
modelling the methanol-water flash system, grouping suitable output variables together
can yield better predictions.

The model for the crude tower is divided into the following sections:
top (),
heavy naphtha stripper (HN),
kerosene stripper (K),
diesel stripper (D),
AGO stripper (A)., and
bottom (B).

D -

AN I

Table 3.2 lists the input and output variables of the network models for each module of

the crude distillation column.

108

5.7.2 Comparison between RBFN and MLP

To confirm that RBFN would give a better model than standard MLP, a comparison on
the RMS error and training times is made between RBFN models and MLP using
backpropagation with variable 1. Table 5.13 shows the results of the two different
networks using two different groups of training data for the top section of the crude
tower. The average RMS error shown in Table 5.13 is the average RMS error of the
five output variables for the top section. From the results, it can be seen that RBFN is
superior both in prediction of the test data and training times. The rest of the sections
will therefore use RBFN.

5.7.3 Grouping of Variables

To determine if the grouping of output variables had a strong influence on the

prediction, the variables in the first two sections at the top of the columm were predicted

individually and in different groups. The results are shown in Table 5.14.

Table 5.13: Overall results for the top section of the main crude distiilation column
using RBFN and feedforward network with BP.

Average RMS Error CPU Time (sec)
RBFN w/ 300 training data 0.0030 22.85
RBFN w/ 150 training data 0.0063 9.83
BP w/ 300 training data 0.0338 1397
BP w/ 150 training data 0.0383 691

109

Table 5.14: RMS errors of variables of top and HN sections of the crude tower.

Outputs Overall RMS Individual RMS Error
Emror

Ttop 0.0048

PAT 0.0140

RR 0.0046

Ovhd 0.0029

Qcond 0.0033

TtopH 0.0039

TbotH 0.0039

PAH 0.0099

IBPH 0.0046

FBPH 0.0046

RhoH 0.0076

IBPH, RR, Qcond 0.0134 0.0051, 0.0042, 0.0041

Ttop,RR,Qcond 0.0067 0.0023, 0.0035, 0.0009

Ttop, Ovhd, RR, Qcond, 0.0146 0.0014, 0.0015, 0.0025,

PAT 0.0017,0.0075

TtopH, ThotH, PAH, 0.0292 0.0021,0.0028,0.0121,0.0029,0

IBPH, FBPH, RhoH .0019,0.0074

From the table, it can be seen that for almost all the variables, the RMS errors are
smaller when the variables are grouped together in a suitable combination. For
example, the RMS errors for variables at the top of the column, Ttop, Ovhd, RR, Qcond
and PAT are 0.0048, 0.0029, 0.0046, 0.0033 and 0.0140 respectively when predicted
individually, compared to 0.0014, 0.0015, 0.0025, 0.0017 and 0.0075 respectively when
predicted together. The same is also true with the variables in the HN section.

The results also show that it is not advisable to combine unrelated variables. For
example, comparing the two variable combinations that are highlighted in the table, the
combination with IBPH, which is in a different section than RR and Qcond, the RMS
error for RR and Qcond are higher than when the variables were combined with Ttop.

110

5.74 Overall Prediction

The RMS errors for all output variables of the crude tower are given in Table 5.15.
Output variables in the same section are grouped and predicted together. The results, as
seen in the table, are very good. All the RMS errors are in the order of 107, and some

are even smaller. This shows that RBFN is suitable for predicting the output variables

of the crude tower, and there is no need for more complex models.

Table 5.15: Overall result for all sections in the crude distillation tower.

Outputs (v1,y2,y3,y4,y5,y6) Total Individual RMS Error
RMS
Error
Top column section
Trop, Ovhd, RR, Qcond, PAT 0.0146 | 0.0014,0.0015,0.0025,0.0017,0.0075
HN stripper section
TropH, TbotH, PAH, IBPH, FBPH, | 0.0292 | 0.0021,0.0028,0.0121,0.0029,0.0019
RhoH 0.0074
Kerosene stripper section
TtopK, TbotK, FPKero, IBPK, 0.0174 | 0.0018,0.0017,0.0021,0.0021,
FBPK 0.0097
Diesel stripper section
TtopD, TbotD, IBPD, FBPD, 0.0210 | 0.0037,0.0036,0.0052,0.0054,0.0030
PourD, PAD 0.0001
AGO stripper section
TtopA, TbotA, IBPA, FBPA, 0.0133 | 0.0005,0.0007,0.0021,0.0050,0.0012
PourA, PAA 0.0038
LSWR section (Bottom of main
column)
TBOT, PourL 0.0098 | 0.0038, 0.0060

111

Referring to Table 5.15, the resuits are surprisingly much better than those
obtained for the M-W flash in the original range, even though the crude tower is
physically more complex than a single flash system. They are, however, comparable to
the results obtained for the M-W flash in the two-phase region. Although the crude
tower has more variables and more components involved, the model is continuous
within the operating range. Note also that the components of crude oil are
thermodynamically closely related. These are most possibly the major contributing

factors that enabled the excellent prediction of the output variables of the crude tower.

5.7.5 Simple Range and Dimensional Extrapolation

Range extrapolation takes place when one of the input variables to a model is applied
outside the range that it was trained for. Dimensional extrapolation takes place when a
variable that was not part of the input variable during identification (because it was
constant) varies during the use of the model [te Braake et al. 1998]. To ensure that the
RBFN model can perform satisfactorily in both range and dimensional extrapolation,
the kerosene section of the column was tested.

A model for the kerosene section was developed with five input variables instead
of six, leaving out the kerosene stripping steam in the input to test for dimensional
extrapolation. The stripping steam rate was fixed at the normal operating point. A test
data set was developed with the stripping steam at the maximum and minimum
operating range.

To test for range extrapolation, a test data set was developed with the stripping
steam at 10% above the maximum and 10% below the minimum steam rate. Although
this condition is avoided in practice, getting a model that would be feasible just outside
its range is important because certain optimisation algorithms cross over constraints

slightly in an effort to reach the optimum value.

Table 5.16 shows the results for both range and dimensional extrapolation. The
results obtained for range extrapolation was close to the original results. There is less
than 15% increase in the total RMS error. This is good because this shows that the
RBFN model is able to provide a reasonable prediction should the optimiser crosses
over a constraint slightly. There was, however, a nearly three fold increase in total
RMS error for the dimensional extrapolation case. Nevertheless, the predictions are still
satisfactory and can be accepted for use because all the individual RMS errors are
around 1% or less. Therefore, the RBFN model is suitable modelling the crude tower
for RTO.

5.7.6 Objective Function for RTO
This section gives an example of a possible economic objective function for RTO for

the crude oil distillation column. A profit based objective function consists of the total

product values after deducting the costs of feed and utilities, as shown in Equation 6.1.

Table 5.16: RMS errors for range and dimensional extrapolation.

Outputs (y1,y2,y3,y4.y5) Total RMS Individual RMS Error
Error

Original result

TtopK, TbotK, FPKero, IBPK, 0.0174 | 0.0018,0.0017,0.0021,0.0021,

FBPK 0.0097

Dimensional extrapolation

TtopK, TbotK, FPKero, IBPK, 0.0515 | 0.0110,0.0242,0.0024,0.0034,

FBPK 0.0105,

Range extrapolation

TtopK, TbotK, FPKero, IBPK, 0.0200 | 0.0028,0.0026,0.0027,0.0029,

FBPK 0.0090

113

6
m[z P - Cfeed - Culilftie:] (6.1)

x Li=t
subject to g(x)20
h(x)=0

where P; = product stream values;
Cieca = feed stream cost;
Cuities = total utility costs;
g(x) = set of process inequality constraints;
h(x) = set of equality constraints represented by the process models.

x = the decision variables, which are the draw-off flow rates.

The product stream values are simply the product draw-off flowrates, F;,

multiplied by the respective prices, D;, as shown in Equation 6.2:
P; =Dy (F) fori=1,...,6 6.2)

The feed costs are the flow rates of the condensate and crude oil streams, F;, multiplied

by the respective prices, D;, as shown in Equation 6.3:
Cieed = (D) (F) forj=1,2. 6.3)

The utility costs are consists of the reboiler (in the HN side-stripper) and condenser
duties (top of column) and the stripping steam rates (main column, kerosene stripper,

diesel stripper and AGO stripper), multiplied by the respective prices, Dy, as shown in
Equation 6.4:

Cuatities = (D) (F) fork=1,2. (6.4)

114

The inequality constraints, g(x), may consist of the product quality constraints and
equipment constraints. Among the product quality constraints, for example, is a certain
range of flash point that is specified for kerosene and a certain specific gravity that is
specified for heavy naphtha. The equipment constraints would include the maximum
and minimum feed and product flow rates because of the constraints from the pumps
that are used. Similar to the equality constraints, h(x), the values of g(x) are all

calculated from the process models.

5.8 SUMMARY

For the flash systems, RBFNs were able to satisfactorily predict all output variables,
except y. The difficulty in predicting y was mainly due to the discontinuity between the
two-phase region and the single-phase regions. The excellent results obtained from the
prediction of the output variables restricted within the two-phase region, shows that the
RBFN can sufficiently model nonlinear systems when there is no discontinuity.

The RBFNs were able to predict all the output variables for the crude distillation
tower very well The RMS errors obtained were, in fact, equivalent in order of
magnitude to those obtained in the M-W flash prediction restricted to the two-phase
region. This can be explained by the fact that all training and testing data for the crude
tower are within the operating region. In addition, the mixtures in crude oil are
thermodynamically ideal.

The difference in formulating the RBFN models between the M-W system and the
crude tower is mainly in the high number of output variables and the multiple sections
of the crude distillation column. Nevertheless, once divided into sections, better results
were obtained when the output variables from the same section of the tower were

predicted together, which is a similar phenomenon with the M-W system.

115

The difficulty in predicting y from the M-W flash system showed that certain

variables need more complex models. If additional accurate thermodynamic

information, like the K-values, are available, then using a hybrid RBFN-FPM model is

one of the simplest methods. HSNN is also a suitable method, especially output-tuned

HSNN, which uses simple, readily available information, and does not need additional

thermodynamic information.

The following summarises the basic guidelines that should be followed to

formulate a connectionist model for a chemical process:

1.

t~

Select a suitable standard ANN model. A common, standard starting point is the
MLP. However, the systems studied here were better modelled with RBFN.
Therefore, we recommend that RBFN also be tested.

Grouping of variables. If there is a large number ot output variables, not all of
them can be predicted with one ANN model because the model would be too large
and become inaccurate. An efficient way is to group related variables together since
this would most probably yield better predictions while at the same time avoid "the
curse of dimensionality".

Serial predictions. If there are variables that are easier to predict and can aid in the
prediction of the other output variables, it is more efficient to predict them first, and
then use the predicted values as part of the inputs. This type of serial prediction has
been shown to yield better results with the aid of the additional information from
previously predicted variables.

Difficult to predict variables with extensive prior information. If there is a
difficult to predict variable and extensive mformation is available, such as
thermodynamic or mass transfer parameters, then a hybrid ANN-FPM model can be
used. If more than one FPM is available, a hybrid ANN-FPM-ANN can also be
investigated. However, models developed for RTO should not, as far as possible,

need rigorous numerical solutions. These models should try to keep to the simple,

116

straightforward calculations of an ANN model. If this is not possible, then use one

of the models recommended in step 5.

Difficult to predict variables, especially those that are discontinuous and

without extensive prior information. For this type of variable, HSNN is

recommended. There are two options available:

e With simple constraints. If there are simple ccnstraints, for example, in the form
of mass, component, or energy balance, then outpui-tuned HSNN is
recommended. Simple zeroing constraints can also be used.

¢ Without constraints. An input variable, which strongly influences the output
variable. is used as the slave input of a completely driven HSNN. If the
relationship is linear, then the linear-nonlinear HSNN is recommended. If the

relationship is non-linear, then the nonlinear-nonlinear HSNN is recommended.

CHAPTER 6

CONCLUSIONS

6.1 CONCLUSIONS

The main objective of this research has been on developing different types of
connectionist models that are appropriate for RTO applications. These models, which
are multivariable in nature because they represent the complete process, should have a
dominant ANN structure to fulfil the desired characteristics ot the models for RTO.
This research also investigated the use of models that have the capabilities of imbedding
easily available, prior information into the structure of the model, like HSNN, for
instance.
In accordance with the objective, the findings of this study can be summarised as
follows:
¢ RBFN is suitable for modelling nonlinear chemical processes. The RBFN was able
to mode! the flash systems and the crude distillation tower well, with the exception
of output variables with discontinuity. The RBFN model for the crude tower was
also able to satisfactorily perform dimensional and range extrapolation, which are
important in RTO applications.
¢ To develop models for RTO, output variables that are related should be grouped
together as this would most probably lead to better predictions. Decomposing large

multivariable systems into smaller modules is also necessary so that the developed

117

118

models are manageable. In addition, grouping unrelated variables together causes
unwanted degeneration of the model, and as such is not advisable.

e The HSNN structures are efficient in embedding readily available knowledge,
especially in predicting variables with discontinuities and constraints. The
completely driven HSNN is suitable when there is a variable with a direct and
strong influence on the behaviour of the output variable. The output-tuned HSNN is
suitable for consolidating constraints into the network model.

e Serial network models can improve predictions; however, when only standard
networks are used, these models cannot handle discontinuities.

e Hybrid ANN-FPM models are suitable for RTO when there are easily solved FPM
with the availability of accurate parameters used in the FPM. These information,

however, are more difficult to obtain.

Therefore, ANN and grey box ANN models have the capabilities to model
chemical processes for RTO. As shown in this study, various methods exist to
overcome difficulties in modelling certain variables. Readily known information can be
incorporated in different ways. Embedding prior information into the network structure
provides an efficient means to come up with a better model, as in the case of HSNN.
Most importantly, all the models developed here can be easily updated and maintained,

which makes them suitable for the process industry.

6.2 CONTRIBUTIONS

In summary, we have accomplished the following through this research work:
1. Illustrated techniques to incorporate available FPM information into ANN models.
2. Developed a general network structure that can be used to incorporate constraints

and discontinuities.

119

3. Developed an ANN model of an industrial crude tower.
4. Showed that the physical complexity of a process does not always correlate with the
ANN model complexity.

5. Opened a window for the use of more complex network structures in chemical

process modelling.

6.3 RECOMMENDATIONS

Several aspects of this research work can be enhanced or developed even further.

Possible future extensions include:

l. Explore other methods to incorporate existing information into the structure of the
network models. There are numerous methods in the study of neural networks that
have the potential to be beneficial and have not yet been applied to chemical
processes. In addition, for processes with abrupt changes, the possibility of training
a classification petwork to determine the region, L-only, V-L or V-only, prior to
calculation of the composition and quantity in each phase.

2. The models developed here could be applied to other complex chemical processes,
especially those with discontinuities. An example is the polymerisation of styrene
[Yang et al. 1999].

3. Severai on-line issues may also be studied, including:
® simulate on-line implementation and study possible actual implementation of the

models to real world application such as the Petronas Refinery in Malaysia.

® investigate on-line versus off-line updating.

REFERENCES

Abilov, A, and Zeybek, Z., "Use of Neural Network for Modeling of Non-linear
Proccess Integration Technology in Chemical Engineering”, Chemical Engineering and
Processing, 39, pp. 449-458 (2000).

Altissimi, R., Brambilla, A., Deidda, A., and Semino, D., "Optimal Operation of a
Separation Plant using Artificial Neural Networks”, Computers in Chemical

Engineering, Vol. 22, pp. $939-S942 (1998).

Aspen Technology Inc., Cambridge, Massachusetts. ASPEN PLUS User Guide
Volume 1, release 9.2 edition, November 1995.

Aspen Technology Inc., Cambridge, Massachusetts. SPEEDUP User Manual Volume
1, release 5.5d edition, March 1995.

Baratti, R., Vacca, G., and Servida, A., “Neural Network Modelling of Distillation
Columns”, Hydrocarbon Processing, pp 35-38 (June 1995).

Baughman, D., and Liu, Y., Neural Networks in Bioprocessing and Chemical
Engineering, Academic Press, San Diego, Ca., (1995).

Bhat, N., and McAvoy, T., “Determining Model Structure for Neural Models by
Network Stripping”, Computers and Chemical Engineering, pp. 271-282 (1992).

120

121

Billings, S., and Zheng, G., “Radial Basis Function Networks Configuration Using
Genetic Algorithms”, Neural Networks, 8(6), pp. 877-890 (1995).

Bittanti, S., and Savaresi, S., “Hierarchically Structured Neural Networks: A Way to
Shape a ‘Magma’ of Neurons”, Journal of the Franklin Institute, 335B(5), pp. 929-950
(1998).

Bulsari,, A., Lewandowski, J., and Palosaari, S., “System Identification of an
Adsorption Process using Neural Networks”, Proceedings [FAC Advanced Control of

Chemical Processes, Kyoto, Japan, pp 53-57 (1994).

Busson, P., Nobrega, R., and Varela, J., *Modular Neural Networks for On-line Event
Classification in High Energy Physics”, Nuclear Instruments and Methods in Physics
Research A, 410, pp. 273-283 (1998).

Calderon, Z., Espuna, A., and Puigjaner, L., "Waste Analysis and Minimization in
Batch and Semibatch Reactor Operation through Dynamic Simulation and Neural
Networks", Computers and Chemical Engineering, 22, pp. $977-S980 (1998).

Chen, K., Yang, L., Yu, X, and Chi, H., “A Self-generating Modular Neural Network
Architecture for Supervised Learning”, Neurocomputing, 16, 33-48 (1997).

Chen, S., Cowan, C., and Grant, P., “Orthogonal Least Squares Learning Algorithm for
Radial Basis Function Networks”, [EEE Transactions on Neural Networks, 2(2), pp.
302-309 (1991).

Chen, T., and Chen, H., “Approximation Capability to Functions of Several Variables,
Nonlinear Functionals, and Operatiors by Radial Basis Function Neural Networks”,
[EEE Transactions on Neural Networks, 6(4), pp.904-910 (1995).

Cheung, T., Kwapong, O., and Elsey, J., “Building Empirical Models of Process Plant
Data By Regression or Neural Network”, Proceedings American Control Conference,
Chicago, pp.1922-1925 (1992).

Cristina, H., Aguiar, I, and Filho, R., "Modeling and Optimization of Pulp and Paper
Processes using Neural Networks", Computers and Chemical Engineering, 22, pp.
S981-5984 (1998).

Cubillos, F., Alvarez, P., Pinto, J. C. and Lima, E., “Hybrid-neural Modelling for
Particulate Solid Drying Processes”, Powder Technology 87, pp 153-160 (1996).

Cutler, C., and Perry, R., Computers and Chemical Engineering, 7, pp. 663-667 (1983).

Elkamel, A., AI-Ajmi, A., and Fahim, M., "Modeling the Hydrocracker Process using
Artificial Neural Networks", Petroleum Science and Technology, 17(9&10), 931-954
(1999).

Elkamel, A., "An Artificial Neural Network for Predicting and Optimizing Immiscible

Flood Performance in Heterogeneous Reservoirs”, Computers Chemical Engineering,
22(11), pp. 1699-1709 (1998).

Elkamel, A., Karkoub, M., and Gharbi, R., “A Neural Network Prediction Model of
Fluid Displacements in Porous Media”, Computers in Chemical Engineering, 20,
Supplement, pp S515-5520 (1996).

123

Freeman, J., and Saad, D., “On-line Learmning in Radial Basis Function Networks”,

Neural Computation, 9(7), pp. 1601-1622 (1997).

Fu, P., and Barford, J., "A Hybrid Neural Network - First Principles Approach for
Modelling of Cell Metabolism”, Computers and Chemical Engineering, 20(6/7), pp.
951-958 (1996).

Gallinent, P., “Training of Modular Neural Net Systems”, Handbook of Brain Theory
and Neural Networks, Arbib, M., ed., MIT Press, Cambridge, MA., pp. 582-585 (1995).

Gontarski, C., Rodrigues, P., Mori, M., and Prenem, L., "Simulation of an Industrial
Wastewater Treatment Plant using Artificial Neural Networks”, Computers and
Chemical Engineering, 24, pp. 1719-1723 (2000).

Gupta, S., Liu, P., Svoronos, S., Sharma, R., Abdel-Khalek, N., Cheng, Y., and El-
Shall, H., "Hybrid First-Principles/ Neural Networks Model for Column Floatation”,
AICHE Journal, 45(3), pp. 557-566 (1999).

Hassoun, M.H., (1995), ‘Fundamentals of Artificial Neural Networks”, The MIT Press,

Cambridge, Massachusetts.

Haykin, S., “Neural Networks A Comprehensive Foundation”, Maxwell Macmillan
International, New York (1994).

Haykin, S., “Neural Networks A Comprehensive Foundation”, Maxwell Macmillan
International, New York (1999).

Himmelblau, D., "Applications of Artificial Neural Networks in Chemical

Engineering”, Korean Journal of Chemical Engineering, 17(4), pp.373-392 (2000).

Homik, K., Stinchcombe, M., and White, H., ‘“Multilayer Feedforward Neural
Networks are Universal Approximators”, Neural Networks, vol. 2, pp 359-366 (1989).

Hussain, M, "Review of the Applications of Neural Networks in Chemical Process
Control - Simulation and Online Implementation”, Artificial Intelligence in
Engineering, 13, pp. 55-68 (1999).

Jang, J., Sun, C., and Mizutani, E., Neuro-Fuzzy and Soft Computing, Prentice Hall,
New Jersey (1997).

Jang, S. Babu, J., and Mikai, H., “On-line Optimization of Constrained Multivariable
Chemical Processes”, AICHE Journal, 33, pp. 26-35 (1987).

Jeokins, R. and Yuhas, B., “A Simplified Neural Network Solution Through Problem
Decomposition: The Case of the Truck Backer-Upper”’, [EEE Transactions on Neural
Networks, 4(4), pp. 718-720 (1993).

Jordan, M., and Jacobs, R., “Hierarchical Mixtures of Experts and the EM Algorithm”,
Neural Computation, 6, pp. 181-214 (1994).

Jordan, M., and Jacobs, R., “Modular and Hierarchical Learning Systems”, The
Handbook of Brain Theory and Neural Networks, Arbib, M., ed., MIT Press,
Cambridge, MA., pp. 579-582 (1995).

125

Lanouette, R., Thibault, J., and Valade, J., "Process Modeling with Neural Networks

using Small Experimental Datasets", Computers and Chemical Engineering, 23, pp
1167-1176 (1999).

Latriile, E., Corrieu, G., and Thibault, J., “Neural Network Models for Final Process
Time Determination in Fermented Milk Production”, Computers in Chemical

Engineering, 18(11/12), pp 1171-1181 (1994).

Leonard, J., Kramer, M, and Ungar, L., “A Neural Network Architecture that Computes
Its Own Reliability”, Computers and Chemical Engineering, 16(9), pp. 819-835 (1992).

Leonard, J., and Kramer, M, “Improvement of the Backpropagation Algorithm for
Training Neural Networks”, Computers and Chemical Engineering, 14(3), pp. 337-341
(1990).

Lin, C.T. and C.S. Lee, “Neural Fuzzy Systems”, Prentice Hall Publishing (1995).

Lu, B. and Ito, M., “Task Decomposition Based on Class Relations: A Modular Neural

Network Architecture for Pattern Classification”, Lecture Notes in Computer Science,
1240, 330-339 (1997).

Luo, W., and Billings, S., “Structure Selective Updating for Nonlinear Models and
Radial Basis Function Neural Networks”, Inter. J. Adapt. Control Signal Processing, 12,
325-345 (1998).

MacMurray, J., and Himmelblau, D., “Modeling and Control of a Packed Distillation
Column Using Artificial Neural Networks”, Computers in Chemical Engineering,
19(10), pp 1077-1088 (1995).

126

Mandlischer, M., Geyer, H., and Ulbig, P., "Neural Networks and Evolutionary
Algorithms for the Prediction of Thermodynamic Properties for Chemical Engineering”,
Lecture Notes in Computer Science, Vol. 1585, pp. 106-113, (1999).

Mavrovouniotis, M., and Chang, S., “Hierarchical Neural Networks”, Computers and

Chemical Engineering, pp.347-370 (1992).

Meghlaoui, A., Thibault, J., Bui, R., Tikasz, L., and Saaterre, R., “Neural Networks for
the Identification of the Aluminium Electrolysis Process”, Computers in Chemical

Engineering, 22(10), pp. 1419-1428 (1998).

Molga, E., van Woezik, B., and Westerterp, K., "Neural Networks for Modelling of
Chemical Reaction Systems with Complex Kinetics: Oxidation of 2-Octanol with Nitric

Acid", Chemical Engineering and Processing, 39, pp.323-334 (2000).

Moody, J., and Darken, C., “Fast Learning in Networks of Locally-Tuned Processing
Units”, Neural Computation, 1, pp. 281-294 (1989).

Nascimento, C., and Giudici, R., "Neural Network Based Approach for Optimisation
Applied to an Industrial Nylon-6,6 Polymerisation Process”, Computers and Chemical
Engineering, 22, pp $595-S600 (1998).

Nascimento, C., Giudici, R., and Scherbakoff, N., "Modeling of Industrial Nylon-6,6
Polymerization Process in a Twin-Screw Extruder Reactor. [I Neural Networks and

Hybrid Models", Journal of Applied Polymer Science, Vol. 72, 905-912 (1999).

127

Nascimento, C., Giudici, R., and Guardani, R., "Neural Network Based Approach for
Optimization of Industrial Chemical Processes”, Computers and Chemical Engineering,
24, pp. 2303-2314 (2000).

Naysmith, M., Ph.D. Thesis, Dept. of Chemical Engineering, University of Waterloo
(1997).

Naysmith, M., and Douglas, P., ‘Review of Real Time Optimization in the Chemical
Processing Industry”, Developments in Chemical Engineering and Mineral Processing,
3(2), pp. 67-87 (1995).

Piron, E., Latrille, E., and Rene, F., “Application of Artificial Neural Networks for
Crossflow Microfiltration Modelling: Black Box and Semi-physical Approaches”,
Computers and Chemical Engineering, 21(9), pp. 1021-1030 (1997).

Poliock, G., and Eldridge, R, "Neural Network Modeling of Structured Packing Height
Equivalent of a Theoretical Plate”, Ind. Eng. Chem. Res., 39(5), pp. 1520-1525 (2000).

Psichogios, D., and Ungar, L., “A Hybrid Neural Network-First Principles Approach to
Process Modelling”, AICHE Journal, 38(10), pp. 1499-1511 (1992).

Reuter, M., van Deventer, J., and van der Walt, T., “A Generalized Neurai-Net Kinetic
Equation”, Chemical Engineering Science, 48(7), pp 1281-1297 (1993).

Sabharwal, A., Bhat, N., and Wada, T., “Integrate Empirical and Physical Modelling”,
Hydrocarbon Processing, pp. 105-112, October 1997.

Schubert, J., Simutis, R., Dors, M., Havlik, [, and Lubbert, A., “Bioprocess
Optimization and Control: Application of Hybrid Modelling”, Joumnal of
Biotechnology, 35, pp. 51-68 (1994).

Schubert, J., Rimvydas, S., Dors, M., Havlik, 1., and Lubben, A., “Hybrid Modelling of
Yeast Production Processes — Combination of a priori Knowledge on Different Levels

of Sophistication”, Chemical Engineering Technology, 17, pp 10-20 (1994).

Seader, J., and Henley, E., "Separation Process Principles”, John Wiley & Sons Inc.,
New York, pp. 178-180 (1998).

Sharma, R., Singhal, D., Ghosh, R., and Dwivedi, A., "Potential Applications of
Artificial Neural Networks to Thermodynamics: Vapor-Liquid Equilibrium
Predictions”, Computers in Chemical Engineering, 23, pp. 385-390 (1999).

Shene, C., Diez, C., and Bravo, S., "Neural Networks for the Prediction of the state of
Zymomonas mobilis CP4 Batch Fermentations”, Computers and Chemical Engineering,
23, pp. 1097-1108 (1999).

Shertinsky, A., and Pickard, R., “On the Efficiency of the Orthogonal Least Squares
Training Method for Radial Basis Function Networks”, IEEE Transactions on Neural
Networks, 7(1), pp.195-200 (1996).

Specht, D., “A General Regression Network”, [EEE Transactions on Neural Networks,
2(6), pp. 568-576 (1991).

Sridhar, D., Seagrave, R., and Bartlette, E., ‘Process Modelling using Stacked Neural
Networks”, AICHE Journal, 42(9), pp. 2529-2539 (1996).

129

Sridhar, D., Bartlett, E. and Seagrave, R., “Information Theoretic Subset Selection for
Neural Network Models”, Computers and Chemical Engineering, 22(4/5), pp. 613-626
(1998).

Su, H., Bhat, N., Minderman, P., and McAvoy, T., Proceedings IFAC Dynamics and
Control of Chemical Reactors, Maryland, USA, pp. 327-332 (1992).

Syu, M., and Chen, B., “Back-propagation Neural Network Adaptive Control of a
Continuous Wastewater Treatment Process”, Industrial Engineering and Chemistry
Research, 37, pp. 3625-3630 (1998).

te Braake, H., van Can, H., and Verbruggen, H., "Semi-mechanistic Modeling of
Chemical Processes with Neural Networks", Engineering Applications in Artificial

Intelligence, 11, pp. 507-515 (1998).

Thibault, J., Acuna, G., Perez-Correa, R., Jorquera, H., Molin, P., and Agosin, E., "A
Hybrid Representation Approach for Modelling Complex Dynamic Bioprocesses”,
Bioprocess Engineering, 22, pp. 547-556 (2000).

Thibault, J., and Grandjean, B., ‘“Neural networks in Process Control -~ A Survey”,
Proceedings IFAC Advanced Control of Chemical Processes, Toulouse, France, pp.
251-278 (1991).

Tholundur, A., and Ramirez, W., "Neural-Network Modeling and Optimization of
Induced Foreign Protein Production”, AICHE Joumal, 45(8), pp. 1660-1670 (1999).

130

Thompson, M. and Kramer, M., “Modeling Chemical Processes using Prior Knowledge
and Neural Networks”, AICHE Journal, 40(8), pp. 1328-1340 (1994).

Thompson, W., Martin, G., and Bhat, N., “How Neural Network Modelling

Complement Those of Physical Modelling”, Proceedings NPRA Computer Conference,
Nov. 11-13, (1996).

Tsen, A., Jang, S., Wong, D., and Joseph, B., “Predictive Control of Quality in Batch
Polymerization using Hybrid ANN Models”, AICHE Joumnal, 42(2), pp. 455-465
(1996).

Turner, P., Montague, G., and Morris, J., “Dynamic Neural Networks in Non-linear
Applications (an Industrial Application)”, Computers in Chemical Engineering, 20,
Supplement, pp $937-5942 (1996).

van Can, H., Hellinga, C., Luyben, K., Heijnen, J., and Braake, H., “‘Strategy for
Dynamic Process Modelling Based on Neural Networks in Macroscopic Balances”,
AICHE Journal, 42(12), pp. 3403-3418 (1996).

van der Walt, T., and van Deventer, J., “The Dynamic Modelling of Ill-defined

Processing Operations using Connectionist Networks”, Chemical Engineering Science,
48(11), pp. 1945-1958 (1993).

Venkatasubramanian, V., and McAvoy, T., “Editorial — Neural Network Applications in

Chemical Engineering”, Computers and Chemical Engineering, pp. v-vi (1992).

Wang, H., Liu, G., Harris, C., and Brown, M., Advanced Adaptive Control, Pergamon
Press, UK, p 51 (1995).

131

Whaley, A., Bode, C., Ghosh, J., and Eldridge, R., "HETP and Pressure Drop Prediction
for Structured Packing Distillation Columns using a Neural Network Model", Ind. Eng.
Chem Res., 38(4), pp. 1736-1739 (1999).

Willis, M., Di Massimo, C., Montague, G., Tham, M., and Morris, A., ““Artificial Neural
Networks in Process Engineering”, [EE Proceedings-D, 138(3), pp. 256-266 (1991).

Wilson, J., and Zorsetto, L., “A Generalized Approach to Process State Estimation
using Hybrid Artificial Neural Network/Mechanistic Models”, Computers and
Chemical Engineering, 21(9), pp. 951-963 (1997).

Wolpert, D.. “Stacked Generalization”, Neural Networks, 5, pp.241-259 (1992).

Yang, S., Chung, P., and Brooks, B., "Multi-stage Modelling of a Semi-batch
Polymerisation Reactor using Artificial Neural Networks", Trans. [ChemE, Vol. 77,
Part A, pp. 779-783 (1999).

Zhang, J.. Yang, X., Momis, A, and Kiparissides, C., “Neural Network Based
Estimators for a Batch Polymerization Reactor”, Proceedings [FAC Dynamics and
Control of Chemical Reactors (DYCORD+'95), Copenhagen, Denmark, pp 129-214
(1995).

Zhang, J., Morris, A., Martin, E., and Kiparissides, C., "Estimation of Impurit and
Fouling in Batch Polymerisation Reactors through the Application of Neural
Networks", Computers and Chemical Engineering, 23, pp. 301-314 (1999).

132

Zhao, J., Chen, B., and Shen, J.,, “A Hybrid ANN-ES System for Dynamic Fault
Diagnosis of Hydrocracking Processes”, Computers in Chemical Engineering, 21,

Supplement, pp $929-8933 (1597).

Zheng. G., and Billings, S., “Radial Basis Function Network Configuration Using
Mutual Information and the Orthogonal Least Squares Algorithm”, Neural Networks,
9(9), pp. 1619-1637 (1996).

Zorzetto, L., Filho, R., and Wolf-Maciel, M., "Process Modelling Development through
Artificial Neural Networks and Hybrid Models", Computers and Chemical Engineering,
24, pp. 1355-1360 (2000).

APPENDIX A
BACKGROUND ON NEURAL NETWORKS

This appendix provides detailed background on neural networks that is necessary to

understand this research.

A.1 NEURONS AND NEURAL NETWORKS

Figure A.1 shows a neuron, which is the simplest processing element of a neural

network. A neuron or a node counsists of three components [Baughman and Liu, 1995;
Haykin, 1994].

L.

Inputs and outputs. This is the synapse or connections from or to other nodes.
Inputs to the node, x;, may also come from data that have been normalized. The
node manipulates the inputs to yield the output, y;, which may then be sent to more
than one node.

Connection weights. The connection weights, wj;, determine the influence of the
input on the output of the node. In this work, the first subscript of the weight, i,
refers to the input while the second subscript, j, refers to the node. Weight factors
can be inhibitory (if the value is negative) or excitatory (if the value is positive). A
weight factor that is close to zero will have a negligible effect on the node.
Activation function. Summation of the weighted inputs is passed through an

activation function (also called squashing function or transfer function). This

133

134

function limits the amplitude range of the output. The most commonly used
functions [Baughman and Liu, 1995] are the sigmoid function,

f(x)=1/(1+e™) (A1)
the hyperbolic tangent function,

f(x) = tanh(x) = (" —e™/(c* + ™) (A.2)
and the Gaussian function,

f(x) = exp(-le?.) (A.3)

As shown in Figure A.l, there may also be threshold values associated with the
node. This threshold value, T;, lowers or increase the net input of the activation
function. After the inputs have gone through the neuron, as shown in Figure 2.2, the
output of the network becomes:

yi=Ziwixi=T; (A4)
The nodes can be connected in several different topologies, the most common being
feedforward and recurrent networks. The nodes are arranged in layers; the network may

contain a single layer, or more than one layer, in which case it becomes a multilayer

network.

Multilayer Feedforward Networks. There are three types of layers: 1. input layer, 2.
hidden layer, and 3. output layer. The input layer contains the source nodes. There can
be more than one hidden layer. The purpose of this hidden layer is to extract higher
order information from the data. The outputs of the input layer are sent to the nodes in
the first layer of the hidden layer. In a feedforward network, inputs to the neurons in a
layer comes from the neurons in the preceding layer. When every node in each layer of
the network is connected to every node in the adjacent layer, the network is fully

connected. There are also partially connected networks.

135

Figure A.1 Schematic diagram of a neuron.

Recurrent Networks. Recurrent network is distinct from feedforward network in that
it has at least one feedback loop. Self-feedback, which is when the output of a neuron is
fed back to its input, can also occur. Addition of unit delay systems or zero-order holds

(denoted by z-1) in recurrent networks, is very common in dynamic modelling.

A.2 DEVELOPING ANN MODELS

There are three phases in developing ANN models [Baughman and Liu, 1995]:

l.

[

136

Training/learning phase. Learning is the process of adjusting weight factors based
on systematic and efficient trial and error. Training is the process of adjusting
weight factors until the output patterns reflect the desired relationship [Baughman
and Liu, 1995]. To do this, the network is repeatedly presented with a set of known
input/output data. The network learns the input/output response behavior, and
subsequently undergoes further training. This is the longest and most time-
consumning step. It is also the most important to the success of the network.

Recall phase. The network is tested with trained data.

Generalisation. The network is tested with data that it was not trained with before.
This phase will determine the interpolation/generalization capability of the network.
If too many nodes are used, then there is a tendency for the network to overfit and

badly generalize.

There are three main leaming algorithms. Decision on which algorithm to use

mainly depends on the type of problem to be solved. The three algorithms are as
follows [Haykin, 1994; Lin and Liu, 1995]:

1.

)

Supervised learning. It is also called active learning or learning with an external
teacher. In supervised learning with every input, a corresponding desired output is
given. The most common method of learning is error-correction learning, where the
error, which is the difference between the network output and the desired output, is
sent back to the network to correct the weights of the network to minimize the error.
Reinforcement learning. Also called leamming with a critic, it does not need as
much or detailed data as supervised learning. This is because feedback to the
network is evaluative (critic) and not instructive (teacher). For example, the critic
will give feedback evaluation like “too high”, “high”, or “low” to a certain output.
A critic signal generator gives the external reinforcement signal.

Unsupervised learning. In this mode of learning, there is no external teacher or

critic. The network relies on internal control and local information to develop its

137

own model without additional input information. The network “self-organize™ itself
by discovering patterns, features or categories in the input while adjusting its
parameters. The network forms clusters by discovering similarities and differences

in the object. Typically, unsupervised learning is used in classification of patterns,

such as image or voice recognition.

A.3 MULTILAYER PERCEPTRONS

Multilayer perceptrons are feedforward multi-layered networks that are capable of

performing just about any linear or nonlinear computation and can approximate any

reasonable function arbitrarily well. A multilayer perceptron has three distinctive

features [Haykin 1994}

a) The model of each neuron in the network includes a nonlinear but smooth (ie.
differentiable) activation function at the output end. The presence of this
nonlinearity is iumportant because it enables the network to map nonlinear
relationships.

b) The network contains one or more hidden layers of nodes. These nodes enable the
network to learn complex tasks by extracting progressively more meaningful
features from the input-output patterns.

c) The network exhibits a high degree of connectivity determined by the synapses of
the network. A change in the connectivity of the network requires a change in the

population of synaptic connections or their weights.

Back propagation learning algorithm is one of the earliest and most common
method for training multilayer perceptrons. Development of this learning algorithm was
one of the main reasons for renewed interest in this area and this learning rule has

become central to many current work on learning in artificial neural networks. It is used

138

to train nonlinear, multilayered networks to successfully solve difficult and diverse
problems such as perform function approximation, pattern association and pattern
classification, non-linear system modeling, time-series prediction and image
compression and reconstruction {Hassoun, 1995].

Backpropagation learning consists of two passes through the different layers of the
network. In the forward pass, the input pattern applied to the sensory nodes of the
network propagates through the different layers. During this pass the synaptic weights
of the network remain fixed. An actual output is produced as a result of the forward
flow of this data. This actual response is subtracted form a desired (target) response to
produce an error signal which is then propagated backward through the network against
the direction of the synaptic connections. During this backward pass, the synaptic
weights are all adjusted to make the actual response of the network more closer to the
desired response. The error-correction scheme, therefore, works by propagating the
information about the deviation from the desired output “backward” through the
network, against the direction of synaptic connections.

The weights of the network can be updated by two procedures: incrementat
learning and batch learning. With incremental learning, the weights are updated after
every presentation of an input pattern. Whereas, with batch learning, weight updating is
performed only after all pattern (assuming a finite training set) have been presented.
The weights of the network are updated such that the sum-squared of error of the
network is minimized. This is done by continually changing the values of the network
weights in the direction of steepest descent with respect to error. Steepest descent or
gradient descent is ome of the simplest optimization techmiques and is not a very
effective one. This technique may suffer from slow convergence, especially when small
learning rates are used.. Alternatively, Newton’s method, conjugate-direction method or
quasi-newton method have been proposed to improve this algorithm [Lin and Lee,
1995].

139

Leonard and Kramer {1990] showed that the backpropagation algorithm, which
normally uses the generalized delta rule for gradient calculations, is inefficient and has
poor convergence on serial processing machines (ie. computers). Backpropagation
learning is generally slow because of the characteristics of the error surface that is
characterized by numerous flat and steep regions and has many troughs that are flat in
the direction of search. In addition, there are local minima at error levels above the
levels of the global minima of the surfaces. This causes the back propagation learning to
become stuck at the local minima and converge very slowly {Lin and Lee, 1995].

To speed up the performance of backpropagation many enhancements and
modifications have been proposed [Lin and Lee, 1995].

o Weight initialization. Owing to gradient-descent nature, backpropagation is very
sensitive to initial conditions. The initial weights are typically set to small random
values. The motivation to start from small weights is that, large weights tend to
prematurely saturate units in a network and render them insensitive to the learning
process. On the other hand randommess is introduced as a symmetry-breaking
mechanism. It prevents units from adopting similar functions and becoming
redundant.

o Learning rate. The learning rate constant, 1, is essentially the step size in the
direction of the gradient descent. It directly influences the convergence and
effectiveness of backpropagation. No single learning constant value suitable for
different training cases and nis usually chosen experimentally for each problem. If
it is small, the search path will closely approximate the gradient path, but
convergence will be very slow due to the large number of update steps needed to
reach a local minima. On the other hand, if) is large, convergence initially will be
very fast, but the algorithm will eventually oscillate and thus not reach a minimum
An efficient approach will be to use an adaptive learning rate constant, so that large
steps are taken when the search is far away from a minimum with decreasing step

size as the search approaches a minimum. Training time can be decreased by the

140

use of an adaptive learning rate which attempts to keep the learning step size as
large as possible while keeping learning stable.

¢ Momentum. Momentum decreases backpropagation’s sensitivity to smal! details in
the error surface. Addition of momentum to term to the gradient-descent method
suppresses oscillations occurring due to large learning rate constant. The idea is to
give each weight some inertia or momentum so that it tends to change in the
direction of the average downhill force that it feels. This scheme is implemented by
giving a contribution from the previous step to each weight change:

Aw(t) = -NVE() + aAw(t-1) (A.5)
where a is a momentum parameter and a value of 0.9 is often used.

e Cost function. The squared error term (d; — y;)° can be replaced by any other
differentiable function F(d; | y;), which is minimized when its arguments are equal,
in the quadratic cost function. Based on this new cost function, a corresponding
update rule can be derived. This will change the error signal for the output layer
while all the other equations of the back propagation algorithm will remain
unchanged.

¢ Training data and generalization. The amount of training data should be proper
and sufficient. There are no rules or procedures suitable for all cases in choosing
training data. One rule of thumb is that training data should cover the entire
expected input space and then during the training process training-vector pairs
should be randomly selected from the set.

o Number of hidden layers and nodes. The size of a hidden layer is usually
designed experimentally. Too few neurons can lead to underfitting. Too many
neurons can contribute to overfitting, in which all training points are well fit, but the
fitting curve takes wild oscillations between these points. For a network of
reasonable size, the size of hidden nodes need to be only a relatively small fraction

of the input layer. If the network fails to converge, more hidden nodes may be

141

required. If it does converge, some nodes may be removed and the final size can be

determined based on the overall system performance.

A.4 RADIAL BASIS FUNCTION NETWORK (RBFN)

RBFN is based on the concept of the locally tuned and overlapping receptive tields that
exist in the cerebral and the visual cortex. It is also strongly rooted in the areas of
interpolation and approximation theory [Jang et al. 1997, Haykin 1995]. The network is
designed for nonlinear input-output mapping through training. The receptive fields of
the network are radial basis functions, which can be adaptively tuned to provide
sufficient overlapping for smooth mapping, but sharp enough for good approximations.

Well known for its fast, localized training, simplicity and generality, the network
attracted much research, especially in the late eighties and in the ninetics. Among the
works include theoretical properties of RBFN {Poggio and Girosi, 1990; Chen and Chen
1995], algorithms and design [Moody and Darken, 1989; Specht, 1990; Chen et al,
1991; Billings and Zheng, 1995; Chen, et al., 1995; Zheng and Billings, 1997; Freeman
and Saad, 1997; Luo and Billings, 1998], and evaluation and confidence level [Leonard,
et al, 1992; Yingwei, et al., 1998]. The network performs very well for classification
and multidimensional curve-fitting (approximation) problems. RBFN is also suitable
for on-line applications because it can be rapidly trained. Among the applications are
speech recognition, image processing, fault diagnosis, process control, time series
analysis and general function approximation.

RBFN has a feedforward structure, though it differs in terms of operation from the
standard feedforward neural network. Figure A.2 shows the basic structure of the
network. There are three layers in the network, in which the nodes are fuily connected

with the nodes in the successive layer. The layers are:

142

X1 X2 XN

Figure A.2 General structure of a radial basis function network.

1. First layer. This is the input layer, which receives N inputs and sends them to the
second layer. The first layer connections to the second layer are not weighted. The
input to the hidden layer is therefore simply the input vector, x.

2. Second layer. This is the hidden layer, which has J nodes with Gaussian density
function:

hj (x) = expl-||]x - ¢}l / (2] (A.6)
where ¢;, j = 1,...,J are the RBF centers, and 0; is the RBF width parameter. These

are the receptive fields or the nodes, which make this hidden layer the most critical

143

layer of the RBFN. The function of this layer will be discussed further in this
section.

3. Third layer. This is the output layer, which has linear nodes. Connections between
the second and third layers are weighted. These weights can be calculated using
standard backpropagation algorithm [Baughman and Liu, 1995]. The final network

output is a weighted sum of the output value of the hidden layer, shown in equation
AT

yi(x) = zjllwzjhj(«f) (A7)
j=
Figure A.3 illustrates a Gaussian receptive field. Performance of RBFN is highly
dependent on the receptive field parameters, ¢; and ;. ¢; determines the location and g
determines the span of the activation region of the nodes in the hidden layer. Therefore,
each node in the hidden layer corresponds to a unique local neighborhood in the input
space. Within the region of activation, the closer the input, x;, is to the center of the

receptive field, c;, the higher the activation level. The maximum activation level, which

is one, occurs when x; is at c;.

h(x-c)

1.0

0.5

_

0 f(o) (x-¢)

Figure A.3 Gaussian basis function

14

Learning for RBFN is divided into two parts. The first is the synthesis of the
hidden layer, and the second is to get the weights of the output layer. The separate
training scheme exploits the localized presentation of the hidden layer units, since only
the nodes activated by an input need updating. The main advantage of localized
training is speed. However, there is reduced generalization ability of the network unless
a large number of nodes is used.

The first part of RBFN traming is to get the receptive fields parameters, which are
the centers, c;, and the width of the receptive fields, o; Several learning schemes exist
for determining these parameters, especially for c¢; The selection of ¢; is critical
because the performance of the RBFN depends on the centers of the receptive field. A
single value of G is sufficient to be used for all the receptive fields. RBFN with the
same O for each receptive field in the hidden layer was theoretically proven as universal
approximator [Hassoun, 1995).

The second part of RBFN training, to get the weights of the output layer, is fairly
straightforward. The works surveyed used linear regression, singular value
decomposition or one of the backpropagation algorithms, like the delta learning rule
[Hassoun, 1995; Haykin, 1994, Leonard, et al., 1992]].

The different methods to find the receptive fields parameters can be divided into
three approaches [Haykin, 1994]:

1. Fixed ¢;. This is the simplest approach to finding ¢;. Some data points from the
training set are randomly chosen to be the fixed centers of the receptive field. This
would be good only if the data are distributed in a representative manner for the
surface approximated. In some cases, all the training data are used as centers.
However, this method is not practical for problems with large amounts of data, like
in speech processing. In another approach, the centers are placed on uniform course
lattice along each dimension of an n-dimensional input space. However, this
method is not practical for problems with high-dimensional input space. The width
of the Gaussian RBF, o, can be fixed using:

145

o =d/2nH'"* (A.8)
where d is the maximum distance between the chosen centers, and J is the number
of centers.
. Unsupervised selection of ¢;. This approach adaptively computes c;. The hidden
layer nodes learn to represent only parts of the input space that is densely populated
by clusters of data. This results in a smaller number of nodes in the hidden layer.
Moody and Darken [1989] used k-means clustering algorithm to locate J RBF
centers that would minimize the sum squared error of the distance between the input
training data and the center. At each time step, a random training vector, x, is
selected and the center, ¢;, nearest of the nearest receptive field is updated according
to:

Ac; = p(x-¢j) (A9)
where p is a small positive constant.

There is no standard way of finding the number of nodes in the hidden [ayer, J.]
is usually found by cross validation. ¢ is heuristically determined to get smooth
interpolation [Hassoun 1995]. A very common method is the nearest neighbor
heuristics, which takes the global average over all the Eucledian distances between
the center of each node, i, and that of the nearest neighbor, j, as seen in the
following equation:

o =|ci-cj| (A.10)
A heuristic method to individually tune G is

o = o - cjf| (A1)
where o is a constant between 1.0 and 1.5.
. Supervised selection of ¢;, In this most generalized form of RBFN, all the
parameters in the hidden and ouput layers are found through supervised learning.
Error between the desired output and the network output is minimized, usually using

a gradient descent technique. This class of method yields RBFN with good

146

generalization at the expense of higher training times because of the increased

computation {Haykin1994].

Chen et al [1991] came up with the orthogonal least squares (OLS) algorithm,
which has node-growing capability. The OLS algorithm provides a systematic method
to select RBF centers. The centers are selected one at a time such that the
approximation errors of the network are effectively reduced at each step. This recursive
procedure is terminated once the errors have reached below a prescribed value. The
MATLAB neural networks toolbox uses this algorithm to find the centers of RBF
networks. An advantage of this method includes a smaller number of nodes in the
hidden layer than that of RBF with randomly selected centers. Another advantage is the
avoidance of numerical ill-conditioning frequently encountered in RBF with randomly
selected centers.

Leonard et al. [1992] introduced the validity index network (VI net), which is an
extension of RBFN. In addition to the network output, the VI net indicates when the
network is extrapolating. The network is able to indicate any extrapolation based on the

estimation of the local training data density.

APPENDIX B
UPDATE EQUATIONS DERIVATION FOR HSNN

B.1 Update Equations for Linear-Nonlinear HSNN

weights of the first hidden layer of the master network, VIM,

the biases of the tirst hidden nodes of the master network, C1M,

the weights of the second hidden layer of the master network, V2ZM, and

the biases of the output nodes of the master network, C2M.

The derivation of the update equation for VIM is as follows:

de
aVIM

de _dedydboda oh

aVIM 0y b da oh OVIM

VIM,,, =VIM -

de
e=(-vaf. a—=2(y—.vd)=2e
y
y=bU)+by
dy dy
—=U d —_=1
o’ . db,
6
b = ZkVZMj.l)(a)]+ C2M, aa%= VaM
J=l
: ab,
by = Slvam ;) @l+ c2m, 22 v,
J=1

147

148

Therefore, there are two possible routes to calculate VIM.

da

=T(h —=I"thh=4a'

a=Ih) 3 IM(h)=a
oh
h: VlM U +C1M —_—=U
(XUys) VM M

Therefore,

d
av;w =[2(e)U,)V2M ;, ®a)Uy) o

de ,
VI [2(e)V2M ;, ®a)|(U y)

In this work, the VIM,.w is set to the average value of the VIM calculated from each

route, as shown in Equation 4.4.

The derivation of the update equation for C1M is as follows:

de
aCIM

de _dedydboda oh

9CIM 3y b 0a 9h OCIM

CM,. =CIM-u

The partial derivatives are basically the same as in the derivation of the update
equations for V1M, except for:
dh

_:l

dCIM

Therefore, there are aiso two routes to calculate C1M as given in the following two

equations:

de de
= 14 . ®qa :
3CIM eUXV2M ;,®a’)] or 3CIM

Similar to V1M, and C1Mnew is taken as the average as shown in Equation 4.7.

149

The derivation of the update equation for V2M is as follows:

de
VM., =V2M -
Hovam
de _ﬁiy_ dab
dV2M dydb dV2M
db
b=(V2M +C2M =
(Xa) avV2M
Therefore,
ae T
=2(e)(U
VoM (8)(_;)(0)
U
where U, =[l’]

The derivation of the update equation for C2M is as follows:

CaM,,, =C2M -1

de
aC2M

de _dedy b

= =2 =2(e)U,)

dC2M ~ 9y b 0C2M

B.2

Update Equations for Nonlinear-nonlinear HSNN

The derivation given here is for the nonlinear-nonlinear HSNN structure shown in

Figure 4.3. Similar to linear-nonlinear HSNN, four types of parameters must also be

derived:

weights of the first hidden layer of the master network, VIM,
the biases of the first hidden nodes of the master network, C1M,
the weights of the second hidden layer of the master network, V2M, and

the biases of the output nodes of the master network, C2M.

150

Because of the structure of the network, the derivation for the update of VIM can be

obtained through four routes.

Route 1:

de _dedydg 0od by da_oh
aVIM Jy g od db,_, da ohaVIM

e=(y-ya). -g—yi=2(.v-yd)=26
y=(V25)(g)+C2S g—;=V23

g=TW) g—i—= ‘d)=g'
by =VIS = (V2M ;13 X(@) + C2M 5 ag‘: =V2M
d=(VISYU,)+C1S az:: =U,

a=TI(h) %;— =M"h)=a
h=VIM)U ,)+CIM 5%{- =Uy
= XU VIS @V 2M s O Wiy

Route 2:

de __aiﬂ ag ad ab4—6 ‘a_a- ah
oVIM dydgdd dby_¢ da JhdVIM

151

0by¢

b4-6 =CI1S = (V2M14__6 Wa)+ C2M4_6 3 =V2M j.4-6
d=\VIiS)U,)+CIS od =1
ab4_6
de . .
SV IM =2e)V2S®@g'(V2M j4-6 ®aU,,
Route 3:
de _k dy 0b;_gda oh
oVIM dyadb,y da dhdVIM
b7_9 =V2S§ = (V2M j.7-9)(a) +C2M 7-9 aba70—9 =V2M j7-9
y=(V2S)}g)+C2S§ 9y =g
dbq_y
de . VaM ,
VIM 2(e)(gXV2 j.1-9 ®@a' Uy
v
Route 4:
de a_e dy dbyyda oh
oVIM dyob,, da ohaVIM
byo = C2S = - C2M 90 _yom
10 =C25 =(V2M j 10)a) + C2M % j.10
y=(V2S)(g)+C2S Y
dbyg
d*__, M U
WIM (ey(v2 jlo @a)Uy

The updated V1M can then be caiculated from Equation 4.19.

The derivation of the update equation for C1M also has 4 routes.

Route |:

de _dedydg dd 0b_;da oh
dCIM ay ag ad db,_; da 0haCIM

oh
h=(VIMYU,,)+CIM —_
VIM)Uy) oCIM

de
=9 '
a 20e) U, V2§S®¢g)(V2M 1-3®@a")

Route 2:

de _dedvdg dd db, da _oh

de ' '
T 2e)(V2S@g')V2M | 4 s ®a')

Route 3:

ae 9£ E)y ab7_9 aa oh
3CIM 3y 9b,_y da 9hICIM

i 119 84)

Route 4:

de _de dy 0bgda dh
dCIM Byabm da doh aCIM

acw =2(e)(V2M), ®a’)

The updated C1M can then be calculated from Equation 4.23.

153

The update equations for V2M are divided into four groups, according to the output
nodes of the master network. The full update formulas for V2M are in Equations 4.11
to 4.14. The derivation for the update formula of V2M ending at output nodes 1 to 3 of

the master network is as follows:

de _dedydg dd 0by_3

AV2M ., dydg od dby; OV2M ,,

3bys

b3 =VIS=(V2M ;| _3)(a) + C2M _, VM ..
j.1=3

de

——=2(e)U,NV2§® g’
VM, (e)U, X 8 Xa)

The derivation for the update formula of V2ZM ending at the master output nodes 4 to 6
is as follows:

d¢ _3edydg ad _ dby
QV2M ;¢ Jydg dd dby ¢ AV2M 4

VoM,

de

— =2e)(V2S®g'
VM oe (e)(V2S ® g')(a)

The derivation for the update formula of V2M ending at the master output nodes 7 to 9
is as follows:

de _0Oe dy ob,_y
aVZM j.7-9 ay ab7_9 8V2Mj‘7_9

9by_g

b7_9 =V2S§ = (VZM j.7-9)(a) + C2M7_9 a—VEA—l—— =
j.1-9

154

de

_ =)
VM1 (e)(g)(a)

The derivation for the update formula of V2M ending at the master output node 10 is as
follows:

de _ de dy dbyg
oV2M ;o 9y dbyo OV2M),

L

by =C25=(V2M ; +C2M — 0 _

10 (1.10)(0) 10 aszon
de

— = 2(¢)(a

VM, (e)a)

The full update formulas for C2M are in Equations 4.15 to 4.18. The derivation for the
update formula of C2M ending at the master output node 1 to 3 is as follows:
de _de dy dg dd ab_;

ob
b, =VIS=WV2M ;) a)+C2M —3
1-3 (j1=3)(a@) -3 3C2M
de

—_—=2(e)(U 25®g'
3C2M |, (exu v £)

The derivation for the update formula of C2M ending at the master output node 4 to 6 is
as follows:

dC2M ; , , dydg dd db, AC2M ; ,

d
j4-6

155

de

— = S®g'
3CoM g 2Ae)V25®g)

The derivation for the update formula of C2M ending at the master output node 7 t0 9 is
as follows:

de _Oe dy 9bq_
0C2M ;9 dy dby 4 3C2M | 5 4

b-’_g = VZS = (V2M j.1-9)(a) + C2M7_9 a—CTa;Aii—
j.7-9

de

—_— =)
T (e)(g)

The derivation for the update formula of V2M ending at the master output node 10 is as
follows:

de _de dy dbyg
aC2M ;,, 0y dbyy C2M

ad
b]o = C2S = (VZMJIO)(G) + C2M|0 aC’bA:’o =1
=58 510
de
_=2
3oy

B.3 Update Equations for Output-tuned HSNN

The derivation given here is for the nonlinear-nonlinear HSNN structure shown in

Figure 4.4. There are 8 types of parameters to be derived:

156

e the weights of the first hidden layer of the master network, VIM,

e the biases of the first hidden nodes of the master network, CIM,

e the weights of the second hidden layer of the master network, V2M,

o the biases of the output nodes of the master network, C2M,

¢ the weights of the first hidden layer of the slave network, V1S,

e the biases of the first hidden nodes of the slave network, C1S,

e the weights of the second hidden layer of the slave network, V2§, and

e the biases of the output nodes of the slave network, C2S.

Because of the structure of the master network, the derivation for the update of VIM

can be obtained through two routes.

Route 1:

e _de 2y dbyda_dh
aVIM ~ 3y b, oa ok OVIM

)
e=(y-ya), 55=2(.v-.v,1)=28
Y
dy
= b +b —_—=
Y= X)) +by %, Y,
J db,
j=l
da
=Fh —=Fl h =
a=1() 5 - [(=a
h=(VIM)U 4)+CIM _oh _
M aviMy M

de '
T [2>e)(y)(V2M ;; ®a)U)

157

Route 2
% -1
by = f;lksz @) C2M, a:; =V2M ;,
=
de

aVlM = [2(€)(V2M12 ®a')](U‘w)

In this work, the V1M, is set to the average value of the VIM calculated from each

route, as shown in Equation 4.33.

The derivation of the update equation for CIM is as follows:
de _dedyodbda Oh

dCIM ~ 3y ob da oh CIM

The partial derivatives are basically the same as in the derivation of the update

equations for VIM, except for:

oh__
oCIM
Therefore, there are also two routes to calculate CIM as given in the following two
equations:
e _ 200, V2M 1 ®a)] or % _[2e)V2M , ®a))
aCIM ' oCIM 4

Similar to VIM, and C1M,.w is taken as the average as shown in Equation 4.36.

The update equations for V2M are divided into two groups, according to the output
nodes of the master network. The full update formulas for V2M are in Equations 4.29
and 4.30. The derivation for the update forrmula of V2M ending at output node | of the

master network is as follows:

158

de _dedy db

b _

6
b = Z[(VZMJ'J)(a)]+ C2M, a—V:-"ET -

J=

de
% -5
VM . (e)(y; a)

The derivation for the update formula of V2M ending at output node 2 of the master
network is as follows:

— § abl -
by = ;E=l[(V2M i@l c2m, oM a
de
% -
avaM (e)a)

The full update formulas for C2M are in Equations 4.31 and 4.32. The derivation for
the update formula of C2M ending at the master output node 1 is as follows:

de =£ dy db
aC2M, 3y ob, 9C2M,

6 dob
b=YvaM; C2M 1=
1 j}::l[(1,1)(0)]"’ 1 3C2M,

de
=2
3C2M, (e)y,)

The derivation for the update formula of C2M ending at the master output node 2 is as

follows:

de_de dy db,

6 dob
b, = Y KV2M .,)a) |+ C2M 2 -
» Elk i@+ c2M, TSI
de
=2
acam, 2

The full update formulas for the slave network are in Equations 4.39 to 4.42.

derivation for the update equation of V1S is as follows:

de _de dy dv, dg dd
dV1S dydy, dg od aV1S

od
d= V S C S —
VIS)U;)+Cl VLS U,
=T(d) igi.—r'(d)= -
g ¥, g
dy
¥y, =(V2S)(g)+C2§ £ =V2S§
dg
dy
y=(y:)b)+by = b
dy,
%__ e (V2S ®a)U,)
avi1s ! s

The derivation for the update equation of C18 is as follows:

de _de dy dy, g od
aC1s Oy dy, dg od aC1S

d =(VISYU,)+CI1S o4 _,

dC1S8

de
€ __ VIS ®da
3CLS [2(e)(p)(V2S ®a')]

159

160

The derivation for the update equation of V28 is as follows:
de _ de dy Oy,

dV2S dydy, aV2S§

dy,
=V2s Cc2s§ =
Vs =(Ng)+ Rz g
de
Vas 2(e)(h)(8)

The derivation for the update equation of C28S is as follows:
de _de dy 0y,
dC2S dydy, 9C2S

y, =(V2S)(g)+C2S§ ﬂ-

de _

3C2S 2(e)(ky)

C.1

All training and testing data given are normalised.

TRAINING AND TESTING DATA FOR
THE FLASH SYSTEM

APPENDIX C
TRAINING AND TEST DATA

Main training data for M-W flash
File name: flIth815

Number of data points: 150

0O 00 0O 000 o0 o0 o o o

© oo
- - - O

0.1

0
0.125
0.125

0.25
0.375
0.375

0.5
0.625
0.625

0.75
0.875
0.875

0.125
0.25

0.76
06

0.76
0.52

0.76
0.52

0.76
052
082
0.76
0.52
0.92
068
0.52

Z
0.473684
0.333333

0.6
0.473684
0.230769

06
0.473684
0.230769

06
0.473684
0.230769
0.565217
0.473684
0.230769
0.565217
0.411765
0.230769

K
0.415409
0.362947
0.362952
0.320358
0.355572

0.2861
0.264512
0.318144
0.236735
0.238061
0.287844
0.215637
0.216419

0.48123
0.481243
0.421326
0.406864

v
0.552345
0.047557
0.764933
0.278329

0
0.49724

0.061214
0.917881
0.411495

0

161

|
0.647154

0.687381
0.687381
0.724529
0
0.759378
o]
0
0.824302
Q
1]
0
0
0.597285
0.597278
0.639092
0

L
0.447655
0.952443
0.235061
0.721671

1

0.50276

1

1
0.919431
1

1

1

1
0.938785
0.082119
0.588505
1

x
0.259646
0.315655
0.315644

0.37694
0.230769
0.442372
0.473684
0.230769
0.580344
0.473684
0.230769
0.565217
0.473684

Q.20687
0.206853
0.252813
0.230769

Q
0.390285
0.038138
0.699536
0.202883
0.010691
0.457677
0.017782
0.Q10691
0.094091
0.017752
0.010691
0.022428
0.017752
0.041131
0.781746
0.266124
0.012859

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
02
0.2
02
02
0.2
02
02
0.2
0.2
02
02
0.2
02
02
03
03
0.3
0.3
03
03
0.3
03
03
03
0.3
0.3
03
0.4
04
0.4
04
04
04
04
04
04

028
0.375
05
0.5
0625
0.75
0.75
0.875

0.125
0.125
0.25
0.375
0.37%
05
0.625
0.625
0.75
0875
0.875

0.125
0.125
0.28
0.375
0.375
05
0.625
0.625
0.75
0.875
0.875

0.125
025
0.25

0375

05
05
0.625

0.92
0.68
0.52
082
0.68
0.44
0.92
c.68
0.44
092
0.68
0.44
0.84
0.68
0.44
0.84
0.68
0.44
084

06
0.44
0.84

0.6

0.84
0.6

0.84
06

0.76
06

0.76
06

0.76
0.52

0.76
0.52

0.76
Q.52
0.92
0.76

0.565217
0.411765
0.23076%
0.565217
D0.411765
0.090809
0.565217
0.411765
0.080809
0.565217
0411765
0.090809
0.52381
0.411765
0.090909
0.52381
0.411765
0.090908
0.52381
0.333333
0.080908
0.52381
0.333333
06
0.52381
0.333333
0.6
0.52381
0.333333
06
0.473684
0.333333
0.6
0.473684
0.333333
0.6
0.473684
0.230769
0.6
0.473684
0.230769
0.6
0.473684
0.230768
0.565217
0.473684

0.371393
0.330116
0.361657
0.296296
0.282398
0.413191
0.24633
0.255503
0.375628
0.221945
0.553631
0.591814
0.486886
0.430179
0.522189
0.382204
0.341871
0.467221
0.308272
0.309985
0.422724
0.257397
0.281804
0.238381
0.608333
0.558716
05131
0.495794
0.44166
0.441662
0.39523
0.355617
0.355621
0.322047
0.31752
0.2937€8
0.270405
0.715515
0.5868
0.636164
0.567386
0.51448
0.50758
0.455528
0.456546
0.410355

0.69997
0.147443
0
0.446742
a

0
0.072037
4]

0

0
0.649838
0
0.831339
0.436462
0
0623131
0.198229
0
0383769
0

0
0.044736
Q
0.11509

1
0.459471
1
0.85698
0.262119
0.956683
0528176
0.035379
0.769374
0.301958
0
0.554806
Q
0.391996
1
0.976181
0.204788
1
0.756506
0.026851
0.902087
0.569997

0.677222
0.71254
0
0.745718
0

o]
0.807551
0

0

0
0.545202
0
0.589163
0.628842
0
0665178
0.698921
0
0.730624
0

0
0.789699
o]
0.817663
0.52381
0.537017
0.6
0.578758
0.616633
0.616631
0.651431
0.683792
0.683792
0.714226
0
0.743142
0
0.43246
0.6
0.48216
0.526416
0.6
0.566296
0.602644
0.602635
0.636121

0.30003
0.852857
1
0.553258
1

1
0.927963
1

1

1
0.350162
1
0.168662
0.563538
1
0.376868
0.801771
1
0.616231
1

1
0.955264
1

0.88491
0
0.540529
0
0.14302
0.737881
0.043317
0.471824
0.964621
0.230625
0.698042
1
0.445194
1
0.608004
0
0.023819
0.795212
0
0.243494
0.973148
0.097913
0.430003

0.303911
0.359748
0.230769
0.419467
0.411765
0.090909
0.546405
0.411765
0.080309
0.565217
0.164129
0.090909
0.201678
0.243638
0.090%08
0.290064
0.340768
0.090909
0.395012
0.333333
0.080909
0.511358
0.333333
0.571691
0
0.160194
0
0.194556
0.232696
0.232693
0.274709
0.32048
0.320468
0.369631
0.333333
0.421615
0.473684
0.100734
0
0.126319
0.154632
0
0.185947
0.220508
0.220481
0.258363

162

0.58391
0.106081
0.012859
0.384284
0.018532
0.010015
0.083954
0.018532
0.010015
0.026982
0.418398
0.011709

0.65096
0.283872
0011708
0.488263
0 139232
0.011709
0.308147
0.018361
0.011708
0.060547
0.018361
0.133221
0.788625
0.267731
0.927478
0.673408
0.159602
0.886252
0.380808
0.039507
0711721
0.227611
0.021034

0.51893
0.028616
0.204745
0.929494
0.703173
0.114362
0.929494

0.54339
0.031685
0.774146
0.412104

04
04
0.4
0.4
04
0s
05
05
0.5
0.5
0s
0s
05
0.5
0.5
05
0.5
0S
06
06
06
06
06
06
0.6
06
Q6
06
0.6
0.6
0.6
06
07
0.7
07
0.7
07
07
0.7
07
0.7
Q7
Q.7
07
0.7
0.7

Q.75
0.75
0.875

0.125
0.125
0.25
0.375
0.375
05
0.625
0625
0.75
0.875
0.875

0.125
0.25
0.25

0.375

0.5
0.5

0.625

0.62¢
0.75

0875

0.87S

0.125
0.25
0.2s

0.375

05
05

0.625
0.75
0.75

0.875

1

0.52
0.92
0.68
0.52
0.92
068
052
0.92
068
0.44
0.92
0.68
0.44
0.92
0.68
044
0.84
0.68
0.44
0.84
.68
044
0.84

0.6
044
Q.84

06

084
06

084
0.6

0.76
0.6

0.76
06

076
0.52

Q.76
0.52
1

0.230769
0.565217
0.411765
0.230769
0.565217
0.411765
0.230769
0.565217
0.411765
0.090809
0.565217
0411765
0.090909
0.565217
0.411765
0.090909
0.52381
0.411765
0.090909
0.52381
0.411765
0090909
0.52381
0.333333
0.090908
0.52381
0.333333
0.6
0.52381
0.333333
08
0.52381
0.333333
0.6
0.473684
0.333333
0.6
0.473684
0.333333
0.6
0.473684
0.230769
0.6
0.473684
0.230769
0.6

0.404194
0.371268
0.337621
0.367443
0.308875
0.778524
0.718846
0.614644

0.64437
0.643704
0.543149
0.521958
0.575945
0.471654
0.427477
0521093
0.388792
0.355054
0.898453
0.741196
0.775748
0732013
0.649142

0.65596
0.650678
0.576993
0.538696
0.494408
0.489841
0.446506
0.446511
0.408147
0.941388
0.714562
0.780426
0.813352
0.625242
0.688896
0.670549
0.588771
0.610876
0.557614
0.501143
0.509985
0.467364
0.455564

0
0.722404
0.192323

0
0.522558

1

0.40643
1
0.829491

0

1
0.626877

0
0.942632
0.450636

0
0.661219
0.260077
0.137494

1

1

0

1
0.634599
0

1
0.452728
1

0.87764
0.289037
0.996753
0.713914
1

1

1
0.935165
1

1
0.670567
1
0.975521
0.208933
1
0.791177

0.062223
1

0
C.667301
0.696637

0
0.724468
0.411765
0.424168
0.565217
0.471346

0
0.565217
0.551949

0
0.586992
0619358

0
0.649527
0.677904
0.305576

0.52381
0.411765
0
0.52381
0.458227
0
0.52381
0.5358¢4
06
0.569808
0.601223
0.601223
0.630536
0.333333
0.6
0.473684
0.35145
06
0.473684
Q.442998
0.6
0.482269
0.518143
06
0.551166
0.581782
06

1
0.277596
0.807677

1
0.477441

Y

0.59357

0

0.17051

1

0
0.373123

1
0057368
0.549364

1
0338782
0.739923
0.862506

o]

0

1

0
0.365401

1

0
0.547272

0

0.12236
0.710963
0.003247
0.286086

0.329433
a
0.024479
0.791067
0
0.208823
0.937777
0

0.230768
029956
0.343931
0.230769
0.390918
Q
0.098345
)
0.121914
0.090909
G
0.176244
0.090909
0.207424
0.241479
0.090909
0.27844
0318219
0.056688
0

0
0.090908
0
0.116428
0.090909
0
0.165791
Q
0.193876
0.224424
0.224415
0.257479
0

0

0
0.072017
0

Q
0.110108
0
0.131578
0.154869
0
0.180125
0.207479
0

163

0.019423
0.620636
0.141263
0.019423
0.455636
0.652593
0.213526
0.861706
0.540237
0.016839
0.861706

0.40955
0.016838
0.811475
0.299531
0.016839
0.524972
0.184317
0.074532
0.793587
0.653883
0.018565
0.793587
0.372077
0.018565
0.793587
0.269828
0.933538
0.695742
0.180772
0.930467
0.567812
0.585388
0.935568

0.72516
0.547448
0.935568

0.72516
2.394261
0.935568
0.707256
0.122139
0.935568
0.574024
0.054315
0.935568

08
08
08
08
08
0.8
08
08
08
08
08
08
08
09
09
08
09
09
08
09
09
09
X}
09
09
09
09

- b b b b h mh ek wd e, s . -

0.125
0.125
025
0.375
0.375
05
0.625
0.625
0.75
0.875
0.875

0.125
0.25
025

0.375

Q.5
05

0.625
0.75
0.75

0.875

0.125
0.128
0.28
0.25
0.375
05
0.8
0.625
Q.75
0.75
0.875
1

1

0.76
052
0.82
076
0.52
0.92
0.68
0.52
092
CT)
0.52
0.92
0.68
0.44
0.92
0.68
0.44
0.92
0.68
044
0.84
0.68
0.44
0.84
0.68
0.44
0.84

06
044
0.84

06

0.84
06

0.84
0.6

0.76
0.6
1

0.473684
0.230769
0.565217
0.473684
0.230769
0.565217
0.411765
0.230768
0.565217
0.411765
0.230769
0.565217
0.411765
0.090809
0.565217
0.411765
0.090909
0.565217
0411765
0.080908
0.52381
0.411765
0.090908
0.52381
0.411765
0.090909
0.52381
0.333333
0.090908
0.52381
0.333333
0.6
0.52381
0.333333
0.6
0.52381
0.333333
06
0.473684
0.333333
0.6

0.891167
0.995713
0.746184
0.779771

0.82408
0.658398
0.735039

0.68782
0.589943
0.630279
0.578563
0.533758
0.631986
1.208998
0.851549
0.939276
1.001984
0.745105
0.828865
0.838198
0.697938
0.741612
0.714296
0.628713
0.651808

0.64936
0.571838
1.137829
1.201687
0.891267
0.995601
0.756078
0.786412
0.885002
0.672069
0.703632
0.789231
0.604862
0.673547
0.675326
0.549874

1
1
1
1

0.603305
1
1
0.395466
1
0.847147
0.245133
1
0672774
1
1
1
0.304681
1
1
0.104902
1
1
o]
1
0.902654

- A s s ek s b s - = O

0.952228
1
1
0.720192
1

0.473684
0.230769
0.5665217
0.473684
0.337611
0.565217
0.411765
0.425811
0.565217
0.463925
0.498865
0.565217
0.53111
0.090908
0.565217
0.411765
0.216276
0.565217
0.411765
0.321386
0.52381
0.411765
0
0.52381
0.443929
0
0.52381
0.333333
0.090909
0.52381
0.333333
0.6
0.52381
0.333333
0.6
0.52381
0.346386
0.6
0.473684
0.422343
0.6

O 0 O o

0.386695
0
0
0.604534
0
0.152853
0.754867
0
0.327226
0
0
Y]
0.695319
0
0
0895098
0
Q
1
[4]
0.097346

0O 0O 00O 0O o0 o0 o o -

Y]
0.047772
o]
0
0.279808
Q

0.103179
0
0.122677
0.143709
o
0.166392
0
0
0
0.035975
0
0
0063898
0
0
0.090509
0
0.113513
0.080909

0O 0O 000 0 O 0O o o

0.073149
Q
0
0.104232
0

164

0.72664
0.516934
0.867241

0.72664
0.316043
0.867241

065647

021322
0.867241
0.556488
0.141106
0.867241
0.444481
0.449068
0.865094
0.657768
0.149536
0.869094
0.657768

0.06601

079858
0.657768

0.02379

0.79858
0.594117

002379

0.79858
0.588723
0.449809
0.800252
0.588723
0.941684
0.800252
0.588723
0.941684
0.800252

0.56097
0.941684
0.729609
0.427342
0.941684

Test data for M-W system
File name: fts70k

Number of data points: 70, error in K-values for single-phase region

0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.07s
0.075
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.355
0.355
0.355
0.3s5
0.355
0.355
0.355
0.355
0.355
0.355
0.495
0.495
0.495
0.495
0.495
0.455
0.495
0.495

p
0.18
0.18

0.355

0.355
.53
0.53

0.705

0.705
0.75
0.75
0.18
0.18

0.355

0.355
0.53
053

0.705

0.705
0.75
0.75
0.18
0.18

0.355

0.355
0.53
053

0.705

0.705
0.75
0.75
0.18
0.18

0.355

0.355
0.53
0.53

0.708

0.705

0.66
0.92
0.66
0.92
0.66
092
0.66
0.92
0.66
0.92
0.66
082
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
Q.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92

r4
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393839
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.5es217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217

K
0.383686
0.383692
0.324137
0.324142
0.292956
0.279381
0.272074
0.246027
0.267176
0.239606
0.470752
0.470753
0.397963
0.397964
0.340543
0.340546
0.301801
0.295889
0.296368
0.286167

0.57035
0.543123
0.485796
0.485796
0.416743
0.416749
0.360732
0.360745
0.348188
0.348208
0.680702
0.596061
0.585304
0.546508
0.505892
0.504542
0.439664
0.439667

v
0.274136
0.727259

0.06968
0.560198
0
0.352456
0

0.06701
o

0
0.468086
0.91134
0.318456
0.770213
0.144218
0.623696
0
0.451895
e
0.400928
0.643805
1
0.505965
0.953018
0.370761
0.821748
0.22174
0.691629
0.179248
0.656537
0.838896
1
0.682093
1
0.551814
1
0.428815
0.880701

Y
0.668322
0.668318

0.7188
0.7188

0
0.765096
0
0.808528
0

0
0.599554
0.599554
0.652339
0.652339
0.699€45
0.699645
0
0.743092
0
0.753789
0.526733
0.565217
0.583218
0.583218
0.632917
0.632917
0.677645
0.677638
0.688516
0.688506
0.448504
0.565217
0.509876
0.565217
0.563198
0.565217
0.610436
0.610436

L
0.725864
0.272741

0.93032
0.439802
1
0.647544
1
0.93299

1

1
0.530914
0.088659
0.681544
0.229787
0.855782
0.376304
1
0.548105
1
0.599072
0.356194
0
0.494035
0.046982
0.629239
0.178252
0.77826
0.308371
0.820752
0.343463
0.161104
0
0.317907
0
0.448186
Q
0.571185
0.119299

x
0.290314
0.290302
0.369608
0.368592
0.393939
0.456424
0.393939
0.547742
0.393939
0.565217

0.21227
0212268

0.2732
0273199
0.342421
0.342414
0.393939
0.418565
0.393939
0.439016
0.153922

0
0.200091
0.20009
0.253128
0.253117
0.313106
0.31307S
0.329605
0.329549
0.109814
Y
0.145188
Q
0.185546
0
0.231406
0.231401

165

Q
0.176409
0616376
0.057213
0.476506
0.017072
0.307009
0.017072

0.07888
0.017072
0.025842
0296105
0.778366
0.206017

0.65643
0.104235
0533187
0.021301
0.392277
0.021301
0.351041
0.406364
0.853044

0.32148
0.817693
0.240325
0.703822
0.152928
0.593658
0.128314
0.564402
0.531834
0861614
0.432819
0.861614
0.352315
0861614
0.278084
0.757656

0485
0.435
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0775
0.775
0.775
09
Qs
0.9
09
0.9
Q.9
08
09
08
09

Training data for M-W system
File name: flth150.txt

0.75
0.75
0.18
0.18
0.355
0.355
0.53
0.53
0.705
0.708
0.75
0.75
0.18
0.18
0.355
0.355
0.53
0.53
0.705
0.705
0.75
0.75
0.18
0.18
0.355
0.355
053
053
0.708
0.705
Q.75
Q.75

0.66
092
0.66
092
066
0.92
066
092
0.66
0.92
0.66
092
0.66
Q.92
0.66
082
0.66
0.92
0.66
0.92
0.66
0.92
0.66
Q.92
0.66
0.92
0.66
0.92
0.66
092
0.66
0.92

0.393939
0.565217
0.39593¢
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393938
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217
0.383839
0.565217
0.393939
0.565217
0.393939
0.565217
0.393939
0.565217

0.42451
0.424514
0.782482
0.652153
0.694964

0.59882
0.605871
0.552858
0.530456
0.513423
0.512978
0.504181
0.856041

0.71349

0.78487
0654174
0.715442
0.6033963
0.631301
0.561723
0611674
0.551612
0.926269

0.77213
0.849322
0.707938
0.784129
0.653601
0.728235

0.60701
0.707531
0.596084

0.396€87
0.850211
1
1
0.886732
1
0.731744
1
0.605855
1
0.575873

1
1
1
1
1

0.951141
1
0.793319
1
0.758893

- eh o h s = s s =

0.958695
1

0.621788
0621788
0.393939
0565217
0.431055
0.565217
0.489039
0.565217

0.53987
0.565217

0.55199
0.565217
0.393939
0565217
0.393939
0.565217
0.409278
0.565217
0.464615
0.565217

0.47774
0.565217
0.393939
0.565217
0.383939
0.565217
0.393939
0.565217
0.393939
0.565217
0.406784
0.565217

Number of data points: 150 with no error in K-values.

0
0

0
0.125

F

r4

K

0.76 0473684 0.41541%
06 0333333 036295 0(.047557 0.687381

v

Y

0.603313
0.149789
0
0
0.113269
0
0.268256
0
0.394145
0
0.424127

0O 0 O O o

0.048859
0
0.206681
0
0241107

0O 0O 00 OO0 O O O

0.041305
0

L

0.244126
0.244118
0
0
0.103376
0
0.134528
0
0.169625
0
0.179342

o O 0O O O

0.095344
0
0.122661
Q
0.130173

o 0 00 0 o o O O

0.095822

q

166

0.258974
0.731424
0.636894
0.864192
0.564388
0.864192
0.466349
0.864192
0.388201
0.864192
0.369836
0.864192
0.638641
0.866778
0.638641
0.866778
0.607412
0.866778
0.507345
0.866778
0.485731
0.866778
0.640204
0.869094
0.640204
0.869094
0.640204
0.869094
0.640204
0.869094
0.613885
0.869094

0.55234S 0647154 044766 0.258646 0.39029
0.95244 0.315655 0.03814

0O 0O 0 0O o0 O oo o

C0OO0O0OO0OO0OCO0O0OO0O0O0O00O000O0O0000000O0000OOOOOO OO0
PP T T T P T I I I S I S T S I T R T e T T e S

03

0.125
0.258
0.375
0.375
05
0.625
0.625
075
0.875
0.875

0.125
0.25
0.25

0.375

05
0.5

0.625
0.75
075

0875

0.126
0.128
025
0.375
0.375
Q.5
0.625
0.625
0.75
0.875
0.875

0.125
0.125
0.2s
0.375
.375
Qs

1
0.76
0.52

0.76
0.52

0.76
0.52
0.92
0.76
0.52
0.92
0.68
0.52
0.92
0.68
0.82
0.2
0.68
0.44
0.92
0.68
0.44
0.92
0.68
044
0.84
0.68
0.44
0.84
0.68
0.44
0.84

0.6
0.44
084

06

0.84
06

084
06

076

0.6
0.473684
0.230769

06
0.473684
0.230769

06
0.473684
0.230769
0.565217
0.473684
0.230769
0.565217
0411765
0.230769
0565217
0.411765
0.230769
0.565217
0.411765
0.090909
0.565217
0.411765
0.090909
0.565217
0.41176S
0.090909

0.52381
0.411765
0.090909

0.52381
0.411765
0.090909

0.52381
0.333333
0.090909

0.52381
0.333333

06

0.52381
0.333333

06

0.52381
0.333333

96
0.473684

0
0.48123
0.48124
042133

0
0.37139
0.33012

¢]

0.2%63

0.55363
0
0.48689
0.43018
0
0.3822
0.34187
0
0.30827
o

o
0.2574
Q
0.23838
1
0.55872
1
0.49579
0.44166
0.44166
0.38523

0.764939
0.278329
0
0.49724
0

0
0.080569
o}

0

0

0
0.061214
0.917881
0.411495
0
0.69997
0.147443
0
0.446742
0

1]
0.072037
0

0

0
0.649838
V]
0.831339
0.436452
0
0.623131
0.198229
0
0.383769
Q

0
0.044736
0
0.11509

1
0.459471
1

0.85698
0.262119
0.956683
0.5281786

0.687381
0.724529
0
0.759378
0

0
0.824302
0

")

0

0
0.597285
0.597278
0.639092
0
0.677222
0.712584
0
0.745718
o}

0
0.807551
0

0

0
0.545202
0
0.589163
0.628842
Q
0.665178
0.698921
0
0.730624
0

0
0.789699
0
0.8176863
0.52381
0.537017
0.6
0.578758
0.616633
0.616631
0.651431

0.23506
0.72167

1
0.50276

1
0.93879
0.08212
0.58851

1
0.30003
0.85256

1
0.55326

0.35016

0.16866
0.56354

0.37687
0.80177

0.61623
1
1
0.95526
1
0.88491
1]
0.54083
0
0.14302
0.73788
0.04332
0.47182

0.315644
0.37694
0.230769
0.442372
0.473684
0.230769
0.580344
0.473684
0.230769
0.565217
0.473684
0.20687
0.206853
0.252813
0.230769
0.303911
0.353748
0.230769
0.419467
0411765
0.090909
0.546405
0.411765
0.090308
0.565217
0.164129
0.090908
0.201678
0.243638
0.090909
0.290064
0.340768
0.090909
0.395012
0.333333
0.090909
0.511358
0.333333
Q.571691
0
0.160194
0
0.194556
0.232696
0.232683
0.274709

0.69954
0.20288
0.01069
0.45768
0.01775
0.01069
0.09409
0.01775
0.01069
0.02243
0.01775
0.04113
0.78175
0.26612
0.01286
0.5939H
0.10608
0.01286
0.38428
0.01853
0.01002
0.08395
0.01853
0.01002
0.02698

0.4184
0.01171
0.65096
0.28387
0.01171
0.48826
0.13823
0.01171
0.30815
0.01836
00117
0.06058
0.01836
0.13322
0.78863
0.26773
0.92748
0.67341

0.1596
0.88625
0.38081

167

03
03
0.3
03
0.3
03
04
0.4
04
04
04
o4
04
04
G4
04
04
04
04
04
05
05
05
0s
05
05
05
0s
05
0s
0S5
05
05
06
06
06
06
06
0.6
06
0.6
0.6
06
06
0.6
06

0.625
0.625

0.78
0.875
0.875

0.125
0.25
0.25

0.375

05
0.5

0.625
0.75
0.75

0875

0.125
0.125
025
0.375
0.375
05
0.625
0.625
0.75
0.87%
0875

0.125
0.25
0.25

0.375

05
05

0.625

0.625
0.75

0.875

0.875

0.6

0.76
06

0.76
0.52

0.76
0.52

0.76
052
0.92
Q.76
052
0.92
0.68
0.52
0.92
o.68
0.52
0.92
o068
0.44
0.92
0.68
0.44
082
0.68
0.44
0.84
0.68
044
0.84
0.68
0.44
0.84

06
0.44
0.84

06

0.84
0.6
1

0.333333
0.6
0.473684
0.333333
06
0.473684
0.230769
06
0.473684
0.230769
06
0.473684
0.230763
0.565217
0.473684
0.230768
0.565217
0.411765
0.230769
0.565217
0.411765
0.230769
0.565217
0.411765
0.090909
0.565217
0.411765
0.090809
0.565217
0.411765
0.090309
0.52381
0.41176S
0.090909
0.52381
0.411765
0.090909
0.52381
0.333333
0.090909
0.52381
0.333333
0.6
0.52381
0.333333
0.6

0.35562
0.35562
0.32205
0
0.29377
0
0.71552
1
0.63616
0.56739
1
0.50758
0.45553
0.45555
0.41036
0
0.37127
0.33762
0
0.30888
1
0.71885
1
0.64437
0
1
0.62196

0.47165
0.42748

0.38879
0.35508
0.89845

0.035379
0.769374
0301958
0
0.554806
0
Q0.391896
1
0.8976181
0.204788
1
0.756506
0.026851
0.902087
0.569997
0
0.722404
0.192323
o
0.522559
1

0.40643

1
0.829491
0

1
0.626877
0
0.942632
0.450636
o
0.661219
0.260077
0.137494
1

0.452728
1
0.87764
0289037
0.996753

0.683792
0.683792
0.714226
Q
0.743142
0
0.43246
0.6
048216
0.526416
06
0.566296
0.602644
0.602635
0.636121
a
0.667301
0.696637
0
0.724468
0.411765
0424168
0.565217
0.471346
0
0.565217
0.551949
0
0.586992
0.619358
0
0.649527
0677904
0.305576
052381
0.411765
0
0.52381
0.458227
0
0.52381
0.535864
06
0.569808
0.601223
0.601223

0.96462
0.23063
0.69804
1
0.44518
1

0.608

0
0.02382
0.79521
0
0.24349
0.97315
0.09791
0.43

1
0.2776
0.80768
1
0.47744
0
0.59357
0
0.17051
1

o
0.37312
]
0.05737
0.54936
1
0.33878
0.73992
0.86251
0

0.32048
0.320468
0.369631
0.333333
0.421615
0.473684
0.100734

0
0.126319
0.154632

0
0.185947
0.220508
0.220481
0.258363
0.230769

0.29956
0.343931
0.230769
0.390918

0
0.098345

0
0.121914
0.090909

0
0.176244
0.090909
0.207424
0.241479
0.090909

027844
0.318219
0.056688

0

0
0.090909

Q
0.116428
0.09Q%09

Q
0.165791

Q
0.193876
0.224424
0.224415

0.03951
071172
0.22761
0.02103
0.51893
0.02862
0.20475
0.92349
0.70317
0.11436
0.92949
0.54339
0.03169
0.77415

0.4121
0.01942
0.62064
0.14126
0.01942
0.45564
0.6525%
0.21353
0.86171
0.54024
0.01684
0.86171
0.40955
0.01684
0.81148
0.29953
0.01684
0.52497
0.18432
0.07458
0.79359
0.65388
0.01857
0.79359
0.37208
0.01857
0.79358
0.26983
0.93354
0.69574
0.18077
0.93047

168

0.125
025
025

0.375

05
05

0.625
075
0.75

0.875

0.125
0.125
0.25
0.375
0.375
0.5
0.625
0625
0.75
0.87%
0.875

0.125
0.25
0.25

0.375

0Ss
05

0.625
0.75
0.78

0.875

0.125
0.125
0.25

084
06

0.76
[oX]

0.76
06

0.76
0.52

0.76
0.52

0.76
0.52
0.92
0.76
0.52
0.92
068
0.52
092
0.68
0.52
0.92
068
0.44
0.92
0.68
0.44
0.92
0.68
044
0.84
o X1:]
0.44
0.84
0.68
0.44
0.84

0.6
0.44
0.84

06

0.52381
0.333333
06
0.473684
0.333333
0.6
0.473684
0.333333
06
0.473684
0.230769
0.6
0.473684
0.230763
06
0.473684
0.230769
0.565217
0.473684
0.230769
0.565217
0411765
0.230769
0.565217
0.411765
0.230763
0.5665217
0.411765
0.090909
0.565217
0.411765
0.090909
0.565217
0.411765
0.090909
0.52381
0.411765
0.090909
0.52381
0411765
0.090909
0.52381
0.333333
0.090908
0.52381
0.333333

0.40815
1
1
1
0.81335
1
1
0.67055
1
0.61088
0.55761
1
0.50999
0.46736

1
1
1
1
1

0.82405
1
1
068782
1
0.63028
057856
1
0.53199

0.65181

- .- ot - = O

0.713914
1
1
1
0.935165
1
1
0.670567
1
0.975521
0.2083833
1
0.791177
0.062223

1
1
1
1
1

0.603305
1
1
0.395466
1
0.847147
0.245133
1
0.672774

0.104902
1
1
0
1
0.802654

J P =

0.630536
0.333333
06
0.473684
0.35145
06
0.473684
0.442998
a6
0.482269
0518143
06
0.551166
0.581782
06
0.473684
0.230769
0.565217
0.473684
0.337611
0.565217
0.411765
0.425811
0.565217
0.463925
0.498865
0.565217
0.53111
0.090909
0.565217
0.411765
0.216276
0.565217
0.41176S
0.321386
0.52381
0.411765
0
0.52381
0.443929
0
0.52381
0.333333
0.090909
0.52381
0.333333

0.28609

0.32943

0
0.02448
0.79107

Q
0.20882
0.93778

o O o o o

0.3967

0.60453

0.15285
0.75487

0.32723
0
Q
0
0.69532

0.09735

QO O O O O -

0.257479
0
o
0
0.072017
0
0
0.110108
0
0.131578
0.154869
Q
0.180125
0.207479

o O O o o

0.068282
Q
Q
0.103179
0
0.122677
0.143708
0
0.166392
0
0
0
0.035975

0.090909
0
0.113513
0.090909
Q

o O 0o o

0.56781
0.58539
0.93557
0.72516
0.54745
0.93557
0.72516
0.39426
0.93557
0.70726
0.12214
0.93557
0.57402
0.05432
0.93557
0.72664
051693
0.86724
0.72664
0.31604
0.86724
0.65647
0.21322
086724
0.55649
01411
0.86724
0.44448
0.44907
0.86909
0.65777
0.14954
0.86909
0.65777
0.06601
0.79858
065777
0.02379
0.79858
0.59412
0.02379
0.79858
0.58872
0.44981
0.80025
0.58872

169

- b b b s A s b aa b

0.25
0.37%
0S
05
0.625
0.78
0.75
0875
1

1

1

0.84
06

084
06

0.76
06

1

Test data for M-W flash

Filename: fts70k.txt

Number of data points: 70 with no error in K values

T
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.215
0.218
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.215
0.355
0.355
0.355
0.355
0355

p
0.18
0.18

0.355

0.355
0583
0.53

0.708

0.708
0.75
0.75
0.18
0.18

0.355

0.385
Q.83
0.53

0.705

0.705
0.75
0.7
0.18
0.18

0.355

0.355
0.53

F
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
092
0.66
0.92
0.66
0.92
0.66
0.92
066
0.92
0.66
Q.92
0.66
0.92
0.66
0.92
0.66

0.6 1 1 06 o] 0 0.94168
0.52381 1 1 0.52381 0 0 080025
0.333333 1 1 0.333333 o] 0 058872

06 1 1 0.6 0 0 094168
0.52381 1 1 0.52381 0 0 0.80025
0.333333 0.78923 0.952228 0.346386 0.04777 0.073149 056097

0.6 1 1 0.6 0 0 094168
0.473684 1 1 0473684 0 0 072961
0.333333 067533 0.720132 0422343 0.27981 0.104232 042734

0.6 1 1 06 o} 0 094168
P4 K Vv y L x q
0.3939 0.38369 027414 06683 072586 0.29031 0.176409
0.5652 038369 0.72726 06683 0.27274 0.2%03 0.616376
0.3939 0.32414 0.06968 0.7188 0.93032 023696t 0.057213
0.5652 0.32414 05602 0.7188 0.4398 0.36959 0.476506
0.3839 0 0 M) 1 039334 0017072
0.5652 0.27938 0.35246 0.7651 064754 0.45642 0.307009
0.3939 0 0 0 1 039394 0.017072
0.5652 0.24603 0.06701 0.8085 093299 054774 0.07888
0.393% 0 0 0 1 0.393%4 0.017072
0.5652 0 0 0 1 056522 0.025842
0.3939 047075 046909 05996 0.5309t 0.21227 0.29610S
05652 047075 091134 05996 008866 021227 0.778366
0.3939 039796 031846 0.6523 0.68154 02732 0.206017
0.5652 0.39796 0.77021 0.6523 022979 02732 065643
0.3939 034054 0.14422 0.6996 085578 0.34242 0.104235
0.5652 0.34055 0.6237 0.6996 0.3763 0.34241 0.533187
0.3939 0 4} 0 1t 0.393%4 0.021301
0.5652 029589 04519 0.7431 0.54811 041857 0392277
0.393% 0 0 0 1 0.39394 0.021301
05652 028617 040093 0.7538 059907 0.43902 0.351041
0.3939 057035 0.64381 0.5267 0.35619 0.15392 0.406364
0.5652 1 1 0.5652 v 0 0859044
0.3939 04858 0.50597 0.5832 045404 020009 032148
0.5652 04858 0.95302 0.5832 0.04698 0.20009 0.817693
0.3939 041674 037076 06329 062924 0.25313 0.240325

170

0.355
0.385
0.385
0.355
0.355
0.4395
0.495
0.495
0.495
0.485
0.495
0.495
0.495
0.485
0.495
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.635
0.775
0.775
0.775
0.775
0.775
Q.775
0.775
0.775
0.775
0.775

09

09

0.9

0.9

0.9

0.9

0.9

09

0.9

0.9

0.53
0.705
0.705

0.7

0.75

0.18

0.18
0.355
0.355

0.53

0.53
0.705
0.705

0.75

Q.75

0.18

0.18
0.355
0.355

0.53

0.53
0.705
0.705

075

0.76

0.18

0.18
0.355
0.355

0.53

0.53
0.705
0.705

0.7

0.75

0.18

0.18
0.355
0.355

0.53

0.53
0.705
0.708

0.78

0.7

0.92
0.66
0.92
0.66
Q.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
0.66
0.92
068
0.92
Q.66
0.92
066
0.92
0.66
0.92
0.66
0.92

0.5652
0.3839
0.5652
0.393%
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.9652
0.3939
0.5682
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652
0.3939
0.5652

0.41675
0.36073
0.36075
0.34819
0.34821
0.6807

1
0.5853

1
0.50589
1
0.43966
0.43867
0.42451
0.42451
1

1
0.69496
1
0.60587
1
0.53046
1
0.51298
1

1
1
1
1
0.71544

0.6313

0.61167

- b b e b et b = =

0.70753
1

0.82175
0.22174
0.69163
0.17925
0.65654
0.8389

1
0.68209
1
0.55181
1
0.42882
0.8807
0.39668
0.85021
1

1
0.88673
1
0.73174
1
0.60586
1
0.57587

1
1
1
1
1
095114

1
0.79332

~
....._..._..._....g_.

0.9587
1

0.6329
0.6776
0.6776
0.6885
0.6885
0.4485
0.5652
0.5099
0.5652
0.5632
0.5652
0.6104
0.6104
0.6218
0.6218
0.3939
0.5652
0.4311
0.5652

0.489
0.5652
0.5399
0.5652

0.582
0.5652
0.3939
0.5652
0.3939
0.5652
0.4093
0.5682
0.4646
0.5652
04777
0.5652
0.3939
0.5652
0.3938
0.5682
0.3939
0.5652
0.3939
Q.5652
0.4068
0.5652

0.17828
0.77826
0.30837
0.82075
0.34346
0.1611
0
0.31791
0
0.44819
Q
0.57119
0.1193
0.60331t
0.14979
0

0
0.11327
Q
0.26826
0
0.39415
o
0.42413

0O O © o O

0.04886

0.20668

0.24111

o

0 0O 00 o0 oo

0.04131
a

0.25312
0.31311
0.31308
0.32961
0.32955
0.10981
0
0.14519
0
0.18555
0
023141
0.2314
024413
0.24412
0

0
0.10338
0
0.13453
0
0.16963
0
0.17934

0 O o O O

0.09534

0.12266

0.13017

O 0O 0o 000 o oo

0.09582
v}

0.703822
0.152928
0.593658
0.128314
0.564402
0.531834
0.861614
0432819
0.861614
0.352315
0.861614
0.278084
0.757656
0.258974
0.731424
0.636894
0864192
0.564388
0.864192
0.466349
0864192
0.388201
0.864192
0.369836
0.864192
0.638641
0.866778
0.638641
0.866778
0607412
0.866778
0.507345
0.866778
0.485731
0.866778
0.640204
0.869094
0.640204
0.868094
0.640204
0.869094
0.640204
0.869094
0613885
0.869094

171

Training file for M-W system in random order for MLP

Number of data points: 150

T P F F] K v y L x q

1 0.75 044 00909 078923 0065 0346 0935 0.073 0.0515
0.2 0.75 068 04118 028891 4] (4] 1 0412 00217
09 0.25 0.76 04737 083041 1 0474 v} 0 07281
0.7 08625 084 05238 0.58305 1 0524 o 0 07952
0.5 0 044 00909 080438 0048 0371 0952 0.077 0.0361
0.8 1 1 06 048572 1 0.6 0 0 09376

0 0.25 052 0.2308 0.3778 0 0 1 0231 00107
0.1 Q.75 1 06 024633 0205 0808 0795 0546 02063
0.7 0.75 1 06 050114 1 0.6 0 ¢ 0.9356
0.7 0875 0.44 00909 0.59641 0 0 t 0091 0.0203
04 0875 052 0.2308 038495 0 0 1 0231 00154
06 0375 0.84 05238 061096 1 0524 o] 0 0.7936
08 0.25 068 04118 0.8269 1 0412 0 0 0.6565

1 1 052 02308 067533 0398 0422 0602 0.104 02178
0.7 0625 092 05652 0.55346 1 0565 4] 0 08654
0.3 0 084 0.5238 0.60833 t 0524 0 G 0.7886
08 0.25 0.84 05238 0.73728 1 0524 0 0 0.79%9
0.1 0875 1 0.6 022908 0 0 1 0.6 0.0298

0 0 0.68 04118 041541 0393 0647 0607 026 02821
05 05 044 0.0909 060794 0 0 1 0091 00168

0 0875 1 0.6 021245 0 0 1 0.6 0.0248
0.1 0875 052 02308 030999 (v] 0 1 0231 00129
09 1 068 04118 060142 0808 0478 0.192 0.132 05328
08 0625 076 0.4737 0.65691 1 0474 o] 0 07266
08 0.125 1 06 0.71107 1 Q06 Q 0 08376
04 0875 052 0.2308 0.38495 0 o 1 0231 00194

0 0 0.84 05238 041541 0682 0647 0.318 026 05286
06 0375 1 0.6 0.5515 1 06 0 0 09335
0.5 0.75 06 03333 042748 0243 0619 0757 0241 0.1539

0 0.78 0.76 04737 023806 0 0 1 0474 0.0178
05 1 092 05652 035506 0687 0678 0313 0318 05935

04 0.25 076 04737 056738 0858 0526 0.142 0.155 06167
02 0375 06 03333 038218 0.115 0665 0885 029 0.0789
04 0.25 052 02308 056739 0205 0526 0795 0.155 0.1144
06 1 0.44 00909 053237 o (1] 1t 0081 0Qo0186
07 0.25 052 02308 081335 0568 0351 0432 0072 0297
0.7 0875 052 02308 050938 0.136 0551 0864 0.18 0.0884
0.5 1 06 03333 035505 0042 0678 0958 0318 0.0482
03 0 0.84 05238 0.60833 1 0524 Q 0 07886
08 1 092 05652 050947 1 0565 0 0 08672

0.4
0.7
03

0.1
0.5
08
0.2

0.1
0.7
03

05
05
0.5
04
0.1
0.3
09
Q7
06
07
03

05

0.9

04
s
06
oe
0.7
05

0.1

02
03
06
06
Q.1
06

0s
0.375

0.125
0.7
05
0.375
0625
Q.75
0.75

028
0.626
025

0.75

0.625
0.125
0.125
0.625
0.375

0.5
0625
0.625
0.875

0.375
025
0.125
0.375
0.375
0.125
0.5

0.375
0.375
0.75

0.875
0.75
0.7

0.375

0.92

084

06
0.76
0.92
0.92
0.68

092
084
0.68
044

0.6

06
068
0.52

0.6
0.76
0.92
0.52
0.68
0.92
0.84
0.84
0.84
0.52
Q.92

0.68
068
0.44
082

0.6
0.44
0.76
0.52

0.6
0.84
0.92
092
0.52
0.68
084

0.5652

0.6
0.5238

06
0.3333
0.4737
0.5652
0.5652
0.4118

0.6
0.5652
0.5238
0.4118
0.0909
0.3333
0.3333
0.4118
0.2308

0.6
0.3333
0.4737
0.5652
0.2308
04118
0.5652
0.5238
0.5238
0.5238
0.2308
0.5652

06
04118
0.4118
0.0909
0.2308
0.3333
0.0909
0.4737
0.2308
0.3333
0.5238
0.5662
0.5652
0.2308
04118
0.5238

061727
0.55577
0.44166
0.41541
0.42132
0.42748
062182

0.3822
0.26198
0.22307
0.24633
0.46737
0.49579

0.4045
0.64437
0.80439
0.42748
0.36745
0.26874
0.55872
0.88577
0.55346
0.65535
0.67055
0.35562

0.2433
0.63719
0.35506
043177
0.70128
0.32036
0.63817
0.57919
0.68895
0.99571
0.670SS
0.49741

0.2861
0.38293
0.78923
0.55363
0.29377
0.48984
0.48983
0.33012

0.7412

0.099

0.952
0.944
0.447
0.988
0.098
0.147

0.565

0.6
0617
0.647
0.639
0.619
0.565
0.665

0.808
0.582
0.579

047
0.371
0.619

0777
0.537
0.474
0.565
0.458
0.443
0.684

0.524
0.678

0.565
0.725
0.482
0.514

0.231
0.443

0.789

0.346
0.545
0.743

0.57

0.57
0.713
0.524

0.048
0.056
0.553
0.012
0.502
0.853

o

0

0
0.233
0.26
0.2583
0.241

0.29
0.412
06
0.546
0.207
0.195
0.091
0.122
0.077
0.241
0.231
0.482
Q.16

0.116
0.1
032

0.524

0.318
0.231

0377
0.126
0.148
0.091

0.11
0.091
0.442
0.231
0.073
0.164
0.422
0.194
0.194

0.36

o]

0.859%
0.9356
0.5953
0.8054
0.1262
0.4453
0.8672
0.6249
0.0154
0.0248
0.084
0.6721
0.3666
0.0083
0.3535
0.508
0.2995
0.0194
0.3752
0.2677
0.7281
0.8654
0.1801
0.5935
0.5771
0.0201
0.8003
0.4s7
0.0107
0.8691
0.587
0.5208
0.4701
0.0186
0.5169
0.3943
0.0168
0.083
0.0129
0.561
0.7414
0.3908
0.8529
0.0686
0.1061
0.7936

173

1
03
09

0.2
0.2
04
08
09
02
o8
07
04
0.2
0.7
0.1
0.2
0.1
06

0.1
0.6
04

07
04
0.9
0.1

05
08

0.2
03
08
0.5
08
0.7
0.7
08

02
0.2
06

05

0.125
0.7S
0875
0.78
0.78

0.875

0.75
0375
0625

025
0.25
025
0.25

0.625
0.75

0.625
0.125
0.125
0.375
0.75
0.25
0.87s
0375
05
0.25
0.75

0.5
0.5
0.25
0.375
05
025
0.375
0.5
0.375
0.125

068
0.6

0.68
084

0.44
0.68

0.52

Q.6
0.92
0.84
0.44

0.76
0.84

0.6
0.52
0.76
0.68

0.6
0.92
0.52
0.44
0.52
0.92
0.52

06

052
0.68
0.92
0.76
0.52
0.68
0.52
076
0.68

0.76
0.92

0.84

04118
0.3333

06
04118
0.5238

0.6
0.0909
04118

0.6
0.2308
0.3333
0.5652
0.5238
0.0909

0.6
0.4737
0.5238
0.3333
0.2308
0.4737
04118
0.3333
0.5652
0.2308
0.0s08
0.2308
0.5652
0.2308
0.3333

06

06

0.6
0.2308
04118
0.5652
0.4737
0.2308
04118
0.2308
0.4737
04118

06
0.4737
0.5652

0.6
0.5238

0.83307
0.30309
0.75756
0.74976

0.2574
0.28041
0.51076
0.53199
0.54111
0.35019
0.82405
0.55346
0.30887
0.40351
0.62524
0.37139
0.43018
0.37139
0.89846
0.41541
0.24389

0.5387
037127
0.27476
0.65919
0.63619
0.79478
0.38293
0.78923
0.32036
0.21245
0.51748
0.75205

0.9371
0.28041
0.27041
0.75205
0.52196
0.90519

0.6889
0.670S5
0.66663

0.2861
0.34189
0.38221
0.69178

0412

06
0.412
0.79
0.761

0.531
0.6

0.338
0.565
0724

06
0.677
0.629
0.677
0.306
0.647

0.536
0.667

0.482
0.565

0.346
0.725

0.6
0.384
0412
0.761

0.384
0.652
0.286
0.474
0.443

0.6
0.7s8
0.699
0.665
0.524

O 0O = O

0.955
0.521

0.327

0.016

0.602

0.545
0.273
0.921
0.301
0.448

0.547
0.278

0.048
0.358

0513

0634

0513

0.373

0.236

Q.094

0.901

0373

0174
0

0.333

0.511
0.452
0.091
0.166

0.231
0.068

0.391
0.091

0.304
0.244
0.304
0.057
0.26
0.412
0.168
03
0.231
0.091
0.126

0.231
0.073
0377

0.6

0.085

0.452
0.474
0.085
0.176
0.083

0.11

0.442
0.341
0.29
Q

0.€591

0.021
0.9386
0.6581
0.0605
0.4486
0.0151
0.4445
0.9396

0.015
0.5772
0.8654
0.3252
0.0117
0.9356
0.3253
0.5689
0.0572
0.3618
0.3903
0.0185
02698
0.6206
0.0107
0.0203
0.1568
0.8691
0.0129

0.561

0.587
0.0248
0.3315
0.2584
0.6591
0.3226
0.0286
0.2584
0.4096
0.3968
0.7252
0.5938%
0.9376

0.083
0.5353
0.7615
0.7936

174

0.7
0.6
04
02
0.2
0.7
0.1
0.8
01

0.7
0.1

0s
0.6

0.6

The following training and testing data files are in the enclosed diskette.

Training file for M-W system in two-phase region only
File name: ftrnz1 (100 data points)

Order of variables is the same as the previous training files for the M-W system.

0.125
0.875

05
0.625
0.125
0.875
0.125

0.75
0S5
0.25
0.375
0.375
Q.25
0.875

0.12%
0.5

0.76
044
0.92

06
0.52
0.84
0.68
0.84
0.92
084
0.76

0.6

0.68
0.68
0.92
0.92

0.4737
0.0909
0.5652
0.3333
0.2308
0.5238
04118
0.6238
0.5652
0.5238
0.4737
0.3333

06

06
0.4118
04118
0.5652
0.5652

0.78043
0.55772
061727
0.34443
0.36862
0.73788

0.2555
0.78643
024633
0.25868
0.73195
0.33875

0.7116
0.54982
0.44651
1.07097
0.36295
0.54765

- 0 - 0 O —= 0O =

0.474

0.565

0.524

0.524
0.808
0.793
0474

0.6
06
0.601
0.412
0.687
0.568

O = O ~ «+ O = 0O

Testing file for M-W system in two-phase region only

File name: ftstnz2 (70 data points).

Order of variables is the same as the previous training files for the M-W system.

Training file for B-T system
File name: fbt2300 (300 data points).
Order of variables: T, P,F, z, V, y, L, x, and q

0.091

0.333
0.231

0.412

0.546
0.511

0.333

0.224

0.316

0.7252
0.0186
0.8599
0.0184

0.015
0.7952
0.0185
0.7969

0.084
0.0541
0.7252
0.0157
0.9417
0.9315
0.3305
0.6591
0.5671
0.8635

175

176

Testing file for B-T system
File name: fbs100 (100 data points)
Order of variables: T, P,F, 2z, V,y, L, x, and q

C.1 TRAINING AND TESTING FILES FOR THE
CRUDE DISTILLATION TOWER

1. Top and heavy naphta section

Training file: HT300 (300 data points).

Testing file: HS100 (100 data points).

Order of variables in both files: Bintolt, Htfeed, Hndraw, Kerodraw, Qreb, Ttop, Ovhd,
RR, Qcond, PAT, Ttoph, Tboth, PAH, IBPH, FBPH, RHOH

2. Kerosene section

Training file: Ktc20r (200 data points).

Testing file: Ksc10r (100 data points).

Order of variables in both files: Bintolt, Htfeed, Hndraw, Kerodraw, Diesdraw, SSK,
TtopK, TbotK, FPKero, IBPK, FBPK.

3. Diesel section

Training file: Dtc620 (200 data points).

Testing file: Dsc610 (100 data points).

Order of variables in both files: Bintolt, Htfeed, Kerodraw, Diesdraw, AGOdraw, SSD,
TtopD, TbotD, IBPD, FBPD, PourD, PAD.

177

4. AGO section

Training file: Agt150 (150 data points).

Testing file: Ags100 (100 data points).

Order of variables in both files: Bintolt, Htfeed, Diesdraw, AGOdraw, SSA, TtopA,
ThotA, IBPA, FBPA, PourA, PAA.

5. LSWR section

Training file: Lswt150 (150 data points).

Testing file: Lsws70 (70 data points).

Order of variables in both files: Bintolt, Htfeed, AGOdraw, SSM, Tbot, PourL.

APPENDIX D
MATLAB PROGRAMS

D.1 Sample Program for Standard RBFN.

£ mrmmusssss Puntilon epproNimetliaon usiny FBREN
clear; clf;
N=150; NR=20;

3 Jefine an input vectors 4nd I [arget vEoTor
f=fopen{'./£1th8i&','r');
for i = 1:N

a=fscanf (f, 's$f', [1 10});

A=(A;al; TN, ¥ will be snored as

end
fclosel(f);

(A(:,1:4))";
(A{1:N,6:10))"';

p
t

x1= A(1:N,1); x2= A(1:N,2); x3= A(1:N,3); x4= A{:,4);
yl= A(1:N,6); y2= A(1:N,7); y3= A(1:N,8); yd4= A(:,9);

% ldentification uzing an REFN
% btrain “he FBFNW

PR

df=100; ¥ Frequency of pregress displays

me=5000; % Maxirmm nunker of epochs/neurons :
sse=0.01; % Zum-sguared errcr gocal

sc=.15; % Spreed <ccnstant for radizl besiz funcotions

tp = [df me sse scl;

flops(0), tic

mysrb

178

a0t
o

y5= A(:,10};

179

rbfn_flops = flops

rbfn_time = toc
3 .end of trainaing.
t ===plen trxaining data

out = simurb(p,wl,bl,w2,b2);

subplot(2,1,1),plot3(x1,x2,0ut(l,:), 'r+');

hold on; grid; xlabel('xi'); ylabel('x2'); zlabel('yi'); view(-30,30);
title('Training data (v1l)’);

plot3(xl,x2,yl,'go');

tmp=out{l, :);
for i=1:N,
a=x1l(i}); X=[a;al;
a=x2{1i); Y=[a;al;
astmp{i); b=yl(i); Z=(a:b];
plot3(X,Y,Z, 'v-"');

end
L smusmzest neTwork
f=fopen('./2ts70k', 'c");
for i = 1:70
aa=fscanf(f,'%£', {1 10));
AA=[AA;aa]; Sxi, x2. vy will be srtored as a riw in array
end

fcloself);

x1={]; x2=[}): x3=(]); x4=(1; x5=[(];
yl=(1; y2=(]; y3=[1; %ty4=i{l; w3=i};

x1=AA(:,1)"'; x2=AA(:,2)'; %x3=AA(:,3)'; x4=AA({:,4)"'; TxXZ=i 1,5 "
y1=AA(:,6)"; y2=AA(:,7)'; y3=2A(:,8)"'; y4=AA(:,9)"'; y5=AA(:,10)"
L9 Runnne fost with trained/untrzined data s==zsti%53%

g={x1; x2; x3; x4];
out = simurb(g,wl,bl,w2,b2);

vy = [yl; v2; y¥3; y4: Y51

sse = sumsqgr(yy - out)

RMS = sqgrt(sse/NR)

ssel = sumsqr(yl - out(l,:})
sse2 = sumsqgr(y2 - out(2,:))
sse3 = sumsqriy3 - out(3,:))
ssed = sumsqgr(y4 - out(4,:}))
sse5 = sumsqr(yS - out(5,:})
rmsl = sqgrt(ssel/NR)

rms2 = sqgrt{sse2/NR)

rms3 = sgrti(sse3/NR)

180

rms4 = sqrt(ssed4/NR)
rmsS5 = sqrt({sse5/NR)
epoch

subplot(2,1,2),plot3(x1,x2,0ut(l,:), 'T+"};

hold on; grid; xlabel{'xi'); ylabel('xZ'); zlabel('yi'); view(-30,30);
title('Test data (v1l}'};

plot3(x1l,x2,yl,'go’'};

tmp=out (1, :);
for i=1:NR,
a=x1(1i); X=(a;al;
a=x2{1i); Y=[a;al;
a=tmp(i); b=yl(i); 2Z=[a;b];
plot3(X,Y,Z,'y-");
end

D.2 Sample Program for MLP

clear;clc;

N=300; 5 Number
df=500; e
me=10000;

: displays (33t concel.

Y speche/nsurens (ag xany as Lu

&}

ms=0.1; t Maxvaimuam mcceptakle roof mean SMuRT @rrox
1r=0.01; % Learning cate.
tp = (df me ms 1lr};

®
%
t takes).
T
T

FIRST=30; 3 Mumper of Neuwrons
SECOND=10;

define an igput vecnors and a targes VEIUCD Y.

%
f=fopen('./f1ch8i5%', 'r'});

A=[];
for i = 1:N
a=fscanf(f, '$f',[1 10]);
A=[A;a]; %xl, x2. v will be stored az 4 row iroarray A
end
fclose(f):;

(A(:,1:4))";
(A(:,6))";

p
t

nou

181

x1= A(L1:N,1); x2= A(1:N,2); x3= A(1:N,3); x4= A(1:N,4); xI= A{:, %
yl= A(L:N,6); /o= A{1:3,71; v2s AUL:N, 31 yds af:,23: w3 A{LaN, 1015

[wl,bl,wZ,bZ,wB,b31=initff(p,FIRST,'1ogsig',SECOND,'logsig',t,'purelin
")

1
.2
Al
V]
[N
o}
b
b

2
ry
D

£
3
v
3

flops(0), tic

[wl,bl,w2,b2,w3,b3,bp_ep]l=mytrbpx(wl,bl, 'iogsig’,w2,b2, 'logsig’, ...
w3.b3, 'purelin’',p,t.tp);

bp_flops = flops;
bp_time = toc;

) oend of toalning.

bp_£flops

bp_time
EEARISLEEEARRSLEEEARILLEE A AVICLEE R ERIGLLEHERFGLRHEEARRLYL
X% DIzt Training Data ARULL

clf
out = simuff(p,wl,bl,'lcgsig',wZ,bz,'logsig',w3.b3,'purelin');

subplot(2,2,1),plot3(x1,x2,0out(l,:), 'r+");

hold on; grid; xlabel('x1')}; ylabel('x2’); zlabel{'yi'); view(-30,30);
title('Training data (yl})');

plot3(xl,x2,yl,'go');

tmp=out(l,:);
for i=1:N,
a=x1(i}; X=[a;al:
asx2(i); Y=[a;al:
a=tmp(i); b=syl(i); Z=[a:b];
plot3(X,Y.Z2,'y-");
end

subplot(2,2,2); plot3(xl,x2,out(2,:},'r+");

hold on; grid; xlabel('xi’); ylabel('x2'); zlabel('v2'}; view(-30,30);
title('Training data (y2)');

plot3(x1,x2,y2,'go"');

182

tmp=cut (2, :);
for i=1:N,
a=x1(1); X=[a;a];
a=x2{i); Y¥=[a;a];
a=tmp(i); b=y2(i); Z=[a;b];
plot3(X,¥,Z,'y-");

end

L A AN S R A S R A N A R A A A Y A A A Y A
LR%%y pict Teszt Laata t9%%%

A=[]Ia=[ll

f=fopen(’./fts70k','r'});

x1l= [}; x2= []; x3= (]; x4= [(]; x5= [];
vi= {); y2= []; y3= [1:; v4= [1: ¥5= [};

a=fscanf (£, "sf',[1 10]);

A=(A;a); 3%1, xZ, v will be stored as 2 row
end
fclose(f);

xl= A(:,1); x2= A(:,2); x3= A(:,3); RACH
yl= A(:,6); 3vyi= 2(:,71; 732 ~(:,%: ARNLE

g=[(x1 x2 x3 x4);

out = simuff{g',wl,bl, 'lcgsig',w2,b2, 'lcgsig’,w3,b3, 'purelin’);
Syy s iyl y2 73 ys wiis
3sse = sumsariyy - ou)

fraus = o SGret

ssel = sumsqgri{yl' - out(l,:))
Rgeesd = ogumzgr (VO - oubil,)
tsze3 = sumsSgriy3d’ - outil. i}
tszed WIe 6,0}
ftszes i P
Frged i3 6,1}
rmsl el

Frms2 = sgrtiszel/NR}

Prms3 sgrtisze3/NR}

Hresd = sgriisse4d /NRj

dresd = osart lzseS/WR;

hruz6 = sgrtisses /NR}

subplot(2,2,3); plot3i(xl,x2,cut(l,:), 'r+');
hold on; grid; xlabel('xi'); ylabel('x2'}); zlabel('y2'); view(-30,30);
title('Test data (yl}');

183

plot3(x1l,x2,y1l,'ge’);

tmp=out (1, :);
for i=1:NR,
a=x1(i); X=[a;al;
a=x2{i); Y=[a;al;
a=tmp(i); b=yli{i); Z=[a;bl;
plot3(X,Y,2,'y-");
=rid

subplot(2,2,4); plot3(xl,x2,0ut(2,:),'r+');

hold on; grid; xlabel('xi'); ylabel('xZ'); zlabel('y2'); view(-30,30);
title('Test data (y2}');

plot3({xl,x2,y2,'ga"'}):

tmp=out (2, :);
for i=1:NR,
a=x1{i); X=l[a;al;
a=x2(i); Y=[(a;a)l;
a=tmp(i); b=y2(i); Z=[a;b];
plet3(X,Y,2, 'v-");
end

D.3 Sample Program for Hybrid RBF-FPM-RBF

%4 ========== Funcsisn approximabzion gsing RBFH
clear; clf;
N=150; NR=70; slack=0.02;

s e
T deiline an

ioput vectors and a targe: vacicr .
]

t :
f=fopen('./£1ch150.txz’','r’);

for i = 1:N
a=fscanf(f, '$f',{1 10]);
A=[A;a]l; 3x1l, X2, v will be aftored a

i
30
1y
[¢]
]
1
ot
"
Al
-
<
M

end
fclose(f);

(A(:,1:5))";
({(A(1:N,6) A(:,9)])";

P
t

x1= A(1:N,1); x2= A(1:N,2); x3= A(1:N,3); x4= A(:,4);
yl= A(1:N,6}; y2= A(1:N,7); y3= A{1:N,9); %yd= Af:,8}; Sy5= Af{:, 9

df=100; % FrequenTy of pryres 8 It
H T T i 3
me=5000; % Maximim nu f ospoohs,/nairsns fan many as

sse=0.1; % 3 di.
sc=.3; % r rzdial kbazis funcoions.

tp = [df me sse sc];
% Tra:niny bDegin. ..
flops (0}, tic

(wll,bll,wl2,bl12,kl,trl] = mysrbip,t,tp);

out = simurb(p,wll,bll,wl2,bl2);

for i = 1:N

if out(l,i) > 1
out(l,i) = 1;

zrid

if out(l,i} < slack
cut(l,i) = 0;

erd

if out(2,i) > 1
out({2,i) = 1;

end

if out(2,1) < slack
out(2,1i) = 0;

aend

$2E53R%BEELS using overall balance IERHBELLERY

F = a(:,3) = 250;
vV = out(l,:}' .* F;
L=F -V;

= A(:,4);
= out(2,:)";
A(:,5) .~ 6;
or i=1:N
num(i) = (F(i)*z(i) - L(i)*x(i));
numl (i) = K{i)*x(i);
if (x(i) == Q)
yii) = z(i);
yE(i) = z(i);
eiseif (V{(i) == 0)

moRN XN
n

taXoes!) .

184

yi{iy = 0;
yE(iy = 0;
elseif (numl(i) < 0.05}
y(i) = 0;
yEili} = 0;
elseif ((numl(i) > 1) & (num{i) < 10)
y(i) = 0;
vE(i) = 0;
elseif (numl(i) >1)
y(i) = 1;
yE(i) = 1;
else
yii) = numl(i);
yE(i) = num(i)/V(i);
end
end

%v\'ﬁvi‘lln'v-'vw*)n:ris“vi,)lnv\'vi-‘)IAnw\‘vv))h
p = ([A(1:N,1:4) y' yf'}}';
t = (A(1l:N,7))";

di=100; T Frecriency ol
me=5000; * Maximium aumak
sse=0.05; % Fum-sm
sc=.29%5; T Sproad congtant fororalisl

tp = [(df me sse sci;

#bless iy, Lo
(w21,b21,w22,b22,k2,tr2]) = mysrb(p,t,tp):

rbfn_£flops = flops
rbfn_time = toc

outl = simurb(p,w21,b21,w22,b22);

for i = 1:N
if outl(i) > 1
outl(i) = 1;
end
if outl(i) < slack
outl(i) = 0;
end
end

subplot(2,2,1),plot3(x1,x2,0ut{l,:}, 'r+")

)

SN T WP oron

185

hold on; grid; xlabel('xi'); ylabel('xZ'); zlabel('yl’'): view(-30,30);

title('Training data (yl}'};
plot3({x1l,x2,y1l,'go’);

186

tmp=out (1, :);
for i=1:N,
a=x1(i); X=[a;al;
a=x2(1i); Y=[a;al:
a=tmp(i); b=yl{i); Z=[a;k};
plot3(X,Y,2,'y-");
end

subplot(2,2,2); plot3(xl,x2,outl, 'r+');

hold on; grid; xlabel('xi'); ylabel(’'xZ'); zlabel('vl');
view(-30,30);

title{'Training data (vI})');

plot3(xl,x2,y2,'g2"'};

tmp=outl;
for i=1:N,
a=x1(i); X=[a;al:
a=x2(1i); Y={(a:;al:;
a=tmp(i); b=y2(i); Z=[a;b];
plot3(X,Y,2, 'v-");
end

% smatand mntwe ot
h wzazleasi DeTworr

f=fopen('. /fts70k.txt','r");

for 1 = 1:70
aa=fscanf (£, '3£°,[1 10]};
AA={AA;aal; Sxi, x2. v will be snored 4s 3 row 1a array

A
i)

znd
fclose(f);

x1=[); x2=(]; x3=[); x4={]; x5=[]; num=(]; numl=(}; yE=(];
yl={]; y2=[); %/3=i;; ¥Tyi=ii; yo=1];

F=[]: Vv=[1; L={]; y=[1: x=(]; z=(];

x1=AA(:,1)"'; x2=AA(:,2)'; x3=AA(:,3)'; x4=AA(:,4)"'; x5=AA(:,3)";
y1=AA(:,6)'; y2=AA(:,7)"'; y3=AA(:,9)"'; ByduAdi, %1 RydEdalc,)

PavE:

[)]

£E%FZ¥ ===z rast with srained/untrzined datn ss22ER5R3%
g=[x1; x2; x3; x4; x5];
out = simurb(g,wll,bll,wl2,bl2);

for i = 1:NR

if out(l,i) > 1
out(l,i) = 1;

elseif out(l,i) < slack
out(l,1i) = 0;

end

if out(2,i) > 1
cut(2,1i) = 1;

elseif out(2,i) < slack

out(2,1i) = 0;

end
end
F = AA(:,3) * 250;
Vv = out(l,:)' .* F;
L=F-V;
z = RA(:,4);
x = out(2,:)';
K = AA(:,5) .* 6;
for i=1:NR
num(i) = (F(i}*z(i) - L{i}*x(i));
numi (i) = K(i)*x(1i);
if (x(i) == 0)
y{i) = z(i);
vE(i) = z(i);
elseif (VI(i) == 0)
y(i) = 0;
vE(i) = 0;
elseif (numl(i) < 0.05)
y(i) = 0;
yE(i) = 0;
elseif ((numl(i) > 1) & (num{i) < 10))
y(i} = 0;
yE(i) = 0;
elseif (numl(i) > 1)
yii) = 1;
vEti) = 1;
else
y{i}) = numl(i);
yE(i) = num(i)/V(i);
end
end
g=[(x1; x2; x3; x4; y; yfl:
outl = simurb(g,w2l,b21,w22,b22);
yy = [yl; y3: y2]:
ssel = sqrt((sumsqr(y2 - outl))/NR)
outs = [out; outl};
sse2 = sqrt((sumsqgr(yy - outs))/NR)
epochl = kl
epech2 = k2
N=NR;

subplot(2,2,3),plot3(xl,x2,0ut(l,), 'r+"};

187

hold on; grid; xlabel('x1'); ylabel('xZ'); zlabel('yi'); view(-30,30);
title('T=st data (yl}');
plot3(xl,x2,yl,'ge’);

tmp=out (1,
for i=1:N,
a=x1(1i); X=[a;al;
a=x2(1); Y=[a;al;
a=tmp(i); b=yl(i); Z=[a;b};
plot3(X,Y,Z,'y-");
end

subplot(2,2,4); plot3(xl,x2,outl, 'r+');

hold on; grid; xlabel('xi'); ylabel('xZ'

view(~-30,30);
title('Test data (y2} ')
plot3(xl,x2,y2,'gs’');

tmp=outl;
for i=1:N,
a=x1l(i); X={a;al:
a=x2(1); Y=[(a;al:
astmp(i}; b=y2(i); Z=[a;bl;
plot3(X,Y,Z, 'y-'});

I

zlabel ('v2');

D.4 Sample Program for Linear-nonlinear HSNN

P _— e
tLinear-nonlinear HINN

clear all

FIRST=6; % Number of Neurons in cthe first
SECOND=2; t Nambn* o NPPXu" i the
N = 150; & Total number of traininy data set

miu = 0.05, % “earh,dg rar
nepoch =50000;

NT=70;

ssse = 0.08;

v Sefine an input vect
f=fopen('./Fith38iS"','r
A=[];

for i = 1:N
a=fscanf(f, '$£',(1 10]);

ors and z targei
")

A=[A;al; tx1l. =2, ¥ will ke

aend
fclosel(f);

p = ([A(:,2) A(:,3:4)])'; % master input

[
o

secoond hidden

188

189

ps = (A(:,1})"; % slave input

t = (A(:,7))"; % output variable
£1 = 'lcgsig’;

sl = FIRST;

f2 = 'purelin’;

s2 = SECOND;

rimnziTlalizing weigat

foval

¥ ¥ived iritial woz mzd bizzes ko cbfaln more congiztennt result
CiM = [-0.85723;-0.6672;0.1388;-0.3251;-0.49891;-0.3237];%..10GC;

ClM = zerosi6,1);

ViM (0.55175 0.77052 -0.61304;-0.19768 -0.47102 0.58185;...
-0.50839 0.71472 -0.77083;-0.61587 -0.89650 0.97798; ...
-0.10135 -0.21388 -0.52850;-0.64335 0.11409 -0.537%2];%. 10s;
V2M=[0.46043 0.59520 0.28319 0.13708 -0.488399 0.24030;...
0.67126 -0.60252 -0.78367 0.82261 0.57068 0.3445];%.. 100

C2M = [-0.69359;-0.14783];%.,100:

C2M = zercs(2,1);

T PRECENTATION FHASE
VSSE = [(];:

Vda = [];

tic;

k = 1;

while RMS > ssse

Verr = [];

for j = 1:N

al = feval(fl,VIM*p(:,3j),C1M); & curpun »f firsz hidden layer
$al = fevalifz, VaAMtal, K C2Mi; % cutpur of master network

a2 = V2M*al + C2M;

V1is = a2(l,:); Cl1s = a2(2,:);
z = (V1S .* ps(:,j)) + ClSs;
error = (z-t(:,3));

Verr = [Verr; error];

5 Update V's and <'s

dal = al .* (l-al); 3 dariv of al

bl = 2 .* error .* psi:,j);

sSVZM = sum{V2M) ; % swmeing un VLM column-wise
dint = sV2M.*dal’;

CiM1l = CIM - miu.*({(2 .* error)*dint)’;

ViMl = VIM - miu.*((2 .* error)*dint) ' '*p(:,3)"';
CiM2 = CIM - miu.*(bl*dint) ';

190

VIM2 = VIM - miu.*(bl*dint)'*p(:,3}"';
CiM = (CIM1+C1M2)./2;
ViM = (VIM1+VIM2)}./2;

C2M(1,1) = C2M(1,1) - miu.*(bl);

C2M(2,1) = C2M(2,1) - miu.*(2.*error);
V2M(1, :) = V2M(1,:) - miu.*{bl*al)’;
V2M(2,:) = V2M(2,:) - miu.*(2.*error*al)’;
end

SSE = sumsqgr(Verr);
RMS1 = RMS;

RMS = sqrt (SSE/N)
VSSE = [VSSE; RMS];

k = k+l;
if RMS > ssse
1f RMS > RMS1
loop = k;
k=nepoch+1;
end
else
loopl = k;
k=nepoch+1;
RMStr = RMS
end
end

hstime = toc;
BEEERLGL tegning BRULLBEERRLLLLE

f=fopen('./fts70k’','c');
p=(1; ps=(]; t=(};

A=[];
for i = 1:N

azfscanf(f,'s$f',[1 101);

A=(A;a]; $x1, x2, v will be stored as a row in array A
end

fclose(f);

p = ([A(:,2) A(:,3:4)])";
ps = (A(:,1))';
t = (A(:,7)})";

Verr = (}:

z2={1];

for j = 1:NT
al = feval (f£1,VIM*p(:,3J),CIM); 3 output of
3al = feval (£2,VIMTal, QoM 3 output of mmster
a2 = V2M*al + C2M;
V1S = a2(1,:}); C1Ss = a2(2,:});

z = (V1S .* psi:,3j)) -~ C1S;
error = {(z-ti{:,3));

2=[Z z];
Verr = [Verr; error];
end
SSE = sumsqr (Verr);
MSE = SSE/NT;
RMS = sqrt(MSE}

D.5 Sample Program for Nonlinear-nonlinear HSNN

clear all
FIRST=20;

SECOND=10; Ll
N = 150; %+ Tonal
miu = 0.095;
nepech =60000;
NT=70;

RMS = 1;

ssse = 0.08;

g S N R LIS v srgyesT R 2T - P N TVl T .-
FoOSEn NS RTL LOMAT VEUTONE RnG & nargeEn TOLGT

f=fopen(’'./Fizhs8i5',r');

A=[];
fer 1 = 1:N
a=fscanf(f,'s€',[(1 10]);

A=(A;al; Fxl, x2., v wiil be stored

end
fclosel(f);

p = ([A(:,2) A(:,3:4)])";
ps = (A(:,1))";
t = (A(:,7))";

£1 = 'lcgsig’;

sl = FIRST;

£2 = 'purelin’;

s2 = SECOND;

FImnitialising weighty and blases

[VIM,C1M] = feval(feval(fl,’'init’),sl,p):
{row,coll=sizel(p);

[VIM,C1M] = rands(sl,row);

X = ones(sl,1) ® feval(fl, 'cutput'};
[S.Q] = size(s2);

if max(S,Q) > 1, s2 = S; end

191

[V2M,C2M] = feval(feval(f2,'init'),s2,x);

5 PRESEMNTATION PHASE
VSSE = [];

vda = [];

k = 1;

tic;

while RMS > ssse
Verr = []:
for j = 1:N

al = feval(fl,VIM*p(:,3).C1lM); % ocuzput of fivst nidden layer -

mAastar neTwork
a2 = feval (f2,V2M*al,C2M); & <cungar F masiec nenwork
V1S = a2(1:3); C1S = a2(4:6); V23 = a2(7:9); C28 = a2(10);
feval (f1,V1S*ps(:,3),Cl1lS); v cuTpus oI £ T hidd
e nenwork
(V2s' * g) + C2S;
error = (z-t(:,3));

= [Verr; error];
alll = f(al al all;

% Upetate V'aoand O

dal = al .* (l-al); g oyt oof oal

%at il o= dal dal dall;

dg =g .* (1-g); $ Aeriv of g

bl = 2 .* error;

sV2M13 = sum(V2M{1:3,:))'.*dal; % mamirlng ep VIM o colamniewise
sV2ZM46 = sum(V2M{4:6,:)) " .*dal;

SV2M79 = sum(V2M(7:9,:))'.*dal;

sV2M10 = sum(V2M(10,:));

dall3 = [sV2M13 sV2M13 sV2M13];

daldé = [sV2M46 sV2M46 sV2M46];

dal79 = [sV2M79 sV2M79 sV2M79];

sgVs = v2s .* dg;

C1M1 = CIM - miu.*(bl*(sv2M10.*dal));

ViIM1 = VIM - miu.*(bl*(sV2M10.*dal)}*p(:,j}"';
CIM2 = CIM - miu.*(bl*g'*dal79')"';

ViM2 = VIM - miu.*(bl*g'*dal79')’'*p{:,])";
C1M3 = CIM - miu.*(bl*sgVS'*daldé6’')’;

VIM3 = VIM - miu.*(bl*sgVS'*dald4é6’') '*p(:,])"';
ClM4 = CIM - miu.*(bl*ps(:,]j) *sgVs'*dall3'}’;
ViM4 = VIM - miu.*(bl*ps(:,3j)*sgVs'*dall3')'*pi{:,.3)";
CiM = (CIM1+C1M2+CIM3+C1M4}./4;

VIM = (VIM1+V1IM2+VIM3+V1iM4) ./4;

C2M(1:3) = C2M(1:3) - miu.*(bli*ps(:,]) *sgVs);
C2M{4:6) = C2M(4:6) - miu.*(bl*sgVs);
C2M(7:9) = C2M(7:9) - miu.*(bl*g):

C2M(10) = C2M(10) - miu.*bl;
V2M(1:3,:) = V2M(1:3,:) - miu.*(bl*ps{:,j)*sgVs*al’);

V2M(4:6,:) =
V2M(7:8,:) =
V2M(10,:) =
end

V2M{(4:6,:) -
V2M(7:9,:) -
V2M (10, :)

SSE = sumsgr(Verr};
RMS1= RMS;
RMS = sqrt(SSE/N)
VSSE = [VSSE; RMS];
k = k+l;
if RMS > ssse

if RMS > RMS1

loop = k;

k=nepoch+1;
end
else
loopl = k;
k=nepoch+1;
RMStr = RMS
znd
end
hstime = toc;
33%eeEET nea2ling

f=fopen('. /£ts70",'r’};

miu.*(bl*sgVsS*al'});
miu.*(bl*g*al');

- miu.*(bl*al)’;

ETEEIRRERTTETNS

p=(1:; ps={]; t=[];
A=[];
for i = 1:NT
a=fscanf(f, '%f',[1 9]);
A=[A;al; xL, XD, v owiil b snorsd as a2 rIiWw o aXra
end

fclose(f):

p = ([A(:,2) A(:,3:4)])";
ps = (A(:,1))";
t = (A(:,6))";

1:NT
feval(fl,VIM*p(:
feval (£2,V2M*al,
Vis = a2(l1:3); C1s =
feval(f1,V1S*ps|(:
ezwark
(V2s' * g} + C2s;
(z-t(:,3));

1]
[
w n

won

slave
Z
error =
2=(2 z};
Verr = (Verr;
end

1}

error};

,j),C1IM); t cutput of firsz hidden layer
C2M) ; $ cuIput of master network
a2{4:6); V2s = a2(7:9); C28 = a2({l1lQ);
,3).,C18); % cumput of farst hidden Lavar

193

SSE
MSE

sumsqr (Verr) ;
SSE/NT;
sqrt (MSE)

g

D.6 Sample Program for Output-tuned HSNN

clear all

FIRST=18; % Mumber of MNeurons o tha firgt
SECOND=1; D Muxnber of Neturons ity the seoond
FM = 6;

SM = 1;

N = 150; % Tonel rnurber <f btraining dasa et
miu = 0.02; 3§ Learnicy rate

nepoch =10000;

NT=70;

RMS = 1;

ssse = 0.04;

% define an IOPUN VEITOUS AV a2 TAargel Jenuor

f=fopen('./Fith81&%','r'});

A=(];
for i = 1:N
a=fscanf(f, '$f',[1 10]1);

A=[A;a]; Fxl, x2, vy wilil be snorsd as

end
fclose(f);

f=fopen('./VyLx.tXt',6'r’); %tu/p =rained data

for i = 1:N

a=fscanf(f, '%f', [1 41);

AI=(AI;a]; ¥xi, x2, vy will ke
end
fclosel(f);

A(:,3) * 250;
= AI(:,1) .*» F;
AI(:,3) .~ F;

[l RO
!

= (V+L)./F;
V./FPp;
L./FP;
A(:,4);
Al(:,4);

%X N 7y
N

. .
Yoy s
PE PR

(Y4
|‘;,‘

<

La

ST

X

194

Tarvyar ot slaon
Laver Pes

o .- .
DTIWOLL ATTTAY on
fr osoeprial aenwlrd

195

yp = AI(:,2);

for i = 1:N;
if ypli) < 0.02;

num(i) = 0;
eiseif V(i) < 1;

num(i) = 0;
else

num(i}) = ((F(i)*z(1) - L{i)*x{1))/V(i))-ypli);
end

end

p = (num);
ps = ([AI(:,1:4) A(:,3:4)1) '
t = (A(:,7))";

£f1 = 'legsig’;

sl = FIRST;

£2 = 'purelin’;

s2 = SECOND;

Lirninializing weignng and nilasss

(V1M,CIM] = feval(feval(fl,
[row,col]= size(p);
(VIM,C1M] = rands(FM,rcw);
x = ones(FM,1) * feval(fl, 'output’);
[S,Q] = size(SM);

if max(S,Q) > 1, s2 = S; end

(V2M,C2M] = feval (feval (f2, 'init’),s2,x);

*init') ,FM,p);

[vis,cls] = feval (feval (f1, 'init’'),sl,ps);
(row,col}= sizel(ps);:

[V1S,C1S] = rands(sl,row);

x = ones(sl,1) * feval(fl, 'cutput’'};

(S,Q] = size(s2);

if max(sS,Q) > 1, s2 = S; end

[V2S,C28] = feval {feval (f2,'init"'),s2,x};

% PRESTENTATION FHASE
VSSE = []:
Vda = [];

tic;

k =1;

while RMS > ssse
Verr = [1];

for j = 1:150

al = feval(fl,ViM*p(:,3j),.CIM); % curpu: of First hidden layer
a2 = feval (£2,V2M*al,C2M); % ourput of master nefwsrk

gl = feval(fl,VisS*ps(:,j),ClS}; ¥ cuzpul cf first n:dden Layer
g2 = feval(f2,V2S*gl,C2S); % outgsl of slave oetwore

z = (a2(l,:) .* g2); % + az{2,:1;

196

error = (z-t(:,3)};
Verr = [Verr; error];

 Update Ve and O's

dal = al .* (l-al); % dariv of al

bl = 2 .* error .* psi:,3);

sV2M = sum(V2ZM); % summeing wp YIM colizmi-wilse
dint = sV2M.*dal"’;

dgl = gl .* (l1-gl); 2 deriv o of ¢l

sV2S = sum(V2S); 4 summing ap WeX¥ ocolumn-wizE

dints = sV2S.*dgl’';

ClM CIM - miu.*(2.*error.*g2*dint)';

ViM VIM - miu.*(2.*error.*g2*dint) '*p(:,3}";
C2M({1,1) = C2M(1,1}) - miu.*(2.*error.*g2);
V2M(1,:) = V2M(1l,:) - miu.*(2.*error.*gl2*al}’;

ClS = C1S - miu.*(2.%error.*a2*dints’);

V1§ = V1S - miu.*(2.*error.*a2*dints’'*ps(:,3)"'});
C2S = €28 - miu.*(2.*error.*az2);

Y28 = V2S - miu.*(2.*error.*a2*gl');

end

SSE = sumsqr (Verr);

RMS1 = RMS;
RMS = sqrt(SSE/N)
VSSE = [VSSE; RMS];
k = k+1;
if RMS > ssse
if RMS > RMsS1
loop = k;
k=nepaoch+1;
end
else
loopl = k;
k=nepoch+1;
RMStr = RMS
end
end
hstime = toc;

3%9EEEE% rosting SHEERFRLLEHRERRN
f=fopen{"'./fts70k’, ') ;
p={1; ps=[]: t=[];

A=[]; AI=[];
for i = 1:N
a=fscanf (£, '$£',[1 10]);

A=[A;a]l; 3zl, X2, v wiil be stored as 2 row in mrray A

197
end
fclosel(f):
f=fopen('. /VyLxts.txt', 'r'};

for i = 1:N
a=fscanf(f,'S$£',[1 4]);

AI=[AI;a); Sxi, #2, v wiii ke stored as @ row in array
end

fclose(f);

F = A(:,3) *~ 250;
vV = AI(:,1) .* F;
L = AI(:,3) .* F;
FP = (V+L)./F;

v = V./FP;

L = L./FP;

z = Al(:,4);

X =

AI(:,4);

yp = AI(:,2);

for 1 = 1:NT;

if yp(i) < 0.02;
numi{i) = 0;

eiseif V(i) < 1;
num(i) = 0;

else
num(i) = ((F(i)*z(i) - L(i)"x{1))/Vv(i))-yp(i):
end
znd
= (num);

34
ps = ([AI(:,1:4) A(:,3:4)1}1}";
t = (A(:,7))';

Verr = []; Z=[];
for j = 1:NT

al = feval(fl,VIM*p(:,3j),CIM); % cutput of f£irst hidden layer
a2 = feval(f2,V2M*al,C2M);% ocutput cf master networs

gl = feval(fl,V1sS*ps(:,j),C1S); 3 cutput of first R :

g2 = feval(£2,V25*gl,C2S); % cunput of slave nenwsrX

z = (a2(1,:) .* g2); % + alilZ :};

Z = [(Z;2]);
error = {z-t(:,3));
Verr = (Verr; error];

end

SSE = sumsqr{Verr);
MSE = SSE/NT;

RMS = sqrt(MSE);

