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ABSTRACT 

This research investigates the development of different types of artificial neural 

networks (ANN) and grey-box ANN models for real t h e  optimisation (RTO) of 

chernical processes. Therefore, must be easily computed, stable, anci easily updated and 

maintained. Due to this, the models have a predominantly connectionist structure. AU 

the models were developed and simulated under MATLAB environme nt. 

initial investigations were focused on a rnethanol-water flash system, which is 

simple, yet realistic in representing ihe non- linearity of multivariable ç hemic al 

processes. Foilowing this, ANN models were then developed for a crude oil distillation 

column, which is a more complex industrial process. Training and testing data for the 

network models were generated using steady state process rnodels simulated m the 

Aspen Plus steady state process simulator. The sensitivity analysis feature in Aspen 

Plus was utilised to generate a large amount of data in a single simulation m. 

Three standard ANN models were developed for the M-W flash system multi- 

layer perceptroos (MW) using backpropagation training with variable learning rate. 

MLP ushg Levenberg-Marquadt, and radial basis function networks (RBFN). Of the 

three standard ANN rmdels. the RBFN was foimd to give the best result, and was thus 

selected as the base case for comparison w ith O ther rmdels. 

The RBFN models were able to mdel the M-W flash system well, except for y, 

the composition of methanol in the vapour outlet s t r e v n  Different combinations of 

output variables affect the predictions of the mdeL In general, grouping suitable 

output variables combinations in a network m d e l  gave bener predictions. 

More complex models were required for better prediction of y because of the 

discontinuity in y that exists in the change between the smgle-phase and the two-phase 



region. Three p u p s  of models were developed: hierarchically structured neural 

network (HSNN), serial network models and hybrid ANN-frst principles models 

(FPM). The rnodels in al1 the thee gmups managed to improve the prediction of the 

base model. 

Among all the models, the output-tuned HSNN mode1 that was designed in series 

with a serial RBFN model provided the best prediction of y. Moreover, the structure of 

the output-tuned HSNN provided means for incorporating constraints into the network. 

The constraiots used are simple and readily known information. The completely dnven 

HSNN, was also able to perforrn as weU, when there is an input variable that directly 

and strongly influenced y. in both types of HSNN, prior knowledge embedded into the 

network structure ailowed for signifïcant improvements over the base case. 

The results of the hybrid ANN-FPM also showed a significant improvement over 

the base case in predicting y. Performance of the hybrid model, however, depended on 

the availability of accurate paramters needed by the FPM. Therefore, a hybrid M N -  

FPM wouM require extensive prior information. 

For the crude oil distillation tower, a standard RBFN was able to provide a highly 

satisfactory mdel. Proper groupiog of related variables not only irriproved predictions, 

but also dowed for the cornplex, multivariable model to be more manageable while 

avoiding the "curse of dimensionality". The RBFN model for one of the crude tower 

sections was also able to give good predictions when tested for range and dimensional 

extrapolation. Smce standard RBFN gave ficiently accurate predictions, developmg 

more cornplex mdels was deemed to be unnecessary. 

This study showed that ANN and grey box ANN models have the potenciai to 

model chernical processes for RTO. Various methods exist to take advantage of readily 

available information that can be utilised to overcome modehg  difficulties. Most 

signifcantly, since these mdels can be easily developed and updated, they are suitable 

for practical industrial applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Real tirne optimisation (RTO), or on-line optimisation. is the continuous evaluation and 

adjustrnent of process operating conditions to mirnise economic produçtivity subject 

to constraints. It is pnerating muçh interest in hdustry brcause of the increasingly 

cornpetitive environment of the current global econorny. Traditionülly, execution of 

RTO requires rigorous plant models. 

Good process models are critical for a successhil implementation of RTO. 

Currently, rnost RTO implementation uses rigorous f i rst  principles mathematical 

models. which are not only complex and costly to develop, but also cumbersome and 

dficult to maintain because of the ski11 and tîme requirements [Naysmith, 19971. The 

high computation time requüed in solving the rmdels is dso a major problem for on- 

line applications. In fact, developing reliable models for a chernical process is a major 

obstacle in irnplementing advanced control and optimisation because of the cornplexity 

and cost involved [Hussain. 19993. This leads to the quest for fuiding otber types of 

suitable models. such as off-the-shelf commercial simulation packages or purely black 

box mdels like artificial neural networks (ANNs). 

in a previous work. Naysmith [1997] çuccessfuily developed and executed 

complete RTO loops on stabilizer-splitter distillation cohimns usmg two commercial 

simulation packages, Aspen Plus and Speedup. Both packages use rigorous first 



principles (FP) mathematical models to simulate chemical processes. Nevertheless, 

Naysmith found out that models developed using both packages were not practical for 

industrial use because of large coqutation times. convergence difficulties and failures. 

For example, in Naysmith's work, the total CPU time in minutes taken for data 

reconciliation and economic optimisation using an Aspen Plus mdel  for a stabiliser- 

splitter process in a retlnery calculnted on IBM RS 6000 Mode1 530H cornputer wûs 

506.3 minutes. 

FP based rnodels, or white box models, requires in-depth knowledge of material. 

energy and momentuni conservation, as weli as themiodynamics and kinetics, of the 

process. These rnodels are also called mechanistic or physical models. A complete 

chemical process model cm result in thousands of rquations. As a consequence, the 

model is complex and requires a high level of expertise to drvrlop and maintain. 

Solving these equations is equally difficult ancl çomputationally tirne-consuming. Thus. 

both mode1 development and maintenance are expensive. Nrvrrtheless, good FP 

models c m  extrapolate weil and are extremely useful for understanding d analysing 

processes. There are commercial packages iivailable to assist in modeiling and 

simulation of chemical operations or plants. These packages are much easier to use 

than building a mode1 from scratch Moreover, most of the steady-state simulation 

packages also have good graphical user interface. Unfortunately, coqutation ushg 

these packages is slow, makmg on-he implementatioo imprxticai. 

An altemate approach to model a process is to use &cial neural networks 

(ANN). ANNs have generated much interest in the chemical engineering mrmnunity 

for more than a decade and many industrial applications have since been reponed 

[Nascimento, et al., 2000; Gontarski, et al., 2000; Elkamel, et al., 1999; Meghlaoui, et 

al., 1998: Turner, et al., 1996; Baratti, et aL, 1995; Cheung, et al., 1992; niibault and 

Grandjean, 19911. Thompsoo et al. [1996] and Thoqson and Knmer [1994] 

suggested the use of ANN as the process model for RTO. In another work, an 



important variable was estirnated using an ANN rnodel as part of a large rigorous mode1 

for use in on-lioe supervisory optimisation [Sabharwal, 19971. 

ANN, a connectionist-based black box model, consists of layers of nodes with 

non-hear basis functions and weighted connections that link the nodes. Using the 

nodes and weights, the inputs are mapped to the outputs after king trained with a set of 

data known as training data. Multilayer feedforwani ANNs have been mathematically 

proven to be a universal approximator [Homik, et al.. 19891. However, since ANNs are 

data driven, the resulting mode1 cm ody be as gwd as the data provided to the network 

for testing and ~auiing. Therefore, u&e FP models, ANNs are poor extrapolators. 

A thkd approach of modeiling penains to construct a mixture of white box and 

black box models. A hybrid model involving white box and black box modrls is used 

to overconie the weaknessrs while utilising the strength of both approaches. While 

most pubtished works defmed the combination of FP and ANN models as hybrid 

models, te Braake, et al. [1998] classified hem as semi-mechanistic models and grey 

box models. The starting point of a serni-mechanistic model is a white box rnodel, with 

certain piirameters or variables calculated from black box models or enipirical 

correlations The starting point of a grey box rnodel is a black box rnodel, with prior 

knowledge king used to provide additional infoxmation. 

Grey box models can also be defmed to includr models with structures designed 

to incorporate prior knowledge. Several methods of integration thût were successful to 

certain applications had k e n  propsed, but there were no specific proven rules. S o m  

of the nieihods use a direct hybrid of ANN and FP models. Modular neunl networks 

(MNN), which represent amther class of ANN, break down large models into sub- 

systems that cooperate with e r h  other to corne up with the m d e l  outputs [GûUinari, 

19951. The architecture of MNN is usuaiiy designed based on prior knowledge of the 

process. Another class of network, Hierarchically Structured Neural Networks (HSNN) 

[Bittanti and Saveresi, 19981, uses pnor knowledge of the output variable behaviour to 

divide tbe input variables mto "master" and "slave" units. The outputs of the tnaster 



network are puaneters for the slave network. Based on this, the slave network 

calculates the predicted output variables of the system In this work, grey box A N N  

models will be used in a generic sense to cover hybnd ANN-FP models, MNN models. 

HSNN models and combinations of the models. 

1.2 ARTIFICIAL NEURAL NETWORKS IN 

CHEMICAL ENGINEERING 

hificial neural networks (ANNs) are widely applied in chernical industries, especially 

in the area of fault diagnosis, process rnodelling, process contml and ptocrss 

optimisation. Applications in chernical engineering include thos  in petro leum re fieries 

[Ekamel, et al., 1999; Cheung, et. al., 1992; Thonipson et. al, 1996; Zhao et. al., 19971, 

chernical plants [Turner, et. ai., 1996; Baratti, et. al., 1995; MacMurray and 

Himmelblau, 1995; Bulsari, et. al., 19941, polymerisation processes [Nascimento, et al., 

2ûûû; Zhang et. al, 19951, mimelectrouics fabrication [Fakhr-Eddine, 19961, 

biotechnology [Thibault, e t  al. 2000; Latrilie, et. al., 1994; Schubert, et. al., 19941, 

metallurgical processes weghlaoui, et. al, 1998; Reuter, et. al., 1993). wastewater 

treamient [Gontuski, et al., 2000; Syu and C h ,  19981, and oil recovery [Ekamrl, 

1998; Eikamel, et. al, 19961. 

There are several advantages of using ANN models in chemical engineering. 

These include: 

1. ANN models are simpler to develop than FPM because a detailed knowledge of the 

process is not required. This directly translates into swings in tirne and money. 

2. ANN models can be easily used, updated and maîntained, making them the 

preferable form of mdels for plant engmeers. 



3. A large arnount of data tnay be required to train the network. However, this is not a 

big problem as most chernical plant engineers are "data rich and information poor" 

[Venkatasubramanian and McAvoy, 19921. 

4. Once trained, execution of ANN based models are very fast. even though large 

networks may take longer training times. ANN models are thus particularly suitable 

for use in on-line applications that repeatedly evatuates the mode!. iike in RTO. 

While ANN models have gained mûny propnents among engineers in the 

chernical industries. there are also some thût are sceptical of the ability of ANN because 

of theù structural weaknesses. The disadvantages of ANNs include: 

To develop ANN models, there is no guidance for picking suitable structures and 

training algorithms. 

Large number of parameters that rnay be used in ANN rnodels makes it easy to 

overft the data, causing poor genenlisation. ANN models are also lmown to br 

poor extrapolators. 

Training algorithrns that use steepest descent methods to compute the connection 

weights tend to be aapped in local minima. This results in mconsistent solutions 

that are highly dependent on the initial vahies, which is especially apparent in large 

networks that are very cormnon in chemicûl engineering. 

Incorporating pnor knowledge into an ANN is also dficult. Once uaiwd, ANN 

mdels do not cany physical significance and therefore cannot yield any insight to 

the process. 

ANN models are poor extrapolators. They are usudly ody reliable within the range 

of &ta that they had been trained for. 

Lately, there have k e n  several studies that reported a preference usmg ANN 

mdels even though rigorous FP models for tbe processes are available [Nascimento, et 

ai., 2 0 0 ;  Altissimi, et al., 19981. The FP wdels were used to generate data to develop 



ANN models. ANN rnodels are especially suitable for on-line applications because of 

the relatively short cornputational time to solve the model and its ability to accuately 

represent the rnodel. In optimisation, this is especially advantageous since the mode1 

must be accessed by the optimiser and computed repeatedly. Ahissimi. et al. 11998) 

successfuily applied ANN rnodeis of a gas separation unit in RTO. The ANN model 

was developed from data generated by the plant model simulated in Aspen Plus. 

Successive quadratic prograrnming (SQP) wûs ihen used to optunise the profit of the 

process unit. Replacement of the rigorous FP rnodel with the ANN rnodel reduced 

computation time by at least 60 folds. Nascimento. et al. [2000] successfuily optimised 

the operating conditions of a nylon-6,6 polymerisation process. The pure ANN rnodel 

for the process was developed using data generated from a rigorous semi-mechanistic 

rnodel that had been fitted to the plant data Optimisation was perfomd off-line by 

mapping all the possible solutions within the region of interest using the ANN rnodel 

and locating the optimum usbg a grid-search method. Nevertheless, both works did m>t 

snidy different types of ANN structures to best model the processes; the ANN rnodels 

used in both works are feedforward multi-layer perceptroas (MLP). 

Hytnid FP and A N N  mdels have also been widely applied in chemical 

engineering applications. Severai rnethods of intrgration that were successful in cenain 

range of applications had been proposed, but there were no specific proven niles. 

PubLished studies on this type of models included those carried out by Thibault et al. 

[2000], te Braake et al. [1998], Wilson and Zorzetto [1997], Thompson and Kramer 

(19941, Schubert et ai. [1994], and Psichogios and Ungar [1992). Tbere even is less 

published work in chemical engineering on rmdels that imbed prior lmowledge mto the 

system structure. A published work on this type of m d e l  has been doue by Chang and 

Mawovouniatis [1992]. 



1.3 OBJECTIVE 

ANN models developed for RTO are different from those developed for process control 

or other off-line applications. RTO requires steady-state models that cm yield al1 

output variables required by the optimiser [Naysmith, 19971. For large, multivariable 

processes, there cm be more than 100 variables to compte. Smce the application is 

on-line, the models must also have short computation times. 

As mntioned previously. simple ANN models have successfully k e n  used for 

RTO. However, there was no discussion on the choice or developrnent of the 

multivariable ANN based models. There is a need to study the various types of ANN 

models to determine which are suitable for RTO, especially smce tk re  are dificulties 

to model chernical processes that may not be modeiled using simple multi-layer 

percepuons or cm be more efficiently represented by other types of ANN. Different 

types of ANN models t h t  had been studied in chernical engineering thus fu were not 

developed for RTO applications; in fact, more complex models were mstly developed 

for conml purposes. in addition, there has k e n  very little work on imbedding prior 

information of a process in the structure of the network mdeL 

The m i n  objective of this research was to investigate, develop, and analyse 

different cotmectionist models that are appropriate for RTO applications. Because of 

time limitations, this research work concentrates specifically on explorhg and 

developing suitable types of standard ANN and grey-box ANN models, without 

completing the whole RTO loop. ui addition, there bas been a previous work by 

Altissimi et al. [1998] that applied a standard ANN model in a complete RTO loop, 

where a reduction in computation time by at least skty times was obtained. However, 

they did not explore the use of different types of grey box M N  structures, which is 

deemed to be necessary because there are chernicd processes that c m o t  be rnodelled 

using standard ANN nmdels. A grey box ANN structure is prefened over semi- 

mechanistic m d e l  because grey box ANN models would preserve the structure of ANN 



rnodels, which cm be easily and efficiently solved. Even if a complex process had a 

srries of grey box ANN models, ihe mode1 would be solved in a straightfomard 

mamer, and would require much smaller computation t h e  compared to rnodels that 

were mechanistic in structure. For ease of investigation, the connectionist models were 

fnst developed for a simple but realistic flash process, followed by drveloprnent for a 

complex crude oil distillation column. 

This work is also rneant to study the possibility of using different configurations 

of Hierarchicûlly Structured Neural Network (HSNN) for modelliag chemical 

processes. Pnor information is imbedded into the HSNN structure to allow better 

rnodelling. So far, HSNN rnodels have never been reported for modelling chemical 

processes. There have also k e n  fewer studies on embrddinp simple and readily 

availablr prior information in the mode1 network structure in chemical engineering 

applications. 

nie pure ANN models form the bais of comparison for the grey box ANN 

models that were developed. The grey box ANN mudels were irnbedded with prior 

knowledge in the form of the architecture of the models. In addition, FP models were 

included in the hybrid ANN-FPM mdels. The rnodels have mostly dominant ANN 

structure, which means tbat they have the desired characteristics that are suitable for 

implementation in RTO. The characteristics are: 

1. Shon execution time (inexpensive coqutation). 

2. Good generalisation capabilities. 

3. Robust (does not fail and has good convergence) and stable. 

4. Easy to develop, update and maintah. 



1.4 SIGNIFICANCE OF RESEARCH 

This research presents the design of different types of ANN and grey-box ANN models 

with the desired cliaracteristics for irnplementation in RTO. Conhg up with a suitable 

mode1 is important because this is usually the major stumbling block for on-line 

irnplementation. Although there has been some work done on implementing an ANN 

model in RTO. there has k e n  no work done on developing and evaluating different 

ANN models in the literature. This work would therefore provide alternatives for other 

types of ANN and Dey box ANN models. especiakiy when simple ANN models are not 

suitable, or when pnor information c m  be ûdded to yield a ktter  model. 

Using grey box ANN niodels will provide options and possibilities of utilking 

rxisting information tlmt can aid in ùicreasing the accuracy of the model. Pnor 

information that can be imkdded does not have to be in the form of equations as is 

çumeotly performd in m s t  research for modelling chemical procesxs. ixûomtion 

about suitable output variable combinations, or which of the output variables should be 

predicted fust in a series of network models, can aid in increasing the accuracy of a 

model. This information is usudly reaciily available, but not nonnally exploited in 

mode1 development. In addition, incorporation of prior infomtion can be achieved 

without involving complex procedures. and this is especiaily important for indusuial 

implementation. 

One of the grey box ANN models, the Hierarchicaiiy Structureci Neural Networks 

(HSNN) based models. can be utilised when to imbed simple prior information mto the 

structure. Cornpletely driven HSNN can be used in the presence of an input variable 

that has a suong infiuence on a particular output variable of a system Output-tuned 

HSNN c m  be used to imbed simple constraints that are usudy bown for chemical 

processes. This type of network, which bas not been used to model chemical processes, 

has the potential to handle discontinuities in a system This is an advantage over m s t  

ANN mdels  because some chemical systems are hown  to exhibit discontinuities. 



Developing ANN models for the simple, non-linear process and the industrial 

process served as an illustration of the different strategies in handlmg multiple input and 

output variables in different chemical systems. The ANN models developed here were 

for the completr processes, rather than for just specific variables, which is rnostly the 

case in most published works. 

1.6 THESIS OUTLINE 

The following is the outline of the thesis. 

Chapter 2 presents a literature review on the current research and grneral 

backgrounds on ANN and g e y  box ANN mdels that my be appiied to chemical 

processes. S o m  of the different rnodel structures have ken applied to chemical 

processes, while others, with possible potrntial for future applications, have not. T h i s  

chapter also provides a brief review on conneçtionist rnodellmg. 

Chapter 3 presents a description of the two processes (simple and industrial), 

mdelled in this work. The simple but realistic system, a mrthanol-water flash dnim, 

was used to study different ANN and grey box .4NN models. The industrial proccss. a 

crude oil distillation column, is a practical candidate for RTO due to variations in feed 

and operathg conditions. as well as having a complex physical mdel. 

Chapter 4 presents the different ANN and grey box ANN models developed and 

tested in this work. There are two types of standard ANN mdels and three types of 

grey box ANN models investigated. Bnef descriptions of the algorithms and stnicture 

of the mdels are also given in this chapter. 

Chapter 5 presents the ~sul t s  and discussions of the difTerent models descriid in 

Chapter 4. The models were tested on the flash systems and the crude oil distillation 

column. A cornparison between the models and between the two different chemical 

processes was also made. 



We conclude in Chapter 6 with comrnents on the current study and 

r e c o ~ a d a t i o n s  for possible fbture enhancements of the techniques developed here. 

Major contributions of this research are also given in this chapter. 



2.1 INTRODUCTION 

Mathematical models are very important in chernical engineering, both in the design 

and operation of chernical plants. in plant operatious, mdels are required for analysis. 

control (especially advanced control) and optimisation. Developing a reliable mode! for 

a chernicd procrss is a major obstacle in irnplementing advanced control and 

optimisation because of the complexity and cost involved [Hussain, 19991. 

Consequently. there is much research in developing dfierent process rnodelling 

techniques. 

Real tirne optimisation (RTO), which is the continuous evaluation and üdjustment 

of a process operaiing conditions to optimise the ecowmic productivity subject to 

constraints, uaditionaily requires rigorous steady-state plant models. These models are 

dficult and expensive to develop and maintain because of the skili and time 

requirements (Naysmith, 19971. Currently, there are efforts to seek other types of 

suitable mdels, such as off-the-shelf commercial simulation packages or purely black 

box mdels  Wre anifcial neural networks (ANNs). A previous work found usbg 

conmiercial simulation packages for RTO to be impractical [Naysmith, 19971. Several 

works suggested the use of ANN as the process niode1 for RTO [Thonipson, et d., 

1996; niompûon and Kramr, 19941. In one work, an important variable was estimated 

using an ANN m d e l  as part of a larger rigorous m d e l  for use in on-line supervisory 



optimisation [Sabbarwal, 19971. In the works of Altissimi, et al. (19981 and 

Nascimento and Giudici [1998], ngorous FPMs were used to generate training and 

testhg data to develop ANN models for a chernical process to be used for optimisation. 

in both studies, the ANN modeis were found to be accurate ruid were able to cut d o m  

cornputation time, whiçh is very important for on-line applications. 

The current work aims at exploring an alternative approach for the process model 

of RTO. Because of setbacks in using purely FP models, this work concentnted on 

A.NN models, and grey-box ANN models that are able to incorporate prior knowledge 

into neural uetwork mdels io the form of hybrid neural networks - FP models, or 

modulu newal networks, or si combination of the two. 

in this chaptrr, a review of RTO is presented to understand the problems and 

requirements in irnplementing RTO, especially on the role of the process model. A 

review on the previous work on RTO is also given. Then. an overview of ANN is 

presented to provide the basis of ANNs dong with their strengths and their weaknesses. 

Different types of the networks that have the potential to be used m RTO are also 

d e m i d .  Background information on ANN is given in Appendix A. Next. different 

hybrid ANN- FP models reponed in c hernical engineering applications are surve y ed. 

Finaily, mdular neural network architectures with potential applications to RTO are 

presented. 

2.2 REAL TIME OPTIMIZATION 

2.2.1 Introduction 

Real-thne optimisation (RTO) or on-line optimisation is the periodic update of process 

operating conditions, such as flownte, temperature and pressure setpoints, so that the 

process is operatmg at its economic optimum, while at the same time hilfdling the 



process and production consuaints [Jang, et al, 19871. RTO can be applied to a single 

unit operation, or even to a whole plant. There is great mterest in RTO in industry 

because of stiff competition and increasingl y stringent product requirements [Cutler and 

Perry, 19831. in addition, advancements in computing power have enabled cost- 

effective implementation of RTO. 

RTO is most beneficial for processes with a wide range of openting conditions. 

in industrial opentions, variations in the operathg conditions are quite commn due to 

varying feedstocks, product specifications and prices, and ecouomic made-off 

[Naysmith and Douglas, 19951. For example, in yi oil refinery, the atmosphenc 

distillation tower receives varying qualities of crude oil. Temperature set points in the 

column, which determine the cut points for the side draws, varies with different assays. 

This leads to complications io deteMing the desirable operathg conditions. As such, 

implementation of RTO cm lead to significant improvement. 

Figure 2.1 illustrates the peneral structure for RTO based on the simulated 

implementation studied by Naysmith [1997]. Refen-ing to this general configuration, 

the steps in a complete RTO implementation cycle are: 

1. Steady state detection: this is where the plant data are monitored for a pseudo- 

steady statc condition before alowing for optimisation to take place. Once an 

approximate steady state is detected, the measureû process variables are relayed 

to the optimiser. 

2. Data reconriliation: this part consists of gross error detection and data 

teconciliation. Gross enor detection filters out overly erroneous data, while the 

rest of the data are reconciled with mass and energy balances from the process 

model. 

3. Parameter estimation: the reconciled data are used CO update xmdel 

paranieters, which are then w d  in the optimiser process mode!. 
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Figure 2.1: General codiguration of a real tirne optimiser. 

Pmess model: this is the m s t  crucial component of the RTO. The process 

model calculates changes in the rnanipulated variables due to the updating of set 

points by the optimiser. The model is also needed in reconciling the measured 

plant data 

Optimisation: the optimum set pomts are searched subject to an economic 

objective hinction taking mto account process constraints. The set points are 

iterated between this optimisation routine and the process mdel. Once 

optimised, the set pomts are passed on to the process conml unit of the piant to 

be updated. 

ùi general, indusirial RTO is difficult to develop and maintain. The pmcess 

rmdels comm~nly used m RTO are rigorous fîrst principles steady-state models, which 



require extensive knowledge not only to drvelop, but also to numerically solve, and 

fuially optimise. Consequently, developing RTO applications is extremely tirne- 

consurning and requùes highly skilled and specialised staff. Maintenance of RTO 

applications is required when there are process modifications [Naysmith, 19971. 

2.2.2 Previous Research 

Naysmith [1997] successfully simulated the uriplerneatation of real-tirne optimisation 

(RTO) of a stabiliser column and a splitter column in commercial simulation packages. 

Using commercial packages to develop and hold the process mode1 for RTO was 

investigaird as a possible mthod to reduce the complexity of developing and 

maintaining RTO. Two simulation packages with different rnodeiling and simulation 

approaches were compared: sequential modula (Aspen Plus) and rquation orientrd 

(Sprrdup). 

Naysmith il9971 found several advantages and disadvaotages in executing RTO 

with both the packages. These include but not resmcted to: 

Developing and debugging the modd. The Aspen Plus mode1 is simplet- to 

drvelop and debug compared to the Speedup mdel. Aspen Plus provides û 

graphical user interface and useful messages in debugging the simulation. Speedup 

is difficult to use and does not provide useful messages in debugging, especially m 

the event of convergence failure. 

Execution tirne. Speedup is computationally more efficient than Aspen Plus 

because ail the model equatioos are solved simultaneously while Aspen Plus solved 

each module in a sequence. In the event of convergence failure, however, Aspen 

Plus is able to give more realistic results than Speedup because of the different 

algotithmic approaches in the simulation m the packages. Nevertheless, simulations 



in both packages are computationally expensive, which limits the suitable choice of 

the optimisation method. 

Optimisation. Both packages use successive quadratic programming (SQP) as the 

optimisation method. Aspen Plus utilises the feasible path approach, while Speedup 

utilises the infeasible path approach Consequently, optimisation with Aspen Plus is 

more conservaiive and takes more steps to reach the same optimum reached by 

Speedup. Nevertheless, in the event of convergence failure, the result given by 

Speedup may be completely meanuigless because it does not occur in the feasible 

region of the process. 

Naysmith [19971 concluded that pmcess simulation packages currently available 

are not practical for use in RTO. This is maidy due to the following: 

- Convergence failure (either because of the simulation mode1 failing to converge or 

SQP hiling to fmd an optimum) would occur aod disnipt the RTO cycle. 

Consequently, the RTO cycle had to br: restarted. 

- Very high coqutation resourcr requiremrnts, niaking the mode1 unsuitable for 

repeated on-line evaluations. 

2.3 ARTIFICIAL NEURAL NETIVORKS 

Due to the problerns encountered in Naysmith's work, an alternative fonn of rnodel is 

sought. A viable option is to use artificial neural network (ANN) models. This section 

provides a review of the background on ANN. 



2.3.1 Introduction to Adficial Neural Networks 

Artificial neural networks (ANNs) have been designed on the premises of municking 

the cornplexities of the brain functions in an effort to capture (or at least partially 

capture) the amazing learning capabilities of the bnin. ANN is ii sort of panllel 

computer/procrssor designed to imitate the way the brain accornplishes a certain task 

[Willis, et al, 199 11. The smallest processing element of ANN is a neuron (also cüllrd 

node) which performs simple calculations. Ushg the nodes çollrctively with massive 

connections arnong them results in a network that is able to process and store 

information for mpping the network inputs to its outputs. With this capability, there 

are widespread interests due to on-ping and potential applications in solving çomplrx 

problems particularly in the tields of pattern recognition (especially in speech and 

image processing), classification, contml, forecasting, systems identifkat ion and 

optimisation. 

ANNs are aot a solution for dl modelling problems. Therefore. it is nrcessary to 

understand the strengths and limitations of ANN to determine theu applicability for a 

parricular problem Baughum and Liu [1995] Lists the foUowing strengths of neural 

networks: 

Distribution of idonnation over a field of nodes. This feature ailows greater 

flexibility and robusmess because a slight error or fdure in certain sections of the 

network will not cause the whole system to collapse. 

Abgility of ANN to leua. ANN is able to adjust its parameters in order to adapt 

itself to changes in the surroundmg systems, for example by using an error- 

correction training algorithm 

Extensive knonieàge indexing. This means ANN is able to store a large armunt 

of information and access it easily when needed. Knowledge is kept in the network 

through the connection between nodes and the weiglits of the connections. 



Suitable for noisy and inconsistent data. This is possible because each neuron in 

the network encodes a minute feature of the input-output pattern, and tlius 

rninimising the effects of maccurate data The overd feature is mapped o d y  when 

the nodes are assembled and co-ordinated together into a single network. 

Imitation of the human Ieaming proeess. The network cm be trained iteratively . 
and by tuning the strengths of the parameters based on observed results. After 

repeated training and adjustments, the network cm develop its own kwwledgr base 

and determine cause and effect relations. 

Potentid for on-üne use. Once trained, ANN can yield results from a given input 

relatively quickly, which is a desired feature for on-he  use. 

Baughman and Liu [1995] also Lists the following limitations of ANN: 

Long training thes.  Training times for ANN can take too long. rspecially for 

large networks, to d e  the ANN impractical. 

Large amount of training data. ANN needs large amount of input-output data for 

proper knowledge extraction. Therefore, if ihere are only a smdl m u n t  of input- 

output data available, ANN may not be suitnble for modeilhg the system 

No guarantee to optimal COSUlts and reliabüity. Althou* the network contains 

parameters that can be tuned by the training algorithm, there is no guarantee that the 

resulting mdel is perfect for the system nie t u e d  mode1 rnay be accurate in one 

region and maccurate in another. In addition, there is aiso the problem of gettmg 

trapped m local minima during training, resultmg in less than optimal results. 

D i m d t y  in selecting good sets of input variables. Selection of input variables is 

difficult because too many input variables will lead to large networks with too many 

panmeters, which can in turn cause overfïtting and p o r  generaiisation. Too Little 

or inappropriate input variables will lead to poor mapping of the system 

The origin of ANN can be f is t  traced to the early 1940's in a paper by McCulloch 

and Pitts on the modehg of neurons [Venkatasubrmanian and McAvoy. 19921- 



Current research in ANN cornes from diverse fields, such as the more traditional 

engineering fields (e-g. elecuicai engineering, compter engineering, etc.), mathematics 

and the sciences (physics, chemistry, and biology), to medicine, psychology, and 

business manage ment . 

in chemical engineering, w hile there have k e n  numerous successful applications 

of neural networks, there are also those who c l a h  neural networks to be wthing m r e  

than a class of nonlinear parameter estimation techniques. While the criticisms were 

somethes weil founded, there is a need to remember that drawbacks, extreme 

expectations and negative reactiom are the nom m the exploration of an emerging field 

[Venkatasubramanian and McAvoy, 1992). Hence, there is a need to h d  suitable roles 

that can k s t  exploit the capabilities of neural networks in the chemical engineering 

fieid. 

Currently, works in chernical engineering on ANN are mostly in process fault 

diagnosis, dyn;unic process modeiiing and process control. Compared to the large 

number of literature found on dynamic modeling, there are fewer papers on steady- 

state ANN process models. Nevenheless, t h e  has been lately an increasing trend for 

diverse application of ANN to model steady-state processes. Among them are: 

Pollock and Eldridge [2000] and Whaley et ai. 119991 fitted ANN rnodels to 

rxperimental data for prediction of height equivalent of a theoretical plate (HETP) 

and pressure drop for columns with structured packing. Compared to a traditional 

semi-empirical method, the ANN models were found to give more accurate 

predictions of experimentally detennined HETP vahies. 

Elkamel, et al. [1999] developed an ANN model for a hydrocracking unit in an oii 

refinery was using plant data Tbe mode1 was used for prediction of product fIow 

and quality. 

Mandlischer et al. [1999] fitted ANN to experimental data to predict the enthalpy of 

vaporisation. The model was found to be just as accurate as two physical models, 

and was siightly mre accurate at critical teniperatures. 



S h m a  et al. [1998] fitted ANN to vapour-liquid equilibrium (VLE) data. They 

found that ANN was able to mode1 the VLE phase envelope better than existing 

equations-of -state, especially for highly polar mixtures. 

Altissimi, et al. [1998] developed ANN models for a hydrocncker outlet gas 

sepamtion unit, which consisted of four distillation colurnns in series, for use in 

RTO. 

Sabharwal [19971 estirnated contaminant composition in a xylene distillation 

colurnn in a refmery in lapan using ANN models aained by both plant and 

sirnulated data, and then useri in off-line process optimisation. 

Cheung, et al. (19923 used steady-state ANN models as soft-sensors to provide 

inferential measurement of two variables of a refmery frationator. 

Baratti, et al. [1995] used ANN as soft-sensors for predicting product compositions 

for a butane splitter and a gasoline stabiliser in a refmery in Italy. 

2.3.2 Network Topologies 

Neurons ( a h  called nodes) cm be connected in several different topologies, the most 

common behg feedforward and recurrent networks. The wdes are arranged in layers. 

As such, the network may contain a single layer, or more than one layer, in which case 

it beconies a multilayer neiwork. Appendix A contains detailed descriptions of a 

nemon. 

Multihyer Fdfomard Networks. There are three types of layers: input layer, 

hidden layers, and output Iayer (Figure 2.2). There can be m r e  than one hidden layer. 

The hidden layer extracts higher order nifomtion from the data. Inputs to the wurons 

in a layer corn from the neurons in the preceding Iger. In a standard multilayer 

feedforw ard network, all connections are weighted. 
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Schematic diagram of a three-layer feedforward network. 

Recurrent Networks. A recurrent aetwork is distinct from a feedforward network m 

that it has at hast one feedback loop. as illustrated in Figure 2.3. Self-feedback. which 

is when the output of a oeuron is fed back to its input, cm dso occur. Addition of unit 

delay systems or zero-order bolds (denoted by 2") in recurrent networks, is very 

common m dyuamic m d e h g .  

2.3.3 Developing ANN Models 

in general, developing ANN can be surmrÿirised into the following steps: 



1 x2, 

inputs 
Figure 2.3: Schrmatic diagriim of a recurrent network. 

1. Pe-ptocQSsing. Some pre-processhg must be perfomd on the data Although 

ANN is able to handle noisy data, industrial data that are very noisy should be 

fütered as much as possible. This is because data with too much noise cm mask 

weak non-linearities [Cheung, et al, 19921. uiput/output data w t  also be scded 

between O and 1 or - l and 1 dependmg on the type of activation function used. This 

is very important to avoid saturating the activation function of the neurons. In 

addition, scabg the data will smooth out highly convoluted dimensions, making it 

easier for the network to leam the huiction surface [van der Walt and van Deventer, 

19931. 

2. Traïning/ieamiog phase. Learning is the process of adjustùig weight factors based 

on systematic and efficient trial and emr. Training is the pmcess of adjustmg 

weight factors until the output pattern reflect the desired relationship [Baughman 



and Liu, 19951. To do this, the network is repeatedly presented with a set of knom 

inputfoutput data. The network l ems  the input/output response behaviour, and 

subsequently undergoes fùrther training. This is the longest and rnost tirne- 

consuming step. It is also the most important to the success of the network. 

Cornmon types 1e-g algorithms are described in Appendix A. 

R d  phase. The network is tested with the training data Further adjustments on 

the weights are made, if needed. 

Generalisation. The network is tested with data that it was not trained with before. 

This phase will determine the interpol~tion/generalisation capability of the network. 

Different numkrs of nodes are tested because there is a possibility for the network 

to overtït and bûdly genrralise. 

Selcction of suitable input variables is extremely important to properly map the 

relatiooslup witli the output variables. For large multivariable systrnis such as diose 

encounterrd in chemical engineering. this is a dficult task. A major deterrent in ushg 

neural networks in chemical engineering is when the number of input variables is luge. 

prirnarily due to what is caiied the "curse of dimensiondity" [Wang, et ai. 19951. This 

is due to the fact that as the number of input variables mcreases, mernory storage and 

computational cost mcrease exponent iall y. The nurnber of parameters to be estimated 

will also iucrease, leading to poor generalisation capabilities [Sridhar, et al, 19981. 

There have k e n  a number of research activities on designing methods to select 

relevant inputs and thereby reducing the input dimension. In one of their works, Bhat 

and McAvoy [1992] built a network including aiI the input variables, and tben started to 

prune them out one by one until al1 irrelevant mputs were eliminated. In mother work, 

the opposite saategy was taken by growing the network size startmg with an mput 

pattern that is considered to be the rnost Unponant [Sridhar, et al, 19981. in these 

works, however, the network must be designed and trained before the relevant inputs 

can be chosen. A method put forwvd by Sridhar et al. [1998] enables the identification 



of important variables before the ANN mode1 is developed. The rnethod, which is 

known as Information Theoretic Subset Selection (ITSS), is based on information 

theory. The ITSS rnethod allows the estimation of the percentage of total information 

in a subset with respect to the entue input vector. input vectors with large percentage of 

information can then be sekcted to develop the ANlU model. 

Mult ilayer perceptrons are feedforward multi-layrred networks that are capable of 

prrformuig just about any iinear or nonlinear computation and cm approxirnate my 

reasonable tiinction arbitrarily wrll. B x k  propagation leaming algorithm is one of the 

eiirliest a .  rnost cornmon method for training multilayer perceptrons. It is usrd to train 

nonlinear, multi- layered nrtworks to successfull y so Ive diffîcult and diverse pro blems 

such as perform function approximation, pattern association and pattern classification, 

non-hem system modeNin$, time-series prediction and image compression and 

reconstruction [Hassoun, 19951. Refer to Appendix A for a detailed description of 

backpropagation leuniog. 

Leonard and Knimer [1990] showed that the backpropagation algorithm is 

inefficient and has poor convergence on serial processing maches  (ie. cornputers). 

Backpmpagation learning is generally slow because of the chacteristics of the e m r  

surface that is characterised by numerous flat and steep regions and has many trou@ 

that are flat in the direction of search in addition, there are local minima at error levels 

above the levels of the global minima of the surfaces. This causes the back propagation 

learning to becorne stuck at the local minima and converge very slowly [Lin and Lee, 

19951. To speed up the performance of backpropagation many enhancements and 

modifications have been proposed Lin and Lee, 19951. Detds of thr: r ecomuded  

modifcatioos are given in Appendix A. 



Other than backpropagation alprithm, there are currently many other teclmiques 

that cm be used to main MLP. Among them are the Levenberg-Marquardt and the 

conjugate gradient training algorithms. 

2.3.5 Radial Basis Function Network (RBFN) 

RBFN is based on the concept of the locnily tuned and overlapping receptive fields that 

exist in the cerebral and tlie visual cortex [Moody and Darken, 19591. The recrptive 

fields of the network are radial basis functions. which can be adaptively tuned to 

provide sufficient overlapping for smooth rnapping, but sharp rnough for p o d  

approximations. 

Well known for its fast, localised training, sirnplicity and generality, the network 

attracted much research, especially in the laie eigbies and in the nineties. The network 

performs very weli for classification and multidimensional curve-fitting 

(approximation) problems. RBM is also suitable for on- lîne applications becûuse it 

can be rapidly trained Freeman and Saad, 19971. Among the applications are speech 

recognition, miage processing, fault diagnosis, process conuol, t h e  series analysis and 

geoeral hinction approximation. 

RBFN has a feedforward structure (Figure 2.4). It differs in ternis of operation 

fiom the standard feedforward neural network in the fonowing aspects: 

1. The k s t  layer connections to the second layer are wt weighted. 

2. The hidden layer has J nodes, usually with Gaussian density function: 

hi (x) = e~p[-llx - cjllZ / (20t)) (2.1) 

where Cj , j = l , . .  ..J are the RBF centers, and Oj is the RBF wiclth parameter. cj 

detemimes the location and Oj detemines the spûn of the activation regioo of the 

nodes in the hidden layer. Each node m the hidden layer corresponds to a unique 

local neighbourhood m the input space. W i W  the region of activation, the closer 



the input, xi, is to the centre of the receptive field, cj, the higher the activation level, 

with the maximum bemg one when xi is at cj. 

Learning for RBFN is divided into two parts. The fust part is on the synthesis of 

the hidden layer, while the second part is on getting the weights of the output layer. 

The separate training scherne exploits the localised preseotation of the hidden layer 

units, since ody the nodes activated by an input needs updating. 

Figure 2.4: General structure of a radial bais  huiction network. 



The tirst part of RBFN training is to get the receptive fields parameters, which are 

the centers, Cj, and the width of the receptive fields, q Several learning schemes exist 

for Jetennining cj . The different approaches are discussed m e r  in Appendix A. A 

single value of a is suffcient to be used for all the receptive fields. RBFN with the 

same a for eûch receptive field in the hidden layer was theoretically proven as universal 

approxirnator [Hassoun, 19951. 

The second part of RBFN training penains to the task of fuwling the weigbs of the 

output Iayer, and is fairly straightforward. The works surveyed used hear regession, 

singular value decomposition or one of the backpropagation algorithms, like the delta 

leamkg d e  [Hassoun, 1995; Haykin, 1994, Leonard, et al., 1992). 

Chen et d [1991) came up with the orthogonal l e s t  squares (OLS) algorithm, 

which has node-pwing capability. The OLS algorithm provides a systematic method 

to select RBF centers. The centers are selected one at a time such that the 

approximation erron of the network are efiectively reduced at each step. This recursîve 

procedure is terminated once the errors have reached below a prescribed value. The 

MATLAB neural networks toolbox uses this algorithm to fmd the centers of RBF 

networks. An advantage of this method includes a smaUer number of nodes in the 

hidden layer than thiit of RBF with randomly selected centers. Another advantage is the 

avoidance of numerical ill-conditioning frequently encountered in RBF with randomly 

selected centers. 

Leonard et ai [1992] inuoduced the validity index network (VI net), which is an 

extension of RBFN. In addition to the network output, the VI net indicates when the 

network is extrapolating. The wtwork is able to indicate any extrapolation based on the 

estimation of the local training data density. 



2.4 HYBRID ANN-FP MODELS 

2.4.1 Background 

Hybrid ANN-FP models were developed to overcome the disadvantages, while utilising 

the advmtaps of both approaches. They are desiped with the airn to enable these two 

approaches to complement each other so that accurate and efficient models can be 

reaiised. Ln the Literature surveyed, advantages of a hybrid model includes: 

Good generiilisation and extrapolation cqabilities [van Can et al., 19961. 

Easier and consume kss time to develop than th& rigorous FP models counterparts 

(Su et al., 19921. 

Able to extract physiçül interpretation from the mode1 [Psichogios and Ungar, 

19921. 

Accurate and reliable even when data is sparse and noisy [Thompson and Kramer, 

19941. 

te Brarike et al. [1998] classified models with a mixture of FP (or white box) 

mdels and black box models (usually AMV) into two categories: semi-mecbanistic 

mdels and grey box models. Semi-mechanistic models are based on FP models, with 

certain parameters or variables calculated €rom black box models or empirical data The 

models are of the same form as the white box models. Grey box mdels are based on 

black box models, with prior knowledge king used to provide additional mformation. 

The rnodels are of the same form as the black box model. Nevertheless, this dehi t ion  

serves only as a gewral guideLine of notation for classification of these models, and is 

wt necessarily used m other works that had been pubiished. For example, Zorzeno et 

aL [2000] defined semi-mechanistic rmdels to be the same as grey box tmdeis, which 

could also be called hybrid models. There are also mdels  b t  cm also fall into either 

category, like the model used by Nascimento et al. [1999]. On the whole, thougb. most 



published works used the t e m  hybrid model to generally indicate a mdel  that is a 

mixture of FP models and black box (usually ANN) models. 

Most applications of hybrid ANN-FP rnodels found in the Literature are designed 

for dynamic models, which are used for control and scheduling. Thompson and Kramer 

(19941 recornmended steady-state hybrid models for RTO because of their potential 

ridvantages over traditional FPM and traditional ANN. 

2.42 Stmctures of Semi-mechanistic Models 

The most comrnon structure of serni-mechanistic rnodek found in the Literature is the 

serial configuration, shown in Figure 2.5. in this configuration, the input variables, X, 

is fed to the ANN, which is uscd to estimate one or more parameters, 0, that are 

difficult to obtain from a mathematical rnodel. The outputs from the ANN, O, from the 

ANN are thea used aloog with the inputs, X, in a FPM to caiculate the process outputs, 

Y. The ANN models can be trahed with either O or Y. An inherent assumprion of this 

configuration is that other than the parameters estimated, the rest of the FP mode1 is 

accurate. This is the mst  common hybrid structure seen in the literature. Examples in 

the iiterature include: 

microbial growth rate for a batch beer production [Zorzetto et al., 20001, 

Figure 2.5: Serial ANN-FP hybrid model. 
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specific reaction rates for a cootiauous stirred tank reactor [te Braake et al., 19991, 

concentration gradient, specifc cake resistance and cake interface concentration for 

crossflow microfiltration [Piron et al. 19971, 

heat and mass transfer coefficients [Cubiilos et al, 19961, 

microbial growth rate for a fedbatch bioreactor [Psichogios and Ungar 19921. 

There are also variations in the application of the serial ANN-FPM structure. 

Schubert et al. [1994] added a fuuy logic (FL) pre-processor to determine the different 

phases of a batch fermentation process when using ANN to predict the value of specific 

substrate consumption rate. Input data enters the FL pre-processor, which then directs 

the data to the proper NW for the corresponding phase. 

Fu et al. [1996] used a modification of the serial configuration. In aii the previous 

serial semi-mechanistic rnodels, supervised learning was used to train the network 

nmdels. However, in the work by Fu et al., reinforcement leaniing was used. The 

performance evaluation unit (PEU), a knowledge-based tool, serveci as a critic that 

rnonitored the output of the hybrid model and gave evaluations based on an 

experimeotal database. 

Additional variations found in the Literature inçludes: 

Thibault et al. [2000] rnoditied the traditional approach slightly by training the ANN 

model with the error of the output variables instead of the e m r  of the parameters 

king modelled with ANN. 

Gupta et al. [ 19991 developed a two-level serial ANN for the prediction of several 

variables and parameters before finally feeding them to the FP rnodel. 

Wilson and Zorzetto il9971 used a serial semimechanistic configuration as the 

rnodel for a Kalman filter, which is a state estimator. 

Other than the serial structure, there had also been work on a paralle1 

configuration, shown in Figure 2.6. in this structure, the ANN is trained to predict the 



residual between FPM and actual plant data [Su et al., 19921. In this way. the combined 

hybrid mode1 is able to accurately predict the process output. A major advantape of this 

configuration is that a less accurate and simple model is suficient because the ANN can 

make up for the model discrepancies. 

Thompson and Krarner [19941 proposed a combination of parallrl and serial 

hybrid configuration, shown in Figure 2.7. The network in parallel to the default mdel 

estimates the residue in the absence of a good FPM. Beyond the range of the ANN 

training data, only the FPM is considered. In this configuration, the puanietric output 

mode1 enforces the process constraints upoo the output variables. 

Figure 2.6: ParaIlel ANN-FPM hybrid model. 
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Figure 2.7: Combination of paralle1 and serial ANN-FPM hybrid model. 
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In most of the iiteranire surveyed. the semi-mechmistic models were able to yield 

models that gave better results than the pure ANN models and other types of models. 

van Cm et al. il9961 cornpared serial and panllel hybnd structure, as well as models 

with pure FPM and pure ANN for modelling and control of a pressure vessel. Using 

ANN models developd from experimental data, they found the seriai configuration 

yielded the best results. They nlso showed that the serial configuration had better range 

and dimensional ex~üpolation capabilities than parallel configuration. On the other 

hand. Shene et al. [1999] found the ANN model more accurate than the serial semi- 

mechanistic mode1 in modelling Zymomonas mobilis CP4 batc h fennentat ion using 

experimental data. 

2.4.3 Other Forms of Hybrid Modeis 

Nascimento et d. [1999] developed a hybnd FP-ANN rnodel for an industrial Nylon-6.6 

polymerisation process to calculate the product relative viscosity. Y. The structure of 

the model is shown in Figure 2.8. ûther than the input variables from industrial data, X. 

the hybrid model also had amine end-groups and carboxyl end-groups concentrations 

calculated b m  FP models, 0, as inputs to the ANN model. 

Figure 2.8: An alternative form of serial hybrid FP-ANN model. 



The difference between this hybnd model and the serial semi-mechanistic model 

is that in this rnodel, the final mode1 is an ANN model, which receives additional 

information in the form of two additional input variables from the FP models. 

Furthemre, the F M  is used to calculate two output variables (the outlet 

concentrations), instead of a process or thermodynamic parameter. In a serial semi- 

mechanistic model, the final model is the FP rnodel, which receives values of 

parameters predicted by ANN models. 

2.4.4 FPM for Training ANN 

There are several manuers in which FPM has been used to train ANN to genente a 

black box model. in a sense, the J?M is integrated into the ANN model, but the 

resulting model is a purely black box model. 

Thompson et û1 [199q suggested several ways to incorporate sirnulated data fiom 

FPM into ANN. 

Models of Models. The ANN is trained on data shnulated using a simulation 

package. The main advantages are the fast and clean (Le. noiseless) training, as well 

as fast on-üne execution. Implementation on an actual plant was a h  reported. 

Combining Models. ANN models of different units in a plant that was trained on 

the simulated data are easier to combine than the actual physical rmdels. The 

combined mdels are caUed a "metanet". This is useful for plant-widr RTO. 

Sabharwal et al. [1997] used an accurate steady-state plant simulation to pnerate 

additional training data outside the range of available plant data for training an ANN 

model to be used for optimisation of a xylene distill~tion unit in a refinery in Japan. 

The range of applicability of the ANN model is therefore mcreased by the data 

generated through FPM simulations. 



Ln another approach, Tsen et al. [ 19961 generated an augmented data set to train 

ANN. The augmented data are data interpolûted and extrapolated using gradient 

information from FPM at acnial experimental data This procedure is advantageous 

when plant data for training are scarce. 

Altissimi et al. il9981 generated data from a rigorous mode1 sirnuiated in Aspen 

Plus to develop steady state ANN rnodels for a hydrocracker outlet gas separation unit, 

which consisted of four distillation colurnns in series. A reductioo in computation tim 

of at least 60 tirnes was achieved when they replaced a rigorous FP mode1 with the 

ANN mode1 in the RTO loop of the gas separation process. 

in a similar approach, Nascimento et al. [2000] pnerated data from a rigorous FP 

mode1 to develop ANN models for an industrial nylon-6.6 polymerisation procrss in a 

twin-screw extruder reactor to be used for optimisation. The rnodels wrre then used to 

map out the objective functions to execute a detailed grid search for findiog the 

optimum in a specifc regioa 

2.5 MODULAR NEURAL NETWORKS 

Theoretically, artificial neural networks ( ANNs) are capable of learning complex and 

hig h-leve 1 systems, w hic h are typical of c hemical processes. Neverthe less, using a 

single, large ANN to solve large problems is prohibitive because of the computational 

complexities involved. ûne way to make the problem manageable is by using modular 

neural networks (MNN). 

In general, MNN is based on the concept of divide and conquer [Jordan and 

Jacobs, 19941. Large problems are divided mto smipler, smaller and more manageable 

problems, solved (or conquered) using ANN, and are then combmed to yield the 

solution. There exist different architectures of dividing , solWig and combinhg MNN, 



with various narnes like hierarchical networks, committee machines, stacked networks, 

and mixtures of local experts. h this work, MNN is used in a general context for 

systems of ANN that CO-operate in an appropriate mamer and the outputs combined to 

sulve a cornplex system 

The design and use of MNN is mtivated by the following setbacks in traditional 

large ANN [Chen et al, 19971: 

A large network causes difficulties in training, such as difficulties m convergence 

and the problem of local minima. 

Slow training. 

No a priori orientation about the iikely kinds of relationshp between the input 

variables themselves aad between input and output variables. 

Structure of ANN is unrelated to physical systrm evea ûfier training, providing no 

insight to the actuiil process. 

A large nurnber of inputs causes a large ournber of parameters to be estirnated. 

reducing the generalisation capability of the ANN. 

The advantages of MNN compared to traditional ANN are [Gallinari, 19951: 

Reduce mdel complexity, resultmg in a mre efficient model. 

Lncorporate existing qualitative and/or quantitative knowledge into the network. 

Possible to decipher the relationship between the variables mvolved through 

connections anmng and within the network modules. 

Increase in ro bustness and flexibility. 

2.5.2 Classes of Modular Neud  Networks 

Gallinari (19951 divided MNN into three classes, Listed as follows: 



1. Partitionhg of the input space. The input data is partitioned into several subspaces. 

This class of MNN is the rnosi commonly encountered m the literature. Each 

module of the network specialises in a section of the input space or m a task-specific 

func tion. 

2. Successive processinp. The whole complex problem is decomposed into specialised 

modules that are carsied out successively. 

3. Combining decision. Several different network models are used to process the input 

data and the outputs are combined to give a better overail model. 

Severai studies carried out in the area of MNN classes are briefly outlined in the 

foiiowing sections. However, in many instances, there has k e n  an overlap between the 

classes of M W .  More detailed uiforrnation on some of the algonthrns is given in 

Appendk B. 

input Space Partition. nie input variables are divided Uito groups, where each 

module would consist of small networks that are experts on a specific task or in a 

specifc range of the inputs. Lu and Ito [1997] divided problern decomposition into 

three catepries: 

1. Explicit decomposition. In this type of decomposition, sufficient pior knowledge is 

needed about the domain and decomposition of the systea Jenkins and Yuhas 

[1993] used this concept and embedded prior information to efficiently control a 

truck to back-up a dock. Mavrovouniotis and Chang il9921 also decomposed the 

input space into subspaces that represent a specific small portion of a pmcess, a 

particular phenomnon or a constraint, or a single thne mstant w i h  a time 

interval. The subsets, therefore, are localised spatially, temporally, or mnceptudy. 

As in Figure 2.9, subsets are then combined to form subnets, which are hirther 

combined to form a hierarchy leading to the output of the network. The overall 

network is trained as a whole, based on its finai outputs. 



2. Class decompositioo. The problem is decomposed into subproblems according to 

inherent relations among the training data. Developed for classification [Lu and Ito, 

WV), this meihod needs only common knowledge about the training data. 

3. Automatic decornposition. The decomposition takes place as the learniog p c e s s  

progresses. This is the most computationally corrsplex method, and as such, it is not 

very suitable for large-scrle problerns. However, this is the most general mthod 

since no previous knowledge of the system is needed. Most decomposition mthods 

Law 1 of 
Subnets 

Figure 2.9: Structure of hierarchical network h m  Chang and Mavrovouniotis [1992]. 



faIl into this category. For example. Chen et al. LI9971 and Jacobs and Jordan 

[1994, 1995; Busson et al., 19981 used tree-structured architecture. Chen et al. 

[1997] used hyperplanes to partition the training data set into subsets. Soft 

partitioning was used so that ihere m y  be overlapping between adjacent piirtitioned 

input data subsets. The hyperplane is deteminrd heuristically tluough a criterion, so 

that the resulting feedforward network cm deal with two less coniplex subproblems 

with Iess computatiooûl cost. Jordan and Jacobs 11994, 19951 also utilised tree-like 

structure and soft partitionhg for their mixture of expert networks, as show in 

Figure 2.10. However. a gating network, whkh perfomd as the partitioning 

mechanism, was added to determine the degree of cootribution from the outputs of 

the vvious local experts. The mixture of experts cm also be manged in a 

hierrirchical nianner. This algorithm hüd so f a  bern applird for classification 

(Busson et al., 1998). 

Figure 2.10: Mixture of Experts partitioned by a gating wtwork as proposed by Jordan 

and Jacobs [1995]. 



Successive Processing. in this class of MNN, elich successive layers of NN correspond 

to a specific processing of the data. This effectively breaks down the global system into 

successive tmks to be solved. In one work, Bittanti and Savaresi [ 19981 introduced two 

types of Hierarchically Structured Neural Networks (HSNN), which are divided into 

slave network and rnaster network 3s illustrated in Figure 2.11. The tùst type, the 

Linear-Nonlioear HSNN, is characterised by the slave function king a Linrar 

combination of the slave inputs, with the mtwork parameters provided by the master 

outputs, which are nonlineu. The output of the HSNN corresponds to the slave 

uetwork output. This type of HSNN is completely driven, and is especially suitable for 

functions with discontinuity (i.e. where one of the variables has a switchiog effect), or 

for zeroing of functions dur to certain variables. The second type, the Output-Tuned 

HSNN, is chriracterised by the master network providing only the gain and the offset at 

the output of the slave network. 

Slave Network 

Figure 2.1 1 : Hierarchically structured master and slave networks. 



The network output is the sum of the slave output and one of the rnaster outputs, 

multipiied by the other master output. This type of HSNN is partially driven and is 

especially suitable for fulfïlling constraints in the form of a hinction. The hiervchical 

network proposed by Mavrovouniotis and Chmg [1992] previously de&bed may ûlso 

be considered to belong to this class of MNN, because the subnets in each layer of the 

network represents a certain feature of the system, which at the end predicts the output 

of the MNN. 

D4cision Combination. The performance of networks c m  be improved by combining 

the outputs of independent modules. This may allow the network to have ü Iÿrger range 

and lower prediction errors thm a single large network. Examples of this type of MNN 

described in the Literature are: 

St&ced networks. Ln stacked neural networks [Wolpen 1992; Sridhar et al., 

19961, differeai independent networks, çalled level-0 nmdrls, are. individually 

trained using part of the original data from the training set (Figure 2.12). The 

outputs of the level-O mdels  are then combined in a level- 1 mode1 to grnerate the 

network output. Sridhar et al Il9961 showed in their work that stacked networks 

were able to yield better results thm traditional ANN models. Lanouette et al. 

[1999] found stacked networks to be usehl for modelling processes when the 

number of data available for training and testing is smaii. Yang et al. [1999] 

successfuUy used stacked networks in the m s t  difficult part of a multi-stage mode1 

of a semi-batch styrene plymerisation reactor. In another work, Zhang et al. [ 19991 

uses strked networks for predictmg fouling in a batch reactor for the 

polymrisation of methyl methacrylate. Tbe only setback is the large training time 

required for training for the individud network. 
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Figure 2.12: Structure for stacked networks. 

Static cornmittee machines. Ensemble averaging networks is one of the static 

cornmittee machines described by Haykin [1999]. The outputs of several 

independent networks trained w ith different initial condit ions were combined, 

allowing an overall MNN with a lvger range of initial conditions. 

For practical implementation of RTO, a process mode1 m s t  not only be accurate. but 

robust easily maintained, and have shon execution tirne. Tbe use of pure FP models 

results in complexities in the development, maintenance and corrputation of RTO. Pure 

neural network mdels, on the other hand, are simple to develop and have fast execution 

of the rnodel. However, usmg ANN may compromise accuracy, especidy when 



extrapolation is needed. ANN models also do not provide any of the process insights. 

In addition, large multivaiable systems that are typical of chernical processes ultimateiy 

Iead to neural wtwork models that are too complex m t e m  of topology and training 

due to the "curse of dimensionality". Therefore, smce models of chernical processes for 

RTO are multivariable, care must be taken when ANN based models are used for RTO 

to counter this problem 

Hybrid ANN-FP models combines both approaches of modelling to eliminate the 

weaknesses described and to take advantage of the strengths of both techniques. 

Sevenl configurations exist in the literature, mostly in the fonn of simple parailel or 

serial stmctures. The configurations given are also mostly tested on dynamic models. 

Although Leonard et al. [1994] mentioned the possibility of using hybtid ANN-FP 

steady-state models for RTO, none has ever been reponed in the Literature. 

Modular mural networks (MNN) models provide a possible solution to break up 

the multi-dimensional problem of chemical process models. Ln MNN, prior kno wledge 

is incorporated into MNN models in the form of the structure, or by hd-wiring the 

network connection. although noue of the works sweyed combined FP models with 

MNN. Nevertheless, algorithms for autornatically decomposing the input space, which 

are rnainly used for classifications, may not be necessary because of the extensive prior 

knowledge that is available on chemical processes. 

The next chapter describes the two processes (simple and industrial) modeiled in 

this research. The simple but realistic system, a rnethanol-water flash drum, is used to 

study different ANN and grey box ANN models. The industrial process, a crude oil 

distillation column, is a practical candidate for RTO due to variations in feed and 

operating conditions. as well as for havmg a complex physical model. 



CHAPTER 3 

PROCESS DESCRIPTION 

3.1 INTRODUCTION 

To develop and test different ANN and grey-box ANN models. two chemical processes 

were studied. The frst process is a methmol-water (M-W) flash and the second process 

is a crude oil distillation column. From a practical point of view, the flash systern c m  be 

solved accurately and quickly using existing FPMs. However, the M-W Rash is as an 

ANN test case chosen because it is simple, yet realistic in representing non-heu, 

discontinuous. multi-variable chernical processes. This would enable a thomugh 

evaluation and analysis of ANN models wcessary to mde l  this clûss of processes. 

A flash drum splits the M-W feed into two outlet strrarns, a vapour and a iiquid 

Stream, with the vapour strevn king ricber in the more volatile component (methmol) 

than the Iiquid Stream A M-W system was chosen because the chemical non-ideality of 

the vapour-liquid equilibriurn and heat of vaporisation of the mixture wiil add to the 

mathematical non-linearity of the system, which would be suitable to develop and test the 

models. At the same t h ,  the M-W flash will be simple enough for studying different 

grey box models within a Limited m u n t  of time. 

A crude oil distillation tower separates crude oil into m y  hydrocarbon products 

suitable for s a k  or hinher processing. A distillation column is actually a series of flash 

units stacked on top of one another. The crude oil distillation tower is an actud cohunn 



in the Petronas Penapisan Melaka refmery in Malaysia. The tower is suitable because it 

is a practical candidate for RTO, due to variations in operating conditions and has a very 

complex and large physicai mode]. The feed to the column, crude oil, çonsists of 

hundreds of coniponents and therefore, thousands of balance equations cm be wntten for 

each uay of the colum. 

in this chapter, the methanol-water flash system and the Aspen Plus mode1 

developed for data pueration are described. A detailed description of the m d e  

distillation column and the Aspen Plus model are also presented. 

3.2 SIMPLE PROCESS, THE 

hl-tV FLASH 

A two-component flash column is a single stage separator, which spli .ts the feed into a 

vapour, V, and Liquid, L, product, as shown in Figure 3.1. Referring to the figure, z, y, 

and x are the compositioos of the more volatile compownt, methanol, in the feed, vapour, 

and liquid streams, respectively. For a methmol-water flash, the vapour Stream is richer 

in methanol because methmol is more volatile ihan water, and the Liquid Stream is richer 

in water for the s a  reason. A methmol-wrtter rnixnire is non-ideal in the sense that the 

equilibnum constant, K, and the heat of vaporisation are functions not only of 

temperature, T, and pressure, P, as ideal solutions are, but are also a hinction of 

composition, x and y. This is a complicating factor. 

ui chernical processes, the complexity of a process model does not only depend on 

the physical equipment, but also on the chemical compownts mvolved. Although a 

process may use the sa= unit operation, the behaviour and thus the model of the process 

is different when dfierent chemical components are involved because of the different 

thennodynamic behaviour of the mixture. Often, the unavailability of thermodynamic 



Figure 3.1 : Schematic diagram of a geoewl two-component flash column. 

data of the çomponents involved will make it difficult to develop good mathematical 

models even for a simple process. 

With regards to vapour-liquid equilibrium for a two-component mixture, which is 

the simplest possible case, Figure 3.2 illustrates a so-called T-x-y phase diagram at 

constant P. TA and Te are the boiling point of components A and B respectively, where 

A is the more volatile component and therefore has the lower boiling point. The 

compositions plotted in the diagram are the composition of A. If a mixture with a 

composition of A, 21, at Ti, then the mixture exists only in the Liquid phase. A Liquid 

mixture in ihis region below the solid bold h e  is kwwn as subcooled. If the 

temperature of the sarne mixture is raised to Thb, the first bubble of vapour will appear. 

Temperatures dong this solid, bold line are the bubble point ternperanires. A liquid 

mixture at the bubble point is caiied a saturated liquid. If the temperature of the mixture 

is raised to TZ, the mixture is now in the two-phase envelope. The mixture splits mto a 

vapour pime with coniposition y1 and a liquid phase with composition xi dong the 

horizontal tie-line. As the temperature is raised to T*, the mixture will continue to 
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Figure 3.2: A p n e n l  two-component phase diagram 

vaporise and at Td, will exist only as a saturated vapour. Temperatures dong this lme 

are the dew point temperatures, at which the last &op of liquid exist. if the temperature 

of the mixture is raised to T3, then the mixture exists only m the vapour phase. A vapour 

mixture in this region above the saturated vapour Line is superheated. Consequently, as 

temperature is increased throughout the single-phase liquid region to the two-phase 

vapour- Liquid equilibriurn reg ion and fmall y to the sing le-phase vapour region, there is a 

sharp discontmuity in the quantity and composition of vapour and liquid. 

In this work, the process was simulated in Aspen Plus. a commercial steady-state 

process simulator. For data generation, feed Stream temperature and pressure were kept 

constant at 1 bar and 60C. while the feed flow rate, F, feed composition, z, flash 

temperature, T, and flash pressure, P, were varied over the following ranges: 



The FLASH2 mode1 in Aspen Plus can be used to mode1 vapour-liquid flashes, 

evaporators, knock-out dnuns and many other two-phase single-stage separators. 

FLASH2 detennines the thermal and phase conditions of a mixture of one or more inlet 

streams, when the outlet conditions are specified. The outkt conditions of the flash cau 

be specifed using two of four variables, whicli cire, temperature, pressure. vapour fraction 

and heat duty. FLASH2 accepts any combination excrpt vapour fraction and heat duty. 

in addition, it allows variation in the condition (r.g. tlowrate, temperature etc.) of the 

feed Stream to the colurnn. Aspen Plus also has an extensive databank of physical and 

therrnodynimic properties called Properties Plus. If the properties of certain componrnts 

are not in Roperties Plus, there are various estimation techniques in Aspen Plus which 

can be used in a process simulation. 

To illustrate the non-linearity of the system, a general mathematical mode1 of an 

isothermai flash is presented. The foiiowing equation relates the compositions to the 

fiowrates of the system: 

wbere 

zi is the feed composition for component i, 

K, = &/xi, is the equil'brium constant for component i, 

w = V/F is the fnction of the feed t h t  goes to the vapour Stream 

The equation can be iteratively solved using a root fmding technique. However, for the 

rnethanol-water system, since Ki = f(x,y,T,P), solving Equation 3.1 becornes more 

difficult because an initial guess or estimate of x and y w d  have to be made and rnatched 



at e x h  iteration. This problem can be solved by simultaneous iteration on (x,y) and v. or 

by having separate nested loops on (x,y) and y [Seader and Henlay. 19983. 

3.3 INDUSTRIAL PROCESS 

The crude distillation tower chosen as the indusuid process in this study was designed to 

pmcess sweet m d e  oil (ie. crude oil with low sulfur content) and condensate. This 

process faces problems brought about by the varying composition of the crude oil and 

condensate feed. Cnide oil composition varies from shipment to shipment, even if they 

corne from the same weil. Once in the storage tanks, the composition is not 

homogeneous because the oil is not mixed. Oil at the bottom of the tank would contai. 

heavier components (ie. high boiling point and rnolecular weight) compared to oil at the 

top of the tank. Accurate feed composition measuremeat is almost impossible, even with 

off-line rneasurements. No on-line composition sensors exist for crude oil. For the 

chosen crude tower, the off-line measurements are inaccurate because the oil sample 

contains a high percentage of light components. Therefore, during sarnpling and 

maiysis, the light components vaporise. Consequeatly, operators always have to adjust 

the set points for the operating condition of the procrss to meet the product specifications 

and yield. For mstuice, there are two different types of feed going to the crude tower. the 

condensate stream and the crude oil stream, which can be adjusted to keep the average 

feed composition at the approximate desired level. Ln addition, product quaiity is ody 

measured in the laboratory once every twelve hours. This requires the operators to rely 

on past expenence by observing the temperature and pressure profdes from the CO l m  to 

estimate whether the produas are within specificahns. Therefore, a good grey box 

mode1 of the process, even one that is not used in RTO, will be very usefùl. This is 

because such nodels would be able to estimate the cold properties bom the operating 

conditions, such as temperature profile of the column, and ihe average feed composition. 
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Figure 3.3: Cnide tower flow diagram 



Figure 3.3 illustrates a simplifed flow diagram of the crude tower. There are four 

side strippers: heavy naphtha (HN) saipper, kerosene stnpper, diesel stripper and 

amspheric gas oil (AGO) stripper. Except for the HN stripper, which has a reboiler, aU 

other strippers including the min column has medium pressure s t em injected into the 

bottom of the column. S t e m  injected into the column reduces the partial pressure of the 

hydrocarbn, lowering the vaporisation temperature. The side strippers r e m  the light 

ends that are withdrawn with the products in the side strearns back to the min column. 

As such, the stripping rate in the side strippers can be used to manipulate the initial 

boiling point (IBP) of the product. 

Feed entering the m d e  tower, which is a mixture of Bintulu condensate md Tapis 

cnide, flashes into the flash zone, carrying over a small cimount of LSWR, which is called 

oveflash. This oveflash ailows some fractionation CO occur on the trays just above the 

flash zone by providing interna1 reflux in excess of the sidestrearn withdrawal. At the 

same time, r siight m u n t  of LSWR that enters the AG0 side draw (also cailed run 

down) is desirable because of the resulting increase in AG0 yield, as long as the quality 

is within specififatioos. berflash is controlled by manipulating the coi1 outlet 

temperature (COT), which is the temperature of the oil leaving the h a c e  used for 

preheating, and AG0 withdrawal. At constant COT, increasing AG0 withdrawal will 

decrease overflash, while decreasing AG0 withdrawal will increase oveflash An 

increase in COT will increase overfiash and vice versa. There is a minimum overflash 

requirement of 3%. Other than AG0 quality constraint, a high oveflash will increase 

energy consumption in the form of heating fuel and puniping rate of the colurnn 

pumparounds. Nevertheless, a low overfiash will result in a dry AG0 tray. 

There are four pumparounds (p/a) in the to wer: overhead p/a, HN p/a, diesel p/a and 

AG0 p/a In addition io providing liquid reflux and reducing the vapour loadmg on the 

upper part of the column, pumpmunds also provide cooling to the tower. Thus, 

punparounds can be used to conml column temperatures, which affect product purity. 

Under normal operation, thougb, punparounds are not used to conml produci quality or 



column temperature, except for the occasional fuie-tuning. An exception is the top 

column terriperanire, which is controlled by rnanipulating the top pumparound and reflux 

flow. Heat in the pumparound and product Stream is recovered by heating the feed 

Stream in the preheat train. 

Product fiom the side draws must meet cenain specifications. Operators obtain 

these specifications from the production plinniag section and adjust the tower operating 

conditions (ie. set points) to ensure on-spec products. The quality specifications are 

checked OR line once duriug each shift - twice a day - at 0600 and 18:00, and are thus 

cailed "cold" propenies. Table 3.1 Lists the specifications and the cornsponding products 

and manipulated variables. It is important to take note of the cold properties because 

these are the values that would be predicted in the mode1 output. 

A reconcilrd steady state simulation of the m d e  tower has been developed in 

Aspen Plus using PETROFRAC, ri rigomus uay by tray equilibrium based distillation 

colurnn mode1 designed specifically for petroleum applications. The main column, side 

stnppers, purnparounds and condenser were ail rnodelled as part of the column with 

PETROFRAC. 

To obtain an accurate feed composition for the simulation, the products of the crude 

tower section were back-mixed and analysed. The feed assay information given to Aspen 

Plus were the true boiling point (TBP) curve, light ends yialysis, Stream specifc gravity 

and average mlecular weight. In Aspen Plus, the feed Stream compositions were 

approximated with seven conventional compownts rangmg from C2 to CS, and at least 

50 pseudo-mmponents. The Peng-Robmson equation of state, which is recomnded 

for refmery applications [Aspen Technologies, 19951, was used to calculate ail 

thermod ynamic pro perties. 



Table 3.1: Product specifications and manipulated variables of the crude tower. 

Heavy Naphtha 

Kerosene 

Diesel 

Note: IBP is initiai 

IBP 
FBP 

Flash Po int 1 B P 

Freeze Point / FBP 

Pour Point / Colour 
rBP 
FBP 

Pour Point 1 Colour 
IBP 
FE3P 

Pour Point 

,ilhg point 

Manipulated Variables 

Top temperature or Q 
HN draw 

HN draw 
SS 
Kerosene draw 

Diesel draw 
Kerosene draw 
Diesel draw 

AG0 draw 
Diesel draw 
AG0 draw 

AG0 draw 

Fi3P is fmal boiling point 
Q is reboiler duty 
SS is stripping s tem rate 

3.4 DATA GENERATION 

For both the flash system and the m d e  distillation tower, data were generated using the 

sensitivity analysis feature m Aspen Plus. In this feature, the independent variables 

specifed were varied one at a time within the Iower and upper limits. For example, if 

temperature, T, and pressure, P, were the independent variables, T was heid at a constant 

value while P was varied. Once P reached the specifed upper bound. T was bcremented 



to the next value and held constant while P was again varied. This procedure was 

repeated until the upper bound for T was reached. 

Although the sensitivity analysis feature in Aspen Plus is convenient in generating a 

lwge nuinber of data. the spread of data obtainrd is very poor for training neural 

networks. and the data is clustered mund certain temperatures or other independent 

variables. To overcomr the problem, a large number of data (at least three tirnes the 

estimated amount that will be used for training) was generated. From this set. data 

coliected at a cenain fvted interval h m  the original data füe were taken to be in the 

training set. niis enables the training data to be sequentially ordered and have a better 

spread over the desued range. The orthogonal Ieast squares (OU) algorithm used to 

train the RBF networks performs better with sequentially ordered training data Training 

data for all the models drvrloped in this work are in sequential order. rxcept for MLP 

models, which performs bettrr with randomly ordered data. The same technique was 

repeatrd for generating testing data, but at independent variable values that were different 

fiom the training set. For example, for the M-W flash system, a totai of 792 data points 

were gewrated, out of which 150 data points were selected for training. Another set of 

data was generated at different independent variable values, out of which 70 were 

çelected for testing. The selrction of the number of training data points was based on 

several trial mns meaot to fiid the number that gave the best result in terms of the 

prediction errors and training thnes. A s d  number of the test data gave a poor 

estimation, while too many data points a large number led to a mode1 ovedit. As stated 

by Haykin [1994] on page 178 of his book: 

"When, however, a neural network learns too many specific input-output 

relations (i.e., it is overtraiwd), the network rnay memrise the training data and 

brefore be less able to genenlise between sunilar input-output patterns" 



Similar to the M- W flash system, the sensitivity analysis feature in Aspen Plus was 

also used to generate data for training and testing for the cmde tower. lnput variables for 

the ANN or grey box ANN rnodels include the feed flow rates for the two feed strrarns. 

and the specified variables of a particular section for the tower operation. The output 

variables are the dependant variables t h  were needed by the optimiser and were 

calculatrd due to changes in the input variables. Ranges for the variables are within the 

operathg region of the column. Within this region, the variables in each section of the 

column have oegligible influence on other sections in the column, txcept the sections that 

are imediately above and below it. This allowed data to be generated one section at a 

tirne. Since the sensitivity analysis feature of A s p n  Plus can only allow a maximum of 

fîve independent variables, my section with more than fivr idependent variables were 

simulated one ai a t h e  for the different values of the sixth independrnt variable. 

Table 3.2 lists the input and output variables of the network mdels for each section 

of the cnide distillation column. Only variables üssociated with the pmicular section are 

mcluded in the network rnodel. Note tliat for the LSWR section of the colunin, the 

LSWR draw off was originally indicated as an output variable. This stream is considrred 

as a waste stream; so, there was no strict specification or cootrol. However, after 

generatùig data for the section. there was no significant change in the LSWR draw off 

rate (Iess than 0.001%). Therefore, the draw off rate was not modeiled since it was 

essentially a constant. 

The fo llow ing lists the nomenclature of the input variables used in Table 3.2: 

Bintolt is the Bintulu condensate feed from the storage tank. 

Hdeed is the Tapis m d e  feed hom the storage tank. 

HNdraw, Kerodraw. Diesdraw and AGOdraw are heavy naphta (HN), kerosene, 

diesel and AG0 product draw off respectively. 

Qreb is the rebo iler duty of the HN side stripper. 

SSK, SSD, and SSA are the stripping steam rates for the kerosene, diesel. and AG0 

side strippers respectively, and SSM is the main colurnn strippmg steam rate. 



Table 3.2: Input and output variables for each section of the crude distillation coluw. 

Cnide tower 
section 

hput variables 

The following Lists the nomenclature of the output variables used in Table 3.2: 

TtopH, TtopK, TtopD and TtopA are the top temperatures of the HN. kerosene, diesel 

and AG0 strippers and Ttop is the top temperature of the main column. 

TbotH, TbotK, TbotD and TbotA are the bottom temperatures of the HN, kemsene, 

diesel and AG0 suippers a d  Tbot is the bottom temperature of the main column. 

PAT. PAH, PAD, and PAA are the p h  at the top of the main column, and the HN, 

diesel and AG0 saippers respectively. 

OvM is the overhead draw off rate. 

RR is the reflux ratio. 

Qcond is the condenser duty of the main colunm. 

IBPH. IBPK, IBPD and IBPA are the initial boiling point of HN, kerosene, diesel and 

AG0 produced respectively. 

Output variables 

Top of main 
c o l m  
HN stripper 

Kerosene stripper 

Diesel stripper 

AG0 stripper 

LSWR (Bottom 
of main colurnn) 

BUitolt, Htfeed, HNdraw , 
Kerodraw , Qreb 
Biatolt, Htfeed, HNdraw, 
Kerodraw , Qreb 
Bintolt, Htfeed, HNdraw, 
Kerodraw, Diesdraw, SSK 
Bintolt, Htfeed, Kerodraw, 
Diesdraw. AGOdraw, SSD 
Bintolt, Htfeed, Diesdraw, 
AGOdraw, SSA 
Bintolt, Htfeed, AGûùraw, 
SSM 

Ttop, Ovhd, RR, Qcond. PAT 

TtopH, TbotH, PAH, IBPH, 
FBPH, RhoH 
TtopK. TbotK, FPKero, IBPK, 
FBPK 
TtopD, TbotD, IBPD. FBPD. 
PourD, PAD 
Ttop.4, %tA, IBPA. FBPA. 
PourA, PAA 
TBot, PourL 



FBPH, FBPK, FBPD. FBPA are the fmal boiling point of HN, kerosrne, diesel and 

AG0 produced respective1 y. 

RhoH is the density of HN. 

FPKero is the flash point of kerosene. 

PourD, PourA and PourL are the pour points of diesel. AG0 and LSWR produced 

respect ive1 y. 

Al1 the training and testing data for the M-W flash are given m Appendix C. Training 

and testing data for crude distillation tower are included in the enclosed diskette. 

3.5 SUMMARY 

The iwo processes studied to develop and test different types of ANN and grey-box ANN 

models are described in drtail in this chapter. Method of data generation and the 

nomnclature used in both processes are also explained. 

in Chapter 4, the ANN and gey-box ANN mdels developed and tested are 

presented. There are two types of standard ANN models and three types of grey box 

ANN rnodels investigated. Bïief descriptions of the algorithrns and structure of the 

models are aiso given in Chapter 4. 



CHAPTER 4 

DEVELOPMENT OF ANN AND GREY BOX 

ANN MODELS 

4.1 INTRODUCTION 

In this chapter, the ANN and grey box ANN models developed and tested in this 

research are described. Brief descriptions of the algorithm and stnicture of the models 

are also included. Al1 mode1 simulations were perfomied m MATLAB using the neural 

network toolbox. 

The models developed can be classified into two classes: 

standard ANN models 

grey box ANN models. 

Two types of standard ANN models were compared to see which one is better as 

the base case: 

multi- layer perceptron (MLP), 

radial basis functions (RBF) network. 

Three types of grey box ANN models were developed: 

hierarchically structured neural networks (HSNN), 



serial networks, 

hybrid wtwork-FPM. 

4.2 MULTI-LAYER PERCEPTRONS (MLP) 

As mentioned in the Literature review section, MLP are multi-layer feedfonvard 

networks. The MLP networks used here have an mput layer, one or two hidden layers 

and an output layer. For ail the models used here, the sigmoid function is chosen as the 

activation function of the networks because the training and test h g  data are nomialid 

between zero and one. Two different types of feedfonvard training algorithms were 

used from the Neural Networks Toolbox of MATLAB: backpropagation with adaptive 

learning rate and the kvroberg-Marquardt algorithm For both training algorithrns, the 

number of layers in the network, the nurnber of nodes m each layer, and the maximum 

sum of squared e m r  that cm be tolerated during training must be specified. 

Traditional backpropagation algorithm uses the standard sterpest dexent 

algorithm with a fued levning rate, p, to fmd the optimal weights. The performance of 

the algorithm is highly dependent upon the value of p. A value of p that is too small 

will converge very slowly, while a value of p that is too large wiü cause oscillations and 

instability. There is no single optimal value for p because this depends upon the current 

position on ÙK e m r  surface that is being searched. Therefore, h w m g  p to Vary 

according to the error would irnprove the performance of the backpropagation 

algorithm The adaptive learniog rate algorithm in Matlab increases p by 5% if the 

present enor is less than the previous emr.  On the other hand, if the present error is 

more than the previous e m r  by 496, the present network parameters are discarded and j . ~  

decreased by 30%. 

The Levenberg-Marquardt algorithm is well known for fast training. It has close 

CO second-order convergence, without computing the Hessian matrix. instead, the 



Hessian matri, is estimated fkom the Jacobian mnaix, which is much easier to compute 

than a Hessian matrix. Once a minimum is approached, the Levenberg-Marquardt 

algorithm in Matlab has a scalar parameter that is adjusted to smalhr values, to increase 

the convergence rate of the algorithm. 

4.3 FUDIAL BASIS FUNCTION NETWORKS (RBFN) 

The RBFN training algorithm in Matlab uses the orthogonal least squares (OU) 

algoritlun to iteratively select the centers of the radial bais receptive fields thar will 

lower the network emr the most. Unlike some RBFN training algonthms the number 

of centrrs (and thus hidden nodes) obtained usbg this training algorithm is less thm the 

number of input vectors becriuse the addition of the centers is stopped once the training 

e m r  is less than a specified sum of squûred error. 

Other than specifying an error goal, the spread constant. which determines the 

widih of the receptive fields must dso be specifïed. u ssbould be large enough for the 

receptive fields to overlap one another to amply cover the whole input range. 

Nevertheless, it should not be too large that there is no distinction between the output of 

different wdes in the same area of the input space. More detaded description of RBFN 

is in Appendix A. 

4.4 HIERARCHICALLY STRUCTüRED NEURAL 

NETWORKS (HSNN) 

HSNN [Bittanti and Saveresi, 19981, uses prïor knowledge of the output variable 

behaviour to divide the input variables mto ''master" and "slave" units. Both types of 

HSNN proposed by Bittanti and Savaresi were tested: completely driven and output 



tuned HSNN. Two types of completely driven HSNN were developed: hem-noniinear 

HSNN and nonlinear-nonlinear HSNN. A prion howledge on the general relationships 

of the input variables with respect to the output variables, y, is needed to determine the 

master (Ud and slave (Us) inputs for all types of HSNN. 

4.41 Linear-nonlinear HSNN 

The mster network for the hem-nodinear HSMV is nonlinear, whle the slave 

network is linear, as shown in the gneral structure illustrated m Figure 4.1. In this 

case, the variable chosen as the slave input should be approximately linear with respect 

io the output variable. Referring to the figure, V I M  and V2M are the weights of the 

frst and second layer of the master network respectively, and CIM and C2M are the 

bises. V 1 S and C 1 S, which are also outputs of the master network, are the weights and 

bias of the slave network. Also note that in Figure 4.1, ovals represeot a standard 

neuron, whilr the output of a square neuron is the surmution of the input multiplied by 

the weights. The network parameters are updated using eqwtions that are denved 

based on backpropagation update fornulas. Unfominately, the update formulas given 

by Bittanti and Savaresi (19981 were ambiguous in some of the notations and had 

several errors. 

The foilowîng update equatioos are based on a rnodel with two output wdes m the 

master network as shown in Figure 4.2, which is the structure of linear-noniinear HSNN 

that were mostly used in this work. The equations can be easily extended to have more 

or Iess nodes in the output layer of the master network. 

The output of the HSNN (which is also the output of the slave network) is 

calculated as Ui Equation 4.1. 



Figure 4.1 : General structure of linear- wnlinear HSNN. 



Figure 4.2: Structure of Linear-mnlinear HSNN for M-W systern 



y = L [(V1S)(Us)] + C l S  (4.1) 

where V 1 S = slave network weights and output of master network 

CIS = slave network bias and output of fuial node of master network 

Us = slave input. 

The update equations were denved based on the backpropagation algorithm The 

weights in the second layer of the mister network are updated using equation 4.2. 

V2M, = V2M - p[2e US) (aT)] (4.2) 

where p = learaing rate 

Us = "extended" slave input - 
a = r(L [(VlM) (UM)]+ C M )  

r(f) = sigmoid activation hinction 
2 e = emr = (y - y d d )  

Us is a vector with a size of K+1 that consists of Us except the last rlement is 1. - 
where K is the nurnber of output wdes in the master network. in this case, K would be 

2. The biases of the output nodes in the master network are updated using equation 4.3. 

C ~ M n w  = C'2M - W2e) as) 1 (4.3) 

The weights for the f is t  layer m the master network are updated from equations 

4.4 to 4.6. 

VlM., = (VlM1 + VlM2) R (4-4) 

where V l M l  = V1M - p[(2e)(Us)(V2M(j91) @ a?](Ud (4.5) 

V1M2 = VlM - p[(2e)(V2M(j92) 0 a')](UM) (4.6) 

The symbol 8 is for element-wise matrix product where the weights m column j of 

V2M are multiplied by the element in row j of a', and then summed topther. The 

biases of the hidden nodes in the mister wtwork are updated using equations 4.7 to 4.9. 

c~M., = (CIMI + C I M ~  n (4.7) 



where ClMl = ClM - p[(Ze)(Us). (V2M(j, 1) @ a')] (4.8) 

C 1M2 = Cl M - p[(2e) (V2MQ,2) 8 a')] (4.9) 

Detailed denvations of the update equations c m  be seen in Appendix B. 

For the nonlinear-nonlinear HSNN, both the master and the slave networks are non- 

linear, as shown in Figure 4.3. As seen in the figure, the slave network now has a 

hidden layer. The variable chosen as the slave input should have a direct, smog and 

non-iinear relationship to the output variable compared to other input variables. Ttw 

number of outputs of the master wtwork is the same as the number of parameters of the 

slave network. Therefore, if there were three nodes in the hidden layer, the rnaster 

wtwork would have ten outputs. The foUowing update equations are based on three 

hidden nodes in the slave network. The equations can be rasily extended to have more 

or less hidden nodes. Detailed denvations are given in Appendix B. 

In the update equations, it is important to note that the weights of the fust layer of 

the slave network, VIS, corresponds to bl, and b, which are the fxst three outputs of 

the miister network. The b i s  of the hidden nodes, CIS, corresponds to b4, b5 and b, 

which are the fowth to suth output of the master network. The weights of the second 

layer, V2S, corresponds to bi, bs and b, which are the seventh to ninth outputs of the 

mster network. Fmally, the bias of the output node, C2S, corresponds to bio, which is 

the 1s t  output of the master wtwork. 

Tbe output of the nonlineu-nonlinear HSNN is calculated as in Equation 4.10. 

Y = z [(V2S) (g)l+ a s  (4. IO) 

where g = r[(VlS) (VS) +ClSI 

The weights on connections ending at the tirst three outputs of the master network are 

updated usmg equation 4.1 1. 



VIS ClS v2s C2S 

Figure 4.3: A nonlinear-nonlinear HSNN. 



VZM& 1 -3) = V2M(i, 1-3) - ~[(2e)(Us)(V2S 8 g') (a)] (4.11) 

where a =  T{L [(VIM) (UM )]+ CIM) 

j = the subscript for aii the nodes in the hidden layer of the master network. 

The weights on connections ending at the fourth to sixth outputs of the master 

network are updated using equation 4.12. 

V2Mn,(i, 4-6) = VZM(i, 4-6) - p [(2e) (V2S @ g? (a)] (4.12) 

The weights on connections ending at the seventh to ninth outputs of the rnaster 

network are updated using equation 4.13. 

V2M,,(j, 7-9) = V2M(i, 7-9) - p[(2e) (g) (a)] (4.13) 

The weights on connections ending at the tenth output of the master network are 

updaied using rquat ion 4.14. 

V2M,,,4, IO) = VZMQ, 10) - ~[(2e).(a)] 

The biases of the fust three output nodes of the rnaster network are updated ushg 

equation 4.15. 

C2Mnm(i, 1-3) = C2M (j, 1-3) - p [(2e)(U~) (V2S O p')] (4.15) 

The biases of the fourth to sixth output nodes of the master network are updated using 

The biases of the seventh to ninth output nodes of the master network are updated using 

equation 4.17. 

C2MndJ 7-9) = C2M (j, 4-6) - ~[@e)(g)I (4.17) 

The bias of the tenth output node of the master network is updated using equation 4.18. 

C2M,(j9 IO) = C2M (j, 10) - p[2e] (4.18) 

The update equations for the -ter network weights in the first layer are as 

follows: 

VlM, = (VlMI + VlM2+ V1M3 + V1M4)/4 (4.19) 

where V l M l  = V 1M - p [(2e) (Us)(V2S O g') (V2M(i, 1-3) 0 a')] (Ud (4.20) 

V 1M2 = VIM - p [(2e) (V2S 8 g') (V2M(j,4-6) 8 a?](Uhi) (4.2 1) 



V lM3 = VIM - p[(2e) (g) (V2MQ.7-9) 8 aB)](Ud (4.22) 

V 1  M4 = V 1M - p[(2e) (VZMQ, IO) 0 a?](Ud (4.22) 

nie update equations for the master network biases in the first lqer are as 

fo llo w s: 

ClMn,, = ( C l M l +  ClM2+ C1M3 + ClM4)/4 (4.23) 

where C 1 M l = C 1 M  - p[(2e)(Us)(V2S O g') (V2M(j, 1-3) @ a')] (4.23) 

C 1 M2 = C 1  M - p[(2e) (V2S @ g') (VZM(j.4-6) 0 a')] (4.24) 

C l M 3  = C1M - p[(2e) (g)(V2M(j,7-9) 0 a')] (4.25) 

C l M 4  = C 1 M - p[(2e) (VZMO, 10) 8 a')] (4.26) 

4.4.3 Output-tuned HSNN 

The output-tuned HSNN has a difTerent structure than the completely driven HSNN. 

Figure 4.4 illustrates a schematic diagram of an output-tuned HSNN. The master 

network has two outputs, which is a gain, bl, and a bias, b, for the output of the slave 

network. This type of network is recommended for zeroing the network output. y. at 

cenain values of an input variable; in this case, the input variable which causes the 

output to be zero is the rnaster input, UM. Output-~ned HSNN is also recommended 

when there is a constraint to be met; m this case, the output of the whole constraint 

equation is UM. 

The output of the output-tuned HSNN is calculated as in Equation 4.27. 

Y = (YS) (bi) + br (4.27) 

where y, = L [(V2S) (g)]  + C2S 

g = R[(VIS) (Us)] + c w  
The output of the mster network, B. is: 

B = @A b2]'= L [(V2M) (a)] +C2M 

where a =  T{[(VlM) (Uhi)] +ClM).  



VIS C1S v2s C2S 

Figure 4.4: Output-tuned HSNN. 



The weights on connections ending at the fust output of the rnaster network are 

updrited using equation 4.29. 

V2MmQt 1) = V W j ,  1) - WWOJs) (a)] (4.29) 

where j = the subscript for all the nodes in the hidden layer of the master network. 

The weights on connections ending at the second output of the master network are 

updated using equation 4.30. 

V3Mnçu(j, 2) = VZMa, 2) - p[(2e)(a)] (4.30) 

Thr bias of the fvst output node of the master network is updated using equation 

4.3 1. 

C2M"djt 1) = C2M (i, 1 ) - ~I(2e)(ys) 1 (4.3 1 ) 

The bias of the second output wde of the mastrr network is upûated using equatioo 

4.32. 

C2M,(j, 2) = C2M (j, 2) - p[2e] (4.32) 

The update equations for the master network weiphts in the first lûyer are as 

fou0 ws: 

VlM,, = ( V l M l +  VlM2)/2 (4.33) 

where VlMl = VIM - p[(Ze)(yd (V3M(i,1) €3 a')](U.d (4.34) 

V 1 M2 = V 1 M - p[(2e) (V2M(j,2) 8 a') ] (Ud (4.35) 

The update equations for the master network biases in the fkst layer are as follows: 

ClM., = (CIMI+ ClM2)R (4.36) 

where C1M1 = CIM - p[(2e)(y3 (V2M(j, 1) O a')] (4.37) 

C1M2 = ClM - p[(2e) (V2M(j,2) 8 a')] (4.3 8) 

Unlike the completely driven HSNN, the slave network parûmeters must also be 

cakulated with update equations. The weights in the second layer of the slave network 

are updated using equation 4.39. 

V2S- = V2S - W e ) ( b d  (g)l (3.39) 

The bias of the output node of the slave network is updated using equation (4.40). 



C2Sm = C2S - ~[(2e)(bdl (4.40) 

The weights in the fmst layer of the slave network are updated using equatioa 

4.41. 

Vis, = V i s  - p[(2e)(bi) (V2S 63 g')]Us (4.4 I )  

The biases of the first layer of the slave network are updated using equation (4.42). 

C lS., = C 1s - p[(2e)(bl) (V2S 8,131 (4.42) 

4.5 SERIAL NETWORK MODELS 

Two types of serial network models were developed: 

serial RBFN-RBFN 

serial RBM-RBM- output-tuned HSNN 

Figure 4.5 illustrates the general structure of the serial RBM-RBFN model, where 

1 represents the input variables and y represents the output variables. Referring to 

Figure 4.5, Network 1 may have 1 to 3 outputs. Network 1, a RBFN, was detemiined 

from the previously performd single network runs. The inputs of Network 2 are the 

original inputs, 1, and the outputs, 0, of Network 1. Network 2 is 3 RBFN. 

Figure 4.5: Serial network mdeL 



According to the defmition of grey box models used in this thesis, the serial 

network model is considered a grey box model because the selections of the 

intemediate variables, 0, are based on pnor knowledge. Lutermediate variables are 

variables that are easier for the wtwork to predict tban the f ia l  output variable. At the 

same time, the intermediate variables are strong functions of the fmal output, ÿnd can 

therefore provide more information for Network 2 to better predict the final output 

variable. 

Ln serial RBFN-RBM - output-tuned HSNN models, output-tuned HSNN is used 

in series with a serial RBFN-RBFN mdel, as showo in Figure 4.6. Two types of 

constrahts were tried in different models for the prediction of y for the M-W flash 

system The fust is: 

y = o a t  v = o  
A second constraint is from the mass and component balances: 

y=Oat  [(D(z) - (L)tx)lI V - yi = O 

Figure 4.6: Sena1 RBFN - RBFN - output-tuned HSNN. 
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4.6 HYBRlD NETWORK MODEM 

In the hybrid network, network models are coupled with first principles models or 

mechanistic equations. There are undoubtedly many ways to do this. However, in this 

work, since the models are going to be used for RTO, the mechanistic models 

incoprated must be simple and straightfonvard to solve. Similarly, although 

previously introduced models may seem to be more difficult to train compared to a 

standard ANN mode], once uained, ail of them can be easily sulved Wte any standard 

ANN model. 

The hybrid models can be divided into two types. The fwst type is the serial 

network - FP rnodel, much Wte the senal semi-mechanistic model. The only difference 

here is that the network model output is noi a process pariuneter, but a procrss output 

variable. Two different models were tested in this category. Model 1 (Figure 4.7) uses 

FPM 1, which is the equi l ium relation: 

Y = (K) (XI (4.33) 

where y = vapour composition of methmol in strearn V, 

FPM 

I 
Netw 

r 

1 Y 
ork 1 O 

Figure 4.7: Type I serial hybrid mdel with K value (Model 1). 



K = equilibrium constant, 

x = Liquid composition of methanol in Stream L. 

The value for K was obtained from Aspen Plus at the corresponding state, but it is 

also possible to calculate K from correlations. Another option wouid be to have a 

separate network to correlate K to the correspondhg input conditions. 

Model 2 for Type 1 crtegory (Figure 4.8) uses FPM 2, the cornponent balance: 

y = [(F)(z) - (L)(x)ll v (4.44) 

For this hybrid model to be used, the intemediate output, 0, must be both L and x or V 

and x, or V, L and x. Conditional statements were added in all hybnd mdels to filter 

out negative values h m  intermediate variables predicted by Network 1. An additional 

condition was also acidrd in the models hot used Equation 4.44 to set y at zero if V is 

less than or equd to zero. These conditions were added not because of the process or 

the inaccwacy of the specific mode1 stnicture, but because an mherent weakness of ail 

standard ANN rnodels for function rnapping is that the models are not able to provide 

exact zeroing. 

Type 2 of the hybrid model is sirniiar to Type 1, except models in this category 

have an additional network at the end of the model. Tberefore, there are three levels in 

Type 2 models. The network in the third level is a RBFN. 

Four diff'erent models were developed for this category. Models 1 and 2 both used 

FPM 1 and had very similar configuration, which is shown in Figure 4.9. The only 

difference is that m addition to the rmdel input, 1, and the output of FPM 1, Model 1 

had the intermediate output, O, gomg to the network in the third level as an input. The 

structure of Model 3 is shown m Figure 4.10. This nodel used FPM 2 m the second 

level. The structure of Mode14 is shown in Figure 4.1 1. This model used both FPM 1 

and FPM 2 in the second level. 
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Figure 4.8: Type 1 serial hybrid rnodel with component balance (Model 2). 
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Figure 4.9: Type 2 hybrid mode1 (Model 2). 

Figure 4.10: Type 2 hybrid mdel (Model 3). 



1 Network 

Figure 4. I 1 : Type 3 hybrid mode l (Mode1 4). 

in this chapter, detailed descriptions of the rnodels developed are presented. Brief 

descriptions of the algonthms and structure of the models are included. Update 

equations for the three HSNN-type models are also given. 

Chapter 5 presents the results of the different models descriid in this chapter. 

The models were tested on the flash systerns and the crude oil distillation colunm. A 

cornparison between the models and between the two different cbeoiical processes is 

also discussed. 



CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 OVERVIEW 

The models described in Chaptrr 4 were drveloped and simulated under the MATLAB 

environment. The numerical results obtained are presented here. 

Two standard ANN models, multi-layer percepuons (MLP) and radial basis 

function networks were tested first to detenninr a base case for cornparison. Models 

were developed for the mthanol-water ( M W )  system, which is a thermodynamically 

non- ideal mixture. 

More cornplex model structures were used for variables that were difficult to 

predict. A simple rnodel that could suficieotly predict output variables is preferred. 

More cornplex models were tested only if a variable was unsatisfactonly predicted by 

standard ANN mdels  as these models were mre difficult to develop and train. For 

exampie, developing HSNN models are more involved because changes m the number 

of variables and in certain model smctures require more adjusmient and nining 

compared to a standard ANN model. HSNN mdels also require longer training times 

because of the complexity of the model structure and the backpropagation algorithm 

used to train the network which was used by Bittanti and Savaresi (1998). in addition, 

as a consequence of iis architecture. HSNN models are ody suitable for single output 



variable prediction. Therefore, it is not practical to develop more complex models for 

all variables when simpler models are sufficieut. 

Results for the different models are presented in the following order: 

standard MLP and RBFN rnodels, 

completely dnven HSNN models, 

serial network models, 

hybrid network models, and 

crude oil distillation tower models. 

For the M-W systetn, 311 models are trainrd with the sarne batçli of 150 training 

data and 70 testing data, which are described earlier in Chapter 3. The s t d a r d  ANN 

mdels were initially tested with different nwnbers of training data ranging from 70 to 

400. and the data set with 150 points was found to give the best results in t e m  of 

prediction and trainllig t ime. 

To determine the number of training data points, both the RBFN ÿod MLP mdels 

were trained with difTerent training data sets. Both models used the s m e  maximum 

acceptable sum of squared error (MSSE) during training and the default oumber of 

allowable of iterations in MATLAB, which is 10,000. As descriùed in Chapter 4, once 

the çprerid constant, O, and MSSE were specified, the OLS algorithm used to train the 

RBFN automatically selects the centers, and thus the number of nodes for the model. 

For MLP, different numbers of hidden layers and nodes were tested. 

For example, Table 5.1 shows the prediction of V with 150 and 300 training data 

points. in the table, "CPU s" represents the tUne in CPU seconds taken for training the 

network on a personal computer with a Pentiurn 200 MHz micro-processor. The RMS 

error for the RBFN mode1 aained with 300 training data points was slightly lower than 

the RMS error trained with 150 data points. However, the training time when 300 data 

points were used was a h s t  ten times more h when 150 data points were used. 

Similarly, the MLP network aahed with the higher number of training data gave better 



predictions. The structure with two hidden layers (30 and 15 nodes) gave better 

predictions than the structure with a single hidden layer (30 nodes). Unfonunately, the 

two-hidden layer structure trained with 300 data points took such a long time to train 

that it is not practical to use for 0 t h  variables as weli. Therefore, the 150 data points 

were chosen as the training set. 

The training and testing data for the crude distillation tower depends on the 

different sections of the column, and as desçribed in the crude tower results section in 

Chapter 3. Similar to the M-W system, different sets of training data were tested to fmd 

the training set that gave the best results. 

Evaluations of the models are based on root mean squared (RMS) rrror for rach 

model predictioo. Error is defmed as the difference ktween desired (or actual value 

provided by the testing data) output value and the predicted output value. Training tirne 

will a h  be taken into consideration, mainly because of the çonvenience in drveloping 

models with shon nainhg cycle. The training t h e  will ordy be a mjor  concem when 

the model is periodicaliy updated on-line. For dl the models, the results presented in 

this chapter are the best ones obtained a.fter numerous trials of different training error 

tolerance, spread constmt, aumber of wdes and layers, and leaming rates, whichever 

paramten that were applicable for the different models. 

Table 5.1 : Rediction of V using 150 and 300 training data points. 

/ MLP (1 layer) 1 MLP (2 layers) 1 
No. of &ta 

RMS e m r  

150 

0.0360 

300 

0.0313 

150 

0.0565 

150 

0.0434 

300 
T 

0.0443 

300 

0.0380 



5.2 STANDARD ANN 

5.2.1 Base Case Mode1 Selection 

There are three types of standard ANN models: two MLP and one RBFN. Al1 the 

mdels have T, P. F and z as the input variables with the sarne training and testing data. 

The models also use the same MSSE and the default maximum number of iteration to 

ovoid long training times. The MLP models were developed with two different training 

algorithms, which were backpropagation (BP) with variable leamhg rate, p. and 

Levenberg-Marqwdt (LM) training. Models with one and two hidden layers were 

tested. The number of nodes in each hidden layer was also varied. The best MLF 

models for both training methods had two hidden layers with 30 and 15 nodès in the 

frst and the second Mden layers respectively. For the RBFN model, the OLS 

algorithm used in MATLAB iteratively selected the wnters (or nodes) that yielded the 

Ieast error. Therefore, only the MSSE and the spread constant had to be changed to fmd 

the best RBFN model. 

Table 5.2 shows the RMS error of the test data prediction for each output variable 

of the M-W flash system As seen in Table 5.2, RBFN gave the smallest RMS errors 

for ail the variables. The predictions of both MLP models yielded sirnilar results for di 

output variables, except for q where the MLP trained with the L-M algorithm had an 

RMS error that is about haif of the RMS error of tbe MLP trained with BP. The model 

trained wiih the L-M algorithm predicted tbree out of five variables better than ihe 

mdel  trained with BP. Both models use a random initiaiisation algorithm for the 

weights and biases; this initial value could also influence the model prediction. The 

training times for the RBFN modets are ten to twenty times shorter than for the MLP 

mdels. Comparing the two MLP models, the L M  algorithm had three to five times 

shorter training times than the BP algorithm with variable p. Based on these results, 

RBFN were taken as the base case for cornparison with 0 t h  models. 
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Table 5.2: Cornparison of the best results obtained with RBFN and two MLP models. 

Output 

v 
Y 
L. 
X 

9 

RBFN model 1 MLP w l  BP &var. u 1 MLP with L-M 1 
CPU s RMS 

Error 
0.0360 
0.1 119 
0.0267 
0.0309 
0.0325 

Since d l  models are compared against the base case, mode1 predictions that 

yielded an improvement relative to the base case are deemed as satisfactory. No 

standard e m r  1Uruts are found in the litenture, m;Unly because acceptable or 

satisfactory predictions are somewhat subjective, depending on the process and the 

objective of the model. 

5.2.2 RBFN Modeis for M-W System 

CPUs 

26.41 
12.63 
11.36 
19.38 
21.59 

Table 5.3 provides the complete results of the standard RBF models for the M-W 

system The first section of the table gives the RMS emr of each output variable that 

was individually predicted. The second section gives the RMS error when two output 

variables were predicted togetber with a single RBM. The thîrd, fourth and fifih 

sections give the RMS e m r  when three, four and five output variables were predicted 

togetber respectively. MSSE listed m the second cohinni is the maximum allowable 

sum of squared error for the training set (that is, during identification). Total RMS 

emrs  in the third colunm of Table 5.3 is the sum of the RMS e m r  of ail the output 

variables of the mdeL Individual RMS emr, m the third cohrmn, is the RMS error of 

RMS E m r  

0.0434 
0.242 1 
0.032 1 
0.0427 
0.0702 

CPUs 

772.0 
852.3 
809.5 
822.0 
614.3 

RMSError 

0.0572 
0.258 1 
0.03 14 
0.0410 
0.0357 



Table 5.3: Results of RBF network models. 

aach variable iu the respective order given in the fust mlumn. For the purpose of 

simplicity, plots of the output variables are not shown here because there are too many 

variables and combmations of variables predicted. However, plots are shown in a later 

section that discusses cornparisons of the results obtained. 

From Table 5.3, although the totd RMS error may seem to mcrease as the number 

of output variables are increased, the individual RMS enor showed otherwise for most 

of the variables. in fact, suitable variable combmations are found to decrease the RMS 

error of most of the variabies. For example, when only V was predicted, the RMS error 

was 0.0360; however, the RMS emr of V when predicted in the output variables 

combination of (V, x], and (V. L. xJ were 0.0297 and 0.0257 respectively. The sarne 

trend in prediction error could be seen with the rest of the variables, cxcept for x and y, 

Outputs 
(Y 1 Ty2,y3,y4.y5) 
V 
Y 
L 
x 
4 

1 

V* Y 
v, x 
v, L 
Vv 'l 

, Y, x 
v. y. x 
v, y, L 
v, L, x 
V. x. q 
v, y. L, x 

MSSE 

0.05 
O. 15 
0.01 
0.0 1 
0.05 
0.0 1 
0.03 
0.0 1 
0.10 
O. 10 
O. 20 
0.03 
0.0 1 
0.0 1 
O. 10 

Total RMS 
Error 

0.0360 
0.1119 
0.0267 
0.0309 
0.0376 
O. 1478 
0.0599 
0.0528 
0.0533 
O. 1625 
O. 1782 
0.1666 
0.0828 
O. 1047 
O. 1993 

Individual RMS 
Error 

0.0354,O. 1 124 
0.0297,0.0302 
0.0264,0.0264 
0.0290.0.0243 
O. 1324.0.0301 

0.0434,O. 1032.0.03 16 
0.0267, O. 1 132,0.0267 
0.0257,0.0257,0.03 14 
0.0498,0.0313,0.0236 

0.0279, O. 1 123 



the composition of methmol in the iiquid and vapour streams respectively. The RMS 

errors of x and y in different output combinations are almost the same. However, the 

results ohtained using RBFN show that y is the rnost dficult variable to predict. 

The results in Table 5.3 are the best obtained using RBF networks, afier trying 

several different spread constants, O, and the mrimum allowable sum of yuared error, 

MSSE. Determining the suitable a for the RBFN models was fairly easy, as a for the 

s m  data would be almost the same even for different variable predictions since the 

data were normlised. For di the RE3M models developed, a was either 0.15 or 0.20. 

The MSSE, however, varied depending on the behaviow of the variable being 

modelled. The variables that hûd good predictions could be modelled tightly, with 

srnail MSSE. For example, for the predictions of V, L, x and q, shown in Table 5.3, the 

MSSE aw 0.05.0.01, 0.01 and 0.05 respectively. For the prediction of y, however, the 

MSSE is 0.15. This is because y is not only highly non-linear, but also discontinuous. 

A tightly tuned mode1 for y wili not be able to generalise well because the surface for 

convergence has k e n  strictly limited by the requirements of a sml l  MSSE. 

5.2.3 RBFN Modeîs for B-T Sgstem 

To ensure that the unsatisfactory result obtained for the prediction of y was not due to 

the non-ideal behaviour of the M-W mixture, the same output variables were predicted 

with a benzene-toluene (B-T) flash system, which is thermodynamically ideal. As in 

the M-W system, the range mdelled covered the smgle-phase iiquid, two-phase and 

smgle-phase vapour regions. The training and testing data were gewrated in Aspen 

Plus by varying T (88-100 OC), P (0.85-1.05 bar), F (70-170 kmollhour), and z (0.28- 

0.71). Since a B-T mixture is themdyuamically ideal, the results would mdicate if the 



non-ideality of the M-W mixture were a major factor in the dfliculty of predicting the 

system 

From the results given in Table 5.4. it cm be seen that the RMS emrs for ail 

output variables are only slightly lower that those of the M-W system, except for L and 

x. The prediction for the vapour composition of benzene, y, is still not satisfactory. 

Afier testing with the B-T system, it can be concluded that y for my flash system that 

covers single-phase liquid. single-phase vapour and two-phase vapour-liquid regions 

would be difficult to predict. Therefore. a more cornpiex stmcture is needed to get a 

better predsctioo of y in this r age  of data. 

5.2.4 RBFN Models for Two-Phase Region 

To determine that the RBF nrtwork is indeed able to mode1 the flash system in the two- 

phase region. ail zeroes and ones in the original pool of training and testing data 

generated kom the M-W Aspen Plus simulation were discarded. The data that are lefi 

are therefore points in the two-phase region, where both Liquid and vapour are present. 

100 data points from the original training data and 70 data points from the origiod 

testing data were then selected at approximately equal intervals. The 100 training data 

Table 5.4: Results of the B-T system using RBFN models. 

Variables 

V 
Y 
L 
x 
9 

M- W system 

0.0360 
0.1119 
0.0267 
0.0309 
0.0325 

B-T system 

0.0264 
O. 1 034 
0.0270 
0.0612 
0.0160 



set was found to be the best after trymg several different numbers of trainhg data. This 

two-phase region is actudy the practical operating region for flash systems. 

The results of the model predictions are shown in Table 5.5. As seen in the table, 

the results obtained are much better thm for the model that spans the single and two- 

phase regions. The predictions are very good especially for y, x and q, where the RMS 

emrs were an order of lowrr than the predictions of the base case. V aud L, 

however, had only slight improvements; this is m s t  probably because the RBFN was 

able to distinguish the iinear relationship between F and V and L rven in the original 

data range. Consequently, the uriprovement seen in the prediction of V and L are wt as 

substantial as for the three other output variables. The good results obtained proves that 

the RBF network is indeed able io mode1 the non-iinearity of the system, but is unable 

to account for the discontinuity at the rdge of phase envelope where the mixture is in 

the sing le-phase reg ion. Fortunate ly, in pract ical industrial applications, the operation 

of a tlash system is limited within the two-phase region. Nevertheless, if a wider region 

was desired, a more cornplex mdel  should be used, esprcially to predict y. 

Table 5.5: Results of standard RBFN model for M-W system in the two-phase region. 

M-W system (2-phase only) 

0.01 14 
0.0065 
0.0108 
0.0074 
0.0095 

- - - - - - - . - - . . . - - 

Outputs 

V 
Y 
L 
x 
9 

- . - . - . 

M-W system (Base case) 

0.0360 
0.1119 
0.0267 
0.0309 
0.0325 



The problem in predicting y stems from the abrupt change in composition From the two- 

phse region to the single-phase liquid region. There my be conditions that cm be 

given to overcome this problem; however, since this is a test case, a generalised 

approach is preferred because similar problerns may also occur in other procesxs. For 

example. Yang et al. [1999 1 reported that straightforward standard ANN was not able to 

mode1 sharp changes in mnorner and initiator concentrations for styrene 

polymerisation. In addition, simple conditions like setting y to zen, when V is zero 

cannot work because of the inherent weakness of ail standard ANN rnodels that cannot 

give exact zeromg for function mpping. Figure 5.1 shows the plot of nomlised actual 

V versus normalised predicted V. Out of six points where the açtual y wrre zero, four 

were predicted to be slightly positive (about 0.06) and two were predicted to be slightly 

Figure 5.1 : Plot of nonnalised actuai V versus wrmalised predicted V. 



negative (abmt -0.02). Consequently, the prediction of V caunot be directly used as a 

condit ion. 

Therefore, to have a generalised approach in handling this problem, more complex 

network models must be used. The following section discusses the results of more 

complex ANN models in predicting y. 

5.3 COMPLETELY DRIVEN HSNN 

Bit tanti and Savaresi [ 19981 reported that completely driven H ierarc hicall y S tnictured 

Neural Networks (HSNN) was able to h d l e  discontinuities. rspecially when the 

discontinuity depends on a specific input variable. HSNN would therefore be a suitable 

network model to test. Two types of cornpletely driven HSNN models were developrd 

for the prediction of y: iinear-nonlineu HSNN and nonlinex-nonlineu HSNN. Output- 

tmed HSNN was not developed for predicting y as a single model on its own because 

no clear-cut constraint could be given fiom the input variables. This type of HSNN. 

however, could be used in the serial model, which will be described in a later section. 

Both models use the same training and testing data füe for the M-W system as in 

the base case. Sirnilu to the base case, the inputs to the HSNN rnodels are aise T. P. F 

and z. However, for HSNN, the input variables are further divided into slave and 

rnaster inputs. 

5.3.1 Lin--aoalinear HSNN 

Figure 4.2 illustrates the best hem-nonlinear HSNN structure used for prediction for 

the M-W system The master wtwork was Lep as a single hidden layer, but tbe number 

of nodes was varied to find the best mo&L The lowest RMS error is found when the 



master network has s u  hidden nodes and two output nodes. The outputs of the he te r  

network provided values for the weipht and bias of the slave network. As mentioned in 

Chapter 4, for hear-nonlinear HSNN, the slave input should have a direct infiuence 

and is approximately iinear to the output of the HSNN. The input variables to the 

network are T, P, F and z. If F was the slave input, then the three remaining input 

variables were the master input. Different slave input and number of hidden nodes for 

the master network were tested to fmd the best configuration. The best c ~ ~ g u r a t i o n  

found had six nodes in the hidden layer of the master network. 

Table 5.6 gives the best results obtained for single output predictions with HSNN 

anci standard RBFN. The second column of the table gives the slave input variable used 

in the linear-oonlinear HSNN model. For example, F was the slave input for the 

prediction of V, and four different slave inputs, 2, F, K and T were individuaUy tested 

for the prediction of y. Two different K-values data were used. In the tïrst model, the 

K-values king used are taken directly from Aspen Plus. Aspen Plus esthates K- 

values fiom physical property methods, without taking into account whether both liquid 

and vapour phases are actualiy preseat at a particular state. Therefore, the K-values are 

incorrect when the M-W mixtures only exist in a smgle phase because equilibrium 

constants are valid only within the two-phase region. The IC-values used in the second 

mode1 are modified to mdicate when there is only a single vapour or liquid phase. 

Referrgig to Table 5.6, m n g  the three output variables predicted, V had the 

lowest RMS error. The result for V is also better than the base case. This is an 

expected outcorne because from mas  balance, since V has a hear relationship with F. 

The RMS errors of the fïrst three rmdels used CO predict y were close. Even though z 

and F are not linearly related to y, both ünear-nonlinear HSNN mdels ore able to give 

a better prediction of y than standard RBFN. When F was used as the slave input to 

predict y, the RMS error obtained is only slightly higher than when z was used as the 

slave input. This is reasonable because from mass and component balances, F and z are 

both stmng, but slightly non-linear functioos of y. Usmg K-values with errors as the 



Table 5.6: Results of linear-nonlinear HSNN models. 

Output Slave lnput 

z 
F 

K(Error in K) 
K (correct K) 

T 

MSSE RMS Error for 
Standard R8FN 

RMS E m r  for 
Linear-nonlinear HSNN 

slave input yielded si.mi1a.r results as the fvst two rnodek because the errors in the K- 

values wodd give rnisleading giformation in the single-phase region. AS expected. the 

best result in predicting y was obtained when the correct K-values were used as the 

slave input. When T was the slave input, the mode1 prediction is worse thui the 

prediction of the RBFN model. This has m s t  probably occurred because the 

relationship between y and T is wt only highly non-linear, but is also not direct one. 

As seen m Chapter 3, T innuences the value of y through the equilibrRun constant K. 

The RMS errors using RBFN and linear-wnlinear HSNN for the prediction of x, 

are close. None of the input variables were suitable as a slave mput for predicting x; F 

was found to be the best choice. Usmg z as a slave mput yielded a RMS enor that is 

also siightly higher than when F was used as the slave input. Therefore, when a suitable 

slave input is not available, using a simple standard RBFN m d e l  is suficient. Alsot 

simple models that can yield acceptable predictions are better because of the short 

training t h e  for developing the mdeL The training t h e s  for predicting y w ith z and F 



as the slave input are 29,826 CPU seconds and 2 1,504 CPU seconds respectively, which 

are much greater than the training time of about 13 CPU seconds for the base case. 

5.3.2 Nonlinear-nonlinear HSNN 

The structure for the nonlinear-nonlinear HSNN mode1 is illustrated in Figure 4.3. Both 

the rnaster and slave networks have one hidden layer. The best model developed has 20 

nodes in the hidden layer and 10 nodes in the output layer of the master network. The 

rnastrr network outputs are the parameters of the slave network, which has three nodes 

in the hidden layrr. The variable choseo as the slave input cm be non-linear, but should 

also be directly a hnction of the output variable. The complexity of nonlineu- 

wnlinear HSNN &es it suitable for modeUing difficult-to-predict variables like y. 

Other output variables are not modelled because the results obtained with simpler 

models are deemed to be satisfactory. 

From the results of the nonlinear-nonlinear HSNN shom m Table 5.7, the RMS 

e m r  for both mdels are less thm that using standard RBFN, but the training t ims 

were much longer mainly because of the complex structure and the backpropagation 

algorithm The training times for the two rmdels with F and z as the slave inputs are 

28.790 CPU seconds and 10.681 CPU seconds respectively. Nevertheless, once 

training is completed and the model is obtained, the execution of the model is very fast. 

Table 5.7: Results of nonlinear-nonlinear HSMV mdels. 

Output 

Y 
Y 

MSSE 
0.05 
0.06 

Slave 
input 

F 
z 

RMS E m r  for 
Nonlinear-nonlinear H S W  

0.0884 
0.0820 

Trainmg Time 
(CPU S) 

28,790 
10.68 1 



5.4 SEMAL NETWORK MODEM 

Al1 the serial network models basically have the same structure as shown in Figure 4.5. 

The first network for di the serial models is sin RBF network that is used to calculate 

intemediate output variables that had good predictions, based on the results show in 

Table 5.3. AU rnodels were used to predict y as the fmal output. Two different types of 

networks were tested as the second uetwork rnodel: RBFN and output-nined HSNN. 

In developing rnodels in tliis category, seveml different intermediate variables were 

tested. Sincr the O and MSSE for Network 1 were aiready kwwn, only the parameters 

for Nçtwork 2 nerd to be systrmatiçally srarclied. The O used for Network 2 for the 

different rnodels ranged from 0.15 to 0.3. The MSSE for Network 2 for the prediction 

of y range from 0.05 to 0.30. 

The results of the serial RBFN-RBFN models are listed in Table 5.8. Referring to 

the fust column in Table 5.8, x+y indicates that the output of Network 1 is x, which is 

then included with the original input variables, 1, as an mput to Network 2 to predict y. 

since it is the most difficult variable to predict ushg standard networks. Tùe ihird 

column in Table 5.8 provides the total RMS error for the prediction of all variables from 

the senal model, while the fourth column provides the individual RMS error of the tirst 

md second networks. Note that although the total error may seem large, the acmal 

RMS error of each individual variable is not. The mdividual RMS errcir of the 

intermediate variables can be seen in Table 5.3. 

The RMS error for the prediction of y, sho wn m column 4of Table 5.8 (RMS e m r  

for ANN 2), dl gave slightly beiter results than prediction with a single RBFN, except 

for V L  + y. The additional idonnation provided by the intemiediate variables for the 



Table 5.8: Results of serial RBF network models. 

prediction of y allowed tighter training. Among the runs perfomd for the serial RBF 

networks, the mns with V,L,x y and V.x i y gave satisfactory results. with both 

yielding the RMS rrmr for prediction of y at 0.103 1 and 0.1088 respectively. The 

variables involved in predicting y in both groups are strong hnctions of y. These are 

the variables needed in a material balance to solve for y. 

5.4.2 Senal RBFN - RBFN - Output-tund HSNN 

Output 

X + Y  

v , L - ) y  
V, L, x + y 
h - ) y  
v. x. q + y 

Bittanti and Savaresi [1998] recornmended that the output-tuned HSNN be used for 

irnplernenting constraints. Referring to the structure of the output-tuned HSNN shown 

in Figure 4.4, an intermediate output is predicted by the slave network and the 

constraint is met by the master network. To predict y, the output-tuned HSNN is not 

used on its own because from previously tested models, it cm be deduced that the slave 

network, which is actually an MLP.  will wt be able to properly predict y. In addition, 

the input variables available are not suitable as constnints, and there is not enough 

information to use the mass and component balance. Two output-tmed HSNN were 

developeé As presented in Chapter 4, the mister mput of the f ~ s t  mde l  was V and the 

second was the component balance. 

Total RMS 
E m r  
0.1397 
O. 1368 
O. 1392 
O. 1 172 
O. 1455 

MSSE 
(ANN l/ANN 2) 

0.01/0.15 
0.0 110.05 
0.0 1 /O. 30 
0.0310.15 
0.01/0.10 

RMS Error 
(ANN l/ANN 2) 
0.0329/0.1 067 
0.080410.1 123 
0.0983 /O. 103 t 
0.062010.1 088 
0.0835/0.1090 



For dl the mdels developed, the master network has six hidden nodes and one 

output node. The slave network has one hidden layer, but the number of nodes varies 

fiornone mde l  to aaother. The rnaster network has only one output, which is the gain 

that is multiplied to the output of the slave network. niere is no bias added to the 

output of the slave network. From the paper by Bittaoti and Sûvaresi [1998], the bias is 

normally used to set the output of the network to a specific constant value when a 

consiraint is met. For the fust constraint, when V is zero, y is also zero. and thus 

elimùiates the need for a bias. For the second constraiot, the value of y varies according 

to the constraiat, and thus would also eliminate the need for a bias. Nevertheless, there 

were several models developed with a bias. The results wrre very poor. with the RMS 

emrs for the prediction of y king p a t e r  than 0.3 for al1 models. Therefore. the rest of 

the models were developed with one output for t l r  master network. 

Table 5.9 presents the results of the serial FU3FN-RBFN-output-nined HSNN 

model. AU models have the same intermediate outputs. The serial RBFN-RBFN model 

was chosen to have V, L rind x as the intermediate outputs because this mode1 has the 

best prediction of Yi (RMS e m r  0.103 1) and cm also be used to rstimate the cornponent 

balance. Refening to Table 5.8, the second and third columns list the rnaster and slave 

inputs respectively. RMS errors of ail rmdels are lower thm the senal RBFN-RBFN 

models. This shows that the output-tuwd R B M  were able to act as a filter and 

implernent the constrnints to improve the prediction of y. 

Table 5.9: Results of seriai RBFN - RBFN - output-tuwd HSNN models. 

Intemiediate 
Output 

V, L X + Yi 

V, L, x yi 

Master 
Input 

V 
Eq. 4.44 

Slave Input 

V, yi, L, x 
V, yi, L, x 

MSSE of 
HSNN 

0.02 
0.04 

Hidden nodes 
in slave 

12 
18 

Final output, y, 
RMS error 

0.01 14 
0.W4 

, 



From Table 5.9, there was an improvement in the prediction of y between the fust 

and the second mdels. The fust m d e l  used the consuaint in Equation 4.43, while the 

second m d e l  used the consaaint in Equation 4.44. The RMS rmr of the second 

model, 0.0074. is the lowest one so far. The training tirne, at 2 12 C'PU seconds, is also 

acceptable. Predictions of y from the rnodels shown in Table 5.9 are ÛU highly 

satisfactory compared to 0th models developed. 

5.5 HYBIUD NETWORK MODELS 

There are two types of hybrid network rnodels: hybrid RBFN-FPM (Type 1) md Iiybrid 

RBM-FPM-RBFN (Type 2). Recalling the defuiition given in Chapter 4, FPM I is the 

equilibriurn relations equation (Equation 4.43) and FPM2 is the compnent balance 

equation (Equation 1.44). The hybrid models are manged in a series of levels as 

discussed in Chapter 4. 

5.5.1 Hybrid RBFN.FPM 

There are two different kinds of hybrid RBFN-FPM models. As described in Chapter 4, 

Model L uses FPM 1 and Model 2 uses FPM 2. Figures 4.7 and 4.8 illustrate the 

scbematic of Model 1 and Model 2 respectively. in this type of model, the output 

variable prediction c o m s  directly from a FPM. 

Table 5.10 presents the resuhs obtained h m  Type 1 mdels.  All models m Table 

5.10 have V, L, and x as the intermediate outputs. In these mdels, the values of V aad 

L are normalised so ihat ihe sum of V and L is F- FPM 1 is used to calculate the output 

variable, y, for both the first and second model; simila. to the heu-nonlincar HSNN 

models, the difference m these two mdels  are the K-values bemg used to calculate y 



Table 5.10: Results of Type 1 hybrid structure. 

1 Intermediate 1 Mode1 1 Total 1 RMS 
Output 
V, L, x 

using FPMI. The fwst models used the K-values taken directly from Aspen Plus, which 

had erroneous values wheo the M-W mixture ody exist in a single phase. that is, K- 

value is not zero even though there is only one phase (either x or y is zero). The second 

mode1 used the corrected K-values. The third mode1 does not use any K-values because 

Model 2. which is the component balance. does not need the K-values. 

The predictions of y from the second and third rnodels are satisfactory, but the 

prediction from the fint mode1 is not This is expected because sorne of the K-values 

king used to calculate y have enors, which would worsen and in certain cases amplify 

the errors of the intermediate variables. The second model, whkh used accurate K- 

values, bas the srmillest RMS e m r  (0.0346) of al l  the three models. This is due to the 

fact that better K-values would enable y to be calculated accuately based on the value 

of x predicted by RBFN 1. 

v, L, x 
v, L, x 

There are four kinds of models under Type 2 hybrid models. Configurations of the 

models are illustrated m Figures 4.9 to 4.1 1. 

The results for the four rmdels, given in Table 5.11, are dl satisfactory; all RMS 

errors for the prediction of y (ANN 2) are less than the base case. AU mdels have 

1 (error in K-values) 
1 (correct K-values) 

2 

RMS 
0.2263 
O. 1329 
O. 1855 

(ANN 1mM) 
0.0983 / O. 1280 



RBFN as ANN 2. The slave input variables of this mode1 are y calculated from either 

FPM 1 or FPM 2 or both. On the whole, the additional network added afier the FPM m 

all the models successfully functioned as a fdter for picking out and correctmg the value 

of y calculated by the FPM. 

Comparing the two hybrid models, the addition of an RBFN after the FPM in 

Type 2 models is generaily beneficial. For example, coniparing Model 1 of Types 1 

and 2, the RMS emrs for the Type 2 models were lower. An exception is Mode12 of 

Type 1 (RMS e m r  = 0.0872) and Model 4 of Type 2 (RMS error = 0.0874), which is 

essentially the same mdel. except for the additional RBFN. Arnong the models tested, 

ail models with the correct K-values used in the FPM had very good predictions. 

5.6 COMf ARISON OF THE PREDlCTIONS OF Y 

Table 5.12 Lists the RMS error of the best of the different models used to predict y. Ail 

RMS errors shown in the table represent the prediction of y in the original range that 

covers both the single and two-phase regions, except for the second in the list. which is 

Table 5.1 1 : Results of hybrid structure. 

1 (correct K-values) 
2 (error in K-values) 
2 (correct K-values) 
3 (correct K-values) 
3 (error in K-vdues) 

4 

Output 
V, L, x 1 (error m K-values) 

Tot al 
RMS 

O. 1988 
0.1185 
O. 1595 
0.0855 
0.0847 
O. 1807 
O. 1857 

RMS 
(ANN 1lANN 2) 
0.0983 / O. 1005 
0.0983 / 0.0202 
0.0620 / 0.0975 
0.0620 / 0.0235 
0.0620 / 0.0227 
0.09831 0.0824 
O.û983/ 0.0874 



Table 5.12: RMS e m r  for prediction of y using the different models. 

1 Mode1 1 RMS error 

1 Standard WFN ((single-phase and two-phase regions) / 0.1119 1 Standard RBFN (two phase region only) 1 0.0065 

Linear-Nonlinear HSNN (F) 
Linear-Nonhear HSNN (emr  in K-values) 
Linear-Nonhear HSNN (correct K-values) 
Nodinesu-nonlinear HSNN 

Serial RBFN-RBFN 
Serial RBFN - Output-tuned HSNN (V) 
Serial RBFN - Output-tuned HSNN (Component Balance) 

Hybrid RBFN - FPM (correct K-values) 
Hybrid RBFN-FPM-RBFN (correct K-values) 

the prediction of y in the two-phase envelope. The results shown in Table 5.12 are 

divided into four p u p s :  

standard RBFN 

completely driven HSNN 

serial networks 

hybrid networks 

The result of the base case, which is the prediction of y over the original region 

using standard RBFN, had the highest RMS error (0.11 19) among the groups of models. 

The RBFN mode1 for the two-phase region, on the other hand, had the lowest RMS 

error (0.0065) among all rmdels. Figures 5.2 and 5.3 illustrate the plots of actuai y 

versus predicted y for both models. In the plots. the diagonal line is where the test data 

points should be when the predicted y is the s;une as the actual or desired y. As seen in 
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Figure 5.2: Plot of y predicted using standard EU3FN (base case) (RMS = 0.1 1 19). 
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Figure 5.3: Plot of  y m the two-phase envelope only (RMS = 0.0065). 



Figure 5.2 for the base case. the six points in the test set where the actual y is zero are 

far off. with the largest difference at about 0.7. The rest of the points, which are in the 

two-phase region, are scattered war the diagonal. As seen in Figure 5.3 for the rmdel 

for the two-phase region, alrnost al1 the test points are on the diagonal. This shows that 

the addition of points in the singlephase region "conhsed" the RBFN during training. 

Consequently, the network faiied to perform evrn in predicting the points in the two- 

phase regioo. 

Al1 the completely driven HSNN models yielded better results thm the base case. 

Four models were testrd in this group: 

Linear-nonlinear HSNN with F as the slave input Tlus model had a more than 

20% reduction in RMS error. Referring to Figure 5.4, tlw six points where the 

actuai y is zero wrre all predicted closer to zero than the standard RBF model. The 

lmgest differencr is about 0.66. The points in the two-phase region are dso closer 

to the diagonal ihan the base case. 

Linear-nonlinear HSNN, with K-values that had errors in the singe-phase 

ngions, as the slave input This model had similar results to the first rnodel, as 

seen in Figure 5.5. The prediction of this model for test data in the two-phase 

reg ion. liowever. is slight ly O ff-diagonal, w ith the predicted values being slightly 

higher than the actual y. However, this is not a trend because different levning 

rates and initial values of the weights and biases yield slightly different predictions. 

For example, Figure 5.6 illustrates the results obtûined using the sarne leamhg rate 

as the prediction in Figure 5.5, but would have different initial values of weights and 

biases because these values were randomly pnerated by an initialisation algorithm 

Lineu-nonlinear HSNN, with the correct values for K d as the shve input 

This model yielded the lowest RMS emr (0.034) amng ai l  the mdels in ibis 

group. As seen in Figure 5.7, the six test data in the single-phase region were 

~redicted close to zero. which e ffectivelv 10 wered the RMS error. 
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Figure 5.5: Plot of y predicted using hear-wolinear HSNN (K-values with enors as 

slave input) (RMS = 0.0857). 
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Figure 5.6: Plot of y predicted ushg linear-nonlinex HSNN (K-values with errors as 

slave input) (RMS = 0.0864). 
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Figure 5.7: Plot of y predicted usmg linear-nonlinear HSNN (K-values without errors 

as slave input) (RMS = 0.0344). 



4. Noolinear-nonlinear HSNN, with z as the slave input. Fmm Figure 5.8. the 

prediction of this model is better than the fust and second mdel. In fact. in the 

two-phase region, the results seemed slightly better than or at least comparable to 

the third model. Unfonunately, the mode1 could not pive good predictions for the 

test data in the single-phase region. resulting in a RMS error of 0.0820- 

The predictions obtained from the completely driven HSNN mdels were more 

satisfactory than the base case. Udike standard RBFN, the hierwhical structure of the 

rnodels were able to eliminate the "confusion" of predicting y in the two-phase region 

rven in the presence of data in the single phase region. Nevertheless. ody the third 

model. whicli had correct K-vülues used as the slave input, were able to satisfactorily 
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Figure 5.8. Plot of y predicted usine nonhear-nonlinear HSNN (z slave) 

(RMS=0.0820). 



predict the test data m the single-phase region. The failure of the three other models to 

predict reasonably weU in the single-phase region are most probably because of the 

absence of a more suitable slave input variable. Otherwise, in the two-phase repion, al1 

models were able to predict very weil. 

The predictions of the serial models are ûlso better than the base case. Two types 

of serial models were tested: 

Sena1 RBFN-RBFN. The best mode1 prediction are plotted it Figure 5.9. The 

predictions are satisfactory in the two-phase region. but unsatisfûctory in the single- 

phase reg ion. The largest error, about 0.7, is fiom the prediction in the sing le-phase 

reg ion. 

Serial RBFN - RBFN - output-tuned HSNN. Both models developed under this 

structure had very good predictions. The lowrst RMS ermrs for the prediction of y 

were 0.01 14 and 0.0074 when the master inputs were V md the componrnt balance 

resptxtivrly. Figure 5.10, whicli shows the plot when the componenr balance was 

the master input, clearly illustrates that al1 the test data were eitlier on or very close 

to the diagonal line. The samr can be said about the data in the single-phase region. 

The one point in the single-phase region where the predicted y is slightly greater 

than zero is most probably because of slight inaccuracies in the predicted values of 

the variables used in the constraint that was fed to the master network. Otherwise, 

the master network of the output-tuned HSNN managed to effectively eoforce the 

constraint given by the mster input. The results fou& using this mode1 suucture 

was the best among aii other models developed. 

The predictions from the serial RBFN-RBFN - output-tuned HSNN were 

surprisingly very good, even when a simple constraint of [V = O at y=O] was given. The 

master network was actually trained with a suitable constramt to provide the 

corresponding output that could effectively enforce the constraint on the output of the 

slave network. As seen h m  the results, the master network was dso effective in 
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Figure 5.9: Plot of y predicted using serin1 RBFN-RBM (RMS = 0.103 1). 
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Figure 5.10: Plot of y predicted using serial RBFN-RBFN - output-tuned HSNN (FPM) 

(RMS = 0.0û14). 



zerohg the output. This is because the master network is trained so that when the input 

is zero, the master output and thus the pain for the slave output is zero, and thus 

effectively zeroing the final output. The output-tuned HSNN was not irnplemented on 

its own because of the unavailability of a suitable constraint. 

The predictions of the hybrid models are also better than the base case. Two 

hybrid model structures were tested: 

1. Hybrid RBFN-FPM. The b a t  result obtained is from a rnodel that used the 

equilibrium relations with the correct K-value to predict y. This is expected since 

having a correct K value would rnable the correct calculation of y if the value of x 

predicted by RBFN is correct. Figure 5.11 shows that except for one point, dl other 

test data are either on or very close to the diagonal. The point that is far from the 

diagonal is most probably caused by an error in the value of x (an intemdiatr 

variable) which would te amplified by K when y is calculateci usuig the equilibrium 

relations. 

2. Hybrid RBFN-FPM-RBFN. Similar to the previous model. the best result 

obtained is fiom ü model thrit also used the equilibrium relations as the FPM witli 

the correct K-value. nie rnodel was able to predict y well, as sho wn in Figure 5.12. 

Overall, the serial RBFN-RBFN-output-tuned structure gave the best predictions 

of y. nie addition of the output-tuned HSNN reduced the error in the prediction of y 

fiom 0.103 1 (fiom the serial RBFN-RBFN) to about 0.0 1. The structure uses simple 

constraints that are easily available commn knowledge for chernical processes. No 

complex parameter or thennodynarnic estimation is weded. In addition, the training 

time for the output-tuned HSNN is much shorter than completely driven HSNN. 

In general, almost ail the rnodels developed rnanaged io improve the predictions of 

the standard RBFN models, especially for those in the two-phase region. A good 

prediction in the two-phase region is obtained when the RMS e m r s  of the mdels in 

predicting y are between 0.08 and 0.09. The only way to reduce the RMS emrs  is by 
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Figure 5.1 1 : Plot of y predicted using hybrid RBM-FPM (RMS = 0.0346). 
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Figure 5.12: Plot of y predicted using hybnd RBF-FPM-RBF (K-values without emrs  

as P M  input) (RMS = 0.0202). 



improving the prediction of the six test data in the single-phase region, which many of 

the methods are unable to do so udess additional information is given. The additional 

information provided by the correct K-values managed to provide the infoxmation 

nerded to properly predict the test points in the single-phase region. 

5.7 CRUDE DISTILLATION TOWER 

5.7.1 Sections of the Cnide Tower 

Changes w i t h  the operating range for a section in the crude distillation tower affrct 

only the sections thai are immrdiûtely above and below the section. This aiiows the 

crude tower model to be divided hto sections where the variables that are related are 

grouped topther, and thus make the model more mûnagrûble. in addition, as shown in 

rnodrlling the methmol-water flash system, groupmg suitable output variables together 

c m  yield better predictions. 

The mode1 for the cnicie tower is divided into the following sections: 

top m v  
heavy naphth stripper (HN), 

kerosene stripper (K), 

diesel suipper @), 

AG0 stripper (A). and 

bottom (B). 

Table 3.2 iists the mput and output variables of the network rnodels for each module of 

the cnide distillation colurnn. 



5.7.2 Cornparison between RBFN and MLP 

To c o n f i  that RBFN would give a better mode1 than standard MLP. a cornparison on 

the RMS emr  and training times is made between RBFN models and M L P  using 

backpropagation with variable p. Table 5.13 shows the results of the two different 

networks using two different groups of training data for the top section of the cntde 

tower. The average RMS error shown in Table 5.13 is the average RMS error of the 

five output variables for the top section. From the results, it can be seen that RBFN is 

superior both in prediction of the test data and training times. The rest of the sections 

will therefore use RBFN. 

5.7.3 Grouping of Variables 

To determine if the grouping of output variables had a strong influence on the 

prediction. the variables in the fust two sections at the top of the colurnn were predicted 

individually and in different groups. The results are shown in Table 5.14. 

Table 5.13: Overd results for the top section of the main crude distillation column 

using RBFN and feedfomard oetwork with %P. 

RBFN w/ 300 ainmg data 
RBFN wl 150 training data 

Average RMS Error 

BP wl300 training data 
BP w/ 150 training data 

CPU The  (sec) 



Table 5.14: RMS errors of variables of top and HN sections of the crude tower. 

Outputs 

Tt0 p 
PAT 
RR 
Ovhd 
Qcond 
TtopH 
TbotH 
PAH 
IBPH 
FBPH 
Rho H 

IBPH, RR, Qcond 
Ttop,RR,Qcond 

Ttop, Ovhd. RR. Qcond, 
PAT 
TtopH, TbotH, P M .  
IBPH, FBPH, RhoH 

Overall RMS 
Enur 

0.0048 
0.0 1 JO 
0.0046 
0.0029 
0.0033 
0.0039 
0.0039 
0.0099 
0.0046 
0.0046 
0.0076 

lndividual RMS Error 

From the table, it can be seen that for almost a11 the variables, the RMS emrs are 

s d e r  whrn the variables are grouped togetber in a suitable combination. For 

example, the RMS emrs  for variables at the top of the column, Ttop, OvM, RR, Qcond 

and PAT are 0.0048, 0.0029, 0.0046, 0.0033 and 0.0140 respectively when predicted 

individually. compared to 0.001 4,0.00 15,0.0025,0.0017 and 0.0075 respectively w heu 

predicted together. The same is also true with the variables in the HN section. 

The results a h  show that it is not advisable to combine unrelated variables. For 

example, cornparhg the two variable combinations that are highlighted in the table, the 

combination with IBPH, which is in a different section than RR and Qcond, the RMS 

e m r  for RR and Qcond are higher than when the variables were combined with Ttop. 



5.7.4 Overall Prodiction 

The RMS errors for al1 output variables of the cmde iower are given in Table 5.15. 

Output variables in the s m e  section are grouped and predicted togeiher. The results, as 

seen in the table. are very good. Al1 the RMS errors are in the order of 10". and sorne 

are even smaller. This shows that RBFN is suitable for prrdicting the output variables 

of the mude towrr, md there is no wed for more cornplex niodrls. 

Table 5.15: Overall result for d l  sections in the crude distillation tower. 

Tot al 
RMS 
E m r  

Top column section 
Ttop, Ovhd, RR, Qcond, PAT 
HN stripper section 

column) 
TBOT, PourL 

0.0146 

TtopH, TbotH, PAH, IBPH, FBPH, 
RhoH 
Kerosene svipper section 
TtopK, TbotK, FPKero, IBPK, 
FBPK 
Diesel stripper section 
TtopD, TbotD. IBPD, FBPD, 
PourD, PAD 
AG0 stripper section 
TtopA, TbotA, IBPA, FBPA, 
PourA, PAA 
LSWR section (Bottom of main 

individual RMS E m r  

0.0292 

0.0174 

0.02 10 

0.0 133 



Referriog to Table 5-15, the resuits are surprisingly much better thm those 

obtained for the M-W flash in the original range, even though the m d e  tower is 

physicaily more complex than a single flash system They are, however, comparable to 

the results obtained for the M-W flash in the two-phase region. Although the ~ n d e  

tower has more variables and more components involved, the mode1 is cotitinuous 

within the operating range. Note also that the components of crude oil are 

thermodynarnically closely related. These are rnost possibly the major contributhg 

factors chat enabled the excellent prediction of the output variables of the crude tower. 

5.7.5 Simple Range and Dimensional Extrapolation 

Range extrapolation takes place when one of the input variables to a mode1 is üpplied 

outside the range that it was trainrd for. Dûneosional ex~apolatioti iakrs place when a 

variable that wûs not part of the input variable during identification (because it was 

constant) varies during the use of the rnodel [te Braake et al. 19981. To ensure that the 

RBFN mode1 cm perform saûsfactorily in both range and dimensional extrapolation, 

the kerosene section of the coIumn was tested. 

A mode1 for the kerosene section was developed with five input variables uistead 

of SU, leaving out the kerosene stripping steam in the input to test for dimensioual 

extrapolation. The stripping s t e m  rate was fked at the normal operaiing point. A test 

data set was developed with the stripping s t e m  at the maximum and minimum 

operating range. 

To test for range extrapolation, a test data set was developed with the stripping 

s t e m  at 10% above the maximum and 10% below the minimum s t e m  rate. Although 

this condition is avoided in practice, getting a mde l  that would be feasiblr just outside 

its range is important because certain optimisation algorithms cross over constraints 

slightly in an effort to reach the optimum value. 



Table 5.16 shows the results for both range and dimensional extrapolation. The 

results obtained for range extrapolation was close to the original results. There is less 

than 15% increase in the total RMS emor. This is good because this shows that the 

RBFN mode1 is able to provide a reasonable prediction should the optimiser crosses 

over a constraint slightly. There was, however, a nearly three fold increase in total 

RMS error for the dimensional extrapolation case. Nevertheless, the predictions are still 

sritisfactory and c m  be accepted for use because all the individual RMS mors are 

around 1% or less. Therefore, the RBM mode1 is suitable modelling the crude tower 

for RTO. 

5.76 Objective Functioo for RTO 

Tiiis section gives an example of a possible economic sbjective function for RTO for 

the m d e  oil distillation colum. A profit based objective functioo consists of the total 

product values after deducting the costs of feed and utilities, as s h o w  in Equation 6.1. 

Table 5.16: RMS errors for range and dimensional extrapolation. 

outpuis ( Y ~ , Y ~ , Y % Y ~ , Y ~ )  

Onginal result 
TtopKT TbotK, FPKero, IBPK, 
FBPK 
Dimensional extrapolation 
TtopK, TbotK, FPKem, IBPK, 
FBPK 
Range extrapolation 
TtopK, TbotK, FPKero, BPK, 
FBPK 

Total RMS 
E m r  

0.0174 

0.0515 

0.0200 

Individual RMS E m r  

0.0018,0.0017,0.0021,0.0021, 
0.0097 

0.01 10,0.0242,0.0024,0.0034, 
0.0105, 

0.0028,0.0026,0.0027,0.0029, 
0.0090 



subject to g(x) 2 O 

h(x) = O 

where Pi = product stream values; 

Cfccd = feed stream cost; 

Cutÿitia = tord utility COS~S; 

g(x) = set of process inequality constraints; 

h(x) = set of equality constraints represented by the process models. 

x = the decision variables, which me the draw-off flow rates. 

The product stream values are simply the product draw-off flowrûtes. Fi, 

multiplied by the respective prices. Di, as shown in Equation 6.2: 

The fied costs are the flow rates of the condensate and cmde oil streams, Fj. multiplied 

by the respective prices, Dj, as shown in Equation 6.3: 

The utility costs are consists of the reboiier (in the HN side-stripper) and condenser 

duties (top of colunm) and the stripping s t e m  rates (main cohunn, kerosene stripper, 

diesel stripper and AG0 stripper), multiplied by the respective prices, 4, as shown m 

Equation 6.4: 

C u  = ( )  fi) for k = 1,2. 



The inequality constraints, g(x), rnay consist of the product quality constraints and 

equiprnent constraints. Among the product quality constraints, for example, is a certain 

range of flash point that is specified for kerosene and a certain specific gravity that is 

specified for heavy naphtha The equipment constraints would include the maximum 

and minimum feed and product flow rates because of the constrahts nom the pumps 

that are used. Similar to the equality constraints. h(x), the values of g(x) are all 

calculeted from the process models. 

For the flash systems, RBFNs were able to satisfactorily predict ail output variables, 

except y. The difficulty in predicting y was mainly due to the discontinuity between the 

two-phase region and the single-phase regions. The excellent results obtained fiom the 

prediction of the output variables restricted within the two-phase region, shows that the 

RBFN can sufficiently mode1 nonlinear systems when there is no discontinuity. 

The RBFNs were able to predict all the output variables for the crude distillation 

tower very weU. The RMS errors obtained were, in fact, equivalent in order of 

magnitude to those obtained in the M-W flash prediction restricted to the two-phase 

region. This cm be explained by the fact that al1 training and testing data for the nvde 

tower are within the operating region. In addition, the mixtures in crude oii are 

themdynamically ideal. 

The difference in formulating the RBFN mdels between the M-W system and the 

nvde tower is mainly in the high number of output variables and the multiple sections 

of the crude distillation column. Nevertheless, once divided mto sections, better resdts 

were obtained when the output variables from the siiae section of the tower were 

predicted together, which is a similar phenornenon with the M-W system 



The difficulty in predicting y fiom the M-W flash system showed that certain 

variables need more corriplex models. If additional accurate themdynamic 

information, îike the K-values, are available, then using a hybrid RBFN-FPM mode1 is 

one of the shplest methods. HSNN is also û suitable method, especiaiiy output-tuned 

HSNN, which uses simple, reûdily available information, and does not need additional 

themdynamic information. 

The foUowing s rna r i se s  the basic guidelines that should be followed to 

formulate a connectionist model for a cliemical process: 

Select a suitable standard ANN model. A common, standard stming point is the 

MLP. However, the systrms studied here were better modelled with RBFN. 

Therefortt, we recomrnend that RBFK also be tested. 

Grouping of variables. If there is a large number of output variables, not al1 of 

them cm be predicted with one ANN mode1 because the mode1 would be too large 

md brcom inaccurate. An efficient way is to gmup related variables together since 

this would most probably yield better predictions whiie at the srime time avoid "the 

curse of dimensionality". 

Senal predictioos. If there are variables that are eûsier to predict and can aid in the 

prediction of the other output variables, it is more efficient to predict them frst, and 

then use the predicted values as part of the inputs. This type of seriai prediction has 

been shown to yield better results with the aid of the additionai information fiorn 

previously predicted variables. 

DiRidt  to predict variables with extensive prior information. If there is a 

difficult to predict variable and extensive mfomation is available, sucb as 

themdynarnic or mass transfer parameters, then a hybrid ANN-FPM model can be 

used. If more than one FPM is available, a hybrid ANN-FPM-ANN can also be 

investigated. However, models developed for RTO should not, as far as possible, 

need rigorous numerical solutions. These rnodels should try to keep to the sinpie, 



straightforward calculations of an ANN model. If this is not possible, then use one 

of the models recommended in step 5. 

5 .  Dillicult to predict variables, especiaiiy those that are discontinuous and 

without extensive prior information. For this type of variable, HSNN is 

reçommended. There are two options available: 

With simple constraints. If there are simple ccnstrahts, for example, in the fonn 

of mss, component, or energy balance, then output-tunrd HSNN is 

recomrnended. Simple zerohg constraints can also be used. 

Without constraints. An input variable, which strongly influences the output 

variable. is used as the slave input of a completely driven HSNN. If the 

relationship is linear, then the linear-nonlincar HSNN is recomnded.  If the 

reliitioiiship is non-linear, then the nonlinear-nonlinear HSNN is reçornrnended. 



CHAPTER 6 

CONCLUSIONS 

6.1 CONCLUSIONS 

The main objective of this rexarch has bren on developiug different types of 

çonnectionist models chat are appropriate for RTO applications. These rnodels, which 

are multivuiable in nature because they represent the complete proçess. should have a 

dominant ANN structure to tulfil the desired characteristics of the rnodeis for RTO. 

This resevch also investigûtrd the use of modrls that have the capabilities of imùedding 

easily available, prior information ioto the structure of the model, like HSNN, for 

instance. 

in accordme witli the objective, the fmdings of this stvdy c m  be summarised as 

fo~ows: 

RBFN is suitable for modelling nonlinear chemical processes. The RBFN was able 

to model the flash systems and the cnide distillation tower weU, with the exception 

of output variables with discontinuity. The RBM mode1 for the crude tower was 

also able to satisfactorily perform dimensional and range extrapolation, which are 

important m RTO applications. 

To develop models for RTO, output variables that are related should be grouped 

together as this would rnost probably lead to better predictions. Decmnposing large 

multiv~able systems into sanaller modules is also necessary so that the developed 



models are manageable. In addition. grouping unrelated variables together causes 

unwanted degenention of the rnodel. and as such is not advisable. 

The HSNN structures are efficient in embedding readily available knowledge, 

especially in predicting variables with discontinuities and constraints. The 

completely driven HSNN is suitable when there is a variable with a direct and 

strong influence on the behaviour of the output variable. The output-tuned HSNN is 

suitable for conso iidating constraints ioto the network model. 

Senal network models cm improve predictions; however. when only standard 

networks are used, these models cannot handle discontinuities. 

Hybrid ANN-FPM models are suitable for RTO when there are cüsily solvrd FPM 

with the availability of accurate parameters usrd in the WM. These informûtion. 

however, are niore difficult to obt;iin. 

Therefore, ANN md grey box ANN models have the capabilitirs to model 

chernical processes for RTO. As shown in this study, various mrthods exist to 

overcome difficulties in modelling certain variables. Readily known information c m  be 

incorporated in different ways. Embedding prior information into the network structure 

provides an efficient means to corne up with a better rnodel, as in the case of HSNN. 

Most importuitly, a11 the models developed here c m  br easily updatrd and mintained, 

which makes hem suitable for the process indusuy. 

6.2 CONTRIBUTIONS 

in ~unrmary, we have accomplished the followmg through this research work: 

1. ILlustrated techniques to incorporate available FPM information into ANN models. 

2. Developed a general network structure that cm be used to incorporate constraints 

and discont inuities. 



3. Developed rui ANN mode1 of an industrial crude tower. 

4. Showed that the physical complexity of a process does not always correlate with the 

ANN mode1 complexity. 

5. Opened a window for the use of more complex network structures in chernical 

process modeilinp. 

6.3 RECOMMENDATIONS 

Several aspects of this research work can be enhanced or developed rven funher. 

Possible future extensions include: 

1. Explore 0 t h  mrthods to incorporate existing information into the structure uf t i r  

network rnodels. There are numerous methods in the study of neural networks thût 

have the potential to be beneficial and have not yet k e n  applied to chemical 

processes. In addition, for processes with abrupt changes, the possibility of training 

a classification network to determine the region, L-only, V-L or V-only. prior tu 

calculation of the composition and quantity in each phase. 

2. The mdels developed here could be applied to other complex chemical processes, 

especiaily those witb discontinuities. An examplr is the polymerisation of styrene 

[Yang et ai. 19991. 

3. Severai on-lme issues may also be studied, including: 

simulate on-line implementation and snidy possible actual implementation of the 

models to real world application such as the Petrooas Refhery in Malaysia. 

investigate on-he versus off-line updating. 
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APPENDIX A 

BACKGROUND ON NEURAL NETWORKS 

This appendix provides detailed background on neural nrtworks thit is necessary io 

understmd this research. 

A.1 NEURONS AND NEURAL NETWORKS 

Figure A.1 shows a neuron, which is the simplest procrssing elrment of a neural 

network. A neuron or a node consists of three components [Bauphman and Liu, 1995; 

Haykin, 19941. 

Inputs and outpub. This is the synapse or connections fiom or to other nodes. 

Inputs to the node, xi, rnay also corne from data that have k e n  normalized. The 

node manipulates the mputs to yield the output. yj, which rnay then be sent to more 

than one node. 

Cornedon wlights The comection weiphts, w,, detemine the influence of the 

input on the output of the node. in this work, the first subscript of the weight, i. 

refers to the input while the second subsrript, j, refers to the node. Weight factors 

c m  be inhibitory (if the value is negative) or excitatory (if the value is positive). A 

weight factor that is close to zero will have a negligible effect on the wde. 

Activation functioo. Sumrnation of the weighted inputs is passed through an 

activation function (aiso called squashing hinction or transfer hinction). This 



fûnction Iùnits the amplitude range of the output The rnost cornmonly used 

fuoctions [Baughman and Liu, 19951 are the sigmoid hinction. 

f(x) = l/(l + e") (A. 1) 

the hyperbolic tangent function, 

f(x) = tanh(x) = (es - e*')/(rS + e-") (A.2) 

and the Grtussian function, 

f(x) = exp(-X'R) 04.3) 

As s h o w  in Figure A. 1, there may also be threshold values associated with the 

node. This threshold value, Tj, lowers or increase the net input of the activation 

function. After the inputs have gone through the neuron, as shcwn in Figure 2.2, the 

output of the network becomes: 

yj = Xi ww, Xi - Tj 04.4) 

The nodes cm be connected in several different topologies. the most cornmon king 

feedforward and recurrent networks. The nodes are mmged in Iûyers; the network may 

contain a single layer, or more than one Iûyer, in which case it becornes a multilayer 

network. 

Muitiiayer Feedfomard Networks. There are three types of layers: 1. input layer, 2. 

hidden layer, aod 3. output layer. The mput layer contains the source nodes. There can 

be more than one hidden layer. The purpose of this hidden layer is to extract higher 

order information from the data The outputs of the input layer are sent to the nodes in 

the fist  layer of the hidden layer. In a feedforward network, inputs to the neurons in a 

layer cornes from the murons in the preceding layer. When every node in each layer of 

the network is comected to every node in the adjacent layer, the network is fuiiy 

connected. There are also partially connected networks. 



Figure A. 1 Schematic diagram of a neuron. 

Recurrent Networks. Recurrent network is distinct fiom feedforward network in that 

it has ai least one feedback loop. Self-feedback, which is when the output of a neuron is 

fed back to its input, cm also occur. Addition of unit delay systerns or zero-order holds 

(denoted by 2-1) in recurrent networks, is very common m dynamic modelling. 

A.2 DEVELOPING ANN MODELS 

There are three phases in developmg ANN mdels [Baughman and Liu, 19951: 



1 .  Training/learning phase. Learning is the process of adjusting weight factors based 

on systematic and efficient trial and error. Training is the process of adjusting 

weight factors until the output patterns reflect the desired relationship [Baughrnan 

and Liu, 19951. To do this, the network is repeatedly presented with a set of known 

inputfoutput data The network l ems  the input/output response behavior, and 

subsequently undergoes hirther training. This is the longest aod most time- 

consuming step. It is also the most important to the success of the network. 

2. Recall phase. The network is tested with trained data. 

3. Generalisation. The network is tested with data that it was not trained with before. 

This phase will determine the hterpolatiodgeneralizatioo capability of the network. 

If too many nodes are used, then there is a tendency for the network to overfit and 

badly grneralize. 

There are thret: main leaming algorithms. Decision on which algoritlim to use 

mainly depends on the type of problem to be solved. The three algorithms are as 

follows [Haykin, 1994; Lm and Liu, 19951: 

Supeded learning. It is also çalled active karning or levning with an extemal 

teacher. in supervised leaming with rvery input, a corresponding desired output is 

given. The most comrnon method of learning is enor-correction leaming. where the 

emr ,  which is the difference between the network output and the desired output, is 

sent back to the wtwork to correct the weights of the network to minimize the emr.  

Reinforcement learning. Also cded leamhg with a critic, it does not need as 

much or detailed data as supe~sed learning. This is because feedback to the 

network is evaluative (critic) and not instructive (teacher). For example, the critic 

will $ive feedback evaluation iike "tw high", 'high", or '70w" to a certain output. 

A mtic signal generator gives the extemal reinforcement signal. 

Unsuperviseci learning. In this mde of learning, there is no extemal teacher or 

critic. The network relies on intemal control and local information to develop its 



own model without additional input information. The network "self-organize" itself 

by discovering pattems, features or categories in the input while adjusting its 

parameters. The network f o m  clusters by discovering sirnilarities and dfierences 

in the object. Typically, unsupenised learning is used in classification of patterns, 

such as image or voice recognition. 

A.3 MULTILAYER PERCEPTRONS 

Multilayer perceptmns lue feedforward multi-layered networks that are capable of 

perfomiing just about iuiy iinear or nonliear computation and cm approximate any 

reasonable function arbitrarily wrll. A multilayer percepuon has three distinctive 

features [Haykin 1994): 

a) The model of rach neuron in the network includes a nonlinear but smooth (ie. 

differentiable) activation fùnction at the output end. The presence of this 

nonlinearity is important because it enables the network to map nonlinear 

relationships. 

b) The network contains one or more hidden layers of nodes. These nodes enable the 

network to l e m  cornplax tasks by extracthg progressively more meaningful 

features from the input-output patterns. 

c) The network exhibits a high degree of connectivity detemined by the synapses of 

the network. A change in the connectivity of the network requires a change in the 

population of synaptic comections or their weights. 

Back propagation learning algorithm is one of the earliest and most common 

method for training mult ilay er percepmns. Develo pment of this learning algorithm w as 

one of the main reasons for renewed interest m this area and this leaming rule has 

becorne centrai to many current work on learning in artiflcial neural networks. It is used 



to train nonlinear, multilayered networks to successfully solve difficult and diverse 

problems such as perforrn function approxitniition, pattern association and pattern 

classification, non-linear system modekg, tirne-series prediction and image 

compression and reconstruction [Hassoun, 19951. 

Backpropapation lemhg consists of two passes through the different layers of the 

network. In the forward pass, the input pattern appiied to the sensory nodes of the 

network propagates through the different layers. During this pass the synaptic weights 

of the network rernain f ied.  An actual output is produced as a result of the forward 

tlow of this data. This actual response is subtracted fonn a desired (target) response to 

producr an rnor signal which is then propagated backward through the network agamst 

tlw direction of the synaptic conorct ions. During this backward pass, the synaptic 

wriglits are ail adjusted to make the actual respona of the network more closer to die 

desirrd response. The emr-correction scheme, therefore, works by propagating the 

iufomtion about the deviatiou from the desired output "bûckward" through the 

network, against the direction of synaptic connections. 

The weights of the network c m  be updated by two procedures: incremental 

learning and batcli leaming. With uicrernentai learning, the weights are updated d e r  

every presentation of an input pattern. Whereas, with batch leming, weight updûting is 

perlomwd only after aii pattern (assuming a finte training set) have been presented. 

The weights of the network are updated such that the sum-squared of error of the 

network is minimized. This is done by continually changing the values of the network 

weights in the direction of steepest descent with respect to ermr. Steepest descent or 

gradient descent is one of the simplest optirnization techniques and is not a very 

effective one. This technique may suffer h m  slow convergence, especiaiiy wben s m d  

le;irning rates are used.. Altematively, Newton's mthod, conjugate-direction method or 

quasi-newton rnethod have been proposed to Uriprove this algoriilun [Lin and Lee, 

19951. 



Leoaard and Knmer il9901 showed that the backpropagation algorith, which 

normally uses the genrralized delta rule for gradient calculations, is inefficient ;ind has 

poor convergence on serial processine machines (ie. computers). Backpropagation 

levning is generaily slow because of the characteristics of the error surface that is 

charactrrized by numerous flat and sterp regions and has many troughs that are flat in 

the direction of search. In addition, there are local minima at error levels above the 

levels of the global minima of the surfaces. This causes the back propagation levning to 

becorne stuck at the local minima and converge very slowly (Lin and Lee, 19951. 

To speed up the performance of backpropagation many enhancrmrnts and 

modifications have bern propsed [Lin and Lee. 19951. 

Weight initialimtion. Owhg to güdient-descent nature, backpropagütion is rrry 

sensitive to initial conditions. The initial wrights are typically set to mail rmdom 

values. The motivation to start from small weights is thût, large wrights tend to 

premturely saturate units in a network md render them insensitive to the leaniing 

process. On the other hand ranciomess is introduced as a symmetry-breaking 

mechanisrn It prevents uoits from adopting similar functions and becoming 

redundant. 

Learning rate. The leamhg rate constant, q, is essentially the strp size in the 

direction of the gradient descent. It directly influences the convergence and 

effectiveness of backpropagation. No single learning constant value suitable for 

different training cases and qis usually chosen experimentaily for each problem If 

it is smail, the seanih path will closely approximate the gradient path, but 

convergence will be very slow due to the large nurnber of update steps needed to 

reach a local minima. On the other hand, if q is large, convergence mitially will be 

very fast, but the algorithm will eventuatly oscillate and ihus not reach a minimum 

An efficient approach will be to use an adaptive learning rate constant, so diat large 

steps are taken when the search is far away from a minimum with decreasing step 

size as the search approaches a minimum Training tmie c m  be decreased by the 



use of an adaptive Ieming rate which attempts to keep the leaming step size as 

large as possible while kreping Iearning stable. 

Momenturn. Momenturn decreases backpropag ation' s sensit ivit y to small details in 

the error surface. Addition of mmentum to terni to the gradient-descent method 

suppresses oscillations occumng dur to large learning rate constant. The idea is to 

give each weight some inertia or momentum so that it tends to change in the 

direction of the average downhill force that it feels. This sclieme is implrmented by 

giving a contribution from the previous step to each weight change: 

Aw(t) = -qVE(t) + a w ( t - 1 )  ( A 3  

where a is a momentum parameter and a value of 0.9 is ohen used. 

Cost function. The squareci error term (di - cm be replaced by any other 

differentiable tùnction F(di , y;). which is minimizrd when its arguments are rqual, 

in the quadratic cost function. Based on  this oew cost hnction. a çorrespooding 

update rule cm be drrived. ï îus  will change the c m r  signal for the output layrr 

while al1 the other equations of the back propagation algorithm wiil remain 

unchanged. 

Training data and generaüzation. The amount of training data should be proper 

and sufficient. There are no rules or pmcedures suitable for d cases in choosing 

training data One rule of thumb is that training data should cover the entire 

expected input space and then during the training process training-vector pairs 

should be randornly selected fiom the set. 

Number of hidden Iayen and nodes. The size of a hidden layer is usuaiiy 

designed experimentally. Too few neurons can lead to underfitting. Too rnany 

neurons can contribute to overfitting, in which ai l  trainmg points are well fit, but the 

fitting cuve  takes wild oscillations between these points. For a network of 

reasonable size, the size of hidden nodes need to be only a relatively m l 1  fraction 

of the input layer. If the network fails to converge, more hidden nodes may be 



required. If it does converge, some nodes may be rernoved and the fmal size cm be 

determined based on the overall system performance. 

A.4 RADIAL BASIS FUNCTION NETWORK (RBFN) 

RBFN is based on the concept of the locally tuned and overlapping recrptive fields that 

exist in the cerebnl and the visual cortex. It is also stroogly rooted in the areas of 

interpolation and approximation rheory [Jmg et al. 1997, Haykin 1995 1. The network is 

designed for nonlinear input-output mpping through training. T?K reçrptivr fields of 

the network are radial basis functions, whiçh can be adaptively tunrd to provide 

sufficient overlapping for smooth müpping, but sliürp enough for good approximations. 

Well known for its fast, localizrd training. simplicity and generality. the network 

attractrd much research, espeçially in the late eighties and in the oinçtirs. h n g  the 

works include theoretical properties of RBM [Poggio and Girosi. 1990: Chen and Cheo 

19951. dgorithrns and design [Moody and Darken, 1989; Specht. 1990; Chen et al., 

1991; Billings and Zheng, 1995; Chen, et al., 1995; Zheng ûad Billings. 1997; Frermm 

and Saad, 1997; Luo and Billings, 19981, and evaluation and confidence lwei [Leonud, 

et al.. 1992; Yingwei, et al., 19981. The network pertorms vrry well for classification 

and multidimensional curve-fitting (approximation) problerns. RBFN is also suitable 

for on-line applications because it c m  be rapidly trained. Among the applications are 

speech recognition, image processing, fault diagnosis, process control, t h  series 

analysis and general function approximation. 

RBM has a feedforward structure, though it differs in t e m  of operation tiom the 

standvd feedforward neural network. Figure A.2 shows the basic structure of the 

network. There are three layers m the wtwork, in which the nodes are fully connected 

with the nodes in the successive layer. The layers are: 



X t x2 

Figure A.2 Genenl structure of a radial basis function network. 

1. Fust byer. This is the input layer, which receives N inputs and sends them to the 

second layer. The fust layer connections to the second layer are not weighted. nie 

input to the hidden layer is therefore shply  the input vector, r 

2. Second hyer. This is the hidden layer, which has I nodes with Gaussian density 

func t io n: 

hj (x) = exp[-llx - c# 1 (2031 (A. 6) 

where cj , j = 1,. . .J are the RBF centers, a d  aj is the RBF width parameter. These 

are the receptive fields or the nodes, which rnake this hidden layer the most critical 



layer of the RBFN. The function of this layer will be discussed hirther in this 

section. 

3. Thid layer. This is the output layer, which has hear nodes. Connections between 

the second and third layers are weighted. These weights can be calculated using 

standard backpropagation algorithm [Baughrnan and Liu, 19951. The fuial network 

output is a weighted sum of the output value of the hidden layer, shown in equation 

Figure A.3 illustrates û Gaussian receptive field. Performance of RBFN is highiy 

dependent on the receptive field parameters, c, and Dj. c, detrrrninrs the location and O, 

determines the span of the activation region of the nodes in the hidden layer. Therefore, 

each node in the hidden layer corresponds to a unique local neighborhood in the input 

space. Within the region of activation, the cbser the input, xi, is to the crnter of the 

receptive field, cj, the higher the activation b e l .  The maximum activation level, which 

is one, occws when xi is at cj. 

Figure A.3 Gaussian basis hinction 



LeÛnung for RBFN is divided into two parts. The fust is the synthesis of the 

hidden layer, and the second is to p t  the weights of the output layer. The separate 

training scheme exploits the localized presentation of the hidden layer units, since ody 

the nodes activated by an input need updating. The main advantage of localized 

training is speed. However, there is reduced generalization ability of the network unless 

a large number of nodes is used. 

The fust pan of RBFN training is to get the receptive fields parameters. which are 

the centers, cj, and the width of the receptive fields, Gj. Several leaming schemes exist 

for determinhg these pammters, especially for cj. The selection of cj is aitical 

brcaux the performance of the RBFN depends on the centers of the receptive field. A 

single value of O is sufficient to be used for ail the receptive fields. RBFN with the 

same a for rüch receptive field in the hidden layer was theoretically provrn as universal 

approximator [Hassoun, 19951. 

The second part of RBFN training, to get the weights of the output layer. is fairly 

straightfonuard. The works sweyed used linear regression, suigular value 

decomposition or one of the backpropagation dgorithms, Like the delta learning rule 

[Hassoun, 1995; Haykh, 1994, Leonard, et al., 199211. 

The different rnethods to fmd the receptive fields parmeters can be divided into 

three approaches [Haykin, 19941: 

1. Fixed ci. This is the simplest approach to finding cj. Some data points from the 

training set are randomly chosen to be the fued centers of  the receptive field. This 

would be good only if the data are distributed in a representative manner for the 

surface approximated. In some cases, ail the training data are used as centers. 

However, this methocl is not praçtical for problems with large amounts of data, Wre 

in speech processing. In awther approach, the centers are p l red  oo uniforni course 

lattice along each dimension of an n-dimensional mput space. However, this 

method is not practical for problems with high-dimensional mput space. The width 

of the Gaussian RBF, O, cm be k e d  using: 



o = d/(2J)lQ (A.8) 

where d is the maximum distance between the chosen centers, and J is the number 

of centers. 

2. Unsupemsed selection of q. This approach adaptively computes Cj. The hidden 

layer nodes learn to represent only parts of the input space that is densely populated 

by clusters of data. This results in a smaller number of nodes in the hidden layer. 

Moody and Darken [1989] used k-rneans clustering algorithm to locate J RBF 

centers that would minimire the sum squmed error of the distance betwern the input 

training data and the center. At each tirne step, a random training vector, x, is 

selrcted and the cenier, cj, nearest of the nearest receptive field is upùated according 

CO: 

Acj = ~(x-c j )  a . 9 )  

where p is a small positive constant. 

There is no standard way of tïnding the number of nodes in the hidden layer. I. 1 

is usually found by cross validation. a is heuristically deterrnined to $et smooth 

interpolation [Hassoun 19951. A very c o m n  method is the nearest mighbor 

heuristics, which takes the global average over aiî the Eucledian distances between 

the center of each node. i, and h t  of the nearest wighbor. j, as seen in the 

fo llo wing equat ion: 

O = Ilci - cjll (A. 10) 

A heuristic method to bdividualiy tune O is 

O = CXllci - cjll (A- 1 1) 

where a is a construit between 1.0 and 1.5. 

3. Supervised selection of CJ. Ln this most generalized form of RBFN. ail the 

paramters m the hidden and ouput layers are found through supervised leamùig. 

E m r  between the desued output md the network output is minirnized, usually using 

a gradient descent technique. This class of method yields RBM with good 



gneralization at the expense of higher training times because of the increased 

computation [Haykin 19941. 

Chen et al Il9911 came up with the orthogonal least squares (OLS) algorithm, 

which has oode-growing capability. The OLS algorithrn provides a systematic method 

to select RBF centers. The centers are seIected one at a time such that the 

approximation errors of the network are effectively reduced at each step. This recursive 

procedure is temiinated once the errors have reached bdow o prescribed value. The 

MATLAB neural networks toolbox uses this algorithm to fmd the centers of RBF 

networks. An advantage of this rnethod includes a smaller number of nodes in the 

Idden iayctr tliüii that of RBF w ith randomiy xlected centers. Anoihrr advüntage is the 

avoidanct. of numerical ill-çonditioning frequently rncountered in RBF w ith rmdomly 

selected centers. 

Lronud et al. 119923 introduced tlic: validity index network (VI [ici), whicli is an 

extension of RBFN. In addition to the network output, the VI net indicates wheo the 

network is extrapolating. The network is able to indicate any extrapolation based on the 

esthution of the local training data density. 



APPENDIX B 

UPDATE EQUATIONS DERIVATION FOR HSNN 

B. 1 Update Equations for Linear-Noniinear HSNN 

weights of the fust hiddrn Iayer of the tnaster network, V 1 M. 

the biases of the tint hidden nodes of the master tietwork, C IM, 

the weiglits of the second hidden layer of the mstrr network. V2M. and 

the biases o f  the output nodes of the müster network, C2M. 

The derivûtion of the updatr equation for V 1M is as follows: 

and 



Therefore, there are two possible routes to calculate V 1 M. 

There fore, 

or: 

Ln this work, the VlM, is set to the average value of the V1M çalculated from e a h  

route, as shown in Equaiion 4.4. 

The denvat ion of the update equation for C 1 M is as fo 110 ws: 

de CIM,,, = ClM - p- 
aclM 

The partial denvatives are basically the same as in the derivation of the update 

equations for V IM, except for: 

Therefore, there are also two routes to calculate ClM as given in the following two 

equations: 

ae ae - = [2(e)(U,  )(V2M j,l Q a ' ) ]  or: - - - [2(e)(V2M j,? @ a')]  
~ C I M  ~ C L M  

Sunilar to V IM, and C 1Mnew is taken as the average as showo in Equation 4.7. 



The derivat ion of the update equation for V2M is as follows: 

There fore, 
.. 

The denvation of the update equation for C2M is as follows: 
.. 

B.2 Update Equations for Nonlinear-nonünear HSNN 

The derivation given here is for the nonlineu-nonlineu HSNN structure shown in 

Figure 4.3. Similar to linear-wnlinear HSNN, four types of parameters must aiso be 

derived: 

weights of the first hidden layer of the master network, V IM, 

the biases of the first hidden nodes of the rnaster network, C IM, 

the weights of the second hidden layer of the rnaster network, V2M, and 

the biases of the output nodes of the niaster network, C2M. 



Because of the stmcture of the network, the denvation for the update of V IM cm be 

obtained through four routes. 

Route 1: 

d = (VIS)(LI,) + ClS 

Route 2: 

ae - ae ay ag ad abb6 aa ah --------- 
avw ay ag ad ab,, aa ah avw 



Route 3: 

9 

Route 4: 

The updated V IM cm then be caiculated frorn Equation 4.19. 



The denvation of the update equation for ClM also has 4 routes. 

Route 1: 

Route 2: 

ae -- 
aciM 

- 2@)(V2S @ g1) (V2M j.4-o 8 a')  

Route 3: 

Route 4: 

The updated CIM c m  then be calculated from Equation 4.23. 



The update equations for V2M are divided into four p u p s .  accordmg to the output 

nodes of the master network. The full update formulas for V2M are in Equations 4.11 

to 4.14. The derivation for the update formula of V2M ending at output uodes 1 to 3 of 

the master network is as follows: 

hl-, = VIS = (V2M j.1-3 )(a) + C2M,-3  

The derivation for the update formula of V2M ending 3t the rnastrr output nodes 4 to 6 

is as foilows: 

The derivation for the update formula of  V2M ending at the niaster output aodes 7 to 9 

is as follows: 



The denvation for the uplate formula of V2M ending at the master output node 10 is as 

follows: 

The full update formulas for C2M are in Equations 1.15 to 4.18. The derivation for the 

update fornula of C2M rnding at the master output node 1 to 3 is as foiiows: 

The derivation for the update formula of CZM ending at the mster output node 4 to 6 is 

as follows: 



The denvation for the update formula of C2M ending at the master output node 7 to 9 is 

as fol10 ws: 

The derivation for the upùate formula of V2M ending at the master output nodr 10 is as 

fou0 ws: 

B.3 Update Equations for Output-tuned HSNN 

The derivation given here is for the nonliaear-nonlinear HSNN structure shown in 

Figure 4.4. There are 8 types of parameten to be derived: 



the weights of the h s t  hidden layer of the master network, V I  M, 

the biases of the first hidden nodes of the m s t e r  network, C l M ,  

the weights of  the second hidden layer of the rnaster network, V2M, 

the biases of the output nodes of the mister network, C2M. 

the weights of the fnst hidden layer of the slave network. V 1 S. 

the biases of the h s t  hidden nodes of the slave network, C I S, 

the weights of the second hidden layer of the slave network, V2S. and 

the biases of the output nodes of the slave network, C2S. 

Because of the structure of the master network, the derivation for the update of V l M  

cm be obtained through two routes. 

Route 1: 



Route 2: 

in this work, the VIM, is set to the average value of the V1M calculated from eacli 

route, as shown in Equation 4.33. 

The derivation of the update equation for C1M is as follows: 

The partial denvatives are basically the sarry: as in the derivation of the updatr 

equations for VlM, except for: 

Therefore, there are also two routes to calculate C 1M as given in the following two 

equations: 

ae -- 
aClM - [2 (e ) (yS) (V2M j,l 0 a') ]  or: - - - [2(e)(V2M j ,2 O a') ]  acm 
Similar to V IM, and C I Mn, is taken as the average as shown in Equation 4.36. 

The update equatioos for V2M are divided mto two groups, accordhg to the output 

nodes of the rnaster network. The full update fomulas for V2M are in Equations 4.29 

and 4.30. The derivation for the update formula of V2M ending at output node 1 of the 

rnaster network is as foiIows: 



The derivation for the update formula of V2M ending at output node 2 of the m t e r  

network is as bllows: 

The hi11 update formulas for C2M are in Equations 4.3 1 and 

the update formula of C2M ending at the master output node 1 

4.32. The derivation for 

is as follows: 

The derivation for the update foimula of C2M ending at the mister output node 2 is as 

follows: 



The Full update formulas for the slave network are m 

derivation for the update equation of V 1s is as follows: 

avis - ay av, as ad avis 

d = (VIS)(U,) + CIS 

Equations 4.39 to 4.42. The 

ad -- 
a n s  -us 

The derivation for the update equation of ClS is as follows: 



The derivation for the update rquation of V2S is as foUows: 

The derivation for the update equation o f  C2S is as follows: 



APPENDIX C 

TRAINING AND TEST DATA 

C.l TRAINING AND TESTING DATA FOR 

THE FLASH SYSTEM 

All training and testing data givrn are nonnalised. 

Main trauiing data for M-W flash 

File nmie: tlth8 15 

Number of data points: 150 









Test data for M-W system 

File nme: fts70k 

Number of data points: 70, emr in K-values for single-phase region 



Training data for M-W system 

File name: flthl50.txt 

Number of data points: 150 with no enor m K-values. 





0.35562 

0.35562 

0.32205 

O 

0.29377 

O 

O.? 1552 

1 

0.63616 

0.56739 

1 

0.50758 

0.45553 

0.45555 

0.41036 

O 

0.37127 

O. 33762 

O 

O. 30888 

1 

0.71885 

1 

0.64437 

O 

1 

0.52196 

O 

0.47 165 

0.42748 

O 

0.38879 

0.35505 

0.89845 

1 

1 

O 

1 

0.65596 

O 

1 

0.5387 

1 

0.48984 

0.44651 

0.4465 1 





Test data for M-W flash 

Filename: fts70k. txt 

Number of data points: 70 witli no cmr in K values 





Training file for M-W system in random order for MLP 

Number of data points: 150 







The following training and testing data files are in the enclosed diskette. 

Training file for M-W system in two-phase region only 

File n m e :  fvnzl (100 data points) 

Order of variables is the same as the previous training files for the M-W system 

Testing file for M-W system in two-phase region only 

File narne: ftsmt2 (70 data points). 

Order of variables is the same as the previous training files for the M-W systern 

Training file for B-T system 

File name: fbtZ300 (300 data points). 

Order of variables: T, P, F, z, V, y, L, x, and q 



Testing file for B-T system 

File name: fbs100 ( 100 data points) 

Order of variables: T, P. F, 2, V, y, L, x, and q 

C.1 TRAINING AND TESTING FLES FOR THE 

CRUDE DISTILLATION TOWER 

1. Top and lieavy naphta section 

Training file: Hl3ûû  (300 data points). 

Tesring file: HS 100 ( 100 data points). 

Order o f  variables in boih fdes: Bintolt, Htfeed, Hndraw, Krrodraw, Qreb, Ttop, Ovhd, 

RR. Qcoud. PAT. Ttoph, Tboth, PM, IBPH, FBPH, RHOH 

2. Kerosene section 

Training fi$: KtcZOr (200 data points). 

Testing file: Ksc10r (100 data pomts). 

Order of variables in both fdes: BintoIt, Htfeed, Hndraw, Kerodraw, Diesdraw, SSK, 

TtopK, TbotK. FPKero, IBPK, FBPK. 

3. Diesel section 

Training file: Dtc620 (200 data points). 

Testing file: Dsc610 (100 data pomts). 

Order of variables in both fdes: Bintolt. Httëed, Kerodraw, Diesdraw. AGOdraw, SSD, 

TtopD, TbotD, IBPD, FBPD, PourD, PAD. 



4. AG0 section 

Training file: Agt 150 ( 150 data points). 

Testing file: Ags100 (100 data points). 

Order of variables in both tles: Bintolt, Htfeed, Diesdraw, AGOdraw, SSA, TtopA, 

TbotA, IBPA, FBPA, PourA, PAA. 

5. LSWR section 

Training file: Lswt 150 ( 150 data points). 

Testhg file: Lsws7O (70 data points). 

Order of variables in both files: Bintoit, Htfeed, AGOriraw, SSM, Tbot, PourL. 



APPENDIX D 

MATLAB PROGRAMS 

D.l Sample Prognm for Standad RBFN. 

flops(O), tic 



rbfn-flops = flops 
rbfn-the = toc 

subplot(2,l,l) ,plot3 (xl,x2,out(l, : ) ,  ' r + ' ) ;  
hold on; grid; xlabel('x1'); ylabel('s2'); zlabel('ylt); view(-30,301; 
titls('Trainicg data (yll'); 
p l o t 3  (xl,x2,yl, 'ga' ; 

tmp=outtl, : ) ;  

for i=l :Nt 
a=xl(i); X=[a;a]; 
a=xZ(i); Y=[a;a]; 
a=tmp(i); b=yl(i); Z=[a;b];  
plot3(X,Y,Z, ' y - '  ) ;  

a d  

g=[xl; x2; x3; x41; 
out = simurb(g,wl,bl,w2,b2); 

y y  = [yl; y2;  y3; y4; y% 
sse = sumsqr(yy - out) 
RMS = sqrt(sse/NR) 
ssel = sumsqr(y1 - out(1,:)) 
sse2 = sumsqr(y2 - out(2, : ) )  

sse3 = sumsqr(y3 - out(3, : ) )  

sse4 = sumçqr(y4 - out(4, : ) )  

sseS = sumçqr(y5 - out(5, : E )  
rmsl = sqrt(ssel/NR) 
rms2 = sqrt(sseS/NR) 
rms3 = sqrt(sse3/NR) 



rms4 = sqrt(sse4/NR) 
rms5 = sqrt(sseS/NR) 
epoch 

subplot(2,1,2) ,plot3(xl,x2,out(l, : ) ,  'r+'); 
hold on; grid; xlabel('xli); ylabel('x2'); zl&el('yLt); view(-30,301; 
title( 'Test data ( : J I )  ' 1 ; 
pl0t3(xl,x2,yl,'go1); 

~ = o u t ( l ,  : ) ;  

for i=l :Nt, 
a=xl(i) ; X=[a;a] ; 
a=x2(i); Y=[a;a]; 
a=tmp(i); b=yl(i); Z=[a;bj; 
plot3 ( X , Y , Z ,  'y-') ; 

end 

D.2 Sample Program for MLP 

clear; clc; 



f lops (0) , tic 

bp-flops = flops; 
bp-time = toc;  

bp-f lops  
bp- t ime 

clf  
out = ~ i ~ ~ ~ ( ~ t ~ ~ t b ~ , ~ l e g ç i g ' t w 2 . b 2 , ' l ~ g ~ i ~ ' t ~ ~ t b ~ t ' ~ ~ ~ ~ ~ ~ ~ ' ) ~  



s~bplot(2,2,3); p l 0 t 3 ( ~ 1 ~ ~ 2 ~ 0 ~ t ( l , : ) ~ ' ~ + ' ) ;  
hold on; grid; xlabel('xi'); ylabel('s2'); zlabel('y2'); view(-30,30); 
title('Test data (y11 ' 1 ;  



t ~ = o u t ( l ,  : ) ;  

f a r  i=l:NR, 
a=xl(i); X=[a;al; 
a=x2(i); Y=[a;al; 
a=tmp(i); b=yl(i); Z=[a;bl; 
p lo t3  ( X , Y , Z ,  'y-' 1 ; 

er:d 

subplot(2,2,4); plat3(xl,x2,out(2,:),'r+'); 
hold on; grid; xlabel('sl'): ylabel('x2'); zlabel11y2'); view(-30,301; 
title('Test data (y2I41; 
plot3 ( ~ 1 , ~ 2 , ~ 2 ,  'ga8 ; 

D.3 Sample Program for Hybrid RBF-FPM-RBF 



for i = I:N 
i f  out(1,i) > 1 

out(1,i) = 1; 
.xid 
i f  out(l,i) < slack 

out(l,i) = O; 
ecci 
i f  out(2,i) > 1 

out(2,i) = 1; 
end 
i f  out(2,i) c slack 

out(2,i) = 0; 
t rici 

ecd 



tp = [df me sse SC]; 

rbfn-flops = flops 
rbfn-time = toc 

for i = 1:N 
i f  outl(i) > 1 

outl(i) = 1; 
er,d 
if outl(i} < slack 

outl(i) = 0; 
end 

ecd 

~ubplot(2,2,l),plot3{xl~x2,out(l,:),'r+'); 
hold on; grid; xlabel('xI1); yhbel('x2'1; 
title('Trainicç data (y11 ' 1 ;  
plot3(xl,x2,y11 ' 3 ~ '  1 ;  



tmp=outl; 
fur i=l :N, 

a=xl(i); X=[a;a]; 
a=x2(i) ; Y=[a;al ; 
a=tmp(i); b=yS(iI; Z=[a;bl; 
plot3 ( X , Y , Z ,  'y-' 1 ; 

ênd 

g=[xl; x2; x3; x4; x51; 
out = si~rb(g1w11,b11,w12,b12); 

fo r  i = 1:NR 
if out(1,i) > 1 

out(1,i) = 1; 
elseif out(1,i) < slack 

out(1,i) = 0; 
end 
if out(2,i) > 1 

out(2,i) = 1; 
elseif out(2,i) < slack 



out(2,i) = 0; 
er,d 

end 

g=[xl; x2; x3; x4; y; yfl; 
out1 = simurb(g,w2l,b2l,w22,b22); 

y y =  [yl; y3; y21; 
ssel = sqrt ( (sumsqr 
outs = [out; outl]; 
sse2 = sqrt( (sumsqr 
epochl = kl 
epoch2 = k2 

s~plot(2,2,3),plot3(xl,x2,out(l,:),'r+'~; 
hold on; grid; xlabel('x~'); ylabel('x2'); zlabel('ylr); view(-30,301; 
title('T~st data (yl)'); 
plot3 (xl,x2,yl, 'ge') ; 



tmp=out(l, : ) ;  

for i=l:N, 
a=xl(i); X=[a;al; 
a=x2(i); Y=[a;al; 
a=tmp(i); b=yl(i); Z=[a;bj; 
plot3 ( X , Y , Z ,  'y-') ; 

end 

subplot(2,2,4); plot3(xl,x2,outl,'r+'); 
hold on; grid; xlabel ( ' x l  ' ) ; ylabel( 's2 ' 1 ; zlabel( ' y 2  ' ; 
view(-30,30); 
title('Test data ( ~ 2 1 ' ) ;  
plot3(xl,x2,y2, 'gai  ; 

tmp=out 1 ; 
f ~t i=l :NI 

a=xl(il; X=[a;al; 
a=x2(i); Y=[a;a]; 
a=tmp(il; D=y2(i); Z=[a;bj; 
plot3(X,Y,Z, 'y-'); 

SECI 

D.4 Sample Program for Linear-noaünear HSNN 



ps = (A(:,îll ' ;  
t = ( A ( : , 7 H 1 ;  
fl = 'lcgsig'; 
sl = FIRST; 
£ 2  = 'purelin'; 
s2 = SECOND; 

% slave input 
3 output variable 

C l M l  = ClM - miu.*((2 . *  error)*dint) ' ;  
V1Ml = VIM - m i u . * ( ( 2  .*  error)*dint)'*p(:,j) ' ;  
C1M2 = C1M - miu. * ( bltdint 1 ' ; 



V1M2 = VlM - miu.*(bl+dint)'*p(:,j}'; 
C1M = (ClMl+CIM2)./2; 
V1M = (VlMl+VlMS) . / 2 ;  
C2M(l,l) = C2M(l,l) - miu.*(bI); 
CSM(2.1) = CSM(2.1) - miu.*(S.'error); 
VSM(1, : )  = VSM(1, : )  - miu.*(bl*al) ' ;  
VZM(2, : )  = VSM(2, : )  - miu.*(2.*error*aï) '; 

SSE = sumsqr (Verr) ; 
RMSl = RMS; 
RMS = sqrt (SSE/N)  
VSSE = [VSSE; RMS] ; 

k = k+i; 
i f  RMS > ssse 

if RMS > RMSf 
loop = k; 
k=nepoch+ 1 ; 

end 
else 

loopl = k; 
k=nepoch+l; 
RMStr = RMS 

er,d 
er,d 

hstirne = toc; 



z = (VlS . *  ps(:,j)) * ClS; 
error = (z-t(:,j)); 
Z = [ Z  21; 

Verr = [Verr; error]; 
e d  

SSE = sumsqr(Verr1; 
MSE = SSE/Nl'; 
RMS = sqrt(MSE1 

D.5 Sample Program for Nonünear-nonlinear HSNN 

p = ( [ A ( : , S )  A ( : , 3 : 4 ) 1 ) ' ;  
ps = (A(:,l))'; 
t = ( A ( : , 7 1 ) ' ;  
fl = 'lcgsig'; 
s1 = FIRST; 
f2 = 'purelin'; 
s2 = SECOND; 

_., _ . . . . . . . . .B riI-~.L Ld Y:.J ',+ieL f ~ r * ~ :  
d 

[VlM,ClM] = feval(feval(fIIrinit'),sl,p); 
[row,col]=size(p); 
[VIMICIM] = rands(s1,row); 
x = ones(s1,l) feval(f1, ' c ~ c p u t ' ) ;  
[ S , Q ]  = size(s2); 
if max(S,Q) > 1, s2 = S; end 



C .. - 
.) ,-;7J. y 2  : ; c ;  *,; ' ;; i,' ' ;; 

- .. .;.. . . . da1 = al . *  (1-al); 'l .... , ::t c : :  

.$ ,: >, .: . ? .- - .  .... : . :. " 
: ,<.; , .:..- - - 
, .-C1 : U T 2  , .AL* : ' ' : , - 

dg = g . *  (1-g); -$, ?:&-,-:-- - -  _ S I  n c  y 
bl = 2 . *  error ;  

., :-: sV2M13 = sum(VSM(1:3, : )  ) ' .*dal; ...J i:q L: 7 ,;::y ::.? ; ..l;~: --.c;:, :; + 
sV2M46 = sum(V2M(4:6, : ) )  '.*dal; 
sV2M79 = sum(V2M(7:9, : )  1 ' .*dal; 
sV2MIO = sum(VZM(10, : )  1 ; 
da113 = (sV2M13 sVSM13 sV2M131; 
da146 = IsV2M46 sV2M46 sV2M461; 
da179 = (sV2M79 sV2M79 sVZM791; 
sgVS = V2S . *  dg; 

ClMl = CIM - miu.*(bl*(sV2MlO.*dal)); 
VlMl = V1M - miu.*(bl*(s~2~lO.*dal))*p(:,j)'; 
C1M2 = C1M - miu.*(bl*g'+dal79') O; 
VlM2 = V1M - miu.*(bl*gt*da179') " p I : , j )  ' ;  
C1M3 = c ~ M  - mi~.~(bl*sgVS'*dal46')~; 
V1M3 = VIM - miu.*(bl*sgVS0*da146'l"p(:,j)'; 
C1M4 = CIM - miu.*(bl*ps(:,j)*sgVS"dall3')'; 
V1M4 = VIM - roiu,*(bl*ps(:,j)*sg~~'*dal13')'*p(:,j)'; 
C I M  = (ClMI+ClMS+ClM3+CIM4)./4; 
V1M = (VlM1+VlMS+V1M3+VlM4)./4; 
C2M(1:3) = C2M(1:3) - miu.*(bl*ps(:, j)*sgVS); 
C2M(4:6) = CSM(4:6) - miu.* (blcsgVS) ; 
C2M(7:9) = CSM(7:9) - miu.*(bl*g); 
C2M(10) = CSM(10) - miu.*bl; 
V2M(1:3, : )  = VSM(1:3, : )  - miu.*(bl9ps(:, j)*sgVS*al'); 



SSE = sumsqr(Verr1; 
RMS1= RMS; 
FWS = sqrt (SSE/N)  
VSSE = [VSSE; RMS]; 
k = k + l ;  
if RMS > s s s e  

if RMS > WSl 
loop = k; 
k=nepoch+l; 

end 
else 

loopl  = k; 
k=nepoch+l; 
RMStr = RMS 

2nd 
end 
hstime = toc; 



SSE = sumsqr(Verr); 
MSE = SSE/NT; 
RMS = sqrtiMSE) 

D.6 Sample Program for Output-tuned HSNN 



for i = 1:N; 
if yp(i) < 0.02; 

nun(i) = 0; 
elseif V ( i )  < 1; 

num(i) = 0; 
eise 

nun(i) = ( ( F ( i ) * z ( i )  
end 

end 

p = (num); 
ps = ([AI(:,1:4) A(:,3:4)1) ' ;  
t = ( A ( : , 7 ) )  ' ;  
fl = 'lcgsig'; 
s1 = FIRST; 
f2 = 'purelin'; 
s2 = SECOND; 

[VlS,ClS] = feval(feval(fl,'icit'),sl,p~); 
[row,col]= size(ps1; 
[V1S,ClS] = rands(s1,rowl; 
x = ones(s1,l) feval(f1, ' cu tpu t ' ) ;  
[S,Q] = size(s2); 
if max(S,Q) > 1, s2 = S; end 
[VSS,CSS] = Eeval(feval(f2,'init'),s2,x); 



error = (z-t(:,j)); 
Verr = [ V e r r ;  error 1 ; 

S S E  = sumçqr(Verrl; 
R M S 1  = RMS; 
RMS = sqrt(SSE/N) 
VSSE = [VSSE; RMS];  
k = k+l; 
if RMS > ssse 

if RMS > RMSl 
loop = k; 
k=nepoch+l; 

en5 
else 

loopl = k; 
k=nepoch+ 1 ; 
RMStr = RMS 

errd 
end 
hstime = toc; 

A = [ ] ;  A I = [ ] ;  
for i = 1:N 

a=fscanf(f,'%fl, [l 101); - * 

A= [A; a] ; % x l ,  s 3 ,  y rti,ir il be s c r ~ r ~ c  2 i~ zyra\,- ;i 



end 
£close(£ 1 ; 

. . 
end 
€close( f )  ; 

= ( & ( I f : )  . *  g2); 3 -1 2 2 i 2 .  :!; 
Z = [Z ;z ]  ; 
error = (z-t(:, j)); 
Verr = [Verr; error] ; 

e d  

s s E  = sumçqr Werr ; 
MSE = SSE/NT; 
RMS = sqrt (MSE) ; 




