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Abstract

In this thesis, we consider the two-space homogenization method, which produces macro-

scopic expressions out of descriptions of the behaviour of the microstructure. Specifically,

we focus on its application to poroelastic media. After describing the method, we pro-

vide examples to demonstrate that the resultant expressions are equivalent to an explicit

derivation, which might not always be possible, and to outline the method for proving that

the expressions converge to their macroscopic equivalents. Upon providing the basis for

this method, we follow Burridge and Keller’s work for using this to prove the existence

of Biot’s consolidation equations for poroelastic media and to provide expressions for the

derivation of the parameters of these equations from the microstructure [5]. We then dis-

cuss the benefits and challenges that arise from this formulation of Biot’s consolidation

equations.
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Introduction

Mathematical modeling is always a balancing act of detail. Too much detail results in

models that are too complicated to be useful, while insufficient detail results in inaccu-

rate models. While in some problems it is fairly obvious which aspects are important to

capture in the model, this is not always the case.

One kind of problem of this type involves properties that vary on multiple scales. One

common form of multiple scales is that of two length scales: amicroscopic scale and

a macroscopic scale. This is to say that we examine problems where the properties of

interest change significantly between points in space that are a microscopic distance apart

as well as points that are different to a degree that is appreciable on a macroscopic level.

A simple example of such a problem would be determining the behaviour of a composite

material formed of thin fibres of two different materials [12]. On a macroscopic scale,

this composite material would seem to be homogeneous, but ona microscopic scale, it

is possible to distinguish between the two materials. As such, on the macroscopic scale,

properties dependent upon the composition of the materialswould seem to vary slowly,

while they would vary rapidly on the micoscopic scale as it changed between materials.

Another example would be the treatment of acoustic waves through a turbulent fluid [12].

Several methods to deal with this problem have been developed, such as volume averaging

and mixture theory (see [9]). These two methods have been used with some success

in studying our application of interest – that of a porous, elastic solid that is saturated

with fluid – and, in fact, some ideas that would later develop into the volume averaging

method were used in Biot’s study of the problem in the middle of the 20th century. Both

of these methods consider a set of continuous points, but their approach to averaging is

different. In the volume averaging method, we consider a heterogenous "representative

volume element" (referred to as an RVE) which describes the microstructure around this

point in order to determine the continuum properties at the point [9, 21]. On the other

hand, in the mixture theory approach the point is treated as though it is occupied by each

substance in the overall medium – in this case, fluid and solid. Rather than considering

the microstructure around this point, we simply work with the flux through that point [9].
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CONTENTS

While this is a very simplified explanation for these methods, we will be concentrating

on the method of homogenization for two spatial scales for the majority of this work

and, as such, will not require a more thorough understandingof the other methods. In

this method, we consider how these properties vary on both a small and large scale and

then average variation on the small scale to obtain an understanding of the larger scale.

A higher number of scales is possible (see chapter 1, section8 in [1] for an example),

but since our application of interest only uses two scales, we will focus on two scales.

To assist in this averaging, we generally assume that the small-scale variation repeats

periodically throughout the medium. We will consider this method in more detail in later

sections.

In the first section, we introduce the homogenization methodin general terms. In the

second section, we derive an effective thermal conductivity for the one-dimensional heat

equation through the homogenization method and compare it to the equivalent effective

parameter determined explicitly to demonstrate the equivalency between homogenization

results and explicit results for this example. In the third section, we prove that the func-

tions derived from the method converge to the proper solution in the case of an elliptic

differential equation. While no general proof is given, theproof may be altered for a

variety of problems (some are given in [1] and [18]) and laterresults are given assum-

ing this convergence. In the fourth section, we derive Biot’s equations for a poroelastic

medium from its microstructure and provide relations between the microscopic properties

and the equations of the entire medium. In the final section, we discuss the advantages

and shortcomings of the method.
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CHAPTER 1

The two-space homogenization method

The two-space homogenization method is applied to problemswhere properties vary over

two different length scales, where one is much smaller than the other. Typically, these

scales are a microscopic scale where the space is clearly heterogeneous and a macroscopic

scale over which the space appears approximately homogeneous (see [12]. However,

despite using the term "microscopic," the length scale may not be strictly microscopic.

Rather, it refers to a scale much smaller than the macroscopic scale and may be more

accurately considered a mesoscopic scale. For example, we may require that continuity

assumptions hold on the smaller scale, which therefore cannot be on an atomic level.

These scales may also be referred to as a fast scale and a slow scale, respectively (as in

[5]). They are largely equivalent, as properties that vary on a microscopic scale will ap-

pear to vary rapidly from a macroscopic viewpoint and, similarly, macroscopic variations

will seem slow from a microscopic viewpoint. We will use these terms interchangeably

throughout the thesis.

We begin with an initial set of equations that are influenced by the heterogeneous mi-

crostructure; for example, a medium that contains a fluid phase might begin with the

Navier-Stokes equations (as in [5] and [13]). However, in order to represent variations on

these separate scales, properties of a medium inn dimensions are represented as functions

of 2n dimensions, separated into twon-dimensional vectors (or scalars in one dimension),

x = (x1,x2, . . . ,xn) andy = (y1,y2, . . . ,yn) [18]. These variablesx andy are referred to

as the slow (or macroscopic) variable and the fast (or microscopic) variable respectively,
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CHAPTER 1: THE TWO-SPACE HOMOGENIZATION METHOD

allowing macroscopic variation to be represented in expressions ofx and microscopic

variation iny. Many works in homogenization quantify this fast variationin y by relating

the two by the relation

y =
x
ε

(1.1)

for a small, strictly positive parameterε (for example, [1, 5, 12, 13, 18]). The precise def-

inition of ε is not as significant as the assumption that it is small, but itis often considered

to be approximately the ratio of the microscopic length scale to the macroscopic length

scale.

This comes with some advantages. Most significantly, it justifies the definition ofy as

the "fast" variable by giving a quantifiable reasoning for its rate of change, since for a

function f with a bounded derivativef ′,

d
dx

f
( x

ε
)

= ε−1 f ′
( x

ε
)

which, for a smallε, is large even iff ′ is bounded [13]. This factor ofε−1 multiplied by

f ′ in the derivative also provides a justification for replacing the derivatives inn dimen-

sions in the initial set of equations for derivatives of the 2n-dimensional functions used in

the homogenization equation as

∇ → ∇x + ε−1∇y (1.2)

where∇x and∇y are del operators with respect tox andy respectively [5].

However, definingy as in (1.1) is not particularly rigorous, as the homogenization method

requiresx andy to be treated as independent variables at some stages of the derivation of

the homogenized equations. Rather, a more cautious approach is to definex as the variable

of macroscopic variation andy as the respective microscopic variable, which allows for

them to be independent. The derivative substitution (1.2) may be viewed as an assumption

of the method rather than a result of relation (1.1). The relation (1.1) is then a diagonal

in the 2n-dimensional space of(x,y), which is made significant as the diagonal along

which the physical solutions lie in then-dimensional problem [5]. Specifically, the 2n-

dimensional functionsf (x,y) in the equations with the substitution (1.2) are expansions
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CHAPTER 1: THE TWO-SPACE HOMOGENIZATION METHOD

from this diagonal of then-dimensional functions of our initial set of equationsf (x) by

[12]

f (x,
x
ε
) = f (x)

In both [12] and [5], this line of reasoning was used after theprevious definition to justify

the treatment ofx andy as independent. Here, we use this as the definition to allow for

true independence of the variables.

This definition causes an epsilon dependence in the originaln-dimensional functions,

which arises from a perturbation expansion of the functionsin terms of epsilon. This is

also used in the 2n-dimensional functions such that

f (x,y) = f0(x,y)+ ε f1(x,y)+
ε2

2
f2(x,y)+O(ε3) (1.3)

These expansions are substituted into the set of equations.Since this is an infinite series

expansion, it is possible to equate the parts multiplied byε i for i ∈Z and obtain equations

for f0, f1, and so on.

The final assumption required for the homogenization methodis the periodicity of the

heterogeneous underlying microstructure, which is represented in periodic behaviour of

the properties iny. We refer to a cell over which one period occurs asY , which is repeated

over the entirety of the domain of the medium iny, Ω [18]. This domain may be bounded,

but calculation for even simple boundary conditions can become complicated [1] and

thus many applications assume that the medium is infinite to simplify calculations (for

example, in [5] and [20]). Sincex andy are considered as different scales over the same

medium, it is simplest to consider both domains as being infinite.

It is from this point that the specific steps vary dependent onthese equations. The initial

goal is to obtain expressions for the zeroth-order part of the epsilon expansion,f0(x,y),

for each property, which is taken to be approximately equivalent to the property sinceε
is small. This may only require the zeroth and first order expansion terms (such as in [5])

or it may require higher-order terms (such as in [13]). The eventual goal will be to obtain

expressions for these zeroth-order terms only in terms of the macroscopic variablex.

In some cases, the zeroth-order term is already only in termsof x. For those where the

5



CHAPTER 1: THE TWO-SPACE HOMOGENIZATION METHOD

zeroth-order term has a dependence ony, it becomes necessary to average over the micro-

scopic variabley to provide an approximation to the macroscopic behaviour. If the shape

of a period cellY is explicitly determined, the average takes the form of an integral with

respect toy overY divided by the volume ofY [12]. If the specifics of the periodicity is

not given, then we take the average over the whole domain ofy divided by its volume.

In the case where the domain is infinite, this may be accomplished by taking the integral

over a ball of radiusR divided by the volume of the ball and then taking the limit asR

extends to infinity.

Whatever the form the average takes, this is used on the expressions for the zeroth-order

terms that still depend upony. These averaged expressions become the new equations for

the macroscopic medium.

Since the flexibility of this method means that we cannot givea more exact description of

the steps required to obtain these expressions, we will makethis more explicit by provid-

ing a simple example. Specifically, we will demonstrate its use in a one-dimensional heat

equation. We use the one-dimensional heat equation becausean explicit treatment of the

equation can provide an equivalent result as the one obtained by the method of homoge-

nization. While this example cannot be used as proof of the method of homogenization,

it does lend credence to it when used in circumstances where an explicit solution is not

possible.
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CHAPTER 2

The one-dimensional heat equation

In order to demonstrate the two-space homogenization method, we apply it to the one-

dimensional heat equation along a metal rod and demonstratethat it is equivalent to the

explicit solution. We largely follow the approach used by Keller in [13], rearranging and

expanding the calculations as required for greater clarity.

However, despite its usefulness as an example of the two-space homogenization method,

its use in practical applications is limited. In this case, the only new information obtained

is a relation between the small scale behaviour of the parameters and the effective macro-

scopic behaviour of these parameters, so it is only useful when we can model this small

scale behaviour. This requires a much more intimate knowledge of the impurities of a

specific metal rod than is practical in real applications. This does not detract from its

usefulness as a demonstration of the method, but it does suggest that one must be careful

in considering the application of the method to real-life situations.

2.1 The two-space solution

The one-dimensional heat equation, which models heat flow along a rod, is a well-known

application of the theory of ordinary differential equations. For a rod where the ther-

mal conductivity,k, varies along its length, the equation for the steady state temperature

7



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

distribution is
d
dx

(

k(x)
d

dx
u(x)

)

= h(x) 0≤ x ≤ 1 (2.1a)

wherex represents the position along the rod, defined such that the ends of the rod are at

0 and 1,u represents the temperature along the rod, andh represents a heat source. For

this example, we assume that one end of the rod is held at temperature 0 while the other

end is insulated so that no heat flows out of the rod at that end.This results in the simple

boundary conditions

u(0) = 0

du(1)
dx

= 0 (2.1b)

We also will assume that the thermal conductivityk is both positive and bounded to pre-

vent unphysical conditions. This assumption will also prove useful later in the application

of the two-space homogenization method.

However, for this method, it is necessary to write the equations in terms of a slow vari-

ablex for changes over a macroscopic scale and a fast variabley for changes over the

microscopic scale, turning it into a partial differential equation. A small parameterε,

independent ofx andy, is also introduced so that

u(x,y,ε) = u0(x,y)+ εu1(x,y)+
ε2

2
u2(x,y)+O(ε3) (2.2)

and so that the derivative in (2.1a) may be replaced by the partial derivatives

d
dx

→
∂
∂x

+ ε−1 ∂
∂y

For the sake of convenience, we will use∂x and∂y to represent these partial derivatives

for the rest of this section. From this, (2.1a) becomes

(

ε−2∂yk(x,y)∂y + ε−1(∂xk(x,y)∂y +∂yk(x,y)∂x)+∂xk(x,y)∂x
)

u(x,y,ε) = h(x,y) (2.3)

Using the epsilon expansion (2.2) and equating like powers of ε, the lowestε terms result

8



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

in three equations

O(1) : ∂y
(

k(x,y)∂yu0(x,y)
)

= 0 (2.4)

O(ε) : ∂y
(

k(x,y)∂yu1(x,y)
)

= −
(

∂x
(

k(x,y)∂y
)

+ ∂y
(

k(x,y)∂x
)

)

u0(x,y) (2.5)

O(ε2) :
1
2

∂y
(

k(x,y)∂yu2(x,y)
)

= −
(

∂x
(

k(x,y)∂y)+ ∂y
(

k(x,y)∂x
)

)

u1(x,y)

−∂x
(

k(x,y)∂xu0(x,y)
)

+ h(x,y) (2.6)

Solving (2.4) in the most straightforward manner possible,we obtain

∂yk(x,y)∂yu0(x,y) = 0

k(x,y)∂yu0(x,y) = f (x)

∂yu0(x,y) = f (x)k−1(x,y)

u0(x,y) = f (x)
∫ y

y0

k−1(x,y ′)dy ′+ g(x)

for an arbitraryy0. In the absence of boundary conditions foru0(x,y), the unknown func-

tions f andg must be determined in terms of the functions at this samey0. To determine

g, we sety = y0, which makes the integral zero, giving

u0(x,y0) = g(x)

Similarly for f , we have

f (x) = k(x,y0)
(

∂yu0(x,y0)
)

Thus, the solution for arbitraryy0 can be expressed as

u0(x,y) = u0(x,y0)+ k(x,y0)
(

∂yu0(x,y0)
)

∫ y

y0

k−1(x,y ′)dy ′ (2.7)

However, sincek is strictly positive and bounded, its reciprocal never approaches zero

and thus the integral does not reach a finite limit as the arbitrary y0 increases. While the

slow variablex is bounded, the domain of the fast variable along the physical diagonal

9



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

y = ε−1x may be made arbitrarily large. So, under the assumption thatthe heat function

u0 is bounded,∂yu0(x,y0) must be zero, since the integral is nonzero wheny 6= y0 andk

is strictly positive. Sincey0 is arbitrary, this shows that the derivative ofu0 with respect

to y is 0 at every point. Sou0 is a function of the slowly varying termx only.

Using this information in (2.5) to eliminate a derivative with respect toy, we obtain

∂yk(x,y)
(

∂yu1(x,y)+ ∂xu0(x)
)

= 0 (2.8)

We can solve (2.8) in a similar way to (2.4), such that

k(x,y)
(

∂yu1(x,y)+ ∂xu0(x)
)

= f (x)

∂yu1(x,y) = k−1(x,y) f (x)−∂xu0(x)

u1(x,y) = f (x)
∫ y

y0

k−1(x,y ′)dy ′−∂xu0(x)y+ g(x)

By the same method used to determinef andg in (2.4), we find

f (x) = k(x,y0)
(

∂yu1(x,y0)+ ∂xu0(x)
)

g(x) = y0∂xu0(x)+ u1(x,y0)

and thereby obtain

u1(x,y) = u1(x,y0)− (y− y0)∂xu0(x)+ k(x,y0)
(

∂yu1(x,y0)+ ∂xu0(x)
)

∫ y

y0

k−1(x,y ′)dy ′

By rearranging and dividing byy− y0, as before, it can be shown that

∂xu0(x) =
u1(x,y0)−u1(x,y)

y− y0
+

k(x,y0)
(

∂yu1(x,y0)+ ∂xu0(x)
)

∫ y

y0

k−1(x,y ′)dy ′

y− y0

(2.9)
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CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

As with u0, we assume thatu1 is a bounded function. Then, we define a functionk0(x) as

k−1
0 (x) = lim

y→∞

1
y− y0

∫ y

y0

k−1(x,y ′)dy ′ (2.10)

We assume that this limit exists and is independent ofy0. With this, we can take the limit

of (2.9) asy goes to infinity to find

∂xu0(x) = k(x,y0)
(

∂yu1(x,y0)+ ∂xu0(x)
)

k−1
0 (x)

k(x,y0)∂yu1(x,y0) = k0(x)∂xu0(x)− k(x,y0)∂xu0(x) (2.11)

Now, sincek0 is independent of bothy andy0 and (2.11) is only in terms ofy0, we may

replace the arbitraryy0 with the variabley in (2.11). This is simply a notational change,

since bothk and∂yu1 are not affected by the symbol used for the second variable.

With this, we can substitute this expression into (2.6) and obtain

∂yk(x,y)∂y
u2(x,y)

2
+ ∂yk(x,y)∂xu1(x,y) = −∂x

(

k0(x)∂xu0(x)− k(x,y)∂xu0(x)
)

−∂xk(x,y)∂xu0(x)+ h(x,y)

∂y
(

k(x,y)∂y
u2(x,y)

2
+ k(x,y)∂xu1(x,y)

)

= −∂xk0(x)∂xu0(x)+ h(x,y) (2.12)

Integrating (2.12) with respect toy from y0 to y results in

(

k(x,y)∂y
u2(x,y)

2
+ k(x,y)∂xu1(x,y)

)
∣

∣

y
y0
= −(y− y0)∂xk0(x)∂xu0(x)+

∫ y

y0

h(x,y ′)dy ′

(2.13)

We define the average ofh with respect toy as

h(x) = lim
y→∞

1
y− y0

∫ y

y0

h(x,y ′)dy ′ (2.14)

Under the assumption that the expression on the lefthand side of (2.13) is bounded, we

divide the equation by(y− y0) and take the limit asy tends to infinity. Thus, we obtain

d
dx

(

k0(x)
du0

dx
(x)
)

= h(x) (2.15)

11



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

This gives us an expression for the slowly varying, or macroscopic scale, properties of

the heat equation. However, this is not simply a case of averaging the functions over the

swiftly varying y, ask0 is determined from (2.10). Since the heat equation is as simple

as it is, we can show that this definition fork0 is correct by explicitly determining the

effective thermal conductivity.

2.2 Effective thermal conductivity

We begin with the same boundary value problem as described in(2.1a,b). This time,

we ignore the rapid variation of the source termh since its homogenized equivalent is

just an average over the rapid variation. We concentrate instead on the rapid variation

of the thermal conductivityk by considering it in terms of the variableε−1x for a small

parameterε. For a bounded derivative ofk, k ′, this provides the rapid variation desired,

as
dk(ε−1x)

dx
= ε−1k ′(ε−1x)

means that the rate of changedk(ε−1x)
dx is large compared to the derivative ofk(x) whenε

is small. To capture both rapid and slow variations, we writethe thermal conductivity as

k(x,ε−1x).

For the sake of computational convenience, we writeh(x) as the derivative of some func-

tion g(x), where we assumeg(1) = 0. This assumption ong does not affect the results,

as only the rate of change ofg is important in this source term. Thus, our steady-state

equation becomes

d
dx

(

k(x,ε−1x)
d
dx

u(x)
)

=
d
dx

g(x) 0≤ x ≤ 1 (2.16)

with the boundary conditions remaining the same as in (2.1b). The solution of the equa-

12



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

tion is quite straightforward under these conditions, as

d
dx

(

k(x,ε−1x)
d
dx

u(x)−g(x)
)

= 0

k(x,ε−1x)
d
dx

u(x)−g(x) = c1

for some constantc1. Settingx = 1, by our assumption ong and the second boundary

condition in (2.1b), it is clear thatc1 = 0. So

k(x,ε−1x)
d
dx

u(x)−g(x) = 0

d
dx

u(x) =
g(x)

k(x,ε−1x)

u(x) =
∫ x

0

g(x ′)

k(x ′,ε−1x ′)
dx ′+ c2

for some constantc2, which is determined to also be equal to zero by settingx = 0 and

using the first boundary condition in (2.1b). From this, it becomes clear thatu is also

dependent onε, so we write it as

u(x,ε) =
∫ x

0

g(x ′)

k(x ′,ε−1x ′)
dx ′ (2.17)

This is to say thatu(x,ε) varies rapidly as a result of its dependence onk, which is to say

that microscopic changes in the position along the rod result in large changes in the value

of u. To eliminate this effect and consider the macroscopic variation inu, we wish to find

the limit asε tends to zero,

u0(x) = lim
ε→0

u(x,ε) (2.18)

To prove that this limit exists and that the result may be expressed in the same manner as

u0(x) in (2.15), we prove the following theorem.

Theorem 2.1: [13] Let f be a function such that the derivative off (x,y) with respect to

its first argument,fx, exists and is continuous. If for some finite valueB, | fx(x,ε−1x)| ≤ B

13



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

for all values ofε and the limit

f (x) = lim
ε→0

ε
∆x

∫ ε−1(x+∆x)

ε−1x
f (x,y)dy (2.19)

exists uniformly in x, independently of∆x, then

lim
ε→0

∫ x

0
f (x ′,ε−1x ′)dx ′ =

∫ x

0
f (x ′)dx ′ (2.20)

Proof: For notational convenience, we define the integralI(x,ε) as

I(x,ε) =
∫ x

0
f (x ′,ε−1x ′)dx ′ =

N−1

∑
j=0

∫ x j+1

x j

f (x ′,ε−1x ′)dx ′ (2.21)

wherex j =
jx
N , j = 0,1,. . . ,N −1 for some natural numberN. We define the difference

between adjacentx j as∆x = x
N . Then, by the assumption that| fx| ≤ B and the mean value

theorem[23], we have

| f (x ′,ε−1x ′)− f (x j,ε−1x ′)| = |(x ′− x j) fx(x̃ j,ε−1x ′)|, x j ≤ x̃ j ≤ x ′ ≤ x j+1

| f (x ′,ε−1x ′)− f (x j,ε−1x ′)| ≤ B∆x (2.22)

From (2.21) and (2.22), it follows that

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′|=|
N−1

∑
j=0

∫ x j+1

x j

f (x ′,ε−1x ′)− f (x j,ε−1x ′)dx ′|

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤
N−1

∑
j=0

|
∫ x j+1

x j

f (x ′,ε−1x ′)− f (x j,ε−1x ′)dx ′|

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤
N−1

∑
j=0

∫ x j+1

x j

| f (x ′,ε−1x ′)− f (x j,ε−1x ′)|dx ′

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤
N−1

∑
j=0

∫ x j+1

x j

B∆xdx ′

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤
N−1

∑
j=0

B(∆x)2

14
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|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤NB(∆x)2

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′| ≤
Bx2

N
(2.23)

Taking the limit of (2.23) asN tends to infinity, the righthand side tends to zero. Since the

lefthand side is nonnegative, this means

lim
N→∞

|I(x,ε)−
N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′|= 0

Thus, asN tends to infinity, the relation betweenI(x,ε) and∑N−1
j=0

∫ x j+1
x j

f (x j,ε−1x ′)dx ′

approaches equality. That is to say,

I(x,ε) = lim
N→∞

N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′ (2.24)

If we take the limit of (2.24) asε tends to zero, we find

lim
ε→0

I(x,ε) = lim
ε→0

lim
N→∞

N−1

∑
j=0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′

= lim
N→∞

N−1

∑
j=0

lim
ε→0

∫ x j+1

x j

f (x j,ε−1x ′)dx ′

= lim
N→∞

N−1

∑
j=0

lim
ε→0

ε
∫ ε−1x j+1

ε−1x j

f (x j,y)dy (using y = ε−1x ′)

= lim
N→∞

N−1

∑
j=0

∆x
∆x

lim
ε→0

ε
∫ ε−1(x j+∆x)

ε−1x j

f (x j,y)dy

= lim
N→∞

N−1

∑
j=0

∆x lim
ε→0

ε
∆x

∫ ε−1(x j+∆x)

ε−1x j

f (x j,y)dy

= lim
N→∞

N−1

∑
j=0

∆x f (x j) (2.25)

15
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where on the final line we use the definition (2.19). The righthand side is in the form of

the definite integral off (x) from 0 tox. Thus, by (2.25) and (2.21),

lim
ε→0

∫ x

0
f (x ′,ε−1x ′)dx ′ =

∫ x

0
f (x ′)dx ′

as required.

Using this theorem, we may now findu0(x) as defined in (2.18). If we assume thatu(x,ε)
and its first derivative is bounded, then by using the solution to u(x,ε) in (2.17) and

applying theorem 2.1, we obtain

u0(x) = lim
ε→0

u(x,ε)

= lim
ε→0

∫ x

0

g(x ′)

k(x ′,ε−1x ′)
dx ′

=
∫ x

0
lim
ε→0

ε
∆x

∫ ε−1(x+∆x)

ε−1x

g(x ′)

k(x ′,y)
dy dx ′

=
∫ x

0
g(x ′) lim

ε→0

ε
∆x

∫ ε−1(x+∆x)

ε−1x

dy
k(x ′,y)

dx ′ (2.26)

If we definek0(x) as
1

k0(x)
= lim

ε→0

ε
∆x

∫ ε−1(x+∆x)

ε−1x

dy
k(x,y)

(2.27)

thenu0 is equal to

u0(x) =
∫ x

0

g(x)
k0(x)

dx (2.28)

By comparingu0 to (2.17), it is clear that it is of a similar form tou(x,ε). It is thereby

simple to show thatu0 satisfies a similar equation to (2.16). Specifically, it satisfies the

equation
d
dx

(

k0(x)
d
dx

u0(x)
)

=
d
dx

g(x) 0≤ x ≤ 1 (2.29)

From this equation, it is clear to see thatk0(x) is an effective thermal conductivity for

the steady-state temperature functionu0(x). The definition for this effective conductivity

when derived explicitly, (2.27), is equivalent to its definition when derived by the two-

space homogenization method, as given in (2.10). Thus, the effective thermal conductivity

16
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derived by the two-space homogenization method is equivalent to its explicit derivation.

Due to the simplicity of the steady-state heat equation, thetwo methods are roughly equiv-

alent when it comes to deriving a macroscopic version of a differential equation that also

includes microscopic effects. However, the two-space homogenization method may be

applied to examples where the explicit solution may not be soobvious, as will be demon-

strated in succeeding sections.

17



CHAPTER 3

Energy proof of the convergence of the

homogenization method for a

second-order elliptic equation

Since the final steps in the homogenization method depends heavily on the initial set of

equations, no general proof of the convergence of the epsilon expansion has been devel-

oped. As such, we will follow the proof of one such equation, as given by Bensoussan,

Lions, and Papanicolaou [1], supplementing the proof with Sanchez-Palencia’s work on

a similar problem [18]. Throughout this section, we will be using Einstein summation

convention.

For a set of pointsy0
j in the direction ofy j, we define one periodic cellY as [1]

Y =
n

∏
j=1

[0,y0
j ] ⊂ R

n (3.1)

As might be clear from the term "period," this shape is repeated throughout the domain

of y, Ω. In R
3, this would take the form of a set of rectangular prisms filling Ω without

overlapping except on the edges [18]. We will call a functionY -periodic if it repeats over

these period cells. To avoid dealing with the period cells hitting the boundary, we assume

Ω to be an infinite domain.

The problem we consider is a second-order elliptic equation. We define a set of bounded,

18
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measurable functions [16] which areY -periodic,ai j(y) for i, j = 1,2,. . . ,n – this is to say,

theseY -periodic functions belong toL∞(Rn).

For this set of functions, we require that they satisfy the ellipticity condition such that

there exists someα > 0 so that

ai j(y)ξiξ j ≥ αξiξi ∀ξ ∈ R
n (3.2)

almost everywhere iny.

In Bensoussan et al.’s work [1], these expressions are used to construct a family of opera-

tors dependent onx andε, definingy = x
ε (1.1) to represent the fast variation. However,

since in our approach we are using the more careful definitionof x andy as independent

variables noted in chapter 1, we must begin by usingy to represent the fast variation.

However, since the fast variable is now independent of the slow variablex, we cannot use

the derivative ofx in the same manner as [1]. We instead introduce a variable that we will

call z so that
∂
∂ z

=
∂
∂x

+ ε−1 ∂
∂y

(3.3)

This is equivalent to the derivative substitution assumption (1.2) and will have the same

result as in [1], since they make this kind of substitution ata later stage. Thus, for our

purposes,

Aε = −
∂

∂ zi

(

ai j(y)
∂

∂ z j

)

(3.4)

where in our derivation, theε reliance suggested in the subscript is implicit throughy and

z. For this family of operators, equation (3.2) is an ellipticity condition [18], meaning

that (3.4) is a family of second-order elliptic operators [1]. In the original derivation by

Bensoussan et al., this family of operators includes a terma0(y) added toAε . However,

this term is taken to be 0 everywhere in many later sections, even though it is originally

defined to be strictly positive. For the sake of consistency,we do not include this term.

Using this, we consider the equation

Aεuε(x,y) = f (x) (3.5)
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where we assume thatuε is Y -periodic iny.

Due to this assumption and the assumption of an infinite domain Ω, we do not need to

concern ourselves with boundary conditions. However, evenin a bounded region, the

boundary conditions are not very relevant, as claimed by Bensoussan et al. [1]. The

reasoning for this relevant irrelevance is not explicitly given when they claim that the

method will give what they refer to as the "right answer" regardless of the boundary

conditions. Remarks in the chapter suggest that they may believe the differences in the

final results based on different boundary conditions are relatively small compared to the

increase in technical difficulty arising from keeping trackof the boundary conditions. This

technical difficulty and the reasoning behind the small changes in the result for differences

in boundary conditions may both arise from the periodicity in the result throughout the

domain, although, again, this is not explicitly stated.

We also assume that the source termf is only a function of the macroscopic variablex.

Bensoussan et al. suggest in their convergence proof that this may be generalized to being

in terms of bothx andy [1]. However, in an earlier part of the homogenization method,

they use its independence fromy and thus we will also assume it to be independent ofy.

From here, we seek a homogenized solution in the form of an operatorA and a function

u(x) so thatuε(x,y) converges weakly tou(x) asε tends to zero andu satisfies

Au(x) = f (x) (3.6)

We callA the homogenized operator ofAε .

To begin, we follow the standard steps of the homogenizationmethod. As such, we

expanduε as an epsilon expansion

uε(x,y) = u0(x,y)+ εu1(x,y)+
ε2

2
u2(x,y)+O(ε3) (3.7)

where each functionu j is alsoY -period iny. Using this and the derivative substitution

(3.3), theε-dependent operatorAε is rewritten as

Aε = ε−2A1+ ε−1A2+A3 (3.8)
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where

A1 = −
∂

∂yi

(

ai j(y)
∂

∂y j

)

A2 = −
∂

∂yi

(

ai j(y)
∂

∂x j

)

−
∂

∂xi

(

ai j(y)
∂

∂y j

)

(3.9)

A3 =
∂

∂xi

(

ai j(y)
∂

∂x j

)

We rewrite (3.5) with the expansions (3.7) and (3.8) so that

ε−2A1u0+ ε−1
(

A1u1+A2u0

)

+
(

A1
u2

2
+A2u1+A3u0

)

+ . . .= f

A1u0+ ε1
(

A1u1+A2u0

)

+ ε2
(

A1
u2

2
+A2u1+A3u0− f

)

+ . . .= 0

Since our definition ofy is independent ofε, we equate the coefficients of the various

orders ofε to zero. For the first three orders ofε, we obtain

O(1) : A1u0 = 0 (3.10)

O(ε) : A1u1+A2u0 = 0 (3.11)

O(ε2) : A1
u2

2
+A2u1+A3u0 = f (3.12)

To solve these equations, we will need a lemma and the appropriate theoretical framework.

We define a Hilbert spaceH1(Y ) as the completion of the set

H1(Y ) =
{

v
∣

∣v,
∂v
∂x1

, . . . ,
∂v
∂xn

∈ L2(Y )
}

(3.13)

under the norm

||v||2H1(Y ) =
∫

Y

(

v2+
( ∂v

∂xi

)2
)

dy (3.14)

We also define a set

W (Y ) = {φ |φ ∈ H1(Y ),φ Y -periodic} (3.15)
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However, sinceφ is only considered overY , this only means thatφ takes the same value

on opposite sides ofY . Using these, we write the following lemma.

Lemma 3.1 [1] For φ ∈W (Y ) andF ∈ L2(Y ), the equation

A1φ (x,y) = F(x,y) in Y (3.16)

has a unique solution forφ up to the addition of a function ofx if and only if

∫

Y
F(x,y)dy = 0 (3.17)

Proof : To show that (3.16) implies (3.17), we note that bothai j andφ areY -periodic.

Thus, using the relation (3.16),

∫

Y
F(x,y)dy =

∫

Y
A1φ (x,y) = −

∫

Y

∂
∂yi

(

ai j(y)
∂φ
∂y j

(x,y)
)

dy = 0

which is (3.17). So it is left for us to prove that (3.17) implies (3.16).

We assume that (3.17) is true. For arbitraryφ ,ψ ∈W (Y ), we define an operatora1 as

a1(φ ,ψ) =
∫

Y
ai j(y)

∂φ
∂y j

∂ψ
∂yi

dy (3.18)

and an inner product

(F ,ψ)Y =
∫

Y
F(x,y)ψ(x,y)dy. (3.19)

Equation (3.16) may be rewritten in an equivalent form for arbitrary ψ ∈W (y) by

∫

Y
ψ(x,y)A1φ (x,y)dy =

∫

Y
ψ(x,y)F (x,y)dy

−

∫

Y
ψ(x,y)

∂
∂yi

(

ai j(y)
∂φ
∂y j

(x,y)
)

dy =
∫

Y
ψ(x,y)F (x,y)dy

−
∫

Y

∂
∂yi

(

ψ(x,y)ai j(y)
∂φ
∂y j

(x,y)
)

+
∂ψ
∂yi

(x,y)ai j(y)
∂φ
∂y j

(x,y)
)

dy =
∫

Y
ψ(x,y)F (x,y)dy

−
∫

Y

∂
∂yi

(

ψai j
∂φ
∂y j

)

dy+
∫

Y

∂ψ
∂yi

ai j
∂φ
∂y j

dy =
∫

Y
ψFdy
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Becauseai j, φ , andψ are allY -periodic, the first integral is equal to zero. This leaves us

with

a1(φ ,ψ) = (F ,ψ)Y , ∀ψ ∈W (y) (3.20)

We now consider the subset ofW (y) not containing functions that are constant iny,

W ∗(Y ) = W (Y )\R (3.21)

From our assumption that (3.17) holds, then forψ ∈ W ∗(Y ), (F ,ψ)Y = (F ,ψ + c)Y

∀c ∈ R. So we have a continuous linear formψ → (F ,ψ)Y = (F ,ψ + c)Y . By what

Sanchez-Palencia refers to as the Friedrichs inequality [18], there existsγ > 0 such that

a1(φ ,φ ) ≥ γ||φ ||2L2 ∀φ ∈W ∗(Y )

By substitutingξi =
∂φ
∂yi

into the ellipticity condition (3.2), we also obtain that

ai j(y)
∂φ
∂yi

∂φ
∂y j

≥ α
∂φ
∂yi

∂φ
∂yi

∫

Y
ai j(y)

∂φ
∂yi

∂φ
∂y j

dx ≥ α
∫

Y

(∂φ
∂yi

)2
dx ∀φ ∈W ∗(Y )

Lettingc = inf( γ
2, α

2 ), we obtain

a1(φ ,φ ) ≥ c||φ ||2W ∗(Y ) ∀φ ∈W ∗(Y ) (3.22)

By (3.20),a1(φ ,φ ) is equal to our continuous linear form atφ , this relation (3.22) means

that it is a strongly monotone operator and thus (3.20) has a unique solution inW ∗(Y )

[25]. SinceW ∗(Y ) does not admit constants with respect toy, this means that the solution

is only unique up to an additive function ofx in W (Y ).

We are now able to solve equations (3.10)-(3.12). We follow Bensoussan et al.’s derivation

closely for these equations [1].

(3.10): SinceA1 includes a derivative with respect toy of u0, a function that is independent

of x is a solution to (3.10). Since (3.10) is of the form of (3.16) for F = 0, by Lemma 3.1,
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this solution is unique up to an additive function ofx, retaining its independence fromy.

Thus,u0 is independent ofy and may be written as

u0(x,y) = u(x) (3.23)

(3.11): Sinceu0 is independent ofy, (3.11) reduces to

A1u1 =
(∂ai j

∂yi
(y)
)( ∂u

∂x j
(x)
)

(3.24)

Because of this, we use separation of variables to resolve this. The operatorA1 is entirely

in terms ofy, so we only need to consider they terms in the equation. For this, we define

aY -periodic functionχ j(y) as the solution to the equation

A1χ j(y) = −
∂

∂yi
ai j(y) = A1y j (3.25)

Due to the periodic nature ofai j(y),
∫

Y A1y jdy = 0, so we find thatχ j(y) is a unique

solution to (3.25) up to an additive function ofx. So the solution of (3.24) may be written

as

u1(x,y) = −χ j(y)
∂u
∂x j

(x)+ ũ1(x) (3.26)

whereũ1(x) is a result of the additive function ofx with χ j being multiplied by ∂u
∂x j

. Its

exact form is not important for this discussion.

(3.12): By Lemma 3.1, we know that, for there to be a unique solution for u2, the integral

with respect toy of the terms other thanA1
u2
2 must be zero. So, for there to be a unique

solution up to an additive function ofx, we require

∫

Y

(

A2u1(x,y)+A3u(x)
)

dy =
∫

Y
f (x)dy = |Y | f (3.27)

where|Y | is the measure ofY (in two dimensions, this is the area ofY ; in three dimensions,

this is the volume). Replacing the indexj with k for later convenience, it is possible to
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simplify the integral ofA2u1 such that

∫

Y
A2u1(x,y)dy = −

∂
∂xi

∫

Y
aik(y)

∂u1

∂yk
(x,y)dy

By substituting the solution tou1, (3.26), into the above equation, we obtain

∫

Y
A2u1(x,y)dy = −

∂ 2u
∂xi∂x j

∫

Y
aik(y)

∂ χ j

∂yk
(x,y)(y)dy

We substitute this into (3.27) and divide by|Y |, giving us

−
( 1
|Y |

∫

Y

(

ai j(y)−aik(y)
∂ χ j

∂yk
(y)
)

dy
) ∂ 2u

∂xi∂x j
= f (x) (3.28)

This takes the form of the operatorA that we were looking for in (3.6). For the sake of

notational convenience, we define a parameterqi jk as

qi jk =
1
|Y |

∫

Y

(

ai j(y)−aik(y)
∂ χ j

∂yk
(y)
)

dy (3.29)

Thus, we may writeA as

A = −qi jk
∂ 2

∂xi∂x j
(3.30)

which, by (3.28), satisfies (3.6).

It now remains to prove thatuε converges tou asε tends to zero.

3.1 Energy proof of convergence

Under the homogenization method, this is clear, sinceu(x) is the zeroth-order term in

theε expansion. However, to demonstrate its viability, we demonstrate that this limit is

equivalent wheny = x
ε . To do so, we require the following spaces.

We have previously definedH1(Y ) and its inner product related to the norm|| · ||2H1(Y ) in

(3.13) and (3.14). This Hilbert space will be defined in the same way over the domain

of x, which we callΩx. We defineH1
0(Ωx) as a subspace ofH1(Ωx), specifically as the

25



CHAPTER 3: ENERGY PROOF OF THE CONVERGENCE OF THE HOMOGENIZATION

METHOD FOR A SECOND-ORDER ELLIPTIC EQUATION

closure of the set of continuous, infinitely differentiablefunctions with compact support

[11] in H1(Ωx). This spaceH1
0(Ωx) is equipped with the sameH1(Ωx) inner product.

From this, we defineV as a closed subspace ofH1(Ωx) such that

H1
0(Ωx)⊂V ⊂ H1(Ωx) (3.31)

We also define an operatoraε such that, foru, v ∈ H1(Ωx),

aε(u,v) =
∫

Ωx

ai j(
x
ε
)

∂u
∂x j

∂v
∂xi

dx (3.32)

and an operatora2 such that

ah(u,v) =
∫

Ωx

qi jk
∂u
∂x j

∂v
∂xi

dx (3.33)

We also define an inner product(·, ·)

(u,v) =
∫

Ωx

uvdx (3.34)

Then fory = x
ε , equations (3.5) and (3.6) are rewritten in a similar mannerto (3.20).

aε(uε ,v) = ( f ,v) ∀v ∈V (3.35)

ah(u,v) = ( f ,v) ∀v ∈V (3.36)

whereuε(x, x
ε , u(x) ∈ V . Using these equivalent expressions, we now prove the conver-

gence.

Theorem 3.1 [1] Let uε(x, x
ε ) andu(x) be functions satisfying (3.35) and (3.36). Then

uε converges weakly tou in V asε → 0.

Proof: Following a similar method as in (3.22),

aε(v,v) ≥ c||v||2H1(Ωx)
∀v ∈V (3.37)
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From Sanchez-Palencia [18],

∣

∣

∣

∫

Ωx

f vdx
∣

∣

∣
≤ || f ||L2(Ωx)||v||L2(Ωx) ≤C||v||H1(Ωx) ∀v ∈V (3.38)

for some constantC. Thus, by (3.22),

c||v||2H1(Ωx)
≤ aε(v,v) = ( f ,v) (3.35)

c||v||2H1(Ωx)
≤ ( f ,v) ≤C||v||H1(Ωx) (3.38)

||v||H1(Ωx) ≤ γ (3.39)

for γ = C
c . We defineξ ε

i as

ξ ε
i = ai j(

x
ε
)

∂uε
∂x j

(x,
x
ε
) (3.40)

Then

||ξ ε
i ||L2(Ωx) ≤ γ (3.41)

So, by the Rellich theorem [18], there exists subsequences of uε andξ ε
i where

uε → uc in V weakly (3.42)

ξ ε
i → ξi in L2(Ωx) weakly (3.43)

For notational convenience, we will refer to these subsequences by the name of their

original sequences,uε andξ ε
i

We write (3.35) as
(

ξ ε
i ,

∂v
∂xi

)

= ( f ,v) ∀v ∈V (3.44)

This expression converges weakly to

(

ξi,
∂v
∂xi

)

= ( f ,v) ∀v ∈V (3.45)

It will thus suffice to show that (3.45) is equivalent to (3.36). This may be accomplished

27



CHAPTER 3: ENERGY PROOF OF THE CONVERGENCE OF THE HOMOGENIZATION

METHOD FOR A SECOND-ORDER ELLIPTIC EQUATION

through the use of adjoint operators. LettingA∗
1 represent the adjoint ofA1 (3.9), we have

A∗
1 = −

∂
∂yi

(

a∗i j(y)
∂

∂y j

)

, a∗i j = a ji. (3.46)

Let w be a solution of

A∗
1w(y) = 0 (3.47)

such that−χ̂ = w(y)−P(y) is Y -periodic for some homogeneous polynomial of degree

1, P(y). If we apply the adjoint operatorA∗
1 to the definition ofχ̂ , we get

A∗
1χ̂(y) = A∗

1P(y) (3.48)

We now definewε as [1]

wε (x) = εw(
x
ε
) = P(x)εχ̂(

x
ε
) (3.49)

Bensoussan et al. claim that this is the solution to

(Aε )
∗wε (x) = 0 (3.50)

We substituteφwε into v in (3.36) such thatφ ∈ C∞(Ωx) andφwε ∈ V . Subtracting the

scalar product ofφuε and (3.50) from the resulting equation, we obtain

aε(uε ,φwε )−aε(φuε ,wε ) = ( f ,φwε )

The lefthand side of this equation may be rewritten as

(

ξ ε
i ,

∂φ
∂xi

wε

)

−

∫

Ωx

ai j(
x
ε
)

∂wε
∂xi

∂φuε
∂x j

dx (3.51)

In Bensoussan et al.’s original derivation,∂φuε
∂x j

was written as∂φ
∂x j

uε . The integral of this

was later replaced by∂uε
∂x j

φ . If we accept that∂φ
∂x j

uε is the correct derivation, then this

replacement almost makes sense through integration by parts, but it is off by a factor of

negative one. For now, we will follow their method and use∂φ
∂x j

uε [1]
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Here, Bensoussan et al. [1] claim that (3.51) converges asε → 0 in such a way that

wε → P in L2(Ωx) strongly andφwε → φP in H1(Ωx) weakly [1]. We also suppose that

ai j(
x
ε )

∂wε
∂xi

→ ai j
∂w
∂yi

, where· represents an average over a periodic cellY ,

ψ =
1
|Y |

∫

Y
ψdy (3.52)

Then, using (3.45) to replacef , we obtain

(

ξi,(
∂φ
∂xi

)P
)

−ai j
∂w
∂yi

∫ ∂φ
∂x j

ucdx = ( f ,φP)

(

ξi,(
∂φ
∂xi

)P
)

−ai j
∂w
∂yi

∫ ∂φ
∂x j

ucdx =
(

ξi,
∂ (φP)

∂xi

)

(3.53)

If we expand∂ (φP)
∂xi

in (3.53), it is possible to simplify this equation to

(

ξi
∂P
∂xi

,φ
)

= ai j
∂w
∂yi

( ∂u
∂x j

,φ
)

∀φ ∈C∞(Ωx)

Similarly to how we derived (3.35) and (3.36), this is equivalent to

ξi
∂P
∂xi

= ai j
∂w
∂yi

∂u
∂x j

(3.54)

SinceP(y) is not a specified polynomial beyond being homogenous and first order, we

take it to be equal toyi. Then by (3.48),

A∗
1χ̂i = A∗

1yi (3.55)

and by the definition of̂χ , w = yi − χ̂i and thus (3.54) is

ξi = ak j
∂

∂yk
(yi − χ̂i)

∂u
∂x j

(3.56)
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We substitute (3.56) into (3.45) to obtain

(

ai j −ak j
∂ χ̂i

∂yk

∂u
∂x j

,
∂v
∂xi

)

= ( f ,v) ∀v ∈V (3.57)

This equation is close to the form of (3.36). If we rearrange (3.36) to appear like (3.57),

we find that they are equivalent if

aik
∂ χ̂ j

∂yk
= ak j

∂ χ̂i

∂yk
. (3.58)

If we take the inner product of (3.55) witĥχ j, we find

(A∗
1χ̂i, χ̂ j)Y =

∫

Y
aik

∂ χ j

∂yk
dy

Similarly, the inner product of (3.25) witĥχi gives

(A1χ̂ j, χ̂i)Y =
∫

Y
ak j

∂ χi

∂yk
dy

Due to the definition of an average·̄ and the preceding two equations, (3.58) is equivalent

to

(A∗
1χ̂i, χ̂ j)Y = (A1χ̂ j, χ̂i)Y (3.59)

Due to the definition of an adjoint operator [11], this is true. Thus, (3.35) does converge

to (3.36) asε → 0. This also shows thatuc, the function to whichuε converges weakly, is

equivalent tou, as desired.

While such proofs of convergence have been done for many other types of differential

equations, most works on specific applications assume this convergence exists and that

their homogenized equations are legitimate. In the next chapter as we consider a specific

application of this method, we will make this assumption [5].
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CHAPTER 4

On Poroelasticity equations derived from

microstructure

Poroelasticity equations model the mechanics solids whichare riddled with fluid-filled

pores – for simplicity, we will refer to these media as poroelastic solids. This type of solid,

and thus these equations, appear in a number of applications, which include problems in

the petroleum industry and biomechanics, among others [19]. Typically, the equations as

derived by Biot have been used for these situations. However, while successfully used in

many applications, their validity for general problems wasquestionable. In order to place

these standard equations on a more theoretical footing, Burridge and Keller made use of

the homogenization method to derive some of these equations– specifically, the equations

for acoustic propagation through a poroelastic solid [4] – from the more theoretically

sound linearized Navier-Stokes equations of fluids and linearized elasticity theory [5].

Certain problems have been raised regarding this derivation and it comes with certain

limitations. These issues will be discussed more completely in a later section. However,

Burridge and Keller’s work has been used to justify the continued usage of Biot’s equa-

tions under the required conditions [24] and it gives a possible direction for numerical

determination of certain parameters from characteristic properties of the fluid and solid

components, which has thus far been left to experimental determination (which is not

always viable).

In the following sections, we follow the approach of Burridge and Keller [5] unless oth-

31



CHAPTER 4: ON Poroelasticity equations derived from microstructure

erwise stated. However, the details of their calculations have been considerably expanded

for the sake of clarity.

4.1 Foundational arguments

For the sake of mathematical simplicity, the model of the poroelastic solid is simplified to

a periodic medium. Specifically, we consider a typical section of the volume and construct

an infinite volume by repeating this typical volume. The reasoning for this choice is not

given in the original paper, but the likely reasoning is to allow for the use of transformation

methods. In addition, this simplifies calculations by not requiring the consideration of

boundary conditions, which have been previously noted to complicate calculations.

As in earlier work by Keller [12], the formulation begins with the definition of length

scalesh andH. In short,h is a typical microscopic length scale andH is a typical macro-

scopic length scale so thath ≪ H. The microscopic length scaleh in this problem is

the length scale of the pore configuration, but there are several possible interpretations of

the macroscopic length scale. Some examples suggested in the paper are the width of a

sample of the medium and the wavelength of an acoustic wave propagating through the

medium [5]. However, the specific scales are not so importantas the ratio between them,

denoted asε = h
H . This ratio is very small due to the relation betweenh andH and thus

forms the basis of a perturbation theory-like approach later in the work.

Before this can be used, the coordinate system must be defined. Some care must be

taken here to ensure logical consistency, as the coordinates are used as independent and

dependent variables depending on context. In either case, two separate three-dimensional

coordinates are defined,~x = (x1,x2,x3) and~y = (y1,y2,y3), where different properties of

an arbitrary function,f (~x,~y), are expressed in terms of the different variables. In Burridge

and Keller,~x is the variable of slow or gradual change and~y is the variable of rapid change

[5]. Skotheim and Mahadevan use different notation, but theequivalent to~x is considered

to represent variation on the macroscopic scale and their~y represents variation on the pore

scale [20]. These are logically equivalent, as macroscopicvariations would seem slower

than changes on the pore scale if considered from the same scale.
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However, both papers use these merely as descriptors, defining one variable in terms of

the other. Continuing to follow Burridge and Keller’s notation, the rapid variable~y is

defined as a stretching of the slow variable~x – that is,~y = ε−1~x. Under this definition, a

small change in~x results in a large change in~y, so it is consistent with the description of

slow and rapid change [5]. But the method relies upon them being independent variables,

so this definition has its flaws, as we noted in the first section.

As before, we consider the earlier descriptions of slow (or macroscopic scale) and rapid

(or pore scale) variables as the definition for~x and~y, which retains their independence.

Still, the relation between the variables,~y = ε−1~x, has its own importance in the method

and must be considered. One possible interpretation is the one used by Burridge and

Keller when they consider~x and~y as independent variables. They claim that~y = ε−1~x

may be considered a diagonal in the six-dimensional coordinate system formed by these

variables. In this case, the physical solutions of the three-dimensional model being con-

sidered are said to lie on this diagonal [5]. This work, though, will follow the approach

used in an earlier work by Keller [12]. Here, every function of a physical property,g(~x,ε),
has an equivalent six-dimensional functional form,g(~x,~y,ε), such thatg(~x,~y,ε) still sat-

isfies the equations andg(~x,ε−1~x,ε) = g(~x,ε).

In either view, the original physical solutions are associated with the~y = ε−1~x relation,

which leads to the treatment of the del operator,∇, for functions inx andy. Letting ∇x

and∇y represent the del operator with respect to x and y, respectively, it may be shown

that

∇ f (~x,ε−1
~x) = ∇x f + ε−1∇y f .

Since the relation~y = ε−1~x represents the physical properties of the problem,∇ is re-

placed with∇x + ε−1∇y for all functions of the formf (~x,~y) (see [5]).

To simplify matters, however, time derivatives are removedby assuming that motions

within the medium are time harmonic. This allows for time derivatives to be replaced by

multiplication byiω, whereω is the angular frequency of the motions.

The final main assumption deals with the viscosity term,µ̃ , and has become customary in

the literature [8]. On the pore scale, the dimensionless viscosity is defined using the fluid
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densityρ f , the angular frequencyω, and the microscopic length scaleh as µ̃
ωρ f h2 . If we

define the product of the frequencyω and the pore length scaleh as the typical speed on

the pore scale, then this is equivalent to the inverse of the Reynolds number [15] on the

pore scale. Since the Reynolds number describes behaviour of the fluid and the fluid acts

on the pore scale, we assume this is the true Reynolds number of the fluid and thus assume

it to be of order 1 with respect toε. This means that the inverse of the Reynolds number,

which is equivalent to the dimensionless viscosity on the pore scale, is also of order 1.

On the macroscopic scale, the dimensionless viscosity is defined using the macroscopic

length scaleH instead ofh, leading to µ̃
ωρ f H2 and can be related to a macroscopic version

of the Reynolds number by defining a typical speed on the macroscopic scale similarly

asωH. Due to the relation betweenh andH, this macroscopic scale Reynolds number is

of orderε−2 when the pore scale Reynolds number is of order 1, like we assume, which

makes the macroscopic dimensionless viscosity of orderε2. Since our eventual goal is to

produce a description of macroscopic behaviour, the initial viscosity termµ̃ is replaced

by ε2µ to represent thisO(ε2) term [5].

Before getting into the derivation, it is important to formalize the underlying structure

of the porous medium. The solid region is represented in the~x and~y coordinates as the

domainDs. Similarly, D f represents the domain of the fluid region. These domains are

then used to define an indicator functionχs(~x,~y), such thatχs has the valueχs = 1 in Ds

and the valueχs = 0 outside ofDs. Since the pores are assumed to be filled with fluid,

this means that it is equivalent to sayχs = 0 in D f [5], and thus a fluid indicator function

may be considered to be 1−χs. While this function is not used directly, it may be useful

when explicitly considering the functions which are commonly defined only over either

the solid or fluid components.

4.2 Derivation of initial equations

Burridge and Keller’s arguments follow from a set of three equations in the fluid do-

main, two equations in the solid domain, and two equations along the boundary. They are

referred to as linearized Navier-Stokes equations, linearized equations of elasticity, and
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linearized interface conditions, respectively, but they are given without reference [5]. Our

first step will be to provide justification for these equations. It is important to note that the

equations marked (3) in Burridge and Keller come before applying the assumptions listed

in the previous section. This includes the six-dimensionalcoordinate system [5]. As such,

the derivation will be in three dimensions and will occasionally use cartesian coordinate

interpretations of such things as the del operator.

Beginning in the fluid domain, the fluid parameters and variables are as follows: fluid

velocity,v; fluid pressure,p; fluid stress tensor,σ ; fluid density,ρ f ; bulk modulus,κ ; and

fluid viscosity,µ̃ , which we replace withε2µ in later analysis.

The first equation is derived from the conservation of linearmomentum, which in Einstein

summation notation may be expressed as

ρ f

(∂vi

∂ t
+ vk

∂vi

∂xk

)

=
∂σi j

∂x j

Here, only linear terms are being considered. As such, the nonlinearvk
∂vi
∂xk

may be ig-

nored. Additionally, by the previous assumption that motions are time harmonic, the time

derivative of the velocity may be replaced byiω. As such,

iωρ f vi =
∂σi j

∂x j

Since we are working in cartesian coordinates, this is equivalent to equation (3a) of Bur-

ridge and Keller,iωρ f v = ∇ ·σ [5].

The second equation can be derived from the constitutive equation below. Lettingξ
represent dilatational viscosity andη represent the shear viscosity,

σi j = (−p+ ξ vk,k)δi j +η(vi, j + v j,i)

At this point, we use the Stokes relation,ξ = −2
3η, to get

σi j = −pδi j +2η

(

(1
2
(vi, j + v j,i

)

−
1
3

vk,kδ i j)

)
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This leads to a small problem. If it is assumed that the shear viscosity in the constitutive

equation is equivalent the the fluid viscosity,µ̃ , as used by Burridge and Keller, this

expression is nearly equivalent to (3b) in their work [5]. However, there is a factor of 2

in front of η in the above equation which is missing from Burridge and Keller. This is

certainly an issue that needs to be resolved, but it will not affect this chapter’s discussion,

as this is the only place where the viscosity term appears andthus the factor of 2 may be

lumped into the viscosity coefficient. This is largely a temporary measure, as knowledge

of whether the coefficient is the true viscosity of the fluid ortwice that amount is clearly of

great importance in numerical simulation. However, despite some efforts in the literature,

such as that by Zhou and Sheng [26], the method from Burridge and Keller has not been

successfully used numerically beyond specialized resultsfor specific parameters. For

simplicity, this work will use thẽµ coefficient used in Burridge and Keller rather than the

2µ̃ obtained above.

The third equation is derived from the continuity equation for the fluid, whereρ f repre-

sents the density,v the velocity, andp the pressure,

∂ρ f

∂ t
+∇ · (ρ f v f ) = 0

∂ρ f

∂ t
+ v f ·∇ρ f +ρ∇ · v f = 0
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Since our eventual goal is to obtain linearized equations, we drop the nonlinear term

v f ·∇ρ f .

∂ρ f

∂ t
+ρ∇ · v f = 0

Now assuming an equation of state for the fluid, namelyρ f = ρ f (p), the above equation

becomes

∂ρ f

∂ p
∂ p
∂ t

+ρ∇ · v f = 0

This may be rearranged as

∂ p
∂ t

= −
ρ f
∂ρ f

∂ p

∇ · v f

By writing the densityρ f in terms of component fluid mass,M f , and fluid volume,Vf ,

this may be simplified down to

∂ p
∂ t

= Vf
∂ p
∂Vf

∇ · v f

∂ p
∂ t

= κ∇ · v f

where the bulk modulusκ comes from the isothermal compressibility of thermodynamics,

given by
1
κ
= −

1
Vf

∂Vf

∂ p
.

Under our assumption that time derivatives may be replaced by iω, we obtain the third

equation.

The next four equations are more common. On the boundary between the fluid and solid
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domains, we use simple boundary conditions for equality of fluid and solid velocities,

v = iωu

and equality of normal stresses, using normal vectorsn̂ facing in towards the solid,

n̂ ·σ = n̂ · τ

where the linear elasticity stress tensorτ is given by the constitutive equation

τ = C∇u

which is a generalized version of Hooke’s law. The fourth-rank tensorC(x,y) is left

unspecified.

Finally, we require that the elastic solid obeys the Lamé equation for the displacement

vectoru. With our assumed replacement of the time derivative withiω, this takes the

form of

−ω2ρsu = ∇ · τ

The above results in the equations as given in Burridge and Keller’s works, with the left-

hand column showing the initial form of the equations and therighthand column showing

the form of the equations after the application of the previously described hypotheses be-

fore the perturbation expansion. As the equations are only valid in certain regions, the

centre column gives the region in which the equations are valid.

Initial equations Domain of validity Rearranged equations

iωρ f v = ∇ ·σ D f ∇y ·σ + ε(∇x ·σ − iωρ f v) = 0

σ = −pI + µ̃ + µ̃D∇v D f σ + pI − εµD∇yv− ε2µD∇xv = 0

iω p = −κ∇ · v D f κ∇y · v+ ε(κ∇x · v+ iω p) = 0

v = iωu ∂D f = ∂Ds v− iωu = 0

n̂ ·σ = n̂ · τ ∂D f = ∂Ds hatn ·σ − n̂ · τ = 0

−ω2ρsu = ∇ · τ Ds ∇y · τ + ε(∇x · τ +ω2ρsu) = 0

τ =C∇u Ds C∇yu+ ε(C∇xu− τ) = 0
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After this, we apply a form of perturbation theory expansionto the field quantities: the

fluid stress tensor,σ ; fluid pressure,p; fluid velocity, v; solid displacement,u; and the

solid stress tensor,τ. Specifically, we replace a field quantity,f (~x,~y,ε), with

f (~x,~y,ε) = f0(~x,~y)+ ε f1(~x,~y)+ (ε2/2) f2(~x,~y)+O(ε3)

Sinceε ≪ 1, we can discard the higher order terms in the epsilon expansion and use

f0(~x,~y) as an approximation tof (~x,~y,ε). To determine their values, we consider the

first two orders of epsilon – that is, first by equating epsilonto zero in one, and then

taking the derivative of the equations with respect to epsilon and setting epsilon to zero.

Since f (~x,~y,0) = f0(~x,~y) and∂ε f (~x,~y,0) = f1(~x,~y), this produces equations of the first

two terms of the epsilon perturbation expansion, as shown below. For future reference,

they have been labelled with the same numbering as in Burridge and Keller [5]. We will

continue to use this labeling through this section and, as such, these labels may not follow

strict numerical order as the order of the equations is changed for the needs of this work.

A few equations will not be written in exactly the same form asgiven by Burridge and

Keller for the same reason, but they will retain the same label as its equivalent in their

work.

39



CHAPTER 4: ON Poroelasticity equations derived from microstructure

First order equations Domain of validity

∇y ·σ0 = 0 (8a) D f

σ0+ p0I = 0 (8b) D f

κ∇y · v0 = 0 (8c) D f

v0− iωu0 = 0 (8d) ∂D f = ∂Ds

n̂ ·σ0− n̂ · τ0 = 0 (8e) ∂D f = ∂Ds

∇y · τ0 = 0 (8f) Ds

C∇yu0 = 0 (8g) Ds

Second order equations Domain of validity

∇y ·σ1+∇x ·σ0− iωρ f v0 = 0 (9a) D f

σ1+ p1I −µD∇yv0 = 0 (9b) D f

κ∇y · v1+κ∇x · v0+ iω p0 = 0 (9c) D f

v1− iωu1 = 0 (9d) ∂D f = ∂Ds

n̂ ·σ1− n̂ · τ1 = 0 (9e) ∂D f = ∂Ds

∇y · τ1+∇x · τ0+ω2ρsu0 = 0 (9f) Ds

C∇yu1+C∇xu0− τ0 = 0 (9g) Ds

From this set of fourteen equations, expressions for the zeroth order terms of the epsilon

expansion may be derived.

4.3 Solutions of the equations

In (8a), the divergence with respect to~y of σ0 is zero at every point. This would not be

enough to prove independence from~y for a second-order tensor, but by (8b), it is pro-

portional top0 times an identity matrix. As such, by the definition of the divergence of a

second-order tensor in cartesian coordinates [10], this results in the partial derivative ofp0

being 0 with respect to each component of~y. From this, bothp0 andσ0 are independent

of~y.

This is not true of most of the other properties with divergence 0, such asτ0 or v0. How-
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ever, for (8g), the tensorC is a part of the generalized Hooke’s Law, relating displacement

to stresses, but here the stress tensor is replaced by a 0 tensor and the operator acts only

on the~y components. As such, the zeroth order displacement,u0(~x,~y), has a~y component

of motion under no stress, which, under the assumption of being bounded in~y, must be a

rigid transformation in~y. Thus,u0 is also independent of~y.

It is worth noting at this point that the paper by Biot that originally studied the poroelastic

case did not use a fluid velocity. Instead, it considered the fluid displacement relative to

the solid displacement. In order to compare them more efficiently, the solid displacement

is expanded into the fluid region and a term for the fluid displacement relative to the solid,

w(~x,~y), is introduced. The expansion ofu0 into the fluid domain is not specified, but it is

unlikely to matter so long as it is continuous across the boundary, as the eventual result

will be considering macroscopic properties rather than rather than microscopic properties.

The relative displacement term,w, is introduced through the relation between the first term

of the solid displacement,u0, and the first term of the fluid velocity,v0, by

v0(~x,~y) = iω [u0(~x)+w(~x,~y)], inD f (12)

using the replacement of time derivatives withiω.

From this, equations containingv0 can be updated to be equations containingw. Specifi-

cally, (8c) and (8d) become equations ofw only, and (9a) and (9b) into more complicated

expressions. Though it also containsv0, (9c) is ignored as it unnecessarily introduces a

higher order term of velocity.

From (8c) in the fluid domain,

κ∇y ·
(

iω [u0(~x)+w(~x,~y)]
)

= 0

iωκ
(

∇y ·u0(~x)+∇y ·w(~x,~y)
)

= 0

iωκ∇y ·w(~x,~y) = 0

∇y ·w(~x,~y) = 0 (13)
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and from (8d) in the boundary between domains,

iω [u0(~x)+w(~x,~y)]− iωu0(~x) = 0

iωw(~x,~y) = 0

w(~x,~y) = 0 (14)

(9a) and (9b), both in the fluid domain, follow similarly, with (9a) only expanding terms

and (9b) also taking advantage of the independence ofu0 from~y. As a result,

−∇y ·σ1(~x,~y)+ω2ρ f w(~x,~y) = ∇x ·σ0(~x)+ω2ρ f u0(~x) (15a)

σ1 = −p1I + iωµD∇yw (15b)

Before substituting (15b) into (15a), it is convenient to consider the term∇y ·D∇yw sep-

arately. First, using the definition of the gradient of a vector [10], lettingêi represent the

normal vectors in theyi direction and using the Einstein summation convention,

D∇yw =
1
2

(

(∇yw)+ (∇yw)T −
2
3

I tr(∇yw)
)

=
1
2

(

(
∂w j

∂yi
êiê j)+ (

∂w j

∂yi
êiê j)

T −
2
3

I tr(
∂w j

∂yi
êiê j)

)

=
1
2

(

(
∂w j

∂yi
êiê j)+ (

∂wi

∂y j
êiê j)−

2
3

I (
∂wi

∂yi
)
)

=
1
2

(

(
∂w j

∂yi
+

∂wi

∂y j
)êiê j −

2
3

I (∇y ·w)
)

From this, it is possible to write the components as in Zhou and Sheng [26]:

[D∇yw]i j =
1
2

(∂w j

∂yi
+

∂wi

∂y j
−

2
3

δi j∇y ·w
)

However, in this case, it is known from (13) that∇y ·w = 0 and thus the last term may be
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dropped. So, from here,

∇y ·D∇yw =
∂

∂yi

(1
2

(∂w j

∂yi
+

∂wi

∂y j

)

)

=
1
2

(∂ 2w j

∂yi
2 +

∂ 2wi

∂yi∂y j

)

=
1
2

(∂ 2w j

∂yi
2 +

∂
∂y j

(
∂wi

∂yi
)
)

=
1
2

(∂ 2w j

∂yi
2 +

∂
∂y j

(∇y ·w)
)

=
1
2

∂ 2w j

∂yi
2

=
1
2

∇2w

It is also important to show that

∇y · p1I =
∂

∂yi
[p1I]i jê j

=
∂

∂yi

(

δi j p1
)

ê j

= ∇p1

Thus, substituting (15b) into (15a) gives

∇yp1(~x,~y)− iω
µ
2

∇2
yw(~x,~y)+ω2ρ f w(~x,~y) = ∇x ·σ0(~x)+ω2ρ f u0(~x)

This equation, along with (13) and (14), functions as a linear set of equations forw andp1

with ∇x ·σ0(~x)+ω2ρ f u0(~x) as the inhomogeneous term. The solutions for these terms

can be written as linearly dependent on this inhomogenous term. The solution tow is

unique if it is required to be bounded in~y, but sincep1 only appears as a gradient of~y, the

bounded solution is unique only up to the addition of some function of~x, f (~x). So,

w(~x,~y) = W (~x,~y)
(

∇x ·σ0(~x)+ω2ρ f u0(~x)
)

(16a)

p1(~x,~y) = P(~x,~y)
(

∇x ·σ0(~x)+ω2ρ f u0(~x)
)

+ f (~x) (16b)
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for some matrixW and some vectorP. The solution forσ1 can be found by substituting

into (15b), but the final goal only requires the first term of the epsilon expansion for the

various properties. As such, only the solution tow is important for this particular work.

A similar method may be used to determineu1 andτ0. Specifically, using

n̂ ·σ0(~x)− n̂ · τ0(~x,~y) = 0 ∂Ds = ∂D f (8e)

∇y · τ0(~x,~y) = 0 Ds (8f)

C(~x,~y)∇yu1(~x,~y)+C(~x,~y)∇xu0(~x)− τ0(~x,~y) = 0 Ds (9g)

it is possible to determineu1 as a unique solution up to an additive function of~x under the

assumption thatu1 is bounded in~y. To avoid the undetermined function, we solve instead

for ∇yu1, in terms of inhomogeneous termsC∇xu0(~x) andp0(~x). It is worth noting that

p0 does not explicitly appear in the above equations. However,it is directly related toσ0

and thus may be replaced into (8e). From this, we obtain

∇yu1(~x,~y) = Q(~x,~y)p0(~x)+L(~x,~y)C(~x,~y)∇xu0(~x) (17a)

Substituting this back into (9g),

τ0(~x,~y) =C(~x,~y)
(

Q(~x,~y)p0(~x)+L(~x,~y)C(~x,~y)∇xu0(~x)
)

+C(~x,~y)∇xu0(~x)

τ0(~x,~y) =
(

C(~x,~y)+CLC(~x,~y)
)

∇xu0(~x)+CQ(~x,~y)p0(~x) (17b)

At this point, there are expressions for the first term in eachepsilon expansion. However,

bothτ0 andw (and therebyv0) are in terms of both~x and~y. Since the goal is to obtain

expressions for the slow, macroscopic variation, it is necessary to remove the dependence

on the fast, microscopic variable~y. Generally, this is done by averaging those quantities

with respect to~y, as shown in the following section.
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4.3.1 Averaging over~y

The first step is to consider how to define the average over~y. For an arbitrary function

f (~x,~y) defined over the domain of the fluid,D f , we begin by considering it over a finite

sphere of radiusR, BR. The functionf is integrated with respect to~y over the intersection

between this sphere and the fluid domain and this integral is divided by the volume of

the sphereBR. Since the medium is assumed to be infinite, we can take the limit of

this average over the sphere as the radiusR goes to infinity. This limit is defined as the

average of the function,f (~x). For a function defined over the solid instead, the same

principle applies by replacingD f with Ds.

Before using this defined average on the equations determined above, it is important to

note that the average of the indicator function of the solid,χs, is equal to the volume

fraction of the solid,Vs(~x), since the indicator function is equal to one at every point of

the solid domain. Similarly,Vf (~x) represents the volume fraction of the fluid. These are

used when averaging functions dependent only on~x, since it would be equivalent to the

function multiplied by the indicator function of that particular domain. Thus, the average

of a function dependent only on~x is equal to that function multiplied by the particular

volume fraction.

With this averaging method, it is now possible to obtain expressions for averaged versions

of τ0 andw. To begin, we average the solutions previously obtained in (16a) and (17b) to

obtain

w(~x) =W (~x)
(

ω2ρ f u0(~x)−∇x p0(~x)
)

(24)

τ0 =
(

C(~x)+CLC(~x)
)

∇xu0(~x)+CQ(~x)p0(~x) (25)

However, these equations are insufficient to properly expressw andτ0, as it leavesp0

andu0 undefined. As such, it will be necessary to provide two more equations in order to

determine these next two unknowns.

We substitute the definition ofv0 with w – that is, (12) – into equation (9a), which results

in

∇x ·σ0(~x)+ω2ρ f u0(~x)+ω2ρ f w(~x,~y) = −∇y ·σ1(~x,~y)

45



CHAPTER 4: ON Poroelasticity equations derived from microstructure

Averaging this gives

Vf (~x)
(

∇x ·σ0(~x)+ω2ρ f u0(~x)
)

+ω2ρ f w(~x) = − lim
R→∞

1
4
3πR3

∫

D f∩BR

∇y ·σ1(~x,~y)d~y

Vf (~x)
(

∇x ·σ0(~x)+ω2ρ f u0(~x)
)

+ω2ρ f w(~x)
∗
= − lim

R→∞

1
4
3πR3

∫

∂ (D f∩BR)
σ1(~x,~y) · n̂d~y

(20)

where in the step marked (*) the divergence theorem was used to convert the volume

integral into a surface integral for reasons that will become apparent later. A similar use

of the divergence theorem is used when averaging (9f). However, as the normal vector̂n

is pointing into the solid, the normal vector to be used in thesolid region is−n̂, resulting

in

∇x · τ0(~x)+ω2ρsu0(~x) = lim
R→∞

1
4
3πR3

∫

∂ (D f∩BR)
τ1(~x,~y) · n̂d~y (21)

Since the solid density,ρs, has not been noted to be dependent on~y, it is likely that the

averaged quantity,ρs, is equivalent toρsVs. However, even if there were a~y dependence,

this would not change the current results, as it only appearsin (9f), which is only used

here. Even if it required epsilon expansion, then theρs used here would be the first term

of the expansion. However, the same cannot be applied toρ f , which must be constant.

It is also important to make similar uses of the divergence theorem withu1 andv1. In

Burridge and Keller’s work, they use a specialized gradientversion of the divergence

theorem [5], but later take the trace of it in order to obtain the average of the divergence.

As such, this work will begin with the divergence in the first place, giving a slightly

modified (22) and (23) as follows:

∇ · v1(~x) = lim
R→∞

1
4
3πR3

∫

∂ (D f∩BR)
v1(~x,~y) · n̂d~y (22)

∇ ·u1(~x) = lim
R→∞

1
4
3πR3

∫

∂ (D f∩BR)
u1(~x,~y) · n̂d~y (23)

The surfaces used on the integrals,∂ (D f ∩BR) and ∂ (Ds ∩BR), can be split into two

(possibly overlapping) components. In the case ofD f , these are(∂D f )∩BR andD f ∩

(∂BR). The latter portion represents the part of the surface of thesphereBR lying inside
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the domain of the fluidD f . Since the integrands are independent ofR and the total surface

of BR is 4πR2, the integral may be bounded by an equation of orderR2. As the integral

is divided byR3, the limit asR tends to infinity will be zero. As such, only the former

portion,∂D f ∩BR, is necessary for the integrals in (20) and (22). Similarly,∂ (Ds ∩BR)

may be replaced by∂Ds ∩BR in (21) and (23).

By (9d) and (9e), however,v1 = iωu1 andσ1 · n̂ = τ1 · n̂ over the border of the fluid and

solid domains. Thus, with the replacement of surfaces to a subset of this border in these

equations, the integrals of (20) and (21) are equal to one another and may be equated to

one another to give

−Vf (~x)
(

∇x ·σ0(~x)+ω2ρ f u0(~x)
)

−ω2ρ f w(~x) = ∇x · τ0(~x)+ω2ρsu0(~x)

−ω2(ρs +Vf (~x)ρ f )u0(~x)−ω2ρ f w(~x) = ∇x · τ0(~x)+Vf (~x)∇x ·σ0(~x)

−ω2ρu0(~x)−ω2ρ f w(~x) = ∇x · τ0(~x)−Vf (~x)∇x p0(~x) (27)

where in the final step,σ0 was replaced by−p0I as from (8b) and the termρ was intro-

duced as a notational shorthand for

ρ = ρs +ρ f = ρs +Vf (~x)ρ f u0(~x) (28)

Similarly, equations (22) and (23) may be combined to give

iω∇y ·u1+∇y · v1 = 0 (29)

Next, replacingv0 in equation (9c) by its definition in (12) and averaging, we obtain

κ∇y · v1(~x,~y)+κ∇x ·
(

iω [u0(~x)+w(~x,~y)]
)

+ iω p0(~x) = 0

κ∇y · v1(~x)+ iωκVf ∇x ·u0(~x)+ iωκ∇x ·w(~x)+ iωVf p0(~x) = 0 (26)

Using (29) in (26) to replacev1 with u1 and dividing the equation byiω,

κ∇y ·u1(~x)+κVf ∇x ·u0(~x)+κ∇x ·w(~x)+Vf p0(~x) = 0 (30)
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While on the surface this appears to have only swapped one unknown term for another,

taking the trace of (17a) results in changing the expressionfor the gradient ofu1 into an

expression for the divergence ofu1,

∇y ·u1(~x,~y) = tr
(

Q(~x,~y)
)

p0(~x)+ tr
(

L(~x,~y)C(~x,~y)∇xu0(~x)
)

(18)

Taking the average of (18) and inserting the result into (30)gives

−
(

Vf −κtr
(

Q(~x)
))

p0(~x) = κ
(

Vf ∇x ·u0(~x)− tr
(

LC(~x)∇xu0(~x)
)

+∇x ·w(~x)
)

(31)

This can be further simplified using the formula for arbitrary function f (~x,~y)

∇x

∫

D f∩BR

f (~x,~y)d~y =
∫

D f∩BR

∇x f (~x,~y)d~y+
∫

∂ (D f∩BR)
q(~x,~y) f (~x,~y)d~y (33)

where the vectorq is dependent on the variation withx of the boundary. As before, the

boundary may be divided up into∂D f ∩BR andD f ∩ ∂BR, but sinceBR is independent

of ~x, there is no contribution from∂BR. As such, the last integral may be replaced by

∂D f ∩BR. Thus, ifw is used in place off , then by equation (14),w = 0 in this region and

the last integral can be dropped. Taking the trace to convertthe gradient into a divergence

operator, we find

∇x ·
∫

D f∩BR

w(~x,~y)d~y =
∫

D f∩BR

∇x ·w(~x,~y)d~y (34)

Dividing by 4
3πR3 and taking the limit asR tends to infinity, we find that

∇x ·w(~x) = ∇x ·w(~x) (32)

This may now be used in (31). This, along with (24), (25), and (27), form a set of four

equations for the four functionsu0(~x), τ0(~x, w(~x), and p0(~x), which describe all the

properties of the poroelastic medium on the macroscopic scale since the fluid stress tensor,

σ0 may be determined from the pressurep0 in (8b). To simplify the notation, we assume
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thatW is invertible and we introduce

M(~x) = κ(Vf −κtrQ(~x))−1 (37)

With these assumptions, we can rewrite the four equations and group them between equa-

tions of motion,

−ω2ρu0(~x)−ω2ρ f w(~x) = ∇x · τ0(~x)−Vf ∇x p0(~x) (35a)

−ωρ f u0+W
−1
(~x)w(~x) = −∇x p0 (35b)

and constitutive equations

τ0(~x) =
(

C(~x)+CLC(~x)
)

∇xu0(~x)+CQ(~x)p0(~x) (36a)

p0(~x) = −M(~x)
(

Vf ∇x ·u0(~x)− tr
(

LC(~x)∇xu0(~x)
)

+∇x ·w
)

. (36b)

4.4 Biot’s equations

The equations given by Biot are for a uniform medium [4], which is to say amacroscop-

ically uniform medium. This may be portrayed by letting the domainsD f and Ds be

independent of the macroscopic variable~x. As such, in (33), there is no variation ofx in

the boundary and thusq is zero. Therefore, as in (32),

∇x f (~x) = ∇x · f (~x) (38)

for any functionf (~x,~y). The averaged coefficients in the four equations are also no longer

dependent on~x due to the uniformity, rendering them constants [5]. With this, equation

(35a) may be simplified, leaving it and (35b) as

−ω2ρu0(~x)−ω2ρ f w(~x) = ∇x ·
(

τ0(~x)−Vf p0(~x)I
)

(39a)

−ωρ f u0(~x)+W
−1

w(~x) = −∇x p0(~x) (39b)
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For reasons of comparison,Vf p0(~x)I is subtracted from either side of equation (36a),

using the definition ofp0 from (36b) to removep0 from the right side of the equation.

After rearranging both this altered (36a) and the original (36b), this results in

τ0(~x)−Vf p0(~x)I =
[

C+CLC+
(

Vf I −CQ
)

M tr
(

Vf −LC
)]

∇xu0(~x)

+
(

Vf I −CQ
)

M∇x ·w(~x) (40a)

p0(~x) = −M tr
(

Vf −LC
)

∇xu0(~x)−M∇ ·w(~x) (40b)

These equations may be compared to the equations in [4] marked (2.2), (5.2), and (5.1),

which are

∂τi j

∂x j
= ρ üi +ρ f ẅi (41a)

−
∂ p f

∂xi
−ρ f üi = Y i j(p)ẇ j (41b)

τi j = Aµν
i j eµν +Mi jζ (42a)

p f = Mi jei j +Mζ (42b)

Equations (39) and (40) from Burridge and Keller can be shownto agree with equations

(41) and (42) from Biot by identifying the differences between notation. Some are ob-

vious, including some which have identical notation, whileothers are quite complicated.

The differences are summarized in the following table.

Burridge & Keller [5] Biot [4]

ρ ,ρ f ,M ρ ,ρ f ,M (43a)

C+CLC+
(

Vf I −CQ
)

M tr
(

Vf −LC
)

[Aµν
i j ] (43b)

iω iω = p = d
dt (43c)

W
−1

[Y (p)]
( d

dt

)

(43d)

u0,w, p0 u,w, p f (43e)

M(Vf I −CQ (−Mi j) (43f)

τ0−Vf p0I τi j (43g)
1
2[∇xu0+(∇xu0)

T ],∇ ·w ei j,−ζ (43h)

These quantities in Biot’s derivation are phenomenological, but Burridge and Keller’s
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quantities are calculated from the continuum mechanics of fluid flow and elasticity the-

ory. Thus, the parameters in Biot’s work could be potentially calculated from Burridge

and Keller’s work given the viscosity of the component fluid and the lamé constants of

the component elastic solid. However, in practice, this is not so simple, which will be

discussed in the next section.

4.4.1 Special cases

Burridge and Keller [5] went on in their work to consider special cases of these equations,

of which we will demonstrate two.

(1) The absence of fluid:Here, we consider an elastic porous solid with empty pores. In

this case, expressions arising from the fluid portion are removed. In particular,W , which

is a part of the solution to the relative motion of the fluidw, is not defined. This leaves us

with adjusted versions of (39a) and (36a). That is,

−ω2ρu0(~x) = ∇x · τ0(~x) (44a)

τ0(~x) =
(

C(~x)+CLC(~x)
)

∇xu0(~x) (44b)

These are of the same form as the equations for the elastic solid [5] that we derived in

section 4.2, as may have been expected.

(2) Fluid in a rigid porous solid:We assume that the porous solid is completely rigid. In

this case, the solid displacementu = u0+ εu1+ . . . is 0 everywhere. In such a case, we

find that (24) is

w(~x) = −W (~x)
(

∇x p0(~x)
)

(45a)

which is equivalent to Darcy’s law for the fluid [5]. Similarly, (25) gives that

p0(~x) = −M(~x)∇x ·w (45b)

whereM is defined as in (37) withQ = 0 [5], sinceQ arises from the definition ofu1,

which is equal to 0 everywhere.
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Both of these cases reduce to well-known relations for the solid and the fluid, respectively.

Burridge and Keller also looked at the isotropic case by taking the averaged tensors to be

also isotropic. It is also possible to look at the case where the Reynolds number is of

order unity on the macroscopic scale, which results in viscoelastic equations. However,

this latter case requires the derivation process to begin again from the initial equations.
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Conclusions

The derivation of the poroelastic equations through the homogenization method was help-

ful in demonstrating that Biot’s equations, derived by phenomenological arguments, had a

firm basis in theory when the Reynolds number (or dimensionless viscosity) was of order

one. At the time, their validity was being called into question [5], but this derivation is

now used to justify the use of Biot’s equations [24]

This method is not the only method to derive Biot’s poroelastic equations. For example,

mixture theory has also been used to derive these equations [9]. However, the homog-

enization method has some advantages over other continuum methods, as well as some

challenges.

The primary advantage of the homogenization method is that it results in expressions for

the parameters in terms of the microstructure, as seen in theprevious sections. Other

continuum approaches often require macroscopic estimation for the parameter values for

the specific material, but parameters derived from the homogenization method can the-

oretically be determined for any material for which we understand the solid and fluid

properties [19].

This can be invaluable in some circumstances. For example, it is clearly difficult to mea-

sure properties of the human brain in vivo. Attempts have been made to estimate these

through measuring the same properties in other mammalian brains, such as monkeys [14]

and cats [17], and assuming that the properties are similar to the human brain. This has

resulted in a wide variance in the estimated results: Metz etal. suggest a range of 10 to 20
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kPa for the shear modulus [14], while Tenti et al. conclude that it is closer to 7.5 kPa [22].

Since the poroelasticity equations may be used to describe the fluid-solid interactions in

hydrocephalus [24], a method to produce the parameters for such a model would clear up

this issue.

We consider some examples of results produced in the literature below.

Skotheim and Mahadevan [20] consider a poroelastic medium at a low Reynolds num-

ber and in an incompressible fluid. One area of biological research in which the flows

are characterized by low Reynolds number is the motion of microscopic organisms [15],

which makes it a natural assumption for their work on filaments in the microscopic pores

[20]. In such a region, properties are approximately time-independent and thus the time

derivatives may usually be ignored [15]. As a result, they use the same initial equations

as in Burridge and Keller after setting the time derivative terms to zero, although they

still retain the boundary condition relating the fluid velocity to the derivative of the solid

displacement, which is equivalent to (3d) in Burridge and Keller [5].

From these simplified equations, they derive an expression for the stress tensor which may

be written in the notation used in the previous chapter as

τ0(~x) = 2µ̂
(1

2
[∇xu0+(∇xu0)

T ]
)

+λ I∇x ·w(~x)− (Vf − γ)p0I (5.1)

where µ̂ and λ are the effective Lamé coefficients andγ is a constant derived in Ap-

pendix A of Skotheim and Mahadevan [20]. This is of a similar form as (40a) and

(42a) in Burridge and Keller [5]. However, their coefficientof the linearized strain,
1
2[∇xu0+(∇xu0)

T ], is a scalar rather than a tensor, and their coefficient to thepressure is

of opposite parity to that in (40a). This does not indicate that the derivation in Skotheim

and Mahadevan is inconsistent with Burridge and Keller [5] or Biot [4], as tensor coef-

ficients may reduce to scalars in certain circumstances [26]. For example, Burridge and

Keller demonstrated that the expression for the stress tensor in the case where the medium

is isotropic on the macroscopic scale also results inµ̂ as a coefficient of the same term

[5], although the equations are not equivalent. Instead, wewould have to consider only

the isotropic equations (2.1) in Biot’s work [4].
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The derivation in Skotheim and Mahadevan is incomplete fromthe point of view of one

seeking a low Reynolds number version of Biot’s poroelasticequations. As they were

seeking to describe a specific related question, they did notderive any other equations

that corresponded to the other poroelastic equations.

Zhou and Sheng [26] relate the tensorW of Burridge and Keller’s work [5] to the dy-

namic permeability function,κ(ω). However, rather than considering the tensor version

of κ, they focus on the scalar version, which occurs when the microstructure is isotropic,

uniaxial, or simple-cubic [26]. This allows them to calculate the dynamic permeability

numerically, but these are quite strong assumptions on the microstructure, reducing it to

much simpler cases. In particular, the microscopic isotropy condition may restrict its use

to a special case of macroscopic isotropy discussed at the end of Burridge and Keller, as

the poroelasticity equations discussed in the previous section are for anisotropic media. It

is worth noting that microscopic isotropy is not required for macroscopic isotropy, so this

does not cover the entirety of the macroscopic isotropy problem [5].

The problem was also studied for a medium with an isotropic microstructure by Chapman

and Higdon [7]. Here, the fluid stress is considered isotropic and all properties of the solid

phase are also isotropic. They estimated the microstructure as a three-dimensional grid

of overlapping spheres in a simple cubic lattice, with the fluid occupying the remaining

space. On this restricted domain, they were able to compute expressions for the stress and

some other related properties.

One may begin to notice a pattern of incomplete results for restricted cases of the equa-

tions. This is a pattern through the literature working on this problem of calculating the

parameters to the poroelasticity equations. There has beenextensive study in the case of

a porous elastic solid without fluid and the case of fluid flow through a rigid solid [6], but

no solution has been formulated for the general case [3].

Indeed, the greatest strength of the homogenization methodwhen compared to other up-

scaling methods is directly related to its greatest weakness. While the parameters derived

by the homogenization method may theoretically be calculated from the microscopic

properties, this is not always simple in practice. In the case of the poroelasticity equa-

tions, this has not been solved even numerically in the thirty years since Burridge and
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Keller first derived the expressions for these parameters.

It is worth noting that the other methods for deriving homogeneous macroscopic prop-

erties from a heterogeneous microstructure also require the parameters to be discovered

phenomenologically. Thus, on the surface, it would seem that this lack of calculation from

theory is no more of an issue than for other continuum methods. However, the issue sim-

ilarly arises out of the method’s strengths. As seen in the comparison to Biot’s equations

in Burridge and Keller [5], the relation between the parameters derived in the homoge-

nization method and their respective macroscopic equivalents are not obvious (see (43b)

in Burridge and Keller or the previous section for a particularly non-obvious example).

Thus, a proper identification of the parameters may require comparison with an equiva-

lent model. This is to say that we may be unable to understand what these homogenized

parameters mean if we do not already have an equivalent modelfor the behaviour being

studied, so we either already have a more useful model or we are limited to theoretical

exploration of parameter space without a sense for the limitations on the parameters.

This might appear at first to obviate most reasons for using the homogenization method,

but there remain reasons to make use of this method. As was theoriginal intention of

Burridge and Keller’s work, the method allows one to place phenomenological models on

a more firm theoretical footing. While Biot’s poroelatic equations were successfully used

in many applications, their validity was questionable. In applying the homogenization

method, Burridge and Keller not only proved that these equations are valid, and further

clarified the conditions under which they are valid – specifically, when the Reynolds num-

ber length scale is on the order of the microstructure. When it is of order unity on the

macroscopic scale, the equations are equivalent to those for a viscoelastic material [5].

The lack of a generally applicable method to calculate the parameters is also not an in-

surmountable setback. In terms of the method, this one setback does not mean that all

such problems will encounter these issues and it remains a valid approximation method

to try and tackle problems involving heterogeneous microstructures. More specifically

there has been some work has been done to correct this intractability for the case of the

poroelastic equations. For example, more recent work by Clopeau et al. [8] has attempted

to rederive the poroelasticity equations through the homogenization method in a some-
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what different manner than Burridge and Keller, with more ofan emphasis on the specific

problem of acoustic waves in a seabed. They claim that their results are also equivalent

to Biot’s poroelastic equations, but in a form that may provemore tractable to numerical

methods. While a full exploration of this possibility has not been conducted, some initial

attempts to apply a finite element approach have shown results for a simple model of the

microstructure [2].

In the end, while the method has its challenges, the two-space homogenization method is a

worthwhile technique for treating problems that include rapid or microscopic variation in

problems where a macroscopic description is desired. Whilethe calculation of parameters

is not always sufficiently straightforward as to allow for anexact calculation in terms of

the microscopic properties, it still provides an understanding of the general shape of a

macroscopic model and may be used to justify a more phenomenological approach. In

cases where an exact or numerical solution of the parametersmay be derived, it provides

a more general framework to determine the properties of the model without resorting to

heuristic experiments.

More specifically to the poroelastic application, the homogenization method has provided

a firm theoretical basis for Biot’s theory, including an indication of where it is valid. While

the problem of calculating the parameters remains unsolvedin all but some simplified

cases, there remains a possibility of obtaining these numerically. If this is done, then it

may provide a solution to the problem of measuring the properties of difficult materials,

such as biological tissues.
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