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Abstract

In this thesis, we consider the two-space homogenizatiaghadewhich produces macro-
scopic expressions out of descriptions of the behavioureficrostructure. Specifically,
we focus on its application to poroelastic media. After diéseg the method, we pro-
vide examples to demonstrate that the resultant expresaienequivalent to an explicit
derivation, which might not always be possible, and to aetthe method for proving that
the expressions converge to their macroscopic equivaleltsn providing the basis for
this method, we follow Burridge and Keller’'s work for usirfgjg to prove the existence
of Biot’s consolidation equations for poroelastic medid &mprovide expressions for the
derivation of the parameters of these equations from theostizicture [5]. We then dis-
cuss the benefits and challenges that arise from this fotionlaf Biot's consolidation
equations.
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I ntroduction

Mathematical modeling is always a balancing act of detado much detail results in
models that are too complicated to be useful, while inswfitdetail results in inaccu-
rate models. While in some problems it is fairly obvious Wwhiaspects are important to
capture in the model, this is not always the case.

One kind of problem of this type involves properties thatyvan multiple scales. One
common form of multiple scales is that of two length scalesnieroscopic scale and
a macroscopic scale. This is to say that we examine problemeseathe properties of
interest change significantly between points in space tiead anicroscopic distance apart
as well as points that are different to a degree that is agiecon a macroscopic level.

A simple example of such a problem would be determining thebieur of a composite
material formed of thin fibres of two different materials [12n a macroscopic scale,
this composite material would seem to be homogeneous, batroitroscopic scale, it
is possible to distinguish between the two materials. A$1isan the macroscopic scale,
properties dependent upon the composition of the matexialdd seem to vary slowly,
while they would vary rapidly on the micoscopic scale as drged between materials.
Another example would be the treatment of acoustic waveaigir a turbulent fluid [12].

Several methods to deal with this problem have been deve)gpeh as volume averaging
and mixture theory (see [9]). These two methods have beeth with some success
in studying our application of interest — that of a poroussgt solid that is saturated
with fluid — and, in fact, some ideas that would later develdp the volume averaging
method were used in Biot's study of the problem in the middi#he 20th century. Both

of these methods consider a set of continuous points, butapproach to averaging is
different. In the volume averaging method, we consider arogenous "representative
volume element” (referred to as an RVE) which describes ticeastructure around this
point in order to determine the continuum properties at thiatd9, 21]. On the other

hand, in the mixture theory approach the point is treateti@sgh it is occupied by each
substance in the overall medium — in this case, fluid and s&ather than considering
the microstructure around this point, we simply work witk flux through that point [9].
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While this is a very simplified explanation for these methagls will be concentrating
on the method of homogenization for two spatial scales ferriajority of this work
and, as such, will not require a more thorough understanalirigje other methods. In
this method, we consider how these properties vary on bothadl and large scale and
then average variation on the small scale to obtain an utahelisig of the larger scale.
A higher number of scales is possible (see chapter 1, se8tiar{1] for an example),
but since our application of interest only uses two scalesyill focus on two scales.
To assist in this averaging, we generally assume that thdl-so@e variation repeats
periodically throughout the medium. We will consider thisthod in more detail in later
sections.

In the first section, we introduce the homogenization metinogeneral terms. In the
second section, we derive an effective thermal condugtfeit the one-dimensional heat
equation through the homogenization method and compaoetlitet equivalent effective
parameter determined explicitly to demonstrate the etpiineg between homogenization
results and explicit results for this example. In the thiedt®n, we prove that the func-
tions derived from the method converge to the proper saiutiathe case of an elliptic
differential equation. While no general proof is given, fireof may be altered for a
variety of problems (some are given in [1] and [18]) and la&sults are given assum-
ing this convergence. In the fourth section, we derive Bietjuations for a poroelastic
medium from its microstructure and provide relations betvéne microscopic properties
and the equations of the entire medium. In the final sectiandiscuss the advantages
and shortcomings of the method.



CHAPTER1
The two-space homogenization method

The two-space homogenization method is applied to probenese properties vary over
two different length scales, where one is much smaller thanother. Typically, these
scales are a microscopic scale where the space is cleaglpgeheous and a macroscopic
scale over which the space appears approximately homoger{see [12]. However,
despite using the term "microscopic,” the length scale naybe strictly microscopic.
Rather, it refers to a scale much smaller than the macroscmaile and may be more
accurately considered a mesoscopic scale. For example aygequire that continuity
assumptions hold on the smaller scale, which thereforeatdreon an atomic level.

These scales may also be referred to as a fast scale and acsllewrespectively (as in
[5]). They are largely equivalent, as properties that varnaanicroscopic scale will ap-
pear to vary rapidly from a macroscopic viewpoint and, samy, macroscopic variations
will seem slow from a microscopic viewpoint. We will use te@srms interchangeably
throughout the thesis.

We begin with an initial set of equations that are influencgdhe heterogeneous mi-
crostructure; for example, a medium that contains a fluidsphaight begin with the
Navier-Stokes equations (as in [5] and [13]). However, theoito represent variations on
these separate scales, properties of a mediundimensions are represented as functions
of 2n dimensions, separated into twalimensional vectors (or scalars in one dimension),
X = (X1,X2,...,%) andy = (y1,¥2,.-.,Yn) [18]. These variablez andy are referred to
as the slow (or macroscopic) variable and the fast (or memoig) variable respectively,
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allowing macroscopic variation to be represented in exgioas ofx and microscopic
variation iny. Many works in homogenization quantify this fast variatiory by relating

the two by the relation
X

y= . (1.1)
for a small, strictly positive parameter(for example, [1, 5, 12, 13, 18]). The precise def-
inition of € is not as significant as the assumption that it is small, bstiften considered
to be approximately the ratio of the microscopic length e¢althe macroscopic length
scale.

This comes with some advantages. Most significantly, itifjestthe definition ofy as
the "fast" variable by giving a quantifiable reasoning ferrate of change, since for a
function f with a bounded derivativé’,

d, X X
— (Y=t 2

o (Z) =1 (5)

which, for a smalk, is large even iff / is bounded [13]. This factor af~1 multiplied by
f’ in the derivative also provides a justification for replagthe derivatives im dimen-
sions in the initial set of equations for derivatives of timed2mensional functions used in
the homogenization equation as

0— Ox+e7 10y (1.2)

wherelly and(y are del operators with respectt@ndy respectively [5].

However, definingy as in (1.1) is not particularly rigorous, as the homogeroranethod
requiresx andy to be treated as independent variables at some stages dritaatin of

the homogenized equations. Rather, a more cautious appi@cdefinex as the variable

of macroscopic variation anglas the respective microscopic variable, which allows for
them to be independent. The derivative substitution (1&) bre viewed as an assumption
of the method rather than a result of relation (1.1). Thetimia(1.1) is then a diagonal

in the 2n-dimensional space dfx,y), which is made significant as the diagonal along
which the physical solutions lie in thedimensional problem [5]. Specifically, the-2
dimensional functiong (x,y) in the equations with the substitution (1.2) are expansions
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from this diagonal of the-dimensional functions of our initial set of equatioh&x) by
[12]
f(x, ) = F(x)
€
In both [12] and [5], this line of reasoning was used aftergherious definition to justify
the treatment ok andy as independent. Here, we use this as the definition to allow fo

true independence of the variables.

This definition causes an epsilon dependence in the orightiinensional functions,
which arises from a perturbation expansion of the functiarterms of epsilon. This is
also used in ther2dimensional functions such that

() = foxy) + £falsy) + 5 a0cy) +O(e) @3)

These expansions are substituted into the set of equatBinse this is an infinite series
expansion, it is possible to equate the parts multiplied'igr i € Z and obtain equations
for fg, f1, and so on.

The final assumption required for the homogenization methdte periodicity of the
heterogeneous underlying microstructure, which is regmesl in periodic behaviour of
the properties iry. We refer to a cell over which one period occur¥asvhich is repeated
over the entirety of the domain of the mediunyjr) [18]. This domain may be bounded,
but calculation for even simple boundary conditions canobex complicated [1] and
thus many applications assume that the medium is infiniténplgy calculations (for
example, in [5] and [20]). Sinceandy are considered as different scales over the same
medium, it is simplest to consider both domains as beingitefin

It is from this point that the specific steps vary dependerthese equations. The initial
goal is to obtain expressions for the zeroth-order part efefpsilon expansiorfp(x,y),
for each property, which is taken to be approximately edaivato the property since
is small. This may only require the zeroth and first order espan terms (such as in [5])
or it may require higher-order terms (such as in [13]). Thentéwal goal will be to obtain
expressions for these zeroth-order terms only in termseofrtAcroscopic variabbe

In some cases, the zeroth-order term is already only in tefrs For those where the
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zeroth-order term has a dependence,ahbecomes necessary to average over the micro-
scopic variable to provide an approximation to the macroscopic behaviduhe shape

of a period cellY is explicitly determined, the average takes the form of aegral with
respect toy overY divided by the volume oY [12]. If the specifics of the periodicity is
not given, then we take the average over the whole domayndbfided by its volume.

In the case where the domain is infinite, this may be accomgdidy taking the integral
over a ball of radiuR divided by the volume of the ball and then taking the limitRas
extends to infinity.

Whatever the form the average takes, this is used on thesstpns for the zeroth-order
terms that still depend upon These averaged expressions become the new equations for
the macroscopic medium.

Since the flexibility of this method means that we cannot giveore exact description of
the steps required to obtain these expressions, we will iadgenore explicit by provid-
ing a simple example. Specifically, we will demonstrate #8 in a one-dimensional heat
equation. We use the one-dimensional heat equation beaauselicit treatment of the
equation can provide an equivalent result as the one olst&inéhe method of homoge-
nization. While this example cannot be used as proof of thinateof homogenization,
it does lend credence to it when used in circumstances wimeegalicit solution is not
possible.



CHAPTER 2
The one-dimensional heat equation

In order to demonstrate the two-space homogenization rdethe apply it to the one-
dimensional heat equation along a metal rod and demonstratté is equivalent to the
explicit solution. We largely follow the approach used byl&ein [13], rearranging and
expanding the calculations as required for greater clarity

However, despite its usefulness as an example of the twoedpanogenization method,
its use in practical applications is limited. In this case dnly new information obtained
is a relation between the small scale behaviour of the paeasand the effective macro-
scopic behaviour of these parameters, so it is only usefelhwte can model this small
scale behaviour. This requires a much more intimate knaydexf the impurities of a

specific metal rod than is practical in real applications.isTdoes not detract from its
usefulness as a demonstration of the method, but it doegsutigt one must be careful
in considering the application of the method to real-lifeiations.

2.1 Thetwo-space solution

The one-dimensional heat equation, which models heat flonged rod, is a well-known
application of the theory of ordinary differential equatso For a rod where the ther-
mal conductivityk, varies along its length, the equation for the steady seatgérature
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distribution is
d d

Ix (k(x)&u(x)) =h(x) 0<x<1 (2.1a)
wherex represents the position along the rod, defined such thanite @ the rod are at
0 and 1,u represents the temperature along the rod, larepresents a heat source. For
this example, we assume that one end of the rod is held at tatnpe O while the other
end is insulated so that no heat flows out of the rod at that Enid.results in the simple
boundary conditions

u(0)=0
du(®) _
3 =0 (2.1b)

We also will assume that the thermal conductiwtig both positive and bounded to pre-
vent unphysical conditions. This assumption will also graseful later in the application
of the two-space homogenization method.

However, for this method, it is necessary to write the equatiin terms of a slow vari-
ablex for changes over a macroscopic scale and a fast vanafile changes over the
microscopic scale, turning it into a partial differentiguation. A small parametes,
independent ox andy, is also introduced so that

2

u(xy,€) = uo(Xy) + €ur(x,y) + %Uz(x,y) +0(¢%) (2.2)

and so that the derivative in (2.1a) may be replaced by thepderivatives

E — i + g_li
dx  oJx oy

For the sake of convenience, we will udeanddy, to represent these partial derivatives
for the rest of this section. From this, (2.1a) becomes

(£720K(%,Y) 8y + & H(AK(%,Y) y + Ayk(%,Y) k) + K(X,Y) dx ) u(x, Y, €) = h(x,y) (2.3)

Using the epsilon expansion (2.2) and equating like powkes the lowestk terms result
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in three equations

O(1):  dy(k(xY)dyuo(xy)) =0 (2.4)
Ofe):  3(k(xy)dua(xy)) = —(d(k(xy)dy) +3(k(x¥)dx) Juo(xy) ~ (25)

)3) ) ol
O(%): 5ay(K(xy)dyn(xy)) = — (3 (k(xy)&,) + & (kix ax))
— dx(k(x,y)dxuo(x,y)) +h(xy) (2.6)

Solving (2.4) in the most straightforward manner possivie pbtain

y
= f(x) ; k™t (xy")dy’ +g(x)

for an arbitraryyo. In the absence of boundary conditionstgtx,y), the unknown func-
tions f andg must be determined in terms of the functions at this sggm&o determine
g, we sety = yp, which makes the integral zero, giving

Uo(X,Yo) = 9(X)
Similarly for f, we have
f(x) = k(x,Yo) (yuo(x,¥0))

Thus, the solution for arbitrarnyy can be expressed as
y
Uo(X,Y) = Uo(X,Yo) + K(X,Yo) (dyUo(x,Yo)) s k(xy’)dy’ (2.7)
0

However, since is strictly positive and bounded, its reciprocal never apphes zero
and thus the integral does not reach a finite limit as therarlyiyo increases. While the
slow variablex is bounded, the domain of the fast variable along the phlydiegonal

9
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y = £ 1x may be made arbitrarily large. So, under the assumptiorthiegteat function
Up is boundedgyup(X,yo) must be zero, since the integral is nonzero whehy, andk
is strictly positive. Sincey is arbitrary, this shows that the derivativewf with respect
toyis O at every point. Sag is a function of the slowly varying termonly.

Using this information in (2.5) to eliminate a derivativetivrespect tg, we obtain

Ayk(x,y) (Ayu1(x,y) + dkuo(x)) =0 (2.8)

We can solve (2.8) in a similar way to (2.4), such that

K06Y) (A (%) + Beto(x)) = ()
Iyt (xy) = K H(xy) f (x) — dxuo(x)
ui(x,y) = f(x) yyk_l(x,y’)dy’ — dkuo(X)y+9(x)

By the same method used to determfnandg in (2.4), we find

f(x) = k(X Yo) (dyu1(X,Yo) + OxUo(X))
9(X) = Yodxuo(X) + U1(X,Yo)

and thereby obtain

u1(X,y) = u1(X,Yo) — (Y —Yo)xUo(X) +K(X,Yo) (dyu1(%,Yo) + dxo(X)) yyk‘l(x,y’)dy’

By rearranging and dividing by— yp, as before, it can be shown that

Yo
Oy (X) = u1(X,Yo) — ui(X,y) N k(%,Yo) (dyua(x,Yo) + dxuo(x)) ; k-2(x,y")dy

Y—Yo Y—Yo

(2.9)

10
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As with up, we assume that; is a bounded function. Then, we define a functigfx) as

ko 1(x) = lim yk—l(x y/)dy’ (2.10)
Y=Y — Yo Jyo ’ '

We assume that this limit exists and is independenyoWith this, we can take the limit
of (2.9) asy goes to infinity to find

Axuo(X) = K(x,Yo) (du1(X,Yo) + FxUo(X)) ky 1 (X)
k(%,Yo)dyu(x,Yo) = ko(X)xUo(X) — K(X, o) xUo(X) (2.11)

Now, sincekg is independent of botia andyp and (2.11) is only in terms ofy, we may
replace the arbitraryg with the variabley in (2.11). This is simply a notational change,
since bottk anddyu, are not affected by the symbol used for the second variable.

With this, we can substitute this expression into (2.6) abotchio

Ayk(x, y)éyUZ()z(’ ) + Ayk(%,Y) Oxu1 (X, y) = —dx(Ko(X)dxUo(X) — k(X,Y)dxUo(x))
— 0k (x,y)dxUp(X) + h(x,y)

3y (K(x y)dy -2 (;" Y) 4 k(x,y) ki (x,y)) = —dkko(x)3kUo(x) +h(x.y) (2.12)

Integrating (2.12) with respect gofrom yp to y results in

(Kx3)3 Z52) k) Ban0) , =~y o) koX)3n(x) + [ iy )y’

2
(2.13)
We define the average bfwith respect to/ as
R(x) = lim — /yh(x y')dy’ (2.14)
y=oy—Yoly, '

Under the assumption that the expression on the lefthardafi(R.13) is bounded, we
divide the equation byy — yp) and take the limit ag tends to infinity. Thus, we obtain

(605200 =Ry 215

11
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This gives us an expression for the slowly varying, or mamwpg scale, properties of
the heat equation. However, this is not simply a case of gusgahe functions over the
swiftly varyingy, askp is determined from (2.10). Since the heat equation is aslsimp
as it is, we can show that this definition flg is correct by explicitly determining the
effective thermal conductivity.

2.2 Effectivethermal conductivity

We begin with the same boundary value problem as describéd.la,b). This time,
we ignore the rapid variation of the source telhnsince its homogenized equivalent is
just an average over the rapid variation. We concentrateadson the rapid variation
of the thermal conductivitk by considering it in terms of the variabée x for a small
parametee. For a bounded derivative & k’, this provides the rapid variation desired,

as dk(e~1x)
€ X =171
———=¢ ki(ex
i (e7%)
-1
means that the rate of chané!ggx—x) is large compared to the derivativelkqfx) whene
is small. To capture both rapid and slow variations, we whtethermal conductivity as

k(x,£71x).

For the sake of computational convenience, we wr{te as the derivative of some func-
tion g(x), where we assumg(1) = 0. This assumption og does not affect the results,
as only the rate of change dfis important in this source term. Thus, our steady-state
equation becomes

% (k(x,s—lx)%(u(x)) %9 o0<x<1 (2.16)

with the boundary conditions remaining the same as in (2.Ibg solution of the equa-

12
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tion is quite straightforward under these conditions, as

%( (K(x, e‘lx)%(u(x) —g(x)) =0

d
-1 - . —
k(x,€77X) OIXu(x) g(x) =c1
for some constant;. Settingx = 1, by our assumption og and the second boundary
condition in (2.1b), itis clear thay = 0. So

d
-1\ Y o _
K(x,€7X) OIXu(x) gx)=0
d v_  9(x
ax i = k(x,£~1x)
_ [ 9X) :

for some constanty, which is determined to also be equal to zero by settirg0 and
using the first boundary condition in (2.1b). From this, icbenes clear that is also
dependent o, so we write it as

¢ 9x) /
u(x,s)_/O mdx (2.17)

This is to say thati(x, €) varies rapidly as a result of its dependenceépwhich is to say
that microscopic changes in the position along the rod t@stdrge changes in the value
of u. To eliminate this effect and consider the macroscopictiam inu, we wish to find
the limit ase tends to zero,

Uo(X) = lim u(x,€) (2.18)

£—0

To prove that this limit exists and that the result may be egped in the same manner as
Up(X) in (2.15), we prove the following theorem.

Theorem 2.1: [13] Let f be a function such that the derivative Ofx,y) with respect to
its first argumentfy, exists and is continuous. If for some finite vamig fy(x,£~1x)| < B

13
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for all values ofs and the limit

F(x) = lim — /,5 R xy)dy (2.19)

exists uniformly in x, independently @fx, then

X X
; I o—17 I _ Fiv/ /
lim [’ _/O F(x")dx (2.20)

Proof: For notational convenience, we define the integfale) as

Xj

|(x,€) = /xf(x’ e Ix)dx' = N_l/Xj+l f(x’, e Ix")dx’ (2.21)
1 - 0 ) - zo ’ .
J:

wherexj = % j =0,1,...,N—1 for some natural numbé¢. We define the difference

between adjacend asAx = . Then, by the assumption thd| < B and the mean value

theorem[23], we have

1F(x",e7 ) — f(x5,e X)) | = | (X" —x)) fx(%j, %), Xj <% <X <Xj11

1f(x, e Ix") — f(xj,e x')| < BAX (2.22)

From (2.21) and (2.22), it follows that

Xj+1 N-1 /xj1

N-1
1(x,€) — Z/ f(xj, e X )dx'| =| Z/ f(x',e71x") — f(xj, e x")dx/|
0 /% =0 /%,

N-1 Xj+1
xj, e X )dx'| < 5| f(x’,ex") — (x5, x")dx’|
i =0 X

"

e f(xj,e2x")dx'| SNf/Xxjﬂ [f(x,e7x") = f(xj,e7x")[dX’
j iSo/x;

&

j X

N-1 Xj4+1
xj e~ x)dx'| < Y / BAxdx’
=
N—1
xj,& X )dx’| < > B(Ax)?
j j=0

N—-1
\I(x,s)—j_o/x
N—-1
1(x s)—go/x
NZ1 xja
1(x s)—jzo/x
N-1
1(x,€) - ,-Zo/x

14
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N-1 Xj+1
(%) — / F(x;, &~ 1x")dx’| <NB(AX)?
j=07%i

Bx?

i X+ -1,/ 1
I1(x,€) — /X f(xj, e x")dx’| <N (2.23)
j=07X%j

Taking the limit of (2.23) ad\ tends to infinity, the righthand side tends to zero. Since the
lefthand side is nonnegative, this means

lim |1 S [ e XAk = 0
N <x,e>—go/ (.6 X )ax'| =

Xj

Thus, asN tends to infinity, the relation betwek(x, &) and 35 [+ f (xj,e~x)dx’
approaches equality. That is to say,

XJ+1
(x,€) = I|m / f(xj, e x")dx’ (2.24)
Xj

N—>oo .

If we take the limit of (2.24) as tends to zero, we find

. XJ+1
lim1(x,¢&) = lim I|m / f(xj, e x")dx’
e—0 e—>ON—>oo Xj

. XJ+1
= lim lim f(xj, e Ix")dx’

N—o0 ZO e—0 Xj

N-1 £ Xj11
= lim § lim e/ - f(xuy)dy (using y=¢e"'x')
&

N—0 =) e—0 ~1x;

N—-1

_ AX e 1(xj+Ax)
=lm 5 wlme e

N-1 e € 1(xj+Ax)
= lim Z Axlim —/ f(xj,y)dy

Noeo Ly e20 AX Je 1y,
N-1
= lim AXT (X)) (2.25)
N— o0 =)

15
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where on the final line we use the definition (2.19). The righthside is in the form of
the definite integral of (x) from 0 tox. Thus, by (2.25) and (2.21),

X X

lim f(x’,s‘lx’)dx’:/ T(x")dx’
£—=0Jo 0

as required. O

Using this theorem, we may now fing(x) as defined in (2.18). If we assume thigx, €)
and its first derivative is bounded, then by using the sotutmu(x,€) in (2.17) and
applying theorem 2.1, we obtain

Up(X) = I|m u(x £)

Ilm/
£-0 kx s 1x

(+A) /
— I|m£/ o g(X)dydx’

0 £-0AX k(x’,y)
X+AX
_/ e—>oAx/ . )k(jyy) ax’ (2.26)
If we definekoy(x) as _
& (X
0 :liinoA%/glx( o k(i’yy) (2.27)
thenug is equal to
X) = /O " li(();)) dx (2.28)

By comparingup to (2.17), it is clear that it is of a similar form ta(x, €). It is thereby
simple to show thatiy satisfies a similar equation to (2.16). Specifically, it & the
equation

d d

& ko) o w0(0) = Sg)  0<x<1 (2.29)

From this equation, it is clear to see thgtx) is an effective thermal conductivity for
the steady-state temperature functip(x). The definition for this effective conductivity
when derived explicitly, (2.27), is equivalent to its defiimn when derived by the two-
space homogenization method, as given in (2.10). Thusffénetige thermal conductivity

16



CHAPTER 2: THE ONE-DIMENSIONAL HEAT EQUATION

derived by the two-space homogenization method is equivédats explicit derivation.

Due to the simplicity of the steady-state heat equationtvtieenethods are roughly equiv-
alent when it comes to deriving a macroscopic version of famdihtial equation that also
includes microscopic effects. However, the two-space hlggnzation method may be
applied to examples where the explicit solution may not belsaous, as will be demon-
strated in succeeding sections.

17



CHAPTER 3

Energy proof of the convergence of the
homogenization method for a
second-order eliptic equation

Since the final steps in the homogenization method deperaisglyen the initial set of
equations, no general proof of the convergence of the epsitpansion has been devel-
oped. As such, we will follow the proof of one such equatiagaven by Bensoussan,
Lions, and Papanicolaou [1], supplementing the proof wah@®ez-Palencia’s work on
a similar problem [18]. Throughout this section, we will bging Einstein summation
convention.

For a set of pointy‘j’ in the direction ofy;, we define one periodic cell as [1]

Y =70y cR" (3.1)
j=1

As might be clear from the term "period," this shape is repedhroughout the domain
of y, Q. In R3, this would take the form of a set of rectangular prisms fijlid without
overlapping except on the edges [18]. We will call a functfeperiodic if it repeats over
these period cells. To avoid dealing with the period celirig the boundary, we assume
() to be an infinite domain.

The problem we consider is a second-order elliptic equatidadefine a set of bounded,

18



CHAPTER 3. ENERGY PROOF OF THE CONVERGENCE OF THE HOMOGENIZATION
METHOD FOR A SECONDORDER ELLIPTIC EQUATION

measurable functions [16] which areperiodic,a;j(y) fori,j =1,2,...,n—this is to say,
theseY-periodic functions belong tb* (R").

For this set of functions, we require that they satisfy tHgtatity condition such that
there exists some > 0 so that

aj(y)é&ié >a&&  vEeR" (3.2)

almost everywhere ig.

In Bensoussan et al.'s work [1], these expressions are osashstruct a family of opera-
tors dependent onande, definingy = % (1.1) to represent the fast variation. However,
since in our approach we are using the more careful definitionandy as independent
variables noted in chapter 1, we must begin by using represent the fast variation.
However, since the fast variable is now independent of thw shriablex, we cannot use
the derivative ok in the same manner as [1]. We instead introduce a variabievhavill
call zso that

9 _0 19

Jdz Ox ay

This is equivalent to the derivative substitution assuopfilL.2) and will have the same

(3.3)

result as in [1], since they make this kind of substitutiomdater stage. Thus, for our

purposes,
A= (a1)57) 3.4)
where in our derivation, the reliance suggested in the subscript is implicit throygimd
z. For this family of operators, equation (3.2) is an elligsiccondition [18], meaning
that (3.4) is a family of second-order elliptic operatork [th the original derivation by
Bensoussan et al., this family of operators includes a &y added toA,. However,
this term is taken to be 0 everywhere in many later sectiores) éhough it is originally

defined to be strictly positive. For the sake of consisteweydo not include this term.

Using this, we consider the equation

AsUg(xy) = f(X) (3.5)
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where we assume that is Y-periodic iny.

Due to this assumption and the assumption of an infinite dofaiwe do not need to
concern ourselves with boundary conditions. However, emem bounded region, the
boundary conditions are not very relevant, as claimed bysBessan et al. [1]. The
reasoning for this relevant irrelevance is not explicitlyesn when they claim that the
method will give what they refer to as the "right answer" religss of the boundary
conditions. Remarks in the chapter suggest that they magvieethe differences in the
final results based on different boundary conditions arixely small compared to the
increase in technical difficulty arising from keeping tradkhe boundary conditions. This
technical difficulty and the reasoning behind the small gearin the result for differences
in boundary conditions may both arise from the periodiaitythie result throughout the
domain, although, again, this is not explicitly stated.

We also assume that the source tefrns only a function of the macroscopic variai{e
Bensoussan et al. suggest in their convergence proof isahty be generalized to being
in terms of bothx andy [1]. However, in an earlier part of the homogenization metho
they use its independence frgnand thus we will also assume it to be independent of

From here, we seek a homogenized solution in the form of amatge and a function
u(x) so thatug(x,y) converges weakly ta(x) ase tends to zero and satisfies

Au(x) = f(x) (3.6)

We call A the homogenized operator Af.

To begin, we follow the standard steps of the homogenizatiethod. As such, we
expandug as an epsilon expansion

2

Ue(%,Y) = Uo(x) + €U (%) + 5 Ua(xY) + O(€°) 3.7)

where each function; is alsoY-period iny. Using this and the derivative substitution
(3.3), thee-dependent operatdy; is rewritten as

Ac = Al +e A+ Ag (3.8)
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where
M= (a0 5)
Ao = —(,%(an(y)aixj) —a%(an(y)(,%j) (3.9)

17} 0
Az = % (&J(Y)ij>
We rewrite (3.5) with the expansions (3.7) and (3.8) so that

u
£ 2AUp + 8_1<A1U1 +A2U0> + <A1§2 + Aouq +A3U0> +...="f

u
Aqug + gl <A1U1+A2Uo> + &2 <A1§2 + Aouq + Asug — f) +...=0

Since our definition o is independent of, we equate the coefficients of the various
orders ofe to zero. For the first three orders &fwe obtain

O(1): Alo=0 (3.10)
O(e): Aur+Aup =0 (3.11)
0(e?) : Al% + Aol + Aglip = f (3.12)

To solve these equations, we will need a lemma and the apatefineoretical framework.
We define a Hilbert spadé*(Y) as the completion of the set

ov ov
1 _ uv v 2

HY(Y) = {Vv|v, I eL (Y)} (3.13)

under the norm 3

2 . V.2
My = [ (P4 (50)7)ay (3.14)
We also define a set

W(Y) = {g|@ € HY(Y),p Y-periodic} (3.15)
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However, sinceap is only considered ove¥, this only means thap takes the same value
on opposite sides of. Using these, we write the following lemma.

Lemma 3.1 [1] For ¢ € W(Y) andF € L(Y), the equation
Ap(xy) =F(xy) inY (3.16)
has a unique solution fap up to the addition of a function ofif and only if

/YF (x,y)dy=0 (3.17)

Proof: To show that (3.16) implies (3.17), we note that bathand ¢ areY-periodic.
Thus, using the relation (3.16),

/YF(x,y)dyz/YAlfp(x,Y) = /;yl (a”(y)g;’j (%, y))dy:O

which is (3.17). So it is left for us to prove that (3.17) ingdi(3.16).

We assume that (3.17) is true. For arbitramyy € W(Y), we define an operatay as

0
/a” d;? d;t.’ (3.18)
and an inner product
(Fw)y = [ FOuy)wiey)dy (319)

Equation (3.16) may be rewritten in an equivalent form fdnitaary ¢ € W(y) by

| wieyAeiydy = | wixy)F (xy)dy
Y Y

—/Yw(x.y)diyi(an(y)g—;’;(x,y))dyz/YW(x,y)F(x,y)dy

_/Ya%i(w(x,y)aij(ng (%, Y)) g;p( ,Y)an(y)g—f(x,y) dy:/w(x,y)F(x,y)dy

+/ d / Fd
/ay. wa,ay] ay.a”ay, y= [ yFdy
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Becausej, ¢, andy are allY-periodic, the first integral is equal to zero. This leaves us
with
a(e.) = (F.@)y, VPeW(y) (3.20)

We now consider the subset\&f(y) not containing functions that are constanyjn
W*(Y) =W(Y)\R (3.21)

From our assumption that (3.17) holds, then fore W*(Y), (F,¢)y = (F, @ +C)y
Vc € R. So we have a continuous linear fogn— (F,y)y = (F,y +c)y. By what
Sanchez-Palencia refers to as the Friedrichs inequably {iere existy > 0 such that

a1(9.0) > Vlloll. Voe W (Y)
By substitutingéj = g—}f into the ellipticity condition (3.2), we also obtain that
Iy, apo
5ol > all P

A dyi dy; ~  dyi dy;

o0Q o 0\ 2
T ——dx>a/ — ) dx Yo e W (Y
/Y"“”(y’ayiay,- > Y(dyi) @ e W (Y)

Lettingc = inf(%, ), we obtain

a1(@,0) > cll@lfy.y)  YPEW(Y) (3.22)

By (3.20),a1( @, @) is equal to our continuous linear form@tthis relation (3.22) means
that it is a strongly monotone operator and thus (3.20) hasigqua solution inW*(Y)
[25]. SinceW*(Y) does not admit constants with respecy tthis means that the solution
is only unique up to an additive function ®in W(Y). O

We are now able to solve equations (3.10)-(3.12). We foll@engbussan et al.’s derivation
closely for these equations [1].

(3.10} SinceA; includes a derivative with respectyof ug, a function that is independent
of x is a solution to (3.10). Since (3.10) is of the form of (3.1&F = 0, by Lemma 3.1,
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this solution is unique up to an additive functionxgfretaining its independence froyn
Thus,ug is independent of and may be written as

Uo(X,y) = u(x) (3.23)
(3.11) Sinceug is independent of, (3.11) reduces to

Ajup = (%(W) <;—):(X)> (3.24)

Because of this, we use separation of variables to resakefhe operatodA; is entirely
in terms ofy, so we only need to consider tigg¢erms in the equation. For this, we define
aY-periodic functiony;(y) as the solution to the equation

ia@ i(y) = Avy;j (3.25)

AXiY) = =5

Due to the periodic nature a;(y), JyA1yjdy = 0, so we find thax;(y) is a unique
solution to (3.25) up to an additive functionxfSo the solution of (3.24) may be written

as
du

% (X) + 01(x) (3.26)

ur(x,y) = —xj(y)

wheret(x) is a result of the additive function ofwith x; being multiplied byg—z. Its
exact form is not important for this discussion.

(3.12) By Lemma 3.1, we know that, for there to be a unique solutts, the integral
with respect toy of the terms other thaAl% must be zero. So, for there to be a unique
solution up to an additive function af we require

/Y(Azul(x,Y) + Agu(x))dy = /Y f(x)dy = |Y|f (3.27)

wherel]Y| is the measure of (in two dimensions, this is the areafin three dimensions,
this is the volume). Replacing the ind¢xvith k for later convenience, it is possible to
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simplify the integral ofA,u; such that

0u
/Azulxy - ax/ak ——L(xy)dy
|

By substituting the solution toy, (3.26), into the above equation, we obtain

2
[ anteyity = —555 [ a) Gy ey

We substitute this into (3.27) and divide P§/, giving us

2
_<ﬁ /Y( i(y) —ai(y) gi,(’ (v))dy) di auxj — f(x) (3.28)

This takes the form of the operatérthat we were looking for in (3.6). For the sake of
notational convenience, we define a parameitgras

1 OXi
=y [, @19) ) o (1)) oy (329)
Thus, we may writéA as
52
—Gijk %0, (3.30)

which, by (3.28), satisfies (3.6).

It now remains to prove that; converges ta ase tends to zero.

3.1 Energy proof of convergence

Under the homogenization method, this is clear, sinEe is the zeroth-order term in
the € expansion. However, to demonstrate its viability, we desti@te that this limit is
equivalent whery = X-. To do so, we require the following spaces.

We have previously defingd*(Y) and its inner product related to the norrn||ﬁ|lm in
(3.13) and (3.14). This Hilbert space will be defined in themeavay over the domain
of x, which we callQ). We defineH3(Qx) as a subspace 6f((), specifically as the
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closure of the set of continuous, infinitely differentialblctions with compact support
[11] in H1(Q). This spaced}(Qx) is equipped with the sané! () inner product.

From this, we defin® as a closed subspacetdt(Qy) such that

H3 () cV c HY(Q) (3.31)

We also define an operata such that, fou, v e H1(Q)),

X, 0u dv
ae(U,V) _/Qxa”(;)d—)(jd—)(idx (3.32)

and an operataa, such that

Ju ov
an(u,V) /q,,kdxjaxl X (3.33)

We also define an inner produgt-)
(u,v) = / uvdx (3.34)

Then fory = %, equations (3.5) and (3.6) are rewritten in a similar mann¢s.20).

ag(Ug,v) = (f,v) WweV (3.35)
an(u,v) = (f,v) WeV (3.36)

whereug (x, %, u(x) € V. Using these equivalent expressions, we now prove the conve
gence.

Theorem 3.1 [1] Let ug(x, %) andu(x) be functions satisfying (3.35) and (3.36). Then
us converges weakly tainV ase — 0.

Proof: Following a similar method as in (3.22),

a:(v,v) > ||| ‘Eil(ﬂx) wevV (3.37)
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From Sanchez-Palencia [18],
[ tvax < lIflleag Mz, <ClMbiny — WeV  (338)

for some constar@. Thus, by (3.22),

ol |Vl[Z1(q, < @e(viv) = (f.v) (3.35)
ol Vl[F1q < (V) SCIV[Hy(ay) (3.38)
IVl SV (3.39)

for y= <. We definef as

e _ o X\0Us . X
& = ay( s)ax,- (%, 8) (3.40)
Then
1&Fl Iz SV (3.41)

So, by the Rellich theorem [18], there exists subsequerfoesandf where

Us — Uc inV weakly (3.42)
EE— & in L2(Oy) weakly (3.43)

For notational convenience, we will refer to these subsecg® by the name of their
original sequencesis andé;®

We write (3.35) as
( ig’d—xi) =(f,v) WeV (3.44)

This expression converges weakly to
ov
(6. 55) = (fv)  wev (3.45)

It will thus suffice to show that (3.45) is equivalent to (3.3®his may be accomplished
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through the use of adjoint operators. Lettiprepresent the adjoint @; (3.9), we have

AL = _5—yi<aij(Y)a—yj>’ aj = aji- (3.46)

Let w be a solution of
Aiw(y) =0 (3.47)

such that-{ = w(y) — P(y) is Y-periodic for some homogeneous polynomial of degree
1,P(y). If we apply the adjoint operatd; to the definition off, we get

AR (y) = AiP(y) (3.48)
We now definew; as [1]
X X
we(x) = ew(—) = P(x)ex (<) (3.49)
Bensoussan et al. claim that this is the solution to
(Ae)*We(x) =0 (3.50)

We substitutepw, into v in (3.36) such thatp € C*(Q)y) andgw, € V. Subtracting the
scalar product ofpu; and (3.50) from the resulting equation, we obtain

ag (Ug, @We ) — @ (@Ug,We ) = (T, we)

The lefthand side of this equation may be rewritten as

¢ X . OWg 0 QU
.g _ j— HH JR—
(E, ,dxiwg) /Qxa”( =) 3% ox, dx (3.51)

In Bensoussan et al.’s original derivati X‘;S was written as%’;ug. The integral of this
was later replaced bg‘)ﬂ—?(p. If we accept thatg—zug is the correct derivation, then this
replacement almost makes sense through integration by, it it is off by a factor of
negative one. For now, we will follow their method and L%'je.lg [1]
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Here, Bensoussan et al. [1] claim that (3.51) converges as0 in such a way that
wz — Pin LZ(QX) strongly andpw; — @P in H1(Q) weakly [1]. We also suppose that

aj(= )‘f}")‘:f — a” (,y , Where- represents an average over a periodictell

1
U= /Y wdy (3.52)

Then, using (3.45) to replade we obtain

<E,,(g:§)P> ‘c?y./a L= (1,0P)

(8.(22)p) - a.g;v g—)‘(’jucdx:(a,g—xi)) (3.53)

If we expandd(d—“)f) in (3.53), it is possible to simplify this equation to

(65:9) =gy (5:9) o=C"(@

Similarly to how we derived (3.35) and (3.36), this is eqlavei to

opP 9w du

& 9% % Aigy: dy; 9x;

(3.54)

SinceP(y) is not a specified polynomial beyond being homogenous artdofider, we
take it to be equal tg;. Then by (3.48),

AL = ALY (3.55)

and by the definition of, w =y; — £ and thus (3.54) is

0

i = ajo— aye (vi X')dxj (3.56)
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We substitute (3.56) into (3.45) to obtain

d%i du ov
(a” . Xi

This equation is close to the form of (3.36). If we rearran®&) to appear like (3.57),
we find that they are equivalent if

X %

. 3.58
i = 8 i ( )

Ak

If we take the inner product of (3.55) witfy, we find

(ALK Ry /a|k

Similarly, the inner product of (3.25) witg gives
oo [ 59X
(A1X1,X|)Y—/Yakjdy y

Due to the definition of an averagand the preceding two equations, (3.58) is equivalent
to

(ALK Ri)y = (Acgj, Xy (3.59)

Due to the definition of an adjoint operator [11], this is trdéius, (3.35) does converge
to (3.36) as — 0. This also shows that,, the function to whichu; converges weakly, is
equivalent tau, as desired. O

While such proofs of convergence have been done for many ttpes of differential
equations, most works on specific applications assume timigecgence exists and that
their homogenized equations are legitimate. In the nexptelnas we consider a specific
application of this method, we will make this assumption [5]
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CHAPTER4

On Poroelasticity equations derived from
microstructure

Poroelasticity equations model the mechanics solids warehriddled with fluid-filled
pores —for simplicity, we will refer to these media as poasék solids. This type of solid,
and thus these equations, appear in a number of applicatibmnsh include problems in
the petroleum industry and biomechanics, among others Ty@ically, the equations as
derived by Biot have been used for these situations. Howexele successfully used in
many applications, their validity for general problems wasstionable. In order to place
these standard equations on a more theoretical footingidgerand Keller made use of
the homogenization method to derive some of these equatispscifically, the equations
for acoustic propagation through a poroelastic solid [4}enTt the more theoretically
sound linearized Navier-Stokes equations of fluids andhzed elasticity theory [5].

Certain problems have been raised regarding this derivatina it comes with certain
limitations. These issues will be discussed more compléteh later section. However,
Burridge and Keller's work has been used to justify the cqorgd usage of Biot’s equa-
tions under the required conditions [24] and it gives a pgmedilirection for numerical
determination of certain parameters from characteristpgrties of the fluid and solid
components, which has thus far been left to experimentaraébation (which is not

always viable).

In the following sections, we follow the approach of Burredgnd Keller [5] unless oth-
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erwise stated. However, the details of their calculatiamselbeen considerably expanded
for the sake of clarity.

4.1 Foundational arguments

For the sake of mathematical simplicity, the model of theoptastic solid is simplified to

a periodic medium. Specifically, we consider a typical sectif the volume and construct
an infinite volume by repeating this typical volume. The orasg for this choice is not

givenin the original paper, but the likely reasoning is towlfor the use of transformation
methods. In addition, this simplifies calculations by najuieing the consideration of
boundary conditions, which have been previously noted mpgiwate calculations.

As in earlier work by Keller [12], the formulation begins Withe definition of length
scaleshandH. In short,his a typical microscopic length scale aHds a typical macro-
scopic length scale so that« H. The microscopic length scalein this problem is
the length scale of the pore configuration, but there arerakepessible interpretations of
the macroscopic length scale. Some examples suggesteel jpager are the width of a
sample of the medium and the wavelength of an acoustic waygagating through the
medium [5]. However, the specific scales are not so impo#gautihe ratio between them,
denoted ag = ﬁ This ratio is very small due to the relation betwdeandH and thus
forms the basis of a perturbation theory-like approactr iatehe work.

Before this can be used, the coordinate system must be defi@ethe care must be
taken here to ensure logical consistency, as the coorgdiaateused as independent and
dependent variables depending on context. In either casesdparate three-dimensional
coordinates are definel= (x1,%2,x3) andy = (y1,Y2,y3), where different properties of
an arbitrary functionf (X,y), are expressed in terms of the different variables. In Bgei
and KellerXis the variable of slow or gradual change aid the variable of rapid change
[5]. Skotheim and Mahadevan use different notation, buethgvalent toX is considered
to represent variation on the macroscopic scale andjmepresents variation on the pore
scale [20]. These are logically equivalent, as macrosoai@tions would seem slower
than changes on the pore scale if considered from the saree sca
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However, both papers use these merely as descriptors,ragbnie variable in terms of
the other. Continuing to follow Burridge and Keller's natet, the rapid variablg is
defined as a stretching of the slow variakle that is,y = e X. Under this definition, a
small change iX results in a large change ¥h so it is consistent with the description of
slow and rapid change [5]. But the method relies upon themgaedependent variables,
so this definition has its flaws, as we noted in the first section

As before, we consider the earlier descriptions of slow (acrscopic scale) and rapid
(or pore scale) variables as the definition¥@ndy, which retains their independence.

Still, the relation between the variablgs= £ 1X, has its own importance in the method
and must be considered. One possible interpretation isrikeeused by Burridge and
Keller when they considex andy as independent variables. They claim tfiat £ 1X
may be considered a diagonal in the six-dimensional coatdiaystem formed by these
variables. In this case, the physical solutions of the talieeensional model being con-
sidered are said to lie on this diagonal [5]. This work, thougill follow the approach
used in an earlier work by Keller [12]. Here, every functidmaghysical propertyg(X, €),
has an equivalent six-dimensional functional fog(®,y, ), such thag(X,y, ¢) still sat-
isfies the equations amiX, £ 71X, &) = g(X, £).

In either view, the original physical solutions are assttawith they = £~1X relation,
which leads to the treatment of the del operafgrfor functions inx andy. Letting [y
and [y represent the del operator with respect to x and y, resdgtiv may be shown
that

Of (%,e71%) = Okf + e 10y f,

Since the relatioy = £~1X represents the physical properties of the probl&nis re-
placed withOy + 10y for all functions of the formf (%,y) (see [5]).

To simplify matters, however, time derivatives are remobgdassuming that motions
within the medium are time harmonic. This allows for timeidatives to be replaced by
multiplication byiw, wherew is the angular frequency of the motions.

The final main assumption deals with the viscosity teftmand has become customary in
the literature [8]. On the pore scale, the dimensionlessogisy is defined using the fluid
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densityps, the angular frequency, and the microscopic length scdieas wpﬁhZ' If we

define the product of the frequenayand the pore length scalteas the typical speed on

the pore scale, then this is equivalent to the inverse of gynB®ds number [15] on the
pore scale. Since the Reynolds number describes behavithe fiuid and the fluid acts
on the pore scale, we assume this is the true Reynolds nurhiterftuid and thus assume

it to be of order 1 with respect t&. This means that the inverse of the Reynolds number,
which is equivalent to the dimensionless viscosity on theeszale, is also of order 1.
On the macroscopic scale, the dimensionless viscosityfisetkusing the macroscopic
length scaldéH instead ot, leading toﬁ and can be related to a macroscopic version
of the Reynolds number by defining a typical speed on the nsaopic scale similarly
aswH. Due to the relation betwednandH, this macroscopic scale Reynolds number is
of ordere 2 when the pore scale Reynolds number is of order 1, like wenasswhich
makes the macroscopic dimensionless viscosity of cgéleBince our eventual goal is to
produce a description of macroscopic behaviour, the Initgcosity termfi is replaced

by £2u to represent thi©(&?) term [5].

Before getting into the derivation, it is important to forima the underlying structure

of the porous medium. The solid region is represented irXtedy coordinates as the
domainDs. Similarly, D¢ represents the domain of the fluid region. These domains are
then used to define an indicator functigg(X,y), such thaixs has the valugis = 1 in Dg

and the values = 0 outside ofDs. Since the pores are assumed to be filled with fluid,
this means that it is equivalent to sgy= 0 in D [5], and thus a fluid indicator function
may be considered to be-1xs. While this function is not used directly, it may be useful
when explicitly considering the functions which are comiyaefined only over either

the solid or fluid components.

4.2 Derivation of initial equations
Burridge and Keller's arguments follow from a set of threai&ipns in the fluid do-

main, two equations in the solid domain, and two equatioosgthe boundary. They are
referred to as linearized Navier-Stokes equations, linedrequations of elasticity, and
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linearized interface conditions, respectively, but theygiven without reference [5]. Our
first step will be to provide justification for these equatolt is important to note that the
equations marked (3) in Burridge and Keller come beforeyapgithe assumptions listed
in the previous section. This includes the six-dimensiopardinate system [5]. As such,
the derivation will be in three dimensions and will occasilbynuse cartesian coordinate
interpretations of such things as the del operator.

Beginning in the fluid domain, the fluid parameters and véemlare as follows: fluid
velocity, v; fluid pressurep; fluid stress tensoq; fluid density,ps; bulk modulusk; and
fluid viscosity, f1, which we replace witlg?p in later analysis.

The first equation is derived from the conservation of limmamentum, which in Einstein
summation notation may be expressed as

(%Hﬂ)_%
Pt ™ Yax ) T ax;

o
d Xk

nored. Additionally, by the previous assumption that mugiare time harmonic, the time

Here, only linear terms are being considered. As such, tidimearv 5. may be ig-

derivative of the velocity may be replaced iay. As such,

. 00jj
P 0%,
J

Since we are working in cartesian coordinates, this is edemt to equation (3a) of Bur-
ridge and Kellerjwpsv = [- 0 [5].

The second equation can be derived from the constitutivatexqu below. Lettingé
represent dilatational viscosity amdrepresent the shear viscosity,

Gij = (—p+ &Vik) &j + N (Vij +Vj,i)

At this point, we use the Stokes relatidn= —%n, to get
1 1 .
gij = —pdij +2n <<§(Vi,j —i—Vj,i) — évk,k5|1)>
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This leads to a small problem. If it is assumed that the shisapsity in the constitutive
equation is equivalent the the fluid viscosify, as used by Burridge and Keller, this
expression is nearly equivalent to (3b) in their work [5]. wéwer, there is a factor of 2
in front of n in the above equation which is missing from Burridge and é&ellThis is
certainly an issue that needs to be resolved, but it will ffecathis chapter’s discussion,
as this is the only place where the viscosity term appearshargithe factor of 2 may be
lumped into the viscosity coefficient. This is largely a targry measure, as knowledge
of whether the coefficient is the true viscosity of the fluidwice that amount is clearly of
great importance in numerical simulation. However, despitme efforts in the literature,
such as that by Zhou and Sheng [26], the method from Burridgekaller has not been
successfully used numerically beyond specialized resattspecific parameters. For
simplicity, this work will use theii coefficient used in Burridge and Keller rather than the
2[1 obtained above.

The third equation is derived from the continuity equationthe fluid, whereos repre-
sents the density,the velocity, andp the pressure,
ops
W"'D'(vaf) =0
ops

W‘{’Vf'mpf—}—pD'Vf:O
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Since our eventual goal is to obtain linearized equatiores,dwop the nonlinear term
Vs - Dpf.

dps B
W‘FPD-V]‘ =0

Now assuming an equation of state for the fluid, nangely= p; (p), the above equation

becomes
dps dp _
6—pﬁ +pU-vi=0
This may be rearranged as
ap Pt
ot oY

By writing the densityp; in terms of component fluid maskls, and fluid volumeVs,
this may be simplified down to

op ., dp
ot Vigy oV
dp_

o KH-ve

where the bulk modulws comes from the isothermal compressibility of thermodyraani
given by

1__1ovr

K Vi dp
Under our assumption that time derivatives may be replagedobwe obtain the third
equation.

The next four equations are more common. On the boundaryeleetihe fluid and solid
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domains, we use simple boundary conditions for equalityudd #hnd solid velocities,
v=iwu
and equality of normal stresses, using normal vedidaing in towards the solid,

No=NA-T

where the linear elasticity stress tensas given by the constitutive equation
T =CUu

which is a generalized version of Hooke’s law. The fourthkraensorC(x,y) is left
unspecified.

Finally, we require that the elastic solid obeys the Laméaéiqu for the displacement
vectoru. With our assumed replacement of the time derivative with this takes the
form of

—w’pu=0-T

The above results in the equations as given in Burridge atlérféaworks, with the left-
hand column showing the initial form of the equations anditjethand column showing
the form of the equations after the application of the presip described hypotheses be-
fore the perturbation expansion. As the equations are aaligl ¥n certain regions, the
centre column gives the region in which the equations aiid.val

Initial equations Domain of validity Rearranged equations
iwpsv=0-0 D+ Oy-0+4¢&(0Ox-0—iwpsv) =0
o= —pl+ [+ pbOv Ds o+ pl — euDOyWV — e2uDOyv =0
iwp=—kO-v D¢ KOy -v+e(kOx-v+iwp) =0
V=iwu 0Dt = dDg V—iwu=0

Nno=~nN-t1 0D = 0Dg hatn-c—-n-t=0
—w?pu=0-T Ds Oy T+ &(0x- T+ w?psu) =0
T=C0Ou Ds COyu+¢e(COxwu—1)=0
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After this, we apply a form of perturbation theory expandiorihe field quantities: the
fluid stress tensomg; fluid pressurep; fluid velocity, v; solid displacementy; and the
solid stress tensor, Specifically, we replace a field quantity(X,y, €), with

f(%,9,€) = fo(X,Y) +ef1(XY) + (62/2) (%) + O(€?)

Sincee < 1, we can discard the higher order terms in the epsilon expamd use
fo(X,y¥) as an approximation td(X,y,€). To determine their values, we consider the
first two orders of epsilon — that is, first by equating epsilorzero in one, and then
taking the derivative of the equations with respect to epsind setting epsilon to zero.
Sincef (X,y,0) = fo(X,y) andd; f(X,y,0) = f1(X,¥), this produces equations of the first
two terms of the epsilon perturbation expansion, as showswbd-or future reference,
they have been labelled with the same numbering as in Buraagl Keller [5]. We will
continue to use this labeling through this section and, els,ghese labels may not follow
strict numerical order as the order of the equations is aba@mhgr the needs of this work.
A few equations will not be written in exactly the same formgagen by Burridge and
Keller for the same reason, but they will retain the samellabets equivalent in their
work.
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First order equations Domain of validity
Oy-00=0 (8a) D+

0o+ pol =0 (8b) Ds
ky-vo=10 (8c) D¢
Vo—iwug=0 (8d) 0D = 0Dg
N-op—N-Tp=0 (8e) 0D = 0Dg
Oy-10=0 (8f) Ds

Clyup =0 (89) Ds

Second order equations Domain of validity
Oy- 01+ Ux-0p—iwpsvo =0 (9a) D;

01+ pgl —uDOyvo =0 (9b) D+

KOy -vi+KOx-Vo+iwpo =0 (9c) D¢

vi—iwu; =0 (9d) 0Dt = dDs
n-op—N-11=0 (9e) 0Dt = dDg

Oy- T+ Ux-To+ wzpsuo =0 (9 Ds

ClOyu1 +Clxug—190=0 (99) Ds

From this set of fourteen equations, expressions for thetlz@rder terms of the epsilon
expansion may be derived.

4.3 Solutionsof the equations

In (8a), the divergence with respectji@f op is zero at every point. This would not be
enough to prove independence frgifior a second-order tensor, but by (8b), it is pro-
portional topg times an identity matrix. As such, by the definition of theatyence of a
second-order tensor in cartesian coordinates [10], thidt®in the partial derivative qfy
being 0 with respect to each componen§ofrom this, bothpg and op are independent
of y.

This is not true of most of the other properties with diveiggf, such asg or vo. How-
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ever, for (8g), the tens@ is a part of the generalized Hooke’s Law, relating displaeeim
to stresses, but here the stress tensor is replaced by add tertsthe operator acts only
on they components. As such, the zeroth order displacenug(®,y), has & component
of motion under no stress, which, under the assumption oigdepunded iy, must be a
rigid transformation iry. Thus,ug is also independent gt

It is worth noting at this point that the paper by Biot thagimally studied the poroelastic
case did not use a fluid velocity. Instead, it considered thid lisplacement relative to
the solid displacement. In order to compare them more dfigiethe solid displacement

is expanded into the fluid region and a term for the fluid dispitaent relative to the solid,
w(X,Y), is introduced. The expansion af into the fluid domain is not specified, but it is
unlikely to matter so long as it is continuous across the dauy) as the eventual result
will be considering macroscopic properties rather thamenathan microscopic properties.
The relative displacement termm, is introduced through the relation between the first term
of the solid displacemently, and the first term of the fluid velocityy, by

Vo(X,Y) = iw[uo(X) +w(X,¥)], inDy (12)

using the replacement of time derivatives wit

From this, equations containirvg can be updated to be equations contaimngpecifi-
cally, (8c) and (8d) become equationsmbnly, and (9a) and (9b) into more complicated
expressions. Though it also contaws (9¢) is ignored as it unnecessarily introduces a
higher order term of velocity.

From (8c) in the fluid domain,

KDy - (iw[uo +wxy ) =0
ik (Oy - up(X) +Dy y)) =0
|wKDy ( y)=0

‘W(XY) =0 (13)
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and from (8d) in the boundary between domains,

iw[up(X) +wW(X,Y)] —icwup(X) =0
iow(X,y) =0
w(%,y) =0 (14)

(9a) and (9b), both in the fluid domain, follow similarly, Wi¢9a) only expanding terms
and (9b) also taking advantage of the independencig fsbm y. As a result,

—Oy- 01(%,Y) + @*prw(X,Y) = Ox - Go(X) + w?prUo(X) (15a)
01 = —pa1l +iwuDOyw (15b)

Before substituting (15b) into (15a), it is convenient tmsidler the terntl, - DOyw sep-
arately. First, using the definition of the gradient of a we¢10], letting& represent the
normal vectors in thg; direction and using the Einstein summation convention,

DOyw = %((Dyw)Jr(Dyw)T—gm(Dyw))
1, 0w; OWi 2 OWi
= 5 dyljeéj)Jr(—JGéj)T—g' tf(—ijééj))

1, 0w, ow, 2 oW,

= S((Ggeen+(5ae) 51 (Gh)

— (G gw;mej 210w

From this, it is possible to write the components as in Zhali@ineng [26]:

1% dw,

[DDVW]” = é( 5yi 5yj d Dy )

However, in this case, it is known from (13) thHa}- w = 0 and thus the last term may be
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dropped. So, from here,

0 /10w  ow
Sy P = 0yi<2(<9yi " 5yj)>
B 1.((92Wj 2w, )
-2V 0yi2  dyidy;
1,02w, 9 ow
= o
( 2% 0yi2  0dy; oy Y ))
1 (92WJ 0
= + —(Ly-w
_ }dZWJ
 20y?
= %DZW

It is also important to show that

Oy-pal = [pll]lj

2 S|

= 6y. (d] pl)

Thus, substituting (15b) into (15a) gives

oHo

Oype(XY) —iw>

Opw(R,Y) + w?*ptw(%,9) = Ox- 00(X) + w’Ps Uo(R)

This equation, along with (13) and (14), functions as a lirsed of equations fow andp;

with Oy - gp(X) + w?psup(X) as the inhomogeneous term. The solutions for these terms
can be written as linearly dependent on this inhomogenaus. td he solution tow is
unique if it is required to be boundedynbut sincep; only appears as a gradientypfthe
bounded solution is unique only up to the addition of somefion ofX, f(X). So,

W(R,9) = W(X,9) (Ox - 0o(X) + w?ptuo(X)) (16a)
pL(X,Y) = P(X,Y) (Ox - 0o(R) + w?piuo(X)) + f(X) (16b)
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for some matrixV and some vectdP. The solution forg; can be found by substituting
into (15b), but the final goal only requires the first term af #psilon expansion for the
various properties. As such, only the solutiomtgs important for this particular work.

A similar method may be used to determimeandty. Specifically, using

N-0p(X) —N-10(Xy) =0 0Ds = 0D+ (8e)
Oy-10(Xy)=0  Ds (8f)
C(X,¥)Byur(Xy) +C(X,¥)Oxlo(X) — To(X,¥) =0 Ds (99)

itis possible to determing; as a unique solution up to an additive functiorxeinder the
assumption that; is bounded iry. To avoid the undetermined function, we solve instead
for Oyuy, in terms of inhomogeneous ter@8lyup(X) and po(X). It is worth noting that

po does not explicitly appear in the above equations. Howavierdirectly related tagy

and thus may be replaced into (8e). From this, we obtain

Oyur (%,Y) = Q(X,¥) po(X) 4 L(X,Y)C(X,¥) Oxto(X) (17a)
Substituting this back into (99),

T0(X,Y) = C(X,¥) (Q(X,¥) po(X) + L(X,¥)C(X,¥) UxUo(X) ) +C(X,¥) Oxuo(X)
To(%,¥) = (C(%,¥) + CLC(%,¥)) Oxto(R) +CQ(X,¥) po(X) (17b)

At this point, there are expressions for the first term in egusilon expansion. However,
both 1o andw (and therebyp) are in terms of botlX andy. Since the goal is to obtain
expressions for the slow, macroscopic variation, it is ssagy to remove the dependence
on the fast, microscopic variabje Generally, this is done by averaging those quantities
with respect tg/, as shown in the following section.
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4.3.1 Averaging over y

The first step is to consider how to define the average gvé&ior an arbitrary function
f(X,y) defined over the domain of the fluibB,s, we begin by considering it over a finite
sphere of radiuR, Br. The functionf is integrated with respect §bover the intersection
between this sphere and the fluid domain and this integralvidet! by the volume of
the sphereBr. Since the medium is assumed to be infinite, we can take thé diim
this average over the sphere as the ragoes to infinity. This limit is defined as the
average of the functionf(X). For a function defined over the solid instead, the same
principle applies by replacinD s with Ds.

Before using this defined average on the equations detednaipeve, it is important to
note that the average of the indicator function of the saglig,is equal to the volume
fraction of the solidVs(X), since the indicator function is equal to one at every pofnt o
the solid domain. Similarlyys (X) represents the volume fraction of the fluid. These are
used when averaging functions dependent onl¥,asince it would be equivalent to the
function multiplied by the indicator function of that pantilar domain. Thus, the average
of a function dependent only axis equal to that function multiplied by the particular
volume fraction.

With this averaging method, it is now possible to obtain egpions for averaged versions
of 1o andw. To begin, we average the solutions previously obtainedéa) and (17b) to
obtain

W(X) =W(X) (w?psUo(X) — Oxpo(X)) (24)
To = (C(X) +CLC(X) ) Uxto(X) +CQ(X) po(X) (25)

However, these equations are insufficient to properly esgafeand Ty, as it leavegg
andug undefined. As such, it will be necessary to provide two more#qns in order to
determine these next two unknowns.

We substitute the definition af with w —that is, (12) — into equation (9a), which results
in

Ox - 0o(X) + w?prup(X) + w?psw(X,Y) = —Oy- 01(X,Y)
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Averaging this gives

1
Vi (%) (Ox 00(R) + w?pruo(X)) + w?psw(X) = — lim 75 o Dy oi(Xy)dy
—%® 3 fMNBRr

* .
= — lim

1
. 2 2 W
Vi (%) (Bx- 00(X) + ”p1Uo(X)) + wprw(x) = — lim g‘nR?»/,xDmBR)

01(Xy) - ndy

(20)

where in the step marked (*) the divergence theorem was wsedrivert the volume
integral into a surface integral for reasons that will beeaapparent later. A similar use
of the divergence theorem is used when averaging (9f). Heweag the normal vectdr
Is pointing into the solid, the normal vector to be used ingbkd region is—A, resulting
in
— lim /

R 27IR3 Jo(DinBR)
Since the solid densitys, has not been noted to be dependengoit is likely that the

Ox- To(X) + w?Pgto(X) 11 (Xy) - ndy (21)

averaged quantityy, is equivalent tsVs. However, even if there wereyadependence,
this would not change the current results, as it only appieafgf), which is only used
here. Even if it required epsilon expansion, thenghesed here would be the first term
of the expansion. However, the same cannot be appligg,tavhich must be constant.

It is also important to make similar uses of the divergenemteém withu; andvs. In
Burridge and Keller's work, they use a specialized gradiarsion of the divergence
theorem [5], but later take the trace of it in order to obt&i@ average of the divergence.
As such, this work will begin with the divergence in the firdage, giving a slightly
modified (22) and (23) as follows:

— . 1
—_— . 1

The surfaces used on the integral$P¢ N Br) and d(Ds N Bg), can be split into two
(possibly overlapping) components. In the cas®ef these arddD) NBr andD N
(0BRr). The latter portion represents the part of the surface opiereBg lying inside
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the domain of the fluid¢. Since the integrands are independerRahd the total surface
of Br is 41R?, the integral may be bounded by an equation of oRferAs the integral
is divided byR®, the limit asR tends to infinity will be zero. As such, only the former
portion,dD¢ N Bg, is necessary for the integrals in (20) and (22). Simila?i{ps N Bg)
may be replaced bgDsN Br in (21) and (23).

By (9d) and (9¢e), howevev; = iwu; ando; - h = 11 - A over the border of the fluid and
solid domains. Thus, with the replacement of surfaces tdaediof this border in these
equations, the integrals of (20) and (21) are equal to onthanand may be equated to
one another to give

~V; (X) (O 00(X) + w?prun(X)) — w?psW(X) = Ox- To(X) + @’Pelio(X)
— (P + Vi (X)p1)Uo(X) — w?prW(R) = Oy T0(X) + Vi (X) Ox - 0o (X)
—w?PUo(X) — w*prW(R) = Ox- To(X) — Vi (X) Dxpo(X)  (27)

where in the final stepgg was replaced by-pgl as from (8b) and the terip was intro-
duced as a notational shorthand for

P =Ps+Ps = Ps+ Vi (X)pruo(X) (28)

Similarly, equations (22) and (23) may be combined to give

iwly-up+Oy-vp =0 (29)

Next, replacing/ in equation (9c) by its definition in (12) and averaging, wéaii

KOy - v1(X,Y) + kOx - (iw[ug(X) +wW(X,¥)]) +iwpo(X) =0
KOy - V1 (RX) + 1wk Vi Ox - Ug(X) 4 1ok Ox - W(X) + Vs po(X) =0 (26)

Using (29) in (26) to replace; with u; and dividing the equation hiyo,

KOy - U1 (X) + KVs Ox - Up(X) + KOy - W(X) + Vi po(X) =0 (30)

47



CHAPTER 4: ON Poroelasticity equations derived from microstructure

While on the surface this appears to have only swapped oneownrkterm for another,
taking the trace of (17a) results in changing the expredsiothe gradient ofl; into an
expression for the divergence wf,

Oy Uy (%Y) = tr (Q(X,)) Po(X) +tr (L(X¥)C(X.¥) Txto(X)) (18)

Taking the average of (18) and inserting the result into (3@3s
— (Vs —ktr (Q(X)) ) po(X) = k (Vi Ux - up(X) —tr (LC(X) Oxuo(X)) + Ox-w(X))  (31)
This can be further simplified using the formula for arbyréunction f (X,y)

o (0= [ DdEe [ k)i (33

where the vectog is dependent on the variation withof the boundary. As before, the
boundary may be divided up in@D; N Br andD¢ N dBR, but sinceBr is independent
of X, there is no contribution fron@Bg. As such, the last integral may be replaced by
0D; NBR. Thus, ifwis used in place of, then by equation (14yy = 0 in this region and
the last integral can be dropped. Taking the trace to cotiveigradient into a divergence
operator, we find

Ox | L Mx)dy = A o Dew(x )y (34)

Dividing by %’rrF\>3 and taking the limit ai tends to infinity, we find that

Ux - W(X) = Dx- W(X) (32)

This may now be used in (31). This, along with (24), (25), a2d)(form a set of four
equations for the four functiongy(X), To(X, W(X), and po(X), which describe all the
properties of the poroelastic medium on the macroscople saace the fluid stress tensor,
0p may be determined from the pressggein (8b). To simplify the notation, we assume
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thatW is invertible and we introduce
M(X) = K (Vi — ktrQ(%)) ~* (37)

With these assumptions, we can rewrite the four equatiotgezup them between equa-
tions of motion,

—w*PUg(%) — s W(X) = Ox- To(X) — Vi Oxpo(X) (35a)
—~wpiuo+W ™ (R)W(R) = —Chpo (35b)

and constitutive equations

To(X) = (C(X) +CLC(X)) Oxto(X) +CQ(X) po(X) (36a)
po(X) = —M(X) (V¢ Ox - Up(R) —tr (LC(X) Oxuo(X) ) + Dk - W). (36b)

4.4 Biot’sequations

The equations given by Biot are for a uniform medium [4], whig to say anacroscop-
ically uniform medium. This may be portrayed by letting the domdinsand Dg be
independent of the macroscopic variakleAs such, in (33), there is no variation win
the boundary and thugis zero. Therefore, as in (32),

OxF(X) = Oy~ F(%) (38)

for any functionf (X,¥). The averaged coefficients in the four equations are alsonger
dependent oX due to the uniformity, rendering them constants [5]. Witls tlequation
(35a) may be simplified, leaving it and (35b) as

—O)ZﬁUo(Y) — a)zpr_V(X) = - (To(i) — Vs pO(X)I) (39a)
—wpsp(R) + W 'W(X) = —Opo(X) (39b)
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For reasons of comparisol; po(X)! is subtracted from either side of equation (36a),
using the definition ofpg from (36b) to removeyy from the right side of the equation.
After rearranging both this altered (36a) and the origiB&h)), this results in

To(X) —Vipo(X)l = [C+CLC+ (Vfl —CQ)M tr (Vi — LC) | Oxuo(X)
+ (Vs —CQ)M Oy W(X) (40a)
po(X) = —M tr (Vi — LC) OxUo(X) — MO - W(X) (40b)

These equations may be compared to the equations in [4] ché2k?), (5.2), and (5.1),

which are
d—x'j’ = pU; + prWii (41a)
0Pt o
~ % PrU=Yi(PW; (41b)
pr = Mije; +M( (42Db)

Equations (39) and (40) from Burridge and Keller can be shtmagree with equations
(41) and (42) from Biot by identifying the differences beemenotation. Some are ob-
vious, including some which have identical notation, winiteers are quite complicated.
The differences are summarized in the following table.

Burridge & Keller [5] Biot [4]

p.pi,M p,ps,M (43a)
C+CLC+ (Vfl —CQ)Mtr (V; —LC) A (43b)
iw iw=p=2 (43c)
W () (&) (43d)
Uo, W, Po u,w, ps (43e)
M(V¢l —CQ (—Mij) (43f)
To— Vi pol Tij (439)
$[Oxuo+ (Oxo) "], 0-w aj,—( (43h)

These quantities in Biot’s derivation are phenomenoldgigat Burridge and Keller's
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quantities are calculated from the continuum mechanicsuaf flow and elasticity the-

ory. Thus, the parameters in Biot’s work could be potentiadiculated from Burridge

and Keller's work given the viscosity of the component flurlahe lamé constants of
the component elastic solid. However, in practice, thisasso simple, which will be

discussed in the next section.

4.4.1 Special cases

Burridge and Keller [5] went on in their work to consider sip¢cases of these equations,
of which we will demonstrate two.

(1) The absence of fluiddere, we consider an elastic porous solid with empty pones. |

this case, expressions arising from the fluid portion areored. In particulaiv, which
is a part of the solution to the relative motion of the flwidis not defined. This leaves us
with adjusted versions of (39a) and (36a). That is,

—w”Pug(%) = Ox- To(X) (44a)
To(X) = (C(X) +CLC(X)) OxUo(X) (44b)

These are of the same form as the equations for the elasiit[Spthat we derived in
section 4.2, as may have been expected. O

(2) Fluid in a rigid porous solidWWe assume that the porous solid is completely rigid. In

this case, the solid displacement= ug + €u1 + ... is 0 everywhere. In such a case, we
find that (24) is
W(x) = ~W(X) (Dxpo(X)) (452)

which is equivalent to Darcy'’s law for the fluid [5]. Similgrl(25) gives that
Po(X) = —M(X)0x- W (45b)
whereM is defined as in (37) witlQ = 0 [5], sinceQ arises from the definition afi1,

which is equal to 0 everywhere. O
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Both of these cases reduce to well-known relations for thd aad the fluid, respectively.
Burridge and Keller also looked at the isotropic case byrtgkihe averaged tensors to be
also isotropic. It is also possible to look at the case whieeeReynolds number is of
order unity on the macroscopic scale, which results in \atsiic equations. However,
this latter case requires the derivation process to begimdgm the initial equations.
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Conclusions

The derivation of the poroelastic equations through thedgemnization method was help-
ful in demonstrating that Biot's equations, derived by ptraenological arguments, had a
firm basis in theory when the Reynolds number (or dimensgsnWescosity) was of order
one. At the time, their validity was being called into quest[5], but this derivation is
now used to justify the use of Biot’s equations [24]

This method is not the only method to derive Biot’s poroétastjuations. For example,
mixture theory has also been used to derive these equaBpnsipwever, the homog-
enization method has some advantages over other continwethods, as well as some
challenges.

The primary advantage of the homogenization method is tmasults in expressions for
the parameters in terms of the microstructure, as seen ipréhaous sections. Other
continuum approaches often require macroscopic estiméiiahe parameter values for
the specific material, but parameters derived from the h@miagtion method can the-
oretically be determined for any material for which we ursti@nd the solid and fluid
properties [19].

This can be invaluable in some circumstances. For exantpéegliearly difficult to mea-

sure properties of the human brain in vivo. Attempts havenbeade to estimate these
through measuring the same properties in other mammalandyisuch as monkeys [14]
and cats [17], and assuming that the properties are sinoitdret human brain. This has
resulted in a wide variance in the estimated results: Medk stuggest a range of 10 to 20
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kPa for the shear modulus [14], while Tenti et al. concluas ths closer to 7.5 kPa [22].
Since the poroelasticity equations may be used to desdréétid-solid interactions in
hydrocephalus [24], a method to produce the parametersiébra model would clear up
this issue.

We consider some examples of results produced in the literdelow.

Skotheim and Mahadevan [20] consider a poroelastic mediuanl@v Reynolds num-
ber and in an incompressible fluid. One area of biologicataesh in which the flows
are characterized by low Reynolds number is the motion ofes@opic organisms [15],
which makes it a natural assumption for their work on filarseéntthe microscopic pores
[20]. In such a region, properties are approximately tim#ependent and thus the time
derivatives may usually be ignored [15]. As a result, they tiie same initial equations
as in Burridge and Keller after setting the time derivatiearts to zero, although they
still retain the boundary condition relating the fluid vatgdo the derivative of the solid
displacement, which is equivalent to (3d) in Burridge antid€¢5].

From these simplified equations, they derive an expreseiahé stress tensor which may
be written in the notation used in the previous chapter as

To(X) =201 (%[DXUO + (DXUO)T]) + A10x-W(X) — (Vi —y) pol (5.1)

where 1 andA are the effective Lamé coefficients apds a constant derived in Ap-
pendix A of Skotheim and Mahadevan [20]. This is of a similami as (40a) and
(42a) in Burridge and Keller [5]. However, their coefficienit the linearized strain,
%[Dxuo + (Oxup) 7], is a scalar rather than a tensor, and their coefficient tprtaesure is
of opposite parity to that in (40a). This does not indicatd the derivation in Skotheim
and Mahadevan is inconsistent with Burridge and Keller [GBmt [4], as tensor coef-
ficients may reduce to scalars in certain circumstances [R&] example, Burridge and
Keller demonstrated that the expression for the stresstémthe case where the medium
is isotropic on the macroscopic scale also resultg @ a coefficient of the same term
[5], although the equations are not equivalent. Insteadwasgld have to consider only
the isotropic equations (2.1) in Biot’s work [4].
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The derivation in Skotheim and Mahadevan is incomplete ftioenpoint of view of one
seeking a low Reynolds number version of Biot's poroelastjoations. As they were
seeking to describe a specific related question, they didlaatve any other equations
that corresponded to the other poroelastic equations.

Zhou and Sheng [26] relate the tens@rof Burridge and Keller's work [5] to the dy-
namic permeability functior (w). However, rather than considering the tensor version
of k, they focus on the scalar version, which occurs when theasiiarcture is isotropic,
uniaxial, or simple-cubic [26]. This allows them to caldeldhe dynamic permeability
numerically, but these are quite strong assumptions on tbestructure, reducing it to
much simpler cases. In particular, the microscopic isgticmdition may restrict its use
to a special case of macroscopic isotropy discussed at thefdBurridge and Keller, as
the poroelasticity equations discussed in the previousoseare for anisotropic media. It

is worth noting that microscopic isotropy is not requiredrtacroscopic isotropy, so this
does not cover the entirety of the macroscopic isotropylpro§5].

The problem was also studied for a medium with an isotroparositructure by Chapman
and Higdon [7]. Here, the fluid stress is considered isotrapd all properties of the solid
phase are also isotropic. They estimated the microstriesira three-dimensional grid
of overlapping spheres in a simple cubic lattice, with th&flbccupying the remaining
space. On this restricted domain, they were able to comppressions for the stress and
some other related properties.

One may begin to notice a pattern of incomplete results fetricted cases of the equa-
tions. This is a pattern through the literature working ais firoblem of calculating the
parameters to the poroelasticity equations. There hasdxdensive study in the case of
a porous elastic solid without fluid and the case of fluid flomatigh a rigid solid [6], but
no solution has been formulated for the general case [3].

Indeed, the greatest strength of the homogenization methet compared to other up-
scaling methods is directly related to its greatest weakna#thile the parameters derived
by the homogenization method may theoretically be caledldtom the microscopic

properties, this is not always simple in practice. In thescafsthe poroelasticity equa-
tions, this has not been solved even numerically in thewtlyieiars since Burridge and

55



CHAPTER 5: CONCLUSIONS

Keller first derived the expressions for these parameters.

It is worth noting that the other methods for deriving hommg@us macroscopic prop-
erties from a heterogeneous microstructure also requer@anameters to be discovered
phenomenologically. Thus, on the surface, it would seetrtiiiglack of calculation from
theory is no more of an issue than for other continuum methidds/ever, the issue sim-
ilarly arises out of the method’s strengths. As seen in theparison to Biot’s equations
in Burridge and Keller [5], the relation between the parargeterived in the homoge-
nization method and their respective macroscopic equitslgre not obvious (see (43b)
in Burridge and Keller or the previous section for a partciyl non-obvious example).
Thus, a proper identification of the parameters may requireparison with an equiva-
lent model. This is to say that we may be unable to understdrad these homogenized
parameters mean if we do not already have an equivalent niadisle behaviour being
studied, so we either already have a more useful model or véraited to theoretical
exploration of parameter space without a sense for thedtroits on the parameters.

This might appear at first to obviate most reasons for usiaghimogenization method,
but there remain reasons to make use of this method. As wawritfieal intention of
Burridge and Keller's work, the method allows one to placemdmenological models on
a more firm theoretical footing. While Biot’s poroelatic eqions were successfully used
in many applications, their validity was questionable. pplging the homogenization
method, Burridge and Keller not only proved that these eqnatare valid, and further
clarified the conditions under which they are valid — spealiyc when the Reynolds num-
ber length scale is on the order of the microstructure. Whénaf order unity on the
macroscopic scale, the equations are equivalent to thoseviscoelastic material [5].

The lack of a generally applicable method to calculate thrarpaters is also not an in-
surmountable setback. In terms of the method, this one detth@es not mean that all
such problems will encounter these issues and it remainichagproximation method
to try and tackle problems involving heterogeneous micuastires. More specifically
there has been some work has been done to correct this aiiilggtfor the case of the
poroelastic equations. For example, more recent work bpézlo et al. [8] has attempted
to rederive the poroelasticity equations through the hanagation method in a some-
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what different manner than Burridge and Keller, with mor@wmiemphasis on the specific
problem of acoustic waves in a seabed. They claim that theults are also equivalent
to Biot’s poroelastic equations, but in a form that may prowae tractable to numerical

methods. While a full exploration of this possibility has been conducted, some initial
attempts to apply a finite element approach have shown sdsula simple model of the

microstructure [2].

In the end, while the method has its challenges, the twoespamogenization method is a
worthwhile technique for treating problems that includgideor microscopic variation in
problems where a macroscopic description is desired. Whelealculation of parameters
is not always sufficiently straightforward as to allow forexact calculation in terms of
the microscopic properties, it still provides an underdiag of the general shape of a
macroscopic model and may be used to justify a more phendoginal approach. In
cases where an exact or numerical solution of the paramateyde derived, it provides
a more general framework to determine the properties of theetnwithout resorting to
heuristic experiments.

More specifically to the poroelastic application, the hoemgation method has provided
a firm theoretical basis for Biot's theory, including an icalion of where it is valid. While
the problem of calculating the parameters remains unsatvedl but some simplified
cases, there remains a possibility of obtaining these nicaigr If this is done, then it
may provide a solution to the problem of measuring the pitogseof difficult materials,
such as biological tissues.
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