
Reconstruction of Half-Sibling

Population Structures

by

Daniel Dexter

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Daniel Dexter 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Half-sibling reconstruction is the task of determining maternal and paternal sibling rela-

tionships from observed genotypes of same-generation individuals in a population. Knowl-

edge of how populations are structured allows biologists to understand mating habits of

different species, how threatened a population is, and how best to protect threatened or

endangered species.

This thesis examines the problem of half-sibling reconstruction and explains an accurate

and fast heurstic for reconstructing half-siblings. The heuristic reconstructs half-sibling re-

lationships with high accuracy on large biological populations where existing algorithms

fail due to running time constraints. In addition to identifying and discussing some of the

major problems with half-sibling reconstruction, we also prove that even the task of deter-

mining whether a half-sibling reconstruction obeys genetic inheritance laws is NP -complete.

Some solutions for overcoming the inherent difficulty of half-sibling reconstruction are also

proposed.

iii

Acknowledgements

I would like to thank my supervisor Dr. Dan Brown for all of his support, infinite

patience, and kindness. He has helped me mature both professionally and academically as

a computer scientist by encouraging and furthering my mathematical knowledge. Thank

you to Dr. Debra Goldberg who piqued my interest and encouraged my involvement in

bioinformatics. I would also like to thank Dr. Ming Li and Dr. Bin Ma for reviewing my

thesis.

My fellow graduate students also deserve many thanks. Special thanks to Rita Acker-

man and David Loker for increasing my understanding of clustering and to Jakub Truszkowski

for all of his support. Thank you to my lab mates who have been a source of encourage-

ment during my time in Waterloo.

Although all of my friends have my gratitude for everything they have done, I would

like to specifically acknowledge Ben Joeris for introducing me to the mathematical side

of computer science and for all of the advice and explanations he has given me over the

years. I would also like to thank William Van Treuren for his support as a friend and fellow

scientist.

This thesis would not have been possible without the immense support I have received

from my family. My mother, Maureen Tanaka, and father, Kevin Dexter, have all of my

thanks and love. Thank you for always believing in me academically and for constantly

supporting and guiding me in all areas of my life.

iv

Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Motivation for Half-Sibling Reconstruction 1

1.2 Biological Background and Notation . 2

1.2.1 Notation . 2

1.2.2 Mendelian Compatibility . 4

1.3 Contributions . 4

2 Related Work 6

2.1 Full Siblings . 6

2.1.1 Likelihood . 7

2.1.2 Combinatorial Optimization . 9

2.1.3 Fast Heuristics . 10

v

2.2 Half-Siblings . 11

3 Quantifying Pairwise Similarity 14

3.1 Triplet Similarity . 15

3.2 Allele Similarity . 20

3.3 Experimental Results . 22

4 Metrics for Comparing Sibship Partitionings 26

4.1 Maximum Matching . 27

4.2 Variation of Information . 29

4.3 Partition Distance for Half-Siblings . 31

4.3.1 Comparing to a Reference Sibship 33

4.3.2 Comparing Two Candidate Sibships 34

5 Half-Sibling Reconstruction Algorithms 36

5.1 Integer Programming Formulation . 36

5.2 The SibJoin Heuristic . 39

5.2.1 Joining Families . 40

5.2.2 Allowing Candidate Parents . 44

5.3 Experimental Results . 44

5.3.1 Simulated Data Set Results . 44

5.3.2 Biological Data Set Results . 47

5.3.3 Integer Programming Performance 48

vi

6 Forced Allele Incompatibilities 51

6.1 Complexity of the Valid Half-Sibling Partitioning decision problem 51

6.2 Correcting Allele Incompatibilities . 60

6.2.1 Shallow Incompatibility Detection 60

6.2.2 Complete Forced Allele Incompatibility Detection 61

6.3 Experimental Results . 62

7 Conclusion 66

7.1 Reconstructing Half-Sibships . 66

7.2 Determining Reconstruction Validity . 67

7.3 Future Work . 68

References 69

vii

List of Tables

3.1 Frequency of incompatible x-lets for x ∈ {4, 5, 6} in 1000 randomly chosen

families with fixed alleles or fixed family size. 19

3.2 Frequency of incompatible x-lets for x ∈ {4, 5, 6} in 1000 randomly chosen

families with fixed alleles or fixed family size. Incompatible x-lets are only

counted if the family does not contain any incompatible y-lets for y < x. . 21

4.1 True partitioning P with candidate sibling partitionings P ′1 and P ′2. P ′1 and

P ′2 both receive the same partition distance score from maximum matching,

even though P ′1 is preferable. The individuals which ought to be removed

due to maximum matching are bolded. 28

4.2 Variation of information calculation for example from Figure 4.1 using base

2 logarithms. VI correctly identifies P ′1 as the better of the two candidate

partitions. 31

5.1 Fraction of total bad joins accumulated after SibJoin is 20%, 40%,. . . , 80%

complete. 40

5.2 Simulated test results for SibJoin and COLONY 2 averaged over 10 trials.

Trials which did not complete in 24 hours are marked ’-’. 46

viii

5.3 Tests for biological data. A ’-’ indicates that an algorithm did not complete

after 24 hours. SibJoin was the only algorithm able to construct a solution

for a 672 individual population of rockfish. The variation of information is

not computed for the HS-MSC since it allows instances of the same individ-

ual, which causes ill-defined VI scores. 47

5.4 Performance of half-sibling IP, measured by V IIP versus SibJoin, V ISJ for

varying population sizes. Ten trials were conducted for each population size

and the averaged score is reported. 49

6.1 SibJoin trials with forbidden allele detection. A ’-’ occurs when there are

no false positives . 63

ix

List of Figures

2.1 An example population which is correctly reconstruced by minimizing the

total number of matings, but incorrectly reconstructed by minimizing the

total number of families . 12

3.1 Minimal allele adjacency graphs of incompatible half-sibling families 15

3.2 Candidate compatible allele adjacency graphs for H(V,E) 16

3.3 Minimal graphs with a minimum vertex cover number of two 16

3.4 ROC curves illustrating cases where each similarity measure does well or

poorly . 24

5.1 0/1 integer program to find minimum number of parents needed to explain

a population. 37

5.2 Demonstration of a successful iteration of SibJoin. Nodes represent individ-

uals, edges represent a half or full-sibling relationship constructed by the

algorithm, and nodes which share a box represent true full-siblings. 41

x

6.1 A sub-population which illustrates how the candidate offspring ofM0 andM1

can force an incompatible half-sibling reconstruction through their matings

with P0. Forced alleles are bolded. Notice that the forced alleles for offspring

of M0 and offspring of M1 force a situation where P0 must have 3 alleles in

order to satisfy Mendelian inheritance for his offspring. 53

6.2 Demonstration of the selection gadget transformation for the pth clause

(xi, xj, xk). Subscripts are used to differentiate individuals with the same

alleles . 53

6.3 Demonstration of the mapping gadget which maps a parent choice in each

of the first gadget’s maternal families to an allele. Allele yi is forced if and

only if xi is true in the MONOTONE ONE-IN-THREE-SAT solution. . . . 54

6.4 Construction of the enforcement gadget for literal xi appearing in clauses

cp, cq, and cr . 54

6.5 Changing a two clause M-1-3-SAT instance to an HSPC instance 59

6.6 0/1 integer program to find minimum number of individuals which, when

removed, creates a valid instance of the HALF-SIB PARENT COVER. . . 62

xi

Chapter 1

Introduction

Half-sibling reconstruction is the task of determining maternal and paternal sibling rela-

tionships from observed genotypes of same-generation individuals in a population. Recon-

structions can take place with or without information about the genotypes of the parents,

but are often more accurate when the parents’ genotypes have been identified. In cases

where the parental genotypes are unknown, a secondary objective may be to infer a parent’s

genotype based on the genotype of the offspring.

1.1 Motivation for Half-Sibling Reconstruction

Conservation biologists and molecular ecologists use pedigree analysis to gain insight into

the mating habits and practices of populations. For example, knowing the reproduction

mechanics of a population helps biologists make important ecological decisions about a

region e.g. [16,28]. The information may also be used to assist in reproduction and conser-

vation of endangered or threatened species [10, 15]. A sub-field of pedigree analysis seeks

1

answers to the question of how same-generation individuals are related. Identifying related

full sibling individuals, or individuals who share both a common mother and common fa-

ther, is well-studied and many algorithms exist for modeling such populations. A similar,

but much more difficult task involves discovering individuals who are related by a single

parent, called half-siblings. Half-sibling relationships can always be used to reproduce full-

sibling relationships; however, the converse is not necessarily true. Additionally, correct

half-sibling reconstruction also allows biologists to measure the degree of polygamy within

a species, which is not possible with full-sibling reconstruction alone.

Knowledge about half-sibling relationships has important real-world applications and

answers questions that full sibling reconstruction cannot. For example, knowing which indi-

viduals share a single common parent allows biologists to measure the degree of polygamy

within a population [27], since the mates of each parent can easily be computed from

half-sibling partitionings. Half-sibling reconstruction also provides specific insight about

pollination patterns of plant populations. In plant populations, mothers are pollinated by

potentially distant fathers. The diversity of pollinating fathers can be used to measure the

degree of isolation, due to deforestation, which threatens many forests [16].

1.2 Biological Background and Notation

1.2.1 Notation

Information about individuals’ genotypes are collected and expressed through the measure-

ment of microsatellites, sequences of repeating DNA base pairs, such as ATATATAT, at a

specific site on a single chromosome. The number of repeats gives an integer value denot-

ing the allele for an individual. Microsatellites are collected from homologous chromosome

2

pairs. It is impossible to distinguish the two chromosomes with inexpensive technology.

Each measurement site is called a microsatellite locus. In practice, scientists identify and

report alleles at multiple loci in a population and these loci are assumed to be independent

from one another, as they are found on different chromosomes.

We will assume that each individual is diploid, meaning that population members

possess two of each type of chromosome: in particular, this excludes loci on the sex chro-

mosomes. Exactly one chromosome is inherited from each of the individual’s parents;

therefore, each locus will have a maternal and paternal allele. Let m be the number of

measured loci for a population. Each locus in the population will have a variable number

of alleles, k, which we represent as Al = {a0, a1, . . . , ak−1}. In practice, some alleles are

more common than others.

During mating, a single maternal and paternal allele at each locus combine to give an

individual’s genotype, which is unordered: (ai, aj) is equivalent to (aj, ai). Unfortunately,

it is not always possible to reconstruct an individual’s alleles at a given locus. Allelic

dropout is a common error in genotyping, where information about a locus cannot be con-

fidently determined and is omitted. We express sites with allelic dropouts as (∗, ∗).

The half-sibling problem is: given a population of n offspring and their genotypes at m

loci, reconstruct a maternal and paternal partitioning, M and P respectively, which obey

the Mendelian laws for half-siblings. Each partition corresponds to a half-sibling family,

called a half-sibship. For each pair of M ∈M and P ∈ P , the individuals in F := M ∩ P

are full-siblings, since they are offspring of a common mother and father.

3

1.2.2 Mendelian Compatibility

Sibling reconstruction finds a population clustering which obeys Mendelian genetics. In the

full-sibling clustering F , each individual appears only once. For half-siblings, an algorithm

must constructM and P when both sexes are polygamous or only one of the two partitions

when one sex is monogamous.

The following rules assist the sibling reconstruction process by determining whether

or not groups of individuals can be biologically related. Berger-Wolf et al. [4] give two

Mendelian properties of diploid full-siblings. In any full-sibgroup, at each locus, at most

four alleles appear, since there are two parents, each with at most two alleles. This is the

4-allele property. The 2-allele property enforces the rule that for each full-sibling group,

there is a partitioning of the alleles at each locus into a maternal and paternal group, such

that each individual obtains exactly one allele from the maternal set and one from the

paternal set. Sheikh et al. [29] extend these rules to half-siblings. The half-sibship property

states that for each locus in a half-sibling family, there exist two alleles {ai, aj}, which are

the alleles of the shared parent, each individual possesses either ai or aj at that locus.

1.3 Contributions

Half-sibship reconstruction is still relatively unexplored. This thesis combines and expands

on current research related to pedigree reconstruction. In particular, we examine whether

similarity measures and techniques used in full sibling reconstruction algorithms can be

applied to the half-sibling problem. We also provide a fast heuristic-based algorithm for

reconstructing half-sibling populations and compare it to current algorithms. Although

a handful of algorithms exist for the half-sibling reconstruction problem, they are all too

4

slow and fail to find correct partitionings when the population is large. Our heuristic

algorithm, SibJoin [9], is thousands of times faster than existing methods and can find

reasonably accurate partitionings for large populations where current algorithms fail. De-

spite its heuristic basis, simulated and real populations show that SibJoin has competitive

accuracy to the best existing methods.

Although half-sibling reconstruction appears similar to the full-sibling reconstruction

problem, there are several differences that make the half-sibling version a more difficult

problem. We discuss barriers to accurate half-sibling family reconstruction and present

solutions to some of these problems. We also prove that even deciding whether half-sibling

partitionings are valid under Mendelian inheritence rules is NP -complete and formulate an

integer program which solves the related optimization objective of minimizing the num-

ber of individuals which need to be removed to make the proposed reconstruction valid.

The NP -hardness result has important negative implications for existing half-sibling recon-

struction algorithms, discussed in Sections 2.2, which attempt to reconstruct half-sibships

from full-sibships.

5

Chapter 2

Related Work

2.1 Full Siblings

Full sibling pedigree reconstruction is well-studied. Most existing sibship discovery algo-

rithms use statistical models of populations and maximum likelihood, combinatorial mini-

mization of some objective, or heuristics. A majority of existing algorithms are likelihood-

based which makes them unsuitably slow for large populations. Combinatorial methods

using integer programming (IP) are parallelizable, but are still too slow when populations

reach the low hundreds of individuals. A detailed survey of existing full-sibling recon-

struction algorithms is given by Jones et al. [20], where the benefits and costs of relevant

reconstruction algorithms are discussed in detail.

6

2.1.1 Likelihood

Most full sibling pedigree reconstruction algorithms use likelihood approaches to model

populations [1,21,30,33,34]. Likelihood methods estimate the probability of the data under

different partitionings of a population. An optimal solution maximizes this probability.

Most likelihood methods use Markov Chain Monte Carlo, simulated annealing, or other

search strategies to find their proposed solutions. These strategies are often very slow,

making them ill-suited for sibling reconstruction on large data sets. On the other hand,

because this class of algorithm establishes a probabilistic model, it is often possible to

directly incorporate error handling and prior assumptions about the population structure,

to increase accuracy. Of the likelihood-based approaches, COLONY [33], COLONY 2 [34],

and PRT 2 [1] are specifically related to the results of this thesis.

Likelihood algorithms for reconstructing sibships are either pairwise methods, which

investigate the relationship between pairs of individuals, or group methods. COLONY

is a group likelihood method that models entire families. In the COLONY algorithms

phenotype is defined as the observed genotype of an individual and the genotype to be

the true genotype without error. The likelihood model allows COLONY to account for

two types of errors which the authors call class I and class II errors. Class I errors occur

when one of the alleles fails to be amplified by the polymerase chain reaction and may

only occur for heterozygotic loci. All other errors, such as misidentification or mutation,

are class II errors. COLONY uses the class I and II errors to calculate the probability of

the phenotype given the underlying genotype. The full likelihood equation calculates the

likelihood of each individual’s phenotype under different parent phenotypes. The original

COLONY program only allows one sex to be polygamous, but polygamy of both sexes was

introduced in COLONY 2. Both maximum likelihood algorithms use simulated annealing

to find the most likely population structure and avoid getting trapped in local maximums;

7

however, there is still no guarantee that the best global solution will be found. Although

COLONY and COLONY 2 offer robust error modeling, results by Sheikh et al. [29], as well

as our own results, show that COLONY and COLONY 2 become prohibitively slow for even

medium-sized populations. Additionally, as demonstrated in Almudevar and Anderson [1],

COLONY 2 often splits true sibgroups into smaller groups, resulting in an incomplete

reconstruction.

PRT 2 [1] is a likelihood method that can be significantly faster than either of the

COLONY algorithms because it only considers maximal sibgroup families. A maximal

sibgroup is a group which is compatible under rules of Mendelian genetics, but for which

adding any other individual will make the group infeasible. PRT 2 allows the user to select

from three different algorithms for enumerating MSGs. The fastest method is a heuristic

which enumerates full siblings based on compatible triples of individuals and takes seconds

to run for populations of hundreds of individuals, but only generate a partial set of MSG’s.

The slower options are graph-based and can take hours to run for large populations, but

evenutally enumerate the entire set of MSG’s. Choosing which of the slower algorithms

to use depends on the estimated size of populations. The first method is a top down

algorithm that starts with large sibgroups and splits them until compatible groups are

found. The other is a bottom up algorithm that is more suitable when sibgroups are

small. One drawback of providing different options is that a user may pick the wrong one

if little is known about family sizes of the population. Choosing wrong MSG constructor

results in poor performance since the algorithm begins searching for maximal groups of

inappropriate size. Because PRT 2 only calculates maximum likelihood from MSGs, it is

faster than COLONY, but does not account for errors and will perform poorely if true

sibgroups are small, but the population is highly compatible.

8

2.1.2 Combinatorial Optimization

Combinatorial optimization approaches seek to provide a sibship partitioning which min-

imizes or maximizes some objective function, such as the number of families, matings, or

parents. As with likelihood methods, finding global optima for large populations can be

computationally demanding. However, many optimization techniques are easily paralleliz-

able.

KINALYZER [3] seeks a minimum set cover by using an integer programming (IP)

formulation where each set is subject to restrictions of Mendelian compatibility for full-

siblings. That is, it seeks to minimize the number of matings. KINALYZER yields decent

results [11]; however, like the COLONY programs, it does not scale well with population

size. The minimum set cover objective used by KINALYZER is NP -hard to optimize [11]

and, so KINALYZER cannot handle populations with more than a few hundred individuals.

Additionally, KINALYZER is very sensitive to errors since there is no built-in tolerance

for mislabeled or mutated alleles. Another problem is that KINALYZER can find multiple

optimal solutions, since its objective is just the number of matings, and it provides no way

to choose which solution is best.

Brown and Berger-Wolf provide a different IP formulation which still minimizes the

number of sibgroups, but only requires a polynomial amount of variables and constraints [8].

The approach uses the property that an incompatible full sibling family will contain an

incompatible triplet of individuals under Mendelian genetics. We discuss such incompat-

ibilities in more detail in Chapter 3. IP constraints are generated for each incompatible

triplet in the full-sibling population, to require that they do not all fall in the same sib-

group. Unlike KINALYZER, the incompatible triplets IP does not keep track of sibgroups

directly. Instead, a constraint for each distinct triplets of individuals enforces the condition

that if individual i is related to j and j is related to k, then i must also be related to k. In

9

total, the IP has O(n2) variables and O(n3) constraints, but generally takes more time than

KINALYZER for reconstructing sibships, even though its IP is exponentially smaller [8].

2.1.3 Fast Heuristics

Heuristics have been applied to the sibgroup reconstruction problem so that researchers

may obtain putitive sibgroups for large populations. By making use of simplifying obser-

vations, heuristics can produce reasonably accurate results hundreds to thousands of times

faster than pure likelihood or combinatorial methods.

Brown and Berger-Wolf propose a clustering algorithm which joins two individuals

based on the number of genetically compatible third partners [8]. Brown and Berger-Wolf

use probabilistic arguments to justify the assumption that if two individuals form a large

number of compatible full-sibling triplets, then they are likely to be full-siblings. The clus-

tering algorithm they use represents each individual as a vertex in a graph with weighted

edges that denote the number of third individuals for which the pair are compatible. Once

triplet similarities for each pair of individuals has been calculated, the algorithm sets a

threshold. Any edge with a lower weight than the threshold is removed and the remaining

connected individuals are tested for full sibling compatibility. Once all compatible families

are joined together, the threshold is raised by one and the process is repeated until all

groups are valid full sibships: true full siblings are likely to have a higher edge weight than

unrelated individuals. The result is that the largest compatible families are joined first, but

the algorithm becomes increasingly selective until no incompatibilities remain. For a pop-

ulation of n individuals with m loci, this algorithm has an O(n3m) runtime. On simulated

and real population data, the heuristic is as accurate or more accurate than KINALYZER

and hundreds of times faster. The algorithm is important because it demonstrates that

10

simple heuristics can quickly produce accurate results.

2.2 Half-Siblings

Far fewer algorithms exist for reconstructing half sibling families than for full siblings.

Weaker Mendelian constraints for half-siblings create a larger space of feasible solutions

and make it more difficult to identify unrelated individuals. As a result, many techniques

used by full sibling algorithms perform too slowly to be adapted to the half sibling prob-

lem. Current half sibling algorithms include COLONY 2, PRT 2, and an IP based on the

minimum set cover formulation of KINALYZER.

COLONY 2 expands the half-sibling compatibility of COLONY from polygamy in one

sex to allowing it in both sexes. Like the full sibling case, COLONY 2 accounts for allelic

errors and produces accurate results. However, the ability to handle polygamy in both

sexes make COLONY 2 even slower and unsuitable for reconstructing large populations.

PRT 2 also claims to support half-siblings, but half sibling groups are never directly

computed. Instead, the outputed solution presents full sibling groups and a list of which

pairs of groups can form valid half-sibling families. This is problematic in instances where

both sexes are highly polygamous because there will be many pairs of half sibling com-

patible full sibling families, however, PRT 2 does not indicate which compatibilities are

true half sibling groups nor which are maternal and which are paternal. Additionally, in

Section 6.1, we will show that reconstructing half sibling populations is NP -Hard. This

makes PRT 2 an ineffective half sibling tool for all but the most simple instances.

Recent work has proposed half-sibling IP strategies which are similar to the full-sibling

strategies in KINALYZER, though they are unsuccessful at reconstructing large popula-

tions [29]. The most viable of these is the half-sibling minimum set cover (HS-MSC) IP.

11

M0 : (4, 8) M1 : (1, 4) M2 : (1, 6) P0 : (9, 10) P1 : (2, 3) P2 : (5, 7)
(4,9) (1,2) (1,5) (4,9) (1,2) (1,5)
(4,10) (1,3) (1,7) (4,10) (1,3) (1,7)
(8,9) (2,4) (5,6) (8,9) (2,4) (5,6)
(8,10) (3,4) (6,7) (8,10) (3,4) (6,7)

(a) The true family structures of a population

C0 C1

(2,4) (1,2)
(3,4) (1,3)
(4,9) (1,5)
(4,10) (1,7)
(8,9) (5,6)
(8,10) (6,7)

(b) The HS-MSC
solution

M0 : (4, 8) M1 : (1, 6) P0 : (9, 10) P1 : (2, 3) P2 : (5, 7)
(2,4) (1,2) (4,9) (2,4) (1,5)
(3,4) (1,3) (4,10) (3,4) (1,7)
(4,9) (1,5) (8,9) (1,2) (5,6)
(4,10) (1,7) (8,10) (1,3) (6,7)
(8,9) (5,6)
(8,10) (6,7)

(c) Full family model which minimizes the total number of clusters

Figure 2.1: An example population which is correctly reconstruced by minimizing the
total number of matings, but incorrectly reconstructed by minimizing the total number of
families

However, the HS-MSC failes to estimate half-sibling groups for large populations due to

slow runtimes and is still unavailable for public use. Additionally, there is no evidence

that minimizing the number of sibgroups is the right thing to do in all instances [1]. The

KINALYZER algorithm has a natural parsimonious explanation: it minimizes the number

of matings which must occur to produce a population. For half-siblings, minimizing the

number of clusters is not equivalent to minimizing the number of matings.

Figure 2.1 demonstrates an example where minimizing the total number of clusters

leads to an incorrect sibling reconstruction even though the matings result in the same

population. Figure 2.1a shows a true population structure, which requires three matings,

M0 with P0, M1 with P1, and M2 with P2, and six clusters, which is also the structure

obtained by minimizing the total number of matings. Figure 2.1b shows the result of min-

12

imizing the total number of clusters with the HS-MSC which requires four matings and

five clusters to explain. The HS-MSC algorithm does not produce separate maternal and

paternal partitionings. Instead, it attempts to find a single minimum set cover which obeys

Mendelian inheritance for half-siblings. In this example, the HS-MSC algorithm produces

a solution with two clusters: C0 has a common parent of (4, 8) and C1 has a common parent

of (1, 6). One of the fundamental problems with the HS-MSC objective is that it fails to

distinguish between maternal and paternal families. Moreover, it excludes real half-sibling

families since it does not produce maternal and paternal partitionings. Notice that the

minimum set cover C0 and C1 produced by the HS-MSC in Figure 2.1b are the same as the

maternal clusters M0 and M1 in Figure 2.1c. However, the HS-MSC algorithm does not

reconstruct any of the paternal half-sibling families given by P0, P1, and P2 in Figure 2.1c.

To illustrate why minimizing the number of clusters may lead to a poor solution, as-

sume that the two half-sibling clusters in Figure 2.1b are correct. Figure 2.1c shows the full

maternal and paternal partitionings that are generated by minimizing the total number of

clusters. In this example, the population is generated by M0 mating with P0 and P1 while

M1 mates with P1 and P2 for a total of four matings. Therefore, minimizing the number

of clusters may require a more complicated mating structure to reproduce a population.

To summarize, there are two problems with the HS-MSC approach: it fails to produce

half-sibling clusters and it can result in an unparsimonious mating structure.

We have introduced the existing algorithms for reconstructing half-sibships; however,

the PRT 2 and HS-MSC approaches do not reconstruct complete half-sibling partitions.

Additionally, the COLONY and HS-MSC algorithms are too slow to be used with pop-

ulations in the hundreds of individuals. As DNA sequencing becomes less expensive and

biologists are able to produce larger population samples, alternative approaches must be

developed in order to process the samples in a reasonable amount of time.

13

Chapter 3

Quantifying Pairwise Similarity

Sibship reconstruction is, in effect, a clustering problem: individuals are clustered into fam-

ilies based on some measure of relatedness. The relatedness measure is meant to encourage

joining members of the same family. The ability of clustering algorithms to accurately

reconstruct groups of related individuals depends on finding an appropriate measure of

similarity between individuals. Brown and Berger-Wolf proposed a successful similarity

measure for full siblings based on Mendelian compatible triples of individuals [8]. We com-

pare their triplet similarity to a simpler method which measures similarity based on shared

alleles between pairs of individuals and determine which is more suitable for half-siblings.

Our results indicate that triplet compatibility is acceptable in most cases and preferable

when the number of distinct alleles at each locus is large, but that allele similarity is a

better choice for most reasonable populations.

14

(a) (b) (c) (d)

Figure 3.1: Minimal allele adjacency graphs of incompatible half-sibling families

3.1 Triplet Similarity

For full siblings, one method of defining similarity between individuals i and j is to count

the number of third individuals k that can be full siblings with i and j simultaneously.

Building a similarity matrix for all pairs of individuals in a population requires enumerat-

ing all triplets in a population and testing their compatibility, which takes O(n3m) time by

brute force. Triplet similarity is an effective measure for full siblings, in part because

any incompatible candidate family contains an incompatible triplet [8]. Therefore, it is

unlikely that pairs of unrelated individuals will obtain a high similarity.

Unfortunately, an incompatible half-sibling family is not guaranteed to have an incompat-

ible half-sibling triplet. In fact, it can require as many as six individuals to identify a

half-sibling incompatibility.

Definition 1. For an allele pool Al at locus l, an allele adjacency graph is a graph G(V,E)

with a vertex for each distinct allele ai ∈ Al and edges between all pairs of allele vertices

that co-occur at locus l of an individual.

In an allele adjacency graph, edges are equivalent to individuals and each pair of con-

nected vertices represents the two alleles found at the fixed locus of an individual. For

15

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Candidate compatible allele adjacency graphs for H(V,E)

example, a family of six individuals such as {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} would

form an allele adjacency graph which is isomorphic to the graph in Figure 3.1c.

Given an allele adjacency graph for a fixed locus in a population, determining whether

the individuals are compatible half-siblings at the locus is equivalent to determining if the

graph has a minimum vertex cover of at most two vertices. The two vertices correspond

to the alleles of the common parent.

(a) (b)

Figure 3.3: Minimal graphs with a minimum vertex cover number of two

16

Theorem 1. Minimal incompatible half-sibling subgroups contain up to six individuals.

Proof. Figure 3.1 demonstrates all the minimal allele adjacency graphs for incompatible

half-sibling families. We will argue that any incompatible half-sibling allele adjacency

graph must, up to an isomorphism, contain one of the four graphs in Figure 3.1 as a sub-

graph.

Without loss of generality, we modify the structure slightly by replacing any self-edge

(vi, vi), corresponding to a homozygote, with a new vertex v′i, an edge (vi, v
′
i), and the

requirement that only vi may share an edge with v′i. For the vertex cover problem, this

modified graph preserves the original solution since the new edge can only be covered by vi

or v′i, while the self-edge of the original graph can only be covered by choosing vi. There-

fore, if v′i appears in the vertex cover set, then it may be replaced with vi since the only

edge touching v′i is (vi, v
′
i). This modification allows us to generalize homozygotic structure

in the proof and ignore cases with self-edges.

Assume for contradiction that an incompatible allele adjacency graph G(V,E) exists which

does not contain any graph in Figure 3.1 as a subgraph, but still requires a common parent

with three alleles; that is, has a vertex cover number of three. Furthermore, assume that

this graph is minimal in the sense that removing any edge will reduce the minimum vertex

cover size from three vertices to two. Remove the third vertex v∗ in the vertex cover and

all adjacent edges. The resulting subgraph, call it H(V,E), must have a two vertex cover,

say {vi, vj}.

First, we observe that there are only two minimal graphs with a minimum vertex cover

of two, which are shown in Figure 3.3, since any connected graph with more than four

vertices must either be a star, which has minimum vertex cover number of one, or have

two non-adjacent edges, which is isomorphic to Figure 3.3a. We enumerate all the possible

graphs for H(V,E) by adding edges that preserve the two vertex cover to the minimal

17

graphs in Figure 3.3.

It is also necessary to consider cases where G(V,E) has more than one connected compo-

nent. If G(V,E) has multiple components which don’t share an edge and v∗ connects to

a separate component, then it is forced to increase the minimum vertex cover number by

one, regardless of the structure of the second component. Therefore, we may represent the

second connected component with a single vertex that shares an edge with v∗. We will try

to reconstruct G(V,E), examining six cases.

1. Adding v∗ to the graph in Figure 3.2a will result in a minimal three vertex cover graph

with edges {(v∗, v0), (v∗, v1)} or {(v∗, v2), (v∗, v3)}, but these graphs are isomorphic

to Figure 3.1b. Therefore, deg(v∗) > 2 will violate the assumption of minimality for

G(V,E).

2. Adding v∗ to Figure 3.2b with edges {(v∗, v1), (v∗, v3)} will result in a minimal

graph, but this graph is isomorphic to Figure 3.1d. Adding {(v∗, v0), (v∗, v1)} or

{(v∗, v2), (v∗, v3)} also create incompatible half-sibling graphs, but these graphs can-

not be G(V,E) since they are not minimal.

3. Adding edge (v∗, v1) to Figure 3.2c produces a graph with a three vertex cover, but

it violates the minimality assumption. Any other three vertex cover graph contains

the graphs in case b as a subgraph.

4. Any three vertex cover created by adding v∗ to Figure 3.2d contains a three vertex

cover graph from case c as a subgraph.

5. Adding v∗ with an edge to each of v0, v1, v2 in Figure 3.2e produces a minimal three

vertex cover graph, but it cannot be G(V,E) since it is isomorphic to Figure 3.1c.

18

6. Lastly, we consider the case where v∗ contains an edge to a node that is not connected

to the rest of the graph. However for each of Figure 3.2f to Figure 3.2j, an edge

between v∗ and the unconnected vertex will result in a graph which contains either

Figure 3.1a or Figure 3.1b as a subgraph. If there is no edge between v∗ and the

unconnected vertex, then cases 1 through 5 all deny the existence of G(V,E).

Assuming that loci are independent, each locus must be checked for incompatibilities

which adds a factor O(m) to testing group incompatibility. Therefore, capturing all of

the information given by forbidden half-sibling substructures would require enumerating

all O(n6) sets of six individuals and would take O(n6m) time by brute force, which is

infeasible for large populations.

We have proved that minimal half-sibling incompatibilities with four, five, and six individ-

uals exist, but how commonly do they occur and how often do they matter? To determine

Variable Parameter Frequency of incompat. x-lets
parameter settings x = 3 x = 4 x = 5 x = 6

k: number of alleles

5 0.765 0.249 0.027 0.001
6 0.839 0.205 0.016 0.000
7 0.876 0.159 0.019 0.000
8 0.922 0.126 0.012 0.000
9 0.951 0.089 0.005 0.000
10 0.949 0.081 0.006 0.000

f : family size

5 0.617 0.088 0.004 0.000
10 0.994 0.772 0.499 0.021
15 1.000 0.993 0.968 0.270
20 1.000 0.999 0.998 0.774

Table 3.1: Frequency of incompatible x-lets for x ∈ {4, 5, 6} in 1000 randomly chosen
families with fixed alleles or fixed family size.

19

how {4, 5, 6}-let incompatibilities are affected by the number of alleles at a locus, we

enumerate populations of all
(
k
2

)
+ k individuals for k = {5, 6, . . . 10} alleles. From these

populations, we sample 1000 sets of size 6 uniformly at random without replacement and

count how many sets contain each type of minimal incompatibility. A similar test is con-

ducted on 1000 sets of sizes {5, 10, 15, 20} with k fixed at 7 alleles. The results are given in

Table 3.1. The number of incompatible {4, 5}-lets tend to decrease as the number of alleles

grows. However, for realistic allele pool sizes, the percentage of incompatible families due

to quadruplets is high, at around 20%. Furthermore, when alleles are held constant, the

percentage of incompatible {4, 5, 6}-lets increases substantially with sib-group size.

The results of a similar experiment answer the second question of how often {4, 5, 6}-let

incompatibilities matter. In this experiment, incompatible x-lets for x ∈ {4, 5, 6} are only

counted if a family contains no incompatible y-lets for y < x. The result of the experiment,

given in Table 3.2, indicate that enumerating only triplets will miss several incompatibil-

ities, particularly in the range of unique alleles which would occur in real populations.

Unsurprisingly, incompatible triplets become more common as the number of individuals

in a set increases. Therefore, triplets should not exclusively be used to find incompatible

families unless the families are very large, but may provide an adequate similarity score

approximation.

3.2 Allele Similarity

As a simple alternative to a triplet-based similarity measure, we may use a pairwise measure

based on counting the number of shared alleles at each locus of a pair of individuals.

Given two individuals, each with m loci, this similarity function mathces alleles of a pair of

individuals. The similarity is the number of matches across all loci of the two individuals.

20

Variable Parameter Frequency of incompat. x-lets
parameter settings x = 3 x = 4 x = 5 x = 6

k: number of alleles

5 0.776 0.05 0.000 0.003
6 0.856 0.029 0.000 0.000
7 0.894 0.019 0.000 0.000
8 0.919 0.009 0.000 0.000
9 0.950 0.007 0.000 0.000
10 0.955 0.009 0.000 0.000

f : family size

5 0.632 0.043 0.002 0.000
10 0.995 0.000 0.000 0.000
15 1.000 0.000 0.000 0.000
20 1.000 0.000 0.000 0.000

Table 3.2: Frequency of incompatible x-lets for x ∈ {4, 5, 6} in 1000 randomly chosen
families with fixed alleles or fixed family size. Incompatible x-lets are only counted if the
family does not contain any incompatible y-lets for y < x.

For example, the pair of individuals x = [(1, 2), (2, 2), (1, 3)] and y = [(1, 1), (2, 2), (2, 3)]

has a similarity of sxy = 4, since for (1, 2) and (1, 1), we do not double count the similarity

between the 1 alleles.

To see why this approach is useful, let X be the random variable that represents the

number of shared alleles between two individuals at a single locus. We can calculate the

expected number of alleles for each relationship type assuming an even allele distribution.

E[X|full siblings] =
8k2 + 4k + 1

8k2
(3.1)

E[X|half-siblings] =
2k3 + 5k2 + k + 1

4k3
(3.2)

E[X|unrelated] =
3k2 − k − 1

k3
(3.3)

Eliminating allele double-counting, we end up with Eq. 3.1, 3.2, and 3.3. For full-

siblings, the expected number of shared alleles approaches 1 as the number of alleles grows,

21

for half-siblings, the expectation approaches 1
2
, and the expectation approaches 0 for un-

related individuals. For a population with m loci, the expected number of shared alleles

for any two individuals is m · E[X] and strongly concentrated around that value.

Theorem 2. The probability that a pairwise allele similarity deviates far from its mean

decreases exponentially as the number of loci increases.

Proof. Let X be a random variable as described above. For independent loci, the allele

similarity Xi is the allele similarity of the i’th locus with 0 ≤ Xi ≤ 2 for 1 ≤ i ≤ m. By

application of Hoeffding’s inequality to the mean allele similarity X =
m∑
i=0

Xi

/
m,

Pr(|X − E[X]| ≥ t) ≤ 2 · exp

(
−t

2m

2

)

The comparatively high expected value for full-siblings also makes this similarity mea-

sure an acceptable method for calculating full-sibling similarity as well, though we focus on

half-siblings here. Additionally, computing allele similarity takes O(n2m) time, compared

to the O(n3m) time to enumerate and compare triplets.

3.3 Experimental Results

We examine how well triplet and allele similarities perform using several test sets that

are designed to enable independent tests of changes in alleles, loci, population size, and

family size. Ideal similarity measurements maximize the score between pairs of true full

or half-siblings and suppress the scores of unrelated pairs of individuals. We assess the

22

effectiveness of each similarity measure by counting the number of true and false positives

at each similarity threshold. For each threshold of similarity, the pairs of individuals with

similarity greater than or equal to the threshold are classified as positive identifications

and the rest are negative identifications. Pairs of individuals which are true half-siblings

and above the threshold are true positives, while incorrect pairs of individuals above the

threshold are counted as false positives. Plotting the true positive rate versus false positive

rate at each threshold produces a receiver operating characteristic (ROC) curve. The ROC

curve exposes the tradeoff between true positive and false positives at each threshold. Ide-

ally, clustering algorithms prefer thresholds with high true positive rates and comparitively

low false positive rates. Unfortunately, these values cannot be computed when the true

population is unknown.

We plotted allele similarity and triplet similarity ROC curves against each other to

determine which measure was better in different situations. Figure 3.4 shows outcomes

where similarity measurements did well and where they did poorly as well as instances

where allele similarity outperformed triplet similarity and vice versa. Both similarity mea-

surements perform well when the number of loci or discrete alleles is high. The ideal ROC

curve is one where the true positive rate reaches 1.0 before any false positives are intro-

duced, but this rarely occurs for either similarity measurements. Figure 3.4a shows a test

with a large number of loci which results in a nearly ideal allele similarity. Figure 3.4b

shows the opposite case with two alleles where the true and false positive rates are growing

by about the same amount at each threshold. When the number of distinct alleles is below

three, the entire population can form a valid half sibling family. In general, poor perfor-

mance was observed when allele or locus counts were low. Figure 3.4c, which represents a

test case with 40 individuals, 6 alleles, and 10 loci, is more representative of a population

that may actually occur in the wild. In these average cases, the allele similarity measure

23

(a) 40 individuals, 6 alleles, 20 loci: The allele sim-
ilarity ROC curve is very close to optimal

(b) 40 individuals, 2 alleles, 6 loci: Both similarity
measures do poorly since there are only two distinct
alleles per locus

(c) 40 individuals, 6 alleles, 10 loci: The allele sim-
ilarity outperforms triplet similarity in average in-
stances

(d) 40 individuals, 20 alleles, 6 loci: The triplet sim-
ilarity outperforms allele similarity for very high dis-
tinct allele counts

Figure 3.4: ROC curves illustrating cases where each similarity measure does well or poorly

almost always outperformed triplet similarity for half-siblings. Lastly, Figure 3.4d shows

an instance with 20 alleles where triplet similarity dominates allele similarity at all thresh-

olds. For large numbers of distinct alleles, triplet similarity bests allele similarity; however,

the allele range where this is true is unrealistically large for real populations. In almost all

24

cases allele similarity performed better than triplet similarity for high loci counts.

As microsatellite technology gets cheaper, one can expect the number of measured loci

to grow and the number of distinct alleles to stay small. We have derived the expected

number of shared alleles between full siblings, half-siblings, and unrelated individuals.

Moreover, Theorem 2 proves that allele similarity will grow in accuracy as the number of

independent loci increases. We have also shown experimentally that, when the number of

distinct alleles is small, allele similarity can provide a more accurate similarity score than

triplet similarity. When comparing half-siblings, allele similarity provides a more accurate

similarity measure than the triplet similarity and should be prefered in most cases.

25

Chapter 4

Metrics for Comparing Sibship

Partitionings

In order to analyze an algorithm’s ability to reconstruct sibships, we must have a good

metric for quantifying the difference between two population assignments. Such a metric

is important for determining how close an algorithm’s solution is to simulated or known

sibship structures, but it can also be used to reduce error by comparing multiple candidate

partitionings and establishing a confidence rating for individuals of a population when

the true population structure is unknown [12]. One method for finding the difference

between two partitionings was proposed by Painter as the number of individuals that must

be reassigned in either partitioning until the two partitionings are identical [27]. A later

method proposed by Almudevar et al. defines a distance metric between two populations

as the minimum number of individuals which must be removed from both populations

in order for the two to be identical [2]. These two formulations are identical [1] and the

value of this measure can be computed by computing a maximum matching between the

26

two partitionings. Although this maximum matching method is widely used in sibship

reconstruction literature and in bioinformatics in general [14, 24], it offers only a coarse

estimate of the difference between two partitionings. Therefore, we advocate a method from

information theory, called variation of information, which yields a better understanding of

the difference between two population partitionings.

4.1 Maximum Matching

As previously stated, Painter [27] proposed the partition distance based on maximum

matching; however, a polynomial time algorithm for computing the maximum matching

was not given until five years later by Gusfield who stated but did not prove that the best

algorithm at the time, due to Almudevar et al. [2], had an exponential worst-case runtime.

Gusfield reduced the problem to an instance of the assignment problem [14], which has a

known polynomial worst-case time complexity. Konolovalov et al. presented an algorithm,

which was also based on reduction to the assignment problem, with an O(n3) time bound.

The classical assignment problem is: given an m× n matrix M , select cells of M such

that the sum of the cells are maximal, and no row or column in M has more than one

selected cell. For two partitionings of the data, P and P ′, create an instance of the assign-

ment problem by forming M with |P| rows and |P ′| columns corresponding to the clusters

in P and P ′ respectively. For each Pi ∈ P and P ′j ∈ P ′, Mi,j := |Pi
⋂
P ′j|. Gusfield proved

that the individuals which must be removed are exactly the individuals in the symmetric

difference of Pi and P ′j for all selected cells (i, j).

When comparing an algorithm’s solution to a known population structure, the par-

tition distance takes on a very literal interpretation as the number of correctly placed

individuals. However, the partition distance due to maximum matching does not convey

27

P P ′1 P ′2
1, 2, 3, 4, 5 1, 2 1, 2
6, 7, 8, 9, 10 6, 7, 8, 9, 10 3, 6, 7, 8, 9, 10

11, 12, 13, 14, 15 11, 12, 13, 14, 15 4, 11, 12, 13, 14, 15
16, 17, 18, 19, 20 16, 17, 18, 19, 20 5, 16, 17, 18, 19, 20

3, 4, 5

Table 4.1: True partitioning P with candidate sibling partitionings P ′1 and P ′2. P ′1 and P ′2
both receive the same partition distance score from maximum matching, even though P ′1
is preferable. The individuals which ought to be removed due to maximum matching are
bolded.

the extent to which misplaced individuals are incorrect. An example of this lack of resolu-

tion is given in Table 4.1. In the example, P ′1 and P ′2 both receive a maximum matching

score of 17
20

, or 0.85. The best solution for both partitionings would be to remove individ-

uals {3, 4, 5} from the population, making them equivalent to P . However, even though

both partitionings have the same distance, P ′1 is peferable to P ′2 because its incorrectness is

due only to the failure to join clusters {1, 2} and {3, 4, 5}. The algorithm which produces

solution P ′2 not only fails to join {1, 2} with {3, 4, 5}, it incorrectly joins each individual

{3, 4, 5} into the wrong family. Moreover, these splits are common in some algorithms,

such as in COLONY and COLONY 2.

Partition distance by maximum matching is a good starting point since its solution

produces a list of incorrect individuals. However, it is unable to measure the degree to

which misplaced individuals are incorrect. In pedigree reconstructions, a split is preferable

to an incorrect join since the split does not claim that unrelated individuals are related,

yet both receive the same score under maximum matching. We have given a simple exam-

ple of when the maximum matching partition distance fails to pick the best partitioning.

Meila [25] gives another example. Therefore, a preferable metric would take the structure

of the solution into account.

28

4.2 Variation of Information

We advocate an alternative information theoretic metric called variation of information,

which was first proposed by Meila [25], to overcome the lack of resolution in the partition

distance’s score. Variation of information measures the entropy, or degree of disorder,

within two partitionings and the mutual information, or how much both partitionings have

in common, to produce its score. VI measures how much knowing the partition element

an individual belongs to in one partition explains where it is in the other partition, and

vice-versa. Unlike maximum matching, in which higher scores correspond to closer results,

variation of information measures the degree to which two partitionings vary. Therefore,

lower scores are preferable.

In order to determine the variation of information between two population partitionings,

the amount of disorder within each cluster must be quantified. The amount of disorder

is known as the entropy of a partitioning. If a random individual is chosen from the

population, the entropy tells us the amount of uncertainty we have about which cluster

that individual will be chosen from. For instance, if a partitioning were to contain exactly

one cluster which assigned all population members as siblings, then there would be no

uncertainty: the randomly chosen individual must have been chosen from the single cluster,

so the entropy is 0. However, if an algorithm were to return a partitioning where each

cluster held exactly one individual, then the uncertainty about which cluster the individual

was chosen from would be much higher.

Define the true partitioning of a population into families as P and an algorithm’s

partitioning as P ′, with p := |P| and p′ := |P ′|. Compute the probability of an individual

selected uniformly at randomly from our population of size n as P (i) = |Pi|/n for each

Pi ∈ P and similarly for P ′. Using the two random variables, we can compute the entropy,

29

which is always non-negative, of P and P ′, denoted H(P), and H(P ′).

H(P) = −
p∑
i=1

P (i) logP (i) (4.1)

Mutual information, denoted I(P ,P ′), measures how much information is shared be-

tween two partitionings. Intuitively, mutual information is a measure of the amount of

information one partitioning would give about the structure of the other. If the amount of

uncertainty in two partitionings is high, but the partitions are very similar, then knowing

one partition gives significant insight into the structure of another. However, if the amount

of uncertainty within each partitioning is low, then the amount of information gained will

be less. Mutual information is, therefore, dependent on the joint distribution of the random

variables for P and P ′, given by P (i, i′) = (|Pi
⋂
P ′i |)/n.

I(P ,P ′) =

p∑
i=1

p′∑
i′=1

P (i, i′) log
P (i, i′)

P (i)P ′(i′)
(4.2)

The variation of information between partitionings P and P ′, which we will call V I(P ,P ′),

may now be computed in O(n+ p · p′) time.

V I(P ,P ′) = (H(P)− I(P ,P ′)) + (H(P ′)− I(P ,P ′)) (4.3)

The VI between two partitionings is 0 if and only if the two partitionings are identical

and smaller VI corresponds to more similar partitionings. Like entropy, the VI is always

non-negative. VI has a tight upper bound of log n [25]; therefore, we will normalize VI to

a value in [0, 1] before reporting the score for each of our trials in later sections.

Returning to the toy example with P , P ′1, and P ′2 from Table 4.1, the normalized

variation of information, calculated using log2, between the real partitioning and each of

30

P P ′1 P ′2
Entropy (H) 2.0 2.2427 1.8955
I(P ,P ′) 2.0 1.4150

Normalized V I(P ,P ′) 0.0562 0.2465

Table 4.2: Variation of information calculation for example from Figure 4.1 using base 2
logarithms. VI correctly identifies P ′1 as the better of the two candidate partitions.

the candidate partitionings is given in Table 4.2. As expected, P ′1 has a higher entropy

than P ′2, which has less groups and more members in most groups. However, the mutual

information for P ′1 is much higher, due to the fact that P and P ′1 are identical except for

a split, whereas the algorithm for P ′2 mixes the three individuals across incorrect clusters.

Finally, after normalization, V I(P ,P ′1) = 0.0562 while V I(P ,P ′2) = 0.2465.

VI is a powerful metric because it is able to discern when individuals are misplaced and,

as demonstrated in our toy example, is a more appropriate measurement of the difference

between two partitionings, particularly in our context. The VI metric can be computed

quickly and gives better information than the current maximum matching solution. There-

fore, results in later sections will be reported in terms of their VI score.

4.3 Partition Distance for Half-Siblings

Both maximum matching and variation of information are easy to calculate when there

are only two partitionings, which is the case for full-sibling reconstruction. Unfortunately,

half-sibling partitioning comparison requires a total of four partitionings: two maternal and

two paternal. Furthermore, microsatellite DNA samples do not provide information about

the sex of the parent that each allele was inherited from. In half-sibling solutions where

the sex of each cluster is known, the overall VI is the average VI between the maternal

31

partitionings M and M′ and paternal partitionings P and P ′ given in Eq. 4.4.

V IHS =
V I(M,M′) + V I(P ,P ′)

2

/
log n (4.4)

In most cases, however, we do not know which partitioning each cluster belongs to.

Assuming that an algorithm enforces the Mendelian requirement that an individual must

have one genetic father and mother, it is possible to reconstruct feasible partitionings where

no individual appears in the same partitioning more than once: there is a partitioning of

the individuals by mothers and one by fathers. This will be discussed in detail later.

However, once the requirement is enforced, each cluster must be labeled either maternal

or paternal so that the resulting partitionings can be compared.

Each cluster in an algorithm’s solution will force a set of clusters to the opposite sex.

For an algorithm where each individual appears in exactly two clusters, the rule is simple:

for each individual i which appears in clusters Cj and Ck, Cj and Ck cannot have the

same sex. Enforcing this rule across all individuals results in two partitionings that are

equivalent to a bipartite graph with vertices representing clusters and edges representing

clusters which cannot have a parent with the same sex. One side of the bipartite graph

is roughly maternal, while the other side is roughly paternal. A major concern is that

this graph may not be fully connected: it may have multiple unattached components. A

fully connected graph can be expected when matings are highly polygamous, which due to

mating transitivity, will force many of the clusters into one connected component. A fully

connected graph is good because it reduces the opportunity for error when deciding the

sex of the parent for each cluster. If the graph is fully connected, then either the left side is

maternal and the right side is paternal or vice versa. On the other hand, many connected

components forces us to make many decisions about which clusters are labeled maternal

or paternal. There are two cases to consider: one where one half-sibling reconstruction has

32

Algorithm 1 Variation of information for half-siblings

1: function Half-Sib VI(B,M,P)
2: for H ∈ B do . H is a connected component in B
3: H+, H− ← (female, male) . H+ is left side of H, H− is the right side.
4: end for
5: for H ∈ B do
6: vi0 ← VI(B,M,P)
7: H+, H− ← (male, female)
8: vi1 ← VI(B,M,P) . Compute VI with switched sexes
9: if vi0 < vi1 then
10: H+, H− ← (female, male)
11: end if
12: end for
13: end function

known sexes for each cluster and one where neither reconstruction has known sexes.

4.3.1 Comparing to a Reference Sibship

The first case arises when comparing an algorithm’s solution to known reference parti-

tionings. In the reference partitionings it is assumed that the sex corresponding to each

partition is known. If this is the case, then it is easy to find the two partitionings from the

clusters produced by an algorithm which minimize the total variation of information.

The determination of each cluster’s sex can be done greedily by the algorithm de-

scribed in Algorithm 1. Each connected componentof the bipartite half-sibling graph must

be assigned a sex. For each connected component, the greedy heuristic calculates the VI

with the left partitioning H+ as maternal and again with H+ paternal. The parental sex

assignment with the lowest VI is chosen for each connected component. Minimizing the

overall VI is a natural objective since it is assumed that the algorithm is trying to re-

construct half-sibling clusters which are correct. Additionally, the greedy algorithm will

33

produce the minimal VI.

Theorem 3. Algorithm 1 produces a minimal variation of information given the con-

structed clusters.

Proof. By Eq. 4.3 and Eq. 4.4

V IHS ∝ H(M) +H(M′) +H(P) +H(P ′) + I(M,M′) + I(P ,P ′) (4.5)

H(M′) and H(P ′) change when the sexes of the connected component are swapped, but

entropy is the sum of terms which depend on exactly one cluster. Therefore, the total

entropy H(M) + H(M′) + H(P) + H(P ′) is preserved regardless of which clusters are

labeled maternal and which are paternal.

Mutual information also depends on the sex assigned to each cluster, but by Eq. 4.2, the

choice of sex for each connected component will not affect the other connected components

as long as the sexes of the reference partitionings stay fixed.

The ability to minimize VI when comparing against a reference solution is important

since most algorithms guage their effectiveness by comparing solutions to simulated or

real-world known populations. Unfortunately, the greedy assumption made in Algorithm 1

depends on knowing the structure of the two partitionings from the reference solution. The

case is not as clear when comparing two candidate solutions.

4.3.2 Comparing Two Candidate Sibships

When candidate half-sibling partitionings are compared against a reference solution, it is

easy to determine the sex of the parent of each candidate cluster with a greedy algorithm

34

because the female and male partitionings of the reference clusterings are fixed. However,

some applications rely on the comparison of candidate partitionings to reconstruct more

accurate partitionings [12]. Unlike full-sibships, in which there is only one partitioning for

each solution, half-sibships require a maternal and paternal partitioning with each individ-

ual appearing once in each.

When neither solution has defined sexes for its clusters, the mating transitivity de-

scribed earlier creates dependencies where one connected component’s sex choice can af-

fect the VI calculation at other connected components. More concretely, suppose that the

assignments H+
i := maternal and H+

j := maternal minimize the VI for the ith and jth

connected component respectively. When neither solution has sexes assigned ab initio, it

is possible for the assignment H+
i := maternal to preclude the next assignment H+

j :=

maternal. As a result, any VI calculation algorithm needs to make optimization decisions

about which to assign as maternal and which to assign as paternal. These decisions may

be very difficult to make, especially in highly polygamous populations, since any decision

about the sex of one parent would affect the decision about sex of many others. At the

present time, it is unknown whether assigning sexes to clusters when neither of the solu-

tions have sexes defined is NP -hard. Therefore, extending classical metrics for comparing

full-sibling solutions works well as a guage of the accuracy of algorithms when compared

to some known population structure, but not for comparing two candidate results where

the partitionings are unknown. When none of the partitionings have assigned sexes and

the polygamy rate is high, there is a strong chance that the connected components will

exhibit mating transitivity that makes it difficult to assign a VI score.

35

Chapter 5

Half-Sibling Reconstruction

Algorithms

5.1 Integer Programming Formulation

In previous Section 2.2 we discussed the HS-MSC IP, which constructs half sibling par-

titionings by minimizing the total number of family clusters and gave an example where

the IP produces incorrect clusters. In the example reconstruction given in Section 2.2, the

HS-MSC algorithm produced paternal clusters. In this section, we propose an IP which

enforces Mendelian genetic laws and gives a full solution where each individual belongs to a

maternal and paternal clustering. Unlike HS-MSC, the new IP minimizes the total number

of clusterings across both the maternal and paternal partitioning. A major drawback of

the HS-MSC is that complete maternal and paternal partitionings must be inferred from

the minimum set cover solution. The authors do not provide a method of doing this. Fur-

thermore, because the HS-MSC does not produce separate partitionings for mothers and

36

minimize
∑

s∈{0,1}

∑
j∈J(s)

(
z
(s)
j +

∑
i<n

x
(s)
i,j εi,j

)
subject to ∑

s∈{0,1}

y
(s)
i,k,l − ai,k,l = 0, 0 ≤ i < n, 0 ≤ l < m, k ∈ K

for each sex s

z
(s)
j − x

(s)
i,j ≥ 0, 0 ≤ i < n, j ∈ J (s)∑

j∈J(s)

x
(s)
i,j = 1, 0 ≤ i < n

∑
k∈K

y
(s)
i,k,l = 1, 0 ≤ i < n, 0 ≤ l < m∑

k∈K

p
(s)
j,k,l ≤ 2, 0 ≤ i < n, j ∈ J (s)

p
(s)
j,k,l − x

(s)
i,j − y

(s)
i,k,l ≥ −1, 0 ≤ i < n, j ∈ J (s), k ∈ K, 0 ≤ l < m

z
(s)
j+1 − z

(s)
j ≤ 0, j ∈ J (s)

Figure 5.1: 0/1 integer program to find minimum number of parents needed to explain a
population.

fathers, it is possible for the minimum set cover to include some clusters from both sexes,

which makes it difficult to say anything useful about mating patterns. Additionally, since

there is only one partitioning of the individuals, many true half-sibling families will fail to

be clustered by the HS-MSC algorithm. On the other hand, the new IP always produces a

valid maternal and paternal partitioning and the IP makes a clear distinction about which

is maternal and which is paternal.

An IP formulation with the new objective is given in Figure 5.1 and is suitable for

small populations. Separate variables are kept for the maternal and paternal partition-

ings. These variables are indexed by a parameter (s), which corresponds to the sex of the

37

partitioning. The objective minimizes the total number of clusterings needed to explain

a population. The index i denotes the individual, j the cluster, k the allele, and l the

locus, for all variables. The ai,k,l constants represent how many of each allele k individual

i contains at locus l: for homozygotes, this constant is 2. The y
(s)
i,k,l variables track the

actual alleles for each individual at each locus. There are up to four y variables for each

locus of each individual. The x variables map an individual i to a cluster j. Finally, the p

variables store the alleles that each parent must have at each locus.

The first constraint forces individuals to join maternal and paternal clusters that sat-

isfy the individual’s allele requirements. There are two instances of each of the remaining

constraints: one for each sex’s partitioning. The first of the ”per-sex” constraints sets

the z variable representing cluster j to one if cluster j is non-empty. Minimizing z in the

objective forces individuals to form as few families as possible: in particular, to minimize

the number of parents. The next constraint guarantees that each individual will belong

to exactly one maternal and paternal cluster. The fourth constraint guarantees that the

parent of each cluster has at most two alleles and the fifth constraint ensures that each

individual receives one allele from each parent.

Like the HS-MSC, the new IP requires a guess about the number of families |J (s)| in

each partition. The upper bound for each j(s) is n since each individual has exactly one

mother and father. However, large values of j(s) greatly increase the size of the solution

space and result in many optimal solutions since a family can be placed in any empty

cluster, which results in a combinatorial explosion of equivalent optimal solutions. Smaller

guesses about cluster size greatly reduce the number of variables and constraints, leading

to a faster solution. However, if the guess is too small, the IP may never find a valid solu-

tion. Adding the sixth constraint forces the chosen clusters, zi variables, to be contiguous

so that all of the empty clusters are forced together. Including this constraint reduces the

38

number of equivalent solutions to O(|Z|!), where |Z| is the number of non-empty clusters in

the optimal solution. We use random perturbations to force a single optimal solution. We

generate a random perturbation matrix E ∈ [1 × 10−10, 1 × 10−9]i×j and add the product

x
(s)
i,j εi,j to the objective equation for all i, j, and s. These small perturbations do not affect

the optimal number of clusters since they are several orders of magnitude smaller than

the zj variables; however, they break ties between equivalent solutions and force a single

optimal solution.

5.2 The SibJoin Heuristic

SibJoin, which uses hierarchical clustering to reconstruct half-sibling families, is an alter-

native to IP and likelihood methods. Instead of searching through large sections of the

feasible solution space, SibJoin uses heuristics to determine individuals or families to join.

As a result, SibJoin is thousands of times faster than likelihood and IP solutions and can be

used to reconstruct populations which have previously been unsolvable due to the popula-

tion size. We describe the SibJoin algorithm, and test it against COLONY 2 on simulated

and real population data sets and against the HS-MSC integer program on real biological

populations.

Some clustering algorithms rely on measurements of similarity between individuals.

We denote the similarity between individuals x and y as sxy and the similarity between

clusters Ci and Cj as sim(Ci, Cj). The terms partitioning and clustering may be used

interchangeably.endfigure

39

Variable Parameter Average # Error after % of total joins
parameter settings bad joins 20% 40% 60% 80%

k: number of alleles

2 33.8 0.112 0.201 0.393 0.632
5 7.8 0.056 0.090 0.146 0.345
10 0.1 0.000 0.000 0.000 0.000
15 0.0 0.000 0.000 0.000 0.000
20 0.0 0.000 0.000 0.000 0.000

m: number of loci

2 27.4 0.267 0.462 0.589 0.718
5 5.3 0.248 0.299 0.430 0.613
10 0.6 0.000 0.000 0.000 1.000
15 0.1 0.000 0.000 0.000 0.000
20 0.0 0.000 0.000 0.000 0.000

n: population size
10 0.1 0.000 0.000 0.000 0.000
50 5.4 0.058 0.070 0.122 0.280
100 19.9 0.026 0.045 0.087 0.298
200 54.3 0.026 0.063 0.177 0.366

f : family size

1 63.1 0.082 0.257 0.426 0.716
5 13.8 0.014 0.055 0.156 0.291
10 2.2 0.088 0.175 0.260 0.429
20 2.2 0.551 0.631 0.774 0.774

Table 5.1: Fraction of total bad joins accumulated after SibJoin is 20%, 40%,. . . , 80%
complete.

5.2.1 Joining Families

SibJoin begins with 2n clusters, each of which contains a single individual. Every individ-

ual appears in exactly two clusters, representing the maternal and paternal half-sib groups.

A variation of single linkage clustering is used to determine which clusters to join. Sin-

gle linkage clustering is a form of agglomerative clustering that determines the similarity

of two clusters Ci and Cj by computing sim(Ci, Cj) = maxx∈Ci,y∈Cj
sxy, and then joining

groups with high similarity. A sample join is demonstrated in Figure 5.2. Ties in similarity

are broken by joining the groups with the highest combined number of members first since

large compatible half-sibling groups are more likely to be related than small groups.

40

(a) Identify half-sibs (in red). (b) Merge their half-sib clusters

Figure 5.2: Demonstration of a successful iteration of SibJoin. Nodes represent individuals,
edges represent a half or full-sibling relationship constructed by the algorithm, and nodes
which share a box represent true full-siblings.

Traditional clustering techniques mandate that only one copy of each individual is

allowed. SibJoin implements a modified form of single linkage clustering which places

restrictions on which clusters may be joined according to Mendelian compatibility con-

straints and handles the multiple copies of individuals necessary to reconstruct maternal

and paternal half-sibling structures.

Single linkage clustering is chosen because of the assumption that individuals with high

allele similarity are very likely to be half or full siblings. The heuristic does well in prac-

tice. For each simulated test case, we analyze the number of incorrect family merges that

SibJoin makes during the first 20, 40, 60, 80, 100% of its joins and report what fraction of

the total error was accumulated by each threshold. In the experiment, populations which

contained no errors were excluded from the average to avoid biasing the error downward.

The average number of incorrect joins is, however, averaged over all trials. The results

shown in Table 5.1 verify that most of the incorrect joins happen toward the end of the

clustering process when joins are selected between individuals with low allele similarity. In

41

most test cases, SibJoin accumulates less than 10% of its total error by the time it is 25%

complete and less than 45% of its total error once it is 80% complete. There are instances,

such as family size 20, where SibJoin appears to perform poorly during early joins; how-

ever, in these cases, the total number of bad joins is low. As a result, one incorrect join

accounts for a large percentage of the total error. Unsurprisingly, when the total number

of errors is very large, SibJoin also makes early mistakes. Both the total errors and the

early errors result from SibJoin not having enough information to make informed early

decisions: for example, when the number of distinct alleles or total loci is very small.

SibJoin’s success comes from two observations. First, in order for bad joins to occur

between any pair of individuals i and j, the similarity between i and j would need to be

larger than the similarity between i and each of i’s real half-siblings, and likewise for j.

Secondly, as clusters grow, the odds that two unrelated clusters form a compatible half-

sibship rapidly diminishes, even if there are surprisingly similar members of these clusters.

Joining must only occur if two clusters form a valid half-sibship. At the initialization of

the algorithm, each individual is assigned a feasible parent set with size at most O(k) per

locus. Each join results in a parent set which is the intersection of the parent set from the

two joined clusters. If the intersection produces the null set, then there is no parent which

can explain the new cluster and the join is rejected. Therefore, testing whether or not a

join is valid takes O(km) time. When a site experiences allelic dropout, SibJoin makes no

assumptions about its parental restrictions; however, sites with genotype (∗, ∗) are never

counted toward allele similarity between individuals.

Unlike crisp clustering methods which mandate that each individual appear in exactly

one cluster, a half-sibling solution contains both a maternal and paternal group for each

individual. We enforce the restriction that any set of individuals sharing both a maternal

and paternal cluster must be compatible full-siblings under the 4-allele and 2-allele prop-

42

erties by maintaining a clustering of full-siblings. Because incompatible full-sibling groups

are less likely than incompatible half-sibling groups of the same size, at each similarity

step SibJoin joins clusters which form valid full-sibships first. The complete algorithm for

deciding the order of joins is given in Algorithm 2 where simHash is a hash H(key, value)

such that simHash(k) is a list of pairs of individuals with allele similarity k and λ and Λ

are the sets of half-sibling and full-sibling clusters respectively.

Microsatellites give no information about which alleles are maternal and which are

paternal. Since SibJoin constructs families in an iterative manner, part of a maternal

family could be reconstructed on the maternal side, while the other part is constructed

on the paternal side. If we are too strict about which sets we call maternal and paternal,

then the two halves will never be joined and the half on the paternal side will likely force

Algorithm 2 SibJoin join selection

1: function Select Joins(simHash, λ,Λ)
2: for t = numLoci ∗ 2→ 0 do
3: C ← Sort(simHash(t)) . Largest average half-sib cluster size first
4: for (ix, iy) ∈ C do
5: if Λ(ix),Λ(iy) are compatible full-sibs then
6: C ← C/(ix, iy)
7: Join(Λ(ix),Λ(iy))
8: . Each full-sib join requires two half-sib joins
9: Join(λ(ix), λ(iy)) . Join largest compatible HS families
10: Join(λ(ix), λ(iy)) . And the remaining cluster for each family
11: end if
12: end for
13: for (ix, iy) ∈ C do
14: if λ(ix), λ(iy) are compatible half-sibs then
15: Join(λ(ix), λ(iy)) . Join largest compatible HS families
16: end if
17: end for
18: end for
19: end function

43

incorrect future joins. The solution is to implement an instance of the bipartite graph

G = (V,E) discussed in Section 4.3, where each cluster is a vertex and edges exist between

clusters which share an individual. Let a join between clusters Ci and Cj be an event

which combines Cj into Ci and let E(v) be the set of edges that touch v. In our graph,

join(Ci, Cj) results in E(vi) := E(vi)
⋃
E(vj) followed by the removal of vj and all edges

in E(vj). Enforcing bipartiteness as a postcondition of the join operation allows flexibility

while ensuring that the solution results in each individual having one parent of each sex.

5.2.2 Allowing Candidate Parents

Identifying candidate parents can drastically increase the correctness of sibship recon-

structions. SibJoin allows for the inclusion of candidate parents for either or both sexes.

If candidate parents are given, a first round of clustering will attempt to join individuals

using parent sets which contain only candidate parents. Once no more joins can be made

with the restricted parent set, SibJoin will then continue to join clusters as described in the

general case. The second round of joins ensures that unobserved parents will not prevent

the algorithm from correctly reconstructing half-sibling families.

5.3 Experimental Results

5.3.1 Simulated Data Set Results

Simulation sets were constructed to test various parameters. Our model generates individ-

uals from an equal number of mothers and fathers. For each mating, parents are chosen

randomly, and children are generated from mother-father pairs according to an even allele

44

distribution. Simulated data had default parameter values of 6 alleles per locus, 6 loci,

half-sibling family sizes of 5 individuals, and a population size of 40 individuals. The re-

sults are an average of ten trials per parameter value. Trials which failed to complete in 1

day are reported as ’-’. The population size was increased to 80 individuals for family size

trials so that the partitionings did not become trivial. The locus count was increased to

10 and family size to 20 when testing population sizes above 200 individuals. A summary

of our parameter tests and their results may be found in Table 5.2. Testing occurred on

a 2.66 GHz machine, containing 8 GB of RAM, and running Python 2.7.

In most cases, the reported VI score approximates the ratio of the partition distance

to population size. Overall, COLONY 2 was more accurate, but took thousands of times

longer, often with only small gains in accuracy. SibJoin does much worse than COLONY

2 on the 10 allele per site test set, but the discrepancy is due to a single trial for which

SibJoin produces a solution with a VI of 0.084 while COLONY 2 produces a perfect recon-

struction. For the 10 locus test set, SibJoin’s VI is again higher, but in practice the false

positive difference between it and COLONY 2 is about one individual per trial.

SibJoin does worst when the population size is large and the family size is small. For

instance, when tested with a 100-individual population and families of 5 individuals, Sib-

Join rendered a VI of 0.201 compared to COLONY 2’s VI of 0.086. When family sizes are

small and population sizes are large, it is much more likely for two unrelated individuals to

be mistakenly labeled as half-siblings. However, SibJoin’s accuracy rapidly improves with

modest increases in family size. In fact, SibJoin is more accurate than COLONY 2 in trials

with families containing 20 individuals. Unsurprisingly, both methods poorly reconstruct

populations where only two alleles are present. With only two alleles, all individuals can

be full or half-siblings.

We may also use SibJoin to explore populations with extreme numbers of individuals.

45

Variable Parameter SibJoin COLONY 2
parameter settings Runtime VI (normalized) Runtime VI (normalized)

k: number of alleles

2 2.8 ms 0.396 48.9 min 0.553
5 13.2 ms 0.222 19.7 min 0.110
10 6.7 ms 0.014 12.8 min 0.004
15 5.1 ms 0.014 10.2 min 0.006
20 5.7 ms 0.003 10.0 min 0.000

m: number of loci

2 8.7 ms 0.469 10.7 min 0.524
5 10.1 ms 0.156 17.2 min 0.130
10 11.1 ms 0.035 14.2 min 0.001
15 12.7 ms 0.002 20.4 min 0.000
20 12.1 ms 0.000 21.3 min 0.000

n: population size

10 0.4 ms 0.042 2.29 min 0.343
50 16.8 ms 0.104 17.1 min 0.078
100 82.5 ms 0.201 73.5 min 0.086
200 3.31 sec 0.230 - -
500 34.68 sec 0.013 - -
1000 2.84 min 0.015 - -
2000 12.43 min 0.018 - -

f : family size

1 51.9 ms 0.546 - -
5 51.1 ms 0.183 29.6 min 0.051
10 46.2 ms 0.040 19.6 min 0.017
20 58.4 ms 0.009 21.7 min 0.042

Table 5.2: Simulated test results for SibJoin and COLONY 2 averaged over 10 trials. Trials
which did not complete in 24 hours are marked ’-’.

SibJoin was able to reconstruct sibgroup assignments for populations of 500, 1000, and

2000 individuals in under 10 minutes, yet problems of this magnitude are intractable for

the HS-MSC and both of the COLONY programs. Furthermore, despite being thousands

to tens of thousands of times faster than COLONY 2, SibJoin still rivals the maximum

likelihood algorithm in overall accuracy.

46

Data Set Algorithm Runtime VI (normalized) False Positives

112 crickets
COLONY 2 35.7 min 0.000 0

HS-MSC - n/a (see caption) 2
SibJoin 19.3 ms 0.014 1

288 kelp rockfish
COLONY 2 624.5 min 0.000 0

HS-MSC - n/a (see caption) 0
SibJoin 87.5 ms 0.000 0

672 kelp rockfish
COLONY 2 - - -

HS-MSC - - -
SibJoin 5.02 sec 0.108 78

Table 5.3: Tests for biological data. A ’-’ indicates that an algorithm did not complete after
24 hours. SibJoin was the only algorithm able to construct a solution for a 672 individual
population of rockfish. The variation of information is not computed for the HS-MSC since
it allows instances of the same individual, which causes ill-defined VI scores.

5.3.2 Biological Data Set Results

SibJoin was tested on two biological data sets. The first data set is a population of 112

field crickets with 7 mothers and 6 sampled loci [7]. The second data set is a population

of 672 kelp rockfish with 7 mothers and 7 sampled loci [31]. Neither COLONY 2 nor the

HS-MSC produced a solution for the 672 rockfish population, so samples from three of the

parents were taken to reduce the population size to 288 individuals. In both populations,

only maternal parentage was available. For all trials, SibJoin was run in a configuration

that only attempts to reconstruct the maternal sex.

Our results are compared to the HS-MSC results in [29] and to our own benchmarks

on COLONY 2. Because the HS-MSC is not yet publicly available, we could not assess

runtime information for the program. However, the authors do note that the HS-MSC IP

finished in under one day. The difference between the two runtimes is not explained merely

by CPU speed increases across a small number of years. Additionally, neither COLONY 2

nor the HS-MSC’s half-sibling minimum set cover approach constructed a feasible answer

47

for the 672 rockfish data set: COLONY 2 was stopped after running for three days. SibJoin

constructs an accurate solution in under 10 seconds.

The HS-MSC ILP does not enforce that individuals must have one parent of each sex

and both partition distance and variation of information are ill-defined when the result

is not a true partitioning. In the population of 112 crickets, the HS-MSC had two false

positives and was otherwise correct. In the test set containing 288 rockfish, HS-MSC

had 4 false positives and was otherwise correct. COLONY 2 was correct in all instances.

SibJoin correctly reconstructed the half-sibship for the 288 rockfish and only misplaced

one individual in the cricket test. SibJoin was the only algorithm to complete for the

population of 672 rockfish. Overall, SibJoin is as accurate as the HS-MSC and nearly as

accurate as COLONY 2, but is much faster than either: SibJoin solves the small rockfish

instance over 42,000 times faster than COLONY 2.

5.3.3 Integer Programming Performance

The integer program proposed in Section 5.1 keeps track of all alleles in each family at

each locus and for every individual. As a result, the IP can have as many as O(kmn2)

constraints, which causes the IP to fail for all but the smallest instances. Table 5.4

compares the accuracy of the IP to the SibJoin algorithm for varying population sizes.

Each population size, from 10 to 30 individuals, was tested over ten trials and the averages

are reported in Table 5.4. The IP failed to produce partitionings which minimized the

number of clusters for 2 trials when the population size was 20 individuals, it failed 6 times

when the population contained 25 individuals, and it failed to reconstruct families for any

population with 30 individuals. Additionally, the IP only marginally out performed Sib-

Join in accuracy for the 25 individual population test. In each other instance, SibJoin was

48

n V ISJ V IIP IP Runtime (seconds) IP Failed Reconstructions
10 0.000 0.039 0.546 0
15 0.046 0.119 106.065 0
20 0.078 0.080 2905.782 2
25 0.089 0.087 12324.613 6

Table 5.4: Performance of half-sibling IP, measured by V IIP versus SibJoin, V ISJ for
varying population sizes. Ten trials were conducted for each population size and the
averaged score is reported.

more accurate. Unsurprisingly, the running time of the IP appears to grow exponentially

with population size. For 25 individuals, the IP took an average of 3 hours and 25 minutes

to solve in the instances where an optimal solution was found. SibJoin took less than a

second for each trial. These results indicate that SibJoin is a better alternative to the IP

in almost all instances. Since the IP we gave is an expanded version of the HS-MSC algo-

rithm, the results indicate that SibJoin should also produce more accurate reconstructions

than the HS-MSC formulation.

Even when the IP manages to finish, there is no guarantee that the minimum set

covers are correct. In Chapter 3, we argued that part of what made the half-sibling re-

construction problem so difficult, was identifying incorrectly placed individuals. Although

the IP presented in this chapter achieves reasonable results for small families, both it and

the HS-MSC formulation suffer from multiple optimal solutions where parentage for a few

individuals is incorrectly assigned with no impact to the objective. At the same time,

we have shown that a simple and fast heuristic performs more accurately and thousands

of times faster than either of the IPs and rivals the accuracy of full likelihood methods

such as COLONY 2. We demonstrated that the heuristic’s speed allows us to reconstruct

family relationships for populations that are too large for existing methods. Additionally,

since the heuristic joins the most similar individuals and families first, it is more accurate

49

than existing methods when the allele pool or locus count is very small. Lastly, SibJoin

is deterministic and does not suffer from multiple optimal solutions like both of the set

cover IP’s. These traits make SibJoin an important alternative to existing algorithms when

sample populations are large or computing power is limited.

50

Chapter 6

Forced Allele Incompatibilities

6.1 Complexity of the Valid Half-Sibling Partitioning

decision problem

In half-sibling problems, a complication arises from the requirement that each half-sibling

must be contained in a maternal and paternal partitioning. To respect Mendelian genetics,

half-sibling partitionings must be created so that each child receives exactly one allele

from each parent at each locus. However, choosing the alleles that were inherited from

each parent for each individual in a polygamous population is a non-trivial task and gives

rise to a new decision problem. A forced allele for one individual influences the choice of

opposite sex parent. In the worst case, choosing a parent can influence the choice of parent

for every other maternal and paternal family in the population due to the fact that each

parent could have mated with multiple other individuals.

The sub-population in Table 6.1 demonstrates how forced allele choices for mothers M0

and M1 can make their common mate P0 incompatible with his candidate offspring. In

51

this example, the three half-sibships can be explained by {M0 = (0, 2), P0 = (0, ∗),M1 =

(0, 1)}. However, notice that M0 forces offspring (0, 1) to inherit allele 0 and M1 forces

offspring (0, 3) to inherit allele 0. As a result, (0, 1) must inherit allele 1 from P0 and (0, 3)

must inherit allele 3 from P0. At the same time, P0 must also pass allele 0 to offspring

(0, 0). Therefore, there is an incompatibility. Even though each half-sibling family is

valid when viewed independently, the choice of alleles for two different mates leads to an

incompatibility for P0. Although this is a small example, highly polygamous populations

can have even further-reaching effects. Suppose that a candidate solution has mother M0

mate with P0 who also mates with M1. Now suppose that M1 also mates with P1 who

additionally mates with M2. M0 directly influences which alleles must be inherited from

P0 in our model. P0 also influences which alleles our model can choose for M1. Therefore,

the mating relationship is transitive: in our example, M0 now influences which alleles the

model chooses for parent M1. These forced allele choices are propogated so that eventually

M0 influences the model’s allele choices for M2. In highly polygamous populations, it is

likely that the allele choice for each parent will be influenced by many other parents in the

proposed population structure, which can make it difficult to decide allele assignments for

each parent. In fact, we will shortly show that deciding whether a valid allele assignment

exists for each parent in a proposed population structure, and thus if a population obeys

the laws of Mendelian inheritance, is an NP -complete problem.

Given maternal and paternal half sibling partitionings, with each individual belonging

to exactly one maternal and one paternal partition, is it possible to assign genotypes to the

parents of each half-sibling family in a way that respects the property that every individual

must inherit one of exactly two alleles from each parent? We will call this problem HALF-

SIB PARENT COVER.

Theorem 4. HALF-SIB PARENT COVER is NP-complete.

52

M0 : (0, 2) P0 : (?, ?) M1 : (0, 1)
(0,1) (0,1) (0,3)
(0,0) (0,0) (0,4)
(2,2) (0,3) (1,1)

Figure 6.1: A sub-population which illustrates how the candidate offspring of M0 and
M1 can force an incompatible half-sibling reconstruction through their matings with P0.
Forced alleles are bolded. Notice that the forced alleles for offspring of M0 and offspring of
M1 force a situation where P0 must have 3 alleles in order to satisfy Mendelian inheritance
for his offspring.

literals family possible shared parent
xi (yj, yk)0 (yj, yk)

(yj, yk)1
xj (yi, yk)0 (yi, yk)

(yi, yk)1
xk (yi, yj)0 (yi, yj)

(yi, yj)1

Figure 6.2: Demonstration of the selection gadget transformation for the pth clause
(xi, xj, xk). Subscripts are used to differentiate individuals with the same alleles

Proof. We first show that HALF-SIB PARENT COVER ∈ NP. Given an instance of the

problem and a certificate which assigns a genotype to the parent of each half sibling family,

we can verify in polynomial time that the solution is valid by determining which allele each

parent contributes for every individual and checking that there are no instances where the

same allele of a heterozygotic individual is assigned by both the mother and the father.

If a parent does not force an allele, e.g. the parent is (a, b) and the child is also (a, b),

then the decision of which allele to cover is deferred to the parent of opposite sex. If

both assignments are ambiguous, then the choice of which allele is maternal and which is

paternal is arbitrary. If a child contains a locus which is homozygotic, then each parent

must force the same allele.

Next, we give a polynomial-time reduction from the NP -complete MONOTONE ONE-

53

yi fam. yi fam. yj fam. yj fam. yk fam. yk fam.
(yi, yj)0 (yi, yk)0 (yi, yj)1 (yj, yk)0 (yi, yk)1 (yj, yk)1
(sp, yi)0 (sp, yi)1 (sp, yj)0 (sp, yj)1 (sp, yk)0 (sp, yk)1
(sp, z)0 (sp, z)1 (sp, z)2 (sp, z)3 (sp, z)4 (sp, z)5
(yj, z)0 (yk, z)0 (yi, z)0 (yk, z)1 (yi, z)1 (yj, z)1

Figure 6.3: Demonstration of the mapping gadget which maps a parent choice in each of
the first gadget’s maternal families to an allele. Allele yi is forced if and only if xi is true
in the MONOTONE ONE-IN-THREE-SAT solution.

cp/cq cp/cr cq/cr
(sp, yi) (sp, yi) (sq, yi)
(sp, yi) (sp, yi) (sq, yi)
(sq, yi) (sr, yi) (sr, yi)
(sq, yi) (sr, yi) (sr, yi)
(sp, z) (sp, z) (sq, z)
(sq, z) (sq, z) (sr, z)

Figure 6.4: Construction of the enforcement gadget for literal xi appearing in clauses cp,
cq, and cr

IN-THREE SAT problem to HALF-SIB PARENT COVER. The ONE-IN-THREE SAT

problem is, given a set of boolean clauses, each containing three literals, determine whether

a configuration of literals exists such that exactly one literal in each clause is set true. The

MONOTONE ONE-IN-THREE SAT problem is the ONE-IN-THREE SAT problem with

the constraint that no literals may be negated. This is also called EXACT-COVER-

BY-3-SETS (X3C), which was used in the first proof of the NP-hardness of parsimony

phylogeny [13]. The reduction requires three gadgets that translate literals and clauses

in MONOTONE ONE-IN-THREE-SAT into alleles and families in HALF-SIB PARENT

COVER respectively.

The first gadget translates picking a literal in a clause to picking a parent for a family.

The second gadget defines paternal families that map the choice of parent to alleles which

54

correspond to literal choices. From the MONOTONE ONE-IN-THREE SAT perspective,

the third gadget enforces the rule that if a literal is chosen to be set true in one clause, it

must be chosen to be true in all of the clauses it belongs to. Define a one-to-one function

f : x→ y which assigns each SAT literal to a unique integer allele value.

1. The selection gadget provides a mechanism which is analagous to choosing the true

literal in each clause of the SAT instance. First, we create a maternal family from the

mapping of literals to alleles for each clause individually. Each family is constructed

so that there are exactly three valid parents for a family of 6 individuals. For a

clause with literals (xi ∨ xj ∨ xk), the corresponding yi, yj, and yk will be the alleles

present in the created family. Three children are created by taking each pairwise

grouping of the y values. A copy of each child is made so that there are a total

of 6 children per selection gadget family. There are three possible mothers for each

selection gadget family. Figure 6.2 demonstrates this portion of the gadget for clause

(xi, xj, xk). Each mother possesses two of the three alleles in the family. Choosing

mother (yj, yk) corresponds to setting literals xj and xk to false and setting literal xi

to true in the MONOTONE ONE-IN-THREE SAT formulation. By definition, only

one parent may be chosen for each of these families which satisfies the one-in-three

SAT requirement of the MONOTONE ONE-IN-THREE SAT problem.

2. The mapping gadget creates two paternal families for each potential mother, pro-

ducing a total of six paternal families per maternal family created by the selection

gadget. The paternal families map the choice of mother onto a single allele with the

property that allele yi is forced in the paternal families if and only if parent (yj, yk)

was chosen as the mother. A father with genotype (yi, z) sets xi literal to true in the

MONOTONE ONE-IN-THREE SAT instance.

55

Let the number of clauses equal m. In order to construct these families, we introduce

alleles s0 . . . sm−1, one for each clause, and another distinct allele z. The z allele is

only used to ensure that the correct relationships are enforced. The s alleles are used

in the third gadget to enforce consistent state assignments across all clauses for each

literal. Figure 6.3 illustrates how to construct the paternal families. Either the sp

allele or the y allele is inherited from the father in each paternal family, but it is

impossible for the father to have both sp and the y alleles as alleles. Multiple copies

of the (sp, yi) child may be needed for the enforcement gadget. Let ki be the number

of clauses that contain xi. Each paternal family corresponding to yi must have ki−1

such children.

3. Lastly, we construct a gadget that forces the property that if an allele is picked in

one selection gadget family, it must be picked in every selection gadget family that

contains the allele. Analogously, a true literal must be true in every clause and a false

literal must be false in every clause. The enforcement gadget forces this requirement

by constructing a constraining family for each pair of clauses in which a literal occurs.

If a literal xi appears in clauses cp and cq, then a family will be constructed so that

either yi is forced or sp and sq are forced. The gadget makes use of the (sp, yi) and

(sq, yi) individuals created by the mapping gadget. Figure 6.4 demonstrates how

these families are constructed.

Each enforcement gadget family for yi has two copies of (sp, yi) which are the two

children from the mapping gadgets containing (yi, yj) and (yi, yk). The redundant

(s, y) children prevent one mapping gadget from lying about its assigned allele. If a

child has the same genotype as its parent, then which allele was received from that

parent is ambiguous. For example, consider allele yi with parent (yi, yj) chosen. All

paternal mapping gadgets which contain child (yi, yj) will possess an ambiguity as

56

to whether yi or yj comes from the mother. As a result, we could pick yi to be

true in the corresponding mapping gadget family, even though it ought to be false.

However, even if (yi, yj) is ambiguous, (yi, yk) is not and, due to the redundance of

(s, yi) children in the enforcement gadget, the (yi, yj) mapping gadget would not be

able to lie without creating an infeasible instance of the problem. Having one (s, y)

child from each mapping gadget family solves this ambiguity, because it is possible

for one mapping gadget to falsely report the forced allele, but never both. If a literal

is in a single clause, then it will not have an enforcement gadget family and the

selection gadget family corresponding to the clause will contain an individual where

it is impossible to determine which allele was inherited from the mother and the

father. However, the ambiguity does not affect the feasibility of the solution: either

allele may be chosen in the selection gadget without consequence since the allele

choice is not propagated to other families and does not influence the choice of alleles

for any other individuals in the family.

If sp is forced, then sq must also be forced to avoid an incompatibility. As a result, yi

is forced in both paternal mapping gadget families. However, if yi is forced, then sp

and sq are forced to be true in the paternal mapping gadget families. Therefore, if yi

is selected in one family, it must be selected in all families that contain it. Conversely,

If yi is not selected in a family, then it is not selected in any family that contains it.

In the MONOTONE ONE-IN-THREE SAT problem, a literal from each clause must be

set to true. The selection gadget translates the task of choosing an allele to picking the

parents of maternal families. Each selection gadget family contains three distinct alleles

{yi, yj, yk). Choosing maternal parent (yi, yj) is equivalent to setting xk true and the xi

and xj literals to false. Since each literal may appear more than once in a MONOTONE

ONE-IN-THREE SAT instance, the equivalent relationship is that any selected maternal

57

genotype in the selection gadget must be selected in each maternal family for which the

genotype is a candidate parent. The enforecement gadget ensures that the proper ma-

ternal parent selections occur. However, the enforcement gadget cannot directly enforce

the requirement on the maternal families due to restrictions from Mendelian inheritance.

Therefore, the mapping gadget uses mating transitivity to act as a bridge between the

selection gadget and the enforcement gadget by introducing new alleles and individuals

that allow the enforcement gadget to influence which parents are selected in the selection

gadget. Finally, let n be the number of literals and m be the number of clauses. Con-

structing the HALF-SIB PARENT COVER instance requires O(m) children for the first

gadget, O(m2 · n) additional children for the second gadget, and O(1) additional children

for the third gadget, so the resulting transformation is polynomial in size.

The reduction builds an instance of HSPC with one locus for each individual. The

decision instance of this problem is not substantially more difficult for children with mul-

tiple loci due to the independence assumptions about individual loci. Determining if a

population with multiple loci fulfills the rule of one allele from each parent at each locus

requires solving an instance of HALF-SIB PARENT COVER at each locus independently.

If there are l loci, then this adds a factor O(l) to the problem.

Figure 6.5 demonstrates a reduction from a MONOTONE ONE-IN-THREE SAT in-

stance with two clauses to the HALF-SIB PARENT COVER problem. There are several

feasible solutions to the M-1-3-SAT instance, but the example illustrates the case where

literals x2 and x4 are set true in the M-1-3-SAT instance. The inherited allele for each

individual in each family is bolded to represent the corresponding HSPC solution where

mothers (1, 3) and (1, 5) are chosen in the selection gadget.

58

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5)
(a) An M-1-3-SAT instance with two
clauses C0 and C1

M0 M1

(1, 2)0 (1, 4)0
(1, 2)1 (1, 4)1
(1, 3)0 (1, 5)0
(1, 3)1 (1, 5)1
(2,3)0 (4,5)0
(2,3)1 (4,5)1

(b) Maternal selection
gadget families

M3

(s0,1)0
(s0,1)1
(s1,1)0
(s1,1)1
(s0, z)6
(s1, z)6

(c) Maternal enforcement
gadget family for x1

P0 P1 P2 P3 P4 P5

(1,2)0 (1,3)0 (2, 3)0 (1,2)1 (1, 3)1 (2, 3)1
(s0, 1)0 (s0, 1)1 (s0,2)0 (s0,2)1 (s0, 3)0 (s0, 3)1
(s0, z)0 (s0, z)1 (s0, z)2 (s0, z)3 (s0, z)4 (s0, z)5
(2, z)0 (3, z)0 (3, z)1 (1, z)0 (1, z)1 (2, z)1

P6 P7 P8 P9 P10 P11

(1,4)0 (1,5)0 (4, 5)0 (1,4)1 (1, 5)1 (4, 5)1
(s1, 1)0 (s1, 1)1 (s1,4)0 (s1,4)1 (s1, 5)1 (s1, 5)1
(s1, z)0 (s1, z)1 (s1, z)2 (s1, z)3 (s1, z)4 (s1, z)5
(4, z)0 (5, z)0 (5, z)1 (1, z)2 (1, z)3 (4, z)1

(d) Paternal mapping gadget families

P12 M4 M5 M6 M7 M8 M9 M10

(s0, z)6 (s0, z)0 (s1, z)0 (1, z)0 (2, z)0 (3, z)0 (4, z)0 (5, z)0
(s1, z)6 (s0, z)1 (s1, z)1 (1, z)1 (2, z)1 (3, z)1 (4, z)1 (5, z)1

(s0, z)2 (s1, z)2 (1, z)2
(s0, z)3 (s1, z)3 (1, z)3
(s0, z)4 (s1, z)4
(s0, z)5 (s1, z)5

(e) Extra families for completeness

Figure 6.5: Changing a two clause M-1-3-SAT instance to an HSPC instance

59

6.2 Correcting Allele Incompatibilities

Unfortunately, the NP -completeness of the decision version of the HSPC problem makes

it very unlikely that a polynomial time algorithm exists for identifying incompatibilities.

As a result, it is impractical to verify that joining two clusters results in partitionings

with valid parent assignments. However, it is still desirable to correct these errors in

order to obtain a more accurate sibship reconstruction. In this section, we will discuss a

simplification of the HALF-SIB PARENT COVER which increases the average accuracy

of SibJoin and may be solved in polynomial time. We also present a 0-1 integer program

for solving an optimization version of the problem that asks for the minimum number of

individuals which need to be removed from the population in order to eliminate forced

allele incompatibilities.

6.2.1 Shallow Incompatibility Detection

One way of reducing the complexity HALF-SIB PARENT COVER problem is to limit the

scope of the search for incompatibility. Instead of investigating transitive relationships of

parents, which is required in HSPC instances, and which likely requires super-polynomial

time, we may instead ask for individuals which have an incompatible set of candidate

parents. Specifically, if all the maternal and paternal candidate parents force the same

allele at a heterozygotic locus of an individual, then that individual is incompatible with

one or both of its assigned families; since both alleles need to arise somehow. Because

we are not concerned with the restrictions from forced alleles of other individuals, this

subproblem may be completed in O(l ·m2 · n) time.

This type of shallow detection was incorporated into our fast heuristic, SibJoin. It

decreased the average error for each test. In our experiments, we found that encorporating

60

this shallow detection into the initial joining phase tends to magnify the impact of misplaced

individuals by preventing otherwise correct joins. Therefore, it is preferable to let SibJoin

run to completion and fix forced allele errors by removing incompatible individuals from

the population and re-running the algorithm starting from the remaining partitionings.

6.2.2 Complete Forced Allele Incompatibility Detection

Although a shallow search for forced allele incompatibilities improves results, it does not

completely resolve all forced allele incompatibilities: again, the problem is NP -Hard. This

is due to the chaining nature of individuals in half-sibling families. Under the assumption

that maternal and paternal partitionings are mostly correct, which is the case for SibJoin,

a natural question is to ask the minimum number of individuals which must be removed in

order to resolve the forced allele incompatibility, and leave an instance where valid parents

may be assigned to every cluster.

Figure 6.6 gives a 0/1 integer program which minimizes the set of individuals which

must be removed in order to resolve forced allele incompatibility in the population. For

a population with n individuals, each possessing m measured loci, let xi = 1 denote the

decision to remove individual i from the population. The variable ylj,k represents the kth

allele at the lth locus of family j. Denote the multi-set which contains the maternal and

paternal families as C. π0 and π1 are functions which map an individual to its maternal and

paternal index in C respectively. λ0 and λ1 map the first and second allele of an individual

to an index in K, the set of all alleles.

The first constraint enforces that no parent can have more than two alleles. The second

and third constraints enforce Mendelian mating requirements on individuals: an individual

is invalid if it does not receive one allele from its mother and its other allele from its father.

61

minimize
∑
i

xi

subject to

2−
∑
k∈K

ylj,k ≥ 0, 0 ≤ j < |C|, 0 ≤ l < m

xli +
1

2
(ylπ0(i),λ0(i) + ylπ1(i),λ1(i)) ≥ 1, 0 ≤ i < n, 0 ≤ l < m

xli +
1

2
(ylπ0(i),λ1(i) + ylπ1(i),λ0(i)) ≥ 1, 0 ≤ i < n, 0 ≤ l < m

xi − xli ≥ 0, 0 ≤ i < n, 0 ≤ l < m

Figure 6.6: 0/1 integer program to find minimum number of individuals which, when
removed, creates a valid instance of the HALF-SIB PARENT COVER.

There are two possible ways to satisfy this constraint. Either the child received its first

listed allele from its mother and the second allele from its father or vice versa. The two

constraints are the logical or of these two possibilities. Finally, the last constraint enforces

the requirement that xi must be 1, corresponding to individual i being selected for removal,

if the individual has any incompatible loci. The minimization objective forces xi and xli to

be 0 as often as possible. Since there can never be more families than individuals, |C| < n,

the integer program has a total of O(m · n) constraints.

6.3 Experimental Results

Using the IP outlined in Figure 6.6, it is possible to identify the minimum set of individuals

which must be removed in order to make a solution from SibJoin feasible. The IP acts on

the assumption that a relatively small set of incorrectly placed individuals causes bad joins,

so finding the minimum individuals to remove should capture many incorrect individuals.

62

Fixed parameter Parameter Norm. VI FP Recall Precision Timeout rate

k: number of alleles

2 0.396 25.9 0.000 0.000 0.0
5 0.225 12.3 0.300 0.694 0.0
10 0.013 0.2 0.000 0.000 0.0
15 0.014 0.0 - - 0.0
20 0.003 0.0 - - 0.0

m: number of loci

2 0.491 23.7 0.109 0.563 0.0
5 0.150 6.6 0.355 0.537 0.0
10 0.032 1.2 0.62 0.650 0.0
15 0.002 0.0 - - 0.0
20 0.000 0.0 - - 0.0

n: population size
10 0.042 0.5 0.2 1 0.0
50 0.098 10.2 0.340 0.679 0.0
100 0.201 41.0 0.400 0.765 0.1
200 0.220 88.9 0.408 0.780 1.0

f : family size

1 0.527 58.5 0.317 0.778 0.7
5 0.181 22.8 0.439 0.756 0.0
10 0.038 3.6 0.313 0.477 0.0
20 0.009 1.4 0.000 0.000 0.0

Table 6.1: SibJoin trials with forbidden allele detection. A ’-’ occurs when there are no
false positives

Although the IP generally solves quickly, it struggles to find a global optimum for pop-

ulations of hundreds of individuals. In these cases the IP gets very close, often within three

percent, to integrality, but never reaches an optimal integer solution since the IP runs out

of memory. To hedge against this, we enforce a 5 minute time limit on the IP. We report

the percent of trials that failed to reach integrality in Table 6.1. An approximate solution

is acceptable as long as there is a reliable way to correctly re-add identified individuals into

the population.

One possibility for reducing error is to detect and disallow shallow allele incom-

patibilities during clustering. Strict enforcement was tested with the SibJoin algorithm.

Unfortunately, enforcing this requirement during the original joining phase raises the error

63

rate substantially: early incorrect joins have a much larger impact on future incompatibil-

ities due to the new rule.

Instead, we report the effects of adding an extra step to the SibJoin algorith that, af-

ter the original algorithm completes, identifies individuals to remove with the IP given in

Figure 6.6. These individuals are removed from existing families and placed in their own

individual clusters. SibJoin is then allowed to run again with the added post-condition

that a join will never create a shallow incompatibility.

Table 6.1 reports the recall and precision of the IP: the percentage of all incorrect in-

dividuals that are identified by the IP and the percentage of individuals that are actually

incorrect among the individuals identified by the IP. We find that the integer program

can have a poor recall, finding only 30% of the false positives in some situations; however,

the precision is relatively high. For individuals in the minimum removal set, the number

of incorrectly placed individuals is consistently above 50%. The precision is significant

since SibJoin’s total error rate is often far below 50%: randomly choosing a subpopulation

where more than 50% of the individuals are misplaced is unlikely. Although the IP does

not identify all false positive individuals, the individuals are often false positives. If there

is a way to correctly reintroduce the set of individuals identified by the IP, then the error

rate will decrease significantly.

Unfortunately, an algorithm which correctly re-adds the false positives has proved elu-

sive. Several methods were tried and often lead to slightly worse scoring candidate recon-

structions. The best method, which re-added individuals as their own clusters and forced

shallow allow compatibility, only decreased the total error by four percent in some tests

and marginally increased it in others.

The IP does worst when there are only two alleles or two loci. This is unsurprising

since there will be no incompatibilities when each locus contains less than three alleles and

64

low loci counts mean that there is a smaller risk of forbidden forbidden allele structures

with bad joins. However, both recall and precision tend to increase with population size

as demonstrated by the 100 and 200 population size test cases. For populations with 200

individuals, the IP did not reach integrality within 5 minutes, but still produced high recall

and precision relative to the other tests, which indicates that the IP is still useful for large

populations and that approximation algorithms may do a decent job at identifying false

positives.

65

Chapter 7

Conclusion

7.1 Reconstructing Half-Sibships

Many of the difficulties that arise during half-sibship reconstruction occur because each

individual must be assigned to a cluster in each of two different partitionings. We have

discussed methods for reconstructing these families so as to preserve Mendelian inheritence

laws throughout reconstruction. We have also compared the triplet similarity measure used

in some full sibling reconstruction algorithms to a simpler allele-based similarity measure

and demonstrated that for half-siblings, the allele similarity measure more accurately iden-

tifies related individuals. Additionally, the pairwise similarity matrix of a population can

be computed an order of magnitude faster with allele similarity than with triplet similar-

ity. The speedup is significant since populations can have hundreds of individuals with

identified loci in the double digits.

We have also demonstrated an application of allele similarity with our fast SibJoin

heuristic. SibJoin is a bottom-up algorithm based on single linkage clustering. Our ex-

66

periments show that despite being a heuristic, the algorithm competes in accuracy with

existing likelihood-based algorithms, but is thousands of times faster in practice. The speed

of our algorithm is important since existing algorithms fail to reconstruct half-sibling fam-

ilies when the population size is above a few hundred individuals. SibJoin can reconstruct

these populations in seconds. We have demonstrated that SibJoin is able to reconstruct

real biological populations that existing algorithms fail to reconstruct, and it does so with

high accuracy.

7.2 Determining Reconstruction Validity

Being able to assess the validity of half-sibling reconstruction is important for both deter-

mining how well an algorithm reconstructs known partitionings as well as for recognizing

when an algorithm makes mistakes in the absence of the true population structure. To solve

the first problem, we have employed information theoretic techniques for measuring the

quality of an algorithm’s reconstruction. Existing methods such as maximum matching,

only offer a very basic understanding of how well an algorithm reconstructs a population.

Instead, we have modified an information theoretic metric, called variation of information,

so that it may be used with half-sibling partitionings.

It is also important to determine whether or not a proposed population structure is

valid under Mendelian inheritance assumptions. For half-siblings, we have proved that

even determining if such a structure obeys Mendelian laws is NP -complete. This realiza-

tion has important implications for half-sibling algorithms in general since most existing

algorithms do not specifically enforce which allele is inherited from the mother and which

is inherited from the father. We have also provided an integer program that solves an op-

timization variant of the problem: what is the minimum number of individuals that must

67

be removed from a population in order for the population structure to be valid. The IP

was run against SibJoin’s population reconstructions. Although the IP only had a recall of

30 to 40 percent when run against SibJoin’s population reconstructions, the precision was

high: 55 to 78 percent of the individuals identified for removal were actually incorrect.

7.3 Future Work

Although we are often able to identify many of the incorrectly assigned individuals in a

population, we have yet to find a good way of moving the individuals to their correct fam-

ilies. Unidentified misplaced individuals often prevent individuals from being compatible

with their true families. Correctly replacing misplaced individuals depends on being able

to identify other misplaced individuals. Techniques like boostrapping for phylogenies may

provide a good way to both quantify confidence in a given model and increase reconstruc-

tion accuracy.

Another open question is whether or not there exists a polynomial time algorithm

to compute the variation of information between two solutions when neither solutions’

parental sexes are known. Having a good metric for measuring the difference between

half-sibling partitionings is important and may also lead to algorithms that increase recon-

struction accuracy.

Finally, current algorithms focus on reconstructing sibship relationships for a single

generation. However, it would be useful to generalize the full and half-sibling techniques

to reconstruct families for multiple generations of individuals.

68

References

[1] A Almudevar and E Anderson. A New Version of PRT Software for Sibling Groups

Reconstruction with Comments Regarding Several Issues in the Sibling Reconstruction

Problem. Mol. Ecol. Resour., 12(1):164–178, 2011.

[2] A Almudevar and C Field. Estimation of Single-Generation Sibling Relationships

Based on DNA Markers. J. Agric. Biol. Envir. S., 4(2):136–165, 1999.

[3] M Ashley, I Caballero, W Chaovalitwongse, B Dasgupta, P Govindan, S I Sheikh,

and T Y Berger-Wolf. KINALYZER, a computer program for reconstructing sibling

groups. Mol. Ecol. Resour., 9(4):1127–1131, 2009.

[4] T Y Berger-Wolf and B DasGupta. Combinatorial reconstruction of sibling relation-

ships. Proc. of CGBI, pages 3–6, 2005.

[5] T Y Berger-Wolf, S I Sheikh, B DasGupta, M V Ashley, I C Caballero, Wanpracha

Chaovalitwongse, and S Lahari Putrevu. Reconstructing sibling relationships in wild

populations. Bioinform., 23(13):i49–56, July 2007.

[6] M S Blouin, M Parsons, V Lacaille, and S Lotz. Use of microsatellite loci to classify

individuals by relatedness. Mol. Ecol., 5(3):393–401, 1996.

69

[7] A Bretman and T Tregenza. Measuring polyandry in wild populations: a case study

using promiscuous crickets. Mol. Ecol., 14(7):2169–2179, 2005.

[8] D Brown and T Y Berger-Wolf. Discovering Kinship through Small Subsets. Proc.

10th WABI-10, 6293 in LNCS:111–123, 2010.

[9] D Brown and D Dexter. SibJoin: A Fast Heuristic for Half-Sibling Reconstruction.

Proc. 12th WABI-12, 7534 in LNCS:44–56, 2012.

[10] G Caughley. Directions in Conservation Biology. J. of Anim. Ecol., 63(2):215–244,

1994.

[11] W A Chaovalitwongse, C A Chou, T Y Berger-Wolf, B DasGupta, S Sheikh, M V

Ashley, and I C Caballero. New Optimization Model and Algorithm for Sibling Re-

construction from Genetic Markers. INFORMS J. Comp., 22(2):180–194, 2009.

[12] J A Coombs, B H Letcher, and K H Nislow. PedAgree: software to quantify error and

assess accuracy and congruence for genetically reconstructed pedigree relationships.

Conserv. Genet. Resour., 2(1):147–150, 2010.

[13] L Foulds and Graham R. The Steiner Problem in Phylogeny is NP -Complete. Adv.

Appl. Math., 3:43–49, 1982.

[14] D Gusfield. Partition-distance : A problem and class of perfect graphs arising in

clustering. Info. Proc. Lett., 82(3):159–164, 2002.

[15] P Hedrick, R Lacy, F Allendorf, and M Soule. Directions in Conservation Biology:

Comments on Caughley. Conserv. Biol., 10(5):1312–1320, 1996.

70

[16] Y Isagi, T Kanazashi, W Suzuki, H Tanaka, and T Abe. Highly variable pollination

patterns in Magnolia obovata revealed by microsatellite paternity analysis. Int. J.

Plant Sci., 165(6):1047–1053, 2004.

[17] M D Jennions and M Petrie. Why do females mate multiply? A review of the genetic

benefits. Biol. Rev. Camb. Philos. Soc., 75(1):21–64, 2000.

[18] A Jones, C Small, K Paczolt, and N Ratterman. A practical guide to methods of

parentage analysis. Molecular ecology resources, 10(1):6–30, January 2010.

[19] B Jones, G D Grossman, D C I Walsh, B A Porter, J C Avise, and A C Fiumera.

Estimating Differential Reproductive Success From Nests of Related Individuals, With

Application to a Study of the Mottled Sculpin, Cottus bairdi . Genet., 176(4):2427–

2439, 2007.

[20] O R Jones and J Wang. Molecular marker-based pedigrees for animal conservation

biologists. Anim. Cons., 13(1):26–34, January 2010.

[21] Steven T Kalinowski, Aaron P Wagner, and Mark L Taper. Ml-Relate: a Com-

puter Program for Maximum Likelihood Estimation of Relatedness and Relationship.

Molecular Ecology Notes, 6(2):576–579, 2006.

[22] M Kimura and T Ohta. Population Stepwise mutation model and distribution of allelic

frequencies in a finite population. Proc. Natl. Acad. Sci. USA, 75(6):2868–2872, 1978.

[23] D Konovalov, B Litow, and N Bajema. Partition-distance via the assignment problem.

Bioinform., 21(10):2463–2468, May 2005.

[24] Y Lin, V Rajan, and B Moret. A Metric for Phylogenetic Trees Based on Matching.

IEEE/ACM Trans. Comp. Bio and Bioinf., 9(4):1014–1022, December 2011.

71

[25] M Meila. Comparing clusterings by the variation of information. Proceedings of COLT,

2777:173–187, 2003.

[26] B D Neff and M R Gross. Microsatellite evolution in vertebrates: inference from AC

dinucleotide repeats. Evolution Int. J. Org. Evolution, 55(9):1717–1733, 2001.

[27] I Painter. Sibship reconstruction without parental information. J. Agric. Biol. Envir.

S., 2(2):212–229, 1997.

[28] U Sezen, R Chazdon, and K Holsinger. Genetic consequences of tropical second-growth

forest regeneration. Science, 307(5711):891, 2005.

[29] S I Sheikh, T Y Berger-Wolf, A A Khokhar, I C Caballero, M V Ashley, W Chao-

valitwongse, C Chou, and B Dasgupta. Combinatorial reconstruction of half-sibling

groups from microsatellite data. J. of Bioinf. Comput. Biol., 8(2):337–356, 2010.

[30] B R Smith, C M Herbinger, and H R Merry. Accurate partition of individuals into

full-sib families from genetic data without parental information. Genet., 158(3):1329–

1338, 2001.

[31] S M Sogard, E Gilbert-Horvath, E C Anderson, R Fisher, S A Berkeley, and J C

Garza. Multiple paternity in viviparous kelp rockfish, Sebastes atrovirens . Environ.

Biol. Fishes, 81(1):7–13, 2008.

[32] S Wagner and D Wagner. Comparing Clusterings - An Overview. Technical report,

Faculty of Informatics, Universit t Karlsruhe, 2006.

[33] J Wang. Sibship reconstruction from genetic data with typing errors. Genet.,

166(4):1963–1979, 2004.

72

[34] J Wang and A W Santure. Parentage and sibship inference from multilocus genotype

data under polygamy. Genet., 181(4):1579–1594, 2009.

73

	List of Tables
	List of Figures
	Introduction
	Motivation for Half-Sibling Reconstruction
	Biological Background and Notation
	Notation
	Mendelian Compatibility

	Contributions

	Related Work
	Full Siblings
	Likelihood
	Combinatorial Optimization
	Fast Heuristics

	Half-Siblings

	Quantifying Pairwise Similarity
	Triplet Similarity
	Allele Similarity
	Experimental Results

	Metrics for Comparing Sibship Partitionings
	Maximum Matching
	Variation of Information
	Partition Distance for Half-Siblings
	Comparing to a Reference Sibship
	Comparing Two Candidate Sibships

	Half-Sibling Reconstruction Algorithms
	Integer Programming Formulation
	The SibJoin Heuristic
	Joining Families
	Allowing Candidate Parents

	Experimental Results
	Simulated Data Set Results
	Biological Data Set Results
	Integer Programming Performance

	Forced Allele Incompatibilities
	Complexity of the Valid Half-Sibling Partitioning decision problem
	Correcting Allele Incompatibilities
	Shallow Incompatibility Detection
	Complete Forced Allele Incompatibility Detection

	Experimental Results

	Conclusion
	Reconstructing Half-Sibships
	Determining Reconstruction Validity
	Future Work

	References

