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Abstract 

Dissolved organic matter (DOM) is a heterogeneous mixture of organic compounds 
comprised mostly of carbon, oxygen, nitrogen, and hydrogen, but is often operationally 
defined as the concentration of dissolved organic carbon that passes through a 0.45 μm 
filter. Derived from the degradation of both plant and animal organic matter, DOM can act 
as an important redox constituent within groundwater, or form carcinogenic disinfection-
by-products during water treatment. It is important to understand the quality of DOM in 
order to be able to understand how it will react within its environment. A number of 
different techniques are used to characterize DOM (such as resin fractionation, ultraviolet 
and visible light absorption, and fluorescence) but these techniques can be both laborious 
and time consuming, in addition to requiring large amounts of sample. Recently, a new 
technique has been developed, Liquid Chromatography – Organic Carbon Detection (LC-
OCD), that provides a fast and reproducible technique. LC-OCD can group components of 
DOM into six categories based upon molecular weight: hydrophobics (HPho), humic 
substances (HS), building blocks (BB), low molecular weight neutrals (LMW-N), and acids 
(LMW-A). Furthermore, the molecular weight and aromaticity of HS can be determined. 
The primary goal of this thesis was to use the LC-OCD to better understand characteristics 
of DOM, with special attention to how the quality of DOM can be defined.  

A laboratory decomposition experiment was set up to identify the composition of 
soluble leaf leachate and observe the changes to DOM during microbial degradation. In 
addition, other widely used characterization techniques were used to compare with LC-
OCD results. Soluble leaf leachate consisted of nitrogen poor, high molecular weight 
(HMW) aromatic molecules with some low molecular weight neutrals (LMW-N). The DOM 
degraded by 44% over 150 days, with only 24% of the total DOM rapidly degrading within 
22 days. Degradation resulted in an increase in the proportion of HS while LMW-N 
decreased. Furthermore, comparison of specific ultraviolet absorption (SUVA: an indicator 
of aromaticity) from HS and total DOM showed an increase in aromatic LMW compounds. 
Generally, LC-OCD analysis compared well with other methods, allowing for a quantitative 
measure into the microbial changes to DOM quality. 

 Septic-impacted groundwater from Long Point, ON, was used as a case study to 
observe the changes in lability of DOM over the length of the septic plume. It was 
hypothesized that the septic tiles would introduce highly-labile DOM into the groundwater, 
which would degrade into a recalcitrant form as it was subjected to subsurface processes. 
Two distinct flow paths were observed under the tile bed: a vertical (shorter time period) 
and horizontal (longer time period) dominated flow. The concentration and SUVA of DOM 
decreased in both flow paths, with aromatic LMW-N slightly increasing in the horizontal 
flow path. The decrease of DOM and nitrate, and the presence of nitrous oxide all indicate 
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the presence of denitrification, indicating that active microbial degradation would be 
heterotrophic, thus requiring DOM. Furthermore, changes to the molecular weight and 
SUVA (both of the DOC and HS) while other proportions remain relatively constant 
indicate HS may be preferential for microbial degradation. LC-OCD analysis found sorption 
of DOM to be unlikely. The LC-OCD was also able to identify dissolved organic nitrogen 
(DON) bound to HS, which decreased in concentration as groundwater aged. These results 
indicate that the active microbial degradation of DOM created a more recalcitrant form 
along the plume. 

 A variety of surface and ground water environments were sampled in order to 
better understand the different compositions of DOM within the natural environment. 
Samples were taken from lakes, rivers, and streams, as well as from agriculturally impacted 
aquifers and an un-impacted aquifer. In most cases, HS and BB comprised the majority of 
DOM, with LMW-N comprising the rest. Hydrologic environments appeared to control the 
composition of DOM, with surface waters having higher DOC concentrations than ground 
waters. Furthermore, streams and rivers contained higher proportions of HS, while lakes 
contained higher proportions of BP (indicative of microbial interaction). Ground water can 
be distinguished from surface waters by having little BP or LMW-A. Furthermore, ground 
water compositions indicate a higher amount of reworking in the subsurface. In addition, 
agriculturally impacted aquifers contained lower HS molecular weights and HS SUVAs, 
while a large range was found from the un-impacted watershed. These results indicate that 
the LC-OCD is able to identify differences between different hydrological environments, 
providing a quantitative tool to measure DOM character. 
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Chapter 1 

Introduction and Characterization of Dissolved Organic Matter 

1.1 Introduction 

1.1.1 Dissolved Organic Matter 

Dissolved organic matter (DOM) is an important, yet complex, part of the carbon cycle. The 

term DOM encompasses organic compounds comprised of carbon, oxygen, nitrogen, and 

hydrogen within solution (Thurman, 1985). This group of heterogeneous molecules is 

derived from the degradation of organic matter. Studies commonly use the concentration of 

dissolved organic carbon (DOC) as a proxy for the concentration of DOM, since carbon 

comprises around 50% of the total DOM, and that measurement of the total organic matter 

(and other elements) is difficult. This study will use concentrations of DOC to discuss the 

amount of DOM. In the environment, DOC concentrations typically range between 2 – 25 

mg/L in surface waters, to 0.1 – 17 mg/L in ground waters (Aiken et al., 1985; Thurman, 

1985; Bourbonniere, 1989; Artinger et al., 2000; Wilson & Xenopoulos, 2008). Highest 

concentrations are often found in waters originating from wetlands and bogs, where large 

amounts of organic debris are found (Chin et al., 1998). Alternatively, lowest 

concentrations are found in ground waters, where DOM is often depleted within the first 

few meters of the subsurface (Marmonier et al., 1995). 

Importantly, DOM plays a key environmental role by transferring carbon, nutrients, 

and contaminants within the terrestrial system, as well as between terrestrial and aquatic 

ecosystems (Thurman, 1985; Jaffé et al., 2008). The importance of this link allows for carbon 

to be cycled among the entire ecosystem, using hydrologic pathways as a transporting 

mechanism between carbon pools. For example, it was found that terrestrial and aquatic 

ecosystems within the Hubbard Brook Experimental Forest were closely linked due to the 

flow of water (McDowell & Likens, 1988). Not only does DOM cycle carbon throughout the 

ecosystem, but it also plays an important role within the ecosystem by acting as a source of 

energy.  
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DOM can be used by various biological organisms as a source of energy. For 

instance, one study observed DOM as an important food resource for zooplankton in a 

highly humic lake (Salonen & Hammar, 1986). Conversely, DOM in the surface of a lake or 

river can absorb light, hindering the availability of light for photosynthesis but also 

protecting aquatic organisms from ultraviolet (UV) exposure (Schindler et al., 1996; 

Williamson et al., 1999). In ground water environments, DOM also plays a key role by 

acting as an important redox constituent. In ground water, DOM may be oxidized during 

natural attenuation of nitrate by heterotrophic bacteria (Starr & Gillham, 1993; Robertson & 

Cherry, 1995; Fenton et al., 2011), as well as act as an electron acceptor for the anaerobic 

oxidation of organic compounds (Lovley et al., 1996; Heitmann & Blodau, 2006; Blodau et 

al., 2009). This illustrates one instance of the importance of DOM in relation to the quality 

of drinking water. 

Drinking water treatment applications seek to reduce the concentration of DOM in 

order to lower the possibility of potential microbial growth, and remove colour, taste, and 

odour (Word Health Organization, 2011). It has also been observed that DOM reacts during 

the chlorination of water (a disinfection technique), forming carcinogenic disinfection-by-

products (DBP) (Marhaba & Van, 2000). Furthermore, the presence of DOM and potential of 

DBP formation make it the single most important determinant for drinking water 

treatment cost (Dr. S. Schiff, personal communication 2012). Furthermore, DOM has the 

capability of mobilizing organic pollutants and heavy metals within waters, which is a 

major concern for the overall quality (Reza et al., 2010; Neale et al., 2011). It is evident that 

understanding the characteristics of DOM is important when dealing with the quality of 

drinking water. 

Dissolved organic matter has numerous ways in which it can interact with its 

environment, both positively and negatively. The difficulty in characterizing such a 

parameter, however, is caused by its intermolecular heterogeneity. Comprised of thousands 

of organic compounds with varying structures and weights, each mixture of compounds 

can differ among different environments. DOM can consist of hard to break down, or 

recalcitrant, forms of carbon, whereas other sources are more easily degraded, or labile, 
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form of DOM. For instance, DOM formed in-situ (referred to as autochthonous) in lakes and 

rivers is considered relatively labile compared to DOM originating from outside sources 

(termed allochthonous). The range in reactivity can be attributed to the variety of source 

materials, as well as the amount of reworking or processing upon the DOM. The rate of or 

extent to which these reactions occur, depends upon the reactivity or lability of the carbon. 

Thus in the environment, there is a wide variety of DOM compositions and types, thus 

advanced methods are required in order to aid in the characterization of DOM.  

1.1.2 Characterization of Dissolved Organic Matter 

The difficulty in characterizing DOM results from its complexity. This can be seen by the 

number of definitions used to describe organic matter. Thurman (1985) observed thirteen 

different definitions that can all be used to describe aqueous organic matter. As previously 

mentioned, many aqueous studies refer to DOM as the concentration of organic carbon 

passing through a 0.45 μm filter. However, a concentration does not give any indication to 

whether the sample contains labile or recalcitrant forms of carbon. Lapworth et al. (2008) 

observed samples with identical DOM amounts to contain different fluorescent 

characteristics. This illustrates how characterizing DOM beyond a concentration is 

necessary to understand its potential within the environment. 

Despite the thousands of compounds that make up DOM, it is important to 

determine whether the DOM is easily degradable or not. Microbially available or labile 

portions can be considered the fraction of ‘useful’ carbon, determined as that which 

biodegrades in a certain amount of time (ranging from hours to weeks), whereas the 

remaining DOM can be termed refractory (Servais et al., 1987; Marmonier et al., 1995). 

However, such a determination is based upon a loss in overall DOM concentration, as well 

as the amount of time left for it to degrade, and doesn’t address the components that make 

up DOM. In order to address this, other studies have attempted to isolate and chemically 

characterize the constituents of DOM using a variety of techniques, in order to determine 

the quality of DOM at hand. 

 One common technique to characterize DOM is the separation of different 

components using XAD resin fractionation. These resins are comprised of non-ionic, 
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macroporous co-polymers with large surface areas, enabling different components to elute 

at different times. Macroreticular Amberlite XAD resins have been widely used to classify 

different components of DOM (Aiken et al., 1979; Leenheer, 1981; Bourbonniere, 1989; 

Drewes & Croue, 2002). It has been found that the majority of DOM is comprised of humic 

substances (Aiken et al., 1985; Thurman 1985; Wassenaar et al., 1990; Grøn et al., 1996; 

Vetter et al., 2010). The term ‘humic substances’ encompasses both humic and fulvic acids, 

consisting of numerous organic compounds that have similar properties. Humic acids are 

defined as the fraction not soluble below pH 2 but soluble at greater pH levels, while fulvic 

acids are soluble at any pH (Aiken et al., 1985; Thurman, 1985). However, it has been found 

that DOM cannot be described by humic and fulvic acids alone. Bourbonniere (1989) was 

one of the earlier studies to further divide fulvic acids based on physio-chemical 

characteristics, characterizing hydrophilic components as well. Although XAD resins allow 

for component characterization, this technique is laborious and requires large amounts of 

sample (liters) in order to obtain a result (Aiken et al., 1992). 

Another method to characterize DOM is through the use of ultraviolet (UV) 

absorption. As UV is absorbed by aromatic structures and unsaturated carbon atoms, using 

specific ratios determine the relative aromaticity or molecular size of the DOM. For 

instance, the E2:E3 ratio uses the absorbance at 250nm (E2) and 365nm (E3) as an indicator of 

DOM aromaticity and molecular weight (De Haan & De Boer, 1987; Dahlén et al., 1996; 

Ågren et al., 2008). Furthermore, it has been found that the specific UV absorbance (SUVA; 

absorbance at 254nm standardized to DOC concentration) is well correlated with 

aromaticity (Weishaar et al., 2003). The limit of UV techniques is that only chromophore-

containing constituents absorb UV, not necessarily all the molecules that comprise DOM. 

Her et al. (2002b) used an on-line UV-detector with an organic carbon detector to observe 

the signal obtained from DOM. It was found that using UV-absorbance alone failed to pick 

up fractions detected by the organic-carbon detector (Her et al., 2002b). Although UV 

methods do not require a large amount of time, they should be paired with other 

techniques in order to obtain a reliable characterization of DOM (Kawasaki et al., 2011). 
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Fluorescence spectroscopy, another optical technique to characterize DOM, uses 

fluorescence excitation emission of the sample. This technique is becoming more common 

and can provide information on the structure and humification (formation of humus) of 

DOM (McKnight et al., 2001; Hunt & Ohno, 2007). However, computation of the data may 

involve more complex modelling, such as parallel factor analysis (PARAFAC), and can be 

affected by interferences (such as nitrate or iron) that change the fluorescence of the 

sample (Hunt & Ohno, 2007). Furthermore, like UV-absorbance, only fluorophore-

containing DOM constituents will respond to this method, indicating the lack of 

characterization of non-fluorophore fractions. 

Pairing the changes of DOM with changes of other compounds can provide 

information on the character of the DOM. For instance, the concentrations of dissolved 

oxygen and DOC within an aquifer can lead to an inference about its bioavailability 

(Chapelle et al., 2012). Another study used carbon dioxide (CO2) measurements from a 

microbial incubation study to quantify DOC biodegradation (Kalbitz et al., 2003), thus in 

turn determining the lability of DOM. Elemental compositions (such as N:C, H:C, and O:C 

ratios of humics) can also be used as indicators of bioavailability (Sun et al., 1997; Hunt et 

al., 2000). More complex techniques such as 13C-NMR or pyrolysis-GC/MS require technical 

analysis, yet provide detailed information on the specific chemical features and structures 

of the organic matter on a molecular level (Conte et al., 2004; Kalscheur et al., 2012). 

A common technique to characterize DOM has been to use size exclusion 

chromatography (SEC), where molecules are separated by their physical and chemical 

differences. The basis of analysis stems from larger molecules eluting before smaller ones, 

allowing for the determination of different size fractions (Huber & Frimmel, 1991; Pelekani 

et al., 1999; Her et al., 2002; Lankes et al., 2009; Szabo & Tuhkanen, 2010; Huber et al., 2011; 

Kawasaki et al., 2011; Ruhl & Jekel, 2012). These size fractions are comparable to other 

molecular-weight methods (Zhou et al., 2000). Furthermore, SEC can be paired with UV-

absorbance detection to give quantitative information of UV-absorbing fractions (Lankes et 

al., 2009). An advantage of these systems is the ability to use small amounts of sample 

(from μL to mL), as well as receive a quantitative index into the composition of DOM.  
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 This study used a relatively new method where SEC is paired with an organic 

carbon detector (UV-thin film reactor developed by Huber & Frimmel (1991)) and termed 

the Liquid Chromatography – Organic Carbon Detection (LC-OCD). The LC-OCD has 

previously been used to determine changes in DOM composition from wastewater effluent, 

as well as its effect upon membrane fouling (Batsch et al., 2005; Grünheid et al., 2005; 

Kennedy et al., 2005; Haberkamp et al., 2007; Ciputra et al., 2010; Neale et al., 2011). The 

DOM classification system explained by Huber et al. (2011) is based on SEC, where 

fractions are defined by the elution time. Although the groupings are arbitrarily defined, 

physio-chemical characteristics assigned to each fraction are comparable with other studies 

(Zhou et al., 2000; Lankes et al., 2009; Müller et al., 2009). Importantly, the organic carbon 

reactor provides sufficient exposure and residence time to allow for excellent oxidation 

yields of organic molecules (Huber et al., 2011). The advantage of such a method is the ease 

of sampling and analysis, providing a highly informative result. Furthermore, other than 

filtering, samples are analyzed without any pretreatment, reducing the possibility of 

alteration or contamination.  

1.2 Thesis Outline 

The objective of this thesis was to assess the use of a new and logistically expedient 

method (Liquid Chromatography – Organic Carbon Detection) in understanding 

characteristics of DOM. Special attention is paid to how the quality of DOM can be defined. 

This will be explored through four chapters.  

The first chapter provides an introduction to DOM, focusing upon definitions and 

common characterization techniques. This introduces the background and basic properties 

of DOM from which the other chapters will build upon with data collected from the LC-

OCD. 

The second chapter uses the LC-OCD to analyze the composition of DOM from a 

laboratory leaf litter decomposition experiment. Here, different methods of DOM 

characterization will be compared with LC-OCD analysis, in order to observe changes to 

DOM during microbial degradation of fresh labile material. This will provide an indication 
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to what components are preferentially utilized over others, as well as the ability of the LC-

OCD to identify such changes. 

The third chapter presents a case study of the change in DOM lability over the 

length of a septic effluent-impacted plume. DOM from groundwater at Long Point, ON, 

provided an environment where the change in DOM along the flow path could be paired 

with the age of groundwater. This was done by comparing the changes in LC-OCD and 

SUVA to changes in quality, and whether these were similar to microbial or sorption 

processes found in literature.  

Finally, the fourth chapter looks at DOM from a variety of surface and ground water 

environments, illustrating what the range in composition of natural DOM. Here it will be 

determined whether or not DOM composition varies among different hydrological 

environments, and whether the LC-OCD can be used to distinguish between such 

environments. 
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Chapter 2 

Using the LC-OCD to Assess Compositional Changes to DOM During 

Biodegradation of Leaf Leachate 

2.1 Introduction 

Dissolved organic matter (DOM) plays an important part within the carbon cycle by 

moving carbon through terrestrial and aquatic ecosystems. The accumulation and 

subsequent degradation of surface organic litter can create high concentrations of DOM 

within only a few centimeters. For instance, soluble components originating from 

degrading leaf litter can create DOM concentrations up to 100 mg/L, but when leached into 

the subsurface, can be rapidly degraded or sorbed to concentrations that are an order of 

magnitude lower (Wetzel & Manny, 1972; Thurman, 1985; Qualls et al., 1991; Hongve et al., 

2000; Cleveland et al., 2004). However, not all DOM degrades at the same rate since various 

organic components comprising DOM differ in biodegradability (Qualls, 2005). It can be 

difficult to determine which components comprise the labile or recalcitrant portions of 

DOM, especially in an environment where a suite of organisms and degradation rates exist. 

Hence, estimating the biodegradability of DOM from the environment most likely 

underestimates the ‘true’ value (Cleveland et al., 2004). For this reason, it is important to 

have a method that can determine what is labile without having to do conventional 

biodegradability techniques that are laborious and time consuming. Understanding the 

composition of fresh, soluble organic matter may provide a better indication of which 

organic components are more bio-available than others.  

2.1.1 Leaf Leachate: A Source of DOM 

To better understand the availability of labile substrates, previous studies have observed 

qualities of young, labile DOM through decomposing leaf litter. It has long been known 

that organic matter can be solubilized rather quickly from organic litter (Nykvist, 1963; 

Wetzel & Manny, 1972; Petersen & Cummings, 1974). In addition, leachate provides an 

important source of both carbon and nitrogen, and is known to be available to the 
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microbial population (Benner et al., 1986; Qualls et al., 1991). DOC leached from leaf litter 

produces a large amount of DOC for the watershed and is rapidly taken up near the surface 

through biotic and abiotic mechanisms (McDowell & Likens, 1988; Fröberg et al., 2007). The 

type of litter and bacterial community present can affect both the total amount of 

biodegradation and rate at which it degrades (McNamara & Leff, 2004; Wallace et al., 2008). 

In order to better understand specific changes to the leachate, incubation studies can be 

used to specifically examine the changing character of DOM during microbial degradation. 

Organic molecules leaching from litter can lead to a number of dissolved organic 

constituents. Some studies have found leached DOM from partially degraded leaf litter to 

consist of low molecular weight (LMW) organic molecules (Wetzel & Manny, 1972; Hur et 

al., 2009), whereas leachate from decomposed leaf litter found the majority to consist of 

fulvic and hydrophilic acids (Qualls, 2005). Regardless of the organic source, DOC formed 

from degradation has generally been found to consist of certain components, such as 

polysaccharides, degraded lignins, lipids, sterols and proteins (McKnight & Aiken, 1998). 

Incubation studies have determined that DOM concentrations resulting from leaching 

decrease rapidly within the first 15 days, and small, non-humic components were 

preferentially lost over that time (Cleveland et al., 2004; Hur et al., 2009). These findings 

illustrate that readily leached DOM from leaf litter provides an array of labile components 

that are available for the surrounding ecosystem. 

2.1.2 Characterizing DOM 

The quality of DOM can be associated with certain parameters. Ultraviolet (UV) and visible 

spectrum (VIS) light absorption occurs as a result of absorption from the aromatic 

structures and unsaturated structures within DOM. It is possible to achieve an indication of 

relative molecular weight, aromaticity, and biodegradability from ratios of different UV-VIS 

wavelengths. For instance, the ratio of absorbances at 255nm (E2) and 345nm (E3) is 

negatively correlated with molecular size of the UV-absorbing components (Dahlén et al., 

1996), while the absorbance ratio of 465nm (E4) to 665nm (E6) correlates with humic 

substance molecular weight and size (Chen et al., 1977; Chin et al., 1994). In addition, the 
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specific UV-absorbance (SUVA) at 255nm has been documented to positively correlate with 

aromatic components, and in turn, the bioavailability of the DOM (Weishaar et al., 2003). 

Decomposition of carbon has been linked with the availability of nitrogen, allowing 

the C:N ratio to provide information of the biodegradability of DOM (Cleveland et al., 

2004). A high ratio in leaf litter has been found to correspond with slow decomposition 

(Enríquez et al., 1993). For microbes (with a C:N around 8:1), their ~40% growth efficiency 

prefers a substrate C:N ratio of 25:1, meaning decomposition of substrates with higher 

ratios leads to nitrogen being taken up from the surroundings, while lower ratios leads to 

microbial mineralization of nitrogen (Fagerbakke et al., 1996; Hunt et al., 2000; Chapin III et 

al., 2002). A high C:N ratio within the leachate indicates a nitrogen-poor composition 

(Qualls et al., 1991). Specifically, bacteria can grow more efficiently on nitrogen-rich DOM, 

thus a low DOC:DON ratio within DOM can indicate a better biodegradable fraction 

(Wiegner & Seitzinger, 2004; Fellman et al., 2008). 

The Liquid Chromatography - Organic Carbon Detection (LC-OCD) method uses 

size exclusion chromatography (SEC) to group organic molecules based upon their 

molecular size. This method provides a promising approach to characterize the composition 

of DOM (Huber et al., 2011). 

2.1.3 Research Objectives 

Based on published studies, I hypothesized that DOM leached from fresh litter will consist 

of labile, low molecular weight (LMW) molecules due to the absence of external processes 

removing DOM from solution. Over time, fresh DOM will be rapidly degraded, leaving a 

recalcitrant form that will consist of humic substances (HS) and some LMW molecules. 

These hypotheses will be tested through a series of objectives. The first objective will be to 

use different methods to quantify components that make up the majority of initial leachate 

composition, and to compare these results to other leachate experiments. The second 

objective will be to see if changes from the various methods over time capture a change in 

the labile components of DOC. Finally, the third objective will be to compare changes 

observed from the LC-OCD with other DOM-quality parameters in order to determine the 

sensitivity of the LC-OCD with other widely used methods. 
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2.2 Methods 

2.2.1 Experimental Design – Leaf Leachate 

A number of senesced leaves from sugar maple trees (Acer saccharum) were collected from 

the surficial litter layer located on a treed lot in Waterloo, ON, in October 2011. Leaves 

were brushed gently to remove attached soil and other detritus and stored in a cold room 

(>4°C) for a week before starting the experiment. All leaves were then were placed in an 

acid-washed 10L glass jar. Leaves were not washed so the microbial community collected 

on the leaves remained attached. The jar was then filled with Nanopure DI water, 

submerging all leaves, and left for 48 hours. In addition, the jar was lightly shaken to 

ensure complete mixing of the water.  

Leachate was then poured through a coffee filter to remove large particulates that 

may have formed during shaking (Figure 2.1). The leachate was then filtered through a 

2.7μm filter, where a sub-sample was collected to be used for inoculation. The rest of the 

leachate was then filtered through pre-washed 1.2μm and 0.45μm filters. The leachate was 

then diluted with Nanopure DI within a 15-L acid-washed jug to a concentration of 25 

mg/L and then poured into ten 1L aliquots within 2L-media bottles. The aliquots included 

five sacrificial time points and a replicate for each time point (T1-T5). The remaining 

diluted leachate was used as time zero (T0) to test for initial chemical parameters. Each 

media bottle contained 1L of the diluted leachate and a stir-bar, at which point 5mL of the 

inoculant was added (corresponding to 10% of the total carbon by mass). No attempt at 

characterizing the microbial community was made since each bottle contained the same 

source of inoculant. Each bottle was then capped with a rubber stopper and lid and 60mL of 

lab air was injected into each bottle to ensure no oxygen limitation with time. Bottles were 

kept sealed until sampled, covered with aluminum foil, and stored at in the dark at room 

temperature (~22°C), and stirred once each day at a sufficient velocity to induce a small 

vortex to ensure complete mixing with the headspace. Two bottles were opened after each 

of 8, 22, 62, 152, and 159 days. The leachates were immediately sampled for concentrations 
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of DOC, total dissolved nitrogen (TN), nitrite (NO2
-), nitrate (NO3

-), ammonium (NH4
+), UV-

VIS absorbance, and SEC analysis of DOC. 

After 152 days, the last time point (T5) was further divided into four aliquots of 

300mL. Nutrients (KNO3 and Na2HPO4) were added at concentrations of 92.6 mg/L and 30 

mg/L (respectively) in order to reduce nutrient limitation within the diluted leachate. The 

same parameters were measured after 7 and 38 days of nutrient addition. 

In order to test the changes to composition as a result of storage, and not microbial 

degradation, a separate storage experiment was run. The reader is referred to the Appendix 

for a full description and analysis of changes to DOM during storage. 

2.2.2 Spectral Analysis 

Absorbance was measured for each sample using a Beckman DU® Series 500 

Spectrophotometer with a 1cm quartz cuvette. Samples were warmed to room temperature 

and scanned at 5nm intervals between 200nm and 700nm. Absorbance ratios of E2:E3 and 

E4:E6 were calculated by dividing the absorbance at 255nm (E2) and 465nm (E4) by the 

absorbance at 365nm (E3) and 665nm (E6), respectively. Furthermore, specific UV-

absorbance (SUVA, L/(mg∙m)) was calculated by dividing the measured absorbance at 

255nm by the concentration of DOC (mg/L). 

2.2.3 Chemical Analysis 

All chemical analysis was completed at the Environmental Geochemistry Laboratory at the 

University of Waterloo. Ammonium (NH4
+) and nitrite (NO2

-) concentrations were 

determined using colourimetric methods, using a Beckman DU® Series 500 

Spectrophotometer. Samples were analyzed for nitrate (NO3
-) using a Dionex ICS-90 ion 

chromatograph. Calibration curves were created using Dionex brand standards. TDN was 

measured using a Tekmar Dohrman Apollo 9000 High Temperature catalytic oxidation 

TOC analyzer with total nitrogen add-on equipped with an autosampler. Standards were 

prepared using potassium nitrate (KNO3). 

DOC concentrations and a set of standards (created using potassium hydrogen 

phthalate) were analyzed on a using a Dohrman DC-190 High Temperature Total Carbon 
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analyzer. Here, samples and standards were acidified using 20% phosphoric acid and 

sparged to remove inorganic carbon. Samples were then injected, combusted at 680°C to 

convert DOC into CO2, and measured by a non-dispersive infrared (NDIR) spectrum. 

Samples were measured in triplicate, with the standard deviation being less than 3% of the 

overall concentration. 

2.2.4 LC-OCD Analysis 

Dissolved organic carbon characterization was completed using a LC-OCD at the 

University of Waterloo (Figure 2.2). Samples were first diluted within a range of 1-5 mg/L 

in order to obtain optimal results. The LC-OCD used a Toyopearl HW-50S (Tosoh, Japan) 

size-exclusion column. The mobile phase is created using a pH 6.85 phosphate buffer 

comprised of potassium dihydrogen phosphate and sodium hydrogen phosphate dehydrate 

and purified of any organics by passing through UV-irradiation. The sample is then 

injected into the mobile phase and passed through an in-line 0.45μm filter into either a by-

pass or the size-exclusion column. The bypass allows for the measurement of the overall 

DOC concentration and UV-absorbance at 254nm. Once through the column, the sample 

enters the UV Detector (set at 254nm). After this, the sample is acidified using phosphoric 

acid. The mobile phase enters the organic carbon detector (OCD), a thin film UV-reactor 

(Gräntzel Thin-film reactor, Huber & Frimmel, 1991), which spreads the sample thinly over 

a UV-lamp where irradiation causes the organic carbon to oxidize into CO2. The CO2 is 

then measured by a highly-sensitive infrared detector, and the data are collected over time 

as the sample elutes from the SEC column. 

Calibration for the OCD was completed using a potassium hydrogen phthalate 

(KHP) stock solution of 1000 mg-C/L and diluted to concentrations of 0.10, 1.00, 2.50, 3.75, 

and 5.00 mg/L. Calibration of the humic substances weight was completed using Suwannee 

River Standard II for humic and fulvic acids. Approximately 4 mg of each standard were 

dissolved in 100 mL of distilled lab water and diluted by a factor of ten. Two measurements 

were used to calibrate molecular mass, whereas five measurements were used to test 

detector sensitivity. 
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Results were analyzed using customized software (ChromCALC, DOC-LABOR, 

Karlsruhe, Germany). The LC-OCD initially determines the DOC concentration from the 

bypass peak. It then divides the DOC into hydrophobic and hydrophilic components. The 

hydrophilic portion is defined as the total sample that elutes from the column, whereas the 

hydrophobic portion is defined as the fraction that remains on the column. The hydrophilic 

portion is then further subdivided into five categories based upon retention time: 

biopolymers (BP), humic substances (HS; which includes both humic and fulvic acids), 

building blocks (BB), and low-molecular-weight neutrals (LMW-N) and acids (LMW-A). 

Boundaries of each fraction are determined relative to the elution of the humic substances 

peak. Biopolymers elute first and are thus the largest molecules. These are comprised up of 

polysaccharides, proteins, and aliphatic hydrocarbons (Grünheid et al., 2005; Lankes et al., 

2009). Next to elute are humic substances, which are comprised of a heterogeneous mixture 

of large, complex molecules. The third fraction to elute is termed ‘building blocks’, which 

are essentially degraded humic substances with humic-like characteristics, but of lower 

molecular weight. The final two fractions to elute are the LMW acid and neutral fractions, 

which contain monoprotic acids, amino sugars, ketones, and aldehydes (Kennedy et al., 

2005; Huber et al., 2011). 

Additionally, the LC-OCD measures the SUVA and nominal average molecular 

weight of the HS. Plotting these parameters allows for the determination to whether it 

consists more of humic or fulvic acids. The reader is referred to Huber et al. (2011) for a 

more detailed account of the determination in HS characteristics. Briefly, as a result of the 

larger size of humic acids they elute earlier than fulvic acids, allowing for the calculation of 

molecular weight. Humics that are more aromatic and higher molecular weight are similar 

to allochthonous humics formed from pedogenic environments. This can be seen by the 

location of the IHSS-HA and IHSS-FA standards at the upper right and upper center of the 

HS-Diagram. Alternatively, lower weight and lower aromatic HS are more like 

autochthonous, microbial-derived humics. Between these end-points, a wide range of 

humic characteristics may exist, dependent upon the source of DOM. This differentiation 
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provides more of a continuum of humics, rather than an operational distinction between 

humic and fulvic acids. 

During analysis, the large response between 20 and 40 minutes made it difficult to 

use the standard automated integration that was part of the instrumental software. 

Normally, a Poisson distribution is fitted to the steepest slope off the main humic substances 

(HS) peak, and integrated to obtain a concentration. However, the initial sample contained 

enough HMW that this main peak would encompass the biopolymer (BP) in the HS 

determination. In order to integrate a more realistic interval, a manual integration for OCD 

was completed at the boundary where humics would typically elute (>30 min; Figure 2.3). 

With the current column setup, fulvic and humic acids are known to peak between 43-45 

minutes (Huber et al., 2011), indicating that the manual integration provides the best 

representation of the data. Since BP do not normally absorb UV, the integration was not 

manually altered for UV. 

2.3 Results 

2.3.1 Leachate Composition and Degradation 

Over 150 days (before nutrient addition), DOC concentration decreased by 11.6 mg/L (or 

44% of the initial concentration) (Figure 2.4a). In the initial leachate, the majority of leached 

DOM to consist of HS (16.3 ±0.9 mg/L; Figure 2.4b), with the remaining portion consisting 

of LMW-neutrals (LMW-N; 3.8 ±0.1 mg/L), building blocks (BB; 2.5 ±0.1 mg/L), 

hydrophobics (HPho; 1.6 ±1.0 mg/L), and BP (1.4 ±0.2 mg/L), along with a small amount of 

LMW-acids (LMW-A; 1.0 ±0.1 mg/L).  

The majority of changes occurred within the first 22 days, with the concentration of 

DOC decreasing by 6.3 mg/L. The proportion and concentration of BP and LMW-N both 

decreased, while LMW-A disappeared within the first week (Figure 2.4c). Alternatively, 

while concentrations of HS decreased, its proportion increased to an asymptotic value of 

75% of the total DOM. Both HPho and BB show little change throughout the experiment. 

On day 8, a notable decrease in the concentration of HS was observed with a concomitant 

sharp increase in HPho. After the first two time points, a film-like substance was observed 
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within the bottles that remained after stirring. In addition, the concentration of BP 

increased by approximately 0.4 mg/L (2.3% of the overall DOM) between 62 and 152 days. 

 Humic substance characteristics did not exhibit much change as a result of 

microbial degradation (Figure 2.5). Initially, leached HS was comprised of moderate weight 

(727 g/mol), aromatic structures (5.84 L/(mg∙m)). During the incubation, both the 

aromaticity and molecular weight increased only slightly. Comparison of HS-SUVA to 

DOC SUVA was a linear relationship (r2=0.65, n=7) but the slope was much smaller than a 

1:1 line (slope= 0.33) indicating a larger proportion of LMW aromatic compounds present. 

2.3.2 Additional Leachate Parameters 

The leaf leachate was acidic (pH<5) and well oxygenated (DO>7.90 mg/L) throughout the 

incubation (Figure 2.6). Inorganic nitrogen was not found in any considerable 

concentration on any sampling date, thus the majority of TDN could be considered as 

organic nitrogen (Figure 2.7). Although the LC-OCD measured DON, the response from the 

samples was too low to integrate and could not be used in this study. High molar ratios of 

DOC:DON illustrate soluble components were low in nitrogen (Figure 2.8). The ratio 

illustrated sharp decrease (from 96 to 56), followed by an increase to 85 after 62 days, and a 

final ratio of 51 at 150 days. Ratios were not calculated after the addition of nutrients due to 

the high concentration of inorganic nitrogen species. 

 The majority of change to spectral-based measurements occurred within the first 22 

days (Figure 2.9). The E2:E3 ratio decreased over the incubation, which has been interpreted 

to indicate an increasing total molecular weight. Conversely, the E4:E6 ratio increased 

between 8 and 62 days, after which the ratio decreased. In addition, SUVA increased over 

the length of the experiment, illustrating either a preferential loss of non-absorbing 

components or increasing aromaticity of the remaining organic compounds. 

2.3.3 Addition of Nutrients 

The addition of nutrients increased the concentration of DOC by 2 mg/L (outside of 

analytical error indicating a notable increase), but did little to further degrade the DOM. 

Although slight decreases in the proportions of HPho (-2.5%) and BP (-1.7%) and an 
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increase in HS (2.8%) were observed, other components did not vary in proportion. No net 

difference was found between the HS molecular weight before and after the addition of 

nutrients. Furthermore, the overall pH of the solution increased towards neutral, yet DO 

and inorganic nitrogen (excluding nitrate) did not show any observable differences. Both 

ratios (E2:E3 and E4:E6) decreased by 0.2 and 2.0 respectively, whereas SUVA and HS-

aromaticity were found to increase by 0.4 and 0.2 L/(mg∙m), respectively.  

2.4 Discussion 

2.4.1 Characteristics of Soluble Leaf Litter 

The results of this study provide insight into the composition of soluble organic matter. 

Many of the parameters showed that the leached DOM had similar characteristics to 

previous studies. The proportion of HS (~60%) and DOC:DON (~100) within DOM was 

similar to leachate from a variety of litter species (Qualls et al., 1991; Cleveland et al., 2004). 

Furthermore, low DOC:DON ratios indicate that soluble organic matter from litter is poor 

in organic nitrogen, possibly requiring an inorganic source of nitrogen to aid with further 

humification or degradation (Qualls et al., 1991). Hur et al. (2009) observed a low 

aromaticity in DOC from freshly degraded leaf litter, indicating a composition of non-

aromatic compounds. Contrary to those results, in this study the E4:E6 ratio and SUVA, 

along with the LC-OCD composition, show that soluble components from fresh litter 

consisted mainly of high molecular weight (HMW), aromatic HS molecules.  

Similar characteristics are seen when comparing leaf litter leachate to other 

environments. The measured E2:E3 ratio and SUVA were similar to other studies measured 

from streams and humic lakes (Dahlén et al., 1996; Peuravuori & Pihlaja, 1997; Ågren et al., 

2008), indicating leached DOM contained a similar bulk weight to that of surface water 

environments. Although leached DOM from this study does not contain as much LMW 

compounds as previous leachate studies, it is representative of DOM that can be found 

within the environment. 

The LC-OCD provided a fast method for characterizing DOM from leached litter. 

Sachse et al. (2001) found high concentrations of BP to be a result of autochthonous 
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formation of DOM. Interestingly, the BP fraction at the start of this study was lower than 

other LC-OCD studies of DOM (Fischer et al., 2002; Rauch & Drewes, 2005; Neale et al., 

2011). Although, the chromatogram had a very wide HS peak not observed in other LC-

OCD studies, comparison with SUVA and E4:E6 values suggest the majority of the broad 

peak are HMW HS. This further illustrates that BP may appear as a product of microbial 

production rather than from physical leaching of large molecules, explaining why the 

original leachate did not contain a high concentration of BP. Interestingly, other measured 

parameters did not distinguish anything unique, illustrating the sensitivity of the LC-OCD 

for distinguishing defining characteristics. 

2.4.2 Changes due to Microbial Degradation 

The change in concentration of DOC gives a direct measurement of biodegradability, which 

can be paired with changes to the lability of DOC. A high DOC:DON ratio suggests the 

DOM is poor in nitrogen, which has been found to be linked with low bioavailability and 

bacterial growth efficiency (Kroer, 1993; Hunt et al., 2000; Fellman et al., 2008). In addition, 

oxic conditions have been found to maintain the stability of non-biodegradable components 

(Grünheid et al., 2005). Leaching of fresh litter did not result in a composition susceptible to 

rapid degradation. Instead, only 44% was lost over the course of the experiment, with only 

24% rapidly degraded in 22 days. After the addition of nutrients, no subsequent degradation 

was observed, illustrating a relatively non-labile composition. Regardless of the amount of 

DOM lost, results indicated that labile DOM was assimilated as a result of microbial 

degradation.  

As indicated by the increasing SUVA, the decomposition of DOM leaves behind a 

more aromatic and a lower quality (less labile) form (Kalbitz et al., 2003; Ågren et al., 2008). 

This can also be observed from the LC-OCD data since analysis revealed different DOM 

compositions at the beginning and end of the experiment. From this, labile components can 

be considered as those that decreased relatively quickly. Since proportions of BP, LMW-N, 

and LMW-A decreased within the first 22 days, it can be concluded that microbes 

preferentially consume these components. The BP fraction is known to encompass 

polysaccharides and proteins, which are both considered labile compounds (Fischer et al., 
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2002; Grünheid et al., 2005). Rauch and Drewes (2005) found the degradation of simple 

sugars led towards formation of HMW polysaccharides. The decrease of LMW-N may 

account for the slight increase in BP over time. Furthermore, concentrations of each 

component are found to decrease, likely resulting from the loss of DOM into respired CO2. 

Overall, these results indicate that simpler compounds were utilized by microbes and may 

even allow for the formation of larger, biosynthesized molecules. 

The final composition likely represents recalcitrant DOM, characterized by high 

proportions of HS and a small amount of LMW molecules. This is similar to an incubation 

study by Fischer et al. (2002), who observed a narrower spectrum of organic components 

after degradation of river DOC through sediment cores, consisting mainly of HS. Studies 

have found non-humic components to be more bioavailable than humics, leading towards 

an increase of humic-like components (Tranvik, 1993; Sun et al., 1997; Hunt & Ohno, 2007; 

Hur et al., 2009). Conversely, Cleveland et al. (2004) believed that lack of soil mechanisms 

(such as preferential adsorption of HS) within an incubation experiment allowed for labile 

humics to remain in solution, while Hunt et al. (2000) observed the uptake of HS by 

microbes. The chromatograms from the LC-OCD support the former, where the 

composition becomes dominantly HS (Figure 2.10). Thus, it could be said over time, the 

increase in the proportion of HS (and relative constant BB proportion) indicates that 

humics may not be rapidly degraded by microbes. Interestingly, although DOC continues to 

decrease, the proportion of HS remains relatively stable, stemming from the decline of HS 

at a similar rate to that of DOC. These observations lead to the idea that DOC undergoes a 

rapid loss of labile substrates, followed by a longer degradation of recalcitrant compounds; 

in this case HS. Furthermore, since HS characteristics (molecular weight and aromaticity) 

remained relatively consistent, it is likely that HS were generally not altered into other 

forms during microbial degradation. 

 A film-like substance was found inside the bottles and is most likely the result of 

the growth of microbial biomass, further contributing to the decline in DOC concentration 

(Lush & Hynes, 1973; Paerl, 1978; Mulholland, 1981). This can be further supported by the 

increase in BP, which likely consists of structurally similar soluble microbial products 



 

 20 

(Rauch & Drewes, 2005). Although not characterized, the growth of biofilm with abundant 

bacteria likely sustains continual degradation of DOM. 

2.4.3 Comparing the LC-OCD with Other Measured Parameters 

Overall, the LC-OCD provided valuable information on the compositional changes during 

microbial degradation. Importantly, it allowed for the observation that an overall loss in 

DOC concentration is the result of the preferential loss of certain components over others. 

Changes to the composition were supported by both LC-OCD analysis and spectral 

information. Unfortunately, the LC-OCD was unable to accurately measure the amount of 

organic nitrogen, which is known to be linked with the biodegradability of both HS and 

DOC overall (Hunt et al., 2000; Cleveland et al., 2004). However, calculation of DON proved 

difficult using wet chemistry, due to the low concentrations found in leached litter. 

 Spectral data compared well with data supplied by the LC-OCD. For instance, the 

decreasing E2:E3 ratio is indicative of a loss in LMW compounds (Dahlén et al., 1996), which 

supports the compositional changes measured from the LC-OCD. Independent measures of 

the molecular weight of DOM also indicated a composition comprised mainly of HMW 

aromatic molecules, which LC-OCD analysis determined to be HS. Conversely, E4:E6 ratios 

did not agree with data from the LC-OCD. The E4:E6 ratios from this study were 

characteristic of fulvic acids, rather than humic acids (Chen et al., 1977), which is not 

supported by the HS molecular weight and HS SUVA (Huber et al., 2011). Furthermore, 

Peuravuori and Pihlaja (1997) and Osborne et al. (2007) did not find E4:E6 to be a useful 

parameter in characterizing DOM, which is in agreement with the results from this study. 

Finally, comparison of bulk SUVA and HS-SUVA illustrate that degradation of DOM caused 

a decrease in the HS SUVA, but formed LMW aromatic components. These results show 

that LC-OCD analysis is comparable to other DOM characterization methods. 

2.5 Conclusion 

The observations from this study further the understanding of changes to DOM as a result 

of microbial degradation. From this experiment, soluble components of leaf litter were 

found to consist of HMW, nitrogen poor, aromatic organic components. However, the LC-
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OCD was able to identify a group of HMW molecules that contained both BP and HS 

characteristics, not previously observed in other LC-OCD studies. The decrease in DOC 

concentration provided a direct measurement of biodegradation, illustrating that only 44% 

of the leached DOC could be degraded over the course of the experiment, with only 24% 

rapidly degraded in 22 days. Components rapidly utilized were LMW molecules, while 

humic-like components (HS, BB, and HPho) either remained proportionally similar or 

became enriched within the DOM. Furthermore, degradation of DOM formed more 

aromatic LMW molecules. Although HS remained proportionally constant at later times, its 

concentration decreased concomitantly with the decrease in DOC, illustrating a pool of 

slower biodegradable carbon. Importantly, most methods were able to support observations 

obtained from the LC-OCD, while E4:E6 ratio was found to be not as useful for 

characterizing DOM. Although both spectral and LC-OCD analysis gave a comprehensive 

look into the change of quality during microbial degradation of DOM, LC-OCD provides 

information on all fractions within DOM and not only the UV-absorbing components. 

These results give an indication of components that comprise freshly soluble organic 

matter, as well as the microbial utilization of certain fractions, which ultimately defines the 

character of DOM within the environment. 
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Figure 2.1: A visual representation of the experimental setup for leaching leaf litter, 
filtering, dilution to 25 mg/L, and separating aliquots into sacrificial bottles. In addition, the 
schematic illustrates when the inoculant was taken. 
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Figure 2.2: Schematic of the LC-OCD. The DOC by-pass allows for measurement of the 
total DOC concentration and SUVA by skipping the size-exclusion chromatography (SEC) 
column. The UV-Detector is run at 254nm. Adapted from Huber et al. (2011). 
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Figure 2.3: Manual integration of the HS left slope. Dotted lines represent the elution time 
of different organic fractions. The shaded area depicts the HMW molecules between the BP 
and HS peak. The above two chromatograms are International Humic Substances Society 
(IHSS) humic (-HA) and fulvic (-FA) acid standards. Although the HS begin to elute at the 
time of IHSS-HA, the peak is closer to the IHSS-FA, indicating the molecular weight of the 
humics are closer to the fulvic acids. 
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Figure 2.4: Results from the LC-OCD analysis (with standard deviations from analysis on 
duplicate bottles). A: change in DOC concentration with time. B: changes to hydrophobics 
(HPho; closed circle), biopolymers (BP; open triangle), humic substances (HS; closed 
square), building blocks (BB; open diamond), low molecular weight neutrals (LMW-N; 
closed triangle) and acids (LMW-A; open circle). C: changes to the proportion of these 
components. The solid grey line at 152 represents when additional nutrients were added.  
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Figure 2.5: HS characteristics determined by LC-OCD analysis. A: HS molecular weight 
and aromaticity over time with standard deviations determined from duplicates. Duplicates 
were not run on days 8 and 22, thus the average of all standard deviations was used for 
those time points. B: HS-SUVA versus overall DOC SUVA with standard deviations 
(determined from duplicates). In graph B, a 1:1 line is represented by the dotted grey line 
while a regression line is fitted with the solid line (R2=0.65, slope=0.33). 
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Figure 2.6: Dissolved oxygen (DO, mg/L) and pH in the leachate solution over time with 
standard deviations. The solid gray line at 152 days represents when nutrients were added. 

 
Figure 2.7: Measured ammonium (NH4

+; closed circle) and nitrite (NO2
-; closed triangle) on 

the left axis (mg-N/L), as well as nitrate (NO3
-; open triangle) and total nitrogen (TN; cross) 

on the right axis (mg-N/L) over the length of the experiment with standard deviations. The 
grey line at 152 days represents when nutrients were added. It can be seen by the higher 
NO3

- than TN concentration at 159 and 190 days that calculation of TN from wet chemistry 
did not provide the best method for calculating dissolved organic nitrogen (DON). 
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Figure 2.8: Calculated molar ratio of DOC:DON (with standard deviations calculated from 
duplicates) over time. The grey line represents when nutrients were added. No DOC:DON 
ratios were calculated after nutrient addition. 

 
Figure 2.9: The ratios of absorbance at 255nm and 365nm (E2:E3; open circle) and 465nm 
and 665nm (E4:E6; closed triangle) are illustrated over time (days) with standard deviations. 
Measured SUVA (L/(mg∙m); closed circle) is also plotted against time. The solid grey line at 
152 days represents when nutrients were added. 
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Figure 2.10: Changes to the DOM composition as illustrated by the chromatograms for 
each time point. Chromatograms run from top to bottom: 0 days, 8 days, 22 days, 62 days, 
152 days, 159 days, and 190 days. Nutrients were added in-between T4 and T5. Dotted lines 
represent the elution peak for BP (~30 minutes) and HS (~42 minutes).  
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Chapter 3 

Evolution in the Quality of Septic-Derived DOM 

3.1 Introduction 

Dissolved organic matter (DOM) is a heterogeneous and ubiquitous component of the 

aquatic ecosystem. Derived from the degradation of organic materials (plant, animal, or 

microbial origin), natural DOM exists in a variety of compositions and concentrations. 

Dissolved organic carbon (DOC) is used as a quantitative measure of DOM, which is often 

operationally defined as the organic molecules that can pass through a 0.45μm filter. 

Typically, groundwaters contain concentrations less than 5 mg/L, but it is not unreasonable 

to find concentrations higher than 10 mg/L (Thurman, 1985; Wassenaar et al., 1989; 

Lapworth et al., 2008). However, groundwaters impacted by septic system effluent can 

contain much higher concentrations. For instance, DOC concentrations greater than 50 

mg/L were measured in a septic tank, while groundwater impacted by the septic-system 

ranged between 4 – 14 mg/L (Robertson et al., 2012). Although differences in 

concentrations are easily measured, it is more difficult to determine changes in the lability 

of DOC. A septic plume hypothetically should provide a wide spectrum of DOC qualities 

from freshly degraded, labile components originating close to the septic tank to more 

recalcitrant forms further along the flow path. 

3.1.1 Septic Tanks and Groundwater 

Septic tanks are known to be a point-source for groundwater contamination, contributing 

pathogens, nutrients, and pharmaceuticals to groundwater (Robertson & Cherry, 1992; 

Harman et al., 1996; Wilhelm et al., 1996; Carrara et al., 2008). The addition of these 

compounds to groundwater is of concern due to the possibility of contamination to nearby 

wells. Approximately 87% of households not connected to a municipal water source use a 

private septic system (Statistics Canada, 2009). With such a high percentage, there is a 

potential risk of contaminating drinking water. 
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Septic tank effluent can alter the quality of groundwater in several ways. One case 

study described a Norovirus outbreak as a consequence of a leaking septic system 

contaminating down-gradient drinking water wells (Borchardt et al., 2011). Furthermore, 

septic tanks may contribute to a decreasing pH, which becomes important for the mobility 

of metals (Robertson & Blowes, 1995). High loading of organic matter also contributes to 

the mobilization of heavy metals (Christensen et al., 1996; Christensen & Christensen, 

1999). More commonly, loading of nitrogen-rich species into groundwater is of great 

concern. Nitrate, a ubiquitous groundwater contaminant, is formed above the water table 

through the oxidation of ammonium, and is often found in concentrations higher than the 

drinking water limit of 10 mg-N/L (Robertson & Cherry, 1992). One way to mitigate 

groundwater nitrate contamination is through the process of denitrification, where labile 

DOC can be used by heterotrophic bacteria to convert nitrate into inert nitrogenous gases 

(such as N2 or N2O). In groundwaters with high amounts of nitrate, denitrification is 

generally dependent upon the availability of both labile organic carbon and pyrite in older 

sediments (Aravena & Robertson, 1998; Fenton et al., 2011). Such a parameter cannot only 

be defined by a concentration since different carbon substrates were found to lead to 

differing rates of denitrification (Greenan et al., 2006). Thus, the lability (quality) needs to 

be understood in order to predict such attenuation rates.  

3.1.2 Labile Carbon Environments 

Labile organic carbon can be considered as compounds that are readily lost or altered. 

Studies have shown that environments of freshly degraded organic matter (like decaying 

leaf litter on forest floor) provides a source of labile carbon that can be distributed 

throughout the watershed via leaching, streams, or groundwater transport (Thurman, 1985; 

Amon & Benner, 1996; Schiff et al., 1997b; Schlief & Mutz, 2007). The continual processing 

of marine DOC by micro-organisms has been found to decrease its bioavailability, resulting 

in a more recalcitrant form (Ogawa et al., 2001). A similar situation may also be found 

within aquifers, where relatively high residence times of groundwater potentially allow for 

substantial degradation by microbes within the subsurface. However, increased loading of 

organic matter into the subsurface (such as from septic systems) may allow for highly labile 
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DOC to be transported within the aquifer. It is apparent there may be a wide range of DOC 

qualities present in groundwaters, thus a method to characterize the quality of DOC is 

needed. 

3.1.3 Quality of Dissolved Organic Carbon 

Different terms can be used to describe the quality of DOC, dependent upon the changes 

that may occur to the DOC. For instance, the ability for DOC to complex with surrounding 

dissolved metals can be referred to as its ‘reactivity’, whereas the ease for microbial 

degradation can be referred to as its ‘biological availability’. Differences in terminology 

may result from the fact there is no generally accepted standard method to determine the 

biodegradability of DOC (Marschner & Kalbitz, 2003). Since the term ‘DOC’ encompasses a 

wide variety of organic molecules, no one molecule is responsible for the overall quality. 

Hence, different groups of molecules may be responsible for interacting either biologically, 

chemically, or physically with the surrounding environment. 

 Constituents of DOC consist of thousands of different molecules, thus grouping 

components of DOC based on their structural or chemical characteristics is an efficient way 

of characterizing DOM. The DOC pool can be sub-divided into different groups depending 

upon the characterization method. Resin fractionation (such as XAD columns or size-

exclusion chromatography) allows for the determination of different components based 

upon size or reactivity of the molecules. For example, determination of the composition 

using XAD resins found DOC to consist of hydrophobic and hydrophilic acids, termed 

humic and fulvic acids, respectively (Leenheer, 1981; Bourbonniere, 1989). Bourbonniere 

(1989) further classified fulvic acids into components based upon their physico-chemical 

characteristics. Ultraviolet (UV) absorption can be used as an index of the amount of 

aromatic components with DOC (through specific UV-absorbance at 255nm) or the relative 

contribution of high and low molecular weight compounds (through absorbance ratios such 

as E2:E3). The division of DOC into certain fractions allows for a more efficient method to 

understand changes or alterations to DOC. Furthermore, such a classification allows for the 

determination of components that comprise high-quality (labile) or low quality (non-labile) 

components, instead of using an overall difference in DOC concentration.  
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Different components of DOC can react differently within the subsurface. Humic 

and fulvic acids (generally considered to be high molecular weight (HMW) molecules), can 

form complexes with heavy metals (Christensen & Christensen, 1999). Furthermore, it was 

found that the extracellular polymeric substances (‘housing’ structures for microbes) can 

absorb heavy metals (Liu et al., 2001). Studies have found polysaccharides and low 

molecular weight (LMW) molecules to not only be preferential for biological demand, but 

also increase the bacterial growth efficiency (Amon & Benner, 1996; Gardner et al., 1996; 

Fischer et al., 2002). Another study hypothesized that biodegradability of DOC is controlled 

by the accessibility of chemical functional groups rather than molecular size (Fischer et al., 

2002). Specifically, the ratio of DOC to dissolved organic nitrogen (DON) can be used to 

predict its lability, with low ratios indicating a higher lability (Hunt et al., 2000; Fellman et 

al., 2008). Overall, the reworking of DOC by bacteria has been found to result in a 

refractory product (Ogawa et al., 2001). In summary, it appears that biological degradation 

may occur to all dissolved fractions, whereas complexing with metals is driven by the 

larger molecular weight fractions (such as humic substances or biopolymers).  

For the purpose of this study, high quality DOC will be defined as the ability to 

interact with its environment physically, chemically, and biologically. High quality DOC 

will consist of components rapidly lost (by either microbial or sorption processes), while 

low quality will refer to components that remain over time. Characterization of DOC using 

a Liquid Chromatography – Organic Carbon Detection (LC-OCD; a size-exclusion 

chromatography based method) identifies concentrations of different organic fractions 

based upon its molecular mass distribution. Wastewater has been found to consist mainly 

of colloids, polysaccharides, and LMW compounds (Brinkmann et al., 2004). Literature has 

identified labile components to consist of polysaccharides, acidic functional groups, and 

low weight compounds (Amon & Benner, 1994; Brinkmann et al., 2004), which correspond 

to the LC-OCD fractions of biopolymers, LMW-acids, and LMW-neutrals, respectively, in 

Huber et al. (2011). Degradation of DOC has been found to result in a narrower range of 

compounds, consisting mainly of humics (Fischer et al., 2002; Hunt et al., 2007; Hur, 2011). 
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These studies lead to the idea that it may be possible to observe a change in quality of DOC 

through a change in the distribution of different DOC fractions. 

3.1.4 Research Objectives 

Characterization of DOC has previously been considered difficult and laborious. However, 

the LC-OCD allows for a rapid assay of DOC size based on molecular weight. The key 

objective of this study will be to gain a better understanding of the components that 

correspond to labile, high quality DOC. By focusing upon an extensively studied septic 

plume in Long Point, Ontario, it will be possible to pair DOC changes to the processes 

found within the aquifer (Robertson & Cherry, 1992; Robertson & Cherry, 1995; Aravena & 

Robertson, 1998, Robertson et al., 2012). I hypothesize that DOC located closest to the septic 

tile consists of high quality components due to high concentrations and rate of loading, 

allowing only minimal degradation of labile components that reach the water table. This 

DOC should consist primarily of biopolymers and LMW-neutrals as a result of the freshly 

decomposed labile carbon from the tank (Neale et al., 2011). As the plume ages, DOC 

quality will steadily change towards a recalcitrant form (consisting of humic substances) 

due to physical, chemical, and biological influences. This will be accomplished through 

three objectives. The first objective will be to see if LC-OCD analysis and changes to SUVA 

are able to determine changes to the quality as DOC ages. This will be completed by 

comparing LC-OCD analysis and SUVA values over the length of the plume. The second 

objective will be to see whether changes to the composition or SUVA relate to microbial or 

sorption processes as described within literature. Finally, the third objective will be to see if 

septic system DOC differs from other groundwater DOC. 

3.2 Site Description 

The Long Point Provincial Park campground on the northern shore of Lake Erie is 

approximately 83km south-east of London, Ontario (Figure 3.1). The campground has 256 

campsites and is open seasonally between the months of May to October. The campsite 

offers a comfort station, which is connected to two septic system tile beds (approximately 

290m2). These tile beds are made of perforated PVC pipe (10cm diameter) approximately 2m 
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above the water table (Robertson & Cherry, 1992). The tile bed used in this study (Tile Bed 

2) has been used since 1990 except for a 2-year period (1995-1996) when flow was diverted 

to another tile bed (Robertson, 2008). 

 Physical hydrogeology and instrumentation at the Long Point site has been 

previously characterized by Robertson & Cherry (1992), and is briefly summarized here. 

The septic plume is found in a relatively homogenous unconfined sand aquifer (5 to 6 m 

thick, K=2x10-2 cm/s), underlain sharply by a silt aquitard. The groundwater has an 

estimated horizontal velocity of 28 m/year near Tile Bed 2 (Robertson, 2008), has minimal 

dispersion, and flows southward towards Lake Erie. Bromide tracer tests showed that the 

effluent spends one to two days in the septic tank, followed by approximately seven days 

during heavy-use periods when the effluent percolates through the 2 m-thick unsaturated 

zone. Furthermore, the increased loading rate below the tile bed causes the ground water 

table to mound directly beneath the tiles.  

 The septic plume can be easily distinguished within the calcareous sandy aquifer by 

its geochemical composition. Importantly, the effluent penetrates the entire thickness of 

the aquifer (Robertson et al., 2012). As septic effluent begins to load early in the season, it 

first blankets the shallow water table zone under the tile, and subsequently flows 

horizontally at the groundwater velocity (Robertson, 2008). The plume can be identified by 

high concentrations of chloride, nitrate, and phosphorus, as well as elevated electrical 

conductivity levels (Robertson & Cherry, 1992). In addition, the aquifer contains acid-

extractable metals (specifically Al, Fe, and Mn), which may indicate the presence of 

hydroxides (Robertson, 2008). Decreasing concentrations of nitrate along the plume have 

been attributed to denitrification, anammox, and pyrite (FeS2) oxidation occurring within 

the plume (Aravena & Robertson, 1998; Robertson et al., 2012). The aquifer contains a high 

amount of solid organic carbon (organic carbon content (foc) of 0.15 wt %), which has been 

thought to be the carbon source for the denitrifying bacteria (Robertson & Cherry, 1992). 

DOC values have also been observed to decrease with depth, attributed to DOC oxidation 

(Robertson & Cherry, 1992). In addition, a high DOC (10 to 15 mg/L) and high NH4
+ (>30 

mg-N/L) pulse has been observed in the plume, resulting from a period of heavy loading 
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from the septic tiles after the Victoria Day holiday (“May 24” long weekend) (Li, 2010; 

Robertson et al., 2012, in prep). Essentially, since nitrifiers were not active to oxidize the 

NH4
+ early in the season, it was able to pass through into the groundwater along with high 

concentrations of DOC (Li, 2010). Over the course of the summer, the NH4
+ is replaced by 

high concentrations of NO3
- (>50 mg/L), but can still be distinguished by an elevated-NH4

+ 

zone (~10 to 20 mg-N/L) (Robertson et al., in prep). 

3.3 Methods 

3.3.1 Field Methods 

Details of the installation of instrumentation can be found in earlier studies (Robertson & 

Cherry, 1992). Multi-level piezometers were purged for several minutes, using a peristaltic 

pump, until the electrical conductivity and pH reached a stable value. Electrical 

conductivity (EC), dissolved oxygen (DO), pH, and temperature were all measured using a 

Barnant 20 digital meter. A flow-through cell was used in order to inhibit contact with the 

atmosphere. In addition, samples were filtered inline using a 0.45μm Supor membrane filter 

(Pall Corporation). 

 Samples for ammonium, nitrite, total dissolved nitrogen (TDN) and anions (nitrate, 

chloride, sulphate) were collected in 30mL plastic containers, whereas DOC was collected 

in 40mL glass vials. Ammonium samples were immediately acidified with sulphuric acid 

(H2SO4) to a pH of 3-4, while sodium hydroxide (NaOH) was added to nitrite samples to a 

pH of 10. Both DOC and anion samples were filtered but not preserved. After collection in 

the field, samples were immediately kept cool and in the dark until they were able to be 

stored in a cold room (<4°C). Analysis was completed within three days of sampling. 

 Gas samples were collected using 60mL glass serum bottles. Unfiltered groundwater 

was filled from the bottom of the bottle to overflowing to ensure no atmospheric contact 

with the sample. A serum rubber stopper and needle were used to cap the bottle, 

minimizing any headspace. Samples were then preserved with 0.2mL of mercuric chloride 

(HgCl2) in order to inhibit further microbial action. 
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3.3.2 Laboratory Methods 

All chemical analysis was completed at the Environmental Geochemistry Laboratory at the 

University of Waterloo. Ammonium (NH4
+) and nitrite (NO2

-) concentrations were 

determined using colourimetric methods, using a Beckman DU® Series 500 

Spectrophotometer.  

 Samples were analysed for chloride (Cl-), nitrate (NO3
-), and sulphate (SO4

2-) using a 

Dionex ICS-90 ion chromatograph at Environmental Geochemistry Laboratory (EGL) at the 

University of Waterloo. Calibration curves were created using Dionex brand standards. 

 TDN was measured using a Tekmar Dohrman Apollo 9000 High Temperature 

catalytic oxidation TOC analyzer with total nitrogen add-on equipped with an autosampler. 

Standards were prepared using potassium nitrate (KNO3). 

 Gas samples were analysed for N2O via a headspace equilibrium technique and gas 

chromatograph (Thuss, 2008). Briefly, a pressurized headspace was created by injecting 

10mL of helium while withdrawing 5mL of sample. Samples were then shaken for 90 

minutes in order to allow for all the N2O to equilibrate with the headspace. Concentrations 

were then determined using a Varian CP 3800 gas chromatograph and calculated according 

to Henry’s Law. 

A detailed description of the LC-OCD and analytical techniques can be found in 

Chapter II. Duplicates were run from six locations in order to obtain the precision for each 

fraction. Precision of the LC-OCD was less than ±0.09 mg/L for all fractions, with HS SUVA 

and molecular weight at ±0.11 L/(mg∙m) and ±24 g/mol, respectively. Overall DOC SUVA 

precision was ±0.17 L/(mg∙m). 

In addition, concentrations of dissolved organic nitrogen (DON) were measured 

upon the BP and HS fractions. As the sample exits the UV-Detector, a small subsample is 

diverted to a helical UV-detector where organically and inorganically bound nitrogen is 

converted to nitrate and subsequently measured at 220nm. Based on duplicate analysis, the 

precision was determined to be ±6.4 μg-N/L. 

DOC concentrations and a set of standards (created using potassium hydrogen 

phthalate) were also independently run on a using a Dohrman DC-190 High Temperature 
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Total Carbon analyzer. Here, samples and standards were acidified using 20% phosphoric 

acid and sparged to remove inorganic carbon. Samples were then injected, combusted at 

680°C to convert DOC into CO2, and measured by a non-dispersive infrared (NDIR) 

spectrum. Samples were measured in triplicate, with the standard deviation being less than 

3% of the overall concentration. 

Ultraviolet absorbance was also independently measured using a Beckman DU® 

Series 500 Spectrophotometer with a 1cm path length. From this, Specific Ultra-violet 

Absorbance at 255nm (SUVA; L/mg∙m) was calculated by: 

     
C

l
A

SUVA      (1) 

where A is the absorbance at 255nm, l is the path length of the quartz cuvette (m), and C is 

the DOC concentration (mg/L). In addition, Nanopure water was used as a blank to subtract 

background absorbance. Furthermore, E2:E3 ratios were calculated by dividing the 

measured absorbance at 255nm by the absorbance at 365nm. It has been found that NO3
- 

may absorb UV at similar wavelengths as DOC (Edwards et al., 2001). However, Weishaar 

et al. (2003) determined it would take more than 100 mg/L of NO3
- to increase the 

absorbance at 254nm by 0.01. Since the aquifer does not contain NO3
- concentrations above 

100mg/L, it can be said that there is no significant absorbance interfering with the overall 

DOC absorbance. 

3.3.3 Groundwater Ages 

Groundwater ages in the proximal plume zone were calculated using two NaBr tracer tests 

and the seasonal breakthrough of elevated EC (Robertson et al., 2012). In this study, the 

same multi-level piezometers were used, allowing for a calculation based on the contours of 

the previous study. Specifically, the position of the measured port between two age 

contours was used to extrapolate the age of the groundwater at that location (Figure 3.2). 

Furthermore, the ages of certain piezometers in the distal plume zone (20 - 200m down 

gradient from the tile bed) were further supported with tritium-helium dating (Robertson et 

al., in press). 
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3.4 Results 

3.4.1 Hydrogeological and Geochemical Properties of the Aquifer 

Assumptions on the groundwater flow path need to be established in order to better 

understand how DOC is transported within the subsurface. First, it is assumed that 

groundwater flow directly under the tile bed is predominately vertical, whereas the rest of 

the aquifer has a dominant horizontal flow towards the south, both at relatively constant 

velocities. In addition, it is assumed there is no flow into or out of the till aquitard. Based 

on groundwater dating, the samples in this study had a wide range of different ages, 

ranging from 5 days to 11.5 years. However the majority of samples was from the proximal 

zone and found to be between 5-600 days.  

Measured conductivity of the samples ranged from 453 to 1322 μS/cm, while Cl- 

ranged from 9.8 to 61.0 mg/L (Table 3.1). The sampling scheme may have included samples 

that were not directly in the effluent plume. In order to correct for this, samples within the 

plume were characterized as having an EC above 600 μS/cm and Cl- concentrations above 

20 mg/L (Robertson et al., 2012) (Figure 3.3). This separates the data into two groups: non-

plume samples (n=3; average EC: 519 ±58 μS/cm; average Cl-: 11.8 ±2.1 mg/L) and plume 

samples (n=20, 1071 ±142 μS/cm; Cl-: 46.3 ±9.0 mg/L). Non-plume samples can be found 

near the water table, approximately 10 meters from the septic tiles (Figure 3.4). 

Non-plume samples have relatively low concentrations of DO (<2 mg/L) and NO3
- 

(>0.1 to 14.2 mg-N/L) (Figure 3.5). Furthermore, non-plume samples contained low 

saturations of both N2O (>312 %) and CH4 (>1.0 x 103 %) (Figure 3.5). The concentration of 

DOC is relatively high (3.54 to 5.53 mg/L), and were generally higher than plume DOC. 

Almost all plume samples also contained DO concentrations below 2 mg/L (Figure 

3.5). Oxygenated groundwater was found in young groundwaters (5.66 and 6.09 mg/L), as 

well as in one sample of groundwater 83 days old (14 m away from the septic tiles, 5.35 

mg/L). Nitrate was found only in high concentrations (>40 mg-N/L) in young groundwater, 

and followed two distinct trends towards lower concentrations with groundwater age. The 

first trend of NO3
- can be seen between 5 to 182 days (-81.7 mg-N/L), while the second 
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trend is between 250 to 985 days (-52.8 mg-N/L) (Figure 3.5). A similar division is seen in 

CH4 data, which increases by 3.1x104 %-saturation between 5 and 182 days, as well as 

between 250 to 985 (+6.4x103 %-saturation). A high saturation of N2O is found among 

younger groundwaters (4.3x105 to 1.2x106 %-saturation at 0 to 99 days), but then decreases 

with age. Concentrations of DOC within the plume are highest in young groundwaters 

(4.63 and 8.02 mg/L in 5 and 9 day old groundwaters, respectively), and decrease to 1.97 

mg/L at groundwater aged 182 days (Figure 3.6). Similar to NO3
-, DOC illustrates a second 

decreasing trend in concentration between 250 and 985 days, with concentrations 

decreasing from 3.75 mg/L to 1.68 mg/L. 

Nitrate and DOC concentrations both suggest that two distinct groundwater paths 

with different travel times are captured in the data. Robertson et al. (2012) found a strong 

vertical component directly under the septic tiles due to heavy sewage loading rates. This is 

seen in the data collected from this study in the decreasing DOC, SUVA, and NO3
- values 

within the first 200 days, occurring predominantly beneath the septic tiles. Secondly, 

higher NO3
- and DOC values further along the plume (starting at 250 days) steadily 

decrease with age, indicating a more horizontally-dominated flow path. The plume maps 

presented in Robertson et al. (in prep) illustrate the horizontal flow of plume tracers along 

the aquifer, illustrating the overall distribution of the plume. Seasonal changes in septic use 

may be responsible for this pattern, since the septic tank is inactive from October to May. 

3.4.2 Plume and Non-Plume Characteristics 

The majority of non-plume DOC can be characterized as having a high proportion of HS 

(64.4 ±5.3% of total DOC) (Figure 3.7). Two samples have different DOC concentrations (173 

days: 5.40 mg/L; 181 days: 3.92 mg/L), but contain very similar compositions. With 

increasing groundwater age, the proportion of HS decreases from a maximum of 67.9% at 

173 days to 58.3 % at 285 days, while BB increase from 15.6 % to 22.6 %. The proportion of 

LMW-N is relatively low (8.26 ±1.4 %), with less than 1% of BP or LMW-A. HS SUVA from 

non-plume samples range from 2.85 to 3.77 L/(mg∙m) (Figure 3.8), while the molecular 

weight of HS range from 575 to 630 g/mol (Figure 3.9). 
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 Plume DOC within the vertical flow path area generally has a lower proportion of 

HS than non-plume groundwaters (Figure 3.10). One exception is found from 83 day old 

groundwater with the anomalous DO concentration, where HS comprise 70.6% of the total 

DOC. The rest of the DOC from this flow path is comprised mainly of HS (average: 53.9 

±6.4 %), with BB (average: 20.6 ±2.2%), LMW-N (14.5 ±2.9 %), and HPho (9.4 ±3.7 %), with 

small proportions of LMW-A (1.3 ±1.0 %) and BP (0.7 ±0.4%). Furthermore, LMW-A are 

found only in groundwaters between 5 and 99 days. Although concentrations of each 

fraction decrease as DOC decreases along the flow path, proportions remain relatively 

stable. However, humic substances from the vertical flow path decrease in HS SUVA and 

molecular weight with age (Figure 3.8; Figure 3.9). 

 Plume DOC within the horizontal flow path (days 250 to 604) is similar in 

composition to the vertical flow path, with HS comprising the majority (58.1 ±9.0%), with 

BB (16.0 ±6.8%), LMW-N (16.8 ±3.4%), HPho (7.3 ±2.4), and LMW-A (0.7 ±0.6%) comprising 

the rest (Figure 3.11). Again, BP do not comprise more than 3.6 % of the total DOC. Humic 

substances increase by 24.7 % between 9 and 503 days, then decrease to a final proportion 

of 45.3 % at 985 days. The proportion of BB is relatively constant (around 22%) to 389 days, 

where it decreases to 7.4 % and increases back to its former percentage. A similar trend is 

seen in the concentration of BB. The proportion of LMW-N increases with time after 250 

days. Concentrations of HS linearly decrease with time, while initial LMW-N 

concentrations slightly decrease from 1.38 mg/L to 0.38 mg/L at 503 days, where it remains 

relatively constant as groundwater ages. The SUVA and molecular weight of humic 

substances within the horizontal flow path exhibited a negative relationship with 

groundwater age (Figure 3.8; Figure 3.9). The molecular weight of HS decreased by 286 

g/mol, while HS SUVA decreased by 3.94 L/(mg∙m). 

DOC SUVA values from non-plume samples were between 2.42 to 4.54 L/(mg∙m) 

(Figure 3.12). The highest values are found with younger groundwater, while the lowest 

value is found in the oldest aged sample. However, SUVA does not decrease linearly with 

age. Instead, a similar trend to DOC and NO3
- is seen, indicating SUVA decreases along 

both flow paths. Furthermore, measured non-plume SUVAs from high DOC are lower than 
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low DOC samples (Figure 3.13). The E2:E3 ratio (an indication of bulk molecular weight) 

finds the oldest samples to have the lowest ratio (1.22), while the younger samples contain 

the highest values (5.56 to 9.91) (Figure 3.14). 

 From the overall plume, highest SUVA was found from the youngest samples 

(Figure 3.12). Similar to NO3
- and DOC, different flow paths can be determined by 

decreasing SUVA values between 0 and 182 days and 250 to 985 days. The vertically-

dominated flow path (5 to 182 days) has an overall decrease of 2.40 L/(mg∙m), while the 

horizontally-dominated flow path (250 to 985 days) decreased in SUVA by 1.43 L/(mg∙m). In 

addition, a positive relationship is found between all plume SUVA and DOC samples 

(Figure 3.13). The E2:E3 ratio of plume DOC does not show such a distinction from different 

flow paths. Instead, only general observations can be made. From this study, younger 

groundwater generally contains ratios between 5.00 and 8.00, increasing until 604 days (a 

maximum of 9.00), where the ratio then decreases to 1.20 (Figure 3.14). 

3.4.3 LC-OCD Analysis of Dissolved Organic Nitrogen 

The LC-OCD could measure DON within the HS and BP component in all samples. 

However, the BP fraction did not generate a sufficient response to accurately integrate the 

peak, unlike HS which had a clear peak. For this reason, only DON bound to HS was 

measured. Concentrations for non-plume HS-bound DON range from 59 to 206 μg-N/L, 

with an average value of 146 ±58.8 μg-N/L (Figure 3.15). Molar ratios of HS DOC to HS-

bound DON (hereafter referred to as HS DOC:DON) are generally low, ranging from 14.0 to 

26.4 (Figure 3.16). 

The vertical flow path contained HS-bound DON from 77 to 375 μg-N/L, and 

generally decreased with age (Figure 3.15). The HS DOC:DON molar ratio was found to 

range between 11.0 and 12.0 in young groundwaters, to a ratio of 14.0 at 189 days (Figure 

3.16). The horizontal flow path illustrates a similar trend in DON, decreasing from 188 to 41 

μg-N/L over 735 days. Conversely, the DOC:DON ratio increases from 13 to 22 over the 

same time period.  
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3.5 Discussion 

3.5.1 Changes to DOC Quality from SUVA and LC-OCD Parameters 

The aquifer at Long Point is impacted by the septic tiles, which are contributing a high 

concentration of labile (high quality) DOC into the aquifer. It has been found that the 

plume exhibits very low dispersivities and has a core zone that shows only minor dilution 

(Robertson & Cherry, 1992; Robertson et al., 2012). The concentrations of Cl- (a 

conservative tracer) and values of EC within the plume (along both flow paths) imply there 

is likely little dilution or mixing of plume DOC with background DOC, thus the decrease in 

DOC is altered by internal processes rather than by dilution. Although extensive 

precipitation can dilute concentrations in the most shallow wells (van Stempvoort et al., 

2011), days leading up to the sampling had no significant precipitation events (Canadian 

Historical Weather Radar, Environment Canada). Hence, as the DOC is transported, 

alterations to its quality must be a result of the internal processes within the aquifer. 

Non-plume groundwater generally contains DOC concentrations higher than plume 

groundwater. Previous studies have found that the high rate of NO3
- loading, anoxic 

conditions and oxidation of carbon within the plume allows denitrification to occur 

(Robertson & Cherry, 1992; Aravena & Robertson, 1998). In addition, the presence of N2O 

supports the presence of this process since it is an intermediate product of denitrification. 

Thus, if there are active microbial processes occurring, it would likely be heterotrophic, 

requiring labile carbon, and would likely follow the denitrification reaction in an anaerobic 

environment: 

    (1) 

Looking at the vertical flow path only, a mass balance calculation indicates that around 49 

mg/L of NO3
- is lost (or 3.50 mmol), meaning that through Equation 1, a total of 53 mg/L of 

DOC (4.38 mmol of CH2O) would be required for the observed loss in NO3
-. A similar 

situation is found in the horizontal flow path, where the loss of 51 mg/L of NO3
- (3.64 

mmol) would require 55 mg/L of DOC (or 4.55 mmol CH2O). The mass balance indicates 

that the loss of DOC is not sufficient to act as a sole source of carbon for denitrification, 
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indicating that a combination of the sediment organic matter (foc) and possibly FeS2 

oxidation are used for denitrification. Although DOC is not the main source of energy, it is 

likely involved with denitrification and that heterotrophic degradation likely alters the 

quality of DOC. 

 The high concentrations of NH4
+ found within the shallow plume is similar to 

previous studies, attributed to heavy sewage loading early in the season (‘May 24’ event) 

(Li, 2010; Robertson et al., 2012). This ‘slug’ represents relatively young DOC that was slow 

to degrade and would have undergone different reactions than the surrounding 

groundwater (Li, 2010). Specifically, this area would have undergone denitrification for 

over 20 years, making it possible that all labile foc has been consumed, and is too shallow 

to interact with available pyrite deeper in the aquifer. From this, it can be argued that the 

NH4
+-rich plume represents a location where DOC is predominantly used for 

denitrification. 

The decrease in DOC concentration occurs concomitantly with a decrease of SUVA 

values, indicating a change in the character of DOC. Aromaticity and biodegradability of 

bulk DOC can be compared through SUVA. An increase in SUVA is correlated to an overall 

increase in the aromaticity of DOC (Weishaar et al., 2003), which has been found to be 

inversely related to the amount of biodegradation (Kalbitz et al., 2003). Interestingly, as the 

DOC concentration decreases, SUVA values indicate an overall decrease in aromatic 

components along both flow paths. This is supported in both flow paths by LC-OCD 

chromatograms and E2:E3 ratios. In addition, there is a decrease in the concentration and 

SUVA of HS, as well as a shift towards lower molecular sized components. Furthermore, 

comparison of HS SUVA to the overall DOC SUVA illustrates a positive linear relationship 

from both flow paths, indicating that the loss of aromatic HS may influence the overall 

SUVA (Figure 3.17). In addition, since the data does not follow a 1:1 relationship, this shows 

that there is a preferential loss of HS, indicating a change to the character of DOC. 

By comparing the two flow paths in the plume, a slight difference exists when 

observing changes to the composition of DOC. Although the vertical flow path illustrates a 

decreasing SUVA, very little change among fraction proportions are observed with time, 
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whereas the horizontal flow path shows an increase in the proportion of LMW-N. As DOC 

concentrations decrease along the horizontal flow path, concentrations of LMW-N remain 

constant, thus increasing in proportion. Qualls and Haines (1992) observed a portion of 

organic matter that degrades rapidly, as well as a portion that degrades much slower. It is 

possible that the longer residence time of DOC in the horizontal flow path allows for the 

accumulation of LMW-N, not possible in the shorter vertical flow path. Integrating these 

results shows a decrease of DOC concentration from the preferential loss of aromatic 

components, forming LMW-N as possible products of degradation. Furthermore, the lower 

HS SUVA than DOC SUVA indicates some products of degradation are aromatic. In both 

flow paths, HS contain the highest variability in proportions, leading to the idea that these 

constituents may dictate the quality of DOC. 

In both flow paths, decreasing aromaticity and molecular weight of HS with 

increasing groundwater age illustrated active degradation of humics. Differences in HS 

characteristics have been attributed to different sources (Artinger et al., 2000). Within this 

plume, DOC can originate from either the septic tile or from the high sediment organic 

carbon (SOC) content within the aquifer. Studies have observed the in-situ generation of 

DOC through the degradation of SOC in the presence of an oxidizing agent (such as 

oxygen, nitrate, or sulphate) within the aquifer (Aravena & Wassenaar, 1993; Buckau et al., 

2000). Thus, changes to the DOC will result from processes occurring within the plume. 

Although HS have been considered to be relatively recalcitrant (Frimmel, 2003; Cleveland 

et al., 2004; Qualls, 2005), this may not always be the case. Volk et al. (1997) determined 

humic substances to be an important part of biodegradable DOC, while Camper (2004) 

demonstrated that humics can act as a sole energy source for biofilms. Degradation could 

be accounted for by the continual reworking of the HS structure. For instance, large 

molecular weight molecules may break down into lower weight and lower aromatic 

molecules, but still be the appropriate size to be classified as HS, which can be seen in the 

data. Furthermore, younger groundwater found near the septic tiles had similar HS SUVAs 

and molecular weights as sewage-impacted humics, while older groundwater were similar 
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to in-situ, autochthonous HS (Huber et al., 2011). These changes within the DOC illustrate 

that HS may act as a labile portion of DOC. 

The LC-OCD provides valuable data on the organic nitrogen bound to the HS 

fraction. When inorganic nitrogen is low, organic nitrogen provides a major nutrient to 

support bacterial growth, and is generally found at very low concentrations (<0.2 mg/L) 

(Nolan & Stoner, 2000; Chapin III et al., 2002; Wiegner et al., 2006). Studies have found that 

an increase of inorganic nitrogen to a system increases the amount of DON release, 

decreasing the overall C:N ratio (Williams & Silcock, 1997; Williams et al., 1999; Neff et al., 

2000). High loads of inorganic nitrogen are introduced into the groundwater from the 

septic tiles, forming higher amounts of DON and contributing to the very low HS 

DOC:DON ratio. Results from this study are similar to groundwater samples collected from 

a moorland (average molar DOC:DON=6.95, n=18; Lapworth et al., 2008) and a degraded 

and intact peatland (average DOC:DON=9.4 and 17.5 (respectively), n=41; Kalbitz & Geyer, 

2002). The ratio of DOC:DON can be used to observe the lability of organic matter. 

Biodegradability of DOC was found to be higher with a low DOC:DON ratio (Fellman et al., 

2008). The horizontal flow path illustrates a greater change in the DOC:DON ratio with age 

than the vertical flow path, showing more loss of DON with time. The greater amount of 

inorganic nitrogen in the vertical flow path may allow DON to persist throughout the flow 

path, while lower concentrations of inorganic nitrogen along the horizontal flow path may 

reduce the formation of DON, thus increasing the DOC:DON ratio. The decrease in both 

DON and DOC along both flow paths further supports the degradation of labile DOC into a 

recalcitrant form.  In addition, the distal plume as been found to contain low levels of NH4
+ 

(1 to 3 mg/L) that contain a lighter isotopic signature than that of wastewater NH4
+, 

indicating a different source (Robertson et al., in prep). It is possible the degradation of HS 

DON provides a secondary formation for this small amount of NH4
+ mineralization away 

from the septic tiles. 

Both SUVA and LC-OCD analysis illustrated that DOC decreases over the length of 

the plume and was becoming a reworked and less labile form. Specifically, changes to the 

DOC occurred to HMW, aromatic HS, possibly producing LMW-N as degradation products. 
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In order to better understand such changes to DOC character, it is best to compare to other 

DOC degradation studies and determine if similar changes are found.  

3.5.2 Processes Affecting DOC Composition 

DOC from the plume changes in quality as a result of internal processes within the aquifer 

from four potential mechanisms: changes from the unsaturated zone, sorption, 

mineralization of SOC, or microbial degradation along both flow paths. 

3.5.2.1 The Unsaturated Zone 

The unsaturated zone provides opportunity for DOC to be altered before it reaches the 

groundwater table. Foulquier et al. (2011) found most labile DOC from a storm-water 

recharge zone to be retained in the vadose zone. Among the natural environment, studies 

have determined soils to be responsible for most DOC degradation within the first few 

meters of the subsurface (Ludwig et al., 2000). However, Long Point is situated upon a sand 

spit and contains little amounts of soil at the surface, thus water (and DOC) may move 

relatively quickly, which may contribute towards the high concentrations seen in this 

study. Although concentrations within the plume (~5 mg/L) are high for groundwaters, the 

source effluent contains much higher concentrations (~32 mg/L; Robertson & Cherry, 1992; 

Robertson et al., 2012), indicating that the DOC has, in fact, been subject to considerable 

alterations before reaching the water table. It has been observed that aerobic soil passage 

results in preferential degradation of chained (aliphatic) carbon, whereas anaerobic 

infiltration degrades more aromatic sources (Grünheid et al., 2005). Furthermore, Huber et 

al. (2011) determined that microbial-influenced HS contain low molecular weights (<500 

g/mol) and HS SUVAs (<2.00 L/(mg∙m)). The data corroborate this idea since the 

composition of DOC beneath the septic tiles consists mainly of humics (HS and BB), in 

addition to containing highly aromatic molecules (determined from the high SUVA), which 

degrade over time into microbially influenced HS. These findings suggest the potential for 

biological degradation of DOC above the water table, which should be taken into account 

when assessing the overall quality along the plume. 
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3.5.2.2 Sorption and DOC Quality 

Adsorption to sediments has been found to alter the overall composition of DOC (Meier et 

al., 1999; Hur & Schlautman, 2003; Meier et al., 2004). Specifically, the presence of 

hydroxides results in fractionation, where HMW and aromatic components are 

preferentially adsorbed (Zhou et al., 2001; Maurice et al., 2002). Robertson (2008) found 

‘substantial amounts’ of acid-extractable aluminum, iron, and manganese within the 

aquifer, indicating the presence of hydroxide minerals as well as the potential for DOC 

fractionation. McIntyre et al. (2005) found adsorption of humic acids to lower both 

concentration and aromaticity of bulk DOC. However, the data do not support preferential 

adsorption since proportions of most fractions remain relatively constant in both flow 

paths as concentrations decrease. This indicates that most fractions are decreasing at the 

same rate, which is against the idea of preferential retention of HS. 

3.5.2.3 Mineralization of Sediment Organic Carbon 

Mineralization of SOC within aquitards and deep aquifers has been found to increase DOC 

and dissolved inorganic carbon concentrations. Furthermore, humic substances are 

preferentially released during this process (Artinger et al., 2000; Buckau et al., 2000; 

Aravena et al., 2004; Hendry & Wassenaar, 2005). Furthermore, the mineralization of SOC 

can be observed by low concentrations of sulphate (SO4
2-, an oxidizing agent) and increased 

concentrations of CH4 gas (Buckau et al., 2000; Aravena et al., 2004). It is unlikely that 

mineralization of SOC influences the quality of DOC within either flow path due to the 

relatively unchanging proportion of HS. In addition, both flow paths contain detectable 

amounts of SO4
2- (5.5 to 47.7 mg/L), furthering the idea that mineralization of SOC does not 

change the quality of DOC. 

3.5.2.4 Microbial Degradation of DOC 

Different fractions of DOC may provide better substrates for microbial degradation, 

illustrating the importance of LC-OCD analysis. Bacterial degradation of inorganic nitrogen 

was found to occur simultaneously with the degradation of HMW DOC (Amon & Benner, 

1996). The loss of NO3
- and DOC, in addition to the decrease in SUVA, may support these 
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findings. Furthermore, the size-reactivity continuum model states that microbial 

degradation of DOC leads to lower weight, refractory compounds (Amon & Benner, 1996), 

supporting the relative increase in LMW-N proportion. These results go against the 

findings of Grøn et al. (1992) and Qualls (2005), both who observed LMW compounds to be 

preferentially utilized. Conversely, Brinkmann et al. (2004) found LMW acids to be highly 

bioavailable, which can be seen in the data by the rapidly decreasing concentration of 

LMW-A. It is plausible there are processes occurring where the uptake of labile LMW 

molecules occurs at the same rate as the formation of recalcitrant LMW compounds from 

HMW degradation. 

Pairing the degradation of DOC with groundwater age allows for calculation of a 

degradation rate. Studies have used an exponential decay model to account for labile and 

recalcitrant portions (Scully et al., 2004; Cuss & Guéguen, 2012), while Worrall et al. (2006) 

found a zero-order degradation rate was indicative of an environment with excess 

substrate. A variety of degradation rates are found within the environment, ranging from 

0.03 to 23 mg-C/L per day (Table 3.2). The data from this study is best fit through a simple 

linear regression. By fitting a linear regression to the vertical flow path area (day 0 to 182; 

R2= 0.45), the degradation rate is found to be 2.2 x 10-2 mg-C/L per day (or 7.99 mg-C/L per 

year). For the horizontal flow path area, the initial concentration below the septic tiles is 

used, as well as data between 250 to 1000 days (R2: 0.68), giving a degradation rate of 4.8 x 

10-3 mg-C/L per day (or 1.75 mg-C/L per year). These calculations indicate a slower 

degradation than other environments; however offer an initial estimate to the rate of DOC 

loss within the aquifer. 

The BP fraction is of particular interest since it can be associated with microbial 

degradation of DOC. Biopolymers are found to be more abundant under areas of high 

organic matter loading (Foulquier et al., 2011; Neale et al., 2011), thus it would be expected 

to find a high concentration under the septic tiles. In addition, it has been found that 

aquifer DOC contains a significant microbial component (Birdwell & Engel, 2009). Within 

both flow paths, heterotrophic bacteria (likely housed in biofilms) would use the DOC 

during oxidation or denitrification, increasing the proportion of proteins and 
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polysaccharides (Hesse et al., 1999). The data indicate that both DOC loss and 

denitrification to occur, creating conditions that should produce high amounts of BP. 

However, there must be a process either hindering the formation and transport or causing 

rapid recycling of these large biomolecules, since very low amounts of BP are found in the 

dissolved fraction. One study of artificial recharge observed the removal of larger fractions 

by adsorption and mechanical filtering (Lindroos et al., 2002). It is possible that the larger 

DOC fractions were filtered out from the unsaturated zone before entering the 

groundwater, possibly contributing to biological mats found directly under septic tanks 

(Wilhelm et al., 1994). In addition, BP may coat the grains within the unsaturated zone, 

rather than be found in solution (Marshall, 1988; Griebler et al., 2002). Regardless, 

groundwaters may not be effective conduits for BP transport, but that does not indicate 

they are not present within the environment. 

Low DOC:DON ratios can be considered to be characteristic of autochthonous 

(formed in-situ) organic matter (Westerhoff & Mash, 2002). Amon and Benner (1996) 

observed bioreactive HMW compounds to be depleted in organic nitrogen, requiring an 

inorganic nitrogen source to allow microbes to degrade it into LMW compounds. Within 

the vertical flow path, HS bound DOC:DON ratios remain constant, even with decreasing 

DON concentrations, illustrating that equal amounts of carbon and nitrogen are being lost 

under the septic tiles. However, the increasing DOC:DON ratio in the horizontal flow path 

indicates that nitrogenous species are depleted along the plume, creating more carbon-

enriched molecules. This may illustrate that labile DOC from groundwater can be 

considered to contain relatively higher nitrogen moieties. In addition, Fellman et al. (2008) 

observed an increasing DOC:DON ratio with a decrease in humic:fulvic ratio. Although the 

LC-OCD provides a range of HS characteristics (from high values of molecular weights and 

SUVAs to low values), a decreasing humic:fulvic ratio would indicate HS becoming less 

aromatic and of lower molecular weight. This result is supported through findings from 

both LC-OCD data and HS SUVA data, as well as from the increase in DOC:DON, 

furthering the idea that HS may be an important constituent in the determination of DOC 

quality. 
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3.5.3 Comparison of Septic Derived DOC to Natural Environments 

Due to the high load of anthropogenic DOC from the septic tiles, it is thought labile 

components of carbon found here may not be found within the natural environment, and 

thus would have a different composition. Humic substances comprise the majority of the 

DOC in groundwater, both in natural systems and within this impacted septic system 

plume (Thurman, 1985; Grøn et al., 1996). Furthermore, the overall composition appears not 

to differ greatly from other groundwaters (Figure 3.18), with humics (HS and BB) forming 

the majority, and the rest comprised of LMW compounds. However, the proportion of 

HPho is indicative of DOC from effluent-impacted rivers, which usually contain 10% of the 

DOC as HPho (Huber et al., 2011). Although the average proportions differ from other 

environments, it can be seen the general composition is similar to other groundwater 

environments. 

The stability of DOC composition in both flow paths leads to the idea that labile 

DOC cannot be properly defined by the abundance of a single component. Wickland et al. 

(2007) suggested a microbial ‘filter’ conformed DOC into a specific composition. Results 

from this study did not show this, since the loss of DOC within the plume did not change 

the overall proportion of the DOC composition. Furthermore, comparison of DOC to a 

variety of natural environments illustrates that although the compositions are generally 

similar, septic-derived DOC contains not only higher proportions of HS, but also more 

aromatic and higher molecular weight HS (Figure 3.19). If DOC from Long Point represents 

a labile form, these results show degradation of DOC would lead toward a lower aromatic 

and molecular weight HS, as well as proportionally within the DOC. 

3.5.4 Future Research 

By grouping DOC fractions based on molecular size, it is difficult to determine structural 

differences within a fraction (such as labile LMW-N or reworked LMW-N). Pairing the 

characterization of DOC with a more qualitative method on individual separated fractions 

(such as 13C-NMR) would likely add further insight to whether the increasing proportion of 

LMW-N is due to the recalcitrance of this fraction, or the breakdown of HMW molecules. 



 

 52 

Regardless, data show septic-influenced plume DOC to contain higher proportions of 

LMW-N than non-plume DOC, leading to the idea that active microbial degradation occurs, 

with this fraction indicative of microbial reworking. 

 The mineralization of isotopically-lighter NH4
+ from the distal plume illustrates an 

area for further research. Although the mineralization of HS DON may account for some of 

this, concentrations are too low (<100 μg-N/L) to completely account for all the NH4
+ (1 to 

3 mg-N/L). Being attributed to organic-rich zones within the aquifer (Robertson et al., in 

prep), focusing LC-OCD characterization on this area would allow for a better 

understanding to the sources of DOC. 

By focusing only upon the DOC within groundwater, this study was able to identify 

changes to the DOC character along the plume. However, future research could focus on 

using the LC-OCD to measure changes within the unsaturated portion of the aquifer, since 

this may play a key role in determining which fractions enter the groundwater and which 

are retained above the water table. In addition, an attempt at the composition of organic 

matter on the solid grains of the aquifer would provide worthwhile results since it is 

possible that large molecules of DOC are found in these locations. 

3.6 Conclusions 

The septic plume at Long Point, distinguished by its high concentrations of Cl-, NO3
- and 

high EC, introduced a large concentration of HMW DOC with elevated aromatic character 

into the groundwater. Two distinct flow paths were determined within the plume: a 

relatively short vertical flow path, and a longer, horizontal flow path; both exhibiting a 

decrease in NO3
- and DOC with increased age. As DOC decreased, proportions remained 

relatively the same, but SUVA and HS SUVA, molecular weight, and DOC:DON illustrated 

a clear decrease with increasing age. In addition, a slight increase of LMW-N and increase 

in aromatic character possibly illustrated the products of HMW degradation. Changes to 

the lability of DOC were found to be similar to that of other microbial degradation studies, 

while preferential sorption of HS was not found to occur within either flow path. 

Comparison of septic-influenced DOC to other groundwater environments illustrates that 

although the relative proportions of each fraction within DOC are similar, labile DOC from 
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the septic tiles contains a higher proportion of HS. These HS are of higher molecular 

weight and more aromatic than other groundwater environments. 

The changes to molecular weight and aromaticity of HS lead to an inference to DOC 

quality. Data from this study suggest that HS may play an important role in providing an 

energy source for microbes, leading to the idea that HMW and aromatic HS provide high 

quality components. Furthermore, since HS comprise the majority of DOC, it can be 

thought that they dictate the overall quality of DOC. For example, the decrease in HS 

aromaticity corresponds with the decrease in SUVA (a measure of the bulk DOC), 

suggesting that the decreasing SUVA may be a result of aromatic, UV-absorbing HS 

degrading into non-absorbing components. These results allow for a better understanding 

into the components that help make up the labile portion of DOC, furthering our 

understanding of DOC dynamics within the subsurface. 
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Table 3-1: Chemical parameters of groundwaters collected at Long Point, Ontario (n=23). 
Parameters for EC, DO, and pH were measured in the field, whereas Cl-, NO3

-, SO4
2-, and 

DOC were measured at the University of Waterloo. Included are values from the effluent 
measured in the septic tank, piezometer nests directly below the tiles, and 40 to 70m down 
gradient of tiles, all from previous studies measured at the same location as this study. 

  EC DO pH Cl- NO3
- SO4

2- DOC 
  μS/cm mg/L   mg/L mg-N/L mg/L mg/L 

Max 1322 6.09 8.27 61.0 83.6 47.7 8.02 
Min 453 0.34 6.05 9.8 1.9 5.5 1.68 

Average 999 1.20 6.65 41.8 43.2 19.4 3.29 
Std Dev 232 1.84 - 14.6 27.4 12.6 1.54 

        Effluent Measured in Tanka,b,c - - 7.25 60.7 0.54 37.5 32.1 

Directly Under Septic Tile Beds, 
(depth between 2 to 6 m)

a,b 1390 0 - 7 6.6 46.0 51.0 34.0 5.0 

Downgradient of Septic Tiles 
 (40 to 70m from septic tiles)

a 1200 1 - 3 6.7 44.0 5.0 78.0 3.2 
a: Robertson & Cherry, 1992: Tile Bed 1 

      b: Robertson et al., 2012: Tile Bed 2 

      c: Robertson, 2008: Tile Bed 2 

        

Table 3-2: Comparison of DOC degradation rates from a variety of environments. 

Environment 
Degradation 

Rate 
Length of 

Time Source 
mg-C/L per day days 

Leaf Litter 1.29 14 Hur et al., 2009 

    
Stream 0.03 to 23 

Average: 3 
Continual 

monitoring Worrall et al., 2006 

    Soil from fen 0.21 30 Fellman et al., 2008 
Soil from bog 0.24 30 Fellman et al., 2008 
Soil from upland wetland 0.09 30 Fellman et al., 2008 

    Directly Beneath Tile Bed 
2 0.02 186 This study 
Along length of plume 0.0048 985 This study 
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Figure 3.1: Site location of Long Point Provincial Park in Ontario (upper diagrams, 
outlined in orange), as well as a cross-sectional view of Tile Bed 2 and aquifer (below). 
Black dots represent ports in the multi-level piezometers, whereas numbers represent the 
piezometer nest. The dotted line represents the water table. 
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Figure 3.2: Groundwater age contours within the Long Point septic plume (days). Figure 
was taken from Robertson et al., (2011). The dotted line represents the water table, while 
ports with the large shaded dot indicate ports sampled in this study. Numbers next to ports 
indicate depth below surface (m). 
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Figure 3.3: Chloride (mg/L) versus electrical conductivity (μS/cm) for all samples. Dotted 
line represents the boundary between plume samples (>20 mg/L Cl-; >600 μS/cm) and non-
plume samples.  
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Figure 3.4: Cross-sectional diagrams of electrical conductivity (A; μS/cm), chloride 
concentrations (B; mg/L), and dissolved organic carbon concentration (C: mg/L) illustrating 
piezometer nests within or out of the plume. Figure C also includes the boundary of the 
plume (dotted grey line), as well as the early season heavy sewage event contributing high 
NH4

+ (‘May 24’ event, solid grey lines). Samples represent a ‘snapshot’ in time, taken from 
a single sampling trip on October 10th, 2011. 



 

 59 

 
Figure 3.5: Concentrations of nitrate (Graph A: mg-N/L) and dissolved oxygen (Graph C: 
mg/L), along with percent saturations of nitrous oxide (Graph B; N2O) and methane (Graph 
D; CH4) versus age of groundwater (days). Solid circle symbols represent samples within 
the plume, while open triangles represent samples not in plume. 
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Figure 3.6: Dissolved organic carbon concentration (mg/L) over age (days) for 
groundwater samples. Closed circles represent samples within the plume, while open 
triangles represent samples not in the plume. 
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Figure 3.7: DOC fraction proportions (Figure A) and concentrations (Figure B; mg/L) 
versus age (days) along the septic plume. LC-OCD fractions include hydrophobics (HPho, 
closed circle), biopolymers (BP, open triangle), humic substances (HS, closed square), 
building blocks (BB, open diamond), low molecular weight neutrals (LMW-N, closed 
triangles) and acids (LMW-A, open hexagon). Black and white symbols represent samples 
within the plume, while grey symbols represent samples out of the plume. 
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Figure 3.8: Humic substance SUVA (L/(mg∙m)) versus groundwater age (days). Closed 
circles represent samples within the plume, while open triangles represent samples not in 
the plume. 

 
Figure 3.9: Humic substance molecular weight (g/mol) versus groundwater age (days). 
Closed circles represent samples within the plume, while open triangles represent samples 
not in the plume. 
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Figure 3.10: Vertical flow path area (0 to 182 days) LC-OCD fractions of DOC (Graph A) 
and concentrations (Graph B, mg/L) versus age (days). Black and white symbols represent 
samples within the vertical flow path of the plume, while grey symbols represent samples 
not in the plume. 
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Figure 3.11: Horizontal flow path (0 to 985 days) LC-OCD fractions of DOC (Graph A) and 
concentrations (Graph B, mg/L) versus age (days). Black and white symbols represent 
samples within the horizontal flow path of the plume, while grey symbols represent 
samples not in the plume. 
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Figure 3.12: SUVA values (L/(mg∙m)) versus groundwater age (days) for samples within 
the plume (both flow paths illustrated; closed circles) and not in the plume (open triangles). 

 
Figure 3.13: SUVA values (L/(mg∙m)) versus dissolved organic carbon concentration 
(mg/L) from both flow paths within the plume. Closed circles represent samples within the 
plume, while open triangles represent samples not in the plume. 
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Figure 3.14: Spectral ratio of E2:E3 versus groundwater age (days) for plume (both 
flowpaths; closed circles) and out of plume samples (open triangles). 

 
Figure 3.15: Humic substances bound dissolved organic nitrogen (μg-N/L) versus 
groundwater age (days) for the vertical flow path (left) and horizontal flow path (right). 
Closed circles represent samples in the plume, while open circles represent samples out of 
plume. 
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Figure 3.16: Ratio of humic DOC:DON versus groundwater age (days) for the vertical flow 
path (left) and horizontal flow path (right). Closed triangles represent samples in the plume, 
while open triangles represent samples out of plume. 

 
Figure 3.17: Comparison of humic substances SUVA to dissolved organic carbon SUVA 
from samples in the plume (including both flow paths; closed circles) and samples out of 
the plume (open triangles). A 1:1 line is represented by the dotted grey line. 
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Figure 3.18: Boxplots illustrating the relative similarity of DOC compositions from other 
natural groundwater environments (n=43) to Long Point (n=23). Natural groundwater 
environments include samples from Nottawasaga Valley (ON; shallow aquifer), Black 
Brook Watershed (NB; deep aquifer), and Turkey Lakes Watershed (ON; variety of 
hydrological environments), depicting a variety of different environments. Each fraction is 
represented by the median, 10th, 25th, 75th, and 90th percentiles, while dots represent 
outliers. 

 
Figure 3.19: Comparison of humic substances SUVA (L/(mg∙m)) and molecular weight 
(g/mol) from Long Point to a variety of other environments.  
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Chapter 4 

Use of the LC-OCD to Characterize DOM from a Number of Surface and 

Ground Water Environments 

4.1 Introduction 

Although DOM has been characterized by the LC-OCD in wastewater treatment processes, 

it has not been applied as a method to characterize organic matter quality in the natural 

environment. A wide range of DOM characteristics have been observed when DOM is 

sampled from a variety of environments (Bourbonniere, 1989; Jaffé et al., 2008; Mueller et 

al., 2012) (Figure 4.1). The purpose of this study is to characterize natural DOM from a 

variety of both surface and ground waters, using the LC-OCD classification scheme. The 

comprehensive sampling of this study will provide a detailed look at natural DOM, as well 

as offer a basis for future studies to quantify long-term changes to the character of DOM.  

4.1.1 Research Objectives 

It is hypothesized that different environments will have different compositions due to the 

variety of sources and physical, chemical, and biological processes encountered in the 

environment. This will be explored through a four objectives:  

1) To observe whether different surface water environments contain similar DOM 

compositions, by comparing LC-OCD chromatograms from three different surface 

water environments: streams, lakes, and rivers 

2) To see whether different ground water environments contain similar 

compositions, by examining the changes to DOM with depth in a shallow aquifer, 

followed by an overall comparison of DOM at an aquifer scale, and finally 

observing the composition of DOM from an entire watershed 

3) To see whether the aromaticity and molecular weight of HS can be used to 

distinguish different environments, determined by comparing the SUVA of HS (an 

indicator of its aromaticity) to its molecular weight 
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4) To see whether DOM from surface waters are compositionally different than 

ground waters, determined by comparing compositions of different hydrologic 

environments and observing whether certain fractions are more dominant than 

others. 

4.2 Site Descriptions 

4.2.1 Surface Waters 

4.2.1.1 Experimental Lakes Area, Ontario 

The Experimental Lakes Area (ELA; 49° 39’ 40”N, 93° 43’ 48”W, Figure 4.2) is situated in 

north-western Ontario, approximately 55km southeast from Kenora. Located within the 

Boreal forest, ELA has been extensively studied during whole-lake and long-term scientific 

experiments. The geology of the area consists of Precambrian bedrock (granite) with a 

discontinuous surficial layer of sandy-gravel till (Davies et al., 1965; Zoltai, 1965). Samples 

from both lakes and streams were collected between May and August in 2010 and 2011 

(Table 4.1). 

4.2.1.2 Grand River, Ontario 

The Grand River Watershed (6,700 km2; 43° 30’ 41”N, 80° 29’ 43”W) is located in southern 

Ontario. The surrounding land is predominately of agricultural use. The Grand River (GR) 

flows overtop Silurian limestone and dolomite (Ayers et al., 1971), with surficial deposits of 

glaciofluvial outwash and till (Barnett et al., 1991). Samples were taken along a 90km 

stretch beginning north of the City of Waterloo and ending just before the City of 

Brantford. Within this stretch, six wastewater treatment plants are located along the river. 

Samples were taken between February and November, 2011.  
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4.2.2 Ground Waters 

4.2.2.1 Nottawasaga Valley, Ontario 

The Nottawasaga Valley (NW) was sampled approximately 5 km southeast of Alliston in 

southern Ontario (44° 7’ 26”N, 79° 49’ 12”W). The regional bedrock of the area is Middle 

Ordovician limestone and shale (Ayers et al., 1979), while surficial deposits are comprised 

of glaciolacustrine deposits (sand and gravel) (Barnett et al., 1991). Land use of the area is 

dominantly agricultural. Samples were collected in April 2011 from a single multi-level 

piezometer in the unconfined surficial sand aquifer. The depths sampled were at 4.35 m, 

5.13 m, 5.94 m, 6.68 m, 9.90 m, and 11.26 m below surface. 

4.2.2.2 Black Brook Watershed, New Brunswick 

The Black Brook Watershed (BBK) is found near St. André, New Brunswick (47° 6’ 11”N, 

67° 45’ 40”W). The watershed covers an area of 14.5km2 with land cover consisting 

predominantly of agricultural activities, especially potato production (Valentin, 2002, p. 6). 

The bedrock of the area consists of sedimentary rock from Ordovician deep marine clastics 

to Early Silurian carbonates (New Brunswick Department of Natural Resources and Energy, 

2000). Surficial geology consists of till and small deposits of glacial outwash (Rampton, 

1984). Samples were collected from twelve domestic wells and three multilevel piezometers 

between the months of May and June in 2011. Depths ranged from 6.1 m to 29.9 m below 

surface. 

4.2.2.3 Turkey Lakes Watershed, Ontario 

The Turkey Lakes Watershed (TLW; 47° 2’ 54”N, 84° 24’ 25”W) is a relatively undisturbed 

area found approximately 60km north of Sault Ste. Marie, Ontario. The watershed has been 

extensively studied by Environment Canada and the Canadian Forest Service for the effects 

of acid rain upon an undisturbed environment. The watershed is approximately 10.5 km2, 

and is located within the Great Lakes-St. Lawrence forest region (Rowe, 1972). The geology 

of the area consists of a Precambrian Bedrock (undifferentiated igneous and metamorphic 

rock) with small areas of surficial glacial deposits of glaciofluvial outwash and ice-contact 
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deposits (gravel, sand, till, and eskers) (Barnett et al., 1991b). A more comprehensive 

description of the geochemistry and instrumentation can be found within the literature 

(Craig & Johnston, 1988; Jeffries et al., 1988; www.tlws.ca). Samples were taken in May of 

2011 from a variety of ground water locations to capture a comprehensive representation of 

the watershed. Specifically, these areas can be classified into five groups: 1) lake shore, 2) 

headwater (near watershed boundary), 3) wetland, 4) upland wetland (near watershed 

boundary), and 5) slope draining the wetland. Depths ranged from 0.90 m to 6.89 m below 

surface. 

4.3 Methods 

4.3.1 Field Methods 

Surface water samples were collected approximately 30 cm under the surface, while deeper 

samples required the use of a Greylor PQ-12 gear pump. Ground water samples were taken 

from wells that were pumped into a flow-through cell until a stable electrical conductivity 

and temperature reading were measured. Samples were filtered using a 0.45 μm filter and 

collected in 40 mL glass vials. In some instances, duplicates were taken in order to test the 

reproducibility of the LC-OCD. Samples were stored in the dark at <4°C and measured no 

more than a week after sampling. 

4.3.2 LC-OCD Analysis 

A full description of the LC-OCD and its technical analysis can be found in Chapter II. 

Duplicates from numerous samples were used to obtain a precision of the LC-OCD. Here, 

standard deviations for all fractions were less than ±0.20 mg/L and were less than ±0.08 

L/(mg∙m) and ±10 g/mol for HS SUVA and molecular weight, respectively. 

http://www.tlws.ca/
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4.4 Results 

4.4.1 Surface Waters 

Overall, surface waters contain DOC concentrations from 3.54 to 38.7 mg/L (n=70, Figure 

4.3). Surface waters can be divided into three categories by location sampled: ELA lakes, 

ELA streams, and the Grand River. Concentrations of DOC are highest from ELA streams 

(n= 12, average: 16.7 mg/L, standard deviation: ±9.28 mg/L), but relatively similar between 

ELA lakes (n=11, 8.70 ±2.69 mg/L) and the GR (n=47, 6.70 ±2.01 mg/L). Among all three 

types, the majority of the DOM is made up of HS (45 to 62 %), with BP, BB, LMW-N making 

up the other 30%. Low molecular weight acids rarely comprise more than 2% of the total 

DOM. Furthermore, a wide range of nominal average molecular weights (545 to 844 g/mol) 

and aromaticities (2.57 to 6.22 L/(mg∙m)) of HS are found (Figure 4.4). 

DOM from ELA lakes are mainly comprised of larger molecular-weight compounds 

(HS: 46 ±9%; BB: 19 ±3%) (Figure 4.5). The DOM from ELA lakes not only varies among 

lakes, but also with depth (Figure 4.6). Profiles from L227 and L442 indicate an increasing 

DOC concentration (increasing by 3.47 mg/L and 0.24 mg/L, respectively) and proportion of 

BP (17% and 6%, respectively). This occurred concomitantly with a decreasing proportion of 

HS (-12% and -1%, respectively). 

Differences in DOM composition can be seen between ELA streams flowing 

through different environments: wetland (surrounded by a high amount of organics) or 

upland bedrock (little organics). Generally, wetland streams that have similar 

concentrations to that of the upland stream are compositionally similar (Figure 4.7). 

Furthermore, HS from upland streams have higher aromaticities (5.62 ±0.57 L/(mg∙m)) than 

wetland HS (4.77 ±0.92  L/(mg∙m)) (Figure 4.8). Alternatively, the molecular weights of HS 

are relatively similar (upland: 764 ±54 g/mol; wetland: 769 ±50 g/mol). 

Samples from multiple trips (five trips throughout the year) were averaged for each 

site along the Grand River. (n=47; Figure 4.9). Although the concentration of DOC 

decreases from 8.12 ±1.21 mg/L upstream to 5.41 ±1.17 mg/L downstream, no change is 

seen in the overall composition. The highest proportion belongs to HS (59 to 66%) and BB 
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(12 to 14%), with relatively similar proportions of and BP (7 to 10 %) and LMW-N (8 to 10%). 

No change is seen in the HS aromaticity; however, although within the standard deviation, 

the HS molecular weight decreases from 710 ±117 g/mol to 659 ±100 g/mol along the entire 

flow path (Figure 4.10). An elevated DOC concentration (6.89 ±1.56 mg/L) is found at the 

Blair site, which also has higher proportions of BP (10%) and BB (13%), and the lowest 

proportion of HS (59%). 

4.4.2 Ground Waters 

Ground water data collected from this study (n=43) can be separated into three groups by 

location: un-impacted watershed (TLW), shallow agriculturally-impacted aquifer (NW), and 

deep agriculturally-impacted aquifer (BBK). The highest DOC concentration is found from 

TLW (n=16; 2.87 ±3.75 mg/L) and is followed by NW (n=9; 2.00 ±0.46 mg/L), while BBK 

contains the lowest concentrations (n=18; 0.79 ±0.57 mg/L) (Figure 4.11). Together, HPho 

(19 to 22%) and HS (39 to 43%) generally comprise the largest portion among all three 

groups, followed by BB (18 to 24%) and LMW-N (13 to 18%). Furthermore, BP (0 to 2%) and 

LMW-A (0 to 6%) are rarely found in ground water environments (Figure 4.12). The HS 

found from TLW are more aromatic (3.05 ±1.40 L/(mg∙m)) than either NW (1.59 ±0.49 

L/(mg∙m)) or BBK (0.82 ±0.69 L/(mg∙m)), but the wide range in molecular weights makes it 

difficult when comparing sample locations (Figure 4.13). 

 The data from NW are best described when compared with depth. The DOC 

concentration decreases (-0.89 mg/L) in the upper portion of the aquifer (~4 to 6 m) (Figure 

4.14). In addition, the deepest point has an elevated DOC concentration (3.04 mg/L), as well 

as the highest aromaticity (2.82 L/(mg∙m)) and molecular weight (739 g/mol). Both the 

aromaticity and molecular weight of HS decreases within the first six meters (-0.54 

L/(mg∙m) and -45 g/mol, respectively), at which point they both increase the following 

three meters (0.45 L/(mg∙m) and 26.5 g/mol, respectively). 

Although having the lowest DOC concentration, there exists a wide range of 

compositions from the BBK data. There is little overlap among different fractions, with the 

majority of BBK DOM consisting of HS (50 ±9%), BB (21 ±7%) and HPho (22 ±4%), with a 

small amount of LMW-N (13 ±5%). Like other ground water environments, there is little BP 
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(1 ±2%) or LMW-A (1%) (Figure 4.11). Furthermore, depth does not appear to affect the 

composition (Figure 4.15). However, HS contain a low aromaticity (0.81 ±0.69 L/(mg∙m)), 

but moderate SUVA (2.29 ±0.88 L/(mg∙m)), indicating most of the UV-absorbing 

components are not found from the HS (Figure 4.13). 

Ground water samples from TLW were collected from a variety of different 

environments, which can be seen from the wide DOC range (0.94 to 16.4 mg/L) (Figure 

4.16). The highest concentration is found from a shallow well near the shore of the lake, 

containing a high proportion of HS (56%) and HPho (26%), and less than 10% of any other 

fraction. The lowest concentration originated from the upland wetland, which contained 

low HS (35%) and high LMW-A (35%).  

4.4.3 Aromaticity and SUVA 

The comparison of HS aromaticity and DOC SUVA provides additional details of DOM. If 

the HS SUVA is equal to the DOC SUVA, it can be thought that HS are the main UV-

absorbing component of the DOM. If the HS SUVA is higher than the DOC SUVA, then the 

DOM contains less UV-absorbing structures, while a lower HS aromaticity would indicate 

that the DOM contains more UV-absorbing structures.  

Surface water HS contain a positive relationship with the DOC SUVA (Figure 4.17). 

Furthermore, HS SUVA values are higher than the overall SUVA at lower concentrations. 

ELA lakes fall above the 1:1 line, while GR and ELA streams fall relatively closer. Ground 

water samples illustrate less of a relationship between HS SUVA and DOC SUVA than 

surface water samples (Figure 4.17). In addition, most of the HS SUVA values are lower 

than the DOC SUVA. 

4.4.4 Hydrophobic Parameter 

The hydrophobic (HPho) portion is not determined through SEC elution of the sample. This 

fraction is defined as the DOM that remains on the column as a result of hydrophobic 

interactions (non-chromatographable DOC), which can be speculated to include lipids, 

lipoids, and hopanoids (Batsch et al., 2005; Ciputra et al., 2010; Huber et al., 2011). At the 

sites, natural DOM consisted of up to 30% HPho, indicating a large portion is relatively 



 

 76 

unclassified by the LC-OCD (Figure 4.3; Figure 4.11). Furthermore, no relationship exists 

between relative proportion and concentration. It is possible that due to the nature of 

which HPho are calculated, noise in the baseline may result in a small residual error 

(possibly integrating ±0.1 mg/L to the overall DOC concentration). However, this error 

would not affect the overall composition of other fractions. Overall, the concentration of 

HPho determined from the LC-OCD should be taken with caution since it does not 

represent a fraction that has been eluted through the column. 

4.5 Discussion 

4.5.1 Quality of Surface Water DOM 

Among these surface water sites, there is a wide range of DOM concentrations (3.5 to 38.7 

mg/L) and a difference in the LC-OCD chromatograms, indicating that the composition of 

DOM is variable among hydrological environments. Generally, the high proportion of 

humics is not surprising since the majority of DOM is known to consist of humics 

(Thurman, 1985). However, samples that contain similar concentrations can be 

compositionally different. The difference in compositions may arise from a number of 

processes that sorbed or degraded DOM. To better understand the different compositions, it 

is best to explore each environment from which the sample was taken.  

4.5.1.1 Streams – Closer to the Terrigenous DOM Source 

Decomposing organic matter creates DOM that either leach through the soil or be 

transported by surface runoff into streams, lakes, or rivers. Streams contain the highest 

proportion of HS, but lowest proportion of all other components. Rapid transportation of 

DOM may not allow much degradation time, which may account narrow spectrum of DOM 

components. Furthermore, differences between the flow paths of each stream may 

contribute to different compositions. For example, the higher DOC concentration of upland 

streams (flowing directly on bedrock) indicates a composition different than wetland 

streams (flowing through soil layers) with lower concentrations. Furthermore, the 

decreasing of HS SUVA and molecular weight in wetland samples further illustrates 
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characteristic changes to the DOM, likely from microbial interactions. Humics with a low 

SUVA and molecular weight generally indicate in-situ microbial activity (Huber et al., 

2011). Similarly, wetland streams with the same concentration as upland streams are 

compositionally (and HS characteristically) similar. These trends indicate a continuum of 

DOM composition, where the degradation of DOM would likely lead to degraded HS and 

increased amounts of BP, BB, and LMW-N.  

4.5.1.2 Impacted Rivers – Transportation and Autochthonous Production of 

DOM 

Samples from the Grand River contained different proportions of HS and BB than other 

surface water environments. Samples from different seasons did not show any difference in 

composition, thus GR data illustrates a year-averaged composition. The higher proportion 

of BP than streams indicates there must be a higher microbial influence within the river. 

However, little change is seen in composition over the flow path. This was not expected 

since samples were taken both above (WM, BR, VIC) and below (BL, FB, GM, BCA) a 

wastewater treatment plant (Figure 4.9). Although there is a slight increase in DOC 

concentration and BP proportion, composition remained relatively similar. Furthermore, 

Hutchins (2011) found an increase in autochthonous characteristics along the Grand River, 

yet this was not apparent in the LC-OCD data. A possible explanation may be that the 

autochthonous production may not affect DOM composition, which means the LC-OCD 

analysis may not be well suited for this determination. Alternatively, since samples from 

this study did not extensively study the upper reaches of the Grand River, it may be 

possible that the autochthonous signature is found both above and below the wastewater 

treatment plant. Instead, the HS-Diagram would be able to distinguish differences in HS 

character. In support, the HS molecular weight decreased along the flow path, which 

indicates a change in the character of HS. 

4.5.1.3 Lakes – A Conversion Place for DOM 

The wide range of concentrations and compositions was expected when comparing 

different lakes. The inter-variability in DOM composition among different lakes can result 
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from watershed or local lake and catchment characteristics, as well as differences in 

residence time (Curtis & Schindler, 1997; Sobek et al., 2007; Mueller et al., 2012). All lakes 

are located within the same environment, which is illustrated by relatively similar 

compositions. For example, proportions remained within 10% for the majority of DOM 

fractions. However, local conditions may influence certain components, which can be 

illustrated by one lake containing a high proportion of BP (~35%) whereas all other lakes 

contained less than 15% BP.  

Lakes were expected to have a different DOM composition than rivers and streams 

as they represent a sink for DOC (Schiff et al., 1990). Although lakes represent a location 

for DOM accumulation, the recalcitrant HS were found in lower proportion than the other 

environments. This could be explained by the presence of processes that alter DOM, such 

as UV irradiation, microbial transformation, and flocculation (Frimmel, 1998; Bertilsson & 

Tranvik, 2000; Tranvik & Bertilsson, 2001; von Wachenfeldt et al., 2008). Studies have 

determined that photochemical transformations of humics degrade DOM into more labile 

components (de Haan, 1993; Moran & Zepp, 1997; Bertilsson & Tranvik, 2000; Sulzberger & 

Durisch-Kaiser, 2009). Furthermore, irradiation of natural organic matter (NOM) increased 

LMW substances (both neutrals and organic acids), which paralleled an increase in 

biodegradability of NOM (Allard et al., 1994; Wetzel et al., 1995; Dahlén et al., 1996; 

Frimmel, 1998; Espinoza et al., 2009). The photodegradation of HS and BB in lakes (and 

possibly all surface waters) may allow increased DOM degradation by microbes, which may 

also increase the proportion of BP. The photodegradation of HS is also observed from the 

difference in HS SUVA and molecular weight, where higher molecular weights and SUVAs 

of stream HS could be attributed to the lower amount of UV degradation when compared to 

lakes. However, these results only illustrate differences among lakes, and do not address 

differences within a lake. 

 Lake profiles illustrate different DOM compositions between the surface and bottom 

of lakes. As mentioned earlier, the surface of the lake is affected by UV-irradiation, 

contributing to the difference in composition. However, the relative decrease of HS at the 

bottom of both lakes indicates that HS may be used for microbial degradation. The 
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anaerobic environment found at the bottom of lakes (occurring at a depth of 4 m for L227 

and 13 m for L442) likely allows for the degradation of humic matter (Tranvik, 1998). In 

addition, the elevated DOC concentration indicates an accumulation of BP molecules, 

which would likely result from the biosynthesis of organic matter within the water column. 

4.5.2 Quality of Ground Water DOM 

Although ground waters do not have UV-irradiation to break down DOM, the subsurface 

provides plenty of opportunity for a number of physical, chemical, and biological processes, 

which can have a significant effect upon the concentration and composition of DOM 

(Thurman in Aiken et al., 1985; Schiff et al., 1990, 1997; Sun et al., 1997; Ludwig et al., 2000; 

Guo et al., 2010). Thus one would expect higher proportions of lower weight DOM 

(Maurice et al., 2002). For instance, Amon et al. (1996) determined that biodegradation of 

DOM formed smaller and less bioavailable molecules. Conversely, Westerhoff and Pinney 

(2000) found LMW to be preferentially removed during soil column experiments. From the 

data, one is able to see a large range of compositions, thus looking at each site individually 

allows for a better understanding to the differences in composition. 

4.5.2.1 Nottawasaga – DOM with Depth 

The NW site allows for a detailed examination of DOM with depth in an unconfined, 

shallow aquifer with mostly horizontal flow. Interestingly, DOM composition varied as a 

function of depth. Most of the DOM is sorbed within the first meter of the subsurface 

(Wassenaar et al., 1989; Marmonier et al., 1995), illustrating the effectiveness of subsurface 

environments in causing DOM loss. Unexpectedly, the lowest depth not only contained the 

highest concentration of DOM , but also was comprised of a different composition than the 

DOM above. Specifically, the high amount of HS (~60%) indicates this may be a different 

source of degrading organic matter, representing DOM from either a different ground 

water flow path or stagnant area. 

Throughout the rest of the vertical profile, the decrease in DOM altered the overall 

composition, which led to an increased proportion of HS. The concomitant decrease in both 

LMW-N concentration and proportion indicates this fraction is preferentially removed. It 



 

 80 

has been suggested that DOC infiltrating through the soil is subjected towards a microbial 

‘filter’ that conforms it into a certain composition (Wickland et al., 2007). This 

diagenetically altered DOM becomes less bioavailable as a result of the reworking by soil 

microbes (Sun et al., 1997). Hence, the decrease in DOM concentration leads towards a 

more recalcitrant composition, which is observed in the data.  

The low amount of BP may be attributed to the fast biodegradation of this fraction 

as it infiltrates towards the ground water (Grünheid et al., 2005). Alternatively, it may be 

that the BP are present, but not found in the water sampled. Biofilms may coat the grains 

within the subsurface, and thus may not be sampled from the collected water (Marshall, 

1988; Griebler et al., 2002; Flemming et al., 2007). Furthermore, it is possible that the 

relatively large size mechanically inhibits it from moving easily within the subsurface 

(Lindroos et al., 2002).  

This site illustrates the range of DOM compositions from a single multi-piezometer 

reach; thus on a larger scale it is expected that a larger range of compositions and 

concentrations would be found, since different sources and processes would inherently be 

sampled. 

4.5.2.2 Black Brook Watershed – DOM at the Aquifer Scale 

The data from BBK illustrates a range of DOM compositions within an aquifer. 

Furthermore, BBK provides samples of deep, low concentration DOM. Deep samples would 

have longer residence times than shallower depths, allowing for longer interaction within 

the subsurface. Surprisingly, a number of different compositions are still found. Similar to 

the deepest sample at NW, DOM throughout the aquifer mainly consists of HMW (HS and 

BB) molecules. However, depth does not constrain the range in compositions, which can be 

seen by the spread in HS proportion (30 – 56 %). Combing all HMW molecules (HS, BB, and 

BP), it can be seen that HMW molecules decreased with depth while LMW molecules 

slightly increased (Figure 4.18). The larger amount of HMW fractions to LMW fractions 

may be due to the relative stability of larger, aromatic molecules (Sun et al., 1997). 

By looking at both agriculturally-impacted aquifers (NW and BBK), HS SUVA from 

these environments contained the lowest of all the sampled environments. Two scenarios 
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may attribute towards such low aromaticities from these locations. First, both 

environments are agriculturally-impacted, thus it is possible that the high input of 

inorganic nutrients (such as nitrate) increases the degradation of DOC. In the presence of 

labile carbon, denitrifying bacteria are able to reduce the amount of nitrate in a reducing 

environment (Knowles, 1982), which means the uptake and reworking of DOC may 

account for the low aromaticities of HS. Heavily reworked DOM from deep marine waters 

was also found to have low aromaticities (Dittmar & Kattner, 2003). The alternative 

scenario is the sorption of aromatic HS within the subsurface, leaving DOM with lower 

aromatic constituents. Lower aromaticities have been linked to preferential adsorption of 

HMW substances (Meier et al., 1999; Westerhoff & Pinney, 2000). 

4.5.2.3 Turkey Lakes Watershed – Watershed Influences on DOM Composition 

Data collected from the TLW allows for the characterization of ground water DOM from a 

number of different local environments. Typically, ground water concentrations are 

expected to be lower than 2 mg/L (Thurman, 1985). However, one sample from TLW 

contained a DOC concentration of 16.7 mg/L, supporting the idea of recently formed DOM. 

In addition, the high HS and low LMW-N composition suggests a relatively young 

composition (Amon & Benner, 1996). Furthermore, the HS characteristics contained high 

SUVA and molecular weights, which are characteristic of pedogenic origins rather than 

microbial-derived HS (Huber et al., 2011), furthering the idea of recently degraded material. 

As expected, the variety of different environments sampled led to a wide range in 

both DOM composition and HS characteristics within TLW. Fellman et al. (2008) observed 

the lability of DOM to be related with the quality of the precursor material. In addition, 

O’Donnell et al. (2010) found the concentration and composition of DOM within a stream 

to be strongly dependent upon the source of water. It is likely that the various 

environments within the watershed provide differing qualities of DOM, in addition to the 

high amount of heterogeneity associated with DOM. 

Among ground waters, samples from TLW contained the highest proportion of BP 

and LMW-N. Specifically, wetlands were responsible for most of the high values. For 

example, the highest proportion of BP (~10%) was found to originate only from wetlands 
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near the edge of the watershed. Furthermore, wetlands also contributed a large amount of 

LMW molecules, which has been previously observed and related to a recalcitrant form of 

‘polymeric LMW molecules’ that remains in solution as more labile, HMW molecules are 

degraded (Chin et al., 1998). These results suggest that wetlands may be responsible for 

contributing a recalcitrant form of DOM into the environment. 

4.5.3 Characteristics of Humic Substances 

The HS-Diagram may give an indication to either the source or the degree to which the HS 

have been reworked. The fact that no samples are found near the IHSS-HA standard 

indicates that such molecule arrangements are rarely found within the natural 

environment. Instead, surface and ground water HS can be grouped based upon their 

environment, leading to the idea that the LC-OCD can be used to comparatively group 

different environments  based upon the molecular weight and aromaticity of HS.  

  The differences between surface and ground water HS aromaticity versus DOC 

SUVA were unexpected. Surface water HS are in general agreement with the DOC SUVA, 

illustrating that HS may dominate the UV-absorbing components within DOM. However, 

ground water HS are lower than the DOC SUVA, which may result from the subsurface 

sorption and degradation of HMW molecules. In addition, lower HS molecular weights can 

be found in groundwaters, indicating a higher degree of reworking. Regardless, the data 

illustrates that the subsurface environment exerts different controls upon the DOM than 

surface waters, allowing the LC-OCD to distinguish between surface and ground water HS. 

4.5.4 DOM Among Hydrological Environments 

The large range in compositions can be attributed to the number of different sources and 

processes that are found among different hydrological environments (Figure 4.19). Humics 

substances comprise the largest portion of aquatic DOM, which is similar to other studies 

(Aiken et al., 1985; Thurman, 1985; Grøn et al., 1996; Sachse et al., 2001). The combination 

of being comprised of hard to break down compounds, products of microbial decay, and 

sorption-desorption processes, may account for HS persisting within the environment 

(McKnight & Aiken, 1998; Frimmel, 2003; Hur & Schlautman, 2003). However, it is possible 
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for HS to be utilized by bacteria (Hunt et al., 2000; Kalbitz et al., 2003b). Photolytic 

degradation of humics results in a slight increase in the BB fraction (Espinoza et al., 2009). 

In addition, microbial degradation has been found to enhance HS-like structures (Hur, 

2011), which would be comparable to the BB fraction from the LC-OCD. The presence of 

BB could then indicate that HS are being actively degraded within the natural environment. 

The LC-OCD allows for quantification of relatively lower weight humics (BB), which 

illustrates the degradation of large humic substances.  

The largest size fraction (BP) comprises relatively little of the total DOM, which 

may be due to the relative lability of its components: polysaccharides, proteins, and sugars 

(Ciputra et al., 2010; Huber et al., 2011). These molecules are mainly found in surface 

waters (particularly lakes and the GR), while in ground waters, only found in wetland-like 

environments. It has been found that two contradictory trajectories exist for organic matter 

decomposition in aquatic ecosystems. The first is the degradation of HMW substances into 

LMW substances, whereas the other is the microbial formation of HMW substances and 

biomass (Frimmel, 1998; Tranvik & Bertilsson, 2001). The availability of biodegradable, 

LMW molecules is what allows for the synthesis of larger, organic molecules. In this case, 

the abundance of the BP fraction would be most representative of such a process occurring, 

unless BP are rapidly consumed at an equal rate of formation. Furthermore, proteins and 

polysaccharides (included within BP) make up the housing materials for bacteria (termed 

biofilms or extracellular polymeric substances) (Costerton et al., 1995; Flemming et al., 

2007). Thus, a higher proportion of this fraction, which appears to be an attribute of some 

surface waters while possibly sorbed within ground waters, can indicate microbial re-

working of DOM. 

The extremely low appearance of LMW-A suggests that this fraction is altered 

(biologically, chemically, or physically) or is never produced within the natural 

environment. Conversely, LMW-N appears to be found in greater proportions, possibly 

indicating a higher degree of recalcitrance than acids. In support, recalcitrant marine DOM 

has been found to consist of high amounts of LMW neutral molecules (Dittmar and 

Kattner, 2003). Whether or not LMW-N comprise a labile portion of DOM is likely a 
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function of the source material from which the DOM is derived, in addition to the amount 

of reworking upon the DOM. 

The wide range of HS characteristics from both surface and ground water 

environments further illustrates the amount of heterogeneity associated with 

characterizing DOM. In this study, the data illustrate that surface waters generally have a 

higher aromaticity than ground waters. Furthermore, the IHSS-FA standard appears to be 

the limit of the data set. The higher aromatic structures in surface water may indicate a 

lower degree of reworking than ground waters, due to the relative stability of aromatic 

compounds (Kalbitz et al., 2003; 2003b). However, low aromaticities do not necessarily 

imply the unavailability of HS. UV-induced transformations have also been observed at the 

interface between streams and ground water, where microbial utilization of ground water 

DOM was aided by its photodegradation (Fasching & Battin, 2012). 

Interestingly, proportions of each fraction remain relatively constrained across a 

range of DOM concentrations. For instance, BB rarely comprise more than 30%, while the 

majority of HS are found above 40% of the total DOM. Such a result indicates that, overall, 

there are certain limits to each fraction within the environment. Regressions of the fraction 

proportions to DOM concentrations gave R2-values above 0.70 for HS, BB, and LMW-N 

(Figure 4.20). The relationship indicates higher concentrations of DOM are dominantly 

comprised of those components. However, as concentrations increase, HS are the only 

fraction to increase in proportion within the DOM. The fractions not influenced by DOM 

concentrations are BP and LMW-A, leading to the idea that these are dependent upon the 

source or external processes reworking the DOM. From these results, it can be thought that 

organic matter degrades into three main classes (HS, BB, and LMW-N), which are then 

subsequently altered, consumed, or synthesized to possibly form BP or other LMW-N 

molecules. Furthermore, LMW-A components are likely unstable within the natural 

environment, thus an external process is needed to form these constituents. 

4.5.5 Usefulness of the LC-OCD 

The LC-OCD provides a fast, in-depth, and reproducible characterization of natural DOM. 

Pairing OCD and UVD analysis allowed for the complete characterization of DOM, instead 
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of a subfraction or surrogate (such as UV absorbance alone). Although the LC-OCD cannot 

give concentrations of specific functional groups, it can quantify six size fractions and their 

relative proportions within DOM. The LC-OCD is still an empirical method, yet in order to 

characterize the thousands of molecules that comprise DOM, one would likely end up using 

an empirical method. Furthermore, except for dilution before analysis, little preparation 

needs to be done on the sample. However, using a similar setup as the LC-OCD, Ruhl & 

Jekel (2012) determined some LMW-N molecules to elute much earlier than the designated 

time. This illustrates that the defined fractions are not absolute, but offer a simple method 

that can be used to compare among environments. 

Since the LC-OCD uses UV-absorbance to characterize the HS, it is important to 

understand that inorganic species within the sample may affect the overall UV absorbance. 

Studies have found that nitrate (NO3
-) and iron (as either Fe2+ alone or Fe3+ complexing 

with humics) can effectively absorb UV, possibly skewing the results (Dilling & Kaiser, 

2002; Weishaar et al., 2003; Maloney et al., 2005). However, nitrate has a peak at 220nm 

(whereas UVD is at 254nm), indicating that only large concentrations (>40mg/L) of NO3 

would influence the signal (Weishaar et al., 2003). Thus, samples containing high 

concentrations of nitrate or iron will not have a ‘true’ UV-absorbance for DOM, which 

must be taken into account when comparing HS characteristics to other environments. 

It is possible to see the LC-OCD proved useful in quantifying natural DOM within a 

variety of environments from the data collected in this chapter. Differences among 

hydrological environments were quantified, illustrating that the LC-OCD can be a powerful 

tool to quickly and easily determine specific changes to the DOM. Furthermore, the 

simplicity and ease of sampling in the field further supports the use of such a method in 

future characterization of natural DOM. 

4.5.6 Future Research 

Although this study provides an extensive DOM data set, it does not address changes with 

seasonality. This study focused upon sampling a wide range of hydrological environments, 

since localized conditions may have a greater influence towards the overall character 

(Bourbonniere, 1989). It has been observed that DOM changes with season in concentration 
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and quality (Fellman et al., 2008). In addition, Sachse et al. (2001) determined differences in 

DOM composition as a result of variations in seasonal allochthonous input. It would be 

worthwhile to explore these compositional differences, in order to determine the annual 

variability in DOM character. 

Variability of DOM characteristics in surface waters can be attributed to the 

differences in watershed characteristics. Mueller et al. (2012) observed such differences 

among a set of lakes, which was attributed to the relative percentages of surface water, 

rock outcrops, and vegetative cover of the watershed. Natural cover was not measured in 

this study, but already the high proportion of LMW-N at TLW suggests high occurrences of 

wetlands may create LMW-enriched DOM. Furthermore, it would prove interesting to 

further explore whether HS contain unique signatures (such as specific molecular weights 

or SUVA values) as a result of the surrounding watershed characteristics. 

The difference in discharge within a river can also affect the quantity and quality of 

DOM. For instance, changes to bacterial abundance were observed during increased 

discharge, which affected the uptake of certain sizes of DOM (Sabater et al., 1993). This is 

not seen in the data from the Grand River, where concentrations and proportions of each 

fraction remain relatively similar between sampling sites.  

4.6 Conclusion 

The LC-OCD provides a fast, reproducible, and detailed determination of DOM 

components. Surface and ground waters contain a wide variety of DOM compositions, with 

surface waters having an overall higher DOC concentration than ground waters. 

Interestingly, regardless of the composition, proportions of each component appear to be 

constrained within certain intervals. The majority of DOM is made up of HS, with the 

remainder consisting of degraded humics (BB) and LMW-N molecules. Furthermore, a wide 

range of humic characteristics are found within the environment, yet can be grouped 

according to the environment from which it was found. Surface water DOM can be 

distinguished from ground water by containing detectable amounts of BP and LMW-A. 

Streams provide rapid transportation of DOM, allowing for little degradation to occur, 

whereas in lakes, UV irradiation and microbial decomposition appears to play an important 
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role in breaking down and transforming HS. Furthermore, autochthonous production of 

DOC within an impacted river illustrates an increased amount of BP compared to other 

environments. Ground waters appear to exert a higher amount of reworking upon the 

DOM, due to infiltration through the upper subsurface. Here, physical, chemical, and 

biological influences create a more mixed DOM composition, compared with surface 

waters. Although the ground water contains higher HPho than surface water, there is little 

data or literature over what this fraction may be comprised of, or the influence it may have 

over the character of DOM. Overall, the LC-OCD proves to be a useful tool in 

characterizing DOM. Use of this classification scheme provides a quantitative tool of 

natural DOM, yet still allowing for a measure of the amount of heterogeneity that is 

inherent with natural DOM. 
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Table 4-1: Site descriptions for both surface and ground waters. Includes sample ID, 
number of samples, and a brief description of the surrounding environment where the 
sample was taken. 

  SURFACE WATERS 
Sample n Environment Description 

Experimental Lakes Area (ELA) 
L303. L304, L373, L239, L114, L661, L373, 

L227, L239, L626, L442 
11 Lakes through-out ELA 

L227 - 0.5m, 4m, 6m, 8m, 10m 5 Lake, profile with depth 

L442 - 0.5m, 5m, 9m, 11m, 13m, 16.5m 6 Lake, profile with depth 

 
 

 
L626 Outflow, L626 Wetland A+B Outflow, 

L626 Wetland B Inflow, L239 EIF, L239 NWIF, 
L239 NEIF 

9 Streams running through wetlands, surrounded by 
organic matter 

U1, U3, U8 3 Upland Streams; running atop bedrock 
     

Grand River (GR) 

West Montrose 5 Most upstream location (0km) 

Bridgeport 4 River sample 

Victoria 3 River sample 

Blair 5 After Wastewater Treatment Plant 

Footbridge 4 River sample 

Glen Morris 4 River sample 

Brant Conservation Authority 5 Most downstream location (90km) 

   
GROUND WATERS 

Sample  Environment Description 
Turkey Lakes Watershed (TLW) 

BT3 - 2.34m, 5.24m 2 Lake shore, boreal lake, 

H10 - 1.67 1 Wetland, edge of lake 
W0 - 0.74m, 2.90m; W1 - 5.34m, 6.89m; W3 - 

3.74m 5 Upland wetland, near watershed boundary 

H1 - 0.90m, 1.81m 2 Headwater, near watershed boundary, steep slopes 

PZ 95, 98, 100 3 Wetland 

PZ 022, 023, 045 3 Slope draining wetland 
 

 
 

Black Brook Watershed (BBK) 
DW18 - 1; DW18 - 2 4 Domestic well; near stream 

DW - 19 2 Domestic well; opposite of DW 18 

MW 1; MW 2 2 Municipal water well 

PZ 1 - 3; PZ 1 - 4 2 Upstream transect perpendicular to Black Brook 

PZ 2 - 3; PZ 2 - 4 2 Upstream transect perpendicular to Black Brook 

PZ 3 -1; PZ 3 - 2; PZ 3 - 3 3 Downstream transect perpendicular to Black Brook 
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DW - 09 1 Edge of watershed boundary 

DW - 01 1 Domestic well; end of watershed 

DW - 03 1 Outside of watershed; upgradient stream which 
Black Brook connects with 

   

Nottawasaga Valley (NW) 
MC2 - 4.34m, 5.13m, 5,94m, 6.68m, 9.90m, 11.26m 6 Multilevel piezometer; unconfined sand aquifer 
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Figure 4.2: Map illustrating the sampling locations in Ontario and New Brunswick. Surface 
water sites include Experimental Lakes Area and the Grand River (blue line). Ground water 
locations include Turkey Lakes Watershed, Nottawasaga Valley, Long Point, and the Black 
Brook Watershed. Maps adapted from Natural Resources Canada, Government of Canada 
(http://atlas.gc.ca). 
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Figure 4.3: Fraction proportion of the total dissolved organic carbon (DOC) versus the 
overall DOC concentration for surface water environments. Data represents all surface 
waters sampled: ELA lakes (closed squares), ELA streams (closed circles), and the Grand 
River (open triangles). 
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Figure 4.4: Humic substances diagrams illustrating the aromaticity (L/(mg∙m)) versus 
molecular weight (g/mol) of humics from surface water environments. Environments 
sampled include ELA lakes (closed squares), ELA streams (closed circles), and the Grand 
River (open triangles). Included are the positions of the International Humic Substance 
Society Humic acid (IHSS-HA; cross) and Fulvic acid (IHSS-FA; star) standards. Black lines 
indicate the boundaries of natural waters, as suggested by Huber et al. (2011). 
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Figure 4.5: Boxplots representing the proportion of hydrophobics (HPho), biopolymers 
(BP), humic substances (HS), building blocks (BB), low molecular weight neutrals (LMW-N) 
and acids (LMW-A) within the dissolved organic matter for each surface water 
environment. Each fraction is illustrated by the median, 10th, 25th, 75th, and 90th percentiles, 
while dots represent outliers. 

 
Figure 4.6: Lake profiles for ELA lakes L227 and L442, illustrating the change in 
concentration (left) and proportion (right) of the components that comprise dissolved 
organic matter. 
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Figure 4.7: Fraction proportion versus total dissolved organic carbon concentration (mg/L) 
for ELA streams. Upland streams are represented through closed squares, while wetland 
streams are represented by open circles. 
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Figure 4.8: Humic substances diagrams illustrating the aromaticity (L/(mg∙m)) versus 
molecular weight (g/mol) of humics from ELA streams. Upland streams are represented by 
a closed diamond, while wetland streams are represented by an open square. Included are 
the positions of the International Humic Substance Society Humic acid (IHSS-HA; cross) 
and Fulvic acid (IHSS-FA; star) standards. Black lines indicate the boundaries of natural 
waters, as suggested by Huber et al. (2011). 
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Figure 4.9: Concentration for each component (top, mg/L) and proportion of the total 
dissolved organic matter (bottom) for sites along the Grand River. Sites range from 
upstream (0km) to downstream (90km) in the following order: West Montrose (WM), 
Bridgeport (BR), Victoria Street (VIC), Blair (BL), Footbridge (FB), Glen Morris (GM), and 
Brant Conservation Authority (BCA). Each location represents an average from five 
sampling trips between January and December 2011.  
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Figure 4.10: Humic substance aromaticity (left y-axis, closed circle; L/(mg∙m)) and 
molecular weight (right y-axis, open triangle; g/mol) along the Grand River. Sites range 
from upstream (0km) to downstream (90km) in the following order: West Montrose (WM), 
Bridgeport (BR), Victoria Street (VIC), Blair (BL), Footbridge (FB), Glen Morris (GM), and 
Brant Conservation Authority (BCA). Each location represents an average from five 
sampling trips between January and December 2011. 



 

 99 

 
Figure 4.11: Fraction proportion versus the total DOC concentration for all ground water 
environments. Data represents Black Brook Watershed (BBK, closed circle), Nottawasaga 
Valley (NW, open circle), and Turkey Lakes Watershed (TLW, closed triangle). 
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Figure 4.12: Boxplots representing the proportion of hydrophobics (HPho), biopolymers 
(BP), humic substances (HS), building blocks (BB), low molecular weight neutrals (LMW-N) 
and acids (LMW-A) within the dissolved organic matter for each ground water 
environment. Each fraction is illustrated by the median, 10th, 25th, 75th, and 90th percentiles, 
while dots represent outliers. 

 
Figure 4.13: Humic substances diagrams illustrating the aromaticity (L/(mg∙m)) versus 
molecular weight (g/mol) of humics from ground waters: Black Brook Watershed (BBK, 
open squares), Nottawasaga valley (NW, closed triangle), and Turkey Lakes Watershed 
(TLW, closed diamonds). Included are the positions of the International Humic Substance 
Society Humic acid (IHSS-HA; cross) and Fulvic acid (IHSS-FA; star) standards. Black lines 
indicate the boundaries of natural waters, as suggested by Huber et al. (2011). 
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Figure 4.14: Depth profiles from a multi-piezometer at Nottawasaga Valley, illustrating 
changes with depth (m) to dissolved organic concentration (Graph A; mg/L), humic 
substance characteristics (Graph B; aromaticity (bottom axis, closed circle) and molecular 
weight (top axis, open triangle)), proportion of each fraction (Graph C), and concentration 
of each fraction (Graph D; mg/L). 
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Figure 4.15: Black Brook Watershed LC-OCD fraction proportions with depth (m). 
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Figure 4.16: Fraction proportion versus the overall DOC concentration (mg/L) for different 
environments within the Turkey Lakes Watershed. Data represents headwaters (closed 
circle), lake shores (open circle), slope draining a wetland (closed triangle), upland wetland 
(open triangle), and a wetland (closed square). 
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Figure 4.17: Comparison of humic substance aromaticity (or SUVA; L/(mg∙m)) versus 
overall dissolved organic carbon SUVA (L/(mg∙m)) for both surface waters (top graph) and 
ground waters (bottom graph). Included are the individual sites for surface water 
environments (ELA lakes: closed circle; ELA Streams: open circle; Grand River: closed 
triangle) and ground water environments (Black Brook Watershed (BBK): closed circle; 
Nottawasaga Valley (NW): open circle; Turkey Lakes Watershed (TLW): closed triangle). 
Include in both graphs is a 1:1 line, depicted by a dotted grey line. 
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Figure 4.18: Comparison of depth (m) to the fraction of high molecular weight DOM 
(HMW= HS, BB, and BP; closed circle) and low molecular weight DOM (LMW= LMW-N 
and -A; open circle) from Black Brook Watershed data. 
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Figure 4.19: LC-OCD chromatograms of different environments. 
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Figure 4.20: The relationship between fraction concentration and proportion are 
illustrated with varying DOM concentrations. The left depicts regressions of the fraction 
concentration (mg/L) versus overall DOM concentration (mg/L) for all hydrological 
environments. R-squared values are included in the bottom right corner. The right 
illustrates corresponding fraction proportion versus DOM concentration (mg/L). 
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Appendix A 

Changes to Dissolved Organic Matter During Storage as Determined by 

LC-OCD Analysis 

Introduction 

The LC-OCD provides a reproducible method to analyze changes to different DOM 

fractions, and has mainly been used during wastewater treatment applications (Batsch et 

al., 2005; Ciputra et al., 2010; Huber et al., 2011; Neale et al., 2011). Other than filtering 

through a 0.45μm filter, LC-OCD requires no sample pre-treatment. No attempt has been 

made to observe whether DOM undergoes compositional changes during storage, raising 

concern over whether the amount of time between sampling and analysis has a significant 

effect upon the composition of DOM. It is hypothesized that storage will have little effect 

on the concentration and composition of DOM due to the cold, dark environment 

(hindering further degradation) in which samples are stored. The objective of this short 

study will be to see whether untreated DOM changes composition over time during 

storage, using LC-OCD analysis to compare changes in concentration and composition.  

Methods 

One lake sample (L239) and a stream sample (U8) where collected in 1L-volumes from the 

Experimental Lakes Area (ELA; Ontario, Canada) in June 2011. Samples were collected near 

the surface, untreated, and stored in the dark at 4°C until analysis at the University of 

Waterloo. Each sample was filtered in the laboratory, shaken well, and divided into five 

40mL glass vials. All vials were stored in a cold room (>4°C) until analysis at 1, 3, 5, and 7 

weeks after the dilutions were made.  

 DOM characterization was completed using the LC-OCD. A full description of the 

LC-OCD system and analytical technique is outlined in Chapter 2. Duplicates were run on 

the initial sample (time zero, T0) in order to determine the reproducibility of the LC-OCD 

and calculate a standard error for each component and used over the entire experiment. 
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Results 

Concentration and Proportion of DOM Components 

Stream DOC concentration (average: 18.76 mg/L, standard error: ±0.25 mg/L) was found to 

be higher than the lake sample (7.54 ±0.07 mg/L), and did change more than the standard 

error throughout the length of the storage experiment (Figure A.1). Although no net 

difference in concentration was observed after seven weeks of either hydrophobics (HPho) 

or building blocks (BB) in the stream sample, the concentrations of these components 

fluctuated during the course of the experiment (Figure A.2). In addition, these parameters 

appeared to have an inverse relationship to each other. Concentrations of low molecular 

weight neutrals (LMW-N; 1.09 ±0.00 mg/L) and acids (LMW-A; 0.04 ±0.02 mg/L), as well as 

humic substances (HS; 4.06 ±0.00 mg/L), did not change over the seven weeks.  

Overall, the lake DOM appeared to be more stable than stream DOM. The DOC 

from L239 did not decrease over the length of the experiment, which is also reflected 

through unchanging proportions of the fractions (Figure A.3). However, the HPho fraction 

fluctuated more than the other components.  

Changes to Absorbance Characteristics 

Ultraviolet-absorbance data changed during storage. The overall SUVA of the stream 

sample increased slightly from 4.96 ±0.06 L/(mg∙m) by 0.2 L/(mg∙m) over the first week, but 

then remained constant (5.24 ± 0.06 L/(mg∙m)) (Figure A.4). The HS SUVA (4.83 ±0.03 

L/(mg∙m)) was lower than DOM SUVA, and also decreased from the initial time point. 

Furthermore, the initial molecular weight of HS (733 ±5 g/mol) had decreased slightly 

during storage (-17 g/mol). Lake SUVA (3.43 ±0.14 L/(mg∙m)) had a lower value than the 

stream, but displayed a similar trend. In addition, HS SUVA did not change, while it was 

found that the molecular weight of HS decreased from 638 to 612 g/mol (±4 g/mol). 

Discussion 

Storage did not greatly affect the overall composition or concentration of DOM determined 

with the LC-OCD. The lake sample fluctuated in concentrations of fractions more than the 
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stream sample. Lake DOM has the potential to be more reworked due to external processes 

such as UV-irradiation and microbial reworking (de Haan, 1993; Moran & Zepp, 1997), 

leading to the paradigm that DOM would be more recalcitrant and would be more likely to 

resist further change. However, exploring differences based upon different sampling 

environments was not in the scope of this project, but would prove interesting to pursue 

elsewhere. Regardless, the overall increase in stream DOM rather than lake DOM indicates 

that samples taken from environments containing labile carbon should be analyzed within 

two weeks to minimize potential changes during storage. 

 Both samples changed in the molecular weight of HS to smaller values. Although no 

change was seen in either the aromaticity or concentration, this result indicates that 

storage can alter the characteristics of HS. Although HS are generally regarded to be 

recalcitrant and difficult to further break down (Frimmel, 2003), studies have found HS to 

act as an important bioavailable source of carbon (Volk et al., 1997). Results from this study 

indicate larger HS break apart into lower weight HS, lowering the average molecular 

weight of the HS while maintaining the same concentration. Samples were filtered to 

reduce further degradation, making it unclear what would cause such a result. However, it 

is seen in both samples, illustrating that LC-OCD analysis should be run as early as possible 

in order to have a more realistic molecular weight HS of the sample. 

Conclusion 

The results from this study find that the concentration of DOM does not greatly decrease 

during storage. Importantly, LC-OCD analysis illustrated that the overall composition does 

not greatly change. The only fraction that may be affected during storage is a decrease in 

molecular weight of HS, as well as a loss in LMW-A components. In addition, samples that 

may contain labile forms of DOM (such as from freshly degraded organic matter) would 

benefit from having the least amount of storage time possible. It can be concluded that 

changes during storage are minimal, and should not affect the overall ‘signature’ of the 

DOM, however it is recommended that samples are stored no longer than two weeks to 

minimize changes to the molecular weight of HS. 
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Figure A.1: Dissolved organic carbon concentration (mg/L) versus time (weeks) for the 
lake sample (circles) and the stream sample (triangles). Standard error for each sample was 
smaller than symbol size. 
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Figure A.2: Stream DOM fraction concentrations (mg/L) versus time (weeks). Standard 
error for each fraction was smaller than the symbol size. 
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Figure A.3: Lake DOM fraction concentrations (mg/L) versus time (weeks). Standard error 
for each fraction was smaller than the symbol size. 
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Figure A.4: Stream (left side) and lake (right side) data illustrating overall SUVA (Graphs 
A; L/(mg∙m)), HS aromaticity (Graphs B; L/(mg∙m)), and HS molecular weight (Graphs C; 
g/mol) versus time (weeks). Standard error was smaller than the symbol size. 
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Environmental Considerations 

This thesis is carbon neutral. 
 
All transportation and electricity that was put into making this thesis has been offset using 
carbonzero (www.carbonzero.ca).  
 

 
 


