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Abstract

Data exploration is considered one of the major processes that enables the user to
analyze massive amount of data in order to find the most important and relevant informa-
tion needed. Aggregation and Ranking are two of the most frequently used tools in data
exploration. The interaction between ranking and aggregation has been studied widely
from different perspectives. In this thesis, a comprehensive survey about this interaction
is studied. Holistic Ranking Aggregation which is a new interaction is introduced. Finally,
various algorithms are proposed to efficiently process ad-hoc holistic ranking aggregation
for both monotone and generic scoring functions.
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Chapter 1

Introduction

Data exploration is considered one of the major processes that enables the user to analyze
massive amount of data. It guides users through the large bulks of data to find the most
important and relevant information. Aggregation and Ranking are two well known tools
in data exploration. Aggregation (grouping) divides data objects into groups based on a
grouping criterion. The most used grouping criterion is the equality where the members of
a group have exactly the same values of the grouping attributes. Group By construct is the
main mechanism used in traditional relational database management systems to support
equality aggregation.

Consider a real estate company that maintains a database of houses and lands. The
database contains information about the premises, their locations, and their prices. The
company is interested in performing certain queries over this database.

Example 1.1 [Equality Aggregation Example]. The company is interested in
presenting the average renting of the apartments in all neighborhoods. The information
about the apartments, their locations, and their recent known rent are maintained in the
table ApartmentForRent. Figure 1.1 shows a SQL-like formulation to this problem.

SELECT Apt . Neighborhood , AVG(Apt . RentPerMonth )
FROM ApartmentForRent Apt
GROUPBY Apt . Neighborhood

Figure 1.1: Equality Grouping SQL-like query

In the previous example, the GROUP BY construct is used to divide the apartments
into groups. The apartments in the same neighborhood belong to the same group. Then,
the aggregating function AVG is used to calculate the average of the rent per month for
each group.
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A natural extension to equality aggregation is the similarity aggregation. In this type,
the grouping criterion is based on similarities such that the members of a group are similar
to each other in a certain aspect but different from other groups members.

Example 1.2 [Similarity Grouping Example]. A group of investors hired the real
estate company to find some candidate lands to build a large shopping center. They prefer
the land with the maximum population within radius 50 miles. The information about the
neighborhoods is maintained in the database in the table Neighborhood, while the informa-
tion about the available lands for sale is maintained in the table LandForSale. Consider
CLUSTER BY construct that performs similarity grouping based on a given condition.
Also, the function DISTANCE that returns the distnce between two locations. Figure 1.2
formulates this problem in SQL-like query.

SELECT L . Location , SUM(N. Populat ion )
FROM Land L , Neighborhood N
CLUSTER BY N. CenterLocat ion
ON DISTANCE(L . Location , N. CenterLocat ion ) < 50

Figure 1.2: Similarity Grouping SQL-like query

In the previous example, the CLUSTER BY construct is used to divide the neighbor-
hoods into groups based on the given condition. The neighborhoods in the same groups
are all far from the location by less than 50 miles. Then, the aggregating function SUM is
used to calculate the summation of the neighborhoods population for each group.

Any equality aggregation can be represented as a similarity aggregation where the
clustering condition is an equality condition. Figure 1.3 rewrites example 1 in terms of
similarity aggregation.

SELECT Apt . Neighborhood , AVG(Apt . RentPerMonth )
FROM ApartmentForRent Apt
CLUSTER BY Apt . Neighborhood
ON EQUALITY(Apt . Neighborhood )

Figure 1.3: Similarity Grouping SQL-like query

A natural extension to similarity aggregation is the holistic aggregation. In this type,
the grouping criterion may not exist or exist in any form.

Example 1.3 [Holistic Grouping Example]. Another group of investors hired the
real estate company to find candidate lands to build three resident buildings. Their primary
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criterion is the locations that have the minimum inter-distance. Consider HOLISTIC BY
construct that perform holistic grouping. Figure 1.4 shows a SQL-like formulation to the
problem.

SELECT DISTANCE(L . Locat ion ) AS Tota lDistance
FROM LandsForSale L
HOLISTIC BY L . Locat ion SIZE 3

Figure 1.4: Holistic Grouping SQL-like query

In the previous example, the HOLISTIC BY construct is used to divide the locations
into all possible groups of size three. Then, the aggregating function DISTANCE is used
to calculate the inter-distance of the locations for each group.

Any similarity aggregation can be represented as a holistic aggregation. Figure 1.5
rewrites example 2 in terms of similarity aggregation.

SELECT L . Location , SUM(N. Populat ion )
FROM Land L , Neighborhood N
HOLISTIC BY L . Location , N. Populat ion SIZE MAX
CONSTRAINT EQUALITY(Apt . Neighborhood )
AND DISTANCE(L . Location , N. CenterLocat ion ) < 50

Figure 1.5: Holistic Grouping SQL-like query

In the previous example, the HOLISTIC BY construct is used to create groups of pairs
of the location and neighborhood such that two constraints are satisfied. The first one is
that all the pairs in the same group have the same location, while the second one is that
the distance between the location and the center of the neighborhood in the same pair is
less than 50 miles.

As stated above the equality aggregation is a special type of the similarity aggregation
which is considered a special type of the holistic aggregation. Figure 1.6 shows the venn
diagram for the aggregation types. The equality aggregation is widely used in current
database management systems. The similarity aggregation is widely studied in machine
learning, data mining, pattern recognition, image processing, and bio-informatics. The
holistic aggregation is the main focus of this thesis.
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Holistic Aggregation 

Similarity Aggregation 

Equality 
Aggregation 

Figure 1.6: Aggregation types venn diagram

Holistic aggregation enriched the aggregation semantics which added more complexity
to the aggregation computation. Thus solving it using the current techniques will not be
efficient.

On the other hand, ranking presents the most important results in an efficient way
based on a ranking criterion. It adds to the complexity of the problem. Not only groups
are needed to be computed, but also they should be ranked according to the ranking
criterion.

The interaction between ranking and aggregation has been studied widely from different
perspectives. In this thesis, Holistic Ranking Aggregation is studied.

The naive approach to solve the holistic ranking aggregation problem is materializing
all possible groups then sorting the results using the required ranking criterion. However,
that is not efficient since there are exponential number of groups, out of which, only small
k required.

1.1 Problem Statement

Holistic Ranking Aggregation HRA finds the top-k groups where these groups are created
based on the scoring function over the group members satisfying all the given constraints.
Without loss of generality, the scores of the members are assumed to be between 0 and 1.
The higher score values are assumed to be preferred. Also, the data and the queries are
assumed to be ad-hoc; they are only known at the query time. First, formal definitions for
the main terms are introduced. Then, the HRA is formally defined.

4



Definition 1.1. [Group g] A group is a set of distinct tuples g = {t1, t2, ..., tm}.
Definition 1.2. [Group-based Scoring Function F ] Let R = {t1, t2, ..., tn} be a

set of tuples, g = {t′1, t
′
2, ..., t

′
m} be a group of m tuples where g ⊆ R, and F be the scoring

function defined on R. F is a Group-based scoring function if it is evaluated over all the
group members and does not depend on other tuples F(g) = F (t

′
1, t

′
2, ..., t

′
m).

This class of scoring function includes many typical aggregation functions. For example:
summation, average, weighted average, standard deviation, summation of pairs difference,
and many others. The following is an example for a function that does not belong to this
class.

Example 1.4. Proxy server intercepts the requests from the clients and serves the
clients with the requested object. To reduce the user-perceived latency of the object requests,
the proxy server fetches the objects and stores them in advance, hoping that the prefetched
objects are likely to be accessed in the near future. Wu et al [19] formalizes this problem
as finding a subset S ′ of size n from the entire collection of objects S, such that

S ′ = argmax
S′⊂S,|S′|=n

[

∑
i∈S

pif(i) +
∑
j∈S′

pj(1− f(j))∑
i∈S

si
li
f(i) +

∑
j∈S′

si
li

(1− f(j))
]

Definition 1.3. [Group Constraint c] A group constraint can be either partial or
holistic. A partial constraint is a constraint that can be used to prune out the group by
knowing only a subset of the groups’ members. A holistic constraint is a constraint that
can be used to prune out the group only if all the group members are known.

For example, a constraint of the existence of certain elements is a partial constraint,
while a constraint on the inter-distance between all the members is a holistic constraint.

Equality aggregation can be defined as a holistic aggregation with a partial constraint
where all the group members have the same values of the given attributes. Also, similarity
aggregation can be defined as a holistic aggregation with partial constraint where all the
group members are similar in given aspect.

Definition 1.4. [Holistic Ranking Aggregation Query (HRAm)] Let R =
{t1, t2, ..., tn} be a set of tuples, F be a group-based scoring function, and C be a set of
group constraints. The query HRAm(R,F ,m, k, C) computes the k groups of size m with
the highest F values and satisfying constraints in C.

The definition can be extended to support variable size groups.

Definition 1.5. [Holistic Ranking Aggregation Query (HRAM)] Let R =
{t1, t2, ..., tn} be a set of tuples, F be a group-based scoring function, M be a set of group
sizes, and C be a set of group constraints. The query HRAM(R,F ,M, k, C) computes the
k groups of any size in M with the highest F values and satisfying constraints in C.
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1.2 Technical Challenges

• Due to the exponential state space generated from the holistic ranking aggregation
problem, it is inefficient to be completely generated. Thus, rules should be defined
to prune the generation of unqualified groups

• Since multiple techniques can be used to generate groups, a sound rule should be
defined to guarantee their correct global ranks

1.3 Contribution

The main contributions of this dissertation are as follows:

• The Holistic Ranking Aggregation HRA problem is formalized.

• A comprehensive survey about the interaction between ranking and aggregation is
introduced.

• Algorithms are proposed to efficiently process ad-hoc holistic ranking aggregation for
both monotone and generic scoring functions.

1.4 Summary and Outline

The rest of this dissertation is organized as follows. Chapter 2 introduces the classification
of ranking aggregation processing techniques. It studies the different interactions between
ranking and aggregation. Chapter 3 studies the holistic ranking aggregation problem when
the scoring function is monotone. Chapter 4 studies the holistic ranking aggregation prob-
lem when the scoring function is generic. Appendix A applies the idea of dominance studied
in section 3.2.2 to the rank-join problem.
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Chapter 2

Background and Related Work

Aggregation or Grouping means the division of tuples or data objects into groups based
on a certain grouping criteria. Ranking (Top-k) gives the most important k results. The
interaction between ranking and grouping has been studied from different perspectives.
Figure 2.1 depicts the classifications of Ranking Aggregation processing techniques. In the
next sections, each dimension is studied.

RANKING AGGREGATION PROCESSING TECHNIQUES 

QUERY MODEL 

GROUPING 
TYPE 

IMPLEMENTATION 
LEVEL 

RANKING 
FUNCTION 

GROUP_  
_THEN_RANK 

RANK_WITHIN 
_GROUP 

GROUP_  
_NO_RANK 

SIMILARITY 
GROUPING 

HOLISTIC 
GROUPING 

EQUALITY 
GROUPING 

QUERY ENGINE APPLICATION 
LEVEL 

MONOTONE 
FUNCTION 

GENERIC 
FUNCTION 

RANK_ 
_NO_GROUP 

Figure 2.1: Classification of Ranking Aggregation processing techniques

Other classifications have been studied but are not included in this chapter. These
classifications can be according to the result types or the query types. The result type can
be exact, approximate, or probabilistic while query type can be offline or ad-hoc. Offline
queries are pre-known but ad-hoc queries are known only during query time.
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2.1 Query Model Dimension

The ranking Aggregation processing techniques can be classified according to the query
model. Several research studies were held on different interactions between ranking and
grouping. Some focus on applying ranking over the groups, while others focus on applying
ranking within each group. Other research studies focus on one and ignore the other.

• Group then Rank

In this model, there is a grouping criterion to construct groups and a ranking criterion
to provide the total order among groups. This model appears in scenarios where the top
groups are required.

Example 2.1 [Group then Rank Example]. A researcher needs to know the best
5 neighborhoods in the city with respect to the number of restaurants and schools each with
different weight. Figure 2.2 shows a SQL-like formulation to the problem.

SELECT R. Neighborhood , AVG(w1∗R. count + w2∗S . count ) AS Weight
FROM Restaurant R, Schoo l s S
WHERE R. Neighborhood = S . Neighborhood
GROUPBY R. Neighborhood
ORDERBY Weight
LIMIT 5

Figure 2.2: Group then Rank SQL-like query

Gang Li et al [4] proposed a ranking aggregation framework where queries are computed
over a specified range on some dimensions other than the grouping dimensions. This is done
by storing precomputed partial aggregation information in the data cube. The proposed
technique supports only predetermined aggregation function and aggregation expression
lacking the ability to support ad-hoc queries.

Li et al [10] gave a framework for efficient processing of ad-hoc ranking grouping queries.
A special class of aggregation functions is defined named the max-bounded functions class.
An upper-bound of the aggregation over a group can be obtained by applying the maximum
values of the member tuples. This can be done if the cardinality of each group can easily
be obtained. Three principles were proposed; Upper-Bound, Group-Ranking, and Tuple-
Ranking.

First, the upper-Bound principle dictates the requirements of early pruning and the
groups with the highest upper-bound scores are prioritized. Then the Group-Ranking

8



principle dictates the order in which groups are probed. The incomplete groups within the
current top-k are prioritized. On the other hand, the Tuple-Ranking dictates the order in
which tuples should be accessed from each group and the tuples with the highest scores
are prioritized.

Yiu et al [23] solves the Group then Rank problem under the following assumptions:
1- no multi-dimensional indexes exist on the grouping tuples; 2- the memory of the sys-
tem is assumed to be not large enough to hold a counter for each distinct group in the
input. Three scenarios were studied and appropriate algorithms were designed. For the
scenario with the data physically ordered by the tuple score, write-optimized multi-pass
sorted access algorithm (WMSA) is designed. The algorithm exploits available memory
for efficient top-k groups computation. For the scenario with the unsorted data, recursive
hash algorithm (RHA) is designed. The algorithm applies hashing with early aggregation
coupled with branch-and-bound techniques and derivation heuristics for tight score bounds
of hash partitions. For scenarios with data clustered according to a subset of group by
attributes, clustered groups algorithm (CGA) is designed.

Wang et al [18] surveys techniques used to group related search results and provide
them ranked to the user.

• Rank within Group

In this model, there is a grouping criterion to construct groups and a ranking criterion
to provide total order between members of each group. This model appears in scenarios
where each group or cluster should be represented by their top candidates. These scenarios
appear much in guided navigation tools and websites.

Example 2.2 [Rank within Group Example]. Consider a warehouse website that
wants to present the top five products in each category based on user rates. Figure 2.3
formulates this problem in SQL-like query.

SELECT PR. Category , PR. Product , AVG(PR. UserRate ) AvgRate ,
RANK() OVER (PARTITION BY Category ORDERBY AvgRate ) AS Rank
FROM ProductReviews PR
GROUPBY PR. Category , PR. Product
HAVING Rank <= 5

Figure 2.3: Rank within Group SQL-like query

Li et al [11] proposed framework to support clustering and ranking together with the
order-within-groups semantics, as a generalization of group by and order by to support

9



fuzzy data retrieval applications. Their solutions were built upon summary-based clus-
tering and ranking using dynamically constructed data summary at query time. They
implemented this framework by utilizing a bitmap index to construct such summary on-
the-fly and to integrate Boolean filtering, clustering and ranking.

• Group no Rank

In this model, there is a grouping criterion to construct groups but there is no ranking
criterion; all the groups are required. This model appears in scenarios where all groups are
independent.

Example 2.3 [Group no Rank Example]. The government needs some statistics
about the unemployed people, persons with disabilities, and seniors (above 65) over all the
states. The result will be analyzed and no state is going to be prioritized. Figure 2.4
formulates this problem in SQL-like query.

SELECT State (C. Address ) , COUNTIF(C. Unemployed ) ,
COUNT(C. WithDisab i l i ty ) , COUNT(C. Sen ior )
FROM Ci t i z en s C
GROUPBY State

Figure 2.4: Group no Rank SQL-like query

Antony et al [1] studied skyline queries over aggregated data to identify the most
interesting groups. The developed algorithm uses best-first search and a Sequential Index
Bounding strategy to find the skyline.

• Rank no Group

In this model, there is a ranking criterion without any grouping criterion. This model is a
special case of Group then Rank where each candidate represents a group (i.e. group size
is one). Also, it is considered a special case of Rank within Group where number of groups
is one and its size is equal to the number of candidates.

Example 2.4 [Rank no Group Example]. A journalist needs to get the top ten
cities with the highest population density. Figure 2.5 formulates this problem in SQL-like
query.

10



SELECT C.Name, C. Populat ion /C. Area AS Populat ionDens ity
FROM City C
ORDERBY Populat ionDens ity
LIMIT 10

Figure 2.5: Rank no Group SQL-like query

Ilyas et al [7] gave a comprehensive survey about the Top-k processing techniques.
Different design dimensions had been studied including query models, data access methods,
implementation levels, data and query certainty, and supported scoring functions.

2.2 Grouping Type Dimension

Ranking Aggregation processing techniques can be classified according to the grouping
technique. Three categories can be used: equality grouping, similarity grouping (cluster-
ing), and holistic grouping.

• Equality Grouping

Grouping is performed based on equality when the members of a group have exactly the
same values of the grouping attributes. Grouping capabilities of this category are widely
studied in the data management systems. It is also a core operation in OLAP and decision
support systems.

In the traditional relational database, Group By clause [12] is the main aggregation
mechanism to provide equality aggregation.

Example 2.5 [Equality Grouping Example]. A CEO of an auto company is
interested in analyzing the car sales across some cities in 2012. Figure 2.6 formulates this
problem in SQL-like query.

SELECT CS.Model , CS . CarYear , CS . CityName , COUNT(∗ )
FROM CarSales CS
WHEREEXTRACT(CS . PurchaseDate , YEAR) = 2012
GROUPBY CS.Model , CS . CarYear , CS . CityName

Figure 2.6: Equality Grouping SQL-like query
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• Similarity Grouping

Grouping is performed based on similarities such that the members of a group are similar
among themselves and dissimilar to the members of other groups. Clustering is studied
widely in machine learning, data mining, pattern recognition, image processing, and bio-
informatics.

Example 2.6 [Similarity Grouping Example]. A group of investors hired the
real estate company to find some candidate lands to build a large shopping center. They
prefer the land with the maximum population within radius 50 miles. The information
about the neighborhoods is maintained in the database in the table Neighborhood, while
the information about the available lands for sale is maintained in the table LandForSale.
Figure 2.7 formulates this problem in SQL-like query.

SELECT L . Location , SUM(N. Populat ion )
FROM LandForSale L , Neighborhood N
HOLISTIC BY L . Location , N. Populat ion SIZE MAX
CONSTRAINT EQUALITY(Apt . Neighborhood )
AND DISTANCE(L . Location , N. CenterLocat ion ) < 50

Figure 2.7: Similarity Grouping SQL-like query

Berkhin [2] surveys clustering techniques used in data mining. Xu et al [21] surveys
clustering techniques used in statistics, computer science, and machine learning. Jain et al
[8] presents an overview of pattern clustering methods from a statistical pattern recognition
perspective.

Zhang et al [24] introduced Cluster By clause to provide some clustering facilities using
SQL in spatial databases. The functionality provided is only a wrapper of clustering
algorithms and no integration with the query engine.

Silva et al [15, 16, 14] proposed a new SQL construct that supports similarity-based
Group-by (SGB). SGB provides enhancement over the previous clustering algorithms. The
execution times of SGB are very close to that of the regular GROUP BY. SGB are fully
integrated with the query engine allowing the direct use of their results in complex query
pipelines. The computation of aggregation functions is integrated in the grouping process
and considers all the tuples in each group, not a summary or a subset based on sampling.
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• Holistic Grouping

In this category no grouping criteria is defined. Instead, a scoring function defined
over the group members is used. Group scores are used as a metric for their order. This
category is the main focus of this thesis.

Example 2.7 [Social Network]. Consider a social network where the administrator
likes to analyze the number of mutual friends between a group of friends. He is interested
in finding 100 groups of size 50 where the number of mutual friends is maximum. Figure
2.8 shows a SQL-like formulation to the problem.

SELECT INTERSECTION(F . Fr i endL i s t ) AS MutualFriends
FROM Friends F
HOLISTIC BY F. Fr i endL i s t SIZE 50
ORDERBY MutualFriends
Limit 100

Figure 2.8: Holistic Grouping SQL-like query

2.3 Implementation Level Dimension

Ranking Aggregation processing techniques can be classified according to the level of inte-
gration with the database systems. Some techniques are implemented as query operators
while others are implemented as an application level over the database system.

• Query Engine

The operator is added to the database engine. This allows the engine to apply opti-
mization techniques to the new operators. Examples are the group by [12] clause and SGB
[15, 16, 14].

The main Eager and lazy aggregation presented in [22] was extended to support SGB
operator to give the new operator flexibility to be moved up and down the query tree.

• Application Level

The operator is implemented as an outer layer over the database engine. This technique
allows the extensibility of the operators. CLUSTER BY [24] is an example.
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2.4 Ranking Function Dimension

Ranking Aggregation processing techniques can be also classified according to the type of
the ranking function. Some techniques assume monotone functions while others assume
no restrictions on the ranking function.

• Monotone Function

A function is monotone if F(x1, ..., xm) ≥ F(x
′
1, ..., x

′
m) whenever xi ≥ x

′
i for every i.

Thus if for every attribute, the value of xi is at least as high as that of x
′
i, then the overall

value of F(x1, ..., xm) is at least as high as that of F(x
′
1, ..., x

′
m).

Example 2.8 [Monotone Function Example]. A real estate wants to present the
average price of the houses in each neighborhood. Figure 2.9 formulates this problem in
SQL-like query.

SELECT H. Neighborhood , AVG(H. Pr i ce )
FROM House H
GROUPBY H. Neighborhood

Figure 2.9: Monotone Function SQL-like query

• Generic Function

This category includes all types of functions including monotone functions.

Example 2.9 [Generic Function Example]. Another group of investors hired the
real estate company to find candidate lands to build three resident buildings. Their primary
criterion is the locations that have the minimum inter-distance. Consider HOLISTIC BY
construct that perform holistic grouping. Figure 2.10 shows a SQL-like formulation to the
problem.

SELECT DISTANCE(L . Locat ion ) AS Tota lDistance
FROM LandsForSale L
HOLISTIC BY L . Locat ion SIZE 3

Figure 2.10: Generic Function SQL-like query
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2.5 Summary

Table 2.1 shows some of ranking aggregation processing techniques and how the thesis fits.

Table 2.1: Ranking Aggregation Processing Techniques

Query Aggregation Implem. Ranking
Model Type Level Function
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RankAggr [10]
√ √ √ √

ClusterRank [11]
√ √ √

N/A
SGB [15]

√ √ √
N/A

Cluster by [24]
√ √ √

N/A
Group by [12]

√ √ √
N/A

Thesis
√ √ √ √
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Chapter 3

HRA - Monotone Functions

In this chapter, the Holistic Ranking Aggregation Query (HRA) with a group-based mono-
tone scoring function is studied. A function is said to be monotone if F(x1, ..., xm) ≥
F(x

′
1, ..., x

′
m) whenever xi ≥ x

′
i for every i. The group size is assumed to be fixed. First,

an algorithm based on the Rank-Join problem is studied in section 3.1. Then, algorithms
based on A∗ are introduced in section 3.2. Finally, the assumption of fixed group size is
relaxed in section 3.3.

The trivial solution of the HRA problem is to compute all the groups of size m, rank
them, and report only the top k groups. If there are no constraints and all the states will
be considered as candidates, only groups created from the first k + m − 1 tuples have to
be considered. This is stated and proved in the following theorem.

Theorem 3.1. In case of no constraints, the Top-K groups of size m are a subset of
the groups of size m that can be created from the largest k + m− 1 elements (i.e. A group
containing the k + m element is dominated by k groups that contain elements from the
largest k + m− 1 elements).

Proof: Let GA be a set of groups of size m created form the k + m − 1 elements
(|GA| =

(
k+m−1

m

)
). Let n be the (k + m)th element and GB be all the new groups created

by introducing n (|GB| =
(
k+m−1
m−1

)
).

∀b ∈ GB, |a ∈ GA : b− n ⊂ a| = k + m− 1− (m− 1) = k

Since n is smaller than or equal to the k elements, k groups dominate b. Thus b will never
be chosen as one of the top-k groups.

17



3.1 Reusing Rank-Join Algorithms

Holistic ranking aggregation can be defined as a special type of the rank-join problem.

Definition 3.1. [Rank-Join Query (RJ)] Let R = {R1, R2, ..., Rm} be a set of m
relations, F be a scoring function defined over the relations, and C be a set of constraints.
The query RJ(R,F , k, C) computes the k join results over R with the highest F values
and satisfying constraints in C.

Theorem 3.2. Let R = {t1, t2, ..., tn} be a set of tuples, F be a group-based scoring
function, and R = {R,R, ..., R} be a set of identical relations where |R| = m. The result
of a holistic ranking aggregation query HRA(R,F ,m, k, C) is equivalent to the result of an
m-way self-join ranking query RJ(R,F , k, C) assuming the following two conditions.
1. The joining condition is the not-equal operator.
2. All the result instances that are computed from the same original tuples, ignoring the
order, are equivalent. Only one of the equivalent groups is reported.

Algorithm 1 outlines the HRAm-RJ algorithm. First, a hash table and a rank-join
instance are defined. The hash table is used to carry the IDs used in building the join
results. The rank-join instance can be any rank-join algorithm that supports non-equality
joining condition. Then, the algorithm iterates until returning the top k groups. In each
iteration, a new result tuple is retrieved and the IDs of tuples participated in the result are
extracted. If the IDs combination is not in the hash table, it constructs the corresponding
group, reports it, and adds the IDs combination to the hash table.

Algorithm 1 HRAm-RJ (R, F , m, k, C)

Require: R: ranked relation and F : group-based scoring function
1: Build hash table H to hash groups generated, the key is the IDs of the original tuples
2: R ← {R,R, ..., R} where |R| = m
3: Initialize a Rank-Join instance RJ(R,F , k, C)
4: while |reported groups| ≤ k do
5: j ← RJ .getNextResult()
6: {ID1, ID2, ..., IDm} ← j.getIDs()
7: if {ID1, ID2, ..., IDm} does not exist in H then
8: g ← j.constructGroup()
9: Report g
10: Add {ID1, ID2, ..., IDm} to H
11: end if
12: end while

Example 3.1 [HRAm-RJ Example]. Consider a relation R ranked on the score
value (score ∈ [0, 1]). The group size is three, the number of groups is two, the group-based
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scoring function is Average, and there are no group constraints. Figure 3.1 depicts the
first seven steps of the HRAm-RJ algorithm. The group {t1, t2, t3} first shows up in step
one, so it is reported. Then, all its permutations show up in the next steps (two - six) and
they are ignored. Finally, a new group shows up in step seven {t1, t2, t4}, so it is reported
and the algorithm stops.

     
    HRA-RJ(R, Average, 3, 2, NULL) 

         
 

 

ID Score 
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

R 

ID Score
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

ID Score
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

ID Score
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

Step 1 

{t1, t2, t3} Reported 
Step 2 

{t1, t3, t2} Ignored 

Step 3 

{t2, t1, t3} Ignored 
Step 4 

{t2, t3, t1} Ignored 

Step 5 

{t3, t1, t2} Ignored 
Step 6 

{t3, t2, t1} Ignored 

Step 7 

{t1, t2, t4} Reported 
{t1, t2, t3} 
{t1, t2, t4} 

Top-2 groups 

3-way self-join 

Figure 3.1: HRAm-RJ Example

The main shortcoming of this algorithm is that the results of RJ are based on ordered
pairs while the results of HRA are based on set theory. This will affect the out-coming of
the rank-join algorithm in the following points:
(1) If a group is reported, all the equivalent groups will also be reported
(2) An extra memory space is needed to check the group equivalence.

Lemma 3.1. If a tuple is materialized, it will be materialized m times.

Rank-join algorithms treat each relation as a distinct one and there is no special treat-
ment for self-joins. Thus, if a tuple is materialized, it will be a good candidate to be
materialized from other relations. Thus, it will be materialized m times.

Lemma 3.2. If a group is reported, all the equivalent groups will also be reported.

If a group is reported, this means that its score is the current highest score. Since all
the equivalent groups have the same score, all the remaining groups will be candidates to
be chosen by the algorithm.
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3.2 New A∗ Algorithms

3.2.1 Bottom-Up Algorithm

As discussed in the previous section, using the existing rank-join algorithm to solve the
HRA problem faces shortcomings in the execution time and memory. More shortcomings
will show up when dealing with the case of the variable group size in section 3.3. In this
section, an algorithm HRAm-B that is based on A∗ [5] class of search algorithms is studied.
HRAm-B considers the shortcomings of HRAm-RJ and tries to avoid them.

The idea is to maintain a priority queue of partial and complete groups ordered on the
upper bounds estimates of their total scores. At each step, the algorithm tries to complete
the group by adding the next tuple to it. It reports the next top group as soon as a
complete group is ready on the top of the queue.

A state is defined as a binary string with a variable length. Each state represents a
group where the position of each bit refers to the corresponding tuple. A bit is set if
the corresponding tuple belongs to the group,otherwise it will be reset. For example, 110
represents a group having the first and second tuples. A state is complete if the number of
ones is equal to the size of the group. The problem of finding a group with maximum score
is reduced to finding the binary string with number of ones equal to the group size that
maximizes the score. The scores of the complete states are computed from the scores of the
group members. While the scores of the incomplete states are computed from the scores
of the materialized members and the score estimates of the non-materialized members. A
tie breaking rule that prioritizes the group with the most materialized elements is used.

HRAm-B adopts the state extension technique used in U −Topk query [17]. A state is
expanded into two states; one considers the next tuple and the other ignores it. However
a straight forward adoption of U − TopK is not applicable because of the different data
model and the score definition.

The details of the HRAm-B are illustrated in algorithm 2. First, a priority queue
and a hash table are created. The priority queue holds the states based on the scoring
function provided and initializes it by adding an empty state. The hash table is used to
hash the tuples retrieved using the order of retrieval as a key. Then, the algorithm iterates
until returning the top k groups. In each iteration, the state on the top of the priority
queue is retrieved. If the state is complete and satisfying the holistic constraints, the
corresponding group is constructed and reported. If the state is partial, the corresponding
tuple is retrieved either from the hash or by calling the getNextTuple function. Then two
states are constructed; one considering the next tuple and the other ignoring it. It adjusts
their scores using the new tuple score. The state with the new one uses the score as the
score of one of the members. Both states use the score as the upper bound for the remaining
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un-materialized group’s members. If each one is satisfying the partial constraints, it will
be added to the priority queue.

Algorithm 2 HRAm-B (R, F , m, k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order states based on F
2: Create a hash table H to hash tuples retrieved, the key is the order of the tuple retrieval
3: s← ””
4: while |reported groups| ≤ k do
5: s← Q.dequeue()
6: if s contains m ones and s satisfy C.getHolisticConstraints() then
7: g ← s.constructGroup()
8: report g
9: else
10: if (|s|+ 1) exists in H then
11: t← H.get(|s|+ 1)
12: else
13: t← R.getNextTuple()
14: H.add(|s|+ 1, t)
15: end if
16: s

′ ← s + ”0”
17: s

′
.adjustScore(t)

18: if s
′

satisfy C.getPartialConstraints() then
19: Q.enqueue(s

′
)

20: end if
21: s

′′ ← s + ”1”
22: s

′′
.adjustScore(t)

23: if s
′′

satisfy C.getPartialConstraints() then
24: Q.enqueue(s

′′
)

25: end if
26: end if
27: end while

Example 3.2 [HRAm-B Example]. Consider a relation R ranked on the score
value (score ∈ [0, 1]). The group size required is three, the number of groups is one, the
group-based scoring function is Average, and no constraints. Figure 3.2 depicts the first
six steps of the HRAm-B algorithm. The priority queue is first initialized with an empty
bit string. The score of this state can be calculated by assuming the upper bound of the
tuples score that will belong to the group (1+1+1

3
= 1). Thus the score is one. Then this

state is removed from the queue and two new states are enqueued, one represents groups
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that contain the first tuple and the other represents groups that will not contain the first
tuple. The scores are calculated in the same way. According to the tie breaking rule, state
(1) is prioritized over state (0). The process continues until a complete state appears on
the top of the queue.

     
    HRA*(R, Average, 3, 1, NULL) 

     
   
 

 

ID Score 
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

R 

Step 1 
Score Group 

  
1  

Step 2 
Score Group 

  
0.96 1 
0.96 0 

Step 3 
Score Group 

  
0.96 0 
0.88 11 
0.88 10 

Step 4 
Score Group 

  
0.88 11 
0.88 10 
0.84 01 
0.84 00 

Step 5 
Score Group 

  
0.88 10 
0.84 111 
0.84 110 
0.84 01 
0.84 00 

Step 6 
Score Group 

  
0.84 111 
0.84 110 
0.84 01 
0.84 00 
0.8 101 
0.8 100 

{t1, t2, t3} 
Top-1 groups 

Figure 3.2: HRAm-B Example

Lemma 3.3. In the worst case, HRAm-B Algorithm generates an exponentail state
space.

HRAm-B inherits all the properties of A∗ search, thus HRAm-B is guranteed to find
the optimal solution since the heuristic score is always upper bounded. Also HRAm-B
suffers from exponential large space requirements.

HRAm-B can perform early pruning; as soon as an invalid state violates any partial
constraint, the state will be pruned and consequently all its children will not be generated.
However HRAm-B has to wait till the groups are fully materialized to check holistic
constraints.

3.2.2 Top-Down Algorithm

As discussed in the previous section, HRAm-B algorithm suffers from exponential space
requirements in some scenarios. In this section, a linear space algorithm HRAm-T is
described. This algorithm loses early pruning property in the favour of fast complete
states generation.
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As in HRAm-B , a state is defined as a binary string. For simplicity, no constraints
are assumed. Thus all complete states are valid and the length of a state is fixed (k+m−1
according to theorem 3.1.1). This assumption is relaxed later.

Definition 2. [State Dominance] Let R = {t1, t2, ..., tn} be a set of tuples and s and
s
′

be complete states with m ones. Let P , P
′

be the positions of ones in s and s
′

respectively.
State s dominates state s

′
(denoted s � s

′
) iff ∀i ∈ [1,m] : tPi

.score ≥ tP ′
i
.score. Which is

equivalent to say ∀i ∈ [1,m] : Pi ≥ P
′
i

This dominance relation results in the following important property

Property 3.1. HRA problem constructs a partially ordered set (poset) in which states
are the elements and the binary relation is the state dominance (�).

Figure 3.3 shows the hasse diagram of the state dominance where the group size is
three.

110100

111000

110010 101100

110001 011100101010

101001 011010100110

100101 010110011001

100011 001110010101

010011 001101

001011

000111

Figure 3.3: The Hasse diagram of the state dominance

This property suggests a state generation technique in which a state is responsible for
the generation of the next dominated states only.
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Definition 3. [Next Dominated States] A set of states S is the next dominated
states of state s if there are no other state s

′
/∈ S dominated by s and not dominated by

any member in S.

For example s
′
= 101010 is a nearest domainted state to s = 110010 where P

′
= {1, 3, 5}

and P = {1, 2, 5}
Definition 4. [States Incomparability] Two states s and s

′
are incomparable iff

s 6� s
′

and s
′ 6� s

For example 110010 and 011100 are incomparable.

The first group is assumed to have the first m tuples which means that the early
materialized tuples are prioritized. This assumption is adopted by most of the ranking
algorithms. For example HRJN [6] and TA [3] algorithms.

As seen in the hasse diagram, a state can generate multiple states and be generated from
multiple states. These results are studied in the next theorems. To resolve the duplicate
problem; a hash can be used or a state can be assigned to one parent state only. Figure 3.4
shows the hasse diagram of the state dominance after assigning each node to the parent
with the higest significant bit.

111000

110100

110010

110001

101001

100101

101100 011100

101010 011010

100110 010110 001110

011001

010101 001101

100011 010011 001011 000111

Figure 3.4: The Hasse diagram of the state dominance with one parent restriction

Theorem 3.3. A state can generate zero states up to the minimum of the group size
and the number of groups required minus one. |s.children| = min(m, k − 1)
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Proof: Given a state s, the number of states that can be generated from s is equal to
the number of ’10’-patterns in s. The number of ones in s is equal to the group size (m).
The number of zeros is the total size of s minus the number of ones (i.e. |s| − |s.ones| =
k + m− 1−m = k − 1). Thus the minimum number of patterns is zero in which no zero
comes after one. The maximum number of patterns is the minimum of m and k − 1.

Theorem 3.4. A state can have zero parents up to the minimum of the group size and
the number of groups required minus one. |s.parent| = min(m, k − 1)

Proof: The proof is similar to the previous one. Given a state s, the number of its
parents is equal to the number of ’01’ patterns in s. The number of ones in s is equal to
the group size (m). The number of zeros is the total size of s minus the number of ones
(i.e. |s| − |s.ones| = k + m − 1 −m = k − 1). Thus the minimum number of patterns is
zero in which no one comes after zero. The maximum number of patterns is the minimum
of m and k − 1.

The algorithm is based on Uniform-cost search [9] which is a special case of the A∗

search where the heuristic is a constant function. In HRAm-T , the constant is zero. The
idea is to maintain a priority queue for the complete groups only ordered on their total
scores. At each step, the algorithm reports the group on the queue top and generate the
next groups that can be candidates to be on the queue top.

Algorithm 3 HRAm-T (R, F , m, k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order states based on F
2: Create a hash table H to hash tuples retrieved, the key is the order of the tuple retrieval
3: s← 11...100...0 where |s| = k + m− 1 and |11...1| = m
4: Q.enqueue(s)
5: while |reported groups| ≤ k do
6: s← Q.dequeue()
7: if s satisfy C then
8: g ← s.constructGroup()
9: report g
10: end if
11: for all next dominated state s

′
do

12: if s
′

is a new state then
13: Q.enqueue(s

′
)

14: end if
15: end for
16: end while

The details of the HRAm-T algorithm are illustrated in algorithm 3. First, a priority
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queue and a hash table are created. The priority queue holds the states based on the
scoring function provided and it is initialized by a state of length k + m− 1 with m ones.
The hash table is used to hash tuples retrieved using the order of retrieval as a key. Then,
the algorithm iterates until returning the top k groups. In each iteration, it gets the state
on the top of the priority queue. If the state is satisfying all constraints, it constructs the
corresponding group and reports it. Then it iterates over all the next dominated states. If
it is a new state, it is added to the priority queue.

Example 3.3 [HRAm-T Example]. Consider a relation R ranked on the score
value (score ∈ [0, 1]). The group size required is three, the number of groups is four, the
group-based scoring function is Average, and there are no constraints. Figure 3.5 depicts
the first four steps of the HRAm-T algorithm. The priority queue is first initialized with a
bit string of length six with three ones. The score of this state can be calculated exactly from
the members of the group represented by the state. (0.96+0.84+0.72

3
= 0.84). Then this state

is removed from the queue and reported. Since the state has one next dominated states
thus a new state is generated and enqueued. The score is calculated in the same way. The
process continues until four states are reported.

HRAm-T(R, Average, 3, 4, NULL)

ID Score
t1 0.96
t2 0.84
t3 0.72
t4 0.68
t5 0.50
t6 0.44

…

R

Step 1
Score Group

0.84 111000

Step 2
Score Group

0.826 110100

Step 3
Score Group

0.786 101100
0.76 110010

Step 4
Score Group

0.76 110010
0.746 011100
0.726 101010

{t1, t2, t3}
{t1, t2, t4}
{t1, t3, t4}
{t1, t2, t5}

Top-4 groups

Figure 3.5: HRAm-T Example

The following two theorems demonstrate two important properties of the proposed
algorithm: soundness and completeness.

Theorem 3.5. HRAm-T is sound. i.e. All groups dominate gi will be generated and
chosen before gi.

Proof: This theorem is proved by contradiction. For the first part, assume a state s
′

dominates state s and is generated after it. s
′

dominates s thus ∀i ∈ [1,m], P
′
i ≤ Pi. Also

s
′

is generated after s thus ∀i ∈ [1,m], P
′
i ≥ Pi. This is a contradiction.

For the second part, assume a state s
′

dominates state s and is chosen after it. s
′
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dominates s thus s
′
.score > s.score. Also s

′
is chosen after s thus s.score < s

′
.score. This

is also a contradiction.

Theorem 3.6. HRAm-T is Complete. i.e. All groups are generated.

Proof: This theorem is proved by contradiction. Assume a state s that is not the
initial one and is not generated from another state. This means that there is no state with
positions less than s positions. A state does not have any state with position less than its
position if it has all ones in the most significant bit. This case is satisfied only in the initial
state. Thus it is a contradiction so this state can not exist.

Relaxing the assumption of no constraints will change the state definition. A state is a
binary string with variable size having m ones. An imaginary zero will be assumed in the
least significant position to perform the transpose operation.

Table 3.1 shows comparison between HRAm-B search and HRAm-T search.

HRAm-B Search HRAm-T Search
Types of States Partial and complete Complete only

Generator Partial states Complete states
Result States Complete states Complete states

Searching Technique A∗ search UCS search
State Space Size Exponential Exponential

g(x) Materialized members Materialized members
h(x) Estimation of unmaterialized members Zero

Table 3.1: HRAm-B Search versus HRAm-T Search

3.3 Variable Group-size

The algorithms provided in this chapter assumes that the size of the group is fixed. How-
ever, in many cases the size may be a range or multiple sizes are allowed. In the next
subsections, the three algorithms proposed are modified to support the variable group size.

Modified HRAM-RJ

There are two modifications; (1) Several instances of the rank-join algorithm are used.
One for each possible group size. (2) A priority queue is used to hold the results from all
the instances.

These modifications add to the shortcomings discussed in section 3.1. Using multiple
instances of the rank-join algorithm will increase the execution time dramatically. Also,
the priority queue used increases the memory demands of the algorithm.
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Algorithm 4 HRAM -RJ (R, F , M , k, C)

Require: R: ranked relation and F : group-based scoring function
1: Build hash table H to hash groups generated, the key is the IDs of the original tuples
2: Create a priority queue Q to order states based on F
3: for all group size m in M do
4: R ← {R,R, ..., R} where |R| = m
5: Initialize a Rank-Join instance RJ(R,F , k, C)
6: j ← RJ .getNextResult()
7: Q.enqueue(j)
8: {ID1, ID2, ..., IDm} ← j.getIDs()
9: Add {ID1, ID2, ..., IDm} to H
10: end for
11: while |reported groups| ≤ k do
12: j ← Q.dequeue()
13: g ← j.constructGroup()
14: Report g
15: RJ ← j.getRJinstance()
16: m← RJ .getNumberOfRelations()
17: repeat
18: j

′ ← RJ .getNextResult()
19: {ID1, ID2, ..., IDm} ← j

′
.getIDs()

20: until {ID1, ID2, ..., IDm} does not exist in H
21: Q.enqueue(j

′
)

22: Add {ID1, ID2, ..., IDm} to H
23: end while
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Modified HRAM-B

There is only one modification; if the state on the top of the priority queue is a complete
state, it will generate two new states. One of the new state considers the next tuple and
the other ignores it.

Algorithm 5 HRAM -B (R, F , M , k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order states based on F
2: Create a hash table H to hash tuples retrieved, the key is the order of the tuple retrieval
3: s← ””
4: while |reported groups| ≤ k do
5: s← Q.dequeue()
6: if Least significant bit is one then
7: if s.numberOfOnes() ∈M and and s satisfy C.getHolisticConstraints() then
8: g ← s.constructGroup()
9: report g
10: end if
11: end if
12: if (|s|+ 1) exists in H then
13: t← H.get(|s|+ 1)
14: else
15: t← R.getNextTuple()
16: H.add(|s|+ 1, t)
17: end if
18: s

′ ← s + ”0”
19: s

′
.adjustScore(t)

20: if s
′

satisfy C.getPartialConstraints() then
21: Q.enqueue(s

′
)

22: end if
23: s

′′ ← s + ”1”
24: s

′′
.adjustScore(t)

25: if s
′′

satisfy C.getPartialConstraints() then
26: Q.enqueue(s

′′
)

27: end if
28: end while
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Modified HRAM-T

There is only one modification; the priority queue is initialized by a set of states. One
for each possible group size.

Algorithm 6 HRAM-T (R, F , M , k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order states based on F
2: Create a hash table H to hash tuples retrieved, the key is the order of the tuple retrieval
3: for all group size m in M do
4: s← 11...100...0 where |s| = k + m− 1 and |11...1| = m
5: Q.enqueue(s)
6: end for
7: while |reported groups| ≤ k do
8: s← Q.dequeue()
9: if s satisfy C then
10: g ← s.constructGroup()
11: report g
12: end if
13: for all next dominated state s

′
do

14: if s
′

is a new state then
15: Q.enqueue(s

′
)

16: end if
17: end for
18: end while

Example 3.4 [Modified HRAM-T Example]. Consider a relation R ranked on
the score value (score ∈ [0, 1]). The group size required is three, the number of groups
is either three or four, the group-based scoring function is Average, and no constraints.
Figure 3.6 depicts the first four steps of the HRAM-T algorithm. The priority queue is first
initialized with two bit strings of length six; one with three ones and the other with four
ones. The scores are calculated from the members of the group represented by the state.
The state ’111000’ has the higher score, thus it is removed from the queue and reported.
Since the state has one ’10’ pattern thus a new state is generated by transposing the pattern
and then enqueued. The score is also calculated in the same way. In step three, the state
’111100’ becomes on the queue top, thus it is removed and reported. The process continues
until four states are reported.
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    DHRA(R, Average, {3, 4}, 4, NULL) 

     
   
 

 

ID Score 
t1 0.96 
t2 0.84 
t3 0.72 
t4 0.68 
t5 0.50 
t6 0.44 

…
 

R 

Step 1 
Score Group 

  
0.84 111000
0.8 111100

Step 2 
Score Group 

  
0.826 110100
0.8 111100

Step 3 
Score Group 

  
0.8 111100

0.786 101100
0.76 110010

Step 4 
Score Group 

  
0.786 101100
0.76 110010
0.755 111010

{t1, t2, t3} 
{t1, t2, t4} 
{t1, t2, t3, t4} 
{t1, t3, t4}

Top-4 groups 

Figure 3.6: Modified HRAM-T Example

3.4 Experiments

All experiments were conducted on a SunFire X4100 server with Dual Core 2.2GHz pro-
cessor, and 8GB of RAM. The parameters of the experiments are the group size m and
the number of the groups required k. Two metrics are reported, the overall running time
and the scan depth.

Experiment I: All algorithms

In these experiments, the three proposed algorithms were compared. In the first exper-
iment, the group size is fixed to 4 and the number of required groups changed from 1 to
60. Figure 3.7 compares the running time of the three algorithms. Algorithms based on
A∗ shows better running time over the algorithm based on Rank-Join problem. Figure 3.8
compares the total scan depth of the three algorithms which are comparable.
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Figure 3.7: Change k - Running Time
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Figure 3.8: Change k - Scan Depth

In the second experiment, the number of required groups is fixed to 50 and the group
size changed from 1 to 6. Figure 3.9 compares the running time of the three algorithms.
Algorithms based on A∗ shows better running time over the algorithm based on Rank-Join
problem. Figure 3.10 compares the total scan depth of the three algorithms which are
comparable.
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Figure 3.9: Change m - Running Time
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Figure 3.10: Change m - Scan Depth

As a conclusion, algorithms based on A∗ show better performance over the algorithm
based on Rank-Join problem.

Experiment II: A∗ algorithms

In these experiments, the two proposed algorithms based on A∗ algoriths were com-
pared. In the first experiment, the group size is fixed to 8 and the number of required
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groups changed from 1 to 100. Figure 3.11 compares the running time of the two algo-
rithms. Bottom-Up algorithm shows better running time over Top-Down algorithm. Figure
3.12 compares the total scan depth of the two algorithms which are comparable.Sheet4
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Figure 3.11: Change k (m = 8) - Running Time
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Figure 3.12: Change k (m = 8) - Scan Depth

In the second experiment, the group size is fixed to 32 and the number of required groups
changed from 1 to 100. Figure 3.13 compares the running time of the two algorithms. The
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Top-Down algorithm shows better running time over the Bottom-Up algorithm. Figure
3.14 compares the total scan depth of the two algorithms which are comparable.Sheet5
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Figure 3.13: Change k (m = 32) - Running Time
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Figure 3.14: Change k (m = 32) - Scan Depth

As a conclusion, each algorithm wins in different configuration. If the group size is
small,the Bottom-Up algorithm is used. Otherwise, the Top-Down algorithm is used.
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3.5 Summary

In this chapter, the Holistic Ranking Aggregation Query (HRA) with a group-based mono-
tone scoring function was studied. An algorithm based on the Rank-Join problem was
introduced and its shortcomings was discussed. Then, two algorithms based on A∗ were
introduced. One was Bottom-up algorithm and the other was Top-down algorithm. Also,
relaxing the assumption of fixed group size was discussed. Finally, experiments comparing
the different algorithms were presented.
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Chapter 4

HRA - Generic Functions

In this chapter, the Holistic Ranking Aggregation Query (HRA ) with group-based generic
scoring function is studied. The group size is assumed to be fixed. A new algorithm is
introduced based on splitting the problem into multiple rank-join problems with monotone
function.

Consider the following two examples that will be used for illustration.

Example 4.1. Consider a relation R, group size required is only one where the scoring
function is represented by the following equation.

f(x) = x4 − 9

5
x3 +

103

100
x2 − 99

500
x +

7

625
(4.1)

Figure 4.1 shows the graphical representation of the function and figure 4.2 shows the
input relation, the group score and their rank. Tuple t1 with score 27.19 ∗ 10−3 is ranked
first while tuple t4 with score −0.89 ∗ 10−3 is ranked tenth.

Example 4.2. Consider a relation R, the group size required is two where the scoring
function is represented by the following equation.

f(x, y) = (4x− 2)e−((4x−2)
2+(4y−2)2) (4.2)

Example 4.3 shows graphical representation of the function.

4.1 HRAG Algorithm

The idea is to split the problem of holistic ranking using generic function into multiple
problems of holistic ranking using monotone function. This can be achieved by determining
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Figure 4.1: Function Graphical Representation

ID Score
t1 0.96 
t2 0.89 
t3 0.84 
t4 0.76 
t5 0.72 
t6 0.68 
t7 0.50 
t8 0.10 
t9 0.05 
t10 0.01 

R 

ID x f(x) *10-

3 
Order

t1 0.96 27.19 1 
t2 0.89 8.46 3 
t3 0.84 2.65 6 
t4 0.76 -0.89 10 
t5 0.72 -0.52 9 
t6 0.68 0.67 7 
t7 0.50 7.20 4 
t8 0.10 0 8 
t9 0.05 3.66 5 
t10 0.01 9.32 2 

Figure 4.2: Input Relation, Group Score, and Group Rank

the local maxima and minima points of the function. There are multiple ways to get these
points, however analyzing such methods is out of the thesis scope. Points are assumed to
be distinct where duplicate points are filtered out. Concept of Intervals and Regions are
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Figure 4.3: Function Graphical Representation

introduced in the following definitions.

Definition 4.1. [Interval I] An interval I is a continuous range of points with
starting point xs and ending point xe. It is written as I = [xs, xe].

Definition 4.2. [Region REG] A region REG is an ordered list of intervals I such
that there is one interval for each corresponding dimension of the function. The function
is either monotonic increasing or monotonic decreasing in the region.

The construction of intervals for a given set of maxima and minima points is defined
in algorithm 7. First, a multidimensional list is created to hold a list of intervals for each
dimension. Then, the algorithm iterates over all the dimensions. For each dimension,
the values of the points at that dimension are extracted and sorted. Then, intervals are
constructed from the values where the first point in the first interval is zero and the last
point in the last interval is one.

Theorem 4.1. The number of intervals in each dimension is less than or equal to the
number of given points plus one i.e. |I(d)| ≤ |P | + 1. This is valid over all dimensions.
Thus, the total number of intervals in all dimensions is less than or equal to the multipli-
cation of the number of dimensions and the number of intervals. i.e. |I| ≤ d ∗ (|P |+ 1).
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Algorithm 7 GetIntervals (P )

Require: P : List of local maxima and minima points
1: Create a list I to hold a list of intervals
2: D ← Dimensions of the given points
3: for all dimension d in D do
4: I(d)← {}
5: pre← 0
6: Pd ← P values of dimension d
7: Remove duplicates from Pd

8: Sort Pd

9: for all point p in Pd do
10: I(d)← I(d) ∪ {[pre, p]}
11: pre← p
12: end for
13: I(d)← I(d) ∪ {[pre, 1]}
14: end for
15: Return I

The construction of the regions for a given list of Intervals is defined in algorithm 8.
First, a list is created to hold the computed regions. Then, regions are constructed by
performing cartesian product of intervals over all dimensions.

Algorithm 8 GetRegions (I)

Require: I: List of list of intervals
1: Create a list REG to hold regions
2: d← Number of dimensions in I
3: REG← I(1)× I(2)× ...× I(d)
4: Return REG

Theorem 4.2. The number of regions is equal to the multiplcation of the number of
intervals in each dimension i.e. |REG| = |I(1)| ∗ |I(2)| ∗ ... ∗ |I(d)|.

Figure 4.4 shows example 4.1 after constructing the regions. There are four regions:
R1 = ([0, 0.1459]), R2 = ([0.1459, 0.45]), R3 = ([0.45, 0.7541]), R4 = ([0.7541, 1])

Figure 4.5 shows example 4.2 after constructing the regions. There are six regions:
R1 = ([0, 0.3232], [0, 0.5]), R2 = ([0, 0.3232], [0.5, 1]), R3 = ([0.3232, 0.6768], [0, 0.5]), R4 =
([0.3232, 0.6768], [0.5, 1]), R5 = ([0.6768, 1], [0, 0.5]), R6 = ([0.6768, 1], [0.5, 1])

The details of the HRAG algorithm are illustrated in algorithm 9. First, a priority
queue is defined. It is used to hold the groups based on the scoring function provided.
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Figure 4.4: Regions

Then, the maxima and minima points P of the function are calculated. Intervals I and
regions REG are constructed. Then, the tuples are assigned to the appropriate regions
over all the dimensions where each tuple is assigned to one region over each dimension. In
the next step, the algorithm iterates over all the regions. For each region, tuples assigned
to the intervals are returned as a set of relations. Then, an instance of rank join algorithm
is assigned to each region and it is used to get the next group from each region. The
algorithm iterates until returning the top k groups. In each iteration, it gets the group on
the top of the priority queue and reports it. Then another group is added to the queue
from the same region.

Figure 4.6 depicts the first four steps of the HRAG algorithm on example 4.1. Af-
ter regions construction, tuples are assigned to the corresponding region. {t8, t9, t10} to
R1 = ([0, 0.1459]). No tuple to R2 = ([0.1459, 0.45]). {t5, t6, t7} to R3 = ([0.45, 0.7541]).
{t1, t2, t3, t4} R4 = ([0.7541, 1]). Then the algorithm starts by getting one group from each
region and enqueuing them to the priority queue. The top group t1 is reported and a
new group is constructed from the same region. The process continues until the required
number of groups is reported.
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Figure 4.5: Regions
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Figure 4.6: Applying HRAG on example 4.1

4.2 HRAG− L Algorithm

Analyzing figure 4.4, the number of comparable regions can be reduced by considering the
maximum and minimum value of each region and splitting regions into smaller ones. First,
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Algorithm 9 HRAG (R, F , m, k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order groups based on F
2: P ← GetMaximaAndMinima(F)
3: I ← GetIntervals(P )
4: REG← GetRegions (I)
5: Assign tuples in R to intervals
6: for all region reg in REG do
7: R ← reg.GetRelations()
8: reg.assign(RJ(R,F , k, C))
9: Q.add(reg.getNextGroup())
10: end for
11: while |reported groups| ≤ k do
12: g ← Q.dequeue()
13: report g
14: Q.add(g.getRegion().getNextGroup())
15: end while

the definition of level is introduced.

Definition 4.3. [Level L] A level L is a set of comparable regions.

The construction of levels for a given function is defined in algorithm 10. First, a list
is created to hold the computed levels. Then, the function is applied to all the points.
These points are sorted after duplicates removal. Then, levels are constructed from these
values where the first point of the first level is −∞ and the last point of the last level is
∞. Finally the order of levels in L is reversed.

Figure 4.7 shows example 4.1 after constructing the levels. There are three levels; the
first one has no region, the second one has four regions, and the last one has two regions.
L1[0.0076,∞] : {([0, 0.0199]), ([0.8801, 1])}
L2[−0.0009, 0.0076] : {([0.0199, 0.1459]), ([0.1459, 0.45]), ([0.45, 0.7541]), ([0.7541, 0.8801])}
L3[−∞,−0.0009] : {}

For example 4.2, there are three levels; the first and the third levels has no region and
the last one has six regions.
L1[0.4288,∞] : {}
L2[−0.4288, 0.4288] : {([0, 0.3232], [0, 0.5]), ([0, 0.3232], [0.5, 1]),
([0.3232, 0.6768], [0, 0.5]), ([0.3232, 0.6768], [0.5, 1]),
([0.6768, 1], [0, 0.5]), ([0.6768, 1], [0.5, 1])} L3[−∞,−0.4288] : {}

The details of the HRAG − L are illustrated in algorithm 11. First, a priority queue
is defined. It is used to hold the groups based on the scoring function provided. Then,
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Algorithm 10 GetLevels (P , F)

Require: P : List of local maxima and minima and F : group-based scoring function
1: Create a list L to hold the constructed levels
2: L ← {}
3: pre← −∞
4: PF ← Apply F on P
5: Remove duplicates from PF
6: Sort PF
7: for all point p in PF do
8: L ← L ∪ {[pre, p]}
9: pre← p
10: end for
11: L ← L ∪ {[pre, c]}
12: Reverse the order of of L
13: Return L

Algorithm 11 HRAG− L (R, F , m, k, C)

Require: R: ranked relation and F : group-based scoring function
1: Create a priority queue Q to order groups based on F
2: LI ← GetLevels(P , F)
3: P ← GetIntersection(LI, F) ∪ GetIntersection(LI, F)
4: I ← GetIntervals(P)
5: REG← GetRegions (I)
6: L← GetLevels (REG)
7: Assign tuples in R to intervals
8: while |reported groups| ≤ k do
9: while Q is empty do
10: l← L.getNextGroup()
11: for all region reg in l.getRegions() do
12: R ← reg.GetRelations()
13: reg.assign(RJ(R,F , k, C))
14: Q.add(reg.getNextGroup())
15: end for
16: end while
17: g ← Q.dequeue()
18: report g
19: Q.add(g.getRegion().getNextGroup())
20: end while
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Figure 4.7: Levels and Regions

intervals, regions, and levels are computed and tuples are distributed over the corresponding
regions. In the next step, the algorithm iterates over each level. For each region, tuples
assigned to the intervals are returned as a set of relations. Then, an instance of rank join
algorithm is assigned to each region and it is used to get the next group from each region.
The algorithm iterates until returning the top k groups. In each iteration, it gets the group
on the top of the priority queue and reports it. Then another group is added to the queue
from the same region.

Figure 4.8 depicts the first four steps of the HRAG−L algorithm on example 4.1. After
regions construction, tuples are assigned to the corresponding region. {t10} to ([0, 0.0199]).
{t1, t2} to ([0.8801, 1]). {t8, t9} to ([0.0199, 0.1459]). No tuple to ([0.1459, 0.45]). {t5, t6, t7}
to ([0.45, 0.7541]). {t3, t4} to ([0.7541, 0.8801]).

Then the algorithm starts by getting one group from each region in the first level and
enqueuing them to the priority queue. The top group t1 is reported and a new group is
constructed from the same region. If the queue is empty and no additional group in the
current level, a new level is introduced. The process continues until the required number
of groups is reported.
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Figure 4.8: Applying HRAG− L on example 4.1

4.3 Experiments

All experiments were conducted on a SunFire X4100 server with Dual Core 2.2GHz pro-
cessor, and 8GB of RAM. The parameters of the experiments are the relation size R and
the number of the groups required k. Two metrics are reported, the overall running time
and the scan depth.

In the first experiment, the relation size is fixed to 1000 and the number of required
groups changed from 1 to 50. Figure 4.9 compares the running time of the three algorithms.
The new algorithms shows better running time over the algorithm based on Brute Force.
Figure 4.10 compares the total scan depth of the three algorithms which are comparable.
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Figure 4.9: Change k - Running Time
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Figure 4.10: Change k - Scan Depth

In the second experiment, the number of required groups is fixed to 50 and the relation
size changed from 100 to 1000. Figure 4.11 compares the running time of the three algo-
rithms. The new algorithms shows better running time over the algorithm based on Brute
Force.
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Figure 4.11: Change Relation Size - Running Time

As a conclusion, the new algorithms show better performance over the Brute Force
approach.

4.4 Summary

In this chapter, the Holistic Ranking Aggregation Query (HRA ) with group-based generic
scoring function was studied. First, a new algorithm was introduced based on splitting the
problem into multiple problems of holistic ranking aggregation with monotone function.
Then, experiments comparing the different algorithms were presented.
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Chapter 5

Conclusion and Future Work

In this chapter, the dissertation is concluded and directions for future work are presented.

5.1 Conclusion

In this dissertation, the Holistic Ranking Aggregation problem was formalized. A com-
prehensive survey about the interaction between ranking and aggregation was introduced.
Algorithms were proposed to efficiently process ad-hoc holistic ranking aggregation for
both monotone and generic scoring functions.

In the survey, multiple classifications of ranking aggregation processing techniques were
introduced. One classification dealed with different interactions between ranking and
grouping operations. Another one dealed with the different types of aggregation. Ranking
Aggregation processing techniques were also classified according to the level of integration
with the database systems. The last classification dealed with the type of the ranking
function.

The Holistic Ranking Aggregation Query with a group-based monotone scoring func-
tion was studied. An algorithm based on the Rank-Join problem was introduced and its
shortcomings was discussed. Then, two algorithms based on A∗ were introduced. One was
Bottom-up algorithm and the other was Top-down algorithm. Experiments comparing the
different algorithms were presented.

Finally, the Holistic Ranking Aggregation Query with group-based generic scoring func-
tion was studied. Multiple algorithms were proposed based on splitting the problem into
multiple problems of holistic ranking aggregation with monotone function. Experiments
were held to show the efficiency of the new algorithms.
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5.2 Future Work

The main direction of the future work is enriching the literature of the Holistic Ranking
Aggregation problem.

• Ranking Aggregation Processing Techniques

As discussed in table 2.1, this dissertation focuses on the Group then Rank query model,
holistic aggregation type, and application level implementation. Various interesting prob-
lems can be defined with other types. One of these problem is Rank within Group problem
with holistic aggregation. In this problem, the user is interested in the top candidates of
each group where the scoring function is holistic.

Another interesting problem is adding the holistic ranking aggregation to the database
engine. This includes implementing it as operator, formalizing it in relational algebra, and
defining various optimization techniques. This allows the engine to apply the appropriate
optimization techniques to the new operators.

• Relax Problem Constraints

Constraints on the holistic ranking aggregation problem can be relaxed. In this dissertation,
a special type of scoring functions was defined. A scoring function is a group-based scoring
function if it is evaluated over all the group members and does not depend on other tuples.
This restriction can be relaxed and the scoring function can be evaluated over any tuple.

Another interesting problem is relaxing the constraint that each tuple can belong only
to one group. Thus, tuples can belong to different groups. Also, membership may be
probabilistic where a tuple can belong to one group with certain probability and belong to
another group with another probability.
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Appendix A

Using Dominanace in Rank-Join
Problem

Rank-join problem is defined in definition 3.1.1. Given multiple relations and a scoring
function, it computes the k join results over the given relations with the highest scores.

The idea of dominance studied in section 3.2.2 can be applied to the rank-join problem.
In this appendix a new rank join algorithm based on the dominance is introduced. Then
a comprehensive comparison between the new algorithm and the two famous rank-join
algorithms J∗ and HRJN∗ is presented.

A.1 DRJ Algorithm

A state, representing a candidate result, is defined as a decimal string with fixed size equal
to the number of the given relations. The values at position p corresponds to the number
of the tuples coming from the relation Rp. Figure A.1 shows the Hasse diagram of the
state dominance where the number of relations to join is three.

The details of the DRJ algorithm are illustrated in algorithm 12. First, the algorithm
creates a priority queue to hold the states based on the scoring function provided and
initializesinitializes it by adding a state of length equal to the number of the input relations.
Also, it creates a hash table to hash the tuples retrieved using the order of retrieval as a
key. Then, the algorithm iterates until returning the top k groups. In each iteration, it
gets the state on the top of the priority queue. If the state is a valid join, it constructs the
corresponding result and reports it. Then it iterates over each relation in the state. For
each relation, it retrieves the next tuple either from the hash or by calling the getNextTuple
function. Then it create the new state. If it is a new state it adjusts their scores using the
new tuple score and adds it to the priority queue.
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Figure A.1: The Hasse diagram of the state dominance

A.2 J∗ Algorithm

J∗ is a rank-join algorithm introduced by Natsev et al [13]. There are two types of states;
complete and partial. A complete state represents a complete result similar to the state
defined in DRJ . A partial state represents an incomplete result. The missing members
are identified using placeholders pointing to the next tuple to be scanned. J∗ algorithm is
based on A∗ search. The main idea is to maintain a priority queue of partial and complete
states ordered on the upper bound of their scores. At each step, the algorithm examine the
top state. The complete state is reported but the partial state is extended to two states
and added to the priority queue. Figure A.2 shows the state space expansion for joining
three relations.

*1*1*1

1*1*1 *2*1*1

11*1 *3*1*11*2*1 2*1*1

111 3*1*112*1 21*1 11*2 *4*1*11*3*1 2*2*1

112 31*1 

12*2 

211 

11*3 

4*1*1

1*4*1

22*1 121 

3*2*1

13*1 

21*2 *5*1*12*3*1

Figure A.2: J∗ state space expansion for three relations
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Algorithm 12 DRJ (R, F , k)

Require: R: set of ranked relation
1: Create a priority queue Q to order the states based on F
2: Create a hash table H to hash the tuples retrieved, the key is the order of the tuple

retrieval
3: s← 11...1 where |s| = |R|
4: Q.enqueue(s)
5: while |reported tuples| ≤ k do
6: s← Q.dequeue()
7: if s is valid join then
8: j ← s.constructResult()
9: report j
10: end if
11: for i = 0 to |s| do
12: if (s[i] + 1) exists in H then
13: t← H.get(s[i] + 1)
14: else
15: t← R.getNextTuple()
16: H.add(s[i] + 1, t)
17: end if
18: s

′ ← s
19: s

′
[i]← s[i] + 1

20: if s
′

is a new state then
21: s

′
.adjustScore(i, t)

22: Q.enqueue(s
′
)

23: end if
24: end for
25: end while

A.3 HRJN ∗ Algorithm

HRJN∗ is a rank-join algorithm introduced by Ilyas et al [6]. Figure A.3 shows the state
space expansion for joining three relations.
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Figure A.3: HRJN∗ state space expansion for three relations

A.4 Analysis

DRJ algorithm is compared to J∗ and HRJN∗ algorithms.

States
J∗ deals with both partial and complete states, while HRJN∗ and DRJ deals with com-
plete states only.

State Generation
In J∗ , the generator is the partial states. Given a partial state, it introduces two states;
one considers the corresponding tuple and the other ignores it. In HRJN∗ , the generation
process is independent of the states. Given a new tuple, it generates all the valid complete
results that contain t and the tuples seen. In DRJ , the generator is the complete state.
Given a complete state, it generates only states that are candidates to be on the top of the
priority queue.

Joining
J∗ check the state validity after generation and before inserting in the priority queue.
HRJN∗ constructs valid joins using a hash structure. DRJ check the state validity after
removed from the top of the priority queue not on generation. J∗ and DRJ can work on
general joining condition while HRJN∗ works only on equality joins.

Pruning
In J∗ , if a state has a property then all its descendants will have the same property.
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This enables J∗ to prune the state if the property is invalid and as a consequent all its
descendants will not be generated.

In HRJN∗ , the generation technique prevent the generation of invalid states, only
valid states are materialized.

In DRJ , since the generation is dependent on the states and not all the descendants
of a state have the same properties, thus no pruning is allowed. This means that the
subsequent invalid states can be generated.

Reporting
In J∗ , a complete state on the top of the priority queue is reported. In HRJN∗ , a
complete state on the top of the priority queue and satisfying the threshold is reported.
In DRJ , a complete state on the top of the priority queue and is satisfying the joining
condition is reported.

Search Technique
J∗ is based on A∗ Search, HRJN∗ is based on Breadth First Search, and DRJ is based
on Uniform Cost Search.

A.5 Experiments

To evaluate the performance of the new rank-join algorithm DRJ , it is compared to the
two famous rank-join algorithms HRJN∗ and J∗ .

Three performance metrics are presented; Maximum Queue Size, Total Scan Depth,
and Overall Running Time.

Experiments are repeated for two different implementations; Two-way (Operator) and
Multi-way. In the Two-way implementation, DRJ makes use of expanding minimum
number of states but in the Multi-way it does not make use of global information from
different relations and does not perform early pruning.

Change K
In this experiment, the number of required answers changed from 1 to 100 and join selectiv-
ity is fixed to 0.2 and the number of relations is fixed to 4. Figure A.4a and A.4b compare
the maximum queue size. In the Two-way implementation, DRJ uses the smallest queue
size. However in the Multi-way implementation DRJ has the worst maximum queue size.

Figure A.4c and A.4d compare the total scan depth. The three algorithms are compa-
rable in the total scan depth in both implementations.

Figure A.4e and A.4f compare the overall running time. In the two-way implementation,
DRJ shows better overall running time than J∗ . However it shows worse overall running
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time than HRJN∗ . In the Multi-way implementation, DRJ has the worst overall running
time.

Change Number of Relations
In this experiment, the number of input relations changed from 3 to 6, the join selectivity is
fixed to 0.2 and number of required answers is fixed to 50. Figure A.5a and A.5b compare
the maximum queue size. In the Two-way implementation, DRJ uses the smallest queue
size. However in the Multi-way implementation DRJ has the worst maximum queue size.

Figure A.5c and A.5d compare the total scan depth. The three algorithms are compa-
rable in the total scan depth in both implementations.

Figure A.5e and A.5f compare the overall running time. In the two-way implementa-
tion, DRJ shows better overall running time than J∗ . However it shows worse overall
running time than HRJN∗ except when the number of relations is 5. In the Multi-way
implementation, DRJ has the worst overall running time.

Change Join Selectivity
In this experiment, the join selectivity changed from 0.2 to 1.0, the number of required
answers is fixed to 50 and number of relations is fixed to 4. Figure A.6a and A.6b compare
the maximum queue size. In the Two-way implementation, DRJ uses the smallest queue
size. However in the Multi-way implementation DRJ has the worst maximum queue size.

Figure A.6c and A.6d compare the total scan depth. The three algorithms are compa-
rable in the total scan depth in both implementations.

Figure A.6e and A.6f compare the overall running time. In the two-way implementation,
DRJ shows better overall running time than J∗ . However it shows worse overall running
time than HRJN∗ . In the Multi-way implementation, DRJ has the worst overall running
time.

Both HRJN∗ and J∗ make advantages of early pruning. Moreover HRJN∗ makes
advantages of fixed size priority queue.
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Figure A.4: Change K
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