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Abstract 

In this thesis, underlying concepts of transport phenomena through generated nanopores on a cell 

membrane during electroporation were studied. A comprehensive literature review was performed to 

find the pros and cons of the previous works and consequently extensive studies were accomplished 

to explain shortcomings of the former studies on this topic. 

The membrane permeabilization of the single cell located in the microchannel was studied, and the 

effects of microchannel’s wall and electrode size were investigated on cell electroporation. It was 

studied how the electrical (e.g., strength of the electric pulse) and geometrical parameters (e.g., 

microchannel height and electrode size) affect size, location, and number of created hydrophilic pores 

on the cell membrane. 

Because of a transmembrane potential, the electrokinetic effects have decisive influence on the 

transport process through the created nanopores. A comprehensive study was performed to explain 

the electrokinetic transport through the nanochannels. Effects of surface electric charge and radius of 

the nanochannel on the electric potential, liquid flow, and ionic transport were investigated. Unlike 

microchannels, the electric potential field, ionic concentration field, and velocity field are strongly 

size-dependent in the nanochannels. They are also affected by the surface electric charge of the 

nanochannel. More counter ions than co-ions are transported through the nanochannel. The ionic 

concentration enrichment at the entrance and the exit of the nanochannel is completely evident from 

the simulation results. The study also shows that the fluid velocity in the nanochannel is higher when 

the surface electric charge is stronger, or the radius of the nanochannel is larger.  

The obtained model of the electrokinetic effects in the nanochannels was utilized to examine the ionic 

mass transfer and the fluid flow through the generated hydrophilic nanopores of the cell membrane 

during electroporation. The results showed how the electric potential, velocity field, and ionic 

concentration vary with the size and angular position of the generated nanopores of the cell 

membrane. It was also shown that, in the presence of the electric pulse, the electrokinetic effects (the 

electroosmosis and the electrophoresis) had significant influences on the ionic mass transfer through 

the nanopores, while the effect of diffusion on the ionic mass flux was negligible in comparison with 

the electrokinetics. Increasing the radius of the nanopores intensified the effect of convection  

(electroosmosis) in comparison with the electrophoresis on the ionic flux. 

Furthermore, the electrokinetic motion of the nanoparticle through the nanochannel was investigated 

to mimic inserting the nanoscale biological samples, such as QDots and DNAs, through the created 
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nanopores on the cell membrane. It was proved that, because of the large applied electric field over 

the nanochannel, the impact of the Brownian force was negligible in comparison with the 

electrophoretic and the hydrodynamic forces. It was demonstrated that increasing the bulk ionic 

concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and 

hence affect the particle’s motion. It was also shown that, unlike the microchannels with thin EDL, 

the change in the nanochannel size will change the EDL field and the ionic concentration field in the 

nanochannel, affecting the particle’s motion. If the nanochannel size is fixed, a larger particle will 

move faster than a smaller particle under the same conditions. 

Finally, it was examined how the nanoscale biological samples (nanoparticles) reach openings of the 

generated nanopores on the cell membrane during electroporation. It was examined what forces 

(electrophoresis, diffusion, and convection) brings the nanoparticles into the nanopores and how the 

size and the surface electric charge of the nanoparticle affect its transport to the opening of the 

nanopores.     
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D
 : diffusion coefficient of negative ion 

µi  
: mobility of ion species i

 
T : temperature 

 

    Chapter 5 

T  : relative permittivity 

0  : absolute permittivity 

  : liquid density 

s  
: surface electric charge density

 
T  : temperature 

gR   : universal gas constant 

,o iC  : intercellular bulk ionic concentration of ion type i 

,o eC  : extracellular bulk ionic concentration of ion type i 

F : Faraday Constant 

a : cell radius 

t : cell thickness 

R : radius of nanopore 

0R  : radius outside of nanopore 

eE  : external electric field 

iD  : diffusion coefficient of positive ion 

i  : mobility of ion species i 

TMP : Transmembrane Potential 

 

  Chapter 6 

 

T  : relative permittivity 

0  : absolute permittivity 

  : liquid density 

w  
: surface electric charge on the walls of nanochannel

 

p
 

: surface electric charge of nanoparticle
 

1  
: electric potential on the left

 

2  
: electric potential on the right

 
  : dynamic viscosity 

F : Faraday constant 



 xxii 

kB : Boltzmann constant 

Rg : universal gas constant 

R : nanochannel radius 

a : nanoparticle side dimension 

L : nanochannel length 

D
 : diffusion coefficient of positive ion 

D
 : diffusion coefficient of negative ion 

µi : mobility of ion species i 

oC  : bulk ionic concentration 

T : temperature 

ς : Gaussian Random Number  

 

   Chapter 7 

 

0( 2 )d a  : diameter of the cell 

a  
:  radius of the cell 

mt  : cell membrane thickness  

ch  : height of the microchannel 

d  : length of the electrode 

0  : electric pulse intensity 

0t  : electric pulse duration 

is  : intracellular conductivity  

es  : extracellular conductivity  

s  : Conductivity of the solution filling the pore  

mc  : Specific membrane capacitance   

1g  : Surface conductance of the membrane   

restV  : rest potential  

  : Creation rate coefficient   

epV  : Characteristic voltage of electroporation    

0N  : Equilibrium pore density at 0mV     

*r  : Minimum radius of hydrophilic pores   

mr  : Minimum energy radius at 0mV 
 
 pores   

D  : Diffusion coefficient for pore radius  

T  : Temperature 

  : Steric repulsion energy  

  : Edge energy   

maxF  : Max electric force for 1mV V  

hr  : Constant in Eq. (7.11.b) for advection velocity  

tr  : Constant in Eq. (7.11.b) for advection velocity  

q  : Constant in Eq. (7.10) for pore creation rate   



 xxiii 

 

 

 

 

 

 

 

 

   : Tension of hydrocarbon-water interface  

0  : Tension of the bilayer without pores  

F : Faraday constant  

T  : relative  permittivity   

0  : Vacuum  permittivity   

  : Viscosity of medium   

  : medium density   

s  : surface electric charge of the nanochannel walls 

p  : surface electric charge of nanoparticle 

pd
 

: diameter of the nanoparticle 

gR  : gas constant  

( ) D Na
 : diffusion coefficient of Na   

( ) D K 
 : diffusion coefficient of  K 

   

( ) D Cl  : diffusion coefficient of  Cl    

i  : mobility of ion species type i  





 1 

Chapter 1 

Introduction 

1.1 Overview 

The main objective of this study is to investigate the underlying concepts of electrokinetic transport 

process in nanochannels and nanopores generated on cell membrane during electroporation 

performing in microfluidic lab-on-a-chip devices. Applying an electric field near the cell results in 

disturbance in its membrane structure and creating nanopores on it. This leads to a significant 

increase in the electrical conductivity and permeability of the cell membrane that usually refers as the 

electroporation or electropermeabilization (Neu, et al., 2009). To obtain the best cell viability and 

transfection rates and decrease the required samples, the microfluidic electroporation of the single cell 

is considered. During the electroporation, the nanoscale pores generate on the cell membrane. 

Because of transmembrane potential and surface electric charge of the cell membrane, the 

electrokinetic effects play important roles on cell transfection (performing electroporation to insert 

biological samples to the cells). 

Traditional electroporation devices (macroscale devices) suffer from a number of problems: In 

addition to the insufficient understanding of its theoretical mechanism, the cell viability and 

electroporation efficiency are inadequate; some cells are distorted while others are unaffected. The 

cell viability is typically about 20~50%, and transfection rate for mammalian cell lines is less than 

50% (Lee, et al., 2009). Because of the large size of these devices, excessive voltage must apply to 

the electrodes in order to generate the required electric field for electroporation. Special safety 

cautions are required to operate commercial electroporators at several hundred volts. The large 

distances between the electrodes in conjunction with the short duration electric pulses can also lead to 

a non-uniform and less stable electric field profile. Furthermore, the conventional electroporators 

usually have sensitive and complicated experimental processes. Aluminum based electrodes are 

widely used in commercial instruments that could be a source of Al
3+

 ions dissolved into the media, 

leading to unpredictable results in cells (Kim, et al., 2007). On the contrary, the microfluidic 

electroporation can provide spatial and temporal control of various electrical parameters. Many 

shortcomings of convectional electroporation such as variations in the local pH, electric field 

distortion, sample contamination, and the difficulties in transfection and maintaining the viability of 

desired cell types can be avoided in the microfluidic electroporation. 
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They are many advantages associate with the microfluidic electroporation (Lee, et al., 2009; Fox, et 

al., 2006). The required voltages in the microfluidic devices are much lower in comparison with the 

macroscopic systems. By shrinking the inter-electrode distance to a few tens of microns, it is possible 

to reduce the voltage requirement to a few volts (three orders of magnitude smaller than typical 

voltages required in a macroscopic apparatus). Consequently, the power consumption (P) becomes 

six orders of magnitude smaller ( 2P V ) and heat generation is minimal. One of the challenging 

problems of the conventional electroporation systems is the heat generation. In microscale devices, 

the area-to-volume ratio is relatively large. This leads to the faster heat dissipation. The fast 

dissipation of the generated heat makes it possible to distinguish the heating effects and the electric 

field effects. The ability of performing the electroporation process in continuous flow is another 

advantage of the microfluidic electroporation devices. The required amounts of difficult-to-produce 

reagents, such as specific plasmids, are considerably small in comparison with the conventional 

electroporation. Microfluidic electroporation has the ability of in situ visualization of molecular 

uptake. One can have a real-time monitoring of intracellular response to the external electric pulses 

(using fluorescent probes for example). The ability to perform the single cell electroporation is a 

further advantage of the microfluidic electroporation. In the microfluidic electroporation, it is possible 

to trap single cells and perform transfection or determine intracellular content or other properties of 

the single cell, which is hardly feasible when using conventional equipment. One can have more 

symmetrical and uniform electric fields in the microfluidic electroporative devices. Cell handling and 

manipulation are also easier in the microfluidic electroporation. Last but not the least is the potential 

of the microfluidics electroporative devices for integration with other microfluidic components to 

form a multifunction lab-on-chip system for subcellular analysis, which would greatly facilitate large 

scales biochemical experimentation. 

The cell electroporation and membrane permeabilization of the cells located in the microchannels 

has not been investigated yet. All the other studies on this topic consider the cells in an infinite 

domain which may not reflect the effects of microchannel walls and electrode size on the cell 

electroporation. Furthermore, there is not any comprehensive study on the electrokinetic effects in the 

nanoscale pores and channels. Because of the nanoscale dimensions of the generated pores, electric 

double layer has a signification overlapped and therefore conventional theories of the electrokinetics 

(such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski theory of electroosmotic slip 

velocity) lose their credibility in such the nanoscale dimensions.  
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This thesis involves the theoretical studies on the cell electroporation and transfection in 

microfluidic devices. The membrane permeabilization of the single cell located in the microchannel is 

examined first. The effects of microchannel height, electrode size, and electric pulse and duration are 

investigated on the number and angular position of the created nanopores on the cell membrane. Next, 

the electrokinetic effects in the nanoscale channels and consequently created nanopores on the cell 

membrane are studied to model the flow field and ionic mass transfer through the created nanopores 

of the cell membrane. Then, the electrokinetic motion of the nanoparticle in the nanochannel is 

studied in order to mimic insertion of the QDots into the cells via the created nanopores of the cell 

membrane. Finally, the transport of the nanoparticle to the opening of the generated nanopore in cell 

membrane during electroporation is investigated.  

1.2 Motivations 

Quantum Dots (QDs) represent one newer form of technology that is now being exploited for the 

detection and tracking of dynamic cellular events in living systems (Algar, et al.; Algar, et al., 

2009). It presents the feasibility of early detection of disease and also monitoring disease 

progression and therapeutic efficiency.  In fact, the QDs are the bio-sensors for the detection and 

tracking of dynamic cellular events in living systems. Reversible electroporation technique can be 

utilized to insert these microscale bio-sensors into the cells. By exploiting the microfluidic lab-on-a-

chip devices, the required reagents of the electroporation reduces significantly; in addition, the 

microfluidic devices are capable of performing the single cell electroporation and present the 

feasibility of online monitoring. Furthermore, microscale electroporation has the best cell viability 

and transfection rate compare with its counterparts (Lee, et al., 2009).   

Current understandings on the theoretical aspects of the cell electroporation are too limited. There 

is no study on the membrane permeabilization of the cells located in the microchannels. The previous 

studies considered the cells in an infinite domain which may not reflect the influence of microchannel 

walls and microelectrode size and location on the cell membrane permeabilization. No studies also 

consider the effects of the electrokinetics on the flow field, ionic transport, and inserting the 

biological samples (QDots) through the nanopores of cell membrane into the cells.  

The major motivation of this study is to expand the current understanding on the underlying 

concepts of the microfluidic cell electroporation.  
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1.3 Background 

As it was indicated before, one of the most interesting applications of the microfluidic electroporation 

is cell transfection (inserting biological samples into the cell). The reversible cell electroporation and 

DNA electrotransfer trace its roots to 1982 (Neumann, et al., 1982). At the beginning of the 

millennium, the idea of using the microfluidic devices for the electroporation initiated. In a series of 

publications, Huang and Rubinsky presented their microfluidic electroporation device (Huang, et al., 

2000; Huang, et al., 2001; Huang, et al., 2003). In fact, this is the first practical attempt to use 

microfluidic devices for the cell electroporation purpose. Figure 1.1 shows the schematic diagram and 

optical image of this work.  

 

Figure  1-1 (a) Scheme of the first proposed flow-through micro-electroporation chip. (b) 

Optical image of the layout the first microfluidic electroporation device.  Micro-hole, micro-

channel and integrated electrodes are tagged in this picture (Huang, et al., 2003). 
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The electroporation system of Figure 1.1 contains one microchannel with an approximate width 

equal to 1.5 times of the cell diameter. In this way, the cells are forced to pass through the channels 

one by one and electroporated individually (single cell electroporation). There is a hole at the center 

of this channel. The purpose of the hole is to trap the cells and fixes them during the electroporation 

process. Three pairs of electrodes are used in this system. The function of one set of the electrodes at 

the entrance of the channel is to prevent the large cells from entering the channel. This was achieved 

by producing electrical repelling force against the large cells. Two 10 µm wide auxiliary 

microelectrodes were placed 10 µm away on both sides of the micro-hole for cell detection by 

impedance measurement. Two other electrodes were placed 100 µm apart on two sides of the micro-

hole to generate the required electric field for performing the electroporation. The cells flew through 

the channels one by one, were trapped by the micro-hole and electroporated. By applying 10 V 

electric potential with 10 ms duration, this system is used to reversibly electroporate the Human 

prostate adenocarcinoma cells (ND-1 cell line). It was reported that the cell transfection efficiency of 

this system is 100%. 

By recent advancements in the field of microfabrications (Ziaie, et al., 2004), much more studies 

conducted on microfluidics cell electroporation (Lee, et al., 2009; Movahed, et al., 2011; Fox, et al., 

2006; Wang, et al., 2010). Most of the leading studies in this field have been reviewed in Chapter 2. 

1.4 Objectives and Scopes 

This thesis studies theoretical concepts of the microfluidic cell electroporation. Here, I investigate 

how different geometrical (e.g. microchannel size, electrode size, and nanoparticle size) and electrical 

parameters (e.g. surface electric charge, electric pulse intensity, and duration) affects the 

permeabilization of the cell membrane and transporting the nanoscale biological samples towards and 

into the generated nanopores on the cell membrane. In the future, the other researchers may use the 

results and finding of this study as a guideline to obtain the optimized design and improve the 

functionality of their proposed microfluidic cell electroporation design. Whit these into consideration, 

the scopes and objectives of this study can be classified as follows:  

 To perform a comprehensive literature review on previous experimental and theoretical 

studies on the microfluidic cell electroporation. 
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 To get solid understanding on the governing theories of electroporation. They include 

theory of membrane permeabilization and the electrokinetic effects in the nanoscale 

dimensions.  

 To study permeabilization of the single cell located in the microchannel.  

 To develop an accurate and comprehensive model for the electrokinetic effects in the 

nanochannels and the nanopores.  

 To model ionic mass transfer and cell uptake from the generated nanopores on the cell 

membrane and during electroporation.  

 To study the electrokinetic motion of nanoparticles in the nanochannels.  

 To investigate the nanoparticle transport to the opening of the nanopores generated on the 

cell membrane during the electroporation.  

1.5 Overview of this thesis 

This thesis consists of eight different chapters.  The references are listed at the end of the thesis. 

Chapter 1, the current chapter, introduces the concepts and motivations of the microfluidic cell 

electroporation. The pioneer studies on this topic have been reviewed here. This chapter also includes 

the scopes and objectives of this study and also the overview of the whole dissertation.   

Chapter 2 contains a critical review on the experimental and theoretical studies of the microfluidic 

cell electroporation. More than 100 papers are reviewed here. All the published theoretical models on 

the cell membrane permeabilization and the ionic mass transfer and the fluid flow through the 

generated nanopores of the cell membrane are studied. This chapter also reviews the previous 

experimental microfluidic set ups of the cell electroporation. Indeed, this chapter provides pros and 

cons of the previous studies on this topic and provides clues to the future trend of the microfluidic cell 

electroporation. 

Chapter 3 contains the membrane permeabilization of the cells located in the microchannels. In this 

chapter, first a theory of membrane permeabilization is introduced. Then, for one specific case of 

study, electropermeabilization of the single cell located in the microchannel is investigated. A 

complete parametric study is performed, and the effects of microchannel height, electrode size, 

electric pulse intensity and duration on the density and size of the created nanopores are investigated.  
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Chapter 4 examines the electrokinetic transport through the nanochannels. Because of electric 

double layer overlapping in the nanochannels, the conventional theories of the electrokinetics such as 

the Poisson Boltzmann equation and the Helmholtz Smoluchowski slip velocity lose their credibility 

and cannot be used anymore. In this chapter, a highly coupled set of partial differential equations 

including the Navier Stokes equations, the Nernst Planck equation, and the continuity equations are 

solved to find the electric potential, the flow field, and the ionic concentration through the 

nanochannel. In this chapter, influences of the nanochannel height and surface electric charge on its 

walls are investigated on the electrokinetic transports.  

In Chapter 5, the proposed model of Chapter 4 is utilized to examine the ionic mass transfer and the 

fluid flow through the generated nanopores on the cell membrane during the electroporation. The 

influences of angular position and cross sectional area of the created nanopores on the cell membrane 

are investigated. Furthermore, it is shown that in addition to the diffusion, the electrokinetics 

(electroosmosis and electrophoresis) play an important roles on the ionic mass transfer and fluid flow 

through the created nanopores.  

In Chapter 6, the electrokinetic motion of a nanoparticle in the nanochannels is studied to mimic 

inserting biological samples into the cells through the nanopores on the cell membrane 

(electroporation). At each time step, the proposed model of Chapter 4 is utilized to find the flow field 

and the ionic mass transfer and consequently the inserted hydrodynamic (electroosmotic) and 

electrophoretic forces on the nanoparticle. Then, the Newton second law is utilized to obtain the 

velocity of the nanoparticle. It is shown that the effect of the Brownian force on the nanoparticle is 

negligible in comparison with the hydrodynamic (electroosmotic) and electrophoretic forces. A 

comprehensive parametric study is performed and the impacts of nanoparticle size, bulk ionic 

concentration, surface electric charge of the nanochannels, and nanochannel cross sectional area on 

the nanoparticle motion are investigated.  

In Chapter 7, it is examined that how the nanoparticle reach the opening of the generated nanopores 

on the cell membrane. First the membrane permeabilization of the cell located in the microchannel is 

studied to find the radius of the generated nanopores and transmembrane potential in the vicinity of 

these generated nanopores. Then, the theory of electrokinetics in nanochannels is utilized to model 

the nanoparticle motion near the generated nanopores. It is shown that, unlike the hydrodynamic 

(electroosmotic) effect, the electrophoretic force tends to move the nanoparticle toward the opening 
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of the generated nanopores. It is also shown that more highly charged and smaller nanoparticles have 

better transport to the opening of the generated nanopores.    

The concluding remarks are presented in Chapter 8. In this chapter, I explain the conclusions and 

contributions of this thesis. Furthermore, I propose some outlines for the future studies on this topic.   
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Chapter 2 

Literature Review* 

2.1 Introduction 

In this chapter, the latest achievements of the microfluidic devices for the cell electroporation will be 

reviewed. Having a comprehensive understanding on the pro and con of the current experimental set-

ups helps us to improve the functionality of the proposed design. However, before going through 

these experimental studies, it is worthy to have a look at some important analytical studies on the 

microfluidic cell electroporation. Although the current analytical studies are unclear regarding the 

exact mechanisms of ions and macromolecule exchange across the cell membrane, they present some 

interesting clues for future works. 

2.2 Theoretical Studies 

The underlying concept in many of these analytical studies is the “theory of cell membrane 

permeabilization” that will be explained in section 3.2. These studies can be categorized in three 

different groups:  

 The studies investigated the effects of different parameters such as field strength, ionic 

concentration, pulse strength and duration on the cell membrane permeabilization.  

 The studies conducted to evaluate the uptakes of fluid, ions, and macromolecules by the cell 

during the electroporation.  

 The studies focused on optimizing and controlling of electric pulse during the cell 

electroporation. 

In the following section, these categories are reviewed separately.  

2.2.1 Studies investigated the effects of different parameters such as field strength, 

ionic concentration, pulse strength and duration on the cell membrane 

permeabilization. 

Many studies investigated different parameters such as the field strength, the ionic concentration, the 

pulse strength and duration on the cell membrane permeabilization. In these studies, Laplace equation 

                                                      
*
 A version of this chapter has been published in the Microfluidic and Nanfluidic Journal as: “Saeid Movahed, 

Dongqing Li ‘Microfluidics Cell Electroporation ’, Microfluidics and Nanofluidics Journal, Springer, 2011, 

Vol. 10, No. 4, pp. : 703-734”. A licence agreement of reprinting this article in the current dissertation has been 

presented in permission section (License Number: 3001440592254). 
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( 2 0  ) was solved in order to find the electric potential inside ( i ) and outside ( e ) the cell. 

Equation (2.1) was suggested to find the current density across the cell membrane (DeBruin, et al., 

1999). In this equation, the cell membrane is modeled as a parallel capacitor and resistance system. 

Transmembrane potential ( mV or TMP) is defined as: m i eV    . In this equation,  ionI  is the ionic 

current, and 
epI is the current due to the electroporation. 

ˆ ˆ( ) ( ) m
i i e e m ion ep

V
n n C I I

t
 


       


 (2.1) 

Using this approach, in a series of papers DeBruin et al. studied the effect of the field strength, the 

rest potential, and the ionic concentration on the cell permeabilization (DeBruin, et al., 1999; 

DeBruin, et al., 1999). According to their results, TMP (the transmembrane potential) is symmetric 

about the equator with the same value at both poles of the cell. Larger shocks do not increase the 

maximum magnitude of TMP because more pores form to shunt the excess stimulus current across 

the membrane. In addition, the value of the rest potential does not affect induced transmembrane 

potential around the cell because the electroporation current is several orders of magnitude larger than 

the ionic current that supports the rest potential. Once the electric field is removed, the shock-induced 

discharges within 2s, but the pores persist in the membrane for several seconds. Complete resealing to 

pre-shock conditions requires approximately 20 s.  

Bilska et al. modeled the electroporation in two geometries, a space-clamped membrane and a 

single cell, and investigated the effects of pulse duration, frequency, shape, and strength (Bilska, et 

al., 2000). The effectiveness of each shock is measured by the fractional pore area (FPA). The results 

indicate that FPA is sensitive to shock duration only in a very narrow range. In contrast, FPA is 

sensitive to shock strength and frequency of the pulse train, increasing linearly with shock strength 

and decreasing slowly with frequency. Their results indicate that varying the strength and frequency 

of a monophasic pulse train is the most effective way to control the creation of pores (Bilska, et al., 

2000).  

Mossop et al. investigated that how the intracellular field is altered by the electroporation 

(Mossop, et al., 2007). In their study, they showed that the intracellular current could vary several 

orders of magnitude whereas the maximum variations in the extracellular and total currents were less 

than 8% and 4%, respectively. A similar difference in the variations was also reported when 

comparing the electric fields near the center of the cell and across the permeabilized membrane, 
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respectively. According to their results, the electroporation also caused redirection of the extracellular 

electric field that was significant only within a small volume near the permeabilized regions, 

suggesting that the electric field can only facilitate passive cellular uptake of charged molecules near 

the pores. Within the cell, the field was directed radially from the permeabilized regions, which may 

be important for improving intracellular distribution of charged molecules. 

Krassowska et al. presented a model of the electroporation in a spherical cell exposed to an electric 

field (Krassowska, et al., 2007). They investigated the pore density around the cell for one case of 

study. According to their results, the highest pore density occurs on the depolarized (the nearest point 

on the cell membrane near negative electrode) and hyperpolarized (the nearest point on the cell 

membrane near positive electrode) poles but the largest pores are on the border of the electroporated 

regions of the cell membrane. Despite their much smaller number, large pores comprise 95.3% of the 

total pore area and contribute 66% to the increased cell conductance. For stronger pulses, the pore 

area and the cell conductance increase, but these increases are due to the creation of the small pores; 

the number and size of the large pores do not increase (Krassowska, et al., 2007).   

Talele and colleagues developed a numerical model for single and spherical cell electroporation 

(Talele, et al., 2010). They simulated spatial and temporal aspects of the transmembrane potential and 

pore radii as an effect of the applied electric field (Talele, et al., 2010). Based on their results, that the 

pore radii tend to be more normalized for AC fields. The relative difference in fractional pore area is 

reduced by the use of a 1 MHz sinusoidal applied electric field over a 100 kHz field. 

These numerical and analytical studies on the cell electroporation have some underlying 

assumptions. First, they assumed the spherical cells. However, some studies indicated that in the 

presence of the applied electric field, the cells deform from spherical to elliptical shape (Teissie, et 

al., 2002). Second, they considered the cells in an infinite space. However, in the microfluidic 

electroporation, the cells are usually located in the microchannels or micro-chambers. The results of 

these studies may not reflect the boundary effects of the microfluidic based electroporative devices. 

Furthermore, the effects of cell expansion and rotation during the electroporation are not considered. 

More sophisticated analytical models are needed to investigate the effects of electro-deformation 

including swelling and rotation.  
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2.2.2 The studies conducted to evaluate the uptakes of fluid, ions, and 

macromolecules by the cell during the electroporation. 

A few studies were conducted on the mass transfer and uptake rate into the cells during the 

electroporation. There are not any accurate models that consider the electrokinetic effects on the mass 

transfer through the nanopores in the cell membrane. Furthermore, most of the current studies are 

based on continuum hypothesis that may become invalid in the small dimensions of the nanopores. 

Zaharoff et al. used one dimensional mass transfer equation to compute the cellular uptake of 

macromolecules (Zaharoff, et al., 2008). This study utilized the analytical approach (will be explained 

in Section 3.2) to estimate the dimension of the generated pores due to the applied electric field in the 

cell membrane. They treated these pores as a channel to uptake the macromolecules to the cell. They 

considered only the effect of diffusion in this process and their analysis was based on the continuum 

hypothesis. However, they concluded that continuum assumption used in their mathematical 

modeling is improper for simulating the diffusion within the cell; convection is probably the 

dominant mechanism of transport for cellular uptake of uncharged macromolecules; in addition, the 

effect of the electrophoresis must be considered in the cellular uptake of highly charged molecules. 

Another important effect on cellular uptake is cell deformation that was ignored in this study.  

Another study conducted by Granot and Colleagues (Granot, et al., 2008) numerically investigated 

the delivery of drugs into the tissue cells by the electroporation. This study was based on the 

following assumptions: the process of mass transfer happens in every cell in the tissue; the cells are 

infinitesimally small; and that the drug entering the cell can be modeled as a uniformly distributed 

reaction rate. They further assumed that the cells are uniformly packed in the tissue so that each 

spherical cell is contained in a cube whose edge is equal to 2r (r is the radius of the cell). They also 

considered only the effect of the diffusion. In this study, first they attributed to each cell at any 

location in the tissue a lumped value of permeability to drug which is proportional to the local value 

of the electrical field. After that, by only considering the diffusion as an uptake mechanism, the mass-

transfer equation (Eq. 2.2) was solved to find the concentration distribution of drug in the tissue in the 

reversible electroporation. The reaction rate ( R ) can be computed as  
0( )pR J A V  where 

pA  is the 

pore cross-sectional area of the permeable cells in each point of the tissue,  
3

0 (2 )V r  is the volume 

of cube surrounded the cell,  J  is flux per area that can be estimated by using the Fick’s law:  

.( )ex inJ P c c    where P  is the permeability of the drug molecules through the membrane pores.  
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More recently, Li and Lin have conducted a two dimensional numerical on molecular uptake via 

the electroporation (Li, et al., 2011). Although their work is the most comprehensive study on this 

topic, they have not considered the effects of different parameters such as surface electric charge of 

the cell membrane and intercellular concentrations of Na , K  , and Cl  ions in their simulations. 

Because of EDL overlapping through the generated nanoscale pores on the cell membrane, these 

parameters have significant influences on the electric field and the ion transportation through the 

nanopores.    

Because of the transmembrane potential, the electrokinetic effects most probably play a role in the 

cell uptake during the electroporation. So far the electrokinetic effects on transport processes in 

nanochannels have not been investigated adequately. The created nanopores in the cell membrane 

during the electroporation can be viewed as the nanochannels. Extensive researches are required to 

understand the electrokinetic transport of fluid, ions, and macromolecules through the nanochannels. 

2.2.3 Studies focused on optimizing and controlling of electric pulse during the cell 

electroporation. 

Effect of the electric pulse shape on the electroporation efficiency is important. Different pulse shapes 

can generate various effects on the cell (Fox, et al., 2006). Some studies investigated the effect of 

different pulse shapes (Sinusoidal, step, and triangular) on the transmembrane potential and the 

number of the pores. For example, Talele et al. showed that as long as a threshold of the 

transmembrane potential is maintained by the electric field, the pore density is increases. They also 

showed that the bipolar pulses leads to the asymmetrical pore density between the two cell polar 

regions (Talele, et al., 2010). In 2010, Miklavcic and Towhidi proposed an analytical model to predict 

the effects of arbitrarily shaped electroporation pulses on the cell membrane conductivity and on the 

molecular transport across the cell membrane (Miklavcic, et al., 2010). Knowing electrical and 

diffusive properties of the cells and the specific dye, their proposed model can be used to optimize of 

the electroporation protocol.  

Other studies in this category used feedback control techniques in order to reduce the side effects 

of the electric pulse on the cell structure. Experimental studies showed that the feedback control 

improves the electroporation efficiency of the single cells (Cukjati, et al., 2007; Khine, et al., 2007). 
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The feedback control can ensure the safe and accurate transfection during the reversible 

electroporation by monitoring the radii of the pores and the time duration for which the pores remain 

open. So far some experimental studies have been reported on the feedback control of the single cell 

electroporation (Cukjati, et al., 2007; Khine, et al., 2007). The interest of performing analytical 

studies on the feedback control of the cell electroporation increases recently. Because of nonlinear 

behavior of the cell electroporation, many conventional controllers cannot be exploited. One of the 

first analytical studies on the closed loop control of the cell electroporation was conducted by Zhao et 

al (Zhao, et al., 2010). Using nonlinear control techniques, they regulate the input voltage in order to 

stabilize the generated pore radii around the desired value. However, their design control theory is 

based on some nonlinear mathematical analysis that may be hard to implement. Other user-friendly 

control techniques (for example fuzzy logic) can be utilized to control the electroporation process.  

2.3 Experimental Studies 

In the current study, by going through the current microfluidic devices and their applications, we have 

classified the microfluidic electroporation devices as follows: 

 The microfluidic electroporative devices that are used to perform the cell lysis and release the 

subcellular contents.  

 The microfluidic electroporative devices that are utilized for inserting external molecules 

(transfection) such as DNA and Q-dots (Ho, et al., 2010) into the cells. 

 The microfluidic electroporation utilized in other processes such as electrofusion, metabolism 

monitoring, and localization of Kinases within cells.  

In this section, we focus on the current mechanical structure, mechanism and performance of the 

microfluidic electroporation. The technical, biological, and electrical properties of these microfluidic 

devices are summarized in Tables 2.1-2.3.  
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Table  2-1 Technical property of Electroporative Devices 
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(Lu, et al., 2005)   Pyrex 7740 Geometry Variation 30µm~130µm Gold 30 ~130 µm PDF 

(Wang, et al., 2006-a) PDMS Geometry Variation 33µm ~213µm Pt Wire far (~7mm)  PDF 

(Wang, et al., 2006) PDMS Geometry Variation 25 µm~219µm Pt Wire far (~10mm) EKF 

(Wang, et al., 2006-b) PDMC Geometry Variation 33µm ~213µm - far (7mm) PDF 

(Wang, et al., 2008) PDMS Geometry Variation 62.5µm~500µm Pt Wire far(4~5mm) PDF 

(Bao, et al., 2010) PDMS Geometry Variation 58µm~5mm Pt Wire far(12~25mm) PDF 

(Kim, et al., 2007) PDMS Salt Bridge 40µm~500µm  Ag/AgCl  far PDF 

(Ikeda, et al., 2007) Pyrex 7740 Geometry Variation 50µm~100µm Pt/Ti 50 µm EKF 

(Khine, et al., 2005) PDMS Cell Trapping-Negative Pressure 3.1µm Ag/AgCl far PDF 

(Valero, et al., 2008) silicon-glass Cell Trapping-Negative Pressure 4, 20, 50µm Pt Wire ~17 µm  PDF 

(Wang, et al., 2007) PDMS/glass elastomeric valve 200µm N/S far N/S 

(Fei, et al., 2007) PMMA Cell Trapping-Negative Pressure 500µm Silver far EKF 

(Suzuki, et al., 2007) Glass Cell Trapping-Negative Pressure 2µm N/S far PDF 

(Cao, et al., 2008) Silicon - 80µm Ti/Gold 50~100µm PDF 

(Sedgwick, et al., 2008) PDMS Cell Trapping-Dielectrophoresis  100µm Ti/Gold 10µm PDF 

(Khine, et al., 2007) PDMS Cell Trapping-Negative Pressure N/S Ag/AgCl far PDF 

(Luo, et al., 2006) PDMS Microfluidic Droplet 30µm~300µm Au  20µm PDF 

(Zhan, et al., 2009) PDMS Microfluidic Droplet 60µm~386µm Gold 20µm PDF 

(Huang, et al., 2003) Silicon/glass Cell Trapping-Negative Pressure 30µm~500µm Pt/Cr 10~100µm PDF 

(Shin, et al., 2004) PDMS No focusing 100µm~500µm Pt far (2cm) PDF 

(Vassanelli, et al., 2008) silicon No focusing - Gold 150~300µm No Flow  

(Lim, et al., 2009) glass No focusing 10 mm ITO 10 mm N/S 

(Lee, et al., 2006) Silicon  No Focusing - Pt, Ag/AgCl near No Flow  

(Valley, et al., 2009-a) Glass By Light 255µm Virtual near PDF 

(Zhu, et al., 2010) PDMS Hydrodynamics 50 ~ 150 µm Ag far PDF 

PDE: Pressure Driven Flow, EK: Electrokinetic Flow, PMMA: Polymethylmethacrylate, 
 
ITO: indium tin oxide 

electrode 
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Table  2-2 Electroporated cell properties 
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(Lu, et al., 2005) lysis Human HT-29 10 µm Moving Single 

(Wang, et al., 2006-a) lysis / transfection Hamster CHO 10-16µm Moving Single 

(Wang, et al., 2006) lysis Bacterial E. coli N/S Moving Multi 

(Wang, et al., 2006-b) swelling / lysis Hamster CHO 10-16µm Moving Single 

(Wang, et al., 2008) transfection Hamster CHO 10-16µm Moving Multi 

(Bao, et al., 2010) swelling / lysis Mouse RBC, WBC , M109, CTC - Moving Multi 

(Kim, et al., 2007) transfection Human K569 - Moving Single 

(Ikeda, et al., 2007) cell lysis Plant Zucchini Protoplast Cells 40-85µm Moving Single 

(Khine, et al., 2005) transfection Human HeLa Cell 10µm Stationary Single 

(Valero, et al., 2008) transfection Mouse, Human C2C12  , MSCs - Stationary Single 

(Wang, et al., 2007) transfection Hamster CHO 10-16µm Stationary Multi 

(Fei, et al., 2007) transfection Mouse NIH 3T3 - Stationary Multi 

(Suzuki, et al., 2007) transfection Human HeLa Cell - Stationary Multi 

(Cao, et al., 2008) electrofusion Human, Plant HEK-293, CMP - Moving Multi 

(Sedgwick, et al., 2008) cell lysis Human A431 squamous cell - Stationary Single 

(Khine, et al., 2007) transfection Human HeLa Cell - Stationary Single 

(Luo, et al., 2006) transfection Plant Yeast cells - Moving Single 

(Zhan, et al., 2009) transfection Hamster CHO - Moving Single 

(Huang, et al., 2003) transfection Human ND-1 cell line - Stationary Single 

(Shin, et al., 2004) transfection Human SK-OV-3 10µm Moving Multi 

(Vassanelli, et al., 2008) transfection Hamster CHO - Stationary Single 

(Lim, et al., 2009) lysis - FITC-BSA-laden vesicle 1~50µm Stationary Single 

(Lee, et al., 2006) transfection - vesicle 10µm Stationary Single 

(Valley, et al., 2009-a) transfection Human HeLa cells 10 µm Stationary Single 

(Zhu, et al., 2010) transfection Yeast - - Moving Single 

 

CHO: Chinese Hamster Ovary Cell, RBC: Read Blood Cells, WBC: White Blood Cells, CTC: Circulating 

Tumour Cells, K569:
 
human chronic leukemia cell, NIH 3T3: mouse embryonic fibroblast cell line,  

HEK-293: Human embryonic kidney cells HEK-293, CMP: plant cucumber mesophyll protoplasts 

C2C12 : Mouse myoblastic cells, MSCs: Mesenchymal stem cell,  

ND-1 cell line: Human prostate adenocarcinoma cells  
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Table  2-3 Electrical properties of the different electroporation microdevices 
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(Lu, et al., 2005) cell lysis AC 6, 8.5 V - 5, 10 KHz 0.204 ~ 4.65 

(Wang, et al., 2006-a) cell lysis / transfection DC 0~200 V 10~100 ms - Up to 1.2 

(Wang, et al., 2006) lysis DC 0~930 V Up to 45 s - Up to 2 

(Wang, et al., 2006-b) swelling /lysis DC - Up to 150 ms - Up to 1.2 

(Wang, et al., 2008) transfection DC 41~110V 0.2~20 ms - 0.3~0.8 

(Bao, et al., 2010) swelling /lysis DC - 100~300ms - Up to 1.6 

(Kim, et al., 2007) transfection DC 7~20V 0.8~8ms - 0.6~1.8 

(Ikeda, et al., 2007) cell lysis 
DC* up to 30V - - - 

AC* up to 70V - Up to 1MHz - 

(Khine, et al., 2005) transfection DC 0.51±0.13V 6.5ms - - 

(Valero, et al., 2008) transfection DC 2V 6ms - 0.67 

(Wang, et al., 2007) transfection DC 200~1000V 20~30ms -  

(Fei, et al., 2007) transfection N/S N/S 500 ms 1Hz 0.035 

(Suzuki, et al., 2007) transfection      

(Cao, et al., 2008) electrofusion DC  20~50µs - 3.7 

(Sedgwick, et al., 2008) cell lysis AC Up to 20V N/S 100kHz~1MHz 1 

(Khine, et al., 2007) transfection DC 0~1V 5~60ms - N/S 

(Luo, et al., 2006) transfection AC 18 V  1kHz - 

(Zhan, et al., 2009) transfection DC 5~9V 0.37~21.6ms - - 

(Huang, et al., 2003) transfection DC 10V 100ms - - 

(Shin, et al., 2004) transfection - - 10ms  0.25~0.75 

(Vassanelli, et al., 2008) transfection DC 0.9, 1.3, 1.7 V 5ms, 10ms - - 

(Lim, et al., 2009)  cell lysis AC 2~5V N/S 20 Hz~ 1kHz N/S 

(Lee, et al., 2006) transfection DC up to 2 V Up to 1.5 S - - 

(Zhu, et al., 2010) transfection DC 0.5~2.5V 2.2~ 11.7 ms - 0.65~1.87kVcm-1 

 

*
There are two sets of electrodes in the system. The DC voltage is applied at the outer electrodes to generate the 

electroosmotic flow while the AC voltage is applied at the inner electrodes for cell lysis 
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2.3.1 Microfluidic electroporation devices for cell lysis (irreversible electroporation)  

Analysis of the intercellular contents is essential for many biological cell studies. In the microfluidic 

electroporation devices, the cell lysis usually accomplish in the microchannels and under a dynamic 

flow field. This may facilitate the removal of subcellular contents and cell debris. One of the leading 

studies that suggested using continuous flow in the microchannels with varying geometry for the 

electroporation carried out by Lu et al. (Lu, et al., 2005). Figure 2.1 shows the schematic diagram of 

this microfluidic electroporation system. This system contains vertical saw-tooth electrode on the two 

opposite sides of the channel wall. By using the saw-tooth shape electrode, the induced electric field 

could be intensified periodically along the channel. The duration of these electric pulses is tuned by 

the flow field velocity and geometry of the electrode-channel system. This system utilize thick 

electrode that last longer in the corroding environment. In spite of the planar electrodes, the vertical 

electrodes can generate a uniform electric field in the system. This study also suggested using AC 

electric field instead of DC in order to reduce bubble creation and pH changes in vicinity of the 

electrodes. 



 

 19 

 

Figure  2-1 Schematic diagram and Dimensions of the electroporative device suggested by Lu et 

al (Lu, et al., 2005) 

The more specific characteristics of the designed system and the electroporation mechanism 

proposed by Lu et al. (Lu, et al., 2005) have specified in Tables 2.1-2.3. Their results show that by 

applying a 6 V-AC electric field with 5 KHz frequency, 28% of cells are lysed completely while 81% 

of cells are partially lysed; their membrane did not disrupted completely and they just loss some parts 

of their organelles and Cytosolic material during the electroporation. In this system, the percentages 

of complete and partial cell lysis become 74% and 71% for a 8.5 V-AC electric field with 10 KHz 

frequency, respectively. 

In 2006, Wang and colleagues proposed applying continuous DC voltage along the microchannel 

with variable cross-section for electric pulse generation (Wang, et al., 2006-a). Schematic diagram of 

this system has been show in Figure 2.2. The continuity of the electric current density leads to the 

stronger electric field in the narrower cross-sections of the channel. In this mechanism, the cell 

velocity and dimensions of the system can adjust the duration of the generated electric pulses. The 
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distinguished characteristic of this study is the direction of applied electric field. This is the first work 

that applies the electric field along the channel.  

 

 

 

Figure  2-2 Schematic diagram of the electroporative device proposed by Wang et al. In the 

electroporative section, the cross-section area of the channels reduces in order to intensify the 

external electric field (Wang, et al., 2006-a).  

The above mentioned mechanism proposed by Wang et al. (Wang, et al., 2006-a) has many 

advantages. Its auxiliary instruments are very simple. There is no need for pulse generator. It needs 

only a simple DC power supply and the pulse is generated by the geometric alteration. No microscale 

electrodes or subcellular structures needed. The low-cost and simple microfabrication procedure 

(such as soft-lithography) can be utilized to fabricate the chip. In addition, the narrow electroporative 

part of the channels allows performing the single-cell electroporation. This also presents the ability of 

on-line monitoring during the electroporation process. Above all, the presence of external electric 

field along the channel causes electrokinetic effects that can facilitate many pre- and post-processing 

requirements. For example, electroosmosis effect can generate the flow in the channels of the system, 

or electrophoresis force can be utilized to manipulate the cells in the system.  

Using this system (figure 2.2), the electroporation carried out on Chinese hamster ovary (CHO) 

cells with diameters ranging from 10-16 μm. The results of this study include several parts. First, they 
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showed that the cells start expanding in the continuous electric field.  In order to study the effect of 

electric field on the cell, they increased the electric field from 0 to 1200 V/cm. To study the 

internalization of dye SYTOX, they increased E (external electric field) while keep the pulse duration 

equal to 40ms. Their results showed that when E is below 400 V/cm, there is not any significant dye 

internalization or cell death. When E is higher than 400 V/cm, the cell electroporation is initiated. 

According to their findings, at E = 500 V/cm, about 56% of the cells are reversibly electroporated. In 

fact, the best efficiency of dye internalization takes place at E = 500 V/cm. Above this value, the rate 

of cell death is increased. At E = 800 V/cm almost all the cells are dead. This paper also includes 

studies on the effect of two main parameters affecting the cell viability in electroporation: the 

duration and the intensity of electric pulse. Based on their results, if E is less than 400 V/cm (the 

threshold of electroporation), the cell will be viable even for long duration pulses. For higher values 

of electric field, the cell viability is much more sensible to pulse duration. Their experimental results 

show that for E = 600 V/cm, almost all the intercellular contents will be depleted after 150 ms. The 

required time for complete cell lysis reduces to 60 ms for E = 1000 V/cm and 30 ms for E = 1200 

V/cm.   From the findings of this paper, one can concluded that for the cells with diameter ranging 

from 10 to 16 μm, if the applied electric field is between 0 to 400 V/cm, no electroporation will occur 

and almost all the cells will remain viable. Cell lysis starts at 600 V/cm. Cell internalization 

accomplishes at the applied electric fields between 400 V/cm to 600 V/cm. The best efficiency of the 

cell internalization will be happened at 500 V/cm and almost 56% of the cells remain viable after 

electroporation. 

Using the mechanism proposed by Wang et al (Wang, et al., 2006-a), Bao and colleagues 

suggested conducting the selective intercellular release (Bao, et al., 2008). They showed that in 

general, Calcein was released at lower field intensities and shorter durations than did SykEGFP (72-

kDa protein kinase, Syk, tagged by enhanced green fluorescent protein (EGFP) from chicken B cells). 

By tuning the electric pulse intensity and duration (which can be done easily by modifying the 

geometry and cell velocity), one specific intercellular contents can be released while the others 

remain in the cell.  

Using their suggested electroporation microfluidic device (Wang, et al., 2006-a), Wang and 

colleagues could lysis one kind of bacterial cell, E-coli (Wang, et al., 2006). E-coli cell is much 

smaller than mammalian ones. Because the transmembrane potential linearly depends on the cell 

diameter, the E-coli cells required higher values of applied electric field for electroporation rather 
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than the mammalian cells. The results of this study show that the local electric field of 1000-1500 

V/cm is required for nearly 100% cell death. In this range, the irreversible pores appear in the 

membrane of the cells that are sufficient for the cell lysis. They also showed that for the field strength 

higher than 2000 V/cm, the cell membrane completely disintegrated. The main difference between the 

mechanisms of this work and their previous work is the type of flow field. In this study, they 

suggested using electrokinetic effects to move the cells and generate flow field. By increasing the 

applied voltage to the system, on one hand the electric pulse is intensified, on the other hand the cell 

velocity increases and consequently the pulse durations is decreased (The pulse duration is calculated 

by the length of the electroporative section and the cell velocity).  Therefore, there is only one degree 

of freedom in the system, which means that pulse magnitude and duration could not modify 

independently.  

Figure 2.3 shows the schematic diagram of the electroporation device proposed by Ikea et al 

(Ikeda, et al., 2007). This system consists of two reservoirs that are connected by one flow channel. 

There is a pinched structure at the center of the channel. Two pairs of electrodes are used in this 

study. The outer electrodes locate at the end of channels (at reservoirs) and the inner electrodes situate 

at the center of the channels. The outer electrodes are used to generate the electroosmotic flow in the 

system while the function of the inner electrodes is to generate the required electric field for the 

electroporation. The pinched structure is used to capture the cells between two inner electrodes. Two 

different pinched structures were used in the system: triangular and trapezoidal. Because of point tips, 

the cells experiences much more electrical damage in the triangular structure than in the trapezoidal 

pinched structure.  

In this study, the cell lysis was performed by both mechanical force (shear force) and electrical 

means. In their first step of the experiments, the triangular pinched structure was used. The voltage 

was only applied at the outer electrodes in order to generate the electroosmotic flow and drive the 

cells into the pinched structure. In this step, the cells were lysed by the shear force at the triangular 

pinched structure. Although their results show the effectiveness of this method, there are some 

limitations with this mechanism. Because the cell lysis is carried out by physical contact between the 

cells and the point tips of the pinched structure, the minimum cell diameter is restricted by the width 

of the triangular pinched structure. In this method, the flow field and cell movement are caused by the 

applied electric field. However, the applied potentials at the outer electrodes are restricted by the 

bubble generation and Joule heating. Because the outer electrodes is only used for flow generation 
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and does not have any contribution in the cell lysis, using other types of micro-pumps may be much 

more advantageous. In the second step, the voltage was applied at the both inner and outer electrodes. 

 

Figure  2-3 Channel structures of the microfluidic electroporation device proposed by IKEDA et 

al. for cell lysis (a) overview, (b) triangular pinched, and (c) trapezoidal pinched structure 

(Ikeda, et al., 2007). 

The DC voltage at the outer electrodes causes the flow movement while the AC voltage applied at 

the inner electrodes resulted in the electrical cell lysis. In this step, both types of the pinched structure 

were utilized. The electrical parameters at the inner electrodes (applied voltage and frequency) were 

tuned in order to lysis the cells. The cell lysis was recorded at the frequencies of 5kHz to1MHz . For 

one specific applied voltage, lower range of frequencies will result in the bubble generation while the 

cell can be lysed at the higher range of frequencies. They also experimentally showed that the larger 

cells will be electroporated at the lower ranges of applied voltages. This is because the 

transmembrane potential linearly depends on the cell diameter. It must consider that if the cell 

diameter is larger than the width of the pinched structure, the pinched type becomes important; in 

these cases, the physical contact can also play a role in the cell lysis. In the second method (when the 

voltage is applied at the inner electrodes) there is no restriction on the minimum cell diameter. 
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However, outer electrodes also does not have any influence on the cell lysis and should be replace by 

other types of micro-pumps in order to reduce the joule heating and bubble generation.   

One of the first studies to use dielectrophoretic force for the cell trapping in the electroporation 

process was performed by Sedgwick and colleagues (Sedgwick, et al., 2008). Other studies have 

suggested trapping the cells in the fixed position during the cell transfection application by using 

negative pressure. The scheme of the system proposed by Sedgwick and colleagues is shown in 

Figure 2.4. 

 

Figure  2-4 Schematic diagram of the electroporation microfluidic system proposed by Sedgwick 

and colleagues for cell lysis (Sedgwick, et al., 2008). 

 

The system consists of two inlets and one outlet. One inlet is used for cell suspension and the other 

is used for buffer solution or microsphere injection. The microspheres are used for separation of 

subcellular contents. One saw-tooth gold microelectrode was positioned perpendicularly to the 

channel. The electrode exerts AC-voltage to generate dielectrophoretic force (for cell trapping) and to 

perform the cell lysis. The results show that 20 V-AC voltage with 1 MHz frequency can generate the 

required electrophoretic force to hold the cells against the flow field up to 30 mL/min and without 

performing cell lysis. Following the trapping step, the frequency was reduced to 100 kHz to perform 

the cell lysis. For one specific applied voltage, the cell will be trapped at a high frequency (for 

example 800 to 1000 kHz for 20 V). By decreasing the frequency, the dielectrophoretic force 

decreases while the cell lysis initiates (for example, at the applied voltage of 20 V and for the 
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frequency range between  200 to 80 kHz, both trapping and cell lysis take place simultaneously). By 

lowering the frequency, the dielectrophoretic force becomes weaker and can be neglected (For 

example at the applied voltage of 20 V and with 200 kHz frequency, the cells starts to lysis without 

trapping). At the very low range of frequencies and applied voltage, none of these effects will happen 

(for example, for the applied voltage below 13 V and for all ranges of frequencies). Their study 

recorded the cell expansion after trapping and before cell lysis. It was believed that this expansion is 

due to the osmotic pressure. In the post-processing step, the cell debris and subcellular contents are 

separated by using microspheres. Three obstacles were used in the channels to trap the microspheres. 

This section is used to separate the cell debris and its intercellular contents. 

Another work that used the dielectrophoretic force to trap and fix the cells at the predefined 

positions was conducted by Lim et al. (Lim, et al., 2009). Figure 2.5 shows the schematic diagram of 

this system. There is an electrode at the lower wall of the channel that consists of sixteen 30 µm wide 

ITO (indium tin oxide) strips each having a thickness of 0.11 µm and separated by 120 µm bare glass. 

The upper wall is the uniform ITO-coated glass plate. Two types of electric field arrangement were 

applied to the system: normal (Figure 2.6) and co-planar (Figure 2.7). The distance between the upper 

and the lower walls are 10 millimeter. The FITC-BSA-laden vesicles are used to study the 

effectiveness of the proposed system for the cell lysis. The first step was to position the vesicles near 

the lower micro-pattern electrodes. To do this, the normal electric field arrangement (Figure 2.6) was 

utilized. The 2.0 Vrms AC voltage with the frequency range of 10 kHz~20kHz was applied in order 

to dielectrophoretically manipulate the vesicles and align them along the ITO electrode strips.  
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Figure  2-5 Schematic illustration of the microfluidic devices proposed by Lim et al  for cell 

manipulation and electroporation The tagged sections are: (1) Glass slide. (2) Uniform ITO 

electrode coating. (3) Sixteen ITO microelectrode strips with 30 μm width and 120 μm inter-

strip spacing. (4) One-millimeter thick polytetrafluoroethylene spacer. (5) Electrolyte solution. 

(6) Colloidal suspension (Lim, et al., 2009). 

 

 
 

 

 

 

Figure  2-6 Normal (a) and Co-planar (b) field generator of the microfluidic electroporation 

devices depicted in figure 2.5 (Lim, et al., 2009)  
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For one specific applied voltage, the elevation of the trapped vesicles from the bottom surface was 

determined by the volume of the vesicle. After trapping the vesicles, the normal electric field (Figure 

2.6(a)) was switched to the co-planar arrangement (Figure 2.6(b)) at 5 Vrms and 40 Hz to rapture the 

trapped vesicles.  

The idea of using dielectrophoretic force to trap the cells during the cell lysis is beneficial. In this 

way, cells can be suspended and fixed in the flow field. During the cell lysis process, release of the 

intercellular contents is carried out with the flow to the desired position, while the cell debris can be 

trapped by the dielectrophoresis. In this way, the separation process can be carried out continuously. 

Table  2-4 Electroporation and cell property of different transfection electroporation micro-devices 
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(Wang, et al., 2006-a) CHO SYTOX Green 500 V 56%
‡ - Single Moving 

(Wang, et al., 2008) CHO SYTOX Green, PEGFP-C1 
800Vcm-1 

1.1ms 
80% - Multi Moving 

(Kim, et al., 2007) K569 GFP* 
7 V 20% 95% 

Single Moving 
20V 70% 50% 

(Khine, et al., 2005) HeLa Cell Trypan Blue - - - Single Stationary 

(Valero, et al., 2008) C2C12 cells, MSCs PI, EGFP, ERK1 - ˃ 75% ~100% Single Stationary 

(Wang, et al., 2007) CHO DNA Dye SYTOX 
279Vcm-1 

30ms 
51% 70% Multi Stationary 

(Fei, et al., 2007) NIH 3T3 GFP and SEAP 35Vcm-1 ~40% ~90% Multi Stationary 

(Suzuki, et al., 2007) HeLa Cell CFP-improtinβ - - - Multi Stationary 

(Khine, et al., 2007) HeLa Cell 
Calcein and Orange 

Green Dextran 
- - - Single Stationary 

(Luo, et al., 2006) Yeast cells Fluorescein - - - Single Moving 

(Zhan, et al., 2009) CHO EGFP 

5.8V 11% - 

Single Moving 4.7V - 68% 

7.1V - 14% 

(Huang, et al., 2003) ND-1 cell line YOYO-1, EGFP Green - 100% - Single Stationary 

(Shin, et al., 2004) SK-OV-3 PI dye, EGFP Green - - - Multi Moving 

(Vassanelli, et al., 2008) CHO 

LY - -     - 

    - 

50% 

Single Stationary TB 1.7V 100% 

ODN 1.7V 100% 

(Lee, et al., 2006) Vesicle - 1.7V 100% - Single Stationary 

(Valley, et al., 2009-a) HeLa Cell PI Dye† 1.5kVcm-1 100% 
100

% 
Single Stationary 

(Zhu, et al., 2010) Yeast cells  1.5V 70% 85% Single Moving 
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2.3.2 Microfluidic electroporation devices for cell transfection (reversible 

electroporation) 

Cell transfection is the most important application of the microfluidic electroporation devices. Cell 

viability and transfection rate are the two most important indices that are usually used to compare the 

efficiency of these electroporation devices. The cells must remain viable after transfection, so the 

electroporation process must be reversible.  In comparison with the cell lysis, the cell transfection 

usually takes place by lower applied electric field.  Tables 2.1-2.3 show the technical, biological, and 

electrical properties of these microfluidic devices. Electroporation and cell properties of the different 

transfection micro-devices are summarized in Table 2.4. In the following sections, the reported 

experimental studies of microfluidic cell electroporation-transfection are reviewed in several groups. 

2.3.2.1 Cell trapping based methods 

One of the leading studies using a trapping section in electroporation in order to fix the cells in the 

predefined position was suggested by Khine and colleagues (Khine, et al., 2005). The manufacturing 

method of such a trapping section was proposed by Suzuki et al. (Suzuki, et al., 2007). Figure 2.7 

depicts this electroporative system. At the center of the system, there is one circulation chamber that 

is connected to many microchannels in radial direction. The two main channels (wider channels) are 

used as the cell input and output.  The other narrower microchannels are utilized as the trapping 

sections in order to fix the cells between the electrodes. The width of these trapping channels is 3.1 

μm that is approximately one-third of the cell diameter. Using an external syringe connected to the 

trapping channels, 2 psi negative pressure is applied in order to trap the cells between the two 

electrodes hydrodynamically. One of the electrodes is connected to the main channel while the other 

is connected to the small channels (see Figure 2.7). In this system, the happening of the 

electroporation can be predicted by measuring the electrical parameters. 
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Figure  2-7 The image of the microfluidic cell transfection system proposed by Khine et al. The 

schematic diagram of the trapping section and the place of electrodes are shown. In this system, 

the negative pressure is induced to trap and fixe the cell (Khine, et al., 2005).  

 

Figure 2.8 shows the electrical circuit of this system. The cell is modeled as the parallel 

combination of variable resistances and a capacitor. There is also leakR  in parallel with the cell which 

is because of the leakage around the cell. This parallel part is in series with the electrical resistance 

due to the microchannels and the electrodes. In this system, the trapped cell acts as a high resistance 

section which can be assumed as two in-series resistances due to the membrane inside and outside the 

trapping channel. Their images show that the cross section area of the membrane outside the trapping 

channel is 80 times bigger than the membrane inside the channels which means that the electrical 

resistance of inside membrane is 80 times bigger than the outside part (electrical resistance is 

inversely proportional to the surface area). This difference between the electrical resistances focus the 
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applied voltage over the inside membrane and generate the high electrical field required for 

electroporation in this part. According to the Ohmic law, voltage and electrical current in the system 

can be related by electrical resistance V = IR. Therefore, for constant voltage, changing in the 

electrical resistance can result in the electrical current variation. Disrupture in the membrane due to 

the electroporation can dramatically decrease the electrical resistance in the system which results in 

the sharp increase in the electrical current. Thus, by recording the electrical current, occurrence of the 

electroporation can be acknowledged. Using this method, the authors could reversibly electroporate 

the HeLa cells and the dye can be transfected to the cells by applying 0.76±0.095 V pulse with 

duration 6.5 ms.  

The main issue that may affect the efficiency of the proposed method is the effects of cell 

deformation on the electroporation. In the paper, it is indicated that although for short pulses (50 ms) 

the membrane breakdown was dependent on tension in the membrane, at longer pulses (50–100 ms) 

the voltage required for the membrane breakdown was tension independent. By considering the pulse 

duration of this study (6.5 ms), further investigation must be pursued to study the effect of the 

generated shear tension on the membrane breakdown. 

 

 

 

Figure  2-8 Electrical circuit model of the cell and chip in electroporation devices of figure 2.7 

(Khine, et al., 2005) 
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Figure  2-9 The layout of the mechanism suggested by Ionescu-Zanetti et. al. (Ionescu-Zanetti, et 

al., 2008) 

 

Another study that used cell trapping to fix the cell in transfection process was performed by 

Ionescu-Zanetti et al (Ionescu-Zanetti, et al., 2008). Figure 2.9 shows the image of the system used in 

this study. They suggested using the electrophoresis effect in pre- and post-processing steps of the 

system proposed by Khine et al (Khine, et al., 2005) in order to decrease the required time of the 

process. The main idea of the system is shown in Figure 2.10. After trapping the cells, the electric 

field of 0 ~ 300mV is applied to the trapping channels in order to electrophoretically pre-concentrate 

the dye near the cell membrane (Figure 2.10.a). This electric field is considerably lower than the 

electroporation threshold (0.5 ~ 2V). After pre-concentrating, the cells can be electroporated by 

applied a large amplitude square wave (5 ~ 30 ms) while during the resealing period dyes can be 

loaded into the cells by electrophoresis mechanism and by applying the low electric field (for 

example 200 mV) in the system.  By using this method, the required time for loading the dyes into the 

cell was reduced substantially. For example, Calcein could be transferred into the cell within 3 

seconds, which took 16 s by diffusion alone. They also could load OGD into the cells within 40 s 

while this time is around 30 min without using electrophoresis effect.  
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Figure  2-10 The schematic steps of the electrophoresis based electroporation device suggested 

by Ionescu-Zanetti et. al. (Ionescu-Zanetti, et al., 2008) 

Using their proposed method (Khine, et al., 2005), Khine, et al designed an innovative feedback 

control system for reversibly electroporate the trapped cells (Khine, et al., 2007). This system is based 

on the measurement and monitoring the electrical resistance of the system. As discussed above, by 

performing the electroporation, the electrical resistance of the system is reduced substantially. In this 

study, by using the mechanism suggested by Cristian Ionescu-Zanetti (Ionescu-Zanetti, et al., 2008), 

the cell was trapped. They monitored the membrane resistance before, during, and after the 

electroporation to predict the electroporation happening and to monitor the membrane resealing after 

electroporation. In order to find the optimum electroporation condition, for various pulse durations 
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(5ms, 10ms, 30ms and 60ms), a voltage ranging from 0 V to 1 V was applied to the system with the 

increment of 0.1 V. As the electroporation happened, the sharp change in the electrical current 

appeared due to the reduction in the electrical resistance. By using this method, occurrence of the 

electroporation can be detected easily. The control program could stop the voltage increasing to avoid 

further disrupture in the cell membrane and significantly decrease the required resealing time for the 

membrane. After detecting the electroporation, a low-voltage (20 mV) was applied to the system in 

order to monitor the resealing kinetic of the cell. The resealing is complete when the electrical 

resistance recovers to its initial value. By using the feedback control suggested in this study, the 

resealing time can be reduced significantly; also, one specific cell can be reversibly electroporated 

repeatedly many times. Their results proved the fact that a shorter pulse width with higher intensity is 

required for electroporation. Shorter pulse width also results in the better membrane resealing. 

However, there is one problem associate with this method. Although by using this method the cell can 

reseal gently, it may not be enough time for dyes to transfect to the cell. To overcome this problem, 

the authors suggested using a pre-concentration method (Ionescu-Zanetti, et al., 2008). 

Another innovative microfluidic device for transfection was proposed by Valero and coworkers 

(Valero, et al., 2008). Figure 2.11 shows the images of this system.  As it can be seen, the system has 

two main parallel channels (with the width of 50µm and 20µm, respectively) that are connected to 

each other by nine channels (with the width of 4µm). These connecting channels serve as the trapping 

sections in order to fix the cells in the electroporative zone between the two electrodes. 

 

Figure  2-11  A single cell electroporation and gene transfection microfluidic device 

manufactured by Silicon and glass (a) 3D scheme of trapped cells; (b) Microfluidic chip picture, 

zoom-in on trapped single cells; (c) Electric field distribution at the trapping sites. Here, a 

voltage of 1 V yields electric field strength of 0.57 kV/cm (Valero, et al., 2008). 
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Each pairs of microelectrodes oriented at the opening of the trapping channels so that the electric 

field is focused on the trapped cells. The performance of each microelectrode is independent of the 

others. Hence, the cells that are not trapped or trapped at the neighbor channels may not be affected in 

the electroporation process of each individual cell. The cells and reagents flow through the upper 

main channel while the lower main channel is for producing the negative pressure in order to trap the 

cells at the opening of the connecting channels. The transfection process includes three main steps. 

First, the cell samples flowed along the upper channel, meanwhile the lower channel was creating a 

negative pressure (via a pump, 1-2 psi) to trap the cells at the opening of the trapping channels. After 

that, the pump was turned off and the DNAs were inserted into the upper channel in order to transfect 

to the cells. After 10 min incubating period, 1 V electric pulse with the duration of 6 ms was applied 

by the microelectrodes in order to generate the 0.67 kV/cm electric field to transfer the DNAs across 

the cell membrane. By using this method, they could perform transfection on the C2C12 and MSCs 

cells by applying a potential of 2 V for at least 6 ms. Their results show that the average transfection 

rate of their study is ~70% while they have a perfect cell viability (~100%). 

2.3.2.2 Membrane Sandwich-based Microfluidic Electroporation 

In a series of papers, Fei and colleagues proposed the membrane sandwich technique (MSE) for cell 

electroporation (Fei, et al., 2007; Fei, et al., 2010). This method suggested immobilizing and 

sandwich the cells between two polyethyleneterefthalate membranes (PET membrane) in order to 

improve the cell transfection and viability. Figure 2.12 shows the schematic of this system. The 

system consists of two crossing channels. One channel is located at the top and the other at the bottom 

of the system.  

 

Figure  2-12 Schematic diagram of membrane sandwich electroporation (MSE) technique (Fei, 

et al., 2007) 
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One cuvette was placed at the intersection of the channels as an electroporation section. Figure 

2.12-b shows the connection between the channels and the DNA migration path. The cells are 

sandwiched between the two membranes. A 3-mm-diameter PET membrane with an average pore 

size of 400 nm was used as the support for the cells. This membrane was fixed at the cuvette by a 

sealing tape. After that, the suspended cells (NIH 3T3) was loaded onto the supporting membrane and 

trapped on the supporting membrane by applying the 3 KPa vacuum pressure. Another 3-mm-

diameter PET membrane with 3 µm pore sizes was added at the top of the system. The distance 

between the membranes is 10 µm. The electrodes located at the inlet and outlet reservoirs (see Figure 

2.12-b). The DNA was loaded to the cathode reservoir. The electrodes have two tasks. First, 300 

pulses with the duration of 5 ms and 100 Hz frequency were applied to generate the external electric 

field of 3.5 V/cm.  

 

 

 

 

Case 1 

 

Case 2 

 
Case 3 

 

Figure  2-13 The orientation of cells and DNAs with respect to each other in three parts of the 

experiments accomplished by Fei et. al. (Fei, et al., 2007) 
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This external electric field caused electrophoresis force to move the DNAs from the cathode 

reservoir to the cell culture medium at the center of the system. After that, 5 pulses with 500 ms 

duration and 1 Hz frequency were applied to generate the 35 V/cm electric field to perform the 

electroporation. This system was utilized to transfect the plasmid GFP into the NIH 3T3. Two 

different experiments were performed and the results were compared with the conventional 

electroporation from the literature (see Figure 2.13).  

The substantial improvement in the cell transfection was recorded compare to the conventional 

cell electroporation techniques. By using this method, the cell viability and transfected rates are 90% 

and 40%, respectively. In fact, the sandwich membranes prevent the diffusion of the DNA molecules 

from the membrane surface. After applying the external electric field, the membrane becomes 

negatively charged. This may repel the negative DNA molecules. The two negatively charged 

membranes trap the DNAs in the small volume near the cells and concentrate the DNAs near the cell 

membrane. This may result in the increase in the DNA transfection to the cell. 

2.3.2.3 Polyelectrolytic Salt Bridges  

Utilizing ionic bridge has been suggested in many microfluidics applications (Park, et al., 2009). Kim 

and collaborators suggested using ionic conductivity of polyelectrodytic gel electrodes for electric 

field concentration (Kim, et al., 2007) and cell electroporation. The microfluidic electroporator device 

was designed to work under a continuous low DC voltage (7~15 V). Figure 2.14 shows the schematic 

diagram of this mechanism. The two electrodes are placed in the hypertonic solution. A pair of 

pDADMAC plugs on both sides of the microchannel separates the cell suspension and the hypertonic 

solution. The pDADMAC plugs have a good ionic conductivity. The chip was designed to have low 

impedance so that a large portion of the potential difference is applied at the cell solution. 

In this paper, the pDADMAC plugs and the hypertonic solution have the identical ionic 

conductivity (equal to 16 Sm-1) while the ionic conductivity of the cell media solution is 10 times 

more resistive. This difference leads to concentrate the electric field on the cells. By using this 

method, they could generate an electric field of 0.9 kV/cm over the microchannel with the input 

voltage of only 10 V. This value of the electric field is sufficient for performing electroporation of 

K562 human chronic leukemia cell.  
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Figure  2-14 The schematic of the micro-electroporation chip that use ionic conductivity of 

polyelectrodytic gel electrodes for electric field concentration. Cells experience an electric field 

gradient by passing through the region between the salt bridges (Kim, et al., 2007). 

In this study, the electroporation efficiency is defined as the number of live permeated cells 

divided by the number of live cells after electroporation. The viability is defined as the ratio of live 

cells to dead cells. For a constant cell velocity at 3.2 cm/s, they investigated the effects of input 

voltage on the electroporation efficiency and the cell viability. Their results show that increasing the 

input voltage from 7 to 20 volts results in increase of the efficiency from 20% to 70 %; however, it 

also brings about the cell membrane damage that decreases the cell viability from 95% to 50%. One 

important parameter in the cell electroporation is the pulse duration. This paper also includes some 

results of the effect of pulse duration on the electroporation. By increasing the cell velocity from 

1 cm/s to 8 cm/s (which results in decreasing the pulse duration), the cell viability is increased from 

70% to 95% while the electroporation efficiency dramatically decreases from 75% to 15% (Input 

voltage is constant and equal to 15 V).  

The method of this study has some advantages: There is no bubble generation, heating shock, and 

chemical contamination associated with this method. The main reason for these positive points is that 

the electrodes are placed in the buffer solutions that are completely isolated from the electroporative 

section and the cells. However, there is one limitation associate with the method. The pDADMAC 

plug has the tendency to swell as it absorbs water. This plug expansion can be high enough to block 

the microchannel.  
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2.3.2.4 Using Mechanical Valve  

Using mechanical valves in the microfluidic electroporation devices was presented by Wang et al 

(Wang, et al., 2007). The scheme of the experimental system of this study is shown in Figure 2.15. 

The system consists of fluidic channel (black one), control channel (gray one), DC power supply, 

solenoid valve, and control unit. There is a PDMS membrane between the fluidic and the control 

channels. Constant DC voltage is applied to the system by power supply. The valve is located in the 

vertical fluidic channel (channel 1), while the horizontal fluidic (channel 2) is used as the cell culture 

channel. If the electrical pulse with proper duration and intensity is applied in the fluidic channel, the 

electroporation can be performed on the cells in this channel.  The electric pulse was generated by the 

control channel that turns on and off a DC electric field by physically connecting and separating the 

ionic buffer. The solenoid valve controls the operation of the control channel (gray one). The roll of 

the valve is to pressurize the PDMS membrane between the fluidic and control channels to block the 

fluidic channel 2, and hence the electrical current in fluidic channel 2. If the valve operates in a close-

open-close sequence, the electrical pulse can be generated in the fluidic channel 2 to perform the 

electroporation.   

Several parameters can affect the performance of this system: control channel width, actuation 

pressure (inserted by Solenoid valve), valve opening time, and applied constant DC voltage. The 

authors tested different values of these operating parameters and finally used the control channel with 

a width of 300 μm and applied 40 psi pressure for 30ms opening time. By using these parameters, 

they could reversibly electroporate the CHO (Chinese hamster ovary) cells and insert the SYTOX 

green into the cell. At optimum condition (electric field with 30 ms duration), the transfection rate 

and the cell viability are 51% and 70%, respectively.   

This system is based on the insulating nature of the PDMS valve (membrane). It was indicated in 

the paper that long time contact between the PDMS and culture media can weaken the PDMS 

insulating property; therefore, they used a triangular structure between the fluidic channels 1 and 2 in 

order to completely separate the culture media (in fluidic channel 2) and the PDMS valve (fluidic 

channel 1).   
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Figure  2-15  The schematic diagram of the electroporation microfluidic device that use 

mechanical valve for cell transfection (Wang, et al., 2007). 

The main advantage of this device is its ability to electroporate the cells in the culture media and 

electroporate the adherent cells. The electroporation of the cells that adhere to the substance is desired 

because of the minimum defection to the cell culture. There are also some disadvantages of this 

method: First, the moving part and the limitation associate with it such as fatigue and vibration. In 

addition, this system is based on the insulating property of PDMS valve that can be weaken over time. 

Furthermore, the manufacturing process of this system seems not easy. Finally, the applied voltage to 

this system (200~1000 V) is considerably higher than the applied voltage (up to 100 times) in the 

other proposed electroporative systems. This high voltage can cause bubble generation, significant 

Joule heating effect, and also requires more safety measures. 

2.3.2.5 Single cell electroporation microarray 

Vassanelli and colleagueas (Vassanelli, et al., 2008) developed a new chip to conduct electroporation 

of single cells attached to the growing surface. Figure 2.16 shows the schematic of this chip. This 

chip has an array of 60 circular cell-size microelectrodes. The microelectrodes are connected to the 

external circuit by a metal line that is covered by a 200 nm layer of amorphous silicon nitride (Si3N4) 

to be insulated from the extracellular electrolyte. The electric potential can be applied to the cells via 

the circular gold layer at the ends of electrodes. The diameter of these free surfaces varies from 15µm 

to 50µm while the distance between microelectrodes was either 150µm or 300µm. The duration and 

the intensity of the applied voltage at each microelectrode can be controlled individually. In this way, 

each target cell can be directly electroporated in situ. There is no need for cell detachment and 
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harvesting that can be harmful to the cell structure. Instead, the pre-programmed control system 

activates the microelectrodes near the target cell to electroporate it. The time of electroporating each 

cell can also be different from the others. This may lead to the sequence electroporation of single 

cells. The cells may be electroporated many times while the different molecules are delivered to the 

cell.  

By using this chip, the different molecules (LY, TB abd 24 nt ODN) were inserted into the 

Chinese hamster ovary cell by performing the reversible electroporation. The train of five 10 ms 

pulses was applied to the target cells. Below the applied voltage of 0.9 V, no uptake was recorded. 

Increase of the voltage from 0.9 V to 1.3 V leads to the improvement of the transfection of LY and 

TB. Above 1.3 V, ODN was also started to enter to the cell. At 1.7 V applied voltage, the uptake 

efficiency of ODN was about 70% while 100% efficiency was recorded for LY and TB.  

In comparison with the other methods, there are many advantages associated with the proposed 

technique by Vassanelli et al. (Vassanelli, et al., 2008). First, the required voltage is relatively low. 

The transfection could be performed by applying only 0.9 V~ 1.7 V DC voltage. There is no need to 

detach and harvest the target cells. There is no restriction on the time for electroporating the cells in 

one specific culture medium. The cells can be electroporated independently from the others. The 

sequence electroporating of one specific cell could also be performed by this method. However, it 

was claimed in the article that this technique cannot be applied to the cells in a tissue.  
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Figure  2-16 (a) Schematics of a  BioChip device and its control system used microarray for 

single-cell electroporation. The control system driven by a personal computer. (b) Equivalent 

electrical model of the coupling between cell and chip (not to scale) (Vassanelli, et al., 2008). 
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2.3.2.6 Droplet Microfluidic Electroporation 

The idea of using microfluidic droplet electroporative devices was first suggested by Luo et al. (Luo, 

et al., 2006). The device can electroporate the yeast cells encapsulated in the droplets. Following this 

study, Brouze and colleague presented a droplet-based microfluidic technology that shows the 

feasibility of high-throughput screening of single mammalian cells (Brouzes, et al., 2009). They could 

encapsulate the single cells and reagents in the independent aqueous micro-droplets and also 

manipulate and monitor the droplets. A critical study on the microfluidic droplet electroporation was 

conducted by Zhan et al (Zhan, et al., 2009). The schematic diagram of this electroporative device is 

shown in Figure 2.17. The chip has two inlets and one outlet. The inlets are connected to two 

reservoirs to supply non-conductive oil and the mixture of cells and ionic conductive buffer solution, 

respectively.  First, the cells were encapsulated in the aqueous droplets flowing in the oil. In the 

downstream, the flow went through a pair of microelectrodes that apply a constant DC voltage to the 

system. 

Because the oil is non-conductive, the cell experienced a transient electric pulse whose shape and 

duration depend on the velocity and dimensions of the droplet, electrical parameters of the system, 

distance between the electrodes, and location of the encapsulated cell in the droplet (see Figure 2.17). 

In this study, the velocity and dimensions of the droplets and also the distance between the electrodes 

are 1.38~8.86 m/min, 60~386 μm in the length, and ~ 20 μm, respectively.  The main drawback of the 

droplet microfluidic electroporation is the effect of oil on cell viability. This study recorded 11% cell 

death due to the contact between the cells and the oil droplet. The percentage of viable cells dropped 

from 68% to 14% by increasing the applied voltage from 4.7 V to 7.1 V. By using this method, a 

plasmid vector coding EGFP could be transfected into CHO cells with the applied voltage of 5.8 V 

and the electroporation zone transit time of 1.8 ms.  
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Figure  2-17 Schematic diagram of the droplet-based microfluidic electroporation. Parts (a) and 

(b) are the images of the droplets at different sections of the system. (a) The electroporation 

section that the droplets rapidly flow through the two microelectrodes on the substrate (each 

electrode was 25 μm wide, and the distance between the two electrodes was 20 μm). (b) Exit 

reservoir of the system where the droplets with encapsulated cells collected there after 

electroporation (Zhan, et al., 2009). 

2.3.2.7 Optofluidic-based Microfluidic Electroporation Device 

Recent studies proposed using optofluidic technology in biology (Brennan, et al., 2009) and cell study 

(Sott, et al., 2008; Lin, et al., 2009). In the series of papers, Valley et al. proposed using a 

photosensitive surface and patterned light to create virtual electrodes to manipulate and electroporate 

single cells (Valley, et al., 2009-a; Valley, et al., 2009-b). The main advantage of this method is the 

ability to perform in situ electroporation. Figure 2.18 schematically illustrates the device. It consists 

of two glass substrates coated with a layer of the transparent conductor indium tin oxide (ITO). The 

bottom substrate is coated with a photosensitive film (a-Si:H). A layer of lithographically patterned 

SU-8 defines the channel geometry and serves as the spacer between the top and bottom substrates. 

The space between the two substrates is filled with a solution containing the cells of interest. The two 



 

 44 

ITO layers were used to apply an AC voltage to the system. In the absence of light, most of the 

electric field is concentrated across the highly resistive photoconductive layer. However, upon 

illumination, the resistance of the photoconductive layer (in the illuminated areas) decreases by many 

orders of magnitude due to creation of electron-hole pairs. This causes the majority of the electric 

field to be applied to the liquid layer wherever the device is illuminated. Therefore, if an object, such 

as a cell, is illuminated, the electric field will be concentrated on it.  The optical power density 

required to operate the device is low (1 W/cm) that can be supplied by a standard projector. 

Therefore, the simplicity of the supporting equipment is another advantage of this method. They 

showed that 0.2 kV/cm AC electric field with 100 kHz frequency could produce the required 

dielectrophoretic force to manipulate and trap the HeLa cells in the predefined positions.  By 

intensifying the electric field to 1.5 kV/cm, the cells could be reversibly electroporated. Their results 

show the high efficiency of the proposed method, the cells could be electroporated individually while 

the surrounding cells remain intact. Therefore, the single cell electroporation can be performed with 

very good efficiency.  

 

Figure  2-18 Cross section of the Optofluidic-based microfluidic electroporation Device. 

Experimental setup and mechanism of the light-induced electroporation system are 

demonstrated. The electric field concentrates across the illuminated cells by creating the virtual 

electrodes near the cell membrane (Valley, et al., 2009-a). 
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2.3.2.8 Cell Transfection in Continuous Flow in Microchannels 

Wang et al used the electroporation device reported in their previous studies (Wang, et al., 2006; 

Wang, et al., 2006-a; Wang, et al., 2006-b; Wang, et al., 2008) to insert the SYTOX green dye and 

pEGFD-C1 protein into the Chinese hamster ovary cell (see Figure 2.2) (Wang, et al., 2008). The 

constant voltage was applied along the channels while electric pulses were generated by the 

geometric variation of the microchannel. Their results show that the percentage of viable cells is 

increased up to the field intensity of 500-600 V/cm. For higher field intensities, the pulse duration 

must be lower than 6 ms in order that the cells are viable. According to their results, if the electrical 

parameters are tuned properly in the system, increasing the number of narrow sections (and hence the 

number of pulse and pulse duration) in the microchannel improves transfection efficiency (see Figure 

2.19). For example, the device with five 700 V/cm pulses and the durations of 0.22 ms has the 

transfection efficiency of 21.2 %; while this efficiency is 14.4% for the device with one 1.1 ms pulse.  

In another their study, they showed that the cells started “growing” immediately when 

electroporation began (Wang, et al., 2006-b). It may be caused by the difference between the 

permeability of the ions and larger-molecules (macro- molecules) inside the cell. In this study, the 

mechanism suggested in their previous studies (Wang, et al., 2006-a) was used to study the cell 

swelling and the cell rapture. For the first several hundred mili-seconds, the cells were exposed to the 

electric field of 200-500 V/cm. 

 

Figure  2-19 The field intensity in electroporation microfluidic device that utilize cross sectional 

geometric variation to generate electric pulse (Wang, et al., 2008) 
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They used three different buffer solutions (with 8 mM Na2HPO4, 2 mM KH2PO4, sacrose of 

various concentrations (hypotonic: 125 mM, isotonic: 250 mM and hypertonic: 375 mM), and pH 

value of 7.4). In these solutions, the increase in the cell volume was observed and the swelling rate 

and the rapture of cell membrane in the real time at single cell level were recorded.  

For external electric field of 400 V/cm, Figure 2.20 shows the swelling of one CHO cell at 

different points of electroporation sections of the device and at different time. The cell velocity is 

0.1~1 mm/s and the buffer solution is isotonic. This figure shows the cell growth in the presence of 

electric field. Their results show that the swelling and the membrane rapture occurs more rapidly in 

hyper- and hypotonic buffers than in isotonic buffer. For example, for the field intensity of 400 V/cm 

and isotonic buffer solution, there is 128% increase in the average percentile of the cell diameter after 

300 ms; while this value is 149% and 145% in the hypotonic and hypertonic buffer solutions, 

respectively. The results show that the swelling rate is more considerable in hypotonic than 

hypertonic solution. They assumed that the swelling is because of water influx into the cells when the 

nanopores are open. Based on this assumption, they concluded that the nanopore density and size are 

higher in hyper- and hypotonic solutions. Therefore, hyper- and hypotonic buffer could contribute to 

the increased delivery of biomolecules into the cells. However, there is another theory for the 

swelling modeling rather than the water influx that will be explained later.  

 

 

 

 

Figure  2-20the time-sequence images of the same CHO cell flowing in the isotonic buffer 

(10mM phosphate and 250mMsucrose; E2=400 V/cm). The images were captured at a rate of 16 

Hz. The velocity of the cell was in the range of 0.1–1 mm/s (Wang, et al., 2006-b). 
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Using the proposed techniques by Wang et al (Wang, et al., 2006-a), Geng et al delivered genes 

into CHO cells at high flow rates (up to ~ 20 mL/min). With the optimal design, ~75% of the viable 

CHO cells were transfected after the procedure (Geng, et al., 2010; Schaper, et al., 2007). Bao et al 

utilized the electroporation microfluidic device proposed by Wang et al (Wang, et al., 2006-a) to 

electroporate blood cells (Bao, et al., 2010). These cells are circulating tumour cells (CTC), red blood 

cells (RBC), and white blood cells (WBC). CTC refers to the cells that detached from the primary 

tumour. They are circulating in the blood stream and may settle down at a secondary site and from 

metastases. Their results show that there are significant differences in the threshold electric field for 

the irreversible electroporation of these cells. For example with the pulse duration of 100~300 ms, the 

irreversible electroporation was occurred at 300~ 400 V/cm, 400~ 500 V/cm and 1100~ 1200 V/cm 

for M109 tumour cells, white blood cell and red blood cell, respectively. These differences could lead 

to the selective electroporation in the stream of blood cells. The difference between the cell diameters 

is the reason of these different threshold values. For the identical external electric field, the cells with 

the bigger radius have the higher transmembrane potential and are easier to be electroporated at lower 

external electrical field.  

This paper of Bao and colleagues (Bao, et al., 2010) also includes some interesting results on the 

swelling of cells during the electroporation. Using the coherent anti-Stokes Raman scattering (CARS) 

microscope and fluorescence microscopy tools, they could observe the subcellular changes during the 

swelling. Their results show that the major part of the swelling is due to nucleous expansion.  

According to their results, the nucleus of the cell starts expanding upon applying the external electric 

field; if the applied electric field is removed, the nucleus will shrink. Under 400 V/cm applied electric 

field, Figure 2.21 shows their captured images in different times.  

For 400 V/cm external electric field, they also have depicted the separate rates of the nucleus and 

cytoplasm expansion versus time (see Figure 2.22). This diagram shows that the cytoplasm 

approximately remains unchanged during the electroporation. According to their findings, they 

suggested one of two possible mechanisms (that are potentially mutually exclusive) to be responsible 

for the cell expansion during electroporation. However, they could not conclude that which one of 

these two theories is true. First, the expansion is due to solution influx into cells, as suggested in 

previous studies. However, the influx solution preferably locates in the nucleus (instead of the 

cytoplasm) after entering through the membrane. Second, the solution influx only accounts for a 
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minor contribution to the expansion. Cells expand mostly due to the nucleus expansion when 

electroporated.  

 

Figure  2-21 Nucleus expansion in a M109 cell. The CARS signal and TPEF were utilized to 

detect the Lipid rich structures (red) and Hoechst 33 342-stained nucleus (blue), respectively. 

The electric field of 400 V/cm was applied during 0–5 s and removed afterwards (5–10 s) (Bao, 

et al., 2010). 

 

 

 

Figure  2-22 The relative increase in the size of cytoplasmic and nucleic areas during the 

swelling. The original size at time 0 is designated as 1 (Bao, et al., 2010). 
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Zhou et al studied single the cell electroporation in continuous flow field (Zhu, et al., 2010). 

Figure 2.23 depicts the schematic diagram of the system. The cellular suspension was injected to the 

sample channel from its inlet. The KCl solution meanwhile was injected from the channels on both 

sides. They were driven by the computer programmed syringe pumps. In the confluent channel of two 

fluids, the cellular suspension flow was squeezed into a thin laminar layer by the KCl solution flows. 

A constant DC voltage was applied onto two chlorinated Ag wires punched in the inlets of the KCl 

channels, to produce a large potential drop on the cellular flow of the central layer. According to 

Ohm’s law, as the conductivity of the KCl solution is much higher than that of the cellular suspension 

solution, major voltage drop will occur over the central layer of the flow.  

Because the size of the cellular flow could be changed by varying the speed ratio of the flows, the 

width of the central layer could be very small (<20 μm as the velocity ratio k = 2). Therefore, a low 

voltage supply (e.g. around 1.5 V) could generate a high electric field on the narrow cellular layer to 

accomplish electroporation with a limited pulse duration. At the optimum operating condition, they 

could successfully transfect the Yeast cells by only applying 1.5 V to the system. In this optimum 

condition, the cells have 70% viability while the transfection rate is around 85%. 

 

Figure  2-23 Schematic of the electroporation chip used hydrodynamic focusing during the 

electroporation process. By going through the focusing region, cells experience a local electric 

charge of high density. The figure located at the upper-right corner shows the fluorescence 

images captured during the experiment (Zhu, et al., 2010). 
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2.3.3 Microfluidic electroporation in other processes 

Many other studies utilized cell electroporation for other applications such as electrofusion (Cao, et 

al., 2008; Schaper, et al., 2007), metabolism monitoring (Cheng, et al., 2010), localization of Kinases 

within cells (Wang, et al., 2008), inactivation of Lactobacillus plantarum by pulsed electric fields in a 

microfluidic reactor (Fox, et al., 2008) gene therapy (Valero, et al., 2008; Fei, et al., 2007; Li, 2008-

b), electrochemotherapy (Gothelf, et al., 2003), electrogenetransfection (Valero, et al., 2008), 

electrofusion (Cao, et al., 2008; Janina, et al., 2007), and transdermal drug delivery (Herwadkar, et 

al., In Press, Corrected Proof). Electrofusion is the method to create hybrid cells by utilizing high-

voltage electrical pulses. It consists of three main steps: cell alignment, electroporation and, fusion. A 

key step in electrofusion is the electroporation of the cells that are desired to be attached to each 

other. One of the microfluidic systems that is utilized for electrofusion was developed by Cao (Cao, et 

al., 2008). Figure 2.24 schematically shows the system. There are up to 2376 microelectrodes located 

on the chip. The electrodes were placed on both sides of channels. The microchip consists of six 

micro-chambers with the serpentile microchannels. The depth and width of the channels are 20 and 

80 µm, respectively. The distance between the microelectrode pairs on both sides of the 

microchannels varies from 50 to 100 µm with the increment of 10 µm in each micro-chamber. In this 

way, one can also have a better control on the electric field applied to each cell.  By using this system, 

two kinds of cells have been electroporated for electrofusion (animal HEK-293 cells and plant 

cucumber mesphy II protoplants). The applied electrical pulse for electroporation is 3~7 kV/cm with 

20~50 µs duration. Considering the distance between the microelectrode pairs (50 to 100 µm), 

approximately 20 to 50 V voltage needs to be applied. Although this is not so high in comparison 

with the other electroporative micro-devices (see Table 2.1), Joule heating effect and bubble 

generation may occur and must be considered carefully.  
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Figure  2-24 The schematic diagram and manufacturing process of the Cell-fusion chip. Part (a) 

shows the layout of a cell-fusion microchip, microchannels, microelectrodes on the chip, and the 

3D schematic diagram of the system. Part (b) demonstrates the manufacturing process of the 

system. The tagged areas are: 1 = Au, 2 = Ti, 3 = SiO2, 4 = Si (Cao, et al., 2008). 
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Chapter 3 

Membrane Permeabilization* 

3.1 Introduction 

Presence of an external electric field near the cell membrane may have different effects ranging from 

manipulating the cell (Gimsa, 2001; Kang, et al., 2009) to altering the cell membrane structure 

(Wong, et al., 2005; Movahed, et al., 2011). When the cell membrane is in contact with aqueous 

solutions, ionization of the surface molecules or adsorption of the ions from the liquid solution causes 

electric charge on the cell membrane. Electroporation is one of the most interesting influences of the 

electric field on the cell membrane. Applying an electric pulse near the cell alters the electric potential 

difference on both sides of the cell membrane; this difference is usually named as the transmembrane 

potential (TMP). When the applied electric field is larger than a critical TMP value, the cell 

membrane structure will be disturbed significantly and nanopores are created in the cell membrane. 

This leads to a significant increase in the electrical conductivity and permeability of the cell that 

refers as an electroporation or electropermeabilization (Neu, et al., 2009; Weaver, 1995). 

Electroporation has many applications in the cell biomedical treatment such as gene therapy (Valero, 

et al., 2008; Fei, et al., 2007; Li, 2008-b), electrochemotherapy (Gothelf, et al., 

2003), electrogenetransfection (Valero, et al., 2008), electrofusion (Cao, et al., 2008; Janina, et al., 

2007), transdermal drug delivery (Herwadkar, et al., In Press, Corrected Proof), cell lysis (Yen-Heng, 

et al., 2009), and cell transfection (Wang, et al., 2009). In many of these applications, the cells should 

remain viable after the electroporation. Thus, the electric pulse duration and intensity should be 

controlled precisely in order to not cause permanent effects on the cell structure or kill the cells. 

Many experimental studies on the cell electroporation have been conducted. These experimental 

studies have been reviewed in Chapter 2. So far, theoretical studies on the cell electroporation have 

lagged the experimental ones though they are completely essential to boost the current understanding 

of the mechanism of the cell electroporation, reducing the side-effects of the external electric field on 

the cell structure, and increase of the electroporation efficiency. It should be pointed out that all the 

                                                      
*
 A version of this chapter is under review in the Journal of Membrane Biology as: “Saeid Movahed, Dongqing 

Li ‘A Theoretical Study of Single-Cell Electroporation in a Microchannel’, Journal of Membrane Biology, 

Online first: 5 November 2012”. The licence agreement of reprinting this article in the current dissertation has 

been presented in Permissions section (License Number: 3033881359908). 
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reported studies on the cell membrane permeabilization (creating the nanopores on the cell membrane 

due to applied electric field) considered the cells in an infinitely large medium. In microfluidic 

devices, the cells are usually located in the microchannels or micro-chambers. The results of the 

current published studies may not reflect the boundary effects of microfluidic based electroporative 

devices. Moreover, the size and position of electroporative electrodes may have significant influences 

on the membrane permeabilization. In this chapter, the membrane permeabilization of a single cell 

located in a straight microchannel is investigated. In this study, the pulse shape is chosen as a square 

wave which is widely used in the microfluidic devices (Wang, et al., 2006; Wang, et al., 2006-a; 

Wang, et al., 2006-b; Wang, et al., 2008; Ionescu-Zanetti, et al., 2008; Khine, et al., 2005; Vassanelli, 

et al., 2008). This electric pulse shape can be easily generated by contracting the cross sectional area 

of the microchannels or using a high voltage pulse generator. We will study the effects of the 

microchannel height, the electrode dimensions, and pulse intensity and duration on 

the distribution and radius of the created nanopores on the cell membrane. The rest of this chapter is 

organized as follows: The following section explains the theory of membrane permeabilization. The 

model considered in the current study will be explained next. Section 3.4 describes the numerical 

approach of the current study. The results and discussions will be provided in section 3.5, before the 

concluding remarks.  

3.2 Membrane Permeabilization 

The theory of the generation and the development of the pores on the cell membrane due to the 

applied electric field can be found in a number of papers (Weaver, et al., 1996; Krassowska, et al., 

2009; Krassowska, et al., 2007; Escoffre, et al., 2009). This theory is based on the energy minimum 

principle and is valid for the uniformly polarized membrane. Many other studies utilized this 

approach to investigate the effect of different parameters on the cell electroporation such as field 

strength and rest potential (DeBruin, et al., 1999), ionic concentration (DeBruin, et al., 1999), 

duration and frequency of electrical shock (Bilska, et al., 2000), electroporation of circular cells (Shil, 

et al., 2008; Talele, et al., 2010), cellular uptake of macro-molecules (Zaharoff, et al., 2008), and 

feedback control of generated pore radii (Cukjati, et al., 2007). Many of these studies have been 

reviewed in Chapter 2. 

According to this theory, there are two kinds of pores in the cell membrane: hydrophobic and 

hydrophilic (see Figure 3.1). The hydrophobic pores are simply gaps in the lipid bi-layer of the 
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membrane that are formed because of the thermal fluctuation. The hydrophilic or inverted pores have 

their walls lined with the water-attracting heads of lipid molecules. The hydrophilic pores allow the 

passage of water-soluble substances, such as ions, and thus they conduct electric current while the 

hydrophobic pores do not.  

 

Figure  3-1 The structure of (a) hydrophobic and (b) hydrophilic pores created in cell 

membrane. 

The pore energy is the required energy to introduce a single pore with radius r  to the cell 

membrane while the other pores are fixed. This energy consists of two parts: ( )E r  for hydrophilic 

pores and ( )U r  for hydrophobic pores. The hydrophobic pore energy can be calculated as 

(Krassowska, et al., 2009): 

2 2 2

*

*

1
( ) ( ) ( )

2
W m m

r
U r E V r

r h
      (3.1) 

where radius *r  and energy *E  are the threshold radius between the hydrophobic and the hydrophilic 

pores and the threshold pore energy at *r , respectively. The pores with *r r  are hydrophobic, and 

the pores with *r r  are hydrophilic. h  is the membrane thickness, and w  and m are permittivity of 

water and membrane, respectively. 

The first term in ( )U r  represents the energy cost for creating a cylindrical gap of radius r  in the 

membrane and the second term is the effect of the transmembrane potential, 
mV , that decreases the 

energy of the membrane by affecting the capacitive energy stored in the membrane. The hydrophilic 

energy, ( )E r , can be calculated by (Krassowska, et al., 2009): 
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where  and   are constants,   is the membrane tension, and F  is the electric force. In equation 

(3.2), the first term represents the electrostatic repulsive force between the lipid heads forming the 

walls of the pores. Second term is the energy required to bend the bi-layer to form the pore perimeter. 

The third term represents the decrease in the energy due to the effect of the membrane tension; and 

the forth term is due to the effect of the transmembrane potential 
mV  that is derived by evaluating the  

mechanical work required to deform a dielectric body in an ionic solution with steady-state electric 

current. ( , )mF r V  can be calculated by the following equation (Krassowska, et al., 2007). In this 

equation,  maxF   and hr  are constants.  

2max( , )
1 ( )

m m

h h

F
F r V V

r r r


 
 (3.3) 

The creation of the pores is believed to be two steps.  The pores are initially created as the 

hydrophobic pores with radii between r  and ( )r dr  at the following rate (per unit area of the 

membrane) (Krassowska, et al., 2009): 

( )
U

kT
c

U
h e dr

r kT





 (3.4) 

where c  is the fluctuation rate of the bi-layer per unit volume, k  is Boltzmann’s constant, and T is 

absolute temperature.  

The pores are initially hydrophobic ( *r r ) ( *r is the threshold radius between the hydrophobic 

and hydrophilic pores). At *r r  pores instantaneously changes their configuration (from hydrophilic 

to hydrophobic) to minimize their energy.  The pores with *r r are hydrophilic. 

As the hydrophobic pores are created, they started to expand or shrink due to two different 

mechanisms: advection and diffusion. Advection is the definite time rate of change of the pore radius, 

leading to the decreasing of the bi-layer energy; and diffusion refers to the random increases and 

decreases of the pore radius induced by thermal fluctuation. However, between these two 

mechanisms, advection is dominant by far. The hydrophilic pore of radius r is assumed to evolve with 

advection velocity u  (Krassowska, et al., 2009): 
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dr D E
u

dt kT r


  


 (3.5) 

In the above equation, E  is the hydrophilic pore energy and D  is the diffusion coefficient associated 

with random fluctuation of pore radius.   

In order to consider the effect of interfacial energy on the pore generation, constant membrane 

tension in equation (3.2) can be replace by the effective membrane tension (Krassowska, et al., 2009) 

:  
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
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In this equation,    is the interfacial energy per area of the hydrocarbon–water interface, 0  is the 

surface tension of the membrane without the pores, pA is the total area of the pores, and A  is the area 

of the lipid bi-layer. Therefore, the advection velocity in equation (3.5) can be approximated as 

(Krassowska, et al., 2009): 
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As indicated above, the pores are created in order to minimize the energy. E  has two local 

minima at 1mr r nm    and at s mr r r  . It means that the pores divided themselves into two 

different groups, small pores ( mr r ) and large pores ( sr r ). By removing the external electric field, 

the transmembrane potential becomes zero; consequently, all the pores shrink to mr  . After that, the 

pores can reseal by first converting to the hydrophobic configuration and then being destroyed by 

lipid fluctuations. 

Considering the above procedure, the electroporation process can be categorized into five different 

steps: induction, expansion, stabilization, resealing, and memory. Through the induction step, the 

transmembrane potential increases until it reaches its critical value. This step is usually takes less than 

one microsecond. As long as the threshold value of TMP maintains, the number and radius of the 

created nanopores increases continuously, this step is usually called expansion. The shape and the 

duration of the electric pulses determine the time span of this step that is usually in the range of 

microseconds to milliseconds. When decreasing the external electric field to its subcritical value, as 
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long as the nanopores are exit, most cell membranes have a much more normal state that is called 

stabilization. By removing the external electric field, the cell membrane runs into the resealing 

process that usually spans from second to minutes. After this step, some more resilient changes are 

usually remains in the cell membrane that takes from minutes to hours. This phase is usually called as 

memory (Wang, et al., 2010).  

By considering the physics of pore creation, evolution and resealing, the following advection-

diffusion partial differential equation (PDE) can be obtained for the pore density distribution, ( , )n r t  

(Krassowska, et al., 2009):  
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 (3.8) 

The four terms on the right-hand side in equation (3.8) represent the four mechanisms that causes 

change in ( , )n r t  : 
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 :  the diffusion term describes random fluctuation of pore radii caused by thermal energy 
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r


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

 : the advection term describes the changes in pore radii that are driven by minimization of 

the energy of the bi-layer; u  is the drift velocity. For hydrophilic pores, E  is replaced by U  in 

equation (3.5).  
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h e
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
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
 : creation rate of pores (equation (3.4)). 

*( )d H r r    : the destruction term describes disappearance of pores; since only the hydrophobic 

pores can be destroyed by lipid fluctuation, this term contains the Heaviside step function ( )H r .  

Because of the exponential dependence of the creation rate on the pore energy and the existence of 

disparate spatial and temporal scales, the numerical solution of PDE (3.8) requires very small 

discretization steps. To avoid the large computational cost associated with the numerical solution of 

PDE (3.8), this equation is asymptotically reduced to a following system of ODE (Neu, et al., 1999): 
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2( )

(1 )
( )

m

ep

V
V

eq m

dN N
e

dt N V
     (3.9) 

where ( )N t , the density of pores, defines as:  

*

( ) ( , )
r

N t n r t dr


    (3.10) 

eqN  is the equilibrium pore density for the given transmembrane voltage, mV : 

2( )

0( )
m

ep

V
q

V

eq mN V N e
 

 (3.11) 

For the membrane with k  pores, the rate of change of their radii, 
jr  , can be determined by the 

following set of equations: 

( , , ), 1,2,....,
j

j m eff

dr
U r V j k

dt
 

 

(3.12.a) 

2
4 max*

*

1
( , , ) {4 ( ) 2 2 }, in r r

1 ( )

m
m p eff

h t

V FrD
U r V A r

kT r r r r r
      

   
(3.12.b) 

In equations (3.9)-(3.12), 0 , ,N q    and 
epV are constants.  

The above-reviewed theory is the most widespread analytical approach to study the effect of 

electric field on the pore creation in the cell membrane. Many studies utilized this theory to 

investigate different aspects of the cell electroporation. Although the above theoretical model can 

address many aspects of the cell electroporation, there are some shortcomings associated with it: 

 First, this model cannot explain the mechanism of resealing the pores with radius mr r .  

 The effect of changing volume of the cell is not considered in the above analysis. Many studies 

show that in the presence of the external electric field, the cells started to deform from circular to 

elliptical shape (Teissie, et al., 2002), and to expand (Wang, et al., 2006-b) or rotate (Gimsa, 

2001). For example, previous experimental studies show that in the presence of external electric 

field, the cell can expand up to 300% of its original volume (Wang, et al., 2006-b).  

3.3 Model Description 

Figure 3.2 shows the schematic diagram of the system in the current study. The spherical cell of 

radius a  (diameter 0d ) immersed in the microchannel of height ch  is considered. The microchannel 

is filled with a conductive medium (an aqueous solution). The thickness of the cell membrane is 
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assumed to be h . The required electric pulse for electroporation ( 0 ) is applied to the cell via the two 

electrodes on the side walls of the microchannel. Five points are defined on cell membrane: D and H 

are the depolarized (DP) and hyperpolarized (HP) poles, E indicates the equator line, Db and Hb 

define the border between the electroporated and the non-electroporated regions on the membrane.  

The values of these parameters used in the current study are listed in Table 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, we aim to investigate the creation of the hydrophilic nanopores in the presence of the 

applied electric field. When the transmembrane potential reach the values of 0.5 ~1V , the hydrophilic 

nanopores will be created with the initial radius of 
*r . In fact, 

*r is the threshold radius that the 

hydrophobic nanopores convert to the hydrophilic ones. In the current study, we applied the 

Figure  3-2 The schematic diagram of the assumed system of the current study. A cell of radius 

a  is assumed in the microchannel of height ch . The microchannel is filled with the conductive 

medium. The required voltage of the electroporation ( 0  ) is applied via the two electrodes of 

length  d  located on the wall of the microchannel 
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asymptotic ODE model (Neu, et al., 1999), (Eqns. (3.9)-(3.12)), to the system shown in Figure 3.2, 

i.e., to investigate the cell membrane permeabilization in the microchannel and study the effects of 

various boundary conditions, including the microchannel dimensions, the location and the size of the 

electrodes, on the cell membrane permeabilization.  

Table  3-1The values for constants and parameters used in the simulations 

Parameter value (unit)  Definition 

0( 2 )d a  15 ( )m  diameter of the cell 

mt  5 ( )nm  cell membrane thickness (Glaser, et al., 1988) 

ch  30 ( )m  height of the microchannel 

d  20 ( )m  length of the electrode 

0  1.7 ( )V  electric pulse intensity 

0t  10 ( )s  electric pulse duration 

is  10.455 ( )S m  intracellular conductivity (Hibino, et al., 1993) 

es  15 ( )S m  extracellular conductivity (Hibino, et al., 1993) 

s  12 ( )S m
 Conductivity of the solution filling the pore (Smith, et al., 2004) 

mc  20.0095 ( )F m  Specific membrane capacitance  (Hibino, et al., 1993) 

1g  22 ( )S m
  Surface conductance of the membrane  (Hibino, et al., 1993) 

restV  80 ( )mV  rest potential (Chambers, et al., 1979) 

  9 2 11 10 ( )m s   Creation rate coefficient  (DeBruin, et al., 1999) 

epV  0.258 ( )V  Characteristic voltage of electroporation   (DeBruin, et al., 1999) 

0N  9 21 10 ( )m  Equilibrium pore density at 0mV    (DeBruin, et al., 1999) 

*r  0.51( )nm  Minimum radius of hydrophilic pores  (Glaser, et al., 1988) 

mr  0.8 ( )nm  Minimum energy radius at 0mV 
 
 pores  (Glaser, et al., 1988) 

D  14 2 15 10 ( )m s   Diffusion coefficient for pore radius (Freeman, et al., 1994) 

T  300 (. )K  Temperature 

  191.4 10 ( )J  Steric repulsion energy (Neu, et al., 1999) 

  11 11.8 10 ( )J m   Edge energy  (Glaser, et al., 1988) 

maxF  9 20.7 10 ( )N V   Max electric force for 1mV V  (Neu, et al., 2003) 

hr  90.97 10 ( )m  Constant in Eq. (3.12.b) for advection velocity  (Neu, et al., 2003) 

tr  90.31 10 ( )m  Constant in Eq. (3.12.b) for advection velocity  (Neu, et al., 2003) 

q  * 2( )mr r  Constant in Eq. (3.11) for pore creation rate  (DeBruin, et al., 1999) 

   2 22 10 ( )J m   Tension of hydrocarbon-water interface (Israelachvili, 1992) 

0  6 21 10 ( )J m   Tension of the bilayer without pores (Hénon, et al., 1999) 
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3.3.1 Electric Field: 

Laplace equation should be solved to find the electric potential inside ( i ) and outside ( e ) the cell.  

2

, 0i e   (3.13) 

The required voltage of electroporation ( 0 ) is applied via the embedded electrodes on the two 

sides of the cells. Thus, the electrical boundary condition on boundaries MN and M’N’ is assumed as: 

, 0 2e M N   (3.14.a) 

, 0 2e M N    

 

(3.14.b) 

The walls of the microchannels are electrically insulated. There is also no current flow at the two 

ends of the microchannel. Therefore, the assumed electrical condition on boundaries LM, NO, OO
’
, 

O
’
N

’
, M

’
L
’
, and L

’
L is:  

ˆ 0n J   (3.15) 

The electric current density should be continuous across the cell membrane: 

1
ˆ ˆ( ) ( ) ( )m

i i e e m m rest p

V
n s n s c g V V I

t
 


        


 (3.16) 

In this equation n̂ is the local outward unit vector normal to the surface of cell membrane,  is the 

Nabla symbol, is  and es
 
are the intracellular and extracellular conductivities;  mV  and restV  are the 

transmembrane potential (TMP) and rest potential. 
1g and 

mc are the surface conductance and 

capacitance of the membrane, in that order.   

The transmembrane potential (
mV ) is defined as: 

( , , ) ( , , )m i eV t a t a      (3.17) 

3.3.2 Number of nanopores: 

As it was explained in section 3.2, the rate of creation of the nanopores can be found by solving Eqns. 

(3.9-3.11): 
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2( )( ) ( )
(1 )

( )

m

ep

V
V

eq m

dN t N t
e

dt N V
   (3.9) 

where ( )N t is the density of pores define as:  

*

( ) ( , )
r

N t n r t dr


   (3.10) 

eqN is the equilibrium pore density for the given transmembrane voltage, mV
 
:
 

2( )

0( )
m

ep

V
q

V

eq mN V N e  (3.11) 

In the above Equations,  , 
epV , q , and 0N  are the constants that can be found in table 3.1.  

3.3.3 Radius of nanopores: 

Based on the asymptotic model of the cell membrane permeabilization (Section 3.2), the nanopores 

are initially created with a radius of *r .  By increasing the applied electric field, the nanopores start to 

develop in order to minimize the energy of the cell membrane. For the membrane with n nanopores, 

the rate of change of their radii, 
jr , can be determined by the following set of equations (see section 

3.2): 

( , , ), 1,2,....,
j

j m eff

dr
U r V j n

dt
   (3.12) 

2
4 max*

*

1
( , , ) {4 ( ) 2 2 }, in r r

1 ( )

m
m p eff

h t

V FrD
U r V A r

kT r r r r r
      

   
(3.18) 

The constants of the above equations have been defined in table 3.1. eff is the effective tension of 

the  membrane. As it was indicated in Section 3.2, if A is the surface area of the cell membrane and

pA is the area of the created nanopores ( 2
1

n
ip iA r  ), eff can be computed as: 

0

2

2
( ) 2

(1 ( ))
eff p

p

A
A A

 
 


 


 (3.7) 
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3.4 Numerical Simulation 

In this study, the above mentioned equations were solved numerically to find the electric potential in 

the domain and investigate the creation of the nanopores on the cell membrane. “Comsol 3.5a with 

MATLAB” commercial package was used in the numerical simulations. The cell membrane has been 

discretized with a discretization step of 60   .  In order to discretize the solution domain, the 

un-structured meshes were applied. The solution domain is broken into small meshes to allow that the 

meshes fully cover the solution domain without overlapping. 

Before applying the electric pulse, transmembrane potential is equal to the rest potential  

( m restV V ). At each time step, first Eqns. (3.133.17) were solved by Finite Element Method to find 

the electric potential in the domain. After the electric potential was obtained, Eqns. (3.7, 3.9-3.12, and 

3.18) were then solved to find the location, number, and radius of the created nanopores on the cell 

membrane. The Runge-Kutta method was utilized to solve ODE equations 3.9 and 3.12. This system 

of equations were solved with a time-step of 32c , in which c  is the time constant of the cellular 

polarization (Hibino, et al., 1993): 

1 1
( ) 2.4c m

i e

aC s
s s

     (3.19) 

3.5 Results and Discussion 

The quantitative information used in the simulations is provided in Table 3.1. The cell of diameter 

(15 )a um  is considered in the microchannel of height (25 ,30 , and 35 )ch um um um . The necessary 

electric field (1~ 3 )V is applied by the two electrodes of width (5 ~20 )d um  located on the walls of 

the microchannel. The electric pulse span is in the order of micro-seconds ( s ).  In this section, we 

aim to study the influence of the electric pulse intensity ( 0 ) and the duration ( 0t ), the electrode size (

d ), and the microchannel height ( h ) on the electro-permeabilization of the cell.  

The pulse shape in this study was chosen as a square wave and can mathematically express as 

0 0( )V u t t   . Here, 0( )u t t is the step unit function that is equal to one for 00 t t  and is zero 

for 0t t
 
(Figure 3.3). The obtained results show that the nanopores’ radius and density are 

symmetric along the equator (see Figure 3.2). The transmembrane potential has the same magnitude 
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with the opposite sign on the two sides of the cell membrane ( 0 180 and180 360        ). 

Therefore, in the present study, only the permeabilization of the back side of the cell membrane has 

been illustrated (180 360   ).  

                                                     0 0( )u t t     

 

 

 

 

 

3.5.1 Time Evaluation: 

For one specific case of study ( 030 , 15 , 3 ,ch um a um V   and 20d um ), Figure 3.4 depicts the 

TMP and the radius of the generated nanopores on the back side of the cell membrane. Once the 

nanopores are generated, the TMP reduces. The TMP has a sharper reduction at the poles  

( 90 and 270   ). At the beginning ( 2t s ), the biggest nanopores are created at DP and HP 

poles. As the nanopores are created, TMP decreases, also the angular positions of the highest TMP 

and the biggest nanopores move toward the equator ( E ). For this case of study, Figure 3.5 depicts the 

density of the created nanopores ( N ). This figure shows that the number of the generated nanopores 

reach its maximum value very fast (1~ 2 s ). From the results shown in Figure 3.4 and Figure 3.5, 

once the nanopores are created, their number and location may not be influenced by the electric pulse 

anymore; the electroporated area also remains unchanged. Further presence of the electric pulse 

results in developing the size of the generated nanopores. Here, the energy level of the cell membrane 

increases in the presence of the electric pulse. According to the theory of membrane permeabilization, 

the created nanopores consume the absorbed energy in order to keep growing and thus results in 

reduction in the TMP. The numerical results of this study also agree with this fact (see Figures 3.4and 

3.5). 

 t0                  t 

 ϕ                                           

 ϕ0 

Figure  3-3The Schematic diagram of the applied electric pulse 
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Figure  3-4 Time evaluation of the membrane permeabilization of the cell located in 

microchannel. ( 030 , 15 , 3 , and 20ch um a um V d um    ). (a) Transmembrane potential and 

(b) radius of the created nanopores. 
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Figure  3-5 Time evaluation of the density of the created nanopores on the membrane of the cell 

located in the microchannel ( 030 , 15 , 3 , and 20ch um a um V d um    ). 

3.5.2 Electrode Size: 

Figure 3.6 illustrates the effect of electrode size ( d ) on the transmembrane potential, before the 

nanopores are created on the cell membrane. A parameter  x  is defined as the ratio of the electrode 

width ( d ) to the cell diameter ( 0d ) i.e. 0x d d .  

For the cells located in an infinite domain and exposed to a uniform electric field of eE , if the 

nanopores are not created, the transmembrane potential is given by the Schwan equation (Pauly, 

1959): 

1.5 cos( )m eV E a   (3.20) 
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The Schwan equation shows that in an infinite domain, if the nanopores are not created on the cell 

membrane, TMP has a sinusoidal distribution. For the cell located in the microchannel as shown in 

Figure 3.2, the numerical simulation in this study also shows that TMP has sinusoidal profile around 

the cell membrane when x  > 1. However, as the ratio of the electrodes width to the diameter of the 

cell decreases, the following occurs (see Figure 3.6): (1) the local TMP value reduces, (2) TMP 

values decrease sharply from poles of the cell membrane ( 90 and 270   ) to the equator 

( 0 and180   ). If the applied voltage is kept constant, decreasing the height of the microchannel 

(the distance between the two electrodes) produces stronger electric field; consequently, the local 

TMP will be increased and the nanopores are created with the smaller applied voltage via the 

electrodes. 

 

Figure  3-6 This figure illustrates the effect of size of electrodes on Transmembrane potential 

before the nanopores are created. In this figure, the parameter is defined as the ratio of 

electrodes width ( d ) to the cell diameter ( 0d ) i.e., 0x d d ( 015 , 2.3a um V  ). 
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Figure 3.6 also depicts the effect of the electrode size on the initial TMP; here, the nanopores have 

not been created yet. Larger values of the initial TMP will produce more nanopores on the cell 

membrane. The TMP tends to decrease less sharply for the higher values of x . Therefore, increasing 

the width of the electrodes enhances the local TMP on the cell membrane. Hence, if we aim to 

increase the created nanopores on the cell membrane, the width of the electrode should be larger than 

the cell diameter (useful in transfection applications). Thus, in order to maximize the efficiency of the 

cell transfection (reversibly electroporate the cell to insert biological samples into the cell), the width 

of the electrode should be bigger that the cell diameter. If the interest is to electroporate only specific 

part of the cell (for example in electrofusion), x  may be smaller than 1.  

3.5.3 Microchannel height and Pulse intensity: 

Figures 3.7 and 3.8 illustrate the effects of microchannel height ( ch ) and pulse intensity ( 0 ) on the 

permeabilization of the cell membrane. In these figures, the microchannel heights are 25 m , 30 m , 

and 35 m . The applied electric pulse intensities are 1 ,1.5 , 2 , and 2.3 V V V V . The pulse span is 

kept constant ( 0 10t s ).  

As it can be seen from these figures, both the electric pulse intensity and the microchannel height 

have great influences on the radius and the density of the created nanopores. For the same size 

microchannels, intensifying the electric pulse increases both the density and the radius of the created 

nanopores. As an example, Figures (3.7a) and (3.8a) shows that for 25ch m , when the applied 

electric pulse is 0 1V  , the generated nanopores size is minimum. By increasing the applied electric 

pulse from 1V to 2V , the maximum  radius of the nanopores reach ~ 45 nm . If the applied electric 

pulse is enhanced to 2.3V , the maximum radius of the nanopores reach ~ 65 nm . These maximum 

size nanopores are mainly located around the poles ( 270o  ) (Figure 3.8). Intensifying the electric 

pulse also expands the electroporated area of the cell membrane. For example, consider the case of a 

microchannel height 25 m (Figure 3.7a and Figure 3.8a). When the applied voltage is 1V , no 

significant nanopores are created on the cell membrane. However, when the applied voltage increases 

to 1.5V  and 2V , the angular area with significant number of the electroporated nanopores covers 

approximately 230 310o o   and 215 325o o  , respectively (see Figure 3.8a).   
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Figure  3-7 Effect of pulse intensity on the radius of the created nanopores on the cell of 

diameter 15 um. The height of the microchannel is 25 m (a), 30 m (b), and 35 m  (c). 

 

180 210 240 270 300 330 360
0

10

20

30

40

50

60

70

Angle (degree)

N
a

n
o

p
o

re
 R

a
d

iu
s
 (

n
m

)

 

 

1 Volt

1.5 Volt

2 Volt

2.3 Volt

180 210 240 270 300 330 360
0

10

20

30

40

50

60

70

Angle (degree)

N
a

n
o

p
o

re
 R

a
d

iu
s
 (

n
m

)

 

 

1 Volt

1.5 Volt

2 Volt

2.3 Volt

(c) 

(a) 



 

 71 

 

 

 

Figure  3-8 Effect of pulse intensity on density of created nanopores on cell of diameter 

15 um. Assumed heights of microchannels are 25 um (a), 30 um (b), and 35 um  (c). 
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3.6 Conclusion: 

In this chapter, the membrane permeabilization of the single cell in the microchannel was 

investigated. The previous studies on the cell electroporation consider the cells in an infinite domain 

which does not reflect the finite boundary effects of microchannel walls on the membrane 

permeabilization process. In the study presented in this chapter, we found that the size of the 

microchannels and the electrodes as well as the position of the electrodes in the microchannels have 

great influences on the cell electroporation. Following conclusions have been obtained: 

 In the microfluidic electroporative devices, the membrane permeabilization can be performed with 

very low-intensity electric pulses (1 3V ). 

 If the electric pulse intensity and duration and also the electrode dimension keep constant, 

expanding the microchannel height reduces the number and radius of the large nanopores; the 

electroporated area of the cell membrane is also decreased.  

 Increasing the electric pulse intensity intensifies the size and the number of the created nanopores 

and also increases the electroporated area on the cell membrane. 

 Transmembrane potential becomes less widely spread for the electrodes with a width larger than 

the cell diameter. The TMP profile is sinusoidal in the non-electroporated area. 

 If the width of the electrodes is smaller than the cell diameter, the local transmembrane potential 

decreases everywhere and sharply in the area from the poles (the nearest points of the cell 

membrane to the electrodes) to the equator.  

 The number of the created nanopores reaches its maximum value extremely fast; further presence 

of the electric pulse may not influence the number and the location of the created nanopores 

anymore. It only develops the generated nanopores.  

 The most nanopores are created around the poles.  
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Chapter 4 

Electrokinetic Transport through Nanochannels* 

4.1 Introduction 

In many microfluidic instruments, the electrokinetic effects are exploited to perform various 

applications ranging from biological process such as cell culture (Movahed, et al., 2010) to cooling 

microelectronic devices (Wang, et al., 2009).  Extensive studies have been conducted on the 

electrokinetic transport phenomena in the microscale channels (Li, 2004; Li, 2008). Sophisticated 

theories have been proposed to model the electrokinetic effects in the microchannels. Usually 

Poisson-Boltzmann equation is used to find the electric potential in the microchannels; Helmholtz–

Smoluchowski theorem is commonly utilized to model the electroosmotic flow through the 

microchannels. With the advancement of nano-fabrication technology (Cho, et al., 2010), more and 

more attention has been paid to transport phenomena in devices involving nanochannels (Garcia, et 

al., 2005; Lee, et al., 2010; Joseph, et al., 2006). By reducing the dimensions of the channels to the 

submicron and nano-scales, these theories may not be applicable anymore. Mostly, this is because the 

ion distribution in the nanochannel cannot be described by Boltzmann distribution, and hence the 

electric field generated by the nanochannel’s surface charge does not obey the Poisson-Boltzmann 

equation. The current understanding of the electrokinetic effects in the nanochannels is very limited.  

In modeling the electrokinetic flow in the microchannels, the Boltzmann distribution is one of the 

fundamental equations. The Boltzmann distribution requires a semi-infinite large liquid phase, the 

equal number of co-ions and the counter-ions in positions sufficiently far away from the charged 

surface, and no significantly overlapped electric double layer fields.  However, all these key 

assumptions are not valid for the smaller nanochannels. For example, the concentrations of co- and 

counter ions are not equal in the nanochannels (Zangle, et al., 2010).  Since the Boltzmann 

distribution is not valid, the Poisson-Boltzmann equation cannot be used to describe the electric field 

in the small nanochannels. Furthermore, there is an essential difference in defining the electrical 

boundary condition between the microchannels and the nanochannels. In the microchannels, the 

Poisson-Boltzmann equation can be utilized to obtain a relationship between the surface electric 
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charge and the surface electric potential, approximately the zeta potential. That is, fixing the surface 

electric charge is equivalent to fix the zeta potential (Li, 2004). Therefore, a constant zeta potential is 

usually used as the boundary condition to solve for the electric double layer field in the 

microchannels. However, in the small nanochannels, because the Poisson-Boltzmann equation is not 

valid, the surface electric charge, via the use of the Poisson equation, can relate only to the electric 

potential gradient at the charge surface, not the zeta potential. 

Thus, the zeta potential cannot be used as the boundary condition for the electric field in the small 

nanochannels. Instead, the surface electric charge should be utilized as the electrical boundary 

condition at the walls of the nanochannels. By considering these facts, the conventional theories of 

the electrokinetic flow are no longer valid in the nanochannels.  

Some studies have been conducted to model and simulate the electrokinetic effects in the nano-

scale channels. Several of them are based on the Poisson-Boltzmann equation (Behrens, et al., 1999; 

Petsev, et al., 2006; Rice, et al., 1965; Wan, 1997). The Boltzmann distribution is derived under the 

following boundary conditions: At positions infinitely far away from the charged solid surface, 1- the 

electric potential is zero, and 2- the bulk solution is electrically neutral or has zero net charge. 

However, in the nanochannel with significantly overlapped electric double layers, the above 

conditions do not exist. Therefore, the Boltzmann equation and hence the Poisson-Boltzmann 

equation are no longer valid in nano-scale channels.  A widespread numerical technique used to 

model the electrokinetic effects in the nanochannels is molecular dynamics simulation (Qiao, et al., 

2003; Qiao, et al., 2002; Qiao, et al., 2005). Using this method, Qiao and Aluru modeled ion 

distribution and velocity profiles for the electroosmotic flow in the nanochannel (Qiao, et al., 2003). 

They proposed electrochemical potential correction term to modify Poisson–Boltzmann equation and 

predict the ion distribution with good accuracy; however, they considered only the presence of the 

counter-ions in their simulations. By using this technique, they also studied the transient response of 

the electroosmotic flow in the nanochannels (Qiao, et al., 2002). However, it must mention that 

molecular dynamics technique needs huge computational effort and may not be practical for larger 

computational domains. In 2000, Freund studied the electroosmotic flow in the nano-scale channels 

(Freund, 2000). In this study, the author only considered the effects of counter-ion on liquid flow; 

they also utilized the Poisson-Boltzmann equation to find the ionic distribution and the electric 

potential. Some studies have been conducted to investigated EDL overlapping for simple cases of 

long and slit nanochannels (Baldessari, 2008; Baldessari, 2008; Pennathur, et al., 2005; Pennathur, et 
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al., 2005); however, the results of these studies cannot be used for the nanochannels with sharp 

changes in geometry such as microchannel-nanochannel connection or three-dimensional 

nanochannels.  

Several new studies utilized the Poisson-Nernst-Plank equations to model the electrokinetics in the 

nano-scale channels. These studies are usually based on two dimensional modeling or did not 

consider the effect of convection on ion mass transfer. For example, Choi and Kim used a two-

dimensional model to investigate the electrokinetic effects in the slit nanochannel (Choi, et al., 2009).  

In 2008, Cheng investigated the electrokinetic ion transport in a one-dimensional slit nanochannel 

(Cheng, 2008). However, this study did not present any results for the flow (velocity) field. The more 

accurate study on the electrokinetic effects in the nano-scale channels was performed by Vlassiouk et 

al. (Vlassiouk, et al., 2008). However, in that study, the authors did not consider the effect of the 

electroosmosis on the ion transfer; therefore, the Poisson-Nernst-Plank and the Navier-Stokes 

equations became decoupled. In this way, it dramatically decreased the difficulties associated with the 

numerical simulations. At the end of mentioned article, the authors showed that their approximation 

(neglecting the effect of the electroosmosis on the ion mass transfer) can contribute 20% to the total 

current (the ion mass transfer). In addition, at the exit of the nanochannel to the microchannel, they 

could not model concentration polarization effect that was experimentally shown in the other studies 

(Zangle, et al., 2010; Kim, et al., 2007).  

It is highly desirable to study the electrokinetic effects in three-dimensional nano-scale channels in 

order to improve the current understanding in this field.  For the small nanochannels, the Poisson-

Nernst-Plank equations along with the modified Navier-Stokes equation and the continuity equation 

must be solved in order to find the ionic mass transfer, the electric field, and the velocity field. These 

governing equations are highly coupled and the results are affected by all these equations and the 

corresponding boundary conditions.  This chapter considers one circular cross-section and three-

dimensional nanochannel connected to two reservoirs at the ends. The Poisson-Nernst Plank, the 

Navier-Stokes, and the continuity equations are solved simultaneously to calculate the electric 

potential, the ionic concentration, and the fluid flow in the nanochannel. The remaining of this 

chapter is organized as follow: Section 4.2 presents the mathematical model of the electrokinetic 

effects in the nanochannels. Section 4.3 explains the details of numerical method. The results are 

described and discussed in Section 4.4 and the concluding remarks are provided at the end of the 

chapter.    
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4.2 Mathematical Modeling 

Figure 4.1 depicts the nanochannel system of this study. A nanochannel with circular cross sectional 

area of radius a  and length L  connects two reservoirs. The nanochannel and the reservoirs are filled 

with an aqueous solution ( NaCl ).  Contact between the aqueous solution and the wall of the 

nanochannel brings about the surface electric charge on the wall. Application of electric potential at 

the two ends of the nanochannel causes liquid flow and the ionic mass transfer through the 

nanochannel (the electrokinetic effects).  

In the nanochannels, the electric double layer thickness cannot be ignored in comparison with the 

channel dimensions. For the smaller nanochannels, the electric double layer fields may overlap 

significantly. Unlike a bulk solution, the electric double layer has substantially different numbers of 

co-ions and counter-ions. Therefore, the ionic concentration of the co-ions and the counter ions are 

not the same through the smaller nanochannels. This may cause concentration polarization at a 

connection of the nanochannel to the reservoirs (Zangle, et al., 2010). 
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Figure  4-1 Schematic diagram of the assumed system of this study. Two reservoirs are 

connected to each other by a circular nanochannel of length L and radius R. Two electrodes 

located in the reservoirs apply electric potential to the ends of the nanochannel. 
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In the governing equations presented in the following sections, 

 

is the electric potential,

 

E  is the 

electric field, ic  is the concentration of ion species i, and also p  and u  are the pressure and the 

velocity vector, respectively. The constants include permittivity (ε0εr), medium density (ρ), Faraday 

number (F), fluid viscosity (η) and valance number (zi), diffusion coefficient (Di), and mobility (μi) of 

ion species i. The values of these constants and parameters are listed in Table 4.1. 

4.2.1 Electric Field 

The electric field in the computation domain can be described as follows. In such a nano-scale 

channel, the Poisson equation must be solved in order to find the electric potential. As seen from Eq. 

(4.1), the Poisson equation is a function of the local ionic concentrations. The electric field is the 

gradient of the electric potential (Eq. (4.2)).  

0( ) ir i iF z c       (4.1) 

E  

 
(4.2) 

The surface electric charge is utilized as one boundary condition. In the present study, the 

following equations are applied at the boundaries GK (the nanochannel wall), JG, and KH to set the 

electrical boundary condition:  
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Figure  4-2 This figure depicts the computational domain of the present study. Taking the 

advantage of symmetric boundary conditions, only a quarter of the domain is simulated. 
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0D E

 

(4.3) 

0( )n D r   (4.4) 

The electric potential at boundaries FD and IE (the reservoirs) is set as follow:  

0   (4.5) 

The symmetric condition is applied at boundaries OA, OB, and DE. The zero charge condition is 

employed at the other boundaries (FJ and HI). Following equation is used for these two types of 

boundary conditions (symmetric and zero charge):   

0n D   (4.6) 

4.2.2 Ionic Concentration Field 

Equation (4.7), the Nernst-Plank equation, is used to describe the mass transfer in the computation 

domain.  

( ) ( ) ( ) 0i i i i i iuc D c z c        (4.7) 

In this equation, first term is the effect of the electroosmosis on the ionic mass transfer. The 

second and the third terms present the influences of diffusion and the electrophoresis on the ionic 

mass transfer, respectively. The Nernst-Plank equation is the general form of Boltzmann distribution. 

By neglecting the effect of convection ( ( )iuc ) on ionic mass transfer, the Nernst-Plank equation is 

simplified to Boltzmann equation. However, it will be shown in Chapter 5 that the influence of 

convection on the ionic mass transfer through the nanopores is not negligible compare with 

electrophoresis. Increase of the size of nanochannels is also intensified the impact of convection on 

ionic mass transfer. Thus, Boltzmann distribution, and consequently Poisson-Boltzmann equation, 

may not be applicable in the nanochannels.    

At boundaries FD and IE (see Figure 4.2), a constant bulk ionic concentration 0c
 
is utilized (Eq. 

4.8).  

0c c

 

(4.8) 

The walls of the nanochannel (GK) and the reservoirs (JG and KH) are assumed to be 

impermeable for mass transfer. Symmetric boundary conditions are implemented at boundaries OA, 
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OB, FJ, HI, and DE. The following set of equations is employed for these two kinds of boundary 

conditions (impermeable and symmetric):  

0n N   (4.9) 

i i i i i iN D c z c c u        (4.10) 

4.2.3 The flow field 

Modified Navier-Stokes equations (Eq. 4.11) along with the continuity equation (Eq. 4.12) are solved 

in order to find the flow field in the system. At boundaries FD and IE we assumed the open boundary 

condition (Eq. 4.13). This type of boundary condition is usually used when the boundaries are 

connected to a large reservoir. The flow can either enter or exit from these boundaries. At the walls of 

the nanochannel (GK) and reservoirs (JG and HK) the no-slip boundary condition is assumed (Eq. 

4.14).  We also utilized the symmetric boundary condition (Eqns. 4.15 and 4.16) for boundaries OA, 

OB, DE, FJ and HI.  

2(( ) ) ( )i ii
u u p u z Fc          (4.11) 

0u   (4.12) 

0 , 0u p    (4.13) 

0u 
 

(4.14) 

0n u   (4.15) 

[ ( ( ) )] 0Tt pI u u       (4.16) 

4.3 Numerical Simulation 

All the above-mentioned, highly-coupled equations were solved simultaneously with the 

corresponding boundary conditions, as described in the last section. The numerical simulation was 

conducted by using COMSOL Multiphysics 3.5a; we employ a mesh independent structure to make 

sure that the results are unique and will not change if any other grid distribution was applied. In order 

to discretize the solution domain, the structured meshes were applied. The solution domain is broken 

into small meshes to allow that the meshes fully cover the solution domain without overlapping. In 

order to find reliable results, which are grid independent, we examined the effect of different number 

of grids. Finally, we found the number of grids with which the numerical results will not change if we 

further increase the number of grids.  
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The transient period of the electroosmotic flow and the ionic mass transfer in the nano-scale 

channels is very small (usually on the order of μs or smaller) and is negligible. Therefore, we solved 

the Navier-Stokes and the Nernst-Plank equations in the steady state flow field.  In order to verify the 

accuracy and correctness of our numerical approach, the governing equations were solved in the cross 

section of a slit nanochannel and the results were compared with the published result of Cheng 

(Cheng, 2008). As an example, Figure 4.3 depicts the electric potential obtained by the two different 

studies; the excellent agreement verifies our numerical method. This figure also shows the electric 

potential distribution predicted by the Poisson-Boltzmann equation. It is clear that there is a 

considerable difference between the results of the Poisson-Boltzmann model and the Poisson-Nernst-

Plank and the Navier-Stokes equations. This is because in the nanochannel, there is significant EDL 

overlapping and hence the Poisson-Boltzmann equation is not valid. 

 

Figure  4-3 For one specific case of study ( KCl aqueous solution in slit nanochannel, 0 1C mM , 

20h nm and 
2

0 0.05C m   ), this figure compares obtained electric potential from  our 

numerical approach with  published result by Cheng (Cheng, 2008) and PB model. In PB 

modeling, the ζ-potential is assumed to be equal to the numerical result of current study (0.16 

V). 
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       Table  4-1The values for constants and parameters used in the simulations 

Parameter value/range Unit 

T ( relative permittivity) 80  - 

0 (absolute permittivity) 128.85 10  F/m 

 (liquid density) 1000  Kg/m
3 

0 (surface electric charge) 0.0001~ 0.001   C/m2 

 ( dynamic viscosity) 31 10  Pa·s 

F(Faraday constant) 96485.3415  A s mol  

a (nanochannel radius) 5 ~15  nm  
L (nanochannel length)  140  nm  

D  (diffusion coefficient of positive ion)  91.28 10  2m s  

D
(diffusion coefficient of negative ion) 91.77 10  2m s  

µi (mobility of ion species i) ( )i gD R T  -
 

T (temperature) 300  .K 

4.4 Results and Discussion 

Table 4.1 summarizes the quantitative information used in our simulations. We consider NaCl

aqueous solution. The characteristic parameters of Na and Cl  ions such as electrophoretic mobility 

and diffusion coefficient, can be found elsewhere (Li, 2004; Koneshan, et al., 1998).   In the 

simulations, we assumed the nanochannels with three different radii (10 nm, 15 nm, and 20 nm).  The 

electric potential at boundaries FD and IE (the two reservoirs) are 0 and 2 V, respectively. The bulk 

ionic concentration of the positive and negative ions at boundaries FD and IE is 1 × 10
3 

mol/m
3
. 

Three different values of 0.0001 C/m
2
, 0.0005 C/m

2
, and 0.001 C/m

2 
are assumed for the surface 

electric charge.  

4.4.1 Electric Potential  

For different values of nanochannel radius and surface charge, Figure 4.4 depicts the variation of the 

electric potential along the centerline of the channel. Zones 1, 2 and, 3 represent reservoir 1, 

nanochannel, and reservoir 2, respectively. Figure 4.4a illustrates the effect of the radius on the 

electric potential drop. For a given value of surface electric charge (
20.0005 C m ), the average 

slope of the potential curve decreases with the increase of the nanochannel`s cross section area.  
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Figure  4-4 Electric potential along the center-line of the reservoir 1 (zone 1), nanochannel (zone 

2), and reservoir 2 (zone 3).  Figures (a) and (b) illustrate the effects of channel radius and 

surface electric charge on the electric potential, respectively. 
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3 
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(b) 
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Figure 4.4b illustrates the influences of the surface electric charge on the applied electric potential 

distribution along the centerline of the nanochannel. This figure shows that, for the given channel 

radius, increasing the value of the surface electric charge causes sharper decrease in the electric 

potential along the nanochannel.  It should be pointed out that, in the microchannels, the applied. 

Figure 4.5 shows the electric potential distribution in the cross section of the nanochannel at the 

middle of the nanochannel, position 210x nm  (in the length of the nanochannel).  From figure 4.5a, 

one can conclude that for the same value of the surface electric charge, the electric potential has 

different values when the radius of the nanochannel changes; for example, it has a smaller absolute 

value in a larger channel. It is also evident from this figure that the electric potential distribution in 

the channel`s cross-section is essentially a horizontal line in the smaller nanochannels, while slightly 

curved in larger channels.  Figure 4.5b exemplifies that for the lower values of surface electric charge, 

the electric potential has a lower absolute value and tends to be a constant value in the cross section of 

the channel. For a larger surface charge, the electric potential is higher and tends to have a minimum 

absolute value in the central of the channel. 

The dependence of the electric potential in the channel cross-section on the radius of the channel is 

one of the unique characteristics of the electrokinetic phenomena in the nanochannels.  In the 

conventional electrokinetic theory, the surface electric charge and the surface electric potential can be 

related by using the Poisson-Boltzmann equation via the following equation (Li, 2004): 

0
0

4
sinh( )

2 b

zen ze

k k T


 

 
(18) 

Therefore, in the microchannels, once the surface charge is specified, the surface electric potential 

is a fixed value. The maximum value of the electrical potential in the channel’s cross section is fixed, 

and will not change with the channel’s radius. Clearly, this is not the case in the small nanochannels, 

as shown in Figure 4.5a.  
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Figure  4-5 Electric potential at the cross section of the nanochannel.  Figure 5 (a) and 5 (b) 

illustrate the effects of channel radius and surface electric charge on the electric potential, 

respectively. 

(b) 

(a) 
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4.4.2 Ionic Mass Transfer  

One of the main differences of the electrokinetic flow through the micro- and nanochannels is 

concentrations of the positive and negative ions. As it was explained before, the concentrations of the 

co-ions and the counter-ions are substantially different in the EDL. In the smaller nanochannels, the 

EDL fields are significantly overlapped.  Therefore, the co-ions and the counter-ions do not have the 

same concentration in the nanochannels. All parameters affecting the electric double layer in the 

nanochannel influences the concentrations of the positive and negative ions. As an example, consider 

negatively charged walls of the nanochannels. With the flow, the ions transported through the 

nanochannel are mostly positive ions (counter ions). Increasing the value of the surface electric 

charge intensifies the negative electric potential in the channel (see Figures 4.4b and 4.5b), therefore, 

increases the difference between the transported positive and negative ions through the nanochannel. 

Alternatively, by decreasing the radius of the nanochannel, the ratio of the electric double layer 

thickness to the nanochannel cross sectional area increases; consequently, the electric double layer 

plays much more important roles in the nanochannel. The stronger the EDL field, the higher 

concentration of the counter-ions in the nanochannel.  Consequently, there is a larger difference 

between the transported counter-ions and the co-ions through the smaller nanochannel. Figure 4.6 

presents the concentrations of the positive and the negative ions at the centerline of the system. Figure 

4.7 shows the concentration of the positive ions (counter ions) at the cross section of the nanochannel 

(x=210 nm).  From these figures, it is clear that decreasing the radius or increasing the surface electric 

charge results in a larger (smaller) concentration of the positive (negative) ions in the nanochannel. 

This figure shows that the concentrations of the positive ions (counter-ions) at the exit of the 

nanochannel increases substantially. This is because of ion polarization and enrichment of the counter 

ions, and the phenomena was observed in a previous experimental study (Zangle, et al., 2010). Zangle 

et al. (Zangle, et al., 2010) showed experimentally the ion polarization and enrichment effect at the 

intersection of the microchannel and the nanochannel. There is a good qualitative agreement between 

our numerical simulation results and their experimental and numerical results.   
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Figure  4-6 The concentrations of positive and negative ions at the centerline of the reservoir 1 

(zone 1), nanochannel (zone 2), and reservoir 2 (zone 3). The effects of surface electric charge (a 

and c) and radius (b and d) on positive and negative ionic concentrations at the centerline of the 

system are shown from these figures. 
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Figure  4-7 Distribution of positive ion (counter ion) at the cross section of the 

nanochannels (x=210 nm).  The effects of surface electric charge (a) and radius (b) 

on the ionic concentration are clearly seen from these figures. 

(a) 

(b) 
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4.4.3 Flow Field  

Figures 4.8 and 4.9 depict the velocity field at the centerline and the cross section of the 

nanochannels, respectively. Zones 1, 2, and 3 represent reservoir 1, nanochannel, and reservoir 2, 

respectively. 

Figure 4.8a illustrates the impact of the radius of the nanochannel (cross-sectional area) on the 

flow field. From this figure, it is clear that by increasing the radius of the nanochannel (cross-

sectional area), the velocity is also increased (while the surface electric charge, the applied voltage 

and, the nanochannel length are kept constant). For the smaller nanochannels, due to the ionic 

polarization of the nanochannel and the positive ion concentration enrichment at the exit of the 

nanochannel, a local electric potential minimum exists near the nanochannel exit. This creates a local 

electroosmotic flow in the opposite direction and consequently reduces the net flow in the applied 

electric field direction. As the radius of the nanochannel increases, the local electric potential 

minimum is smaller; correspondingly, the net electrokinetic flow velocity is higher. The effect of the 

surface electric charge on the fluid flow is showed in Figure 4.8b. For the fixed nanochannel 

dimensions (length and radius) and a fixed applied voltage difference, increasing the value of the 

surface electric charge increases the velocity through the nanochannel. This may be understood as the 

net charge density in the nanochannel is increased with the increase of the surface charge. These 

conclusions are also obvious from Figure 4.9. This figure shows the velocity field at the cross section 

of the nanochannel. Figure 4.9a shows that increasing the surface electric charge results in increasing 

the velocity field through the nanochannel. From Figure 4.9b, one can see that increasing the radius of 

the nanochannel (cross-sectional area) also raises the velocity in the system.  
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Figure  4-8 The velocity field at the centerline of the reservoir 1 (zone 1), nanochannel (zone 2), 

and reservoir 2 (zone 3). The effects of radius (a) and surface electric charge (b) on the velocity 

at the centerline of the system are clearly seen from these figures. 

(a) 

  1   2   3 
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(b) 
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Figure  4-9 The velocity field at the cross-section of the nanochannel. This figure shows the 

effects of surface electric charge (a) and radius (b) on the velocity. 

(b) 

(a) 
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4.5 Concluding Remarks 

Conventional electrokinetic theories, based on the Boltzmann distribution and the Poisson-Boltzmann 

equation, are not valid in the small nanochannels. A more general model employing the Poisson-

Nernst-Plank equation coupled with the modified Navier-Stokes equation is used in this study to 

examine the electric potential, the ionic concentration, and the velocity field in the nanochannels. 

Unlike in the microchannels, the electric potential, the ionic concentration, and the liquid flow are 

strongly dependent on the nanochannel's cross section area (diameter), while the surface charge of the 

nanochannel wall is fixed. Higher values of the surface electric charge or the smaller nanochannels 

results in a significantly larger difference between the counter-ions and the co-ions in the 

nanochannel.  The velocity of the electrokinetic flow in the nanochannel is larger for the higher 

surface electric charge and the bigger nanochannels.    

  



 

 93 

Chapter 5 

Electrokinetic Transport through the Nanopores in Cell Membrane 

during Electroporation* 

5.1 Introduction   

The underlying concepts of the membrane permeabilization and the cell electroporation have been 

introduced in Chapter 3. As it was indicated before, one of the most important applications of the cell 

electroporation is cell transfection: nanopores created in the cell membrane are used as a pathway to 

insert biological molecules into the cell. Although the cell electroporation was reported in early 70’s 

(Neumann, et al., 1972),  the first successful reversible electroporation and DNA electrotransfer can 

trace its roots back to thirty years ago, in 1982 (Neumann, et al., 1982). Nowadays, the microscale 

cell electroporation has been demonstrated to have the best cell viability and transfection efficiency 

among all recognized gene transfection methods (Lee, et al., 2009). More and more experimental 

studies on the microfluidic cell electroporation have been reported in recent years (Movahed, et al., 

2011; Lee, et al., 2009; Wei, et al., 2011; Wang, et al., 2009; Zhan, et al., 2009; Fox, et al., 2006; 

Wang, et al., 2010). 

As it was explained before, presence of applied electric field near the cell membrane causes the 

extra transmembrane potential, TMP ( mU ), across the cellular membrane. If there is not any 

hydrophilic nanopore on the cell membrane, the TMP is linearly proportional to the cell radius and 

the external electric field ( eE ). For the spherical cells surrounded by sufficiently high conductive 

media, the steady state TMP can be evaluated as 1.5 cos( )m eU E a  , where eE  is the external 

electric field, a is the cell radius, and   is the polar angle measured with respect to the direction of 

the external field eE , see Figure 5.1. This equation is usually stated as the Schwan equation (Pauly, 

1959). If the medium is not highly conductive, the constant of the Schwan equation should be less 

than 1.5. Excessive theoretical studies have been done to investigate the transient response of the 

Schwan equation (Kotnik, et al., 1998), also the effects of different parameters such as alternating the 
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electric fields, the conductivity of the media, and the shape of the cell on the induced transmembrane 

potential (Marszalek, et al., 1990; Grosse, et al., 1992; Kotnik, et al., 1997; Kotnik, et al., 2000; 

Pucihar, et al., 2009). The sinusoidal dependency of TMP to the angular position on the cell 

membrane is proved experimentally (Gross, et al., 1986; Hibino, et al., 1991; Hibino, et al., 1993). 

TMP causes random hydrophobic pores in the cell membrane. These pores grow under the stress from 

TMP and become hydrophilic at the threshold value of 0.5 ~1mU V  (Fox, et al., 2006). Upon 

creating the first hydrophilic nanopore, the TMP remains constant in the vicinity of the created pores 

and further increase of the external electric field will no longer have any effects on the TMP. In this 

stage, further increase in the electric field has two effects: first, increasing the electroporated area (the 

area with hydrophilic nanopores) on the cell membrane; second, increasing the radius of the created 

nanopores (Escoffre, et al., 2007).  Under the controlled condition (restricted pulse duration and 

intensity), these nanopores are reversible and can act as a pathway for either inserting hydrophilic 

molecules such as membrane-impermeant molecules (Wang, et al., 2008), gene (Fei, et al., 2007), and 

DNA plasmid (Kim, et al., 2007) to the cell or releasing internal contents of the cell (Bao, et al., 2008; 

Agarwal, et al., 2009). By removing the electric pulse, the hydrophilic nanopores are present on the 

cell membrane from seconds to minutes (Movahed, et al., 2011). 

Many studies have been done on the creation of the nanopores. These studies have been reviewed 

extensively in Chapter 2. It was explained in section 2.2.2 that, because of the presence of the 

transmembrane potential, the electrokinetic effects may have considerable influence on the ion 

insertion and flow uptake of the cell. However, the current studies on the cell uptake do not consider 

the electrokinetic effects on the process. 

Here, it should be pointed out that the influence of the electrokinetics is present until the end of the 

electric pulse. As it was indicated before, by removing the electric pulse, the hydrophilic nanopores 

are still present on the cell membrane from seconds to several minutes. In this stage, diffusion may 

play the decisive role on ion insertion. Nevertheless, the effect of the electrokinetics is not negligible 

on the cell transfection. Because the nanometer dimensions of the created pores, the conventional 

electrokinetic theories such as Helmholtz Smoluchowski model are not applicable. In these small 

nanochannels, the electric field generated by the surface charge and the ionic distribution no longer 

obeys the Poisson-Boltzmann model (Li, 2004; Li, 2008). However, previous experimental studies 

show that the continuum assumption for liquid flow of aqueous solution is valid in the channels as 

small as 4nm (Zheng, et al., 2003).  
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In chapter 4, we studied the electric potential, the ion distribution, and the flow field in the 

nanochannels by solving the set of highly coupled partial differential equations including the Poisson 

equation, the Nernst-Planck equation, the modified Navier-Stokes equations, and the continuity 

equation. We have shown that unlike microchannels, the electric potential, the ionic concentration, 

and the velocity fields of the electroosmotic flow are strongly size-dependent in the nanochannels. In 

the present chapter, the ionic transfer and the flow uptake to the cell through the nanopores are 

investigated during the presence of the electric pulse. First, the mathematical model of the 

electrokinetic mass and momentum transfers in the nanopores is presented. Then, the numerical 





Ee 

 



              Front 

              Back 

θ 

 

3a 

a 

Figure 5-1 The schematic diagram of the circular cell exposed to the external electric field. The 

arrow indicates the direction of external electric field (Ee) and θ is the polar angle determines 

the location of nanopore on cell membrane. Radius of the cell is a. To find the electric potential 

around the cell, it is assumed that the cell is immersed in a spherical shell of extracellular fluid 

of thickness 2a. 
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method utilized in the present study is introduced. Finally, the effects of different parameters such as 

the location of the nanopores in the cell membrane, and the nanopore size on the ionic mass transfer 

and the liquid flow in the nanopores are examined. The effects of the electroosmosis, the 

electrophoresis, and the diffusion on the ionic mass transfer through the created nanopores are 

compared.   

5.2 Mathematical Modeling 

The appearance of external electric field in a vicinity of cell surface can create hydrophilic nanopores 

in the cell membrane. These nanopores can serve as a pathway for ions and fluid transport. The flow 

and the ion transfer in such a nanoscale channel can be analyzed by a combination of equations 

governing the nanopore creation, the electrostatics, the mass transfer, and the momentum transfer.  In 

the present study, we examine the mass and momentum transfer in one nanopore. Figure 5.2 depicts 

the computational domain. The pore is circular, and the length of the pore is equal to the cell 

membrane thickness. Taking advantages of symmetric boundary conditions, only a quarter of the 

domain is simulated. “Inside” and “outside” domains are considered in order to study the effects of 

interior and exterior of the cell on ionic mass transfer and the fluid flow through the nanopore. 

As explained before, after the creation of the first hydrophilic nanopore, the transmembrane 

potential (TMP) around the electroporated area becomes constant and further increasing of the 

external electric field does not increase the TMP. 

5.2.1 Electric Field around the Cell Membrane 

In the present study, the same parameters (cell type, size, computational domain, and external electric 

field) as those in DeBruin’s works (DeBruin, et al., 1999; DeBruin, et al., 1999) were used. A 

spherical cell of radius a  suspended in a circular conductive medium of radius 3a  and exposed to 

the electric field of strength eE  is considered. The intercellular and extracellular potential i and e

can be calculated by solving Laplace equation ( 2 0  ). The transmembrane potential (TMP) is 

applied at the cell membrane to relate the intercellular and the extracellular electric potentials. The 

transmembrane potential is the difference of intercellular and extracellular potentials at both sides of 

the cell membrane. At the non-electroporated areas, transmembrane potential ( mU ) can be calculated 

by (DeBruin, et al., 1999; DeBruin, et al., 1999):  
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( , , ) ( , , ) 1.5 cos( )m i e eU t a t a E a        (5.1) 

As explained before, after the creation of the first hydrophilic nanopore, the TMP becomes 

constant and further increasing of the external electric field does not amplify the TMP. The 

transmembrane potential at the front and backside of the cell are assumed to be 1V  and 1V , 

respectively.  As explained before, the same parameters as that used in DeBruin’s work have been 

adopted in the present study (DeBruin, et al., 1999; DeBruin, et al., 1999); and the critical value of 

TMP has been assumed to be 1V . However, the possible values for critical TMP are different from 

cell to cell and TMP threshold can be as low as 250 mV. Further information about the possible 

values of TMP can be found in Refs. (Teissie, et al., 1993; Kakorin, et al., 2003; Towhidi, et al., 

2008). According to the results of DeBruin’s works, if the applied external electric field is 40kV m , 

the electroporated areas are approximately between 45 45    and 135 135    . 

In order to consider the effect of applied external electric field ( eE ), the following boundary 

condition is applied at 3r a : 

cos( )eE r    (5.2) 

The results of this section are utilized to define the proper electrical boundary condition near the 

entrance and the exit of nanopores (more explanations are given below). 
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Figure  5-2 Schematic diagram of the computational domain. Parts (a) and (b) are 3-D and side-

view illustrations of computational domain. Arrows show the view of each figures of part (b). 

With the advantages of symmetric boundary conditions, only one quarter of physical domain is 

simulated. The pore is circular with a radius R. The length of the pore is equal to the cell 

membrane thickness (t).  h  is assumed to be ten times of the membrane thickness ( 10h t ).  In 

order to consider the effects of interior and exterior of the cell on flow field and ionic mass 

transfer through the nanopore, “inside” and “outside” sections are considered. The radius at 

these parts is oR . 
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5.2.2 Electric Field through the Nanopores 

The electric field in the computation domain can be described as follows. In the created nanopores, 

the electric double layer (EDL) thickness is not negligible in comparison with the nanochannel 

dimensions. Concentrations of co-ions and counter-ions are substantially different in the EDL. In the 

smaller nanochannels, the EDL fields are significantly overlapped.  Therefore, the co-ions and the 

counter-ions do not have the same concentration in the nanochannels. In such nanoscale channels, the 

electric field no longer obey the Poisson-Boltzmann model which is derived under the assumption of 

an infinitely large liquid and by using the boundary condition of zero net charge at positions of 

infinitely far away from the charge solid surface. Because these conditions are no longer valid inside 

the small nanochannel, the Poisson equation ( 0( ) ir i iF z c       ) must be solved in order to 

find the electric potential distribution in the nanochannel. This equation is a function of the local ionic 

concentrations. The electric field is the gradient of electric potential ( E   ). The electric field 

through the nanopores is influenced by the nanopores dimension, the ionic concentrations, and the 

surface charged of the nanopores. Here,  iz  and ic  are the valence and concentrations of ion type i , 

  is the electric potential, E  is the electric field, 0  and r  are the absolute and the relative 

permeability, and F is Faraday constant.  

As explained in the introduction, once the nanopores are created, the TMP no longer depends on 

the externally applied electric field and becomes constant and equal to the threshold value (1V ). At 

the front of the cell, this threshold value is assumed to be 1V , while at the back of the cell, the 

threshold TMP is set to 1V . TMP is the potential difference along the nanopore length direction. 

Inside the cell membrane, the electric potential is equal to rest potential ( 80rest mV   ); so, in the 

computational model the electric potential at boundaries IL and MJ become:  

MJ rest 
 (5.3.a) 

IL m restU   

 

(5.3.b) 

Here, it should again be mentioned that upon removing the electric pulse, TMP becomes zero and 

the electrokinetic effects vanish through the nanopores. However, at this stage the hydrophilic 

nanopores are still present on the cell membrane, and the diffusion may be the main means of the ion 

transportation through the nanopores. 
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The wall of the nanopore has electrostatic charge. In the conventional theory of the electrokinetics, 

the surface electric charge and the surface electric potential can be related by using the Poisson-

Boltzmann equation (Li, 2004). However, in the small nanochannels, this equation is not valid 

anymore and the surface electric charge must be utilized directly in order to set the electrical 

boundary condition at the walls of the nanopores. If the constant surface electric charge density ( s ) 

is considered at the walls of the nanopore, following relations can be used to set the electrical 

boundary conditions at the walls of the nanopores (boundary LM):  

0D E

 

(5.4.a) 

sn D    (5.4.b) 

At boundary AH and KB, proper electric potentials ( 1 and 2 ) should be applied in order to 

consider the effects of the external electric field ( eE ) on the electrokinetic effects in the nanopore. 

These electric potentials are obtained from the results of the model described in section (5.2.1).   

1AH 
 (5.5.a) 

2KB 
 (5.5.b) 

The symmetric condition is applied at boundaries OP, OQ, and AB. There is no surface electric 

charge at boundaries HI and JK. Following mathematical equations are used to model these two kinds 

of boundary conditions (symmetric and no surface electric charge): 

0n D   (5.6) 

5.2.3 Ionic Concentration Field  

The Nernst-Planck equation (Eq. (5.7)) is used to describe the mass transfer in the computation 

domain. 

( ) ( ) ( ) 0i i i i i iuc D c z c        (5.7) 

In this equation, the first term is the effect of the electroosmosis (convection) on the ionic mass 

transfer. The second and the third terms present the influences of the diffusion and the electrophoresis 

on the ionic mass transfer, respectively.   

The Nernst-Plank equation is the general form of Boltzmann distribution. By neglecting the effect 

of convection ( ( )iuc ) on ionic mass transfer, the Nernst-Plank equation is simplified to Boltzmann 

equation. However, the results of this chapter show that the influence of convection on the ionic mass 



 

 101 

transfer through the nanopores is not negligible compare with electrophoresis. Increase of the size of 

the nanochannels is also intensified the impact of convection on ionic mass transfer. Thus, Boltzmann 

distribution, and consequently Poisson-Boltzmann equation, may not be applicable in the 

nanochannels.    

At boundaries AH and KB, constant bulk ionic concentration ic  is utilized (Eq. (5.8)). Here, 

subscripts i  and e  indicate the inside and the outside of the cell.  

0,ic c

 

(5.8.a) 

0,ec c
 

(5.8.b) 

The walls of the nanopore (LM) and the cell membrane surface (IL and MJ) are assumed to be 

impermeable for mass transfer. The symmetric boundary conditions are implemented at other 

boundaries (OP, OQ, AB, HI, and JK). The following set of equations is usually employed for these 

two kinds of boundary conditions (impermeable and symmetric): 

0in N   (5.9) 

i i i i i i iN D c z c c u        (5.10) 

5.2.4 The Flow Field 

Modified Navier-Stokes equations (Eq. (5.12)) along with the continuity equation (Eq. (5.11)) should 

be solved in order to find the flow field in the system. Boundaries AH and KB are assumed as the 

open boundary (Eq. (5.13)). This type of boundary condition is usually used when the boundaries are 

connected to a large reservoir (for example, comparing the volume of the nanopore with the interior 

of the cell). The flow can either enter or exit from these boundaries. At the wall of the nanopore (LM) 

and the surface of the cell (IL and MJ), no-slip boundary condition is assumed (Eq. (5.14)).  We also 

utilized the symmetric boundary condition (Eqns. (5.15) and (5.16)) for other boundaries (OQ, OP, 

AB, HI, and JK).  

0u   (5.11) 

2( ( ) ) ( )i i
i

u
u u p u z Fc

t
  


       


 (5.12) 

0 , 0u p  
 

(5.13) 

0u   (5.14) 
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0n u   (5.15) 

[ ( ( ) )] 0Tt pI u u       (5.16) 

In Eqs. (5.1) - (5.16),   is the electrostatic potential and ic  is the concentration of ion species i ; 

p  and u   are the pressure and the velocity vector, respectively. The constants include permittivity  

( 0 r  ), medium density (  ), Faraday number ( F ), fluid viscosity ( ), valance number ( iz ), 

diffusion coefficient ( iD ), and mobility ( i ) of ion species i .  

5.3 Numerical Simulation 

The details of the numerical solution of the governing equations have been explained in section 4.3. 

In this study, the interior of the cell can be considered as a big reservoir for the nanopores. The 

electroporation time span is not sufficiently long to change the ionic concentration inside the cell and 

far from the exit of the nanopores. Thus, in the computational domain, the parameter h  is assumed to 

be sufficiently long ( 10h t  ) and the boundary KB is located far from the exit of the nanochannel. 

Therefore, assuming constant bulk ionic concentrations for this boundary is reasonable, and the 

steady state Navier-Stokes and Poisson-Nernst-Planck equations are solved for the system in this 

study. 

5.4 Results and Discussion 

Table 5.1 summarizes the quantitative information used in the simulations. We consider a mammalian 

cell with radius 50 μm and the membrane thickness of 5nm (DeBruin, et al., 1999); the liquid is a 

mixture of NaCl and KCl  aqueous solutions. Cell electroporation is usually conducted in vitro. We 

can modify the extracellular ionic concentrations to appropriate values; however, the assumed ions 

( Na
, K  , and Cl ) have predefined concentrations inside the cell. In the simulations, we consider 

the typical intercellular concentrations of these ions, see Table 5.1. The characteristic parameters of 

Na
, K  , and Cl  ions such as the electrophoretic mobility, and the cell characteristics such as the 

radius, the membrane thickness, the rest potential, and the surface electric charge can be found 

elsewhere (Li, 2004; Taheri-Araghi, 2010; Lodish, et al., 2003; Koneshan, et al., 1998; Weaver, et al., 

1996; Catacuzzeno, et al., 2008).  

In the following four sections, the numerical simulation results of the electric potential, the ionic 

concentration, the ionic flux, and the velocity field through the nanopore created on the cell 
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membrane will be discussed. In the simulations, we assume the nanopores with three different values 

of radius (5 nm, 8 nm, and 10 nm) located in the front and the back of the cell (relative to the external 

electric field direction). The radius of the inside and the outside zones (see Figure 5.2) is assumed as 

50 nm. Because the nanopores are created on the cell membrane, the TMP is fixed and equal to the 

threshold value (as explained before). In the present study, for the nanopores located at the front and 

the back of the cell, this threshold values are assumed to be +1V  and 1V , respectively.   

              Table  5-1 The values of the constants and parameters used in the simulations 

Parameter value/range Unit 

T ( relative permittivity) 80  - 

0 (absolute permittivity) 128.85 10  F/m 

 (liquid density) 1000  Kg/m
3 

s (surface electric charge density)
 

0.0001  C/m
2
 

T (temperature) 300  K 

gR  (universal gas constant) 8.314  .J mol K  

,o iC ( Na
) (Lodish, et al., 2003) 12 mM  

,o iC ( K  ) (Lodish, et al., 2003) 139 mM  

,o iC  ( Cl )(Lodish, et al., 2003) 4 mM  

,o eC ( Na
) 50 mM  

,o eC ( K  ) 50 mM  

,o eC ( Cl ) 100 mM  

F(Faraday Constant) 96 485.3415 A s mol  

a (cell radius) (DeBruin, et al., 1999) 50 m  

  t (cell thickness) (DeBruin, et al., 1999) 5 nm  

R(radius of nanopore) 5, 8, and 10 nm  

Ro (radius outside of nanopore) 50 nm  

eE (external electric field) 40 kV m  

D ( Na
) (Koneshan, et al., 1998) 1.28×10

   9
 

2m s
 

D ( K  )(Koneshan, et al., 1998) 1.83×10
   9

 
2m s

 

D ( Cl )(Koneshan, et al., 1998) 1.77×10
   9

 2m s  

i  ( )i gD R T
 

- 

TMP(front of the cell) 

When nanopore is formed 
1  V  

TMP(back of the cell) 

When nanopore is formed 
1  V  
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5.4.1 Electric Potential through the nanopores 

Figure 5.3 show the electric potential distribution in the computational domain and along the center 

line of the nanopores (line AB). Here, a = 5nm, 2
0 0.0001C m    and the nanopore is located at the 

back side of the cell (TMP= 1 V). In Figure 5.3, zones 1, 2, and 3 represent “outside the cell”, 

“nanopore”, and “inside the cell”, respectively. In order to consider the effects of the external electric 

field (
eE ) on the flow field and the ionic concentrations through the nanopores, the electric potentials 

at x=0 nm (boundary AH) and x= 105 nm (boundary KB) are determined by solving equations (5.1) ~ 

(5.4). Table 5.3 presents the quantitative values of these electric potentials.  

 

 

 

Figure  5-3 The electric potential distribution in the nanopores along the centerline of the 

nanopores. Zones 1, 2, and 3 represents outside the cell, nanopore, and inside the cell, 

respectively.  The radius of the nanopore is 5 nm, 2
0 0.0001C m   , and the nanopore is 

located at the back side of the cell (TMP= 1 V). 

1 2 3 



 

 105 

The electric potential has sharp variation in zone 2 (through the cell membrane); this generates a 

considerably high electric field through the nanopores. Because of the difference in ionic 

concentrations of positive and negative ions, electric potential does not vary linearly in the nanopores. 

The substantially high electric field through the nanopores intensifies the impacts of electrokinetics 

on liquid flow and ionic mass transfer. This will be explained in the following sections.  

5.4.2 Flow Field 

Figure 5.4 depicts the velocity vectors of the flow field in the system. Here, the figure is captured 

from side-view (see Figure 5.2), 2
0 0.0001C m   , radius of the nanopores are 5 nm and 10 nm, 

and the nanopores are located at the backside of the cell membrane.   

 

Figure 5-4 The side view of the velocity field and the electric field in the computation domain. 

The vectors represent the flow field, the color bar shows the scale for the electric potential. The 

radius of the nanopores are 5 nm (a) and 10 nm (b), respectively. 2
0 0.0001C m   , and the 

nanopores are located at the backside of the cell membrane. 

(a) 

(b) 



 

 106 

Figure 5.5 shows the effects of the nanopores dimension and angular orientation on the velocity 

field. Tables 5.2 and 5.3 also present the quantitative values of the average velocity. In these figures 

and tables, the velocity field in the axial direction of the nanopores (x-direction) is averaged over the 

cross section of the nanopore. Positive (negative) sign of the averaged velocities means that the 

velocity field is from the outside (inside) to the inside (outside) of the cell membrane. Figure 5.6 

shows that on each side of the cell, the angular orientation of the nanopores has small influence on the 

flow field. This can be explained as the TMP on the electroporated areas has the fixed values; only 

the electric potential at boundary AH slightly changes by angular orientation. The values of these 

electric potentials are presented in Table 5.3.  

Figure 5.5 also shows that by increasing the dimensions of the nanopores, the average velocity in 

x-direction is also increased. To simplify the analysis of the velocity field in the nanopores, let us 

consider a one-dimensional slit nanochannel of height h. In the Appendix B of this manuscript, it has 

been shown that the averaged electroosmotic velocity at the center of such the slit nanochannel can be 

approximated as: 

2 ( )EOF x i iU h FE z c   (5.17) 

In this equation, 
iz  and 

ic are the valance and the concentration of ions type - i , respectively. F  is 

Faraday constant, 
eE  is external electric field, and h  is the height of the nanochannel. As shown in 

Eq. (5.17), in addition to the applied electric field, the averaged electroosmotic velocity in the 

nanochannels is a function of the ionic concentrations of the co-ions and the counter-ions 

(
i i Na k cl

z c c c c     ) and the height of the nanochannel ( h ). By increasing the height of the 

nanochannel, the averaged axial velocity should also increase. The obtained numerical results also 

show this effect. Figure 5.6b (and also the results of Table 5.2) shows that by increasing the radius of 

the nanopores, the averaged axial velocity is also increased. 

 Table 5-2 Effects of nanopore radius on averaged velocity 

 Radius (nm) u (m/s) Na
+  

(mol/m
3
) K

+  
(mol/m

3
) Cl


(mol/m

3
) 

F
ro

n
t 5 -0.001693 0.054176 0.466591 1.266189 

8 -0.131462 0.180661 1.483154 2.06E+00 

10 -0.224252 0.242076 1.891859 2.632984 

B
a

ck
 5 0.178161 0.637799 0.529499 0.017929 

8 0.573485 1.033349 0.745952 0.059999 

10 0.971606 1.331049 0.831815 0.080416 
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.  

 

 

Figure 5-5 Averaged velocities at the cross section of the nanopores. In parts (a) and (b), radius 

and angle are 10 nm and 45˚, respectively. Here, angle is defined as θ and (π-θ) in front and 

backside of the cell membrane, correspondingly. It is clear that on each side of the cell, angular 

orientation of the nanopores on cell membrane has negligible effects on the flow field (5-5.a). 

Increasing the nanopore radius will result in escalation in averaged velocity (5-5.b).   
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Table 5-3 Effects of angular orientation of nanopores on flow field and ionic concentrations. 

Angle is defined as θ and (π-θ) in front and backside of the cell membrane, respectively. 

(r=10nm) 

* Electric potential at boundary AH 

** Electric potential at boundary KB 

 

The other parameters that affect the velocity field are the ionic concentrations of the positive and 

the negative ions (
Na k cl

c c c    ). As it can be seen from the results of Tables 5.2 and 5.3, 

(
Na k cl

c c c    ) has greater absolute values in the nanopores located at the backside rather than the 

front of the cell. This is why the absolute values of average velocity in the nanopores at the back of 

the cell are larger than the nanopores in the front of the cell.  

5.4.3 Ionic Mass Transfer  

Unlike the microchannels, the concentrations of the positive and the negative ions are not the same in 

the smaller nanochannels due to the overlapped EDL effect. The positive ions migrate in the direction 

of the electric field (e.g., from the positive to the negative electrodes). Negative ions migrate in the 

opposite direction of the electric field. For simplicity, in the Appendix B, it is shown that the ratio of 

the electroosmosis and the electrophoresis effects on the ionic flux through the slit nanochannels can 

be approximately estimated by the following equation.  

,

eo

ep i m i

N u

N z F 



 (5.18) 

Clearly, in addition to the parameters in the numerator of Eq. (5.18), all parameters influencing the 

velocity will alter the ratio of the convective (electroosmotic) versus the electrophoretic mass transfer 

rates. Because of the strong electric field through the created nanopores during the electroporation  

 Angle(degree) 1  (V) 
* 

2  (V)
** 

u (m/s) Na
+  

(mol/m
3
) K

+  
(mol/m

3
) Cl

 
(mol/m

3
) 

F
ro

n
t 

0 -1.0835 -0.08 -0.21286 0.242095 1.892151 2.673728 

15 -1.08335 -0.08 -0.21438 0.242091 1.892117 2.669082 

30 -1.0829 -0.08 -0.21828 0.242087 1.891946 2.657606 

45 -1.0826 -0.08 -0.22425 0.242076 1.891859 2.632984 

B
a

ck
 

0 0.9237 -0.08 0.979437 1.344391 0.839993 0.080418 

15 0.9235 -0.08 0.977901 1.341965 0.838466 0.080408 

30 0.9231 -0.08 0.977901 1.341965 0.838466 0.080408 

45 0.92275 -0.08 0.971606 1.331049 0.831815 0.080416 
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( 7
2 10 V m ), the electrokinetics (the electroosmosis and the electrophoresis) must have great 

influences on the ionic mass transfer rate. The diffusive mass transfer rate is negligible in comparison 

with the electrokinetic ones. In the present study, in order to compare the effects of the 

electroosmotic, the electrophoretic, and the diffusive mass transfer rates, we normalized their absolute 

values and studied the effects of the nanopore radius and its angular orientation on normalized 

convective, electrophoretic, and diffusive mass transfer rates. These normalized mass transfer rates 

are defined as: 

 

                           Normalized electrophoretic mass transfer rate: ,

,

i m i i

i i i i m i i

z Fc

c u D c z Fc

 

 



   
 

                           

                                Normalized diffusive mass transfer rate: 

,

i i

i i i i m i i

D c

c u D c z Fc 



   
 

 

Normalized convective (electroosmotic) mass transfer rate: 

,

i

i i i i m i i

c u

c u D c z Fc    
 

 

Figure 5.6 illustrates the effects of the nanopore’s radius and their angular orientation on the 

averaged ionic concentration through the nanopores. Tables 5.2 and 5.3 also show this information. 

From this figure, it is clear that increasing the nanopore radius will intensify the averaged ionic 

concentration through the nanopores. However, the angular orientation of the nanopores has less 

impact on the averaged ionic concentration.  
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Figure 5-6 Averaged ionic concentrations at the cross section of the nanopores. In parts (a) and 

(b), radius and angle are 10 nm and 45˚, respectively.  Here, angle is defined as θ and (π-θ) in 

front and backside of the cell membrane, respectively. It is clear that on each side of the cell, 

angular orientation of the nanopores on cell membrane has negligible effects on the ionic 

concentration (5-6.a). Increasing the nanopore radius will result in increase in averaged ionic 

concentration (5-6.b).   
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For different values of the nanopore radius and angular position, Tables 5.4 and 5.5 present the 

convective (electroosmotic), the electrophoretic, and the diffusive mass transfer rates. Figure 5.7 also 

illustrates the normalized convective (electroosmotic), electrophoretic, and diffusive mass transfer 

rates. From this figure, one can conclude that: First, the effect of the diffusive ionic mass transfer rate 

is negligible in comparison with the electrokinetic based mass transfer rates. Second, increasing the 

size of the nanopores will intensify influence of the convection (electroosmosis) on the ionic mass 

transfer rates in comparison with the electrophoretic mass transfer rate. This can be explained by 

considering the fact that increasing the nanopores radius will increase the electroosmotic flow 

velocity through the nanopores. Finally, it is clear that the ionic mass transfer rates are different at the 

two sides of the cell membrane. However, on a given side of the cell membrane, the angular 

orientation of the nanopores has negligible effects on the mass transfer rates through the nanopores. 

Table 5-4 Effects of nanopore radius on ionic mass transfer rates (IMTR) through the nanopores 

(Angle=45˚) 

 
Radius 

(nm) 

Diffusive IMTR (mol/s) Electrophoretic IMTR (mol/s) Convective IMTR (mol/s) 

Na
+ 

K
+ 

Cl
 Na

+ 
K

+ 
Cl

 Na
+ 

K
+ 

Cl
 

F
ro

n
t 5 1.94E-11 3.08E-10 -6.55E-10 8.46E-10 7.37E-09 -2.74E-08 -1.86E-13 -2.26E-12 -4.48E-12 

8 1.15E-10 1.81E-09 -1.49E-09 3.29E-09 2.77E-08 -5.18E-08 -2.34E-10 -1.85E-09 -2.66E-09 

10 2.17E-10 3.01E-09 -3.23E-09 4.64E-09 3.73E-08 -6.91E-08 -6.66E-10 -5.05E-09 -7.31E-09 

B
a

ck
 5 -2.36E-10 -3.27E-10 8.98E-12 -9.97E-09 -8.37E-09 3.87E-10 6.88E-10 5.44E-10 1.94E-11 

8 -5.38E-10 -6.65E-10 5.31E-11 -1.88E-08 -1.39E-08 1.51E-09 6.04E-09 4.18E-09 3.51E-10 

10 -1.18E-09 -1.25E-09 1.00E-10 -2.52E-08 -1.62E-08 2.13E-09 1.68E-08 1.02E-08 1.00E-09 

 

Table 5-5 Effects of nanopore angular orientation on ionic mass transfer rates through the 

nanopores. Angle is defined as θ and (π-θ) in front and backside of the cell membrane, 

respectively (R=10 nm). 

 
Angle  

(degree) 

Diffusive IMTR (mol/s) Electrophoretic IMTR (mol/s) Convective IMTR (mol/s) 

Na
+ 

K
+ 

Cl
 Na

+ 
K

+ 
Cl

 Na
+ 

K
+ 

Cl
 

F
ro

n
t 

0 2.17E-10 3.01E-09 -3.28E-09 4.64E-09 3.73E-08 -7.02E-08 -6.30E-10 -4.79E-09 -7.02E-09 

15 2.17E-10 3.01E-09 -3.28E-09 4.64E-09 3.73E-08 -7.01E-08 -6.35E-10 -4.82E-09 -7.06E-09 

30 2.17E-10 3.01E-09 -3.26E-09 4.64E-09 3.73E-08 -6.98E-08 -6.47E-10 -4.91E-09 -7.17E-09 

45 2.17E-10 3.01E-09 -3.23E-09 4.64E-09 3.73E-08 -6.91E-08 -6.66E-10 -5.05E-09 -7.31E-09 

B
a

ck
 

0 -1.19E-09 -1.26E-09 1.00E-10 -2.55E-08 -1.63E-08 2.13E-09 1.71E-08 1.03E-08 1.01E-09 

15 -1.19E-09 -1.26E-09 1.00E-10 -2.54E-08 -1.63E-08 2.13E-09 1.70E-08 1.03E-08 1.01E-09 

30 -1.19E-09 -1.26E-09 1.00E-10 -2.54E-08 -1.63E-08 2.13E-09 1.70E-08 1.03E-08 1.01E-09 

45 -1.18E-09 -1.25E-09 1.00E-10 -2.52E-08 -1.62E-08 2.13E-09 1.68E-08 1.02E-08 1.00E-09 
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Figure 5-7 Effects of nanopore radius and its angular orientation on ionic mass transfer rates 

through the nanopores. The nanopores are located at the backside of the cell membrane. In 

parts (a) and (b), radius and angle are 10 nm and 45˚, respectively. Angle is defined as θ and (π-

θ) in front and backside of the cell membrane, respectively.   
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For different values of nanopore radii (5 nm and 10 nm), Figures 5.8 and 5.9 depict the ionic 

concentration of Na and Cl  at the cross-section surface midway of the nanopores. The surface 

electric charge is 2
0 0.0001C m   . These figures show that more positive ions are transported 

through the nanopores located at the back of the cell; more negative ions are transported through the 

nanopores at the front of the cell.  Increasing the radius of the nanopores also intensifies ionic mass 

transfer.   

 

Figure 5-8 . Ionic concentration of the Na
 ions at the cross-section midway of the nanopores. 

The surface electric charge is 2
0 0.0001C m   . (a) R=10 nm, back of the cell, (b) R=10 nm, 

front of the cell (c) R=5 nm, back of the cell. 

  (b) (c) 

(a) 
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Figure 5-9 Ionic concentration of the Cl   ions at the cross-section surface in the center of the 

nanopores. The surface electric charge is 2
0 0.0001C m   . (a) R=10 nm, back of the cell, (b) 

R=10 nm, front of the cell (c) R=5 nm, front of the cell. 

To finish the discussion part, I would like to qualitatively compare the findings of this study with 

the results of Pucihar and colleagues (Pucihar, et al., 2009). In that paper, the transport of PI dye into 

the Chinese hamster ovary cells was monitored during and after the electric pulse. Their results show 

that during the electric pulse, the ions are mainly electrophoretically transported; however, after 

removing the electric pulse, the transport becomes much slower and diffusion is the main means of 

the ionic transportation. In addition, during the electric pulse, the ionic transport becomes detectable 

(a) 

 (b) (c) 
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after 60 µs.  Here, it should be mentioned that to perform the reversible electroporation and the cell 

transfection in the microfluidic based electroporative devices, the electric pulses usually last from few 

to tens of millisecond (for example see Table 2.3); thus, the lag between the start of applying electric 

pulse and the start of detectable transportation may not be significant compare with these millisecond 

pulses. In addition, the results of the current study reveal the importance of the electrokinetics 

(electrophoresis and electroosmosis) on the ionic transport during the cell electroporation. This may 

explain that how the electrophoretic based electroporation devices hasten transport of larger 

molecules into the cell. After applying the electric pulse, the presence of subcritical electric field near 

the cell can enhance delivery rate of the big molecules (Ionescu-Zanetti, et al., 2008). After removing 

the electric pulse, diffusive transport proceeds until resealing all the nanopores that takes from 

seconds to minutes. Although during the electric pulse diffusion might proceed at a thousand times 

lower rate than the electrophoresis and the electroosmosis, but it proceeds a thousand times longer. 

Thus, the effect of the diffusion may not be negligible on the cell transfection, though its effect is 

negligible during the few milliseconds of the electroporation while the electric pulse is present. 

5.4.4 Conclusion  

In this chapter, ionic mass transfer and fluid flow through the created nanopores in the cell membrane 

during the electroporation and in the presence of the electric pulse were studied. Previous studies only 

considered the effect of the diffusion on the cell transfection. Because of the transmembrane 

potential, the electrokinetic effects must consider on the ionic mass transfer through the nanopores. 

Because of the nanoscale dimensions of the created pores, the conventional electrokinetic theories 

such as the Poisson-Boltzmann distribution and the Helmholtz-Smoluchowski equation for the 

electroosmotic flow velocity could not be used. Therefore, in the present study, the Poisson-Nernst-

Planck equations along with the modified Navier-Stokes equations were simulated directly in order to 

achieve the electric potential, the fluid flow, and the ionic concentration in the nanopores. The results 

of this paper involve some interesting findings. During the electroporation and in the presence of the 

electric pulse, the electrokinetic effects have great influences on the ionic mass transfer through the 

nanopores; the diffusive mass transfer rate has negligible effect on the ionic mass transfer compare 

with the electroosmosis and the electrophoresis ones.  Increasing the nanopore radius also intensifies 

the effect of the convection (electroosmosis) on the ionic mass transfer rate. It is shown that 

increasing the radius of the nanopores will intensify the flow field and the ionic concentrations 

through the nanopores. The ionic concentrations, the flow field, and the electric potential are different 
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through the nanopores located at the front and backside of the cell membrane. However, for the 

nanopores located at each side of the cell membrane, the angular positions of the nanopores have 

insignificant influences on the flow field and the ionic mass transfers. Here, it should be pointed up 

that the electrophoretic and the electroosmotic transport only proceeds for as long as the electric pulse 

is present, which are the first milliseconds of the electroporation. After removing the electric pulse, 

ion diffusive transport proceeds until resealing all the nanopores that takes from seconds to minutes.  

Although during the electric pulse the ion transfer by diffusion is at a much lower rate than the ion 

transfer rate associated with the electrophoresis and the electroosmosis, the diffusion takes place over 

a much longer period of time, thus, the effect of diffusion on the cell transfection may not be 

negligible. 

 

      

  



 

 117 

Chapter 6 

Electrokinetic Motion of a Rectangular Nanoparticle in a 

Nanochannel*  

6.1 Introduction 

With the advancement of nano-fabrication technology, nano-fluidic devices involving nano-

particles, such as for detecting aerosol nanoparticles and manipulating QDot and DNA, are highly 

desirable (Mijatovic, et al., 2005; Huh, et al., 2007; Bonthuis, et al., 2008; Tegenfeldt, et al., 2004; 

Reisner, et al., 2010; Li, et al., 2003; Yuan, et al., 2007). Another important application of 

transporting the nanoparticles in nanochannels is the electroporation where the nanoparticles (e.g., 

DNA and Qdots) are transported via nanopores of the cell membrane into the cell (Movahed, et al., 

2011; Fox, et al., 2006; Lee, et al., 2009). Particle motion in microchannels under applied electric 

field has been studied extensively (Ye, et al., 2005; Ye, et al., 2002; Ye, et al., 2004; Ye, et al., 2004; 

Kang, et al., 2009; Xuan, et al., 2005; Daghighi, et al., 2010; Wu, et al., 2009; Wu, et al., 2009). 

However, the electrokinetic motion of the nano-particles in the nanochannels has not been well 

studied.   

As it was explained in Chapter 4, by decreasing the size of the channels to the nanoscale, some 

conventional theories of the electrokinetics lose their applicability. This is because of the relatively 

thick electric double layers (EDL) that may overlap in the small nanochannels. In the microscale 

channels, EDL is usually much smaller than the channel’s lateral dimension and hence are not 

overlapped in the channel. Therefore, the electric potential of the EDL is equal to zero in the center 

region of the channel; consequently, the bulk ionic concentrations of positive and negative ions are 

equal in the center region of the channel (outside EDL). These two statements (zero electric potential 

and zero net electric charge outside of EDL or in the center of the channels) are the underlying 

assumptions for the conventional electrokinetic theories and the governing equations of the 

electrokinetics, such as the Boltzmann distribution of the ions, the Poisson-Boltzmann equation for 

the electric potential at the cross section of microchannels, and the Helmholtz-Smoluchowski slip 

                                                      
*
 A version of this Chapter has been published in Journal of Colloid and Interface Science as: “Saeid Movahed, 

Dongqing Li, ‘Electrokinetic motion of a rectangular nanoparticle in a nanochannel’ Journal of Nanoparticle 

Research, Springer, 2012, Vol. 14, Issue 8, pp.: 1-15”. The licence agreement of reprinting this article in the 

current dissertation has been presented in Permissions section (License Number: 3001441230540). 
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velocity for modelling the electroosmotic flow. In the small nanochannels (from a few nanometers to 

about 100 nanometers), the EDL thickness becomes larger or at least comparable with the channel 

lateral dimensions. Hence, the EDL from different channel walls may overlap, the electric potential is 

not zero at the center of the nanochannel, and the bulk ionic concentrations of co- and counter ions 

are not equal in the nanochannels.  

There are a few papers reporting studies of the electrokinetic motion of the nanoparticles in 

nanopores and the nanochannels. Lee and colleagues studied diffusiophoretic motion of a charged 

spherical particle in the two-dimensional nanopore (Lee, et al., 2010). In that article, the walls of the 

nanopore are electrically neutral and the nanoparticle’s motion is determined by the ionic 

concentration gradient in the nanopore. Ai and Qian conducted a two-dimensional numerical study on 

the translocation of a DNA-shaped nanoparticle through the nanopores (Ai, et al., 2011). They 

showed how externally applied electric field, the EDL thickness, and the initial orientation of the 

nanoparticle affects the movement of the nanoparticle through the nanopore. Their results show that 

thick EDL can trap the particle at the entrance of the nanopore. However, the nanoparticles will 

always pass the nanopore if the externally applied electric field is sufficiently high. Qian et al. studied 

the axial symmetric electrophoretic motion of the heterogeneous nanoparticle in the nanochannel 

(Qian, et al., 2008a; Qian, et al., 2008b). They examined the flow field and the ionic concentrations 

around the nanoparticle. However, they used an incorrect boundary condition 0in N  for the non-

permeating surface of the nanoparticle. The correct boundary condition for the non-permeating 

surface of the particle moving at a velocity V should be ( )i in N n cV  (Keh, et al., 1985).  The 

right-hand side of this equation describes the convective mass transfer rate on the impermeable 

surface of the particle due to the particle movement. This difference in the boundary conditions can 

significantly influence the concentration field, the flow field, and the particle’s velocity in the 

nanochannel, and will be discussed in the later section of this chapter.  

Furthermore, the previous studies (Qian, et al., 2008a; Qian, et al., 2008b) considered effectively 

the infinite long nanochannel and did not consider the end effects. For any practical applications, the 

nanochannels have a finite length, comparable with the nanochannel diameter; and the two ends of 

the nanochannel must connect to reservoirs or microchannels. The ends of the nanochannels have 

major influences on the electrokinetic transport phenomena and processes. Because of the overlap of 

EDL in the small nanochannels, the co-ions and the counter ions do not have the same concentration 

in the nanochannel. Concentration polarization occurs at the entrance and the exit of the nanochannel 
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to the reservoirs (Zangle, et al., 2010). These affect the electric potential, the flow field, and the ionic 

concentration in the nanochannels, and consequently the electrophoretic and hydrodynamic forces 

exerting on the nanoparticle. Thus, in order to have an accurate analysis of the electrokinetic effects 

in the nanochannels, the effects of the reservoirs at the two ends of the nanochannel (for example, the 

microchannels connecting the nanochannel) should be considered in the model and simulation. The 

present research aims to investigate the three-dimensional electrokinetic motion of the nanoparticles 

in the nanochannels with the consideration of the end reservoir effect. The effects of channel 

dimension, nanoparticle dimension, bulk ionic concentration, and surface electric charge of the 

nanochannel walls on the particle motion will be examined. Because crystallized quantum dots 

usually have cubic shape (Chattopadhyay, et al., 2011; Oron, et al., 2009), and the nanopores in the 

cell membrane can be approximated as the nanochannels with a circular cross-section, the three-

dimensional rectangular nanoparticle in the circular nanochannel will be considered in this study.  In 

the following sections, a physical description and a mathematical modeling of the system in the 

current study will be provided first. After outlining the numerical method, the numerical simulation 

results are presented and discussed. Effects of the Brownian force, the surface electric charge of the 

nanochannel wall, and the cross sectional area of the nanochannel on the nanoparticle motion are 

described.  

6.2 Modelling 

6.2.1 Physical Modeling 

Figure 6.1 illustrates the nanochannel system of this study. The nanochannel has a circular cross 

sectional area of radius R  and length L  and connects two reservoirs. The nanochannel and the 

reservoirs are filled with an aqueous solution (e.g., NaCl ).  The cubic nanoparticle  

( a a a  ) is considered at the center of the nanochannel. Application of electric potential at the two 

ends of the nanochannel causes liquid flow, ionic mass transfer, and motion of the nanoparticle 

through the nanochannel (the electrokinetic effects). The dash lines in Figure 5.1 outline the 

computational domain of the present study. The effects of the two reservoirs at the ends of the 

nanochannel should be considered in the simulations; therefore, two sections ABKL and EFGH are 

included in the computational domain. CDIJ and MNPO represent the nanochannel and the 

nanoparticle in the computational domain, respectively. The details of the governing equations and 

the boundary conditions will be explained in the following sections. 
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In the governing equations presented in the following sections, 

 

is the electric potential,

 

E  is the 

electric field, D is the electrical displacement,
 
 ic , iz , and iN are the concentration, valance, and flux 

of ion species i , respectively. p , u , and pV  are pressure, velocity vector, and translational velocity 

of the nanoparticle, correspondingly. pm is mass of the nanoparticle. t  represents time. w  and p
 

are the surface electric charge densities on the nanochannel wall and on the surface of the 

nanoparticle, respectively.
 
The constants includes permittivity (ε0εr), medium density (ρ), the Faraday 

number (F), fluid viscosity (η) and valance number (zi), diffusion coefficient (Di), and mobility (μi) of 

ion species i. The values of these constants and parameters are listed in Table 6.1. 

 

Figure  6-1 Schematic diagram of the nanochannel-nanoparticle system in this study. The dash 

line encloses the computational domain. Two reservoirs are connected to the circular 

nanochannel of length L and radius R. Two electrodes located in the reservoirs apply electric 

potential to the ends of the nanochannel. The nanochannel wall is negatively charged. A 

negatively charged cubic particle is initially positioned at the center of the nanochannel. 
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6.2.2 Mathematical Modeling 

In order to model the electrokinetic motion of the nanoparticle in the nanochannel, it is necessary to 

find the forces exerted on the particle. The dominant forces acting on the nanoparticle are the 

electrophoretic and the hydrodynamic forces. Although the Brownian force can become important for 

such a nanoscale particle (Morgan, et al., 2002); it will be shown later in this article that the influence 

of this force is negligible in comparison with the electrophoretic force. After finding the forces, the 

Newton second law can be utilized to determine the velocity of the nanoparticle.  

The continuum approach will be used in developing the model. Existing experimental studies 

show that the continuum assumption for aqueous solutions is valid up to 4 nm (Zheng, et al., 2003). It 

was explained in chapter 4 that the following set of highly coupled partial differential equations 

subjected to the proper boundary conditions are employed to describe the electric potential, the ionic 

concentration, and the flow field in the nanochannels (Movahed, et al., 2011 ): 

0( )r i i
i

F z c       (6.1) 

E  

 

(6.2) 

0i
i

c
N

t


 

  
(6.3) 

i i i i i i iN uc D c z c       (6.4) 

2 ( )i i
i

u
p u z Fc

t
  


     


 (6.5) 

0u   (6.6) 

Eq. (6.1) is the Poisson equation. This equation should be solved in order to obtain the electric 

potential distribution in the computational domain. Term i i iF z c  on the right hand side of this 

equations shows that how the difference of co- and counter ions influence the electric potential inside 

the domain. The electric field is the gradient of the electric potential, as indicated by Eq. (6.2). Eq. 

(6.3) is the Nernst-Plank equation where the definition of ionic flux is given by Eq. (6.4). The first 

 ( iuc ), second ( i iD c ), and third ( i i iz c  ) terms at the right hand side of Eq. (6.4) represent how 

the flow field (the electroosmosis effect), diffusion, and electric field (the electrophoresis effect) 

contribute to the ionic mass transfer, respectively.  The ionic concentration of each species can be 

found by solving these two equations. Eqns. (6.5) and (6.6) are the Navier-Stokes and the continuity 
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equations, respectively, which describe the velocity field and the pressure gradient in the 

computational domain. Proper boundary conditions for these equations are described as follows: 

6.2.3 Electric potential:  

Uniform surface electric charge  is considered for the boundaries BC, CD, DE, JK, IJ, and HI that 

represent the walls of the channels (Eq. (6.8.a)), and the boundary MNPO that stands for the surface 

of the nanoparticle (Eq. (6.8.b)). Zero surface electric charge (Eq. (6.8.c)) is assumed at the 

boundaries AB, KL, EF, and GH. The applied electric potential at boundaries LA and FG are 1  (Eq. 

(6.9.a)) and 2  (Eq. (6.9.b)), respectively.  In the following equations, E  and D  are the external 

electric field and electrical displacement, respectively. n  is the normal vector directed from the 

surface to the fluid.    

0D E

 

(6.7) 

( ) wn D r   (6.8.a) 

( ) pn D r 
 

(6.8.b) 

( ) 0n D r 
 

(6.8.c) 

1LA 
 (6.9.a) 

2FG 
 (6.9.b) 

6.2.4 Mass transfer:  

The walls of the solid nanochannels are impermeable for mass transfer (BC, CD, DE, JK, IJ, and HI). 

The symmetric boundary condition is assumed at the boundaries AB, KL, EF, and GH.  Following 

mathematical equations represent these two kinds of boundary conditions (symmetric and 

impermeable). The following equations represent that the normal ionic flux must be zero at these 

boundaries: 

0in N   (6.10.a) 

i i i i i i iN D c z c c u        (6.10.b) 

Constant bulk ionic concentration ( 0c ) is assumed at the boundaries LA and FG (two reservoirs): 

0i
c c  (6.11) 
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The surface of the nanoparticle (boundary MNPO) is also impermeable for mass transfer. The 

mathematical condition representing the impermeable surface of the nanoparticle is given by (Keh, et 

al., 1985): 

( )in N n cU  (6.12) 

 where n  is a unit vector normal to the surface of the nanoparticle. This equation means no molecules 

can penetrate into the particle. In this equation, U is the velocity of the liquid-particle interface. When 

the relative velocity of the ions and the surface is zero, ions do not enter to or exit from this boundary. 

In this study, for simplicity, the nanoparticle is considered to have a translational velocity pV  only 

and no rotation. Therefore, Eq. (6.12) can be re-written as: 

( )i pn N n cV  (6.13) 

The open boundary condition is assumed for the surfaces LA and FG (Eq. (6.14)); flow can both 

enter to and exit from the open boundary. For this type of boundary condition, it is assumed that there 

is not any applied pressure gradient and viscous stress at these boundaries. This boundary condition is 

employed to model the connection of the nanochannel with the reservoirs.   No slip velocity (Eq. 

(6.15)) is applied at the walls of the nanochannel and the reservoirs, boundaries BC, CD, DE, JK, IJ, 

and HI. The computational domain boundaries AB, KL, EF, and GH are treated as the symmetric 

boundary condition (Eqns. (6.16) and (6.17)).  In Eq. 6.17, I is the identity tensor.       

( ( ( ) )) 0 , 0Tu u n p       (6.14) 

0u 
 

(6.15) 

0n u 
 

(6.16) 

[ ( ( ) )] 0Tt pI u u     
 

(6.17) 

No slip boundary condition is also assumed for the surface of the nanoparticle (boundary MNOP). 

At the solid-liquid interface of the nanoparticle translating at the velocity pV , the no slip velocity is 

defined as (Keh, et al., 1985): 

pu V  (6.18) 

Eq. (6.18) means that the relative velocity of the liquid to the solid particle must be zero.  
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6.2.5 Particle Motion 

Because the surface of the nanoparticle is negatively charged, the externally applied electric field 

brings electrostatic force ( epF ) on the nanoparticle (electrophoresis effect). Due to the particle motion 

and the electroosmotic flow of the liquid in the nanochannel, the frictional force (hydrodynamic 

force) is also exerted on the nanoparticle by the liquid flow ( hdF ). The total force acting on the 

particle is: 

t ep hdF F F   (6.19) 

The electrophoretic and the hydrodynamic forces can the calculated as follow: 

ep s
F T ds   (6.20.a) 

2

0

1
( )

2
ij i j ijT E E E  

 
(6.20.b) 

( ( ) )T

hd s
F n pI u u ds           

(6.21) 

In the above equations, I is the identity tensor and T  is the Maxwell stress tensor; ijT is the 

representation of this tensor with Einstein notation.  

At each time steps, the Newton second law can be utilized to find the velocity of the nanoparticle 

( pV ): 

p

t p

dV
F m

dt
  (6.22) 

6.2.6 Brownian Force 

It should be mentioned that the Brownian force is neglected in the above model.  In the following, a 

simple two dimensional analysis is presented to compare the effects of the electrophoretic and the 

Brownian forces on a cylindrical nanoparticle (radius a and a unit length) moving in the 

nanochannels. The Brownian force can be modeled as (Kadaksham, et al., 2004; Liu, et al., 2005): 

12 B
B

a k T
F

t

 



 (6.23) 
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In this equation, is the Gaussian random number with zero mean and unit variance; a  is the 

radius of the particle,   is viscosity, bk  is Boltzmann constant, T  is temperature, and t  is time 

step. To find a simple and two-dimensional approximate solution for the electrophoretic force (Eq. 

(6.20)), the applied electric potential is assumed to be linear in the computational domain.  By 

considering the uniform surface electric charge on the cylindrical nanoparticle (radius a and a unit 

length), estimation for the electrophoretic force is given by:   

2ep z pF E a   (6.24) 

The ratio of the Brownian to electrophoretic forces ( ) can be found as: 

B

ep z

F C

F E a t
  


 (6.25) 

Where: 

12

2

B

p

k T
C





  (6.26) 

In Eq. (6.25), C is constant that can be found by solving Eq. (6.26). Using the parameter values 

listed in Table 6.1, the maximum value of C becomes 81.99 10  . zE , t , and a  are determined 

by the characteristics of the system in this study. For example, 95 10a m  , Transient period of 

nanoparticle movement in the nanochannels is in the order of 10
15 

second (It will be shown at the rest 

of this chapter); therefore, 
1510t s  . In most practical applications, such as in electroporation 

(creating nanopores on cell membrane), even a small electric potential difference (e.g., the trans-

membrane potential is about 1 Volt) over a very short length (e.g., the membrane thickness 5~10 nm) 

of the nanochannel (nanopore) will generate a very strong electric field in the nanochannels (~ 10
5~6  

V/m). Using these values, the maximum ratio of the Brownian force to the electrophoretic force, Eq. 

(6.25), is approximately 33 10  .  Thus, neglecting the Brownian force in comparison with the 

electrophoretic force is a reasonable assumption for the present study. As it can be seen from Eq. 

(6.25), the large value of zE  in the nanochannel results in this conclusion. The numerical results of 

this study, as shown in the following sections, indicate that the electrophoretic and the hydrodynamic 

forces are of the same order of magnitude. Thus, without loss of generality, it can conclude that, 
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under the conditions of the present study, the effect of Brownian force is negligible in comparison 

with both electrophoretic and hydrodynamic ones.  

6.3 Numerical Method 

This study considers the three-dimensional nanochannel with a circular cross section connected to the 

two reservoirs at the ends. The nanoparticle is initially located at the center of the nanochannel. The 

Poisson-Nernst-Plank, the Navier-Stokes, and the continuity equations are solved simultaneously to 

calculate the electric potential, the ionic concentration, and the fluid flow in the computational 

domain.  The numerical method of solving these equations has been explained in Chapter 4, Section 

4.3. These governing equations are highly coupled; the results are affected by all these equations 

and the corresponding boundary conditions. The numerical simulation was conducted by using the 

COMSOL Multiphysics 3.5a. A mesh independent structure is employed to make sure that the results 

are unique and will not change if any other grid distribution is applied. In order to discretize the 

solution domain, the structured meshes are applied. The solution domain is broken into small meshes 

that fully cover the solution domain without overlapping.  The reliable numerical results should be 

grid independent; therefore, in this study, the effect of different number of grids was 

examined; finally, the number of grids was found with which the numerical results would not change 

if further increase in grid number was applied. 

At each time steps, by simulating the flow field, the ionic concentration, and the electric potential 

(Eqns. (6.1)-(6.6)), the total force exerted on the nanoparticle is computed (Eqns. (6.19)-(6.21)); 

consequently, the Newton second law is utilized to obtain the velocity of the nanoparticle (Eqn. 

(6.22)). The assumed tolerances for electric potential are 1x10
-3

 V and for the other parameters, 

3( )c mol m , ( )u m s , and ( )p MPa , is 1x10
-8

. Here, it should mention that the smallest binary 

number in the COMSOL that can differentiate from 1 is "eps" = 2.2x10
-16

.  To examine the 

correctness of the proposed numerical method, a simple case of the motion of the rectangular micro-

particle in a rectangular microchannel was simulated and the result was compared with the steady 

state analytical results of   Li et al. (Daghighi, et al., 2010). Figure 6.2 depicts this comparison. The 

key parameters used in this simulation are indicated in this figure. Good agreement in terms of the 

steady state velocities between both approaches supports the proposed theoretical model and the 

numerical method.  
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Figure  6-2 Application of the model and the numerical method to a case of electrokinetic motion 

of a rectangular micro-particle in a rectangular microchannel. The particle velocity at steady 

state is compared with an analytical solution. 

 

6.4 Results and Discussion 

In this study, a cubic nanoparticle is considered in the simulation to mimic the shape of the quantum 

dots. The electrical and geometrical parameters used in the simulations are summarized in Table 6.1. 

The radius of the nanochannel ( R ) is assumed to be 10 ~ 15 nm; the side of the nanoparticle ( a ) is 5 

~ 10 nm; the dimensions of the boundaries in Figure 6.1, AB, EF, FG, GH, KL, and LA are 100 nm . 

The surface electric charge density of the nanoparticle is 20.0001p C m   . The surface electric 

charge density of the walls of the nanochannel (
w )

 
is 0.0001 ~ 0.0005 C/m

2
; and the applied 

electric potential difference is 1V  .  
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Table 6-1The values for constants and parameters used in the simulations 

Parameter value/range Unit 

T ( relative permittivity) 80  - 

0 (absolute permittivity)) 128.85 10  F/m 

 (liquid density) 1000  Kg/m
3 

w (surface electric charge on the walls of nanochannel)
 

0.0001~ 0.0005   C/ m
2
 

p
 
(surface electric charge of nanoparticle)

  
0.0001  C/ m

2
 

1  
(electric potential on the left)

 
0  V 

2 (electric potential on the right)
 

 1  V 

 ( dynamic viscosity) 31 10  Pa·s 

F(Faraday constant) 96485.3415  A s mol  

kB (Boltzmann constant) 
231.381 10  .J K

 
Rg (universal gas constant) 8.314  ( . )J mol K  

R  (nanochannel radius) 10 ~15  nm  

a (nanoparticle side dimension) 5 ~10  nm  

L (nanochannel length) 120  nm  

AB, EF, FG, GH, KL, LA (see Fig. 6.1)  100  nm  
D  (diffusion coefficient of positive ion)  91.28 10  2m s  

D
(diffusion coefficient of negative ion) 91.77 10  2m s  

µi (mobility of ion species i) ( )i gD R T  -
 

C0 (bulk ionic concentration) 310 ~0.3
 mol/m

3 

T (temperature) 300  .K 

ς (Gaussian Random Number ) 1  - 
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6.4.1 Effects of the boundary conditions and the reservoirs 

As mentioned in the introduction (Section 6.1), the correct boundary condition for the non-permeating 

surface of the particle moving at a velocity V should be ( )i in N n cV  (Keh, et al., 1985), i.e., Eq. 

(6.13), not 0in N  .  The right-hand side of Eq. (6.13) describes the convective flux on the 

impermeable surface of the particle due to the particle movement. This difference in the boundary 

conditions can significantly influence the concentration field, the flow field, and the particle’s 

velocity in the nanochannel. As an example, let us consider one specific case: a NaCl  aqueous 

solution, 31C mol m , the surface electric charge density on the walls of the nanochannel and the 

surface electric charge of the nanoparticle are 20.0001C m , the nanochannel radius is 15R nm , 

the applied electric voltage between boundaries LA and FG is 1V , and the nanoparticle dimension is 

5 5 5nm nm nm  .  As an example, Figure 6.3 shows the effects of using these two different 

boundary conditions on the ionic concentration of the counter-ion ( Na ). Figure 6.3(a) used the 

correct boundary condition ( ( )i in N n cV ) and Figure 6.3(b) used the incorrect boundary condition 

( 0in N  ) for the non-permeating walls of the moving particle. This figure clearly shows the 

significant differences in the ionic concentration and the velocity of the nanoparticle. 
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Figure  6-3 The effects of applying (a) the correct non-permeating boundary condition 

( ( )i in N n cV ), and (b) the incorrect non-permeating boundary condition ( 0in N  ) at the 

surface of a moving particle on the ionic concentration distribution and velocity of the 

nanoparticle. The color bar indicates the concentration of counter-ion ( Na  ) along the channel 

at the surface across the center line of the channel (z = 0). 

Color:  Concentration (C1) (mol/m
3
) 

Color:  Concentration (C1) (mol/m
3
)  (a) 

  (b) 

  Vp = 2.94×10
2 

m/s 

 

 Vp = 2.43×10
3  

m/s 
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Figure 6.4 depicts the difference between the concentrations of the positive and the negative ions 

(counter-ions and co-ions) in the nanochannel region. In this figure, 2 310C mol m ,

20.0001w p C m    , 10R nm  
, 5a nm , 1V  . As indicated in Figure 6.1, the applied 

electric field and consequently the electroosmotic flow are from the left to the right.   As it can be 

seen from this figure, at the exit of the nanochannel to the microchannel (section A-A), this 

concentration difference increases substantially. Such an accumulation of the counter-ions (here, the 

positive ions) at the exit of the nanochannel is usually referred as ion polarization effect (Zangle, et 

al., 2010). Without considering the end reservoir effects, i.e., the interface of the microchannel and 

the nanochannel, such ion polarization effect cannot be modeled and simulated, which will in turn 

affect the electroosmotic flow and electrophoresis inside the nanochannel.  

 

 

Figure  6-4 The concentration difference of the counter ions and the co-ions in the nanochannel 

(
2 310C mol m , 20.0001w p C m    , 10R nm  , 5a nm , and 1V  ). The color bar 

indicates the ionic concentration difference in 
3mol m . The nanoparticle moves from the right 

to the left at a velocity  44.94 10pV m s   .  

Color (C1-C2) (mol/m
3
) 

A 

 

 

 

 

 

 

 

 

  

A
  

 

44.94 10pV m s    
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6.4.2 Effects of the nanoparticle size 

As explained before, the electrophoretic and the hydrodynamic forces act on the nanoparticle. The 

electrophoretic force is a function of the externally applied electric field, the particle surface electric 

charge, and dimensions of the nanochannel (Eq. 6.20). The hydrodynamic force is dependent on the 

velocity field that is the function of the bulk ionic concentration, the applied electric field, the 

dimensions of the nanochannel and the nanoparticle, and the surface electric charge of both the 

channel and the particle. Figure 6.5 illustrates the induced pressure around the moving nanoparticle. 

An enlarged view of the flow field in vicinity of the nanoparticle for this specific case is shown in 

Figure 6.5b.  Under the assumed parameters of this case, the nanoparticle moves from the right to the 

left, i.e., opposite to the electroosmotic flow. The electrophoretic movement of the nanoparticle 

through the nanochannel causes an induced pressure in the nanochannel.  

For the same size nanochannels ( 15R nm ), Figure 6.6 depicts the velocity field of the two 

different nanoparticles ( 5,10a nm ). The bulk ionic concentration, the surface electric charge and 

the applied electric field are kept constant ( 2 310C mol m , 20.0001w p C m    , R = 15 nm, 

and ΔΦ = 1V). In this case of study, the nanoparticle moves in the direction of the electrophoretic 

force. This figure shows that the bigger nanoparticle moves faster in the same size nanochannels. The 

same size nanochannels have the same EDL thickness; by increasing the size of the nanoparticles, the 

gap between the nanoparticle and the wall of nanochannel decreases, consequently, the local electric 

field in the smaller gap and hence the electrophoresis drive force to the particle increases. Thus, the 

nanoparticle should move faster.  
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Figure  6-5 (a) The induced pressure field, and (b) the flow field around the moving cubic 

particle in the nanochannel. The color bar indicates the induced pressure in Pa. The 

nanoparticle moves from the right to the left at a velocity Vp = - 4.94 x 10-4 m/s. ΔΦ = 1V, 
2 310C mol m , 20.0001w p C m    , 10R nm , and 5a nm .  

Color:  Pressure (Pa) 

Color:  Pressure (Pa) 

(b) 

(a) 

  Vp = 4.94 x 10
4

 m/s 
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Figure  6-6 Applied external electric field and velocity vectors around moving cubic particle in 

nanochannel ( 2 310C mol m , 20.0001w p C m    , 15R nm , and 1V  ). (a)  

5a nm , (b) 10a nm . The color bar indicates the externally applied electric field. 

(a) 

Color:  External applied electric field (V/m) 

 Vp=7.14x10
4 

m/s 

 Vp=8.77x10
4 

m/s 

   Color:  External applied electric field (V/m) 

(b) 
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6.4.3 Effects of bulk ionic concentration 

Generally, the ionic concentration of the liquid will affect the electric double layer fields of the 

nanochannel and the nanoparticle, and the applied electric field along the nanochannel. Consequently, 

the ionic concentration affects the velocity of the nanoparticle. Figure 6.7 illustrates the net velocity 

variation of the nanoparticle with time for four different values of the bulk ionic concentrations. The 

negative sign of the velocity of the nanoparticle means that the particle moves in the opposite 

direction of the x-axis, i.e., from the right to the left (see Figure 6.1). It should be realized that, 

because both the nanoparticle and the nanochannel are negatively charged, the electrophoresis tends 

to move the nanoparticle towards the left (the positive electrode in Figure 6.1); and the electroosmotic 

flow caused by the negatively charged channel wall tends to move towards the right (the negative 

electrode in Figure 6.1). In this simulation, the surface charge densities of the nanoparticle and the 

channel wall are the same, C/m
2
. It should be pointed out that, the body force for the 

electroosmotic flow in the nanochannels is ( )i i iz Fc   , see Eq. (6.5). This force is function of the 

bulk ionic concentration ic . When the bulk ionic concentration increases, the body force for the 

electroosmosis increases and therefore the EOF velocity increases. Thus, the motion of the 

nanoparticle towards the left will be reduced, and the particle velocity becomes smaller.  

As explained above, by increasing the bulk ionic concentration, the electroosmotic flow increases, 

and hence, according to Eq. (6.21), the hydrodynamic force strengthens. Therefore, increasing the 

bulk ionic concentration can also change the direction of the nanoparticle movement. As an example, 

Figure 6.7 also shows that the velocity of the nanoparticle can change from negative to positive when 

the bulk ionic concentration changes from 30.001mol m  to 30.3 mol m .   

It should emphasize that for the low values of the bulk ionic concentration, the nanoparticle moves 

in the opposite direction of the flow field, due to the electrophoresis effect; increasing the bulk ionic 

concentration retards the nanoparticle motion. Further increase of the bulk ionic concentration can 

reverse the direction of the nanoparticle movement.  
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Figure  6-7 Effects of bulk ionic concentration on the velocity of the nanoparticle. The radius of 

the nanochannel is 15 nm and the particle size is 5 nm, respectively. Surface electric charge 

densities on the walls of the nanochannel and on the surface of the nanoparticle are  

20.0001C m , and 1V  . 

 

6.4.4 Effects of surface electric charge of the nanochannel 

As explained before, the two different forces (the electrophoretic and the hydrodynamic) 

determine the nanoparticle motion. Direction of the nanoparticle movement is determined by the net 

force of these two forces. Similar to the bulk ionic concentration, increase of the surface electric 

charge of the walls of the nanochannel intensifies the electroosmotic flow and hence the 

hydrodynamic force on the nanoparticle. Figure 6.8 shows the effects of the surface electric charge of 

the nanochannel on the velocity of the nanoparticle. In this simulation, the surface charge density of 

the nanoparticle is 20.0001C m . This figure shows that, for lower values of the surface electric 

charge on the walls, the nanoparticle moves in the negative direction of x-axis. This implies that the 

electrophoretic effect is dominant. Increasing the surface electric charge on the channel wall will 

increase the electroosmotic flow in the positive direction of the x-axis (from the left to the right as 
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shown in Figure 6.1). Over a certain value of the surface charge density, the electroosmotic flow is so 

strong that the associated hydrodynamic force (viscous frictional force on the particle by the moving 

liquid) will carry the particle to move with the flow (in the positive direction of the x-axis).  

Therefore, higher values of the surface electric charge can reverse the direction of nanoparticle 

motion.  

In summary, it should be noted that for the case of low surface electric charge on the walls of the 

nanochannel (hence the weaker electroosmotic flow), the nanoparticle moves in the opposite direction 

of the flow field (dominant by the electrophoresis). Intensifying this surface electric charge of the 

channel wall slows down the nanoparticle; further increase of the surface electric charge can reverse 

the direction of the nanoparticle motion.  

 

 

 

 

Figure  6-8 Effects of the surface electric charge density of the nanochannel on the velocity of the 

nanoparticle. The surface charge density of the nanoparticle is -0.0001C/m
2
, and 1V  . 
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6.4.5 Effects of the nanochannel cross-sectional area 

The effects of the particle size and channel size on the electrophoretic motion of micro-particles in 

microchannels have been studied previously (Ye, et al., 2005; Xuan, et al., 2005; Daghighi, et al., 

2010). For the case of thin EDL, a larger particle moves faster than a smaller particle in a 

microchannel with a fixed size.  This is because the electrophoretic force on the particle or the local 

applied electric field near the particle is intensified by the smaller gap between the particle and wall 

of the microchannel.  Furthermore, for the case of the thin EDL, changing the dimension of the 

microchannel has no effects on the electroosmotic flow (i.e., the EOF velocity is independent of the 

microchannel size) and consequently the hydrodynamic force on the particle. However, this story is 

different for the case of the microchannel with a thick EDL or the case of the small nanochannel 

where the EDL thickness is comparable with the channel’s dimension.  In these cases, the 

electroosmotic flow velocity field is not independent of the channel size. It has been shown that the 

particle moves slower in the smaller microchannel with the thick EDL (Shugai, et al., 1999). For the 

electrophoretic motion of the particles in the nanochannels, because the EDL thickness is similar to 

the size of the nanochannel, one should expect the behaviour similar to that in the microchannels with 

the thick EDL: The particle of a fixed size should move slower in the smaller nanochannels. 

Figure 6.9 shows the influences of the nanochannel cross sectional area on the velocity of the 

nanoparticle of a fixed size, a = 5 nm. The negative value of particle velocity in this figure indicates 

that the nanoparticle moves in the negative direction of x-axis, i.e., the opposite direction of the 

electroosmotic flow. It shows that the velocity of the particle decreases as the nanochannel’s diameter 

decreases. This may be understood as the following: When the size of the nanochannel is smaller, the 

EDL overlap increases, and the EDL field is stronger. Consequently the electroosmotic flow is 

stronger in a smaller nanochannel.  Because the electroosmotic flow is in the opposite direction to the 

electrophoresis of the particle, the particle’s motion from the right-to the left is therefore decreased. In 

brief, if the surface electric charge and the bulk ionic concentrations keep constant, the same size 

nanoparticles move faster in the bigger nanochannels.   
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Figure  6-9 .  Effects of nanochannel cross sectional area on the velocity of nanoparticle. The size 

of the nanoparticle is 5 nm. Surface electric charge densities on the walls of the nanochannel 

and the surface of the nanoparticle are the same 20.0001C m ,
 

30.01C mol m , and 1V  . 

 

Figures 6.7, 6.8, and 6.9 show that the nanoparticle accelerates very fast in the nanochannels and 

its transient response is in the order of femtosecond. This is too fast to be detected by the current 

experimental methods. Thus, understanding of the characteristics at steady state will be sufficient for 

the appreciation of the electrokinetic motion of the nanoparticles in the nanochannels. Figure 6.10 

shows how the bulk ionic concentration, surface electric charge, and size of the nanochannel impact 

the steady state velocity of the nanoparticle. This figure represents all the major conclusions of 

sections 6.4.2 to 6.4.5. 
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Figure  6-10 Effects of bulk ionic concentration (a), surface electric charge on the walls of the 

nanochannel (b), and the radius of the nanochannel (c) on the steady state velocity of the 

nanoparticle. 

6.5 Concluding Remarks    

The electrophoretic motion of a negatively charged cubic nanoparticle in the nanochannel with the 

circular cross-section was studied. The influences of the reservoirs at the ends of the nanochannel on 

the electric field, the ionic concentration field, the flow field were considered. Because of the very 

large electric field applied over the nanochannel, the Brownian motion of the nanoparticle is 

negligible in comparison with the electrokinetic effects. Increasing the bulk ionic concentration 

increases the electroosmotic flow and may change the particle’s motion and carry the particle with the 

electroosmotic flow. Increasing the surface charge density of the nanochannel wall has the same 

effect.  For a fixed nanochannel size, a larger nanoparticle will move faster than a smaller 

nanoparticle under the same conditions, because of the stronger local electric field in the smaller gap 
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decreasing the nanochannel size will increase the electric double layer field and hence the 

electroosmotic flow in the nanochannel, consequently affect the particle’s motion. 
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Chapter 7 

Electrokinetic Transport of Nanoparticles to the Opening of 

Nanopores in Cell Membrane during Electroporation 

7.1 Introduction 

So far this thesis has studied different parameters affecting the membrane permeabilization and 

transfection during the electroporation of a single cell located in the microchannel. After performing 

a complete literature survey in Chapter 2, membrane permeabilization of the single cell located in a 

microchannel has been investigated in Chapter 3. The results of this chapter show that how the 

electric pulse induces the electric potential on the cell membrane (Transmembrane Potential, TMP) 

and what is the density and radius of the created nanopores on the cell membrane. Chapter 

4 investigates an electrokinetic transport through the nanochannels. In Chapter 5, I have utilized the 

proposed model of Chapter 4 to investigate the electric potential, the flow field, and the 

ionic mass transfer through the created nanopores on the cell membrane during the electroporation. 

Chapter 6 examines the electrokinetic motion of the nanoparticle in the nanochannel. The results of 

this part may be exploited to mimic how the QDots move through the created nanopores on the cell 

membrane during the electroporation. 

Until now, the results of this study explain many aspects of the single cell electroporation in the 

microchannel and the electrokinetics in nanofluidics. However, it has not clarified yet that how the 

nanoparticles (nanoscale biosamples such as QDots) will be transported to the opening of the 

nanopores and what forces influence the process. In this chapter, the aim is to study the nanoparticle 

transport to the opening of created nanopores on the cell membrane during the electroporation. It is 

explained what forces play an important role on the process and how the size and the surface 

electric charge of the nanoparticle influence the nanoparticle transport. The influence of 

an angular position of the created nanopores on the nanoparticle transport will also be investigated. In 

the following sections, first, an assumed physical model and computational domains of the current 

study will be explained. Next, the mathematical modeling and the governing equations will be 

reviewed. Then, the numerical simulation techniques will be introduced. After that, the results will be 

shown and discussed, and finally, the concluding remarks will be presented. 
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7.2 Model Description  

Reversible electroporation can create nanopores in the cell membrane which serve as a pathway 

for biological samples, ions, and fluid transport. “Theory of cell membrane permeabilization” 

explains how the nanopores create on the cell membrane during electroporation (Neu, et al., 1999). 

The flow and the ion transfer in such a nanoscale channel can be analyzed by a combination of 

equations governing electrostatics, mass transfer, and momentum transfer (Movahed, et al., 2012). 

Once the flow field, the ionic mass transfer, and the electric potential are determined, the applied 

electroosmotic and electrophoretic forces on the nanoparticles can be calculated, and consequently the 

Newton second law will be utilized to find the velocity of the nanoparticle and trace it in the 

computational domain. 

In the current study, first, we apply the required electric pulse around a spherical cell of radius a

(diameter 0d ) to electroporate it. The cell immersed an aqueous solution in a microchannel of height

ch (see Figure 7-1). The thickness of the cell membrane is assumed to be mt . The electric pulse is 

applied to the cell via the two electrodes placed on the side walls of the microchannel. Once the 

radius and location of the nanopores and also the electric potential in the vicinity of the created 

nanopores are determined, a highly coupled system of partial differential equations will be solved to 

find the ionic mass transfer, fluid flow, and electric potential and consequently exerted electroosmotic 

and electrophoretic forces on the nanoparticle.  The detail of the mathematical modeling and the 

governing equations will be explained in the next section.  

The assumed computational domain of created nanopores has been depicted in Figure 7-2. The 

nanopore is assumed to have a circular cross-section, and the length of the nanopore is equal to the 

cell membrane thickness. “Inside” and “outside” domains, that represent the interior and the exterior 

of the cell, should be considered to have an accurate analysis on the electrokinetic transport through 

the generated nanopores. 
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Figure  7-1 The schematic diagram of the assumed system of the current study. A cell of radius 

a is assumed in the microchannel of height ch . The microchannel is filled with the conductive 

medium. The required voltage of the electroporation ( 0 ) is applied via the two electrodes of 

length d
 
located on the wall of the microchannel. 
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Figure  7-2 Schematic diagram of the computational domain. Parts (a) and (b) are 3-D and side-

view illustrations of the computational domain. Arrows show the view of each figures of part 

(b). The pore is circular with a radius R. The length of the pore is equal to the cell membrane 

thickness ( mt ). h  is assumed to be ten times of the membrane thickness ( 10 mh t ).  In 

order to consider the effects of interior and exterior of the cell on the flow field, the 

ionic mass transfer, the electric potential, and the nanoparticle transport to the opening 

of the created nanopores, ABB A   and EFF E   sections are considered. The radius at 

these parts is Ro ( 0 10R R ). 
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7.3 Mathematical Modeling 

In this section, the mathematical modeling of the current study is introduced. First, the governing 

equations of the membrane permeabilization will be reviewed. The equations should be solved to find 

the size, density, and location of the created nanopores on the cell membrane. In section 7.3.2, the 

coupled system of partial differential equations will be reviewed that should be solved to find the 

electrokinetic transport (electric potential, ionic mass transfer, and fluid flow) in the created 

nanopores. Consequently, the Newton second law should be utilized to trace the nanoparticle in the 

vicinity of the created nanopores. 

7.3.1  Cell Membrane Permeabilization 

7.3.1.1 Electric Field 

The Laplace equation ( 2

, 0i e  ) should be solved to find the electric potential inside ( i ) and 

outside ( e ) the cell. The required voltage of the electroporation ( 0 ) is applied via the embedded 

electrodes on the two sides of the cells. Thus, the electrical boundary condition on boundaries MN 

and MʹNʹ is assumed as: 

, 0 2e M N   (7.1.a) 

, 0 2e M N    
 

(7.1.b) 

The walls of the microchannels are electrically insulated. There is also no current flow at the two 

ends of the microchannel. Therefore, the assumed electrical condition on boundaries LM, NO, OO
’
, 

O
’
N

’
, M

’
L
’
, and L

’
L is:  

ˆ 0n J   (7.2) 

The electric current density should be continuous across the cell membrane (DeBruin, et al., 1999; 

DeBruin, et al., 1999): 

1
ˆ ˆ( ) ( ) ( )m

i i e e m m rest p

V
n s n s c g V V I

t
 


        


 (7.3) 

In this equation n̂ is the local outward unit vector normal to the surface of cell membrane,  is the 

Nabla symbol, i
s  and 

e
s are the intracellular and extracellular conductivities;  mV  and restV  are the 

transmembrane potential (TMP) and rest potential. 1g and mc are the surface conductance and 
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capacitance of the membrane, in that order. The transmembrane potential is defined as 

( , , ) ( , , )m i eV t a t a     .  

The first and the second terms of the right hand-side of Eq. (7.3) represent the capacitive current 

( m mc V t  ) and the current through the protein channels ( 1( )m restg V V ), respectively. pI

represents the current through the created nanopores. If the cell membrane is discretized into k

elements, the surface area of each segment can be found as 2A a k  . At each of these sections of 

membrane, 
pI can be found as (Krassowska, et al., 2007): 

1

1
( ) ( , )

m

p p j m

j

I t i r V
A 



  (7.4) 

Here, m  is the number of the created nanopores at each segment; pi is the current through each 

nanopore that can be computed by using the following equation (Krassowska, et al., 2007): 

( , ) m
p m

p i

V
i r V

R R



 (7.5) 

where 
pR  is the Ohmic resistance of the cylindrical pores and iR  is the correcting resistance that 

is used to consider the effect of changing in transmembrane potential in vicinity of the pores. 

(Krassowska, et al., 2007):  

2

m
p

t
R

s r
  (7.6) 

1

2
iR

sr


 
(7.7) 

In the above equations, mt and
 
s are the membrane thickness and the conductivity of the solution 

filling the nanopore, respectively. 

7.3.1.2 Number of nanopores: 

The rate of creation of the nanopores can be found as (Neu, et al., 1999):  

2( )( ) ( )
(1 )

( )

m

ep

V
V

eq m

dN t N t
e

dt N V
   (7.8) 

where ( )N t is the density of pores define as:  
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*

( ) ( , )
r

N t n r t dr


   (7.9) 

eqN is the equilibrium pore density for the given transmembrane voltage, mV
 
:
 

2( )

0( )
m

ep

V
q

V

eq mN V N e  (7.10) 

In the above Equations,  , 
epV , q , and 

0N  are the constants that can be found in Table 7-1.  

7.3.1.3 Radius of nanopores: 

 Based on the theory of the membrane permeabilization, the nanopores are initially created with a 

radius of 
*r  (Neu, et al., 1999).  By increasing the applied electric field, the nanopores start to 

develop in order to minimize the energy of the cell membrane. For the membrane with n nanopores, 

the rate of change of their radii, 
jr , can be determined by the following set of equations (Neu, et al., 

1999):  

( , , ), 1,2,....,
j

j m eff

dr
U r V j n

dt
   (7.11.a) 

2
4 max*

*

1
( , , ) {4 ( ) 2 2 }, in r r

1 ( )

m
m p eff

h t

V FrD
U r V A r

kT r r r r r
      

   
(7.11.b) 

The constants of the above equations have been defined in Table 7-1. 
eff is the effective tension 

of the  membrane. If A is the surface area of the cell membrane and pA is the area of the created 

nanopores 

(
2

1

n

p ii
A r


 ),

eff can be computed as (Krassowska, et al., 2007): 

0

2

2
( ) 2

(1 )
eff p

p

A
A A

 
 


 


 (7.12) 

7.3.2 Electrokinetic Transport 

Once the location and size of the created nanopores are determined, the Electrokinetic theory 

should be utilized to find the electric potential, the ionic transfer, the fluid flow, and the nanoparticle 

transport toward the opening of the nanopores. Because of comparable dimensions of the EDL 

thickness and the nanopore radius, the conventional Electrokinetics such as the Helmholtz-

Smoluchowski velocity and the Poisson-Boltzmann equation may not be applicable anymore. 
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However, former experimental studies show that the continuum hypothesis is valid up to 4 nm for 

aqueous solutions (Zheng, et al., 2003). In this study, we have utilized a more generalized model to 

study the electrokinetic effects in the system (Movahed, et al., 2011 ) that will be briefly reviewed in 

the following sections. In the equations of this section,   is the electrostatic potential and ic  is the 

concentration of ion species i; p  and u  are the pressure and the velocity vector, respectively. The 

constants include permittivity (ε0εr), medium density (ρ), Faraday number (F), fluid viscosity (η), 

valance number (zi), diffusion coefficient (Di), and mobility (μi) of ion species i.  

7.3.2.1 Electric potential in the nanopores: 

 In such a nanoscale dimensions, the Poisson equation (
0( )r i ii

F z c       ) must be solved 

in order to find the electric potential distribution in the nanopore. This equation is a function of the 

local ionic concentrations that can be found by the Nernst Plank equation. Electric field is the gradient 

of the electric potential ( E   ). The electric field through the nanopores is influenced by the 

nanopores dimension, the ionic concentrations, and the surface charged of the nanopores. Here, iz  

and ic  are the valence and concentrations of ion type i ,   is the electric potential, E  is the electric 

field, 0  and r  are the absolute and relative permeability, and F is the Faraday constant.  

The electrical boundary conditions have been determined from the numerical results of section 

7.3.1. Transmembrane potential ( mU ) is the potential difference along the nanopore length direction. 

Inside the cell membrane, the electric potential is equal to rest potential ( 80rest mV   ); so, in the 

computational model the electric potential at boundaries ED , E D  , BC , and C B become:  

' 'andED restE D
  

 
(7.13.a) 

BC and ' ' restC B
TMP   

 

(7.13.b) 

The wall of the nanopore has electrostatic charge. If the constant surface electric charge 

density (
s

 ) is considered at the walls of the nanopore, following relations can be used to set 

the electrical boundary conditions at the walls of the nanopores (boundaries CD and C
’
D’):  

0D E

 

(7.14.a) 

sn D    (7.14.b) 
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Boundaries AA
’
 and FF’ are located on two sides of the membrane, outside and inside the 

cell domain. As it was indicated before, the Laplace equation should be solved to find the 

electric potential outside ( e ) and inside ( i ) the cell domain (see section 7.3.1). The proper 

electrical boundary conditions (
1


 
and 

2
 ), that are the solutions of the Laplace equation at 

these boundaries, should be applied at the boundaries AA
’
 and FF’ in order to consider the 

effects of external electric field (
e

E ) on the electrokinetic effects in the vicinity and through 

the nanopore:   

' 1AA
 

 (7.15.a) 

' 2FF
 

 (7.15.b) 

There is no surface electric charge at boundaries AB, EF, A
’
B 

’
and E

’
F
’
: 

0n D   (7.16) 

7.3.2.2 Ionic Concentration Field:  

The Nernst-Planck equation (Eq. (7.17)) is used to describe the mass transfer in the computation 

domain. 

( ) ( ) ( ) 0i i i i i iuc D c z c        (7.17) 

In this equation, the first term is the effect of electroosmosis (convection) on ionic mass transfer. 

The second and the third terms present the influences of diffusion and electrophoresis on ionic mass 

transfer, respectively.   

At boundaries AH and KB, constant bulk ionic concentration 
0

c is utilized (Eq. (7.18)). Here, 

subscripts i and e indicate the inside and the outside of the cell.  

0,i
c c

 

(7.18.a) 

0,e
c c

 
(7.18.b) 

The walls of the nanopore (boundaries CD and C
’
D’) and the cell membrane surface (BC, DE, B

’
C

’
 

and D
’
E
’
) are assumed to be impermeable for mass transfer. 

0in N   (7.19) 

i i i i i i iN D c z c c u        (7.20) 
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7.3.2.3 The Flow Field: 

Modified Navier-Stokes equations (Eq. (7.22)) along with the continuity equation (Eq. (7.21)) 

should be solved in order to find the flow field in the system. Boundaries AA
’
 and FF

’
 are assumed as 

the open boundary (Eq. (7.23)). This type of boundary condition is usually used when the boundaries 

are connected to a large reservoir (for example, comparing the volume of the nanopore with the 

interior of the cell). The flow can either enter or exit from these boundaries. At the wall of the 

nanopore (CD and C
’
D’) and the surface of the cell (BC, BʹCʹ, ED, and EʹDʹ), no-slip boundary 

condition is assumed (Eq. (7.24)).  We also utilized the symmetric boundary condition (Eqns. (7.25) 

and (7.26)) for other boundaries (AB, EF, A
’
B
’
, and E

’
F
’
).  

0u   (7.21) 

2( ( ) ) ( )i i

i

u
u u p u z Fc

t
  


       


  (7.22) 

0 , 0u p  
 (7.23) 

0u   (7.24) 

0n u   (7.25) 

[ ( ( ) )] 0Tt pI u u       (7.26) 

7.3.2.4 Electrokinetic Motion of the Nanoparticle: 

 Once the flow field, ionic concentration, and electric potential in the vicinity of the created 

nanopore are determined, the exerted electroosmotic (hydrodynamic, hdF ) and electrophoretic ( epF ) 

forces on the nanoparticle can be calculated to study the nanoparticle transport into the created 

nanopores. Because the surface of the nanoparticle is negatively charged, the electrophoretic and the 

electroosmotic effects are in the opposite directions. Unlike the electroosmotic effects, the 

electrophoretic force is in the opposite direction of the electric field. Because of the nanoscale of the 

particles, the Brownian force ( BF ) may also influence the particle motion. 

The total force acting on the particle is: 

t ep hd BF F F F    (7.27) 

The electrophoretic, the hydrodynamic and the Brownian forces can the calculated as follow (Hsu, 

et al., 2007; Kadaksham, et al., 2004; Liu, et al., 2005):  
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ep
s

F T ds   (7.28.a) 

2

0

1
( )

2
ij i j ijT E E E  

 
(7.28.b) 

( ( ) )T

hd
s

F n pI u u ds          
(7.29) 

12 B
B

a k T
F

t

 


  
(7.30) 

In the above equations, I is the identity tensor and T  is the Maxwell stress tensor; ijT is the 

representation of this tensor with Einstein notation. In Eq. (7.30), is the Gaussian random number 

with zero mean and unit variance; a  is the radius of the nanoparticle,   is viscosity, bk  is 

Boltzmann constant, T  is temperature, and t is time step. 

At each time steps, the Newton second law can be utilized to find the velocity of the nanoparticle 

( pV ): 

p

t p

dV
F m

dt
  (7.31) 

7.4 Numerical Simulation 

The numerical simulation of the current study consists of two parts. In the first step, the explained 

equations of section 7.3.1 are solved in the computational domain of Figure 7-1 to find the size, 

density, and location of the created nanopores on the cell membrane. Then, the equations of section 

7.3.2 are simulated in the computational domain of Figure 7-2 to find the ionic mass transfer, the fluid 

flow, and the nanoparticle transports near the created nanopores. In order to discretize the solution 

domain, the structured meshes are applied. We employ a mesh independent structure to make sure 

that the results are unique and will not change if any other grid distribution is applied. In order to find 

the reliable results, which are grid independent, we examine the effect of different number of grids. 

Finally, we find the number of grids with which the numerical results will not change if we further 

increase the number of grids.  

We employ “Comsol 4.2a with Matlab” commercial package to simulate the equations. In the first 

step, the cell membrane of Figure 7-1 is discretized with the discretization steps of 60   .  In 

order to discretize the solution domain, the un-structured meshes are applied. The solution domain is 
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broken into small meshes to allow that the meshes fully cover the solution domain without 

overlapping. Before applying the electric pulse, the transmembrane potential is equal to the rest 

potential ( m restV V ). At each time step, first the Laplace equation subjected to proper boundary 

conditions (Eqns. (7.1-7.5)) is solved by the Finite Element Method to find the electric potential in the 

domain. As the electric potential is determined, Eqns. (7.6-7.12) can then be solved to find the 

location, number, and radius of the created nanopores on the membrane. The Runge-Kutta method is 

utilized to solve ODE equations 7.8 and 7.11. This system of equations is solved with the time-step of 

32c , in which c  is the time constant of the cellular polarization (Hibino, et al., 1993): 

1 1
( ) 2.4c m

i e

aC s
s s

     (7.32) 

In the next step, the highly-coupled equations of section 7.3.2 are solved simultaneously in the 

computational domain of Figure 7-2 to study the transport of the nanoparticle near the created 

nanopores. The solution domain is broken into small meshes to allow that the meshes fully cover the 

solution domain without overlapping.  

7.5 Results and Discussion 

Table 7-1 summarized the values of the parameters used in the current study. We assumed a 

mammalian cell of radius 7.5a m (diameter 0 15d m ) suspended in the microchannel of height 

30ch m . The electric pulse with the intensity of 0 1.7V  and the duration of 0 10t s  is 

applied via the two embedded electrodes with a width 20d m . The microchannel is filled with the 

aqueous mixture of NaCl and KCl . The assumed ionic concentrations of the filling aqueous solution 

were presented in Table 7-1. We consider typical intercellular ionic concentrations of the mammalian 

cells (Lodish, et al., 2003). The ionic characteristics of different ions Na , K  , and Cl can be found 

elsewhere (Koneshan, et al., 1998).  

The radius ( R ) and position ( ) of the created nanopores, the transmembrane potential (TMP ), 

and the electric potential in vicinity of the created nanopores (
1
  and 

2
 ) will be determined by 

simulating the simulating the ODE system of section 7.3.1.  
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Table  7-1 The values for constants and parameters used in the simulations 

Parameter value (unit)  Definition 

0( 2 )d a  15 ( )m  diameter of the cell 

mt  5 ( )nm  cell membrane thickness (Glaser, et al., 1988) 

ch  30 ( )m  height of the microchannel 

d  20 ( )m  length of the electrode 

0  1.7 ( )V  electric pulse intensity 

0t  10 ( )s  electric pulse duration 

is  10.455 ( )S m  intracellular conductivity (Hibino, et al., 1993) 

es  15 ( )S m  extracellular conductivity (Hibino, et al., 1993) 

s  12 ( )S m
 Conductivity of the solution filling the pore (Smith, et al., 2004) 

mc  20.0095 ( )F m  Specific membrane capacitance  (Hibino, et al., 1993) 

1g  22 ( )S m
  Surface conductance of the membrane  (Hibino, et al., 1993) 

restV  80 ( )mV  rest potential (Chambers, et al., 1979) 

  9 2 11 10 ( )m s   Creation rate coefficient  (DeBruin, et al., 1999) 

epV  0.258 ( )V  Characteristic voltage of electroporation   (DeBruin, et al., 1999) 

0N  9 21 10 ( )m  Equilibrium pore density at 0mV    (DeBruin, et al., 1999) 

*r  0.51( )nm  Minimum radius of hydrophilic pores  (Glaser, et al., 1988) 

mr  0.8 ( )nm  Minimum energy radius at 0mV 
 
 pores  (Glaser, et al., 1988) 

D  14 2 15 10 ( )m s   Diffusion coefficient for pore radius (Freeman, et al., 1994) 

T  300 (. )K  Temperature 

  191.4 10 ( )J  Steric repulsion energy (Neu, et al., 1999) 

  11 11.8 10 ( )J m   Edge energy  (Glaser, et al., 1988) 

maxF  9 20.7 10 ( )N V   Max electric force for 1mV V  (Neu, et al., 2003) 

hr  90.97 10 ( )m  Constant in Eq. (7.11.b) for advection velocity  (Neu, et al., 2003) 

tr  90.31 10 ( )m  Constant in Eq. (7.11.b) for advection velocity  (Neu, et al., 2003) 

q  * 2( )mr r  Constant in Eq. (7.10) for pore creation rate  (DeBruin, et al., 1999) 

   2 22 10 ( )J m   Tension of hydrocarbon-water interface (Israelachvili, 1992) 
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In the following sections, first we investigate the membrane permeabilization of the cell suspended 

in the microchannel. Once the size, the location, and the electric potential near the cell membrane are 

determined, we utilize the electrokinetic model in section 7.3.2 to study the nanoparticle transport to 

the created nanopores. In this part, we examine what forces affect the nanoparticle transport and how 

close the nanoparticles will be to the opening of the nanochannel in order to get into the nanopores. 

Furthermore, the effects of size and surface electric charge of the nanoparticle on its transport to the 

opening of the nanopores will be investigated.  

In this study, we assume the negatively charged nanoparticles. The results of this study show that 

the electrophoretic force is the dominant one in transporting the nanoparticle. The electrophoretic 

0  6 21 10 ( )J m   Tension of the bilayer without pores (Hénon, et al., 1999) 

F 196 485.3415 ( )A s mol  Faraday constant (Li, 2004) 

T  80  relative  permittivity  (Li, 2004) 

0  8 18.85 10 ( )F m   Vacuum  permittivity  (Li, 2004) 

  31 10 ( )Pa s  Viscosity of medium  (Li, 2004) 

  31000( )kg m  medium density  (Li, 2004) 

s  
20.0001( )C m  surface electric charge of the nanochannel walls 

p  
20.3 ~ 0.6 ( )C m   surface electric charge of nanoparticle 

pd
 

10,12 , and15 ( )nm  
diameter of the nanoparticle 

gR  
1 18.314 ( . )J mol K   gas constant  

( ) D Na
 

9 2 11.28 10 ( )m s   diffusion coefficient of Na  (Koneshan, et al., 1998) 

( ) D K 
 

9 2 11.83 10 ( )m s   diffusion coefficient of  K 
  (Koneshan, et al., 1998) 

( ) D Cl  
9 2 11.77 10 ( )m s   diffusion coefficient of  Cl   (Koneshan, et al., 1998) 

i  ( ) i gD R T  
mobility of ion species type i  

0, ( ) iC Na
 12 ( )mM  Intercellular concentration of  Na  (Lodish, et al., 2003) 

0, ( ) iC K 
 139 ( )mM  Intercellular concentration of   K 

 (Lodish, et al., 2003) 

0, ( ) iC Cl  4 ( )mM  Intercellular concentration of  Cl  (Lodish, et al., 2003) 

0, ( ) eC Na
 50 ( )mM    Extracellular concentration of   Na  

0, ( ) eC K 
 50 ( )mM  Extracellular concentration of   K 

 

0, ( ) eC Cl  100 ( )mM  Extracellular concentration of  Cl  

Bk  23 2 2 11.38065 10 ( )m kg s K    Boltzmann Constant  (Li, 2004) 
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force exerting on the negatively charged nanoparticle is in the opposite direction of the electric field. 

Thus, the negatively charged nanoparticle should be inserted to the cell from the back of the cell (the 

side that facing the negative electrode (180 360  ), see Figure 7-3) where the TMP is positive 

and the direction of the electrophoretic force is from outside to the inside of the cell membrane. 

7.5.1 Membrane Permeabilization: 

 Figure 7-3 shows that how the presence of the electric pulse affects the TMP and creates the 

nanopores on the cell membrane. As indicated before, the radius of the cell and the height of the 

microchannel are 7.5a m and 30ch m , respectively. The electric pulse intensity and duration 

are  0 1.7V   and 0 10t s . The obtained results show that the nanopores’ radius and density are 

symmetric along the equator (see Figure 7.1). The transmembrane potential has the same magnitude 

but with the opposite sign on the two sides of the cell membrane ( 0 180   and 180 360   ). 

Thus, Figure 7-3 only shows the distribution of the radius of the created nanopores and the 

transmembrane potential for one side of the cell membrane (180 360   ).  

In the next section, the created nanopores at the two points of the cell membrane are selected 

( 270   and 288   ) to study the nanoparticle transport to the opening of the created nanopores. 

The radius and the transmembrane potential of these nanopores are determined by the numerical 

solution of the equations of section 7.3.1 (see Figure 7-3). The angular position 270   represents 

the nearest point of the cell membrane to the negative electrode. The largest nanopores with the 

highest value of TMP are generated at this point (see Figure 7.3). At 288   , the radius of the 

created nanopores is around 15 nm which is still large enough to insert the biological nanoparticles to 

the cell.   
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Figure  7-3 Distributions of the trans-membrane potential and the radius of the created 

nanopores on one side of the cell membrane (180 360  ). Here, 30 ,ch m  7.5 ,a m  

0 1.7 ,V   0 10 ,t s and 20d m . These distributions are symmetric around the equator 

of the cell (Figure 7-1). 

7.5.2 Electrokinetic transport of the nanoparticles to the opening of the created 

nanopores: 

 As explained before, in this section we examine how the nanoscale particles move to the opening 

of the created nanopores of Figure 7-3. Figure 7-4 depicts the electric potential field and the velocity 

field in a nanopore located at 270   . The radius of this nanopore and the TMP are 20R nm and

0.66mV V  , respectively. For this nanopore, the calculated electric potential at the boundaries AA
’
 

and FF’ are 1 0.747V  
 
and 2 0.08V   , respectively (see Eqns. (7.15)).  In a closer view, Figure 
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7-5 depicts the velocity vectors (a) and the electric field near the generated nanopores at 270    

(b). The surface of the cell membrane is negatively charged ( 20.0001( )s C m 
  ) and the electric 

field is from outside to inside of the cell membrane. Thus, as it is clear from Figure 5(a), the 

electroosmotic effect and consequently flow field should be from inside to the outside of the cell 

membrane. In this study, it is assumed that the nanoparticle is negatively charged (

20.3 ~ 0.6 ( )p C m 
   ). The assumed diameters of the nanoparticles are 10 ~15 ( )pd nm .  The 

exerted electrophoretic force on the negatively charged nanoparticles is in the direction of the electric 

field, that is from the outside to the inside of the nanopore at cell membrane. Thus, unlike the 

hydrodynamic effect (electroosmotic effect), the electrophoretic force tends to bring the nanoparticle 

into the opening of the nanopore.  

Figure 7.5.b shows the direction of the electric field near the generated nanopore at 270   . In 

this figure, the color bar represents the norm of the electric field (( E )) in logarithm scale (

2 2 2log( )x y zE E E  ).  Suppose that q is the total electric charge of the nanoparticle ( pq dA  ). 

Then, the magnitude of the exerted electrophoretic force on the nanoparticle can be estimated as 

epF q E  . The direction of this exerted force on the negatively charge nanoparticle is in the 

direction of the electric field. Therefore, the magnitude of the electrophoretic force is proportional to 

the norm of electric field ( epF E ).  
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Figure  7-4 This figure shows the electric potential and generated flow field through the created 

nanopore at 270   . The radius of the created nanopore and the transmembrane potential is 

20R nm  and 0.66TMP V  , respectively. The color bar is for electric potential.  
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Figure  7-5 (a) The velocity field ( m s ) and (b) the external electric field (V m ) in vicinity of the 

generated nanopores at 270   . The color bar in Figure 7.5 (a) indicates the magnitude of the 

velocity field. In Figure 5 (b), the color bar represents the norm of electric field in logarithmic 

scale (
2 2 2log( )x y zE E E  ).   

(a) 

(b) 
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Now, the question is how close the nanoparticle should be from the nanopore in order to be 

trapped and transported to the opening of the nanopore. Based on the force balance, as long as the 

electrophoretic force is stronger than the hydrodynamics resistance, the nanopore should move 

towards the opening of the nanopore. As an example, consider Figure 7-6.   This figure illustrates the 

trajectory of the nanoparticle near the opening of the nanopore of Figure 7.4. The diameter and the 

surface electric charge of the nanoparticle are 20.45p C m   and 10d nm . When the 

nanoparticle releases from a point ( 55 , 50 , 0 )nm nm nm  , the nanoparticle passes the opening of 

the nanopore and does not come to the nanopore. However, when the nanoparticle is released close 

enough to the nanopore from a point ( 50 , 50 , 0 )nm nm nm  , it turns towards the opening of the 

nanopore.  To explain this, let’s compare the exerted electrophoretic and hydrodynamic forces on the 

nanoparticle. In Figure 7.6(a), when the particle releases from a point ( 55 , 50 , 0 )nm nm nm  , the 

value of exerted electrophoretic and hydrodynamic resistance on the nanoparticle are 0.06hdF nN

and 0.04epF nN , respectively. The nanoparticle move towards the nanopore until the 

electrophoretic force is dominated by the hydrodynamic resistance. For example, at the point 

( 45.7 , 3.7 ,11 )nm nm nm   where the magnitude of the hydrodynamic resistance and electrophoretic 

forces are 0.2261hdF nN and 0.2204epF nN . At this point, the stronger hydrodynamic 

resistance changes the direction of the nanoparticle and repels it from the nanopore.  

When the nanoparticle is closed enough to the nanopore, the electric field and consequently 

electrophoretic force is strong enough to dominate the hydrodynamic resistance and move the 

nanoparticle toward the nanopore. For example, consider Figure 7-6 (b) where the nanoparticle 

releases from ( 50 , 50 , 0 )nm nm nm  . At this point, the magnitude of the electrophoretic force and 

the hydrodynamic resistance are 0.0567epF nN and 0.0317hdF nN , respectively. The stronger 

electrophoretic force moves the nanoparticle towards the nanopore. When the nanoparticle 

approaches the nanopore, both the electrophoretic and hydrodynamic forces increase. However, the 

electrophoretic force is still strong enough to suppress the hydrodynamic resistance. At the point 

( 37.3 , 0.41 , 8.6 )nm nm nm  , the electrophoretic force ( 1.1epF nN ) overpowers the 

hydrodynamic resistance ( 0.7epF nN ) and turns the nanoparticle toward the opening of nanopore.   
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Figure  7-6 This figure shows how the nanoparticles will be close to the opening of the nanopore 

in order to get into it. The origin of the coordinate system is located on the center of the 

nanopore (point O, see figure 2). The initial position of the nanoparticle 0 0 0( , , )x y z  is (a) 

( 55 , 50 , 0)nm nm  and (b) ( 50 , 50 , 0 )nm nm  , respectively. The color bar is for time.    
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Here, it should be pointed out that the magnitude of the exerted Brownian force (Eq. 7.30) on the 

nanoparticle is in the order of 1110 N which is two orders of magnitude smaller that the 

electrophoretic and hydrodynamic forces that are in the order of   9(10 )nN N . Thus, the Brownian 

force has less effect on the nanoparticle transport compare with the hydrodynamic and electrophoretic 

forces.  

Figure 7-4 explains that unlike the electroosmotic (hydrodynamic) effect, the electrophoresis tends 

to move the negatively charged nanoparticle towards the opening of the nanopores. Therefore, by 

intensifying the electrophoretic force on the nanoparticle, the nanoparticle transport to the opening of 

the nanopore will be improved. This force is affected by the external electric field, the surface electric 

charge, and the size of the nanoparticle. During the electroporation, the electric field around the cell 

membrane is controlled by the external applied electric field (
0 ) via the electrodes. If this applied 

electric field is low, the nanopores may be not created on the cell membrane. As the nanopores are 

created, further increase of this applied electric field may ruin the membrane structure and kill the 

cell. Thus, this applied electric field should be kept around the specific value that the nanopores are 

created and the cell is still live. Further explanations are presented in Chapter 3.  However, the size 

and the surface electric charge of the nanoparticle may be modified in order to strengthen the 

electrophoretic effect and consequently nanoparticle transport to the opening of the nanopores. The 

effects of these parameters are studied in Figures 7.7 and 7.8.  

Figure 7-7 demonstrates that how increasing the surface electric charge of the nanoparticle 

improves the its transport to the opening of the nanopore. The nanoparticle is initially released from

( 50 ,0, 25 )nm nm  . The assumed radiuses of the nanoparticle and the created nanopores are 5nm  

and 20nm , respectively.  By increasing the surface electric charge of the nanoparticle from 

20.3p C m    to 20.6p C m   , the nanoparticle turn towards the nanopore and get into its 

opening. Here, increasing the surface electric charge make the electrophoretic force stronger. 

However, because the nanoparticle size is kept constant, the hydrodynamic resistance against its 

motion is not changed dramatically and consequently the nanoparticle transport to the opening of the 

nanopore improves.  
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Figure  7-7 This figure shows the effect of surface electric charge of the nanoparticle on 

the nanoparticle transport to the opening of the nanopore. (a) 20.30p C m   , (b) 

20.45p C m   , and (c) 20.60p C m   . In this figure 270 , 20 , 10R nm d nm     . 

The nanoparticle is initially located at ( 50 , 25 , 0 )nm nm nm  . The origin of the 

coordinate system is located on the center of the nanopore (point O, see figure 2).  
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For one specific case of study ( 2270 , 20 , 0.45pR nm C m      ), Figure 7-8 shows that by 

increasing the nanoparticle size, its transport to the opening of the nanoparticle becomes more 

difficult. Further increase of the nanoparticle size may also change the direction of the nanoparticle 

motion. In fact, by increasing the size of the nanoparticle, the hydrodynamic resistance increases. It 

should be mentioned that because the surface electric charge kept constant, increasing the size of the 

nanoparticle causes intensifying the electric charge of the nanoparticle and consequently the 

electrophoretic forces. However, it seems that by increasing the size of the nanoparticle, the 

hydrodynamic resistance strengthens more dramatically rather than the electrophoretic force and 

consequently the nanoparticle transport to the opening of the nanopores becomes more difficult.  
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Figure  7-8 This figure shows the effect of the nanoparticle size on its transport to the 

opening of the nanopore. (a) 10d nm , (b) 12d nm , and (c) 15d nm . In this figure 

20.45p C m   , 270 , and 20R nm    . The nanoparticle is initially located at 

( 50 , 50 , 0 )nm nm nm  . The origin of the coordinate system is located on the center of 

the nanopore (point O, see figure 7.2). 

The results of this study also demonstrates that for the closer nanopores to the poles of the cell (

270   ), the nanoparticles transports to the opening become easier and faster. It can be explained 

by considering these facts that by getting closer to the poles, the TMP becomes stronger and the 

created nanopores become bigger.  For example, we compare the nanoparticle transport to the 

opening of the nanopores created at 270   and 288   . The radius of the created nanopores and 

the TMP at points 270   and  288   are: 270 0.66TMP V  , 288 0.6TMP V  , 270 20R nm  , 
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and 288 15R nm  . The nanoparticle release from ( 40 , 40 , 0 )nm nm nm  . It takes about 18.7 ns

and 46.2 ns  to transport the nanoparticle to the opening of the nanopores created at  270   and 

288   , respectively.  

 

7.6 Concluding remarks 

In this chapter, I have studied the nanoparticle transport to the opening of the created nanopores on 

the cell membrane during the electroporation. First, the permeabilization of the cell studied. While the 

radius and the TMP of the created nanopores were established, the transport of the nanoparticles to 

these created nanopores was investigated. It was shown that unlike the electroosmotic effect, the 

electrophoretic force tends to move the nanoparticle to the opening of the nanopores. The effect of 

Brownian force is negligible compare with electroosmosis and electrophoresis. More highly charge 

and smaller nanoparticles transport easier to the opening of the nanopores. As the nanopores get 

closer to the poles of the cell ( 270   ), the transport of the nanoparticles to their openings becomes 

easier.    
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Chapter 8 

Conclusions and Future Works 

8.1 Conclusions and Contributions of this Thesis 

This thesis dealt with the underlying concepts of the microfluidic cell electroporation. The 

contributions of this work include investigating the electrokinetic effects in nanoscale dimensions, 

electrokinetic motion of nanoparticles in nanochannels, the membrane permeabilization of the cell in 

the microchannel, and mechanism of cell transfection during the electroporation. Key contributions 

may be summarized as follows:  

1. Investigating the membrane permeabilization of the cells located in the microchannels is one of 

the contributions of the current study. This part is presented in Chapter 3. The findings of this 

part shows that: 

 By keeping the electric pulse constant, increasing the microchannel height reduces the 

number and the radius of the biggest nanopores, as well as the electroporated area of the cell 

membrane. 

 If the width of the electrodes is bigger than the cell diameter, the transmembrane potential 

will be centralized and have a sinusoidal distribution around the cell if nanopores are not 

generated. 

 As the width of the electrode decreases and becomes smaller than the cell diameter, the local 

transmembrane potential decreases; in the non-electroporative area, the transmembrane 

potential distribution deviates from the sinusoidal behavior; the induced transmembrane 

potential also concentrates around the poles of the cell membrane (the nearest points of the 

cell membrane to the electrodes). 

 During cell membrane permeabilization, the biggest nanopores are initially created at the 

poles and then the nanopore population expands toward the equator.  

 The number of the created nanopores reaches its maximal value within a few microseconds; 

further presence of the electric pulse may not influence the number and location of the 

created nanopores anymore but will develop the generated nanopores. 
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 Strengthening the electric pulse intensifies the size and number of the created nanopores as 

well as the electroporated area on the cell membrane. 

2. A comprehensive study of the electrokinetic transport through the nanochannels is one of the 

main contributions of the current study.  The details of this part have been explained in Chapter 

4. The results of chapters reveal that:  

 Unlike the microchannels, the electric potential field, ionic concentration field, and velocity 

field are strongly size-dependent in the nanochannels.  

 The electric potential gradient along the nanochannel also depends on the surface electric 

charge of the nanochannel.  

 More counter ions than the co-ions are transported through the nanochannel.  

 The ionic concentration enrichment at the entrance and the exit of the nanochannel is 

completely evident from the simulation results.  

 The study also shows that the flow velocity in the nanochannel is higher when the surface 

electric charge is stronger or the radius of the nanochannel is larger. 

3. In Chapter 5, ionic mass transfer and fluid flow through the generated hydrophilic nanopores of 

the cell membrane during the electroporation are examined. The results show that: 

 The electric potential, velocity field, and ionic concentration vary with the size of the 

nanopores and are different through the nanopores located at the front and backside of the 

cell membrane.  

 On a given side of the cell membrane, angular position of nanopores has fewer influences on 

liquid flow and ionic transfer.  

 By increasing the radius of the nanopores, the averaged velocity and the ionic concentration 

through the nanopores are increased.  

 It is also shown that, in the presence of electric pulse, the electrokinetic effects 

(electroosmosis and electrophoresis) have significant influences on ionic mass transfer 

through the nanopores, while the effect of diffusion on ionic mass flux is negligible in 

comparison with electrokinetics.  
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 Increasing the radius of the nanopores intensifies the effect of convection (electroosmosis) in 

comparison with electrophoresis on ionic mass transfer. 

4. Electrokinetic motion of the nanoparticles through the nanochannels is another contribution of 

the present study. Chapter 6 gives details of this part of the study: 

 Because of the large applied electric field over the nanochannel, the impact of the Brownian 

force is negligible in comparison with the electrophoretic and the hydrodynamic forces.  

 Increasing the bulk ionic concentration or the surface charge of the nanochannel will 

increase the electroosmotic flow, and hence affect the particle’s motion.  

 Unlike microchannels with thin EDL, the change in nanochannel size will change the EDL 

field and the ionic concentration field in the nanochannel, affecting the particle’s motion.  

 If the nanochannel size is fixed, a larger particle will move faster than a smaller particle 

under the same conditions. 

5. Nanoparticle transport to the opening of the created nanopores on the cell membrane during the 

electroporation is the last contribution of the current study. The results of this part have been 

presented in chapter 7: 

 It was found that the negatively charged nanoparticles preferably move into the nanopores 

from the side of the cell membrane that faces the negative electrode.  

 Opposite to the electroosmotic flow effect, the electrophoretic force tends to draw the 

negatively charged nanoparticles into the opening of the nanopores.  

 The effect of the Brownian force is negligible in comparison with the electroosmosis and the 

electrophoresis.  

 Smaller nanoparticles with stronger surface charge transport more easily to the opening of 

the nanopores.  

 Positively charged nanoparticles preferably enter the nanopores from the side of the cell 

membrane that faces the positive electrode. On this side, both the electrophoretic and 

electroosmotic forces are in the same directions and contribute to bring the positively 

charged particles into the nanopores. 
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8.2 Future Works 

Many aspects of this study can be extended for the future studies. Some of them are discussed below:  

 Experimental studies should be performed and a simple lab-on-a-chip design should be 

purposed for microfluidic cell electroporation. In these future studies, the results of the 

current dissertation can be utilized as a guideline to find the optimum parameters and values 

of different geometrical and electrical parameters. As an example, the optimal microchannel 

height and electrode size may be set by considering the results of this study. This study also 

explains how the electric pulse intensity and duration should be manipulation in order to 

create reversible nanopores on the cell membrane and to not kill the cell during the 

electroporation. The optimum electrical and geometrical characteristics of nanoparticles can 

be found from the results of this study. These results explain that how the size and surface 

electric charge of the nanoparticle influence the nanoparticle transport toward the opening of 

the nanopores. The results also show that how the angular position of the generated 

nanopores affects the transportation of negatively and positively charged nanoparticles into 

the cell. It shows that how the biological nanoparticle should be pre-concentrated in order to 

enhance transfection rate.   

 Previous experimental studies showed that the cells start to growth in the presence of external 

electric field (Wang, et al., 2006-b).  There is not any theory that explains the exact 

mechanism behind the swelling of the cell in the applied electric field. Having the accurate 

theory to predict the kinetics of the electroporation can also allow us to design the control 

system which is not case dependent.  

 Theory of membrane permeabilization should be modified to consider cell deformations 

during the electroporation. The current model has some underlying assumptions that must be 

considered carefully. As an example, first, cells are considered to be spherical. However, 

many previous studies show that the cells are elliptical and have a deformed shape under the 

applied electric field or pressure. Furthermore, the effect of cell expansion and rotation during 

the electroporation were not considered. More sophisticated models are needed to investigate 

the effects of electro-deformations such as swelling and rotation.  

 Experimental studies showed that feedback control improves the electroporation efficiency of 

single cells (Cukjati, et al., 2007; Khine, et al., 2007). The feedback control can be utilized to 
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monitor the radii of the pores and the time duration for which the pores remain open, and 

hence ensure the safe and accurate transfection during the reversible electroporation. 

Although a few experimental studies have been reported on the feedback control of the single 

cell electroporation, more analytical studies for dynamic response of cell membrane to the 

external electric field must be performed to develop better feedback control of cell 

electroporation. Because of nonlinear behavior of the cell electroporation, many conventional 

controllers cannot be used. Other user-friendly control techniques (for example fuzzy logic) 

may be utilized to control the electroporation process.  
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Appendix B 

Approximate Solution of the Electrokinetic Effects in Slit 

Nanochannels 

In this section, the aim is to find an analytical and approximate method to compare the effects of 

electroosmosis and electrophoresis on ion mass transfer through the nanochannels. To simplify the 

analysis, we will consider a one-dimensional slit nanochannel of height h, as shown in Figure B-1. At 

the cross section of the slit nanochannel, the electroosmotic and electrophoretic ionic fluxes will be 

estimated and compared.  Generally, Nernst-Planck equation can be used to find the ionic flux: 

,i i i i m i i
N cu D c z Fc       (B.1) 

In this equation, the first, second and third terms represent the influences of convection 

(electroosmosis), the diffusion, and the electrophoresis on ion flux of type i, respectively. Thus, the 

ration of the electroosmosis flux ( EON ) to the electrophoresis flux ( EPN ) of ion types i can be written 

as:  

,

EO i

EP i m i i

N c u

N z Fc 



 (B.2) 

In the above equation, u and   are unknown. Finding exact analytical expressions for these 

parameters seems to be impossible; therefore, we will look for an approximate solution for them.  

 

 

 

              y 

            

 

 

 

Figure B-1 Schematic diagram of slit nanochannel 

It is assumed that there is an unidirectional and fully developed flow field through the slit 

nanochannel; following equation with proper boundary conditions should be solved to find the 

velocity: 

                                        h                                       flow field 

                 x    
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By integrating Eq. (B.3) over the nanochannel cross section we have: 
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Eq. (B.6) can be integrated in order to find the velocity in the nanochannel: 

0 0 0

y y y

x i i

u
ds FE z c drds

x


    


  

0 00

y y

x i iy
u u FE z c drds        (B.7) 

If we integrate Eq. (B.7) from 0 to h, the velocity at the center of the nanochannel (
EOU ) can be 

found as: 

0 00

0

h h

x i ih
u u FE z c drds      

 

                                          0 0

h h
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(B.8) 

Eq. (B.8) can be calculated approximately by the average value of integral 
x i i

FE z c multiple by 
2h : 

                                          

2

EO x i i
U h FE z c    (B.9) 
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