
An Instruction Scratchpad Memory

Allocation for the Precision Timed

Architecture
by

Aayush Prakash

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Aayush Prakash 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Aayush Prakash

ii

Abstract

This work presents a static instruction allocation scheme for the precision timed architectures

(PRET) scratchpad memory. Since PRET provides timing instructions to control the temporal

execution of programs, the objective of the allocation scheme is to ensure that the explicitly spec-

ified temporal requirements are met. Furthermore, this allocation incorporates instructions from

multiple hardware threads of the PRET architecture. We formulate the allocation as an integer-

linear programming problem, and we implement a tool that takes binaries, constructs a control-

flow graph, performs the allocation, rewrites the binary with the new allocation, and generates an

output binary for the PRET architecture. We carry out experiments on a modified version of the

Malardalen benchmarks to illustrate that commonly known ACET and WCET based approaches

cannot be directly applied to meet explicit timing requirements. We also show the advantage of

performing the allocation across multiple threads. We present a real time benchmark controlling

an Unmanned Air Vehicle as the case study.

iii

Acknowledgements

I am grateful to Dr. Hiren Patel, who has been more than a supervisor, mentor and friend.

This work would not have been possible without his guidance and encouragement. I think the

learning experience and support I received throughout my masters, kept me motivated to work

and perform. I would also like to thank Dr. Siddharth Garg and Dr. Mahesh Tripunitara for their

support and valuable comments as my committee members. I feel incredibly fortunate to have

the privilege of interacting with such great people.

I would like to thank my friends in Waterloo for making my stay memorable, enjoyable and

learning experience. My thesis would not have been possible without their support.

Lastly but not the least, I would like to thank my parents and my sister for motivating and

encouraging me during the tough and distressing times during my masters. I simply would not

be the person that I am today without their help and unconditional love. I thank my parents for

the valuable education that they have provided me and guidance through every step of my life.

iv

Dedication

This thesis is dedicated to the loving memory of my grandfather who taught me everything

in life and loved me the most.

I would also like to dedicate my thesis to my parents, Ajit & Sanju and my sister Akanksha.

v

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 4

1.3 Thesis Organization . 4

2 General Background: Related Work and PRET Architecture 6

2.1 Related Work . 6

2.2 PRET Architecture and the timing instructions 9

2.2.1 Timed blocks . 10

3 CFG Construction, timing and WCET Analysis 12

3.1 Source to Source Translation . 13

vi

3.2 Stage 2: Parsing and CFG Construction . 15

3.2.1 Parsing the binary . 15

3.2.2 Identifying basic blocks . 17

3.3 Identifying timed blocks . 20

3.4 WCET Analysis for the PRET Architecture . 27

4 SPM Instruction Allocation 28

4.1 Problem Formulation . 29

5 Re-writing 35

5.1 Re-writing the PRET executable binary . 35

6 Results 40

6.1 Comparison of our scheme vs ACET and WCET based approaches 42

6.2 Experiments on Shared SPM vs Dedicated SPM 47

7 Case Study 50

7.1 Unmanned Air Vehicle . 50

8 Conclusion 53

8.1 Future Work . 53

References 55

vii

List of Tables

2.1 ISA extensions with timing instructions for PRET. 9

4.1 Symbol table for variables used in allocation. 29

6.1 Malardalen Benchmarks. 42

7.1 Tasks and their timing requirements in Papabench. 52

viii

List of Figures

1.1 The VGA thread program with its control flow. 3

2.1 The Memory Map of PRET . 10

2.2 Variants of timed blocks. 11

3.1 Proposed tool flow for instruction SPM allocation for PRET. 12

3.2 Timing constructs for specifying timing requirements. 13

3.3 Example with timing constructs. 14

3.4 Control-flow graph construction. 16

3.5 A simple example of a jump table. 19

3.6 Timed block identification. 21

3.7 Assembly program fragment for timed block. 22

4.1 Identifying the frequency. 32

4.2 Example allocation. Note that it shows a fragment of the binary code. 34

5.1 Simple example of jump table with targets. 36

ix

5.2 Re-written jump table with targets. 37

5.3 Illustration of rewriting. 37

5.4 Adding branch instructions to maintain control flow. 38

6.1 Timing requirements met versus SPM size. 41

6.2 Percentage of Timing requirements Met. 43

6.3 Size requirements. 45

6.4 Percentage of timing requirements met . 47

6.5 Total Size requirements . 48

7.1 Task from Papabench . 51

7.2 Inter-task interactions in Papabench with control and data dependency. 51

x

Chapter 1

Introduction

1.1 Motivation

The Precision Timed architecture (PRET) is a hard real-time embedded processor architec-

ture [13] that has predictable timing behaviours. PRET achieves predictability by making in-

struction execution repeatable. This simplifies the complexity of determining worst-case execu-

tion time (WCET) estimates of programs executing on PRET. WCET estimates are necessary to

guarantee that temporal requirements of time-sensitive applications such as those in avionics, au-

tomotive and other safety-critical systems, are always met. PRET also introduces timing instruc-

tions that explicitly state timing requirements in the program. These timing instructions allow

controlling the temporal behaviours of the program. PRET’s memory hierarchy favours a shared

scratchpad memory (SPM) for instruction and data. Caches are not used because obtaining tight

WCET estimates with caches is complex [6]. SPMs, on the other hand, use software-controlled

techniques to move instructions on and off the SPM; thereby, allowing the designer to have con-

trol over the transfers on and off the SPM. This makes SPMs an attractive alternative over caches

1

for predictability.

Although SPMs are predictable, manually performing the allocation of instruction and data is

tedious, and error prone. Consequently, there are works that automatically allocate instructions

and/or data onto the SPM [7, 23]. SPM allocation techniques that are WCET-centric such as that

proposed by Deverge and Puaut [7] and Suhendra et al. [23] perform automatic allocation with

the objective of reducing the worst-case execution path of the program. These works present

innovative allocation techniques, but mainly for reducing the WCET of a single task. Hence,

it cannot be directly applied to multi-threaded applications. Suhendra and Roychoudhry [24]

address this by performing allocations with the goal of minimizing worst-case response time for

concurrent embedded programs. Note, however, PRET programs have explicitly defined timing

requirements, which means that reducing the worst-case path may not be sufficient to meet the

timing requirements. For example, there may be timing requirements that do not fall on the

worst-case path of the program. Then, the objective of minimizing the worst-case path for SPM

allocation may entirely neglect these timing requirements.

Current PRET programming practices require entire programs to fit on the scratchpad mem-

ory [13]. This limits PRET’s practical use since programs are typically larger than the SPM size,

and manual allocation is inefficient. This brings us to the focus of our work: a static instruction

SPM allocation scheme for the PRET architecture that is aware of timing requirements explicitly

specified in the program. In particular, we identify the basic blocks enclosed within PRET’s

timing instructions (called a timed block), and schedule the basic blocks within this timed block

such that it just meets its timing requirement. By allocating just enough instructions to meet the

timing requirements, we conserve space on the shared SPM. This is important because it enables

other instructions from other timed blocks in the same program, and from other threads to utilize

the space for meeting requirements specified in their timed blocks. Notice that we present a static

approach such that the program has the same allocation for its entire execution.

2

1 void VGA Thread () {
2 B1 :
3 img = getImage (g raph i c s bu f f e r) ;
4 snr = getSNR(Img) ;
5 i f (snr<thresh) {
6 B2 :
7 img = medianFi l te r (img) ;
8 updateGraphicsBuf fer (img) ;
9 }

10 else {
11 B3 :
12 writeImage (VGA pin , img) ;
13 invokeGraphicsThread () ;
14 }
15 }

1

(a) C code.

START

B1

B2 B3

END

A

B C

ED

1

(b) High level CFG.

Figure 1.1: The VGA thread program with its control flow.

We will take an example highlighting the problem we identify with the WCET reduction for

single thread. Using the timing instructions as described in table 2.1 we can specify the timing

requirements in the program. But when we try to reduce the WCET, it may not be necessary

that we meet the deadlines. For instance, 1.1b shows a control flow graph of a VGA Thread.

The program (1.1a) reads image from the graphics buffer and checks the SNR of the image. If

the image is noisy, it undergoes median filtering (the path (A,B,D)) which is highly compu-

tationally expensive. Else the program writes the image to the VGA pin (the path (A,C,E)).

The data (image here) has to be written at a particular frequency and time to the VGA pin. Thus

the VGA pin has an inherent timing requirement ((A,B,D)) and was found to be WCET path

with x cycles. (A,C,E) takes y cycles. There is a timing requirement for the path (A,C,E)

of z cycles, such that z < y. The path (A,B,D) is allocated to SPM to reduce the WCET, and

assuming it consumes the entire SPM space, the path (A,C,E) will not be allocated to SPM and

3

hence will miss the deadline. On the other hand if (A,C,E) is allocated instead of (A,B,D),

then the deadline can be met, given the fact that y becomes lower than z after allocation.

1.2 Summary of Contributions

The main contributions of this work are threefold: 1) a static instruction SPM allocation scheme

to meet explicit timing requirements in the program, 2) ensuring that the allocation selects the

minimum number of instruction blocks that satisfy the timing requirements, and 3) a tool that

automates the analysis and allocation from ARM binaries. We perform our allocation on com-

piled binaries because it allows the allocation to operate on instructions that are a part of a

library, whose source might be unavailable, and to make the allocation scheme compiler agnos-

tic such that any pre-compiled binary following the ARMv4 ISA can be used. We implement

a tool that accepts binaries as input, parses them and constructs control-flow graphs (CFG)s for

each thread, identifies timed blocks and control-flow subgraphs encompassed within those timed

blocks, computes WCET estimates of the timed blocks, and performs the instruction SPM alloca-

tion. We formulate the allocation as an integer-linear programming (ILP) problem that allocates

the minimum number of instruction blocks necessary to meet the timing requirements of the

timed blocks. We perform experiments on a subset of modified Malardalen benchmarks to show

the benefits of performing the allocation across multiple threads when using a shared SPM.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 1 presents the motivation behind the work and the

contributions. We discuss the background, PRET, timing instructions and related work in chap-

ter 2. Chapter 3 talks about CFG (control flow graph) construction, timing and WCET analysis

4

of a given binary. We present instruction allocation in chapter 4 and re-writing of the binary after

allocation in chapter 5. Results are present in chapter 6 and the UAV case study in chapter 7. We

conclude the thesis with chapter 8.

5

Chapter 2

General Background: Related Work and

PRET Architecture

2.1 Related Work

There are two broad areas of research in SPM allocation: reduction of average-case execution

time (ACET) [3, 27], and reduction of worst-case execution time (WCET) [7, 23]. General

purpose systems use ACET methods, and hard real-time systems typically use WCET methods.

Avissar et al. [3] present a static SPM allocation at compile time. They formulate the allocation as

an ILP problem, allocating the most profitable instructions and data. Udayakumaran et al. [27],

propose a IPET(Implicit Path Enumeration Technique)based dynamic allocation of instructions

& data to SPM using compile time decisions. They divide the whole program into regions (with

fixed allocation) guarded by program points and associate time stamps at each program points.

These program points can be functions, loop entry or exit points, start or end of if/else, switch

statements, etc. The level of allocation for instructions are these regions, while for us, its ba-

6

sic blocks. These time stamps help in collecting data access and instruction frequency during

profiling. The time stamps help decide the potential candidates for allocation and eviction. The

candidates for allocation are the ones giving higher latency gain and lower transfer cost. But,

both [3, 27] cannot be used for real time systems, as opposed to our work which deals with hard

real time systems.

The authors in [7, 23] propose data allocation schemes that focus on reducing the WCET of

the program They identify a unique problem that is the WCET path may change with a single

allocation of data. They first formulate the problem of static allocation of data to SPM as 0-1 ILP

problem. Then they iteratively allocate one variable to SPM and perform the WCET analysis to

determine the new WCET path in each iteration. Deverge [7], also identify the same problem, and

come up with an iterative scheme for dynamic allocation of data to SPM. However, by reducing

the execution time of the worst-case path of the program, the allocation does not account for

timing requirements that may be embedded via timing instructions. We focus on meeting timing

requirements that are explicitly specified in the program. For example, a VGA I/O operation

that must occur at specific pre-defined rates may not lie on the worst-case path. Minimizing the

worst-case path may neglect this explicit timing requirement, which is the focus of our work.

Note that while our approach focuses on the instruction SPM allocation part of the problem, the

deficiency with WCET reduction exists for both data and instruction.

Other research efforts by Whitham and Audsley [29] present a hardware based WCET-

directed dynamic data and instruction allocation to SPM by introducing a time-predictable scratch-

pad memory management unit (SMMU). They point out the problem of pointer aliasing and

pointer invalidation when using when supporting dynamic structures. For this, they propose

a memory management unit that translates logical addresses to physical addresses. They later

present an allocation scheme that uses the SMMU [30]. This is also a WCET-centric allocation

that focuses on reducing the execution time on the WCET path.

7

Recent works have focused on allocation of instructions across multiple threads [15, 24].

Metzlaff et al. [15] present a predictable hardware-based dynamic allocation to instruction SPM

for a simultaneous multi-threaded processor. Their proposal is to dynamically allocate the SPM

at the granularity of functions, which is similar to method caches by Schoeberl et al. [21]. The

loading of the SPM is done at runtime.

Mitra et al. [24] incorporate interference between threads due to dependencies in pre-emptive

scheduling, and include this in their allocation scheme as presented in [23]. They propose a

metric called worst-case response time of a concurrent application based on [23] and model

the application as message sequence chart to capture thread interactions. Their SPM allocation

method is similar to their earlier work [23] described eariler.

Schoeberl et al. [22, 10] and Andalam et al. [1] both introduce a PRET like architecture,

named Patmos and ARPRET respectively. Schoeberl et al. discuss how compiler transforma-

tions, and optimizations can impact the WCET paths where the analysis uses an iterative implicit

path enumeration technique approach [10]. Andalam et al. [1] present a concurrent language

PRET-C coupled with a microblaze-based platform called ARPRET, to ensure concurrency and

predictability in programs. PRET-C uses an EOT instruction that is capable of making threads

wait for a specified time, and can achieve some of the functionalities like repeatability and mutual

exclusion. While EOT provides an implicit notion of time, it is different than PRET [13] in that

PRET requires explicit timing instructions. As of now, the authors have not concentrated on the

SPM allocation problem. In summary, most existing allocation approaches are WCET-centric,

which does not directly apply to the PRET architecture with explicit timing requirements. Our

own previous efforts used profiling for SPM allocation for PRET [19]. The work in this paper

extends this work by performing static analysis, and an allocation; thereby, completing the entire

automation tool as well.

8

2.2 PRET Architecture and the timing instructions

The precision timed architecture (PRET) is a hard real-time embedded processor that has pre-

dictable and repeatable temporal behaviors [13]. This is a multi-processing architecture with a

thread-interleaved pipeline that supports four hardware threads [5]. PRET also proposes instruction-

set architecture (ISA) extensions to the ARMv4 ISA, which allow the user to specify temporal

requirements in the form of timing instructions [5] to control the temporal behaviour of the pro-

gram. We present these timing instructions in Table 2.1 [5].

Instruction Semantics
set time %r, offset Load the currentTime+ offset into register %r
delay until %r Stall pipeline until currentTime >= [%r].
branch expired %r, target Conditionally branch to the target if the currentTime > [%r].
exception on expire %r, id Processor throws an exception with id when currentTime > [%r].
deactivate exception id Disable exception handler for exception id.

Table 2.1: ISA extensions with timing instructions for PRET.

PRET puts forward a memory hierarchy that shares one SPM between the four threads for

both instructions and data. However, the off-chip main memory assigns a particular DRAM bank

to a hardware thread [20]. For more information about the PRET memory hierarchy, we forward

the readers to [20].

Figure 2.1 describes the memory map of the PRET architecture. The address spaces 0x00000000-

0x00000020, 0x00000020-0x00004000 and 0x00004000-0x00004100 are reserved for excep-

tion vector table, supervisor mode stack and IRQ mode stack respectively. The address space

0x40000000-0x40400000 corresponds to four hardware threads. The address space 0x40400000-

0x40410000 represents the shared SPM among all the threads.

9

0x00000000
0x00004100

0x40000000

0x40100000

0x40200000

0x40300000

0x40400000
0x40410000

0xFFFFFFFF

Thread 1 Address Space

Thread 3 Address Space

Empty

Empty

 Exception Vector Table + Stack

Thread 0 Address Space

Thread 1 Address Space

Scratchpad Memory

Figure 2.1: The Memory Map of PRET

2.2.1 Timed blocks

We use the timing instructions from Table 2.1 to define timed blocks.

A timed block encloses a sequence of instructions that have a specific temporal requirement.

Figure 2.2 shows code fragments that use macros that synthesize to timing instructions from

Table 2.1, and define timed blocks. For example, the v1 timed block (line 8–10). This timed

block specifies that the enclosed code must always take 100ns. Notice that there are three variants

v1, v2 and v3, each with unique semantics. Variant v1 specifies that the enclosed code must

always take at least the specified amount of time. If the program runs faster, then it is padded

with no-operations until the specified timing requirement. There is no exception if the execution

exceeds the timing requirement. For variant v2, the semantics are the same as v1 except that

violations of the timing requirements cause a branch to the patchup() function at the end of the

10

timed block. Variant v3 provides immediate miss detection, which branches to the patchup()

function as soon as the timing requirements are violated.

1 i n t main () {
2 i n t i , j ;
3 char i n b u f [M] [N] ;
4 char o u t b u f [M] [N] ;
5 f o r (i =0 ; i<M, i ++){
6 f o r (j =0 ; j<N; j ++){
7 / / v1 : r1 , 1 0 0 ns
8 SET TIME (1 , 1 0 0) ;
9 i n b u f [i] [j]= i n p o r t ;

10 DELAY UNTIL (1) ;
11 }
12 }
13 / / v2 : r1 ,100000 ns
14 SET TIME (1 , 1 0 0 0 0 0) ;
15 o u t b u f = f i l t e r (i n b u f) ;
16 BRANCH EXPIRE(1 , p a t c h u p ()) ;
17 DELAY UNTIL (1) ;
18 d i s p l a y (o u t b u f) ;
19 re turn 0 ;
20 }

(a) Variants 1 and 2 of timed block.

1 void d i s p l a y (char o u t b u f [] []) {
2 / / v3 : r1 , 1 0 0 ns
3 SET TIME (1 , 1 0 0) ;
4 EXCEPTION EXPIRE (1 , 2) ;
5 writeToVGA (o u t b u f) ;
6 DEACTIVATE EXCEPTION (2) ;
7 DELAY UNTIL (1) ;
8 }

(b) Variant 3 of timed block.

Figure 2.2: Variants of timed blocks.

11

Chapter 3

CFG Construction, timing and WCET

Analysis

Thread 0

Thread 1

Thread 3

Thread 2

C Source Files
with Timing Constructs

Compile with
arm-elf-gcc

Parsing & CFG
Construction

Source-2-source
Translation

WCET
Analysis

Time Block
Identification

ISPM
Allocation

C Source Files
with Timing Instructions

Thread 0

Thread 1

Thread 3

Thread 2

ARM ELF
Binary Files

Thread 0

Thread 1

Thread 3

Thread 2

Binary
rewriting

ARM Binary Files
with Allocation

Thread 0

Thread 1

Thread 3

Thread 2

Figure 3.1: Proposed tool flow for instruction SPM allocation for PRET.

We prototype a tool that performs instruction SPM allocation for the multi-threaded PRET

architecture [13]. As indicated by Lickly et al. [13], these threads can be a part of a single ap-

plication or they can be executing different applications. Figure 3.1 shows the main stages of the

SPM allocation tool. The first stage performs a source to source translation of the original source

program with the timing constructs to its representative source program with timing instructions.

This is purely a source translation where we embed the appropriate timing instructions in place

of the timing constructs. We use the GNU ARM GCC compiler to compile each of the threads

12

into its respective binary files. Notice that no SPM allocation is done in this stage. After hav-

ing generated the binary, the second stage parses the binary, and constructs a control-flow graph

(CFG) for each thread. For this work, we support binaries using the ARMv4 ISA. In the third

stage, we use the constructed CFGs to identify basic blocks, and timed blocks formed by the

timing instructions in the program. This allows us to perform static WCET analysis on the basic

and timed blocks for each CFG in the fourth stage. Notice that the design of the PRET archi-

tecture significantly simplifies the WCET analysis [13] because of its predictable and repeatable

instruction execution. The fifth stage uses the results of the WCET analysis and provides it to

the SPM allocation stage, which determines the blocks to allocate on the shared SPM given the

timing constraints imposed by the timing instructions, and the size of the SPM. Upon determin-

ing the allocation, we rewrite the binary making the necessary changes to reflect the allocation in

stage six. The rewriting requires adding instructions to the binary for preserving the correct pro-

gram flow semantics. Finally, we output the rewritten binaries that are executable on the PRET

architecture.

3.1 Source to Source Translation

1 t r y f o r (1 0 0 , P NS) {
2 / / . . .
3 }

(a) tryfor

1 t r y i n (100000 , P NS) {
2 / / . . .
3 } immed ia t eCa tch (. . .) {
4 p a t c h u p () ;
5 }

(b) tryin with patchup()

1 t r y i n (1 0 0 , P NS) {
2 / / . . .
3 } catch (. . .) {
4 p a t c h u p () ;
5 }

(c) tryin

Figure 3.2: Timing constructs for specifying timing requirements.

Timing constructs provide a structured approach to encoding timing requirements in the pro-

gram. These are essential because they ensure that the description of timing requirements are

13

wellformed. An example of a malformed timing requirement is one that has a set time to indi-

cate the start of the timed block, but one that does not have a terminating delay until. For the

three variants of timing instructions described in Section 2.2, we provide three timing constructs

as illustrated in Figure 3.2 [19]. We provide C constructs to specify the three variants of the

timed block (v1, v2 and v3) shown in figure 2.2. We convert these timing constructs into timing

instructions from Table 2.1. Listing 3.2a synthesizes to the first variant, Listing 3.2b converts to

the second variant with a patchup() invocation when the timer expires, and Listing 3.2c synthe-

sizes to the third variant supporting immediate exception handling once the timer expires. The

example shown in Figure 2.2 with the corresponding timing constructs is shown in Figure 3.3.

1 i n t main () {
2 i n t i , j ;
3 char i n b u f [M] [N] ;
4 char o u t b u f [M] [N] ;
5 f o r (i =0 ; i<M, i ++){
6 f o r (j =0 ; j<N; j ++){
7 / / v1 : r1 , 1 0 0 ns
8 t r y f o r (1 0 0) {
9 i n b u f [i] [j]= i n p o r t ;

10 }
11 }
12 }
13 / / v2 : r1 ,100000 ns
14 t r y i n (1 0 0 0 0 0) {
15 o u t b u f = f i l t e r (i n b u f) ;
16 }
17 e x p i r e {
18 p a t c h u p () ;
19 }
20 d i s p l a y (o u t b u f) ;
21 re turn 0 ;
22 }

(a) Timing constructs for v1
and v2.

1 void d i s p l a y (char o u t b u f [] []) {
2 / / v3 : r1 , 1 0 0 ns
3 t r y i n (1 0 0) {
4 writeToVGA (o u t b u f) ;
5 }
6 catch (e x c e p t i o n i d) {
7 p a t c h u p () ;
8 }
9 }

(b) Timing constructs for v3.

Figure 3.3: Example with timing constructs.

14

3.2 Stage 2: Parsing and CFG Construction

We parse the binaries, and construct the CFG representation for each thread from its compiled

binary. While we discuss the details of the CFG construction algorithm for a single thread, the

same applies to all other threads. The key steps involved in this stage are parsing the binary,

detecting the basic blocks, discovering the blocks that form timed blocks, identifying the tar-

get addresses for branch instructions, and representing this information in a control-flow graph

(CFG) data structure. These key steps form the crux of Figure 3.4, which we explain next.

3.2.1 Parsing the binary

Using the GNU ARM GCC toolchain, we generate a binary in the SREC format. This is a textual

representation of its equivalent ELF binary. Note that this is a compiled binary, which consists

of a sequence of instructions with each instruction being assigned a program counter (pc) by the

compiler as described in Definition 1. We use the domain B = {0, 1} to represent binary values.

We use a superscript to denote the bit-width of the particular field. For example, B32 indicates a

binary string that is 32 bits wide.

Definition 1. A compiled program is a sequence of program counter (pc) and instruction pairs

pi = [(pc1, i1), (pc2, i2), ..., (pc|p|, i|p|)] where |pi| is the number of static instructions in the pro-

gram, pcm ∈ B32 is a 32-bit program counter for instruction im, and im ∈ B32 is a 32-bit

encoding of the mth instruction. The set of all compiled programs is denoted by P .

An instruction in the compiled program is encoded in binary. This encoding contains the

operation to be performed by the instruction, the source and destination registers used by the

instruction, and offsets for control-transfer instructions. We decode the binary representation of

instructions, and represent the instruction as shown in Definition 2.

15

Algorithm 1: Control-flow graph construction.

Input: P = 〈ci1, ci2, . . . , cif 〉
Output: G = 〈V,E〉

1 Let ControlTransfer be the set of opcodes for control-transfer instructions
2 Let V ← ∅ and E ← ∅
3 Let LI ← [] be an empty sequence of compiled instructions
4 Let vp, vc be vertices
5 Let C ← {t ∈ B32 : ∀c ∈ P, t← getTargetInstruction(c)} be the set of target

instructions for control-transfer in P
6 foreach ci in P do
7 if {ci} ∩ C 6= ∅ ∧ isNotEmpty(LI) then
8 if isBlockPresent(getAddress(peek(LI)), V) then
9 vp ← findBlock(getAddress(peek(LI)), V)

10 vp ← updateBlock(vp, LI)

11 else
12 vp ← createBlock(LI)
13 end
14 if isBlockPresent(getAddress(ci), V) then
15 vc ← findBlock(getAddress(ci), V)
16 else
17 vc ← createEBlock(getAddress(ci))
18 end
19 E ← E ∪ {(vp, vc)}
20 V ← V ∪ {vp, vc}
21 LI ← []

22 end
23 add(LI , ci)
24 if {getOpcode(ci)} ∩ ControlTransfer 6= ∅ then
25 if isBlockPresent(getAddress(peek(LI)), V) then
26 vp ← findBlock(getAddress(peek(LI)), V)
27 vp ← updateBlock(vp, LI)

28 else
29 vp ← createBlock(LI)
30 end
31 Vc ← ∅
32 foreach ti ∈ getComputedTargets(ci, P) do
33 if isBlockPresent(getAddress(ti), V) then
34 Vc ← Vc ∪ {findBlock(getAddress(ti), V)}
35 else
36 Vc ← Vc ∪ {createEBlock(getAddress(ti))}
37 end

38 end
39 E ← E ∪ {(vp, vc) : ∀vc ∈ Vc}
40 V ← V ∪ Vc

41 LI ← []

42 end

43 end

1
Figure 3.4: Control-flow graph construction.

16

Definition 2. A three operand instruction is a 5-tuple i = 〈op, sReg1, sReg2, dReg, tOffset〉
where op ∈ OPCODES defines the set of all operations an an instruction can perform, sReg1,

sReg2 ∈ B5 are source registers, dReg ∈ B5 is the destination register, and tOffset ∈ B16 is

the offset for control-transfer instructions.

Figure 3.4 takes as input the sequence of instructions of the compiled program, and outputs

a control-flow graph (CFG) of the main function. We define the CFG in Definition 3.

Definition 3. A control-flow graph (CFG) is a directed graph G = 〈V,E〉 where V ⊆ Z+ × P
is the set of basic blocks, and E ⊆ V × V is the set of edges dictating the control-flow of the

program. A vertex v = 〈k, p′〉 is a tuple where k is a unique identifier for the vertex, and p′ is the

compiled sequence of instructions forming the basic block.

3.2.2 Identifying basic blocks

A key component in constructing the CFG is identifying basic blocks of the program. A basic

block is a part of a program that is a sequence of instructions with a single entry point, and a sin-

gle exit point. This means that none of the instructions within the basic block are target addresses

of control-transfer instructions of any instruction in the program. In addition, the basic block’s

last instruction is a control-transfer instruction. These basic blocks are the vertices of the CFG

uniquely identified via k with instructions contained in the basic block as a sequence of instruc-

tions p′. We locate control-transfer instructions in the program, and determine the target address

of the control-transfer instruction by as indicated by the ARM reference manual [2].Note that the

method of computing the target address depends on the type of control-transfer instructions. We

show this in line 5 of Figure 3.4.

Figure 3.4 uses ci = (pc, i), as a compiled instruction i with program counter pc.. The

algorithm iterates through the instructions in the compiled program, and constructs vertices based

17

on two conditions. The first condition is when when ci’s pc is a target of some other control-

transfer instruction (line 7–2), and the second is when ci is a control-transfer instruction (line 24

– 42) itself. In the first condition, we collect the sequence of instructions that are neither control-

transfer or targets of control-transfer instructions in LI . Lines 8–13 check if a basic block for the

instructions in LI already exists or not. If it does, then that vertex is denoted vp, but if it does

not, then it is created. This is the parent vertex. Then, lines 14–18 performs the same check for

ci, and finds the vertex to which it belongs if one exists; otherwise, it creates a new one. Since

these two vertices follow one after another, we create an edge between the two and insert the

edges, and nodes into the CFG in lines 19–20. The second condition (lines 24–42) addresses

the situation when ci is a control-transfer instruction. Similar to the first condition, lines 25–30

find or create the parent vertex. Notice that if a vertex is found then we update the instructions

that belong to it using updateBlock(...). Since control-transfer instruction can have multiple

targets (consider conditional branches and jump tables), we retrieve the set of possible targets

using computeTargets(...). For each one of these possible targets, we either create a vertex, or

we retrieve the vertex associated with the target. Later, we insert edges to all these targets in line

39, and add the vertices to the set of vertices V .

We describe how we identify the targets for control-transfer instructions next (line 32). By

targets, we mean the address of the children to add and preserve edges from the parent to children

(line 39). PRET supports multiple control-transfer instructions that include immediate branches,

register-indirect branches (including instructions that alter the program counter using loads), and

timing instructions with exception handling.

We support immediate branches, timing instructions with exception handling, and a subset

of register-indirect branches. In particular, we focus on the register-indirect branches that imple-

ment jump tables. Immediate branches encode the offset in the immediate field tOffset of the

instruction. Hence, it is straightforward to compute the target address, which is a function of the

18

immediate value and the program counter of the instruction itself.

Identifying the target addresses of register-indirect branches, on the other hand, are difficult

in general. This is because the target address is contained within a register. Determining the

potential target addresses of register-indirect branches in general requires a form of binary-level

data-flow analysis [9] such that expected data values of the registers are known through the

analysis. Our approach is different in that we perform a partial data-flow analysis to compute

the potential target addresses for commonly used register-indirect branches. The most common

of these is the use of jump tables that are used to implement switch statements, and procedure

calls. Figure 3.5 presents a simple example with a jump table where the ldrls instruction

conditionally executes only if the cmp evaluates to true. Note that the ARMv4 ISA supports

conditional execution of all instructions. The instruction ldrls loads the address pc+4+r1×4
into the program counter register only when r1 is less than or equal to 2. By inspecting this simple

program, one can determine that the possible offsets (value of r1) for which the ldrls executes

are 0, 1 and 2. Hence, the target address can be pc+ 4, pc+ 8 or pc+ 12. Since we do not know

the actual value of r1, we conservatively construct edges from the end of the basic block with

the register-indirect instruction to each of the possible target addresses.

0x0000bc48: cmp r1, #2
0x0000bc4c: ldrls pc, [pc, r1, lsl #2]

Figure 3.5: A simple example of a jump table.

Another common use of register-indirect branches is to return from procedure calls. A call is

made from a procedure Crk (caller) to procedure Ce (callee), using the branch and link instruc-

tion. To return from a procedure Ce to the procedure Crk, the link register with Crk’s address

is loaded into the pc. Our partial analysis correctly handles register-indirect branches used in

procedure calls. We accomplish this by making a callback list for Ce with all the procedures

19

Cr1, Cr2, ..., Crk that invoked Ce at some point of time using static analysis. The targets of

register-indirect branches from Ce are the program points in Cr1, Cr2,, Crk that invoke Ce.

Control transfers as a result of exceptions in the timing instructions are handled similar to imme-

diate branch instructions. However, we acknowledge that a limitation of our work is that we do

not support general register-indirect branches at the moment.

Figure 3.6a shows a binary corresponding to a simple loop program with timing instructions.

Figure 3.6b shows how we construct CFG given the binary. We add all the instructions sequen-

tially from lines 2–19 in LI (using line 23 in Figure 3.4). When we reach line 21, we see its a

target of branch instruction on line 37. So we create a basic block B1, update it with LI , and

then create an empty block B2 using address of instruction on line 21, and add edge from B1 to

B2 (using lines 7-22 in Figure 3.4). We set LI as empty.

We then add sequence of instructions from lines 21 to 23 in LI until we encounter a control

transfer instruction. We try to find if we created an empty block corresponding to LI before, and

we did as the block is B2. We do this search using address of first instruction on LI , i.e. line 21.

We update the sequence of instructions in B2. B2 has two children, so we create empty blocks

B3 and B4 with addresses on line 39 and 25 respectively and add directional edges from B2 to

B3 and B4. We set LI as empty. Similarly we update the instructions on B3 and B4, whenever

we encounter their control transfer instructions on line 46 and 37 respectively. We also add an

edge from B4 to B2. This is done using lines 24–42 of Figure 3.4.

3.3 Identifying timed blocks

Timed blocks enclose program code between two timing instructions. The first timing instruction

is the set time and the second is typically the delay until. The program code within these two

20

1 B1 :
2 40000024: mov ip , sp
3 40000028: stmdb sp ! , { fp , ip , l r , pc}
4
5 40000034: mov r2 , #8000
6 40000038: mov r3 , #0
7 4000003 c : s t t r2 , r3 , r3 , 0
8 40000040: mov r1 , #3
9 40000044: s t r r1 , [fp , #−16]

10
11 40000060: mov r2 , #8000
12 40000064: mov r3 , #0
13 40000068: dut r2 , r3 , r3 , 0
14 4000006 c : mov r2 , #9984
15 40000070: add r2 , r2 , #16
16 40000074: mov r3 , #0
17 40000078: s t t r2 , r3 , r3 , 0
18 4000007 c : mov r1 , #0
19 40000080: s t r r1 , [fp , #−16]
20 B2 :
21 40000084: l d r r1 , [fp , #−16]
22 40000088: cmp r1 , #9
23 4000008 c : bgt 400000 c4
24 B4 :
25 40000090: mov r2 , #8000
26 40000094: mov r3 , #0
27 40000098: s t t r2 , r3 , r3 , 0
28 4000009 c : l d r r1 , [fp , #−20]
29 400000 a0 : sub r1 , r1 , #3
30 400000 a4 : s t r r1 , [fp , #−20]
31 400000 a8 : mov r2 , #8000
32 400000 ac : mov r3 , #0 ; 0x0
33 400000b0 : dut r2 , r3 , r3 , 0
34 400000b4 : l d r r1 , [fp , #−16]
35 400000b8 : add r1 , r1 , #1
36 400000bc : s t r r1 , [fp , #−16]
37 400000 c0 : b 40000084
38 B3 :
39 400000 c4 : mov r2 , #9984
40 400000 c8 : add r2 , r2 , #16
41 400000 cc : mov r3 , #0
42 400000d0 : dut r2 , r3 , r3 , 0
43 400000d4 : mov r1 , #0
44 400000d8 : mov r0 , r1
45 400000dc : sub sp , fp , #12
46 400000 e0 : ldmia sp , { fp , sp , pc}

1

(a) Source binary.

START

B1

B2

B4B3

END

(b) CFG.

START

B11

B12TENT

B13

B14TEXT

B15TENT

B16

B2

B31TEXT

B32

B41 TENT

B42

B43 TEXT

END

(c) TRACFG.

START

B11

B12TENT

B13

B14TEXT

B15TENT

B16

B2

B31TEXT

B32

B41 TENT

B42

B43 TEXT

END

TB1

TB2

TB3

(d) Timed blocks.

Figure 3.6: Timed block identification.

timing instructions form a timed block. For example, Figure 3.7 presents a fragment of the pro-

gram that is a timed block. Notice that the set time and delay until instructions are implemented

by PRET using ARM coprocessor instructions, which we annotate on the side with comments.

Notice that stt denotes a set time instruction, and dut a delay until. We identify different

timing instructions using their respective opcode. For instance, delay until in assembly is encoded

as dut. The timing requirement is specified within the register, which we extract using the partial

flow-analysis. In this case, the mov r2, #8000 provides us with the timing requirement for

this timed block.

Definition 4. A timing-requirement aware CFG (TRACFG) is a CFG GTRA= 〈VTRA, ETRA〉
where V ⊆ Z+ × VTRA × P is the set of annotated basic blocks, and E ⊆ VTRA × VTRA is the

21

set of control-flow edges. A vertex v = 〈k, a, p′〉 is a 3-tuple where k is a unique identifier for the

vertex, a is an annotated type such that VA = {REG, TENT, TEXT}, and p′ is the compiled

sequence of instructions forming the basic block.

In order to detect timed blocks, we first identify timing instructions in the CFG by transform-

ing the CFG to a timing-requirement aware CFG (TRACFG) as in Definition 4. The TRACFG

separates a basic block that has a timing instruction in it into multiple blocks. The TRACFG also

annotates the vertices (basic blocks) with a vertex type. REG means the vertex is a regular basic

block, TENT identifies the set time instruction, and TEND annotates the vertex that has the

delay until instruction. We use a helper function type(v) to retrieve the attribute of the vertex.

We construct the TRACFG from the CFG using Algorithm 1. This algorithm identifies basic

blocks that have timing instructions within them, and splits them such that the timing instruction

forms a vertex in the TRACFG with a specific type. The input to the algorithm is the CFG

G = 〈V,E〉 obtained from Figure 3.4 and the output is a TRACFG GTRA = 〈VTRA, ETRA〉.
Ein and Eout are the set of incoming and outgoing edges for a certain vertex v (lines 3–4).

The algorithm starts by identifying the vertices in V that contain timing instructions using the

hasTimingInsn(v) (line 6). Note that there can be multiple timing instructions within the same

basic block as shown in the Figure 3.6 (B1), and each timing instruction resides in a unique basic

block. splitVertex(v) performs the splitting of the vertex v, and produces a sequence of newly

40000034: mov r2, #8000
40000038: mov r3, #0
4000003c: stt r2, r3, r3, 0
40000040: mov r1, #3
.........
40000068: dut r2, r3, r3, 0

Figure 3.7: Assembly program fragment for timed block.

22

Algorithm 1: Constructing the timing-aware CFG.
Input: G = 〈V,E〉 be the CFG.
Output: GTRA = 〈VTRA, ETRA〉 be the TRACFG

1 Let VTRA ← V and ETRA ← E.
2 foreach v ∈ V do
3 type(v)← REG
4 Let Ein ← {(vi, vj) ∈ ETRA : vj = v}
5 Let Eout ← {(vi, vj) ∈ ETRA : vi = v}
6 if hasTimingInsn(v) then
7 〈[v1, v2, .., vl]〉 ← splitVertex(v)
8 E′in ← {(vi, v1) : ∀(vi, vj) ∈ Ein}
9 E′out ← {(vl, vj) : ∀(vi, vj) ∈ Eout}

10 VTRA ← VTRA ∪ {v1}.... ∪ {vl} − {v}
11 foreach vi in [v1, .., vl−1] do
12 ETRA ← ETRA ∪ {(vi, vi+1)}
13 end
14 ETRA ← ETRA ∪ E′in ∪ E′out − Ein − Eout

15 end
16 end
17 return〈VTRA, ETRA〉

created vertices LV as the output. It first identifies if the instruction ci is set time (using function

isSetTime(), line 4) or delay until (using function isDelayUntil(), line 10). If the condition is

true, then it first creates a vertex with REG attribute using the sequence of instructions LI ,

given its not empty, (lines 5–7, 11–13, 20–22). Then, the algorithm creates a new vertex with

either TEXT or TENT attributes for the instruction ci. We then add both the vertices to LV

(lines 8, 14), and build the sequence of instructions LI by adding the instruction in each iteration

(line 17) until we encounter a timing instruction (lines 9, 15). For example, if the vertex has

exactly one set time (or delay until), it will be split into three vertices, {v1, v2, v3}. v1 will

contain the instructions before set time, v2 will contain the set time instruction, and v3 will

contain instruction after set time. Note that v1 or v3 may not exist too, as the actual vertex v,

can only contain set time. If v contains multiple set time or delay until , it can be split into

23

Algorithm 2: Function splitVertex().
Input: Vertex v
Output: LV = [v1, v2, .., vl]

1 Let LV ← [] be an empty sequence of vertices
2 Let LI ← [] be an empty sequence of compiled instructions
3 foreach ci in getCompiledInsnSequence(v) do
4 if isSetTime(ci) then
5 if isNotEmpty(LI) then
6 add(LV , 〈getUniqueId(), REG,LI〉)
7 end
8 add(LV , 〈getUniqueId(), TENT, [ci]〉)
9 LI ← []

10 else if isDelayUntil(ci) then
11 if isNotEmpty(LI) then
12 add(LV , 〈getUniqueId(), REG,LI〉)
13 end
14 add(LV , 〈getUniqueId(), TEXT, [ci]〉)
15 LI ← []

16 else
17 add(LI , ci)
18 end
19 end
20 if isNotEmpty(LI) then
21 add(LV , 〈getUniqueId(), REG,LI〉)
22 end
23 return LV

multiple vertices such that each timing instruction gets a new vertex, with either TEXT or

TENT attribute (line 7–14). For example, vertex B1 in figure 3.6 is split into six basic blocks

{B11, B12, .., B16}.

After we obtain the sequence of vertices from algorithm 2, we proceed with Algorithm 1.

We augment VTRA gets with the new set of basic blocks (vertices) {v1, v2, .., vl}, and v is re-

moved (line 10). We create l − 1 edges from vertex v1 to v2, v2 to v3, and so on in the sequence

[v1, v2,, vl], and insert them in ETRA (lines 11–13). We also create appropriate edges between

24

parents of v, and the first vertex v1, and also between the last vertex vl and the children of v (lines

8, 9). We insert these edges inETRA,after removingEin andEout (line 14). Figure 3.6c shows the

TRACFG of the CFG in Figure 3.6b. Given the CFG, in figure 3.6b, we traverse its vertices. As

mentioned, before, we split vertex B1 into six vertices as it has multiple timing instructions. We

then add edges among the newly created vertices, that is we create (B11, B12), ..., (B15, B16).

We also create edge between parent of B1, START & B11 and B16 & child of B1, B2. Like-

wise, we split B3 and B4 into two ({B31, B32}) and three ({B41, B42, B43}) vertices respec-

tively as they both contain one timing instruction each. We then add edges among the newly cre-

ated sequential vertices, that is we create (B11, B12), ..., (B15, B16). Similarly we create edges

(B2, B41), (B41, B42), (B42, B43), (B43, B2), (B2, B31), (B31, B32) and (B32, END).

Definition 5. A timed block starting at vertex v1 and ending at v2 is a subgraph G′TRA =

〈V ′TRA, E
′
TRA〉 of a function’s TRACFG GTRA = 〈VTRA, ETRA〉 where V ′TRA ⊆ VTRA and

E ′TRA ⊆ ETRA. Vertices v1, v2 ∈ V ′TRA ⊆ VTRA such that v1 6= v2 ∧ type(v1) = TENT ∧
type(v2) = TEXT ∧ hasPath(v1, v2, GTRA).

Algorithm 3 describes our approach to identifying timed blocks. Notice that a timed block

is in itself a sub-graph of the TRACFG (Definition 5). However, there can be multiple timed

blocks within a single TRACFG. We denote this as a set of timed blocks TB. The algorithm

takes the TRACFG GTRA constructed using Algorithm 1, an empty stack S, and root vertex of

GTRA (vroot) as inputs. The function timedBlockFinder(...) is a recursive DFS traversal, and it is

invoked with the root vertex of the graph vroot. During the traversal, we identify the timed blocks

by matching the TEXT block to the corresponding TENT block. In each function invocation,

we identify whether the current node is timed block entry (TENT), and then add it to the stack

S (lines 5–6). Upon encountering a timed block exit vertex (TEXT), we pop the top node on

the S, and create the entry and exit pair (line 7–8). The function copyGraph(GTRA, v, v1), copies

the sub-graph from GTRA, starting at v1 and ending at v, which we add into TB (line 9).

25

Algorithm 3: timedBlockFinder(...): Identifying timed blocks.
Input: GTRA = 〈VTRA, ETRA〉, S is an empty stack, TB is an empty set of timed blocks, vroot is

the root vertex of the GTRA

Output: TB
1 if isVisited()(v) then
2 return
3 end
4 isVisited()(v)← true
5 if type(v) = TENT then
6 push(S, v)
7 else if type(v) = TEXT then
8 v1 ← pop(S)
9 TB ← TB ∪ {copyGraph(GTRA, v, v1)}

10 end
11 foreach v2 in getChildren(v) do
12 timedBlockFinder(GTRA, S, v2)
13 end

Figure 3.6d shows how we identify the timed blocks. We invoke timedBlockFinder(...) on

START , and we traverse through the path (B11, B12, B13, B14, B15, B16, B2, B31, B32,

END) on successive invocations. We traverse B31 before B4 (line 12). When we reach B12,

put that on S and when we reach B14, pop B12 out, and create the timed block TB1. Similarly

we create TB2, by identifying B15 and B31. We invoke timedBlockFinder(...) on the other

child of B2, and create TB3, by identifying B41 and B43. The algorithm then terminates as we

have visited all the nodes. Please note that, the selection of B4 over B31 will yield the same

result. timedBlockFinder(...) creates the timed block because of three reasons. First, it does

not travel the same vertex twice (the function isVisited(), lines 1–3). There are no malformed

timed blocks (timed blocks do not partially overlap, and by definition they are singly entry (entry

block) and single exit (exit block) sub graph). timedBlockFinder(...) travels the node in the

program order. Notice that we need to discover paths from entry to exit in timed blocks. The

enumeration is used for further analysis in section 4.1. In the future, we plan to use satisfiable

26

modulo theories to assist in discovering paths between vertices [11]. We also leverage the fact

that timing requirement of (B2, B31, B32, END) in TB2 will always be met, whenever the

timing requirement of (B2, B41, B42, B43, B31, B32, END) is met. Hence, we can ignore thee

former path.

3.4 WCET Analysis for the PRET Architecture

A key objective of the PRET architecture [13] is to simplify the complexity of the WCET analy-

sis. This is possible due to the predictable microarchitecture of PRET, and its repeatable temporal

behaviours for instruction execution. Hence, our WCET analysis uses fixed individual instruc-

tion execution costs, and it assumes known loop bounds. We compute the WCET of a basic block

by assuming that all instructions in the basic block are on allocated to the main memory Tmain.

We perform this analysis for every thread since PRET is a multi-threaded architecture. However,

we only compute the WCET of basic blocks enclosed within timed blocks. This allows us to

verify whether the timing requirement specified in the timed block adheres to the WCET of the

instructions within the timed block. Since our objective is to ensure that all executions of a timed

block always meets timing requirement, we must guarantee that every path’s execution is less

than or equal to the timing requirement specified by the timing instructions. Consequently, this

work differs from simply reducing the WCET path as done by others [7] where the objective is

to simply reduce the WCET of the program. By having a timing requirement, we only allocate

the necessary number of instructions to the SPM to meet the timing requirement, and use the

remaining space on the SPM for other instructions for other timed blocks or hardware threads.

27

Chapter 4

SPM Instruction Allocation

The allocation of instructions to SPM is a 0-1 knapsack problem. Given a set of n items and a

knapsack with a capacity c with pj and wj as the profit and weight of item j respectively. The

knapsack problem is selection of items, such that we maximize the total profit Pr :

Pr =
n∑

j=1

pj ∗ xj (4.1)

such that
n∑

j=1

wj ∗ xj ≤ c (4.2)

where

xj =

 1 if item j is selected

0 otherwise
(4.3)

wj and pj are independent of wi and pi respectively, where j 6= i,

For allocation of instructions to SPM, the item j is the basic block of instruction. So we have

n basic blocks or items, and the capacity c is the total SPM size. xj is set to 1, if the item j

28

(basic block) is selected (for allocation) and 0 otherwise. Profit pj = frequencyj ∗ (timemain
j −

timejspm), for each block j. Please note that wj and pj are distinct for each basic blocks. We

want to maximize Pr, which means the instruction saved/gain by allocating basic blocks to SPM.

4.1 Problem Formulation

Symbol Description
gpjt Auxiliary variable that assists in reducing the difference between

the timing requirement and the actual execution time of path p in
timed block j of thread t.

gabspjt The absolute value of gpjt.
Fjt(k) Frequency of execution of basic block k, with respect to timed block

j in thread t.
Tmain
t (k) WCET of basic block k, when executed on main memory.
T spm
t (k) WCET of basic block k, when executed on SPM.
Kpjt Set of all basic blocks forming path p in timed block j of thread t.
St(k) The size of basic block k in thread t.

Table 4.1: Symbol table for variables used in allocation.

The objective of the instruction SPM allocation is to meet the timing requirements specified

in the timed blocks. However, we want to allocate the minimum number of basic blocks so that

we just meet our requirements. This allows us to utilize the remaining SPM space for other timed

blocks from the same thread, and from other threads.

Xt(k) =

 1 if basic block k in thread t is allocated

0 otherwise
(4.4)

29

Minimize

A =
H∑
t=1

Jt∑
j=1

Pjt∑
p=1

gabspjt (4.5)

such that
H∑
t=1

Nt∑
k=1

Xt(k)St(k) ≤ Sspm (4.6)

and

∀p ∈ [1, Pjt],∀j ∈ [1, Jt],∀t ∈ [1, H]

Rjt ≥ gpjt + Tpjt (4.7)

gabspjt ≥ ±gpjt (4.8)

where

Tpjt =
∑

k∈Kpjt

[Xt(k)Fjt(k)T
spm
t (k)+

(1−Xt(k))Fjt(k)T
main
t (k)]

and

gpjt is free integer.

We present an integer-linear programming (ILP) formulation for allocating instructions from

multiple threads. The variableXt(k) (Equation 4.4) is the boolean variable representing the basic

block of instruction k in thread t. It is equal to 1 only when the basic block is allocated to SPM.

We minimize a variableA that allocates just enough instructions to meet the timing requirements.

The variable gpjt in the objective function (Equation 4.5) is an auxiliary variable that assists in

30

reducing the difference between the timing requirement specified by the timed block j, and the

WCET estimates of path p in thread t. A negative value of gpjt suggests a violation of the timing

requirements. By minimizing the sum of the absolute value of this variable (gabspjt) for all paths p

in timed block j and in thread t, we reduce the difference between the timing requirements of the

timed blocks and the WCETs of the enclosed paths. Table 4.1 shows the meaning of all relevant

variables, we use in the formulation. Npjt is the total number of basic blocks on path p, Pjt is the

total number of paths for timed block j, and Jt is the total number of timed blocks in thread t. H

is the total number of threads. Nt is the total number of basic blocks in thread t.

The first constraint (Equation 4.6) states that the sum of the sizes of all basic blocks allo-

cated to the SPM must not exceed the maximum size of the SPM (Sspm). The second constraint

(Equation 4.7) is for all the three variants of the timed blocks discussed in Section 2.2.1. By min-

imizing gpjt, we reduce the WCET of path p by allocating basic blocks from path p to the SPM.

Rjt denotes the timing requirement for timed block j in thread t, and Tpjt is the computed WCET

of path p within timed block j in thread t. There are a total of
∑H

t=1

∑Jt
j=1 Pjt such constraints.

The variables Xt(k), Fjt(k), T
spm
t (k), Tmain

t (k) represent the indicator variable, frequency of

occurrence, execution time on SPM and execution time on main memory, respectively of basic

block k. Kpjt denotes the set of basic blocks in the path p within timed block j in thread t.

Lemma 4.1.1. The auxiliary variable gpjt ≤ 0, for a given path p, timed block j and thread t.

Proof. Given Rjt − Tpjt ≥ gpjt. We want to minimize |gpjt|, and the best possible value for

that is zero as the absolute auxiliary variable is always non-negative. At any given point of time

before, during or after the allocation, we will have two cases:

Case 1: When Rjt ≥ Tpjt

In this case, gpjt will always be zero, so the above condition holds true and we achieve the best

possible value for objective function.

31

Case 2: When Rjt ≤ Tpjt

In this case gpjt will be a negative integer.

Hence gpjt ≤ 0.

Extraction of frequency Fjt(k) uses our partial data-flow analysis on the binary. The loop

detection can be done by using any of the standard graph based techniques. Most common

among them being the approach based on dominator trees. We use a straightforward graph

based cycle detection technique to identify them. As we assume known loop bounds, we extract

them automatically from the binary by identifying the loop header, and looking at the compare

instruction. For instance in Figure 4.1:

40400050: cmp r1, #n
40400054: bgt 404000a4

Figure 4.1: Identifying the frequency.

By looking at cmpr1,#n instruction in the loop header, we find that r1 is the loop induc-

tion variable, and n + 1 is the loop bound. For backward loops, the comparison looks like

movr1,#n; cmpr1,#0; ble < exitLoopTarget >. The comparison can also be done relative to

a register, after storing loop bound in the same (cmpr1, r8). A value analysis on r8, may yield

the loop bound, but that is not the focus of the paper, as we said we assume known loop bounds.

So the value of r8 is known. Also, please note that frequency Fjt(k) is a relative frequency of ex-

ecution of the block, not an absolute. By Fjt(k), we mean how frequent block k executes inside

the timed block j, not how frequent it executes in the program. For instance in figure 3.6d, the

loop bound of the loop ((B2, B41, B42, B43) is 10. From the perspective of timed block T3, the

frequency of execution of block B42 is 1. However, from the perspective of T2, the frequency of

execution is 10. Hence, F31(k) equals 1, and F21(9) equals 10.

32

Figure 4.2 shows an example program, its CFG from binary, and the result of the allocation.

The code consists of a simple loop with a timed block with a timing requirement of 25 cycles. The

timed block consists of two paths (A,B) and (C,D), which take 47 and 30 cycles, respectively.

We allocate blocks from all paths within the timed block such that the WCETs of each path is less

than the timing requirement of the timed block. Hence, for the example in Figure 4.2, we allocate

both paths to meet the timing requirement. Blocks fEven and fOdd are allocated to the SPM.

Note that after allocation, we alter the branch instructions (beq <feven> and b <fodd> to

beq <fevenS>, and b <foddS>, respectively) in the binary, to correctly branch to the SPM

locations, and maintain the correct control flow.

33

int fEven(int a, int b) {
return(a*b);

}
int fOdd(int a, int b) {
return(a-b);

}
int main(){

START: int i, c[N],a[N],b[N];
B11, B42: for(i=0;i<N;i++) {
B12, B41: tryfor(150, P_NS){

if(imodulo2 ==0)
fEven: c[i]= fEven(a[i],b[i]);

else
fOdd: c[i] = fOdd(a[i],b[i]);

}
}

END: return 0;
}

(a) C code fragment.

START
mov ip, sp
.....

B11
cmp r1, #4
bgt END

B12
stt r2,r3,r3,0

TENT

fEven
.....
mul r4,ip,r4
.....

fOdd
.....
sub r4,ip,r4
.....

B41
dut r2,r3,r3,0

TEXT

B42
........

END
sub sp, fp, #20
ldmia sp, r6, r7, fp, sp, pc

A: beq fEven
C: b fOdd

B: b B41
D: b B41

TB1

Requirement: 25 cycles

A→B: 47 cycles C→D: 30 cycles

1

(b) TRACFG with timed block identifica-
tion.

START
mov ip, sp
.....

B11
cmp r1, #4
bgt END

B12
stt r2,r3,r3,0

TENT

fEvenS
.....
mul r4,ip,r4
.....

fOddS
.....
sub r4,ip,r4
.....

B41
dut r2,r3,r3,0

TEXT

B42
.....

END
sub sp, fp, #20
ldmia sp, r6, r7, fp, sp, pc

A: beq fEvenS
C: b fOddS

B: b B41
D: b B41

TB1

Requirement: 25 cycles

A→B: 20 cycles C→D: 16 cycles

1

(c) After allocation.

Figure 4.2: Example allocation. Note that it shows a fragment of the binary code.

34

Chapter 5

Re-writing

5.1 Re-writing the PRET executable binary

After determining the allocation, we rewrite the binary to reflect the allocation. The rewriting

stage moves allocated blocks to the SPM address space, and inserts appropriate control-transfer

instructions to preserve the correct semantics of the program. Algorithm 4 explains the rewriting.

The inputs for Algorithm 4 include the set of vertices from the TRACFG VTRA, and the

set of basic blocks S selected for allocation to the SPM. The output is a sequence of com-

piled instructions P ′. For each vertex vc = 〈k, a, p〉, we obtain the new SPM address using

getNextSPMAddr(), and rewrite its pc. We also keep a mapping of the old address (pc) and the

new SPM address pc′ (lines 4–10). Changing the addresses of an instruction can result in incor-

rect control flow of the program. For example, changing the address of an instruction ci whose

address was the target of some other branch instruction. To address this, we modify the targets

of other control-transfer instructions to reflect the allocation changes using the mapping. Notice

that we also insert a no-operation instruction to the end of the basic block in vc. We replace this

35

no-operation instruction with a branch instruction to the next basic block in order to correctly

reflect the control flow.

B1:
0x4000004c: cmp r1, #2 ; 0xf
0x40000050: ldrls pc, [pc, r1, lsl #2]
B2:
0x40000054: b 40000158
B1’:
0x40000058: 40000098
0x4000005c: 400000a4
B3:
0x40000098: mov r1, #0
0x4000009c: str r1, [fp, #-20]
0x400000a0: b 4000016c
B4:
0x400000a4: mov r1, #36
0x400000a8: str r1, [fp, #-20]
0x400000ac: b 4000016c

Figure 5.1: Simple example of jump table with targets.

Lines 13–23 in algorithm 4 describes the modification to branch instructions, pc-relative

load/stores and jump tables. We traverse each instruction in the basic block for vc denoted by p,

and we use newTarget() to compute the updated target address. If ci is a branch instruction then

we use rewrite ci with the new target address (lines 15–16). Notice that newTarget() uses the

map between old addresses and new address from line 5. When we allocate PC-relative load and

store instructions (i.e. ldr r1, [pc,#n]) to SPM, they also suffer from the problem of

pointing to incorrect targets. We correct these the same way we corrected immediate branches,

as shown in the lines 15–16. However, the ARM ISA only permits an immediate field of 12 bits.

In order to load from a 32- bit immediate value, we encode ci as a sequence of eor and shift

operations followed by the relevant load instruction. The register-indirect branch instructions

used for jump tables have unknown targets, but we resolve these as before (see Section 3.2). We

36

illustrate these key concepts in rewriting using a simple example in Figure 5.1.

A precise control flow (since all the n instructions are potential targets and hence it is not an

over-approximation [31]) is maintained by either allocating all the instruction blocks containing

the n instructions and instruction block containing the indirect jump to SPM, or simply not

allocating the blocks. In this case, if B1 is allocated to SPM, we need to allocate B1′ to SPM

too and vice versa. If any of the targets themselves, are allocated to SPM (B3 or B4), we

need to change the entries of the jump table (B1′) to match the new target(s). The function

updateJumpTable() in Algorithm 4, lines 17–19, achieves the same. So if we allocate B3 to

SPM, the resulting binary will look like figure 5.2:

B1’:
0x40000058: 40000098
0x4000005c: 40400000

B3:
0x40400000: mov r1, #0
0x40400004: str r1, [fp, #-20]
0x40400008: b 4000016c

Figure 5.2: Re-written jump table with targets.

We add branch instructions to maintain the correct control flow of the whole program. These

branch instructions use the space created by the nop instruction on line 8. This is shown in

Figure 5.3.

0x400082ac: cmp r3, #10
0x400082b0: bgt 0x400082dc
0x400082b4: ldr r1, [pc, #76]

Figure 5.3: Illustration of rewriting.

Assume the instruction block with the bgt instruction gets allocated to the SPM. To main-

tain the correct control flow, we insert a branch instruction after the bgt instruction such that it

37

branches back to main memory location of the previous fall-through path. The modified instruc-

tions are shown in Figure 5.4.

0x40400004: cmp r3, #10
0x40400008: bgt 0x400082dc
0x4040000c: b 0x400082b4
0x400082b4: ldr r1, [pc, #76]

Figure 5.4: Adding branch instructions to maintain control flow.

These added branch instructions also help in maintaining the correct control flow in case of

register-indirect branch instructions. For example, the instruction mov pc,lr loads the pc with

the contents of the link register. However, the instruction identified by the target address in the

link register lr can reside in the SPM or the main memory. If the target is in main memory, correct

control flow is maintained as it branches back to the correct location. If the target is in SPM, then

we insert a branch instruction to preserve correct control flow. We do not currently address the

issue of fragmentation caused by adding these additional branch instructions. However, we do

incorporate these added branch instructions in the execution cost of each block on the SPM. Note

that in the examples, we use branch instructions with target addresses. However, in binary, the

target offset is encoded instead of address.

38

Algorithm 4: Rewriting the binary.
Input: VTRA, S
Output: P ′, a re-written sequence of compiled instructions.

1 Let BRANCHOPS, PCLOADOPS and JTABLESTARTOPS be the set of opcodes for branch
instructions, pc relative load/stores and starting instruction of jump table respectively

2 Let S is the set of basic blocks to be allocated
3 Let M be a Map
4 foreach vc = 〈k, a, p〉 ∈ S do
5 foreach ci = (pc, i) in p do
6 Let pc′ ← getNextSPMAddr()
7 putToMap(M, getAddress(ci), pc′)
8 ci← (pc′, i)

9 end
10 addToEnd(p, (getNextSPMAddr(), nop()))

11 end
12 VL ← order(VTRA)
13 foreach vc = 〈k, a, p〉 ∈ VL do
14 foreach ci = (pc, i) in p do
15 if getOpcode(ci) ∩ BRANCHOPS 6= ∅ then
16 ci← (pc,wrtBranch(i, newTarget(i,M)))
17 else if getOpcode(ci) ∩ PCLOADOPS 6= ∅ then
18 ci← (pc,wrtLoad(i, newTarget(i,M)))
19 else if getOpcode(ci) ∩ JTABLESTARTOPS 6= ∅ then
20 updateJumpTable(ci,M)
21 end
22 end
23 end
24 foreach vj = 〈k, a, p〉, vj+1 = 〈kj+1, aj+1, pj+1 ∈ VL do
25 if (vj ∈ S ∧ vj+1 /∈ S) ∨ (vj /∈ S ∧ vj+1 ∈ S) then
26 pc′ ← getAddress(getNop(p))
27 updateNop(p, (pc′,wrtUBranch(peek(pj+1)))

28 end
29 end
30 P ′ ← createBinary(VL)

39

Chapter 6

Results

We experimentally compare the proposed approach with an approach that uses the ACET method [3],

and one that uses the WCET method [23]. Since there are a limited number of PRET programs,

we perform the evaluation on altered Malardalen benchmarks. We alter them by inserting tim-

ing constructs in the benchmarks. The only benchmarks we do not use are the ones that use

recursions because our analysis does not support that as of now.

The first experiment shows that increasing the SPM size increases the fraction of timed blocks

that meet their timing requirements as shown in Figure 6.4. Note that some of the benchmarks

meet their timing requirements earlier than others. This happens because of the different timing

requirements in the benchmarks.

In this section we present two main ideas. First the comparison of our allocation strategy with

ACET [3] and WCET [23] reduction based SPM allocation. We show that either the common

allocation techniques cannot be directly applied and need some adaptation or they use more SPM

size. Second the improvement with respect to PRET having shared memory among threads as

opposed to dedicated SPM memory banks for each threads.

40

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Size of the SPM normalized

P
er

ce
nt

ag
e

of
 D

ea
dl

in
es

 M
et

bs
crc
adpcm
fibcall
compress
fft1
fir
jfdctint
lcdnum
minver

Figure 6.1: Timing requirements met versus SPM size.

The table 6.1 shows each program with their respective number of timed blocks. The table

also shows the individual SPM space requirements to meet all the timing requirements of each

program for our scheme and WCET based scheme. We ran the experiments from 0% to 20% of

the total SPM size available on PRET, and executed it on the PRET simulator [26]. We will talk

about how we implement ACET & WCET approaches next.

41

6.1 Comparison of our scheme vs ACET and WCET based

approaches

Benchmark # Timed Blocks SPM Size Requirements (bytes)
WCET Our Scheme

adpcmc 8 2628 760
bs 5 3088 1000
compress 10 3564 480
crc 8 956 560
edn 1 1144 300
fdct 8 12440 10900
fibcall 8 1152 430
fir 1 5824 80
fft1 1 728 200
jfdctint 2 2764 2680
lcdnum 2 516 240
minver 1 6192 20
nsichneu 4 33436 840
duff 1 664 480
prime 1 492 100
select 1 948 840
ud 1 1716 1140

Table 6.1: Malardalen Benchmarks.

Figure 6.2 shows the comparison between ACET based, WCET based static allocation and

our allocation. Like Figure 6.4, the numbers on x axis denote the respective configuration. We

have a total of 9 configurations, made after randomly selecting four Malardalen Benchmarks.

Each benchmark is denoted by a number given on the right of the figure 6.4. The four numbers

under the bars denote the four benchmarks (comprising each configuration) used for the four

threads. Note that for each set of experiments we use different SPM size. This is because every

42

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Benchmark configurations

P
er

ce
nt

ag
e

of
 ti

m
in

g
re

qu
ire

m
en

ts
 m

et

ACET
WCET
WCET*
Our scheme

Figure 6.2: Percentage of Timing requirements Met.

program has different SPM size requirements for meeting its timing requirements. The figure

shows the percentage of the total timing requirements met at the point (SPM space), where our

scheme met all of them. This point (SPM space) is different for different configurations as

different threads have different minimum space requirements. As evident from the figure, our

scheme excels over both the commonly known approaches. In ACET, we select only those basic

blocks for allocation which give higher cost which is product of frequency and execution time.

We formulate the problem as 0-1 ILP problem with size constraint, to enable an optimal selection

of basic blocks. The formulation is similar to the one in [3]. We try to maximize the gain after

allocation to SPM and Avissar et al [3], who try to minimize the loss of having instructions on

43

main memory. By its definition, we cannot use ACET based approach, in real time system as they

don’t care about the timing requirements. This is evident from our experiments, where we miss

timing requirements (figure 6.2). In configuration 3, 4, 5 & 6, ACET meets higher percentage of

timing requirements (> 70%). The reason is two-fold. First, the included benchmarks (crc, edn,

lcdnum, fft1 & fibcall) have low SPM size requirement to meet timing constraints individually

(shown in table 6.1). Second, the timed blocks mostly include expensive basic blocks.

In WCET, we follow the scheme described as greedy heuristic algorithm in [23] with code

object as basic block. We allocate the most impacting basic block (highest contribution towards

execution time) on the WCET path. Please note that the allocation, may change the WCET path,

so we recompute the WCET path after allocation. We keep allocating until we reach the size limit

or WCET path stops changing and all the blocks in that path are allocated. We raised a concern

before, that all the timing requirements may not be met, because of this WCET approach. There

may be some timed blocks outside this WCET path, awaiting allocation. So even if we have

unused space left on SPM, we may miss timing requirements on such timed blocks. This actu-

ally happened in our benchmark compress as we miss one timing requirement on the function

writebytes as it lies outside the WCET path. So our scheme meets all the timing requirements

for a given space in each configurations, while WCET-based static allocation misses timing re-

quirements. That is why we extend the WCET approach to WCET-H approach, to use the unused

space to meet the timing requirements by allocating expensive blocks. This scheme meets all the

timing requirements in compress benchmark.

We see that the WCET and ACET meet equivalent percentage of timing requirements in some

configurations. This is because majority of basic blocks in our experiments come in the WCET

path of the entire program and ACET also selects the most impacting (expensive) basic block

among all the basic blocks. WCET meets higher timing requirements in 3, 4, 5 & 6 because of

the same reasons as ACET approach mentioned above. It also meets > 50% timing requirements

44

in configurations 7, 8 & 9 because of the benchmark nsichneu which has huge individual space

requirement to meet its timing requirements (shown in table 6.1). WCET on the other hand,

chooses to rather meet all other timing requirements instead of nsichneu in the available space.

Our scheme has high minimum space requirement to meet all the timing requirements in 7, 8 &

9 including nsichneu.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5
x 10

4

Benchmark configurations

S
iz

e
re

qu
ire

m
en

t (
by

te
s)

ACET
WCET
WCET*
Our scheme

Figure 6.3: Size requirements.

Figure 6.3 shows the total minimum SPM size required by ACET, WCET and our scheme to

meet all the timing requirements in each configurations. The results observed are in accordance

with the one in Figure 6.2. The total size requirement of ACET based approach to meet all the

45

deadlines, is as high as 23x as compared to our scheme (configuration 7) with the average 9x.

Our scheme requires less SPM space in all the configurations, as we specifically target timed

blocks and its constituent basic blocks. Important point to note is that, ACET will meet all the

timing requirements eventually, the worst case size requirement being the whole program.

In WCET, the total size requirement in the configuration 2, 7 & 9 is zero because we will

always miss one time requirement in the benchmark compress. So we use WCET-H approach, to

meet all the timing requirements minus this missed timing requirement in configurations 2, 7& 9.

So we have presented the total size required to meet all the timing requirements minus this missed

timing requirement. The reason why WCET works better than ACET in most configurations is

two-fold. First non-inclusion of expensive basic blocks in WCET path. Second not all threads

have timing requirements, for instance threads bsort, cnt, expint, insertsort, janne complex,

ludcmp, matmult, minmax, ns, qurt and statemate do not have any timing requirements.

WCET also performs worse than ACET in some configurations (1 & 4) of figure 6.3. This is

because WCET selects the most impacting basic block with no regard to its size or bulkiness.

ACET is slightly smarter in this regard as it leverages ILP.

In our benchmarks, as we pointed out before, the improvement observed as compared to

ACET and WCET is also because we specifically target, identify and allocate timed blocks. We

will also like to point out that, even in case of straight line program with a single time requirement

on the entire program, we perform better than ACET and WCET. For instance, consider a simple

program with just four basic blocks (a, b, c, d), with execution times tmain
a , tmain

b , tmain
c & tmain

d

respectively on main memory, tspma , tspmb , tspmc & tspmd respectively on SPM and sizes sa, sb, sc &

sd respectively. Its given that td > tc > tb >> ta and sd > sc > sb >> sa. Suppose if the timing

requirement is tmain
a + tmain

b + tmain
c + tmain

d + ε where ε < tmain
a − taspm. So while ACET and

WCET will both select block d as the allocation candidate, our scheme will select block a as the

candidate. So clearly we meet the timing requirement with least space requirement (sa) among

46

the other schemes (sd).

6.2 Experiments on Shared SPM vs Dedicated SPM

0

20

40

60

80

100

Benchmark configurations

P
er

ce
nt

ag
e

of
 ti

m
in

g
re

qu
ire

m
en

ts
 m

et

5,
11

,1
2,

13

6,
10

,1
4,

15

2,
9,

14
,1

6

3,
8,

17
,1

8

4,
7,

19
,2

0

1,
4,

21
,2

2

5,
6,

22
,2

3

2,
3,

14
,2

2

2,
6,

7,
24

25
,2

6,
29

,3
0

27
 2

8
31

 3
2

Dedicated SPM
Shared SPM

 1 2 3 4 5 6 7 8 9 10 11

bs 1
crc 2
fdct 3
fibcall 4
adpcm 5
compress 6
fft1 7
fir 8
jfdctint 9
lcdnum 10
minver 11
bsort100 12
cnt 13
edn 14
expint 15
insertsort 16
janne_complex 17
ludcmp 18
matmult 19
minmax 20
ns 21
nschnieu 22
qurt 23
statemate 24
select 25
prime 26
duff 27
ud 28
cover 29
qsort−exam 30
sqrt 31
ndes 32

Figure 6.4: Percentage of timing requirements met

The second set of experiments indicate the advantage of using the shared SPM, and our multi-

threaded SPM allocation over having dedicated SPM segments for each thread. Figures 6.5, 6.4

show the results. We use the same configuration for figures 6.2 and 6.3. The black bar shows the

fraction of timing requirements met for shared SPM, and gray bar shows the timing requirements

met when each thread has its own dedicated SPM segment. The total SPM size for all threads

47

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5
x 10

4

Benchmark configurations

S
iz

e
re

qu
ire

m
en

ts
 (

by
te

s)

Dedicated SPM
Shared SPM

Figure 6.5: Total Size requirements

is the same as the shared SPM. Figure 6.4 shows that the shared SPM clearly helps in meeting

timing requirements, and our allocation leverages the shared SPM by using the unused space of

one thread for another thread’s timed blocks. Figure 6.5 shows the minimum size requirements,

to meet all the deadlines for all benchmarks in each configuration. Clearly shared SPM space

excels over dedicated memory banks for each thread. Note that if we simply sum up the indi-

vidual size requirements for each thread from table 6.1, it will be same as size requirement with

shared space. The reason we get improvement is because, we take thread in each configuration

with maximum size requirement, then give the other three threads the same size requirement,

48

and then compute the total size requirement for each configuration. The rationale behind this is

that if each thread has its own SPM bank, they all need to be of equal size.

49

Chapter 7

Case Study

7.1 Unmanned Air Vehicle

We present a case study taken from PapaBench [16]. PapaBench is a real time benchmark de-

rived from GNU Paparazzi UAV project.It has two main functional units executing on different

processors, namely fly by wire (managing servo/radio commands) and autopilot (controlling

the flight movement). fly by wire incorporates five tasks r1–r5 shown in table 7.1 with their

respective timing requirements. We run fly by wire on first two threads and autopilot on the

next two threads. Nemer et al. [16] launch tasks at the respective frequencies/periodicity, without

explicitly specifying the amount of time these tasks should take. They assume that these tasks

will always be finished within the time bound of their respective period. Their assumption might

hold when WCET of these tasks are low as compared to their respective time periods. That is

why scale the frequencies to make the case study more interesting. Also, in order to specify the

time constraints on these tasks, instead of writing a scheduler, a simpler and infallible way is use

of timed blocks. For example, if we want altitude control task to take x cycles periodically, we

50

can simply specify in the program (figure 7.1):

tryfor(x){
altitude_control_task()
}

Figure 7.1: Task from Papabench

r4

r1 r2

r5 r3

r8 r12 r11

r10
r13

r9

r6

r7

c
c

c

c
c

c d

c

c

cd

c

fbw autopilot

1

Figure 7.2: Inter-task interactions in Papabench with control and data dependency.

Figure 7.2 shows the interaction between different tasks and dependencies c, for control and

d for data. fly by wire receives radio orders using task r5, and transmits to autopilot via task

r3. autopilot performs tasks r10, r13 and r8 to analyse the orders, stabilize and transmit back

to fly by wire. r2 receives the data, and r4 transmits it to servos. Task r11 helps in receiving

the gps data and tasks r9, r6 & r7 help in the stabilization task based on gps data.

In table 7.1, we have scaled the timing requirements from the actual benchmark by a factor

of 195 in order to make the case study more interesting. This is equivalent to slowing down the

processor. We run tasks r1, r2 & r5 on the first thread , r3 & r4 on the second thread, r6, r7, r8,

r9, r12 & r13 on the third thread and r10 & r11 on the fourth thread. We also change the timing

51

requirements of the task r10 and r12 by a factor of 4 and 2 respectively to again make the case

study more interesting.

We observe, that our approach takes around 27.5 k of SPM to meet all the timing requirements

in the 13 tasks. ACET and WCET as discussed in the chapter 6 take 128k and 82k SPM space

respectively to meet all the timing requirements, making us 4.7x and 3.0x better than ACET and

WCET respectively in space requirements. For a given SPM size of 27.5k, we meet all the timing

requirements using our approach. However, ACET and WCET approaches miss 8 and 4 timing

requirements out of the 13 tasks/timing requirements. Also please note that, some of the tasks

including r4, r6, r7 and r8, do not need any allocation, as their time of execution across all paths

on main memory is lower than the respective timing requirement.

TaskID Tasks Timing Require-
ments (kHz)

r1 check failsafe task 62.50
r2 check mega128 values task 62.50
r3 send data to autopilot task 31.25
r4 servo transmit 62.50
r5 test ppm task 31.25
r6 altitude control task 312.50
r7 climb control task 312.50
r8 link fbw send 62.50
r9 navigation task 312.50
r10 radio control task 125.00
r11 receive gps data task 312.50
r12 reporting task 250.00
r13 stabilisation task 62.50

Table 7.1: Tasks and their timing requirements in Papabench.

52

Chapter 8

Conclusion

We present a tool that statically allocates instructions from multiple threads to a shared SPM

for the PRET architecture. Our allocation has three key novelties: 1) it attempts to meet timing

requirements explicitly specified in the program, 2) it allocates the minimum number of basic

blocks necessary to satisfy these timing requirements, and 3) it performs its allocation across

multiple threads, which benefits overall application allocation. Our results indicate that we suc-

cessfully meet our timing requirements, and that we leverage the shared SPM for the multi-

threaded PRET architecture over dedicated SPMs. We are currently investigating the allocation

of data and synchronization variables across multiple threads.

8.1 Future Work

The approach does not discuss synchronization between the threads, and the delay introduced

because of the synchronization. If there is a wait within the timed block on an event of an-

other thread, the allocation should change to reduce the response time. The work in [23], talks

53

about the worst case response time between the threads and how they minimize it. We plan to

investigate this issue in the future work

We plan to investigate dynamic allocation and feasibility of the approach with regard to

binary re-writing. Re-writing dynamically is challenging as the binary changes at run time.

So we plan to investigate the feasibility of the approach and the overheads involved.

We are also working on size agnostic implementation of our approach. By size agnostic we

mean, we will prepare the best allocation strategy for each possible SPM size off line. Then

we retrieve the allocation based on SPM size. We also want to run one re-written binary, on all

platforms with different SPM sizes.

54

References

[1] S. Andalam, P. Roop, and A. Girault. Predictable multithreading of embedded applications

using pret-c. In Proc. of International Conference on Formal Methods and Models for

Codesign, pages 159–168. ACM, 2010.

[2] ARM. ARM technical reference manual, 2001.

[3] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation scheme for

scratch-pad-based embedded systems. ACM Trans. Embed. Comput. Syst., 1:6–26, 2002.

[4] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not what you execute.

ACM Trans. Program. Lang. Syst., 32:23:1–23:84, 2010.

[5] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, and Jan Reineke. Temporal

isolation on multiprocessing architectures. In Proc. of Design Automation Conference,

pages 274–279, 2011.

[6] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire Maiza,

Jan Reineke, Benoı̂t Triquet, Simon Wegener, and Reinhard Wilhelm. Predictability con-

siderations in the design of multi-core embedded systems. Ingénieurs de l’Automobile,

807:36–42, 2010.

55

[7] Jean-Francois Deverge and Isabelle Puaut. WCET-directed dynamic scratchpad memory

allocation of data. In Proc. of the Euromicro Conference on Real-Time Systems, pages

179–190. IEEE Computer Society, 2007.

[8] GNU. GNU ARM cross compiler toolchain, 2006.

[9] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni, Easwaran Ra-

man, and David I. August. Practical and accurate low-level pointer analysis. In Proc. of

the International Symposium on Code Generation and Optimization, pages 291–302. IEEE

Computer Society, 2005.

[10] T. Harmon, M. Schoeberl, R. Kirner, R. Klefstad, K.H.K. Kim, and M.R. Lowry. Fast,

interactive worst-case execution time analysis with back-annotation. IEEE Transactions on

Industrial Informatics, 8:366–377, 2012.

[11] W.R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis via satisfi-

ability modulo path programs. In ACM Sigplan Notices, volume 45, pages 71–82. ACM,

2010.

[12] C. Lattner. Llvm and clang: Next generation compiler technology. In The BSD Conference,

Ottawa, Canada, 2008.

[13] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A.

Lee. Predictable programming on a precision timed architecture. In Proc. of International

Conference on Compilers, Architectures and Synthesis for Embedded Systems, pages 137–

146, 2008.

[14] Isaac Liu, Jan Reineke, and Edward A. Lee. A pret architecture supporting concurrent

programs with composable timing properties. In Asilomar Conference on Signals, Systems,

and Computers, 2010.

56

[15] Stefan Metzlaff, Sascha Uhrig, Jörg Mische, and Theo Ungerer. Predictable dynamic in-

struction scratchpad for simultaneous multithreaded processors. In Proc. of the Workshop

on Memory Performance: Dealing with Applications, Systems and Architecture, pages 38–

45. ACM, 2008.

[16] Fadia Nemer, Hugues Cass, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne De Michiel.

Papabench : A free real-time benchmark. In Proc. of Workshop on Worst-Case Execution

Time Analysis, 2006.

[17] Nghi Nguyen, Angel Dominguez, and Rajeev Barua. Scratch-pad memory allocation with-

out compiler support for java applications. In Proc. of the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages 85–94. ACM, 2007.

[18] Jongsoo Park, James Balfour, and William James Dally. Fine-grain dynamic instruction

placement for l0 scratch-pad memory. In Proc. of the 2010 International Conference

on Compilers, Architectures and Synthesis for Embedded Systems, pages 137–146. ACM,

2010.

[19] Hiren D. Patel, Ben Lickly, Bas Burgers, and Edward A. Lee. A timing requirements-aware

scratchpad memory allocation scheme for a precision timed architecture. Technical Report

UCB/EECS-2008-115, EECS Department, University of California, Berkeley, 2008.

[20] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee. Pret dram

controller: bank privatization for predictability and temporal isolation. In Proc. of the

International Conference on Hardware/software Codesign and System Synthesis, pages 99–

108. ACM, 2011.

[21] Martin Schoeberl. A time predictable instruction cache for a Java processor. In On the

Move to Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time

57

and Embedded Systems (JTRES 2004), volume 3292 of LNCS, pages 371–382, Agia Napa,

Cyprus, October 2004. Springer.

[22] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Christian W.

Probst, Sven Karlsson, and Tommy Thorn. Towards a time-predictable dual-issue micro-

processor: The patmos approach. In In Proc. of Workshop on Bringing Theory to Practice:

Predictability and Performance in Embedded Systems, 2011.

[23] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET centric data

allocation to scratchpad memory. In Proc. of the IEEE International Real-Time Systems

Symposium, pages 223–232. IEEE Computer Society, 2005.

[24] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratchpad allocation for concur-

rent embedded software. In Proc. of the International Conference on Hardware/Software

Codesign and System Synthesis, pages 37–42. ACM, 2008.

[25] The Paparazzi team. The paparazzi project, 2003.

[26] The CHESS PRET team. The pret simulator ptarm, 2011.

[27] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic allocation for

scratch-pad memory using compile-time decisions. ACM Trans. Embed. Comput. Syst.,

5:472–511, 2006.

[28] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay of scratchpad mem-

ory for energy minimization. In Proceedings of the 2nd IEEE/ACM/IFIP international con-

ference on Hardware/software codesign and system synthesis, CODES+ISSS ’04, pages

104–109, New York, NY, USA, 2004. ACM.

58

[29] J. Whitham and N. Audsley. Studying the applicability of the scratchpad memory manage-

ment unit. In Real-Time and Embedded Technology and Applications Symposium, pages

205 –214, 2010.

[30] Jack Whitham and Neil Audsley. Studying the applicability of the scratchpad memory man-

agement unit. In Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology

and Applications Symposium, RTAS ’10, pages 205–214, Washington, DC, USA, 2010.

IEEE Computer Society.

[31] L. Xu, F. Sun, and Z. Su. Constructing precise control flow graphs from binaries. Technical

report, University of California, Davis, 2009.

59

	List of Tables
	List of Figures
	Introduction
	Motivation
	Summary of Contributions
	Thesis Organization

	General Background: Related Work and PRET Architecture
	Related Work
	PRET Architecture and the timing instructions
	Timed blocks

	CFG Construction, timing and WCET Analysis
	Source to Source Translation
	Stage 2: Parsing and CFG Construction
	Parsing the binary
	Identifying basic blocks

	Identifying timed blocks
	WCET Analysis for the PRET Architecture

	SPM Instruction Allocation
	Problem Formulation

	Re-writing
	Re-writing the PRET executable binary

	Results
	Comparison of our scheme vs ACET and WCET based approaches
	Experiments on Shared SPM vs Dedicated SPM

	Case Study
	Unmanned Air Vehicle

	Conclusion
	Future Work

	References

