Query Interactions in Database
Systems

by

Mumtaz Ahmad

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2012

(© Mumtaz Ahmad 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

The typical workload in a database system consists of a miz of multiple queries of
different types, running concurrently and interacting with each other. The same query
may have different performance in different mixes. Hence, optimizing performance requires
reasoning about query mizes and their interactions, rather than considering individual
queries or query types. In this dissertation, we demonstrate how queries affect each other
when they are executing concurrently in different mixes. We show the significant impact
that query interactions can have on the end-to-end workload performance.

A major hurdle in the understanding of query interactions in database systems is that
there is a large spectrum of possible causes of interactions. For example, query interactions
can happen because of any of the resource-related, data-related or configuration-related
dependencies that exist in the system. This variation in underlying causes makes it very
difficult to come up with robust analytical performance models to capture and model query
interactions.

We present a new approach for modeling performance in the presence of interactions,
based on conducting experiments to measure the effect of query interactions and fitting
statistical models to the data collected in these experiments to capture the impact of query
interactions. The experiments collect samples of the different possible query mixes, and
measure the performance metrics of interest for the different queries in these sample mixes.
Statistical models such as simple regression and instance-based learning are used to train
models from these sample mixes. This approach requires no prior assumptions about the
internal workings of the database system or the nature or cause of the interactions, making
it portable across systems.

We demonstrate the potential of capturing, modeling, and exploiting query interac-
tions by developing techniques to help in two database performance related tasks: work-
load scheduling and estimating the completion time of a workload. These are important
workload management problems that database administrators have to deal with routinely.

We consider the problem of scheduling a workload of report-generation queries. Our
scheduling algorithms employ statistical performance models to schedule appropriate
query mixes for the given workload. Our experimental evaluation demonstrates that our
interaction-aware scheduling algorithms outperform scheduling policies that are typically
used in database systems.

The problem of estimating the completion time of a workload is an important problem,
and the state of the art does not offer any systematic solution. Typically database adminis-
trators rely on heuristics or observations of past behavior to solve this problem. We propose

il

a more rigorous solution to this problem, based on a workload simulator that employs per-
formance models to simulate the execution of the different mixes that make up a workload.
This mix-based simulator provides a systematic tool that can help database administra-
tors in estimating workload completion time. Our experimental evaluation shows that our
approach can estimate the workload completion times with a high degree of accuracy.

Overall, this dissertation demonstrates that reasoning about query interactions holds
significant potential for realizing performance improvements in database systems. The
techniques developed in this work can be viewed as initial steps in this interesting area of
research, with lots of potential for future work.

v

Acknowledgements

I would like to express my gratitude to Dr. Frank Tompa for providing me the oppor-
tunity to pursue my research interest in the area of database systems. I am thankful to my
academic supervisor, Dr. Ashraf Aboulnaga, for his guidance and financial support during
my PhD studies. His encouragement and help have been instrumental in completing this
work.

[am grateful to Dr. Shivnath Babu for his collaboration in this work. I would like to
thank Dr. Kamesh Munagala for his help in developing the linear programming formulation
of the query scheduling problem. I would like to acknowledge Songyun Duan for his help
with the work on evaluating sampling techniques.

I would like to thank the members of my thesis committee: Dr. Ugur Cetintemel, Dr.
Wojciech Golab, Dr. Tamer Ozu, Dr. Ken Salem, and Dr. Frank Tompa. I would like to
express my appreciation to the Cheriton School of Computer Science staff and in particular
Margaret Towell for all the help during these years.

Finally I would like to thank my family for their patience and prayers.

Table of Contents

[List of Tables|

[List of Figures|

(1 _Introduction|

(1.1 Summary of Contributions and Roadmap|.

[2 Literature Survey|

[2.2 Optimizing the Performance ot Concurrent Query Mixes|

[2.3 Workload Management in Database Systems|

2.4 Machine Learning and Experiment-driven Pertormance Modeling]

[3 An Experimental Study of Query Interactions|

[3.1 Granularity of Modeling Query Interactions|

[3.2 Experimental Setup(. 0oL

[3.3 Effect of Query Interactions on Query Completion Time|

[3.4 Eftect ot Query Interactions on Resource Consumption|

(3.5 Identifying Query Types in the System|

[3.5.1 Query Template Partitioner|

vi

ix

[4 Experiment-Driven Modeling of Query Interactions| 36

[4.1 Sampling to Collect Training Data| 37
[4.1.1 CDR Samplingl, 38
[4.1.2 Interaction Level Aware Latin Hypercube Sampling| 39

[4.2 Regression Models for Query Interactions{. 45
[4.2.1 Linear Regression Models| 46
[4.2.2 Gaussian Processes oL 47

[4.3 Accuracy and Cost of Modeling| 52
[4.3.1 Accuracy of Modeling| 52
[4.3.2 Cost of Modeling|, 55
433 Conclusionl. 63

bl Introductionlo 64
[5.2 Interaction-aware Batch Schedulingl 66
[5.3 Interaction-aware On-line Schedulingl 71
[5.3.1 NRO: A Novel Cost Metric for Query Mixes| 73
[5.3.2 Setting the Cost Threshold|. 77
[5.4 Scheduling Based on Query Optimizer Cost Estimates|. 79
(5.5 Experimental Evaluation| 000000 83
[5.5.1 Experimental Setup|. 83
[5.5.2 Choice of Sampling and Modeling Technique] 84
[b.5.3 Scheduler Effectiveness o000 87
[5.5.4 Sensitivity to Ongrol - - -o 89
[5.5.5 Scalability and Robustness of the On-line Algorithm| 89
[5.5.6 Scheduling for Skewed Data Distribution| 92
[5.5.7 Comparison to Optimizer-based Scheduler| 92

vil

[6 Predicting the Completion Time of Business Intelligence Workloads| 98

6.1 Introductionl L 98
[6.2 Anatomy of an Interaction-aware Predictor|. 99
6.3 Workload Simulatorf.o 101
6.4 Experimental Evaluation| 104
[6.4.1 Experimental Setup|.o 104

[6.4.2 Choice of Sampling and Modeling Technique|{ 105

[6.4.3 Overall Prediction Accuracy| 106

[6.4.4 Incremental Samplingf. 0. 107

[6.4.5 'Time Needed for Sampling and Prediction| 108

[6.4.6 Robustness and Scalability of Predictions|. 109
(__Conclusions and Future Work] 114
[r.1 Conclusionsl 114
(1.2 Future Workl.o 115
[References] 118

viil

List of Tables

[3.1 Runtime, ¢;, of different TPC-H query types on a 1GB database[. 21
[3.2 Runtime, ¢;, of different TPC-H query types on a 10GB database] 22
3.3 Notation used in this dissertation| 23

B4

; (in seconds) for different query types in query mixes on a 10GB database| 24

Aij ()
(3.5 A;; (in seconds) for different query types in query mixes on a 1GB database| 25
3.6 A)
[3.7 A;; (in seconds) for (Jo; on a 10GB database 26

; (in seconds) for different query types in query mixes on a 10GB database| 26

[3.8 Resource consumption for different mixes of ()13 and)y on a 10GB database| 27

[3.9 Resource consumption for different mixes of ()13 and ()o; on a 10GB database| 27

[3.10 Runtime, ¢;, of queries in a 1GB skewed TPC-H database]. 34
13.11 Ay (in seconds) for different query types in query mixes on a 1GB skewed |
| [PC-H databasel 35

[4.1 T'he effect of the interaction levels of the training mixes on prediction error| 43

4.2 Model training and prediction time (in seconds) for different models.| . . . 63
[>.1 Runtime of LP in CPLEX for different values of b with T"'=6, M =60, . . 70
[5.2 Values of different cost metrics for selected query mixes running on a TPC-H |
[1GB databasel.o 76
[6.1 Training time of representative prediction scenarios| 109

X

List of Figures

(1.1 Completion times of three different workloads that consist of the same set |
of 60 TPC-H queries|, 3
(1.2 Schedule A: Negative interaction between (); and 3| 4
(1.3 Schedule B: Positive interaction between () and Q4| 4
[3.1 Sampling a query mix| 23
[3.2 Identifying query types from given query templatel 31
[4.1 Space-filling sampling from the space of possible mixes via Latin Hypercube |
Sampling (LHS)[. o 41
[4.2 Modeling the completion time of (); using CDR sampling on the 1GB database| 53
4.3 Modeling the completion time of (J); using IL_LHS sampling on the 1GB |
databasel 54
[4.4 Modeling the completion time of ()15 using CDR sampling on the 1GB |
databasel 54
[4.5 Modeling the completion time of ()13 using IL_LHS sampling on the 1GB |
databasel 55
4.6 Modeling the completion time of (); using linear regression on the 1GB |
databasel 56
4.7 Modeling the completion time of (J; using GGaussian processes on the 1GB |
databasel 56
[4.8 Modeling the completion time of ()15 using linear regression on the 1GB |
databasel 57

[4.9 Modeling the completion time of (;3 using Gaussian processes on the 1GB

databasel 57
[4.10 Modeling the completion time ot (J); using CDR sampling on the 10GB |

databasel 58
[4.11 Modeling the completion time of ¢); using IL_LHS on the 10GB databasel . 58
[4.12 Modeling the completion time of ()15 using CDR sampling on the 10GB |

databasel 59
[4.13 Modeling the completion time of ()15 using IL_LHS sampling on the 10GB |

databasel 59
[4.14 Sample collection time for 1GB database with T"=6[. 60
[4.15 Sample collection time for 1GB database with T"=12/ 61
[4.16 Sample collection time for 1GB database with T"=21 61
[4.17 Sample collection time tor 10GB database with T"=6(. 62
[b.1 QShutHer Workflow| 66
(5.2 QShuffler architecturel 67
(.3 Throughput vs timerons for ();3 in the 1GB databasel 81
[>.4 Throughput vs timerons for ()o; in the 1GB databasel 82
[5.5 Batch schedule execution time for different modeling approaches| 85
[5.6 QShuffler on-line algorithm for different modeling approaches 86
[5.7 Scheduling for B=5[. oo 87
[5.8 Scheduling for B =25 oo 88
[5.9 Scheduling tor B=50[. o 88
[5.10 Scheduling for different values of Oyro (M =30)[. 90
[5.11 Scheduling tor T"=21| 91
[5.12 Scheduling tor 10GB database], 91
[5.13 Scheduling for skewed data with K =4 (M =30)| 93
[5.14 Scheduling for skewed data with K =1 (M =30)[. 93
[5.15 Throughput vs MPL tor Wg| 94

X1

[5.16 Optimizer-based schedulingl 95

[5.17 Optimizer-based scheduling ot workload Wx using two service classes| . . . 96
[6.1 Problem setting for predicting workload completion times|. 99
(6.2 Workflow of predicting workload completion times 100
[6.3 Simulating the execution of a workload as a sequence of mixes| 102
[6.4 Prediction error for different sampling and modeling approaches| 106
[6.5 Prediction error for 57" and 107 samples| 107
[6.6 Prediction error for incremental samplingf. 108
[6.7 Prediction error across different MPL settingsf 110
[6.8 Prediction error when varying the number of query types| 111
6.9 Prediction error for workloads on the 10GB databasel 112
[6.10 Prediction error for different scheduling policies] 112
[6.11 Prediction error for skew-aware and default approaches| 113

xii

Chapter 1

Introduction

Database management systems are widely used in software applications in diverse areas.
Every day, users come across business, industrial, and financial applications that rely
on underlying database management systems. It is almost impossible to think of any
application area that does not rely on some kind of system for storage and retrieval of data
and records. Thus, software applications for our banking, financial, health care and retail
sectors are all dependent on these database management systems.

The performance of software applications that rely on database systems depends on the
performance of these database systems. Therefore, studying and developing techniques for
performance improvement of database systems is an important area of interest for com-
puter science research. Achieving good performance in a database system requires careful
administration and tuning, which requires significant effort on the part of a database
administrator. Helping database administrators is also an important research area that
has received much attention during the past 20 years, resulting in the development of
techniques to facilitate the automated administration of database systems. Database ad-
ministrators have increasingly sophisticated tools that drastically reduce the man-hours
needed to administer the systems in an efficient manner.

In this dissertation, we present work that contributes to this ongoing effort to develop
improved techniques for automated administration of database systems. We focus on the
study of workload management issues in database systems. In particular, we focus on
the observation that during the typical execution of a workload, a database system, at
any point of time, is executing a mix of queries of different types. The queries in the
mix run concurrently with each other and interact with each other. The interactions
among concurrent queries can have a significant impact on database performance. Hence,

optimizing database performance requires reasoning about query mizes and interactions
within, rather than considering queries or query types in isolation.

Consider the simple case of query scheduling. Scheduling policies like shortest job
first (SJF) or shortest remaining time first (SRTF) have been proposed in the research
literature. The next query is scheduled on the basis of its running time. However, this
approach completely ignores the fact that the running time of the query, which is employed
as the basis for scheduling, is the running time of the query when the query is running alone
in the system. Depending on the nature of the query, its running time will be affected by
the currently executing mix of queries in the system. Thus, for example, if the current mix
of queries is heavily I/O bound, a short I/O-bound query may fare worse than a long CPU-
bound query if it is scheduled to run at that time on the basis of its running time when it is
run alone in the system. Reasoning about query mixes and having a better understanding
of their effect on the system would enable us to better choose a query for scheduling from
the pool of available queries. Furthermore, understanding these interactions can help in
providing better solutions for other performance problems in addition to query scheduling.

A query @) that runs concurrently with another query @) can impact (Q2’s performance
in different ways, either negatively or positively. For example, the resource demands of
()1 and @), can interfere with each other, with the interference happening at one or more
of different physical resources like CPU, L1 or L2 cache, memory, and I1/O. Moreover,
the queries can interfere at internal resources inside the database system such as latches,
locks, and buffer pools. In such cases, the concurrent presence of more instances of (1 will
degrade the performance of (). On the other hand, queries running concurrently in a mix
may positively affect each other. For example, (); may bring data or index blocks into the
buffer pool that are useful for the concurrently running). In this scenario, the increased
cache hits will make)3 complete much faster than if)3 were to run without) running
with it.

We illustrate the impact of query interactions in query mixes using 60 instances of TPC-
H [103] queries running on a 10GB TPC-H database in the IBM DB2 database management
system [38]. (The details of our experimental setup are given in Chapter [3]) Figure
shows the respective completion times of three different workloads composed of these 60
queries. The total set of queries in all three workloads is the same. However, we change the
arrival order of the queries across the three workloads, causing differences among the query
mizes scheduled by DB2 for each workload. All other aspects of the system, including
hardware resources, configuration settings, and physical design, are kept the same across
the executions of the three workloads.

The difference in scheduled mixes among the three workloads causes a 2.1 hour (63%)
difference in completion time between the “worst workload” W; and the “best workload”

) 5
=
9
g4
[
S
=3
c
i)
?
= 2
€
o
O 4

0

1 2 3
Workloads

Figure 1.1: Completion times of three different workloads that consist of the same set of
60 TPC-H queries

Wis. It is important to note that each workload runs the same set of queries under identical
system configurations. In workload Wi, which runs in 5.4 hours, queries that compete for
resources get executed concurrently, resulting in negative interactions. Workload W35 runs
the same set of queries in just 3.3 hours. As mentioned earlier, the workload queries and
system settings are exactly same and this difference in runtimes is solely a result of the
different query interactions that come into play in different mixes that get scheduled in
the different workloads. In workloads W5 and Wj, the interactions are less negative and
occasionally positive, with queries that help each other executing concurrently.

Figures[I.2]and[I.3]visually illustrate how query interactions impact workload execution.
Consider a database system with a multi-programming level (MPL) of 2. That is, at most 2
queries will be scheduled to run concurrently in the system at any point of time. Suppose
the system has to run four queries ()1, @2, @3, and)4 which are currently queued up
waiting to be scheduled. Figures and show two different schedules A and B. Each
bar in these figures shows the time interval where a query runs in the database system.
Queries ()7 and ()9 are run first in both schedules, and)3 completes before).

When @, finishes, ()3 gets scheduled in Schedule A, whereas Q4 gets scheduled in
Schedule B. Suppose ;1 and ()3 have strong negative interaction, whereas ()1 and Q4

Schedule A S1 S2 S3

e A A)\
(Y \
t1 2 t3
— i :

—

Time

Figure 1.2: Schedule A: Negative interaction between ()7 and Q3

Schedule B S1 S2 S3

“{_A_Y_A_Y_A_\

v

Figure 1.3: Schedule B: Positive interaction between ()1 and Q4

have positive interaction. Since (J; and (J3 run concurrently in Schedule A but not in
Schedule B, @ will take much longer to complete in A than in B, which is what we see in

Figure The difference in overall completion time between Schedules A and B is caused
solely by the different interactions in the query mixes that execute in the system.

If the 60 TPC-H queries from Figure were submitted to the database system as a
single batch, then we would like the system to run the queries as per workload W3 in the
figure. However, the system has to be interaction-aware to be able to choose this schedule
over, say, workload W;. We need to develop techniques that can estimate the impact of
different queries on each other when they run concurrently with each other. At the same
time, we need to develop algorithms that can make use of this estimation of interaction
and solve the performance problem at hand (e.g. query scheduling problem in this case).

A major hurdle in making database systems interaction-aware is in finding effective
ways to capture and model query interactions. As we mentioned earlier, there is a large
spectrum of possible causes for interactions that includes resource-related, data-related,
and configuration-related dependencies. Interactions are often benign. However, depending
on the system setting, the effect of interactions can vary all the way from severe performance
degradation to huge performance gains. Furthermore, interactions that occur when a
database system runs on one hardware and operating system configuration may not happen
when the same system runs on a different configuration.

In a database system, it is the job of the query optimizer to come up with the most
efficient query execution plan for a given query. Query optimizers rely on analytical cost
models to come up with best query plans. Would it be possible to reason about concurrently
executing query mixes using the analytical cost models used by database query optimizers
to estimate the cost of query execution plans? We believe that the answer is “No”. The
cost models used in almost all database systems today work on a per query plan basis,
so they cannot estimate the overall behavior of multiple concurrent queries. For these
conventional cost models to capture interactions in query mixes, we would need to extend
them to model the complex internal behavior of each distinct database system, and how
this behavior depends on hardware characteristics, resource allocation, and data properties
— a seemingly impossible task.

In this dissertation, we explore approaches to capture and model the query interactions
in concurrently executing query mixes. As discussed above, the infeasibility of analytical
cost models poses a big challenge. We overcome this challenge by employing ezperiment-
driven performance modeling. The experiment-driven performance modeling approach con-
sists of two steps. In the first step, experiments are run to collect training data. These
experiments consist of running a set of judiciously chosen query mixes, and measuring the
performance of different queries in these mixes. In the second step, after the training data
is collected, statistical modeling approaches are used to fit a model to this data.

In addition to presenting experiment-driven performance modeling approaches to rea-
son about query interactions in concurrently executing query mixes, our work proposes
interaction-aware end-to-end solutions to two problems in the area of database workload
management: scheduling batches of report-generation queries in database systems and
predicting the completion time of a batch workload of report-generation queries. Report-
generation workloads are a common type of workload in Business Intelligence (BI) settings.
These workloads are critical for operational and strategic planning, so it is important to
run them efficiently. Report-generation workloads continue to rise in importance, and with
the emergence of frontline data warehouses [19] 49, [106] our techniques become more rel-
evant. Frontline data warehouses seek to provide service level agreements that are similar
to transactional systems. This makes workload management techniques like the ones that
we propose even more important, since these techniques would be needed to guarantee
that the service level agreements are met. Furthermore, frontline data warehouses aim
to develop techniques that achieve low latency even for enterprise sized data warehouses.
Having this low latency means that the cost of experiment-driven modeling does not be-
come prohibitive with the increase in the size of the data warehouse. Thus, even for large
databases, the training data can be collected at relatively low cost.

The end-to-end solutions that we present demonstrate that query interaction can be
effectively modeled and exploited. The successful application of the techniques devel-
oped in our work to two important problems validates the effectiveness of our approach
and algorithms, and at the same time it demonstrates the significant potential for perfor-
mance improvement in database systems that can be realized by reasoning about query
interactions in concurrently executing query mixes. Next we present the summary of our
contributions and a roadmap for the remainder of this dissertation.

1.1 Summary of Contributions and Roadmap

Literature Survey: In Chapter [2] we present a survey of the literature from related
areas that touch upon the different aspects of our work.

Query interactions: We conduct a detailed experimental study using TPC-H queries
on the DB2 database system to observe the impact of query interactions in concurrently
executing query mixes. Chapter [3| presents the results of this experimental study illus-
trating the significant impact that query interactions can have, thereby motivating the
need to reason about query mixes. The query mixes presented are composed of query
instances belonging to TPC-H. TPC-H defines 22 query templates where each template
can be instantiated with different parameter values to generate hundreds of distinct query

instances. Typically such templates would define the query types that make up the mixes.
Chapter [3] also proposes techniques that can be employed by the database administrator
to automatically identify the query types in an application.

Experiment-driven modeling: After demonstrating that query interactions in con-
currently executing query mixes can have a great impact on performance, the challenge is
to come up with ways to better reason about and understand these interactions. In par-
ticular, we need models that can capture these interactions and predict the performance
of queries in different mixes. As discussed before, analytical models may not be the best
suited for this purpose. In our work, we propose an entirely different and practical approach
to capture and model query interactions. First, we measure the impact of interactions in
terms of how they affect the average completion time of queries. Completion time is an
intuitive and universal metric that is oblivious to the actual cause of interactions. Second,
we propose a proactive experiment-driven approach to tease out the significant interac-
tions that can appear in a query workload. This approach is based on running a small
set of carefully chosen query mixes, and measuring how the average completion times of
various query types are affected by running them in a mix instead of in isolation. Third,
having collected a representative set of samples, we employ statistical learning techniques
to fit a model to the observed samples. Thus, our approach requires no prior assumptions
about the internal workings of the database system or the nature or cause of query inter-
actions, making it portable across systems. Chapter [4] presents our approach for planning
experiments and statistical modeling to capture the impact of query interactions.

Workload scheduling: A core contribution of this dissertation is represented in end-
to-end solutions to two real-world problems that demonstrate how our approach enables
interactions to be modeled and exploited in database systems. The first problem we con-
sider is that of scheduling report-generation queries in database systems. As discussed
in our motivating example in Figure [1.1} scheduling the correct query mixes can have a
huge impact on the performance of the workload. Typical scheduling policies like first
come first serve (FCFS) and shortest job first (SJF) are not interaction-aware and may
perform sub-optimally when there are significant interactions among queries. Chapter
describes our novel interaction-aware scheduling algorithms that schedule the appropriate
query mixes for a given query workload, with the goal of minimizing the completion time
of the workload.

Predicting completion time of workloads: The second problem that we consider
is answering a simple but very important question : “How long will this workload take
to complete?”. This problem is important for database administrators in many workload
management contexts. The state of the art does not provide a database administrator
with any tools that predict the completion time of a workload, so database administrators

typically rely on heuristics and past behavior. Here, again, we demonstrate that reasoning
about query mixes enables us to come up with a systematic approach that can help database
administrators in estimating the workload completion time. We develop a novel mix-based
workload simulator that simulates the execution of the different query mixes to estimate
the total completion time of the workload. Chapter [6] describes our approach for predicting
the completion time of a given query workload.

Conclusion and future work: We conclude in Chapter [7] and present directions for
future work. For example, the emergence of cloud computing and server consolidation
gives rise to many interesting research challenges in the context of workload management.
We believe that the ideas from our work can be quite useful in these areas.

Chapter 2

Literature Survey

There is very little work that deals directly, in a general way, with the performance of con-
currently executing query mixes and the interactions within these mixes. In this chapter,
we present a survey of the literature from several related areas that touch upon the various
aspects of our research.

2.1 Transaction Mix Models

Some papers have employed the concept of transaction mizes [60, 07, 111, 112]. The
transaction mix models proposed in these works have been used for performance predic-
tion, capacity planning, and detecting anomalies in performance. These works define a
transaction mix as transactions of different types running during a time interval or mon-
itoring window and they do not consider which transactions ran concurrently with which
other transactions. Further, these works reason about transactions where a transaction
may consist of more than one query. The workloads considered are typically multi-tier
transactional applications. In general, an assumption is made that the number of transac-
tion types is a fixed small number that is known a priori.

In [60], the authors propose the use of transaction mix models based on linear regression
for performance anomaly detection in multi-tier enterprise applications. It is assumed that
the system is well provisioned and queuing delays at resources are negligible. During a
fixed time interval, the total number of transactions of each type is monitored alongside
their response times. The paper claims that this model of aggregate response times can
retrospectively explain the performance of various enterprise applications that the authors
consider. An anomaly is detected in the system using the simple idea that if the observed

time of various transaction types during an observation interval is in agreement with the
time suggested by the model, then it is considered normal behavior. Otherwise, if there is
a disagreement, the behavior is deemed as anomalous. This work is significantly extended
in [97].

In addition to retrospectively explaining the performance of an application and high-
lighting anomalous behavior, the work in [97] also aims to predict the application level
response times given a future workload. The paper also focusses on predicting the im-
pact of application consolidation on transaction response times. The basic transaction mix
model is the same as that in [60]. In [60], one of the assumptions is that queuing delays
are negligible. In [97], this assumption is relaxed, and queuing delays at resources are also
included in the extended model. In case of server consolidation, system performance
is predicted by concatenating the transaction mix models of each application running in
isolation. In order to show the improvement achieved by reasoning about transactions
mixes, the results are also compared to a scalar variant of the basic model that only uses
the total number of transactions in the observed interval instead of reasoning about the
mixes. The work assumes, like its predecessor, that (a) the total number of different types
of transactions are fixed and limited, (b) the interactions among transactions are negligible
and can be ignored, and (c) that there is not much contention for the resources except the
congestion that is being modeled by queuing delays. Since even with a small number of
transaction types, the number of possible mixes and hence the model space can be very
large, the authors claim that non-stationarity of mixes (i.e. the mixes running during
an observation interval keep changing from interval to interval) helps them to sample the
number of mixes required for model calibration, without employing invasive system or
application instrumentation or controlled sampling.

In [I12], the authors discuss resource provisioning and capacity planning for multi-tier
applications and use the TPC-W benchmark [104] for experimentation. In multi-tier ap-
plications, different tiers may run on different machines and the workloads are generally
characterized at the level of sessions, with transactions having strong inter-transaction
dependencies. The authors simulate transaction based behavior where the next transac-
tion is selected based on a certain probability. A regression-based transaction mix model
is proposed to approximate the CPU demand of client transactions on given hardware for
each tier. Once the approximate demand for CPU is known, this approximation is used to
parameterize an analytical model of a simple network of queues, where each queue repre-
sents a tier. This analytical model dynamically evaluates the required system resources in
changing workload conditions. The work shows that for diverse workloads with a changing
transaction mix over time, the CPU demand can be modeled effectively using the transac-
tion mix model. The authors use the TPC-W benchmark for their experimentation and

10

study the accuracy and efficiency of their proposed models for the three different types
of traffic mix that are defined by TPC-W (shopping, browsing, and ordering). In [111],
the authors extend their work done in [I12]. In particular, the work in [I11] considers
workloads where the number of transactions are much higher than what we see in typical
synthetic workloads. The contribution of the paper is to illustrate how the approach can
be extended to production workloads with a large set of transaction types. The idea is
to extract a set of popular core transactions and then apply regression modeling. The
concept of core transactions is based on the observation that during a typical run, the dis-
tribution of transactions is such that a core subset of transactions account for the majority
of the time, e.g., it is observed that the top 20 transaction types are responsible for 93.6%
of the client accesses in the trace collected from two different application servers that pro-
vide customized client access to HP OpenView [80]. Thus it is only these transactions
that are considered for transaction mix models.

As discussed earlier, these works define a transaction mix as all the transactions of
different types that run during a time interval or monitoring window without considering
which of these transactions ran concurrently. This is fundamentally different from our no-
tion of a concurrent query mix. For example, these papers would not distinguish between
the following three cases: (a) a monitoring window in which 10 transactions of type T}
execute concurrently with 10 transactions of type 75, (b) a monitoring window in which 10
transactions of type T execute concurrently followed by 10 concurrent transactions of type
Ty, and (c) a monitoring window in which 5 transactions of type T) execute concurrently
with 5 transactions of type 75 and when these transactions finish another 5 transactions of
type T execute concurrently with another 5 transactions of type T5. These three cases will
all be considered to have the same transaction mix: 10 transactions of type 7} and 10 trans-
actions of type T5. Like our work, these papers use statistical techniques to learn models to
estimate performance metrics for transaction mixes. However, their performance models
would not distinguish between the three cases above even though they have very different
concurrently executing transactions . In this dissertation, we show that the concurrent
execution of different queries in different mixes has a significant effect on performance, and
our performance models explicitly take this concurrent execution into account.

2.2 Optimizing the Performance of Concurrent Query
Mixes

There has been some previous work on optimizing the performance of concurrently execut-
ing queries. Work on this topic falls into two categories: work on multi-query optimization

11

(e.g., [85]) and work on sharing scans in the buffer pool (e.g., [79]). Both these categories of
work try to induce positive interactions among concurrent queries based on detailed knowl-
edge of database system internals. However, the types of interactions considered are fairly
restricted. In contrast, our work focuses on capturing all the diverse kinds of positive as
well as negative query interactions regardless of the known or unknown underlying cause.
Our approach does not require a priori information about the database system internals
or the hardware and operating system environment.

Since the time of publishing the work on query mixes and query interactions that makes
up this thesis [10, 11}, 12} 13| 5] [16], there have been several papers that build upon our
work and adopt our model of query mix.

The work in [I02] employs sampling and modeling ideas from our work and focuses on
the problem of admission control in multi-tier web applications. In particular, the authors
employ reasoning about query mixes to decide which requests a system should process and
which it should reject in order to minimize the client timeouts. When a query arrives, an
expected execution time is computed using the model that takes into account the currently
executing query mix. If the expected execution time does not exceed the timeout threshold,
the query is accepted, otherwise it is rejected.

In [40], the authors focus on predicting the response latency of concurrently executing
query types in BI workloads. They propose the use of average latency of a logical 1/0O
operation as the metric of choice for query latency indication. This metric is called buffer
access latency (BAL). A linear regression model, BAL to latency (B2L) relates the end-
to-end query latency with the BAL metric. In order to employ this B2L model to make
predictions, a model for estimating the average BAL value under contention, BALs to
concurrent BAL (B2c¢B), is proposed that incorporates the observations based on pairwise
interactions between query templates. Once B2cB for a query type in a query mix is
estimated, it is straightforward to compute the end-to-end latency by using B2L. In order
to learn both these models, training data is collected using Latin Hypercube Sampling
(LHS) along with directly sampling of query mixes consisting of pairwise interactions. In
order to predict the query latency in changing mixes, the authors propose approaches that
are very much inspired by our workload simulator presented in Chapter [§]

The problem of predicting the response time of an individual query in a given query
mix is also addressed in [03]. However, that work does not consider the execution in
changing mixes. The focus in that work is to learn models on-line such that the models are
constantly updated in response to new training data. The new training data needs to be
taken into account as there are changes in the number of query templates or the underlying
resource configurations. The work shows that, by using Bayesian learning approaches, the

12

models can be efficiently adapted to changes in query types or resource configurations in
an on-line manner.

2.3 Workload Management in Database Systems

In Chapter [5|we consider the problem of scheduling report-generation workloads in database
systems. There is a wealth of literature on job scheduling from an operations research or
industrial engineering perspective (e.g., see [31]). Scheduling in database systems has been
studied in the context of concurrency control, where the focus is on minimizing lock con-
tention [55] 58], in real-time database systems (RTDBMS) [2], 3, [4, Bl (54, 57, R2], and for
providing prioritization and QoS in transactional workloads in general-purpose database
systems [68, [69], OT].

Real-time database systems are different from general-purpose database systems in
the sense that they have intrinsic timing constraints. Each transaction is associated with
time-dependent deadlines and the overall goal, in general, is to minimize missed deadlines.
Works on scheduling in real-time database systems study how scheduling around critical
resources (CPU, locks, and 1/0O) helps meet the desired goals. In [2, 3], 4, [5] the authors
conclude that for real-time database systems, CPU is the most important resource because
the transactions only acquire other resources after they have the CPU. For the schedul-
ing policy, the authors study priority inheritance and preemptive prioritization. In [57]
and [82], the focus is on differentiating classes of requests in an RTDBMS. In [57] the focus
is on real time main memory databases.

Translating transaction-level priorities into priorities on resource usage (e.g., CPU and
locks) has been studied in the context of general-purpose database systems in [27, 68, [69].
The optimal buffer space requirement for each query is estimated in [87] and used to ensure
that memory consumption of scheduled queries does not exceed the available memory.
In contrast to all these works on scheduling, reasoning about query mixes is central to
our approach. Ignoring query interactions in a mix can result in suboptimal scheduling
decisions.

Scheduling techniques are also important in web servers. As system load increases,
the importance of effective scheduling increases because load-shedding may have to be
employed to keep systems responsive under high load. The work in [90] proposes using
shortest remaining time first (SRTF) scheduling to avoid dropping requests in web servers
when the system is under high load. While our scheduling algorithms share the goal of
avoiding overload, our approach is to take query interactions into account to make better

13

scheduling decisions. For example, we show in Chapter |5| that shortest job first, the non-
preemptive version of SRTF scheduling, is often suboptimal.

Workload management is an area of growing importance in database systems. In addi-
tion to scheduling, work in this area includes techniques for admission control and setting
the multi-programming level (MPL) of the database system. The multi-programming level
of the system represents the number of queries that execute concurrently in the system
at any time. In this dissertation we do not focus on the problem of admission control di-
rectly, as our scheduling algorithms do not reject or queue the queries. However, admission
control can be considered a form of scheduling, so we present a review of related work.

One of the first works to discuss the problem of adaptive tuning of MPL in database
systems is [51]. The authors outline the factors contributing to overload conditions and
suggest the use of feedback control mechanisms to adjust the concurrency level in the
system. The proposed approach continuously monitors transaction throughput over fixed-
size time intervals and a feedback loop is employed to adjust the MPL. The MPL is
adjusted according to increases or decrease in the transaction throughput during the last
time interval.

Most of the focus in the area of workload management has been on transactional work-
loads. In transactional workloads an important concern is data contention thrashing, that
is, performance degradation because of excessive lock conflicts. Therefore, many proposed
techniques perform load control based on some locking performance metric [28] 43|, 44] 58]
72, [73, 99, [100]. Thus, for instance, in [72] a metric called the conflict rate is used. This
metric records the ratio of the number of locks held by all transactions to the number of
locks held by active (non-blocked) transactions. If this ratio increases beyond a certain
threshold, the admission of new transactions is suspended until the ratio drop below the
threshold. The approach is further extended in [73], where the authors propose that ad-
vance knowledge of certain properties of a transaction can be used to estimate the effect on
the conflict rate if the transaction were admitted, and admission decisions could be based on
the estimated rather than the currently observed value of the conflict rate. Adaptive load
control has also been studied for multi-tier applications and internet servers [41], 56], [107].

In [92], the authors experimentally investigate how low we can set the MPL to facilitate
effective scheduling. They experimentally demonstrate that a low MPL, compared to the
total number of clients, is sufficient to achieve near-optimal throughput and mean response
time for a range of different workloads and transaction types. A feedback control loop is
used to tune the MPL. The feedback control loop is augmented with queueing theoretic
models that seek to capture basic properties of the relationship between system throughput
and response time and the MPL. These models predict a lower bound on the MPL, and
this lower bound provides the control loop with a good starting value. The control loop

14

then tries to optimize MPL starting with this value. In this dissertation, we focus on

external scheduling for any given MPL, so our work is complementary to work on setting
the MPL.

DB2 Query Patroller (QP) [83] is a query management system to control the admission
and flow of queries into a database system. It is able to classify queries such that small
high-priority queries may run promptly instead of waiting behind large low-priority queries.
An administrator can set resource usage policies at the system and user level and can make
sure that these policies are not being violated by controlling the concurrency level. DB2
Workload Manager (WLM) [109] represents the evolution of workload management in DB2.
In addition to features provided by QP, it is able to manipulate resource allocations among
different service classes of queries being admitted to improve their response times.

As mentioned above, the report-generation workloads that we consider in this disserta-
tion consist of complex analytic queries that are typical in Bl workloads. These workloads
are very different from transactional workloads. For transactional workloads, there are
many different approaches for setting the MPL dynamically. We discussed some of these
works above. However, these approaches do not work well for BI workloads. In general,
setting the MPL dynamically for BI workloads is non-trivial, which is why these workloads
are typically run using a statically pre-tuned MPL. Most of the works on MPL tuning for
transactional workloads employ some mechanism of feedback. In case of BI workloads this
is not particularly effective for many reasons. There can be orders of magnitude difference
in throughput between transactional workloads and BI workloads. In transactional work-
loads the throughput can be thousands of transactions per second, while in BI workloads
it may be tens or hundreds of queries per hour. Furthermore, there can be a lot more
variance in the completion time of different query types in Bl workloads. For example, in
our experiments with TPC-H queries on a 1GB database, we have queries with completion
times that range from 1 second to more than 10 seconds. Similarly, in our experiments
with a 10GB TPC-H database, we have queries with completion times that range from 100
seconds to more than 500 seconds. Long running queries make it very difficult to select
a proper control interval to implement feedback mechanisms, and shifts in the workload
between long- and short-running queries can make convergence problematic.

Niu et al. [75] [76, [77, [78] present a general framework for workload adaptation that
can handle scheduling for time-varying workloads. These works describe a query scheduler
that handles different service classes for different query types. The query scheduler uses a
utility function that aims to meet different service level objectives for the different service
classes. The query scheduler uses the query optimizer cost estimates (known as timerons
in DB2) to measure the cost of the queries executing in the system. The scheduler uses a
timeron threshold to define the capacity of the system. The scheduler admits a query if

15

admitting it will not increase the total optimizer cost (in timerons) of all queries executing
in the system beyond the timeron threshold. The timeron threshold is defined using an
experiment that is conducted off-line before scheduling starts. In this experiment, a varying
number of queries is executed concurrently, and the throughput of the system is plotted
against the total timerons to determine the timeron value that results in peak throughput.
This timeron value is used as the timeron threshold. An important assumption in these
papers is that there is a global system saturation point for query optimizer cost for all
query types. However, in Chapter [5| we show that the optimizer cost estimates can be
misleading indicators of the actual performance of different queries.

In [70], the authors propose a batch workload manager for BI systems that does ad-
mission control based on the estimated memory requirement of the BI queries. The main
objective of the work is to avoid thrashing and overload in the system. The authors ar-
gue that typically it is memory contention that causes thrashing. They measure the peak
memory requirement of each query type in the workload and then use it to prioritize the
queries. The queries with highest memory requirements get the highest priority and vice
versa. These priorities are used to order the queries, and queries are admitted into the
system such that the queries with highest priority are at the head of the admission queue.
The queries are thus admitted according the order of their priorities such that the combined
memory requirement of the concurrent queries does not exceed the total available memory
of the system. As a query finishes and more memory becomes available, the next query can
be admitted if adding this query to the system does not exceed the total available memory
of the system. This work completely ignores the interaction among queries. In Chapter
we show that resource consumption metrics, such as the memory requirement of queries,
can be quite misleading in determining the performance of queries in mixes.

2.4 Machine Learning and Experiment-driven Perfor-
mance Modeling

Traditionally, database systems have relied on analytical models for reasoning about per-
formance. In particular, query optimizers are well known for using analytical cost mod-
els to evaluate different query execution plans. However, as the complexity of systems
keeps increasing, machine learning and experiment-driven performance modeling are gain-
ing wide acceptance as methodologies to build robust performance models. In our work
we use experiment-driven performance modeling to capture and model query interactions
in query mixes, constructing models that predict the performance of queries in different

16

mixes. In this regard, there are many related works that adopt a similar approach in their
study of DBMS performance.

A very relevant set of work in this area is [37, [45] [46] 64]. In [46], the authors use
machine learning techniques to predict performance metrics for database queries. They
use Kernel Canonical Correlation Analysis (KCCA) [23] for making these predictions. In
the training phase, KCCA develops a model of multivariate correlations between a dataset
of query plan features and a dataset of runtime performance features. This model can then
be used to predict the runtime performance characteristics of a given query by observing
its query plan features. The authors demonstrate that this approach of machine learning
enables performance predictions for individual query types with less than 20% error in over
85% of the test cases. Their work, however, exclusively focuses on single query types and
does not consider interactions among queries in query mixes. In [45] the authors extend the
approach presented in [46] to predict the performance of MapReduce jobs in Hadoop [18].
In [37, [64], the authors discuss this approach of predicting runtime performance features
in the context of a general framework of workload management where the effectiveness
of different workload management policies is evaluated using a simulator for the database
engine.

In [50], a decision tree is used to predict ranges of query execution times. The decision
tree is constructed by taking into account query plan features and load features of the
system. This decision tree is then used to predict the execution time range of a new query.
In contrast to our work, no explicit features of query mixes and interactions are taken into
account and the multi-programming level (MPL) of the system is the only feature used to
represent the overall load on the system. IBM’s LEO learning optimizer [98] uses machine
learning to improve the quality of cost estimates by the query optimizer. The execution of
the queries is monitored to get actual cost statistics that are compared to the optimizer’s
estimates. The adjustments are learnt and can be used during future optimizations of
queries. In [I10], the authors use machine learning to produce a self-tuning cost model for
XML queries. Similarly, machine learning is employed for database provisioning in [48], 06].

Experiment-driven performance modeling has also been used for tuning database and
system resource configuration parameters [22), 39, [05]. In [39], the authors propose a tool
that helps in finding better configuration parameter settings for a database system by plan-
ning experiments corresponding to different parameter value settings. In [95], the authors
propose techniques to better tune the CPU and memory allocations for database workloads
running inside virtual machines. In [7], experiment-driven performance modeling is used
in cloud computing to help better scheduling of MapReduce jobs on a cluster of machines.

In these works as well as ours, there is a need to run sampling experiments to collect
training data that is later on used to train statistical models. An important concern

17

is that “where and when” these experiments should be run. This concern is not unique
to these approaches; it is a problem that a database administrator faces routinely when
evaluating or implementing any change to the production system. The problem increases
in complexity as the application stack becomes more layered and complex.

Depending on the system setup, an administrator can try to handle this problem in
many different ways. The experiments can be done on the system before it goes into
production. If the database is already in production use, the maintenance windows can
be used for running experiments. Similarly, an administrator can use test systems or
even a standby system (put in place to handle failovers) for this purpose. In [39], an
important contribution of the authors is that they propose an experiment executor that
exploits the under-utilized resources to run the experiments. The resource set includes
all the production, test, and standby systems, and the user can specify policies for each
resource that determine when that resource can be used for experiments.

Commercial vendors are also realizing the importance of this issue and supplementing
their products with appropriate tools to help an administrator in running experiments.
For example, Oracle 11g provides an infrastructure called Real Application Testing [24].
The Real Application Testing framework allows the user to evaluate the impact of changes
to the database system before applying these changes to the production system. It has a
component called Database Replay, which enables the user to capture real workloads run-
ning on a production system with minimum impact. During the specified capture window,
it captures all the database requests, including all the information about transactional
concurrency and system load. Having captured the workload, the database administrator
can run it on a test system exactly as it ran on the production system.

In our work we simply propose running the sampling experiments on the production
system when it is not in use. However, we note that any of the above frameworks can
be adapted to run our experiments. A detailed study of this problem of where and when
to run the experiments is complementary to the work presented in this dissertation and
beyond the scope of our work. We always assume that we have available capacity to run
the experiments to collect the required training data for different query mixes, although
we are always mindful of the fact that there is a “budget” of query mixes that can be run
during sampling experiments.

In the next chapter we present the results of our detailed experimental study that
illustrate the significant impact that query interactions can have in query mixes.

18

Chapter 3

An Experimental Study of Query
Interactions

In Chapter [I, we presented an example to illustrate the effect of query interactions on
database workloads. We showed that there can be a significant difference in the perfor-
mance of different workloads due to different query interactions in the execution of these
workloads. In order to drill down into the performance of query mixes, we conducted a
detailed experimental study to observe the impact of query interactions in concurrently
executing query mixes [I0]. In this chapter, we present several examples of query inter-
actions observed in this experimental study. A related question that we discuss in this
chapter is how query types can be defined.

3.1 Granularity of Modeling Query Interactions

In this dissertation we focus on studying interactions in a database system at the granu-
larity of query types that we identify by using query templates. A range of other options
exist. A simpler scheme that models interactions at a coarser granularity than ours is to
categorize queries based on their resource consumption. For example, we can categorize
queries into CPU or I/O bound so that two or more concurrent CPU (I/O) bound queries
would be considered to interact negatively. A more complex scheme that models query
interactions at a finer granularity than ours involves capturing interactions at the level of
different phases of execution of physical operators in a query execution plan like Hash Join
and Sort.

19

Modeling interactions at a finer granularity has the potential of being more accurate.
However, fitting a fine granularity model requires much more training data and much more
fine grained measurements than fitting a coarse granularity model. For example, if we
want to capture interactions between different physical operators in a query execution
plan, we need to conduct experiments in which we observe and measure interactions not
only between whole queries but also between individual operators in these queries.

Similarly there can be multiple choices for performance features of interest. The per-
formance metric that we use in this dissertation is the average completion time of different
query types. An alternative would be, for example, to observe system and database re-
source consumption features. Completion time is an intuitive and universal metric that is
oblivious to the cause of interactions. Our choice of modeling granularity and performance
metric works well for the workload management problems that we consider in our work.
In our experimental study we also collected data about system resource consumption in
different query mixes. We present this resource consumption data as well to show that
looking at the resource consumption of queries alone is not sufficient to capture query
interactions.

3.2 Experimental Setup

We conducted our experimental study using queries from the TPC-H decision support
benchmark with two scale factors, 1 and 10 [I03]. The scale factor 1 generates a dataset
of 1GB and scale factor 10 generates a dataset of 10GB. The database system we use is
DB2 version 8.1, and we ran our experiments on a machine with dual 3.4GHz Intel Xeon
CPUs and 4.0GB of RAM running Windows Server 2003. The buffer pool size of the
database was set to 400MB for the 1GB database, and to 2.4GB for the 10GB database.
The TPC-H benchmark has 22 query types that are instantiated with different parameter
values, and we use query mixes consisting of different numbers of instances of different
TPC-H query types, with different parameter values in each query instance as required
by the TPC-H specification. The standard TPC-H specification provides two programs
for generating data and queries, DBGEN and QGEN. We use these programs to generate
our datasets and query instances. In order to ensure that we have a good set of indexes
we used the DB2 Design Advisor [113] to recommend indexes. Similarly, we ran the DB2
Configuration Advisor [65] to make sure that the configuration parameters are well tuned.
The size of the databases with all indexes was 2.4GB and 23GB for scale factors 1 and 10,
respectively. We refer to the scale factor 1 database as the 1GB database and the scale
factor 10 database as the 10GB database.

20

Query Type | runtime ¢; (sec)
Q1 10.07
02 1.95
Q3 3.41
04 2.09
05 2.59
Q)6 4.77
Q7 5.76
08 415
Q9 9.66
010 2.65
O11 0.98
012 9.38
013 6.12
Q14 0.42
016 1.74
O17 0.03
018 7.12
019 0.34
020 1.48
Q21 7.30
022 1.07

Table 3.1: Runtime, ¢;, of different TPC-H query types on a 1GB database

Let Q1,Qs, . .., Q2 be the TPC-H query types. Table|3.1|shows the average completion
time of the TPC-H query types on a 1GB database when they run alone in the system,
which we denote by ¢;. The completion time (or runtime) of a query instance is the time
elapsed between when the query starts and when it finishes. Table shows the completion
time of these queries on a 10GB database. We omit ()15 since it creates and drops a view,
which is not supported by our prototype implementation. Each completion time in the
two tables represents the average completion time of 10 instances of the particular query
type. There is very little variance in completion times for a specific query type, which is
expected since TPC-H uses uniform distributions for data and query parameters.

We now consider multiple queries running concurrently. Let the multi-programming
level (MPL) of the database be denoted by M. A set of queries that execute concurrently
in the system is referred to as a query miz. Formally, query mix m; can be represented as a

21

Query Type | runtime ¢; (sec)
o1 204.61
Q2 97.25
03 247.95
04 170.90
Q5 136.04
Q6 346.63
Q7 102.06
Q8 387.72
Q9 578.61
Q10 353.89
O11 14.58
012 48317
013 101.27
014 5.56
Q16 26.59
O17 43.23
018 554.56
Q19 222.31
020 273.08
Q21 570.37
022 20.17

Table 3.2: Runtime, t;, of different TPC-H query types on a 10GB database

vector (Nj1, Nia, ..., N;r), where N;; is the number of instances of query type @); in m;, and
Z;F:l N;; = M. The symbol T" denotes the number of query types. We denote the average
completion time of queries of type); in mix m; by A;;. The average completion time is
computed by adding the runtimes of all V;; instances of); in mix m,, and then dividing
the sum by N;;. Table summarizes our notation used throughout the dissertation.

To sample a query mix, we use the following procedure. All queries in the mix m; =
(Ns1, Nia, ..., N;r) are started at the same time ¢y. The different query types have different
runtimes and they do not finish at the same time. So in order to make sure that we are
always running the same query mix m;, as soon as an instance of @); finishes, we start
another instance of ();. This continues until the longest running query instance of the
initial set of instances (started at ty) finishes at time ¢;. The completion time of the mix
is t; — to. This process is illustrated in Figure |3.1]

22

H Symbol ‘ Description

M Multi-programming level
T Number of query types
Qj Query type j
q; An instance of query type j
t; Average completion time of a @);
query when running alone
m; = A query mix, m;, with N;;
(Ni1, Nig, ..., Nir) instances of each query type j
Ajj Average completion time of a @,
query when running in mix m;

Table 3.3: Notation used in this dissertation

Q,

el le]]

A query instance finishes, start

(”—_ another instance of the same query
i
1

Mix completion time

Figure 3.1: Sampling a query mix

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Ni]‘ Aij Nij A,‘j Nij Aij
mp 1]11093.14 | 1 578.36 3 | 1190.15| 0O 0.0 0 |00] O | 0.0
ma 1 179497 | 1 1261.39 | 2 | 263862 | 1 |432.12] O 0.0 0 0.0
ma 1 |1186.74 | 1 663.97 0 0.0 3 |31153] 0 | 00| O | 0.0

Table 3.4: A;; (in seconds) for different query types in query mixes on a 10GB database

In the beginning of an experimental run we start by running some random query mixes.
This is our warm up time for sample collection to ensure that we take our observations on
a warm buffer pool. In general, the completion time of a mix is minimally affected by its
preceding mix. As we mentioned above, the standard TPC-H specifications provides two
programs for generating data and queries, DBGEN and QGEN. These standard programs
ensure that generated data values follow a uniform distribution. Similarly, when queries
are instantiated, the different instances of the same query type uniformly touch different
data ranges in the tables that they access. Thus, we find that there is negligible variation
in the runtimes of different instances of the same query type and the runtime of a mix is
also minimally affected by the mixes that precede it.

3.3 Effect of Query Interactions on Query Completion
Time

In this section we present several examples of the impact of interactions in a query mix
on the completion time of a given query type in this mix. Interactions among queries that
run concurrently in mixes can be negative or positive. We say that a query of type @;
has negative interactions in mix m; if A;; > t;, i.e., an instance of @); is expected to run
slower in the mix than when run alone. On the other hand, A;; < t; indicates positive
interactions.

We start with a simple example of query interactions. Table [3.4] shows three mixes
consisting of 6 long-running query types on the 10GB database. Each mix in this table,
and also in Tables[3.5}-[3.9 was run five times, and the measurements shown are averages of
these five runs. In all cases, the variance in completion time for all query types was less than
4% of the mean. The high variability in A;; illustrates the effect of query interactions. The
behavior of queries changes from mix to mix depending on the interaction among queries.
In all these mixes, A;; values are much higher than the corresponding ¢; values shown in
Table [3.2] Thus, all queries are impacted negatively in these mixes. Consider the average

24

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij A,‘j Nij Aij Ni]‘ Aij Nij A,‘j Nij Aij
my 8§ | 11440 | 2 45.76 1 119316 | 4 71.12 4 | 11187 | 1 55.38
ms 2 | 109.88 | 6 88.13 3 119148 | 5 61.23 3 | 114.21 1 159.95
me 11 | 14390 | 8 | 14460 | 3 | 211.20 | 2 97.80 2 114980 | 4 | 127.50
my 2 136170 | 8 |298.60 | 1 476.0 | 18 | 121.20 | O 0.0 1 |231.20

Table 3.5: A;; (in seconds) for different query types in query mixes on a 1GB database

runtime of (J; and ()7 in the first two mixes. Both mixes have M = 5, and both have one
instance each of ()1 and @7, but there is an increase in A;; in my for all query types. In
particular, the runtime of ()7 is more than twice its time in m;. One may be tempted to
think that this is just because of the characteristics of ()13 which was introduced in ms.
The next mix mg shows that this is not true. In this mix, both); and)7 actually have
better performance than in ms, even when we increase the number of instances of ()13 from
one in my to three in ms.

The effect of query interactions in a 1GB database can be seen in Table [3.5] The table
shows different mixes of the same query types as in Table [3.4, These six query types have
the longest runtime among all TPC-H query types when run alone on a 1GB database.
Consider the average runtime of ()21 in the two mixes m4 and mjs. Both these mixes have
M = 20, yet A;; for Q21 in ms is almost three times that for my. Similarly, consider the
average runtime of)7 in the two mixes mg and my. We run the same number of instances
of Q7 in both mixes and M = 30 for both mixes, but A;; for Q7 in my is almost twice the
Aij for Q7 in meg.

Next, we present interesting cases of positive interactions using the same six query
types as before on a 10GB database. Mix mg in Table [3.6] presents an example of positive
interaction for Q7. The average runtime of)7 in this mix, A;;, is 72.7 seconds, while the
runtime of)7 when it is run alone in the system is 102.06 seconds (Table . Thus, Q7
benefits from being run in this mix: an instance of)7, on average, runs faster when run
concurrently with 1 instance of (1, 5 instances of)9, and 2 instances of ()1 than when it
runs alone in the system.

The performance of query)7 in mix mg raises the following question: would @Q7’s
performance be even better if it were run in a mix that predominantly has instances of
Q7 (e.g., because of possibly increased buffer cache hits)? To answer this, consider the
average runtime of ()7 in mix mg which has four concurrent instances of)7. Notice that
(Q7’s runtime in myg is much worse than its runtime in mg, and also worse than ();’s runtime
when it runs alone in the system (i.e., Q7’s interactions are negative in my).

25

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Ni]‘ Aij Nz‘j Aij Nij Aij Ni]‘ Aij Nij Aij
mg 1 | 189740 | 2 72.70 5 1291930 0 | 00| 2 |1904.10| O | 0.0
mo 0 0.0 4 126447 | 0 0.0 0 |00] 1 |341366| 0 | 0.0
mio 4 538.0 0 0.0 0 0.0 0 |00 1 539.30 0 | 0.0
M10q 4 537.98 0 0.0 0 0.0 0 |00 1 541.39 0 | 0.0
mi0p 4 042.94 0 0.0 0 0.0 0 |00 1 538.26 0 | 0.0

Table 3.6: A;; (in seconds) for different query types in query mixes on a 10GB database

mi1 0 4 1 4188.20
m13 2 2 1 3476.10
miq 3 1 1 3581.70
mis 4 0 1 2782.40

Table 3.7: A;; (in seconds) for (J2; on a 10GB database

Mix mqg presents another example of positive interaction, this time for ()15. The average
runtime of Q15 in this mix is 539.3 seconds, compared to a runtime of 554.56 seconds when
it is running alone. Thus, ()15 benefits from being run with 4 instances of ;. Mixes mqgq
and mqq, show repeated runs of mix m;o with different instances of the same query types.
The results for all variants of mqq are similar, indicating that this positive impact of query
interactions that we see in these mixes is consistent and robust across different instances.

Next, we demonstrate that query interactions can be fairly complex, with small changes
in the query mix sometimes having a huge impact on performance that may be difficult to
predict. Table shows more examples of interactions from the 10GB TPC-H database
where we focus on three-way interactions of TPC-H query ()57 in the presence of queries of
type Q9 and (Q13. In all examples we have M = 5 and one instance of (o;. The first row of
the table shows the instance of (9; running with 4 instances of (J13. In the subsequent rows,
we replace instances of (013 with instances of (Jg. The completion time of ()57 first increases
with the introduction of an instance of @)y, then it decreases and increases alternatively as
we keep increasing the number of instance of ()9 and decreasing the number of instances
of)13. The worst runtime of ()21 is almost twice the best runtime. It can be observed
from Table that Q21 runs much better in a mix with concurrent instances of ()9 than
with concurrent instances of (J13. This behavior is not what we would have expected from
Table because (g is by far the more heavyweight query when each query is considered
individually.

26

miz | Q13 (Ni;) | Q9 (Nij) | Q13 (Aij) | Q9 (Ai;) | CPU Utilization(%) | Millisec/Disk Transfer
mie 0 5 0.0 919 .0 24.11 25.30

miy 1 4 356.0 1547.16 27.43 25.0

mig 2 3 422.59 2079.72 19.68 22.08

mig 3 2 388.74 2508.33 4.97 9.8

mao 4 1 289.1 3762.55 53.15 26.0

ma1) 0 224.42 0.0 86.06 16.55

Table 3.8: Resource consumption for different mixes of)13 and (9 on a 10GB database

miz | Q13 (Ny;) | Q21 (Nyj) | Q13 (Ayj) | Q21 (Ay;) | CPU Utilization(%) | Millisec/Disk Transfer
mo2 0 5) 0.0 1300.735 5.79 7.2

ma3 1 4 372.05 2196.81 9.30 11.4

Moy 2 3 436.62 2283.41 14.38 12.8

mas 3 2 322.71 2576.06 30.68 17.7

mag 4 1 206.88 4188.2 99.36 21.5

may) 0 224.42 0.0 86.06 16.55

Table 3.9: Resource consumption for different mixes of ()13 and ()27 on a 10GB database

In this section, we have presented several examples that illustrate that query runtimes
are significantly impacted by interactions in query mixes. Thus, in order to accurately
predict the query runtimes, we need to take into account the impact of other concurrently
executing queries. Next, we discuss the effect of query interactions on resource consump-
tion.

3.4 Effect of Query Interactions on Resource Con-
sumption

We present some observations about resource consumption in different query mixes. Here,
again, we see that traditional approaches that profile the resource consumption of individ-
ual queries and workloads while ignoring interactions may not be useful. When queries run
concurrently, resource utilization and performance bottlenecks can shift considerably from
one mix to another. In Tables 3.8 and we show the resource consumption of different
mixes with two-way query interaction and M = 5 on the 10GB database. The tables report
average CPU utilization (in %) and average milliseconds per disk transfer for the different
mixes (a measure of I/O consumption). Milliseconds per disk transfer is a direct measure
of disk response time including the queueing time, so it captures the effect of varying load.

27

In both tables we run ()13 with one other query type and observe the resource consumption
of the mixes. The tables present some interesting observations. It is obvious that resource
consumption is different for different mixes based on query types. However, what is inter-
esting is that, even when we have two given query types, just replacing an instance of one
query type with an instance of the other can significantly change resource consumption,
validating our assertion about the significance of interactions. Consider mixes mig to ma;
which all consist of instances of query types @13 and Q9. In my9, the CPU utilization
drops significantly and even the disk transfer time is reduced as compared to mixes mig to
mqs. The CPU utilization then rises considerably again in mix msyy. Similar observations
are made for mixes Mmoo to Moy, where the CPU utilization keeps rising from mix to mix.
However the disk transfer time first rises from mixes mas to msg and then drops in mix mo7.
All these changes happen by just changing one query instance from one mix to the next.
Also, observe the complex pattern of resource consumption and how it changes from mix to
mix due to the nature of query interactions. It is clear from these tables that considering
query mixes is important for answering questions about resource consumption. Another
interesting observation from these tables is that there is little correlation between resource
consumption and query runtime. These observations lead us to the conclusion that moni-
toring resource consumption is not a good way to predict performance and interactions in
query mixes. Instead, a better approach is to directly monitor and model the completion
time of different query types in different query mixes, as we do in this dissertation.

3.5 Identifying Query Types in the System

So far we have assumed that the query types Q1, ..., Q7 are given. The query types could
be identified by the DBA or they could be tagged by the application. This section presents
some novel techniques to simplify the task of choosing query types.

One straightforward technique is to have one-to-one correspondence between query tem-
plates and query types, i.e., each distinct template forms a query type. A query template
consists of SQL text along with possible parameter markers. In this dissertation, we use
the TPC-H benchmark where query templates are already given to us. However, query
templates can be extracted from query logs by writing a simple query template extractor.

A typical query template extractor parses database query logs to extract all distinct
templates corresponding to queries that executed in the system over a given period of
time. This process involves log parsing, identifying parameter values in the query text
and replacing them with parameter markers, and using a canonical representation of query
templates to facilitate string-based comparisons between extracted templates. Along with

28

the distinct query templates, the extractor also returns the distribution of values seen for
each parameter marker.

Counterparts of the query template extractor exist for almost all database systems
(e.g., [T4]). Query templates are used routinely for purposes like: (i) avoiding the overhead
of query optimization for templates seen frequently, and (ii) enforcing the use of manually-
tuned plans for important queries that repeat. There has also been work on extracting
query templates directly from the source code of database applications rather than parsing
logs [47, [67].

The TPC-H benchmark defines T'=22 distinct query templates. The following template,
derived from TPC-H, is an example query template with one parameter marker which is
represented by the symbol “?”. Different value settings of the parameter marker give rise
to different instances of this query template.

Select *
From lineitem as 1, orders as o, supplier as s, nation as n
Where 1.1_orderkey = o.o_orderkey and

1.1_suppkey = s.s_suppkey and

s.s_nationkey = n.n_nationkey and

n.n_name = 7

The one-to-one correspondence between query templates and query types works well
for databases where data values have uniform distribution. This is the case with the
standard TPC-H specification. However, equating query types to query templates can be
a suboptimal choice in the presence of data skew. We study the performance of all instances
of a query type (), in a mix m; based on a single number A;;, the average completion time
of all instances of (); in m,. This representation works as long as all instances of ¢); in m;
have similar performance. This is the case when the underlying data values have a uniform
distribution. The presence of data skew can cause two (); instances ¢; and gy with different
values of the parameter marker(s) to perform differently. For example, in the presence of
data skew, an instance of the above TPC-H template for n_.name=“USA” could take much
longer to run than, say, for n_name=“Mexico”. To deal with such behavior, our approach
is to partition the query template into two or more query types. Thus, in the general case
of skewed databases, each query template will correspond to one or more query types.

We present a methodology that helps us in automatically determining the best set
of query types in the database workload. Our methodology is implemented in a module
called the query template partitioner, which partitions a template into multiple query types
if different instances of that template can have different completion times. We present this
module next.

29

3.5.1 Query Template Partitioner

The query template partitioner takes a query template) (possibly output by the template
extractor) with parameter markers as input. The output returned is a partitioning of @
into one or more query types such that query instances of the same type have similar
performance. Modern query optimizers already account for skew in data values while
choosing query plans and estimating plan cost. Thus, we need not reinvent the wheel on
that front. The partitioner’s work flow, summarized below and in Figure [3.2] leverages the
query optimizer to generate the query types for a given template Q).

1. Generate a large number, say n=1000, of query instances from () by instantiating
each of ()’s parameter markers. Let the instances be ¢,...,q,.

2. For each instance ¢;, run the query optimizer to find ¢;’s execution plan p;, and p;’s
estimated cost ¢;. Thus, we get n tuples of the form (g;, p;, ¢;)-

3. Consider the distribution of ¢; values, and decide whether these values form a sin-
gle cluster or multiple clusters, as described below. If there are multiple clusters,
then find the best clustering of the values. The centroids of the clusters define the
partitioning of () into one or more query types.

4. To determine the query type of a given instance ¢ of template (), we use the query
optimizer to find ¢’s plan p and the associated cost ¢. The cluster centroid closest to
¢ defines ¢’s query type.

Note that even though this approach relies on the query optimizer, we do not rely on
the optimizer cost estimates to estimate the performance of queries. Moreover, we never
execute the queries to determine the query template partitioning or the type of a given
input query. What we want is for the optimizer to be able to come up with different cost
estimates for different query instances of the same query template if the parameter values
in these different instances have an effect on performance due to data skew. That is, we
need the optimizer to be able to detect the effect of data skew on performance and reflect
this in its cost estimates. Beyond that, we do not use the optimizer cost estimates.

Step 3 is the most nontrivial step in the partitioner’s workflow. The first decision in
Step 3 involves determining whether the plan cost values ¢;, 1 < i < n, naturally form one
cluster or more. To make this decision, we compute the Coefficient of Dispersion (CoD) —

30

sample of query

Query Template . -
4 P Sample instances of instances Get optimizer plan

the given template J costs for all instances

Dataset of plan
costs

Just one cluster and one
query type
corresponding to it. Get
average plan cost value
for plan cost dataset

Potentially clustered
distribution

Single Cluster

Run clustering
algorithm for different
number of clusters

Clusters

corresponding to
different runs

Find the best number
of clusters, say k

k Clusters
Record the information
representing clusters One time off-line process
Cluster information
\ 4
Query instance of the
given template Get the optimizer cost Query Type
value for this instance >

and match it to
appropriate cluster

Figure 3.2: Identifying query types from given query template

31

also known as the Fano factor — of the ¢; values [32, [42]. The coefficient of dispersion of a
distribution is defined as the ratio of the variance to the mean:

variance y.1 (¢; —€)?

CoD =

mean n Xc

where ¢ denotes the mean of the ¢; values. A value of CoD > 1 (over dispersion) is a
common rule of thumb used by statisticians to determine that the data is best represented
by more than one cluster. We follow this guideline to determine whether to run the
clustering algorithm or not on the dataset of ¢; values.

There is an abundance of literature on clustering. In our study of plan cost datasets,
we have found that the simple K-means clustering algorithm works very well. K-means
can be described as a partitioning algorithm that partitions the given dataset into a user-
specified number of clusters, K. Each cluster is represented by its centroid. K-means starts
by choosing K initial centroids. Then, it proceeds in an iterative manner assigning data
points to clusters so as to minimize the sum of the distances from each data point to the
centroid of the cluster to which the point is assigned. The data points may switch clusters
during the iterations, and the centroids are recomputed until the sum cannot be minimized
anymore. The clustering result may be dependent on the initial values chosen for the K
centroids. This problem is addressed in practice by repeating the clustering algorithm a
few times, and then choosing the cluster partitioning that gives the minimum total sum of
distances of points to their cluster centroids.

A critical component of the clustering process is to pick the best value of K automati-
cally. Luckily, this problem has been well studied in the K-means literature. To determine
the best value of K, we adopt the silhouette coefficient [59] as a metric of the quality of
a given clustering of the ¢; values. Let Cf,...,Ck denote the K clusters produced by
running K-means on the ¢; values. For a data point ¢ € Cj, let a. represent the average
distance of c to all the points in cluster C;. Let b. represent the minimum over the average
distances of ¢ to the points in cluster C;, 1 < ¢ < K, i # j. That is, b. is the average
distance of ¢ to the closest cluster other than the cluster that ¢ belongs to. The silhouette
coefficient of ¢ is defined as:

o bc — Q¢
e = mazx(ac, b.)
Intuitively, —1 < s. < 1 measures how close c is to the points placed in the same cluster
as ¢ compared to points placed in other clusters. That is, s. compares the intra-cluster
distance with the smallest inter-cluster distance from c¢’s perspective. Values of s, close to
the maximum value of 1 — which indicates that the inter-cluster distance dominates the
intra-cluster distance — denote a good clustering of c.

32

The notion of silhouette coefficient can be extended to the overall clustering by aver-
aging s. across all the clusters C1, ..., Ck. We define Sk, the silhouette coefficient of the
clustering produced by running K-means to produce K clusters, as follows:

K
1 ZCEC’-SC
IS :_E el
T K (e

J=1

Our goal is to identify the value of K that maximizes Sk for the given set of ¢; values.
We run K-means with larger and larger values of K > 2 until we see a drop in Sk as K
is increased further. For the TPC-H queries on skewed data, the largest value of Sk was
produced in the 2 < K < 5 range.

The output of Step 3 for a given query template @ is either: (i) a validation that () can
be treated as a single distinct query type, or (ii) a partitioning of @ into K query types
identified by the cluster centroids produced by running the K-means algorithm with the
K value with maximum Sg. Note that Steps 1-3 are done off-line. These steps are not on
the critical path of query execution.

Suppose we want to find the type of a query instance g of a given template () in Case (ii)
where the template corresponds to multiple query types. We first use the query optimizer
to find ¢’s plan p and associated cost c¢. This step does not involve additional overhead
since it can be piggybacked with the regular query optimization process of finding the plan
to execute q. We then find the cluster to which the plan cost ¢ belongs by finding the
nearest neighbor to ¢ among @)’s cluster centroids. The query type corresponding to the
nearest centroid is returned as ¢’s query type.

To test the robustness of our approach, we use the skewed TPC-D/H database generator
available at [94]. This database generator populates a TPC-H database using skewed
random values that are distributed according to a Zipf distribution [I0T]. This distribution
has a parameter z that controls the degree of skew, where z = 0 generates a uniform
distribution and as z increases, the data becomes more and more skewed. We use a 1GB
dataset that was generated using z = 1.

We consider TPC-D/H query templates and consider the six templates used in previous
experiments (Q1, Q7, Qg, Q13, Q1s, and Qa1). Our first step is to see how many of these
given query templates will be divided into more than one query type. For this we generate
200 instances of each query template with different values for the parameter markers and
get their plan cost values by running the DB2 optimizer in its EXPLAIN mode. We then
run our coefficient of dispersion test on these plan cost values. The queries show some
variance in their plan cost values for different instantiation of the parameters as expected.

33

Query Type Q1 Q7T | Q91| Q92| Q93| Q94 | Q13 | Q18 | Q21
runtime ¢; (sec) || 9.99 | 10.61 | 3.06 | 10.61 | 14.01 | 24.19 | 5.94 | 7.35 | 6.39

Table 3.10: Runtime, ¢;, of queries in a 1GB skewed TPC-H database

Interestingly, however, only the plan costs of instances of ()9 show enough dispersion to
merit subdividing into clusters. We further verify this conclusion by examining the
variation in actual runtimes of the various instances of the six query templates. The
runtimes of instances of Q9 do indeed exhibit high variation. We see runtimes varying
from 3 seconds to 24 seconds. The runtimes of different instances of each of remaining five
query templates also exhibit some variation as parameters vary, but the variation is not
high and can be well represented by an average value. Now having decided that (9 needs
to be divided into further query types, we run K-means clustering on the plan cost dataset
of the 200 instances of Q9. We use Matlab to run K-means clustering, and we vary K from
2 to 10. Next, we need to find the best value of K, and that will be the number of query
types corresponding to the template under consideration. For this we use the silhouette
metric as discussed above. The silhouette metric indicated that K = 4 gives best clustering
quality. Thus, we now have 9 query types in the system: Q1,Q7,Q13,Q18,Q21,Q9.1,Q9.2,Q93,
and Qg 4. The last 4 query types correspond to the (Qy template.

Table [3.10| shows the runtime of queries of these types when they run alone in the
system in this setting of skewed TPC-D/H database. There is significant difference in the
runtime of the query sub-types of ()9. Table shows mixes consisting of these query
types with M = 30. Once again, we can see widely varying performance of queries from
mix to mix depending on the interactions among queries. Thus, having identified the query
types in a skewed database, we can study the query mixes and interactions as we did in

Tables B.4- [3.9]

The examples in this chapter illustrate that interactions in query mixes impact query
runtimes significantly. We cannot accurately predict the performance of a query ¢ unless
we are able to model the effect of other queries running concurrently with ¢q. Focusing on
individual query types and ignoring interactions and the concurrently executing query mix
can lead to inaccurate conclusions about performance. Thus, it is important to develop
mix-based reasoning about query workloads to better manage the performance of database
systems. This mix-based reasoning is our focus in Chapter [

34

aseqeiep H-Dd.I, PoMays gT © uo soxtur L1onb ut sodA) L1enb juorepyip 10§ (spuoses ur) “7 T1°¢ 9[qR],

81901 V| v¥ael 9| 98°6L G| €0°69¢ ¢ | €0'99¢ 14 00 0] 8¢6VL T | 19°¢cce 9| ¢9 1V V|| Ofw
00 0| LT°LV1 T | LL0€C T | €T'8IV | ST | 68°¢C4C 9| L9291 T | €9°0CLT T]99°20¢ T | 1€7¥C T || 6ew
¢e'TIC G | ¢LE8I V| 1906 8 | €9°GEY T | O0vLIE ¢ | 8L°60¢ ! 144! T | L8°¢CLC ¥ | €961 v || Sew
.EM\ .SZ .m:\ EZ .Ev\ SZ .DT‘ SZ Dv\ .EZ Sv\ EZ EM\ DZ EM\ .DZ .DT. .SZ XTI\
120 810 €10 760 €60 ¢ 60 60 LO 10

35

Chapter 4

Experiment-Driven Modeling of
Query Interactions

In Chapter (3, we presented several examples of positive and negative query interactions
in concurrently executing queries in query mixes. We concluded that mix-based and
interaction-aware reasoning can offer us significant benefits in understanding database
performance. In this chapter we turn our attention to the question of how to construct
interaction-aware performance models for queries in database systems.

Traditionally, analytical formulas have been used by database query optimizers to es-
timate the execution cost of query plans. However, the cost models used in almost all
database systems today work on one query at a time, so they cannot estimate the overall
behavior of multiple concurrent queries that are interacting with each other. Developing
accurate analytical formulas to estimate the properties of query mixes requires a detailed
understanding of all possible causes of inter-query interactions. Interactions can arise
from a variety of causes: resource limitations, locking, configuration parameter settings
(including misconfigurations), properties of the hardware or the software implementation,
correlation or skew in the data, and others. This space of potential causes is large, not
fully known ahead of time, and can vary from one database system to another. Thus the
task is seemingly impossible.

Since general-purpose analytical formulas are hard to develop for estimating query com-
pletion times, we decide to leverage machine learning techniques by employing experiment-
driven modeling. Our approach for experiment-driven modeling is based on running a small
set of carefully chosen query mixes to collect training samples of the form shown in the
tables in Chapter [3[(e.g. Table . Each sample gives a measure of how the average com-
pletion time of different queries is affected by running them in a specific mix. The full set of

36

collected samples can be analyzed to identify various interactions (and non-interactions).
Having collected the samples, statistical models can be trained from these samples, and
then used to estimate completion time. While the experiment-driven approach has to be
repeated for each new database, hardware and operating system setting, it is effective irre-
spective of the underlying cause of interactions because the effect of significant interactions
will be captured in the monitoring data collected from experiments.

We treat the problem of generating an interaction-aware performance model for query
type @; as a problem of training a regression model. Concretely, for each query type Q);,
we need an interaction-aware performance model that will take as input the query mix m,,
= (Np1, Npa, ..., Nyp) and return an estimate A,; of the average completion time of an
instance of); in m,,. Thus, we build one regression model for each query type. The model
is trained from a set of n samples, where sample s;,1 < i < n, has the form s; = (m;, A;;)
= (N, ..., Nir, Ai;). Sample s; denotes an observation that an instance of);, when run in
mix m;, is completed in time A;;. An appropriate type of regression model M; can be fitted
to the n samples s1, ..., s, to predict the completion time A,; for an instance of ¢); when
run in any mix m,. The model will have the form: A,; = M;(m,) = M;(Ny, ..., Nyr).
Two key questions arise:

e Sampling question: How to efficiently generate a representative set of samples from
which to train the model?

e Modeling question: What type of regression model gives the best accuracy in esti-
mating query completion times in mixes?

We first consider the sampling question in Section 4.1 The modeling question is considered
in Section .2

4.1 Sampling to Collect Training Data

Our goal for sampling is to generate a representative set of samples to train the models
presented in Section [£.2] This problem is non-trivial because the space of possible mixes
can be very large. If M is the MPL and T is the number of query types, the total size of
this space is the number of ways we can select M objects from T object types, unordered
and with repetition. This is an M-selection from a set of size T' [86]. And the number of
possible selections is given by:

37

S(T, M) = (M+T—1)

M

Even for the simple case of 6 query types, we get S(6,20) = 53130 for M = 20, and
S(6,50) = 3478761 for M = 50. And when we have 7' = 22 and M = 60, the number of
possible mixes is well above 10Y°. Thus, as the query types and MPL increase, a simple
enumeration of the space by running all possible mixes is an infeasible approach.

We need to develop algorithms that help us to design experiments to collect a subset
of mixes from the entire space. On one hand, more experiments bring in more samples,
which leads to more accurate models to estimate the performance of different query types
in different mixes. On the other hand, experiments add overhead on the system, so we want
to minimize the number of experiments needed. In this section, we consider techniques
that collect representative samples by executing a small number of selected mixes.

4.1.1 CDR Sampling

A straightforward approach to collect samples is to pick randomly from the space of pos-
sible mixes. However, random sampling has some obvious limitations. For instance, a
disadvantage of pure random sampling, in particular when there are relatively few sam-
ples, is that some query types may not appear at all in these few samples. Also, it is
not uncommon to have scenarios in which during a certain activity period all concurrently
executing queries are of the same type. Similarly, on the other end of the spectrum, there
can be a typical activity period when a query mix consists of instances from all query types
present in the system. Thus, if we are picking a small set of random samples, it is highly
likely that we may not get even a single sample corresponding to these cases. However, we
can augment random sampling with simple heuristics that are based on our observations
and domain knowledge. These heuristics can help us to overcome some of the limitations
of random sampling by explicitly sampling from certain “interesting” parts of the space.

With the above observations in mind, we developed a simple sampling approach called
corner, diagonal, and random sampling (CDR sampling). CDR sampling works as follows.

Input: Number of query types T', number of mixes to sample S, MPL = M,

1. For MPL M, we start by running 7' experiments where we sample the “corner” points
of the space, i.e., the mixes (M,0,...,0), (0, M,...,0), ..., (0,0,..., M).

2. t M >T , we take D samples “diagonally”.

38

a. If M mod T = 0, we sample a mix with an equal number of occurrences of each
query type, i.e., <¥, %, cee %) If M mod T # 0, then we skip this step.

b. Then, we take a fixed number of samples from the space of possible mixes, with
a constraint that there has to be at least k instances of each query type. k is
varied randomly across a small range of values in 1,..., % — 1. A sample is
collected as follows:

i. Assign each query type k instances
ii. Next, a query type @;, 1 < i < T, is picked randomly and it is randomly
assigned n;, 0 < n; < M — (T * k), instances.
iii. Next, another query type (), is randomly picked and we randomly assign
nj, 0 <n; < M — (n; + T * k), instances. We continue in this fashion until
we have T'x k+ny+ny---+np =M.

3. Finally, we take S — (D + T') samples at random from the full space of mixes. A
sample is collected by using a procedure similar to that outlined in steps 2b(ii) and
2b(iii) above:

a. A query type Q;, 1 <1 < T, is picked randomly and it is randomly assigned n;,
0 <mn; < M, instances. Next another query type (); is randomly picked and we
randomly assign n;, 0 < n; < M —n,; instances. We continue in this fashion till
we have nqy +ng---+np =M.

In step 1, we sample the corner points of the space. In step 2 we sample the “diagonal”
points of the space for the case when the number of query types is less than the multi-
programming level of the system. We call these mixes “diagonal” in the sense that each of
theses mixes contain all the query types present in the system. The number of instances
of each query types is varied randomly in these diagonal mixes. Finally we sample the
remaining mixes by randomly selecting the query types and assigning a random number
of instances to each query type.

4.1.2 Interaction Level Aware Latin Hypercube Sampling

CDR sampling is a straightforward approach to complement random sampling with simple
heuristics to ensure that corner and diagonal points in the space are covered. But as the
dimensionality of the input space (i.e., the number of query types T') increases, random
sampling tends to exhibit clustering and poor coverage of the space [88]. The techniques
in the family of space-filling designs of experiments aim to spread the samples regularly

39

throughout the input space. Latin Hypercube Sampling (LHS) is one such technique that
provides a space-filling experimental design.

Latin Hypercube Sampling

Latin Hypercube Sampling is a form of stratified sampling. In stratified sampling the
entire space is divided into subspaces such that the subspaces are mutually exclusive and
collectively exhaustive. The samples are collected to ensure that all subspaces are well
represented. Latin Hypercube Sampling performs well in practice, and has been shown
to perform better than simple random sampling [53, 88]. It should, however, be noted
that the quality of an experimental design can only be evaluated with respect to a certain
goal. In our case, the goal is to use the collected samples to train an interaction-aware
performance model that can estimate the average completion time of an instance of a query
type in a given mix. The lower the estimation error for the trained model, the better the
sampling technique. In Section [£.3] we show that our sampling approach based on Latin
Hypercube Sampling is indeed better than the CDR approach.

To illustrate LHS we first present a simple case where our objective is to sample n
points in two dimensions. These n points are sampled as follows:

1. Divide the axis along each dimension into n equally spaced intervals.

2. Label the intervals along each dimension with integers {1,2,...,n}.

3. There are now n? cells or subranges in the plane. Each cell can be identified with

an ordered pair (7,j). Now randomly pick n cells such that each interval along each
dimension appears only once in these n cells. One way to accomplish this can be to
randomly permute the set {1,2,...,n} for each dimension and then pick the ordered
pair (i, j) by picking the corresponding elements i and j from each set.

Figure shows an example where we have two dimensions, and we have to select
n = 5 points using LHS. In our setting, this will correspond to selecting n = 5 mixes for
T = 2 query types. The two axes T} and T5 in Figure denote the number of query
instances of each query type in a mix. Latin Hypercube Sampling divides each of these
dimensions into 5 equal intervals. The “*” symbols in Figure denote the set of mixes
that LHS selects.

We can now generalize the above approach. In general, LHS selects n mixes from a
space of T query types as follows:

40

* (4,5)

a * (5,4)
: 1 (33) L

* (1,2)

* (2,1)

- '|'1

Figure 4.1: Space-filling sampling from the space of possible mixes via Latin Hypercube
Sampling (LHS)

1. The range of the number of possible instances of each query type is divided into n
equal subranges.

2. n mixes are selected from the space such that each subrange of each query type has
one and only one selected mix in it. This can be done, as described above, by ran-
domly permuting the set 1,2, ..., n for each dimension and picking the corresponding
elements of each permutation for the samples.

Thus, each subrange in each dimension is covered by exactly one selected mix and
no two selected mixes have the same subrange in any of the dimensions. Step 2 above
guarantees this property of LHS and leads to the selection of a good set of samples that is
well spread out in the space.

Interaction Level of Query Mixes

In Section we augmented random sampling with heuristics to sample corner and
diagonal points. Beyond these simple heuristics, we do not assume any prior knowledge
about the workloads. However, it is clear that it would be beneficial if the mixes exe-
cuted during sample collection contain enough information for predicting the performance

41

of unobserved mixes. In this dissertation we are interested in information about query
interactions. Thus, if an insight about query interactions can lead to better samples, we
can augment our sampling algorithm by incorporating this insight.

One such insight that we observed during our empirical study of query interactions is
that the performance of different query types in a mix is greatly influenced by the number
of distinct query types present in the mix. We define the interaction level (IL) of a mix
as the number of distinct query types in this mix. Notice that total number of possible
interaction levels in a mix would be num_I Ls = min(T, M).

We demonstrate experimentally that covering all possible interaction levels of mixes
in the sample is important for accurate prediction. We want to show that given a set of
mixes whose performance we want to predict, sampling from the subspace of mixes with
the same interaction levels (ILs) as the given mixes can produce a better prediction model
than sampling from the subspace of mixes with interaction levels different from that in the
given mixes. In our testing of this hypothesis we use the Gaussian processes (GP) modeling
approach, which is described in Section 4.2.2] However, the results are similar for other
modeling approaches discussed in Section (4.2, The testing methodology is as follows:

1. Create a set of mixes with interaction levels in the range Range_I L; as the test mixes.

2. Create another set of random mixes with ILs in the range Range_I L, as the training
mixes and learn a Gaussian processes (GP) model GP; from them. Evaluate the
prediction accuracy of GP; on the test mixes.

3. Create another set of random training mixes with ILs in the range Range_I Ly, such
that Range_IL, is disjoint from Range_IL; and learn a GP model GP; from the
these mixes. Evaluate the prediction accuracy of GP, on the test mixes.

4. Compare the accuracy values from Steps 2 and 3. If GP; can make more accurate
prediction than G P, it shows that to build better prediction models for a set of test
mixes, we should use mixes with the same interactions levels in our training samples
as those found in the test mixes.

The error metric we use to evaluate the prediction accuracy is the mean relative error
(MRE). 1If we pick Y test mixes where a; is the actual performance metric observed for
mix m;, and e; is the model predicted value of the performance metric, MRE is defined as:

1 Y lei—ail
Y Zi:l %

MRE is commonly used for computing model accuracy. We test the effect of the
interaction level of the training sample on performance using mixes containing the six

42

Train | Test | Q1 | Q2 | Q3 | Q4 | Q5 | Q6
TR, | TT, |0.21]028]0.26|0.21| 0.2 | 041
TR, | TT; |0.62| 2.3 | 1.01|0.79 | 0.54 | 1.22
TRy, | TTy [0.32] 0.5 | 0.45|0.36 | 0.31 | 0.69
TRy | TT, | 0.15] 0.25 | 0.19 | 0.16 | 0.15 | 0.25

Table 4.1: The effect of the interaction levels of the training mixes on prediction error

longest running query types on a 1GB database, shown in Table 3.1 The mixes are
sampled for M = 30 and are split into two subsets: (i) Set I that contains mixes with ILs
in Range_IL; = [1,3], and (ii) Set II that contains mixes with ILs in Range_I L, = [4,6].
We randomly pick 500 mixes from Set I as training mixes T'R;, and we pick another disjoint
300 mixes from Set I as test mixes T'7T}. Similarly from Set II we pick 500 training mixes
T R, and pick 300 test TT5.

Table shows MRE in different scenarios. For each row, the first column shows the
set of training mixes that was used to train Gaussian processes models. The second column
shows the set of test mixes. The remaining six columns shows MRE for different query
types in test mixes. The main observations are:

1.

ii.

When the training mixes and test mixes come from the same range of interaction
levels, prediction is more accurate (lower error in the table). For instance, the case
of using T'Ry to predict T'T, is much better than the case of using T'R; to predict
TT,, since in the former case the query interactions present in 7715 are captured by
mixes in T' Ry, while in the latter case this is not true. For example, let us look at the
prediction errors for query @ in Table[d.1] When Train = TR; and Test = TT}, the
prediction error for @)1 is 0.21. When Train = TR, and Test = T'T,, the prediction
error for ()1 is a much higher 0.62.

In both cases where training mixes and test mixes are from different ILs, the pre-
diction accuracy is poor. However, using T'R, to predict 77} is relatively better
than using T'R; to predict TT5. Recall that TRy and T'Ty are both from IL € [4, 6],
which partially capture query interactions in mixes from IL € [1,3]. Therefore the
GP model learned from T' R, covers more query interactions than that of the model
learned from T'R;.

The above evaluation demonstrates that it is important to sample mixes that cover
different interaction levels to make accurate performance prediction for unseen mixes that

43

will be encountered in real workloads, and whose interaction levels are unknown at sampling
time. Thus, we would like to incorporate this heuristic of sampling from the subspaces that
cover mixes with different interaction levels in our sampling algorithms. Also, recall that
we have a hard constraint that the multi-programming level of the system is M. We adapt
LHS to satisfy the condition on MPL and make the sampling algorithm interaction level
(IL) aware. These adaptations give us an interaction level aware LHS sampling approach,
which we call, IL_LHS.

Input: Number of query types 7', number of mixes to sample S, MPL = M;

1. We start by running 7" experiments where we sample the “corner” points of the space,
i.e., the mixes (M,0,...,0), (0,M,...,0),...,(0,0,...,M).

2. For every interaction level k, 2 < k < num_ILs

i. Generate a matrix M T}, of size (S *T') using the standard LHS design; each row
vector represents a mix.

ii. For each mix (row vector) in M7}, randomly set 7' — k out of T" values to 0 to
make IL equal to & for this mix, and scale the values to make each value an
integer such that the sum of these T" — k values is equal to M.

iii. Since our budget is S and we want to cover each IL, the number of mixes that
are allowed for IL = k is [(S — T)/(num_ILs — 1)]. We randomly pick this
number of mixes from a given MT}, for each k.

Incremental Sampling

An issue with IL_LHS sampling is that if we collect a sample set with a small number of
samples, say 100 mixes, and a sample set with a large number of samples, say 200 mixes,
the smaller set will not be a subset of the larger set. The IL_LHS algorithm needs to know
the total number of samples S prior to the running of the algorithm. If we invoke the
algorithm again to add more samples, it would not satisfy the requirements of stratified
sampling because the algorithm would try to cover the subspaces that are already covered.
To address this issue, we developed an incremental version of the IL_LHS algorithm that
works as follows:

1. First, select the T samples with IL=1 which correspond to the “corner points of the
mix space” of the form (M, 0,0, ...,0), (0, M,....0), ..., (0,0,..., M).

44

2. Use the IL-aware algorithm to plan S'—T training samples to collect from the feasible
ILs greater than 1.

3. Generate a sequential list of samples by sampling randomly without replacement
from the set of S — T samples. This step maintains a roughly uniform distribution
across ILs as more samples are collected

The DBA can specify a large S according to her budget. Then she can collect samples
incrementally based on the sequential list from Step 3 above. She can suspend the sampling
process any time, and resume it later. This approach of specifying a large set of samples
in advance and collecting the samples incrementally can also be used with CDR sampling.
If this incremental sampling approach is used, the DBA can decide to stop the sampling
at any time if she finds that the accuracy of the models is adequate.

We now have two sampling approaches to collect data for training the models: CDR
sampling and IL_LHS. CDR sampling is simpler while IL_LHS gives better coverage of the
space of possible query mixes. We expect IL_LHS to result in more accurate performance
models, an issue we will study in Section [4.3] But first, we discuss the modeling question
and present different modeling approaches that we have considered.

4.2 Regression Models for Query Interactions

There are many candidate regression models in the machine-learning literature, e.g. linear
regression, locally weighted linear regression, regression trees, polynomial regression, and
neural nets [108]. Such machine-learning techniques have been employed in database tuning
before, including for predicting single-query completion times without taking interactions
and query mixes into account (e.g., [46]).

Our choice of which model type to use is driven by two key constraints. First, we cannot
rely on the features of individual queries alone since we have to capture query interactions.
Second, while previous work assumed that many training samples (few 1000s) are available,
we expect few training samples per model because of the high cost of sample generation.
As a rule of thumb in machine learning, more complex model types can be more accurate if
(and only if) trained well, but they need more samples for accurate training. On the other
hand, the simplicity of a model does not necessarily imply that it is always going to be
less accurate. If the underlying data is relatively simple and we have a good representative
sample to train the model, even a simple model can yield good accuracy. We discuss two
types of models that we have considered. In Section [£.3] we study the accuracy of the
models.

45

4.2.1 Linear Regression Models

The simplest type of model that we have considered for modeling query completion times
is the linear regression model (LR). A linear regression model uses the following structure
to compute A,;, the estimate of average completion time for query type Q;,1 < j < T in
mix m,:

T
Apj = Z Brej Npk
k=1

where N, denotes the number of instances of query type Qr,1 < k <7 in mix p. The
parameters are regression coefficients that will be estimated while learning the model from
training data. There is a different set of § parameters for each query type, and they are all
learned from the training data, giving us a linear regression equation for each query type.
There is no intercept term present in the regression equation. This fits the intuition that
when we have zero instances of all the query types, the predicted completion time is zero.
The § parameters of the regression models are learnt once, and they are repeatedly used
to estimate the completion time of different queries in different mixes.

As mentioned above, the § parameters are estimated while learning the model from
training data. Given a training set of S samples of the form {A;;, Nj,..., Nyr}, for query
type @, we have:

Aij = B1jNit + BojNig + ... + BrjNir + €45, i=1,...,S

The above equation can be written in vector form as:

Aj =Npj+e¢,
where
Ay Nip Nig -+ Nir Bij €15
4, = A:gj N— Noy N22:' -+ Nop 5= 5:23‘ . 5:2]‘
A‘Sj Ngi Ns2."' Ngr B’;I‘j 5;5*;'

The f; parameters can be estimated using the method of least squares estimation [8]
61, 62]. The €; terms are error terms that are minimized by the least-square estimates of

B;-

46

4.2.2 Gaussian Processes

In linear regression, the entire training data is used to learn the regression parameters
in a pre-determined manner and hence a single global model for each query type is used
to fit all the training data. Intuitively speaking, this approach can be hit or miss: the
prediction is good only if the true structure of the data matches the global linear structure
assumed by the model. Also, an underlying assumption is that the structure of the data
in the modeling space is relatively simple so that it can be effectively captured by a simple
linear model.

However, as we have seen in Chapter [3| query interactions can be very complex, and
the performance of queries may change dramatically with small changes in the mix. This
motivates us to consider a different and more powerful modeling approach called instance-
based learning [108]. The basic idea in instance-based learning is to infer the performance of
a mix of interest, m,, from the performance of mixes in the training set that are “close” to
m,. Intuitively, instance-based learning focuses on the local space around m,, at prediction
time.

A simple type of instance-based learning is I-nearest neighbor (1-NN). When asked to
estimate A,;, the average running time of query type @, in mix m,, 1-NN returns the
average running time of (); in the mix that is nearest to m, among the training samples
according to some distance metric. The k-nearest neighbor (k-NN) model is a more robust
alternative to 1-NN. A £-NN model finds the top & mixes that are nearest to m, among the
training samples, denoted my, ..., ms, and returns the estimate Apj = # However,
the density of training samples can differ across different regions of the full space. The
parameter k degrades to a coarse and unpredictable tuning knob. In dense regions, k-NN
focuses on the local space and in less dense regions it becomes more global.

In this dissertation, we use Gaussian processes (GP) from machine learning as our
instance-based learning technique. In this section we explain what a Gaussian process is
and how it is used for regression.

A univariate Gaussian (Normal) distribution can be specified by its mean and variance.
Thus, a random variable » € R, that has Gaussian distribution with mean m and variance
v?, is written as r ~ A (m,v?), and its probability density function is given as:

]. _ 1 (Tfm)Q

e 22
21V

p(r;m,v?) =

A multivariate Gaussian distribution generalizes the univariate Gaussian distribution
to multiple dimensions and it can be specified by a mean vector and a covariance matrix.

47

A vector valued random variable Y € RY, that has multivariate Gaussian distribution
with mean vector u € R? and covariance matrix C, is written as Y ~ N(u, C), and its
probability density function is given as:

1 1 T—1
. — (=3 (Y=p)" C7 (Y —p))
p(Yip, C) = (Qﬂ)d/2’C|1/2€ 3(Y—p 1

A Gaussian process is a stochastic process (2, : ¢ € X', where X is the index set), i.e.,
a collection of random variables. The defining characteristic of a Gaussian process is that
any finite subset of these random variables has a multivariate Gaussian distribution [84].
A Gaussian process is completely specified by its mean function and covariance function.
For any finite subset of random variables from the Gaussian process, the mean function
returns the mean vector for that subset and the covariance function gives us a covariance
matrix for that subset.

Before understanding how we can use Gaussian processes for our regression problem,
we look at two standard properties of the multivariate Gaussian distribution that we are
going to use [105].

P1. Let Y € R? be a multivariate Gaussian random variable such that Y ~ A (i, C'). Let
a=(1,2,...r)and b= (r + 1,...d), and then partition Y such that

_(Ya ~ (1a ~ (Cua Cap
Y = (YZ> , Where p = <,ub) and C' = (Cba Obb) (4.1)
The distribution of Y, conditional on (Y, = y,) is multivariate Gaussian (Y;|Y, =
Ya) ~ N(Mb|a, Chla), such that

Hola = Hb + CbaCz;czl (ya - /Jla>7 and (42>

Cola = O — CaCly Ca (4.3)

Since Y is a d-dimensional vector, this distribution essentially gives us a distribution
on b co-ordinates out of the d co-ordinates of ¥ when the remaining a are given.

P2. The sum of two independent Gaussian random variables Y ~ AN (u,C) and Z ~
N/, C") is also Gaussian, with Y + Z ~ N (u+ u/,C + C").

48

In order to understand how Gaussian processes are used for regression, con-
sider the Bayesian formulation of linear regression. Given a set of data points
(x1, 1), (T2, 92), - - -, (Tn, Yn), where z; € R? and y; € R, the probabilistic interpreta-
tion of linear regression [25] assumes that the y; variables are univariate Gaussian random
variables such that

T .
y=wxt+e€, 1=1,....n

where it is assumed that ¢; are independent and identically distributed (i.i.d.) noise vari-
ables such that ¢; ~ A(0,0%). Similarly, it is assumed that parameters vector w is a
multivariate Gaussian with prior distribution w ~ N(0, p?I). Given these assumptions,
explicit results can be obtained for posterior predictive distribution and inference can be
made for new data points. Gaussian processes regression generalizes Bayesian linear re-
gression as follows [84].

Let us assume that we are given a set of observed data points (z1,v1), (Z2,%2) - . . (Tn, Yn),

and we want to make predictions for new data points (2,11, Ynt1)s - - -, (21, y1), where x; €
R? and y; € R.

Our task at hand is to get a posterior predictive distribution on unobserved 4,41, ..., Y,
given observed y1,...Yn. Let 4 = (Yni1,Yny2, - u) and Yo = (y1,92,...,yn). Let
(Y1,Y5,...,Y)) be random variables that model observed and unobserved y values. Let

there be a Gaussian process Z, with zero mean function and covariance function K (the

covariance function is also known as the kernel function). Gaussian processes regression
(GPR) models the random variable Y; as:

K:in—l-q, Z:]_,,l

This can be written in vector form as:

Y=2Z+¢ (4.4)

where € = (€1, €9, ..., €¢) is a multivariate Gaussian. By the i.i.d. noise assumption we have
(recall that o2 is the variance of the noise distribution):

€q o?l 0
€= <€) ~ N(0,K.), where K. = (0 021)

b

The vector Z is a multivariate Gaussian by the definition of a Gaussian process such
that Z ~ N (0,K), where K is the covariance matrix. Each entry K;; in matrix K is

49

defined as K;; = K(x;, x;) (recall that K is the covariance function). As in Equation [4.1]

K can be written as:
K.. Ku
K — aa a
(Kba Kbb)

Thus, by property P2 discussed previously, Y in Equation [4.4]is a multivariate Gaussian
such that Y ~ NV (0, K + K.), and the matrix (K 4+ K.) can be written as:
2
K+ K. = (Kaa—i—af Kab>

Ky, Ky, + 0?1 (4.5)

Thus the problem of regression now boils down to finding posterior predictive distri-
bution Yu|(Y, = va). Property P1 tells us that Y,|(Y, = v,) is also a multivariate
Gaussian such that Y|(Ya = ya) ~ N (Tig|q, Keja). By substituting from Equation |4.5]into
Equations .2 and we get

ﬁb‘a = Kba(Kaa + 0-2])_1ya7 a’nd (46)

Kijo = (Kip + 0°1) — Kpo (Koo + 0°1) 'Ky (4.7)

Thus, we have the mean vector and covariance matrix of a posterior predictive dis-
tribution. For regression, what we want from this posterior predictive distribution is a
point prediction for an unobserved data point (z*,y*). In practice, the mean value of the
conditional (Equation corresponding to x* is returned as y* [84]. It is noteworthy that
Gaussian processes provide the user with a powerful regression framework just by using
standard properties of the multivariate Gaussian distribution. In order to do regression us-
ing Gaussian processes, all that is needed is to specify a covariance function. A covariance
function defines similarity between two points and is defined in terms of input space. This
function helps us to encode the assumption that the points that are close in input space
are likely to have similar output values. There can be many choices for such a covariance
function. A typically used function, which is the one we use in this thesis, is the squared
exponential or Gaussian kernel function [84]. For z, 2’ € R the function is given as:

R
K(z,2") =e =175 for some A >0

and for query mixes m; and msy, the function can be written as:

50

)2

(N1,—Naji
K(my,mqe) = e~ Tio TR (4.8)

This covariance function has the desirable properties that when m; and msy are close,
(N1; — No;) = 0 and K(my,my) &~ 1. As the distance between m; and msy increases,
K(mq,ms) approaches 0.

To summarize, Gaussian processes give us a framework for using the properties of
a multivariate Gaussian distribution for prediction. We are given a training set of n
samples. For a query type @);, a sample s;,1 < i < n, has the form s; = (m;, 4;;)
= (N1, ..., Nir, A;j), and we want to predict the completion time Apj for any mix m,,. By
Property P2 and Equation , we can think of an (n + 1)-dimensional multivariate Gaus-
sian Y = (Ay;, Ao, ..., Anj, Ap;). The values A;;, where 1 < ¢ < n, are known and the
value Apj needs to be predicted. Property P1 tells us that if we have a d-dimensional mul-
tivariate Gaussian, the conditional distribution on b co-ordinates out of the d co-ordinates,
when the remaining a are given, is also Gaussian. In our case, we have an (n + 1)-
dimensional multivariate Gaussian Y. Thus, the distribution of Y, = Apj conditional
on Y, = (Ay;, Agj, ..., Apj) is Gaussian with mean and variance given by Equations
and 4.7 To compute these equations all that is needed is a covariance function as dis-
cussed above. In principle, decision theory and loss functions can be employed to return
a point prediction for Apj by sampling from this conditional distribution [84]. However,
in practice, the mean value of the conditional distribution is a good enough estimate that
can be computed by simple linear algebraic operations as specified in Equation [4.6] once
the covariance function is specified [84]. It can be seen that parts of Equation can be
precomputed based on the n training samples, and they can be used to predict the required
flpj for any given test mix m,,.

The Gaussian process modeling approach that we have presented has two hyper-
parameters, o and A. In this dissertation, we use the Weka machine learning toolkit [108].
The Weka toolkit has default values for the hyper-parameters o and A, which we leave un-
changed. Other toolkits can use more advanced methods to learn these hyper-parameters
based on the training data, but we have found in our experiments that the simple approach
adopted by Weka results in accurate models.

In this section we have presented two modeling approaches that we employ to estimate
the query completion times in query mixes. Next we study the accuracy of our sampling
and modeling approaches.

51

4.3 Accuracy and Cost of Modeling

In the preceding sections we presented various modeling and sampling approaches. In this
section we analyze the performance of these approaches. Our analysis aims to answer two
questions: (1) How accurate are our performance models? and (2) How expensive is it
to build these models? We expect the more complex models such as Gaussian processes
to be more accurate than simple linear regression. We also expect more samples to lead
to more accuracy. However, in all realistic scenarios, we will have a limited budget to
run experiments to collect samples. Thus, we are interested in studying how the accuracy
improves with the number of samples, and how much time is taken to collect these samples.

4.3.1 Accuracy of Modeling

We first concentrate on the accuracy of our models. Our approach is as follows. We consider
a training set S of 37", 57", 7T, and 107" samples collected using the two sampling algorithms
that we presented in Section Since we have T independent predictor variables — the T
query types — we specify the sample size in terms of multiples of T'. For both IL_LHS and
CDR sampling, we use the incremental sampling algorithm presented in Section [£.1.2] We
evaluate the accuracy of different models trained using these samples, allowing us to study
how the accuracy varies with increasing number of samples. For the test set, we use a set
of 207" samples where 107" samples are collected by each of the two sampling algorithms.
This ensures that our test set is not biased to any sampling algorithm.

We present the results from both the 1GB and 10GB TPC-H databases described in
Section [3.2] using the same experimental setup. (We use this experimental setup through-
out the dissertation.) In both cases, we show the results for)1 and @Q15. These two queries
are long-running queries, and the prediction error for these two queries is representative
for all other TPC-H queries except for two queries that have sub-second execution times,
namely ()17 and ()19, in 1GB database. For these two queries, the relative prediction er-
ror may be high, but the absolute error is very small, representing less than a second of
runtime.

We start with the 1GB database, and we present the results from the settings when
T = 12, and we use the 12 longest running query types shown in Table [3.1 We consider
the case when M = 30.

Figures show the accuracy of different modeling approaches in predicting the
completion time of @), and ()5 for different sampling approaches on the 1GB database.
The x-axis shows the number of samples in multiples of the number of query types T.

52

0.6

=<LR GP

_ 05
Ll
14
=
+ 0.4
2 ‘—__—)\
w
5
203
2
©
&

0.2

0.1

3 5 7 9

Number of samples (x #Query Types)

Figure 4.2: Modeling the completion time of); using CDR sampling on the 1GB database

The y-axis shows the prediction error on the 207" test samples measured using the MRE
metric.

The figures show that GP is the better modeling approach for both sampling algorithms,
and the error is higher for linear regression. We see that the additional sophistication of
GP does indeed result in higher accuracy, and that the simplicity of linear regression
comes at a cost of lower accuracy. The figures also show that as we increase the number
of samples, the accuracy improves in general. However, it is important to realize that
the relationship between the number of samples and accuracy in prediction is not always
monotonic. Sometimes as we increase the number of samples, there can be a slight decrease
in accuracy. This should be expected because we are measuring accuracy against a test set
of mixes, and sometimes bringing in more samples may be just adding noise to the models
when they are predicting the accuracy of the test set.

Another very important observation is that, in general, the improvement in accuracy is
very steep as we increase the number of samples from 37. However as we keep collecting
more samples this improvement becomes less steep. In most cases, going from 77" to 10T
samples does not significantly increase accuracy. This shows that our modeling approach
is robust and can get good accuracy with a reasonably small number of samples. For
experiments in later chapters, we typically use 107" samples which — based on these results
— should provide sufficiently high accuracy.

53

0.5

+LR =GP

74

Prediction Error (MRE)
o
w

o
(Y]
|
L

0.1

3 5 7 9
Number of samples (x #Query Types)

Figure 4.3: Modeling the completion time of @); using IL_LHS sampling on the 1GB
database

0.6

=*LR =GP

7

/

e
'

Prediction Error (MRE)

o
[\

0.1

3 5 7 9
Number of samples (x #Query Types)

Figure 4.4: Modeling the completion time of ()13 using CDR sampling on the 1GB database

54

0.5

=*LR GP

I&J 0.4
=3
S 0
=
w 0.3
c
.0
=]
2
®
a 0.2

0.1

3 5 7 9

Number of samples (x #Query Types)

Figure 4.5: Modeling the completion time of)15 using IL_LHS sampling on the 1GB
database

Figures show the accuracy of each modeling approach in predicting the com-
pletion time of)7 and () for different sampling approaches. This is the same data as in
Figures but plotted differently to study the effect of the sampling approach. These
figures show that all modeling approaches show better accuracy in case of IL_LHS. As we
saw before in modeling, the more sophisticated sampling approach does indeed result in
higher accuracy, justifying its extra complexity.

The figures show that for both); and)13 we are able to get MRE in the range
[0.15 — 0.3] with 10T samples and using GP models. This is the typical error range that
we observe for most of the settings.

Now we switch to the 10GB case. Figures show the accuracy of different
modeling approaches in predicting the completion time of (); and ()15 for different sampling
approaches for the 10GB settings where T'= 6 and M = 10. Again, we can observe similar
trends to the ones that we observed for the 1GB database.

4.3.2 Cost of Modeling

In Section we considered the accuracy of our performance models. The second ques-
tion that we consider is the time taken to sample the data and train the models. For

55

0.6

IL-LHS -e-CDR
__ 05
[11]
o
=
« 0.4 [
2
2
S 03
k3]
he]
&

0.2

0.1

3 5 ! ;

Number of samples (x #Query Types)

Figure 4.6: Modeling the completion time of)1 using linear regression on the 1GB database

0.5
“*|L-LHS -e-CDR

%

o
N
| |
|
i
1
1
|
|

Prediction Error (MRE)
o
w

0.1
3 5 7 9
Number of samples (x #Query Types)

Figure 4.7: Modeling the completion time of (); using Gaussian processes on the 1GB
database

56

o
)

IL-LHS -e-CDR

p

o
o

Prediction Error (MRE)
o
H
J

o
¥

01

3 5 7 9
Number of samples (x #Query Types)

Figure 4.8: Modeling the completion time of ()13 using linear regression on the 1GB
database

0.5

IL-LHS -e-CDR

/

Prediction Error (MRE)
o
w

o
N
!
|
|
[
|
L

0.1
3 5 7 9
Number of samples (x #Query Types)

Figure 4.9: Modeling the completion time of ()15 using Gaussian processes on the 1GB
database

57

LR =GP

o
L)

/

e
o

Prediction Error (MRE)
o
i

o
[\

o
-

w

5 7 9
Number of samples (x #Query Types)

Figure 4.10: Modeling the completion time of @); using CDR sampling on the 10GB
database

o
N

LR =GP

7

Prediction Error (MRE)
o o
KN o

°
©
|

o
(Y]

o
-

w

5 7 9
Number of samples (x #Query Types)

Figure 4.11: Modeling the completion time of), using IL_LHS on the 10GB database

58

0.5

\(\ =¢LR GP

°
'S

Prediction Error (MRE)
o
w

o
N

0.1

3 5 7 9
Number of samples (x #Query Types)

Figure 4.12: Modeling the completion time of ()13 using CDR sampling on the 10GB
database

0.5
=<LR GP

Fe) Mo
w A—
= v
S
g
w 0.3
f =
.2
S
®
fo.2

0.1

3 5 7 9

Number of samples (x #Query Types)

Figure 4.13: Modeling the completion time of @15 using IL_LHS sampling on the 10GB
database

59

14

--MPL5 =MPL10
12 »

+MPL20 +<MPL30 /
10

= —=EMPL40 “=MPL50 /
1<
2 4 e
=
£ / /
> 6
'—
4

Number of samples (x #Query Types)

Figure 4.14: Sample collection time for 1GB database with T' = 6

a given setting of MPL and query types in the system, the time required to collect the

samples mainly depends on the number of samples. Figures show the sampling
time for the 1GB and 10GB databases.

The figures show that sampling times increase considerably with MPL. For example, it
takes less than an hour to collect samples for 7' = 6 and M = 5, while it takes about 12
hours to collect samples for T'= 6 and M = 50. At higher MPLs more queries are running
concurrently and there is significant contention for the resources resulting in higher times
for the mixes.

The figures also show that as we collect more samples the increase in sampling time
is not necessarily linear. This is expected because different mixes have different running
times because of different interactions that come into play. Hence, increasing the number
of mixes from 27T to 47 does not mean that the sample collection time will also increase
by exactly two fold.

Another interesting observation is that sometimes T' = 6 takes more time than T" = 12.
For example, it takes about 9.0 hours to collect 107" samples for T'= 6 and M = 40, while
it takes about 8.5 hours to collect 107" samples for 7" = 12 and M = 40. When we consider
T = 6 query types in the system, we consider the 6 longest running query types. Thus, the
mixes with 7" = 6, which consist of only the longest running query types may take more

60

-_—
o~

~+MPL5 -=MPL10

12 .

+MPL20 =<MPL30 /

=10 "ScMPL40 e-MPL50 /
| 44
3 g)
= / /
o
3 6 —
.g /e//‘k
F o4

e

o
) 4

i

o
)4

3 5 7 9
Number of samples (x #Query Types)

Figure 4.15: Sample collection time for 1GB database with T = 12

28 | MPL5 —-=-MPL10
o4 | *MPL20 2<MPL30 _—
+MPL40 -e-MPL50 /
»n 20 I
5
o
< 16
£
g 12
£
8
4
0

Number of samples (x #Query Types)

Figure 4.16: Sample collection time for 1GB database with T' = 21

61

35
-+MPL5 /L
30
=MPL10 /
25
[
; / /0
© 20
=
-E /
[<})
E) ./ /
=
10
—
5
0

3 5 7 9
Number of samples (x #Query Types)

Figure 4.17: Sample collection time for 10GB database with 7' = 6

time than the mixes that also contain some short running queries, which happens as we
move to 7' =12 and T = 21.

Next, we consider the model training time and the prediction time for different models.
In our implementation we have used the Weka toolkit [108]. We do not expect model
training time and prediction time to be a significant factor, but nevertheless we want to
verify this assumption. For model training and prediction, the time taken depends on the
number of predictor variables, which in our case is the number of query types T. Model
training time also depends on the number of samples used for training. Table 4.2 shows
for different values of T' the time that it takes to train the models and make predictions
for a test set consisting of 600 mixes. These numbers are shown for samples collected from
the 1GB database, although we emphasize that training and prediction times depend not
on the size of the database, but rather on the size of the training set and the number of
query types. It is clear from the table that both modeling approaches show training and
prediction times that are within reasonable time limits. As 7" and the number of training
samples increase, it can be observed that linear regression is faster, which is expected since
it is the simpler model.

T Number of LR | GP
Training Samples

T=6 60 0.14 | 0.20
600 0.18 | 3.34

T=12 120 0.15 | 0.29
600 0.23 | 3.37

T =21 210 0.17] 0.5
600 024 | 34

Table 4.2: Model training and prediction time (in seconds) for different models.

4.3.3 Conclusion

In this chapter we considered the problem of generating interaction-aware performance
models. We presented two different approaches to collect samples on which to train the
models: CDR sampling and interaction level aware IL_LHS. We presented two different
modeling techniques to estimate the query completion times in mixes: linear regression
and Gaussian processes.

Our evaluations shows that Gaussian process models trained on samples collected by
IL_.LHS show the best accuracy for estimating query completion times. This is expected
since GP and IL_LHS are the more sophisticated modeling and sampling approaches among
the ones that we considered. On the other end of the spectrum, linear regression models
trained on samples collected by CDR sampling — the combination of the simpler sampling
and modeling approaches — generally show the highest error among all combinations of
modeling and sampling approaches. However, the error of LR with CDR sampling is still
reasonable and is not much higher than the other approaches. Henceforth we focus on
these two combinations: GP with IL_.LHS and LR with CDR. These two combinations
represent the two ends of the spectrum for accuracy vs simplicity.

In the next chapters we put these modeling and sampling approaches to practical use
and develop solutions for the problems of workload scheduling and workload completion
time estimation. We will see that the required model accuracy depends on how the model
is being used. For scheduling, where the goal is to distinguish good mixes from bad mixes,
the simple LR with CDR is adequate. On the other hand, for completion time prediction
we need the more accurate GP with IL_LHS. Thus, having different choices for sampling
and modeling approaches is beneficial.

63

Chapter 5

QShuffler: Interaction-Aware
Scheduling of Report-Generation
Queries

5.1 Introduction

A core contribution of this dissertation is that we develop interaction-aware end-to-end
solutions to workload management problems, demonstrating that our approach for mod-
eling query interactions can be exploited in order to gain huge performance improvements
in database systems. The first problem we consider is that of scheduling report-generation
queries in database systems. As discussed in Chapter [I] report-generation workloads are
a common type of workload in modern Business Intelligence (BI) settings and data ware-
houses [19, 49, [106].

We have developed a query scheduler, called QShuffier (for Query Shuffler), that focuses
on the throughput-oriented workloads encountered in report-generation systems [11], 12]
13]. There is a fixed number of report types that a user can request in such systems,
but the reports requested during any given period may vary. Depending on user activity,
multiple reports may be requested over a short period of time. The goal of the system
is to minimize the total completion time for generating all the requested reports (i.e., to
maximize throughput). The response time of individual queries is not important as long
as all the reporting queries are completed within a desired time window. This is a common
scenario in BI systems like Cognos [30] and Business Objects [20].

64

Concretely, the goal of QShuffler is to schedule appropriate query mixes for a given query
workload W in order to minimize W’s total completion time. We show that schedulers
used in commercial systems today (e.g., first come first serve, shortest job first) rely on
the characteristics of individual queries, so they can produce suboptimal schedules when
significant inter-query interactions exist. QShuffler’s interaction-aware scheduling gives
significant performance improvements over these conventional schedulers. Under heavy
load, interaction-aware query scheduling can turn an otherwise unresponsive system into
one that processes its workload in a timely fashion.

QShuffler implements two novel interaction-aware algorithms for scheduling queries.
The algorithms cater, respectively, to two common scenarios found in report generation:

e The first scenario involves queries being submitted to the database system in large
batches. QShuffler’s batch scheduling algorithm is optimized for this scenario. This
algorithm uses a linear-programming-based formulation of the scheduling problem.

The linear-programming-based solution requires query preemption. The algorithm
continues to perform well when we produce a preemption-free schedule, although the
optimality guarantee does not hold any more.

e The second scenario involves client applications or workflows submitting queries in
small batches, often one at a time. As soon as queries are processed and the results
returned, new queries are submitted by the clients until report generation is complete.
Since queries keep arriving continuously at the database system, scheduling decisions
have to be made on-line (with some limited look-ahead that is based on observing
the queries in the arrival queue). QShuffler’s on-line scheduling algorithm is designed
for this scenario.

While the on-line algorithm uses a conventional priority-based scheduling approach
— because of the need to keep scheduling overhead low — the technique for computing
priorities is interaction-aware and novel. This algorithm needs a measure of the cost
that a query mix incurs while running on the system. We have seen in Chapter [3]
perhaps surprisingly, that resource utilization metrics (e.g., CPU or 1/O utilization)
are not good metrics to use for scheduling. These metrics may be useful if the
objective is to monitor and control system resource utilization. However, our results
show that these metrics are quite unrepresentative in quantifying the completion time
of queries in different mixes. We develop a new metric, called normalized runtime
overhead (NRO), to address this problem. The NRO metric is a measure of the
runtime overhead that queries of different types incur when they run concurrently
with other queries in a mix as compared to running alone in the system.

65

Set of Query
Types

Training Data for
Model Statistical

Modeling of
Interactions

Experiments on
Sample Mixes

Off-line Training Performance Model
{one time)

Next Query/ Sequence
of Query Mixes

Query Dispatcher |

<

Scheduler

Scheduling
(with every
workload)

Next Query / Workload
Next Query Mix

DBMS

Query
Execution H / / 2 "'// Completed Queries

Figure 5.1: QShuffler Workflow

Figure [5.1] shows the workflow of our solution approach. Given T query types, the
DBA identifies the scenarios where scheduling is needed for workloads consisting of these
query types. The query types can be identified by employing the techniques presented in
Chapter [3] The DBA generates a list of training mixes to be collected. Depending on the
budget and resources, these training samples can be collected all at once or incrementally
as described in Chapter [d] The collected samples are used for learning a statistical model
that predicts performance in the presence of interactions. Sampling and model building are
one-time off-line steps. After that, the learned model is used by the scheduling algorithms.
Next we present QQShuffler’s two scheduling algorithms.

5.2 Interaction-aware Batch Scheduling

In this section, we describe an interaction-aware scheduling algorithm that enables QShuf-
fler to schedule large batches of queries efficiently. Since most database systems do not
preempt queries once they start, we focus on non-preemptive scheduling throughout this
work. There is work on preemptive scheduling of plan operators (e.g., [21]), but our focus
is on scheduling entire queries.

66

Clients T Query
Types

Arrival Queue I ‘ l l I ‘ I

Perf
‘ “Moddl Qshuffler

Scheduled QueryMix

M Concurrent
Queries

Completed Queries

Figure 5.2: QShuffler architecture

The workload to be scheduled, W, comes from a set of clients, e.g., report-generation
applications. FEach client issues a fixed number of queries where each query belongs to one
of the T" possible query types Q1, @2, ..., Q7. Let I; denote the total number of queries of
type Q; in W. Thus, |W| = Zle I;. The clients place their batch of queries in an arrival
queue, and QShuffler schedules queries from this queue. It is assumed that the database
system is free to execute the queries queued at the system in any order. Precedence
constraints among queries have to be enforced outside the system. Also, it is assumed that
only throughput is important, not latency. Figure |5.2]illustrates the solution architecture.

The objective of QShuffler’s batch scheduling algorithm is to schedule the submitted
queries as a sequence of query mixes so that the total completion time of W is minimized
(which is equivalent to maximizing throughput for this workload). Formally, the completion
time of W can be defined as the time elapsed between when the first query in W starts
execution and when all the queries in W have finished execution. In a report-generation
scenario, the objective of minimizing total completion time corresponds to producing all
the reports requested in a certain period as fast as possible to stay within the available
time budget.

Intuitively, the algorithm works as follows. The algorithm considers a large set of mixes
X = {mi,ma, ..., mx|} such that the schedule chosen for W will consist of: (i) a subset of
mixes selected from X, and (ii) a specification of how the I; instances of each query type
in W should be run using the selected mixes. Next, we describe how X is picked and how
the schedule is chosen from X.

The space X of mixes considered: X is a systematic enumeration of a very large
subset of the full space of query mixes. As discussed in Section .1} for an MPL M and

67

number of query types, T', the space of possible mixes is a bounded T-dimensional space,
and the total size of this space is the number of ways we can select M objects from T
object types, unordered and with repetition. This is an M -selection from a set of size T,
and the number of possible selections is given by S(T, M) = (M7~ [86].

If we restrict the space of mixes by assuming that queries of the same type can be
scheduled only in batches of size b, then we get a subspace of size S(T', 7 MYy = (+T 1) This

restriction significantly reduces the number of possible mixes that need to be cons&dered,
and we can now enumerate all mixes in this subspace. This strategy for enumerating
possible mixes can generate mixes with up to M instances of one query type, @;. If there
is a query type (); with fewer than M instances (i.e., I; < M), we prune mixes with more
than /; instances of (); from the search space X.

Linear program to pick a subset of X: QShuffler uses a linear program (LP) [89] to
pick the subset of X used in the chosen schedule. Intuitively, an LP optimizes an objective
function over a set of variables subject to some constraints. The inputs to the LP used
by the scheduler consist of the set of query mixes m; € X and [;, 1 < 5 < T, the total
number of instances of each query type @), to be scheduled. The LP contains an unknown
variable n; (n; > 0) corresponding to each mix m; € X. The variable n; is the total time
for which queries will be scheduled with mix m; in the chosen schedule.

The chosen schedule should perform the work required to complete all I; input instances
of each query type ;. This requirement can be written in the form of the following T
constraints in the LP:

R

Nij .
ZniA—f >1, Vje{l,... T} (5.1)

i=1 *J

These constraints are derived as follows. Let 1 denote the (normalized) amount of work
needed to complete the execution of one instance of ();. Thus, the total work required to
complete the execution of the I; instances of); in the input workload is I;. Nj;x 5~ denotes
the fraction of this work that gets completed per unit time when mix m; is scheduled
Recall that NN;; denotes the number of instances of query type @, in m;, and A;; denotes
the average completion time of a query of type @); in m;. When mix mz runs for one unit
of time, each of the V;; query instances of type Q; in m;

work required to complete it. (IV;; and A;; are constants that depend only on m; and @);.

Section [4.2] shows how A;; values can be estimated for each mix in X using our interaction-

aware performance models.) It follows that Z|X|1 n; A” denotes the total work done for @);

68

in the chosen schedule. This work must not be less than /; in a feasible schedule for W.
This reasoning explains the T' constraints presented in Equation [5.1]

Working with the constraints in Equation the objective of the LP is to find the
schedule with the minimum total time to completion. Since only one mix will be scheduled
at any point in time, the LP’s optimization objective can be written naturally as:

|X|
Minimize g n;

=1

We can solve the LP using any LP solver. In QShuffler, we use the highly-efficient CPLEX
tool [33]. We give two lemmas to illustrate the properties of the LP solution.

Lemma 1 The number of nonzero n; variables in the LP solution is at most T, assuming
T < |X]|.

The above lemma follows from linear-programming theory, where it is known that the
number of variables set to nonzero values in the LP solution will not be greater than
the number of constraints in the LP [89]. Recall from Equation that our LP has T'

constraints, one per query type.

Lemma 2 The LP solution produces a schedule that has the optimal workload comple-
tion time among any schedule consisting of mixes from X, provided that instantaneous
preemption of queries is possible.

In the LP solution, some n; variables will be set to nonzero values and the rest will be zero.
It follows from Lemma |I| that at most T' (assuming 7' < |X|) variables will be nonzero.
The mixes with nonzero n; will be chosen in the optimal schedule. That is, the LP chooses
at most 7" mixes out of the | X | mixes given as input. For each mix, the respective n; value
found by the LP gives the total time for which query instances should be run with that
mix. Thus, we can generate a complete schedule from the LP solution. The optimality of
the schedule follows from the optimality of the LP.

However, this schedule assumes that we can preempt queries that are running when the
time (n;) assigned to a mix expires; the LP may have chosen to finish running these queries
using one or more other mixes. Since instantaneous query preemption is not supported by
most database systems as it requires instantaneous query suspend and resume features, we

69

b 10 6 5 4 3 2 1
Number of mixes | 462 | 3,003 | 6,188 | 15,504 | 53,130 | 324,632 | 8,259,888
LP runtime (sec) | 0.01 | 0.06 | 0.13 0.33 0.95 5.56 179

Table 5.1: Runtime of LP in CPLEX for different values of b with T"'= 6, M = 60

need to transform the preemptive schedule generated by the LP to an efficient preemption-
free schedule.

Obtaining a Preemption-free Schedule: We present a technique to produce
a preemption-free schedule from the LP solution. Without loss of generality, let the
mixes with nonzero n; in the LP solution be mq,ms,..., my, with respective n; values
ny,Na,...,ny. The approach described here would still work if fewer than 7" mixes have
nonzero n,;. We partition the total number of instances I; of query type (); among mixes
mi, Mg, ..., mp in proportion to the fraction of work related to @); that the LP solution
assigned to each mix, namely:

N Noj - N1
=L =L opp 2t
Ay Ay Ar;
Once the entire input workload I, I, ..., I has been partitioned among the mixes
may,Ma, ..., My, these mixes are scheduled in decreasing order of n; values. For each mix

m;, we schedule queries from the set of instances assigned to m; until they all complete,
then we move to the next mix. While this technique does not need query preemption,
the generated schedule does not have a provable bound on total completion time. In our
implementation of QShuffler, we use this more robust approach to produce non-preemptive
schedules from the LP solution.

Scalability of Linear Programming: Modern LP solvers are quite scalable, and
can handle large problem sizes with reasonable efficiency. For example, the CPLEX solver
that we use can handle a very large number of mixes in the set X in reasonable time. To
illustrate the scalability of CPLEX for our problem, Table shows the runtime of the
CPLEX for different values of b with a number of query types T' = 6 and an MPL M = 60
(the highest MPL in our experiments). It can be seen that 320K variables are processed in
less than 6 seconds and 8.26 million variables are processes in less than 3 minutes. Thus, X
can be a very large subset of the full space of possible query mixes, increasing the chances
of finding the best subset of mixes in the chosen schedule.

Next, we present QShuffler’s on-line scheduling algorithm, which is suitable for the
scenario in which clients submit queries in small batches or one at a time.

70

5.3 Interaction-aware On-line Scheduling

For many report-generation workloads, queries are submitted to the database system not
in large batches, but rather continuously or in small batches. In this section, we present
an interaction-aware on-line scheduling algorithm that QShuffler uses for these workloads.
The on-line scheduling algorithm schedules a new query whenever a running query fin-
ishes. While making each scheduling decision, the on-line algorithm has to work with a
limited lookahead, namely, the queries in the arrival queue (recall Figure . The on-line
scheduling algorithm exploits the implicit batching of queries made possible by the queue.
No assumptions are made about the future workload. In particular, no query is held up
by our scheduling algorithm with the hope that other queries arriving in the future could
have positive interactions with this query. Thus, the challenge is to get the best possible
global performance while being limited to local decisions under partial information.

When a query mix m; runs on the database system, a cost is incurred based on the
characteristics of m;. There are a number of ways to measure the cost of running a
mix. For example, the cost can be measured in terms of the load on resources like CPU,
memory, and I/O bandwidth. (We will show that these conventional resource-based cost
metrics are inadequate, and a new metric is needed.) A simple scheduling policy would
always pick the next query to schedule as the one that gives the minimum cost among all
queries present in the arrival queue. However, this greedy policy can be highly suboptimal.
Consider a scenario where there are light queries and heavy queries in the queue. The
greedy scheduler will keep scheduling the light queries until it has no option but to run a
mix of heavy queries. This is a highly suboptimal schedule with very poor performance:
when the light queries are scheduled together, the system is underutilized, and when the
heavy queries are scheduled together the system is thrashing [29].

A better, but more conservative, policy in the above scenario will try to keep a mix
of light and heavy queries running in the system subject to system capacity and MPL.
QShuffler’s on-line scheduling algorithm takes such an approach. This algorithm makes
decisions to achieve the objective of running the system as close as possible to a cost
threshold. This conservative policy is aimed at avoiding overload, while running query
mixes that give good performance in the near term. Intuitively, the system takes on as
much work as it can take efficiently in the near term so that it is not stuck with too much
work in the far term.

We have designed the interaction-aware on-line scheduling algorithm using a template
that can be instantiated with alternative implementations of the following three things:

1. A cost metric, R, for capturing the cost incurred by a query mix executing in the
database system.

71

Algorithm 1 On-line scheduling algorithm

GetNextQueryToSchedule(m,: Current mix, AQ: Query arrival queue)
1 if (AQ is empty)

2 then return null; > No queries to schedule

3 fori«1toT

4 do

5 Let m, be the query mix resulting from adding a query
6 of type Q; to m,;

7 Rp < Cost of m,, estimated using performance model;
8 Priority P, < 1/|0r — R,|;

9 r[i] <= P;; > Array r stores the priority of each query type
10 > Schedule a query instance corresponding to the query type
11 > with highest priority in the arrival queue
12 Sort r in decreasing order of priority;
13 for i < 1 to T' > Traverse r in decreasing order of priority

14 do

15 Let @; be the query type corresponding to r[if;
16 if (AQ has an instance of @),)

17 then return earliest query in AQ of type Q;;

2. A performance model to compute R;, which is the estimated value of the cost metric
R incurred by a query mix, m,.

3. A cost threshold, Or, that specifies the desired value of R; in the database system as
query mixes are run.

Algorithm (1| shows the algorithmic template used by the on-line scheduling algorithm.
This template provides a generic, low-overhead framework for scheduling that can be im-
plemented within the database system or outside of it (e.g., in the JDBC driver). The
template can be instantiated with any definition of the cost metric R, a corresponding cost
threshold O, as well as a performance model for estimating R (i.e., computing }%Z) for
candidate mixes.

When a query finishes, the GetNextQueryToSchedule function in Algorithm [1] picks the
query to schedule next. The algorithm uses the performance model to answer the following
what-if question: “For each query type, what would be the cost that results from adding

72

a query of this type to the currently running query mix?” Each query type is assigned
a priority based on how close it would keep the system to the desired cost threshold. A
query instance belonging to the query type with the highest priority in the arrival queue
is scheduled.

The overhead of the scheduling algorithm is a function of the number of query types,
T, and not the size of the arrival queue. Thus, the arrival queue can be arbitrarily large
without increasing the scheduling overhead. Having more queries in the queue is better
for the scheduler since it provides more possible mixes to schedule. Practically, the arrival
queue will have a bounded size that gives the scheduler its window into the future. We
call the size of the queue the lookahead, L. QShuffler’s focus is on total completion time of
report-generation workloads, so delaying a query in the queue has no penalty (i.e., fairness
is not required). Since report-generation workloads are bounded in size, all queries will
eventually be scheduled, and starvation is not an issue.

The on-line scheduling algorithm of QShuffler instantiates the algorithmic template in
Algorithm 1 as follows. For cost metric, R, QShuffler uses the NRO metric described
in Section [5.3.1] The cost threshold is Oyro, and Section [5.3.2] explains how to set this
threshold. Finally, QShuffler employs statistical models to compute N }A%Oi, the estimated
value of NRO for a given mix m;, as we have discussed in Section [4.2]

5.3.1 NRO: A Novel Cost Metric for Query Mixes

The main purpose of defining a cost metric for query mixes is to be able to separate
“good” (low cost) query mixes from “bad” (high cost) query mixes while making scheduling
decisions. It is tempting to consider cost metrics that are based on the demand placed
on important resources while a query mix is running. Example metrics that fall into this
category include CPU utilization and I/O bandwidth requirements.

One of our contributions is to show that resource-based cost metrics are inadequate to
differentiate between good and bad mixes during scheduling. The intuitive reason is that
different query mixes place very different demands on various resources. As a result, there
often is no strong correlation between the average completion times of queries in mixes
and the observed resource consumption. In effect, we are stating that it is not possible to
quantify the impact of query interactions by looking at one or more resource-consumption
metrics alone.

Instead, our insight is that all different kinds of significant interactions happening in the
database system should manifest themselves in the average runtime that queries exhibit in

73

a given mix. Thus, we develop a cost metric that relies on overall query execution time,
and thereby accounts for all kinds of query interactions.

Our new cost metric for a query mix is called Normalized Runtime Overhead (NRO).
The NRO metric is a measure of the runtime overhead that queries of different types incur
when they run concurrently with other queries in a mix as compared to running alone in
the system. Recall the following notation introduced in Section : t; denotes the average
runtime of a query of type (); when it runs alone in the system, and A;; denotes its average
runtime when run in the query mix m;. We define the runtime overhead for the query type

(); in mix m,; as /:i_j. Note that this definition captures all kinds of interactions for this

J
query type, including negative (where A;; > t;) and positive (where A;; < t;) interactions.

The next step is to generalize the definition of runtime overhead from a single query
type to an entire query mix. Consider a query mix m; with T query types and an MPL
of M, with N;; denoting the number of query instances of type @; in m;. We define the
overall runtime overhead for the T" query types in the mix as the weighted average of their
individual overheads. Here, the weight associated with query type @); is the fraction of
queries of this type in the mix. Thus, the runtime overhead for mix m; is:

RO - Nil % t11 Nz’2 X t22 4+ 4 NiT X tTT
' Nit + Nig+ -+ -+ Nir

T
1 (Ay
M Zjl t

J

The value of RO; represents the total runtime overhead for the query mix m; with MPL
M. To be able to use the same metric to measure overhead for mixes of different sizes (i.e.,
different MPLs), we define our cost metric N RO; as the normalized overhead computed per
query processed. That is, we divide RO; by the MPL M to get N RO;. This normalization
captures the fact that incurring an overhead of, say, 5 while processing 20 concurrent
queries is better than incurring an overhead of 5 while processing 10 concurrent queries.
Thus:

RO; 1 ¢ Ajj

We developed the NRO metric after considering several other cost metrics, none of which
have the following desirable properties of NRO:

74

e NRO is not overly sensitive to the effect of a small number of long running queries

like mix_runtime
20 Nijxt;
the total runtime of the mix are less robust: the effect of a single query that suffers

a large increase in runtime in the mix will dominate even if none of the other queries
in the mix suffer any degradation.

in the mix. On the other hand, metrics that are based directly on

e At the same time, NRO does not average out overheads per query type so much that
it cannot distinguish between good and bad mixes. Without careful averaging as
done in NRO, significant overheads incurred by multiple individual query types can
get lost in the overall average runtime.

e Finally, NRO values correlate well with our intuitive separation of good mixes from
bad ones.

Next, we use example mixes of TPC-H queries to illustrate the effectiveness of NRO. We
show that while NRO is able to distinguish between good and bad mixes, resource-based
metrics can fail to make this distinction.

Table shows several mixes of the 6 longest-running query types on a TPC-H 1GB
database on IBM DB2. The individual runtimes, ¢;, for each of these 6 query types are
shown in Table For each mix, Table shows the query frequencies, N;;, and the
average runtime in seconds, A;;, for each query type. The table also shows the values of
three candidate cost metrics for each mix: (i) NRO, (ii) average number of disk transfers
per second (a measure of disk consumption), and (iii) average CPU utilization. All mixes
in the table have an MPL M = 30.

The first two mixes in Table [5.2] m; and ms, are simple mixes consisting of multiple
instances of one query type running concurrently. We see that NRO is small for my, which
suggests that (); queries do not interfere with each other. (Recall that lower values of
NRO are better.) The 30 @y queries finish in 163.7 seconds in m4, while it would take
30 x 10.07 = 302.1 seconds if we were to run these 30 instances sequentially. Here, 10.07
seconds is the ¢; value of @, for the TPC-H 1GB database from Table 3.1} Thus, m;’s low
NRO value matches the fact that m; is a good mix.

On the other hand, my has a much higher NRO than m;, which suggests that ms is
a worse mix. Indeed, the 30 Q)7 queries take 331.8 seconds to finish in msy, compared to
just 30 x 5.76 = 172.8 seconds for running these 30 instances sequentially (5.76 seconds
obtained from Table . Also, notice that the Q)7 queries in ms take much longer to run
than the Q1 queries in my despite the fact that (); is almost 2x slower than ()7 when run
alone in the system (see Table. The NRO cost metric captures this effect appropriately

75

aseqeiep 9T H-Dd.L © U0 Suruunt soxXru A£1onb pojoo[os I0J SOLIJoUW 30D JUSIOPIP JO SON[RA :g'G o[qe],

694 0'86 | 199°0 of of of ofverr| 6|6¥81] 0z]990z| 1 0f of fw
N 916 | €80 | V8¢ | T €08 | T |0GEr| G2 |ge9r| | 0| 0| 0| o] ‘w
6708 ¢'8L| 90T || gIge | T| 00| 0|TIel| SI| 0Ok | T|986c| 8|L198| ¢| ‘w
86 GG | 0690 || GLET| ¥ S6VT | @| 846| 2 |TTIC| €| 9VPT| 8|GERT| 11| fw
9'69 9€TT | 0Z6T| 00| 0| 00| 0| 00| 0 00| 0|81EE| 0| 00| 0 “w
6766 99| 2r¢0 | 00| 0] 00| 0| 00| 0| 00| 0| 00| 0|L€T| 0g| 'w
(%) ndo | (sd) ys:q |'ogN | "V 1N | "V ION L VO P BN By BN Y PN I
SN 150)) 0) %0 0 0

76

because NRO is not biased towards long-running queries. Table also shows that the
disk consumption of m; is lower than msy, while its CPU utilization is higher than that of
ma.

Mixes mg and my further illustrate how, unlike resource-based cost metrics, NRO can
differentiate good mixes from bad ones. NRO tells us that my is costlier than ms, which
we can indeed see by comparing A;; values between the two mixes. An algorithm that uses
the NRO metric will schedule query mixes like ms and avoid mixes like my. As before, the
resource consumption metrics are not useful for distinguishing between the performance
of these two mixes. Mix my places a higher load on disk than mg, but ms places a higher
load on CPU than my4. Furthermore, the resource consumption levels of these two mixes
are lower than the individual highs in Table [5.2]

The final two mixes, ms and mg, clearly demonstrate the inadequacy of the given
resource-based cost metrics. These two mixes are quite similar to each other if we consider
resource-based metrics alone. On the other hand, NRO tells us that ms is costlier than
mg. We can validate this observation qualitatively by considering the average completion
times of QY9 and (13, which are the two query types common between the mixes. For both
query types, performance in my is worse than in mg.

We have observed effects similar to those described here for a variety of different work-
loads and while using various resource consumption metrics such as CPU queue length,
disk queue length, and bytes transferred per second: the level of consumption of a single
resource or of a combination of multiple resources cannot consistently distinguish good
mixes from bad ones, while NRO can distinguish good mixes from bad ones.

5.3.2 Setting the Cost Threshold

The cost threshold Oygro is an important tuning parameter in the on-line scheduling al-
gorithm. The setting of Oygro exposes a tradeoff that we will illustrate using our earlier
example of a workload that consists of light and heavy queries. If Oygo is set low, the
low-cost mixes composed almost exclusively of light queries will have priority over all other
mixes during scheduling. This situation can have two undesirable consequences: (i) re-
sources may be underutilized if only light queries are scheduled, and (ii) the heavy queries
will queue up and ultimately force a situation where high-cost query mixes have to be run
for long periods.

The above problem cannot be solved by increasing 6yro arbitrarily because a high
Onro will tend to favor high-cost, and hence poorly-performing, query mixes over better
ones. There is some optimal value for 0ygo that depends on the (unknown) future query

77

workload. We have developed a solution to pick a robust setting of #ygro that leverages
the desirable properties of QShuffler’s batch scheduling algorithm. Our solution uses the
following three steps:

1. Choose a representative workload Wpg.

2. Run the batch scheduling algorithm on Wpx to generate the corresponding batch
schedule Sg.

3. Compute Oyro as a weighted average of the NRO values of the mixes chosen in Sg.

We will describe each of these steps in turn.

Choosing a Representative Workload Wg: The representative workload Wg can be
specified by the database administrator similar to what is required by popular tools like
physical design advisors [9, 113]. QShuffler can automate this process partially because
report-generation workloads tend to repeat themselves with a high degree of regularity.
For example, the same set of reports may be generated every night or every weekend. In
these situations, simple hints from administrators that give the time period of the workload
cycle are enough to capture a representative workload.

If the variability in the workload is too high to be captured in a single representative
workload, then we can collect different workloads for different time periods (e.g., every
hour). QShuffler then relies on the practical heuristic that the recent past is a good
predictor of the near future, and uses the workload from the last time period as the
representative workload for the next time period.

Running the Batch Scheduling Algorithm: Next, the batch schedule Sk for the
representative workload W is determined by running the batch algorithm from Section
on Wgk. Only the schedule is computed; the workload is not actually run. Recall that the
batch algorithm chooses a good set of mixes to schedule based on statistical models to
estimate query completion time.

Picking Oygro: After the batch scheduling algorithm we have:

® My, Mo, ..., mp, which represent the T" query mixes comprising the batch schedule
Sg for Wg (recall Lemma . Sk is a good approximation of the optimal schedule
for Whp.

® ni, Na, ..., np, which represent the runtime of the respective mixes mq, ma, ..., mr

in Sg. Recall from Section that the LP which computes Sg also gives the time
for which each mix will run in Sg.

78

o N }%Ol, N }%Og, . N }%OT, which represent the NRO values of the respective mixes
mi, Ma, ..., mp in Sg. NRO values are computed using the performance model.

We set Oy ro to the weighted average of the NRO values of the mixes in the batch schedule
Sgr. Here, the weight of each NRO value is the fraction of time for which its corresponding
mix will run in Si. That is:

n1XNROl—i-nQXNROg—i—...—i—nTXNROT
ny+ng+...+np

ONrO =

Intuitively, this approach aims to set Oygro such that the schedule generated by the on-
line algorithm will be close to the best batch schedule for the representative workload.
Steps 1-3 will be run once to set Oy gro if a single representative workload can be identified.
The value of Oygo will be periodically recomputed if the predicted workload is different
for different time periods. The process of recomputing Oyro for a new workload is very
efficient because the bottleneck is in computing the new batch schedule, which can be
finished within seconds.

5.4 Scheduling Based on Query Optimizer Cost Esti-
mates

In this dissertation we argue that the analytical cost models used by database query op-
timizers may not be the best choice to reason about query interactions. Instead, we have
proposed capturing the impact of query interactions by experimentally measuring how they
affect the average completion time of different query types. We would like to compare our
proposed approach for scheduling to an approach that is based on query optimizer cost
estimates. In this section, we describe our implementation of a query scheduler that uses
query optimizer cost estimates, and we experimentally compare against this scheduler in

Section (.5l

Our optimizer cost based query scheduler is based on the work of Niu et al. [75] [76], [77,
78] (in particular, the query scheduler described in detail in [76] [77]). The query scheduler
in these works uses the query optimizer cost estimates (termed as timerons in IBM DB2)
to measure the cost of the queries executing in the system. The scheduler uses a timeron
threshold to define the capacity of the system. The scheduler admits a query if admitting
it will not increase the total optimizer cost (in timerons) of all queries executing in the
system beyond the timeron threshold. The timeron threshold is determined by running

79

an experiment before scheduling starts. In this experiment, a varying number of queries
is executed concurrently, and the throughput of the system is plotted against the total
timerons to determine the timeron value that results in peak throughput. This timeron
value is used as the timeron threshold.

The work in [75 [76, [77, [78] includes a general framework for workload adaptation that
can handle scheduling for time-varying workloads. In addition, the scheduler described in
these works can also handle different service classes for different query types, and it can
perform admission control separately for the different service classes by defining a separate
timeron threshold for each service class. The different service classes can have different
service level objectives, and the scheduler dynamically adjusts the timeron threshold for
each service class based on a utility function.

In this dissertation, our performance objective is maximizing overall throughput with-
out distinguishing between different query types, so we do not define different service classes
with explicit service level objectives. Moreover, we do not rely on a utility function since
the “utility” we are maximizing is simply throughput.

Despite these differences, we still find that the work of Niu et al. represents a useful
comparison point because it enables us to answer the following two questions: (1) Can
we use query optimizer cost estimates as our cost metric for scheduling? and (2) Can we
effectively use different service classes to distinguish between “lightweight” query types
and “heavyweight” query types as measured by their query optimizer costs? A scheduler
with these two service classes may be able to indirectly capture query interactions. In
particular, such a scheduler may be able to avoid scheduling too many heavyweight queries
concurrently.

To answer these questions, we adapt the scheduler of Niu et al. to our setting. The
adapted scheduler works as follows: (1) before the workload runs, define a timeron threshold
for the system, (2) (optionally) divide the query types into lightweight and heavyweight
based on their optimizer cost estimates and divide the timeron threshold between these
two service classes, (3) when the workload runs, admit the next query only if this will not
increase the total timeron cost of all queries in the system (or in this query’s service class)
beyond the timeron threshold. We refer to this scheduler as the optimizer-based scheduler.

The first step of the optimizer-based scheduler is to define the timeron threshold that
represents system capacity. In our setting, we know the query types a priori, but we need
to handle different workloads that consist of queries of these types. The query types have
widely varying estimated and actual execution costs, which makes finding the timeron
threshold difficult. Finding the timeron threshold requires finding the system saturation
point at which throughput peaks, but the system saturation point depends on the workload.
We illustrate this with a concrete example.

80

1000 Mo --Timerons vs Throughput

800 l(\
600 I \\
400 I

Throughput (queries/hour)

0 1000 2000 3000 4000
Timerons (x 1000)

Figure 5.3: Throughput vs timerons for ()13 in the 1GB database

Consider (013 and (27 on the 1GB TPC-H database. The estimated cost of Qi3 is
81,507 timerons and that of (Q9; is 819,324 timerons. Thus, the estimated cost of Qo1
is more than 10 times that of ()3, while the actual completion time of ()51 is only 1.2
seconds more than that of @)13. Figures and show throughput (measured based
on an actual experiment) vs timerons for @13 and Q2, respectively, as the number of
concurrently executing queries increases. The system saturation point for ()3 is 244,521
timerons, while the saturation point for Qo1 is 2,457,973 timerons. Using these two query
types results in timeron thresholds that differ by an order of magnitude. Furthermore, if
there exists a global timeron threshold for all query types, then for every instance of (Q9;
we should be able to admit 10 instances of ()13. However, the figures clearly show that
the throughput of ()13 drops quickly as we add more queries beyond its saturation point,
while for ()21 we can keep adding instances without a significant drop in throughput. This
example clearly illustrates that optimizer cost estimates can be misleading indicators of
the actual performance and resource consumption of different queries. The example also
shows that there is no straightforward way to find a system saturation point that works
for different workloads even if we know the query types. We cannot plot a throughput vs
timerons graph without having a specific workload, and in our setting we do not have a
specific workload that is known a priori.

Notwithstanding the above, we still want to evaluate the effectiveness of optimizer-based
scheduling. We therefore need to find the system saturation point. To find the system

81

1000
900
800
700
600 I

500

—-Timerons vs Throughput

300
200
100

Throughput (queries/hour)

|
400 !
|
|

0 10000 20000 30000 40000
Timerons (x 1000)

Figure 5.4: Throughput vs timerons for (J2; in the 1GB database

saturation point and the corresponding timeron threshold in our setting, we propose the
following methodology. We create a workload consisting of an equal number of queries of
each query type (say, 10 queries of each type) and we randomly shuffle these queries. We
run this workload at different MPLs and find the workload run with the best throughput
(i.e., the lowest total completion time). This workload run corresponds to the system
saturation point, and we use it to define the timeron threshold.

Defining the timeron threshold requires averaging the timeron values throughout the
workload run, which itself is not straightforward. We propose two approaches for averaging
the timeron values to obtain the timeron threshold. Both approaches rely on tracking the
query mixes that executed in the workload run and the total timeron cost for each query
mix. The first approach is to simply average the timeron costs of these query mixes, which
gives a timeron threshold T'hry,iz—qveragea defined as follows:

K opt;
Thrmi.t—averaged = %

where k is the total number of mixes that executed in the workload run and opt; is the
total timeron cost of mix 7. The second approach is to use a time-weighted average of the
timeron costs, which gives a timeron threshold T Ariime—weighted defined as follows:

82

Zf:l(li X opt;)
Zf:l li
where [; is the time in seconds for which mix 7 ran. We found that these two threshold

values were close to each other and gave similar scheduling results, with ThAryme—weighted
performing slightly better, so we use T'hriime—weighted-

Thrtimefweighted =

To use service classes in the optimizer-based scheduler, we define two service classes, one
for lightweight query types and one for heavyweight query types. We manually place each
query type in one of the two service classes based on its optimizer cost. In our experiments
we found that there is a large difference between the optimizer costs of lightweight and
heavyweight query types, so there was no ambiguity in assigning query types to service
classes (details in Section . Instead of evaluating a specific algorithm to find the best
way of dividing the timeron threshold between these two service classes, we conducted
experiments in which we varied the fraction of the timeron threshold given to each service
class across a wide range of values. In all these experiments, using one service class was
superior to using two service classes that distinguish between lightweight and heavyweight
queries. Thus, we conclude that using two service classes does not improve the performance
of the optimizer-based scheduler, so we did not try to find a “best” way for dividing the
timeron threshold between the two service classes.

5.5 Experimental Evaluation

5.5.1 Experimental Setup

Our machine setup is the same as the setup described in Section [3.2] Other details are as
follows.

Query Types: To study the different aspects of our algorithms, we use the 12 longest
running TPC-H query types on the 1GB database, shown in Table 3.1 with different
parameter values for each instantiation. The parameter values are chosen according to the
TPC-H rules. These 12 query types represent our base case settings. When we use other
settings to study the sensitivity and robustness of our approach, the details are specified
for the corresponding experiments.

Arrival order and workloads: As we demonstrate in our motivating example in Chap-
ter [1, the arrival order of workload queries is important since it determines the query
mixes that the system encounters and hence the total completion time of the workload.

83

Thus, to test QShuffler under various settings, we systematically vary the arrival order of
workload queries according to the following strategy. We arrange the query types in our
workload in the order in which they are specified in the TPC-H benchmark (i.e. @ first,
then Qs,..., up to Q91). As an initialization step, we go through the list of queries and
place I(Q) instances of each query type in the arrival queue. This ensures that the system
has a balanced initial workload. We then go through the list of query types in a round
robin manner, placing B randomly generated instances of each query type in the arrival
queue until all queries are in the queue. The parameter B specifies the degree of skew in
the arrival order of the workload. As B increases, more queries of the same type arrive
together. For the 1GB database, we use I(Q) = 10 and B = 5, 25, and 50. We use a pool
of 60 instances of each query type to construct our workloads. For the 10GB database, we
use IQQ = 0 and B = 2, 5, and 10. We use 10 instances of each query type. We limit the
workload sizes for the 10GB database due to the long runtimes of queries on this database
(e.g. a workload consisting of 60 queries can take more than 5 hours).

Scheduling algorithms: We experimented with five different scheduling algorithms. The
first is the QShuffler batch scheduling algorithm, which requires the entire workload to be
known in advance. The other four algorithms do not require the full workload to be known
in advance, and we assume that the scheduler can see only the next L queries in the
arrival queue. The value L is the lookahead value discussed earlier in the chapter. The
algorithms are: first come first serve (FCFS), which is insensitive to L; shortest job first
(SJF), which schedules the shortest query available in the next L queries using the runtimes
in Tables [3.1 and [3.2] our on-line scheduling algorithm; and the optimizer-based scheduler

(Section [5.5.7)).

Performance metric: Our performance metric is total completion time for the workload.
Since the workload queries are fixed in each experiment, minimizing total completion time
is equivalent to maximizing throughput. The batch scheduling algorithm chooses a schedule
by taking the entire workload into consideration, so we use it to judge the quality of the
QShuffler on-line algorithm, SJF, and FCFS. We measure the performance of each of these
algorithm in terms of slowdown compared to batch schedule, defined as:

completion time of on-line/FCFS/SJF schedule

100
completion time of batch schedule 8 %

5.5.2 Choice of Sampling and Modeling Technique

In Chapter 4| we identified two sampling and model training choices: Gaussian processes
models trained on samples collected by the IL-aware LHS algorithm (GP with IL_LHS) and

84

2800

-=-LR with CDR (5T)
-e—LR with CDR (10T)

-+ GP with IL_LHS (5T)
-% GP with IL_LHS (10T) P

2600

2400

Completion Time (sec)

2200 |

2000 T T T
5 16 25 35 45 55
MPL

Figure 5.5: Batch schedule execution time for different modeling approaches

linear regression models trained on samples collected by CDR sampling (LR with CDR).
We first discuss some observations on the performance of our scheduling algorithms with
both these approaches. Then we discuss the results of our scheduling algorithms in detail.

Figure[5.5|shows the total completion time of the schedules chosen by our batch schedul-
ing algorithm for different MPLs for a workload consisting of the longest running 12 query
types on the 1GB database. For each sampling and modeling approach we consider models
built based on 57" and 107" samples. The figure shows that for 57" samples both approaches
result in very similar performance. For LR with CDR we do not see much improvement in
performance when the number of samples is increased from 57" to 107". In case of GP with
IL_LHS we do observe that there is an improvement in performance as we collect more
samples. However, it should be noted that the difference between the best and the worst
performance for different choices of the modeling approach and the number of samples is
not more than 2-3%.

Next, we turn our attention to the performance of the QShuffler on-line algorithm. We
still consider the case when T' = 12, M = 30, and the database is 1GB. As mentioned above
we use the batch scheduling algorithm to evaluate the performance of on-line algorithms.
Figure|5.6|shows the performance of the QShuffler on-line scheduling algorithm. Once again
we show the performance of the on-line algorithms for both model training approaches,
and for each approach we consider 57" and 107 samples. In the figure the batch algorithm

85

120%

——Batch

—=|R with CDR (5T)
—e—LR with CDR (10T)
-#-GP with IL_LHS (5T)
110% -%-GP with IL_LHS (10T)

100% ¢

Slowdown Over Batch Scheduling

90% T ‘
5 15 25 35 45
Workload B value

Figure 5.6: QShuffler on-line algorithm for different modeling approaches

uses LR with CDR with 57" samples for modeling. The figure shows that we get very
similar performance with LR with CDR for both the 57 and 107 cases. In the case of
GP with IL_LHS we observe that its performance is worse than the performance achieved
by employing LR with CDR. The reason for this is the high computational and memory
requirements of the GP algorithms. This is not a problem when using GP in an off-line
manner. However, in the on-line scheduling algorithm, the time to consult the GP model is
on the critical path of workload execution, so the overhead of the model has a direct effect
on performance. This overhead would be acceptable if the GP model results in significantly
better scheduling decisions, but it does not.

One may expect to get significantly better scheduling performance by employing more
accurate and sophisticated modeling and sampling techniques. However, these experimen-
tal results demonstrate an important point about the scheduling problem: the scheduling
algorithm does not need models that provide high accuracy in the absolute sense. As long
as the modeling accuracy is good enough to distinguish good mixes from bad ones, the
models are good enough for the scheduling algorithms. There are other situations where
the models need to be as accurate as possible. For example, in Chapter [6] when we study
predicting the completion time of Bl workloads, we will see that we need accurate models
and hence we will use GP with IL_LHS. However, in this chapter the extra complexity
of GP with IL_LHS is not justified. Therefore, we use LR with CDR modeling with 57
samples for the remainder of this chapter.

86

200%

——Batch
2 —e-On-line
S 180% =+ FcFs
® —-SJF
=
& 160%
=
£
m 140%
1)
(]
>
O 0,
g 120% _—
F3 ‘—A——__**’/—/
g _ ‘_‘/‘AL
2 100% ¢===¢= e o= = =
)
80% ‘ ‘ ‘ ; :
5 15 25 35 45 55

Figure 5.7: Scheduling for B =5

5.5.3 Scheduler Effectiveness

Figures[5.7, [5.8 and[5.9 show the performance for different MPLs of our on-line scheduling
algorithm, FCFS, and SJF for B = 5, 25, and 50, respectively. The workload consists of
60 instances of each of the 12 longest running TPC-H query types on a 1GB database, for
a total of 720 queries. The lookahead is L = 60. The methodology in Section [5.3.2| results
in a value of Oyro between 0.63 and 0.7 in all these cases. Therefore, we use Oygro = 0.7
for all our experiments unless otherwise stated. The figures show that the batch and on-
line scheduling algorithms of QShuffler are significantly better than FCFS and SJF. The
on-line algorithm performs worse than the batch algorithm, as expected, but the difference
between them is low.

The figures clearly demonstrate the benefit of interaction-aware scheduling. The per-
formance gap between the QShuffler algorithms and the other two algorithms increases
as B increases. FCFS is the scheduling algorithm used by all database systems that we
are aware of, and these experiments show that varying the arrival order can significantly
degrade its performance. When we examine the NRO and A;; values from our sampling
data for this 1GB database, we find that the heterogenous mixes (i.e., containing many
different query types) are among the best mixes. At B = 5, the arrival order is almost
approaching round robin, and not too many queries of the same type can arrive together,
so FCFS is able to keep up with QShuffler. But as B increases, and the arrival order starts

87

200%

180%

160%

140%

120%

100%

Slowdown Over Batch Scheduling

80%

200%

180%

160%

140%

120%

100%

Slowdown Over Batch Scheduling

80%

——Batch
—e—0On-line

-+ FCFS
—=<SJF

e A. =~
s =~
A -
I 4 _ _A_______._‘.
5 15 25 35 45 55
MPL
Figure 5.8: Scheduling for B = 25
——Batch
—e—On-line
== FCFS
—SJF
-
s & . /
- b - -7 ."
bee o= =" i /»
o - -
5 15 25 35 45 55
MPL

Figure 5.9: Scheduling for B = 50

88

sending “bad” mixes, the performance of FCFS starts degrading significantly. Further, for
this experiment, SJF consistently turns out to be the worst policy overall. Interestingly,
SJF is the optimal scheduling policy if query interactions are ignored, and the fact that it
is the worst policy in this experiment demonstrates the importance of modeling query in-
teractions when scheduling. To illustrate the potential benefit of QShuffler (or, conversely,
the opportunity lost by using FCFS and SJF), we note that for B = 50 the performance
gain of the on-line scheduler over FCFES is up to 40%. This gain comes “for free” simply
by scheduling the queries in the correct way.

The figures also show that as MPL increases, FCFS and SJF are not able to keep up with
the increased load on the system and their performance degrades compared to QShuffler.
As MPL increases, there are more interactions that come into play, and QShuffler is able
to take these interactions into account when choosing the schedule.

5.5.4 Sensitivity to Oyro

Our methodology for setting 6ygo requires using the batch scheduling algorithm on a
representative workload. If the DBA wrongly assumes that the workload is going to consists
of only those query types that have severe negative interaction, then most of the mixes
that are proposed by the batch scheduling algorithm would have a high value of the NRO
metric and #ygo is going to be higher than required. On the other hand, if the DBA uses
a workload that consists of only good mixes, then 0y ro is going to be lower than required.
Choosing the representative workload for setting 0y ro is important, but the DBA does not
need to run or know the exact ordering of queries for this workload; a rough estimate of the
number of queries of each type in the workload is sufficient. Moreover, we observed that
the on-line scheduling algorithm is quite robust to small variations in fygo. To study the
effect of large variations in Oy pro, Figure shows the performance of different workloads
for M = 30 when we set 6ygo unexpectedly low or high corresponding to cases where
the DBA did not choose an accurate representative workload. We can see that the on-line
algorithm is still either better or at least comparable to FCFS and SJF.

5.5.5 Scalability and Robustness of the On-line Algorithm

We study the scalability of QShuffier in two dimensions: query types T and database
size. As T increases, the space of possible query mixes increases, which affects both model
building and scheduling. To test QShuffler for higher T', we use a workload comprised of
21 queries in the TPC-H benchmark as shown in Table 3.1 The workload consists of 60
queries of each type, for a total of 1220 queries.

89

200%

—+—Batch
o)) -A-FCFS
£ 180% +——=*=SJE
3 --6_NRO =10.70
2 -#-6_NRO =0.40
(3 160% -=-0_NRO =1.00
=
2
©
0 140%
]
>
O
E 120%
[*]
°
2 100%
7
80% T T T T
5 15 25 35 45

Workload B value

Figure 5.10: Scheduling for different values of Oyro (M = 30)

Figure shows the performance of the different scheduling algorithms for this work-
load for MPL 30 and varying B. The figure shows that, as in previous experiments, the
on-line scheduling algorithm performs better than FCFS and SJF.

To test QShuffler for larger database sizes, we use the 10GB TPC-H database. Since
the hardware is unchanged from the 1GB case, the queries place a much higher load on
the system and have much higher runtimes in the 10GB case. Therefore, we experiment
with only the 6 longest running query types from Table [3.2 The workload consists of 10
queries of each type for a total of 60 queries, the lookahead is set to L = 10, and MPL is
set to 10. The value of 6yro was computed based on this workload to be 0.33. The arrival
order of the queries is determined based on the parameter B, and we use B = 2,5, and 10,
since we have only 10 queries of each type.

Figure shows the performance of the different scheduling algorithms for this work-
load. The completion time for the batch scheduling algorithm in this case is 1.78 hours
and it is significantly better than any other algorithm, e.g., beating FCFS (7.43 hours) by
a factor of 4.2. This shows the potential of interaction-aware scheduling. The figure also
shows that the on-line scheduling algorithm consistently performs better than FCFS, and
better than SJF except when B = 10. On examining the different mixes we found that,
unlike the 1GB case, the homogeneous mixes (i.e., containing one query type only) are
among the best mixes in the 10GB case. This results in SJF and FCFS both improving

90

200%

ing

180%

160%

140%

120%

100%

Slowdown Over Batch Schedul

80%

450%
400%
350%
300%
250%
200%
160%
100%

Slowdown Over Batch Scheduling

50%
0%

——Batch
——0n-line
-~ FCFS
—-—SJF
I— e
"""""——::-— -7 /
5 15 25 35 45
Workload B value
Figure 5.11: Scheduling for 7' = 21
——Batch
"~ —e—0On-line
S -~ FCFS
=~ =*=SJF
i\ ________

6 8 10
Workload B value

Figure 5.12: Scheduling for 10GB database

91

as the arrival patterns become more skewed, since both algorithms would schedule mixes
consisting of queries of the same type when this happens.

The experiments in this section show that our scheduling algorithms are able to exploit
different scheduling opportunities in different scenarios. In case of the 1GB database, the
mixes containing one query type are bad mixes. The workloads with higher values of B tend
to present this kind of mixes, so there is more opportunity for performance improvement
over FCFS at higher values of B. On the other hand, for the 10GB database, the mixes
containing many different query types are bad mixes, so there is much more opportunity
for performance improvement over FCFS at lower values of B. Our scheduler is able to
take advantage of the scheduling opportunities in both these cases.

5.5.6 Scheduling for Skewed Data Distribution

In this section we present the results for robustness of our scheduler in case of databases
with skewed data distributions. Our approach for dealing with skewed data distributions
was presented in Section For this experiment we use the 9 query templates on a
1GB skewed database shown in Table [3.10, Figure shows our scheduling results for
workloads consisting of query instances (with different parameter values) of these query
templates.

The figure shows three workloads with B = 5, 25, and 50, and M = 30. The figure
shows that QShuffler is consistently better than FCFS and SJF for the different workloads
for all values of B. For the sake of comparison, in Figure [5.14] we also show the case
where we continue to group all instances of the ()9 query template together into one query
type, i.e., K = 1. The results shows that our approach for handling skew improves the
performance of both batch and on-line scheduling algorithms in Figure[5.13] FCFS behaves
the same whether K =1 or K = 4. In Figure we can see that the gap between FCFS
and the QShuffler algorithms increases for all workloads. For example, for the workload
with B = 25, the slowdown over batch scheduling for FCFS is 140% in Figure [5.14] and it
is 145% in Figure The improvement of on-line scheduling is much more pronounced.
We can also observe that even when no process for automatically identifying query types
in the presence of skew is employed (K = 1), our basic approach is still robust enough to
improve the performance over FCFS and SJF in Figure |5.14l

5.5.7 Comparison to Optimizer-based Scheduler

In this section, we compare the performance of QShuffler against the optimizer-based
scheduler presented in Section 5.4} For this comparison, we use the 10GB database and

92

170%

—e—Batch /
2 160% -+==0nline -
= -+ FCFS // _________ 1
g 150% T A
ﬁ 0, ,”’
o 140% -
= /’a”
£ 130% —
[11] P
E 120%
o
g 110%
3 100% .
()
8
n 90%
80% T T T T
5 16 25 35 45

Workload B value

Figure 5.13: Scheduling for skewed data with K =4 (M = 30)

170%
——Batch

160% -—*—On-line —
-~ FCFS

150% =—SJF / _________
140% e am== T

130% — =

0,
120% —=——
110%

100% *

Slowdown Over Batch Scheduling

90%

80% T T T T
5 15 25 35 45
Workload B value

Figure 5.14: Scheduling for skewed data with K =1 (M = 30)

93

14
—-MPL vs Throughput

R N

Throughput
o oo
\

Figure 5.15: Throughput vs MPL for Wy

the three workloads used in Figure (60 queries with different B values). The first step
in using the optimizer-based scheduler is to determine the timeron threshold as outlined
in Section [5.4] For this, we construct a workload consisting of the same 60 queries used
in Figure [5.12] with the arrival order randomly shuffled. We call this workload Wx. Fig-
ure [5.15{shows the throughput vs MPL graph for Wg. The best throughput is obtained at
MPL M = 6, and this corresponds to a timeron threshold T'Ariime—weighted = 17,3353, 73.87
timerons.

Figure shows the performance of the optimizer-based scheduler using this timeron
threshold for Wg and the three workloads in Figure[5.12] In this figure, we use one service
class for all query types (i.e., we do not distinguish between lightweight and heavyweight
queries). The MPL varies throughout the workload run when using the optimizer-based
scheduler. For example, when we run the optimizer-based scheduler for Wx, the MPL
varies from 3 to 12. Figure [5.16| also shows the performance of the QShuffler on-line
scheduling algorithm for MPLs M = 6 (the MPL corresponding to the best throughput for
Wgr) and M = 10 (the MPL used in previous experiments). The figure clearly shows that
QShuffler outperforms the optimizer-based scheduler. This demonstrates the importance
of considering query interactions in scheduling and modeling actual query completion times
rather than relying on query optimizer cost estimates.

94

300%

N
[+)]
<
=

200% +——

100% -

50% -

0% -

Slowdown Over Batch Scheduling
&
(=]
X

W_R B=2 B=5 B=10
Workloads

m Batch Optimizer-based ®Online M=6 ®Online M=10

Figure 5.16: Optimizer-based scheduling

Next, we turn our attention to using different service classes for lightweight and heavy-
weight queries. First, we divide the 6 query types used in this experiment into lightweight
and heavyweight according to their query optimizer cost estimates. This classification was
easy for these query types since there is a clear separation in cost between the query types
with low estimated cost and those with high estimated cost. Denote the highest estimated
cost of any query type by Opt,,q.. Of the 6 query types, 3 have estimated costs in the range
[0.82 — 1]Optynas, and we place these in the “heavyweight” service class. The remaining 3
query types all have estimated costs in the range [0.12 — 0.38]Opt,nqes, and we place them
in the “lightweight” service class. This classification is unambiguous since there is a small
range of costs within a class and a large distance between the classes.

After defining the two service classes, the next task is to divide the timeron threshold
between these two classes. Recall that the optimizer-based algorithm schedules queries from
different service classes using different timeron thresholds. Before embarking on a search
for the best algorithm to perform this division, we wanted to experimentally study how
well such an algorithm can be expected to perform. We varied the fraction of the timeron
threshold given to the heavyweight class from 30% to 80%, with the rest of the timeron
budget going to the lightweight class. We ran workload W at each of these settings using
the optimizer-based scheduler with two service classes. We use Wx as the workload in this
experiment since it is the workload used to determine the timeron threshold. Using the
same workload to determine the timeron threshold and for scheduling gives the scheduler

95

450%

—Two service classes
—-Single service class

ing

400%

N

s =

- N N [w
o o [o o
L 28 2 2 =2
=X N N X =

Slowdown Over Batch Schedul

100%

50% T T T T
30% 40% 50% 60% 70% 80%
% of Timeron Threshold given to Heavyweight Class

Figure 5.17: Optimizer-based scheduling of workload W5 using two service classes

the best chance of finding a good schedule.

Figure |5.17| shows the slowdown compared to the QShuffler batch scheduler of the
optimizer-based scheduler using two service classes on Wx at each division of the timeron
threshold. For comparison, the figure also shows the slowdown of the optimizer-based
scheduler with one service class from Figure |5.16, The figure shows that using one service
class always outperforms using two service classes (except for the 50% point in which two
service classes is better by a small margin that is well within the range of experimental
error). Thus, no matter what algorithm is used to divide the timeron threshold between
the two service classes, using one service class is going to be better.

The experiments in this section provide answers to the two questions posed in Sec-
tion [5.4; (1) QShuffler outperforms scheduling based on query optimizer estimates, and
(2) this does not change if different service classes are used to distinguish between
lightweight and heavyweight queries.

In summary, this chapter presented QShuffler, a throughput oriented scheduler for BI
report-generation workloads. QShuffler’s batch and on-line scheduling algorithms make
interaction-aware scheduling decisions for the workloads. We experimentally validated the
effectiveness of our scheduling approach using a BI benchmark on a real database system.
We showed that QShuffier can provide significant improvement in performance over the
default FCFS scheduler used by database systems , and over other scheduling algorithms

96

such as SJF and scheduling based on query optimizer cost estimates. Next, in Chapter [0]
we move away from scheduling and turn our attention to another workload management
problem. We present interaction-aware techniques for predicting the completion time of a
workload.

97

Chapter 6

Predicting the Completion Time of
Business Intelligence Workloads

6.1 Introduction

In Chapter [5| we considered the problem of scheduling appropriate query mixes for a given
query workload in order to minimize the workload’s total completion time. In this chapter
we consider another important workload management problem: estimating the completion
time of a given batch of queries. The state of the art does not provide a database
administrator (DBA) with any systematic tools that can predict the completion time of a
given batch of BI queries. Typically database administrators rely on heuristics and their
past experiences in this regard.

Figure illustrates the problem setting for this question of estimating the completion
time of a workload consisting of batch of queries. A database system has to process a
batch of queries ¢, qa, ..., ¢,. The multi-programming level of the system is set to M.
Whenever a query ¢ finishes among the M currently running queries, a new query ¢ from
the batch will be scheduled in its place based on a given scheduling policy. Given the
query batch, scheduling policy, and MPL, can we predict (ahead of time) how long the
database system will take to process the entire batch of queries?

Automated tools to answer this question with good accuracy and efficiency can help in
several workload management tasks:

e DBAs may need to plan the execution of different report-generation workloads to fit
within available time windows.

98

q; e
(32 Database system
Query . Scheduling ° running at
Batch . Policy ° MPLM
o
"

Figure 6.1: Problem setting for predicting workload completion times

e Accurate prediction can be used to give data analysts continuous feedback on the
progress of running workloads.

e Such tools form what-if modules to determine which scheduling policy to use for a

workload or the resources needed to complete a high-priority workload within a given
deadline 37, [63].

e Estimating workload completion time can be used as a what-if module to partition
a query workload across multiple database instances in a parallel database system.

As mentioned above, there are no research or industrial-strength automated tools for
predicting batch query workload completion times in a general way. In this dissertation, we
address this limitation and present an interaction-aware solution for predicting workload
completion times [15, [16]. The defining feature of our solution is that it treats query
batch workloads as a sequence of query mixes that execute, while accounting for the query
interactions that arise in these mixes.

6.2 Anatomy of an Interaction-aware Predictor

We begin with an overview of our interaction-aware predictor of batch workload completion
times. The predictor comprises a simulator that can simulate the execution of query mixes
in a given database system. The simulator performs this task using interaction-aware
performance models that can estimate the running time of queries executing with other
queries in a mix.

99

Training Data
for Model

Statistical
Modeling of
Query
Interactions

Experiment-
Driven Sampling
of Mixes

Set of Query 4+ Interaction-Aware

Types Performance Model Off-line sampling

and model learning

On-line prediction
for different
workloads

MPL

Workload
S Simulator

Workload
(Query Batch)

&

Predicted Completion Time

Figure 6.2: Workflow of predicting workload completion times

Figure[6.2]shows the overall workflow of the predictor which consists of a predominantly
off-line learning component and an on-line prediction component. The workflow is invoked
by a database administrator when she identifies a context where batch workloads are
executed repeatedly, and predictions of workload completion times can be useful.

Sampling and Modeling (Off-line Phase): We have explained our approach for sam-
pling and modeling query mixes in Chapter 4} The database administrator uses the query
types T" and multi-programming level M to generate the set of samples and learn a model
from these samples as discussed in Chapter [4

Simulating Workload Execution (On-line Phase): The simulator uses a recurrence
relation in conjunction with interaction-aware performance models to simulate the exe-
cution of the workload as a sequence of query mixes. This approach overcomes a major
disadvantage of conventional analytical simulation where domain experts have to spend
many hours implementing the simulator, only for it to become inaccurate when database
internals are modified. Few works on database tuning have harnessed the power and
flexibility of simulation (a notable exception is [81]). Another noteworthy feature of our
simulator is that it incorporates the simulation of the scheduling policy as a pluggable
component. While we used this feature to support two common scheduling policies, First
Come First Serve (FCFS) and Shortest Job First (SJF), other scheduling policies can be
supported if needed.

100

6.3 Workload Simulator

In this section, we present the workload simulator that estimates the completion time of a
given workload. The simulator is given the following input:

e A workload, W, that can come from one or more clients. The workload consists of a
batch of queries belonging to the T possible query types. The workload is a batch
workload that is known in advance, and all the |W| queries are placed in the arrival
queue of the simulator.

e The MPL of the system, M.

e A scheduling policy for determining which queries to schedule next. By default, the
simulator uses FCFS, but it can also use other policies such as SJF.

We consider the execution of the workload as a sequence of mixes of M queries each, as
shown in Figure [6.3] These mixes, which we call workload phases, change when one query
finishes and another query starts. The goal of the simulator is to simulate the exection
of the workload phases and the transition between them, and to estimate how long each
phase will take. The predicted workload completion time is the total time taken by all
phases.

We start with an initial mix (N;1, Njo, ..., Ny7) consisting of the first M queries sched-
uled from the arrival queue. This is workload phase 1. When one of these M queries finishes
and another one starts, we transition to a new mix and a new workload phase. The tran-
sition between phases continues until all queries are executed, for a total of |[W| — M + 1
phases.

When we transition from one phase to the next, the currently executing query mix
changes, and this results in different query interactions coming into play. The newly
starting query will affect the performance of the currently executing queries and its per-
formance will be affected by these queries. Thus, the simulator needs to track the per-
formance of the executing queries in the different mixes. To do this, the simulator uses
an interaction-aware performance model. The performance model estimates, for any mix
(Ni1, Nio, ..., N;7), the average completion time of the different query types in this mix,
denoted by </1ﬂ, Ao, . . ,AiT>-

The simulator tracks the fraction of total work completed by each query in each phase.
Consider a query instance, g;, of type @);. This query instance will start with the start
of some workload phase, and this workload phase would be query phase 1 for this query

101

Phas,f 1 A query finishes, current
g <« phase finishes, update work
Q [|77 > completed by all queries
U3 -
Q [[T >
T [>
a; \ Predicted remaining completion
New query added to mix, time of a query, if the gurrent
new phase starts, a, Phase 2 mix had continued to persist
values are u@a_@d/_,.a QG F——— - >
a2 | T >
a3 2 >
Qa1 >
Qar B
4 Phase n
...... o N
a3 Iy S
...... a
&5
e)

Workload completion time L=1, +1, +1

n

Figure 6.3: Simulating the execution of a workload as a sequence of mixes

instance. The query will execute through different workload phases until it completes all
the work it needs to perform. Let wc;; be the fraction of ¢;’s work completed in its query
phases 1 to i. When g; starts, its wc;; = 0, and ¢; is done when its wc;; = 1. We define
the following recurrence relation to keep track of we;; through the different query phases:

wey; = 0

wey = we-y; + (1= weony;) * fi (6.1)

The fraction of ¢;’s work completed up to query phase i—1 is wc(;—1);, and the remaining
work after phase i —11s (1—wc(;—1);). The fraction of this remaining work that is completed
during query phase i is f;;, defined as:

102

where [; is the length of phase i and a;; is the predicted remaining completion time of query
instance g; when it executes in the query mix of phase 7. If ¢; continues executing in this
mix, it would finish in time a;;. Since phase ¢ will end in time /;, ¢; will only complete
l;/ a;; of its remaining work in this phase.

To estimate a;;, the simulator uses the performance model to obtain the estimated
completion time of ¢; in the mix of phase 7, AZ] This is time required for ¢; to execute
from start to finish in this mix. Since g; has already completed wc(;—1); of its work, the
simulator multiplies the estimate Aij by (1 —wci-1);). The performance model returns
one estimate of completion time for each query type. Thus, if the simulator starts two
instances of a given query type at the same time with the start of some workload phase,
they will also finish at the same time. In practice, the two instances are unlikely to finish
at the same time since there is some variance in completion time for query instances of
the same query type (e.g., due to internal scheduling at various resources). To model this
variance in the simulator, we perturb the estimate of a;; by a small random amount e
between —0.1% and +0.1% of the estimate AU This leads to the following formula for
estimating a;;:

ai;; = (14 €)(1 —wep—1y;) * Ay (6.2)

To estimate [;, the length of phase i, we observe that phase ¢ will continue until one
of the running queries finishes, at which point the simulator will transition to phase 7 4 1.
Thus, phase ¢ will end at the earliest time a query finishes. That is,

li = min (a;) (6.3)

j=1..M

At the end of phase ¢, the simulator needs to update the state of the simulation to
reflect the end of phase ¢ and the start of phase i + 1.

End of phase i: To finish phase 7, the simulator uses Equation to update the work
completed for all queries that are running in this phase.

After this update, a query that has wc;; = 1 is finished and removed from the mix.
The next query in the workload will take its place to start phase ¢ + 1.

Start of phase ¢ + 1: When phase 7 + 1 starts, the running query mix has changed,
so the simulator needs to recompute the estimated remaining time a;11; for all queries in
the mix using Equation . After computing a(;41); for all M query instances in the mix,
the simulator can estimate the length of phase ¢ + 1 using Equation 6.3 The simulator
then finishes phase i + 1 and starts phase 7 + 2, and this continues until all the workload
queries are executed.

103

The simulator has a special case for handling the last phase of the workload (phase
(|[W| — M +1)). At the start of this phase, there are M running queries, but as these
queries finish, they will not be replaced by other queries. The simulator makes a simplifying
assumption and estimates the length of this phase ljy|—a41 as the maximum a;; of all
queries in this phase, ignoring the change in query mix as queries finish. This simplifying
assumption enables the simulator to use the same performance model (with the same MPL)
for all workload phases without affecting prediction accuracy.

The simulator estimates the completion time for the whole workload, Ly, as the total
length of all the workload phases:

|W|—M+1

Ly= >

6.4 Experimental Evaluation

6.4.1 Experimental Setup

Our machine and workload setup is same setup that we used before, described in Sec-
tion|3.2) and Section A workload run in our experimental setting can be defined by the
following 5 parameters: (1) database size, (2) number of query types 7', (3)arrival order
skew parameter, B , (4) scheduling policy, and (5) MPL M.

Query Types: We consider all the 22 TPC-H query types except for Q15 (recall that Q15
creates a view and this is not supported by our prototype implementation). In addition to
query batches that include all the T'=21 query types, we also considered batches containing
instances of only the top 12 and the top 6 longest-running query types (when queries run
alone in the system) as shown in Tables and 3.2l Thus, our batch workloads have
T=6,T=12,0or T = 21.

Scheduling policies: We consider the FCFS and SJF scheduling policies, as used in
Chapter 5] The lookahead L for SJF is the same as used in experiments in Section
(L =60 for 1GB and L = 10 for 10GB).

Arrival order skew: As in Chapter | we create different workloads by varying the
parameters that control the arrival order skew: the initialization parameter 1) and the
arrival order skew B. To construct a query batch, we first go through the given list of query
types and add I(Q) instances of each type. Going through the list again in a round-robin
fashion, we keep adding B instances of each query type to the batch until all the queries are
added. For FCFS, as B increases, more queries of the same type are scheduled together.

104

Workloads: For the 1GB database, we use 1) = 10 and B = 5, 25, and 50. We use 60
instances of each query type. Thus, batches with T" = 21 query types consist of 1260 query
instances, batches with T" = 12 query types consist of 720 query instances, and batches
with T" = 6 query types consist of 360 query instances. Query instances are generated

by instantiating TPC-H query templates with different parameter values chosen as per
TPC-H rules. For these workloads, we use MPL M € {5, 10, 20, 30, 40, 50, 60}.

For the 10GB database, we use IQ) = 0 and B = 2, 5, and 10. We use T' = 6 and 10
instances of each query type. When running these workloads, we use MPL M € {5, 10}.
We limit the workload sizes and MPL for the 10GB database due to the long runtimes of
queries on this database. Recall from Figure that 60-query workloads on the 10GB
database can take more than 5 hours to complete.

Evaluation Methodology: By systematically varying the choice of query types, size
of query batch, and scheduling policy, the parameter B, and MPL M, we generated 142
distinct and varied workloads. We run these workloads with a warm buffer pool and
measure their completion times. These workloads have actual completion times ranging
from 30 minutes to more than 5 hours. For each workload W, we compare W’s actual
completion time act with W’s completion time predicted by our technique, pred. Our error
metric is the relative prediction error, which is defined as:

_|pred — act|

Rel x 100%

ac

6.4.2 Choice of Sampling and Modeling Technique

In Chapter {4] we settled on two sampling and model training choices: Gaussian processes
models trained on samples collected by the IL-aware LHS algorithm (GP with IL_LHS) and
linear regression models trained on samples collected by CDR sampling (LR with CDR).
In Chapter 5 we found that LR with CDR was good enough to distinguish good mixes
from bad ones for the purpose of scheduling. The problem of predicting the completion
times of workloads, however, is more challenging than scheduling and it requires more
accuracy in predicting query completion times. Therefore, our chosen approach is GP with
IL_LHS. Nonetheless, we did experimentally evaluate LR with CDR as well, and the results
are shown in Figure [6.4f The figure shows the cumulative frequency distribution of the
relative prediction error in all the 142 workloads that we use in our experiments for both
GP with IL_LHS and LR with CDR. (For the cumulative frequency plots that we show in
this section, lines towards the top left of the graph indicate better prediction accuracy.) It
can be seen that error is quite high for LR with CDR. The error is more than 100% for

105

120%

-»-GP with IL_LHS
LR with CDR

100% *
>
(5]
<
S 80%
o
<
s 60%
2
ks
g 40%
=
(&)

20%

0%) 1 L 1 1
0% 50% 100% 150% 200%

Percent error in prediction

Figure 6.4: Prediction error for different sampling and modeling approaches

20% of the cases, and it reaches 200% for some cases. Overall about 50% of the time the
prediction errors are more than 30%. On the other hand, the GP with IL_LHS approach
show remarkable accuracy and this is the best choice for predicting workload completion
times. Thus, for the remaining experiments we use GP with IL_LHS.

6.4.3 Overall Prediction Accuracy

Figure shows two cases for the GP with IL_LHS approach. In one case, we use models
trained on 107" samples and in the other case we use models trained on 57" samples. Thus,
for T=21 TPC-H query types, in the case of 57" and 107, we sample no more than 105
and 210 query mixes, respectively, to train the models.

From Figure [6.5, we can see that in case of 5T samples about 70% of the time the
prediction errors are less than 20%. If the DBA has a larger sampling budget and is willing
to collect up to 107 samples, then the overall accuracy improves further to the point where
about 80% of the time the prediction errors are less than 20% . These end-to-end results
show that our sampling, modeling, and workload simulation algorithms result in accurate
and robust predictions across a wide range of workloads. The DBA can now make highly
accurate predictions for the future workloads in her database by collecting a small number
of samples just once (which can be done along with initial system setup and tuning).

106

120%

10T GP with IL_LHS
topy, | 5T GP with IL_LHS
0
>
[3)
c
S 80%
o
o
'f,>', 60%
:
g 40%
=
(&)
20%
0% & ‘
0% 20% 40% 60%

Percent error in prediction

Figure 6.5: Prediction error for 57" and 107" samples

6.4.4 Incremental Sampling

Our empirical observations indicate that 57" training samples are good enough for most
cases. Depending on the situation, a DBA may have a lower or larger sampling budget.
She may not be sure, e.g., whether less than 57" training samples would be good enough
or whether she should invest in the time to collect up to 107" samples. To address such
dilemma the DBAs can use our incremental sampling algorithm presented in Section [4.1.2]

Figure shows the results of our incremental sampling algorithm. The plots with the
suffix “-inc¢” show how the prediction error drops as incremental sampling brings in 37,
5T, and 7T samples over time. From the figure, we can see that even in case of 37" samples
about 40% of the time the errors are less than 20%, and about 60% of the time the errors
are less than 30%. These accuracies may be enough for the workloads that a DBA is seeing,
and she needs to go no further. The effectiveness of the approach is clear in that this case
needs only 63 samples for 21 TPC-H query types (as opposed to 210 samples for 107").
With 57 incremental samples, we get errors lower than 30% almost 90% of the time. As
more samples are collected incrementally, the figure shows that the results for 77" are very
close to 107", so one may not need to go all the way to 107".

107

120%

--10T GP with IL_LHS
100% 7T-!nc
° | =5T-inc
c:f =-3T-inc
S 80%
(=2
o
s 60%
2
I
g 40%
=2
(&)
20%
0% L I

0% 20% 40% 60%
Percent error in prediction

Figure 6.6: Prediction error for incremental sampling

6.4.5 Time Needed for Sampling and Prediction

The time required to obtain the predictions shown in the previous experiments consists
of the off-line time to collect samples and build the model, and the on-line time used by
the simulator. The running time of the simulator is minimal: for the largest workload
consisting of 1260 queries, the simulator takes less than 10 seconds overall. For workloads
with fewer queries, the running time of the simulator is typically a fraction of a second.
Table [6.1] shows the training time for a representative subset of prediction scenarios. The
first column is the prediction scenario identified by the DBA. The second column shows the
absolute training time: the time needed by our incremental sampling algorithm to collect
samples and learn a model that gives <20% error for >80% of the time. Absolute training
times do not tell the full story. The third column shows relative training time: the ratio
of the absolute training time to the average time to run a workload corresponding to that
scenario in our experiments. Notice that the training time is equal to the time to run a
very small number of workloads. Our solution offers three important advantages:

e Once the models are trained, they can be reused to give predictions for any number
of workloads that match the prediction scenario.

e The relative training time drops as the number of query instances |W| in the batch
workload increases, since absolute training time is independent of |W|. Once we

108

Prediction scenario || Training Ratio of training time to
(given by DBA) time avg workload runtime
M=5,T=21, 1GB | 0.6 hours | 0.9 (1260-query workloads)
M=30, T=21, 1GB || 4.3 hours | 3.9 (1260-query workloads)

M=10, T=6, 10GB || 15 hours 4 (60-query workloads)

Table 6.1: Training time of representative prediction scenarios

train the models, we can give predictions for workloads of any size. In practice,
batch workloads can be large in size. For the 10GB case, a typical 60-query workload
can take more than 5 hours to run, and a 1260-query workload can take more than
100 hours. In comparison, our training time is 15 hours.

e Incremental sampling gives the DBA the flexibility to collect more samples as and
when resources are available. The training overhead can be spread out over time,
and there is no need to allocate a contiguous block of training time.

6.4.6 Robustness and Scalability of Predictions

Next we drill down into the accuracy data presented in Figure to study different aspects
of the performance of our techniques for predicting workload completion times. In all
these figures, we use 107" training samples. The conclusions that we draw in the following
discussion are applicable for all sample sizes.

Effect of MPL: The first question we ask is what effect does MPL have on prediction
errors? Recall that to study the accuracy of our approach in different settings, we vary
MPL from 5 to 60. We have found that most of the cases where our prediction error is high
are cases where the MPL is high. Figure shows the cumulative frequency distribution
of error for the 142 workloads that we use partitioned by MPL. The figure shows that in
case of lower MPLs (5, 10, 20, 30), around 85% of the predictions have error less than 20%.
On the other hand, for higher MPLs, around 70% of the predictions have error less than
20%.

This increase in prediction error is due to two factors. At high MPLs, there is more load
on the system. Thus, the variance in query completion times is higher, making prediction
harder. The second factor that leads to reduced accuracy at higher MPLs is that the
space of possible query mixes (from which we have to sample) grows substantially with
increasing MPL. As discussed in Section 4.1 even for the simple case of 6 query types,
when we increase MPL from M = 20 to M = 50 there is a 65-fold increase in the size of

109

120%

--M=5,10,20,30
10000 M=40,50,60
(] r"ﬁ'
E r
S 80%
o
2
T
o 60%
2
5
g 40%
=
(&)
20%
0% :
0% 10% 20% 30% 40% 50%

Percent error in prediction

Figure 6.7: Prediction error across different MPL settings

the space to be sampled and modeled. However, in our experiments, we do not increase the
number of samples, always collecting the same number of samples for every MPL for a given
database size. Despite the high system load and explosion in the modeling space, we still
maintain good prediction accuracy, which demonstrates the robustness of our approach.

Sensitivity to workload parameters and scheduling policy: We now turn our at-
tention to varying different parameters that can affect prediction accuracy, such as the
number of query types, scheduling policy, and workload size. Our focus is on studying the
change in error distribution as these settings vary. Results are shown across all MPLs. It
should now be apparent that higher errors generally correspond to higher MPLs.

Since our workload simulator makes predictions based on changing query mixes, we
want to see how well it performs when the number of query types changes. When there are
more query types to schedule, the simulator will encounter more distinct query mixes, so
there is a higher likelihood of error in its prediction of workload completion times. To study
the effect of the number of query types on accuracy, Figure [6.8 shows the error distribution
for three types of workloads: (i) 1GB workloads that consist of 1260 queries picked from
T = 21 distinct query types, (ii) 1GB workloads that consist of 720 queries picked from
T = 12 distinct query types, and (iii) 1GB workloads that consist of 360 queries picked
from T = 6 distinct query types and 10GB workloads that consist of 60 queries picked
from T' = 6 distinct query types.

110

120%

-T=12
100% *T:? 5
- o
§ 80%
(=2
o
S 60%
2
)
=
g 40% f
= o
(&) ‘{Ei
20% w{:?

0%

0% 10% 20% 30% 40% 50%
Percent error in prediction

Figure 6.8: Prediction error when varying the number of query types

Figure clearly shows the robustness of our approach when the number of query types
is increased. In fact, we see slightly better accuracy when the number of query types is
higher. Increasing the number of query types increases the sampling space. However, recall
that when we use fewer query types, we use the longest-running query types in the system.
When the workload consists solely of long-running queries that significantly interact with
each other, in particular at high MPLs, there is more variance as compared to a workload
where these long-running queries are separated by more predictable short-running queries.

Figure [6.9 shows the error distribution of the workloads that run on a 10GB database.
These are long-running workloads, typically taking more than 4 hours to finish. The figure
shows that even when we limit ourselves to only 57 samples, the prediction accuracy
remains good, which shows that our approach is robust in the case of long-running queries
even with a small number of samples.

Figure|6.10] shows prediction errors for two scheduling policies, FCFS and SJF. Predic-
tion accuracy is high for both policies, illustrating that our approach is robust to variations
in the scheduling policy. Both FCFS and SJF are straightforward to implement. However,
for more advanced scheduling algorithms, the scheduler can itself be a simulator. As long
as it is possible to know/simulate what the next query is, the prediction simulator can use
this information and work in a seamless manner.

Sensitivity to data skew: Figure shows the error distributions for workloads on a

111

120%

--10GB 10T Samples
10GB 5T Samples

100% /‘
80%

>
Q
<
[}]
=
(=2
: j
s 60% -
g 40%
=
O
20%
1}
0% | | L 1
0% 10% 20% 30% 40% 50%

Percent error in prediction

Figure 6.9: Prediction error for workloads on the 10GB database

120%

-o-SJF
FCFS

100% /—-
“’"r“;i,

80%

60%

40%

Cumulative Frequency

20%

e
Wy

(5T

0% 10% 20% 30% 40% 50%
Percent error in prediction

0%

Figure 6.10: Prediction error for different scheduling policies

112

120%

->-Query Sub-types
No Query Sub-types

100%

- =
60% /

o [

20% /

0% 1 1
0% 10% 20% 30% 40% 50%
Percent error in prediction

Cumulative Frequency

Figure 6.11: Prediction error for skew-aware and default approaches

TPC-H database with a skewed data distribution and 360 query instances comprising the 6
longest-running TPC-H query types. We use the skewed TPC-D/H database generator [94]
to generate a 1GB TPC-H dataset with z = 1. Our experimental setup is the same as in
Section Our goal is to study how dividing query types into sub-types based on data
skew will affect prediction accuracy. Recall from Section that only Qg is divided into
query sub-types. The figure shows the error for the skew-aware algorithm that partitions
(9 into query sub-types, and for the skew-oblivious algorithm that does not partition
(9. Both algorithms have good accuracy, but the skew-aware algorithm is more accurate,
illustrating that query partitioning helps to improve the performance further.

Overall, we see that the combination of our sampling, modeling, and workload simula-
tion algorithms result in accurate and robust predictions across a wide range of workload
settings. Using our technique, a DBA can identify scenarios where she needs to repeatedly
make predictions for batch workloads. She can use our sampling and modeling approach
to train the interaction-aware models, and then use the workload simulator to accurately
predict the completion times of different workloads.

113

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation we have investigated the notion of query interactions. We have focussed
on the insight that concurrently executing queries in a database system interact with each
other, and these interactions can have a significant impact on query performance. We have
argued that reasoning about query interactions can help in developing better techniques
for workload management in database systems.

We have presented a detailed experimental study in Chapter [3| to demonstrate the
impact of the query interactions among concurrently executing queries. The queries are
represented using the abstraction of query types, and we propose techniques that can be
employed to identify the query types in an automatic manner. We have chosen to study
query interactions by measuring their impact on query runtimes. Query runtime is an
intuitive metric because any potential cause of interactions is eventually reflected in the
query runtime. Our experimental study illustrates that interactions in query mixes impact
query run times significantly. Ignoring these interactions leads to inaccurate understanding
of query performance.

Thus, we motivated the need for developing a mix-based reasoning about query work-
loads to better understand the performance of a database system. In particular we need
performance models that can capture query interactions and predict the performance of
queries in different mixes. We argued that analytical models are not suited for this pur-
pose, and we proposed experiment-driven modeling as a way to capture query interactions.
The experiment-driven modeling approach consists of running a small set of training query
mixes and measuring the average completion time of the queries in these mixes. After that

114

machine learning is employed to train models on this sample data. This approach requires
no assumptions about the nature of query interactions or the internals of the database
system. We discussed this approach in detail in Chapter [d, where we presented two differ-
ent approaches to collect training mixes: CDR sampling and interaction level aware Latin
Hypercube Sampling(IL_LHS). We considered two different modeling techniques to esti-
mate the query completion times in query mixes: linear regression and Gaussian processes.
Linear regression and CDR sampling is the simplest combination of modeling and sampling
approaches, while Gaussian processes and IL_LHS is the most sophisticated combination
that we considered.

We have presented solutions to two workload management problems that take ad-
vantage of our approach to capture and model query interactions The first problem we
considered is that of scheduling report-generation query workloads in database systems.
We presented QShuffler, a throughput oriented scheduler for BI report generation work-
loads, in Chapter | QShuffler employs batch and on-line scheduling algorithms, which
correspond to two different scenarios. The batch scheduling algorithm is optimized for
the scenario when queries are submitted in large batches. The on-line scheduling algo-
rithm deals with the scenario when the user is submitting queries one at a time or in
smaller batches. These algorithms make use of the interaction-aware performance models
for estimating query completion times. Our experimental evaluation shows that QShuffler
significantly improves performance over FCFS and SJF schedulers.

The second problem that we considered is predicting the completion time of batch BI
workloads. Here, again, we demonstrate that reasoning about query mixes enables us to
come up with a systematic approach that can help a database administrator in estimating
completion time of a workload. In Chapter [6] we presented a mix-based workload sim-
ulator that estimates the completion time of a workload and uses the interaction-aware
performance models that we propose. Our experiments show that the combination of our
sampling, modeling, and workload simulation algorithms result in accurate and robust
predictions across a wide range of workload settings.

7.2 Future Work

In this dissertation, when modeling query interactions, we rely on two coarse-grained fea-
tures to represent a query mix, namely query types and the number of instances of each
query type. A very interesting question is what other features of a query type or query
instance can be relevant for predicting query completion time. For example, in [46] the
authors use query plan features for predicting multiple performance metrics for database

115

queries, although that work does not consider query interactions. Nevertheless, the query
optimizer uses a sophisticated cost model to distinguish between candidate plans, and all
commercial database systems now include some self-managing features in their optimizers
and cost models. For example, some cost models are augmented by taking into account
the current state of the system, which effectively means that the plans chosen for queries
in a workload can depend upon what other queries are running concurrently. This means
that query plan features may provide useful information for modeling interactions, and
choosing the correct features is an interesting area for further research. For example, the
authors of [40], while employing many ideas presented in this dissertation, propose using
a logical I/O based metric to predict the execution performance of the queries in changing
query mixes in a workload. In [I7], the authors propose using both plan and operator level
features to build models for query performance prediction. In [66], the authors use opera-
tor level features to model resource consumption for database queries. In this dissertation,
we have focussed on black box modeling and our work shows that the models obtained
from this approach are accurate enough to help us in important workload management
tasks. However, we believe that developing models of query interactions that extend black
box modeling with features from query semantics and query execution plans can be an
interesting area of future work.

In this dissertation and other related works |40} 93] [102], the models of interactions are
learned for a given system configuration, and they are updated as the system evolves. An
interesting future direction is to explore whether the models can be learned in a general
way, such that if the data or system changes, the models still remain accurate. If we can
model interactions in a general way, we may be able to use the models to choose better
system design. For example, if we learn about positive and negative interactions in a
general way, we may be able to use this information to improve database physical design
so that the physical design of a database induces positive interactions and avoids negative
interactions. In [79], an effort is made to induce positive interactions by sharing scans in
the buffer pool. We believe that there may be an opportunity to extend similar ideas to
aspects of database physical design like indexes, partitioning, and materialized views.

With the emergence of cloud computing and software as a service (SaaS), database
consolidation, multi-tenancy, and virtualization are gaining wide acceptance as means to
reduce the cost and complexity of managing database systems. This new trend also poses
many challenges for understanding and predicting system performance. The consolidated
databases in a multi-tenant settings share resources and compete with each other for these
resources. These interactions on shared resources can be quite complex and raise many
interesting research questions. For example, can a new workload be added to an existing
machine that is already running a mix of workloads without some resource becoming

116

a bottleneck? If a machine is overloaded, which workloads should be moved to other
machines in order to restore performance to the desired level? Should replicas be created
for a database to scale-out the workload? Where should these replicas be placed? Recent
research efforts have focussed on formulating these challenges from different perspectives
and propose solutions for them [I, [, 20], 34) B35, 36l 52] [71), O3, ©5]. We believe that the
ideas presented in this dissertation can be extended to some of the research problems in
these areas. For example, in [14] we presented some preliminary results of our investigation
of applying machine learning techniques to determine how resource metrics of consolidated
systems are impacted by workload mixes and their interactions.

In general we are starting to see researchers in the database community showing more
enthusiasm for experiment-driven performance modeling. We hope that the ideas presented
in this dissertation will serve as useful tools to solve challenging problems in the area of
database systems tuning, performance modeling, and workload management.

117

References

[1] Daniel J. Abadi. Data management in the cloud: Limitations and opportunities.

IEEE Data Eng. Bull., 32(1):3-12, 2009.

[2] Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time transactions.
ACM SIGMOD Record, 17(1):71-81, 1988,

[3] Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time transactions
with disk resident data. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
1989.

[4] Robert K. Abbott and Hector Garcia-Molina. Scheduling I/O requests with
deadlines: A performance evaluation. In Proc. IEEE Real-Time Systems
Symposium, 1990.

[5] Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time transactions: a
performance evaluation. ACM Transactions on Database Systems (TODS),
17(3):513-560, 1992.

[6] Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar F. Minhas, Peter
Kokosielis, and Sunil Kamath. Deploying database appliances in the cloud. IFEFE
Data Eng. Bull., 32(1):13-20, 2009. [117

[7] Ashraf Aboulnaga, Ziyu Wang, and Zi Ye Zhang. Packing the most onto your
cloud. In Proc. Int. Workshop on Cloud Data Management (CloudDb), 2009.

[8] F. S. Acton. Analysis of Straight-Line Data. Dover, 1966.

[9] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection
of materialized views and indexes in SQL databases. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), 2000.

118

[10] Mumtaz Ahmad, Ashraf Aboulnaga, and Shivnath Babu. Query interactions in
database workloads. In Proc. Int. Workshop on Testing Database Systems

(DBTest), 2009.

[11] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
Modeling and exploiting query interactions in database systems. In Proc. ACM
Conf. on Information and Knowledge Management (CIKM), 2008. ,

[12] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
Qshuffler: Getting the query mix right. In Proc. Int. Conf. on Data Engineering

(ICDE), 2008. [12}

[13] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
Interaction-aware scheduling of report-generation workloads. The VLDB Journal,

20(4):589-615, 2011. 12}

[14] Mumtaz Ahmad and Ivan T. Bowman. Predicting system performance for
multi-tenant database workloads. In Proc. Int. Workshop on Testing Database

Systems (DBTest), 2011.

[15] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu.

Interaction-aware prediction of business intelligence workload completion times. In

Proc. Int. Conf. on Data Engineering (ICDE), 2010. ,

[16] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu.
Predicting completion times of batch query workloads using interaction-aware
models and simulation. In Proc. Int. Conf. on Ezxtending Database Technology

(EDBT), 2011. [12]

[17] Mert Akdere, Ugur Cetintemel, Eli Upfal, and Stan Zdonik. Learning-based query

performance modeling and prediction. In Proc. Int. Conf. on Data Engineering

(ICDE), 2012.
[18] Apache hadoop. http://hadoop.apache.org/.

[19] Aster data systems. http://www.asterdata.com/. [6)]

[20] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger.
Multi-tenant databases for software as a service. In Proc. ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), 2008. 117

119

[21]

[22]

23]

[24]

[25]

[20]
27]

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas.
Operator scheduling in data stream systems. VLDB Journal, 13(4):333 — 353, 2004.
00)

Shivnath Babu, Nedyalko Borisov, Songyun Duan, Herodotos Herodotou, and
Vamsidhar Thummala. Automated experiment-driven management of (database)
systems. In Proc. Workshop on Hot Topics in Operating Systems (HotOS), 2009.

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1-48, March 2003.

Peter Belknap, Supiti Buranawatanachoke, Romain Colle, Benoit Dageville, Karl
Dias, Leonidas Galanis, Shantanu Joshi, Jonathan Klein, Stratos Papadomanolakis,
Uri Shaft, Leng Tan, Venkateshwaran Venkataramani, Yujun Wang, Graham Wood,
Khaled Yagoub, and Hailing Yu. Oracle real application testing. In Proc. Int.
Workshop on Testing Database Systems (DBTest), 2008.

George E.P. Box and George C. Tiao. Bayesian Inference in Statistical Analysis.
Wiley, 1973.

Business Objects. http://www.businessobjects.com/.

Michael J. Carey, Rajiv Jauhari, and Miron Livny. Priority in DBMS resource
scheduling. In Proc. Int. Conf. on Very Large Data Bases (VLDB), 1989.

Michael J. Carey, Sanjay Krishnamurthi, and Miron Livny. Load control for
locking: The "half-and-half’ approach. In Proc. ACM Symposium on Principles of
Database Systems, 1990.

Yvonne Coady, Russ Cox, John Detreville, Peter Druschel, Joseph Hellerstein,
Andrew Hume, Kimberly Keeton, Thu Nguyen, Christopher Small, Lex Stein, and
Andrew Warfield. Falling off the cliff: When systems go nonlinear. In Proc.
Workshop on Hot Topics in Operating Systems (HotOS), 2005.

Cognos. http://www.cognos.com/.

Richard H. Conway, William L. Maxwell, and Miller Louis W. Theory of
scheduling. Addison-Wesley, 1967.

David R. Cox and Peter A. Lewis. Statistical Analysis of Series of Events.
Chapman & Hall, 1966.

120

[33]
[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

CPLEX. http://www.ilog.com/products/cplex/.

Carlo Curino, Evan Jones, Samuel Madden, and Hari Balakrishnan.
Workload-Aware Database Monitoring and Consolidation. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD), 2011.

Carlo Curino, Evan Jones, Raluca A. Popa, Nirmesh Malviya, Eugene Wu, Samuel
Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational cloud: a database
service for the cloud. In Biennial Conf. on Innovative Data Systems Research

(CIDR), 2011.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: An elastic
transactional data store in the cloud. CoRR, abs/1008.3751, 2010.

Umeshwar Dayal, Harumi A. Kuno, Janet L. Wiener, Kevin Wilkinson, Archana

Ganapathi, and Stefan Krompass. Managing operational business intelligence
workloads. ACM SIGOPS Operating Systems Review, 43(1):92-98, 2009. [17]

IBM DB2. http://www-01.ibm.com/software/data/db2/.

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database
configuration parameters with iTuned. In Proc. Int. Conf. on Very Large Data

Bases (VLDB), 2009.

Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal.
Performance prediction for concurrent database workloads. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD), 2011. ,

Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. A method for
transparent admission control and request scheduling in e-commerce web sites. In

Proc. Int. Conf. on World Wide Web (WWW), 2004.

Ugo Fano. On the theory of ionization yield of radiations in different substances.
Physical Review, (1-2):44-52, 1946.

Peter A. Franaszek and John T. Robinson. Limitations of concurrency in
transaction processing. ACM Transactions on Database Systems (TODS),
10(1):1-28, 1985.

Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. Wait depth
limited concurrency control. In Proc. Int. Conf. on Data Engineering (ICDE),
1991. 14

121

[45] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy H. Katz, and David A.
Patterson. Statistics-driven workload modeling for the cloud. In Workshops Proc.
Int. Conf. on Data Engineering, 2010.

[46] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet Wiener, Armando
Fox, Michael Jordan, and David Patterson. Predicting multiple metrics for queries:
Better decisions enabled by machine learning. In Proc. Int. Conf. on Data

Engineering (ICDE), 2009. [45]

[47] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce M. Maggs, Todd C.
Mowry, Christopher Olston, and Anthony Tomasic. Scalable query result caching
for web applications. Proc. of the VLDB Endowment (PVLDB), 1(1):550-561,
2008.

[48] Saeed Ghanbari, Gokul Soundararajan, Jin Chen, and Cristiana Amza. Adaptive
learning of metric correlations for temperature-aware database provisioning. In

Proc. Int. Conf. on Autonomic Computing (ICAC), 2007.
[49] Greenplum. http://www.greenplum.com/. [6]

[50] Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. PQR: Predicting query
execution times for autonomous workload management. In Proc. Int. Conf. on
Autonomic Computing (ICAC), 2008.

[51] Hans-Ulrich Heiss and Roger Wagner. Adaptive load control in transaction
processing systems. In Proc. Int. Conf. on Very Large Data Bases (VLDB), 1991.
14

[52] Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and

cost-based optimization of mapreduce programs. Proc. of the VLDB Endowment
(PVLDB), 4(11):1111-1122, 2011.

[53] Charles R. Hicks and Kenneth V. Turner. Fundamental Concepts in the Design of
Experiments. Oxford University Press, 1999. [0]

[54] Jiandong Huang, John A. Stankovic, Krithi Ramamritham, and Don Towsley. On
using priority inheritance in real-time databases. In Proc. IEEE Real-Time Systems
Symposium, 1991.

[55] Toshihide Ibaraki, Tiko Kameda, and Naoki Katoh. Cautious transaction
schedulers for database concurrency control. IEEE Transactions on Software

Engineering, 14(7):997-1009, 1988.

122

[56]

Abhinav Kamra, Vishal Misra, and Eric M. Nahum. Yaksha: A self-tuning
controller for managing the performance of 3-tiered websites. In Proc. Int.
Workshop on Quality of Service (IWQOS), 2004.

Kyoung-Don Kang, Sang H. Son, and John A. Stankovic. Service differentiation in
real-time main memory databases. In Proc. IEEE Int. Symposium on
Object-Oriented Real-Time Distributed Computing, 2002.

Naoki Katoh, Toshihide Ibaraki, and Tiko Kameda. Cautious transaction
schedulers with admission control. ACM Transactions on Database Systems

(TODS), 10(2):205-229, 1985. [13]

Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, 1990.

Terence Kelly. Detecting performance anomalies in global applications. In Proc.

Workshop on Real, Large Distributed Systems, 2005. [9)

John F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 1. 3rd edition.
40

John F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 2. 2nd edition.
40

Stefan Krompass, Harumi A. Kuno, Janet L. Wiener, Kevin Wilkinson, Umeshwar
Dayal, and Alfons Kemper. Managing long-running queries. In Proc. Int. Conf. on

Extending Database Technology (EDBT), 20009.

Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Kevin Wilkinson, Archana
Ganapathi, and Stefan Krompass. Managing dynamic mixed workloads for
operational business intelligence. In Proc. Intl. Workshop on Databases in
Networked Information Systems (DNIS), 2010.

Eva Kwan, Sam Lightstone, K. Bernhard Schiefer, Adam J. Storm, and Leanne
Wu. Automatic database configuration for DB2 universal database: Compressing
years of performance expertise into seconds of execution. In Proc. Conf. on

Database Systems for Business, Technology and Web (BTW), 2003.

Jiexing Li, Arnd Christian Konig, Vivek R. Narasayya, and Surajit Chaudhuri.
Robust estimation of resource consumption for sql queries using statistical
techniques. Proc. of the VLDB Endowment (PVLDB), 5(11):1555-1566, 2012.

123

[67]

[76]

Amit Manjhi, Phillip B. Gibbons, Anastassia Ailamaki, Charles Garrod, Bruce M.
Maggs, Todd C. Mowry, Christopher Olston, Anthony Tomasic, and Haifeng Yu.
Invalidation clues for database scalability services. In Proc. Int. Conf. on Data
Engineering (ICDE), 2007.

David T. McWherter, Bianca Schroeder, Anastassia Ailamaki, and Mor
Harchol-Balter. Priority mechanisms for OLTP and transactional web applications.
In Proc. Int. Conf. on Data Engineering (ICDE), 2004.

David T. McWherter, Bianca Schroeder, Anastassia Ailamaki, and Mor
Harchol-Balter. Improving preemptive prioritization via statistical characterization
of OLTP locking. In Proc. Int. Conf. on Data Engineering (ICDE), 2005.

Abhay Mehta, Chetan Gupta, and Umeshwar Dayal. Bl Batch Manager: A system
for managing batch workloads on enterprise data warehouses. In Proc. Int. Conf.
on Extending Database Technology (EDBT), 2008.

Umar F. Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboulnaga,
Kenneth Salem, and Andrew Warfield. RemusDB: Transparent high availability for
database systems. Proc. of the VLDB Endowment (PVLDB), 4(11):738-748, 2011.
117

Axel Monkeberg and Gerhard Weikum. Conflict-driven load control for the
avoidance of data-contention thrashing. In Proc. Int. Conf. on Data Engineering

(ICDE), 1991.

Axel Monkeberg and Gerhard Weikum. Performance evaluation of an adaptive and
robust load control method for the avoidance of data-contention thrashing. In Proc.

Int. Conf. on Very Large Data Bases (VLDB), 1992.

MySQL slow query log parser.

http://code.google.com /p/mysql-slow-query-log-parser/.

Baoning Niu, Patrick Martin, and Wendy Powley. Towards autonomic workload
management in DBMSs. Journal of Database Management, 20(3):1-17, 20009. ,
[}

Baoning Niu, Patrick Martin, Wendy Powley, Paul Bird, and Randy Horman.
Adapting mixed workloads to meet SLOs in autonomic DBMSs. In Workshops
Proc. Int. Conf. on Data Engineering, 2007. [15] [79]

124

[77]

(78]

[79]

[80]
[81]

[82]

[33]

[84]

[36]

[87]

[38]

[39]

Baoning Niu, Patrick Martin, Wendy Powley, Randy Horman, and Paul Bird.
Workload adaptation in autonomic DBMSs. In Proc. Conf. of the Center for
Advanced Studies on Collaborative Research (CASCON), 2006. 79,

Baoning Niu and Jian Shi. Scalable workload adaptation for mixed workload. In

Int. Conf. on Scalable Information Systems (Infoscale). [L5] [79]

Kevin O’Gorman, Amr El Abbadi, and Divyakant Agrawal. Multiple query
optimization in middleware using query teamwork. Software - Practice and

Eaperience, 35(4):361-391, 2005. [12]
HP service manager software. http://www.managementsoftware.hp.com/.

Oguzhan Ozmen, Kenneth Salem, Mustafa Uysal, and M. Hossein Sheikh Attar.
Storage workload estimation for database management systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD), 2007.

HweeHwa Pang, Michael J. Carey, and Miron Livny. Multiclass query scheduling in
real-time database systems. [EFEE Transactions on Knowledge and Data
Engineering (TKDE), 7(4):533-551, 1995.

Query patroller: IBM DB2 Query Patroller adminsistration guide.
http://www.ibm.com/software/data/db2/ querypatroller/.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,

2005. (48] A9} 0L BT

Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and
extensible algorithms for multi query optimization. In Proc. ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), 2008.

Herbert J. Ryser. Combinatorial Mathematics. The Mathematical Association of
America, 1963. [37] [6§]

Giovanni M. Sacco and Mario Schkolnick. Buffer management in relational database
systems. ACM Transactions on Database Systems (TODS), 11(4):473-498, 1986.

Thomas J. Santner, Brian J. Williams, and William Notz. The Design and Analysis
of Computer Ezperiments. Springer-Verlag, 2003. [39] (0]

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1998. .,
69

125

[90]

[91]

[92]

[96]

[97]

(98]

Bianca Schroeder and Mor Harchol-Balter. Web servers under overload: How
scheduling can help. ACM Transactions on Internet Technology (TOIT),
6(1):20-52, 2006.

Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, and Erich Nahum. Achieving
class-based QoS for transactional workloads. In Proc. Int. Conf. on Data
Engineering (ICDE), 2006.

Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam
Wierman. How to determine a good multi-programming level for external
scheduling. In Proc. Int. Conf. on Data Engineering (ICDE), 2006.

Muhammad B. Sheikh, Umar F. Minhas, Omar Z. Khan, Ashraf Aboulnaga, Pascal
Poupart, and David J. Taylor. A bayesian approach to online performance
modeling for database appliances using gaussian models. In Proc. Int. Conf. on

Autonomic Computing (ICAC), 2011.

Skewed TPC-D data generator.
ftp:/ /ftp.research.microsoft.com/users/viveknar/TPCDSkew/. [33]

Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, Peter
Kokosielis, and Sunil Kamath. Automatic virtual machine configuration for
database workloads. In Proc. ACM SIGMOD Int. Conf. on Management of Data

(SIGMOD), 2008.

Gokul Soundararajan and Cristiana Amza. Autonomic provisioning of backend

databases in dynamic content web servers. In Proc. Int. Conf. on Autonomic
Computing (ICAC), 2006.

Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationarity for
performance prediction. In European Conf. on Computer systems (EuroSys), 2007.

O, 10

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
2001. 17

Alexander Thomasian. Performance limits of two-phase locking. In Proc. Int. Conf.
on Data Engineering (ICDE), 1991.

Alexander Thomasian. Thrashing in two-phase locking revisited. In Proc. Int.

Conf. on Data Engineering (ICDE), 1992.

126

[101] E. C. Titchmarsh. The Theory of the Riemann Zeta Function. Oxford Science
Publications, Clarendon Press, Oxford, second edition, 1986.

[102] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. Q-Cop: Avoiding bad query mixes
to minimize client timeouts under heavy loads. In Proc. Int. Conf. on Data

Engineering (ICDE), 2010.

[103] Transaction Processing Perfromance Council (TPC). http://www.tpc.org/tpch. [2
20)

[104] Transaction Processing Perfromance Council (TPC). http://www.tpc.org/tpcw.

[105] Richard V. Mises. Mathematical Theory of Probability and Statistics. Academic
Press, 1964.

[106] Vertica. http://www.vertica.com/. [6] [64]

[107] Matt Welsh and David Culler. Adaptive overload control for busy internet servers.
In Proc. USENIX Symposium on Internet Technologies and Systems, 2003.

[108] Tan H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, third edition, 2011. [47)

[109] DB2 workload manager. http://www.ibm.com/software/data/db2/.

[110] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun Zhang.
Statistical learning techniques for costing XML queries. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), 2005.

[111] Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia Smirni.
R-capriccio: A capacity planning and anomaly detection tool for enterprise services
with live workloads. In Proc. ACM/IFIP/USENIX Int. Conf. on Middleware, 2007.

O [L1]

[112] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A regression-based analytic
model for dynamic resource provisioning of multi-tier applications. In Proc. Int.
Conf. on Autonomic Computing (ICAC), 2007. [9, [L0]

[113] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian
Garcia-arellano, and Scott Fadden. DB2 Design Advisor: Integrated automatic
physical database design. In Proc. Int. Conf. on Very Large Data Bases (VLDB),

2004. (20} [T

127

	List of Tables
	List of Figures
	Introduction
	Summary of Contributions and Roadmap

	Literature Survey
	Transaction Mix Models
	Optimizing the Performance of Concurrent Query Mixes
	Workload Management in Database Systems
	Machine Learning and Experiment-driven Performance Modeling

	An Experimental Study of Query Interactions
	Granularity of Modeling Query Interactions
	Experimental Setup
	Effect of Query Interactions on Query Completion Time
	Effect of Query Interactions on Resource Consumption
	Identifying Query Types in the System
	Query Template Partitioner

	Experiment-Driven Modeling of Query Interactions
	Sampling to Collect Training Data
	CDR Sampling
	Interaction Level Aware Latin Hypercube Sampling

	Regression Models for Query Interactions
	 Linear Regression Models
	Gaussian Processes

	Accuracy and Cost of Modeling
	Accuracy of Modeling
	Cost of Modeling
	Conclusion

	QShuffler: Interaction-Aware Scheduling of Report-Generation Queries
	Introduction
	Interaction-aware Batch Scheduling
	Interaction-aware On-line Scheduling
	NRO: A Novel Cost Metric for Query Mixes
	Setting the Cost Threshold

	Scheduling Based on Query Optimizer Cost Estimates
	Experimental Evaluation
	Experimental Setup
	Choice of Sampling and Modeling Technique
	Scheduler Effectiveness
	Sensitivity to NRO
	Scalability and Robustness of the On-line Algorithm
	Scheduling for Skewed Data Distribution
	Comparison to Optimizer-based Scheduler

	Predicting the Completion Time of Business Intelligence Workloads
	Introduction
	Anatomy of an Interaction-aware Predictor
	Workload Simulator
	Experimental Evaluation
	Experimental Setup
	Choice of Sampling and Modeling Technique
	Overall Prediction Accuracy
	Incremental Sampling
	Time Needed for Sampling and Prediction
	Robustness and Scalability of Predictions

	Conclusions and Future Work
	Conclusions
	Future Work

	References

