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Abstract

High spin-orbit coupling and low effective mass of electrons in InAs nanowires makes it an
attractive material for studying quantum physics in mesoscopic and nanoscale quantum
devices. We first study the transport properties of FET devices made of InAs nanowires
of diameter in the range of 35-70 nm. The temperature dependence of electron mobility
in InAs nanowires from 10-200 K exhibits a positive slope below approximately 40 K,
then turns over to a negative slope at higher temperatures. This is explained by Coulomb
scattering from the surface donor like states that give rise to a subsurface accumulation
layer and the thermal activation of these surface donors. The scattering rates are calculated
using a momentum relaxation time approximation. The transition probabilities between
the self-consistent Poisson-Schrodinger states of a 50 nm diameter nanowire are calculated
using Fermi’s golden rule. The results clarify the dominant scattering mechanism in InAs
nanowires and signify the need for surface passivation to obtain high mobility devices.
In a second study, we model a gate defined double quantum dot in the nanowire with
high spin-orbit coupling in order to determine the precise gate voltage dependence of the
exchange Hamiltonian. This modelling is critical for designing two-qubit quantum logic
operations in the nanowire double dot architecture. A quantum double well structure is
simulated based on the realistic potential created by a set of fine local electrostatic gates
in the presence of nanowire surface accumulation layer. An effective spin Hamiltonian is
derived for a pair of interacting electrons localized in the double dot system in the presence
of a strong spin-orbit coupling. The accuracy of the effective Hamiltonian is established by
a strong agreement obtained between the dynamics generated by the effective Hamiltonian
with those obtained by a numerically exact solution of the time-dependent Schrodinger
equation. The parametric dependences of the effective exchange Hamiltonian on external
magnetic field, barrier gate voltage, and spin-orbit field is determined. This opens the door
to designing optimal pulses for high fidelity quantum gates in real InAs nanowire devices.
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Chapter 1

Introduction

Semiconducting nanowires as building blocks in bottom-up nanoelectronics provide a rich
field of opportunity for studying quantum phenomena in nanoscale devices. This advantage
is afforded by the nanowire geometry approaching one dimensionality which allows for large
scale fabrication of coupled nanoscale circuits. The choice of Indium Arsenide (InAs) as
the semiconductor material further supplements this advantage due to, a) small effective
mass of electron m* = 0.023m, that leads to, i) stronger quantum confinement, giving
wider separation of the high energy states in InAs quantum dot spectrum from the low
lying subspace which is the regime of interest for quantum information applications, ii)
high electronic mobility relevant for charge transport based electronic devices, b) large and
tunable Landé g factor [1, 2] and spin-orbit (SO) coupling [3] that allows for efficient control
over the electronic spin degree of freedom for use in spintronic devices. The nanowires we
investigate are grown in a gas source molecular beam epitaxy (GS-MBE) system through
vapour-liquid-solid (VLS) growth method using a gold catalyst particle. The nanowire
diameter is determined by the size of the Au seed particle while the length is determined
by the growth time. The nanowires are integrated into a field-effect transistor (FET)
device through a series of nano-lithographic steps. A FET is a three-terminal device
configured like a parallel plate capacitor. The charge density in the device can be controlled
(down to zero) with global or local gates. The tuning of charge to a single electron in an
electrostatically defined quantum dot as well as the electron-electron coupling between
adjacently fabricated quantum dots has been demonstrated in 50-100 nm nanowires by
selective depletion of electrons through local electrostatic gates [4, 5].

In this thesis, we address problems that have the end goal of effecting a spin based pro-
totype quantum information processor (QIP) realized in InAs semi-conductor nanowires.
The objective is to fully control quantum mechanical processes at the single electron level
in a way that adheres to all of the criteria required for quantum bits (qubits). In 2000
David DiVincenzo outlined a set of principles that would guide the physical design of a
device capable of performing quantum computation [6]. The guidelines are the following:



1. Well-characterized qubits: Identify a two-level quantum property of a scalable system
within which to encode the qubit. The internal and control Hamiltonians of the
system should be known accurately.

2. Initialization: It must be possible to prepare the system in a known state at the start
of the computation.

3. Decoherence: The loss of information in the quantum state resulting from unwanted
interactions with the environment are to be limited below the error thresholds of
fault tolerant quantum computation [7, 8, 9].

4. Universal set of gates: It should be feasible to perform an arbitrary unitary trans-
formation of a given initial state to any coherent state in the Hilbert space of the
system. This requirement is equivalently expressed as the ability to perform an arbi-
trary single spin rotation and an entangling two spin operation such as a controlled
NOT gate [10].

5. Measurement: It must be possible to perform quantum measurement on a single or
multiple qubit state which is the output of quantum computation.

The idea of electron spin qubits localized in an array of adjacent quantum wells was
proposed as early as 1998 [11, 12], encouraged also by the prospects of studying controlled
non-equilibrium spin dynamics of magnetic nanosystems. In the following, we outline
the generalized framework proposed in [11, 12] for performing quantum computation in
electrostatically gated quantum dots. The initial state of the system corresponds to the
well-separated regime of the two quantum dots occupied by a single electron each. The
spin states are initialized by letting the system evolve to its thermal ground state at
sufficiently low temperature in the presence of a strong Zeeman field, £, >> kg1 where
E is the Zeeman energy gap between up and down spin states, kT is the thermal energy
at temperature 7. The control required for performing single qubit gates, which in this
case amounts to an arbitrary rotation of a single spin, is provided by local time-dependent
magnetic fields. Interactions between individual spin qubits are facilitated by lowering the
height of tunneling potential barrier separating the two electrons. The resulting exchange
interaction allows for fast and electrostatically tunable two qubit gates, t ~ 350 ps [13].
As the final step, a projective measurement of the two electron spin in singlet-triplet basis
is achieved through the Pauli spin blockade [13].

This design was originally restricted to the material systems where the electron’s spin
and orbital degrees of freedom coupled weakly enough to have negligible effects on spin
dynamics. An intrinsic spin-orbit (SO) interaction arises in atomic physics, when an or-
biting electron is subjected to a nuclear electric field which in the electron’s rest frame is
Lorentz transformed into an effective magnetic field acting on its spin. The form of SO
Hamiltonian as a first order relativistic correction to a single electron Schrodinger equation



1s:

HSO = p X VV) (11)

4m2c20-'<
where m is the electron mass, ¢ is the speed of light, o are the Pauli spin matrices, p
is the momentum vector, and VV is the gradient of the electrostatic potential. The SO
coupling in crystalline structures arises from the interaction of conduction electrons with
the lattice potential. There are two contributions to the SO Hamiltonian in crystalline
low-dimensional systems. A Dresselhaus component [14] arises from the bulk inversion
asymmetry (BIA) of underlying Wurtzite [15] crystal structure that is exhibited in the
nanowires of interest to us. An additional Rashba component [16] results from the structure
inversion asymmetry (SIA) of the confining potential.

While the actual value of spin-orbit coupling parameter in a localized quantum dot is
subject to the details of local electric fields, an order of magnitude estimate is provided
by direct experimental observations [17, 18]. The presence of SO interaction was detected
experimentally by measuring the size of an avoided crossing in double quantum dot at
the transition from singlet to triplet ground state in a varying magnetic field. This anti-
crossing results from the SO induced mixing of singlet and triplet spin states. The size
of the anticrossing was measured to be Ago = 0.23 meV in a quantum dot of lateral
dimension A = 23 nm in 50 nm diameter InAs nanowires [17]. An intuitive measure of SO
interaction is given by SO length Ao = 127 nm corresponding to the Agp above. The SO
length is the distance traveled through which the electron spin is rotated by an angle of .
In general, SO interaction in InAs nanowires is calculated to be two orders of magnitude
higher than in GaAs [18]. At such high values, spin orbit Hamiltonian Hgo can no longer
be treated as perturbative correction to the system Hamiltonian.

In fact, Hgp has found an application in QIP as an efficient control handle for single
spin manipulations. The time-dependent electrical control of an electron’s orbital motion
is translated into a time-dependent magnetic field which acts on the electron spin and con-
sequently induces spin precession in a process termed electrically detected spin resonance
(EDSR) [19]. In the absence of SO coupling, large amplitude microwave magnetic fields
are required for performing fast single electron rotations, which is associated with a lossy
process of photon assisted tunneling of the electron out of the dot. The EDSR replaces the
practically limiting requirement of localized strong Zeeman coupling with an AC electric
field for manipulation of single electron spins. This motivated our choice of material in the
present work. Electrically controlled coherent single spin rotations have been demonstrated
in GaAs [20] as well as in InAs [21].

On the other hand, the SO interaction disturbs the isotropic structure of effective spin
Hamiltonian for a pair of coupled spins described by the so called Heisenberg exchange
interaction [22]. The exchange interaction between the coupled spins enables entangling
dynamics necessary for generating universal quantum gates [11, 23]. The effective spin
interaction between an electron pair on restriction to the lowest spatial states of the system
is completely described by an isotropic exchange interaction H., = Jo.09, where J is the



strength of exchange coupling, and o;,7 = 1,2 is the spin operator for each electron. The
strength of the exchange interaction J varies with the height of the interdot tunneling
barrier. Under the assumption that the barrier gating action is adiabatic, the unitary
resulting fromevolving under the exchange interaction is U = e~tJo /@)-d'or02 where ¢ is
the time during which the spin interactions are turned on via tunneling. A straightforward
construction of a SWAP?! operation results from U when the exchange is pulsed in a
manner such that fg J(t').dt' = w. A desirable two-qubit gate, the controlled-NOT? gate, is
then designed by combining two v/ SW AP operations ( fot J(t').dt' = w/2) with single spin
rotations in a well-defined sequence. The coherent control of coupled spins was performed
in asymmetric double quantum dots created in GaAs/AlGaAs heterostructures by Petta
et al. [13]. Rabi oscillations were measured between Sy — T} spin states evolving under the
exchange interaction in the presence of a detuning € oc V;, — Vi between the two quantum
dots, where tunnel barriers V r connect each dot to the adjacent reservoirs, allowing
electrons to be transferred into the dots. A schematic of their experiment is shown in
figure 1.1. The ability to perform single qubit rotations along with the controlled-NOT gate
guarantees the implementation of an arbitrary unitary operation on the two-qubit (two-
spin) Hilbert space. In other words, these gates form a universal gate set for quantum
computation [10]. However, in the presence of SO coupling, a non-zero matrix element
A = (So|Hgo|Ty) arises leading to mixing between singlets and triplets. Additional spin
structure arises in the effective spin Hamiltonian leading to the following general form:
an isotropic exchange term proportional to J’ (here J’ in the general case is distinguished
from the isotropic exchange strength J in the absence of SO coupling), a Dzyaloshinskii-
Moriya term proportional to 8 which is first order in SO coupling, and a second order
pseudo-diploar term proportional to unitless scalar v [24, 25]:

Hepin = J'(01.02+ B.(01 X 03) + 7(B.01)(B.02)). (1.2)

The exchange coefficients J'; B and 7 depend on the double well potential profile and
the external magnetic field. This SO induced anisotropic exchange interaction in coupled
double quantum dots was first highlighted by Kavokin [24] as a non-negligible source of
error in a semiconductor solid state based quantum information processor; the strength
of anisotropic terms relative to the isotropic exchange interaction was estimated to be
d ~ 1071 — 1072, This corresponds to an error rate p. ~ §? larger than the current thresh-
olds for fault tolerant computing, p.(th) ~ 1075 [26]. The SO coupling strength is two
orders of magnitude higher in InAs. Newer studies considered SO induced terms in the
effective spin Hamiltonian both as an error source to be mitigated [27, 28] and a useful tool
for designing more general quantum gates [29]. In both cases, precise knowledge of the
SO Hamiltonian is crucial for engineering high fidelity gates. Motivated by this, Baruffa
et al. [30] developed analytical formulations of the effective spin Hamiltonian under the

ISWAP gate interchanges the states of two spins (qubits).
2C-NOT is an entangling two qubit gate which flips the state of a ‘target’ qubit depending on the state
of a ‘control’ qubit which remains unaffected.



assumption of a weak spin-orbit coupling with reference to GaAs quantum dots. In this
thesis, we extend their analysis to include a strong spin-orbit interaction appropriate for
InAs. We present a numerical study of a realistically gated double well system treating
spin-orbit coupling on equal footing with other terms in the Hamiltonian. Further, we
identify a pseudo-spin basis for encoding quantum information that emerges as the most
suitable choice from the point of view of qubit preparation and manipulations.

In addition to the theoretical question of quantum gate design in the presence of a strong
SO coupling described above, we address an experimental issue pertaining to the role of
surface states in transport in nanowire FET devices which constitute the basic hardware
of proposed spintronic quantum device. The high surface to volume ratio in nanowires
renders the electron transport through the nanowire highly susceptible to surface physics.
In particular, InAs has surface states that pin the Fermi level above the conduction band
at the surface, unlike other I1I-V materials such as GaAs with larger band gap, in which
similar surface states pin the surface Fermi level in the gap. These surface states act
as electron donors and, therefore, lead to a surface accumulation layer [31]. In addition,
random telegraph noise signals are measured in the nanowires resulting from charge trap-
ping/detrapping due to defects in the oxide at the nanowire surface [32]. Together, the
surface states and charge traps act as Coulomb scattering centers; the density of surface
states is larger than that of charge traps and is expected to be a dominant contribution to
scattering limiting the device performance. A second focus of this thesis is to understand
and quantify the effect of donor-like surface states on electron transport which will pro-
vide a benchmark to compare with optimized nanowire devices in the future. In the next
section, we outline in further detail the specific research problems addressed in this thesis
and its organization.

1.1 Problem Description

The level of precision required for performing quantum operations in nanoscale physical
devices warrants a detailed study of microscopic physical processes affecting the device
operation. In the proposed nanowire qubit device, electron spins are localised in an ex-
ternally gated double well potential profile created in the nanowire. The shape of this
potential confines and controls the degree of interaction between the pair of spin qubits.
An accurate knowledge of the spatial charge and potential distributions inside the nanowire
is, therefore, highly desirable. We perform a study of electron mobility in InAs nanowires
across a range of temperatures and voltages in a FET device. The experimental electron
mobilities of the conduction electrons are indicative of the scattering mechanisms, which in
turn sheds light on the underlying potential profile. The information obtained about the
surface physics in the experimental study is utilized in the theoretical study of characteriz-
ing an effective spin Hamiltonian of a double quantum dot (DQD) system in the presence
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Figure 1.1: A) Bloch sphere for the Sy — Ty two level system that has |Sy) and Tp) at
the north and south poles (z axis) and the states | 1)),| |1) as the poles along the x
axis. The system is initialized in the state | 7)) marked by red arrow in i); application
of a finite exchange J(¢) at detuning € o Vi — V}, between the left and right quantum
dots for time 7 rotates the initial spin state about the z-axis of the Bloch sphere through
an angle ¢ = Jrg/h to a final state | |1) when ¢ = 7 as shown in iii). B) Plot of
the singlet probability Ps as a function of time 75 over several 7 cycles at an inter-dot
tunnel coupling Vi for four different values of negative detuning e labeled a — d, where
detuning increases from a to d. A constant offset is applied to the plotted values for
clarity. Faster Rabi oscillations were observed at smaller negative detuning. C) The time
period of the oscillations was reduced by an order of magnitude on increasing the tunnel
coupling controlled by Vr and by increasing detuning to positive values.



of spin-orbit coupling. The effective spin Hamiltonian would guide the experimental real-
ization of coupled spin gates which are the building blocks of a universal gate set. In the
next two sections, we summarize the two research problems that are the subject of this
thesis.

1.1.1 Modelling Coulomb scattering to explain experimental mobility

The first problem addressed in this thesis pertains to the material properites of InAs
nanowires. The theory of spin based quantum computation in InAs nanowires has been
well laid out for nearly a decade now, and has helped accelerate advances in experimental
solid state technology. However, new experimental challenges are born with the intro-
duction of newer semiconducting materials in uncoventional geometries. An important
mechanism which is detrimental to the operation of these devices is the presence of surface
states that have been known to act as charged donor states and the presence of dynamical
charge traps in surface oxide. We perform a numerical study of the role played by these
surface states as scattering centers affecting the transport through the nanowires. The
conductance measurements are taken for a set of device with nanometer radii from 35-70
nm over a temperature range of 20-200 K. Field effect mobility is then extracted from
the slope of these conductance curves. Finite element modelling of charge and potential
distribution under the influence of these charged surface states is performed under varying
temperature and gate conditions. Calculation of scattering rates from these charged surface
states are found to provide a very close match to the scale and temperature dependence
of experimentally observed mobilities. This study emphasizes the need for tailored surface
passivation of the future nanowire devices, in order that they are capable of realizing stable
quantum dots. Furthermore, the complete characterization of the transport in nanowire
devices provides a benchmark to compare with the improved devices in future such as
core-shell nanowires [33]. In Chapter two, we first present the conductance and field-effect
mobility measurements for nanowire FET devices of diameter (35, 50, 75) nm. In section
2.2, we discuss the finite element method (FEM) simulation of nanowire charge and poten-
tial profile obtained from a self-consistent Poisson-Schrédinger solver. In section 2.3, we
describe the calculation of scattering rates in momentum relaxation time approximation
using Fermi’s golden rule and compare the results with the experimental study in section
2.3.1. The results are summarized in section 2.4.

1.1.2  Modelling exchange Hamiltonian for designing two qubit quantum gates

Double quantum dots are considered a model system for qubits in spin based solid state
quantum computation schemes. An electrostatically gated nanowire device is an attractive
physical system within which to realize such qubits. The high spin-orbit coupling in InAs
provide an efficient route to performing single qubit operations through EDSR while fast
control of the exchange interaction allows coherent manipulation of coupled spin qubits.
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We identify a theoretical challenge in that the high SO coupling disturbs the conventional
design of two qubit coupled gates such as SWAP, controlled-NOT gate which are the build-
ing blocks for a universal gate set. To overcome this challenge, we first develop an effective
spin Hamiltonian description of the exchange interaction between electrons spins in a realis-
tic nanowire double quantum dot geometry. This is achieved by projection of the complete
Hilbert space solutions of the double dot system in the presence of spin-orbit coupling to a
4-dimensional subspace of two-electron spins. Such an effective spin Hamiltonian descrip-
tion paves way for utilizing the exchange interaction to design quantum gates, however,
the resulting gates will only be as accurate as the underlying Hamiltonian. It is, therefore,
important to also benchmark the accuracy of derived spin Hamiltonians. We achieve this
through an exact comparison of the dynamics generated by this Hamiltonian with those
obtained from the exact solution of the time dependent Schrodinger equation. Further, we
characterize the dependence of effective spin Hamiltonian on experimental control param-
eters - double well barrier height, external Zeeman coupling and spin-orbit field. The large
spin-orbit coupling in InAs also poses a challenge for the preparation of pure spin states to
be used as qubits due to the presence of non-trivial spin space correlations in the system.
This problem is mitigated by choosing the basis of spin-orbit eigenstates in the limit of weak
interdot coupling as the basis for representing logical qubits. Towards this end, a revised
procedure for calculating effective spin Hamiltonian is outlined and constitutes ongoing
work. The problems described above are considered in detail in Chapter three. A finite
element model for a gated InAs nanowire double dot is described in Sec 3.1. In Sec 3.2,
we describe in detail the numerical methods for obtaining the double well potential profile
and calculating the time evolution of the system. We then discuss several approaches for
deriving Hy,;, from the numerical results. In Sec 3.3, we analyze the accuracy of Hyyp
in describing the dynamics, and present results on the parametric dependence of Hgy;;, on
the barrier gate voltage, the external magnetic field, and the spin-orbit field. In Sec 3.4,
we examine the appropriate pseudo-spin basis for encoding quantum information in the
system. Finally, we summarize and discuss the results in Sec 3.5.

A summary of the main results of the thesis and directions for future work are presented
in Chapter four. The details of the numerical solvers employed in this work are available
in Appendix B.



Chapter 2

Surface Scattering and Transport

Electron transport in nanowires is marked by a pronounced interaction of carrier elec-
trons with the surface. In addition to surface roughness, the presence of charged defects,
impurities at surface, amplifies the role of electron-surface interaction in transport. Al-
though it is widely believed that surface layer plays a dominant role in nanowire transport
[49, 50, 51, 52], a detailed study of the dominant scattering mechanism has been missing.
In this chapter, we develop finite element method (FEM) based numerical procedures for
modelling charge and potential distribution in a globally back-gated gated InAs nanowire
FET device. The numerical model is employed to explain a characteristic temperature-
dependent mobility behavior seen in multiple FET devices fabricated from InAs nanowires
of different diameters. Electron mobilities are seen to rise with temperature peaking at
3,000 — 20,000cm?V~ts71 at T =~ 40 K followed by a nearly monotonic decrease with
temperature up to 7' = 200 K. These mobilities are too low to be limited by optical or
acoustic phonon scattering, which yield estimated bulk mobilities 2-3 orders of magnitude
larger than those observed here [48]. This is expected to remain true even in quasi-one-
dimensional systems, where phonon scattering is moderately enhanced due to a larger
available phase space for scattering [54]. Surface states are known to be present in InAs
nanowires at densities ~ 10" — 102 em~2eV ™! and to act as donors. These positive donor
like states result from the pinning of Fermi level above the conduction band at nanowire
surface, and are the source of majority carriers in the nanowire. We argue that a sufficient
density of these positively charged surface states should be more effective at scattering
electrons than surface roughness, and therefore limit the mobility. Chemical treatment of
the nanowire surface is seen to have a strong effect on the temperature-dependent mobility
consistent with the hypothesis of surface dominating the transport.

The collisions of electron with Coulomb impurities are treated in a modified Born
approximation in the calculation of scattering rates. A scattering potential resulting from
a random distribution of impurities along the nanowire surface is simulated using the
numerical model. We assume a temperature dependent ionization of donor states in the
model. This is related to the experimental observations of shifts in threshold voltage of



the conductance vs gate voltage curves with temperature across a range of 20-200 K. We
find that the decrease in mobility with temperature above ~ 50 K can only arise from an
increase in the number of ionized surface states. A minor contribution to the decrease of
mobility with temperature comes from populating higher radial subbands with increasing
temperature which pushes the electron density closer to the surface, but it is not alone
found to be sufficient to cause a negative slope in the mobility versus temperature.

Theoretical model developed here provides good agreement with the experiments and
also plays an essential role in understanding the quantum size effect and surface scattering
in these nanowire devices. The results underscore the need for tailored surface passiva-
tion techniques to reduce the density of surface scatterers and smooth the local electronic
potential, leading to increased carrier mobility and cleaner devices for a wide range of quan-
tum transport and optoelectronics applications. Further, the results obtained for pure InAs
nanowires serve as a benchmark to compare with the future studies of passivated nanowires.

Monocrystalline InAs nanowires were grown in a catalytically driven epitaxial process
by Christopher Haapamaki and Ray LaPierre at McMaster University. Details of the
growth process are included as they are relevant for the study of scattering in nanowires.
Fabrication of nanowire FET devices and experimental measurements of conductance pre-
sented in section 2.1 were performed by Yipu Song and Greg Holloway. In Sec. 2.2 we
provide details on the numerical finite element method (FEM) model used to simulate
charge and potential distribution in the nanowire. In Sec. 2.3 we discuss the framework
for calculating remote impurity scattering from charged surface states. The summary and
conclusions are presented in Sec. 2.4.

2.1 Experimental measurements of mobility in field-effect transis-
tors

InAs nanowires were grown in a gas source molecular beam epitaxy (GS-MBE) system
using Au seed particles. A 1 nm Au film is heated to form nanoparticles on a GaAs (111)B
substrate. For nanowire growth, In atoms were supplied as monomers from an effusion
cell, and Asy dimers were supplied from an AsHj gas cracker. The nanowires grew in
random orientations with respect to the GaAs (111)B substrate, possibly due to the large
lattice mismatch strain between InAs and GaAs. Transmission electron microscopy (TEM)
analysis, shown in figure 3.1a, indicated a Au nanoparticle at the end of each nanowire
(darker contrast at the left end), consistent with the VLS process. Most nanowires had
a rod-shaped morphology with negligible tapering and a diameter (~ 20 — 80 nm) that
was roughly equal to the Au nanoparticle diameter at the top of each nanowire, indicating
minimal sidewall deposition.

A common occurrence in III-V nanowires is the existence of stacking faults whereby the
crystal structure alternates between zincblende and wurtzite, or exhibits twinning, along
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Figure 2.1: (a) Low and (b) high magnification bright-field TEM images of an InAs
nanowire grown by GS-MBE at 0.5 um/hr. Scale bars are 500 nm in (a) and 5nm in
(b). The inset in (b) shows selected area diffraction pattern along the [2110] zone axis in-
dicating pure wurtzite crystal structure. A majority of wires grown under these conditions
had low stacking fault densities < 1 pym™?.

the nanowire length. It has been shown that growth parameters in metalorganic chemical
vapour deposition (MOCVD) have profound effects on the InAs nanowire crystal phase
[36, 37]. Zincblende, wurtzite, or mixed zincblende/wurtzite nanowires were formed by
simply tuning the temperature and V/III flux ratio. It was found that for GS-MBE grown
InAs nanowires, stacking faults can be nearly eliminated and pure wurtzite structures
can be realized at sufficiently low growth rate ~ 0.5um/hr. At higher growth rates, but
otherwise identical growth conditions, the InAs nanowires exhibited a much larger fraction
of stacking faults on average. For example, TEM analysis of InAs nanowires grown at a
rate of 1um hr~! exhibited an average linear density of stacking faults ~ 1 um~!'. The
density of faults was found to diminish dramatically when the growth rate was reduced.
Selected area electron diffraction for a typical nanowire (inset of figure 3.1b) confirms the
pure wurtzite crystal structure and the absence of stacking faults.

Field-effect transistors (FETs) were fabricated by mechanically depositing as-grown
nanowires on a 175 nm thick SiO, layer above a n™"-Si substrate that functions as a back-
gate, and writing source/drain contacts for selected wires using electron-beam lithography.
This was followed by an etching / chemical passivation process to remove the native oxide
and prevent regrowth [41] prior to evaporation of Ni/Au contacts. Channel lengths ranged
from 0.7 - 3 pm. Transport measurements were carried out in He vapour in an Oxford
continuous flow cryostat operating from 4 K to room temperature. Bias and gate voltages
were applied using a high resolution home-built voltage source, and a DL Instruments
current preamplifier was used to measure DC current at a noise floor ~ 0.5 pA/ VHz .
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Figure 2.2: (a-c) Conductance pinchoff curves for devices 1 — 3 at selected temperatures.
D is the nanowire diameter and L the FET channel length (device 1 is tapered with an
average nanowire diameter (D) = 71 nm). The tangent lines drawn on the 7" = 122 K
and T'= 60 K traces in (a) indicate the maximum slopes corresponding to peak field-effect
mobility. The pinchoff threshold voltage is defined as the intercept between this tangent
line and the G = 0 axis. (d-f) The pinchoff threshold voltages versus temperature extracted
from the conductance measurements. In (d), data are shown for device 1 before and after
an ammonium polysulfide etching / passivation process is applied to the FET channel (the
data in (a) correspond to the as-fabricated case). The empirical fits in (d-f) are of the form
V, = Vo + Vie Ee/FT a5 described in the text.

All devices tested at room temperature displayed fully Ohmic I-V characteristics, with
resistances typically in the range of 5 — 100 k(2.

Many such devices were investigated to varying levels of detail, and gave qualitatively
similar results. Here we will focus on three representative devices, denoted 1, 2 and 3 with
nanowire diameters D=71, 50 and 35 nm, respectively. Devices 2 and 3 had untapered
nanowires, whereas the device 1 nanowire was tapered with diameter linearly varying from
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53 nm to 90 nm ((D)=T71nm) across the FET channel. Device 2 is used as the basis for all
model simulations described below. The data from device 1 (tapered nanowire) is included
because it was the highest mobility device of this set, the temperature dependence of its
mobility followed a similar trend to the untapered devices, and it was one of three devices
for which post-measurement TEM analysis was performed.

Figure 2.2(a-c) shows conductance G = I /Vy4, where [ is current and V, is source/drain

bias, versus backgate voltage for devices 1-3 at selected temperatures, at a bias Vg = 1

mV. For all three devices, the maximum transconductance (%) is seen to decrease as
9/ max

temperature is raised above ~ 30K. Figure 2.2(d-f) show the pinchoff threshold voltages V;
corresponding to the data in figure 2.2(a~c), where V; is defined as the intercept between the
tangent line of maximum slope and the G = 0 axis. V; typically shifts toward more positive
gate voltages as temperature is decreased, and saturates below ~ 50 K. Note that all
temperature sweeps reported here were from low to high temperature. We fit the pinchoff
threshold data to an empirical function based on thermal activation V; = Vj + Vie Ea/ KT
where k is Boltzmann’s constant, typically yielding an E, ~ 15 — 30 meV. The fits to
some devices, however, showed smaller F, such as for device 3 in figure 2.2f, with an
E, = 5 meV. Note that for device 1 in figure 2.2d we also plot the V; measured after
an ammonium polysulfide etching/passivation process was applied to the FET channel
(labeled ‘post-passivation’). Interestingly, V; shifted considerably to more positive gate
voltage post-passivation, and also showed much weaker temperature dependence. This
suggests that the as-grown nanowires in this study may have a relatively large density
of surface states acting as electron donors, and that this density is reduced by sulfur
passivation, as has been previously noted [46]. Indeed, for some as-grown nanowire FET
devices in the diameter range 50 — 70 nm we were not able to see significant gating effect at
room temperature, and in some cases, even at low temperature. We have also observed, for
some nanowires, significant shifts in V; after annealing in vacuum at 80°C, which indicates
that gas adsorbates in ambient conditions can strongly affect the nanowire surface potential
[39].

From the measured conductance versus backgate voltage curves, both the field-effect
mobility and the effective mobility [42] may be extracted. The field-effect mobility is a
lower bound on the effective mobility, and is defined as

_do L dG

Pre =0 —— = = =

dn  C} dvy,’

where o is conductivity, n is the electron concentration, ¢ is electron charge, C’; is the

gate capacitance per unit length (see Methods). Equation 2.1 only strictly holds at peak

mobility, where dre — (). The effective mobility is defined as

dn
B LG
I G, =V
where V; is the pinchoff threshold voltage defined previously, and the condition Vi3 <<
Vy — Vi must be satisfied. The field-effect and effective mobilities for the same conductance

(2.1)

(2.2)
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Figure 2.3: (left) Comparison of the field-effect and effective mobilities for device 2 at
T = 40 K. (right) The temperature dependence of effective mobility for device 2 at different
values of gate voltage relative to V), the gate voltage at which peak mobility occurs. The
values at V), are shown by black dots, at V}, +0.25 V by red dots, etc. The mobility at
Vp + 0.5 V is typically just at the crossover point between the two slopes than can be seen
in the effective mobility in the left panel.

data at T'= 40 K (device 2) are compared in figure 2.3. The effective mobility is typically
a smoother function of Vj than fis., and pers > pise for all of our data. Two regimes can
be clearly seen in fi.r;: ‘%’ is larger from V, = —0.25V to V, = +0.25V than it is at
more positive gate voltages. In figure 2.3 we show the effective mobility versus temperature
for this device for different values of gate voltage relative to the position (Vjeq) of peak
effective mobility. The data shown are for the gate voltage at Veq, 40, where the top curve
(black dots) is for 6 = 0, and the lower curves (red, green, blue) are for § = 0.25,0.5,1.0
V, respectively. The temperature dependence is most pronounced at peak mobility, but
follows a similar trend for points on the high slope region of the effective mobility curve.
For mobilities at large positive gate voltages relative to Vpeq, the temperature dependence
becomes negligible.

A qualitatively similar temperature dependence is observed for the other two devices as
shown in figure 2.4. At a given temperature, the mobility increases with nanowire diameter,
as was reported previously [42]. This is consistent with the mobility being dominated by
surface charge scattering, as the overlap of the carrier distribution with the scattering
potential becomes much stronger at smaller diameters [55]. Motivated by this hypothesis,
the mobility vs temperature data for the three devices was fit to empirical function of the
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Figure 2.4: Experimental peak effective mobilities versus temperature for devices 1-3 plot-
ted on a log scale. The mobilities show an increase with nanowire diameter. The highest
mobility seen is prr = 20,964 cm?V ~'s™! in D=71 nm device at T=51 K.

form pu(7T) o T*N(T)~¥, where N(T) is the number of surface scatterers, approximated
as N(T) o< (1 + Be F«/¥T') and found to yield a good agreement with y = 2 and x ~ 1.
This function is based on the the following reasoning. For a fixed number of scatterers,
the average mobility increases with temperature as 7%, where x ~ 1, since the carrier
concentration increases with temperature leading to an increase in the Fermi velocity,
which reduces the scattering probability [55, 47]. On the other hand, an increase in the
number of scatterers decreases mobility. In the limit of a low density of scatterers and a
high probability of scattering per defect, scattering events can be treated as uncorrelated,
and p o« N~ However, for scattering from surface states, there is a high density of
scatterers with a low probability of scattering per defect, leading to correlated scattering
[56] (see details in results section). Here, the electron wavefunction remains coherent while
interacting with multiple surface charges simultaneously, which leads roughly to p oc N2,
since the scattering matrix element is roughly proportional to N, so the transition rate is
proportional to N2. The intuition developed here is used in the first-principles calculation
of scattering rates presented in the results section.

2.2 Numerical modeling of field-effect transistors

The nanowire transistor was simulated using a finite-element method implemented in the
COMSOL® multiphysics package. The model consisted of a L = 1um long, D = 50 nm
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diameter nanowire atop a 175 nm thick SiO, layer above a conducting layer serving as a
backgate. Due to the low effective mass of electrons in InAs, it is essential to use a self-
consistent Poisson-Schrédinger solver [57] so that quantum confinement is properly taken
into account. The intrinsic carrier concentration of electrons and holes in InAs is much
lower than the observed density of ionized surface donor states [31] in the temperature range
of interest and is neglected. The model assumes that the conduction electron concentration
at zero gate voltage is due to a surface density of positively charged donor states, o, ~
10'* — 102 em~2, which is an input parameter that is allowed to vary with temperature.

The Schrodinger equation is solved over a nanowire cross-section assumed to be lying
in the xy plane. The transverse confinement results from potential barriers at surface of
height equal to the electron affinity in InAs, E, = 4.9 eV. The charge distribution n(x,y)
is calculated from the solution of 2-D Schrodinger equation as below

n(w9) = Y it )P / " H(E - E)g(E - E)dE (2.3)

where, g(E — E;) = — ./ (bng is the 1-D density of states per unit length, f(E — E;) is

the Fermi-Dirac dlstrlbutlon, E; and 9;(z,y) are the energy and wavefunction of the i"
eigenstate, respectively. The above summation reduces to

1 Er — FE;
y) = Vv 2m*kBTZ iz, y) > X F_y1p (F—) (2.4)

kgT

where, Ep is the quasi-Fermi level and F} is the Fermi-Dirac integral of order j and
m* = 0.023m,. The 3-D electron density nsp is related linearly to n(x,y) as nsp(z,y,2) =
4n(x,y)/mD?, where D is the nanowire radius. The Fermi energy Fr is determined by
the net conduction electron concentration at a given gate voltage. The output charge den-
sity from the Schrodinger solver is used to calculate the next iteration of spatial potential
profile using a Poisson solver. The total space charge p(z,y, z) that goes in the Poisson
equation is composed of positive and negative charge due to impurities as well as electrons
and holes, given by

p(f,y72> = eU(NlJ)r - NX - Tl(ﬂ?,y, Z) —i—p(&:,y,Z))

where e is the single electron charge, N} is the density of ionized donors, N is the
density of ionized acceptors, n and p are the electron and hole density distributions respec-
tively. For the circular nanowire with diameter D and longitudinal axis along z axis,

p(x,y,2) = eo(o ’\/x2+y

The first term corresponds to the positive ionized donor density localized at the surface
of the nanowire, nsp is the electron concentration obtained from the Schrédinger solver,

D/2 _n3D(x Y,z )+p($ Y,z ))
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the hole carrier density p is negligible for the values of donor density o, considered here.

The output of Poisson solver is fed to the Schrédinger solver to obtain the next iteration
of electron charge density. The two solvers are run in sequence until the relative error in
consecutive solutions of potential distribution is smaller than .1%.

Figure 2.5 shows the plot of potential at T=60 K for InAs nanowire (D = 50 nm,
L = 1pm) placed on SiO, dielectric layer of thickness t,, = 180 nm at a back-gate voltage
of 0 V and a surface donor density of 1 x 10" em~2. The color scale shows the potential
distribution in the nanowire as well as the substrate. The inset on the right is a plot
of potential profile in a cross-sectional plane of the nanowire in the middle of the FET
channel, indicating the radial distribution of potential with the inset color scale. Figure
2.6 shows the calculation of first few transverse sub-bands appearing in the nanowire. The
energy gap between the s-like ground state and the first excited state, AE ~ 20 meV is
quite large due to the small effective mass of electron in InAs. Electron charge distribution
is calculated from the sub-bands using Fermi-Dirac integral in equation 2.4. Compared to
the classical solution, in the quantum calculation, the charge distribution has a tendency
to be pushed away from the surface as well as to be delocalized over the entire radial
cross-section due to the large Bohr radius of electron in InAs, agp ~ D/2. The charge
distribution further bears a dependence on back-gate voltage and temperature conditions.
At positive values of applied gate voltage the distribution is pushed towards the bottom
of the nanowire and is repelled away to the top of the nanowire on application of negative
gate voltages. On increasing the temperature, higher sub-bands start getting occupied as

the thermal energy becomes comparable to the energy splitting between the sub-bands,
kT ~ AFE.

Figure 2.7 shows comparison of the spatial distribution of carriers calculated using the
Schrodinger-Poisson solver near the peak and pinch-off regimes of the conductance curve in
the limits of a high and a low temperature. The panels on the left show the carrier density at
the gate voltage Vjeqr corresponding to peak mobility observed experimentally at 7' = 20
K and T = 200 K. At 200 K, the total carrier concentration is an order of magnitude
larger (due to a higher density of ionized surface states) and the charge distribution starts
approaching the classical result obtained using Poisson solver with Boltzman statistics for
the charge density. Note that Ve = +0.15 V at 20 K, whereas Vijeqr = —4.9 V at 200
K; this is why the maximum of the charge distribution is shifted downwards (toward the
backgate) at 20 K but is shifted upwards at 200 K. The panels on the right show the carrier
distributions at Vjeqr +0.85 V (20 K) and Vjeqr +1.9 V (200 K), i.e. when the device is in
the on state. An empirical study of charge proximity to surface was done as a function of
temperature using the experimental values of gate voltage at peak mobility but was found
to be insufficient in explaining the observed dependence of mobility.
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Figure 2.5: Plot of potential V(x,y, z) at T=60 K for InAs nanowire of size L = 1000 nm,
D = 50 nm placed on SiOy dielectric layer of thickness ¢ = 180 nm at a back-gate voltage
of V=0V and a surface donor density of o}, = 1 x 10em™2. The two bars on either
end represent the source and the drain contacts which are set to zero voltage. The inset
on the right shows the potential profile along a nanowire cross-section.

2.3 Coulomb Scattering

In this section, we use the FEM model described above to calculate Coulomb impu-
rity scattering rate from positively charged surface donor states. We chose a function
o (T) = 09 + g1e /¥ t0 model the thermal activation of surface donor states as an
input in the FEM model. The parameters are chosen such that the simulated electron den-
sity at zero gate voltage would roughly match the experimentally measured carrier density
of device 2 at peak mobility. Note that peak mobility occurred at negative gate voltages
in the real device, so the actual densities of surface donor states are likely larger than the
values used in simulation. The reason for carrying out the simulations at zero gate voltage
was to model the behavior for a radially symmetric wavefunction, unperturbed by the pres-
ence of a nonzero gate voltage, for simplicity. Figure 2.8(a) shows the values of ¢ (T') used
in the simulations, and the resulting spatial average conduction electron density (n(7)).
The parameters are op = 1.7 x 10°cm™2,0; = 9.8 x 101%cm~2 and E, = 6.7 meV for the
curve in figure 2.8(a).

Mobility calculations are performed using multi-subband momentum relaxation time
approximation [58]. Consider the three-dimensional eigenstates of the nanowire, ¢(m, k) =
Um(, y)e™* /v/L, where m is the radial subband index and k is the axial wavenumber. The
transition probability 7}y, between the states |m, k), [n, k') within the 2D sub-bands m
and n are calculated from Fermi’s golden rule:
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Figure 2.6: First three transverse sub-bands ¢ (x,y) are plotted in arbitrary units at a
back-gate voltage V = 0 V, at surface donor density o4 = 1 x 10" em=2, T' = 60 K. The
maximum contribution to the spatial charge density comes from the s-like ground state.
The contribution of higher orbitals is suppressed due to the relatively small magnitude of
thermal energy kKT at T'= 60 K compared to the energy gap AE between the ground and
excited states.

where M/} is the scattering matrix element (k,m|Vo|k',n) resulting from the Coulomb
interaction potential Vi of charged surface impurities. In our numerical simulations, V is
obtained directly from the Poisson solver, and this takes into account the linear screening
and dielectric mismatch effects [53, 59]. In the absence of these effects, Vi would be
analytically expressed as a sum over unscreened point-charge potentials. In a cylindrical
coordinate system (7,0, z) where r and z are the radial and axial coordinates,

- = 2+ (D/2)? = rDcost; + (z — z;)*)/? 2.
Vo =2 Vo= mw;(rH /2 = rDeost; + (= = %)) (2.6)

where Vi; is the potential due to a single impurity located at r; = (D/2,6, z;). With the
numerically-derived V¢ that includes screening effects, we find that the value of M} for a
single positively charged surface impurity is on the order of 1072 meV or less. Its smallness
is due to the vanishing of [1|? at the surface, the large dielectric constant for InAs, screen-
ing effects, and that the scattering potential is attractive. In this case, treating scattering
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Figure 2.7: Plot showing the dependence of spatial electron charge distribution on tem-
perature and back-gate voltage for a D = 50 nm nanowire, calculated by the Schrodinger-
Poisson solver. The left panels show the carrier density at the gate voltage corresponding
to peak mobility (V, = Vjear) at T = 20 K and 200 K. Clockwise, from top left, the sim-
ulated gate voltages are V, = 0.15,1.0, —3.0, —4.9 V, respectively. At 200 K, the carrier
density is much closer to the classical (Poisson only) result, since many quantum subbands
are thermally occupied. At 20 K, the density is shifted considerably away from the surface,
partially due to quantum confinement. The right panels shows the charge distribution at
the peak conductivity in the device ‘ON’ state.

from single impurities independently and incoherently adding their rates can only lead
to the observed mobilities if the surface impurity charge densities are unreasonably high,
N ~ 108 cm™2. At such densities, the mean separation between scatterers is too small
for the picture of uncorrelated scattering to be valid. On the other hand, for a Vi that is
the collective potential corresponding to a random distribution of many scatterers over the
length of the nanowire, we are able to obtain the observed mobilities at impurity densities
N(T) ~ ol (T) (see Figure 2.9). The scattering matrix element M™" now roughly scales
with N, rather than being independent of N in the picture of uncorrelated single-defect
scattering.

The scattering matrix element is given by
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D/2 L/2 y
M = / / / P (1, 0) Ve (1, 0)e " * =K% 20 dr (2.7)

L)2

where Vi is the total potential corresponding to a set of impurities. The integral in equation
2.7 has no straightforward analytical solution, so is generally solved numerically [55]. The
geometry for simulating correlated scattering is indicated schematically in figure 2.9(a),
and the Poisson solution Vi obtained for a random impurity distribution is shown in figure
2.9(b). The relaxation rate in subband m due to scattering into subband n is calculated
as

/7 (k) =Y (1= cosg) Ty (2.8)

k./

where ¢ is the angle of deflection between the incoming wave vector k and the outgoing
wave vector k’. The possible values of k&’ are given by energy conservation, E,, +h?k*/2m =
E, + h*k"?/2m = Ep. In 1-D geometry, only back-scattering events contribute to electron
relaxation rates. When the electron concentration permits the occupation of multiple sub-
bands, the relaxation rate in the m' sub-band, 7, is obtained as 1/7,,(k) = > 1/7™"(k)
where k is the initial momentum. At low temperatures or carrier densities, it is valid
to only consider the relaxation time for an electron with Fermi wavenumber kr. Making
this approximation, we substitute the Fermi wavenumber in each subband k. The average
relaxation time is given by 7(Er) = >, i/ > ;ni, where n; is the population of ith
subband leading to an average electron mobility u = er/m*. Figure 2.8(b) shows the Fermi
wavenumbers of the first few radial subbands calculated from the Schrédinger-Poisson
solutions for input donor densities o,(T). The first excited subband appears near 40 K,
producing a dip in the average wavenumber (kr). The sharp drop in Fermi velocity as
temperature is lowered below 40 K strongly increases the ionized impurity scattering rate,
which causes a drop in mobility.

2.3.1 Results

We performed the scattering calculations in two ways: (i) calculating integrals M}y for
the electron wavefunction and scattering potential over the entire length of the L = 1um
nanowire, and (ii) restricting the problem to a subsection of the nanowire of length | < L.
Method (ii) is motivated by the fact that the experimentally observed mobilities suggest a
mean free path [,y ~ 100 — 200 nm, so that on average, we expect an electron traversing
the nanowire to experience several uncorrelated scattering events. In the latter picture, the
scattering rate 77" is calculated from the T}7} for the electron wavefunction restricted to a
length [ comparable to the mean free path, and the scattering rate for the entire length of
nanowire is L/l times this rate. On the other hand, the probability for the electron to be
in any one subsection is [/L, so these factors cancel. The only difference between the two
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cases is that the 1D density of states gl, which appears in the evaluation of equation 2.8, is
proportional to the subsection length. Hence, for an electron treated quantum mechanically
on a length scale [ (but classically on larger length scales), the density of states to scatter
into is lower than if the wavefunction were spread across length L, increasing the calculated
mobility. Therefore a factor L/l larger density of scatterers is required in calculation (ii)
relative to (i) in order to produce the same calculated mobility.

The results of these calculations are shown in figure 2.9: (d) shows the density of scat-
terers N obtained by calculations (i) and (ii) that reproduce the experimental mobilities. In
calculation (ii), a variable subsection length [ was chosen such that N(T) ~ of,(T); these
values are plotted on the right axis. The calculated mobilities from (ii) are shown in figure
2.9(c) in comparison with the experimental values. A three-fold increase of N over the
range 40-150 K is able to explain the observed decrease in mobility with temperature for
both calculation methods. Furthermore, the density of scatterers is nearly a perfect match
to the assumed ionized surface donor density for method (ii). It is reasonable to expect
that the increase of N with temperature results from the thermally activated ionization of
surface donor states. Confinement also plays a role in this temperature dependence, since
higher radial subbands contribute to a larger electron concentration near the surface, with
a corresponding increased scattering rate. However, for a fixed N, this confinement effect
is too small to cause a negative slope of the mobility-versus-temperature. We find that
interband scattering plays a very limited role, giving at most a correction of order 10% to
the scattering rates. As expected, the positive slope of mobility below 40 K follows the
behavior of the average Fermi velocity (figure 2.8(b)) over the same temperature range,
where only the lowest radial subband is occupied. Overall, the simulation results confirm
that scattering from charged surface states at expected densities can explain the magnitude
and temperature dependence of the experimental mobilities.

2.4 Conclusions

In conclusion, we have shown evidence to support the hypothesis that ionized impurity
scattering by charged surface states dominates the electron mobility in InAs nanowires
across a wide range of temperatures. Transport measurements show a ubiquitous turnover
in the temperature-dependent mobility at low temperatures. The decrease in mobility with
temperature observed above ~ 50 K can be explained by a thermally activated increase in
the number of scatterers. These results for pure InAs nanowires provide a benchmark to
compare with the transport behavior of nanowires passivated by chemical means or by an
epitaxial shell. Relevant to the discussion of scattering presented here is the experimentally
observed correlation of stacking faults and reduced electron mobility included in Appendix
A.1. Tt is possible that the longer zincblende sections of the nanowire may contain bound
states that trap electrons [60], leading to Coulomb scattering. Gap states that trap charges
locally can arise at dislocations [61], however, there are no mechanisms within the VLS
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Figure 2.8: (a) The values of surface donor density, of,(T'), used as inputs for the numer-
ical simulation of a 50 nm diameter nanowire are shown on the right vertical axis. The
functional form, described in the text, models a simple thermal activation of donors. The
resulting average conduction electron densities, (n(7")), are shown on the left axis. The
ot (T) values were chosen to produce (n(T")) at V;, = 0 similar in magnitude to the values
observed experimentally for device 2 at peak mobility. (b) Fermi wavenumbers &y, ..., kg of
the first six radial subbands calculated from the Schrodinger-Poisson solutions for inputs
o (T). (k) is the average value over thermal occupation, and is proportional to the average

electron velocity.

growth method through which dislocations could form for the bare (111) oriented InAs
nanowires studied here.

The modelling framework developed here is extensible to the study of magneto-conductance
in nanowires to further characterize their electrical and spin transport properties. In fu-
ture work, it is suggested to perform calculations of mobility using a Landauer model of
transport as transmission through localized impurity potential barriers which removes the
perturbative approximation inherent in the use of Fermi’s golden rule. A more challenging
task will be to model the dynamical behavior of negatively charged trap centers found in
the nanowire oxide and to study its impact on transport. The effect of negatively charged
static impurities at the nanowire surface has recently been studied theoretically [62] and
found to have a drastic effect on channel mobility. This is due to a strong reflection prob-
ability of an electron from a negative barrier. Such negatively charged surface states can
arise in InAs nanowires in the form of charge traps present in the surface oxide. However,
we do not see an evidence of charge traps limiting the mobility in our devices. The pin-
choff threshold voltage shifts to more positive values as temperature is reduced, but more
positive gate voltages should lead to higher occupation of negative traps. Furthermore,
if oxide charge traps limited mobility, then we would expect much higher mobilities in
core-shell nanowires where the oxide surface is 10-20 nm away from the core. Somewhat
higher mobilities were observed in those nanowires [33], but only by a factor ~1.4.
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Figure 2.9: (a) Geometry used for calculating scattering from a random distribution of
surface charges for a nanowire of total length L = 1 ym and diameter D =50 nm. The
total scattering rate is obtained by calculating the scattering matrix elements over the
entire nanowire in method (i), or by calculating the matrix elements over a subsection of
length | and incoherently adding the rates from all L = [ sections in method (ii). (b)
Poisson potential Vi corresponding to the surface charge distribution in (a), projected
onto a plane along the axis of the nanowire. (¢) Comparison of the experimental mobilities
(device 2) and the mobilities calculated using method (i) (the results using method (ii) are
nearly identical). (d) The densities of surface charges N(T) that produce the calculated
mobilities in (c) for both methods. The subsection lengths [ used in method (ii), loosely
identified with mean free path, are shown on the right axis.
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Chapter 3

Spin-Orbit Coupling and Anisotropic Exchange

A double quantum dot realized in an InAs nanowire forms a testbed system for QIP in
which both single-qubit and entangling two-qubit gates can be realized, the former using
SO mediated EDSR, the latter using modulation of the exchange coupling. These two
mechanisms, both controlled electrically by the same local gates used to form the double
dot, form a universal set of quantum gates. In the absence of the SO coupling, the inter-
action between a pair of electrons localized in separate quantum wells assumes a simple
Heisenberg form, H., = —Jo.05, where J is the controllable strength of exchange cou-
pling, o, is the vector of Pauli matrices for the #*" spin. The form of this interaction is
guided by the fact that the electronic spin and spatial degrees of freedom decouple and the
requirement that the two electron wavefunction is anti-symmetric with respect to particle
exchange. A strong SO coupling is needed to achieve fast single-qubit rotations through
EDSR. Hence, the effect of SO interaction on the exchange coupling cannot be neglected
when designing quantum gates. The SO interaction leads to additional anisotropic terms
in the exchange Hamiltonian. It is useful in designing experiments to characterize these
terms and their dependence on applied fields and gate voltages in simulations that use
realistic device geometries and parameters.

In this chapter we develop numerical methods for extracting the 4 x 4 effective spin ex-
change Hamiltonian Hy,;, for a realistic nanowire double quantum dot geometry in the
presence of spin-orbit coupling. The double dot is modelled by a nanowire sitting atop five
narrow electrical gates in a dielectric (SiN) layer above a SiOy/n™*Si substrate (the doped
Si substrate can be used as a global gate). We choose parameters suitable for modelling
InAs nanowires. A three-dimensional electric potential inside the nanowire is obtained by
an iterative Poisson-Schrodinger solver, and then projected to a one-dimensional poten-
tial along the nanowire axis for modelling exchange. The numerically exact dynamics of
the full (spin and orbital) model is simulated by solving the time-dependent Schrédinger
equation as a reference to compare with the dynamics calculated from the effective spin
Hamiltonian. The effective spin Hamiltonian is numerically derived from the solution
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of time-independent Schrédinger equation, using several methods: effective interaction
method, first-order Schrieffer-Wolff method, parametric fitting of eigenvalues, truncation
to the ground subspace, and a generalized numerical Heitler-London method. The first
order Schrieffer-Wolff method and the truncation method were previously employed in [30]
to calculate effective spin Hamiltonian for GaAs quantum dots. We find that the Hy,;, cal-
culated using the effective interaction method produces dynamics in very good agreement
with the numerically exact results in the complete Hilbert space, even in the presence of a
SO coupling sufficiently strong to cause energy shifts AFgo ~ 100ueV.

The spin-orbit coupling is a relativistic effect incorporated as a correction in the Schrodinger
equation by a Hamiltonian

HSO = P X VV), (31)

4m2020'(
where VV is the spatial electric field experienced by an electron moving with momentum
p. The presence of large Dirac gap, 2mc? ~ 1MeV in the denominator suppresses this
interaction for a free electron in vacuum. The magnitude of the interaction is, however,
enhanced in a confined semiconductor structure due to 1) fast electron motion in strong
nuclear electric fields, 2) lower symmetry of microstructures than that of vacuum [63].
The lack of spatial inversion symmetry in the crystal described as e+(k) # er(—k), when
combined with the condition of time-reversal symmetry e(k) = ¢, (—k) gives rise to spin
split subbands, €;(k) # € (k) even in the absence of magnetic field [64]. Here, ;) (k) is
the energy of spin-up(down) subband at momentum k. We consider InAs nanowires that
exhibit a wurtzite [65] crystal structure as seen in the study of electron transport in Chapter
two. The form of spin-orbit coupling in such nanowires is dictated by the symmetries of
the wurtzite crystal (bulk inversion asymmetry) and the nanowire confinement (structure
inversion asymmetry). The former contribution stems directly from the bulk conduction
band spin-splitting in materials that lack inversion symmetry of the crystal lattice called
the Dresselhaus [14] component while the second contribution arising from the asymmetry
of confining potential is called the Rashba component [16]. We consider the 1-D limit where
the strongest confinement is provided by the nanowire walls. If cubic-in-momentum terms
are neglected , the general form for the SO interaction for the case of axial confinement is
[64]

Hso = (p.c)(n.o), (3:2)

where p is the (kinetic) momentum vector, ¢ is a unit vector along the [0001] crys-
tallographic direction, 1 gives the direction and magnitude of the spin-orbit field, and
o = (04,0,,0,) is the vector of Pauli matrices. The effects of structure inversion asymme-
tries (SIA) and bulk inversion asymmetries (BIA) are included in Eq. (3.2), resulting in an
arbitrary linear combination of Rashba [16] and linear-Dresselhaus [14] type interactions.
The [0001] crystallographic direction of wurtzite InAs aligns with the nanowire growth
axis, which we label as the @ direction, simplifying Eq. (3.2) to

Hso = (pz)(n.0). (3.3)
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We choose Eq. (3.3) as the general form describing the SO interaction in InAs nanowires.

In the presence of SO interaction, the eigensolutions to the total Hamiltonian describing two
interacting electrons are not generally spin-separable, i.e. spin is no longer a good quantum
number. When the SO interaction is sufficiently weak, its effects can be gauged away [25,
30] and the double dot spin dynamics can be determined with high precision by an effective
4 x 4 spin Hamiltonian. The following general form is obtained for effective interaction
between spins, deduced independently in [24] and in [27] from the axial symmetry of the
interaction about the spin-orbit field: an isotropic exchange term proportional to J' (here
J' in the general case is distinguished from the isotropic exchange strength J in the absence
of SO coupling), a Dzyaloshinskii-Moriya term proportional to 8 which is first order in SO
coupling, and a second order pseudo-diploar term proportional to unitless scalar ~:

Hepin = J'(01.02+ B.(01 X 03) + 7(B.01)(B.02)). (3.4)

The exchange coefficients .J’, 3 and v depend on the double well potential profile, the
spin-orbit fields and the external magnetic field.

Anisotropic exchange in SO coupled double quantum dots has been previously studied both
as a useful tool for designing quantum gates [29] and as an error source to be mitigated
[30, 69, 25]. The theory of effective spin Hamiltonian in the presence of a perturbatively
weak spin-orbit coupling has been developed for a decade now but there hasn’t yet been
an experimental realization of two qubit gate utilizing this interaction. In this chapter we
try to bridge this gap between theory and experiment. We perform an operational charac-
terization of the spin Hamiltonian in terms of experimentally accessible control paramters
that will guide the design of gates using this interaction. A numerical study is appropriate
for InAs based quantum dots due to the relatively strong SO interaction which renders the
accuracy of an analytical perturbative approach to be questionable.

Our method for calculating the effective spin Hamiltonian (Hy;,) consists of two main
steps. First, we iteratively solve coupled Poisson-Schrodinger equations to calculate the
double well potential, optimizing the tuning by the local electrostatic gates to model a
realistic two-electron case. We then construct the total Hamiltonian, H;,, governing the
spatial and spin components of the electrons. H,, is numerically diagonalized, obtaining
eigenstates that have support over both the spatial and spin eigenspaces. In step two, Hypp
is obtained by reducing to the 4-dimensional Hilbert space of the spins, while retaining
the influence of the orbital-spin eigenstates. This is achieved using an effective interaction
method [72, 70, 71, 73] well known in many-body problems [74, 75, 76]. Finally, the values
for the anisotropic exchange coefficients are extracted using a crystal-field approach [75].
For comparison, we report on several additional methods for estimating the reduced spin
Hamiltonian, described below. We quantify the accuracy of these methods by comparing
the outcome of the time evolution of selected spin states under Hgy;,, with the outcome of
the time evolution of the entire system under H,,; projected to the spin subspace.
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The chapter organization is as follows: in Sec 3.1 we describe the finite element model for
a gated InAs nanowire double dot. In Sec 3.2 we describe in more detail the numerical
methods for obtaining the double well potential profile and solving the Schrodinger equation
of the system. We then discuss several approaches for deriving Hg,;, from the numerical
results. In Sec 3.3, we analyze the accuracy of Hgp;, in describing the dynamics, and
present results on the parametric dependence of Hyy, on the central barrier gate voltage
and the external magnetic field. Finally, we summarize and discuss the results in Sec 3.5.

3.1 Device Model

The finite element model (Comsol Multiphysics) incorporates an InAs nanowire of diameter
50nm and length 1 pum sitting atop a set of five local gate electrodes with center-to-center
spacing of 60nm. These gates are embedded in a 20nm thick SiN dielectric layer above
200 nm-thick SiOy with a global gate electrode underneath. A schematic of the model is
shown in Fig. 3.1a. The local and global gate voltages are adjusted to produce a double well
potential at carrier densities consistent with few electron dots at a temperature 7'=1K.

We consider a uniform distribution of nanowire surface states when calculating the lon-
gitudinal potential profile inside the nanowire. We take this into account by including a
positively charged surface donor density ps,; = 1 X 10" cm™2, a value consistent with the
results of transport studies in the previous chapter. We then treat the nanowire as a quasi-
1D system at low temperatures due to strong radial confinement resulting from the low
electron effective mass m* in InAs. The transverse sub-bands due to radial confinement are
split by a gap of ~ 25 meV compared to the thermal energy kgT = 0.086 meV at T'=1 K.
Hence, we project the 3D double well potential to a 1D axial potential to simplify further
numerical analysis. The 1-D axial potential extends over a length L = 250 nm. Under
the assumption of quasi-1D geometry, the transverse wavefunctions are approximated by
ground state harmonic oscillator solutions. The electrostatic Coulomb interaction between
a pair of electrons located at coordinates (rq,rs) takes the following form [77].
e2\/m

cvre e“‘”‘”'Qerfc(\/arl —13)) (3.5)

He(ri,ma) = 4drrege

where a = m*w, /(2h), hw, is the excitation energy of the electron transverse motion
calculated to be ~ 20 meV for D=50 nm nanowire.

The 1D Hamiltonian of the two electron system Hy,; is composed of an orbital term Hy, a
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Figure 3.1: a) Geometry of the simulated nanowire device with fine local gates embedded
inside a 20 nm thick SiN layer which separates the nanowire from the SiO, dielectric layer;
exchange coupling between the dots is modulated by an externally applied voltage on
the central local gate marked V3. The voltage applied at the side and plunger gates are
Vi =Vs=—-17Vand Vo, =V, = 0.4V, respectively. b) 1-D projection of the potential,
Viwis obtained from the Poisson-Schrodinger solver at 7' = 1 K along the nanowire axis for
a range of values of V3; the system enters a single well regime as V3 approaches 0V.

Zeeman term Hz, a spin-orbit term Hgp, and the Coulomb repulsion term He:

Hyw = Ho+ He+ Hz + Hso;

Hy, = (P12/2m* + P22/2m* +V(r)+V(r)) eI,
Hy; = g'upB -0+ g"'upB - 09,
HSO - px1(nal) +p$2<n'0-2)7

(3.6)

where up is the Bohr magneton, r; is the position coordinate of the it electron, V (r;),i =
1,2 is the 1-D projection of the potential derived from Poisson-Schrodinger solver, ¢ is
the vacuum dielectric constant, and g* is the effective electron g-factor taken to be ¢g* =
8 as calculated from the Zeeman splitting of orbitals in [17]. The kinetic momentum
P = p + eA is expressed using the canonical momentum p; = —ihAV,; and the vector
potential A that satisfies B = V x A. I is the identity operator acting on the spins. The
Cartesian coordinate system used is depicted in Fig. 3.1a. The strengths of the Rashba
and Dresselhaus interaction terms in Hgp are 7, and 7, respectively (see Appendix C.4).
For most calculations, we chose the SO vector 1 to lie in the x — y plane at an angle of 45°
to the z-axis with a magnitude |7| = 15meV.nm, corresponding to equally strong Rashba
and Dresselhaus couplings [69, 3]. For completeness, we also analyze cases with different
orientations of the SO vector 7 in the x —y plane as well as different SO coupling strengths
|n|. Fig. 3.1b shows a set of one-dimensional double-well potential profiles obtained by
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projecting the solution of self-consistent 3-D Poisson-Schrodinger solver along the nanowire
axis. The local gate voltage V3 is varied from -0.75 V to 0 V corresponding to the transition
of two-electron double well system from weakly interacting regime at V3 =-0.75 V to a single
dot regime at V3 =0 V.

3.2 Methods of constructing effective spin Hamiltonian

The two-electron double dot system Hamiltionian described above is solved numerically to
obtain the spin-orbit eigenspectrum and the eigenstates, which are then used to construct
an effective spin Hamiltonian in the four dimensional subspace of two electron spins. In
the next section, we present the details of the Schrodinger solver followed by the methods
of constructing effective spin Hamiltonian.

Step I: Numerical diagonalization of H;,;

In order to diagonalize H;,, the Schrodinger equation Hiyx = €,x is specified as four
coupled linear differential equations, in the basis of two independent position variables
ri,72 € R and two spins. The system of equations is solved using the numerical finite
element method. The eigenfunctions x(r1,72) € (L2(R) ® C*)®? are represented in the
following spinor form:

¢SO(T‘1,T2)

Cb ,(7"1,7“2)
O(T]-? 2) ’

¢ )

T
T+(7“17?”2

X(r1,72) = (3.7)

<

where s € {Sy,T_, Ty, T} is the spin state of the two electrons in the singlet-triplet ba-
sis, where the subscripts & and 0 indicate the angular momentum projections +h and 0,
respectively. ¢4(r1,r2) are the spatial wavefunctions that are symmetric or antisymmetric
depending on s . The Schrodinger equation is solved over a 2D rectangular domain of size
L x L with ~ 1000 mesh elements. A Dirichlet boundary condition ¢, = 0 is enforced
along the domain boundary. A constraint corresponding to the particle exchange sym-
metry or anti-symmetry, Po,(ry,re) = £ds(r1,rs2), is applied to the spatial wavefunctions
¢s(r1,72). Here, P is the particle exchange operator and the sign depends on the spin state
s. This guarantees the antisymmetry of the total wavefunctions. Fig. 3.2 shows a plot
of the eigenfunctions of the static Hamiltonian, H,,; at V3 = —0.65V in the presence of
Zeeman interaction, B = (90 mT)Z and spin-orbit vector given by n = f(w +9) meV.nm.
The spatial wavefunction respects the particle exchange symmetry/anti-symmetry as re-
quired by the Pauli principle. This can be seen as the reflection symmetry/anti-symmetry
of the plotted wavefunction with respect to the diagonal. The vanishing amplitude of the
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Figure 3.2: Real part of the ground state wave function x;(r1,72) obtained from diago-
nalization of Hyy, at V3 = —0.65V in a magnetic field B, = 90 mT, with SO interaction

In| = 15meV.nm and ) = (& + 9)/v/2. The state shows a |T—) like character since the
Zeeman energy is larger than isotropic exchange in this case.

wavefunction at the diagonal indicates that the double dot occupancy errors are small and
the electrons are localized in separate quantum dots.

Further, the time evolution of the system in the full Hilbert space is calculated numerically
by solving the Schrodinger equation

0
Hioix(r1,72,1) = Zhax(ﬁﬁz,t); (3.8)

with time ¢ and coordinates r1, 5 as independent variables. We choose an initial state x (¢ =

|S0)=£|Tb) |So>ﬂ|To>}
V2 V2 )

0) that corresponds to a reduced-dimension spin state from the set { |S0), |T0),
The details of the solver are provided in Appendix B.

Step II: Constructing 4 x 4 spin Hamiltonian

A standard approach to construct an effective Hamiltonian that acts on a low-energy
subspace of the full Hilbert space $ of a Hamiltonian H,, is to apply a Schrieffer-Wolff
transformation [78] to Hy, so as to decouple, up to a desired order of perturbation the-
ory, the low-energy subspace form the rest of §. However, this method gives an effective
Hamiltonian in a rotated basis that is no longer spin separable (c.f. sec 3.2.2). However,
for the purposes of this study we want to restrict ourselves to a separable spin basis of
pure singlets and triplets.

Here we employ a slightly unusual approach of ‘effective interaction theory’ [71, 75] to
construct a spin Hamiltonian Hy,, represented in the basis of Eq (3.7), acting on the low
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energy subspace of the numerically diagonalized Hy,;. The unknown coefficients {J', 3,~}
appearing in Eq (3.4) are derived from Hy,;, using a crystal-field approach [75]. The results
are compared with alternative methods of calculating these coefficients as described in the
next sections.

3.2.1 Method A. Effective Interaction Theory

Theories of effective interaction [72, 70, 71, 73] have been used in many-body physics prob-
lems ranging from quantum chemistry to nuclear physics [74, 75, 76]. In this approach, a
full Hilbert space Hamiltonian H is transformed into an effective Hamiltonian h,, that acts
on a restricted subspace, called the model space, of dimension m. According to Bloch’s
[79] and des Cloizeaux’s theory [80], it is possible to define h,, such that the m eigenvalues
match exactly those of the exact Hamiltonian and the m eigenfunctions are the projections
of the exact wave functions onto the model space. The effective Hamiltonian h,, can be
viewed as an operator acting in the model space that incorporates information about the
original interactions in the complete space of H.

The numerical calculation of the restricted space Hamiltonian h,, relies on the eigenvalues
and the projection of eigenvectors of the full Hamiltonian H on the model space. We
choose a basis set for the model space in our problem as

{&iti=1-0 = {¥sS0, YasT-, YasTo, YasTh }, (3.9)

where 1g(ag) is the lowest symmetric (anti-symmetric) spatial wavefunction of the SO free
Hamiltonian (H;,; — Hso). The SO eigenvectors x;,i = {1,2..,m} of Hy, are projected
onto this model space as

4
Uy = [6)Vin, (3.10)
Jj=1

where Vj; = (&), (4,5 = 1,..,4), is the projection of first m = 4 eigenstates onto the
model space. This leads to a spectral definition of the effective spin Hamiltonian as

h =Y Ei|0;)(¥;| = VEV™, (3.11)
=1

where E is a diagonal matrix of eigenvalues, E = {E}, Es, E5, E4}. However, this con-
struction is not guaranteed to yield a Hermitian matrix as the eigenvectors defining the
columns of V' are neither orthogonal nor normalized. The projections are orthogonalized
by a S~'/2 transformation proposed by [80] given by Vi = (VV1)~1/2V. Here S is the
overlap matrix of the projected wavefunctions. This allows the definition of a Hermitian
effective Hamiltonian

Hgpin = Vi EV . (3.12)
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Finally, the extraction of anisotropic coefficients {.J’, 3,7} from the numerical Hamiltonian
Hpir is done using the crystal-field approach as follows. An effective Hamiltonian described
by n parameters may be written in terms of a complete set of operators as

spm ZXE’ (313)

where T are the spin operators in Eq (3.4) corresponding to the interactions in the model
space, including the Zeeman interaction with an external field. X;,7 = {1,...,n}, are then
unknown coefficients in the Hamiltonian. Following [75], the parameters X; are calculated
as

X; = Z Distr(T] Hypin), (3.14)

where A;; = tr(TjTi), since the operators T;,7 € {1,...,n}, are linearly independent. In
principle, Hy,;, constructed this way is as precise as the full Hamiltonian in the sense of
predicting exact eigenvalues, as long as all the interactions are taken into account in the
general form of Hyy;,, (Eq (3.4)). A rigorous analysis of the convergence properties of the
effective interaction method is not available, however, they have enjoyed great success in
the nuclear physics community.

3.2.2 Method B: Degenerate Perturbation Theory

Here, we look at an approach based on formalized version of degenerate perturbation theory
known as Schrieffer-Wolff transformation. The main idea is to apply a unitary U = e° to
the exact Hamiltonian H.,.. that decouples the low energy subspace from the rest of the
Hilbert space.

H 0
S -S low
Hea:ac = 3.15
‘ a < 0 Hhigh) ( )

A unitary to this effect is introduced in [30] to extract an effective spin Hamiltonian in the
presence of SO interaction. The first order SO term in Hyy is gauged away by performing
a Schrieffer-Wolff transformation, H = e°H,,;e ™, where

7
S = —é(xlnl.al + XT9Mo.09) (3.16)

The vectors n; depend on SO coupling, n; = (1/lp,1/lg,0) where Ip = h*/2m*|n,|,
lr = h?/2m*|n,| are the effective spin-orbit lengths corresponding to Dresselhaus and
Rashba contributions, respectively. In the absence of an external magnetic field, H reduces
to an isotropic spin Hamiltonian up to a SO induced constant energy shift. It is noted that
the transformed Hamiltonian H acts on a unitarily transformed basis of spins U|&;)j—(1_43-

The rotation of H can be undone approximately by replacing the spatial coordinate x with
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=

its mean value (z) = +a, so that U, = e™'2 ). Applying U, gives an approximate
effective spin Hamiltonian in the original unrotated basis . We calculate {.J’, 3,~v} from
the numerically obtained Hamiltonian UJI:[ U,. This method only requires the numerical
solution of SO free Hamiltonian, H;,; — Hso. The information about the exchange strength
J and the dot separation a is sufficient to implement the approximate unitary transform
giving Hy,,, in the singlet-triplet basis.

(n1.01—n2.02

3.2.3 Method C: Parametric Fitting of the Energy Eigenvalues

In this method, we make a direct correspondence between the energy eigenvalues of the
exchange Hamiltonian, Eq. (3.4) and the numerically calculated eigenspectrum of Hy,;. The
solution of algebraic equations obtained by equating the two sets of eigenvalues yields the
unknown parameters in Eq.3.4. This method is constrained in terms of the number of free
parameters that can be extracted, only providing {J',|3|,v}, and gives valid solutions over
a restricted range of conditions. In particular, when no external magnetic field is present,
the eigenvalues of the effective spin Hamiltonian in Eq. (3.4) are two-fold degenerate, given
by

—J' =2J'\/1+|B]> = J'|B?
J' + J'|8J?
A} = : 3.17
) —J' +2J'\/1+|B]2+ J'v|B? (3.17)
J' + JvB

These are compared with the numerically calculated energy level splittings of the lowest SO
states x; to extract the unknowns J’, |3|,~. In order to deal with the degeneracy at B = 0,
an additional condition is required in the calculation of unknown coefficients (see Appendix
C.1). On adding a Zeeman term, the method is seen to have an artificial dependence on
the magnitude of the external magnetic field; when Zeeman splitting exceeds the exchange
splitting, g*upB > J' imaginary solutions are obtained for the coefficient |3| which are
physically disallowed. The knowledge of numerical eigenfunctions is not utilised in this
method.

3.2.4 Method D: Truncation

Consider the basis {{;} given in Eq. (3.9). By restricting H;, to this basis, an effective
4 x 4 spin Hamiltonian Hg,;, corresponding to Hyy is constructed by simple truncation as

(Hspin)ij = (§il Hiot|&5) = (Jo1.02)i5 + (il HsolE). (3.18)
where {i,j = 1,...,4}. Using the spin-orbit selection rules [30], the second term above
can be written in terms of spin operators as

(il Hsol€;) = Br - (01 X 02) + B2 - (01 — 03), (3.19)
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where 3; and 3 are proportional to the strength of SO interaction:

B1 = Im(Ys|(Pa, — Pay) - MYas), Bz = Re(s|(Pe, — Pay) - M|Yas)- (3.20)

We thus obtain
Hspin = J(O’l.O'Q) +ﬁ1.(0’1 X 0'2) + ,62.(0'1 — 0'2). (321)

Note that J here is not modified by the SO coupling, but rather corresponds to case
1n = 0. The parameters 31, B, are directly related to the coefficient vector 3 in Eq. (3.4).
The relative strength of 81,3, is subject to an arbitrary choice of the relative phase of
the wavefunctions &;, and the observable quantity is |3| = 1/|81]?> + |B2|?>. This method
is clearly disadvantageous because it does not capture the modification of J by the SO
coupling, nor does it capture 7.

3.3 Results

In this section, we present a comparison of the effective spin Hamiltonians H;;,, constructed
using methods A-D described above, and use them to study spin dynamics in the 4 x 4
Hilbert space when exchange is pulsed on. A state fidelity measure is used to compare
the final states obtained via evolution under Hy,;, to those obtained by solving the time
dependent Schrodinger equation in the full Hilbert space and projecting the final state to
the low energy subspace. We also calculate the dependence of {J',3,~} on the central
barrier gate voltage V3, the external magnetic field B, and the SO coupling 7.

3.3.1 Gate voltage dependence

In order to proceed with characterizing the dependence of effective spin Hamiltonian on
experimentally accessible parameters, we begin with studying the modulation of exchange
through the handle of voltage control of central barrier. Fig. 3.3a shows the isotropic ex-
change parameter J and the interdot separation 2a, calculated using the numerical finite
element method. Here, there is no external magnetic field or SO coupling, B = 0, n = 0.
We observe an exponential decrease in J from 2 x 1072 eV at V3 =0 Vto J =2 x 1078 eV
at V3 =-0.75 V. High values of exchange interaction results in InAs due to its large Bohr
radius, allowing for stronger overlap of the single-dot electron wavefunctions, ap = €<ay,
where aq is the Bohr radius in vacuum. For the purposes of QIP, it is detrimental to
operate in a double dot regime resembling a single quantum well as an unbounded increase
in J would eventually result in excitations out of the designated subspace of two qubits.
This sets an upper bound on the strength of J in a practical gate design. The lower bound
is set by the requirement of achieving fast coupled gates such that the decoherence errors
accumulated during the gate operation lie below the threshold for fault tolerant quantum
computation. Referring back to fig. 3.3a, the dot separation 2a is seen to respond almost
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Figure 3.3: a) Plot of interdot separation 2a and isotropic exchange energy .J in the absence
of SO interaction and external magnetic field, calculated using the numerical finite element
method (blue) and the generalized Heitler-London method (red) as a function of barrier
gate voltage V5. We observe that J decreases exponentially with barrier gate voltage in
the well-separated regime, but the rate of the response slows in the single well regime.
The dot separation increases almost linearly by ~ 50 nm over this range of gate voltages,
demonstrating the electrostatic tunability of the FEM model. b) The first-order anisotropic
parameter |3| calculated as a function of barrier voltage V3 in the presence of a large SO
coupling, 7 = (15 meV.nm)(& + 9)/v/2 and zero external magnetic field, using methods
A-E described in the text. Methods A-D yield |3| that increases monotonically with the
barrier height, explained by the increase in the electric dipole moment of the two electrons
as they are separated. The Heitler-London method fails to capture the correct qualitative
behavior of |3].

linearly to the barrier height, and can be varied over a range of ~ 50 nm by varying V3
from -0.05 V to -0.75 V. Fig. 3.3b presents a comparison of the first-order anisotropic
parameter |3| calculated using methods A-D in zero external magnetic field. The differ-
ent methods give qualitatively similar results in which |3| increases monotonically with
|V3|. Larger anisotropy at larger separation can be explained by the increase of the electric
dipole moment of the two-electron system [30]. The magnitude of anisotropy is seen to
closely follow the trend of dot separation as the barrier height is varied. This coincides
with the intuitive picture presented in [24] where the source of anisotropy is attributed to
the opposite rotation of the two electrons in spin-orbit fields directed along the respective
momentum vectors, as the electrons tunnel across the barrier in opposite directions. As
the dot separation becomes wider, tipping angle of the spins with respect to spin-orbit
axis increases leading to higher anisotropic terms in the effective spin Hamiltonian. The
energy scales for different spin-spin interactions in equation 3.4 calculated using effective
interaction method are plotted as a function of barrier gate voltage V3 in Appendix C.2.
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An analytical calculation of J was performed using Heitler-London (HL) method by Kaveh
Gharavi. The results of HL method predicted an exponential decrease in the isotropic JH*
(Fig. 3.3a) with barrier height in the well-separated regime, in qualitative agreement with
the exact numerical method; however, the values for J#* were about an order of magnitude
larger than J. For low values of the barrier potential, the inter-dot separation becomes
small and the assumption that the two-particle wavefunction can be written in terms of
single-particle wavefunctions used in HL approximation, begins to break down. This is
manifested as a sharp drop in the value of J#I at V3 = —0.25V, and a prediction of a
triplet ground-state for V3 > —0.25V. Such behaviour is known to be a signature of the
breakdown of the Heitler-London approximation [81, 82]. The parameter L shown in
Fig. 3.3b yields a result similar to that found in [30]. This led to the conclusion that the
Heitler-London method is not suitable for extracting the first-order anisotropic exchange
parameter.

In the next section, we proceed to study the spin dynamics of the two electron system.
The condition of adiabatic evolution inherent in the use of an effective spin Hamiltonian
for describing the dynamics of a low energy subspace requires a large separation A,
of the subspace from spatially excited states. The energy gap A, = % calculated
within our numerical framework varies from 1 meV in the low barrier regime where the
quantum wells are shallow to 2 meV at high barrier where the quantum wells are deeper.
Keeping in mind the relevant energy scales, Zeeman energy E,, the exchange energy J,
and the thermal energy kT a suitable range of gate operation can be found such that
Ay >> Ez, J kgT. This assists the adiabatic evolution of the system under fast switching

of exchange interaction required for minimizing decoherence in resulting quantum gates.

3.3.2 Spin dynamics

In the following, we consider time evolution of selected states under a constant exchange
Hamiltonian. The numerical methods developed here are well suited to simulating arbi-
trary voltage pulses; however for the purposes of testing the accuracy of effective spin
Hamiltonians we restrict to the simplest case of a constant electrostatic potential.

The external magnetic field is chosen as B = (90mT)z, a field compatible with EDSR
experiments. We restrict attention to a set of initial states drawn from the Sy-7y Bloch
sphere, |Sy), |To), |S°>\j/E§|T°> , |SO>$%|T°> . The time evolution of the spin state in the 4 x 4 Hilbert
space under Hgy;, is given by pgn(t) = e ety . (0)erint For a given value of Vs
(corresponding to exchange ‘on’), we compare pgp,(t) with the time-evolved density matrix
in the full Hilbert space projected along the 4-dimensional basis S = {&;},—1,. 4} described
previously. The latter is calculated by numerically solving the time dependent Schrodinger

equation for the 4-component spinor x(t) as described in Sec 3.2. The elements of the
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(non-normalized) projected density matrix are given by

i) = Y (b)) ®)1&) (3:22)

kl=1,..,4

where y;(t) is the i*"-component of x(t), and the tilde indicates that p is not normalized.
For non-zero SO coupling, in general Tr(p) < 1, indicating that information is lost by
the projection to the low energy subspace. In order to compare with pgpi,, we normalize
this density matrix so that p = p/Tr(p). Fig. 3.4 shows the overlap between these states,
f = |Tr(p'pspin)|, as a function of the evolution time. The time ranges from 0 < ¢ < 22,
where J is the isotropic exchange energy for the same gate voltage but in the absence of SO
coupling; the maximum time therefore corresponds to a SWAP gate in the case of isotropic
exchange, Usyqp = exp (—i%h(al.ag)). The initial state is % in the 4 x 4 Hilbert
space, and the corresponding state 1s (71, 72)|S0) + ¢ as(r1,72)|1p) in the full Hilbert space.
The central barrier gate voltage is set to V3 = —0.55V in this example, corresponding to
J =0.041meV and a SWAP gate time % = 12.6 ps. Under the same conditions but with
In| = 15meV.nm, J' = 0.035meV. In general, the isotropic exchange energy is reduced in
the presence of SO coupling. This can be understood by the lowering of the energy gap
between singlet and triplet states due to SO-induced mixing between these states.

Figure 3.4 shows that spin dynamics in the 4 x 4 Hilbert space under the Hyy,, of method
A are in remarkably good agreement with the numerically exact results, for SO strengths
up to |n| = 30 meV.nm. We interpret the overlap f as a measure of the accuracy of the
effective Hamiltonian, and conclude that the error per unit SO coupling is at most of the
order 7 x 107° meV~! nm™! corresponding to the error seen at the largest value of SO
coupling used in these numerical experiments, || = 45 meV.nm. That is the key result
of this work. By tracing the amplitude of each of the states |Sy), |14, |To), |T-) during
the exchange pulse, the agreement is also shown to hold good for each time during the
pulse evolution. The rapid oscillations observed for the overlap f and in the probabilities
pertaining to p result due to the fact that the input states chosen to be pure singlet /triplet
states are actually superpositions which include highly excited states of the Hamiltonian
H,,;. The amplitude of the oscillations increases with the size of the SO coupling strength
as the overlap between the spin-orbit eigenstates of H;,; and the pure spin states decrease.
The oscillations are removed if the input states are chosen to be the spin-orbit eigenstates.

Comparison of methods: In Fig. 3.5a we plot f = |Tr(p'pspin)| at t = Z—f} versus the
strength of the SO coupling, where pg, is calculated by each of the methods A-D de-
scribed above. The input state is the same as that of Fig. 3.4. Methods A-C match the
numerically exact result far better than method D (truncation); even with SO coupling
as large as |n| = 45meV.nm, methods A-C all agree to better than 5%, and method A
better than 0.4%. Note that the methods A, C are based on the numerical solution of the
complete Hamiltonian H;,; while methods B, D rely on the solutions of simpler spin-orbit

free Hamiltonian, H;,; — Hgo.

38



0.998 ; : : ' : 0.998

0.9r PSS T"(P"Pspm) 0.9}

0.8r 4 @ Tr(lsﬂ)( Sﬂlpspm(t)) 08+

|77]= 15 meV.nm |77|= 30 meV.nm

gorr THITXT Ipgyin) .07
S o8l | e TUTX Toeen® = o)
2 05 ; v THTXT,lpge® S g 54
2 o WMWWWWWUW THISpK Sole®) = g4 %'%% :
03 [T Pl Q"’«m@% |
02 TUTX o) oo %%m%
ik ] —— TUTX T p
a) 0 0.2 04 0.6 08 141 b) 3 , i .8 : _1.4
t (s) t(8)

Figure 3.4: Plot of the overlap f = |T7(ppspin)| between output states pgpin evolved
under the Hgy;, of method A and the numerically exact results p obtained by solving the
Schrodinger equation in the full Hilbert space. The timescale ¢ € [0, I—f,] is chosen to
correspond to an approximate SWAP gate. The initial spin state is % The SO
strength is in a) (15 meV.nm)(z + 9)/v/2, and b) (30 meV.nm)(& + g)/v/2. The external
magnetic field is set to B = (90 mT)z. We also plot the time evolution of probability
densities of the spinors Tr(|s)(s|p(t)), T7r(|s)(s|pspin(t)) where s € {So, T, T, T }. Very
good agreement is seen between the probabilities predicted by the two methods. The rapid
oscillations seen in f and the probabilities pertaining to p result due to the fact that the
input states chosen to be pure singlet/triplet states are superpositions which include highly
excited states of the Hamiltonian Hy,;.
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Further, we carry out the comparison for different input states in order to identify any
state dependent behavior. Figure 3.5b shows the result using method A for six different
states on the So-T Bloch sphere; here the SO coupling is set to || = 15meV.nm. The er-
ror in the output states averages 1.2 x 107° for all inputs except |Ty), which is an eigenstate
of Hyyn when m is perpendicular to the spin quantization axis as in the current configura-
tion (the error associated with this state indicates the level of numerical error in the FEM
simulation). From these results we conclude that the effective interaction method (A) and
the approximate Schrieffer-Wolf method (B) yield the most accurate spin dynamics in the
presence of large SO coupling, noting that method C is fairly accurate but not sufficiently
general.

Comparison with isotropic exchange: Finally, we apply our tool for studying unitary evo-
lutions to quantify the fidelity between output states of the full dynamics in the presence
of SO coupling, p(t), and the output of an isotropic SWAP gate with zero SO coupling,
piso- Fig. 3.6 shows the fidelity f = |T7(p'piso)|, Where piso = Uswap(p(0))Ul,,, and p(t)
results from Eq. 3.22 with a pulse duration ¢ = Z—? The initial state p(0) is again chosen as
W. The output state fidelity drops quickly as a function of the SO coupling strength.
Since a leading-order SO effect is J — J' < J, one could compensate by adjusting the
pulse duration to be t' = I—f,. This compensated case is also plotted (black points) for
comparison. Surprisingly, the fidelity with the ideal isotropic gate is worse in the latter
case, as the longer evolution time gives rise to larger error accumulation via the anisotropic
terms. More sophisticated pulse designs will be required to correct for these anisotropies

in the design of a high fidelity quantum gate.

3.3.3 Dependence of H,,;, on experimental controls

Using method A to derive Hyy;,, we study the dependence of the exchange coefficients
{J', 3,7} on the central barrier gate voltage V3, external magnetic field B, and spin-orbit
vector 17. A finite magnetic field influences the exchange Hamiltonian through the modifi-
cation of orbital states. Consider a magnetic field aligned perpendicular to the nanowire
axis B; = B, z. The vector potential A is chosen in the Landau gauge, A = (0, B, x,0)
[83]. The effect of SO induced anisotropy in this case is to mix the exchange- and Zeeman-
split singlet and triplet states. Fig. 3.7 shows the coefficients {J',|3|,v} calculated using
method A as a function of V3 and as B, is varied from 0 to 2T. Increasing the mag-
netic field strength enhances the dot confinement and lowers the interdot barrier height,
pushing the electrons closer. This is reflected in a shift of the isotropic term J’ towards
higher values as B, is increased. Conversely, the anisotropic terms 3,y are suppressed for
a strong B ; the effect is clearly visible at more negative values of barrier gate voltage.
The magnitudes of the exchange coefficients are independent of the direction of B in the
y — 2z plane by construction, since we use a 1D potential rather than the full 3D potential
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Figure 3.6: Here, we show a comparison between the output of the gates generated by
isotropic and anisotropic exchange interaction. State fidelity (red dots) between outputs

of an ideal isotropic SWAP gate, p;s,, and the full Hilbert space state evolution in the

presence of SO coupling, p(™), as a function of SO coupling strength ||. The initial state
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in the presence of SO coupling.
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Figure 3.7: Calculated value of coefficients a) J’, b) |3], ¢) v using method A are plotted
versus the central barrier voltage V3 and the strength of external magnetic field B, . Here,
B, is along £ and the nanowire is along &, with the SO vector n = (15 meV.nm)(z+9)/v/2.
The parameter magnitudes are independent of the direction of B in the y — z plane (due
to the 1D approximation), and of the direction of 7 in the # —y plane. The vector 8 aligns
with 7.

to describe the double dot.

On the other hand, an external magnetic field aligned with the dot axis, Bj, leaves the
orbital states unchanged. The interplay between Zeeman and SO interactions [30] seen in
the unitarily transformed basis (cf Sec. 3.2.2) is absent since the Zeeman Hamiltonian is
always diagonal in the singlet-triplet basis (the direction of B defines the spin quantiza-
tion axis.). Therefore, the magnitudes of anisotropic coefficients are independent of the
orientation of the SO vector n with respect to the Zeeman field B; however, B aligns with
7). This behaviour is expected since 3 is first-order in SO coupling, and should respond
linearly to changes in 7).

Finally, we study the dependence of exchange coefficients on the strength of SO coupling
|n|. Fig. 3.8 shows a surface plot of the {J', 3,7} as a function of V5 over a range of SO
interaction strength 0 < || < 22meV.nm, with external magnetic field B, = 90 mT.
Figures 3.8b and ¢ show approximately linear and quadratic dependences on |n| for the
first- and second-order terms, respectively.

A possible energy spectroscopy method for experimentally calculating the strength of
SO coupling |3| is included in Appendix C.3.

3.4 Qubit Preparation and Measurement

The effective Hamiltonian construction that we described above is associated with a par-
ticular choice of pure spin basis states in which the SO induced spin-space correlations
are assumed to be decoupled in the initial state of the system. However, there are no
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Figure 3.8: Calculated value of exchange coefficients a) J', b) |8|, ¢) v extracted after
applying method A on the result of FEM simulation of time independent Schrédinger
equation, are plotted versus the central barrier voltage V3 and the strength of spin-orbit
interaction |n|. Here, the direction of n is § = (£+%)/v/2 and there’s an external magnetic
field B = (90 mT)z. The coefficients do not show a dependence on the direction of B in
the y — z plane. The magnitude of the first order term 3 shows a linear dependence on |7/,
and the vector 3 is aligned with 7). The second order term shows an expected quadratic
dependence on |n|.

straightforward experimental procedures that can implement this decoupling to yield a
state separable in spin and space components. The error associated with the initializa-
tion can become a hurdle in the achievement of high fidelity quantum operations. We are
presently studying the generalization of effective spin Hamiltonian Hy,, described above to
a pseudo-spin subspace spanned by two electron SO-eigenstates in the regime that the ex-
change is negligible. As outlined in the DiVincenzo criteria, the choice of basis for encoding
qubits in a QIP scheme is guided by the feasibility of both preparation and measurement
of quantum state in such basis. Consider the state of the double well system before the
exchange interaction is switched on. The two electrons are localized in separate quantum
wells. In the presence of spin-orbit coupling, the eigenstates of an individual electron are
spatial admixtures represented by two-component spinors

1) =) 1) + Ga(r)] 1),
1) = G ) — Cr(r)| 4, (3.23)

satisfying (}]1) = 0, where r is the spatial coordinate of the electron, (;(r) € Ly(C).
By encoding the qubits in the pseudospins {|$>, |i>}, we can drop the requirement of
performing local rotations for initialization in the pure spin basis. If the coupled quantum
gates are performed adiabatically then it is guaranteed that the final state of the system
will evolve back into the basis of these SO eigenstates. Towards this end, we are currently
studying the construction of effective spin Hamiltonian in the spin-orbit eigenbasis in the
regime of weak inter-dot coupling utilizing the effective interaction method studied above.
The model space basis is redefined as

{6} i=1ma = {80, T, To, T, }, (3.24)

43



where

S0y = ERZID g7y = |TD, |y = D 7y = ). (3.25)

The eigenstates of Hy,; at a different height of the barrier when expressed in the basis of
Eq. 3.24 produces the operator V' in Eq. 3.11 leading to the construction of desired Hypp,
using Eq. 3.12. The form of the resulting Hamiltonian is not known apriori. However, the
off-diagonal elements will still appear in Hy;, due to a mismatch between the quantization
axes at different barrier heights. The direction of quantization axis is determined both
by the external Zeeman field and the internal spin-orbit fields that depend on the spatial
wavefunction. Further, it is noted that the EDSR mechanism utilized for implementing
single qubit gates produces transitions between the pseudo-spin states {f, l} rather than
the true spins [84]. The analysis of gate operation in the basis of spin-orbit eigenstates will
present a more well-rounded approach to QIP in our nanowire double dot device. This is
an ongoing topic of study.

3.5 Summary

In this chapter we have developed numerical methods to accurately describe spin dynam-
ics in gate-defined double quantum dots formed in a 1D quantum wire in the presence
of a large SO interaction. The form of the SO coupling is chosen to be appropriate for
a quasi-1D nanowire. Starting with a 3D model of a nanowire sitting atop local gate
electrodes, we iteratively solved the Poisson-Schrodinger equations for the 3D electrostatic
potential, which was projected to a 1D potential to numerically solve for the double dot
eigenstates and spectrum. The model allows for an arbitrary external magnetic field, and
arbitrary strength and direction for the SO coupling. A 4 x 4 effective spin Hamiltonian
Hpir, was calculated from the eigensolutions using an effective Hamiltonian method. Hpi,
has the form of anisotropic exchange and is expressed in the separable basis of singlet
and triplets. Once Hgp;;, is determined as a parametric function of gate voltage, the spin
dynamics under arbitrary gate voltage sequences can be calculated. By comparison with
the computationally expensive, numerically exact evolution in the full Hilbert space, we
find the spin dynamics under Hg,;, to be very accurate, even up to relatively strong SO
coupling strengths. We investigated the parametric dependence of exchange coefficients
on central barrier gate voltage, external magnetic field, and SO strength. The effect of a
magnetic field perpendicular to the nanowire axis is to influence the exchange coefficients
through increasing the confinement and reducing dot separation. The dependence of ex-
change coefficients on perpendicular magnetic field becomes more pronounced at larger
interdot barrier height. The direction associated with the SO coupling determines the
first-order anisotropy direction 3, and the magnitudes of the first- and second-order terms
scale roughly linearly and quadratically with |n|, respectively.
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We believe the numerical framework established here is sufficiently general and flexible to
accurately simulate spin dynamics over a wide range of experimentally accessible condi-
tions. It can guide experiments to measure the exchange coefficients that determine Hyyy,,
and can be used to predict spin dynamics as a function of the control parameters directly
accessible to experiment: local gate voltages and external magnetic field. In future work,
we would like to perform a similar study of Hy, and spin dynamics in the basis of SO
eigenstates. This is a natural basis in which the electron spins in quantum dots are ther-
mally initialized. The EDSR induced single spin operations are also performed in this
coupled spin-space basis which makes it a suitable choice for QIP. It will also be relevant
to calculate the effect of the local gate voltages on the Rashba spin-orbit coupling by con-
sidering the long-rage variations in the 3D electrostatic potential prior to the projection
to 1D. One drawback of the current method is the 1D approximation which renders the
problem cylindrically symmetric, in contrast to the real device, whose cylindrical symmetry
is broken by the device geometry. However, due to the small effective mass of electrons in
InAs, the constant-n, 1D approximation should be reasonably accurate for nanowires of
sufficiently small diameter, particularly as a heuristic guide for experiments.
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Chapter 4

Conclusions

In the past few years there has been an extensive research on InAs nanowires inspired
by the prospects of discovering new physics in the low-dimensional geometry of nanowires
[85, 86, 87] as well as developing technological applications ranging from nanoscale circuits
[38] and gas sensors [39] to high-efficiency solar cells [40]. Motivated by the goal of building
spin based QIP device using InAs nanowires, we addressed two open problems in the field.
We used numerical modelling of realistic nanowires devices to, i) characterize and explain
experimentally observed electron transport in InAs nanowire FET devices, ii) develop a
framework for designing two qubit coupled quantum gates in a lab experiment. Both the
problems addressed in this thesis serve the purpose of bridging the gap between theory
and physical implementation of a prototypical QIP device based on InAs nanowire double
quantum dots.

The problem of nanowire transport introduced in section 1.1.1 has been answered
in Chapter two. Based on a ubiquitous trend of experimentally observed temperature-
dependent mobility, we hypothesized remote Coulomb scattering from ionized surface states
as a limiting scattering mechanism for electron transport in InAs nanowires. In 2.3.1 we
calculated Coulomb scattering rates from a simulated scattering potential of a surface dis-
tribution of positively charged donors for D=50 nm nanowire FET device. The key result
of this work is illustrated in figure 2.9 which shows a reasonably good agreement between
experimentally observed effective mobility and the mobilities calculated using modelled
scattering rates. The model assumed a temperature dependence of surface donor state
ionization in line with the observed increase in experimental carrier concentration with
temperature. Inspite of the fact that the model is relatively simple, it adequately incorpo-
rates the main factors governing the carrier relaxation rate. A characterization like this for
quasi-1D nanowire is useful for the future study of nanowires as the radii get smaller and the
interplay of confinement and surface effects dominate transport. The dependence of scat-
tering rate on nanowire radii remains to be investigated within our model. The nanowire
surface to volume ratio increases for smaller diameter which leads us to expect stronger
overlap of electron wavefunction with nanowire surface resulting in stronger scattering
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rates. This is what we also observe experimentally. On the other hand, smaller diameter
leads to wider separation of the 1-D subbands, thereby, suppressing the inter-band scatter-
ing. It will be interesting to see if a somewhat similar temperature dependence of surface
donor ionization is able to expain the scale as well as the reduced slopes of experimental
mobility seen for smaller radii nanowires.

The second problem concerning the design of coupled quantum gates has been addressed
in Chapter three. The presence of large spin-orbit interaction in InAs leads to coupling be-
tween spin and spatial coordinates of the electron preventing the diagonalization of double
well Hamiltonian in the spin basis. We reduced the complete Hilbert space interactions
of a spin-orbit coupled qubit to an effective 4x4 Hamiltonian acting in the spin space
employing techniques borrowed from different fields of study. We tested the accuracy of
derived effective Hamiltonian by direct comparison with the exact numerical simulation of
time dynamics of Schrédinger equation for the spin orbit coupled system. Figure 3.5 is the
key result illustrating the high degree of agreement obtained between the dynamics gen-
erated by effective spin Hamiltonian and the time-dependent Schrodinger equation solved
in complete Hilbert space of the system. The effective Hamiltonian was paramterized by a
set of variables J', 3,~. An operational characterization of this interaction was performed
for experimentally accessible control parameters: gate voltages, external magnetic field,
strength and direction of spin orbit vector. Within the numerical framework, we were able
to treat a spin-orbit coupling of arbitrary strength on equal footing with other interactions
in the Hamiltonian.

The study of effective spin Hamiltonian in the pseudo-spin basis (eq. 3.9) is in progress.
The strength of anisotropic terms in the Hamiltonian are suppressed in the pseudo-spin
basis. By construction, Hy,;, is diagonal at the start of the pulse; on shifting to a different
gate voltage the off-diagonal terms appear only in the presence of an external magnetic
field. For future work, it might be of interest to perform following numerical experiments
with the setup already available: a complete study of single spin dynamics in a gated 3-D
quantum dot under the influence of an oscillating electric field in an EDSR like setup using
a PDE based Comsol model. This could be potentially useful for studying the parameters
of a single qubit gate design as well as for the study of error mechanisms in the gate.
Also, the double dot numerical model can be utilized to calculate the SO induced error
probabilities in a Pauli spin blockade experiment by studying spin dynamics in the presence
of electrical detuning between the quantum wells.

Appendix
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Appendix A

Stacking faults and mobility

A.1 Structural Defects

The relationship between structure and mobility was investigated by performing post-
measurement transmission electron microscopy (TEM) on selected devices by Yipu Song;
this was motivated by the observation that a fraction of devices displayed significantly
lower mobilities than were typical for a given nanowire diameter. Indeed, it was observed
that a 55 nm diameter nanowire with low mobility ~ 1,000 cm?/Vs had a high linear
density of stacking faults, at least ~(70 nm)~! as shown in figure A.1. In contrast, the
highest mobility device we measured, device 1, had no visible faults along the entire channel
length. Device 3 (D = 35 nm) was found to have only one visible fault as shown in figure
A.1, and better mobility than the D = 55 nm device, despite having a smaller diameter.
The magnitude and temperature dependence of mobility appear to be greatly reduced in
the D = 55 nm device due to the high density of stacking faults. Wurtzite InAs has a 20%
larger bandgap than zincblende InAs [88], so that for electrons, stacking faults correspond
to potential wells that may be as deep as ~ 70 meV. Since these are planar defects, the
reflection coefficient for an incoming plane wave can be a sizable fraction of unity. On
the other hand, we cannot obtain theoretical mobilities as low as ~ 1000 cm?/V's from
a simple 1D model of square well potentials at the linear defect density observed here.
Further investigation is required to clarify the origin of the surprisingly low mobilities seen
here.
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Figure A.1: Stacking fault density and reduced mobility. Experimental mobilities (left)
and post-measurement TEM images (right) for device 3 (D = 35 nm) and a low-mobility
D = 55 nm nanowire FET device. Stacking faults are indicated by the red arrows; at least
7 faults can be seen in the D = 55 nm nanowire, compared to only one visible fault in the
D = 35 nm nanowire. The nanowires are imaged along the [-2 1 1 0] zone axis so that all
planar defects will be visible. The solid lines show power law fits to 7-%* and 7% for the

35 nm and 55 nm devices, respectively. No faults were observed along the entire channel
for device 1 ((D) = 71 nm).

20



Appendix B

Numerical Solvers

Geometry of the prototype nanowire device is shown in figure B.1. The bottom layer
comprises a SiOy dielectric layer and is in direct contact with the metallic gate at the
bottom surface serving as the global back gate. InAs nanowire is placed on top of the SiO,
layer and is assumed to be embedded inside a volume with dielectric constant €, = 1. The
model domain is meshed by tetrahedral volume elements. A geometry dependent mesh
size is applied by Comsol® that renders finer mesh elements within the nanowire volume.

The Poisson equation below is solved using the electrostatics module of Comsol Multi-
physics.

V.(eo&, E) = p, (B.1)
E=-VV (B.2)

The boundary conditions used in the Comsol FEM model are as follows.

e Dirichlet boundary condition: V = 0 at the bottom surface of the SiO4 layer, V =0
at all the boundaries (interior as well as exterior) of source and drain contacts at the
ends of the nanowire.

e Neuman boundary condition: ps = eol, along the InAs nanowire surface. This
specifies the value of electric displacement field(D) component perpendicular to the
nanowire surface n.(D; — Ds) = p;.

e Charge conservation for all domains.

e Space charge density: V.D = p, specified inside nanowire volume as calculated from
the solution of Schrodinger equation.

o FElectric displacement field: n.D = n.Dy in the plane of source-drain surfaces, where
D, = 0 is the boundary electric displacement field.

o1



200nmm

ta

180nm

AT
Sy

RS A5S

AR

AR Ay
SR

{1

Figure B.1: Model domain for Poisson solver showing tetrahedral mesh elements and vari-
able mesh sizes for different components: nanowire, dielectric substrate and surrounding
vacuum.

The two-dimensional Schrodinger equation is solved for a nanowire cross-section. In-
stead of using the Dirichlet boundary condition at the circumference a potential well of
height equal to the electron affinity in InAs, E, = 4.9 eV is specified at the boundary. The
coupling between Poisson and Schrodinger solvers is enabled through the use of Comsol in-
terpolation function definition that allows passing the stored solutions V(z,y, z), n(z,y, 2)
as inputs in the respective models.

The Poisson solver described above is modified for the study of gate controlled exchange
coupling discussed in Chapter 3. In addition to the global back-gate, a set of five local
gates of width 20 nm and pitch 60 nm are added to the device geometry as shown in
figure 3.1. A negative voltage applied at the gates 1 and 5 confines the electron, a positive
voltage applied at gates 3 and 4 (plunger gates) creates a potential well while the central
gate barrier is set to a variable negative gate voltage. The local gate voltages are specified
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as additional Dirichlet boundary conditions in the model. This Poisson solver is coupled
with a 3-D Schrodinger solver defined over a cylindrical nanowire of diameter D=50 nm
and length L=1000um. The solver includes the kinetic and potential energy terms but not
the electron-electron or spin-orbit interaction. The converged potential solution is axially
projected to one-dimension and then used as an input in a second Schrodinger solver for
obtaining spin-orbit eigen solutions for H;, described in the main text.

The time-independent Schrodinger equation H|x) = E|x) is specified as a system of
coupled linear PDEs using the Comsol coefficient form PDE interface for four dependent
variables {dso, d1—, 10, o7+ } Over a 2-D square domain. The electrostatic interaction
term, external potential term as well as Zeeman term appear in the matrix for absorption
coefficient a, the spin-orbit interaction appear in the matrix for convection coefficient
while the kinetic energy term resembles the diffusion term in the coefficient form PDE.
The boundary condition |x)=0 is applied at all edges.

A constraint corresponding to the anti-symmetry condition for spatial component of the
triplet states is added to the Comsol study as fOL fOL Gs(r1,72)0L(r1, 72)dridry = 0 where s €
{Ty, T_, T, }. The spatial component of singlet is constrained as fOL fOL G50 (11, 72) P, (71, 72)dridry =
2 fo s, Tl,T2)¢SO<T1,T2)dT1dT2 The solver domain is meshed by 2-D triangular ele-
ments with an edge length of A < 10 nm using ‘advancing front’ triangulation method.

A stationary study is performed using Comsol’s default eigenvalue solver with a specified
relative tolerance of 107° for the computed eigenvalues.

The simulation of time-dependent Schrodinger equation 3.8 is carried out on the same
model using Comsol’s time dependent solver. The stepping method used is a variable
order BDF (backward differentiation formula) with maximum order 5. For the specified
tolerance of 1073, this produces time steps of length At = 1071¢ s for simulating a pulse
of length t ~ 10 ps. The alternative ‘generalized alpha’ method while producing faster
convergence gives erroneous results and is not found suitable for our study.

For the purposes of parametric studies as well as automation, the comsol models were
combined with Matlab interface using Comsol LiveLink with MATLAB utility for scripting
usage.
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Appendix C

Appendix to Chapter 3

C.1 Comments on Method C: Parametric fitting of eigenvalues

In the absence of magnetic field, the eigenstates of effective spin Hamiltonian given by
equation 3.4 are doubly degenerate. As such the value of three unknowns {.J’,|3],v} and
a constant can not be obtained from the solution of three algebraic equations. In this case,

\/1+|B|2—1)2
- 18]
where |T_) refers to the spin-orbit modified triplet state. The remaining parameters are

then obtained using the energy eigenvalues.

we determine |@| from the spin-orbit eigenstates, noting that |(T_|So)|> = (

The method produces erroneous results in the regime F; > J. An expected reason
for the breakdown is the increased interaction between the |7+) and higher spatial orbital
states due to the reduction of corresponding energy gap in high magnetic fields.

C.2 SO coupling in zero magnetic field

In this section, we provide additional details on the numerical eigenspectrum and eigen-
states obtained for the two-electron double well system. In figure C.1a, the energy scales of
different terms in the effective spin Hamiltonian are plotted in zero external field, B = 0.
Figure C.1b shows the projection of spin-orbit eigenstates along the basis of unperturbed
states {&;};=1..4. The triplet degeneracy in the absence of magnetic field is seen to be
lifted by the spin-orbit interaction. The eigenstates of the Hamiltonian are hybridized over
the triplets irrespective of the strength of spin-orbit interaction.
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Figure C.1: a) Plot showing the energy scale of different terms in the effective spin Hamil-
tonian Eq. (3.4) as a function of central barrier height V3. The values are extracted from
the FEM simulation using method A in zero external field B = 0, b) Projection of the
lowest 4 spin-orbit eigenstates x;(r1,72),7 = {1,2,3,4} along the basis of unperturbed
singlet-triplet states, S = {{;};=1, 4. Mixing between singlets and triplets increases in the
regime where electrons are further apart.

C.3 Energy spectroscopy of SO coupling strength

In figure C.2 we plot the energy gap between singlet and triplet states in the presence of
external Zeeman coupling at a point V3 such that E; ~ J. This energy gap is amplified
by the spin-orbit coupling and can possibly be used in an energy spectroscopy scheme to
measure the strength of SO coupling.

C.4 Matrix for SO Hamiltonian

The spin-orbit Hamiltonian in eq. 3.6 can be written down in the basis {{;};=1_4 intro-
duced in eq. 3.9 as below

0 (OéD — iOéR>aTj 0 —(OCD + iOéR)aTj
Hep — —ih (ap + tag)0r; 0 (ap +iag)or; 0
i V2 0 (ap — iag)0r; 0 (ap + iag)0r;
(—ap +iag)0r; 0 (ap — iag)0r; 0

where j = {1,2}, ag = 1., ap = 1, are the coefficients of Rashba and Dresselhaus interac-
tion terms, respectively.
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Figure C.2: a) Plot of A(a) — A(0), where A;(a) = Eso(a) — By (a),i = {+,0,—}. The
notation Es(«) refers to the energy of spin state s when |p| = 15meV.nm. Plot shows
spin-orbit induced energy shifts between triplet-singlet level splittings in B; = 90 mT for
three different values of spin orbit strength, || € {15,7,1.5} meV.nm, b) Projection of
the spin-orbit eigenstate |<X1|§j>|32’: (1.4 along the spin states showing spin-orbit induced
mixing between |S0) and |T'—) states in a spin-orbit eigenstate as a function of barrier
height V3.
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