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Abstract 

5-HMF as a versatile organic compound is considered as a promising biomass-derived value-added 

product via dehydration of saccharide. A large amount of research has been carried out on its 

production and separation. In this research, three single and three mixed solvents were tested to 

separate 5-HMF via liquid-liquid extraction from simulated HTC products. The mixed solvents were 

made up of DCM-THF, DCM-2-butanol and 2-butanol-THF with different mixing ratio of 1:4, 1:1, 

and 4:1. 20wt% and 10wt% NaCl were added in to help phase separation and to improve the 

performance of extraction. The simulated HTC product was composed of 5-HMF, levulinic acid and 

furfural. The extraction was carried out in vial and the phase separation was accomplished in a 

separatory funnel.   

The aqueous phase was analyzed with HPLC-UV to determine the solute concentrations in the 

aqueous phase. The solute concentrations in organic phase, partition coefficients, separation factors, 

solute recovery rates and purities of 5-HMF in separated products were calculated accordingly. The 

separation performance of mixed solvents was compared with theoretical values. In addition, the 

effects of pH and NaCl concentration on extraction and separation were investigated.  

It was found that the partition coefficients of 5-HMF were always higher than those of levulinic acid. 

20 wt% of NaCl improved 5-HMF extraction significantly, and the corresponding partition coefficient 

was 6.87. Extraction of levulinic acid was found more sensitive to solvent pH value than 5-HMF and 

furfural. For 5-HMF extraction, pH 2.4 was more favorable than pH 2.0. Meanwhile, mixed solvents 

had better extraction performance than each single solvent for 5-HMF. The performance of the mixed 

solvents depended on mixing ratio; partition coefficient showed linear correlation with mixing 

fraction.  

More furfural was extracted into organic phase than 5-HMF, and the partition coefficients of levulinic 

acid were very close to that of 5-HMF.  In general, however, mixed solvent extraction was able to 

improve the extraction efficiency rather than separation efficiency of 5-HMF.  
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Chapter 1 

Introduction 

1.1 Motivation  

Biomass has been considered as a sustainable resource for energy supply, which provides 37TWh 

biomass renewable energy per year [1]. Biomass is also a renewable resource for the production of many 

valuable chemicals. In one report from United States, 30 chemicals produced from biomass were listed, 

and 12 of them were evaluated as the most valuable building blocks in chemical industry, including those 

from both fermentation and chemical conversion such as 5- (hydroxymethyl) furfural, levulinic acid, 2,5-

furandicarboxylic acid and itaconic acid [2].  

5-(Hydroxymethyl) furfural (5-HMF) has been chosen as the focus of this research due to its versatile 

applications in chemical industry. 5-HMF can be produced from glucose, fructose, cellulose and 

lignocellulosic biomass. It is an intermediate for many other products, including pharmaceutical products 

[3, 4], fungicides, flavor-enhancers in the food industry [5, 6], polymers [7-9], and alkane biofuels [10, 

11]. Some of the reaction pathways are shown in Figure 1-1[12].  

5-HMF and many of its derivatives possess a considerable market potential. The market price of 5-HMF 

is about $700-$1500 per kilogram. 2,5-Furan dicarboxylic acid (FDC) is regarded as a replacement of 

polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) with a considerable market size 

[13]. As one of the co-products, levulinic acid has a worldwide market of about one million pounds per 

year with a price around $10 per kilogram, while the cost of levulinic acid production can be reduced to 

$3.21 per kilogram [14].  

Despite the impressive array of useful 5-HMF-derived intermediate chemicals in literature, 5-HMF is still 

not produced at an industrial scale [15]. Although a great amount of research has been carried out for 5-

HMF production, challenges exist not only in its production but also in separation. 
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Figure 1-1. Chemistry and applications of 5-HMF and its derivatives  

(solid arrow, direct transformation; broken arrow, multistep reaction; 5-HMF; LVA; LVE; FA; HFCA; FDC; 

FDCA; DHMF; DHM-THF; HMTHFA; 1,2-(hydroxy(5-(hydroxymethyl)tetrahydrofuran-2-yl)methyl)-5-

(hydroxymethyl) tetrahydrofuran-2-carbaldehyde; 2, (E)-4-(5-(hydroxymethyl)furan-2-yl)but-3-en-2-one; 3,(1E,4E)-

1,5-bis(5-(hydroxymethyl)furan-2-yl)penta-1,4-dien-3-one; 4, tetrahydrofur-furyl alcohol; 5, 2,5-

dimethyltetrahydrofuran; 6, furan; 7, 2-hydroxymethyl-5-vinylfuran; 8, furfuryl alcohol; 9, 2,5-

di(aminomethyl)furan; 10, 2-methyl tetrahydrofuran; 11, 2,5-dimethylfuran; 12, 2-methylfuran)  

 

1.2 Research opportunities and Contributions 

A great amount of studies on 5-HMF production have been carried out, and some of them were 

summarized recently by Rosatella et al. [16]. 5-HMF can be produced with compressed hot water [17], 

organic solvents [18, 19] and ionic liquids [20-24] as reaction media. Compared with the application of 

organic solvents and ionic liquids, producing 5-HMF in a water solution, which is referred to as 

hydrothermal conversion (HTC), is considered as a “green” process. However, it is difficult to maintain 
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both a high conversion of feedstock and a high selectivity of 5-HMF production in HTC under the same 

condition.  

Most previous and on-going research focuses on improving the production efficiency of 5-HMF [21, 25-

28], but separation and purification of 5-HMF still remain a challenge. Several technologies have been 

developed to address this challenge, including synthesis in ionic liquids [20, 21] or supercritical fluids 

[29], separation with preparative chromatography [30], or absorption by sorbents [31].  

In this work, mixed organic solvent extraction was applied to the extraction of 5-HMF from its simulated 

product solution. The extraction performance was improved by using mixed solvents facilitated by 

salting-out effect. The results also revealed that pH has influence on 5-HMF separation with its co-

product, especially levulinic acid. Meanwhile, salting-out effect differed depending on the applied 

solvents. High organic solvent recovery rates indicated its feasibility in industrial application.  

1.3 Thesis structure 

The objective of this research is to investigate the feasibility of separation and purification of valuable 

chemicals from hydrothermal conversion product solutions with mixed organic solvents. The innovation 

herein is that the low boiling point organic solvents are applied, which decrease the energy consumption 

in further separation. Meanwhile, not only the extraction performance will be studied, but also the effect 

of extraction conditions will be investigated, including pH and salt concentration. 

Chapter 1 of this thesis introduces the research motivation and opportunities.  

Chapter 2 is a state-of-the-art review of research in relation to 5-HMF derivatives with their applications, 

synthesis methods in aqueous solution and other solvents, with or without catalysts, and the technologies 

for 5-HMF separation and purification. It indicates the existing problems and objectives of the research 

for this thesis work.   

Chapter 3 describes the methodology of this thesis work, which is mainly experimental, including 

extraction of 5-HMF from simulated HTC product solution and results detection methods, as well as data 

process methods.  

Chapter 4 presents results from the experiments and discussion about extraction and separation 

performance. It discusses the influence of NaCl concentration and pH level on extraction and purification 

performance. 

Based on the contents in Chapter 4, conclusions and contributions of this work are summarized in 

Chapter5. In addition, recommendations are made for future work.   
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Chapter 2 

Literature Review 

2.1 Derivatives of 5-HMF and their application  

There are two functional groups in 5-HMF, hydroxyl group and formyl group (shown in Figure 2-1). The 

furan ring itself is also a reactive structure. With these features, 5-HMF is able to undergo reduction, 

oxidation, esterification and many other reactions. These possible reactions endue 5-HMF its versatile 

derivatives and applications.  

 

Figure 2-1. Structure of 5-(hydroxymethyl) furfural (5-HMF) 

2.1.1 Oxidation of 5-HMF 

The hydroxyl group in 5-HMF can be oxidized into an aldehyde or carboxyl group and the aldehyde can 

be oxidized into a carboxyl group. 5-HMF can undergo a selective oxidation reaction under different 

conditions. The products include furan-2,5-dicarboxaldehyde (FDC), 5-hydroxymethylfuran-2-carboxylic 

acid (HFCA), 5-formylfuran-2-carboxylic acid (FFCA) and furan-2,5-dicarboxylic acid (FDA). 

The oxidation of 5-HMF into FDC was studied by van Deurzen et al. using chloroperoxidase (CPO) as 

catalyst and hydrogen peroxide as the oxidant. A 92% conversion of 5-HMF and a maximum selectivity 

of 74% to FDC were achieved under this condition. The reaction pathways and side-products are shown 

in Figure 2-2 [32]. Moreau et al. investigated oxidation of 5-HMF to FDC in a batch reactor at 363 K with 

supported V2O5/TiO2 as catalyst and toluene and MIBK as solvents under an air pressure of 1.6MPa [33].  

Gorbanev et al. studied the conversion of 5-HMF into FDA using 1wt % Au/TiO2 as catalyst and a 71% 

yield was obtained at 30 °C in 18 hours with 20 bar oxygen in basic aqueous solution [34]. It was also 

found that more intermediate oxidation product, HFCA, was produced compared with FDA when using a 

lower pressure or a lower concentration of base. Casanova et al. found that with both catalysts of Au-

CeO2 and Au-TiO2, the optimal conditions to convert 5-HMF into FDA were 130 °C and 10 bar air 

pressure. An over 99 mol% yield was achieved [35].  

Carlini et al. worked on synthesis of FDA from 5-HMF based on VOPO4·2H2O (VOP) [36]. When VOP 

and N,N-dimethylformamide (DMF) were used at 100 °C and room pressure O2, 8.13 mmol of FDA/(g 

catalyst) productivity and 95% selectivity were achieved but with a low 5-HMF conversion.  



 5 

 

Figure 2-2. Reaction scheme for CPO catalyzed 5-HMF oxidation 

 

2.1.2 Reduction of 5-HMF 

Reduction of the formyl group of 5-HMF results in formation of 2,5-bis(hydroxymethyl)furan, which is 

an important building block for the production of polymers and polyurethane foams [18]. Several 

researchers reported high yields  with nickel, copper chromite, platinum oxide, cobalt oxide, molybdenum 

oxide and sodium amalgam catalysts [37, 38]. A 100% conversion rate and high selectivity were obtained 

by using Pt/C, PtO2 or 2CuO·Cr2O3 [39]. The furan ring was hydrogenated by Pd/C or Raney nickel 

catalysts to form 2,5-bis (hydroxymethyl) tetrahydrofuran [40]. 

2.1.3 Other reactions and applications  

Esters can be produced via the reaction of alcohol or organic acid with 5-HMF. The product can be used 

as a fuel, fuel addictive, or a starting materials for the synthesis of monomers for polymerization reactions 

[7-9]. 

2-hydroxypropane-1,2,3-tricarboxylate (mumefural, MF), from 5-HMF has shown promising 

pharmaceoutical applications [3]. It is considered as a potential anti-influenza chemical. Chuda et al. have 

proven that both mumefural and 5-HMF can improve blood fluidity [4]. 5-HMF can be converted into an 

adenosine receptor (A2A) antagonist, which is identified as a highly potent chemical with 100-fold 

selectivity for the A2A receptor over the A1 [41]. This compound has a great potential for pharmaceutical 

applications. Its synthesis pathway is illustrated in Figure 2-3 [16]. Another compound, 5-aminolevulinic 

acid (DALA), is one of the most valuable derivatives of levulinic acid. For pharmaceutical industry, 5-

ALA is also a commonly used photosensitizing drug in photodynamic therapy for skin cancer treatment 

[42-44]. Meanwhile, it is not only a useful insecticide [45], but also one type of biodegradable herbicide 
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that shows high activity toward dicotyledonous weeds with little influence on monocotyledonous crops 

[46]. Its major synthesis pathways are shown in Figure 2-4 and Figure 2-5 [44].  

 

Figure 2-3. Synthesis pathway of adenosine receptor (A2A) antagonist 

 

  

Figure 2-4. Conventional synthesis pathway of 5-aminolevulinic acid 

 

Figure 2-5. NREL synthesis of 5-aminolevulinic acid 

Other derivatives are utilized as flavor enhancers in food industry. Terada et al. prepared 5-

hydroxymethyl-2-furaldehyde bis-(5-formylfurfuryl) acetal from 5-HMF by using a strong-acid cation-

exchange resin as catalyst [6]. The synthesis pathway is shown in Figure 2-6 [16]. The authors reported 

that 2.3% yield was achieved and indicated its application as flavor-improving agent. 
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Figure 2-6. Synthesis pathway of 5-hydroxymethyl-2-furaldehyde bis (5-formylfurfuryl) acetal 

 

5-HMF can also react with l-alanine under alkaline conditions to produce N-(1-carboxyethyl)-6-

(hydroxymethyl) pyridinium-3-ol, which is also called alapyridaine [5]. Alapyridaine is a new type of 

flavor enhancer, which is able to enhance several tastes at the same time although it exhibits no flavor 

itself. Figure 2-7 shows the synthesis pathway of alapyridaine. 

 

Figure 2-7. Synthesis pathway of taste-enhancer alapyridaine 

 

2.2 Synthesis of 5-HMF 

Research on 5-HMF synthesis started in the 1890s, and in 1919, Middendorp published his research on 

the physical and chemical propertied of 5-HMF as well as its synthesis methods [47]. Since then, it has 

been updated periodically [39]. The higher concentration and purity of 5-HMF in product solution are 

beneficial to 5-HMF separation and purification. It was widely accepted that the yield of 5-HMF can be 

enhanced by using homogeneous or heterogeneous acid catalysts. The synthesis of 5-HMF can be carried 

out in aqueous solutions and organic solvents as well as ionic liquids. Feedstock conversion rate and 5-

HMF selectivity were affected by several factors in reaction, including solvent, catalyst and heating 

method. The corresponding reaction mechanisms, catalysts, reaction mediates and reaction conditions 

applied to 5-HMF production are summarized as follows. 
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2.2.1 Reaction mechanisms 

Monosaccharide can be converted into 5-HMF via direct dehydration reaction; for example, one molecule 

of fructose or glucose loses three molecules of water to form one molecule of 5-HMF. The 

polysaccharides, such as cellulose, are first decomposed to monosaccharide, which is converted into 5-

HMF through further dehydration reaction subsequently. This process is demonstrated in Figure 2-8 [21]. 

 

 

Figure 2-8. Reaction mechanism for cellulose conversion from cellulose into 5-HMF  

 

Different conversion mechanisms of monosaccharide to 5-HMF have been well studied. The formation 

pathways from D-fructose and sucrose were investigated by Amarasekara et al. [29, 48]. Two conversion 

pathways are demonstrated in Figure 2-9 [16]. In Pathway A, glucose is transferred into fructose first and 

then forms the furan ring structure to accomplish the reaction. In Pathway B, glucose does not form furan 

ring, but is converted into 5-HMF directly through dehydration.  

It was reported that glucose with stable ring structure has a lower reactivity than fructose, because the 

enolization rate of glucose in solution is lower than fructose, which is the rate-determining step for 5-

HMF formation [49]. The selectivity of 5-HMF formation is affected by the tautomeric forms of sugar 

molecule. D-fructose has four tautomeric forms (shown in Figure 2-10), among which the furanoid form 

exhibits the highest selectivity for 5-HMF formation [50]. Therefore, enhancing the ratio of furanoid form 

of fructose is one option to increase the selectivity of 5-HMF in reaction. It was found that furanoid form 

is the dominant existing form of D-fructose in dimethyl sulfoxide (DMSO) [51], and fructose can also be 

rearranged to the furanoid form in acetone–water mixtures [50]. Therefore, DMSO was adopted as the 

reaction medium by many researchers.  

javascript:popupOBO('CHEBI:28757','b801641k')
http://www.chemspider.com/175
http://www.chemspider.com/937
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Figure 2-9. Two possible pathways of 5-HMF formation from glucose 

 

Figure 2-10.  Four tautomeric forms of D-fructose 

5-HMF undergoes rehydration to form its major co-products, levulinic acid and formic acid, at low pH, 

but participates in a polymerization reaction between 5-HMF and fructose at high pH [52]. The reaction 

mechanism is shown in Figure 2-11 [53]. These side-reactions and formation of co-products decreases the 

5-HMF yield. Therefore, one of the goals of previous and ongoing researches is to suppress side-reactions 

and rehydration of 5-HMF in synthesis process.  
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Figure 2-11. Mechanisms of side-reaction and by products formation in 5-HMF synthesis process  

2.2.2 Homogeneous catalyst  

Both mineral and organic acids can be employed as homogeneous acidic catalysts. The most commonly 

used mineral acids include HCl, H2SO4 and H3PO4. It was found that the yield of 5-HMF produced from 

glucose increased in the order of H3PO4 > H2SO4> HCl. Levulinic acid in product increased in the 

opposite order [54]. The catalytical activities of organic acids, such as citric acid, maleic acid, p-

toluenesulfonic acid, oxalic acid, were also investigated in subcritical water [55, 56]. It was found that at 

lower pH (pH=2), phosphoric acid was the favorable catalyst to form 5-HMF, but at relatively higher pH 

(pH=3), HCl showed a better catalytical activity. In one case, a continuous microreaction process 

catalyzed by HCl, achieved 54 % yield and 75 % 5-HMF selectivity with 71 % fructose conversion in 1 

min [19].  

In degradation of fructose or glucose for 5-HMF production, the formation of organic acids decreases the 

solution pH, which leads to the rehydration of 5-HMF to levulinic acid subsequently. Earlier research has 

proven that using phosphate buffer solution (PBS) to stabilize pH in reaction was able to address this 

problem effectively [57]. It was reported that 92% yield of 5-HMF was achieved from glucose and 35% 

yield from cellulose when using PBS. PBS can be considered as a promising reaction medium for 5-HMF 

synthesis.  

Metal salt, including compounds of chromium, titanium, zirconium and lanthanide, were also used as 

homogeneous catalyst. When using CrCl2 as catalyst in [EMIM][Cl], 62%  yield of 5-HMF was achieved 

from glucose at 100°C in 3 hours [58]. [EMIM][Cl]–CrCl2 facilitated the isomerization of glucose to 

fructose, and mechanism is illustrated in Figure 2-12 [59].   
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Figure 2-12. Effect of [EMIM] [Cl]–CrCl2 in isomerization of glucose to fructose 

 

The advantages of homogeneous catalysis include that it only involves with one phase operation, which 

simplifies the reactor design. The homogeneous catalysts also ensure the sufficient and uniform contact of 

feedstock compounds with catalysts. However, the application of homogeneous acid catalyst causes 

corrosion of reactor, which implies a great capital cost. Additionally, catalyst recycle and acidic waste 

disposal remain problems for a homogeneous process.   

2.2.3 Heterogeneous catalyst 

Recently, many researchers focused on heterogeneous catalysts for 5-HMF synthesis. The advantages of 

using heterogeneous catalyst include that its separation from aqueous product is much simpler than 

homogeneous process. Some solid catalysts enable reactions to take place under relatively mild conditions 

with lower temperatures. These features reduce the corrosion of reactor, and benefit the cost and energy 

saving.  

Moreau et al. studied H-form mordenites and H-form zeolites, which were employed as catalysts in a 

solvent mixture of water and methyl isobutyl ketone. A yield of more than 70% and selectivity of over 

90% were achieved at 165°C [60, 61]. Metal oxides are also widely used as catalysts for 5-HMF 

synthesis. TiO2, Zirconia (ZrO2) and zirconium phosphate (ZrP) were effective in hot compressed or 

subcritical water [62, 63]. They were able to suppress rehydration of 5-HMF. TiO2 (A) and ZrO2 

promoted the isomerization of glucose into fructose, while TiO2 (R) did not have this effect [64]. Sulfated 

zirconia, prepared from impregnation of ZrO2 with H2SO4, was applied to 5-HMF synthesis in both 

aqueous and acetone-DMSO mixture solvents. Fructose conversion rate of 93.6% with 5-HMF yield of 

72.8% were achieved at 180°C for 20 min reaction time in acetone-DMSO mixture [65]. One modified 

metal oxide catalyst, hydrated niobium pentoxide (Nb2O5 • nH2O2), converted fructose and inulin to 5-

HMF at 160°C in water-2-butanol biphasic system with yields of 89% and 54%, respectively [66]. 
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Besides inorganic catalyst, a carbon-based organic solid acid, which was prepared by a facile and eco-

friendly approach from glucose and p-toluene sulfonic acid (TsOH) [67], was used to catalyze fructose 

dehydration into 5-hydroxymethylfurfural. A 5-HMF yield of 91.2% was achieved in DMSO at 130 °C in 

1.5 hours. This result is better than those using other catalysts, including Amberlyst-15 AC-SO3H and 

zeolite H-BEA under the same conditions. In addition, TsOH can be reused for several times only with 

minor decline in performance. However, this catalyst was not favorable in an aqueous condition, and gave 

only a conversion rate of 67%, a selectivity of 12% and a yield of 8%. Another disadvantage of this 

catalytical process is the utilization of DMSO as solvent, which has negative impact on cost and the 

environment. 

In addition to solid acid catalysts, basic catalysts were utilized in 5-HMF synthesis as well. It has been 

proven that using a combination of solid acid and base catalysts provided better performance in 5-HMF 

synthesis at temperatures below 100°C. In this process, hydrotalcite promoted the isomerization of 

glucose to fructose as base catalyst, and Amberlyst-15 catalyzed dehydration of fructose to 5-HMF. The 

catalysis scheme is shown in Figure 2-13 [68]. 

 

 

Figure 2-13. Synthesis of 5-HMF from glucose with Amberlyst-15 and hydrotalcite as catalysts 

 

Other complex compounds were also synthesized and employed in 5-HMF production. The application of 

supported ionic liquid on nanoparticles as catalyst resulted in a fructose conversion rate of 99.9% and a 5-

HMF yield of 63%  in DMSO at 130 °C in 30 min [53]. Micellar heteropolyacid (HPA) catalyst, 

Cr[(DS)H2PW12O40]3  was used to convert cellulose to 5-HMF, and a conversion rate of 77.1% and a yield 

of 52.7% were achieved within 2 h at 150°C [25]. These catalysts all exhibited high stability in recycle. 

2.2.4 Synthesis in aqueous solution 

The chemical reaction carried out in pressurized hot water with or without catalyst is defined as 

hydrothermal conversion (HTC), in which the operating temperature commonly ranges from 250 to 

450°C [57]. The application of HTC in 5-HMF production has several advantages. First, commonly used 

feedstock, such as glucose and fructose, has much greater solubility in water than in other organic 
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solvents. This means that a high concentration of feedstock can be processed. Dumesic et al. researched 

on 5-HMF synthesis from 30wt% fructose solution, and 83% HMF selectivity was achieved [69]. Second, 

using water as a medium is not only environmentally friendly, but also profitable, because it reduces the 

cost of solvent. Third, the pressurized hot water is able to provide catalytical condition for 5-HMF 

formation. It has been reported that dehydration of glucose or fructose is catalyzed by acid catalyst, 

including mineral acids [56, 70-72] and solid acids [51, 73, 74]. Most researchers agreed that the unique 

properties of water at high temperatures and high pressures play a significant role in hydrothermal 

conversion of biomass. Hot water can catalyze both acidic and basic reactions by enhanced self-

dissociation of H2O to H
+
 and OH

-
 [75]. At room temperature, the ionic product for water Kw = [H+][OH

-
], 

is about 10
-14

, but it increases to 10
-11 

at 200-300 
o
C [76]. This dissociation feature of compressed hot 

water is favorable for 5-HMF production.   

2.2.5 Synthesis with other solvents 

Application of organic solvents in 5-HMF production can improve the yield of 5-HMF. The most 

commonly used organic solvents can be clarified into two categories. Some are miscible with water and 

act as the co-solvents or modifiers of reaction solution, such as DMSO. Others are not soluble in water or 

can be salted out to form biphasic system to facilitate extraction of 5-HMF from aqueous solution, such as 

MIBK, dichloromethane (DCM), tetrahydrofuran (THF), 1- and 2-butanol (this case will be elaborated in 

2.3.1). 

DMSO is the most favorable co-solvent for 5-HMF production for two reasons. First, it can prevent the 

formation of co-products such as levulinic acid and humins [18]. Second, since higher ratio of D-fructose 

molecules exist as its furanoid form in DMSO than in water [77], both higher feedstock conversion and 

selectivity of 5-HMF were obtained in DMSO [19, 24, 78]. The mechanism of dehydration of D-fructose 

to 5-hydroxymethylfurfural in DMSO is shown in Figure 2-14, in which DMSO forms intermediate 

((4R,5R)-4-hydroxy-5-hydroxymethyl-4,5-dihydrofuran-2-carbaldehyde) with fructose during reaction 

[48]. 5-HMF produced from D-fructose achieved 92% yield in DMSO at 150°C for 2 hours [72]. A 

conversion rate of more than 98% and 85% selectivity were achieved by using HCl as catalyst with 

MIBK-2-butanol or DCM simultaneously extraction with DMSO as co-solvent [79]. The disadvantage of 

using DSMO as co-solvent is the existence of DMSO in organic phase challenges further purification of 

5-HMF. Also, toxic by-products can be generated from the decomposition of DMSO [18]. 
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Figure 2-14. Proposed mechanism for the dehydration of D-fructose to 5-HMF  

 

Ionic liquids, known as "green solvents", are a new type of solvent applied to many synthesis reactions. It 

has several such special properties such as low melting point, suitable viscosity as reaction solvent, and 

high solubility of polar compounds and other solvents in it. The ionic liquids applied to 5-HMF synthesis 

include [BMIM]Cl [20, 21], [EMIM][Cl] [59], [ASBI][Tf] [80], [HMIM]Cl [23], [NMM][CH3SO3] [81], 

and [BMIM][BF4] [22]. Ionic liquids from biorenewable materials, such as choline chloride (ChoCl)-

based ionic liquids, were utilized together with low molecule weight organic acid as catalyst as well [27].  

DCM and DMSO added in an ionic liquid reaction system can modify the viscosity of ionic liquid to 

allow easy stirring. Other solvents added in an ionic liquid can realize the extraction of product to 

suppress the side-reactions of 5-HMF in water; this family of solvents include MIBK, toluene and diethyl 

ether [27, 82, 83]. Ionic liquids are immiscible with many organic solvent, and this feature makes the 

extraction and product separation much easier than those in water.  

2.2.6 Effect of microwave heating 

Microwave irradiation has been widely used in chemical synthesis, which is featured by its high heating 

speed for reaction system and special effect on reaction results [84]. It can promote 5-HMF formation in a 

HTC process. Compared with conventional heating methods, microwave heating can increase saccharide 

conversion, selectivity and yield of 5-HMF, with reduced reaction time. It was reported that 5-HMF was 

generated in milk and juice during microwave heating [85, 86]. Highly concentrated aqueous fructose 

(27wt %) was converted to 5-HMF by microwave heating at 200°C, and a 53% yield of 5-HMF and 95% 

conversion of fructose were achieved in 60s with HCl as catalyst. It was also found that the power input 

of microwave heating changed neither conversion nor product distribution [87].  

Microwave heating can be coupled with solid acidic catalysts or ionic liquid as reaction media. Using 

ionic liquid [BMIM][Cl] as a solvent and CrCl3 as a catalyst, the conversion of fructose, glucose, sucrose, 
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cellobiose and cellulose to 5-HMF with microwave heating was studied [88]. A 5-HMF yield of 71 % was 

achieved for glucose in 30 s at 140 °C, and 54 % was obtained for cellulose conversion at 150 °C in 10 

min. Xylan, corn stalk, rice straw and pine wood were also able to be catalyzed to 5-HMF by CrCl3 in 

ionic liquid facilitated by microwave heating [20].  Qi et al. applied sulfated zirconia and a strong acidic 

cation-exchange resin (DOWEX 50WX8-100) as catalyst to convert D-glucose and fructose into 5-HMF 

with microwave heating in a 70:30 (w/w) acetone/DMSO solvent [89]. With ion exchange resin as 

catalyst, 97.9% glucose conversion and 91.7% 5-HMF selectivity were achieved in 20 min at 150 °C. H-

form zeolites as solid acid was used to catalyze the hydrolysis of cellulose in ionic liquid (N-methyl 

imidazole) with microwave heating and the reported 5-HMF yield was up to 40% [90].  

2.3 Separation and purification of 5-HMF 

2.3.1 Solvent extraction theory  

Solvent extraction is one of the most favorable separation procedures in chemical industry due to its 

simplicity. The principle of solvent extraction is the distribution of solutes between two immiscible 

liquids or phases, which are common to aqueous solutions and organic solvents. The result of solvent 

extraction is that the solutes are removed from one phase to another phase with being concentrated or 

separated from other compounds to accomplish the purification. Solvent extraction can be carried out 

under different conditions ranging from ambient conditions to critical conditions.  

Solvent extraction also involves with solvation and solvent-solute interactions. Some liquid properties are 

influential on solvent extraction procedure, including viscosity, surface tension, vapor pressure, density, 

polarity (electronegativity, dipole- moment) and polarization ability [91]. Polarity is one of the important 

properties which affect a solvent extraction process.  

According to their permanent dipole-moment, solvents can be classified into polar and non-polar solvents. 

Polar solvents are favorable for polar compounds extraction, and correspondingly non-polar solvents are 

favorable for non-polar or low-polar compounds extraction. 

Cohesive forces, including dispersion force, Vander Waals force, dipole force and hydrogen bonding, 

keep liquid molecules together and determine the interactions between molecules.  

The square of solubility parameter of liquid ( ) can be expressed as [91] 

   
     

 
           (1) 

where    -the molar heat of vaporazation;   

  - gas constant; 
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  - thermodynamic temperature; 

   - the liquid volume.   

Hansen solubility parameter denoted as    is related to several factors which affect the solvent 

extraction[91].  

      
    

    
    

          (2) 

where   - the energy from dispersion forces between molecules; 

   -  the energy from dipolar intermolecular force between molecules; 

  -  the energy from hydrogen bonds between molecules. 

According to Eq. (2), dispersion forces, dipolar force and hydrogen bond interaction between molecules 

are the dominating factors which influence the solvent extraction result. Hansen solubility parameter can 

be plotted in a three-dimensional space, using   ,     and    as axis, called Hansen space. The rule is that 

two molecules are more likely to dissolve into each other with nearer locations in Hansen space. 

2.3.2 Salting-out effect 

Salting-out effect refers to the phenomenon that the solubility of certain solute decreases with high 

concentration of salt present in solution. Salting-out effect can be employed for several applications. It 

can accomplish phase separation of miscible solvent with water solution. It can also facilitate the 

extraction of metal-chelates, ion-pairs,  or organic  materials from solution [92].  

Several mechanisms of salting-out effect have been proposed. It was found that the aqueous solubility of 

a nonelectrolyte dependents on the type of salt and its concentration in solution. The salting-out effect can 

be evaluated using the Setschenow Equation [93]. 

    (    )                      (3) 

where   - the solubility of the organic solute in aqueous salt solution; 

  - the solubility of the organic solute in water; 

      - the molar concentration of electrolyte; 

      - the empirical Setschenow constant.  

The estimation of       in Setschenow equation has been developed by several researchers [94-96].       

was found to be a function of the intrinsic solubility (  ) of solute [97]. Xie et al. showed that       was 

determined with Eq. (4) 

                             (4) 

where        is the molar volume calculated by the method of Le Bas [98, 99].  
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NaCl effect on nonelectrolyte solubility in solution was also predicted with another simple equation[100].,  

                               (5) 

Different ions display different “salting-out” capacities. It was found that stronger “salting-out” effect 

could be achieved from anions with double charges [101, 102]. 

Although 5-HMF and furfural have no dissociable functional group in their structures, their extraction is 

affected by salt concentration, because salt ions are assumed to bind with water molecules according to 

ion hydration theory [103]. The distribution of organic solute depends on its interactions with two phases, 

and the binding of salt ions with water molecules affects the solvation of solutes in aqueous solution, 

which influences the extraction performance.  

2.3.3 Solvent extraction of 5-HMF  

Solvent extraction is currently the most popular approach to 5-HMF extraction. Organic solvents can be 

applied to form biphasic system during reaction, in which 5-HMF can be extracted continuously into the 

organic phase spontaneously during formation. This process prevents further rehydration of 5-HMF into 

levulinic acid in aqueous phase. Organic solvents can also be added in after reaction to carry out the 

extraction of 5-HMF.  

It has been proven that ketones or alcohols with 4-C chain were effective in 5-HMF extraction from 

aqueous product solution [69, 72]. The problem is that, with high polarity, 5-HMF cannot be distributed 

easily into the organic phase, and it tends to be retained in the aqueous phase. Without modification of the 

extraction system, the distribution of 5-HMF from aqueous phase to organic phase is not satisfactory. A 

5-HMF partition coefficient of only 1.89 was achieved when 30% fructose aqueous solution was 

catalyzed by H3PO4 with MIBK/2-butanol (7:3) as the extraction agent [72].  The partition coefficient (P) 

was defined as the ratio of solute concentration in organic phase to that in aqueous phase. 

By taking advantage of the salting-out effect, salts were introduced into solvents to improve 5-HMF 

extraction. Salt concentration affects the interaction between solutes or solvents and water molecules [100, 

104]. The distribution of 5-HMF between organic and aqueous phases can be improved dramatically in 

biphasic production system modified with inorganic salt [69, 105]. NaCl and KCl were found to be the 

most effective to improve both 5-HMF production and extraction. A 5-HMF partition coefficient of 7.3 

was obtained when the reaction was carried out in NaCl-saturated biphasic system using THF as extract 

agent [69]. The result of Dumesic’s research supported this conclusion. With 1-butanol as extract agent, 

Na2SO4 gave the highest partition coefficient of 8.1 for 5-HMF among all salt-saturated biphasic system, 

which is five times higher than the result from non-salt system [69]. The disadvantage was that the salt 
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may be brought into the organic phase, and more salt is present in the organic phase when a higher salt 

concentration is used in extraction.  

Another challenge to solvent extraction is the separation of 5-HMF from other co-products, or 

purification of 5-HMF. Two major co-products in 5-HMF synthesis are levulinic acid (LVA) and furfural 

(FF) [106].  Due to similar properties of 5-HMF and levulinic acid, it is difficult to separate them from 

each other. Furthermore, furfural can be more easily extracted than 5-HMF and levulinic acid. A 91% 

furfural recovery rate was achieved by 7:3 (w/w) MIBK:2-butanol from reaction mixture in water-DMSO 

solution [78]. 

2.3.4 Other 5-HMF separation methods 

Vacuum distillation for liquid separation was patented in 1965; it can be employed for 5-HMF separation 

since the formation of levulinic acid with acid catalyst makes the direct evaporation or distillation less 

efficient for its separation from the product mixture. By vacuum distillation, 5-HMF with a concentration 

of 77.9% produced from acid-catalysis was diluted by polyethylene glycol (Carbowx 600), vacuum dried 

at 30-35°C, and pH 7.6 with a pressure of 1-2 mm. The purity of 5-HMF produced after distillation was 

reported to be 100% [107]. 

Supercritical carbon dioxide has been widely used in food industry, biological and environmental research, 

due to its non-toxic, no-residual and easy separation from the target product [108-110]. Non-function 

resin was also used for purification of 5-HMF from its synthesis mixture; and a purity of more than 99% 

was reported[30]. The disadvantage of this method is its reliance on cation exchange chromatography and 

relatively complex operation. In Vinke’s research, 5-HMF was selectively adsorbed onto activated carbon 

with loadings up to 30% (w/w) [31]. The use of active carbon prevented the formation of levulinic acid. 

After absorption, 5-HMF was recovered by extraction of the loaded activated carbon with organic 

solvents. 

2.4 Existing problems  

As mentioned above, 5-HMF can be produced by HTC with water as a reaction medium. The aqueous 

products are composed of 5-HMF, levulinic acid, furfural, organic acids and many other compounds. The 

technical challenges include not only the improvement of feedstock conversion and 5-HMF formation 

selectivity in reaction, but also the separation and purification of 5-HMF from the aqueous product. The 

former has been extensively investigated and several outstanding results have been reported. The latter is 

the subject of this thesis work because the separation and purification is still a challenge to the HTC 

technique. 
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In HTC, it is difficult to achieve both high feedstock conversion rate and 5-HMF selectivity at the same 

time without any modification or catalyst in reaction system. Although 100% selectivity was achieved by 

using niobium based catalysts in 6 wt% fructose water solution, only 28.8% fructose conversion was 

achieved [111]. Similar results were obtained by using zirconium and titanium as catalysts: 99.8% 5-

HMF selectivity was achieved, but with only 44.4% fructose conversion rate [112]. It was found that 

small scale reaction improved the production performance in aqueous solution.  

When using microreactor with HCl as catalyst, the convention of fructose was raised to more than 95%, 

but the selectivity of 5-HMF was sacrificed, which was no more than 60%. The limitation for 

microreactor is that the glass reactor is too fragile to be built in industry [19]. Also, another drawback is 

that the industrial level microwave equipment requires high capital, operating, and maintenance costs 

[113]. 

Since the concentration and purity of 5-HMF in HTC product solution is not satisfactory, some research 

focuses on its separation and purification to address the problem. After production, there are two optional 

measures to process the 5-HMF product mixture. One optional method is conversion of 5-HMF into its 

derivatives in product mixture first and then separate and purify its derivatives instead of 5-HMF. The 

critical point is to find certain derivatives which can be produced in 5-HMF product mixture directly with 

practical conditions, and whose separation is easier then 5-HMF itself.  

As summaries in Section 2.1, 5-HMF can be oxidized, reduced and converted to more complex 

compounds. However, one problem with these processes is that most of these reactions are not able to be 

carried out in one-pot conversion without condition modifications. For example, the major oxidation 

products, such as FDA, FDC, FFCA and HFCA cannot be produced directly in aqueous product solution, 

but in either organic solvent or basic aqueous solution. Since the products are aldehydes or acids with 

high boiling points and polarities, the application of high boiling point solvent which facilitate the 

conversion reaction, such as MIBK, still raised the difficulty for its purification. The synthesis of 

reduction products involves the precious metal such as Pd, or Pt in catalyst preparation, which increases 

the cost greatly. Meanwhile, the problems of catalytic activity loss or catalyst leaching in aqueous 

solution should be considered as well in many reactions. The ester and ether formation and separation 

direct from 5-HMF product mixture have been reported successful for polymer production. However, the 

major problem for this conversion process is the significant decrease of the product market value.  

For some applications, high purity of 5-HMF is required, such as in production of medicines or additives 

in food industry. If the further synthesis reaction is carried out directly in product mixture without 

purification, complex side reactions will cause the formation of many undesired by-products, which make 
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the further separation more difficult and increase the consumption of reactants. Therefore, the separation 

of 5-HMF from its product mixture instead of its derivatives is necessary in some cases.  

Homogeneous catalytic reactions with inorganic acids are the most economic methods for 5-HMF 

production. However, the inorganic acidic catalysts are difficult to be recycled, and they may catalyze the 

rehydration of 5-HMF into levulinic acid in subsequent separation process. The application of acidic 

solution also results in the equipment corrosion. Although PBS, as one of the homogeneous acidic 

catalysts, increases the purity of 5-HMF in product solution, it introduces the emulsification of organic 

solvents in extraction easily, which causes difficulty for further separation.  

Among heterogeneous catalysts, some solid acidic catalysts are only applicable in organic solvents, but 

not favorable in aqueous solution. For example, functional resins, as the effective catalysts for 5-HMF 

synthesis, are not resistant to high temperature. This disadvantage prolongs the reaction time to hours. 

Using ionic liquids as reaction media results in less environmental impact and less solvent residue in 

product. But some of them are not applicable to biphasic reaction system, since organic solvents such as 

glycerol, which lower the dielectric constant, cause the catalytical activity loss of ionic liquid. DMSO is 

another favorable reaction medium for 5-HMF production. It requires the application of vacuum 

distillation to accomplish its separation with products, which is energy consuming.  

The non-polar property limits the application of supercritical CO2 to 5-HMF extraction, which is more 

favorable for non-polar or low polar compounds extraction instead of polar compounds [114]. Modifier 

can improve its extraction performance for 5-HMF from solid samples [115]. The problem is that 

commonly used modifiers, such as ethanol and methanol, however, are not applicable to 5-HMF 

extraction from aqueous solutions due to their low distribution coefficient between supercritical carbon 

dioxide and water [116].  When these modifiers contact with water, they are released from CO2 and 

dissolved in water, and lose their abilities to facilitate the extraction. Therefore, modifiers are applicable 

in organic compound extraction from solid sample, but not for extraction from aqueous solution. For 

adsorption using non-function resin or active carbon, the major problem is that the complete desorption is 

difficult to be achieved, which hinder its application in industry. 

Although organic solvent extraction has the disadvantages including environmental impact,  requirement 

of distillation for separation, and slightly increased cost, it is still one of the most practical and feasible 

processes for 5-HMF separation. It can be carried out in biphasic sytem spontaniously with the reaction, 

and it requires neither extra catalysts nor high capital investment. However, most researchers reported the 

partition coefficient or recovery rate of 5-HMF in extraction, while few have reported the separation 

results of 5-HMF from those co-products.  
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In addition, extraction and separation conditions exert influence on 5-HMF extraction, including pH, 

salting-out effect in extraction system. Since as a weak organic acid, the existing forms of levulinic acid 

are expected to be determined by pH level. Molecules with different existing forms behave distinctively 

when distributing between the aqueous and organic phase. Thus, pH condition could have influence on 

levulinic acid extraction and separation. Since “salting-out” effect has a significant influence on organic 

solvent extraction. Although 5-HMF and furfural have no dissociable functional group in their structures, 

their extraction is affected by salt concentration, because salt ions are assumed to bind with water 

molecules according to ion hydration theory [103]. The distribution of organic solute depends on its 

interactions with two phases, and the binding of salt ions with water molecules affects the solvation of 

solutes in aqueous solution, which influences the extraction performance. Meanwhile, the possibilities of 

recycle and reuse of the mixed solvents is one the major concerns of applications to evaluate its feasibility 

in industry. It requires more research. However, no research focused on these aspects was carried out 

specifically.  

Different from single solvents, the properties of mixed solvents, such as polarity and solubility in aqueous 

solution, can be adjusted by solvent mixing. The extraction performance is affected strongly by these 

properties. Mixed solvents have been applied in components extraction from coal or other samples to 

improve the extraction performance [117]. Herein, mixed solvents will be applied to 5-HMF extraction 

from its simulated product mixture with different conditions.  

2.5 Research objectives 

This research investigate the separation and purification of 5-HMF from its simulated product solution 

with its co-product of levulinic acid and furfural using mixed solvent extraction. The objectives are 

designed as followed. 

1) The separation and purification of 5-HMF from simulated product solution with levulinic acid and 

furfural as co-product in mixed solvents extraction will be evaluated by comparing with the results of 

single solvent extractions.  

2) The pH effects on 5-HMF extraction and separation will be studied by analyzing the results from 

different pH levels.  

3) Different salt concentrations will be tested to reveal the relationship between salt concentration and 

separation efficiency for 5-HMF.  

4) The possibilities of recycle and reuse of the mixed solvents will be investigated as one of the criteria 

to evaluate its feasibility in industry. 
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Chapter 3 

Methodology 

3.1 Mixed solvent extraction of 5-HMF from simulated solution 

3.1.1 Materials and their properties  

All the chemicals in this thesis work were purchased from Sigma-Aldrich. Experiments were carried out 

using simulated aqueous HTC products by mixing 5-HMF with levulinic acid and furfural at different 

ratios. Salt was also added into the system to facilitate the extraction. The solute concentrations mimicked 

the components in the hydrothermal conversion product from research done by Asghari et al. [56]. 

Although their results were not the best in 5-HMF production by hydrothermal conversion, it is 

considered feasible in industrial production due to its simple operation and the readily available catalyst. 

The compounds in the product from Asghari’s reaction in subcritical water are listed in Table 3-1. 

 

Table 3-1. Compounds in product from HTC reaction in subcritical water  

Compounds in 

product 
Percentage (%) Compounds in product Percentage (%) 

5-HMF 65.30 glycol aldehyde 0.73 

furfural 3.90 pyruvic acid 1.40 

fructose 2.08 formic acid 3.06 

glucose 0.39 acetic acid 1.72 

erythrose 0.45 levulinic acid N/A* 

* Levulinic acid was not detected in product.  

 

As shown in Table 3-1, 5-HMF and furfural were major compounds in the product. However, levulinic 

acid was added in my simulated solution since it most likely exists in most HTC products, although at a 

low quantity. The concentrations of 5-HMF in sample solution varied from 3.59% to 5.37%, levulinic 

acid concentrations from 0.35% to 0.56% and furfural concentration from 0.57% to 0.74%. Within these 

ranges of concentrations, the solutes dissolved in organic solvent did not change the properties of organic 
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phase greatly. Therefore, the partition of solutes between two phases could be considered independent of 

solute concentrations.  

The applied organic solvents were DCM, 2-butanol and THF. The properties of DCM, 2-butanol and THF 

were listed in Table 3-2. DCM is a commonly used organic solvent for the production of 5-HMF and 

levulinic acid [72, 74, 118]. 2-butanol has been proven effective for 5-HMF production and extraction in 

biphasic systems [19, 78, 119]. THF is less toxic than DCM. THF exhibited a promising extraction 

potential for 5-HMF [69]. All these solvents have boiling points lower than 100°C and low enthalpy of 

vaporization, which means less energy consumption during solvent recycle by evaporation. 

 

Table 3-2. Properties of DCM, 2-butanol and THF 

Solvent Enthalpy of 

vaporization 

(kJ/mol) 

Polarity 

index 

Boiling point 

(at 760 mmHg) 

Vapour Pressure 

(mmHg at 25°C) 

Density  

at 25°C 

(g/cm
3
) 

Solubility 

in water at 

25°C ( g/L) 

THF 29.81 4.2 68.278 152.44 0.904  miscible 

2-butanol 40.75 4.0 96.608 25.24 0.802 181 

DCM  28.06 3.4 39.639 448.01 1.252 13 

 

Polarity index is adopted herein to estimate solvent polarity in bulk extraction, which is the parameter 

indicating the interaction between solvent and various polar test solutes [120].   

3.1.2 Mixed solvent extraction  

Three groups of mixed solvents used in this work and the corresponding ingredients are listed in Table 

3-3. Mixed solvents are the mixtures of DCM and THF (Group 1), DCM and 2-butanol (Group 2), and 

THF and 2-butanol (Group 3), and the individual solvents are DCM, 2-butanol and THF.  

Considering a mixed solvent made up of organic solvents A and B, their polarity indices are denoted as 

    and    , and their volume fractions are denoted as    and   , respectively (       ). Then the 

polarity index of the mixture     can be calculated using Eq. (6) [121].  

                       (6) 

Eq. (6) shows that the polarity of a mixed solvent can be adjusted by changing the mixing volumetric 

ratio of the organic solvents with different polarity indeces. 
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Table 3-3. Properties of mixed organic solvent in extraction with NaCl 

Group 

No.  
Solvent  

Entry 

No. 

solvent volume 

ratio 

Estimated 

polarity index 

1 DCM-THF 1 1 : 4 3.98 

2 1 : 1 3.65 

3 4 : 1 3.32 

2 DCM - 2-butanol 4 1 : 4 3.74 

5 1 : 1 3.50 

6 4 : 1 3.26 

3 2-butanol -THF 7 1 : 4 4.14 

8 1 : 1 4.05 

9 4 : 1 3.96 

 - DCM 10 - 3.10 

 - 2-butanol 11 - 3.90 

 - THF 12 - 4.20 

 

It has been reported that pH 2.0 and pH 2.5 were the optimum conditions for 5-HMF production in 

aqueous solution [56, 122]. Therefore, pH 2.0 and pH 2.4 were tested herein. The pH of sample solution 

was adjusted by HCl, and it was measured by a pH meter (Oakton 700) with a resolution of pH 0.01.  

The sample solution was modified with 10 wt% and 20 wt% NaCl. Preliminary tests were carried out to 

determine the applicable NaCl concentration. 5wt%, 10wt%, 15wt%, 20wt% and 25wt% NaCl aqueous 

solutions were tested in biphasic system for all solvent combinations. These tests showed that 10wt% 

NaCl was the minimum concentration that enabled phase separation rapidly for all extraction mixtures. 

When 25wt% NaCl solution was mixed with organic solvent, NaCl precipitated out from solution. 

Therefore, no more than 20wt% NaCl was applied in my study herein.  

Liquid-liquid extraction was carried out in a 20 mL glass vial. 2.5 mL mixed organic solvent was mixed 

with 2.5 mL aqueous sample solution, and then the vial was shaken manually for 3 minutes. Then the 

mixture was left still in separatory funnel for 30min to enable the phase separation. After phase 

separation, the volumes of aqueous phase (Vaq) and organic phase (Vorg) were measured with a 10 ml 

graduated cylinder.  

Each experiment data points in this thesis were replicated twice or three times and the mean values are 

presented. 
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3.2 Analysis method  

The aqueous phase after separation was analyzed using HPLC (Waters 2690) equipped with a Zorbax 

SBC18 reverse phase column (Agilent). The mobile phase was using a 1:7 (v/v) methanol : H2SO4 

(0.1mM, pH 2.5) at a flow rate of 1.0 ml/min. The column temperature was set at 303 K. The retention 

time for levulinic acid, 5-HMF and furfural under this condition were 3.15 min, 3.65 min, and 5.05 min, 

respectively.  

The chromatography was equipped with a PDA detector (Waters 996). The wavelength of UV detector 

was set at 323, 315 and 254 nm for 5-HMF, furfural and levulinic acid, respectively. External standard 

method was employed to calibrate HPLC-PDA system. It was carried out with 2 wt% standard aqueous 

solution of 5-HMF, levulinic acid and furfural by using 5 levels of injection volume. The calibration 

curve was plotted from peak areas in chromatograms of the standard samples. Component concentrations 

in aqueous phase after extraction were obtained from this standard curve.    

3.3 Data analysis 

3.3.1 Extraction performance evaluation 

The concentrations of 5-HMF, levulinic acid and furfural in the aqueous phase were used for the 

calculation of partition coefficient, separation factor, 5-HMF purity and solute recovery rate in the 

extracted product.  

The concentration of 5-HMF in organic phase      is calculated using Eq. (7). 

     
                

    
                   (7) 

where    - the initial volume of simulated THC product solution (        ); 

   - initial concentrations of solute in simulated HTC product solution; 

     - solute concentration in aqueous phase after extraction; 

     - the volumes of organic phase after extraction; 

     - the volumes of aqueous phase after extraction. 

The partition coefficient (P) was defined as the ratio of solute’s concentration in organic phase to that in 

aqueous phase. A greater P means more solute distributed into the organic phase. In this study, greater 

partition coefficient of 5-HMF (PHMF) together with lower partition coefficient of levulinic acid (PLVA) 

and furfural (PFF) are desired; it means more 5-HMF and less levulinic acid or furfural has been extracted 

from the aqueous phase into the organic phase.   
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The separation factor was defined as the ratio of partition coefficients of solute A to that of B. For 

simplicity, the separation factor between 5-HMF and levulinic acid is denoted as S1 and that between 5-

HMF and furfural as S2. The greater magnitude of S indicates the better separation performance.  

Finally, the recovery rate (R) was determined by the ratio of the solute mass extracted out by organic 

solvent to the initial solute mass in simulated HTC product, as shown in Eq. (8). Recovery rate indicates 

the portion of solute recovered after solvent extraction. A greater RHMF means a greater portion of 5-HMF 

recovered from the simulated HTC product.  

  
            

        
                                                         (8) 

The purity of 5-HMF after extraction, denoted as  , was calculated to evaluate the purification effect. It 

was defined as the portion of the mass of 5-HMF (    ) in total mass of solute (      ), and it was 

calculated as, 

   
    

      
 

           

                               
 

     

                
          (9) 

in which      ,      , and      are the concentrations of 5-HMF, levulinic acid and furfural in organic 

phase after extraction, respectively.  

Solvent recovery rate was also quantified, since it is one of the key factors for cost estimation in industry. 

Solvent recovery rate is defined herein as the ratio of the organic phase volume to the initial organic 

solvent volume, which is 2.5 mL in all tests.  

3.3.2 Mixed solvent performance assessment 

To understand how each individual solvent performed in the mixed solvent, the partition coefficients 

determined from experiments were compared with the calculated theoretical values. The calculation for 

theoretical values are based on two assumptions, one is that the solute distributions into the organic phase 

do not interact with each other, and the other is that the organic solvent functioned independently in 

mixed solvent extraction. For a mixed solvent composed of solvents A and B with volumes VA and VB, the 

mass of the solutes dissolved in solvents A (MA) and B (MB) can be calculated with Eq. (10) and (11) .  

                      (10) 

                     (11) 

Where the concentrations of solute in solvent A is denoted as      , and in solvent B as      , 

respectively. Therefore, the total mass of solute in organic phase (    ) is the sum of mass of solute in 

solvent A (MA) and B (MB), that is 
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                                         (12) 

The concentration of solute in organic phase       is determined by total mass of solute in organic phase 

and total volume of organic phase (    ) which is the sum of VA and VB.   

The volume concentration of solute in organic phase can be calculated as, 

     
                 

     
                 `      (13) 

Partition coefficients of solute in solvents A (  ) and B (  ) in single solvent extraction are defined as, 

                        (14) 

                       (15) 

The concentration of solute in organic phase was calculated using Eq. (16).  

     
   (           )

     
     (         )               (16) 

where    and    were the volume fractions of solvent A and solvent B in mixed solvent, which were 

calculated with Eq. (17) and (18). 

   
  

     
                    (17) 

   
  

     
                    (18) 

The theoretical partition coefficient of mixed solvent, denoted as   , can be calculated with Eq. (19). It 

represents the total effect of mixed solvent extraction. 

   
    

   
                                        (19) 

The error bar was added in charts using standard deviation of the sample, denoted by    and defined as 

follows. 

   √
 

 
∑ (    ̅)  

           (20)  

where     is the observed values of the sample items,  ̅ is the mean value of sample data, and N is the 

sample size. 
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Chapter 4 

Results and Discussion 

4.1 Extraction and separation using single solvents  

All the results from mixed solvent and single solvent extractions are listed in Table 4-1. For easier 

understanding, some results presented in Figures are taken from this table.  

4.1.1 Extraction of 5-HMF  

The partition coefficients of 5-HMF in single solvent extraction with 20 wt% NaCl at pH 2.4 are shown in 

Figure 4-1.The partition coefficients of 5-HMF were affected by solvent polarity, which decreased in the 

order of DCM < 2-butanol < THF. The general conclusion is that 5-HMF is easier to be extracted by 

high-polarity solvent from previous studies [123]. The results from single solvent extraction in this 

experiment agreed with this conclusion. As a non-polar and aprotic solvent, DCM was the least favorable 

for 5-HMF extraction among these three single solvents. The lowest 5-HMF partition coefficient was 

obtained in DCM extraction.  

 

 

Figure 4-1. PHMF in single solvent extraction with 20wt% NaCl at pH 2.4  
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Table 4-1. Partition coefficients, separation factors and recovery rates of 5-HMF, LVA and furfural after extraction with 20wt% NaCl at pH 2.4 

Group 

No. 

Solvent Entry 

Number 

PHMF Stdev  

of PHMF 

PLVA Stdev 

of PLVA 

PFF Stdev 

of PFF 

S1 S2 RHMF 

(%) 

RLVA 

(%) 

RFF 

(%) 

Purity of 5-

HMF (%) 

1 DCM-

THF 

1 4.50 10.1% 2.20 4.4% 15.31 33.6% 2.04 0.29 81.8 68.8 93.9 75.7 

 2 3.48 24.4% 1.48 8.1% 17.50 59.7% 2.35 0.20 77.7 59.7 94.6 75.3 

 3 2.32 0.2% 0.81 2.9% 22.47 73.0% 2.86 0.10 69.9 44.8 95.7 74.2 

2 DCM - 

2-butanol 

4 5.14 16.5% 3.61 71.9% 11.58 23.5% 1.42 0.44 83.7 78.3 92.1 75.7 

 5 6.87 0.1% 3.71 13.7% 22.60 57.6% 1.85 0.30 87.3 78.8 95.8 75.9 

 6 3.86 8.0% 2.05 30.8% 26.83 98.1% 1.88 0.14 79.4 67.2 96.4 74.9 

3 2-butanol 

-THF 

7 6.87 12.5% 3.69 0.8% 14.53 13.0% 1.86 0.47 87.3 78.7 93.6 76.3 

 8 5.48 21.3% 2.87 6.2% 11.24 41.0% 1.91 0.49 84.6 74.2 91.8 76.2 

 9 4.06 2.4% 1.61 80.8% 8.13 5.4% 2.52 0.50 80.2 61.7 89.1 76.6 

4 DCM 10 5.95 2.8% 3.956 6.6% 14.12 45.4% 1.50 0.42 85.6 79.8 93.4 75.9 

5 2-butanol 11 3.965 0.9% 2.90 2.4% 4.98 10.0% 1.37 0.80 79.9 74.4 83.3 76.4 

6 THF 12 1.08 2.4% - 0.22* 0.3% 31.22 128.9% - 0.03 52.0 - 96.9 - 

PHMF, PLVA, PFF - Partition coefficient of 5-HMF, levulinic acid and furfural;  

Stdev - Standard deviation ; 

S1
 
- Separation factors between 5-HMF and LVA;  

S2
 
- Separation factors between 5-HMF and furfural;  

RHMF, RLVA, RFF - Recovery rate of 5-HMF, levulinic acid and furfural.  

* This value is negative, which was not taken into calculation for further analysis.
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According to the theory of hydrogen bond formation [124], there are at least two possible ways for 5-

HMF to form hydrogen bonds. One is involved with the oxygen atom on its furan ring, which is ready to 

form hydrogen bond with hydrogen donor. The other way is using the hydroxymethyl group in its 

structure, which can act as hydrogen donor and combine with another hydrogen receiver in organic 

solvent structure. 

THF is proven to be an effective organic solvent for 5-HMF extraction in biphasic reaction system, which 

was also mentioned in previous research [69]. Its extraction capacity for 5-HMF can be attributed to two 

different reasons. First, although THF, as an aprotic solvent, cannot act as hydrogen donor, it still can 

form hydrogen bonds with water molecules via the oxygen atoms in its structure as hydrogen acceptor 

[125]. This implies the possibility for THF to form hydrogen bonds with the hydroxyl group in 5-HMF, as 

well as with the carboxyl group in levulinic acid. This interaction between solute and solvent molecules is 

able to facilitate the migration of 5-HMF and levulinic acid from aqueous phase to organic phase. Second, 

according to ‘like dissolves like’ rule [126], THF is favorable for 5-HNF extraction due to the furan ring 

in its structure. The same effect also influenced the extraction of furfural from simulated solution.   

For 2-butanol, its interaction with 5-HMF is more complicated, which implied that some interaction other 

than hydrogen bond between molecules of alcohol solvents and 5-HMF also participated in the extraction 

process. Due to steric effect, it is usually easier for 1° alcohol to form hydrogen bonds than 2° alcohol 

[127]. Therefore, if hydrogen bond were the major interaction between butanol and 5-HMF that affects 

the extraction performance, then theoretically the partition coefficient of 5-HMF should be greater in 

extraction with 1° alcohol than with 2° alcohol. However, the experimental data exhibited otherwise. In 

Dumesic’s research, 5- HMF achieved greater partition coefficients in extraction with 2° alcohols than the 

corresponding 1° alcohols under the same condition [69]. However, the specific reason for this 

phenomenon requires further investigation in the future.  

4.1.2 Extraction of levulinic acid and furfural  

Partition coefficients of levulinic acid and furfural in single solvent extractions with 20 wt% NaCl at pH 

2.4 are shown in Figure 4-2 and Figure 4-3. The partition coefficients of levulinic acid displayed an 

obvious correlation with solvent polarity in single solvent extraction, which decreased in the order of THF 

> 2-butanol > DCM. The interaction of hydrogen bonds between THF and levulinic acid, which 

facilitated the extraction of levulinic acid by THF (mentioned in section 4.1.1). The relatively high 

partition coefficients of levulinic acid in extraction of 2-butanol can be attributed to its straight chain 

structure, which is similar to the structure of levulinic acid. The similarity in their structures is considered 

the factor that benefited the extraction of levulinic acid.  
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The partition coefficient of levulinic acid in extraction by DCM was negative. It indicates that the total 

mass of levulinic acid in aqueous phase after extraction was higher than its initial amount. This result was 

possibly explained by two possible reasons. One is that the existence of DCM promoted the rehydration 

of 5-HMF into levulinic acid. However, in simultaneous extraction with DCM, no results indicated that 

DCM has catalytical activity for rehydration of HMF [78]. Another is that there was certain interaction 

existing between levulinic acid and DCM, which changed its UV absorption properties. It was most likely 

to influence its absorption peak during HPLC-UV analysis, which may result in inaccurate measurements 

of concentrations. However, neither of these two interpretations is able to be explained or verified 

concretely right now, and this phenomenon still requires further investigation to better understand its 

mechanism. 

The partition coefficient of furfural in single solvent extraction, which decreased in the order of DCM > 

THF > 2-butanol, did not show a simple correlation with solvent polarity. As mentioned in Section 4.1.1, 

solute extractions were affected by several factors. With the lowest polarity, DCM was most favorable for 

furfural extraction among three solvents employed. Although THF has a similar moleculor structure with 

furfural, it still gave much lower PFF than DCM due to the high polarity of THF. It implied that furfural 

extraction was affected more by the solvent polarity than the solvent molecular structure. With a high 

polarity and a straight-chain structure, 2-butanol was the least efficient for furfural extraction in the tests 

herein. 

 

Figure 4-2. PLVA in single solvent extraction with 20wt% NaCl at pH 2.4  
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Figure 4-3. PFF in single solvent extraction with 20wt% NaCl at pH 2.4  
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Figure 4-4. Separation factors in single solvent extraction with 20wt% NaCl at pH 2.4  
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extraction using THF with saturated NaCl [69]. This can be attributed to the difference in operating 

conditions including pH, NaCl concentration and extraction temperature. Dumesic et al. carried out 5-

HMF extraction during reaction at the temperature of 180°C, whereas this experiment was conducted at 

room temperature. The effect of temperature on extraction varies for different solutes according to their 

properties, as well as extraction process features, which can be entropy or enthalpy driven process, 

endothermic or exothermic process. For example, the extraction of some sulfonamides is an enthalpy 

driving process, and their n-octanol/water partition coefficient decreased with an increase in temperature 

from 23°C to 60°C [128]. But no larger temperature range was investigated in their research. However for 

some chlorobenzenes, their n-octanol/water partition coefficient increased significantly with temperature 

even at a low temperature range of 5-45°C [129]. For other two complex aromatic compounds, 

propranolol and atenolol, their n-octanol/water partition coefficients also increased with an increase in 

temperature[130]. Comparing the extraction results of 5-HMF herein to those from Dumesic et al., we can 

conclude that PHMF was slightly influenced by temperature as well, and it increased with an increase in 

temperature.  

 

 

Figure 4-5. PHMF in mixed solvent extraction with 20wt% NaCl at pH 2.4 
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The extraction performance also depends on the ion concentration in solution. The ions include not only 

salt ions, but also H3O
+
 and OH

−
, which can be generated by dissociation of water or other dissociable 

compounds, such as organic or inorganic acids. At a high temperature, the ionization constant of water  

(Kw) increases up to around 10
-11

 [76], which means more water molecules dissociate into H3O
+
 and OH

−
 

ions. In Dumesic’s research, the initial pH for reaction was 0.6, which became even lower after reaction 

and consequently much lower than pH 2.4 in this experiment. The acid in solution also provided more 

ions, which promoted organic compounds to participate into organic phase to achieve higher partition 

coefficients. The theory of pH effect on extraction performance will be discussed in detail in Section 4.4.  

Besides, the irritation caused by high temperature heating facilitated sufficient mixing of aqueous solution 

and organic solvent. The extraction was improved because of more effective contact occurred in heating 

than in manually shaking.  

In mixed solvent extraction, the partition coefficients were affected by properties of both solvents. For the 

extraction of 5-HMF, THF is able to act as the hydrogen bonds accepter, but DCM does not possess the 

capability to act as hydrogen donor or accepter. Meanwhile, due to the low polarity of DCM, partition 

coefficients of 5-HMF in Group 1 were not satisfactory. For the extraction of 5-HMF in Group 3, both 

THF and 2-butanol were able to extract 5-HMF efficiently. Therefore, the mixture showed satisfactory 

partition coefficient for 5-HMF in mixed solvent as well.  

The advantage of my approach is that less NaCl was used to achieve a similarly competitive result. It has 

been proven that with a higher NaCl concentration in sample solution, more NaCl was brought into 

organic phase [105]. Although NaCl crystal was also observed in the flask along with the evaporation of 

organic solvent, less NaCl would appear in the organic phase.   

4.2.2 Extraction of levulinic acid and furfural 

Partition coefficients of levulinic acid in mixed solvent extraction at pH 2.4 with 20 wt% NaCl are shown 

in Figure 4-6. Due to property similarities of 5-HMF and levulinic acid, the partition coefficients of 

levulinic acid exhibited the similar performance with 5-HMF. Mixed solvent extraction with DCM and 2-

butanol achieved the greatest partition coefficient of levulinic acid, and mixed solvent extraction with 

DCM and THF results in the lowest partition coefficient of levulinic acid. These results are consistent 

with that from single solvent extraction discussed in Section 4.2.1 .  

Meanwhile, it was also found that partition coefficients of levulinic acid in all cases were lower than those 

of 5-HMF. The average recovery rate of 5-HMF in mixed solvent extraction was 81.3% and it was 68.0% 

for levulinic acid. It indicated that it was easier to extract 5-HMF into the organic phase than levulinic 

acid with the applied solvent system.  
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Figure 4-6. PLVA in mixed solvent extraction with 20wt% NaCl at pH 2.4 
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Figure 4-7. PFF in mixed solvent extraction with 20wt% NaCl at pH 2.4 
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greater 5-HMF partition coefficients, mixed solvents of DCM with 2-butanol and THF with 2-butanol 

gave lower average separation factors between 5-HMF and levulinic acid. It was also found that 

separation factors between 5-HMF and levulinic acid increased with the decrease of the polarity of mixed 

solvent separately within each group. It can be explained by the phenomena that partition coefficients of 

levulinic acid increased more significantly than that of 5-HMF with an increase of solvent polarity. 

However, they were all below 3 in mixed solvent extraction, which means that 5-HMF still was not able 

to be separated from levulinic acid effectively using the mixed solvent extraction method herein.  
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Table 4-1 shows the purity of extracted 5-HMF after extraction. Among the three groups, mixed solvent 

of THF and 2-butanol gave the highest average 5-HMF purity. These results indicate that although the 

extraction efficiency was improved with mixed solvent extraction method, the separation of 5-HMF with 

levulinic acid and furfural cannot be achieved with this method. It means that the extraction of 5-HMF 

was able to be improved with mixed solvent extraction from its aqueous production mixture but without 

significant improvement in purity.  

 

 

Figure 4-8. Separation factors in mixed solvent extraction with 20wt% NaCl at pH 2.4 
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coefficient of 5-HMF was not significantly enhanced by the mixing of two solvents. Actually, for some 

entries, mixed solution resulted in the decrease of partition coefficient of 5-HMF. In DCM-2-butanol 

mixed solvent extraction, partition coefficient of 5-HMF was greatly increased, and Entry 5 showed the 

most significant increase, which was as high as 171.9%.  

 

Table 4-2. Comparison between theoretical values of PHMF and experiment data of PHMF with 20wt% 

NaCl at pH2.4 

Group 

No.  
Solvent Entry No. Calculated PHMF 

Experimental 

data of PHMF 
Increasing rate*  

1 DCM-THF 

1 4.98 4.50 -9.7% 

2 3.52 3.48 -1.2% 

3 2.06 2.32 12.9% 

2 DCM-2-butanol 

4 3.39 5.14 51.7% 

5 2.53 6.87 171.9% 

6 1.66 3.86 132.3% 

3 2-butanol-THF 

7 5.55 6.87 23.6% 

8 4.96 5.48 10.6% 

9 4.36 4.06 -7.0% 

* Increasing rate is calculated via dividing experimental data of PHMF by calculated PHMF, which indicates the 

differences between measured and predicted data. 

 

For mixing solvents, the advantage is that different solvents have diverse properties, which may be 

involved in different interactions between the solute and the solvent molecules. The improved extraction 

performance of mixed solvents may be attributed to the protic and aprotic properties of the solvents. 

Depending on whether they have capability to exchange protons (H
+
), an organic solvent can be classified 

to be protic and aprotic [131]. Protic solvents act as proton donors in hydrogen bond, and aprotic 

solvents cannot donate hydrogen. 2-butanol is a protic solvent, since it has a hydroxyl group in its 

structure, which can participate in proton exchange. On the contrary, DCM and THF are aprotic solvents 

without H
+
 that is exchangeable under certain condition. This feature determines their capacity to form 

hydrogen bones with water or solutes. The formation of hydrogen bond affected not only the extraction 

performance, but also affected the retention of solvent in aqueous phase.  
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In Group 1, both of DCM and THF are aprotic solvents. Although hydrogen bonds can be formed 

between the hydroxymethyl group in 5-HMF and the oxygen atom in THF, the extraction performance 

was not significantly improved by solvent mixing. For mixed solvents of DCM with 2-butanol and THF 

with 2-butanol, each group was composed of one protic solvent and one aprotic solvent. PHMF was 

significantly increased in Group 2, but only slightly improved in Group 3. The difference in capability of 

hydrogen donating may lead to different interactions between the solvents and the solute, which was 

responsible for the improved extraction performance. 

4.3.2 Volume ratio effect on extraction 

The relationships between organic solvent volume fraction and solute partition coefficients in each 

solvent group are shown in Figure 4-9, Figure 4-10 and Figure 4-11. Partition coefficients of 5-HMF and 

partition coefficients of levulinic acid are shown at the primary y-axis, and partition coefficients of 

furfural are shown in the secondary y-axis.  

The partition coefficients of all three solutes displayed a linear correlation with solvent volume fraction in 

DCM-THF and 2-butanol-THF mixed solvents extraction. The exception was the group of DCM-2-

butanol mixed solvent, in which the linear correlation existed only in furfural extraction (shown in Figure 

4-10). This phenomenon also appeared in the extraction with 10wt% NaCl at pH 2.4 and the extraction 

with 20wt% NaCl at pH 2.0.  

This linear correlation indicated that the organic solvents in mixed solvent extraction functioned 

independently to solvent volume faction for the condition in this thesis work. It can be proven by the 

following.  

Since        , Eq. (19)     
    

   
           can be written as 

        (    )   (     )                               `            (21) 

If the partition behavior of solutes in different solvents were independent on its volume fraction, it can be 

assumed that    and     are independent on the volume fraction    and   , which means that    and     

are all constants.  

To test this assumption, the linear correlation equations for furfural and levulinic acid in charts were 

substituted to Eq. (21). The linear correlation of partition coefficient of 5-HMF with volume fraction 

disappeared in Group 2, so it was not included in this test. The following results were determined from 

each group.   

For extraction of levulinic acid,  
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a) From mixed solvent of DCM with THF   

                       

b) From mixed solvent of DCM with 2-butanol   

                   

c) From mixed solvent of THF with 2-butanol  

                    

For extraction of furfural,  

a) From mixed solvent of DCM with THF   

                          

b) From mixed solvent of DCM with 2-butanol   

                     

c) From mixed solvent of THF with 2-butanol  

                     

The results above show that partition coefficients for the same solvent varied from one group to another.  

It can be concluded that    and    are not constant in mixed solvent, which means the extraction 

capacities of individual organic solvent in mixed solvents was affected by solvent mixing. Therefore, we 

can assume that     and   are a function of volume fraction of solvent A (  ) and B (  ) respectively 

    (  ) and      (  ) .  

Since        , then     (  )   (    ). Then let  (    )   (  ), thus     (  ).  

Classify the items in  (  ) and  (  )  into constant terms and non-constant terms. The constant parts in 

 (  ) and  (  )  are denoted as   and   separately, and the non-constant terms are denoted as  (  ) 

and  (  ). Then    and    can be written as     (  )   (  )    and     (  )   (  )  n.  

Substituting it into Eq. (21), and rearranging  

   (     )        (  )     (  )         (  )     

  { (  )    (  )   (  )   }  {         }              (22) 

                                  
A B 



 42 

After rearrangement, it can be concluded that the items in the second bracket is linear. Only if the terms in 

the first bracket { (  )    (  )   (  )   }, is linear, or it is constant with       and    , the 

whole equation can be linear.  

However, according to the assumption that  (  ) and  (  ) are non-constant terms, the terms in the first 

bracket (marked as A part in Eq.(22)) cannot be a constant, and it can only be a function of    or zero. 

Only if   (  )   (  )      , which means that  (  )   (  ), and  (  ) is linear, then { (  )  

  (  )   (  )   } will be linear with   . Therefore, it was concluded that the prerequisite of the linear 

correlation displayed in charts is that    and    are linear functions of the volume fraction of the solvent. 

The special extraction performance of mixed solvent Group 2 was possibly related to the phenomena of 

solvation. When a solute dissolved in a solvent, the solute molecules are surrounded by the solvent 

molecules to form a solvent shell on the outer space of solute molecules. According to the components of 

solvent shell in mixed solvent, solvation can be classified into two categories. One is non-selective 

solvation, and the other is selective solvation. In non-selective solvation, the molecule numbers in 

solvation shell equals to the molecule ratio of individual solvents in mixed solvent.  In selective solvation, 

the molecule numbers in solvation shell do not equal to the molecule ratio in bulk solvent [132]. For 

organic compound molecule, there may be similar phenomena occurring between the solvent and solute 

molecules due to the property difference between different parts in their structures. 

 

Figure 4-9. Correlationsihp between partition coefficients of solutes and solvent volume fraction in 

Group 1 with 20wt% NaCl at pH 2.4 
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Figure 4-10. Correlationsihp between partition coefficients of solutes and solvent volume fraction in 

Group 2 with 20wt% NaCl at pH 2.4 

 

 

Figure 4-11. Correlationsihp between partition coefficients of solutes and solvent volume fraction in 

Group 3 with 20wt% NaCl at pH 2.4 
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Mixed solvent in Group 2 is composed of DCM and 2-butanol. DCM is a non-polar small molecule, 

which prefers to interact with non-polar structure in molecules, such as the furan ring in 5-HMF. 2- 

butanol has high polarity with larger molecular size, and the hydroxyl group in its structure can act as 

hydrogen donor to form hydrogen bonds with 5-HMF. Adjust the molar ratio of these two solvents can 

affect their extraction performance. The organic solvents were mixed by volume ratio, and according to 

their molar weights and densities, the theoretical molar ratio and fractions can be determined. The 

calculation results are shown in Table 4-3. From the result and data in Table 4-3, we can find the suitable 

molar ratio for 5-HMF extraction in certain mixed solvent. In Entry 5, the molar fraction was about 11/8. 

Assuming that there is no selective solvation, the molar ratio in solvent shell was the same as that in bulk 

solvent. It means that, compared with 2-butanol, about 1.5 times DCM molecules exist in solvent shell. If 

selective solvation is taken into consideration, the results would be too sophisticated to be analyzed. With 

present results, the specific interactions between solutes and solvent molecules cannot be identified and 

explained accurately. It is concluded from our results that the behavior of mixed solvent in extraction was 

different from single solvent extraction and it was influenced by solvent mixing.  

 

Table 4-3. Theoretical molar ratio and fractions of mixed organic solvent in extraction with NaCl 

Group 

No. 

Solvent Entry 

No. 

Solvent 

volume ratio 

Theoretical 

molar ratio 

Molar 

fraction 

1 DCM-THF 

1 1 : 4 0.30 2/7 

2 1 : 1 1.19 6/5 

3 4 : 1 4.76 19/4 

2 DCM - 2-butanol 

4 1 : 4 0.34 1/3 

5 1 : 1 1.38 11/8 

6 4 : 1 5.51 11/2 

3 2-butanol -THF 

7 1 : 4 0.22 2/9 

8 1 : 1 0.86 6/7 

9 4 : 1 3.45 31/9 

 

4.4 Effect of pH value  

The pH effect on partition coefficient and separation factor with 20wt % NaCl at pH 2.0 and pH 2.4 are 

shown in Table 4-4.  According to the results in Table 4-4, when pH decreased from pH 2.4 to pH2.0, the 

average PHMF for each group did not change much for mixed solvent extraction of DCM with THF and 
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DCM with 2-butanol, but it decreased when a mixed solvent of THF and 2-butanol was employed. 

Levulinic acid extraction was improved by lower pH in mixed solvent extraction with DCM and THF and 

THF and 2-butanol. In mixed solvent extraction with DCM and 2-butanol, PLVA decreased with the lower 

pH. On average, furfural extraction was almost independent of pH value, since the changing rates were 

only 2% - 3%. Overall, pH had a stronger influence on levulinic acid extraction than 5-HMF and furfural.  

With a dissociation constant pKa of 4.59, the existing form of  levulinic acid in aqueous solution is 

affected by pH due to the dissociation of carboxyl group in its structure [133]. The existing excessive 

proton in solution of lower pH value could hinder the dissociation of carboxyl group in levulinic acid in 

acidic solution. Levulinic acid exists more as molecule at lower pH value, which tends to participate into 

organic phase much easier than disassociated ions with less electric charge. Therefore, it is more 

favorable to be extracted by an organic solvent in acidic solution. 5-HMF and furfural do not have 

functional groups which can undergo strong dissociation in their structures, so their partition between 

aqueous and organic phase did not depend on the pH. The dissociation of 5-HMF (pKa =12.82) was 

negligible under the pH range in this experiment and 5-HMF mainly existed in the form of molecules [3].  

 

Table 4-4. pH effect on partition coefficient in extraction with 20wt% NaCl (pH 2.0/pH 2.4) 

Group 

No. 
Solvent 

Entry 

No. 
PHMF ratio PLVA ratio PFF ratio S1 ratio* S2 ratio** 

1 DCM-THF 

1 0.97 1.22 1.02 0.79 0.95 

2 1.03 1.20 1.07 0.86 0.96 

3 1.05 1.36 0.98 0.77 1.07 

Average 1.02 1.26 1.03 0.81 0.99 

2 DCM-2-butanol 

4 1.00 0.53 1.07 1.89 0.94 

5 0.80 0.44 0.83 1.82 0.96 

6 1.04 0.85 1.03 1.23 1.01 

Average 0.95 0.60 0.97 1.65 0.97 

3 2-butanol-THF 

7 0.71 1.31 0.92 0.55 0.77 

8 0.97 1.23 1.02 0.78 0.95 

9 0.89 1.49 0.98 0.60 0.91 

Average 0.86 1.34 0.98 0.64 0.87 

* S1 ratio refers to the ratio of S1 in extraction at pH 2.0 to S1 in extraction at pH 2.4 with 20% NaCl. 

** S2 ratio refers to the ratio of S2 in extraction at pH 2.0 to S2 in extraction at pH 2.4 with 20% NaCl. 

 

These results can be verified by calculating the concentration of dissociated ions in solution with  

Henderson–Hasselbalch equation [134]. 
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   is a weak acid, which is able to release hydrogen ions via dissociation.       stands for the 

concentration of dissociated ions of   ,       is the concentration of molecule form of   . The initial 

total molecule concentration of    is denoted as      . 
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For 5-HMF,           , when pH = 2.0 and 2.4 respectively,  
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In Eq.(29) and (30),  compared to the number with magnitude of 10
10

 on the right side,    on the left side 

is negligible. Then we got 

     
        

                   (31) 

     
        

                   (32) 

Form the simplified results above, one can get the conclusion that although  

        

        
             (33) 

Compared with initial concentration of      , an variation in       is still too small to show significant 

influence on extraction performance.   

For levulinic acid,          

     (
     

        
  )                    (34) 

     (
     

        
  )                    (35) 
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After calculation, one gets 

     
        

               (36) 

     
        

               (37) 

For levulinic acid, 
        

        
 has the same magnitude of 2.5 as the results from 5-HMF. However, the 

absolute concentration difference between          and          are much greater than that of 5-HMF. 

This calculation is one supporting verification of the experimental result that pH has a great influence on 

levulinic acid extraction.  

In Table 4-4, separation factors between 5-HMF and levulinic acid S1 was affected by pH change greater 

than separation factors between 5-HMF and furfural S2 on average. This is because, as discussed above, 

PLVA involved in this separation factor was affected greater by pH change. When pH decreased from 2.4 

to 2.0, all average separation factors decreased except for S1 using mixed solvent extraction with DCM 

and 2-butanol. It implies that adjusting pH from 2.4 to 2.0 is not an effective way to improve 5-HMF 

separation with levulinic acid and furfural.  

4.5 Effect of NaCl concentration  

4.5.1 Effect of NaCl concentration on extraction   

Table 4-5 summarizes the effect of NaCl concentration on the extraction performance, which shows that 

partition coefficients of all three solutes increased with NaCl concentration. This is consistent with 

‘salting-out effect’ theory, and similar phenomenon has been reported for 5-HMF extraction with 1-

butanol and 2-butanol carried out by Dumesic et al. [105].  

Table 4-5 shows that different solutes had different sensitivities to NaCl concentration, and the same 

solute had different sensitivities in extraction with different solvents. This was attributed most likely to 

the complex interactions among water, solute, solvent molecules and salt. These interactions include 

hydrogen bonds, solvation of solvent and solute molecules, and solvation of salt ions. The extraction 

performances were influenced by the properties of both solvents and solutes. As mentioned above, 

‘salting-out effect’ is attributed to the solvation of salt ions, which makes water molecule unavailable to 

solute molecules [135]. Among the three solutes used herein, levulinic acid has the strongest interaction 

with water. Hydrogen bonds can be formed between its carboxyl group and water molecules, and its 

dissociated ions can be solvated by water. Both of these two types of interactions can be weakened by the 

presence of NaCl. Although the hydroxyl group in 5-HMF also is able to be dissociated, it is much more 
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difficult than that of levulinic acid. Therefore, the partition coefficients of levulinic acid were affected by 

NaCl concentration most significantly.  

 

Table 4-5. NaCl concentration effect on partition coefficients at pH 2.4 (20wt% NaCl/10wt% NaCl) 

Group 

No. 
Solvent Entry No. PHMF ratio PLVA ratio PFF ratio S1 ratio* S2 ratio** 

1 DCM-THF 

1 1.50 1.66 1.43 0.90 1.05 

2 1.50 1.35 1.45 1.11 1.03 

3 1.29 1.13 1.25 1.14 1.03 

Average 1.43 1.38 1.38 1.05 1.04 

2 
DCM-2-

butanol 

4 1.49 2.00 1.42 0.75 1.05 

5 1.53 1.57 1.42 0.97 1.07 

6 1.53 1.99 1.31 0.77 1.17 

Average 1.51 1.85 1.38 0.83 1.10 

3 
2-butanol-

THF 

7 1.81 1.68 1.84 1.08 0.99 

8 1.58 1.4 1.58 1.13 1.00 

9 1.47 0.93 1.44 1.58 1.02 

Average 1.62 1.34 1.62 1.26 1.00 

* S1 ratio refers to the ratio of S1 in extraction with 20% NaCl to S1 in extraction with 10%NaCl at pH 2.4. 

** S2 ratio refers to the ratio of S2 in extraction with 20% NaCl to S2 in extraction with 10%NaCl at pH 2.4. 

 

For the mixed solvent extraction of DCM with THF mixed solvent, there were only aprotic organic 

solvents, in which different solutes exhibited similar sensitivity to NaCl concentration change. For the 

mixed solvent extraction of DCM and 2-butanol, the increase of NaCl concentration resulted in higher 

extraction selectivity for levulinic acid. Considering the ‘like-dissolves-like’ theory [131], it can be 

deduced from this result that in this group 2-butanol had dominant effect on partition coefficient with the 

increase of NaCl concentration. However, in mixed solvent extraction with THF and 2-butanol, 5-HMF 

and furfural gave higher sensitivity than levulinic acid. This means that THF exerted the dominant effect 

on the increase of partition coefficients with NaCl concentration here. This is because the solubility of 

THF in aqueous solution depended on NaCl concentration. At a higher concentration of NaCl, less THF 

was able to exist in aqueous phase and more THF was forced to move into the organic phase. Since the 

existence of THF in organic phase is favorable for the extraction of solutes with furan ring in its structure, 

5-HMF and furfural were more favorable to be extracted than levulinic acid with higher NaCl 

concentration. It also can be verified by the results in mixed solvent extraction using DCM and THF, in 

which 5-HMF and furfural exhibited slightly greater sensitivity than levulinic acid in Entry 2 and 3.  
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4.5.2 Effect of NaCl concentration on separation   

Table 4-5 also showed that for mixed solvent extraction with DCM and THF, S2 remained almost the 

same, while the S2 varied from -10% to 14%.  In mixed solvent extraction with DCM and 2-butanol, S2 

increased from 5% to 17% and S1 decreased from 3% 25%. In mixed solvent extraction with THF and 2-

butanol, S1 increased from 8% to 58%, whereas S2 almost remained the same. It can be summarized that 

high NaCl concentration always benefited 5-HMF extraction, but it was not the case for the separation of 

5-HMF from other compounds. The separation factor between 5-HMF and levulinic acid increased most 

significantly for mixed solvent extraction with THF and 2-butanol.  

An increase in NaCl concentration improved the separation of 5-HMF and levulinic acid in mixed solvent 

extraction of DCM with THF and 2-butanol with THF, but exhibited negative effect in mixed solvent 

extraction of DCM with 2-butanol. Meanwhile, NaCl concentration only displayed slight influence on 

separation of 5-HMF and furfural. 

4.6 Organic solvent recovery  

Extraction systems with different solvents mixture had different solvent recovery rates, as shown in Table 

4-6. The recovery rate of organic solvent did not have a simple proportional relationship with their 

individual solubility in water. Although mixed solvent of DCM and 2-butanol had the outstanding 

performance in the extraction and separation of 5-HMF, its solvent recovery is the lowest. Only around 

90% of the solvent could be recovered with mixed solvent extraction with DCM and THF, as well as with 

DCM and 2-butanol. 

There are two factors affecting the solvent recovery rate. One is the evaporation of organic solvent. 

Solvent with higher vapor pressure tended to lose larger volume via evaporation. Therefore, the mixed 

solvent with DCM in it showed a lower solvent recovery rate on average. The other factor is the mutual 

solubility of organic solvent with water. In many organic solvent-salt–water systems, although the 

‘salting-out effect’ enhances the phase separation of aqueous solution and organic solvent, there is still a 

certain amount of organic solvent dissolved in the aqueous phase [136]. The low recovery rate of organic 

solvent in mixed solvent extraction with DCM and 2-butanol might be caused by the strong interaction 

between 2-butanol with water through hydrogen bonds.  

It has also been proven that DCM, 2-butanol and THF are all able to form hydrogen bonds with water 

molecules [125, 137, 138]. With a higher concentration of NaCl, water molecules tended to be occupied 

by NaCl solvation instead of solvation of solutes. Therefore, more organic solvent molecules were likely 

released from hydrogen bond connection with water, and it was supposed to give a higher solvent 

recovery rate with a higher concentration of NaCl. However, only mixed solvent extraction with DCM 
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and THF achieved higher solvent recovery rate with 20wt% NaCl than that with 10wt% NaCl. Using 

mixed solvent of DCM with 2-butanol and THF with 2-butanol, the solvent recovery rates decreased, both 

for 20% NaCl. It was reported that in water-2-butanol-NaCl system, 2-butanol can form Na+(2-

BuOH)2Cl− complex with an equilibrium constant of 0.11 [139], which will enhance the retention of 2-

butanol in the aqueous solution. The phenomenon that extraction with higher a NaCl concentration gave a 

lower solvent recovery rate might imply the existence of Na+(2-BuOH)2Cl− complex in the extraction 

system. With 20wt% NaCl, more Na+(2-BuOH)2Cl− complex could be formed, which results in more 2-

butanol retained in the aqueous phase and the lower organic solvent recovery rate in extraction with 

20wt% NaCl than that in extraction with 10wt% NaCl. 

 

Table 4-6.  Solvent recovery rate with 20wt% NaCl at pH 2.4 

Group 

No. 

Solvent Entry No. with 20wt% at 

pH 2.4/ % 

with 10wt% at 

pH 2.4/ % 

1 DCM-THF 1 92 86 

  2 90 94 

  3 96 88 

  Average 93 89 

2 DCM-2-butanol 4 90 92 

  5 82 84 

  6 92 92 

  Average 88 89 

3 2-butanol-THF 7 96 98 

  8 96 96 

  9 92 98 

  Average 95 97 
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Chapter 5 

Conclusions and recommendations for future work 

It was found that the extraction of 5-HMf using organic solvents was influenced by several factors, 

including solvent polarity, solvent molecule structure, and solvent hydrogen donating feature. For single 

solvents, high polarity was favorable for 5-HMF extraction. However, high polarity also created the 

conflict between extraction and separation of 5-HMF and levulinic acid. Compared with single solvent 

extraction, mixed solvent extraction gave better performance for 5-HMF extraction than that with single 

solvents. In mixed solvent extraction, the partition coefficients of solutes did not always show the simple 

correlation with solvent polarity. The extraction capacities of mixed solvents did not behave 

independently in mixed solvents, although the partition coefficients of solutes displayed linear correlation 

with solvent mixing fraction in some mixed solvent groups. Their extraction capacities were affected by 

mixing, and exhibited a complicated relationship with solvent mixing ratio.  

Among three groups, higher partition coefficient of 5-HMF, better separation of 5-HMF with furfural, 

higher 5-HMF purity in product and a higher solvent recovery rate were achieved by mixed solvent 

extraction with THF and 2-butanol. In this group, entry 7 (v/v for 2-butanol:THF = 1:4) is the most 

favorable solvent combination for 5-HMF extraction. It can be summarized that considering extraction 

and separation performance together, extraction with 20wt% NaCl at pH 2.4 is the favorable condition for 

5-HMF extraction.  

Increasing NaCl concentration significantly increased the partition coefficients of all three solutes due to 

‘salting-out’ effect. However, the separation factors between 5-HMF with levulinic acid and furfural were 

not improved significantly. Adjusting pH level in a small range had a strong influence on the partition 

coefficients of levulinic acid, but not for 5-HMF or furfural. Therefore, the separation factors between 5-

HMF and levulinic acid were influenced more significantly than the separation factors between 5-HMF 

and furfural. After extraction, around 90% of applied organic solvent could be recovered, which makes 

this process economically feasible.  

Recommendations for future work include investigating the special behavior of mixed solvent of DCM 

and 2-butanol in 5-HMF extraction, applying mixed solvent in real hydrothermal conversion product and 

two-phasic 5-HMF synthesis system to test their extraction capacity for the simultaneous extraction of 5-

HMF during reaction.  
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Appendix  

Table A-1. PHMF, PLVA, PFF, separation factors and purification of 5-HMF after extraction with 20wt% NaCl at pH 2.4 

Entry 

No. 

Organic solvent PHMF Stedv. 

of PHMF 

PLVA Stedv. 

of PLVA 

PFF Stedv. 

of PFF 

RHMF 

(%) 

RLVA 

(%) 

RFF 

(%) 

Purity of  

5-HMF (%) 

S1 S2 

1 DCM+THF/1:4 4.50 10.1% 2.20 4.4% 15.31 33.6% 81.8 68.8 93.9 75.7 2.04 0.29 

2 DCM+THF /1:1 3.48 24.4% 1.48 8.1% 17.50 59.7% 77.7 59.7 94.6 75.3 2.35 0.20 

3 DCM+THF/4:1 2.32 0.2% 0.81 2.9% 22.47 73.0% 69.9 44.8 95.7 74.2 2.86 0.10 

4 DCM+2-B/1:4 5.14 16.5% 3.61 71.9% 11.58 23.5% 83.7 78.3 92.1 75.7 1.42 0.44 

5 DCM+2-B/1:1 6.87 0.1% 3.71 13.7% 22.60 57.6% 87.3 78.8 95.8 75.9 1.85 0.30 

6 DCM+2-B/4:1 3.86 8.0% 2.05 30.8% 26.83 98.1% 79.4 67.2 96.4 74.9 1.88 0.14 

7 2-B +THF/1:4 6.87 12.5% 3.69 0.8% 14.53 13.0% 87.3 78.7 93.6 76.3 1.86 0.47 

8 2-B +THF /1:1 5.48 21.3% 2.87 6.2% 11.24 41.0% 84.6 74.2 91.8 76.2 1.91 0.49 

9 2-B +THF /4:1 4.06 2.4% 1.61 80.8% 8.13 5.4% 80.2 61.7 89.1 76.6 2.52 0.50 

10 THF 5.95 2.8% 3.956 6.6% 14.12 45.4% 85.6 79.8 93.4 75.9 1.50 0.42 

11 2-Butanol 3.965 0.9% 2.90 2.4% 4.98 10.0% 79.9 74.4 83.3 76.4 1.37 0.80 

12 DCM 1.08 2.4% - 0.22 0.3% 31.22 28.9% 52.0 - 96.9 - - 0.03 
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Table A-2. PHMF, PLVA, PFF, separation factors and purification of 5-HMF after extraction with 10wt% NaCl at pH 2.4 

Entry 

No. 

Organic solvent PHMF Stedv. 

of PHMF 

PLVA Stedv. 

of PLVA 

PFF Stedv. 

of PFF 

RHMF 

(%) 

RLVA 

(%) 

RFF 

(%) 

Purity of  

5-HMF (%) 

S1 S2 

1 DCM+THF/1:4 3.00 6.1% 1.33 19.1% 10.68 18.8% 75.0 57.0 91.4 74.3 2.26 0.28 

2 DCM+THF /1:1 2.32 6.7% 1.09 14.3% 12.09 16.9% 69.9 52.3 92.4 73.5 2.12 0.19 

3 DCM+THF/4:1 1.80 3.3% 0.72 1.1% 17.93 2.3% 64.3 41.8 94.7 73.1 2.52 0.10 

4 DCM+2-B/1:4 3.45 8.9% 1.81 4.7% 8.16 26.6% 77.6 64.4 89.1 74.3 1.91 0.42 

5 DCM+2-B/1:1 4.49 39.0% 2.35 21.0% 15.87 160.3% 81.8 70.2 94.1 74.0 1.91 0.28 

6 DCM+2-B/4:1 2.53 1.5% 1.03 1.7% 20.50 0.0% 71.7 50.8 95.3 73.8 2.45 0.12 

7 2-B +THF/1:4 3.78 4.4% 2.19 2.4% 7.90 14.1% 79.1 68.7 88.8 74.2 1.73 0.48 

8 2-B +THF /1:1 3.48 5.3% 2.05 1.2% 7.10 10.3% 77.7 67.2 87.7 74.1 1.70 0.49 

9 2-B +THF /4:1 2.76 6.7% 1.72 6.7% 5.63 11.5% 73.4 63.3 84.9 73.9 1.60 0.49 
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Table A-3. PHMF, PLVA, PFF, separation factors and purification of 5-HMF after extraction with 20wt% NaCl at pH 2.0 

Entry 

No. 

Organic solvent PHMF Stedv. 

of PHMF 

PLVA Stedv. 

of PLVA 

PFF Stedv. 

of PFF 

RHMF 

(%) 

RLVA 

(%) 

RFF 

(%) 

Purity of  

5-HMF (%) 

S1 S2 

1 DCM+THF/1:4 4.35 1.1% 2.69 5.0% 15.67 109.6% 81.3 72.9 94.0 83.2 1.62 0.28 

2 DCM+THF /1:1 3.58 0.4% 1.78 7.9% 18.69 98.6% 78.2 64.0 94.9 82.9 2.01 0.19 

3 DCM+THF/4:1 2.44 1.3% 1.11 1.5% 22.13 72.1% 71.0 52.6 95.7 82.0 2.21 0.11 

4 DCM+2-B/1:4 5.13 2.7% 1.91 40.0% 12.34 113.8% 83.7 65.6 92.5 84.1 2.69 0.42 

5 DCM+2-B/1:1 5.47 5.6% 1.62 12.6% 18.70 54.7% 84.5 61.8 94.9 84.1 3.38 0.29 

6 DCM+2-B/4:1 4.02 0.4% 1.73 5.1% 27.56 105.7% 80.1 63.4 96.5 83.1 2.32 0.15 

7 2-B +THF/1:4 4.89 0.8% 4.82 8.3% 13.42 44.0% 83.0 82.8 93.1 83.2 1.01 0.36 

8 2-B +THF /1:1 5.30 1.5% 3.54 7.5% 11.49 42.4% 84.1 78.0 92.0 83.7 1.50 0.46 

9 2-B +THF /4:1 3.62 3.2% 2.39 24.2% 8.01 27.4% 78.3 70.5 88.9 83.4 1.51 0.45 
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Table A-4. Solvent recovery rate with 20wt% NaCl at pH 2.4 

Entry No. Organic solvent Vorg (mL) Vaq (mL) Total volume 

(mL) 

Solvent 

recover rate 

1 DCM+THF/1:4 2.30 2.60 4.90 92.0% 

2 DCM+THF /1:1 2.25 2.30 4.55 90.0% 

3 DCM+THF/4:1 2.40 2.25 4.65 96.0% 

 Group 1 Average 2.32 2.38 4.70 92.7% 

4 DCM+2-B/1:4 2.25 2.45 4.70 90.0% 

5 DCM+2-B/1:1 2.05 2.45 4.50 82.0% 

6 DCM+2-B/4:1 2.30 2.25 4.55 92.0% 

 Group 2 Average 2.20 2.38 4.58 88.0% 

7 2-B +THF/1:4 2.40 2.40 4.80 96.0% 

8 2-B +THF /1:1 2.40 2.45 4.85 96.0% 

9 2-B +THF /4:1 2.30 2.55 4.85 92.0% 

 Group 3 Average 2.37 2.47 4.83 94.7% 
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Table A-5. Solvent recovery rate with 10wt% NaCl at pH 2.4 

Entry No. Organic solvent Vorg (mL) Vaq (mL) Total volume 

(mL) 

Solvent 

recover rate 

1 DCM+THF/1:4 2.15 2.65 4.80 86.0% 

2 DCM+THF /1:1 2.35 2.35 4.70 94.0% 

3 DCM+THF/4:1 2.20 2.15 4.35 88.0% 

 Group 1 Average 2.23 2.38 4.62 89.3% 

4 DCM+2-B/1:4 2.30 2.40 4.70 92.0% 

5 DCM+2-B/1:1 2.10 2.45 4.55 84.0% 

6 DCM+2-B/4:1 2.30 2.30 4.60 92.0% 

 Group 2 Average 2.23 2.38 4.62 89.3% 

7 2-B +THF/1:4 2.45 2.40 4.85 98.0% 

8 2-B +THF /1:1 2.40 2.35 4.75 96.0% 

9 2-B +THF /4:1 2.45 2.45 4.90 98.0% 

 Group 3 Average 2.43 2.40 4.83 97.3% 
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