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Abstract 

Semantic Web and Linked Data community is now the reality of the future of the Web. The standards 

and technologies defined in this field have opened a strong pathway towards a new era of knowledge 

management and representation for the computing world. The data structures and the semantic 

formats introduced by the Semantic Web standards offer a platform for all the data and knowledge 

providers in the world to present their information in a free, publicly available, semantically tagged, 

inter-linked, and machine-readable structure. As a result, the adaptation of the Semantic Web 

standards by data providers creates numerous opportunities for development of new applications 

which were not possible or, at best, hardly achievable using the current state of Web which is mostly 

consisted of unstructured or semi-structured data with minimal semantic metadata attached tailored 

mainly for human-readability. 

This dissertation tries to introduce a framework for effective analysis of the Semantic Web data 

towards the development of solutions for a series of related applications. In order to achieve such 

framework, Wikipedia is chosen as the main knowledge resource largely due to the fact that it is the 

main and central dataset in Linked Data community. In this work, Wikipedia and its Semantic Web 

version DBpedia are used to create a semantic graph which constitutes the knowledgebase and the 

back-end foundation of the framework. The semantic graph introduced in this research consists of two 

main concepts: entities and topics. The entities act as the knowledge items while topics create the 

class hierarchy of the knowledge items. Therefore, by assigning entities to various topics, the 

semantic graph presents all the knowledge items in a categorized hierarchy ready for further 

processing. 

Furthermore, this dissertation introduces various analysis algorithms over entity and topic graphs 

which can be used in a variety of applications, especially in natural language understanding and 

knowledge management fields. After explaining the details of the analysis algorithms, a number of 

possible applications are presented and potential solutions to these applications are provided. The 

main themes of these applications are entity detection, topic identification, and context acquisition. 

To demonstrate the efficiency of the framework algorithms, some of the applications are developed 

and comprehensively studied by providing detailed experimental results which are compared with 

appropriate benchmarks. These results show how the framework can be used in different 

configurations and how different parameters affect the performance of the algorithms. 
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Chapter 1 
Introduction 

1.1 Background 

To believe Sir Tim Berners-Lee, the inventor of World Wide Web as we know it today, the future of 

the web – often called Web 3.0 – is and should be the Semantic Web [1]. In his TED talk [2] in 2009, 

he appealed to the people of the world to make Semantic Web a reality by sharing their data on the 

web rather than just sharing their documents. The world has, since then, answered his call by 

providing a huge and ever-growing flow of open data, creating the largest free, publicly available, 

semantically tagged, inter-linked, and machine-readable collection of structured data on the Internet 

called Linked Data [3, 4]. 

Linked Data is the heart of the Semantic Web. Although the two terms are often used 

interchangeably, the relationship between Linked Data and the Semantic Web is a matter of different 

opinions. While most people view the Semantic Web as the whole and Linked Data as the parts 

making up the whole, some believe Linked Data is the appropriate implementation of the Semantic 

Web concepts. To quote Sir Berners-Lee again, “Linked Data is the Semantic Web done right” [5]. 

To be more specific, Linked Data consists of a collection of different data structures provided by 

different organization. These data, however, have been carefully tagged in a manner which has made 

them machine-readable and linked to other parts of the Linked Data collection. Such design has 

provided unique opportunities for both research and practical applications. This dissertation attempts 

to exploit the inner-most core of the Linked Data, Wikipedia, in order to demonstrate the possibilities 

created by Linked Data. 

One of the earliest adaptations and transformations of the conventional Web into the Semantic Web 

is none other than Wikipedia [6]. Wikipedia is a free encyclopedia of general knowledge which has 

been created by the global collaboration of writers; it includes articles about a vast variety of 

knowledge items in multiple languages and is supported by the non-profit Wikimedia Foundation. 

While Wikipedia is written and structured for human use, it has been an early subject of 

transformation to its Semantic Web counterpart called DBpedia [7]. In January 2007, DBpedia was 

initially released by people from the Free University of Berlin and the University of Leipzig in 

collaboration with OpenLink Software Incorporated. Since then, DBpedia has become the center of 

gravity for all other databases that join the Semantic Web community. DBpedia has converted the 
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unstructured (or semi-structured) Wikipedia articles into the Semantic Web structured ontology 

standard called Resource Description Framework (RDF) [8]. RDF can simply be represented as a list 

of subject, predicate, and object triples. These triples, as will be shown later on, form a graph of 

knowledge items which are semantically connected to one another. It is these RDF graphs and certain 

sub-graphs which are the subject of attention and analysis of the presented work here. 

The goal of this dissertation is to highlight the resources available from Linked Data, specifically 

DBpedia. The work presented here attempts to demonstrate how the semantic graph of 

Wikipedia/DBpedia can be utilized and depict certain applications resulting from the efforts. The 

main focus of the work is to introduce the graph-based analysis of semantic data and the solutions 

made possible by such analysis. Among the various solutions introduced, the entity detection and 

topic identification applications are the experimental venue which this work ventures into exploring 

more deeply and provides a comprehensive analysis of their affecting parameters. 

1.2 Motivations 

The motivation behind this work is mainly driven by the expanding interest and a recent increase in 

research based on the provided resources of the Linked Data.  Chapter 2 presents a list of literature 

work on the topics of the Semantic Web, Linked Data, and their applications in text analytics. 

Specifically, it focuses on the use of Wikipedia in topic identification, the main theme of this 

dissertation. The interesting notion, however, is that while the official introduction of the concepts of 

Semantic Web [1] and the launch of Wikipedia were both initiated in 2001, it was only recently that 

researchers paid particular attention to the uses of Wikipedia in semantic challenges. Shortly after the 

first formulation, of how Linked Data should be designed, was presented in 2006 [3] and the launch 

of DBpedia in 2007, the research work using Wikipedia in text analytics started to show up more and 

more in literature and the number of publications has kept growing to this date. This is a positive 

indicator of the value of Linked Data, how it can produce opportunities that were previously 

impossible (or nearly so), and the effect it has brought to the text analytics community. 

Another factor in motivating the author to pursue the presented topic is the project that jumpstarted 

the research. In early 2007, the Speech and Concept Understanding research team at the University of 

Waterloo’s Centre for Pattern Analysis and Machine Intelligence (UW CPAMI) undertook a project 

called Parla Search Engine. The goal of the project was to design a smart search engine for 

multimedia content. The Parla project consisted of multiple components, from automatic speech 
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recognition to information retrieval.  The component which started the research of this dissertation 

was called Web Query Categorization (WQC) or Query Topic Identification (QTI). The WQC target 

was to recognize the user’s topic of interest based on his query, filter out the search engine results, 

and tailor it to match that topic. The exact details of the project and WQC component are explained 

later on in  Chapter 3. 

Finally, venturing into open problems from a novel point of view and a different direction along 

with scientific curiosity were most certainly forces behind motivating the research. There is a wide 

range of applications and problems to which the methods presented in this work can be applied. Some 

of these problems have been offered solutions from other directions, such as statistical approaches, 

and some would still need more research work. The new ground opened up by Linked Data resources 

is a tempting opportunity for innovation and the candidate has tried to take advantage of a portion of 

these resources hoping to provide a framework for future work and development of further innovative 

approaches. 

1.3 Problem Domain and Contributions 

In very generic terms, the scope of the dissertation is providing graph-based analysis of various text 

analytics topics using Linked Data resources. Since such a domain can be quite extensive, a certain 

core methodology is showcased which can easily be adapted to different applications and problems. 

In  Chapter 3, some of these applications are described and, subsequently, a possible adaptation of the 

core methodology is presented as an example of how to tackle each of these specific problems. While 

being flexible to manage those applications, the presented methodology contains a number of key 

ingredients which are relied upon in each and every case. The main contribution of the thesis is to 

introduce a mentality blueprint of how to use these key ingredients to create proper solutions for 

various problems in this domain. In other words, the main contribution of the thesis is that it 

introduces a number of tools and demonstrates how these tools can be coupled together, albeit to 

different degrees in various cases, to tackle different problems.  

The three key ingredients of the presented methodology are: 

1. Semantic Graph Knowledgebase 

2. Entity Detection 

3. Semantic Analysis 
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These three ingredients are the general pillars of the proposed methodology. Each of them, 

however, has a number of sub-domains which are the tunable components making the methodology 

flexible to fit diverse problems. In  Chapter 3, each of these components is explained in details and 

proper discussion is followed on how and when to use each component to best effect. These 

discussions constitute another contribution of this dissertation. 

Following the description of methodology components, a list of the possible uses of the presented 

framework is offered. These applications are a small portion of possibilities brought upon by the 

ingredients mentioned above. Nevertheless, these applications render a sufficiently complete picture 

of what the problem domain is and how it can be undertaken. For each application, a possible solution 

is offered. The solution, however, is neither unique nor ideal as there are often too many parameters 

for each problem to consider. In order to demonstrate how these parameters affect the problem 

domain and how the solution should be evolved to match the problem, one specific application, Query 

Topic Identification, is studied in greater detail. The application has been analyzed thoroughly and the 

effects of each important factor have been examined. The experimental results of this study are then 

presented in  Chapter 4. As a secondary problem, a small but intrinsically different application, Speech 

Recognition, is also introduced, studied, and empirically presented. These two experimental studies 

aim to showcase how the methodology can contribute to real-world problems. It is noteworthy to 

consider that both of these problems have been previously tackled by other methods; therefore, the 

methodology of this dissertation grants new perspectives and brings about balance by showing how 

the Semantic Web and Linked Data can complement the existing methods in domains which 

historically were handled by other means. 

1.4 Organization of the Dissertation 

The rest of this dissertation is organized as follows.  Chapter 2 presents a review of the literature 

related to the scope of this thesis. It starts by presenting a background into the Semantic Web and its 

various technologies. Then, a description of Linked Data is provided along with guidelines on how to 

migrate to Linked Data as a realization of the Semantic Web. Finally, a brief look into Wikipedia uses 

in various problems pertaining to the topic of this thesis is presented. 

 Chapter 3 portrays the core methodology of this dissertation. It starts by explaining the structure of 

Wikipedia and DBpedia. Subsequently, it will describe the three key ingredients of the framework 
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mentioned earlier, namely: Semantic Graph, Entity Detection, and Semantic Analysis. For each of 

these components, a number of sub-components are introduced and their uses are justified. Finally, a 

number of applications using the aforementioned framework are presented and a potential solution for 

each application is discussed. The first of these applications is the Parla project introduced earlier 

which motivated and initiated this thesis. 

 Chapter 4 demonstrates the experimental results of two studies in greater details: Query Topic 

Identification and Speech Recognition. Lastly,  Chapter 5 will summarize and conclude the 

dissertation and provides some insight into possible future research on the topic.  
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Chapter 2 
Background and Literature Review  

2.1 Semantic Web 

The methodology and framework proposed in this work heavily rely upon the Semantic Web 

framework and Linked Data resources. Thus, it is proper to briefly introduce the technology and 

provide some essential details used in this work. The Semantic Web, initiated and overseen by Tim 

Berners-Lee, is a collaborative movement led by the international standards body, the World Wide 

Web Consortium (W3C) [1]. As stated by W3C, Semantic Web mainly revolves around two issues: 

“common formats for integration and combination of data drawn from diverse sources” and “the 

language for recording how the data relates to real world objects” [9]. The goal of this movement is to 

convert the current state of the web, which mostly consists of unstructured or semi-structured 

documents, to a web of structured, semantically-tagged data. In order to achieve this task, a certain set 

of standards are proposed by the Semantic Web. The following provides a brief look inside the 

structure of the Semantic Web and some of its important components. 

2.1.1 General Structure 

In general, Semantic Web has a multi-layered architecture which consists of the data accompanied by 

semantics and reasoning tools. In order to make the Semantic Web work properly, web developers 

should be able to: have a common language to communicate and share their data, provide meaning 

and context for their data, and provide their reasoning schemes for further processing of their data. 

These three requirements are the reasons behind many of the layers designed for the Semantic Web. 

There are a few other layers, as well, which are mostly related to the front-end areas, such as user 

interface and applications. Figure  2.1 (a) shows the most famous structure for Semantic Web, 

originally presented in Tim Berners-Lee’s talk in 2002, called the layer cake and has since evolved to 

cover new languages and components. Figure  2.1 (b) shows the updated version of the structure 

which has remained more or less the same since 2007. 

2.1.2 URI/IRI 

The Uniform Resource Identifier (URI) is the main and fundamental platform for the Semantic Web. 

URIs, as the name suggests, are strings of characters that identify resources over a network, mainly 

the World Wide Web. URIs have the capacity to be dereferenced and allow for the unambiguous 



 

 7 

identification of resources. All web page Uniform Resource Locators (URLs) are examples of URIs. 

However, URIs can be used for defining other concepts beside location of web pages. For instance, 

the URI <http://www.w3.org/2002/07/owl#Thing> defines the concept “Thing” which is the most 

general concept used in semantic hierarchies. Some developers provide corresponding URLs for the 

URIs they define and the web page pointed by the corresponding URL provides human-readable 

information about the URI. For instance, <http://dbpedia.org/page/Life> is a URL for a page 

which provides further information about the resource known by URI: 

<http://dbpedia.org/resource/Life>. 

 
Figure  2.1: The layer cake [10, 11]. 

 

The upper level layers of the Semantic Web, specifically RDF, use URIs in their formats. The 

upper layers also incorporated Unicode to accommodate different character sets. However, since 

Internationalized Resource Identifiers (IRI), the latest extension of URIs, permit the use of full 

Unicode [12], the Unicode has been removed from latest version of the structure. 

2.1.3 XML 

The basic need for web developers in creating Semantic Web is data exchange and communication. 

Fortunately, because of XML [13] and its global approval from the web community, all developers 

agreed to use it as the common language to exchange data. The interoperability of XML provided a 
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framework for developers to free themselves from previous rigid formats and to be able to express the 

semantics and their relationships much more easily [14]. As a result, all the other languages used in 

Semantic Web are built on top of XML [15]; as such these languages use XML syntax making XML 

a meta-language [16]. Moreover, XML Schema and Namespaces provide the capability of defining 

categories and structures within XML itself [16]. 

2.1.4 RDF 

While XML provides a very flexible syntax for data exchange and XML Schema defines the data 

structure, neither can provide the framework capabilities which RDF offers: expressing semantics for 

the data. Designed similar to the classical conceptual modeling techniques such as entity-relationship 

or class diagrams, the W3C recommended language for expressing semantics is RDF [8]. According 

to W3C timeline, the first draft of RDF was released back in October 1997 [17]. W3C released the 

final version of the RDF in 2004 as a recommendation called RDF primer [18]. There is also an 

interest group called Semantic Web Interest Group [19], formerly known as RDF Interest Group [20], 

which serves as a public forum to discuss the use and development of the Semantic Web concepts 

including RDF. The final specifications for RDF can be found in a set of six documents called primer, 

syntax, semantics, vocabulary, concepts and test cases, found at [21]. 

The basic structure of RDF is rather simple: It merely consists of a set of triplets in the form of 

(Subject, Predicate, Object). Subject and Predicate are resources defined by URIs while Object can be 

either a URI or a literal [14]. This simple structure creates a set of entries which are, in fact, 

presentable as a directed graph called a semantic network. Figure  2.2 shows such a network for a 

simple example adopted from RDF Primer [18]. 

In this example, the RDF describes a resource which is about a certain person identified by the 

URI: <http://www.w3.org/People/EM/contact#me> whose name is “Eric Miller”, email address is 

em@w3.org, and title is “Dr.”. In this scenario, the resource URI indicated above is the subject. “Eric 

Miller”, em@w3.org, and “Dr.” are the objects. The predicates for these objects are respectively: 

“whose name is”, “whose email address is”, and “whose title is”. However, these predicates should be 

presented in URI form. The following shows the URIs for each predicate: 

• "whose name is" as <http://www.w3.org/2000/10/swap/pim/contact#fullName> 

• "whose email address is" as <http://www.w3.org/2000/10/swap/pim/contact#mailbox> 

• "whose title is" as <http://www.w3.org/2000/10/swap/pim/contact#personalTitle> 
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Figure  2.2: A sample RDF graph (semantic network). 

 

There is also another relationship which indicates that the subject being described in this example 

has a type defined by URI: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> and the type 

is a Person defined by URI: <http://www.w3.org/2000/10/swap/pim/contact#Person>. Note 

that the definition of the type as the predicate is a standard RDF URI which means it can be 

unambiguously parsed by RDF parsers; however, the definition of a Person, for instance, uses a local 

semantic RDF definition. Such local RDF descriptions can be further refined by the provider of this 

RDF sample using predicates that equate the local definition of the person with a globally known 

URI. 

Figure  2.3 shows the RDF code corresponding to this example. Note that in this code, XML 

namespaces are used to shorten the common URI prefixes. For instance, the namespace 

xmlns:contact is defined as <http://www.w3.org/2000/10/swap/pim/contact#> which means 

that contact:Person is equal to <http://www.w3.org/2000/10/swap/pim/contact#Person>. 

Also note that using contact:Person as the starting tag implies the type relation in RDF parser rules 

and, therefore, the type association can be omitted. 
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Figure  2.3: A sample RDF code. 

 

Finally, the above RDF example can be described in triple format. The triple format is a simple and 

commonly used method of expressing RDF data. Table  2.1 shows four triples, each accounting for an 

edge in the RDF graph of Figure  2.2. When recorded in a file, each triple row is terminated by a blank 

space character followed by a period. 

Table  2.1: A sample RDF description in triples format. 
Subject Predicate Object 

<http://www.w3.org/People/EM/contact#me> rdf:type contact:Person 

<http://www.w3.org/People/EM/contact#me> contact:fullName “Eric Miller” 
<http://www.w3.org/People/EM/contact#me> contact:mailbox mailto:em@w3.org 

<http://www.w3.org/People/EM/contact#me> contact:personalTitle “Dr.” 

 

In the above table, the subject URI is presented in its full form. However, the other columns use 

namespaces to indicate the URIs (note that mailto: is not a namespace, but rather an identifier such as 

http:). Table  2.2 lists a number of namespaces frequently used in Semantic Web community for 

resource definition along with a few namespaces for largely used data sources such as DBpedia. 

2.1.5 Ontology 

Providing semantics for data is not enough to guarantee data is understandable by various parties. 

Each party may use different identifiers or resources to describe a single term [1]. In order to 

complement the semantic circle, each party has to provide a vocabulary of terms and a set of 

inference rules so that other parties can comprehend the semantics used and, if necessary, deduct new 

semantics using the set of rules. This collection of vocabulary and rules is called ontology. 
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Table  2.2: Common namespace prefixes and corresponding URIs. 
Namespace Prefix Namespace URI 

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs: http://www.w3.org/2000/01/rdf-schema# 

owl: http://www.w3.org/2002/07/owl# 

dc: http://purl.org/dc/elements/1.1/ 

dcterms: http://purl.org/dc/terms/ 

skos: http://www.w3.org/2004/02/skos/core# 

foaf: http://xmlns.com/foaf/0.1/ 

dbpedia: http://dbpedia.org/resource/ 

dbpedia-owl: http://dbpedia.org/ontology/ 

 

There exist quite a few ontology languages which were developed by different organizations. 

Among them SHOE [22] was a language based on HTML presented in 2000. XOL [23] was one of 

the early languages built using XML. After the introduction of RDF, W3C further introduced RDF 

Schema, also known as RDFS, as an extension to RDF. Similar to XML Schema, RDFS provided the 

structure definition for RDF which, in fact, acted as a kind of ontology. RDFS, which is very similar 

to object-oriented languages, enabled developers to express classes, subclasses, their relations, and 

properties of each class such as domain and range [24]. DAML-ONT [25] is another ontology 

language developed by DARPA. DAML-ONT covered the basic concepts similar to RDFS as well as 

inference logic. OIL [26] was a European counterpart ontology language and its foundation was very 

similar to RDFS, but it was based on description logic. DAML+OIL [27] was a descendant of the 

previous two languages and tried to include the expressiveness of both languages. Finally, OWL, or 

the Web Ontology Language [28], was introduced as the W3C ontology language of choice in 2004. 

OWL is a successor of DAML+OIL and has three different levels: Lite, DL, and Full. These three 

differ in the degree of expressiveness and completeness. OWL is now experiencing its second version 

called OWL 2 released in 2009 [29]. This new version is an extension and revision of OWL and, 

therefore, is fundamentally very similar but adds new functionality with respect to OWL. Figure  2.4 

shows the results of a survey assessing the amount each ontology language is used among different 

types of researchers [30]. OWL is the most common ontology among developers, as shown in this 

figure. OWL uses RDF notations but it provides more features including cardinality, transitive 

property, disjoint union of classes, and richer data types. 
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Figure  2.4: Ontology languages and their use by researchers (adopted from [30]). 

 

2.1.6 Ontology Editors 

Ontology editors are tools created to facilitate the implementation, organization, and modification of 

custom ontology description data for web developers. These editors essentially provide basic levels of 

ontology development, such as defining classes, editing class properties, specifying relationships, and 

imposing constraints, and may be able to provide syntax checking, as well [16]. Some powerful tools 

can also combine different ontology descriptions. The best available editor is called Protégé [31]. It is 

a Java-based, open-source editor developed by Stanford University that supports RDF(S) and OWL. 

Figure  2.5 provides a screenshot of this editor. 

There are two other famous ontology editors: SWOOP [32, 33] and OntoEdit [34]. Developed in 

University of Maryland, SWOOP is also an open-source, Java-based editor which acts as an OWL 

ontology web browser/editor. It combines the power of Protégé with a web-based environment called 

Ontolingua to provide an easy-to-use browser and editor [35]. OntoEdit, now commercially available 

as Ontostudio, used to be a web service developed in University of Karlsruhe which supported F-

Logic, RDFS, and OIL. Figure  2.6 shows the results of the survey (similar to Figure  2.4) assessing the 

percentage usage of different ontology editors. 
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Figure  2.5: A screenshot from Protégé (adopted from [31]). 

 

 
Figure  2.6: Ontology editors and their use by researchers (adopted from [30]). 
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2.1.7 Reasoning Engines 

Reasoning engines, or semantic reasoners, are tools which use the provided facts and inference rules 

of a certain ontology dataset to deduce new facts about that ontology. The newly deducted facts help 

to answer queries which could not originally be answered using initial facts. Having been studied by 

the Artificial Intelligence (AI) community for quite some time, a number of reasoning engines were 

developed to support ontology standards discussed previously. 

One of the most popular reasoning engines is called Jena [36, 37] which was originally developed 

by HP Labs at Bristol in 2000. Jena was an open-source project and once HP stopped supporting it in 

2009, the Apache Software Foundation adopted the project following the application of the project 

team in November 2010. Jena is more than an inference engine; it is in fact, a framework for 

Semantic Web application development. It includes a number of components to handle RDF, 

ontology, and the SPARQL query language [38], a Semantic Web query language similar to relational 

database management systems query languages like SQL. Furthermore, Jena’s reasoning engine 

supports RDFS and OWL-DL entailment.  

The two other popular reasoning engines are Racer [39, 40], which is based on description logic 

and supports RDFS, DAML and OWL, and Pellet [41, 42], which is made by the same people 

responsible for SWOOP and works with SWOOP as an ontology consistency analyzer. Figure  2.7 

lists different existing reasoners and shows how popular they are. 

 
Figure  2.7: Reasoners and their use by researchers (adopted from [30]). 
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2.2 Linked Data 

Linked Data is the realization of the Semantic Web. The Semantic Web is a “Web of Data” of any 

type imaginable: people, events, places, organizations, and so on. The Semantic Web includes a 

collection of technologies (RDF, OWL, SKOS, SPARQL, etc.) which offer an environment where a 

specific application is able to request certain data inquires or, using the provided ontology, infer new 

facts. However, to have an actual web of data, it is imperative to convert the huge amount of data on 

the Web to “a standard format, reachable, and manageable by Semantic Web tools” [43]. Moreover, it 

is not enough to only provide access to data. The data providers should also offer the semantic 

relationships among data. Otherwise, the Web of Data will be reduced to a sheer collection of 

datasets. Such collection of interrelated datasets on the Web is referred to as Linked Data [43]. 

The implementation of Linked Data requires technologies to be offered under the umbrella of a 

common format (RDF) so that the existing databases in various formats, such as relational, XML, or 

HTML, can be either converted or accessed on-the-fly. Another important requirement is to provide 

query endpoints to facilitate data access. While W3C offers a variety of data access technologies 

(RDF, GRDDL, POWDER, RDFa, R2RML, RIF, SPARQL), there was a motivational impasse in the 

realization of Linked Data.  

In order to encourage data providers to convert and provide access to their datasets using Semantic 

Web technologies, a few interesting applications or frameworks were needed as incentives. On the 

other hand, to create such incentives, large enough datasets in Semantic Web format should have been 

available. To resolve the deadlock, some organizations decided to bootstrap the Linked Data by 

unilaterally generating large Semantic Web datasets and creating a community called Linking Open 

Data (LOD) [44]. 

One such large Linked Dataset generated by LOD is DBpedia. This dataset, which is at the heart of 

Linked Data, offers the content of Wikipedia in RDF format. DBpedia is particularly significant not 

only because of providing access to Wikipedia data, but also due to integration of links to other 

datasets on the Web, e.g. GeoNames [45]. DBpedia also provides “same-as” RDF triples which 

equate the URI of certain items in its knowledgebase with the URI of equivalent items in other similar 

datasets, such as YAGO [46, 47]. Providing these extra links enables applications to exploit and 

integrate more knowledge and facts from several datasets which may improve the user experience. 

Figure  2.8 shows one of the early stages of LOD in May 2007 with only 12 datasets and Figure  2.9 
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presents its latest state as of September 2011 with 295 datasets. The comparison demonstrates the 

growing interest in joining the Linked Data movement by various organizations all over the world. 

 
Figure  2.8: LOD cloud diagram in May 2007 (adopted from [48]). 

 

 
Figure  2.9: LOD cloud diagram as of September 2011 (adopted from [48]). 
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In order to generate a dataset in the proper Linked Data format, Tim Berners-Lee laid out a few 

rules in his notes on Linked Data design issues [3]. The following reiterates these rules, which are 

commonly known as the ‘Linked Data principles’. 

1. Use URIs as names for things 

2. Use HTTP URIs so that people can look up those names 

3. When someone looks up a URI, provide useful information, using the standards (RDF, 

SPARQL) 

4. Include links to other URIs, so that they can discover more things 

The first rule is trivial since there would be no Semantic Web in the absence of URIs as mentioned 

earlier in layer cake architecture. The second rule is also globally understood given the available 

HTTP infrastructure of web pages which would be convenient landing places for description 

documents. An example was given earlier about the DBpedia URI and corresponding URL for the 

‘Life’ resource. The third rule suggests that the URIs should come with information which can be 

used to explore and exploit relationships and rules. Such information should be in a standard 

Semantic Web format to facilitate access. Finally, the fourth rule again emphasizes including 

connections to other datasets, a rule which is derived from the basic nature of Linked Data. 

Finally, Berners-Lee suggests a star rating scheme to encourage government data owners and other 

organizations to provide data as Linked Open Data rather than Linked Data. The four rules above can 

be used as guidelines for creating Linked Data. However, if one wants to have Linked Open Data, the 

data should be released under an open license such as Creative Commons CC-BY [49]. Table  2.3 

presents this scheme which makes data progressively more powerful and useful as it gets more stars. 

Table  2.3: Linked Open Data star rating system (adopted from [3]). 

★ Available on the web (whatever format) but with an open license, to be Open 
Data 

★★ Available as machine-readable structured data (e.g. excel instead of image 
scan of a table) 

★★★ Same as (2) plus non-proprietary format (e.g. CSV instead of excel) 

★★★★ All the above plus: Use open standards from W3C (RDF and SPARQL) to 
identify things, so that people can point at your stuff 

★★★★★ All the above, plus: Link your data to other people’s data to provide context 
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2.3 Wikipedia 

The foundation of the methodology presented in this dissertation is undoubtedly Wikipedia. While a 

complete description of the building blocks of Wikipedia is presented in  Chapter 3, it is fitting to 

provide a brief background on the uses of Wikipedia in a few fields related to this work. The 

following sections provide a few examples of Wikipedia application in literature. First, a quick look 

at the connections between Wikipedia and the Semantic Web is presented. Afterwards, a background 

on topic identification, which is an important portion of this dissertation, is introduced. As presented 

in  Chapter 4, query topic identification is the dominant application for which the experimental results 

have been discussed; therefore, the review is more focused on query topic identification. However, 

the last section provides an insight into the application of Wikipedia in a more general field: text 

classification. 

2.3.1 Wikipedia and Semantic Web 

The idea of integrating Semantic Web concepts and Wikipedia/Wikis has been the subject of 

discussion for a while now. Besides DBpedia, there are a number of other works done on the subject. 

Völkel et al., for example, proposes that semantics will be added to Wikipedia articles in the form of 

category, typed links, and attributes [50]. The paper states that categories already are used in 

Wikipedia and by adding simple prefixes to internal Wiki links, articles would be linked semantically. 

Attributes provide literals (strings, numbers, etc. which are not specific articles) to the articles. In a 

way, typed links resemble predicates and attributes resemble objects in RDF. Furthermore, the 

authors are affiliated with Karlsruhe Institute of Technology which was behind the development of 

the Semantic MediaWiki (SMW) [51, 52]. SMW is an extension of MediaWiki, the software which 

powers Wikipedia. This extension is free and open-source which provides the capability of storing 

and querying data within the Wiki pages. This creates a framework for turning Wikis into powerful 

and flexible collaborative databases. Moreover, the data entered into these Wiki pages can effortlessly 

be converted into Semantic Web format. 

2.3.2 Wikipedia and Topic Identification 

Query topic identification, or query classification, is the task of NLP that focuses on inferring the 

domain information surrounding user-written queries and on assigning to each query the best category 

label from a predefined set. Given the ubiquity of search engines and question-handling systems 

today, this challenge has been receiving a growing amount of attention. For example, it was the topic 
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of the ACM’s annual KDD CUP competition in 2005 [53], where 37 systems competed to classify a 

set of 800 real web queries into a set of 67 categories designed to cover most topics found on the 

internet. The winning system was designed to classify a query by comparing its word vector to that of 

each website in a set pre-classified in the Google directory. The query was assigned the category of 

the most similar website, and the directory’s set of categories was mapped to the KDD CUP’s set 

[54]. This system was later improved by introducing a bridging classifier and an intermediate-level 

category taxonomy [55, 56]. 

Most query classifiers in the literature, like the system described above, are based on the idea of 

mapping the queries into an external knowledge source (an objective third-party knowledgebase) or 

internal knowledge source (user-specific information) to classify them. This simple idea leads to a 

great variety of classification systems. Using an internal knowledge source, Cao et al. [57] developed 

a query classifier that disambiguates the queries based on the context of the user’s recent online 

history. On the other hand, many very different knowledge sources have been used in practice, 

including ontology [58], websites [59], web query logs [60], and Wikipedia [61, 62]. 

Exploiting Wikipedia as a knowledge source has become commonplace in scientific research. 

Several hundreds of journal and conference papers have been published using this tool since its 

creation in 2001. However, while both query classification and NLP using Wikipedia are common 

challenges, there have not been many query classification systems based on Wikipedia. One such 

system was proposed by Hu et al. [61]. Their system begins with a set of seed concepts to recognize, 

and it retrieves the Wikipedia articles and categories relevant to these concepts. It then builds a 

domain graph by following the links in these articles using a Markov random walk algorithm. Each 

step from one concept to the next on the graph is assigned a transition probability, and these 

probabilities are then used to compute the likelihood of each domain. Once the knowledgebase has 

been built in this way, a new user query can be classified simply by using its keywords to retrieve a 

list of relevant Wikipedia domains, and sorting them by likelihood. Unfortunately, their system 

remained small-scale and limited to only three basic domains, namely “travel”, “personal name” and 

“job”. It is not a general-domain classifier such as the one introduced in this dissertation. 

Another query classification system was designed by Khoury [62, 63]. It follows Wikipedia’s 

encyclopedia structure to classify queries step-by-step: first, using the query’s words to select titles, 

second, selecting articles based on these titles, and third, selecting categories from the articles. At 

each step, the weights of the selected elements are computed based on the relevant elements in the 
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previous step: a title’s weight depends on the words that selected it, an article’s weight on the titles’, 

and a category’s weight on the articles’. Unlike [61], this system was a general classifier that could 

handle queries from any domain. 

2.3.3 Wikipedia and Text Classification 

While using Wikipedia for query classification has not been a common task, there have been several 

document classification projects done using that resource which are worth mentioning. Schönhofen 

[64] successfully developed a complete document classifier using Wikipedia by mapping the 

document’s vocabulary to titles, articles, and finally categories, and weighting the mapping at each 

step. Alternatively, other authors use Wikipedia to enrich existing text classifiers by improving upon 

the simple bag-of-words approach. The authors of [65] use it to build a kernel to map the document’s 

words to the Wikipedia article space and classify from there, while the authors of [66] and [67] use it 

for text enrichment: to expand the vocabulary of the text by adding relevant synonyms taken from 

Wikipedia titles. Interestingly, improvements are reported in the classification results of [64], [66] 

and [67], while only [65] reports worse results than the bag-of-words method. The conclusion seems 

to be that working in the word space is the better option, a conclusion that [65] also shares.  

2.4 Summary 

This chapter provided a background on the topics fundamental to the understanding of the 

methodology presented in the upcoming chapters. First, the Semantic Web was introduced and its 

various components were presented in the layer cake structure. Afterwards, each of these components 

was studied. Specifically, RDF was discussed in details as it is one of the most important technologies 

in Semantic Web standards. After introducing the Semantic Web, the concepts of Linked Data and 

Linked Open Data were introduced as the physical implementations of the Semantic Web principles. 

Lastly, a review of some of the uses of Wikipedia in literature, which are closely related to the topic 

of this dissertation, was presented. Among them, query topic identification was the key application as 

it is the target of the experiments of this dissertation. Finally, it is important to note that some of the 

works in related literature are mentioned in later chapters where applicable to the context. 
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Chapter 3 
Semantic Analysis of Wikipedia 

3.1 Introduction 

In this chapter, the general methodology and its specific components are discussed. As both titles of 

the dissertation and this chapter suggest, the main building block of the methodology is Wikipedia. 

Therefore, Section  3.3 starts by explaining the structure of Wikipedia and digs into how it will be 

used to solve problems. Afterwards, the Semantic Web version of Wikipedia, called DBpedia, will be 

introduced. These two will constitute the foundation of the methodology: the knowledgebase that the 

framework is relied upon. 

In Section  3.5, the semantic graph of the knowledgebase will be the topic of discussion. The 

semantic graph, one of the key ingredients mentioned in  Chapter 1, is the most important part of the 

knowledgebase with respect to the problems presented in this work. Therefore, the focus is directed 

towards how the semantic graph connects entities and topics to each other and one another: entity-to-

entity, topic-to-topic, and entity-to-topic. 

Once the knowledgebase is fully discussed, Section  3.6 and Section  3.7 will present the two main 

algorithms of the methodology upon which all the offered solutions and experiments are based. These 

two algorithms, called entity detection and semantic analysis, are the other two key ingredients of the 

methodology. They will present two general ideas for how to tackle different problems. The specific 

algorithm used for different problems is usually a different variation of each of these algorithms 

tailored for that specific problem. However, the order of the application of these two algorithms is 

always the same. The entity detection should always be performed before semantic analysis since 

semantic analysis depends upon, and operates on, the output of entity detection. 

The final part of this chapter will present a few interesting problems and suggest the potential 

solutions to these problems. These solutions are, as expected, based on the proper variation of two 

discussed algorithms using a proper portion of the knowledgebase. 

3.2 Problem Definition 

Before delving into the discussion of the building blocks of the methodology, it is helpful to 

describe the generic problem definition which the methodology is trying to address. While a crisp 
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formulation cannot be achieved to cover all the use cases, Table  3.1 illustrates a generic problem 

definition which can be adapted to various specific problems. 

Table  3.1: Generic problem definition. 

Input A textual object in any format e.g.: 
• Letters 
• Bag of words 
• Sequential words 
• Bag of sentences 
• Sequential sentences 
• Parallel sentences 
• Text document 

Processing Perform any number of the following tasks: 
• Detect potential entities (possibly ranked) 
• Traverse the semantic graph 
• Gather and rank semantically similar entities/topics 
• Determine high scored target entities/topics 

Output Suggest a ranked list or an iterative recommendation of one or a combination of 
the following items: 

• Entities 
• Topics 
• Part of the input 
• Any textual object 

 

The input portion of the problem is some kind of textual object. As mentioned in Table  3.1, it can 

be any collection of words, sentences, letters, or even, in the case of speech recognition application, a 

set of parallel potential candidate sentences as we will observe. These collections can be ordered or 

unordered text. The size is also variable. It is possible that the input would be a short text like a web 

query or a large document such as an e-mail. The larger sized text objects are usually broken into 

smaller ones. The details of such pre-processing on input and handling of different types of input data 

are later discussed in Section  3.6.  

The processing portion is usually the part that varies greatly from one application to another. The 

steps mentioned above are the ones taken in the provided solutions in Section  3.8. The processing 
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portion needs a knowledgebase in order to perform the semantic analysis required for solving related 

problems. More specifically, the processing unit employs two main concepts of the knowledgebase 

called entities and topics. While Section  3.3 and Section  3.4 explain the main structure of the 

knowledgebase, Section  3.5 will give an in depth look into the concepts of entity and topic and how 

they are related in the semantic graph. Based on different applications, the solutions might be tipped 

towards one of these two concepts. For instance, the query topic identification problem uses more of 

the topic graph while speech recognition and context awareness applications are dealing mainly with 

entities. In any case, the detection of entities is always an included part of the algorithms presented 

here. Afterwards, it is possible to traverse the graph, find semantically similar entities or topics, and 

rank them based on a relevancy equation. In some cases, the targets are known, e.g. categories in web 

query categorization. Therefore, the processing unit will try to map the input to those target outputs. 

In other cases, such as text prediction and completion, there is no specific target available; this means 

the processing unit can only provide a list of candidate targets based on semantic similarity to the 

input. Sections  3.6 and  3.7 will explore the different aspects of the processing portion. 

Once the processing is done, the output is presented usually as a ranked list of items or iterative 

recommendation of items. The items can be, as mentioned, entities, topics, or any type of textual 

object. The output may also be a combination of different items. For example, logical AND/OR 

combination of topics can be the result of a topic identification problem. 

To summarize the problem definition given a text input, we would like to perform a semantic 

analysis of the input based on a knowledgebase of entities and topics and return the most relevant and 

closest desired target object or objects. Having had the general picture of problem definition in mind, 

we can now proceed to the description of the fundamental components of the methodology. Once all 

the components are introduced, Section  3.8 will show how the above generic problem definition is 

evolved into different specific applications and how the portions are adapted to each application.  

The very first component to study is the knowledge platform upon which all the processing 

algorithms are based. As mentioned earlier, the knowledgebase mainly consists of entities, topics, and 

their relationships. Understanding these concepts is paramount to understanding the methodology. 

Therefore, in the next three sections, we will thoroughly explain the structure of the knowledgebase 

and two parts of the semantic graph related to entities and topics. 
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3.3 Wikipedia 

The fundamental platform of the methodology is the knowledgebase over which all the presented 

algorithms are constructed. The choice of the knowledgebase for this work is Wikipedia. As 

mentioned before, Wikipedia has been a popular resource for numerous research works, some of 

which were mentioned in Section  2.3. It has also become the major source of open data for the 

improvement of the Semantic Web and Linked Data community [4, 68]. The main reason Wikipedia 

gets such attention is its sheer extent over a wide range of knowledge topics. According to the official 

Wikipedia statistics webpage [69], there have been about 4 million articles in the English branch of 

Wikipedia and more than 21 million articles in all languages of Wikipedia as of April 2012. This 

much volume opens up unique possibilities for research and makes Wikipedia the main player in the 

Linked Data community. In the following, the structure of Wikipedia is studied, its advantages and 

problems are discussed, and the process of converting Wikipedia to the semantic graph is explained.  

Wikipedia can simply be defined as a collection of articles about various concepts and knowledge 

items. These articles are written in different languages through the collaboration of different authors. 

One of the unique characteristics of Wikipedia is the internal links between articles. These links are 

many-to-many connections which relate each article to many others. These links and the frequency of 

their existence are mainly decided by human intuition of authors and collaborative correction 

mechanism of Wikipedia. If certain parts of an article are missing, inadequate, and/or incorrect, the 

subsequent authors will try to fix or compensate them. 

Figure  3.1 displays a snapshot of an article about the University of Waterloo. The contents of the 

middle of the page are removed and only the top and bottom of the page is depicted in this figure 

since these parts are the locations with the key information. Four items have been labeled on this 

figure. These items are the main elements of Wikipedia used to create the semantic graph. The 

following subsections will explain each of these elements: 

1. Title of the article 

2. Infobox 

3. Wikilinks 

4. Categories 
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Figure  3.1: A sample Wikipedia page. 
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3.3.1 Titles 

Each article in Wikipedia has one or more titles. Titles, as the word suggests, are the labels specifying 

what an article is about. There are three types of titles: 

1. Main titles 

2. Redirect titles 

3. Disambiguation titles 

To understand what each of these titles mean, each concept has been described using the example 

of Figure  3.2. Each article has one and only one main title and each main title only refers to one 

specific article. In other words, the main title is the unique key identifying an article. For instance, in 

the Figure  3.2, titles “United States” and “Americas” (shown by solid line boxes on the left) are the 

main titles pointing to their corresponding articles (shown by the large boxes on the right). 

 
Figure  3.2: An example of the main, redirect, and disambiguation title. 
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Each article might have a number of redirect titles (or simply called redirects). Each redirect points 

to the main title of an article and, therefore, points to the same article the main title points to. The use 

of redirects is to provide additional links for alternative names. The alternates can be the various 

names which mean the same, the foreign translations, abbreviations, and typos. In the example above, 

the main title “United States” has “United States of America”, “USA”, and a common typo “United 

Staets” as redirects. The “Americas” article, on the other hand, has a redirect called “American 

continent”. 

The last type of titles are called disambiguation titles which are the reverse of a redirect meaning 

that one disambiguation title points to many different articles. Disambiguation titles are provided to 

differentiate the different senses of a title if the title has multiple meanings. For instance, the title 

“America” in Figure  3.2 might be interpreted as the United States or it might refer to the entire 

continent of America (North and South America). While some of the titles pointed to by 

disambiguation titles have different names than the disambiguation title, as shown in the above 

example, in many cases, there is a strong possibility that the different articles pointed to by the 

disambiguation title have the exact same name. For instance, “Phoenix” can refer to all of the 

following articles: Phoenix, a mythical bird; Phoenix, Arizona; a 1998 movie called Phoenix; and a 

minor constellation in the southern sky. To differentiate these types of commonality, the 

disambiguation title is annotated with extra tags; the annotated titles then become the main titles of 

the articles to which the disambiguation title was originally pointing. In the case of the “Phoenix” 

example, the titles will respectively be converted to the following annotated main titles: “Phoenix 

(mythology)”, “Phoenix, Arizona”, “Phoenix (film)”, and “Phoenix (constellation)”. 

3.3.2 Infoboxes 

Infoboxes are fixed-format tables which appear on some Wikipedia articles and often act as 

summaries of the articles. The entries provided in these boxes are often the unifying items that similar 

articles share e.g. capital city shared by all countries. Additionally, some of the entries are included to 

facilitate access and navigation to related articles. The inclusion of an infobox is neither a 

requirement nor banned on any given article. The decision to add the infobox or not, and if so, what 

kind of infobox to add and which part of it to fill is a decision made by consensus among all the 

collaborative authors contributing to the page. 

The content of an infobox comes from certain templates which contain important facts and 

statistics typical to the associated articles of such templates. For instance, the articles related to people 
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will often feature date of birth as a common field for all human beings. Some articles might also 

feature spouses and children if applicable. Then, for different professions, different fields are added 

on. Politicians have records of offices they hold and the dates they hold them while athletes’ 

infoboxes present information about their possible awards and physical attributes. In other words, 

these templates work as easy-to-read synopsis of the concept presented in the article in a small 

ontology format. Such ontological nature of infoboxes is the main reason behind their conversion into 

real RDF ontology of DBpedia as we will see in Section  3.4. Figure  3.3 demonstrates four sample 

infoboxes using four different template types: musical bands, animals, politicians, and countries. 

 
Figure  3.3: Four examples of different types of infoboxes. 

 

3.3.3 Wikilinks 

Wikilinks are the hyperlink equivalents in Wiki articles. A wikilink, also called an internal link, is a 

link connecting a page in Wikipedia to another. It is simply formatted by double square brackets such 

as [[article]]. A wikilink might have some extra parameters attached. These parameters can be a wide 

range of editing and linking tricks for flexible mark-up purposes. Two important examples of such 

parameters are labels and types. Labels are often aliases describing or clarifying the link in a human 

readable format. For instance, “online collection of structured data” is a label for the link to the article 
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“Online database” mentioned in the Freebase Wikipedia article [70]. Types are tags describing what 

kind of page the link is pointing to. Types are specified using the type name followed by a colon and 

then the article or resource page name. For instance, a wikilink specified by [[file:Image_Name.png]] 

is a link to a page containing a digital picture file. Among these typed wikilink, the one linking to 

categories is of most importance to this work. Category links are described in next subsection. 

3.3.4 Categories 

Categories are the most important elements of an article in regards to the topic of this research. Each 

article is tagged by (or points to) one or more categories. The categories of Wikipedia are structurally 

regarded as semi-articles. Their template is different than a regular article and their links are specified 

using a typed wikilink as described above by “category:” tags behind their names. For instance, the 

category of science is defined as [[Category:Science]]. The number of categories is in the hundreds of 

thousands and keeps growing. In September 2008, the count was around 400,000 and by the July 

2011, it grew to more than 740,000 categories. 

The categories of Wikipedia are not just labels but they also have features of their own. Wikipedia 

considers each category as a typed article. Each category article starts with a short summary of what 

topic the category is representing. The body provides backward links to all the regular articles that are 

pointing to this category. Finally, each category can have its own category labels on the bottom of its 

article page similar to the categories of a regular article demonstrated by label 4 in Figure  3.1. This 

type of structure will cause each category to belong to another parent category and, therefore, form a 

hyponymy graph. 

Wikipedia’s categories describe every domain of knowledge ranging from the very precise, such as 

“fictional secret agents and spies”, to the very general, such as “information”. As explained, the 

categories are connected by hyponym relationships, with a child category having an “is-a” 

relationship to its parents. Therefore, more specific categories have more general parents called super-

categories. However, the graph is not strictly hierarchic: there exist shortcuts in the connections (i.e. 

starting from one child category and going up two different paths of different lengths to reach the 

same parent category) as well as loops (i.e. starting from one child category and going up a path to 

reach the same child category again). Some of these characteristics, such as shortcuts, are tolerable 

but some, like loops, present serious issues in the semantic analysis and, therefore, need some pre-

processing before they can be used. Section  3.5 will explore the details of the category graph and 

provide information on how the graph is pruned and processed to be used in analysis.  
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3.3.5 Other Elements 

A Wikipedia article has a number of other elements which are not significantly used in this research. 

Before moving on, it is worth briefly describing some of these elements and pointing out some useful 

applications which can be performed using these elements. These elements include, but are not 

limited to: 

• Summary 

• Table of Contents 

• Body 

• “See Also” section 

• References & External links 

• Templates 

The body of an article is the most important element of the article. While the wikilinks are 

embedded in different parts of the article body, the statistical analysis of the body words can be a 

useful resource. For instance, calculating the frequency of each of the words in an article and relating 

those frequencies to the categories of the article can act as a potential approach for document 

classification problems. 

The Table of Contents (ToC) can be used to group wikilinks and annotate them with semantic tags. 

Specifically, the headers of each section are useful clues to tag wikilinks. The “See Also” section is 

part of the ToC which usually groups wikilinks of certain articles which are closely related to the 

current article. The next subsection will explore a little further about how the ToC can be used to 

extract RDF triples. 

The summary, especially its first sentence, is a good indicator of the main concept that the article 

subject is related to. For instance, Albert Einstein is affiliated with many topics based on the 

categories of his Wikipedia article such as Nobel laureate, inventor, and humanitarian. But the first 

sentence of the summary of his article specifically introduces him as “a German theoretical physicist” 

which is the first title people mostly associate him to. 
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Lastly, the templates are common structures, possibly following a timeline, that many related 

articles are associated with. For instance, the family template indicates the spouse(s) and child(ren) of 

a person and can be used to generate important RDF triples automatically and with high accuracy. 

3.3.6 Challenges 

Although Wikipedia looks like a very regularly structured data source compared to common hyper-

text web pages, there are still a few challenges to be dealt with in order to efficiently use Wikipedia 

for automated semantic analysis purposes. The main problem regarding Wikipedia is that, despite all 

the structures, templates, tags, and mark-ups, Wikipedia is still a resource designed primarily for 

human-readability not machine-readability. The presence of all the elements mentioned above is, for 

the most part, intended for enhancement of usability and navigation. These elements are user interface 

features that help human users to find relevant information faster and easier. They are not, on the 

other hand, engineered to be a computing resource by nature and using them in a computing task 

requires further processing. 

 
Figure  3.4: The developed Wikipedia parser tool 
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The first issue is that of parsing the data. Although Wikipedia dump files [71] provide SQL 

statements so that the end user can regenerate a database, the provided links are too untidy to use. For 

example, there are a large number of articles and categories that are created and kept for editing and 

maintenance purposes. These data do not contribute to the main encyclopedic purpose of Wikipedia 

and one needs to write some parsing code to clean the data from these extra materials.  

Alternatively, one might use the textual format of the Wikipedia database dump which is free of 

these extra entries. This alternate format is one giant XML file that carries each article as a XML 

tagged element. Therefore, aside from a few main pieces of information, such as the title of an article, 

the remainder of each article body should be parsed so that the information from all the wikilinks, 

categories, and infoboxes gets extracted. In any case, some effort should be put into converting 

Wikipedia resources to machine-friendly versions. Figure  3.4 shows a parser tool developed in early 

stages of this research work by the author for this purpose. 

 
Figure  3.5: Converting wikilinks to RDF triples (adopted from [50]).  
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Assuming that the basic elements of Wikipedia, such as article titles, wikilinks, and categories, are 

successfully extracted, the data is not yet fully proper for semantic uses. The lack of proper predicate 

labels for wikilinks is one of the major semantic issues. Wikilinks provide links between two articles. 

If we consider articles as entities, a wikilink simply asserts that the source article is related to the 

target article. The problem is that the type of these relations is not specified. As an example, the 

Wikipedia article about Toyota points to Japan but we cannot derive what the relationship between 

Toyota and Japan is solely based on this link. To compensate this deficiency, many researchers tried 

to encourage the use of semantic Wiki framework so that the authors can easily integrate the type of 

the links as well. Works of [50, 72] along with the WikSAR project [73], Platypus Wiki [74, 75], and 

Rhizome [76] all more or less suggest converting wikilinks to RDF triples by mapping the article title 

to the subject, the linked article to the object, and the type of the link to the predicate part of the  RDF 

triple. Obviously, the type should be provided by the author beforehand. Figure  3.5 shows an example 

of converting wikilinks to RDFs. 

However, there are intuitive approaches which can try to detect or estimate the type of the 

wikilinks automatically. As mentioned earlier, the Table of Contents can be one resource. The 

wikilinks are distributed in the article body and if extracted normally, the order and position of the 

wikilinks would be lost. But if, during parsing the body, the header of the section in which the link 

appears is recorded, it is at least possible to have a general idea of what that link is about. For 

instance, the link to “Ulm” in the Einstein article appears in the “Early life and education” section 

which is not far from the exact type being his birth place. [77] provides other uses of the ToC for 

partitioning the text in order to find the most relevant patterns. Although grouping and tagging 

wikilinks with their ToC section header gives a general idea of the topic of the wikilink, a more 

sophisticated approach, such as natural language processing, should be used along with the ToC to 

detect the type of a wikilink. One simple method is to find the closest verb or noun of the wikilink 

and use that as an estimate. For instance, in sentences: “Albert Einstein was born in Ulm” and “His 

father was Hermann Einstein”, the verb ‘born’ and the noun ‘father’ (‘was’ is ignored as being a form 

of ‘to be’: a stop word), are closest words which define two wikilinks, Ulm and Hermann Einstein. 

Finally, the very important step to be taken to improve the semantic value of the knowledgebase is 

the processing of the infobox information. If processed accurately, infobox information can provide 

immense semantic merit to the knowledgebase. Processing the infobox is a specifically challenging 

task. Below are a few of the issues to be noted when parsing infoboxes to efficiently extract the data: 
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• There are many different infobox templates. 

• In each template, some fields might be missing or not applicable. For instance, some 

people might be alive and some might not and, therefore, a date of death might not be 

included in some articles. 

• Some of the entries in infoboxes are pointers to other articles while some others are literal 

values. 

Despite the above difficulties, the tabular nature of infoboxes has invoked interest in a number of 

research works. Auer and Lehmann  [78] show that forming semantic RDF triples by converting 

infoboxes can be done easily and then be used in astounding question-answering tasks. Wu and Weld, 

on the other hand, introduce Kylin [79], a self supervised machine learning system that extracts 

semantic relationships from Wikipedia from natural language text, constructs and completes 

infoboxes, and identifies missing links for proper nouns on each page. Later, they introduced the 

KOG autonomous system [80] to further refine infoboxes in order to achieve a clean structure 

ontology. Moreover, in the Intelligence in Wikipedia project [81], they try to extract a knowledgebase 

of semantic triples by combining two paradigms called information extraction (IE) and communal 

content creation (CCC) which are again based on infobox information. Last, but certainly not least, 

the DBpedia project [68, 82] is a very famous example of successfully converting infobox 

information into RDF triples. The next section will give a meticulous description of the DBpedia 

structure and its components. 

3.4 DBpedia 

Simply said, DBpedia is the semantic version of Wikipedia; or at least is one possible adaptation of it. 

Although it is not the answer to all of Wikipedia’s problems mentioned above and although it does 

not have every desirable semantic entry, such as strongly typed RDF triples of wikilinks mentioned 

earlier, it provides the best machine-readable Semantic Web experience out of Wikipedia so far. 

DBpedia is engineered to be used in computing tasks, specifically in semantic analysis methods; no 

wonder it has become the nucleus [68] and crystallization point [82] for the Web of Data (Linked 

Data) initiative. In this section, some of the more important DBpedia components are discussed. 

Many of the concepts are, however, based on Wikipedia’s counterparts that are already explained in 

the last section. Therefore, this section delves a bit more into formatting of the data rather than the 

definition of the concepts. 
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The DBpedia community’s goal is to extract structured information from Wikipedia and make it 

available on the web for sophisticated queries [7]. Therefore, DBpedia is trying to address challenges 

mentioned in the previous section. In fact, it does more than that. Not only does it clean up the 

garbage information, like maintenance articles, and provides intelligently designed RDF triples for 

different elements of Wikipedia, it also annotates the extracted information by linking them to other 

knowledgebases like YAGO [46, 47], hence creating the linked data. 

DBpedia provides multiple features and resources, namely: the knowledge ontology, external links 

to many other data sources, a SPARQL [38] query portal, and natural language processing datasets. 

However, the main core of DBpedia is the collection of semantic datasets. These datasets represent 

various elements of Wikipedia, some of which were mentioned in the previous section, and the 

relations between them. Time-wise, they are extracted from a snapshot dump of the Wikipedia 

database [71] at a certain date but they are continually getting updated in a batch operation once the 

new versions of Wikipedia dumps become available. Recently, DBpedia launched DBpedia Live [83] 

to make its resources even more up-to-date. DBpedia Live keeps updating the datasets as soon as new 

Wikipedia articles become available instead of waiting for an entire new dump to be released. 

The structure of these datasets is, in fact, what makes them interesting for computing. They are sets 

of triples in each line adherent to the popular RDF structure of subject-predicate-object. There are 

also quadruple versions of the dataset available with an additional fourth column specifying the 

source of the triple. The complete list of these dataset and their description are available at [84, 85]. 

Here, we take a look at the important ones which are also used in this methodology: 

• Titles 

• Redirects 

• Disambiguation Links 

• Ontology Infobox Types 

• Ontology Infobox Properties 

• Wikipedia Pagelinks 

• Categories (SKOS) 

• Article Categories 
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Before describing each dataset individually, it is noteworthy to take a look at a big picture showing 

how different entries of different datasets make up a DBpedia page equivalent of the Wikipedia 

article. Figure  3.6 portrays a sample DBpedia page which corresponds to the Wikipedia article of 

Figure  3.1 about the University of Waterloo. The Wikipedia article is located at 

<http://en.wikipedia.org/wiki/University_of_Waterloo> while the DBpedia page is located 

at <http://dbpedia.org/page/University_of_Waterloo>. We can see that the format of the 

DBpedia URL is based on the Wikipedia one and a similar rule is applied in other languages.  

 
Figure  3.6: A sample DBpedia page. 
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The DBpedia URL is, however, not the main unique key to identify its resources. It just provides a 

human-readable version of its resources for each article. Each URL has a standard resource URI 

pointing to it which is the main identifier of any given DBpedia resource. We saw that RDF format is 

fundamentally based on URIs. In DBpedia each resource is identified by a URI formatted as: 

<http://dbpedia.org/resource/unique_resource_name>. The rationale is that URIs act as the 

identifiers of the resources and then, if any URI is entered into a browser, it will redirect to a URL so 

that the user lands on a webpage with human-readable material describing the resource. This method, 

in fact, is the standard RDF design in the Semantic Web community [18]. 

Consequent to above discussion, the page shown in Figure  3.6 is referring to a unique resource. 

The resource URI of this page is then the identifier occurring in all the datasets. Since all the 

information on this page are characteristics related to the presented resource, it stands to reason that 

the resource would be the subject of any RDF triple presented in this page. This assumption is true 

because the page is actually created based on all the triples which have the given resource URI as 

their subject. The page generation, in effect, gathers all the triples with the resource URI as subject 

and creates a two columned table with first column being the predicate and the second column being 

the object. The numerical labels on the figure point to some of the fields of datasets which are 

explained below. The title, labeled as 1, corresponds to the same label in Figure  3.1. The entries in 

Figure  3.6 exist in different datasets. In the following subsections, the aforementioned main datasets 

are described and marked where the labeled entries in the figure are located. 

3.4.1 Titles Dataset 

The titles dataset, as the name suggests, is the dataset that presents all the titles and their URIs. None 

of the typed or maintenance titles are included here and all the presented titles are the ones related to 

knowledge items. This dataset is, therefore, used as the basis of our entity graph as explained in 

Section  3.5 and it constitutes one of the pillars of the semantic analysis methodology. The format of 

the titles dataset is simply designed to connect the URI of each title to its English language label. The 

triple is as follows1: 

<Title_URI> <http://www.w3.org/2000/01/rdf-schema#label> "Title Label"@en .  

<Title_URI> is the title identifier through all other datasets. The middle URI is the W3C standard 

predicate representing the concept of “label”. Lastly, the “Title Label” is a literal string value 

                                                      
1 Subject and object URIs are shown in blue, predicate URIs in red, and literals in green. 
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indicating the English label of the title. The @en notion indicates the English language. Each row is 

terminated with a period. The triple is indicating, by the RDF format, that the entity known as 

<Title_URI> has a label called “Title Label”. An example for “Albert Einstein” is below: 

<http://dbpedia.org/resource/Albert_Einstein> <http://www.w3.org/2000/01/rdf-

schema#label> "Albert Einstein"@en . 

Each line in the titles dataset is associated with a page such as that in Figure  3.6. The URI is 

mapped to the URL of the page and the label is displayed at the location marked 1 on the figure. 

3.4.2 Redirects Dataset 

The redirects dataset represent a subset of the titles dataset and indicates which of the titles are 

redirect ones. It also provides the main title each redirect title points to. The format is: 

<Redirect_Title_URI> <http://dbpedia.org/ontology/wikiPageRedirects> 

<Main_Title_URI> . 

The predicate URI has been created by DBpedia (along with many others in its ontology). The 

redirect title URI and main title URI each have one corresponding row in the titles dataset. Each 

redirect title points to only one main title and as a result has only one row in this dataset. An example 

for a redirect title can be: 

<http://dbpedia.org/resource/Waterloo_University> <http://dbpedia.org/ontology/

wikiPageRedirects> <http://dbpedia.org/resource/University_of_Waterloo> . 

Figure  3.6 shows the instances of redirect entries marked as 4 with the first row corresponding to 

the above example. The URI on the left column is the predicate URI which was shown above and the 

ones on the right column are different redirect titles. This means that the order is reversed in the 

figure; this is done so that the main title is the subject of all triples featured on the page, as discussed 

earlier. Therefore, to show this swapped direction, an “of” is added after the predicate URI. 

3.4.3 Disambiguation Links Dataset 

The disambiguation links dataset is very similar to the redirect dataset and indicates the 

disambiguation titles and the various main titles that the disambiguation title clarifies. The format is: 

<Disambiguation_Title_URI> <http://dbpedia.org/ontology/wikiPageDisambiguates> 

<Main_Title_URI> . 
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Figure  3.6 shows some inverted examples marked 3. The only difference with the redirects dataset 

is the cardinality of the relations. Each disambiguation title naturally disambiguates many main titles 

while each redirect title redirects to only one main title. For instance, the title “UW”, can point to both 

“University of Waterloo” and “University of Washington”. 

3.4.4 Ontology Infobox Types Dataset 

This dataset maps titles to a list of ontological types extracted from infoboxes. The list features 320 

different classes of things at the time of writing [86]. These types can be anything from professions 

such as Artists, Athletes, and Governors to region types such as City, Town, and Country. The dataset 

not only maps the titles to one of those 320 types/classes but it might provide equivalent triples 

mapping the titles to the types of other sources such as YAGO [47, 82]. The format is: 

<Title_URI> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <Type_URI> .  

Types are similar to categories but they are very general and tend to feature the main characteristics 

of the entity they are presenting. “University of Waterloo” is of type University while “Aristotle” is 

both a Person and a Philosopher. 

3.4.5 Ontology Infobox Properties Dataset 

As discussed in last section, infoboxes are valuable sources of structured information in some articles. 

This dataset is the result of careful conversion of article infoboxes into RDF triples. As mentioned 

before, infoboxes provide values for certain common characteristics of an entity, e.g. birth date of 

people. Considering the article as an entity, these characteristics are called properties of the entity. 

Their values can either be literal values or other entities. Since the RDF object can be either a literal 

or a URI, such structure fits nicely into a RDF triple format as below: 

<Title_URI> <Property_URI> “Value”[^^Datatype_URI][@en] . 

<Title_URI> <Property_URI> <Value_Title_URI> . 

The <Title_URI> refers to the main title (entity) and the <Property_URI> specifies what property 

(characteristic) of the title is presented. If the value of the property is a literal, it will be expressed in 

quotations; otherwise, if the value is an entity, its URI is given. In case of a literal value, it is possible 

that the data type of the value is followed and if the value is a string, the language (here English) will 

be added. There is a special case of homepages where the value URI will be replaced by the URL of 

the homepage as the following depicts: 
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<Title_URI> <http://xmlns.com/foaf/0.1/homepage> <URL> . 

The interesting notion about the properties dataset is that the predicate URI varies so that it can 

express different properties. DBpedia, as of this moment, provides more than 1600 different property 

URIs in its ontology and also borrows some property URIs, such as the homepage above, from other 

RDF sources. The following are a few examples of property triples expressing Canada’s leader title, 

founding date, and currency: 

<http://dbpedia.org/resource/Canada> <http://dbpedia.org/ontology/leaderTitle> 

“Prime Minister”@en . 

<http://dbpedia.org/resource/Canada> <http://dbpedia.org/ontology/foundingDate> 

"1867-07-01"^^xsd:date . 

<http://dbpedia.org/resource/Canada> <http://dbpedia.org/ontology/currency> 

<http://dbpedia.org/resource/Canadian_dollar> . 

3.4.6 Wikipedia Pagelinks Dataset 

The pagelinks dataset contains the wikilinks. The format is: 

<Source_Title_URI> <http://dbpedia.org/ontology/wikiPageWikiLink> 

<Target_Title_URI> . 

The number of wikilinks, as of the time of writing, is about 146 million triples. The links are 

directed, meaning, for example, “University of Waterloo” points to “Research In Motion” but not the 

other way around. However, it is possible that both titles point to each other e.g. “University of 

Waterloo” points to “Waterloo, Ontario” and vice versa. This dataset is a rich source for data mining 

and ripe for algorithms similar to Page Rank. 

3.4.7 Categories (SKOS) Dataset 

The categories dataset is, in fact, the most important dataset used in this work. It counts for the topic 

graph portion of the semantic graph presented in Section  3.5. This dataset provides the list of 

Wikipedia’s categories (about 740,000) along with their hyponym relations. The dataset uses Simple 

Knowledge Organization System (SKOS) vocabulary [87] to describe categories and their relations. 

A complete list of SKOS vocabulary and its ontology is given in its W3C recommendation page [88]. 

However, this dataset only uses three classes of SKOS ontology: skos:preflabel, skos:Concept, and 
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skos:broader2. These three are used to describe three definition parts which each category in this 

dataset has. For each category, one row provides the human-readable label (skos:preflabel) of the 

category (similar to the titles dataset labels but using SKOS vocabulary). The second part is another 

row common for all categories which indicates that each category is a concept (skos:Concept). This 

row is to maintain the RDF well-formedness and semantic correctness. The third part is a set of rows 

showing all the super-categories of the given category with broader semantics (skos:broader) which in 

turn produces the hyponymy graph. These three parts have the following formats: 

1. <Category_URI> <http://www.w3.org/2004/02/skos/core#prefLabel> 

“Category_Label”@en . 

2. <Category_URI> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 

<http://www.w3.org/2004/02/skos/core#Concept> . 

3. <Category_URI> <http://www.w3.org/2004/02/skos/core#broader> 

<Super_Category_URI> . 

To find the sub-categories of a certain category, one should match the category URI to the object 

part of the skos:broader entries. The following examples show the definition of the category of 

“Software Engineering” and one of its super-categories, “Computer Science”, and one of its sub-

categories, “Computer Programming”, in this dataset: 

<http://dbpedia.org/resource/Category:Software_engineering> 

<http://www.w3.org/2004/02/skos/core#prefLabel> “Software engineering”@en . 

<http://dbpedia.org/resource/Category:Software_engineering> <http://www.w3.org/

1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2004/02/skos/core#Concept> . 

<http://dbpedia.org/resource/Category:Software_engineering> 

<http://www.w3.org/2004/02/skos/core#broader> 

<http://dbpedia.org/resource/Category:Computer_science> . 

<http://dbpedia.org/resource/Category:Computer_programming> 

<http://www.w3.org/2004/02/skos/core#broader> 

<http://dbpedia.org/resource/Category:Software_engineering> . 

                                                      
2 The “skos:” namespace is equal to the <http://www.w3.org/2004/02/skos/core#> prefix. 
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3.4.8 Articles Categories Dataset 

The articles-categories dataset is the part that completes the semantics graph by connecting the 

articles main titles to their categories. Section  3.5 will present an in-depth description of the relations 

created by the dataset and the pieces making up the semantic graph. The format of the dataset is: 

<Title_URI> <http://purl.org/dc/terms/subject> <Category_URI> . 

Figure  3.6 shows some examples of these triples, marked as 2. Below is another example, in triple 

format, showing that “Albert Einstein” belongs to a category called “Cosmologists”: 

<http://dbpedia.org/resource/Albert_Einstein> 

<http://purl.org/dc/terms/subject> 

<http://dbpedia.org/resource/Category:Cosmologists> . 

3.4.9 Final Knowledgebase 

Having gathered all the DBpedia datasets mentioned above, we have enough data in our arsenal to 

create the appropriate knowledgebase for the semantic analysis. Note that there are many other 

datasets offered by DBpedia, such as Short Abstracts and Geographic Coordinates, which have been 

left out due to lack of use in the presented semantic analysis. However, these extra datasets can 

provide valuable aid in certain applications which are outside the scope of this work. Moreover, note 

that the quantity of the data, namely the number of triples in each dataset, keeps growing as DBpedia 

gets more updates from newer Wikipedia dumps. While this is a desirable feature, the additional data 

might not necessarily improve the performance of semantic analysis in every case. We will observe in 

 Chapter 4 that the knowledgebase used in some experimental results is of earlier versions of 

Wikipedia. The only time constraint is that the test set used in those experiments predates the version 

of Wikipedia to avoid featuring entities which have not been yet incorporated in Wikipedia. 

Figure  3.7 shows a diagram of how all the above components are linked together to create the 

knowledgebase. The blue ovals, green boxes, and red ovals show titles/entities, literal values, and 

categories/topics, respectively. Types/classes are shown by an orange oval and the skos:Concept, a 

constant for all categories, by a light blue oval. The namespaces used to shorten the URIs are given in 

the box at the bottom left corner. Notice how the dashed line separates the knowledgebase into two 

areas: the top left corner area with titles at its core (excluding the orange oval of classes) represents 

the entity graph while the bottom right corner area with categories at its core represents the topic 

graph. These two together constitute the semantic graph explained in Section  3.5. 
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Figure  3.7: Final knowledgebase generated by DBpedia datasets. 

 

Figure  3.7 shows the structure of the knowledgebase. However, to have a quantitative 

understanding of the knowledgebase volume, it is valuable to look at some statistics given in Table 

 3.2. These statistics belong to the DBpedia version 3.7 datasets. 

Table  3.2: DBpedia 3.7 datasets statistics [86, 89]. 
Dataset Triples Distinct 
Titles 8.8 million 3.6 million Main Titles 
Redirects 5.1 million  
Disambiguation Links 1.0 million ~0.1 million Disambiguation Titles 
Ontology Infobox Types 9.3 million 320 Types for 1.8 million of Main Titles  
Ontology Infobox Properties 17.5 million 1643 Properties + ~10 External Properties 
Wikipedia Pagelinks 145.9 million  
Categories (SKOS) 3.0 million 740,000 Categories 
Article Categories 13.6 million  

 
To understand how the above statistics play into the knowledgebase, there are a few points to 

discuss. Firstly, note that there are 8.8 million titles but only 3.6 million of them are unique entities. 

From the remaining 5.2 million titles, 5.1 million of them are redirects and about 0.1 million of them 
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are disambiguation titles. This means this knowledgebase has information about 3.6 million unique 

things which we will call entities. However, there are 5.2 million other access routes to these entities. 

These alternate routes are especially helpful in the entity detection task described in Section  3.6. Also 

note that the total number of triples in disambiguation links dataset is 1.0 million which is because 

each of those 0.1 unique disambiguation titles point to many different main titles and hence more of 

the total triples. 

Secondly, there are 9.3 and 17.5 million triples connecting main titles to 320 different types and 

1643 properties, respectively. However, the infoboxes are not available for all the main titles and, as 

the table indicates, these triples are associated with only 1.8 million of the main titles. This means 

each main title with an infobox has 5.2 types and 9.7 properties on average. 

Lastly, the wikilinks connections create a graph with about 146 million edges. 5.1 million triples in 

the pagelinks dataset are repeats of redirects dataset rows. Therefore, excluding redirect wikilinks, the 

pagelinks graph has about 141 million edges for 3.6 million main titles as nodes. On the other side, 

the category graph has 3.0 million triples. As explained, each category has two rows specifying the 

label and skos:Concept connections and the rest are hyponym relations. Thus, the number of edges in 

the category graph is 3.0 million minus 740,000 categories twice which leaves about 1.5 million 

edges for 740K categories as nodes. Finally, the connection between title and category graphs is 

created by 13.6 million links from the titles dataset to the categories dataset. Since there are 3.6 

million main titles and 740,000 categories, on average, each title has 3.8 categories and each category 

is related to 18.4 titles.  

The above statistics conclude the description of the knowledgebase. The next section will talk 

about the semantic graph as a subset of the knowledgebase. It then officially introduces the 

definitions of entity and topic and describes the graphs associated with each one. Once the graphs are 

explained, some of the challenges regarding the use of the semantic graph in the methodology are 

presented and discussed.  

3.5 Semantic Graph 

The knowledgebase created from DBpedia provides a collection of entries of a diverse nature 

connected to one another to form a graph. The edges of the resulting graph represent semantic 

connections between various entries, hence producing a semantic graph. Such a semantic graph, in 

turn, can be used in semantic processes. However, because of the diversity of the types of the graph 
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nodes, any analysis of the graph should be performed separately on sub-parts of the semantic graph. 

This section introduces and specifies two main parts of the semantic graph: entity graph and topic 

graph. 

The basic blocks of an encyclopedia such as Wikipedia are the articles presented in it. These 

articles provide information about certain concepts which we call entities. Entities are atomic 

elements indicating objects, people, organizations, location, events, acts, situations, expressions, 

abstract concepts, laws, and so on. Any specific element can be thought of as an entity. In other 

words, each entity is a knowledge item and the collection of entities is assumed to constitute the 

human knowledge. The range and specificity of items covered by entities will differ from one 

knowledgebase to another. For instance, a medical knowledgebase might cover different diseases, 

medicines, and medical procedures extensively while not presenting any insight into any other 

subjects. Wikipedia is one of the largest generic knowledgebases available and, although it might not 

provide as many entries about different diseases as a medical knowledgebase would, it provides 

enough entities on any given subject to be useful in general purpose applications.  

While the entities define the extent of the knowledgebase, they do not contribute to the building of 

the structure of the knowledgebase. A well-designed knowledgebase has a meta-layer of information 

defining the structure and classification of the entities using a hierarchy model. The structure layer of 

the Wikipedia/DBpedia knowledgebase is defined through a set of categories which we generally call 

topics. Topics are abstraction concepts or classes which encircle a set of entities in a group. As an 

analogy for the relationship between topics and entities, consider the relationship between classes of 

objects and specific instances of those classes e.g. Physicists is a class and Albert Einstein is an 

instance of that class. Therefore, Physicists can be a topic and Albert Einstein an entity which belongs 

to that topic. Moreover, it is possible that topics share entities and, therefore, have overlapping 

domains. For instance, the topics of Lawyers and Politicians have many entities in common since 

there are many lawyers who enter politics. Lastly, the range and specificity of topics may also vary 

greatly based on the domain of a knowledgebase. Wikipedia, being a large generic knowledgebase, 

offers an expansive set of topics, describing every domain of knowledge and ranging from the very 

precise, such as “Fictional secret agents and spies”, to the very general, such as “Information”. 

An interesting notion about entities and topics is that there are certain entities and topics which are 

identified with the same label. For instance, “Physics” and “University of Waterloo” are both labels 

of an entity as well as a topic. Later, we see that such entities and topics have a certain relationship in 
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datasets, but, it is valuable to see why such phenomenon exists. The answer is that, while such entities 

and topics are identified similarly, their definitions differ fundamentally. An entity represents a 

certain specific concept for which it is labeled, while a topic defines a certain domain for a group of 

entities belonging to that domain. For example, the entity of “University of Waterloo” identifies the 

academic institution while the topic of “University of Waterloo” specifies the group of all the entities 

that belong to this topic. Clearly, the entity of “University of Waterloo” belongs to this topic but the 

following entities also belong to the “University of Waterloo” topic: “University of Waterloo Faculty 

of Engineering”, “St. Paul’s University College”, and “Waterloo Warriors”. Sometimes the 

distinction between such entities and their topics is difficult to discern e.g. “Physics” as an entity 

represents the science itself while “Physics” as a topic represents the category of this science within 

the realm of all sciences. One good way to mentally distinguish such cases is to think of entities as 

standalone concepts while topics are containers of entities which also belong to a hierarchy of other 

topics. For instance, “Physics” as a topic is a sub-category of “Physical Sciences” and a super-

category of “Thermodynamics”. 

In order to have a clear designation of entities, topics, and their relation, we need to formulate the 

knowledgebase using these concepts. The knowledgebase core (KB) is defined by the following: 

 { }RPTEKB ,,,  (3.1)  

In this equation, E represents the entities, T represents the topics, P represents the predicates, and R 

represents the set of all possible relations between E and T. The following shows how elements of the 

set R are defined: 

 { }   PpRR p ∈=  (3.2)  

 ( ) { }{ }TEoopsRp ,,s  ,, ∈=  
(3.3)  

In the above equations, Rp defines various relations defined by sets of triples of subjects (s), 

predicates (p), and objects (o). Subjects and objects can be either entities or topics while predicates 

originate from available relations and properties in the datasets. For instance, we will see that wikilink 

relations from the pagelinks dataset provide a LinksTo relation between entities. Such relations might 

be demonstrated as below (short format): 

 ( ) ( ) ( ){ }212121 ,  ,, eeEeeeLinksToeRLinksTo ≠∧∈=  (3.4)  
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Moreover, if and only if a relation Rp exists between any given subject s and object o, can we assert 

that the logical proposition of p(s,o) is true. Equation  (3.5) demonstrates such as assertion in general 

terms. As a case in point, let us assume entity e1 has a wikilink to entity e2 i.e. (e1,LinksTo,e2)∈RLinksTo. 

Therefore, we can assert that LinksTo(e1, e2) is true. It is also very important to note the upcoming 

relation definitions are all only providing necessity conditions and not all triples conforming to these 

conditions would have the defined relation. The sources of relation triples are various datasets. 

 ( ) ( ) TrueospRops P ≡⇔∈ ,,,  (3.5)  

Having the knowledgebase and the concept of entities and topics defined, we can delve into the 

sources of these concepts and how they are related to each other and one another. The next three sub-

sections will describe entity-to-entity, topic-to-topic, and entity-to-topic relationships. They show the 

datasets used to specify such relationships and how these relationships create entity and topic graphs. 

3.5.1 Entity Graph 

The dataset used in the knowledgebase to represent entities is clearly the titles dataset. This is a trivial 

choice as the titles dataset is the collection of the identifier of the encyclopedia articles which, by 

definition above, identifies the entities. As shown before, the titles dataset has many different types of 

connections to both itself and other datasets. The portion of connections of the titles dataset which 

connects the entities to other entities is the base of the Entity Graph.  

The entity graph is the graph created by the collection of titles as its nodes and the connections 

between titles as its edges. The entity graph is a directed graph which means the edges are not 

symmetrical. Moreover, Figure  3.7 shows four different types of connections from titles to other titles 

(connections to literals are not of interest here). Table  3.3 shows these connections, their source 

datasets, predicate URIs, and equivalent relations in knowledgebase. 

Table  3.3: Entity graph edge types and specifications. 
Connection Dataset Predicate URI Relation 

Redirection Redirects dbpedia-owl:wikiPageRedirects RedirectsTo 

Disambiguation Disambiguation Links dbpedia-owl:wikiPageDisambiguates DisambiguatesTo 

Wikilink Wikipedia Pagelinks dbpedia-owl:wikiPageWikiLink LinksTo 

Property Ontology Infobox 
Properties 

dbpedia-owl:Property_Label HasProperty 
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The first two types of connections, redirection and disambiguation, serve to specify the equivalent 

titles in the entity graph. These two types are used in the entity detection algorithm to match main 

titles to input keywords. However, these connections do not add extra value to semantic analysis and 

their use is mainly limited to input processing. The formal definitions of the relations these two 

connections generate are as follows: 

( )

( )
( )

( )( )




















∧≠∧∈¬∃
∧≠
∧∈

=

)(  
),(: 

 
, 

 ,,

2

32313

21

21

21

eMainTitle
eeeeoRedirectsTEe

ee
Eee

eoRedirectsTeR ToRedirectss  (3.6)  

( )
( )
( )
















∧≠
∧∈

=
)(  

 
, 

 ,,

2

21

21

21

eMainTitle
ee

Eee
etesToDisambiguaeR tesToDisambigua  (3.7)  

( )
( )






≡′′∈′′¬∃
∧≡′∈′¬∃

⇔≡
TrueeetesToDisambiguaEe

TrueeeoRedirectsTEe
TrueeMainTitle

),(:
),(:

)(
 (3.8)  

Equation  (3.6) defines the RedirectsTo relation by stating that: one entity (e1) can redirect to 

another entity (e2), one entity cannot redirect to itself (e1 ≠ e2), and one entity cannot redirect to more 

than one entity. Equation  (3.7) defines DisambiguatesTo relation by stating that: one entity (e1) can 

disambiguate to another entity (e2) and one entity cannot disambiguate to itself (e1 ≠ e2). Both of these 

equations also state that the object entity (e2) of the triple should be a main title i.e. it should not be a 

redirect or a disambiguation title as defined by Equation  (3.8). Note that MainTitle relation has no 

formal definition and is determined only by titles dataset. Therefore, it is accepted as ground truth. 

The third type of connection is the largest part of the entity graph: wikilinks. Table  3.2 indicates 

that there are about 146 million edges of wikilink type. Therefore, wikilinks are statistically the best 

source of semantics between entities. Equation  (3.9) defines the wikilink relation called LinksTo. This 

equation is the extended version of Equation  (3.4) and it states that an entity can link to a different 

entity (not itself) and both entities should be main titles. 

 

( )
( ) ( )
















∧

∧≠∧∈
=

)( 
)( 

, 
 ,,

2

1

2121

21

eMainTitle
eMainTitle

eeEee
eLinksToeRLinksTo  (3.9)  



 

 49 

 
Figure  3.8: A segment of the entity graph featuring wikilink connections (adopted from [90]). 
 

Figure  3.8 illustrates a small segment of the entity graph which features wikilink types of 

connections. The central node is the “Human-computer interaction” entity and the rest are links up to 

2 levels deep. 

The final type of the entity graph edges is an infobox property. As discussed earlier, some of the 

infobox property triples have other entities as their objects. Therefore, property triples provide 

another type of entity-to-entity connection. The major difference between these connections and 

wikilinks is that the predicate part of the triple is also a variable indicating what property of the 

subject entity the object entity is identifying. That is why the URI in Table  3.3 will vary for each 

different property. Having access to different properties for each entity semantically enriches any 
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analysis and is very useful for natural language processing tasks such as question answering. 

However, for the scope of this research, entity graph traversal methods only differentiate between a 

property connection and a wikilink connection in general and do not distinguish between different 

types of properties. Therefore, instead of defining one relation per property, a generic relation called 

HasProperty is defined to represent infobox property triples. 
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The wikilinks and properties provide similar connections in the entity graph. Using a generic 

predicate such as HasProperty to define property triples causes its formal definition to resemble the 

wikilinks definition closely. Therefore, it seems as if properties are equal to wikilinks format-wise 

and only provide extra connections. This, however, is not semantically the case. There are two major 

differences between these two types of edges in the entity graph which will be reflected in semantic 

analysis later on. The first major distinction is that almost all entities have at least one wikilink while 

according to Table  3.2, only about half of the main titles have infobox information and consequently 

possible properties. The number of wikilinks of each entity is also usually much higher than number 

of its properties (if there are any properties for that entity). The second contrast between the two types 

of connections is that the properties are much more finely chosen than wikilinks. The properties are 

based on templates which feature cherry-picked features of entities which are most closely related to 

the topic of the entity article while wikilink can be chosen much more freely and, therefore, lack the 

desired semantic accuracy. In other words, one might always call a property closely relevant to the 

entity which is not the case for all wikilinks. To summarize, wikilinks provide a higher volume of 

information and are better for collective semantic analysis whereas properties are of lower quantity 

but are much more precise in terms of semantic relevance. 

The elements discussed above constitute the entity graph of the semantic graph. We will see in 

Section  3.6 how the input is broken into possible entities and afterwards in Section  3.7, how the entity 

graph provides a collection of candidate entities for aggregated operations to determine entities most 

similar to the input entities. Such analysis, however, is usually only one part of the semantic analysis. 

Another major process on the semantic graph uses the topic graph by traversing its hierarchy and 

determining semantic distances between topics and between entities. The next section will elaborate 

on the definition and the structure of the topic graph. 
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3.5.2 Topic Graph 

The dataset used to represent topics in the knowledgebase is the category (SKOS) dataset. As 

mentioned before, this dataset provides a massive set of categories which are connected by the 

hyponym relations between them, where a child category has an “is-a” relationship to its parents. 

Such relationships create a hierarchical structure which we will call the Topic Graph. Each category 

in the topic graph represents a node and the relationships between the category and its parents 

represent the edges of the topic graph. It is notable that in the topic graph each node (category) can 

have multiple parents as well as multiple children. Having multiple children is trivial since any topic 

can have multiple sub-topics about more specific concepts e.g. Engineering can have sub-topics such 

as Computer Engineering, Mechanical Engineering, and Chemical Engineering. The possibility of 

multiple parents, however, derives from topics which either belong to more than one concept or act as 

nexus points for different concepts. For instance, “Golf” as a topic can be thought of as a professional 

sport or a recreational hobby and, therefore, can belong to both parent topics: “Professional sports” 

and “Outdoor recreation”. On the other hand, the topic “American physicists” is a topic which 

connects American scientist in any field with physicists from any nationality and, therefore, it can 

belong to both parent topics: “American scientists” and “Physicists by nationality”. Figure  3.9 depicts 

a partial view of Wikipedia’s category hierarchy with arrows pointing downward to sub-categories. 

 
Figure  3.9: Partial view of Wikipedia's category system (adopted from [91]). 
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As shown in Figure  3.7 earlier, the category dataset provides a skos:broader predicate to create 

hyponym relations between categories. Table  3.4 demonstrates the specifications of the edges and the 

relationships of the topic graph while Equation  (3.11) and Equation  (3.12)  formally define 

IsSubCategoryOf and IsSuperCategoryOf relations between topics. The former relationship shows 

that the subject of the triple is a child of the object of the triple while the latter relationship represents 

the opposite i.e. the subject is a parent of the object. 

Table  3.4: Topic graph edge and relation specifications. 
Connection Dataset Predicate URI Relation 

Broader Topic Category (SKOS) skos:broader IsSubCategoryOf 

Narrower Topic Category (SKOS) skos:narrower 
(inverse of skos:broader) 

IsSuperCategoryOf 
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Note that although two connections are mentioned in Table  3.4, there is only one type of 

connection for the topic graph edges. The two relationships mentioned above are using the same 

dataset as the source and, practically, express the same relation in different ways. The only difference 

is that one is the inverse of the other and is defined for the ease of use. The URI used in the dataset is 

only skos:broader and to find the inverse relation, the subject and the object in the triple would be 

swapped. This would semantically be equal to keeping the subject and the object positions intact and 

change the URI to skos:narrower instead. Equation  (3.11) defines the IsSubCategoryOf relation by 

specifying that if topic t1 is a sub-category of topic t2, then the parent topic t2 cannot be the sub-

category of the child topic t1. A topic cannot be a sub-category of itself either. Equation  (3.12) defines 

that a topic t1 is the super-category of t2, if and only if t2 is a sub-category of t1. 

Even though the above formulation provides a definite hierarchy of hyponym relationships, the 

graph is not strictly hierarchic as noted earlier: there exist shortcuts in the connections (i.e. starting 

from one child category and going up two different paths of different lengths to reach the same parent 

category) as well as loops (i.e. starting from one child category and going up a path to reach the same 

child category again). These anomalies are introduced as a result of the incremental generation of 
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Wikipedia’s structure by human authors and the lack of a systematic enforcement of strict hierarchy 

rules. Therefore, a pre-processing method may need to be applied to the topic graph so that a strict 

version can be generated and inconsistencies can be pruned from the topic graph. Figure  3.10 shows 

some examples of such anomalies. The red dashed lines show the extra routes and loops. Notice how 

the “Society” category becomes a sub-category of itself indirectly by a 3-level loop which violates the 

last condition of Equation  (3.11). Also, in this figure, the arrows are upward showing skos:broader 

connections in contrast to Figure  3.9 in which downward arrows represent skos:narrower connections. 

 
Figure  3.10: Examples of topic graph anomalies. 

  

Pruning and pre-processing of the topic graph needs a number of steps performed. There is a 

faction of categories which is for maintenance, internal use, or organization purposes. There are also a 

few categories which have no parents or are disconnected from the main topic graph. The topic graph 

pre-processing algorithm should handle all these cases as well as inconsistent links and edges.  

To perform such tasks, a leveling procedure is applied on the topic graph assigning each category 

with a level number which indicates the shortest path length from the root to that category. Figure 

 3.11 shows the complete topic graph pre-processing algorithm. The algorithm is quite simple. It 

receives one or more nodes as the root of the graph, assigns them a level of zero, and then assigns the 

immediate children of the root nodes a level 1 number. This means all immediate children of root 

nodes are 1 step away from the root. Then all the immediate children of level 1 nodes which have no 
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level number assigned yet are found and given a level 2 number. The next step will search for the 

level 2 nodes’ immediate children and assigns them a level 3 number and so on. This process is 

repeated until no unassigned children are found. Afterwards, the remaining unassigned nodes will be 

the ones with no parents, in disconnected sub-graphs, or out of the sub-graph identified by the given 

root nodes. These unassigned nodes will be labeled as Pruned. Moreover, any edge that indicates a 

node with a lower level number is a sub-category of another node with equal or higher level number 

is deemed an anomaly and, therefore, will be marked as Pruned. 

Input: Desired root nodes of the processed topic graph 

1. Assign a Level 0 to root nodes 

2. L ← 1 

3. Current_Level_Nodes ← All sub-categories of (L-1) level nodes 

with no level number assigned. 

4. Assign level L to Current_Level_Nodes. 

5. L ← L + 1 

6. If Current_Level_Nodes is not empty go to step 3. 

7. Mark all unassigned nodes as Pruned. 

8. Mark any broadening edges connecting a node of level X to any 

node of level Y where X <= Y as Pruned. 

Figure  3.11: Topic graph pre-processing algorithm. 
 

As a result of the above algorithm, each row in Figure  3.10 corresponds to one level. For instance, 

“Science” will have a level of 1 and both “Physical Sciences” and “Natural Sciences” will get a level 

3 number. In this case, according to step  8 of the algorithm, the edge connecting “Physical Sciences” 

as a sub-category of “Natural Sciences” is marked Pruned because both of them have equal level 

number. Similarly, the edge from “Scientific Disciplines” to “Academic Disciplines” makes a level 2 

node the sub-category of a level 3 node which, according to step  8, earns the link a Pruned label. 

Moreover, note that when the children of level 3 are found, “Physical Sciences” will not be 

considered to get a level 4 number as the child of “Natural Sciences” because it has already been 

assigned a level 3 number. 

Another important issue is the choice of root nodes for the pre-processing algorithm. The real root 

of Wikipedia’s category system is called “Contents”. This category, however, has a lot of 
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maintenance and internal sub-categories which are not of interest for the semantic graph. Therefore, 

the root nodes given to the pre-processing algorithm as input are “Main topic classifications” and 

“Fundamental categories”. These two are grandchildren of the “Contents” category and fathers of the 

semantic portion of Wikipedia’s category graph which we are interested in. Using these two as root 

nodes automatically renders the undesirable children of the “Contents” category unassigned and, 

therefore, marked as Pruned. 

The leveling procedure explained in the Figure  3.11 algorithm can be formally expressed by 

Equation  (3.13)3 which expresses each topic (t) has a natural number called level (lvl). This topic is a 

sub-category of another topic with a level one lower (lvl – 1) and there exists no other topic which is a 

super-category of (t) and has a level number lower than (lvl – 1) i.e. there are no other shorter paths to 

root available. 

( )

( )
( )

( ) 





































−<∧′′

∧′′∈′′¬∃

∧







−′

∧′∈′∃

∧∈
∧∈

=

)1(),(
),(:

)1,(
),(:

 

 ,,

lvlLLtHasLevel
ttoryOfIsSubCategTt

lvltHasLevel
ttoryOfIsSubCategTt

Nlvl
Tt

lvlHasLeveltRHasLevel
 (3.13)  

Table  3.5 presents some statistics after performing the topic graph pre-processing algorithm. The 

first two rows show that 125,780 categories were pruned after the processing. The following rows 

show the frequency of categories in each level. It is interesting to note the diamond shape which the 

growth/shrinkage trend has created. There are a few categories at the root which grow rapidly to 

150955 categories wide at level 6 and then it starts to decrease to only 36 categories for the last level. 

The reason for growth is the rapid branching of the child categories at higher levels which broaden 

the width. But as we go deeper, there would be less and less categories and we will just see leaf nodes 

and that is why the number shrinks back. This diamond shape will be the shape of most sub-graphs of 

the topic graph as the trend is self-repeating in smaller dimensions as well. 

An important notion about the above leveling algorithm is that it imposes certain limitations on the 

structure of the topic graph. These limitations may cause loss of generality and, therefore, reduction 

in performance for certain applications by decreasing the possible paths between topics and/or 

removing certain topics. It is possible to bypass applying this algorithm and work on the original 
                                                      
3 N represents the natural numbers and R represents the real numbers. 
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topic graph. However, to avoid anomalies such as loops or topics with no parents, the traversal 

algorithm operating on the unpruned topic graph should keep a record of visited nodes and steer away 

when it comes in contact with an already visited node. This approach is more relaxed than leveling 

algorithm and allows better semantic exploration while it still recovers from wrong paths; however, it 

requires more space and more time for traversal compared to leveling algorithm. The extra space is 

needed for keeping a list of already visited nodes in each traversal and the extra time is needed for 

exploring all the adjacent nodes in each step compared to the leveling approach which only explores 

the ones with only lower levels (or only higher levels depending on the application). 

With the topic graph defined, we have a solid semantic ontology structure for analysis. The major 

advantage of the topic graph is its hierarchy compared to the network structure of the entity graph. 

The topic graph hierarchy enables meaningful traversal methods for semantic analysis while the entity 

graph analysis mostly relies on aggregate clustering methods as described in Section  3.7. However, 

there is one last crucial element in the semantic graph to be discussed before any semantic analysis 

can be performed: the Entity-Topic connection layer. 

Table  3.5: Processed topic graph statistics. 

Topic Graph Source Wikipedia Dump 
October 2010 – DBpedia 3.6 

Total Categories 632607 
Pruned Categories 506827 
Level 0 2 
Level 1 25 
Level 2 933 
Level 3 12152 
Level 4 51850 
Level 5 122269 
Level 6 150955 
Level 7 96065 
Level 8 48982 
Level 9 12311 
Level 10 6448 
Level 11 3118 
Level 12 1067 
Level 13 540 
Level 14 74 
Level 15 36 
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3.5.3 Entity-Topic Connection Layer 

To perform a semantic analysis, there should be a link between the entity graph and the topic graph. 

As defined in Section  3.2, the processing portion of the methodology starts by detecting the entities 

from the input and then traversing the semantic graph. For some cases the traversal is limited to the 

entity graph. For many other cases, the analysis moves from entities to topics and performs topic 

graph traversal instead of, or in parallel with, entity graph traversal. To achieve this transition from 

entities to topics, a connection layer is needed between the entity graph and the topic graph which we 

call the Entity-Topic (ET) connection layer. 

As mentioned before, each entity belongs to one or more categories and each category may have 

many entities attached. Therefore, there exists a many-to-many relation between entities and topics. 

The dataset providing the relation is the article-categories dataset. While this dataset only provides 

dcterms:subject URI linking entities to topics, by swapping the subject and object of its triples, we 

can define relations for both directions similar to the topic graph relations. Table  3.6 presents 

HasCategory and IsCategoryOf relations and Equation  (3.14) and Equation  (3.15) provide formal 

definition of these relations respectively.  

Table  3.6: Entity-Topic connection layer relations. 
Connection Dataset Predicate URI Relation 

Entity to Topic Article Categories dcterms:subject HasCategory 

Topic to Entity Article Categories inverse of dcterms:subject IsCategoryOf 
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Note that, by definition, only entities which are main titles can have categories. To fetch the 

categories of all other titles, they should first be traversed to their proper main titles. Furthermore, 

since IsCategoryOf is just a formal inverse of the HasCategory relation, it does not have physically 

corresponding triples in the article-categories dataset and it just uses the inversed triples. The inverse 

URI in Table  3.6 is mentioned solely for semantic correctness of the definition. 
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It is notable that some (not all) categories have a main article page assigned to them. This translates 

to some topics having a main entity among other entity connections. The main entity of a topic 

usually has the same label as the topic. Such cases are already discussed in Section  3.5. However, 

having the same label is not always the case and there is no other distinct indication of such relations 

between entities and topics either. Therefore, we will treat all connections between entities and topics 

in the connection layer equally. 

Having defined the entity graph, the topic graph, and the connection layer, we can consider the 

semantic graph a complete ontology structure for the purpose of our methodology. The entity graph 

acts as a container for knowledge items. However, it does not provide much structure. The topic 

graph, on the other hand, provides a hierarchical structure suitable for semantic analysis. 

Consequently, the connection layer connects the elements of the entity graph to the elements of the 

topic graph providing indirect structure for the entity graph by placing entities on the fringes of the 

topic graph. In other words, the topic graph acts as the meta-data for the entity graph. 

Figure  3.12 depicts a simplistic illustration of the structure of the entire semantic graph. As 

mentioned before, the topic graph resembles a diamond shape after being processed and assigned 

levels. The topic graph is at the top providing structure. The entity graph, however, is just a network 

of entity nodes interconnected through various uni- or bi-directional edges and it is shown as a circle 

of knowledge items at the bottom. Then each entity is connected to one or more topics shown by 

dashed lines. These connections constitute the Entity-Topic connection layer. 

Lastly, it should be noted that the infobox types dataset, which provides the main type/class of 

some entities, is not used in the semantic graph. Types are generally good indicators of what an entity 

is in essence and they might be useful in some question answering problems. However, since there is 

no structure or hierarchy in the types dataset and also due to a limited number of types, meaningful 

semantic analysis cannot be applied on a variety of applications using types. 

3.5.4 Challenges 

While the semantic graph defined above is well-structured, there exist several issues with both the 

entity graph and the topic graph. Here, some of these issues are discussed and some clues on how to 

tackle them are provided. While it is not necessary to address these issues in every application, it is 

attempted to provide proper algorithms later on in order to address them in proper problem context. 
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Figure  3.12: Semantic graph structure. 

 

The entity graph, as mentioned, provides two main types of semantic connections between entities: 

properties and wikilinks. The advantages of these two types have already been discussed: wikilinks 

have a higher quantity and hence better statistical characteristics while properties have been cherry-

picked as important features of an entity and semantically more relevant. If an approach needs to 

consider a wikilink and a property and rank them, it is usually the case that properties get a higher 

weight in scoring as we will observe in Section  3.7. However, the entity graph does not provide any 

distinction between wikilinks or between properties for each separate type i.e. edges are not weighted. 
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In other words, given an entity, we would not know, based on that entity itself, which of its wikilinks 

are more important than the other. Similarly, we cannot easily determine which of the properties of a 

single entity are more important. This means, we might need to invent some sort of weighting method 

to rank wikilinks and properties of an entity. The ranking of these connections, nonetheless, depends 

on the application. An importance measure should be defined for each application and then the links 

should be ranked based on that importance measure if needed. Furthermore, the weights of the entity 

graph edges are also dependant on the context. For instance, when the context is the personal life of a 

politician, the links to his/her spouse and children are more important. But, if the context is about the 

political life of the politician, the links to the offices held by him/her has more weight. 

The same argument applies to the topic graph. There is no weight to the topic graph edges and, 

therefore, we do not know which of the parents or children of a given category are more important 

than the others. For instance, the topic “Toyota” belongs to many parent topics such as: “Car 

manufacturers of Japan”, “Companies of Japan”, and “1937 establishments in Japan”. The edges in 

the graph have the same weight for all these three parents but one might suggest that the order above 

is a better indicator of the importance of each parent. But again, such ordering cannot be intuitively 

found for each topic and its connection. Moreover, similar to the entity graph, it is often the case that 

the weight of edges depends on the application and context and should be extracted dynamically. 

Finally, the ET connection layer edges are also weightless and, therefore, there are no specific 

distinguishing factors between topics of a given entity. In this case, however, the types dataset might 

be useful to indicate the main topic of an entity but that would only indicate the topmost category for 

each entity and the rest of the topics would still remain on equal standings. 

To address these issues in practice, we would need a set of entities and topics to determine the 

context and then perform the edge ranking using aggregation methods. These aggregations can be 

between entities, topics, or both. For instance, if a list of entities is given, we can find the most 

common topics between these entities to distinguish between all the topics of all the given entities.  

In another possible approach, we can use approaches similar to TF-IDF. For instance, suppose we 

need to find more relevant parent topics of a certain given topic. If a parent topic is the parent of 

many other topics as well, it indicates that the parent is not closely related to the given topic while if a 

parent has only the given topic as the child, it would probably be very relevant to its child.  
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Some of the above issues, and the approaches to tackle them, will be discussed later on in more 

detail. However, before one can perform any semantic analysis over the semantic graph, the entities 

of the input to the system should be known as they are the entry points to the semantic graph. The 

next section will discuss how to detect the entities from the input. 

3.6 Entity Detection 

Entities are elements of the knowledgebase defining our world model. This means every textual 

statement regarded as an input to this methodology is assumed to consist of a number of entities 

connected to each other by natural language connectors. Therefore, for any further processing of the 

input, it should be broken into its building blocks i.e. entities. This process is called entity detection. 

Once we have a list of entities, we are able to find the connections between these entities and other 

entities or topics, perform semantic analysis, and finally, map them to the output for each specific 

problem. In this section, the base algorithm template for entity detection is described and its 

parameters are discussed. Later on, the exact algorithms for specific applications are laid out. 

As indicated in Section  3.2, the input is some kind of textual object and to start the processing, the 

entities should be extracted from the text. The process of mapping text to entities is a common 

requirement for most other works. For instance, works of [92-94] explain methods for different 

services provided by the Wikipedia Miner project [95]. These services include automatic annotation 

of a text document with Wikipedia links which is called wikifying the document. Another method is to 

find the extent to which two text items are related to each other. Another work is to find main topics 

of a document using Wikipedia article titles. The main challenge of all of these methods is to map 

parts of the input text to Wikipedia article titles which we call entities. Another series of works are 

[96-98] which are the basis of a project called Wikitology. These works try to address a range of 

different use cases comprehensively explained in [99]. Some of these use cases are document concept 

prediction, entity linking to knowledgebase entities, interpreting tables, and document description. 

Again, all of these works rely on matching Wikipedia articles to the input documents. 

The methodology presented here treats the input text as a collection of entities glued together by 

lingual connectors such as verbs, prepositions, articles, and so on. The approach is to break the text 

and extract these entities. However, finding the exact match is not always straightforward. Some 

entities can be expressed in different forms e.g. “American history”, “History of United States”, “U.S. 

History”. While the redirects might cover some of these variations, not all entities can be matched 
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perfectly and there is always a possibility of extra or missing words in the input. Trying to 

compensate for extra or missing words by being flexible in matching, on the other hand, causes false 

positive matches. Therefore, the strategy of entity detection here is to match text to multiple entities 

in parallel and score them based on their closeness. Moving forward, all the processes will be 

performed on a set or subset of the candidate entities using aggregation operators. For example, if 

there is a word called phoenix in the input, it can be matched to many entities as shown in Section  3.3. 

The entity detection algorithm considers all the variations. As the process goes ahead and extracts 

more entities from the input, the analysis tries to recognize the context of the input and then it might 

prefer the mythical bird sense of the word phoenix to the city of Phoenix sense, for example. 

Input: A textual object 

(I) Processing Division 

• Apply text breaking 

• Remove stop words 

(II) Search Division 

• Search entities for matching keywords 

• Store search result information: location and statistics 

(III) Scoring Division 

• Apply word featuring weights 

• Apply penalty weights 

• Apply ordering weights 

(IV) Equivalency Division 

• Insert and score redirects 

• Insert and score disambiguated entities  

(V) Production Division 

• Determine the number of final candidate entities.  

Figure  3.13: Entity detection algorithm. 
 

Figure  3.13 shows the generic template for the entity detection algorithm. This template has a 

number of divisions. Some of these divisions might be customized for different problems. This 

means, firstly, a division might be completely ignored, completely applied, or partially applied. 
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Secondly, the method used for each division might be different based on the problem being solved. 

This section will explain each division and iterates through possibilities for customization of the 

divisions and the reasons behind why each customization can be applied. 

3.6.1 Processing Division 

Processing division has the responsibility of preparing the input text for search. The first preparation 

task is to manage the size of the text which might vary in different applications from a few words to a 

large document. In order to efficiently extract entities, a large textual object must be broken into 

smaller components especially if the words of an entity do not have the same order in the input text. 

Moreover, finding entities in a large document as a whole will not benefit from the context of the text 

if processed at once, but if the input is streamed in instead, after finding a few entities, the context can 

be recognized and used in spotting correct entities later on. Also, if the words from the input 

constituting an entity are not in the correct location or there is a disjoint, the entity detection must 

consider a range of words to find the correct entity. If this range is too large, the possibility of 

detecting false positives increases. As a case in point, consider the following text: “Phoenix is the 

capital and the largest city of the U.S. state of Arizona, a state which has a long border with Mexico”. 

To find the correct entity for “Phoenix, Arizona”, the entity detection algorithm should count for out 

of order and disjoint possibilities. But if the input is not broken into smaller components, some false 

positives such as “Mexico City”, “Capital of Mexico” can also be detected.  

Text breaking methods used in this methodology are dependent on the application. Here, three 

possible text breaking methods are introduced. Later in Section  3.8, we will discuss appropriate 

breaking methods for different applications. The main three text break methods are: 

1. Using text internal separators 

2. Fixed word window with overlap: Window(n, o) 

3. Variable n-gram window 

The first method can be applied on text inputs that do provide certain separators. For instance, a 

document written in normal language uses sentences separated by certain punctuation marks such as a 

period (.) and a semicolon (;). This method is very simple and works for ordinary text inputs with 

comparatively short sentences. 
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The second method is also a simple method but provides more flexibility which makes it a better 

choice for more applications. In this method a fixed length moving window of n words is considered 

to break the text. The window is applied on the beginning of the text input which produces the first 

component. Then, the window is moved ahead enough so that it covers the last o words of the first 

component plus n – o new words. To clarify, suppose that n = 10 and o = 4. The first window will 

cover the words 1 to 10. The second window starts from word 7 and covers till word 16. This means 

words 7, 8, 9, and 10 are repeated as the overlaps of two components and word 11 to 16 would be the 

10 – 4 = 6  new words of the second component. The reason for having an overlap between windows 

is to keep the coherence and the flow of the text. The choice of n and o depends on the nature of text 

and can be set empirically. The number of overlap words can be set to zero if needed. Furthermore, it 

is possible to use variable-sized windows and overlaps but a justified strategy must be designed for 

this type of selection. This method is appropriate for most text breaking applications, especially if 

unordered matching is required. 

The third method is specifically for applications that require strict ordered matching. This method 

starts from the first word and searches for matching candidate entities. Then, it searches for the bi-

gram combination of first and second word matching entities. If there are any bi-gram available, it 

will search for a tri-gram made up of the first, the second, and the third word and repeats this until it 

finds all the possible n-grams in matching entities. Once done, it moves one word ahead and starting 

from the second word, it repeats the incremental n-gram search again. Finally, the method finds all 

the matching candidate entities that have an n-gram from the input. Since this is a brute force 

algorithm and might take a long time, the length of n-grams can be limited to a maximum value. As 

this method searches for a combination of words rather than individual words, the order of the input 

will be maintained in the resulting entities. A more detailed example of this algorithm is presented in 

Section  4.3 for speech recognition applications. 

The second task of processing division is to clean the input. This is often done by removing stop 

words i.e. articles and common pronouns and verbs such as: a, the, he, I, go, come, etc. Performing 

this task again depends on the type of the application. For instance, for WQC applications, this will be 

performed as web queries are usually not complete sentences and, therefore, stop words do not count 

as keywords. For speech recognition application, on the other hand, we will preserve the stop words 

as we are looking for exact matches. 
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3.6.2 Search Division 

Search division is the common division among all variations of the entity detection algorithm i.e. no 

entity detection algorithm bypasses search division. It simply tries to find the words from the input in 

the list of entities. In fact, search division returns a list of all entities that feature at least one of the 

words of the current input component. This means the search might be performed on broken 

components separately and, therefore, on multiple occasions. The type of search might also be 

different based on ordering. If order does not matter, all entities that feature one or more words are 

found. Otherwise, only entities that feature a sequence of input words will be returned. As mentioned 

above, the latter search approach is the case in n-gram text breaking method. Each n-gram is a broken 

text component and it is searched so that an exact match is found in entities. 

Besides searching and fetching entities, this division might also record certain information about 

the search. This information can be about the statistics of the matching, such as the number of input 

words found in an entity, the total words of the entity, and the length of the longest ordered sequence 

of input words found in an entity. It might also be about the location of found words in an entity. 

Such information can be used in subsequent divisions. Similar to earlier customization choices, 

inclusion or exclusion of stored information depends on the type of application and scoring methods 

applied. 

3.6.3 Scoring Division 

Scoring is the crucial division of the entity detection algorithm in terms of the accuracy and the 

performance of the algorithm. As stated earlier, for each input component, many entities would be 

detected as candidate entities. Each of these candidate entities will have a score indicating how much 

the algorithm believes the entity has been correctly detected. The scores will then be used to rank the 

entities accordingly. Consequently, the scores are the parameters determining how accurate the entity 

detection was achieved. 

The score equation used in this methodology is comprised of three separate weights: word featuring 

weight, penalty (or proportional importance) weight, and ordering weight. The word featuring weight 

indicates how many of the input component words are in the entity. The more words are in an entity, 

the better match it would be. Penalty weight accounts for the extra portion of the entity not covered 

by the input. This penalty can take on different forms. We will introduce three possibilities in the 

formalization sub-section. The rationale for penalty weight is, clearly, that a lower penalty is 
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desirable. All of the forms of the penalty weight are, however, defined as the proportion of the part of 

the input covered by the entity when compared to the entire entity. Any part of the entity not covered 

by any words of the input will result in a mismatch and, subsequently, a decrease in the final score.  

Finally, the ordering weight is an optional added incentive for the entities which feature words with 

the same order as the input. This part is only applied when search division considers no necessary 

order in entity matching; the algorithm prefers to reward entities with matching order over the ones 

without matching order. The details of the scoring mechanism will be discussed below shortly. 

3.6.4 Equivalency Division 

After finding and scoring candidate entities, we need to make sure that they are the main entry points 

to the entity graph. This means, if the candidate entities are among redirects and disambiguation titles, 

we need to find the main titles and insert them into the list of candidate entities. The task is very easy 

for redirects, if any of the entities has a redirect relation, the entity it redirects to will be inserted into 

the list. The newly inserted entity will inherit the score of the original entity as it is representing the 

same equivalent entity. 

For disambiguation entities, there are two possible methods. The first method, similar to redirects, 

will insert all the disambiguated entities into the list and assign them the same score as their original 

entity. The second method is to insert all the disambiguated entities into the list but recalculate their 

score based on the same scoring strategy as scoring division. The rationale of the second method lies 

within the way disambiguation is handled. As mentioned in Section  3.3, disambiguated entities 

usually have the same label as the original entity with their sense annotated to them e.g. “Phoenix” 

will be “Phoenix (mythology)”, “Phoenix, Arizona”, and so on. Therefore, a recalculation of the score 

can be a good choice considering the possibility of the extra annotation being in the input component. 

For instance, if the input text is “Phoenix is the largest city of Arizona” and searching is considering 

out of order entity matching, “Phoenix, Arizona” is a perfect match compared to “Phoenix 

(mythology)” which has an extra word not matching any of the input words. Moreover, this second 

method of handling disambiguation equivalents can be combined into the search division. Since the 

disambiguated entities are main titles and already in the entity graph, if the original disambiguation 

entities are ignored in the search, we can be confident that the annotated entities will be automatically 

searched and scored without the need to find the equivalency. 
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3.6.5 Production Division 

Once the candidate entities list is ranked and finalized, the production division decides what portion 

of the candidate list can be used further in the semantic analysis. This is done via applying a threshold 

over the scores and cutting off the entities with scores below the specified threshold. The threshold 

can be based on the rank as well as the score. It might also be fixed or variable. The following shows 

all four possibilities: 

• Fixed score threshold: All the entities with score equal or above the specified threshold 

will be selected and the rest will be discarded. 

• Fixed rank threshold: All the entities equal or above the specified rank will be selected 

and the rest will be discarded e.g. top 10 candidate entities will be selected. 

• Variable score threshold: All the entities with a score equal or above a certain percentage 

of the highest entity score will be selected and the rest will be discarded. For instance, let 

us assume that the topmost candidate entity has a score of 4.0. A variable score threshold 

of 60% would select all the entities with score equal or above 4.0*60% = 2.4. 

• Variable rank threshold: All the entities with a rank within a certain top percentage of the 

total number of candidate entities will be selected and the rest will be discarded. For 

instance, let us assume there are 50 candidate entities in total. A variable rank threshold of 

20% will select the top 50*20% = 10 ranks.  

Note that ranking can be done in two ways: regular ranking with ties (e.g. if there are 4 ties with 

rank 3 the next entity will start at rank 7 skipping the ranks of 4, 5, and 6) and dense ranking with no 

tie gaps (e.g. 4 ties with rank 3 will all have the same rank and the next entity gets the next immediate 

rank of 4). 

3.6.6 Formalization 

Formalizing the entity detection algorithm is not a straightforward task as the different nature of 

applications dictates various setups, structures, and formats. For instance, it will be shown that in the 

speech recognition problem that the input text is two or three parallel sentences unlike other problems 

with sequential word order. Yet, an attempt has been made to provide a generic view of the algorithm 

in formal language to better understand each division. Once the basic method is established, the 
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transition to specific formats is easy to understand. The following demonstrates different divisions 

and their steps in the formal format and then tries to explain what each equation means. 

The first step is to define the input text. Figure  3.13 defines the input as any textual object. To be a 

bit more specific, the input is defined as a set of words. These words might be in a specific order or 

might be just a bag of words. In some cases, such as text prediction, some of the words might not be 

complete i.e. there may be a few starting letters of the word. In general, we call the smallest unit of 

the input text a word. Equation  (3.16) defines the input. 

 { }SLWInput ,,

 (3.16)  

In this equation, W is the set of words, L is the set locations for each word in W, and S indicates the 

separators if available. The exact definition of L and S depends on the structure of the input. The 

following equations define a number of different possibilities: 

Bag of words (no order):  
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Parallel sentences(same size):  
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Equation  (3.17) defines no location and no separators which means there is no word order in the 

input. A web query fits this definition since web queries are a set of words which are not necessary in 

the correct order. Equation  (3.18) indicates a sequence of words e.g. one sentence with words indexed 

as w1, w2, w3, …. Equation  (3.19) is a sequence of sentences e.g. a text document. The words have a 

sequential order but there are certain separators breaking sentences at certain positions. Equation 
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 (3.20) shows the format used in the speech recognition problem where there are two or three sets of 

sentences with an equal number of words in each sentence. In this equation, I indicates the total 

number of words in each sentence and J indicates the number of sentences. Each sentence ends with a 

separator in this format which means no other separators are in the middle of the sentences (note the 

capital I in wI, j). 

The first part of the entity detection algorithm, which uses the above input definition, is the 

processing division. As stated, the processing division breaks the input into smaller components and 

cleans the stop words based on the problem definition. Since both tasks are optional, they may or may 

not be performed. Equation  (3.21) shows the result of processing division. 
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In the above equation, Compn represents one sample component which is a subset of the input 

created by the text breaking algorithm. In this format, Kn would be a subset of input words, W. The 

reason for changing the variable from W to K is due to the stop word cleaning process. Regardless of 

performing the cleaning task, we consider the resulting words as keywords hence the letter K. LKn and 

SKn will in turn represent the subset of locations and separators for those keywords included in the 

Compn (if any were found). The following are two examples of the processing division tasks. The first 

example indicates an input with 5 words, no order, and no separators. No text breaking was 

performed but the cleaning task removes word 3: 
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The second example shows an input with 10 words with sequential order and no separators. A 7-

word window, 3-word overlap text breaking algorithm (Window(7,3)) was performed but no cleaning 

was done: 
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Having specified input components, search division tries to find all the entities in the semantics 

graph that feature at least one of the keywords of each component. The set of candidate entities for 

Compn is called En and it consists of candidate entities (ec) and some information about them (INFOc) 

used for scoring. Each candidate entity (ec) in this set contains at least one keyword (ki) from the 

keywords of the corresponding component (Kn). Equation  (3.24) states the formal format of the 

candidate entities of each component. 
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The next step is scoring each candidate entity. As stated, the scoring division includes three 

weights for each entity score. The following will describe each of these three weights in formal 

format. However, it should be noted that the scoring division will apply the scores solely based on the 

nature of each entity and the keywords it contains. In some use cases, after performing semantic 

analysis on one component, an additional scoring mechanism will evaluate new scores based on 

semantic analysis and applies those over the scores presented here. The score for each candidate 

entity in En, called Sn(ec), is defined using three parameters: the word featuring weight (Nk), the 

penalty weight (Pk), and the optional ordering weight (Ok). The following equations describe these 

parameters in formal format: 

 [ ]kkkc
n OPNeS ××=)(  (3.25)  

 ( ) ),( ic keContainsik kCountN =  
(3.26)  
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(3.27)  

 ( )1)"",( 1 +−=⇒+ ijOkkkeContains kjiic   
(3.28)  

All the parameters mentioned in the above equations, plus the locations of the input component 

keywords in the entities, are calculated by the search division and packaged inside the INFOc 

parameter of En.  

 { }LocationsOFFNCNNINFO kekekekc ,,,,,,,  (3.29)  

The first parameter (Nk) indicates the number of keywords featured in the candidate entity (ec). The 

higher the number of featured words is, the higher the score will be. The second parameter (Pk) 

accounts for the extra words of the entity not featured by any of input keywords. Equation  (3.27) 

provides three possible definitions. The first is simply the proportion of keywords in the entity (Nk / 

Ne, where Ne is the total number of words in candidate entity ec). The second is the proportion of 

characters in the entity that belong to keywords (Ck / Ce, where Ck is the total number of characters of 

the keywords featured in the entity and Ce is the total number of characters in candidate entity ec). 

This metric assumes that longer keywords are more important; in the context of web queries, which 

are only a few words long [54, 100], it may be true that more emphasis was meant by the user on the 

longest most evident word in the query. The final measure of proportional importance is based on the 

word’s inverted frequencies. It is computed as the sum of inverted frequencies of the keywords in the 

entity to the sum of inverted frequencies of all entity words (ΣFk / ΣFe), where the inverted frequency 

of a word w is computed as: 

 ( )wEw NumNumF ln=  (3.30)  

In Equation  (3.30), NumE is the total number of entities in the semantic graph and Numw is the 

number of entities featuring word w. It is, in essence, the IDF part of the classic TF-IDF equation: 

(Nw / Ne)ln(NumE / Numw), where Nw is the number of instances of word w in a specific entity (or more 

generally, a document) and Ne is the total number of words in that entity. The TF part (Nw / Ne) is 

ignored because it does not give a reliable result when dealing with short entities that only feature 
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each word once or twice. This metric has been used successfully in the past in a classifier working on 

WQC problem using Wikipedia [62]. 

Lastly, the third parameter (Ok) is used when the entity detection wants to accept out-of-order 

keyword searches in entities but also wants to prefer the entities that match input order. In this case, 

the ordering weight would be the length of the longest sequence of keywords appearing in the entity 

label in correct order. Note that if the search mechanism already considers order in the search Ok will 

be equal to Nk and it would not have any effect on the scoring. Therefore, Ok is only used when out of 

order searching is performed. 

To clarify the scoring mechanism, consider the input: “Geography of United States”. After 

applying stop word removal (similar to Equation  (3.22)), the keywords of the only input component 

is: K1 = “Geography United States”. Now consider the following entities: 
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 (3.31)  

Entity e1 features Nk = 2 words of the K1 and has Ne = 2 words in total. Entity e2 features Nk = 3 

words of the K1 and has Ne = 3 words in total. Finally, entity e3 features Nk = 2 words of the K1 and 

has Ne = 3 words in total. Considering the first definition of penalty weight and using no ordering 

weight, the scores of each candidate entity would be: 
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 (3.32)  

It is evident that e2 would be the top candidate and e1 and e3 would follow. It is interesting to notice 

how penalty weight will penalize e3 for having an extra word dropping it to the last position. If we 

have used ordering weight above, all of the scores would have been multiplied by 2 as “United 

States” is the longest sequence of words in K1 that matches the three entities. However, let us 

compare the score of e2 for input component K1 and input component K2 = “United States 

Geography” using ordering weight.  
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Since all three words in K2 match the order of candidate entity e2, Ok would be equal to 3 hence the 

score of S2(e2) is equal to 9 compared to S1(e2) which is 6. 

After performing the scoring, equivalency division simply adds redirects and disambiguation links. 

As explained, redirects copy the score while disambiguation links might recalculate scores based on 

their annotated sense disambiguation tags. f(INFOc) represents the recalculation of the score in the 

following equations which show the formal format of equivalency division: 

 ( ) ( )( ) ( ){ }ccnccccnn eeoRedirectsTE,INFOe  ,INFOeEE ′∧∈′← ,  (3.34)  

 ( )( ) ( )( ) ( ){ }ccnccccnn eetesToDisambiguaE,INFOe  INFO,feEE ′∧∈′← ,  
(3.35)  

Finally, the production division will cut off the candidate entities for each input component which 

has a score less than a certain threshold. As explained, the cut can be performed on the score or the 

rank of entities and the thresholds could be constant or a percentage of top ranked candidate entities. 

The following equations show the two possible threshold methods: 

 ( ){ }Thresholde S ,INFOeEE c
n

ccnn <−← )(  (3.36)  

 ( ) ( ){ }ThresholdeS Rank ,INFOeEE c
n

ccnn <−← )(  
(3.37)  

The above formalization equations conclude the entity detection algorithm description. The next 

section will describe the next step in processing which is semantic analysis of the candidate entities 

resulting from the entity detection algorithm explained in this section. 

3.7 Semantic Analysis 

The key element and final part of the proposed methodology is the semantic analysis. Once the input 

has been translated to a list of candidate entities by the entity detection algorithm, the entry points to 

the semantic graph are specified. This means an analysis algorithm can pick up the entry points and 

traverse the semantic graph to find relevant entities and topics based on the use case exposed to the 

methodology. For instance, in case of query topic identification, once the input query is mapped to 

candidate entities, the semantic analysis algorithm will use the ET connection layer to find 

corresponding topics of the candidate entities. It then traverses the topic graph so it can find the 
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closest, most relevant target topic and, by doing so, identify the topic of the query. As another 

example, the semantic analysis algorithm can use the candidate entities to recognize the context of the 

input and use the context for word sense disambiguation; that is, based on the candidate entities, it can 

decide which entity best matches the incoming input. Section  3.8 will introduce a list of possible use 

cases where the semantic analysis can be used to provide a solution along with possible solutions 

using semantic analysis. 

To perform any of the tasks mentioned in the above examples, the semantic analysis algorithm 

must traverse the semantic graph often starting from multiple entry points passing through multiple 

paths and converging on a possible target or targets. Such traversal can be varied based on many 

different parameters. One parameter is whether the traversal should be performed on the entity graph, 

the topic graph, or both. Another parameter is whether the direction of the traversal is important or 

not. The importance of the distance between entry points and targets in traversal paths over the 

number of paths can be another factor. The targets themselves are, in some applications, known and, 

in some other applications, unknown. In some cases, the semantic analysis and entity detection will 

repeatedly be performed in an alternative manner on different input components and they produce a 

progressive analysis instead of a snapshot analysis. The following sections will describe different 

concepts and algorithms for semantic analysis considering the above parameters and how to tackle 

each appropriately. Once these concepts and algorithms are explained, Section  3.8 will provide some 

real-world applications and will use different semantic analysis algorithms explained below to 

provide possible solution for each application. 

3.7.1 Semantic Distance 

The first and most fundamental concept to understand in semantic analysis is the semantic distance 

between elements of the semantic graph. Most of the applications handled by this methodology 

require that the entities or topics which are semantically relevant or close to input to be identified. 

Therefore, there should be a metric to determine how much two ontological concepts are close to each 

other. This metric is called the semantic distance. 

The semantic distance, also known as the semantic similarity or semantic relatedness, might have 

various definitions in different situations [101]. Cosine similarity is one similarity metric used often 

in text mining applications and uses the term frequency of documents as the vector describing each 

document. The cosine of two vectors representing two documents will be calculated using their 
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Euclidean dot product. Cosine values near 1 mean very similar and values near 0 mean not so similar 

documents. Latent Semantic Analysis (LSA) [102, 103] is famous for using this method and metric. 

Since the knowledgebase in this methodology is defined by the semantic graph, the semantic 

distance should be defined accordingly. The items defining the semantic distance in this structure are 

entities and topics and, therefore, the semantic distance definition is based on the literal distance 

between the nodes of the semantic graph i.e. entities and topics. The distance between nodes in the 

semantic graph is specified by the length of a path connecting one node to another. This path, 

however, is not unique. For most of the nodes in the semantic graph, there are countless paths 

connecting each pair. Each of these paths might have a different length and, therefore, producing 

numerous semantic distances for any given two nodes (and that is without considering the loops in the 

entity graph). The trivial way for handling this issue is to find the shortest path between the two nodes 

in question. Alas, the definition of the shortest path between two nodes is not unique either as it 

depends on many factors such as: types of source and target nodes, types of the connecting edges, the 

direction of the edges, and the semantic weight of the edges. To explain how each of these factors 

affects the definition of the semantic distance, the different definitions are classified using the types 

of the two nodes for which the distance is defined. The following provides the semantic distance 

definitions for topic-to-topic, entity-to-topic, and entity-to-entity nodes along with other deciding 

factors in each case. 

3.7.1.1 Topic-to-Topic Distance 

Determining the semantic distance between two topics is the most straightforward of all the 

definitions. The topic graph is the upper layer of the knowledgebase with a hyponymy structure. 

There is only one edge type between topics which is a hyponym relation showing the child is a sub-

category (sub-topic) of its parent. Therefore, the semantic distance between two topics would simply 

be the length of the shortest path between the two topics in the topic graph. Equation  (3.38) shows the 

topic-to-topic semantic distance (DistTT) using the recursive form. The description of this equation is 

that if any two topics t1 and t2 are directly connected as one being the sub-category or super-category 

of another, the semantic distance would be equal to 1. Otherwise, if there is another topic t such that t 

is directly connected to t2, the distance would be the distance between t1 and t plus 1 given that there 

is no other topic directly connected to t2 with a lesser distance to t1 compared to t i.e. the distance 

between t1 and t2 is the shortest path length. 
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The above is a general definition describing topic-to-topic semantic distance applicable to most use 

cases. However, there is a possibility that some applications would need to find the semantic distance 

given a certain direction for traversal. In other words, the definition given above is a symmetrical 

definition causing DistTT(t1, t2) to be equal to DistTT(t2, t1). But if the application asserts that, for 

example, the distance direction from t1 to t2 should be strictly from child to parent (t1 should be a sub-

category of t2), then the distance would only be defined between children and their ancestors in a one-

way direction. Any two topics not related through ancestry i.e. related through siblings or cousins, or 

related through the reverse direction of ancestry will get a distance of infinity. For instance, if the 

assertion is that the direction should only be upwards from children to parents and assuming that t1 is 

a sub-category of t2, then the distance4 from t1 to t2 would be equal to 1: 1),( 21 =ttDistU
TT  and the 

reverse would be infinity: ∞=),( 12 ttDistU
TT . Now if t3 is another child of t2 which means t1 and t3 

are siblings, the distances between t1 and t3 in both directions would be equal to infinity: 

∞== ),(),( 1331 ttDistttDist U
TT

U
TT . Figure  3.14 shows some examples of upward distances. The same 

argument, albeit reversed, is true if the assertion was downward from parents to children. Equation 

 (3.39) and Equation  (3.40) will define the upward and downward topic-to-topic distances 

respectively. The downward distances are the exact inverse of the upward distances. Having defined 

the upward distance, the downward distance can be defined by swapping variables as indicated by 

                                                      
4 U

TTDist  represents the upward distance and D
TTDist  represents the downward distance. 
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Equation  (3.40) meaning the downward distance between t1 and t2 is equal to the upward distance 

between t2 and t1. 

 
Figure  3.14: Examples of upward topic-to-topic semantic distances. 
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There might be an interest to define the semantic distance between two topics using the distance 

between entities of each topic. Such formulations vary greatly based on the definition and might be 

useful for certain applications but in the scope of this research, the semantic distance between two 

topics would be defined solely based on the topic graph. 

3.7.1.2 Entity-to-Topic Distance 

The meaning of the semantic distance between an entity and a topic is tricky. Entities and topics are 

naturally different concepts and, therefore, one might not be able to define the semantic distance 

between them. Since an entity might belong to a topic, we can interpret that as the entity being 

semantically very close to the topic it belongs to i.e. the minimum possible distance (c). Now to 

define the distance between an entity (e) and a topic (t) which it does not belong to, we can reduce the 

problem to finding the distance between topic (t) and another topic (te) to which entity (e) does 

belong. Since we have already defined topic-to-topic distance, we only need to add the minimum 

possible distance (c) to the topic-to-topic distance to calculate the distance between an entity and a 

topic. However, any given entity might belong to many different topics which means by the above 

definition, many distances can be calculated. The solution is simply to select a topic (te) for distance 

calculation which minimizes the distance compared to all other topics to which entity (e) belongs. 

Equation  (3.41) shows the formalization of the above definition. 
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In the above equation, c is a constant determining the proportional weight of an edge between an 

entity and its topic compared to an edge between two topics. Since topic-to-topic edges are valued at 

1, selecting a value less than 1 for c will increase the topic graph dominance while a value larger than 

1 for c will decrease the topic graph effect over an entity-to-topic semantic distance. Furthermore, if 

the entity-to-topic distance is only used in comparison with other entity-to-topic distances, the choice 

for c would be irrelevant as all distances would get the same value. In such cases, one might use a 

value of zero for c and reduce the problem to topic-to-topic distance comparison. 
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In this research, the distance from a topic to an entity is not applicable as entities are the entry 

points of the semantic graph. In the next subsection, however, we will see how entity-to-entity 

distance can be defined based on entity-to-topic distances and in such cases, the distance from a topic 

to an entity would be assumed the same as the distance from an entity to a topic. 

3.7.1.3 Entity-to-Entity Distance 

Defining a semantic distance between two entities is a complicated issue. Entities are connected to 

each other via different types of edges and different types of nodes. Entities are connected through the 

entity graph by means of redirects, disambiguation links, wikilinks, and properties. They are also 

connected through the topic graph by the use of hyponym relations between their topics. Therefore, to 

accurately define the entity-to-entity semantic distance, all of the above parameters should be taken 

into account. Equation  (3.42) provides a generic definition considering all the different routes 

possible for connections between two entities. 
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The distance, as defined in the above equation, tries to indicate the shortest path between two 

entities by considering the minimum of 5 possible route types. Each of these 5 routes provide 

symmetrical distances; thus, the order of arguments (e1 and e2) does not matter. The routes are, 

however, compared using different importance weights considering the essence of each route type. In 

the following, each route is described and a discussion is provided on how each of the weights is set. 

The first two routes indicate redirects ( R
EEDist ) and disambiguation links ( D

EEDist ). These two 

types might only be available between certain entities. If an entity is a redirect or disambiguation of 

another entity, it means these entities are in fact equivalent and, therefore, there is no distance 

between them semantically. But if no such relation is available between two entities, redirects and 

disambiguation links do not contribute to a semantic distance definition; therefore, in case of absence, 

their distance would be considered as infinity. This will reduce the first two routes to binary functions 

resulting in either zero or infinity which means if they exist, they will supersede all other routes and 

causing the minimum to become zero; if they do not exist, they will not have any effect in the DistEE 
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definition as infinity would act as neutral element in a minimum aggregation function. Because of this 

zero versus infinity binary effect, adding an importance weight coefficient is unnecessary for these 

two routes.  Equation  (3.43) and Equation  (3.44) demonstrate the above routes in a formal format. 
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The third route ( P
EEDist ) represents the property connections between entities. Since only half of 

the entities have infoboxes [86] and, therefore, might have properties, it is possible that not every two 

entities have a route between them which only consists of property edges. If such a route exists, each 

step would count as one unit towards the length of the route and, consequently, the distance. In 

practice, however, property routes are used in a step-by-step exploration method; this means that only 

entities immediately connected to a given entity through properties are selected. This implies the 

distance is usually one, but in such an exploration method, the deciding factor is the importance 

weight labeled as alpha (α) in Equation  (3.42). The discussion on weights will follow shortly. Also 

note that the direction of the property link does not matter in this definition. Equation  (3.45) provides 

a multistep definition of the property entity-to-entity distances. 
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(3.46)  

The fourth route ( L
EEDist ) represents the wikilinks connections between entities. Every entity in the 

entity graph has at least one wikilink but it usually has more. Due to the high number of wikilinks, it 

is likely that any two given entities are connected through wikilinks. But it is also possible to find two 

entities without a multistep route consisting of wikilinks. Nevertheless, similar to property links, 

wikilinks are often used in step-by-step exploration methods which are only interested in the 

immediate connected entities. Therefore, the deciding factor again is the importance weight, labeled 
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as beta (β) in Equation  (3.42). Similar to properties, the direction of wikilinks does not matter in 

determining the semantic distance. Equation  (3.46) provides a multistep definition of the wikilinks 

entity-to-entity distances. 

The fifth and final route ( T
EEDist ) represents the connections between entities through the topic 

graph. Since each entity in the entity graph has at least one topic and since all topics are connected to 

each other through the topic graph, any two entities are connected to each other via at least one path 

(and possibly many more paths) through the topic graph. Therefore, it is always possible to find a 

semantic distance between two entities even if there are no paths in the entity graph to connect them. 

The trick is to find all the topics of each of the two entities and then find one topic from the first 

entity and another topic from the second entity which produce the shortest path possible among all 

other possibilities of topic-to-topic connections. Figure  3.15 illustrates an example. Suppose that e1 

has three topics (tx, ty, tz) and e2 has two topics (ta, tb). There are 6 possible connections between topics 

of e1 and topics of e2. In this example, the distance between ty and ta is the smallest, equal to 3. 

Therefore, the semantic distance between e1 and e2 would be equal to 3 + 2c. As mentioned in entity-

to-topic distance, there is an edge with weight of constant c between any entity and its topics. 

Therefore, the final distance would always have a 2c add-on. 

 
Figure  3.15: Entity-to-entity semantic distance through the topic graph. 

 

While finding the semantic distance through the topic graph is always possible, similar to previous 

distances, we are mostly interested in entities which are immediately connected to the topics of a 

certain entity. For instance, in the above example, only entities which are connected to tx, ty, and tz are 

of interest when dealing with e1 as the starting point. This preference reduces the intermediate 

distances to zero which makes the deciding factor and final distance equal to 2c times the importance 
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weight labeled as theta (θ) in Equation  (3.42). Equation  (3.47) expresses the formal format of entity-

to-entity distance through the topic graph. 
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As mentioned earlier, the final entity-to-entity semantic distance is defined based on the minimum 

of the 5 different routes explained above. However, there is also a possibility of defining routes which 

are a mix of the last three options. If the entities fall within the redirects and disambiguation links, 

they are basically equivalent and the distance would automatically be zero. However, considering the 

last three options, it is possible to define a route which uses different types of connections in its 

different steps. For instance, consider a route from the starting entity to a second entity through a 

wikilink, then to a third entity through a property link, and finally, to a fourth entity through a topic 

graph link. Considering such mixed format will produce numerous possible routes, finding the 

shortest path will then become a very computationally demanding task. To include such routes but at 

the same time simplify the algorithm, a step-by-step exploration algorithm is introduced. This 

algorithm will try to create the best mix-and-mash route through a greedy approach. Although the 

algorithm will be explained later, it is important to note how this approach affects the importance 

weighting scheme introduced in Equation  (3.42). Setting the proper weights for α, β, and θ is based 

on how they are used in each step of the exploration algorithm. Figure  3.16 illustrates entities which 

are immediately connected to a certain entity (e1) through different types and will appear in one step 

of the exploration algorithm. It also shows the importance weights for each type.  
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Figure  3.16: Entity-to-entity immediate connections through various types. 

 

Entities e2 and e3 are equivalent and, therefore, have zero distance to e1. Entities e4 and e5 are 

connected through the entity graph and have distance of α and β respectively. Lastly, entity e6 is 

connected through the topic graph and has a distance of 2 × c × θ. The rationale behind setting proper 

values for α, β, and θ is based on the essence of each route. Since the properties are specified by 

Wikipedia authors as important links between two entities, they are considered the closest entities 

(which are not equivalents) to a given entity. Afterwards, wikilinks will be the closest ones. Since 

wikilinks do not have definite predicates, they might not be as accurate as properties but they are still 

closer concepts to an entity as they are directly connected compared to the entities connected through 

the topic graph. Therefore, one step distance through the topic graph should be weighted higher than 

wikilinks. Using the above rationale, proper values for α, β, and θ should satisfy the following 

condition: 

 θβα ≤≤  (3.48)  

Note that the value of constant c cannot be zero since it causes all weights to become zero based on 

the above condition. A good value for c is in fact 0.5 because it will simplify the T
EEDist  distance for 

one step to θ (= 2 × 0.5 × θ). Moreover, based on the application, each of the three routes might be 

ignored when finding semantic distance. For instance, due to the nature of a problem, one might 

ignore using properties all together. Also, it is possible to select the same value for all the weights and 

make the semantic distance equal for all types (considering c = 0.5).  
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3.7.2 Semantic Distance Calculation Algorithms 

Although a complete definition of semantic distance was presented, there was no discussion on how 

to practically calculate these distances. The calculation of the distance between two entities or two 

topics is not very complicated. However, the different setups dictated by the problem definition can 

affect the algorithm mechanism. Here, a number of different algorithms are briefly introduced and 

discussed. Each of these algorithms tackles a variation of the distance calculation based on a different 

setup. 

3.7.2.1 Topic-to-Topic Generic Semantic Distance 

In this case, the goal is to find the distance between any given two topics. To be generic, the goal is 

defined as to find the distances between two sets of topics instead of two individual topics. Figure 

 3.17 provides the full algorithm specification and presents the steps. 

The algorithm starts by creating a set called Calculated Distances (CD). This set will have the 

distances between starting topics and destination topics and all the intermediate topics in between. It 

is initialized by the zero distances from starting topics to themselves. There is another variable 

defined as l which stores the current path length starting at zero.  

Step  2 checks that if there is no destination topic (td) which has at least one missing distance to any 

of the starting topics, the algorithm is done and jumps to step  6. In other words, it checks to see if the 

distances between all starting topics and all destination topics have been calculated. Next in step  3, 

the algorithm tries to find the distances to all the new topics which are one step further from the topics 

it already calculated the distance of l for. This is done by gathering all the topics (tn) with a distance 

of l from any of the starting topics (ts) and then finding all of their sub- or super-category topics (tm) 

whose distances to the starting topics are not already in CD. Such sub- or super-category topics will 

get a distance of l + 1 to the starting topics (ts, tm, l + 1). Then l is increased by one and the algorithm 

continues until all the distances are calculated.  

Note that in this algorithm, the first element of the CD tuples is always a starting topic (ts∈TS). 

When the algorithm stops, not only the distances to all destination topics are calculated for all starting 

topics, but all the intermediate topic distances have also been calculated which can be used in later 

processing. 
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Goal:  Given a set of starting topics (TS ) and a set of  

  destination topics (TD ), find ( , )TT s dDist t t  for any st TS∈  

  and dt TD∈ . 

Input:  TS T⊂ : Set of starting topics 

  TD T⊂ : Set of destination topics 

Output:  ( , )TT s dDist t t  for all st TS∈  and dt TD∈  

1. ( ){ }TStttCD ∈← 0,, , 0←l  

2. If ( ) ( )( ){ }CDnttNnTStTDtt dssdd ∈∈¬∃∈∃∧∈ ,,::  is empty, go to step  6 

3. ( ) ( )
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ttoryOfIsSubCateg
CDnttNn
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4. 1+← ll  

5. Go to step  2 

6. ( )( ) ( ) ( ) lttDistTDtTStCDltt dsTTdsds =∈∧∈∧∈∀ ),(,,  return  

Figure  3.17: Topic-to-topic generic semantic distance calculator algorithm. 
 

3.7.2.2 Topic-to-Topic Upward and Strictly Upward Semantic Distance 

Here, two variations of previous algorithm are presented. As mentioned earlier, in some applications, 

it is needed that the traversal direction in finding the semantic distance be limited to a certain course. 

Here, the algorithms for upward and strictly upward calculation are discussed which are very similar 

to the generic one. The only difference is that the upward algorithm only chooses topics which are 

parents of the topics at the current l distance. The strictly upward algorithm is the same as the upward 

algorithm with the added constraint that it employs the processed topic graph using levels concept 

defined in Equation  (3.13). In the strictly upward algorithm, not only the next step topics should be 

parents of the current l distance topics, they should also have a lower level than their child topics. 

Note that in upward and strictly upward algorithms, it is possible that no upward path between a 

source topic and a destination topic exists. That is why there is an extra step in case of no change in 

CD, which jumps out of the loop and considers remaining distances to be infinity. Upward algorithm 
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is specified by ),( ds
U
TT ttDist  and strictly upward algorithm is specified by ),( ds

SU
TT ttDist . We will 

observe that the strictly upward algorithm will be used in Parla application explained in Section  3.8. 

Figure  3.18 and Figure  3.19 present the specification and steps of upward and strictly upward 

algorithms respectively. 

Goal:  Given a set of starting topics (TS ) and a set of  

  destination topics (TD ), find ( , )U
TT s dDist t t  for any st TS∈  

  and dt TD∈ . 

Input:  TS T⊂ : Set of starting topics 

  TD T⊂ : Set of destination topics 

Output:  ( , )U
TT s dDist t t  for all st TS∈  and dt TD∈  

1. ( ){ }TStttCD ∈← 0,, , 0←l  

2. If ( ) ( )( ){ }CDnttNnTStTDtt dssdd ∈∈¬∃∈∃∧∈ ,,::  is empty, go to step  7 
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4. If CD remains unchanged, go to step  7 

5. 1+← ll  

6. Go to step  2 

7. ( )( ) ( ) ( ) lttDistTDtTStCDltt ds
U
TTdsds =∈∧∈∧∈∀ ),(,,  return  

Figure  3.18: Topic-to-topic upward semantic distance calculator algorithm. 
 

Goal:  Given a set of starting topics (TS ) and a set of  

  destination topics (TD ), find ( , )SU
TT s dDist t t  for any st TS∈  

  and dt TD∈ . 

Input:  TS T⊂ : Set of starting topics 

  TD T⊂ : Set of destination topics 

Output:  ( , )SU
TT s dDist t t  for all st TS∈  and dt TD∈  



 

 88 

1. ( ){ }TStttCD ∈← 0,, , 0←l  

2. If ( ) ( )( ){ }CDnttNnTStTDtt dssdd ∈∈¬∃∈∃∧∈ ,,::  is empty, go to step  7 
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4. If CD remains unchanged, go to step  7  

5. 1+← ll  

6. Go to step  2 

7. ( )( ) ( ) ( ) lttDistTDtTStCDltt ds
SU
TTdsds =∈∧∈∧∈∀ ),(,,  return  

Figure  3.19: Topic-to-topic strictly upward semantic distance calculator algorithm. 
 

3.7.2.3 Topic-to-Topic Downward and Strictly Downward Semantic Distance 

Although we will not be using downward distances here, it is very easy to define them based on their 

upward counterparts. Downward and strictly downward distances are the exact inverse of upward and 

strictly upward algorithms. Downward algorithm is specified by ),( ds
D
TT ttDist  and can be defined 

by changing ),( mn ttoryOfIsSubCateg  in step  3 of Figure  3.18 to ),( mn ttegoryOfIsSuperCat . 

Similarly, strictly downward algorithm is specified by ),( ds
SD
TT ttDist  and can be defined by 

changing mn LL >  and ),( mn ttoryOfIsSubCateg  in step  3 of Figure  3.19 to mn LL <  and 

),( mn ttegoryOfIsSuperCat  respectively. 

3.7.2.4 Entity-to-Topic Generic Semantic Distance 

Calculating entity-to-topic semantic distance is trivial once the topic-to-topic semantic distance is 

defined. All we need to do is to find the topics of an entity, find the minimum distance from those 

topics to the target topic, and add the entity-to-topic edge constant weight (c) to the distance. To be 

generic the algorithm is presented for a set of initial entities (IE) and a set of target topics (TT). In this 
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algorithm, topics of entity EIei ∈  is referred to by TEt ji ∈, . Figure  3.20 shows the specification of 

the algorithm and presents the steps. 

Goal:  Given a set of initial entities ( IE ) and a set of target 

  topics (TT ), find ( , )ET i tDist e t  for any ie IE∈  and tt TT∈ . 

Input:  IE E⊂ : Set of initial entities 

  TT T⊂ : Set of target topics 

Output:  ( , )ET i tDist e t  for all ie IE∈  and tt TT∈  

1. ( ) ( ){ }),( ,,, jiijiiji teyHasCategorTtIEetTE ∧∈∧∈←  

2. For each IEei ∈ , TTtt ∈ , TEt ji ∈, , and Rc∈ , the distance 

( )),(min),( , tjiTTjtiET ttDistcteDist +=  

Figure  3.20: Entity-to-topic generic semantic distance calculator algorithm. 
 

If entity-to-topic upward, strictly upward, downward, and strictly downward distances are needed 

to be calculated, it suffices to replace ),( , tjiTT ttDist  in step  2 with the proper distance function from 

the corresponding topic-to-topic distances. 

3.7.2.5 Entity-to-Entity Mixed Route Semantic Distance 

As mentioned before, entity-to-entity distance can be calculated by either finding the minimum of 

the distances via different connection types or using a step-by-step exploration method. The former 

method is very similar to finding topic-to-topic or entity-to-topic generic semantic distance 

algorithms but with appropriate connections types. Here, we will discuss the latter method as it is the 

more complicated approach. In this algorithm, the distances between two sets of entities and all the 

intermediates are calculated. Figure  3.21 shows the specification of the algorithm and provides the 

steps. 

In this algorithm, the distances between a starting set of entities (ES) and a destination set of 

entities (ED) and all the intermediate entities are calculated. The algorithm starts by giving a distance 

of zero from ES entities to themselves. It also defines EN as the set of entities to be processed next 

and is initialized to ES. Then, the algorithm starts exploring. Step  2 checks if any distances to ED are 
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still outstanding, otherwise jumps to the end. Steps  3 to  6 respectively find the equivalent entities, the 

properties, the wikilinks, and entities with a common topic with EN. All of the new distance will be 

added unless a shorter distance to the new entities is already calculated. Then the newly added entities 

will replace the content of EN to be processed in next round. Step  8 will search within calculated 

distance and if there are two or more distances between the same two entities, it will keep the shortest 

one and discard the longer ones. The algorithm continues until all distances from ES to ED are 

calculated. 

Goal:  Given a set of starting entities ( ES ) and a set of  

  destination entities ( ED), find ( , )EE s dDist e e  for any  

  se ES∈  and de ED∈ . 

Input:  ES E⊂ : Set of starting entities 

  ED E⊂ : Set of destination entities 

  , , ,c Rα β θ ∈ : Weighting parameters 

Output:  ( , )EE s dDist e e  for all se ES∈  and de ED∈  

1. ( ){ }ESeeeCD ∈← 0,, , ESEN ←  
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7. Replace EN with the newly added entities 

8. ( ) ( )( ) ( )( ){ }llCDleeCDleeleeCDCD nsnsns <′∈′∃∧∈−← :,,,,,,  

9. Go to step  2 

10. ( )( ) ( ) ( ) leeDistEDeESeCDlee dsEEdsds =∈∧∈∧∈∀ ),(,,  return  

Figure  3.21: Entity-to-entity mixed route semantic distance calculator algorithm. 
 

The above algorithm concludes how to define the semantic distance and how it is calculated in 

different configurations. While semantic distance is the main foundation of semantic analysis, it is not 

the only factor. The next step is to discuss how the semantic distance is played out versus a concept 

called commonality which represents how to handle multiple routes from entry points of the semantic 

graph to the target entities or topics. 

3.7.3 Semantic Distance and Commonality 

As described in the entity detection algorithm, every input component produces multiple candidate 

entities as the entry points to the semantic graph. Given the entry points, the problem is usually 

finding entities or topics that are similar to the input. Regardless of whether the target entities/topics 

are specified or not, the semantic distance is not the only deciding parameter in finding the most 

semantically similar target. That is because of multiple entry points will cause multiple routes to the 

targets and, therefore, there might be a trade-off between targets with closest semantic distance and 
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targets being pointed by multiple entry points. In other words, a target might not be closest individual 

to any of the entry points but it might be the closest common target among most of the entry point. 

This factor is called the commonality of the target. 

To clarify consider the following example. Suppose that input component has 10 candidate entities. 

Also suppose each entity has 3 topics on average. Now suppose there are 4 target topics to which we 

want to classify the input. To classify input to one of these 4 targets, we need to consider all possible 

routes from input entity topics to the target topics. Therefore, the number of topics resulted from entry 

point entities are about 3×10 = 30 topics considering 3 topic per candidate entity. This means the total 

number of possible routes to target topics is 30×4 = 120. Now, let us assume that candidate entity #4 

has a topic which has a semantic distance of 3 to target topic #1 and this is the shortest distance 

among all other 120 possible routes. The point of commonality is that just because topic #1 has the 

shortest semantic distance to one of the input candidate entities, it is not necessarily the best topic to 

classify the input to. The classifier needs to find the topic which is commonly closer to all of the input 

candidate entities. In this example, the classifier can use an aggregate function, such as sum or 

average (depending on the problem), over all the possible routes to each target (30 for each target 

here) and calculate the overall semantic distance for each target topic. 

Another aspect of commonality factor to consider is the score of each entity candidate. When 

detecting entities, each candidate received a separate score. This means there are different confidence 

levels for various entry points. Thus, the targets should be ranked based on the entry point scores as 

well as the number of routes and semantic distance of each route. How to define the effects of the 

candidate entity scores, the aggregation function applied on various routes, and the semantic distances 

on the final target scores depends on the application of the analysis. However, we can have some 

general rules of thumbs: 

1. The higher candidate entity scores produce higher target scores. 

2. The more routes to a common target probably5 contribute to higher target scores. 

3. The shorter semantic distances produce higher target scores. 

                                                      
5 This might not always be true as it depends on the aggregation function e.g. average function can produce higher scores for 
fewer routes. 
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(3.49)  

Equation  (3.49) formalizes above rules in a generic way. In this equation, ∗
gS  on the left hand side 

(of the consequent) represents the target (goal) score for an entity or topic indexed g. On the right 

hand side, there is an aggregate function (AGG) over all the possible routes from all the candidate 

entities (ec) to the target (yg). Some examples of the aggregate function are given in the antecedent. 

Inside the aggregate function, there is fraction in which the numerator represents rule  1 above by 

making target score directly proportional to candidate entities scores. Note that the function (f) 

applied on the candidate entities should not render the proportion contradict rule  1 (unless otherwise 

intended). The denominator, on the other hand, follows rule  3 by making target score inversely 

proportional to the distance between candidate entities and the target. Again, note that the functions 

applied on the semantic distance (h) should support the inverse proportionality (unless otherwise 

intended). The f and h functions are scalar functions provided for flexibility on the power of the effect 

of nominator and denominator and can be customized in different applications. The function M on the 

other hand is an optional mapping function between candidate entities and other entities/topics. For 

instance if the distance is calculated between entities (i.e. X and Y are both equal to E), function M 

can be an identity function returning ec as is. However, if the application is topic identification, M 

would be the HasCategory function which finds the topics of the candidate entity and the goal (yg) 

would also be the target topics which the query should be classified in. 

3.7.4 Entity Analysis 

Entity analysis is applied on the types of problems which only involve entities. These kinds of 

problems start with a set of initial entities. These initial entities are either given or detected by the 

entity detection algorithm. Afterwards, there would be a number of alternating entity detections and 

semantic analyses until the input is fully processed. In these kinds of problems, there is often a set of 

conditions that the input entities should conform to. The entity detection algorithm finds the candidate 

entities conforming to the given conditions and scores them. Then, the semantic analysis component 
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re-scores the candidate entities based on their similarity to the initial set of entities. The similarity is 

defined based on semantic distance and commonality of entities. Once the new candidate entities are 

re-scored and selected, the initial set of entities is updated based on the old and new entities and the 

process repeats. Some actual applications of entity analysis, such as speech recognition and text 

prediction, are given in Section  3.8. Below a generic template for entity analysis algorithm is 

described in Figure  3.22. 

Goal:  Given a textual input source, find entities conforming to 

  a set of conditions (COND ). 

Input:  nCOMP : Input components 

  COND : A set of conditions entities should conform to 

Output:  Result entities nRE  for each component nCOMP  which  

  conform to COND  

1. { } 1, ←← iOE  

2. Find candidate entities iE  using the entity detection algorithm 

over iCOMP  and keep scores in )( c
i eS   

3. Filter out entities from iE  which do not conform to COND  

4. Find semantic distance between OE  and iE   

5. Calculate commonality score ∗
cS  for all candidate entities ic Ee ∈  

using observed entities in OE , re-score all iE  using iS  and ∗
cS  

6. Select high scored entities from iE  and put them in result 

entities iRE  and return iRE  as a part of output 

7. Update OE  based on iRE  : ( )iREOEuOE ,←   

8. 1+← ii   

9. If iCOMP  exists, go to step  2, otherwise exit 

Figure  3.22: Generic entity analysis template algorithm. 
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Note that in above algorithm, OE is empty in the first round; therefore, steps  4 and  5 are ignored in 

the first iteration and step  6 only uses the entity detection score ( )(1
ceS ) to select result entities 

(RE1). Afterwards, OE will be updated using result entities. The updating function (u) can be a simple 

replacement of OE by REi or it can mix all the entities and select the top ranked ones. The progressive 

analysis mentioned later will demonstrate another strategy for updating based on the age of an entity 

as well as its score. Finally, rescoring can be done by a customized function over iS  and ∗
cS . 

3.7.5 Topic Analysis 

Topic analysis is applied on types of problems which require the input to be mapped to a certain set of 

topics. Therefore, the first step is to use the entity detection algorithm to provide the candidate entities 

for each input component (if text breaking is needed). Afterwards, the topics of candidate entities will 

be acquired. Finally, the distances between topics of candidate entities and the target topics will be 

calculated and scored using commonality equation. The target topic(s) with highest scores will be 

deemed as the topic of the input component. Topic identification application in Section  3.8 and most 

of  Chapter 4 is dedicated to address the details topic analysis. One thing to note here is the possibility 

of having static or dynamic target topics in topic analysis. If the target topics are known and limited 

beforehand (static), it is possible to pre-calculate and cache the distances between target topics and all 

other topics in the topic graph. This action will increase the speed of algorithm considerably. 

However, if the targets are defined dynamically, the distances must be calculated in an iterative 

manner explained earlier. To increase the efficiency of the algorithm in this case, a limit can be 

imposed on the steps of iterative distance calculation and if the target topics are not within a threshold 

radius of starting topics, they will be considered as having the maximum possible distance or infinity.  

3.7.6 Progressive Analysis 

Semantic analysis in some problems requires the system to be constantly and dynamically involved 

with input. In other words, as the input components are read by the system, the semantic analysis is 

performed on each component and the results is kept and evolved for the next incoming input 

components. For instance, in a question-answering dialog system, the user keeps asking for new 

information and there is a good chance that the new questions are related to the past question. This 

system should keep track of the context of conversation and reason based on the history of the 
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conversation. Although the natural language dialog system is not the scope of this research, the 

methods described earlier can assist this system to detect correct entities and topics. 

Here, progressive analysis is applied in two directions. One over entity analysis which is called the 

context awareness application and the other is over topic analysis which is called topic tracking 

application both explained in Section  3.8. The progressive entity analysis tries to keep record of the 

entities already seen. In order to achieve this, the entities which win over thresholds i.e. score high 

enough to be selected as result entities will be stored in a set of observed entities (OE) similar to OE 

in the generic entity analysis algorithm. These observed entities will be assigned an age initialized to 

zero. Age of observed entities is incremented every iteration of semantic analysis. If an observed 

entity is observed again during next iterations of the semantic analysis, the age of that entity is reset to 

zero. In each round of semantic analysis, entities older than a threshold (Tage) are discarded from OE 

list. This mechanism keeps an updated memory of entities and these entities can, in turn, help to 

detect more correct entities from the input. Figure  3.23 summarizes the aging mechanism in 

progressive entity analysis. In this mechanism OEi are the observed entities in the current iteration 

similar to REi in generic entity analysis algorithm. 

Input:  OE : General observed entities set  

  iOE : The observed entities of current iteration(i) 

1. For all ( )( ) ( ){ }iOEeOEageee ∈∧∈, , do ( ){ } ( ){ }0,, eageeOEOE −←   

2. For all ( )( ) ( ){ }iOEeOEageee ∈∧∉, , do ( ){ }0,eOEOE ←  

3. If ( )( ) ( )ageTageOEagee >∧∈,  then ( ){ }ageeOEOE ,−←   

Figure  3.23: Progressive analysis aging mechanism. 
 

Applying progressive analysis on topics is similar to entities with the difference that the observed 

entities (OE) set is replaced with observed topics (OT). In each round of analysis, the target topics are 

selected by the analysis algorithm and they will be added to the OT set. If the new topics already exist 

in the OT, their age will be reset to zero. In each round, all the topics older than a threshold will be 

discarded. Both lists, OE and OT, are used to score the new candidate entities or topics in the new 

rounds of analysis. The rationale behind such a progressive analysis mechanism is that the entities in 
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or topics of the input are coherently connected in successive components of the input. However, the 

change in context can happen but it is gradual. That is why the sets will discard the entities or topics 

which are not updated in the context after a while. 

3.8 Applications 

This section is dedicated to the introduction of a number of applications which can benefit from the 

entity detection and semantic analysis algorithms discussed earlier. The goal is to introduce a variety 

of different problems with different input and output types and for each problem, discuss how every 

element of semantic analysis is customized to address the issues of that specific problem. In each 

case, a potential solution is proposed. However, the proposed solution is not the only possible 

approach to solve that problem. It is possible to tackle these problems with tools other than the ones 

mentioned in this research. It is also possible to tackle these problems using the semantic analysis 

mentioned earlier but with various configurations. The potential solutions here provide one (possibly 

most generic) configuration. For one specific application (topic identification) various configurations 

are discussed in  Chapter 4. The starting application is called Parla project and it is the initial 

motivation behind this research. 

3.8.1 Parla Project 

The Parla project was defined as a project with multiple research aspects. In general, it was a search 

engine for media content. The goal was to design a system which can provide a portal for accessing 

audio and video material using search abilities which can search through the content of an audio or 

video file similar to how the regular search engines search within textual web pages. This system 

would need a number of components to work properly. The main components of such a system will 

be:  

• Automatic speech recognition engine to convert audio/video to text 

• Search and indexing engine for information retrieval purposes 

• User interface as a portal for users to access and work with the system 
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Figure  3.24: The structure of Parla project. 

 

 
Figure  3.25: The components of the Parla project. 

 



 

 99 

However, a generic speech recognition engine cannot perform reliably for all possible inputs from 

all possible topics. To increase the performance of the speech recognition engine, a semantic analysis 

engine was also included in the system. The semantic engine task was to perform two actions. First, 

after a transcription of an audio file was acquired using the generic speech recognition engine, the 

semantic engine would classify the text into a topic. Once the topic of the audio file was known, it 

was processed again using a speech recognition engine with a model dedicated to the topic of the 

audio file with higher accuracy. The second action performed by the semantic engine was to identify 

the topic of the user’s query to the system and provide results related to the user’s query topic. This 

last part of semantic engine which we call “Query Topic Identification” was the motivation behind 

this research. Figure  3.24 and Figure  3.25 show the final structure and components of the Parla 

project. 

The query topic identifier component of the Parla project shown in Figure  3.25, is the component 

of interest here. The other components of the project are not discussed as they are out of the scope of 

this dissertation. The Parla project, however, is a nice showcase of how the semantic analysis 

methods explained earlier can be used in a real-world problem. The Parla project was limited to four 

topics for practical and developmental reasons but the concept works for as many desired topics. 

Therefore, the query topic identification task was to receive a user text query and identify to which of 

the four specified topics it belongs. The four topics used in the project were: Economy, Politics, 

Science & Technology, and Sports. Figure  3.26 shows a web page of the final system in action 

displaying the search results for the term ‘bank’. To present the solution used to develop the query 

topic identifier component, the algorithm should be formally described as in Table  3.7. 

Table  3.7: Query topic identifier algorithm description. 
Algorithm: Parla Component: Query Topic Identifier 

Goal: Given user’s query, determine to which of four topics it belong. 

Input: W: Input query as bag of words (no necessary order) 

Output: ti: One of the four topics (t1, t2, t3, t4) 
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Figure  3.26: A screenshot of the Parla system in action. 

 

The next step is to define each part of solution according to the methodology described in 

Section  3.6 and Section  3.7.  Therefore, the first action is to define input for the entity detection 

algorithm. Since a textual query submitted to a search engine is not necessarily an ordered text, the 

best model to describe the query is a bag of words as defined in Equation  (3.17). Moreover, it is 

assumed that the query is, in nature, a short text containing a few words [100]. This means that the 

text breaking is not necessary and the input would be only one component. Furthermore, stop words 

are not removed in Parla project. Therefore, the input would be { }NkkkComp ,,, 211 =  in which N 

is the total number of input words and ki are the input words i.e. keywords.  

Once the search division of the entity detection algorithm finds the candidate entities with one or 

more input keywords, a score for candidate entities should be defined. The score for candidate entities 

are based on Equation  (3.25) with no ordering weight and character length as the penalty weight. 
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Therefore, the score for candidate entities is equal to ekkc CCNeS ×=)(1 . Afterwards, the 

equivalency division adds redirects with the score mentioned but the disambiguations were not added 

as they were supposed to be scored as separate entities based on their annotated main titles e.g. 

“Phoenix (mythology)” for “Phoenix”. The production division would also apply a limit of top 100 on 

the entity detection output. However, the limit is applied on topics of candidate entities rather than 

candidate entities themselves. The reason is that in order to map the input to one of the four target 

topics, the extracted candidate entities should be mapped to their topics and then the semantic 

analysis can be performed between the topics of the candidate entities and the target topics. The 

topics of candidate entities are called base topics and shown as tb which means for a certain candidate 

entity ),( bc teyHasCategor  is true i.e. tb is a topic of ec. Once all the base topics are gathered, a 

score parameter can be defined for each base topic. First, a parameter called topic-to-keyword weight 
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Topic-to-keyword weight specifies that if the candidate entity ec has the keyword ki and is related to 

the topic tb, then the )( c
t

k eW b

i
 weight is equal to the score of that candidate entity. Once all the 

possible topic-to-keyword weights are calculated, a parameter called density is defined which 

basically represents the score of base topic. The density of each base topic tb is defined as: 
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Once the density of all base topics are calculated, the production division ranks the base topics 

based on their densities and keeps the top 100 ones and discards the rest. 

The final part of the solution is to specify what type of semantic distance is used and what 

parameters are used to define the commonality score of target topics. The semantic distance used in 

this project is the strictly upward topic-to-topic distance between base topics and the target topics 

because the four target topics are very general topics and in fact most of them have a level 1 standing 

in the topic graph. The strictly upward condition was chosen rather than upward to avoid multiple 

routes in distance calculation. Equation  (3.52) expresses the commonality Equation of  (3.49) 

customized for the query topic identifier task of the Parla project. As you can see, the Density 
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function here, acts as the f function of the original commonality equation since it converts the score of 

candidate entities to a new value. The mapping function (M) is the HasCategory which asserts that tb 

is a topic of the candidate entity. Finally, the h function here is the cubic power of the distance plus a 

small value. The small value is added to avoid division-by-zero in case of zero distances. The h 

function is empirically tuned for this specific application and has no theoretical rationale. 
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In Equation  (3.52), tg indicates one of the four the target topics and ∗
gS  indicates the final score of 

each of the target topics. Once all four scores are calculated, the target topic with the highest score is 

selected as the topic of the input query and the results of the search engine shown in Figure  3.26 are 

filtered out accordingly. It is notable that in the development of the query topic identifier component 

of Parla project, the Wikipedia categories used to represent the four target topics are in fact 5 

categories. “Science” and “Technology” are each an individual category. Therefore, to tackle the 

problem, the semantic analysis is in fact performed using 5 target topics but those two topics are 

considered as one when the highest scored topic is returned. This application showcased the use of 

semantic analysis in a real-world problem. The next application reiterates the steps of topic 

identification application explained here with the difference of being a generic problem rather than 

the specific case discussed here. 

3.8.2 Topic Identification 

Topic identification is the main application used in this research. While the setup of the application is 

similar to the Parla project explained above, the topic identification is defined as the generalization of 

the Parla project. While, in this section, the general approach is described,  Chapter 4 provides a 

comprehensive study of the parameters involved and the affects of each of those parameters. To 

define topic identification problem, we can use a generalization of query topic identifier component 

which states: given a textual query, find the top topics from a set of specified topics which identify 

the query best semantically. Thus, the difference with Parla project is two-fold. One, the target topics 

can be any number; two, the result can be one or more target topics. This means the topic 

identification should be able to match a query to any number of target topics. Figure  3.27 provides the 
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formal description of the topic identification algorithm and iterates the steps of a potential generic 

solution. 

Goal:  Given user’s query, find top M  topics semantically most 

  relevant to the query. 

Input:  W : Input query as a bag of words (no necessary order) 

  GT : The set of target topics 

Output:  ( , )g gt r : A subset of GT  indicating semantically most  

  relevant topics to the query and their ranks ( gr )for  

  ( ) ( ) ( )1g G Gt T g M M T∈ ∧ ≤ ≤ ∧ ≤  

1. Pre-process the input by removing stop words and creating one 

component: { } ( ) ( ){ }wkWwNikKKComp ii =∈∃∧≤≤=∅∅= :1,,, 111  

2. Find all the candidate entities ( ) 1, EINFOe cc ∈  using 1Comp   

3. Calculate the score of all candidate entities: ekkc NNNeS ×=)(1   

4. Find all base topics: topics of all candidate entities ( bt )  

5. Calculate all topic-to-keyword weights: 
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6. Calculate density of all base topics: ( )∑=
i

b

i
ck

c
t

keb eWtD )(max)(   

7. Calculate score of all target topics: ( )∑ 





=∗

b
ttDist

b
g gbTTe

tDS ,
)(

  

8. Sort all gt  based on ∗
gS  descending, rank gt  based on its position 

as gr , and return top M as ),( gg rt  

Figure  3.27: Topic identification algorithm. 
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The above algorithm shows a similar approach to the Parla project query topic identifier algorithm 

mentioned earlier. However, there are a few differences which are applied on the generic approach to 

fit most cases rather than the specific case of Parla project. Below is a list of differences and their 

justifications: 

• The stop words are removed generally as is common practice. Based on the application and 

whether the query includes the exact search quotation marks, removing the stop words can 

be applied or ignored on different parts of the input query. 

• The candidate score penalty weight uses the number of featured words to the number of 

total entity words here. This is a generic choice. If an application regards longer words as 

more important words, the character count proportion might be a better choice. 

• The base topics are not limited in this generic approach. All the possible base topics will 

affect the final score of target topics. 

• The chosen semantic distance is generic topic-to-topic distance as we do not know in 

advance if the target topics are general ones or specific ones. Therefore, no upward or 

downward specification should be applied here. 

• The h function applied on the distance function is an exponential function. The reason for 

choosing this function is that it gives higher weight to closer topics than the further ones. 

Due to the nature of exponential function, higher distances will produce very large 

denominators which, in turn, shrink the effect of that specific topic in the summation 

severely. Therefore, the closer base topics would be the dominant ones in shaping the final 

score of a target topic. There are, however, many other possibilities for the h function as 

discussed in  Chapter 4. But the exponential function is shown a good generic function 

especially when the base topics are not limited (compare 25 to 100 base topics in Section 

 4.2). 

3.8.3 Speech Recognition 

The application of semantic analysis in speech recognition is a very specific one for a specific setup. 

The semantic analysis can be applied as a secondary algorithm over the speech recognition algorithm 

in order to improve the performance of the speech recognition. Here the setup is briefly explained and 

the potential solution is described. Later in Section  4.3, the details of the algorithm are discussed. 
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In certain speech recognition methods, after the audio data of a sentence is processed, it is possible 

that two or more candidate sentences are produced as the result of the recognition algorithm. Each of 

these sentences might include right or wrong transcribed words. For instance, it is possible that the 

first two words of the first sentence are the correct transcriptions while words 3, 4, and 5 of the 

second sentence are the correct ones. Therefore, there should be an algorithm which finds all possible 

combinations of the words and decides which word from which sentence should be selected as the 

final transcription result of the speech recognition algorithm. Moreover, this process will be repeated 

for the next recognized sentences of the audio file. While simple voting algorithm might be used in 

individual sentence processing, a smart semantic analysis can help improve the performance if there 

is more than one sentence in the audio file and the sentences are semantically connected as any 

regular conversation is. 

The input for this application consists of sets of equal length sentences. Each set has equal number 

of sentences compared to other sets but the number of the words in each sentence of each set can be 

different from other sets. For example, first set has 3 sentences each with 10 words. The second set 

has 3 sentences with 6 words each and so on. It is possible that there are blank words in sentences to 

make up for the missing words. The text breaking algorithm in this case does not do much as the 

input is already in a structured format. Assuming that each set of sentences has I sentences and there 

are M total sets of sentences, m
jiw ,  indicates the jth word of the ith sentence of mth set in which 

Ii ≤≤1  and Mm ≤≤1 . The number of words in each set is different. Thus, the number of words in 

the set m is specified by mN . 

The desired output of this application is a sequence of words for each set of sentences which 

creates one final sentence created out of the words of I sentences in each set. The order of words is 

important here. This means the jth word of the final sentence for set m, should be the jth word from one 

of the I sentences in set m. Therefore the results can be shown as an ordered sequence of words each 

from a sentence i of each set: m
Nidx

m
jidx

m
idx

m
idxm

m
m

mN
m
j

mm wwwwOutput ,,2,1, ,,,,,
21

=  in which 

{ }Iidxm
j ,,2,1 ∈ . For instance, for I = 3, m = 2, and N2 = 4, the output can be: 

2
4,1

2
3,3

2
2,1

2
1,22 ,,, wwwwOutput =  which means the selected words are: first word from second 

sentence, second word from first sentence, third word from third sentence, and fourth word from first 

sentence of set 2. 
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Solving this problem can be performed at two stages. At the first stage, the entities of each set can 

be found individually and only based on how well they fit the possible combinations. Based on the 

candidate entities, the correct combination of words can be suggested. At the second stage, the 

entities of earlier sets can be used as clues to determine the entities of next sets more accurately. 

Therefore, the second stage is a progressive entity analysis. Here, a generic two stage solution is 

provided while in Section  4.3, a more detailed stage one solution is described along with an example. 

Figure  3.28 illustrates the specification and the algorithm steps for the potential solution. 

Goal:  Given a number of sets of multiple sentences, find the 

  best combination of words creating one sentence for each 

  set. 

Input:  M :  Number of sets 

  I :  Number of sentences in each set 

  mN :  Number of words in set m  

  ,
m
i jw :  thj  word of 

thi  sentence of the set m  

Output:  
1 2,1 ,2 , ,

, , , , ,m m m m
j N mm

m m m m
m idx idx idx j idx N

Output w w w w=  

 for 1 m M≤ ≤   

1. { }←← OEm ,1   

2. Find all candidate entities matching any exact sequence of m
jiw ,  

and score them as ekkc
m NNNeS ×=)(   

3. If { }≠OE , find the semantic distance between OE  and candidate 

entities, find commonality score ∗
cS  for all candidate entities, 

re-score candidate entities based on mS  and ∗
cS   

4. Sort candidate entities descending over their scores 

5. Select the top candidate as the winning entity, select the words 
m

jiw ,  featured in the winning candidate as the final results in 

mOutput , add the winning entity to: mOE   
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6. If all word slots in the current set are decided go to step  9 

7. Based on the selected words in step  5, re-score candidate 

entities considering possible conflicts, remove the winning 

entity and all entities which do not provide words for remaining 

slots from the candidate entity list 

8. Go to step  4 

9. Perform progressive analysis aging mechanism using OE  and mOE   

10. 1+← mm   

11. If Mm >  return mOutput  for all sets, otherwise go to step  2 

Figure  3.28: Speech recognition word combination solver algorithm. 
 

In the above algorithm, only steps  3 and  9 are related to the second stage which is progressive 

entity analysis. One can remove these steps and the algorithm still works on an individual level as we 

will observe in Section  4.3. The points of importance in above algorithm can be summarized as 

following: 

• The entity detection scoring equations uses word number penalty weight as the length of 

words are not important in this application. Moreover, since the search of words is an exact 

match to a sequence of the input words for that set, the words are found in order. This 

means that Nk is equal to Ok in this case. We will see a better alternative scoring for this 

application which considers how many sentences are suggesting the same word for a 

certain position and that becomes the weight of that word. Instead of having Nk, the sum of 

the weight of words can now be used as the word featuring score along with penalty 

weight. 

• After selecting one winning entity and using it to specify words for certain positions, the 

already found candidate entities can now support combinations that have conflicting words 

in the position which algorithm already decided for. These conflicts should be considered 

and that is why a recalculation of both Nk and penalty weight should be performed and the 

entities should be re-scored (step  7). 
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• The general observed entities (OE) act as the context tracker (as we will see in last 

application of this section). It means that the candidate entities which are closer to 

observed entities (which get updated every iteration) are probably better candidates. 

Therefore, after finding the entity-to-entity semantic score ∗
cS , the original score of the 

candidate entities mS  can be updated accordingly. The simple approach for this updating is 

to normalize ∗
cS  to [0, 1] and then use )()1()( *

c
m

cc
m eSSeS ×+=  to boost the scores. 

The entity with highest ∗
cS  will have its mS  score doubled and the one with lowest ∗

cS  

will have its mS  untouched. 

• The winning entities of each set constitute the observed entities of that iteration (OEm) 

using which the aging mechanism will update the general OE. This means the OE will be 

regularly updated and it follows the context of the audio data. 

3.8.4 Text Prediction 

Text prediction is another potential problem on which the semantic analysis can be applied. There are 

many commercial methods in text prediction especially in mobile application development. The best 

example is SwiftKey keyboard application [104] for Android devices. This product uses a 

sophisticated probabilistic approach for predicting what the next word the user wants to type would 

be and suggests that. Suggesting words facilitates typing on touch devices as the keyboards are not 

physical and, in case of mobile phones, are very small which make typing harder than usual 

keyboards. The product is now moving towards providing context dependent keyboards as well. For 

instance, it provides SwiftKey healthcare version which is a customized version for people using their 

devices in a healthcare environment. This version considers healthcare topics to be the dominant ones 

when predicting words and also contains vocabulary and knowledgebases dedicated to healthcare, 

such as medicine and illness names, which are not that common in everyday use. The solution 

provided here follows a similar rationale of trying to guess the context of the text and then suggest 

words (or phrases) based on the context acquired using previous words read from the input. 

Therefore, the approach is a bit different in a way that the suggestions in this solution are dynamically 

determined based on the conversation context while products such as SwiftKey have pre-calculated n-

gram probability tables. 
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The problem definition here is as follows: given a continuous stream of words as input, provide a 

list of possible words when a few starting letters of the current word are given. This means the 

prediction happens after a number of starting letters is known and, therefore, the list of possible words 

are limited to the ones which start with those known letters. However, those letters can still point to 

many possible words which means the algorithm should have a method for ranking possible words 

and return the top N ones as the answer. Note that the number of predicted words (N) is usually 

limited depending on the screen size of the phone or other user interface issues. Therefore, it is 

important that the selection of top N is performed accurately. Moreover, the number of letters given 

before a prediction is made (designated by M here) can be variable too6. Figure  3.29 provides the 

algorithm specification and the steps. 

Goal:  Given a continuous stream of words as input, provide a 

  list of possible words when a few starting letters of the 

  current word are given. 

Input: M :  Number of letters of the current word received  

   before performing prediction 

  N :  Number of predicted words to return 

  P :  Number of previous words to include in n-gram  

   entity detection 

  I :  Current word position 

  IL :  Number Starting letters of the current word ( Iw ) 

  iw :  Previous input words for ( )1 1i I≤ ≤ −  and current word 

   for i I=   

Output: NI pwpwpwOutput ,,, 21 =  are N  predicted words for  

  current position ( I )  

1. { }←← OEi ,1   

2. Read next M letters from input, if no more entry to input, exit 

3. Find all candidate entities which start with "" IL  or "" 1 II Lw −  or 

                                                      
6 M = 3 is a common choice. 
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"" 12 III Lww −−  or until "" 12 IIIPI Lwww −−−  ; score the candidate 

entities using ekkc
I NNNeS ×=)(  

4. If { }≠OE , find the semantic distance between OE  and candidate 

entities, find commonality score ∗
cS  for all candidate entities, 

re-score candidate entities based on IS  and ∗
cS   

5. Sort candidate entities descending over their scores 

6. Return N distinct words NI pwpwpwOutput ,,, 21 =  that start with 

IL  letters from the corresponding top N candidate entities 

7. Observe the complete current word Iw , if it matches any of top N 

predicted words, add the candidate entity containing that word 

into OE , update OE  using aging mechanism 

8. 1+← ii   

9. Go to step  2 

Figure  3.29: Text prediction algorithm. 
 

The potential solution provided above is a progressive entity analysis algorithm which attempts to 

keep a list of observed entities and rank candidate entities based on the context created by the 

observed entities. Furthermore, the algorithm not only tries to find candidate entities starting with the 

known letters but also entities which might match previous words plus the known words. For 

instance, suppose that the observed input so far is: “The constitution of the united” and the next 3 

letters of the next word are: “sta”. The algorithm here tries to find all the candidate entities which start 

with letters “sta” such as “Stable”, “Standard”, and “State” as well as entities which match previous 

words plus the next word known letters such as “United States” which matches the previous word of 

the input “united” and then the 3 letters “sta” in word “States”. The number of previous words 

considered in this fashion is another parameter of the algorithm which is denoted by P here. Finally, 

the observed entity list is updated using the aging mechanism. However, the age parameter used here 

should be larger than the one used, for example, in speech recognition application. The reason is that 
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in an application like speech recognition, the update happens after many entities were recognized in 

an input set and added to the observed entity list. This simulates a batch update. In this application, 

however, the update happens after every single word prediction. Therefore, the entities can become 

outdated very quickly which is not desirable and thus, the age threshold (Tage) should be a larger 

number. 

The above algorithm is yet another example of progressive entity analysis used to select better 

candidate entity at every pass of the algorithm over the input. There are a few points about the above 

algorithm which can be discussed further as following: 

• The candidate entities are matched to the current word letters (LI) and P previous words 

using exact match and, therefore, the words are all in order. However, each candidate entity 

might include extra words after the word starting with read letters. For instance, continuing 

the example mentioned earlier, the entity “United States of America” matches the input 

“The constitution of the united sta…” but has two extra words “of America”. The 

preference is to find an entity which has lesser extra words and match the input completely 

hence the scoring method of ekkc
I NNNeS ×=)( . 

• When returning predicted words, the algorithm goes through the candidate entities and 

returns only the word that matches the LI instead of the entire entity. For instance, in case 

of “United States of America” being the candidate entity, the word “States” is returned 

rather than all the rest of the entity “States of America”. In some variations, the developer 

might decide to actually suggest multiple consecutive words in each entry. In that case, the 

other words of the entity can and will be used. 

• Since the user will eventually enter the full word, the algorithm can use this feedback and 

tune itself for further predictions. In this algorithm, such a tuning is performed by adding 

candidate entities of correctly predicted words into the observed entity list and creating a 

context for the input seen up to that point. 

• Note that in the updating of OE, there is no current loop observed entity list (OEi). In other 

words, the OEi is only consisted of the correctly predicted candidate entities. Therefore the 

aging mechanism only updates the correctly predicted candidate entities in each round. 
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3.8.5 Context Awareness and Topic Tracking 

The last application discussed here are, in fact, more of meta-applications meaning that they are tools 

used in other applications to enhance their performance. We have already observed the context 

awareness application as the progressive entity analysis used in both speech recognition and text 

prediction applications. Keeping track of the context of the input can be useful in most of text 

processing solutions. Keeping track of the topic of the input can provide a second layer of semantic 

awareness for the different algorithms. In this application, the way the context and topic of the input 

are used is not discussed. This application only provides the method to recognize the context and the 

topic of the input. The context and topic can then be used to perform a variety of actions including 

finding the semantic distance of new candidate entities to the recognized context entities or topics and 

re-scoring them. As an example, both the context and topic can be used to perform word sense 

disambiguation, a common task in most natural language processing and semantic processing 

problems. 

The problem definition here is simply to firstly, keep track of the input context which we define as 

a set of observed entities and secondly, keep track of the topic(s) of the input. The topic(s) will be 

selected from a pre-specified set of topics. It can be one or more topics returned for each component 

of the input. Both the context and the topics are recognized based on candidate entities in each round 

of the algorithm. The candidate entities are extracted from input as before but it is possible that extra 

conditions of the system affect the candidate entity list. These extra conditions are called (COND) in 

the algorithm. 

To tackle this problem, two lists are kept: observed entities (OE) and observed topics (OT). The 

observed entities are selected from top scored candidate entities of each round (similar to two 

previous applications). The observed topics are recognized using generic topic identification 

algorithm over the candidate entities of each round. Both lists are updated using aging mechanism. 

The age threshold can, however, be different for each list. Figure  3.30 provides the description of the 

algorithm as a pseudocode. 

As shown in Figure  3.30, this algorithm does not provide specific results. It only demonstrates how 

to create and maintain the OE and OT lists. Step  12 provides the opportunity to add extra steps for 

applications that use context and topic hence making this algorithm a customizable template. 
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Goal:  Given a stream of input words, track context and topic of 

  the input. 

Input:  iw :   Input word at position i  

  GT :   A set of goal topics for tracking the topic 

  N :   Number of topics to return each round 

  ST :   Candidate entity score threshold 

  COND : Specific problem conditions which candidate 

    entities should follow  
Output:  OE  and OT   

Input: CONDSTNTw Gi ,,,,  

1. { } { } 1,, ←←← iOTOE  

2. Perform text breaking method appropriate for the application 

and create iCOMP , if no more input available, exit 

3. Find candidate entities iE  using the entity detection 

algorithm over iCOMP  and keep scores in )( c
i eS   

4. Filter out entities from iE  which do not conform to COND  

5. If { }≠OE , find semantic distance between OE  and iE   

6. Calculate commonality score ∗
cS  for all candidate entities 

ic Ee ∈  using observed entities in OE , re-score all iE  using 

iS  and ∗
cS  

7. Select high scored entities from iE  with score over ST , put 

them in iOE   

8. Use iE  and find top N  goal topics ( Gn Tt ∈ ) for Nn ≤≤1  using 

generic topic identification algorithm 
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9. Put top N  goal topics in iOT   

10. Update OE  based on iOE  using aging mechanism 

11. Update OT  based on iOT  using aging mechanism 

12. If needed, use OE  and OT  to enhance the system performance 

13. 1+← ii   

14. Go to step  2 

Figure  3.30: Context awareness and topic tracking algorithm. 
 

3.9 Summary 

This chapter introduced and explained the proposed methodology of this dissertation in great details. 

First, it was explained how to create a knowledgebase using Wikipedia or DBpedia. These two 

sources were comprehensively studied and they resulted in the final knowledgebase called the 

semantic graph. Next the components of the semantic graph were described.  These components were 

a topic graph over the entity graph linked by entity-topic connection layer. Once the concepts of 

entity and topic were sufficiently explained, the main algorithms of the methodology were introduced. 

First, the entity detection algorithm was discussed and formalized. Then, the semantic analysis 

algorithms were presented. Semantic distance, which is the main component of semantic analysis, 

was defined between entities and topics and the algorithms for its calculation were expressed. 

Afterwards, the second most important component of semantic analysis which is commonality score 

was presented. Based on these two components, various semantic analysis namely entity analysis, 

topic analysis, and progressive analysis were introduced and explained. Finally, a list of real-world 

applications was provided and a potential solution for each of these applications was offered. The 

solutions were studied and important points were explained. The next chapter will study further two 

of the applications provided above. 
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Chapter 4 
Experimental Results 

4.1 Introduction 

In this chapter, a comprehensive study and the related experimental results of studying various effects 

of the parameters in the two applications introduced in Section  3.8 is presented. Query topic 

identification is the main application on which the semantic analysis algorithms are applied in this 

study. There are many parameters in the algorithms which can be studied for perfect performance. 

This chapter main focus is to study the effect of these parameters and show the trends associated with 

the variations of each parameter. This chapter would also provide a vision into the speech recognition 

application. It provides an entity detection algorithm along with its results and compares them with 

the results of a baseline method. 

4.2 Query Topic Identification 

As mentioned in the previous chapter, query topic identification was a component of the Parla project 

which started this research into the applications of semantic analysis using an encyclopedic 

knowledgebase. In order to achieve the goals of both the Parla project and this research, numerous 

experiments were designed and performed so to study various parameters and their effects. Moreover, 

these experiments helped shaping the methodology explained in the previous chapter. In other words, 

the described methodology is the result of incremental empirical testing as well as theoretical studies. 

Therefore, the first two experiments would not match the described methodology completely but it 

shows how the building blocks of the methodology are shaped as well as how other approaches 

compare to the described methodology. The upcoming sections summarize these efforts into three 

experiments. 

The first experiment shows the very early attempts in learning whether using the entity detection 

algorithm can withstand the noise words and if so, how resistant the entity detection algorithm is 

towards various amount of noise words added to the queries. At this stage, there is no semantic 

analysis in form of semantic distance or commonality scoring. The presented algorithm only uses the 

density function introduced in Section  3.8. The data used in this toy problem are all synthesized using 

Wikipedia articles. 
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The second experiment provides results for an iterative algorithm which uses an upward 

exploration strategy in finding parent topics until it reaches the target topics. This method presented 

in this experiment has unique characteristics. Firstly, the result of the algorithm can be a variable 

number of target topics since it follows a step-by-step exploration method and it is possible that in 

each step a different number of target topics are met. Secondly, there is no explicit semantic distance 

in this method as the target topics are selected using a ‘first visited, first selected’ approach. This 

means implicitly the topics with smaller semantic distance are selected but there is no commonality 

applied. 

Finally, the third experiment is the main experiment which is exactly according to the semantic 

analysis methodology. There are various setups in this experiment showing the effects of various 

parameters, such as the number of base topics and the h function in commonality equation. These last 

two experiments are both using the KDD CUP 2005 datasets. 

4.2.1 Toy Problem: Synthesized Data 

In this experiment, a query is synthesized using a random entity and then it is polluted with unrelated 

words called noise words. The aim of the experiment is to study how resistant the entity detection 

algorithm is to the noise i.e. how much noise words can be added without losing considerable 

performance accuracy. To describe the setup, three aspects should be explained. 

4.2.1.1 Data Synthesis 

To create the input data for this experiment, a number of queries are generated. Each query is 

associated with a topic and, therefore, each query has a number of words or phrases which are taken 

from entities related to that topic. Each query has also a number of noise words which are random 

words unrelated to the query topic. The following simple steps are performed to generate a single 

query associated with its topic: 

1. Select a random topic and save it as the target topic of the query 

2. Select a random entity which belongs to the selected topic and add it to the query. Repeat 

this step until the desired numbers of keywords (or key-phrases) are added to the query. 

3. Select and add random unrelated words to the query until the desired ratio between 

keywords of step 2 and the noise words is acquired. 
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4.2.1.2 Identification Algorithm 

The algorithm used to identify the topic of each query is similar to the entity detection algorithm 

explained for the Parla project and generic topic identification application in Section  3.8. In a 

nutshell, given the query, the algorithm finds all the candidate entities containing at least one word of 

the query. It only uses the number of featured words as candidate entity score (no penalty or ordering 

weights). Then, the keyword-to-topic weights are calculated. Based on these weights, the densities of 

the topics are acquired. The top 100 topics are then sorted descending over their densities. Figure  4.1 

depicts the steps of the algorithm. 

Input: The query as a bag of words 

1. Pre-process the input by removing stop words and creating one 

component: { } ( ) ( ){ }wkWwNikKKComp ii =∈∃∧≤≤=∅∅= :1,,, 111   

2. Find all the candidate entities ( ) 1, EINFOe cc ∈  using 1Comp   

3. Score candidate entities using kc NeS =)(1   

4. Find all base topics: topics of all candidate entities ( bt )  

5. Calculate all topic-to-keyword weights: 

( ) )()(),(, 1
cc

t
kbcic eSeWteyHasCategorkeContains b

i
=⇒∧   

6. Calculate density of all base topics: ( )∑=
i

b

i
ck

c
t

keb eWtD )(max)(   

7. Sort all bt  over )( btD  descending 

8. Keep the top 100 base topics and discard the rest 

Figure  4.1: Toy problem topic identification algorithm. 
 

4.2.1.3 Evaluation Metrics 

The common metrics used in evaluation experiments in text classification tasks are the popular recall, 

precision, and F1 measures. However, due to randomly synthesized nature of the data in this 

experiment, we only know to which topic a query belongs but we do not know to which other topics 
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the query does or does not belong. Therefore, when classifying a query, we can discern whether it is 

classified in correct topic (true positive) or it is not classified in correct topic (false negative) which 

means we can only calculate recall which is the ratio of true positives to the sum of true positives and 

false negatives. To specify whether a query is classified correctly or not, the topic of the query is 

searched in the final top 100 topics returned by the algorithm above. If the target topic has the first 

rank in the list, the query is classified correctly. 

A second metric is also used in this experiment. While the recall metric would tell us what 

percentage of the queries were classified correctly, it does not provide any extra information about the 

queries not classified correctly. It is desired to know if the topic of a query is not identified as the first 

choice, where in the list the topic is located. In other words, it is desired to know the relative location 

of target topics in the returned list so even if a query is not classified correctly, we would be able to 

see if it was classified close to top of the list rather down below. This second metric is called 

percentile. It, however, differs slightly from the regular percentile definition. A percentile here 

indicated 100% minus the percentage of the topics with a higher score. e.g. if 5 items have the same 

highest score in a list containing 100 different items, the percentile for all of those top 5 items is 

100% (rather than 95%). The 6th item which has slightly lesser score will have a percentile of 95%. 

To have a better evaluation in the following setups, each setup is repeated 100 times and the recall 

and percentile metrics were averaged over all repetitions to provide more precise results. The 

following setups test three factors. The first setup tests the effect of the absolute number of noise 

word given a constant number of keywords. The second setup studies the query size versus the ratio 

of noise words. Last but not least, the third setup represents the effect of having an ordered search 

(exact search) versus no order of words in the query. The semantic graph used in the three setups is 

the Wikipedia database dump of September 2008 which contains about 5.5 million entities (titles) and 

about 400,000 topics (categories) before clean-up and about 260,000 after clean-up and leveling. 

4.2.1.4 Setup 1: Noise Words Effect 

In the first setup, we try to make a preliminary observation on the effect of noise words on our 

method. The input consists of one key phrase from one entity and a variable number of noise words. 

The number of noise words varies from 0 to 20. Figure  4.2 shows the results for both measures. The 

red solid line with diamond markers shows the recall metric and the blue dashed line with circle 

markers indicates the percentile metric. Note that the recall metric is originally in range [0, 1]. Here it 

is mapped to [0, 100] in order to be depicted with the percentile metric in the same scale. 
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Figure  4.2: Toy problem setup 1 performance chart. 

 

Since there is only one key phrase in the experiment, it is expected that the addition of noise words 

affect the performance considerably. The probability of noise words forming a false entity increases 

when the number of noise words increases, specifically when it surpasses the number of the keywords 

of the key phrase. Therefore, the decline of recall is justified. Percentile, on the other hand, is 

consistently high even with the presence of excessive noise words. This means that the target topic is 

always among the top returned topics even when there is high amount of noise words present. 

4.2.1.5 Setup 2: Query Size versus Noise Ratio 

In the second setup, we are trying to examine how much the ratio of the key phrases in a query to the 

number of noise words affects the performance. The input consists of a number of key phrases and 

noise phrases. In this experiment, we change the ratio of noise while keeping the total number of 

phrases constant in order to cover a wide range of combinations. The total number of phrases would 

be 10, 20, 30, and 40 and we apply noise with the ratio of 0% to 90%. For example, when the total 
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number of phrases is 20 and the noise ratio is 40%, we would have 12 key phrases and 8 noise 

phrases. Figure  4.3 and Figure  4.4 show the results for recall and percentile respectively. 

 
Figure  4.3: Toy problem setup 2 recall performance chart. 

 

 
Figure  4.4: Toy problem setup 2 percentile performance chart. 
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It is evident from the results that the method can guaranty more than 99% percentile and 90% recall 

performance when the noise ratio is less than 70%.  In other words, the method can effectively resist 

the noise up to 70% without a major drop in performance. Such a resistance threshold is high enough 

for our purpose considering the noise ratio will not usually be too high. Such a high performance is 

specifically significant if we consider the size of the goal set which is a set of 260,155 different topics 

after some clean-up. 

4.2.1.6 Setup 3: Effect of Ordered Query 

The third setup is identical to the second setup except for the query which is defined as exact phrases 

rather than phrases i.e. query is keeping the order of words as in using quotation marks around the 

key-phrases taken from entities. The results in Figure  4.5 and Figure  4.6 clearly show that both 

metrics improve strongly when the query is ordered. We can observe about 10% increase in noise 

resistance and more similarity between recall and percentile evaluations compared to having no order. 

The charts suggest that the queries with exact search quotation marks might have up to 80% noise 

words and still keep a high performance in base topic identification. This setup concludes the toy 

problem experiment. The next experiment will incorporate real query data and comparisons with real 

baseline methods. 

 
Figure  4.5: Toy problem setup 3 recall performance chart. 
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Figure  4.6: Toy problem setup 3 percentile performance chart. 

 

4.2.2 Iterative Algorithm 

The query classifier proposed in this experiment is designed to explore the topic graph from any 

starting point until it reaches the nearest specified target topics. The main characteristic of this 

algorithm is that it can return multiple topics per query and it is the user’s choice to specify the 

maximum number of topics a query can belong to (specified by ClassificationSize in the algorithm). 

The algorithm will then return topics up to that number as the result. The pseudocode of this 

algorithm is shown in Figure  4.7. For this experiment, the semantic graph is again created from the 

Wikipedia version available from September 2008. 

Define:  TargetTopics (a subset of the topic graph), 

  Classification (classification results), 

  CassificationSize (number of classification results  
  allowed per query) 

Input: Query 

1. Classification ← { } 

2. EntityList ← the candidate entities after stop word removal 
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3. TopicList ← the base topics of the candidate entities 

4. Do for 20 iterations: 

a. NewClassification ← subset of TopicList that are in 

TargetTopics 

b. If COUNT(Classification + NewClassification) <= 

CassificationSize 

i. Classification ← Classification + 

NewClassification 

c. If COUNT(Classification + NewClassification) > 

CassificationSize AND COUNT(Classification) > 0 

i. Break from loop 

d. If COUNT(Classification + NewClassification) > 

CassificationSize AND COUNT(Classification) = 0 

i. Classification ← Select CassificationSize elements 

from NewClassification 

ii. Break from loop 

e. TopicList ← unvisited parent topics directly connected 

to TopicList 

5. Return Classification 

Figure  4.7: Iterative query topic identification algorithm. 
 

4.2.2.1 Exploration Algorithm 

The first step of this algorithm is to map the user’s query to an initial set of base topics from which 

the exploration of the graph will begin. This is accomplished by the entity detection algorithm as 

before. The query is stripped of stop words to keep only keywords; the system then generates the 

exhaustive list of candidate entities that feature at least one of these keywords, and expands the 

exhaustive list of base topics pointed to by these candidate entities. Next, the algorithm considers 
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each keyword/entity/topic triplet where it is the case that the keyword is in the entity and the entity 

points to the topic, and assigns each one the keyword-to-topic weight that is equal to word featuring 

weight and character penalty weight equal to ekkcc
t

k CCNeSeW b

i
×== )()( 1 . As a reminder, Nk is 

the total number of query keywords featured in the candidate entity, Ck is the character count of the 

keywords featured in the candidate entity, and Ce is the total number of characters in the candidate 

entity. The rationale for using character counts in this experiment is to shift some density weight to 

entities that match longer keywords in the query. The assumption is that, given that the user typically 

only provides less than four keywords in the query, having one much longer keyword in the set could 

mean that this one keyword is more important. Consequently, we give a higher weight to keywords in 

an entity featuring the longer query keywords and missing the shorter ones, as opposed to an entity 

featuring the shorter query keywords and missing the longer ones. Finally, the density value of each 

base topic is computed again using: ( )∑=
i

b

i
ck

c
t

keb eWtD )(max)( . 

This process will generate a long list of topics, featuring some topics pointed to by high-weight 

keywords and summing to a high density score, and a lot of topics pointed to by only lower-weight 

keywords and having a lower score. The list is trimmed by discarding all topics having a score less 

than half that of the highest-density topic (as explained by variable score threshold in production 

division of the entity detection algorithm). This trimmed set of topics is the initial set the exploration 

algorithm will proceed from. It corresponds to “TopicList” at step  3 of the pseudocode in Figure  4.7. 

Through practical experiments, we found that this set typically contains approximately 28 topics. 

Once the initial list of topics is available, the search algorithm explores the topic graph step by step. 

At each step, the algorithm compares the set of newly-visited topics to the list of target topics defined 

as acceptable classification labels and adds any targets discovered to the list of classification results. 

It then generates the next generation of unvisited topics directly connected to the current set as parent 

and repeats the process. The exploration can thus be seen as radiating through the graph from each 

initial topic. This process corresponds to steps ( a) and ( e) of the algorithm. 

There are two basic termination conditions for the exploration algorithm. The first is when a 

predefined maximum number of classification results have been discovered. This maximum could for 

example be 1, if the user wants a unique classification for each query, while it was set at 5 in the 

KDD CUP 2005 competition rules. However, since the exploration algorithm can discover several 

target topics in a single iteration, it is possible to overshoot this maximum. The algorithm has two 
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possible behaviors defined in that case. First, if some results have already been discovered, then the 

new topics are all rejected. For example, if the algorithm has already discovered four target topics to a 

given query out of a maximum of five and two more topics are discovered in the next iteration, both 

new topics are rejected and only four results are returned. The second behavior is for the special case 

where no target topics have been discovered yet and more than the allowed maximum are discovered 

at once. In that case, the algorithm simply selects randomly the maximum allowed number of results 

from the set. For example, if the algorithm discovers six target topics at once in an iteration, five of 

them will be kept at random and returned as the classification result. 

The second termination condition for the algorithm is reaching a maximum of 20 iterations. The 

rationale for this is that, at each iteration, both the set of topics visited and the set of newly-generated 

topics expand. The limit of 20 iterations thus reflects a practical consideration, to prevent the size of 

the search from growing without constraint. But moreover, after 20 steps, we find that the algorithm 

has explored too far from the initial topics for the targets encountered to still be relevant. For 

comparison, in our experiments, the exploration algorithm discovered the maximum number of target 

topics in only 3 iterations on average, and never reached the 20 iterations limit. This limit thus also 

allows the algorithm to cut off the exploration of a region of the graph that is very far removed from 

target topics and will not generate relevant results. 

4.2.2.2 Experimental Results 

In order to test this algorithm, it was submitted it to the same challenge as the KDD CUP 2005 

competition [53]. The 37 solutions entered in that competition were evaluated by classifying a set of 

800 queries into up to 5 categories (topics) from a predefined set of 67 target categories ci, and 

comparing the results to the classification done by three human labelers. The 800 text queries were 

meaningful English queries selected randomly from MSN search logs, unedited and including the 

users’ typos and mistakes. The solutions were ranked based on overall precision and overall F1 value, 

as computed by equations  (4.1) to  (4.6). The competition’s Performance Award was given to the 

system with the top overall F1 value, and the Precision Award was given to the system with the top 

overall precision value within the top 10 systems evaluated on overall F1 value. Note that participants 

had the option to enter their system for precision ranking but not F1 ranking or vice-versa rather than 

both precision and F1 ranking, and several participants chose to use that option. Consequently, the top 

10 systems on F1 value ranked for precision are not the same as the top 10 systems ranked for F1 

value, and there are some N/A values in the results in Table  4.1. 
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In order for this algorithm to compare to the KDD CUP competition results, we need to use the 

same set of category labels. Fortunately, the size and level of detail of Wikipedia’s topic graph makes 

it possible to identify topics to map any set of labels to. In this case, we identified 84 target topics in 

Wikipedia corresponding to the 67 KDD CUP category set. 

With the mapping done, the 800 test queries were classified using above algorithm and the results 

were evaluated on overall precision and F1 following the KDD CUP guidelines. Our results are 

presented in Table  4.1 along with the KDD CUP mean and median, the best system on precision, the 

best system on F1, and the worst system overall as reported in [53]. As can be seen from that table, 

our system performs well above the competition average, and in fact ranks in the top 10 of the 

competition. 

Table  4.1: Iterative topic identification algorithm performance in baseline standings. 
System F1 Rank Precision Rank Overall Precision Overall F1 

Best F1 1 N/A 0.4141 0.4444 

Best Precision N/A 1 0.4237 0.4261 

Our algorithm 10 7 0.3081 0.3005 

Mean 18 13 0.2545 0.2353 

Median 19 15 0.2446 0.2327 

Worst 37 37 0.0509 0.0603 
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It is interesting to consider not only the final classification result, but also the performance of our 

exploration algorithm. To do this, we studied how frequently each of the termination conditions was 

reached. We can summarize that there are five distinct ways the algorithm can terminate. The first is 

“no initial list”, which is to say that the initial keyword-to-topic mapping failed to generate any topics 

for our initial set and the exploration cannot begin. If there is an initial set of topics generated and the 

exploration begins, then there are still four ways it can terminate. The first is “failure”, if it reaches 

the cutoff value of 20 iterations without encountering a single target topic. The second termination 

condition is “exploration limit”, if the algorithm reaches the cutoff value of 20 iterations but did 

discover some target topics along the way. These topics are returned as the classification results. The 

third termination is the “overshoot”, if the algorithm discovers more than the maximum number of 

results in a single iteration and must select results randomly. And the final termination condition is 

“topic limit”, which is when the algorithm has already found some topics and discovers more topics 

that bring it to or above the set maximum; in the case it goes above the maximum, the newly-

discovered topics are discarded. In each case, we obtained the number of query searches that ended in 

that condition, the average number of iterations it took the algorithm to reach that condition, the 

average number of topics found (which can be greater than the maximum allowed when more topics 

are found in the last iteration) and the average number of target topics returned. These results are 

presented in Table  4.2.  

Table  4.2: Iterative topic identification algorithm exploration results chart. 
Termination Number of 

Queries 
Average Number 
of Iterations 

Average number 
of target topics 
found 

Average number 
of target topics 
returned 

No initial list 52 0 0 0 

Failure 0 20 0 N/A 

Exploration limit 0 20 0 N/A 

Overshoot 28 2.4 7.0 5 

Topic limit 720 3.3 7.8 3.3 

 

As can be seen from above table, two of the five termination conditions we identified never occur 

at all. They are the two undesirable conditions where the exploration strays 20 iterations away from 

the initial topics. This result indicates that our exploration algorithm never does diverge into wrong 

directions or miss the target topics, nor does it end up exploring in regions without target topics. 
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However, there is still one undesirable condition that does occur, namely that of the algorithm 

selecting no initial topics to begin the search from. This occurs when no entities featuring query 

words can be found; typically because the query consists only of unusual terms and abbreviations. For 

example, one query consisting only of the abbreviation “AATFCU” failed for this reason. 

Fortunately, this does not happen frequently: only 6.5% of queries in our test set terminated for this 

reason. The most common termination conditions, accounting for 93.5% of query searches, are when 

the exploration successfully discovers the maximum number of target topics, either in several 

iterations or all in one, with the former case being much more common than the latter. In both cases, 

we can see that the system discovers these topics quickly, in less than 4 iterations on average. This 

shows the success and efficiency of our exploration algorithm. Moreover, the classification results 

compare favorably to those of the KDD CUP 2005 competition: this algorithm would have ranked 7th 

on precision in that competition, with an increase of 6.4% compared to the competition median, and 

10th on F1 with a 6.9% increase compared to the median. The next experiment, however, tries to even 

improve these results further by using the complete semantic analysis methodology presented in this 

dissertation and tuning its parameters to create the optimal query identification system. 

4.2.3 Semantic Distance Algorithm 

This experiment is a natural continuation of the previous experiment. The semantic graph used is the 

same as last experiment with a slightly different cleaning method for the topic graph. There are 

5,453,808 entities and 282,271 topics in this semantic graph.  However, there are also a few 

fundamental differences. In this experiment, we intend to fully use the components of semantic 

analysis methodology. This means there is no step-by-step exploration and instead we are using the 

semantic distance method explained in the methodology. This causes that the number of returned 

topics for all queries be the same. Moreover, in contrast with previous experiment where we only 

allowed paths going from child to parent topic, we allow any path between two topics, regardless of 

whether it goes up to parent topics or down to children topics or zigzags through the graph. Therefore, 

the semantic distance is the generic ),( gbTT ttDist . The reason for adopting this more permissive 

approach is to make our classifier more general: the parent-only approach may work well in the case 

of previous experiment where all the goal topics selected were higher in the hierarchy than the 

average base topic, but it would fail miserably in the opposite scenario when the base topics are 

parents of the goal topics. Finally, we can note that, while exploring the graph to find the shortest 

distance from every goal topic and all other topics may seem like a daunting task, for a set of about 
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100 goal topics, such as we used in this experiment, it can be done in only a few minutes on a regular 

computer. 

The identification algorithm used in this experiment is very similar to the generic topic 

identification algorithm described in Figure  3.27. It, however, has a few distinctions in order to make 

it possible to study the important aspects of the algorithm. Figure  4.8 shows the steps of this new 

algorithm. Note that the input to this algorithm is still the words of the query (W) and the set of target 

topics (TG). 

Input: GTW ,  

1. Pre-process the input by removing stop words and creating one 

component: { } ( ) ( ){ }wkWwNikKKComp ii =∈∃∧≤≤=∅∅= :1,,, 111  

2. Find all the candidate entities ( ) 1, EINFOe cc ∈  using 1Comp   

3. Calculate the score of all candidate entities: kkc PNeS ×=)(1   

4. Find all base topics: topics of all candidate entities ( bt )  

5. Calculate all topic-to-keyword weights: 

( ) )()(),(, 1
cc

t
kbcic eSeWteyHasCategorkeContains b

i
=⇒∧   

6. Calculate density of all base topics: ( )∑=
i

b

i
ck

c
t

keb eWtD )(max)(   

7. Keep the high density base topics and discard the rest 

8. Calculate score of all target topics: ( )( )∑ 









=∗

b gbTT

b
g ttDisth

tD
S

,
)(

  

9. Sort all Gg Tt ∈  based on ∗
gS  descending and return top M  

Figure  4.8: Query topic identification algorithm. 
 

The first distinction of the algorithm is the score of candidate entities which is defined by a variable 

penalty weight. This is because the penalty weight is one of the parameters to be studied. In this 
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experiment, all three penalty weights introduced by Equation  (3.27) are studied. Regardless of the 

penalty weight, there is an interesting point about the keyword weights. We can see from the 

definition of )( c
t

k eW b

i
 that every keyword appearing in an entity will receive the same weight )(1

ceS

. Moreover, when an entity is composed exclusively of query keywords (i.e. there is no penalty), their 

weight will be the number of keywords contained in the entity (Nk). The maximum weight a keyword 

can have is thus equal to the number of keywords in the query; it occurs in the case where an entity is 

composed of all query keywords and nothing else. In such case, we can see that the maximum density 

a topic can have is the square of the number of query keywords. It happens in the case where each 

keyword has its maximum value in that topic, meaning that one of the entities pointing to the topic is 

composed of exactly the query keywords. 

Another distinction in the above algorithm is the addition of the step  7. At this stage of the 

algorithm, we have a weighted list of base topics, featuring some topics pointed to by high-weight 

keywords and summing to a high density score, and a lot of topics pointed to by only lower-weight 

keywords and having a lower score. In our experiments, we found that the set contains over 3,000 

base topics on average. We limit the size of this list by keeping only the set of highest-density topics, 

as topics with a density too low are deemed to be too unrelated to the original query to be of use. This 

can be done either on a density basis (i.e. keeping topics whose density is more than a certain 

proportion of the highest density obtained for this query, regardless of the number of topics this 

represents, as we did in the previous experiment) or on a set-size basis (i.e. keeping a fixed number of 

topics regardless of their density, the approach we will prioritize in this experiment). When using the 

set-size approach, a question arises on how to deal with ties when the number of tied topics exceeds 

the size of the set to return. In this experiment, we break ties by keeping a count of the number of 

entities that feature keywords and that point to each topic, and giving priority to the topics pointed to 

by more entities. 

The last distinction in the algorithm with generic topic identification algorithm is the h function 

which determines how much the effect of the semantic distance would be. In the algorithm, this 

function is left as variable so that different options can be studied. . There are of course some options 

that have been considered in the literature different than the semantic distance described in this 

methodology. For example, Coursey and Mihalcea [105] proposed an alternative metric based on 

graph centrality, while Syed et al. [96] developed a spreading activation scheme to discover related 
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concepts in a set of documents. Some of these ideas could be adapted into our method in future 

research. 

However, even after settling on the shortest-path distance metric, there are many ways we could 

take into account the base topics’ densities into the goal topics’ ranking. The simplest option is to use 

it at a threshold value – to cut off base topics that have a density lower than a certain value, and then 

rank the goal topics according to which are closest to any remaining base topic regardless of density. 

That is the approach we used in the previous experiment using exploration method. On the other 

hand, taking the density into account creates different conditions for the system. Since some base 

topics are now more important than others, it becomes acceptable, for example, to rank a goal that is 

further away from several high-density base topics higher than a goal that is closer to a low-density 

base topic. We thus define a ranking score for the goal topics, as the sum for all base topics of a ratio 

of their density to the distance separating the goal and base. There are several ways to compute this 

ratio; five options that we considered in this study are: 
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In each of these equations, the score ∗
gS  of goal topic tg is computed as the sum, for all base topics 

tb, of the density D(tb) of that topic, divided by a function of the distance between topics tb and tg. This 

h function is a simple division in equations  (4.7) and  (4.8), but the exponential in equations  (4.9), 

 (4.10), and  (4.11) put progressively more importance on the distance compared to the density. The 

addition of 0.0001 in equations  (4.7) and  (4.8) is simply to avoid a division by zero in the case where 

a selected base topic is also a goal topic. 
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Finally, the goal topics with the highest score are returned as classification results. In this 

experiment, we return the top three topics, to allow for queries to belong to several different topics. 

We believe that this corresponds to a human level of categorization; for example, in the KDD CUP 

2005 competition [53], human labelers used on average 3.3 topics per query. However, this parameter 

is flexible, and we ran experiments keeping anywhere from one to five goal topics. 

The various alternatives and options for our classifier described above were all implemented and 

tested, in order to study the behavior of the system and determine the optimal combination. That 

optimal combination was then subjected to a final set of tests with new data. In order to compare and 

study the variations of our system, we again submitted them all to the same challenge as the KDD 

CUP 2005 competition [53]. All the measures and metrics are similar to what was explained in 

previous experiment and equations  (4.1) to  (4.6). The only difference is that the mapping between 

KDD CUP goal category set and the topic graph were performed a little more comprehensively and 

we identified 99 goal topics in our topic graph corresponding to the 67 KDD CUP category set. These 

correspondences are presented in  Appendix A.  

4.2.3.1 Penalty Weight 

The first aspect of the system we studied is the different formulae for the penalty weight of query 

keywords in an entity. The choice of formula has a direct impact on the system, as it determines 

which entities are more relevant given the user’s query. This in turn determines the relevance of the 

base topics that lead to the goal topics. A bad choice at this stage can have an impact on the rest of the 

system. 

The weight of an entity, and of the query keywords it contains, is function of the two parameters 

presented in Equation  (3.25), namely the number of keywords present in the entity and the penalty for 

extra keywords in that entity. We have introduced three possible mathematical definitions of penalty 

weight for an entity. They are a straightforward proportion of keywords in the entity, the proportion 

of characters in the entity that belong to keywords, and the proportion of IDF of keywords to the total 

IDF of the entity, as computed with Equation  (3.30). We implemented all three equations and tested 

the system independently using each. In all implementations, we limited the list of base topics to 25, 

weighted the goal topics using Equation  (4.8), and varied the number of returned goal topics from 1 to 

5. The results of these experiments are presented in Figure  4.9. The three different experiments are 

shown with different grey shades and markers: dark squares for the formula using the proportion of 

characters, medium triangles for the formula using the proportion of keywords, and light circles for 
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the formula using the proportion of IDF. Three results are also shown for each experiment: the overall 

precision computed using Equation  (4.4) in a dashed line, the overall recall of Equation  (4.5) in a 

dotted line, and the overall F1 of Equation  (4.6) in a solid line. 

 
Figure  4.9: Performance metrics for various penalty weight functions7. 

 

A few observations can be made from Figure  4.9. The first is that the overall result curves of all 

three variations have the same shape. This means that the system behaves in a very consistent way 

regardless of the exact formula used. There is no point where one of the results given one equation 

shoots off in a wildly different range of values from the other two equations. Moreover, while the 

exact difference in the results between the three equations varies, there is no point where they switch 

                                                      
7 Overall precision (dashed line), recall (dotted line) and F1 (solid line) using Nk*(Ck/Ce) (dark squares), Nk*(Nk/Ne) 
(medium triangles), and Nk*(ΣFk/ΣFe) (light circles). 
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and one equation goes from giving worse results than another to giving better results. We can also see 

that the precision decreases and the recall increases as we increase the number of acceptable goal 

topics. This result was to be expected: increasing the number of topics returned in the results means 

that each query is classified in more topics, leading to more correct classification (that increase recall) 

and more incorrect classifications (that decrease precision). Finally, we can note that the best equation 

for the penalty weight of extra keywords in entities is consistently the proportion of keywords (Nk / 

Ne), followed closely by the proportion of characters (Ck / Ce), while the proportion of IDF (ΣFk / ΣFe) 

trails in third position. 

It is surprising that the IDF measure gives the worst results of the three, when it worked well in 

other projects [62]. However, the IDF measure is based on a simple assumption, that a word with low 

semantic importance is one that is used commonly in most documents of the corpus. In our current 

system however, the “documents” are article titles, which are by design short, limited to important 

keywords, and stripped of semantically irrelevant words. These are clearly in contradiction with the 

assumptions that underlie the IDF measure. We can see this clearly when we compare the statistics of 

the keywords given in the example in [62] with the same keywords in our system, as we do in Table 

 4.3. The system in [62] computed its statistics from the entire Wikipedia corpus, including article text, 

and thus computed reliable statistics which are presented in column 2 and 3; in the example in Table 

 4.3, the rarely-used company name WWE is found much more significant than the common corporate 

nouns chief, executive, chairman and headquartered. On the other hand, in our system WWE is used 

in almost as many titles as executive and has a comparable Fw score, which is dwarfed by the Fw score 

of chairman and headquartered, two common words that are very rarely used in article titles. 

Table  4.3: Comparison of IDF of sample keywords. 
Keyword Numw

* Fw
* Numw Fw 

WWE 2,705 7.8 657 9.0 
Chief 83,977 5.6 1,695 8.1 
Executive 82,976 5.8 867 8.7 
Chairman 40,241 7.2 233 10.1 
Headquartered 38,749 7.1 10 13.2 

 

Finally, we can wonder if the two parts of Equation  (3.25) are really necessary (the ordering weight 

is not used in this experiment at all), especially since the best equation we found for penalty weight 

repeats the Nk term. To explore that question, we ran the same test again using each part of the 
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equation separately. Figure  4.10 plots the overall F1 using Nk alone in light dotted line with circle 

markers and Nk / Ne in black dashed line with square markers; it reproduces the overall F1 of Nk * (Nk 

/ Ne) from Figure  4.9 in its medium solid line with triangle markers for comparison. This figure shows 

clearly that using the complete equation gives better results than using either one of its components. 

 
Figure  4.10: Comparison of the components of the entity score. 

 

4.2.3.2 Size of the Base Topic Set 

The second aspect of the system we studied comes at the step  7 of the algorithm, when the list of base 

topics is trimmed down to keep only the most relevant ones. This list will initially contain all topics 

connected to any entity that contains at least one of the keywords the user specified. As mentioned 

before, the average number of base topics generated by a query is 3,400 and the maximum is 45,000. 

These base topics are then used to compute the score of the goal topics, using one of the summations 
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of equations  (4.7) to  (4.11). This test aims to see if the quality of the results can be improved by 

limiting the size of the set of base topics used in this summation, and if so what is the approximate 

ideal size. 

For this test, we used Nk * (Nk / Ne) for candidate entity score, the best formula found in the 

previous test. We again weighted the goal topics using Equation  (4.8) and varied the number of 

returned goal topics from 1 to 5. Figure  4.11 shows the F1 value of the system under these conditions 

when trimming the list of base topics to 500 (black solid line with diamonds), 100 (light solid line 

with circles), 50 (medium solid line with triangles), 25 (light dotted line with squares), 10 (black 

dashed line with squares) and 1 (black dotted line with circles). 

 
Figure  4.11: Overall F1 using 1 to 500 base topics. 
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Figure  4.11 shows clearly that the quality of the results drops if the set of base topics is too large 

(500) or too small (1). The difference in the results between the other four cases is less marked, and in 

fact the results with 10 and 100 base topics overlap. More notably, the results with 10 base topics start 

weaker than the case with 100, spike around 3 goal topics to outperform it, then drop again and tie it 

at 5 goal topics. This instability seems to indicate that 10 base topics are not enough. The tests with 

25 and 50 base topics are the two that yield the best results; it thus seems then that the optimal size of 

the base topic set is in that range. The 25 base topic case outperforms the 50 case, and is the one we 

will prefer. 

It is interesting to consider that in the previous experiment, we used the other alternative we 

proposed, namely to trim the set based on the density values. The cutoff used was half the density 

value of the base topic in the set with the highest density; any topic with less than that density value 

was eliminated. This gave us a set of 28 base topics on average, a result which is consistent with the 

optimum we discovered in this experiment. 

4.2.3.3 Goal Topic Score and Ranking 

Another aspect of the system we wanted to study is the choice of equations we can use to account for 

the base topics’ density and distance when ranking the goal topics. The option we used in the 

previous experiment, to find the nearest goals to any of the retained base topics regardless of their 

densities, is entirely valid. The alternative we consider here is to rank the goal topics in function of 

their distance to each base topic and of the density of that base. We proposed five possible equations 

to mathematically combine density and distance to rank the goal topics. Equation  (4.7) considers both 

distance and density evenly, and the others put progressively more importance on the distance up to 

Equation  (4.11). 

To illustrate the different impact of equations  (4.7) to  (4.11), consider three fictional base topics, 

one which has a density of 4 and is at a distance of 4 from a goal topic, a second with a density of 4 

and a distance of 3 from the same goal topic, and the third with a density of 3 and a distance of 3 from 

the goal. The contribution of each of these bases to the goal topic in each of the summations is given 

in Table  4.4. As we can see in this table, the contribution of each base decreases as we move down 

from Equation  (4.7) to Equation  (4.11), but it decreases a lot more and a lot faster for the base at a 

distance of 4. The contribution to the summation of the topic at a distance of 4 is almost equal to that 

of the topics at a distance of 3 when using Equation  (4.7), but is three orders of magnitude smaller 

when using equation  (4.11). That is the result of putting more and more emphasis on distance rather 
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than density: the impact of a farther-away higher-density topic becomes negligible compared to a 

closer lower-density topic. Meanwhile, comparing the contribution of the two topics of different 

densities at the same distance shows that, while they are in the same order of magnitude, the higher-

density one is always more important than the lower-density one, as we would want. 

Table  4.4: Example of the impacts of h function. 
Equation Density 4 

Distance 4 
Density 4 

Distance 3 
Density 3 

Distance 3 
 (4.7) 1.00 1.33 1.00 
 (4.8) 0.25 0.44 0.33 
 (4.9) 0.07 0.20 0.15 
 (4.10) 0.001 0.01 0.007 
 (4.11) 4.5×10-7 0.0005 0.0004 

 

We ran tests of our system using each of these five equations. In these tests, we again set the 

candidate score as Nk * (Nk / Ne), kept the 25 highest-density base topics, and varied from retuning 1 

to 5 goal topics. The overall F1 of the variations of the system is presented in Figure  4.12. In this 

figure, the classification results obtained using Equation  (4.7) are shown with a black dashed line with 

circle markers, Equation  (4.8) uses a grey solid line with square markers, Equation  (4.9) uses a 

dashed black line with triangle markers, Equation  (4.10) uses a light grey line with circle markers and 

Equation  (4.11) uses a grey line with triangle markers. 

We can see from Figure  4.12 that putting too much importance on distance rather than density can 

have a detrimental impact on the quality of the results: the results using equations  (4.10) and  (4.11) 

are the worst of the five equations. Even the results from equation  (4.9) are of debatable quality: 

although it is in the same range as the results of equations  (4.7) and  (4.8), it shows a clear downward 

trend as we increase the number of goal topics considered, going from the best result for 2 goals to 

second-best with 3 goals to a narrow third place with 4 goals and finally to a more distant third place 

with 5 goals.  

Out of curiosity, we ran the same test a second time, but this time keeping the 100 highest-density 

base topics. These results are presented in Figure  4.13, using the same line conventions as Figure 

 4.12. It is interesting to see that this time it is Equation  (4.9) that yields the best results with a solid 

lead, not equation  (4.8). This indicates a more fundamental relationship in our system: the best 

summation for the goal topics is not an absolute but depends on the number of base topics retained. 
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With a smaller set of 25 base topics, the system works best when it considers a larger picture 

including the impact of more distant topics. But with a larger set of 100 base topics, the abundance of 

more distant topics seems to generate noise, and the system works best by limiting their impact and 

by focusing on closer base topics. 

 
Figure  4.12: Comparison of the impact of the various h function equations. 

 

4.2.3.4 Number of Goal Topics Returned 

The final parameter in our system is the number of goal topics to return. We have already explained 

that our preference to return three goal topics is based on a study of human classification – namely, in 

the KDD CUP 2005 competition, human labelers used on average 3.3 topics per query. Moreover, 

looking at the F1 figures we presented in the previous subsections, we can see that the curve seems to 

be exponential, with each extra topic returned giving a lesser increase in F1 value. Returning a fifth 
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goal topic gives the least improvement compared to returning only four goal topics, and in fact in 

some cases it causes a drop in F1. Returning three topics seems to be at the limit between the initial 

faster rate of increase of the curve and the later plateau. 

 
Figure  4.13: Comparison of the impact of the h function equations using 100 base topics. 

 

Another way to look at the question is to consider the average score of goal topics at each rank, 

after summing the densities of the base topics for each and ranking them. If on average the top-ranked 

topics have a large difference to the rest of the graph, it will show that there exist a robust division 

between the likely-correct goal topics to return and the other goal topics. The opposite observation, on 

the other hand, would reveal that the rankings could be unstable and sensitive to noise, and that there 

is no solid score distinction between the goals our system returns and the others. 

For this part of the study, we used the summation of Equation  (4.8). We can recall from our 

discussion earlier that the maximum keyword weight is Nk and the maximum topic density is Nk². 
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Queries in the KDD CUP dataset are at most 10 words long, giving a maximum base topic density of 

100. This in turn gives a maximum goal topic score of 1,002,400 using Equation  (4.8) and 25 base 

topics in the case where the distance between the goal topic and each of the base topics is one except 

for a single base topic at a distance of zero; in other words, the goal is one of the base topics found 

and all other base topics are immediately connected to it. More realistically, we find in our 

experiments that the average base topic density is 1.48, and the average distance between a base and 

goal topic is 5.6 steps, so an average goal topic score using Equation  (4.8) would be 1.18. 

Figure  4.14 shows the average score of the goal topic at each rank over all KDD CUP queries used 

in our experiment, obtained using the method described above. This graph shows that the top topic 

has on average a score of 3,272, several orders of magnitude above the average but still below our 

theoretical maximum. In fact, even the maximum score we observed in our experiments is only 

67,506, very far below the theoretical maximum. This is due to the fact that most base topics are more 

than a single step removed from the goal topic. 

 
Figure  4.14: Average goal topic score per rank over all KDD Cup queries. 
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The graph also shows the massive difference between the first three ranks of goal topics and the 

other 96. The average score goes from 3,272, to 657 at rank 2 and 127 at rank 3, down to 20 and 16 at 

ranks 4 and 5 respectively, then cover the interval from 2 to 0.7 between ranks 6 and 99.  This 

demonstrates a number of facts. First of all, both the values of the first five goal ranks and the 

differences between their scores when compared to the other 94 shows that these first ranks are 

resilient to noise and variations. It also justifies our decision to study the performance of our system 

using the top 1 to 5 goal topics, and it gives further experimental support to our decision to limit the 

number of goal topics returned by the classifier to three. 

It is interesting to note that the average score of the topics over the entire distribution is 42.53, very 

far off from our theoretical average of 1.18. However, if we ignore the first three ranks, whose values 

are very high outliners in this distribution, the average score becomes 1.62. Moreover, the average 

score over ranks 6 to 99 is 1.28. Both of these values are in line with the average we expected to find. 

4.2.3.5 The Optimal System 

After having performed the above test, we are ready to put forward the optimal classifier, or the one 

that combines the best features from the options we have studied. This classifier uses Nk * (Nk / Nt) for 

candidate entity score, selects the top 25 base topics, ranks the goal topics using the commonality 

summation formula of Equation  (4.8), and returns the top-three topics ranked. The results we obtain 

with that system are presented in Table  4.5, with other KDD CUP competition finalists reported in 

[53] for comparison. As can be seen from Table  4.5, our system performs well above the competition 

average, and in fact ranks in the top-10 (7th place) of the competition in F1 and in the top-5 (2nd 

place) in precision. This is also a considerable improvement over the results obtained in the previous 

experiment using the iterative exploration method. For comparison, system #22, which won the first 

place in the competition, achieved the best results by querying multiple web search engines and 

aggregating their results [54]. Our method may not perform as well right now, but it offers the 

potential for algorithmic and knowledge-base improvements that goes well beyond those of a simple 

aggregate function, and is not dependent on third-party commercial technology. 

We also found in our results that 47 of the 800 test queries were not classified at all, because the 

algorithm failed to select any base topics at all. This situation occurs when no entities featuring query 

words can be found. These queries are all single words, and that word is either an uncommon 

abbreviation (the query “AATFCU” for example), misspelled in an unusual way (“egyptains”), an 

erroneous compounding of two words (“contactlens”), a rare website URL, or even a combination of 
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the above (such as the misspelled URL “studioeonline.com” instead of “studioweonline.com”). These 

are all situations that occur with real user search queries, and are therefore present in the KDDCUP 

dataset. It is worth noting that Wikipedia titles which are the source of the entities in the semantic 

graph include common cases of all these errors, so that only the 5.9% most unusual cases lead to 

failure in our system. 

Table  4.5: Semantic distance topic identifier performance in baseline standings8. 
System F1 Rank Overall F1 Precision Rank Overall Precision 

KDDCUP #22 1 0.4444 N/A 0.4141 
KDDCUP #37 N/A 0.4261 1 0.4237 
KDDCUP #21 6 0.3401 2* 0.3409 
Our system 7 0.3366 2 0.3643 
KDDCUP #14 7* 0.3129 N/A 0.3173 
KDDCUP Mean  0.2353  0.2545 
KDDCUP Median  0.2327  0.2446 

 

4.2.3.6 Case Study 

It could be interesting to study a specific example, to see the system’s behavior step by step. We 

chose for this purpose to study a query for “internet explorer” in the KDDCUP set. This query was 

manually classified by the competition’s three labelers, into the KDDCUP categories 

“Computers\Software; Computers\Internet & Intranet; Computers\Security; Computers\Multimedia; 

Information\Companies & Industries” by the first labeler, into “Computers\Internet & Intranet; 

Computers\Software” by the second labeler, and into “Computers\Software; Computers\Internet & 

Intranet; Information\Companies & Industries” by the third labeler. 

The algorithm begins by identifying a set of relevant base topics using the calculated candidate 

entities and then weighting them using the density function. For this query, our algorithm identifies 

1,810 base topics, and keeps the 25 highest-density ones, breaking the tie for number 25 by 

considering the number of entities pointing to the topics. For any two-word query, the maximum 

candidate entity score value is 2, and the maximum base topic density value is 4. And in fact, we find 

that 8 topics receive this maximum density, including some examples we listed in Table  4.6. We can 

see from these examples that the top-ranked base topics are indeed very relevant to the query. 

                                                      
8 * indicates competition systems that would have been outranked by ours. 
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Examining the entire set of base topics reveals that the density values drop to half the maximum by 

rank 33, and to a quarter of it by rank 37. The density value continues to drop as we go down the list: 

the average density of a base topic in this example is 0.40 which corresponds to rank 660, by the 

middle of the list at rank 905 the density is 0.33, and the final topic in the list has a density of only 

0.05. It can also be seen from the samples in Table  4.6 that the relevance of the topics to the query 

does seem to decrease along with the density value. Looking at the complete list of 1,810 base topics, 

we find that the first non-software-related topic is “Exploration” at rank 41 with a density of 1. But 

software-related topics continue to dominate the list, mixed with a growing number of non-software 

topics, until rank 354 (density of 0.5 and 1 entity pointing to the topic) where non-computer topics 

begin to dominate. Incidentally, the last software-related topic in the list is “United States internet 

case law”, at rank 1791 with a density of 0.11. 

Table  4.6: Base topic samples for "internet explorer" query case study. 
Topic Rank Density Entities# 
Internet Explorer 1 4 36 
Internet history 2 4 32 
Windows web browsers 3 4 20 
Microsoft criticisms and controversies 8 4 4 
HTTP 25 2.67 5 
Mobile phone web browsers 26 2.67 4 
Cascading Style Sheets 33 2 5 
Internet 37 1 17 
PlayStation Games 660 0.40 2 
Islands of Finland 905 0.33 1 
History of animation 1811 0.05 1 

 

The next step of our algorithm is to rank the 99 goal topics using the sum of density values in 

Equation  (4.8). Sample rankings are given in Table  4.7. This table uses the Wikipedia goal topic 

labels; the matching KDDCUP categories can be found in  Appendix A. We can see from these results 

that the scores drop by half from the first result to the fourth one. This is much less drastic than the 

drop we observed on average in Figure  4.14, but is nonetheless consistent as it shows a quick drop 

from a peak over the first three ranks and a long and more stable tail over ranks 4 to 99. 

It is also encouraging to see that the best two goal topics selected by our system correspond to 

“Computers\Internet & Intranet” and “Computers\Software”, the only two categories to be picked by 
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all three KDDCUP labelers. The fourth goal corresponds to “Online Community/Other” and is the 

first goal that is not in the KDDCUP “Computer/” category, although it is still strongly relevant to the 

query. Further down, the first goal that corresponds neither to a “Computers/” nor “Online 

Community/” category is Technology (“Information\Science & Technology”) at rank 16, which is 

still somewhat related to the query, and the first truly irrelevant result is Magazines (“Living\Book & 

Magazine”) at rank 18 with a little over a quarter of the top topic’s score. Of the categories picked by 

labelers, the one that ranked worst in our system was “Information\Companies & Industries” at rank 

30. All the other categories they identified are found in the top-10 results of our system. 

Table  4.7: Goal topic samples for "internet explorer" query case study. 
Goal Topic Rank Score 
Internet 1 11.51 
Software 2 10.09 
Computing 3 8.03 
Internet culture 4 5.63 
Websites 5 4.97 
Technology 16 3.54 
Magazines 18 3.39 
Industries 30 2.86 
Law 49 2.54 
Renting 99 1.30 

 

4.2.3.7 New Data and Final Tests 

In order to show that our results in Table  4.5 are general and not due to picking the best system for a 

specific dataset, we ran two more tests of our system with two new datasets. The first dataset is a set 

of 111 KDD CUP 2005 queries classified by a competition judge. This set was not part of the 800 test 

queries we used previously; it was a set of queries made available by the competition organizers to 

participants prior to the competition, to develop and test their systems. Naturally, the queries in this 

set will be similar to the other KDD CUP queries, and so we expect similar results. 

The second dataset is a set of queries taken from the TREC 2007 Question-Answering (QA) track 

[106]. That dataset is composed of 445 questions on 70 different topics; we randomly selected three 

questions per topic to use for our test. It is also worth noting that the questions in TREC 2007 were 

designed to be asked sequentially, meaning that a system could rely on information from the previous 
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questions, while our system is designed to classify each query by itself with no query history. 

Consequently, questions that were too vague to be understood without previous information were 

disambiguated by adding the topic label. For example, the question ‘Who is the CEO?’ in the series of 

questions on the company 3M was rephrased as ‘Who is the CEO of 3M?’ Finally, two volunteers 

independently labeled the questions to KDD CUP categories in order to have a standard to compare 

our system’s results to using equations  (4.1) to  (4.6). The TREC dataset was selected in order to 

subject our system to very different testing conditions: instead of the short keyword-only KDD CUP 

web queries, TREC has long and grammatically-correct English questions. 

The results from both tests are presented in Table  4.8, along with our system’s development results 

already presented in Table  4.5 for comparison. These results show that our classifier works better 

with the test data than with the training data it was developed and optimized on. This counter-intuitive 

result requires explanation. 

Table  4.8: Topic identification performance results for new test sets. 
Query Set Overall F1 Overall Precision Overall Recall 
KDDCUP 111 0.3636 0.4254 0.3175 
TREC 0.4639 0.4223 0.5267 
KDDCUP 800 0.3366 0.3643 0.3195 

 

The greatest difference in our results is on recall, which increases by over 20% from the training 

KDDCUP test to the TREC test. Recall, as presented in Equation  (4.2), is the ratio of correct topic 

labels identified by our system for a query to the total number of topic labels the query really has. 

Since our classifier returns a fixed number of three topics per query, it stands to reason that it cannot 

achieve perfect recall for a query set that assigns more than three topics, and that it can get better 

recall on a query set that assigns fewer topics per query. To examine this hypothesis, we compared 

the results of five of the labelers individually: the three labelers of the KDDCUP competition and the 

two labelers of the TREC competition (the 111 KDDCUP demo queries, having been labeled by only 

one person, were not useful for this test). Specifically, we looked at the average number of topics per 

query each labeler used and the recall value our system achieved using that query set. The results, 

presented in Table  4.9, show that our intuition is correct: query sets with less topics per query lead to 

higher recall, with the most drastic example being the increase of 1.5 topics per query between 

KDDCUP labelers 2 and 3 that yielded a 10% decrease in recall. However, it also appears from that 
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table that the relationship does not hold across different query sets: KDDCUP labeler 2 assigns less 

labels per query that TREC labeler 2 but still has a much lower recall. 

Table  4.9: Comparison of topic number and recall for different labelers. 
Query Set Average Number 

of Topics 
Recall 

TREC Labeler 1 1.93 ± 0.81 0.5443 
TREC Labeler 2 2.91 ± 0.92 0.5090 
KDDCUP Labeler 2 2.39 ± 0.93 0.3763 
KDDCUP Labeler 1 3.67 ± 1.13 0.3076 
KDDCUP Labeler 3 3.85 ± 1.09 0.2747 

 

Next, we can contrast the two KDDCUP tests: they both had nearly identical recall but the new 

data gave a 6% increase in precision. This is interesting because the queries are from the same 

datasets, they are web keyword searches of the same average length, and the correct categorization 

statistics are nearly identical to those of Labeler 3 so we would actually expect the recall to be lower 

than it ended up being. An increase in both precision and recall can have the same origin in equations 

 (4.1) and  (4.2): a greater proportion of correct topics identified by our classifier. But everything else 

being equal, this would only happen if the queries themselves were easier for our system to 

understand. To verify this hypothesis, we checked both query sets for words that are unknown in our 

system. As we explained previously, a lot of these words may be rare but simple typos (“egyptains”) 

or missing spaces between two words (“contactlens”), and while they are unknown and ignored in our 

system their meaning is immediately obvious to the human labelers. The labelers thus have more 

information to classify the queries, which makes it inherently more difficult for our system to 

generate the same classification. Upon evaluation of our data, we find that the KDDCUP set of 800 

queries features about twice the frequency of unknown words of the set of 111 queries. Indeed, 10.4% 

of queries in the 800-query set have unknown words and 4.4% of words overall are unknown, while 

only 5.4% of queries in the 111-query set have unknown words and only 2.5% of words in that set are 

unknown. This is an important difference between the two query sets, and we believe it explains why 

the 111 queries are more often classified correctly. It incidentally also indicates that an automated 

corrector should be incorporated in the system in the future. 

The better performance of our system on the TREC query set can be explained in the same way. 

Thanks to the fact that set is composed of correct English questions, it features even fewer unknown 
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words: a mere 0.4% of words in 1.9% of queries. Moreover, for the same reason, the queries are much 

longer: on average 5.3 words in length after stop word removal, compared to 2.4 words for the 

KDDCUP queries. This means that even if there is an unknown word in a query, there are still a lot of 

other words in the TREC queries for our system to make a reasonably good classification. 

Differences in the queries aside, it does not appear to be major distinctions, much less setbacks, 

when using our classifier on new and unseen datasets. It seems robust enough to handle new queries 

in a different spread of domains, and to handle both web-style keyword searches and English 

questions without loss of precision or recall. 

Finally, it could be interesting to determine how our classifier’s performance compares to that of a 

human doing the same labeling task. Query classification is a subjective task: since queries are short 

and often ambiguous, their exact meaning and classification is often dependent on human 

interpretation [107]. It is clear from Table  4.9 that this is the case for our query sets that human 

labelers do not agree with each other on the classification of these queries. We can evaluate the 

human labelers by computing the F1 of each one’s classification compared to the others in the same 

dataset. In the case of the KDDCUP data, the average F1 of human labelers is known to be between 

0.4771 and 0.5377 [53], while for our labeled TREC data we can compute the F1 between the two 

human labelers to be 0.5605. This means our system has between 63% and 71% of a human’s 

performance when labeling the KDDCUP queries, and 83% of a human’s performance when labeling 

the TREC queries. It thus appears that by this benchmark, our classifier again performs better on the 

TREC dataset than on the KDDCUP one. This gives further weight to our conclusion that our system 

is robust enough to handle very diverse queries. 

4.3 Speech Recognition 

The final part of this chapter is a brief study of the speech recognition application firstly introduced in 

Section  3.8. Here we start by describing the problem specification in more details. Then, a variation 

of the algorithm presented in Section  3.8 is explained along with an example for a better clarification 

of algorithm mechanism. Finally, the experimental results of the algorithm using real test data are 

presented and compared with baseline methods. 

Speech decoders are becoming prominent in an increasing number of real-world applications and 

are required to become more robust and more reliable. Nowadays, speech transcription is being used 

ubiquitously. The requirement for highly accurate decoders has increased substantially. Most 
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researchers agree that one of the most promising approaches to the problem of reducing word error 

rate (WER) in speech transcription is to combine two or more speech decoders and compile a new 

composite more accurate output [108]. The Recognizer Output Voting Error Reduction (ROVER) is 

the most widely used technique in this regard. However, its performance has stagnated over the past 

few years mainly due to the limitations of the voting algorithms used. These shortcomings include the 

use of unreliable word level confidence scores of decoders as well as randomly-broken ties when the 

frequency of occurrences is used during the voting. This experiment proposes a novel voting scheme 

for the ROVER combination procedure which relies on the entity graph as patterns to select the 

winner token from the different hypotheses of the decoders. 

4.3.1 ROVER Procedure 

ROVER [109] is a system developed at NIST in 1997 to produce a composite of decoder outputs 

when the outputs of multiple automatic speech recognizers (ASR) are available. The goal is to 

produce a lower WER in the composite output. This is done through a voting mechanism to select the 

winner word from among the different decoder outputs. ROVER is a two-step process as shown in 

Figure  4.15. It starts by combining the multiple decoder outputs into a single minimal-cost word 

transition network (WTN) through dynamic programming. The confidence scores of the recognizers 

are shown in parentheses in the WTN of Figure  4.15. In the second step, the resulting WTN is 

browsed by a voting process which selects the best output sequence out of potential word sequences 

presented by different ASRs. Three voting mechanisms have been presented in [109]. At each 

location in the composite WTN, a score is computed for each word using Equation  (4.12) where i is 

the current location in the WTN, Ns is the total number of combined ASR systems, N(w, i) is the 

frequency of word w at the position i, and C(w, i) is the confidence value for word w at the position i. 
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The parameter α is set to be the trade-off between using word frequency and confidences. In the 

case there is an insertion or deletion, the NULL transition, noted as @, in the word transition network 

will have the confidence conf(@). A training stage is therefore needed to optimize both the parameter 

and the NULL transition confidence value. This is commonly done through grid-based searching. The 

three voting schemes are frequency of occurrence, frequency of occurrence and average word 

confidence, and frequency of occurrence and maximum confidence. The first scheme only uses 

occurrences to select the winning word at each WTN slot. However, ties tend to occur frequently and 
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they are randomly broken. The remaining two schemes rely on word confidences to overcome the 

problem of arbitrarily broken ties. The fact that ROVER's voting relies on confidences makes it a 

vulnerable technique. It is not safe to assume that the word confidences are reliable. Much research 

[110] is still pursued in attempts to come up with a robust and effective technique to provide a decent 

confidence measure for Large Vocabulary Continuous Speech Recognition (LVCSR). Even in [109], 

neither algorithm that relies on a confidence score achieved a significant error reduction compared to 

the frequency-based voting algorithm. Furthermore, ROVER is unable to outvote the erroneous ASR 

systems when only one single ASR is providing the correct output. The scoring schemes make it 

difficult to boost a single ASR output since both occurrence and confidence are used to score each 

word at a specific location. 

 
Figure  4.15: ROVER procedure. 

 

4.3.2 Entity-based Voting Algorithm 

The proposed approach in this experiment relies on entity-to-WTN pattern matching in order to 

intelligently select the winner token at each location of the WTN. The assumption that underlies our 

work is that there exist multi-word statements that a speaker is likely to use and that we can improve 
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the voting stage within the ROVER procedure by recognizing these multi-word statements. In this 

context, multi-word statements refer to a variety of entities such as long nouns (e.g. the honorable 

Member of Parliament) or proper names (e.g. Harvard University). Figure  4.16 presents the steps of 

our proposed approach. The goal of the algorithm is to browse the WTN and select the best word at 

each slot (called token) from different parallel sentences provided by each ASR system. The words 

which are selected as winners are tagged as WINNER. The algorithm continues until it can find a 

winner for all the slots and, therefore, generate one final sentence as the output result. 

Input: WTN 

1. Tag all common tokens as WINNER 

2. Find all the candidate entities matching any n-gram word 

combination in WTN with at least two consecutive words 

3. While slots without a WINNER token exist do: 

4. While any candidate entity remains do: 

5. Update the candidate entity list by discarding all 

entities that do not match any WTN slot without a 

WINNER tag 

6. Score and rank all candidate entities 

7. Select the highest score candidate entity as winner 

8. Tag tokens matching the winner entity n-grams words as 

WINNER 

9. Remove the winner entity from the candidate entity list 

10. End while 

11. Use frequency of occurrences to select WINNER in the 

remaining slots, if any 

12. End while 

Figure  4.16: Entity-based voting algorithm. 
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In step  1 of the algorithm, we browse the WTN to locate all slots in which the same token has been 

recognized by all speech decoders. Therefore, we can tag that token as the WINNER. In other words, 

if all speech decoders agreed on the same token at a given slot, we suppose it has been correctly 

recognized and hence, we tag it as WINNER. Step  2 finds all the candidate entities which match any 

n-gram of consecutive tokens within the WTN. There is a requirement that the candidate entity should 

match at least two consecutive tokens in the WTN. Moreover, at least one of the tokens featured in 

the candidate entity should not already be marked as WINNER. These conditions ensure that the 

found candidate entities can be used to discover new WINNER tokens. Once all eligible candidate 

entities are found, a loop will be created until there is no slot without a WINNER token. The next 

nested loop iterates over found candidate entities list and process them until no candidate entities 

remain in the list. At the start of the loop in step  5, the list of candidate entities gets updated and any 

candidate entity which does not contribute to finding new WINNER tokens is discarded. In other 

words, only candidate entities which feature at least one word matching a WTN slot without a 

WINNER tag will be kept.  

Step  6 is a crucial part of the algorithm. In this step, all candidate entities are scored and then sorted 

descending over their scores. The equation used here to score the candidate entities is a little different 

than score equations presented so far. Equation  (4.13) shows the scoring formula used for scoring 

candidate entities. 

 ( )
e
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The above equation is a transformation of basic candidate entity score introduced by Equation 

 (3.25). The first term (summation) represents an extended version of the word featuring weight while 

the second term (fraction) represents the new penalty weight. In this equation, Wk is the number of 

occurrences of word k in its slot over different ASR systems. Nk is the number of consecutive words 

found in the entity i.e. it is equal to n as in n-gram found in the entity. Nx is the number of false 

matches i.e. the number of words within the n-gram which match tokens at slots where a WINNER tag 

is attributed to a different token. Finally, Ne is, as before, equal to the total number of entity words. 

An important note here is the impact of the NULL transition in Equation  (4.13). The NULL token has 

a weight, which is its occurrences at the slot but it does not count as a word. It can thus contribute to 

the value of Wk, but not to Nk or Ne. 
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Once all candidate entities are scored, the top scored candidate entity is selected as the winner 

entity and the token words featured in the winner entity are selected as WINNER tokens. Afterwards, 

the winner entity is removed from the candidate entity list so that other entities are selected for other 

remaining slots. The loop continues until all candidate entities are exhausted and no more remaining. 

In the case that there are still slots available without a WINNER tag, step  11 indicates that the token 

with the most frequency of occurrences is selected at the WINNER token. In other words, the token 

with the highest Wk is the winner word. If ties occur, they are broken randomly. 

The next subsection presents an example which illustrates all the above steps. It is notable that the 

algorithm explained above might be slower compared to the classic ROVER voting algorithm 

because of the additional processing it requires. For offline applications, however, this should not be 

an issue. For real-time applications, the algorithm can be optimized in a number of ways: for instance, 

by pruning the infrequent entities from the semantic graph, by caching frequently-used entities, and 

by making use of the text indexing tools available in many commercial database systems. 

4.3.3 Illustrative Example 

In order to better illustrate the steps in Figure  4.16, we present a working example. Let us assume that 

a given speech waveform is transcribed by three different speech decoders. The resulting WTN is 

given in Figure  4.17. Per step  1 of the algorithm, the token “The” at the first slot is a common token 

and, therefore, a WINNER.  

Now let us assume for the sake of this example that only four candidate entities are found for this 

WTN. These entities, along with their initial scores, are given in Table  4.10. Notice that the first 

entity matches three words: “united”, “states”, and “ink”. But only the first two words are 

consecutive. Consequently, only “united states” is matched with the WTN and “ink” is ignored. 

Notice also that the “boarding school” entity gets an extra word weight because of the NULL 

transition between “boarding” and “school”. Finally, note that none of the candidate entities cover the 

initial slot 0, the only position for which a WINNER token is identified, and consequently Nx = 0 for 

all candidate entities. 

At the first iteration, the highest-scored candidate entity is “boarding school”. Therefore, the tokens 

“boarding”, “NULL”, and “school” at slots 3, 4, and 5 are tagged as WINNER. This entity is removed 

from the list, before the second iteration begins. The next iteration starts by updating the scores of the 

remaining three candidate entities. The updated list of candidate entities is shown in Table  4.11. Only 
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one entity has its score changed:  “states board of education”, which has a false-matched token (Nx) at 

slot 3 as “board” where “boarding” was tagged as WINNER during the previous iteration. Therefore, 

the highest-scored candidate entity is “united states of ink” in this iteration. The words “united” and 

“states” are thus tagged as WINNER at slot 1 and 2 respectively. The remaining candidate entities 

only match slots with winner tokens. Therefore, no more candidate entities are usable and they all get 

discarded per step  5 of the algorithm. This means that the algorithm deals with slot 6 using frequency 

of occurrence per step  11, thus marking “band” with frequency 2 a WINNER token over “bland” with 

a frequency of 1. The composite final sentence is thus “the united states boarding school band”. 

 
Figure  4.17: A sample WTN for three decoders. 

 

Table  4.10: Initial candidate entities and their scores. 
Candidate Entities Matched Slots Score (S(ec)) 
“united states of ink” 1 – 2 (1 + 2) × (2 - 0)/4 = 1.5 
“knighted skates inc.” 1 – 2 (1 + 1) × (2 - 0)/3 = 1.33 
“states board of education” 2 – 3 (2 + 2) × (2 - 0)/4 = 2 
“boarding school” 3 – 5 (1 + 1+ 2) × (2 - 0)/2 = 4 

 

Table  4.11: Remaining candidate entities and updated scores in the second iteration. 
Candidate Entities Matched Slots Score (S(ec)) 
“united states of ink” 1 – 2 (1 + 2) × (2 - 0)/4 = 1.5 
“knighted skates inc.” 1 – 2 (1 + 1) × (2 - 0)/3 = 1.33 
“states board of education” 2 – 3 (2 + 2) × (2 - 1)/4 = 1 
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4.3.4 Datasets and Result 

The tests were conducted using the transcription output of the Carnegie Mellon University Sphinx 4 

decoder. In terms of data, we have considered the English Broadcast News Speech (HUB4) testing 

framework [111]. This corpus is composed of both speech data (LDC98S71) and transcripts 

(LDC98T28). It is a total of 97 hours of 16000 Hz recordings from radio and television news 

broadcasts. Transcriptions of this HUB4 corpus have been used to train the language model (named 

as LM-98T28 hereafter). Two other freely available language models were used: an open-source 

model for broadcast news transcriptions from CMU [112], referred to as LM-BN99 hereafter, and 

another language model created from the English Gigaword corpus [113], referred to as LM-GIGA 

hereafter. In order to simulate outputs of speech decoders from several sites, we have loaded the 

Sphinx 4 decoder with different language models. A total of three configurations have been set up: 

Sphinx 4 loaded with LM-98T28 (s4-LM-98T28), Sphinx 4 loaded with LM-BN99 (s4-LM-BN99), 

and Sphinx 4 loaded with LM-GIGA (s4-LM-GIGA). All possible binary combinations were carried 

out. Table  4.12 reports the setup. Notice here that the order of combination matters. This is an 

inherent problem of ROVER's WTN building stage. Because of the use of different language models, 

a normalization step is required to standardize the output of the different speech decoders. In other 

words, the same word can be written in different ways and, therefore, all these variations have to be 

unified under a single form. Examples of these issues include acronyms like CNN which can be 

written as c. n. n. (three distinct letters), c.n.n. (one single word), cnn (one single word), c n n (three 

letters), and capitalization, such as Vote, voTe, vote, etc. Moreover, the positions of NULL tokens are 

determined according to the order of transitions which means the each combination order causes 

different NULL tokens to be inserted into transitions. 

It is worth mentioning that the Sphinx 4 confidence scores were not reliable. Consequently, using 

these scores in the voting algorithm causes no change in the outcome. For this reason, we only used 

the frequency-based voting in the reminder our tests. In terms of candidate entities, we have used the 

list of all titles in Wikipedia that are two or more words in length from the October 2010 version of 

the encyclopedia. This condition created a set of 6,479,950 entities ranging from bi-grams up to 45-

grams, averaging 3-grams in length. 

The baseline performance is obtained through the use of the frequency of occurrence voting 

scheme. The ROVER baseline WER is given in Table  4.13. The First row in this table represents the 

different binary combinations previously defined in Table  4.12. 



 

 156 

Table  4.12: Decoders combinations. 
ID Combination Configuration 
C1 s4-LM-GIGA - s4-LM-98T28 
C2 s4-LM-GIGA - s4-LM-BN99 
C3 s4-LM-98T28 - s4-LM-GIGA 
C4 s4-LM-98T28 - s4-LM-BN99 
C5 s4-LM-BN99 - s4-LM-98T28 
C6 s4-LM-BN99 - s4-LM-GIGA 

 

Table  4.13: ROVER baseline WERs 
Test C1 C2 C3 C4 C5 C6 

WER 37.12 36.45 37.32 35.51 32.45 33.10 
 

 
Figure  4.18: Entity-based voting algorithm WER reduction rates. 

 

In order to illustrate the performance of the entity-based voting scheme, the WER reduction is 

plotted. Figure  4.18 reports the WER reduction (absolute and relative) achieved with our voting 

algorithm. The WER reduction reported in Figure  4.18 shows that our voting scheme is 

outperforming the original frequency of occurrence scheme in almost all the experiments. The 
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relative WER reduction ranged from 3% to up to 12%. This reduction is considered impressive since 

ROVER performance has stagnated over the past few years and it has become more and more 

difficult to achieve even a small WER reduction. However, with the C5 binary combination, the 

entity-based voting algorithm performs slightly worse than the original ROVER algorithm. This can 

be explained by the fact that the C5 baseline WER is already the lowest which means performance is 

at its best. In other words, when the WER is low and decoders are highly optimized, the entity-based 

voting performs roughly the same as the original scheme. 

To wrap up, in this experiment, a voting algorithm based on the entity detection algorithm has been 

proposed to improve the performance of the ROVER procedure. The voting scheme relies on entities 

in order to select the winner token at each slot of the WTN. Tests showed that this new approach 

outperforms the original voting scheme and achieve substantial WER reduction in most of the setups. 

Future research can focus on enhancing our proposed algorithm in a number of ways. One possible 

direction is to expand it to handle more than pairs of decoders. Indeed, combining the output of three 

or more decoders in our system should improve the results compared to using only two decoders. We 

could also look at improving the technique used to break ties. The random decision our system makes 

at present is not optimal, and some kind of intelligent decision process should give better results. 

4.4 Summary 

In this chapter, two of the applications introduced in Section  3.8 were studied through experimental 

tests. The first application was the query topic identification which was the main focus of the chapter. 

The problem was divided into three stages and a comprehensive study followed examining many 

parameters involved in the algorithm structure. At the first stage, the flexibility of entity detection and 

base topic identification towards noise was measured using synthesized data. The second stage 

provided an iterative method which tried to solve a real-world problem using KDD CUP 2005 

datasets for query categorization. Finally, the stage three presented a full semantic analysis algorithm 

to solve KDD CUP 2005 problem using the full methodology described in this research. Many factors 

of the algorithm were tested in order to create the optimal solution which produced favorable results. 

The second application was speech recognition problem which used a variation of the entity 

detection algorithm to create a voting mechanism for combining results of multiple decoders to 

generate a better transcription. The tests showed great improvements over baseline data which have 

not been improved upon for a long time.  
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Chapter 5 
Conclusion and Future Research 

5.1 Summary of the Study 

This dissertation presented a methodology for semantic analysis of textual input based on an 

encyclopedic graph-based knowledgebase source. The presented methodology provided various 

algorithms and also provided a number of sample problems which can be tackled using the provided 

algorithms. It tried to show how the generic algorithm templates can be tailored for different types of 

applications by presenting the potential solutions for the presented sample problems. In each solution, 

some variation of the semantic analysis algorithm was used and justifications as why the algorithm 

was set up in a certain way were provided in each case. Finally, a couple of the applications were 

studied further using empirical experiments and tests. The numerical results of the performance of the 

algorithm in each setup was presented and compared to baseline methods. The experiments also 

tested various parameters of the algorithms and showed how changes in these parameters affect the 

final results. 

The first part of the study was the introduction of Wikipedia and DBpedia as the knowledgebase 

used in the research. Wikipedia was introduced as a valuable source of semantic information. The 

main components of Wikipedia used to create the knowledgebase were individually explained. These 

components were: titles, infoboxes, wikilinks, and categories. All these components were the crucial 

blocks in creating the semantic graph. However, due to the human-readable structure of Wikipedia, 

there were challenges in converting this encyclopedia into a machine-readable format. Consequently, 

a semantic web version of Wikipedia was introduced as DBpedia which provided all the crucial 

components in computer-friendly linked data format. DBpedia is a collection of datasets which are 

compatible to RDF format since they use triples of “subject, predicate, object” and also use URIs to 

refer to items in their datasets. Such a structure can easily be transferred to a database for machine 

use. Moreover, the triple format and linked data nature of these dataset can easily be converted to a 

semantic graph. 

The next part of the study introduced the semantic graph generated from Wikipedia or DBpedia. 

The semantic graph is comprised of two sub-graphs: entity graph and topic graph. This study heavily 

relies on the two concepts of entity and topic. The entity graph and the topic graph are thus the 

knowledge sources for each of these concepts. The entities were introduced as all possible knowledge 
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items, such as people, places, events, organizations, and so on. The topics, on the other hand, are 

considered as a meta-layer of semantic knowledge which gives the entities structure and hierarchy. In 

other words, topics provide the classification of the knowledgebase and entities are the instances that 

belong to one or more of these classes. This means that the entity graph is connected to the topic 

graph and the connection was called the entity-topic connection layer. 

Once the semantic graph is described, the study presented the first element of semantic analysis 

algorithms: entity detection. It was noted that any semantic analysis would require the entities to be 

first identified. The entities, therefore, are acting as entry points to the semantic graph unless an 

application is specifically working on topics and provides topics as the input. Most applications, 

however, would need to perform entity detection first. The proposed algorithm had included five 

divisions: processing, search, scoring, equivalency, and production. Each of these divisions was 

introduced, explained, and a formal mathematical definition for them was presented at the end. In 

summary, the processing division divided the input into blocks ready for further processing. Each 

block was called an input component. Search division was tasked to find entities matching each input 

component and called them candidate entities. Scoring division would assign a score to each 

candidate entity based on how close it matches the input component. Equivalency division tried to 

find entities that are equal to the candidate entities but are not found in search division and add them 

to candidate entity list. Finally, production division filtered out those candidate entities which scored 

lower than an acceptable threshold and returned the remaining high scored entities for further 

semantic analysis. 

The second element of the semantic analysis was the introduction of semantic distance and 

commonality score. Since the main part of analysis is done using the semantic distance and 

commonality score, throughout this dissertation they are called as the semantic analysis themselves. 

This means while entity detection is a very important step in the analysis but the main analysis is 

performed when the proper semantic distances and the final scores using commonality score are 

calculated. The semantic distance was introduced as having various types. In one aspect, a semantic 

distance can be defined based on its source and destination e.g. whether it is between entities and 

entities, entities and topics, or topics and topics. Another aspect in defining the semantic distance was 

the direction which we observed could be upward, downward, strictly upward, or strictly downward. 

Some algorithms were presented on how to calculate each of these types of semantic distances. 

Finally, the commonality score stated that not only the semantic distance is important in calculating 
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semantic relevancy but the number of different paths and how many entities or topics they have in 

common is also another aspect of semantic closeness. The commonality score was defined using a 

generic template equation which, in short, provided an aggregate function over the scores of 

candidate entities divided by their semantic distances to the goal targets. Using the entity detection, 

semantic distance, and commonality score, three basic semantic analysis methods were introduced 

next: entity analysis, topic analysis, and progressive analysis. Entity and topic analysis each examined 

how the analysis would be performed for each type separately and progressive analysis showed how a 

tracking and aging mechanism can be applied to the semantic analysis in general. 

Once the description of semantic analysis methodology was completed, the study provided a 

number of real-world problems and applications which can benefit from the presented methodology. 

In each case the problem definition was explained and its important aspects were discussed. 

Afterwards, a version of semantic analysis algorithm was presented as the potential solution to that 

problem. It should be noted that for these applications, there were many other possible approaches 

available and even the presented potential solutions could be tweaked in many different ways. The 

goal was, however, to show at least one possible solution so the practicality of the methodology is 

demonstrated. 

In order to further prove that the proposed semantic analysis can be implemented in real-world 

problems, the solutions for two of the applications were, in fact, implemented and tested using real-

world datasets. The first application was query topic identification which was developed in three 

stages. First, it was only entity detection and calculation of immediate topics called base topics in 

order to examine the flexibility of the algorithm to noise words using synthesized datasets. The 

second stage used iterative algorithm for finding target topics instead of semantic distance and 

commonality. It used real datasets from KDD CUP 2005 competitions and scored favorably. Finally, 

the last stage used the full semantic analysis algorithm over the same data as the second stage. Many 

parameters of the algorithm were tweaked to study their effects on final results. An optimal system 

was created as the result of studying the parameters which scored highly in identifying new datasets 

from both KDD CUP 2005 and TREC 2007 sources. The second application was the speech 

recognition problem which used the entity detection algorithm to decide between the outputs of 

multiple speech decoder systems to achieve a final transcription of audio data. The experimental 

results showed impressive improvements over baseline methods. 
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5.2 Conclusion 

The methodology presented in this dissertation has been shown to have a number of strong attributes 

to make it a valuable framework for various semantic analysis problems. The choice of a knowledge 

source such as Wikipedia which is an ever-growing up-to-date live knowledgebase makes it possible 

to provide more accurate analysis as more information is being added to the encyclopedia. If the 

implementation of the proposed algorithm uses the DBpedia online sources, there would be no need 

to update the knowledgebase as it will be automatically up-to-date since it receives the data directly 

from DBpedia network. 

The number of different algorithms for semantic analysis provided in this study demonstrates the 

flexibility of the proposed methodology and its framework. The provided methods can be applied to a 

variety of applications. The number of application shown to use the methodology is an evidence of 

the flexibility of the methodology and framework. 

Another attractive notion about the presented framework is the speed of the algorithms in various 

components. The implementation of this framework, specifically in Parla system and topic 

identification, was able to perform in real-time. The reason is that most of the algorithms in this study 

have linear complexity in each step. For instance, the search division of the entity detection algorithm 

has O(N) time complexity where N is the number of the input words. This is done by the full-text 

indexing of the database containing entities which by using hash tables and various indices only 

requires O(1) for each input word to return a list of candidate entities. Graph traversal algorithms 

have also at most O(V) time complexity where V is the number of nodes in either the entity graph, the 

topic graph, or both. The reason for that is the condition that no node should be visited twice and, 

therefore, only a subset of nodes will ever be visited and only once for each. This means, in worst 

case scenario, the complexity is at most linear. 

Finally, the experimental results presented here show the practicality of the methodology. In the 

query topic identification task, a ranking and classification algorithm was presented to find the best 

set of goal topics given user-specified keywords. To demonstrate its efficiency, a query classification 

system using this methodology was implemented. A thorough study of the algorithm was performed, 

focusing on each design decision individually and considering the practical impact of different 

alternatives. It was shown that our system’s classification results compare favorably to those of the 

KDD CUP 2005 competition: it would have ranked 2nd on precision with a performance 10% better 

than the competition mean, and 7th in the competition on F1 also with a performance 10% better than 
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the competition mean. Lastly, two blind tests on different datasets that were not used to develop the 

system were presented to validate the results. The consistency of high performance over a range of 

datasets demonstrates that the algorithms used are based on sound methodology and if applied 

correctly on real-world applications, they can provide valuable solutions. 

In conclusion, the presented framework is shown to be versatile valuable work in semantic analysis 

which can be recreated and used by any researcher as all the resources are publicly available. The 

framework will always be recent as its data source is a live knowledgebase. It was shown to be very 

flexible and match numerous applications. Finally, it was shown to be practical and provide high 

performance results. Therefore, this methodology is proved to be a valuable tool for further semantic 

analysis by researchers in the field. 

5.3 Future Work 

The variety of the applications that can use the presented methodology provides a good platform for 

future research work in this area. There are, however, two important tasks which can immediately 

follow the work presented here. First, the speech recognition application, which was implemented and 

had produced improved results over baseline methods, only used the entity detection algorithm. The 

next step in this application is to add the progressive entity analysis. Since the algorithm is run over a 

number of transcription sets all related to a single large audio file, using progressive entity analysis 

make it possible to track the context. As it happens, same words keep repeating in a conversation and 

tracking the context makes it possible to have a history of found entities and reuse them in following 

transcription sets. 

The second future work to do is the implementation of text prediction algorithm. This application 

again uses a progressive entity analysis algorithm. Any text document can act as the input for this 

application and, therefore, heavy testing of the algorithm is easily possible. It is a good idea to test all 

possible design parameters to find an optimal system for this application and then compare it to the 

other available methods. 

Besides the above tasks, there exists a significant extension to this study which can be taken on in 

future research. As mentioned in challenges sections in previous chapters, there are certain limitations 

to this framework. The main issue is since there are no weights on the edges in the semantic graph, if 

an application needs single candidate entity for the analysis, this framework might not be able to 

provide the most accurate results as it operates mainly on sets of candidate entities. To remedy this 
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limitation, one can continue this work by trying to calculate proper weights for the edges of the graph 

through learning methods or statistical approaches. Once done, the framework algorithms should be 

modified such that they incorporate weights into their traversal tasks. 

Last but not least, the work on topic identification might be of interest to anyone developing query 

classification systems, text classification systems, or most other kinds of classification software. By 

using Wikipedia, a classification system gains the ability to classify queries into a set of almost 

740,000 (and growing) categories covering most of human knowledge and which can easily be 

mapped to a simpler application-specific set of categories when needed, as it was done in this study. 

And while multiple alternatives at every design stage of the query topic identification system were 

considered and tested, it is possible to conceive of further alternatives that could be implemented on 

the same framework and compared to results presented here. Future work can focus on exploring 

these alternatives and further improving the quality of the classification. In that respect, one of the 

first directions to work in will be to integrate an automated corrector into the system, to address the 

problem of unknown words which was the source of 5.9% of the KDD CUP 800 queries that 

remained unclassified with our system. 
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Appendix A 
Category Mappings 

This appendix lists how we mapped the 67 KDD CUP categories to 99 corresponding Wikipedia 

categories in the September 2008 version of the encyclopedia. 

KDD CUP Category Wikipedia Category 
Computers\Hardware Computer hardware 

Computers\Internet & 
Intranet 

Internet 
Computer networks 

Computers\Mobile 
Computing 

Mobile computers 

Computers\Multimedia Multimedia 

Computers\Networks & 
Telecommunication 

Networks 

Telecommunications 

Computers\Security Computer security 

Computers\Software Software 

Computers\Other Computing 

Entertainment\Celebrities Celebrities 

Entertainment\Games & 
Toys 

Games 

Toys 

Entertainment\Humor & 
Fun 

Humor 

Entertainment\Movies Film 

Entertainment\Music Music 

Entertainment\Pictures & 
Photos 

Photographs 

Entertainment\Radio Radio 

Entertainment\TV Television 

Entertainment\Other Entertainment 
Information\Arts & 
Humanities 

Arts 

Humanities 

Information\Companies & 
Industries 

Companies 

Industries 

Information\Science & 
Technology 

Science 

Technology 

Information\Education Education 

Information\Law & 
Politics 

Law 

Politics 

Information\Local & 
Regional  

Regions 

Municipalities 

Local government 
Information\References & 
Libraries 

Reference 

Libraries 

Information\Other Information 

Living\Book & Magazine 
Books 

Magazines 

Living\Car & Garage 
Automobiles 

Garages 

Living\Career & Jobs Employment 
Living\Dating & 
Relationships 

Dating 

Intimate relationships 

Living\Family & Kids 
Family 

Children 

Living\Fashion & Apparel 
Fashion 

Clothing 

Living\Finance & 
Investment 

Finance 

Investment 

Living\Food & Cooking 
Food and drink 

Cooking 

Living\Furnishing & 
Houseware 

Decorative arts 

Furnishings 

Home appliances 

Living\Gifts & 
Collectables 

Giving 

Collecting 

Living\Health & Fitness 
Health 

Exercise 

Living\Landscaping & 
Gardening 

Landscape 

Gardening 

Living\Pets & Animals 
Pets 

Animals 

Living\Real Estate Real estate 

Living\Religion & Belief Religion 
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Belief 

Living\Tools & Hardware 
Tools 

Hardware 
(mechanical) 

Living\Travel & Vacation 
Travel 
Holidays 

Living\Other Personal life 

Online Community\Chat 
& Instant Messaging 

On-line chat 
Instant messaging 

Online 
Community\Forums & 
Groups 

Internet forums 

Online 
Community\Homepages 

Websites 

Online 
Community\People 
Search 

Internet personalities 

Online 
Community\Personal 
Services 

Online social 
networking 

Online Community\Other 
Virtual communities 

Internet culture 

Shopping\Auctions & 
Bids 

Auctions and trading 

Shopping\Stores & 
Products 

Retail 
Product management 

Shopping\Buying Guides 
& Researching 

Consumer behaviour 

Consumer protection 

Shopping\Lease & Rent Renting 

Shopping\Bargains & 
Discounts 

Sales promotion 

Bargaining theory 

Shopping\Other 
Distribution, 
retailing, and 
wholesaling 

Sports\American Football American football 
Sports\Auto Racing Auto racing 

Sports\Baseball Baseball 
Sports\Basketball Basketball 
Sports\Hockey Hockey 

Sports\News & Scores Sports media 

Sports\Schedules & 
Tickets 

Sport events 

Seasons 

Sports\Soccer Football (soccer) 

Sports\Tennis Tennis 

Sports\Olympic Games Olympics 

Sports\Outdoor 
Recreations 

Outdoor recreation 

Sports\Other Sports 
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Journal Papers 

• Milad AlemZadeh, Richard Khoury, and Fakhri Karray, “Query Classification using Wikipedia’s 

Category Graph”, Journal of Emerging Technologies in Web Intelligence - Special Issue on Web 
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