
Methods for Reducing Monitoring

Overhead in Runtime Verification

by

Chun Wah Wallace Wu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Chun Wah Wallace Wu 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Runtime verification is a lightweight technique that serves to complement existing ap-

proaches, such as formal methods and testing, to ensure system correctness. In runtime

verification, monitors are synthesized to check a system at run time against a set of prop-

erties the system is expected to satisfy. Runtime verification may be used to determine

software faults before and after system deployment. The monitor(s) can be synthesized to

notify, steer and/or perform system recovery from detected software faults at run time.

The research and proposed methods presented in this thesis aim to reduce the monitor-

ing overhead of runtime verification in terms of memory and execution time by leveraging

time-triggered techniques for monitoring system events. Traditionally, runtime verification

frameworks employ event-triggered monitors, where the invocation of the monitor occurs

after every system event. Because systems events can be sporadic or bursty in nature,

event-triggered monitoring behaviour is difficult to predict. Time-triggered monitors, on

the other hand, periodically preempt and process system events, making monitoring be-

haviour predictable. However, software system state reconstruction is not guaranteed (i.e.,

missed state changes/events between samples).

The first part of this thesis analyzes three heuristics that efficiently solve the NP-

complete problem of minimizing the amount of memory required to store system state

changes to guarantee accurate state reconstruction. The experimental results demonstrate

that adopting near-optimal algorithms do not greatly change the memory consumption and

execution time of monitored programs; hence, NP-completeness is likely not an obstacle

for time-triggered runtime verification. The second part of this thesis introduces a novel

runtime verification technique called hybrid runtime verification. Hybrid runtime verifica-

tion enables the monitor to toggle between event- and time-triggered modes of operation.

The aim of this approach is to reduce the overall runtime monitoring overhead with re-

spect to execution time. Minimizing the execution time overhead by employing hybrid

runtime verification is not in NP. An integer linear programming heuristic is formulated

to determine near-optimal hybrid monitoring schemes. Experimental results show that

the heuristic typically selects monitoring schemes that are equal to or better than näıvely

selecting exclusively one operation mode for monitoring.

iii

Acknowledgements

I would like extend my greatest appreciation and gratitude to my family. Thank you for

continually supporting my dreams and aspirations, for your words of advice and wisdom,

and for your love. I am truly blessed by God to have such a great and loving family.

Words cannot describe how grateful I am for the love of my life, Noreen Wong, for

being in my life. Thank you for always being there for me throughout all of the joys and

challenges that I experienced throughout my graduate studies. I cannot thank you enough

for your presence, comforting words, and love.

My graduate studies would not have been possible without the great mentorship, guid-

ance, and support of Dr. Sebastian Fischmeister, my supervisor, and Dr. Borzoo Bonakdar-

pour. I sincerely thank you both for the opportunity and privilege of learning and conduct-

ing research with both of you. I would also like to extend my thanks to Dr. Derek Rayside

for providing me an exciting opportunity to collaborate and develop new lab content for

the undergraduate course in E&CE 351 (Compilers) and for his mentorship.

I would like to thank all of the members of the Real-Time Embedded Software Group

for making the past two years on campus memorable. It was a pleasure to work on research

projects with Shay Berkovich, Deepak Kumar, and Samaneh Navabpour. Hany Kashif and

Johnson Thomas, thanks for being such great officemates.

I am also truly grateful for all of my friends’ support. Thank you Amanda Cheung,

Kathryn Cheung, Irina Choi, Jasmine Choi, Nathan Chung, Esther Lee, Heidi Wu, and

Joanna Wu, for many years of incredible and supportive friendship. Yuki Cheung, Ken-

neth Lam, Henry Pang, Alice Tsang, Ronald Wan, Abraham Wong, Lily Wong, Osman

Wong, and Jeffrey Woo, thank you for bringing lots of laughter and priceless memories

throughout my undergraduate and graduate studies. Thank you Pastor Timothy Wai for

your continual prayer, support, and mentorship, in my spiritual walk with God. Thank

you all for everything.

My research and graduate studies were funded by scholarships from Natural Sciences

and Engineering Research Council of Canada (NSERC) and Ontario Student Assistance

Program (OSAP). I greatly appreciate the financial support NSERC and OSAP provided

me over the past two years.

iv

With kind permission of Springer Science and Business Media, Chapters 3 and 4 of

this thesis were adopted from a publication that I co-authored: “Efficient Techniques

for Near-Optimal Instrumentation in Time-Triggered Runtime Verification,” in Runtime

Verification, ser. Lecture Notes in Computer Science, vol. 7186, pp. 208 – 222.

v

Dedication

This thesis is dedicated to my family: Matthew, Wendy, and Joshua Wu, and to the

love of my life, Noreen Wong, for their endless love, care, support, and encouragement

throughout my studies.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Summary of Contributions . 5

1.2 Outline . 5

2 Related Work 7

2.1 Reducing Runtime Verification Overhead 8

2.2 Time-triggered Runtime Verification . 9

3 Preliminaries 12

3.1 Checking System Properties at Run Time 12

3.2 Control-flow Analysis . 13

3.3 Time-triggered Runtime Verification . 14

3.3.1 Transforming Control-flow Graphs 14

3.3.2 Determining the Longest Sampling Period (LSP) 17

3.3.3 Increasing the Longest Sampling Period 18

vii

4 Heuristics for Time-triggered Runtime Monitoring 20

4.1 Introduction . 20

4.2 Optimizing Memory Overhead in Time-triggered Runtime Verification . . . 23

4.2.1 Integer Linear Programming . 23

4.2.2 Integer Linear Programming Model 23

4.3 Heuristics . 26

4.3.1 Heuristic 1: Greedy Heuristic . 29

4.3.2 Heuristic 2: Minimum Vertex Cover Heuristic 32

4.3.3 Heuristic 3: Genetic Algorithm . 36

4.4 Experimental Results . 39

4.4.1 Performance of Heuristics . 40

4.4.2 Analysis of Instrumentation Overhead 42

4.5 Concluding Remarks . 46

5 Hybrid Runtime Monitoring 47

5.1 Introduction . 47

5.2 Hybrid Runtime Verification . 50

5.2.1 Overhead Runtime Costs . 51

5.2.2 Utilizing Integer Linear Programming as a Heuristic 52

5.3 Implementation and Experimental Results 57

5.3.1 Experimental Setup . 57

5.3.2 Experimental Results . 58

5.4 Concluding Remarks . 63

6 Conclusions 64

viii

7 Future Work 65

References 67

ix

List of Tables

4.1 Performance of different optimization techniques. 41

5.1 Monitor cost configurations. 59

x

List of Figures

1.1 Overview of established runtime verification approaches. 3

3.1 A simple C program. 14

3.2 Steps for obtaining optimized instrumentation and longest sampling period. 15

3.3 Illustrating redundant samples in time-triggered runtime verification. . . . 18

4.1 Memory usage vs. sampling period period. 21

4.2 CFG used for illustrating heuristics. 28

4.3 Illustrations of Heuristic 1. 31

4.4 Illustrations of Heuristic 2. 35

4.5 The impact of different instrumentation schemes on memory usage and total

execution time. 43

4.6 The impact of sub-optimal solutions on execution of instructions to build

history and its maximum size. 45

5.1 Comparing different methods of monitoring. 48

5.2 CFG used for illustrating ILP model. 56

5.3 HyRV instrumentation toolchain for C applications. 58

5.4 Monitoring overhead of crc for three monitoring modes under all cost con-

figurations. 60

xi

5.5 Monitoring overhead of insertsort for three monitoring modes under all cost

configurations. 61

5.6 Monitoring overhead of fir for three monitoring modes under all cost config-

urations. 62

xii

Chapter 1

Introduction

Software is ubiquitous in many applications and the versatility of software has promoted a

rapid growth of complex software systems. Verifying software systems’ correctness poses a

significant and important challenge to address. In a relatively recent National Institute of

Standards and Technology (NIST) report, it is estimated that $59.6 billion are lost every

year from software errors [1]. In a more recent article, Charette highlights some incidents

that attribute huge monetary losses due to software failures [2]. For example, Inland

Revenue (from the United Kingdom) experienced a $3.45 billion tax-credit overpayment

that were attributed to software errors in 2004-2005. Software failures are not limited to

monetary consequences. There are millions of lines of code in modern aircrafts and vehicles.

The F-35 Joint Strike Fighter and Boeing’s 787 Dreamliner require the use of 5.7 and 6.5

million lines of code, respectively; premium-class automobiles also require software systems

to that scale and the complexity of such systems are growing extremely fast [3]. Ensuring

software correctness is of utmost importance in these applications because software failures

may endanger the safety of the people operating and using them.

In computing systems, correctness refers to the assertion that the system satisfies its

specification; verification is a way to check for such an assertion [4]. There are tradition-

ally three main verification techniques that are applied in the software domain: theorem

proving, model checking, and software testing. All three types of techniques have strengths

and weaknesses when they are applied to software systems design and development.

Theorem proving generally involves finding a proof from a set of axioms after express-

1

ing the system and its properties in some form of mathematical logic. State-of-the-art

theorem provers can provide some automation, but typically requires a significant amount

of manual effort/interaction to prove the correctness of the system model with respect to

its properties [5, 6]. Theorem proving is able to cope with an infinite search space.

Model checking [7] on the other hand automates the process of proving the satisfiability

of system properties by conducting an exhaustive search on an abstract model that is

representative of the system. This search is computationally expensive; it suffers from the

state-explosion problem [8]. Binary decision diagrams [9], reduced ordered binary decision

diagrams [10] and bounded model checking [11] are some techniques that were developed

and applied to make model checking more efficient. However, these techniques are still

constrained by the state-explosion problem and become intractable for larger models.

Software testing covers a wide range of diverse methods that are generally incomplete

and mainly test for the presence of bugs while verification techniques tests for the ab-

sence of bugs [6]. Software testing does not usually provide very high confidence about

the correctness of a system, as it only checks for the presence of defects under specific

conditions.

Runtime verification [6,12–17] is an emerging lightweight verification technique, where

a monitor dynamically checks a system under inspection at run time with respect to the

system’s specification. Runtime verification complements exhaustive verification methods,

such as model checking and theorem proving, as well as incomplete solutions, such as testing

and debugging. Runtime verification adopts a high degree of rigour like model checking

and theorem proving, but trades off some of the rigour and completeness for practicality

and efficiency that is inherent in most online software testing methods and approaches.

Most techniques in the literature of runtime verification employ monitors that are event-

triggered. In event-triggered runtime verification, the system under scrutiny is modified to

invoke the monitor every time a critical event occurs at run time. A critical event refers

to a change in the program state that may influence the verdict (i.e., the truthfulness) of

one or more properties that the system must/should satisfy. Figure 1.1(a) illustrates how

a system and an event-triggered monitor would interact.

In recent years, there has been an increasing level of interest in exploring time-triggered

approaches for runtime verification [18–22]. In time-triggered runtime verification, the

2

System Monitor

New (critical) event
(change of state)

Steering/Recovery/Control

Invoke monitor

(a) Event-triggered Approach.

System Monitor

New (critical) event
(change of state)

Steering/Recovery/Control

Bu�er event

Preempt system
every SP

Read bu�ered
events

SP - sampling period

(b) Time-triggered Approach.

Figure 1.1: Overview of established runtime verification approaches.

monitor typically preempts the system under scrutiny periodically at run time to evaluate

the properties of interest. Once the monitor is finished checking the set of system properties,

it relinquishes control to the system. The monitoring correctness is a primary concern in

time-triggered runtime verification because the monitor may miss critical events between

two consecutive samples. One approach to tackle this issue is to buffer critical events

into auxiliary memory and have the monitor read the event buffer when it samples the

program [18]; other approaches are discussed in Chapter 2. The behaviour of the system

and the monitor is illustrated in Figure 1.1(b).

Determining the periodicity of the monitor is dependent on the available computational

resources and the maximum tolerable latency allowed for the system to detect and report

any system property violation. The time from which a property violation occurs to the

time the monitor detects the violation is known as the detection latency.

Time-triggered runtime verification is advantageous in certain aspects. First, time-

triggered monitors have predictable behaviour and incur predictable overhead. Secondly,

time-triggered monitors can potentially reduce the amount of incurred runtime monitoring

overhead when the sampling period is increased (or the sampling frequency is decreased).

The deployment of runtime monitors for software systems requires an in-depth under-

standing of the inherent trade-off between execution time and memory overhead. From

the observations made in [18,19], the monitoring overhead with respect to execution time

3

can decrease if the monitor and the system can increase the amount of memory used at

run time (or even after, if offline verification is considered). The reverse also holds; if the

available memory resources decrease, then the monitor will likely incur greater overhead

with respect to execution time.

The work that is presented in this thesis tackles memory overhead and execution time

overhead separately in two different ways. The first part of the thesis (see Chapter 4)

focuses on making time-triggered runtime verification applicable to larger scale systems

by tackling the NP-complete problem of determining the optimal instrumentation scheme

that would yield in the lowest amount of auxiliary memory required to preserve correctness

in monitoring. The second part of the thesis (see Chapter 5) presents a novel approach,

known as hybrid runtime verification, that aims to minimize the amount of time spent in

executing verification procedures at run time by combining the advantages of both event-

and time-triggered monitoring; hybrid runtime verification is particularly effective when

the system encounters both sporadic and bursty critical events at run time.

The approach that one should take highly depends on the nature of the system, the

available resources, and the set of properties it should satisfy. For hard real-time systems,

predictable monitoring is very important. This is because bursty critical events may cause

extremely high monitoring overhead and make the monitor’s behaviour hard to predict. As

a result, the monitor may cause the system to violate a timing constraint. This would be

difficult to debug if the unmonitored system initially satisfies the detected timing violation.

Thus, hard-to-predict monitoring behaviour is undesirable. Another benefit of having

predictable monitoring for such systems is that the monitors activity can be included

in offline schedule computation and verification; this enables designers to check before

deployment that timing guarantees will likely not be violated from the added checking

at run time. For systems that do not have hard timing deadlines and do not impose

tight memory constraints, increasing the efficiency in executing the monitored system with

respect to time is beneficial.

4

1.1 Summary of Contributions

The main contributions that are presented in thesis are twofold:

1. Minimizing the number of locations where events must be buffered in time-triggered

runtime verification given some target sampling period is NP-complete [18]. Solving

for the optimal solution is intractable for programs with a large number of critical

events, even with state-of-the-art solvers. The first part of this thesis introduces

three polynomial-time heuristics that aim to scale the applicability of time-triggered

runtime verification and shows that the heuristics provide reasonable sub-optimal

instrumentation schemes. This work resulted in a publication to the International

Conference on Runtime Verification in 2011 [19].

2. Time-triggered runtime verification may reduce the monitoring overhead as the sam-

pling period is increased; however, the monitor can sometimes sample without doing

any meaningful work. The second part of this thesis introduces hybrid runtime veri-

fication, which aims to exploit the benefits of both event- and time-triggered runtime

monitoring to reduce the overall monitoring overhead with respect to execution time.

This involves solving an optimization problem that is already difficult to solve for a

linear execution trace. To cope with the complexity of the optimization problem, a

heuristic is presented that reasonably models the optimization problem. The experi-

mental results demonstrate that the heuristic generally produces monitoring schemes

that are equal or better than the most efficient way of monitoring a program using

an event- or time-triggered monitor.

1.2 Outline

The rest of the thesis is organized as follows. Chapter 2 presents related work in the

literature on methods of improving the efficiency and feasibility of runtime verification.

Chapter 3 formally defines and describes all common terminology and concepts that are

used in Chapters 4 and 5. Then, Chapter 4 presents three polynomial- time and space

heuristics that trade-off optimality for scalability of time-triggered runtime verification.

5

Some of the secondary observations made in Chapter 4 motivate the work presented in

Chapter 5. Chapter 5 explores a novel approach, known as hybrid runtime verification,

which attempts to leverage the benefits of both event- and time-triggered monitoring tech-

niques to reduce the runtime monitoring overhead. Chapter 6 summarizes the key findings

of the work presented in Chapters 4 and 5. Finally, Chapter 7 describes some future

research directions and ideas that may extend the work presented in this thesis.

6

Chapter 2

Related Work

Existing work and literature on runtime verification and monitoring is presented and dis-

cussed in this chapter. Most of the work cited in this chapter pertain to methods and

techniques that are used to make monitors for runtime verification more efficient.

In classic runtime verification [13, 23, 24], a system is composed with an external ob-

server, called the monitor. Monitors in runtime verification are typically automatically

synthesized from one or more properties that the system should satisfy [14]; the monitor

routinely checks the system against these properties and is responsible for detecting prop-

erty violations at run time. Most work in the literature of runtime verification adopts and

uses event-triggered monitors [25], where every critical change in the state of the system

causes a direct invocation of the monitor for analysis.

Runtime verification has mostly been studied in the context of linear temporal logic

(LTL) properties [17, 24, 26–28] and, in particular, safety properties [29, 30]. Other lan-

guages and frameworks have also been developed for facilitating specification of temporal

properties [31–33]. [34] considered runtime verification of ω-languages. In [35], the authors

address runtime verification of safety-progress [36,37] properties.

Organization. The rest of this chapter describes some recently published work that

address the challenges in making runtime verification applicable and feasible to more soft-

ware systems. Section 2.1 presents recent literature that address the issue of reducing

the overhead cost of monitoring in runtime verification. Section 2.2 focuses on surveying

literature where authors employ time-triggered techniques for runtime verification.

7

2.1 Reducing Runtime Verification Overhead

Dwyer et al. [38] aim to dynamically adjust the runtime monitoring scheme by incorpo-

rating the semantics of the system properties of interest and the program state to reduce

the number of monitor invocations at run time. The decision to skip or execute instru-

mentation code is done at run time. Their framework, known as Adaptive Online Program

Analysis (AOPA), guarantees that the monitor will correctly detect property violations and

empirically observe that the monitoring overhead is reduced because of the optimizations

performed on both monitor synthesis and program instrumentation. AOPA runs within

Java; the dynamic behaviour of the monitored system is controlled within a Java virtual

machine. The authors choose to have the monitors verify the properties online to further

reduce the overhead costs of post-processing potentially very large buffers offline.

Barringer et al. [39] demonstrate that a large set of logics used to express safety and

liveliness system properties may be expressed using their unifying logic known as Eagle.

They further show that the monitors that are synthesized from properties expressed in

Eagle logic do not require storing the execution trace, which reduces monitoring overhead

with respect to memory.

Bodden et al. [40] describes an approach that reduces the monitoring overhead by

statically analyzing the program under scrutiny along with its corresponding tracematches

to eliminate critical events that need not be monitored. A tracematch defines a runtime

monitor using a regular expression over an alphabet of critical events in the program.

The monitoring technique that they base their method on is aspect-oriented programming

(AspectJ). The potential reduction of tracematches occurs in three stages, so that the user

has control over the precision of the reduction; each subsequent stage in their procedure

increases in computational complexity.

Bodden et al. [41] present two partitioning schemes that alleviate runtime monitoring

overhead of widely used and deployed large scale systems. The partitioning schemes dis-

tribute the monitoring workload across all of the deployed systems; each instance either

will monitor regions of the program or will temporally toggle the monitor so that the over-

head is not noticeable (approx. 5% overhead). In this work, the schemes that the authors

present ensures that no false positives are reported (but the monitors may report false

negatives), thereby making the debugging information easier to use.

8

Huang et al. [42] introduced a rigorous non-linear feedback controller for the monitor

and the monitored program so that the monitor does not cause overload situations. Over-

load situations are caused by bursts of critical instructions that are monitored over a short

period of time. Software monitoring with controllable overhead (SMCO) strives to maintain

the monitoring overhead below the design threshold (or reference). The feedback controller

controls whether the program will be monitored or not. When the monitor approaches or

exceeds the target overhead, the monitor is effectively switched off by executing the orig-

inal of the program. When the monitoring overhead is less than the target overhead, the

monitor is invoked by the program executing the instrumented version.

The authors aim to reduce the overhead (with respect to time) incurred from toggling

on and off the monitor by making a copy of the the original source code and instrumenting

the copy. The monitored program inserts guards at the beginning of function calls to

determine whether the un-instrumented or instrumented copy of the program will execute.

While SMCO effectively controls the monitoring overhead, it does not guarantee that

all properties are correctly monitored because in overload situations, the monitor is turned

off and does not process any critical events that are generated from the program being

scrutinized. Since the monitoring accuracy is not 100%, this approach is unsuitable for

applications that require all violations to be detected. Furthermore, the authors assume

‘infinite’ application memory space and double the size of the source code of the program

being monitored. In memory-constrained systems, this approach may be infeasible.

Zhu et al. [43] present a hard real-time runtime monitoring solution. They bound the

latency of error detection by performing schedulability analysis on the monitor’s execution

time requirements (i.e. monitoring budget) and its overhead with the real-time schedule of

the system that is being scrutinized. Although real-time tasks are assumed to be periodic,

the release of critical events (also known as PVEs in [43]) are aperiodic. The main goal of

this work is on time-aware instrumentation.

2.2 Time-triggered Runtime Verification

Pike et al. [21] proposed an embedded domain-specific language in Haskell, known as

Copilot, that compiles into small constant-time and constant-space C monitors that may

9

be used in time-sensitive software systems (i.e. hard real-time). The monitors that are

generated using Copilot periodically sample the program state to verify system properties.

The authors of [21] do not consider missing state changes that result from sampling because

within a hard real-time context, the monitor and program are assumed to share a global

sense of time and a static periodic schedule. The monitors synthesized using Copilot are

conservative in that they will report false positives (of system property violations), true

positives and true negatives, but not false negatives.

While the work in [21] is suitable specifically for hard real-time applications, it is difficult

to apply this work to soft-RT or non-RT applications. The rigour and predictability of real-

time systems allowed the authors to synthesize correctly functioning monitors. However,

the periodicity and predictability of real-time systems does not hold for other types of

systems, so the monitor’s correctness is not guaranteed in other applications. Furthermore,

Copilot synthesized monitors are only capable of monitoring global variables, which may

encourage poorly encapsulated (and difficult to manage) code. This may cause issues in

software maintainability for large-scale software systems.

Stoller et al. [22] present a technique called runtime verification with state estimation

(RVSE), which aims to cope with the pitfalls of time-triggered runtime verification with

respect to program correctness by utilizing a hidden Markov model of the monitored pro-

gram to estimate missing program states incurred from sampling-induced gaps. The state

estimation of the hidden Markov model determines the probability of a state sequence

given an observed sequence, which can then be used to infer the probability that a system

property is satisfied by an execution of the program.

The monitor’s correctness is not guaranteed because this method utilizes state esti-

mation. This technique may be useful in determining potential system property violation

(useful bug reporting), but cannot be deployed in systems that require the monitor to

report all violations confidently.

Bartocci et al. [44] extends the work of [22] and [42] by combining the two approaches

together to form a more complete monitoring framework with controllable overhead. Specif-

ically, the authors of [44] leverage RVSE to infer the likelihood of property satisfaction/vi-

olation whenever the monitor is temporarily disabled for overhead control purposes. They

also extend the theory behind RVSE and introduce techniques that can predict the critical-

ity level of a system property, which is a function of the expected distance to the violation

10

of the property. The criticality levels of system properties of interest can then determine

the allocation of the available monitoring resources. While [44] improves the usability and

usefulness of [42], this runtime verification framework does not guarantee correct state

reconstruction.

Another approach to time-triggered runtime verification was presented by Bonakdar-

pour et al. [18], where the correctness of the monitor and the verification process is achieved

by determining the longest possible sampling period of the monitor (without instrumen-

tation). The authors consider buffering critical events into auxiliary memory as a viable

way to increase the sampling period while preserving correct program state reconstruc-

tion. Extending the longest sampling period involves solving an NP-complete optimization

problem that aims at minimizing the size of auxiliary memory required for the monitor to

correctly reconstruct all program state sequences at run time. The majority of the work

presented in the remaining chapters of this thesis extends this particular approach.

Navabpour et al. [20] propose methods of time-triggered runtime verification that utilize

symbolic execution [45] to predict the set of all feasible paths of the system prior to run

time. From the set of predicted paths, the longest sampling period is computed. At run

time, the monitor will adjust its sampling period based on the path that is taken by the

program. The authors observe that some execution paths contain unevenly distributed

critical events; to further refine this monitoring technique, they consider determining code

regions within each path and assign the monitor to vary the sampling period depending on

the code region. This path-aware approach for time-triggered runtime verification aims to

reduce the amount of runtime monitoring overhead incurred from sampling by enabling the

monitor to adapt to local sampling periods rather than a global sampling period. Global

sampling periods do not efficiently use the available monitoring resources.

11

Chapter 3

Preliminaries

In this chapter, the common terms and concepts used throughout the subsequent chapters

are defined and explained. Section 3.1 introduces terms and symbols that are used in the

definitions presented in the rest of the chapter. Section 3.2 explains some basic concepts in

control-flow analysis that is required for determining correct monitoring behaviour in time-

triggered runtime verification. Section 3.3 formally describes how control-flow analysis is

used to determine a ‘safe’ sampling period for runtime verification and how the sampling

period can be effectively increased to reduce the monitoring activity.

3.1 Checking System Properties at Run Time

Runtime verification consists of a monitor and a program/system under inspection. The

monitor is typically synthesized from one or more properties that the system should satisfy

and runs in parallel with the system at run time. The program invokes the monitor

whenever it executes an event that may change the logical result of one or more properties

in event-triggered runtime verification. In time-triggered runtime verification, the monitor

interrupts the program execution at regular time intervals to observe the state(s) of the

program and check the set of properties the system is expected to satisfy.

The state of the program is determined by evaluating the value of a set of variables

being monitored. Formally, let P be a program and Π be a logical property (e.g., in ltl),

12

where P is expected to satisfy Π. Let VΠ denote the set of variables that participate in Π.

Let a critical event be a change of any variable in VΠ.

In event-triggered runtime verification, the instrumented version of P will call/invoke

the monitor to evaluate Π whenever P encounters a critical event. Invoking the monitor ev-

ery time that some variable in VΠ changes guarantees correct program state reconstruction

at run time.

In time-triggered runtime verification, a monitor reads the value of variables in VΠ at

a fixed sampling frequency and evaluates Π. Accurate program state reconstruction of P

between two consecutive samples is the main challenge in using this mechanism; e.g., if

more than one critical event occurs between two consecutive samples, then the monitor

may fail to detect violations of Π. The monitor must sample at a ‘safe’ rate to facilitate

correct program state reconstruction of P , typically determined by applying control-flow

analysis [18–20].

3.2 Control-flow Analysis

In control-flow analysis, control-flow graphs are used to represent the program P . Defini-

tion 1 formally defines what a control-flow is and what it represents:

Definition 1 The control-flow graph (CFG) of a program P is a weighted directed simple

graph CFGP = 〈V, v0, A, w〉, where:

• V : is a set of vertices, each representing a basic block of P .

• v0: is the initial vertex with in-degree 0, which represents the initial basic block of P .

• A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A if and only if the

execution of basic block u immediately leads to the execution of basic block v.

• w: is a function w : A → N, which defines a weight for each arc in A. The weight

of an arc represents the best-case execution time (BCET) of the source basic block.

The best-case execution times are expressed in terms of the number of clock cycles

required to execute the basic blocks.

13

1 scan f (”%d” , &a) ;

2 i f (a % 2 == 0) {
3 p r i n t f (”%d i s even” , a) ;

4 } e l s e {
5 b = a / 2;

6 c = a / 2 + 1;

7 p r i n t f (”%d i s odd” , a) ;

8 }
9 d = b + c;

10 end program

Figure 3.1: A simple C program.

A basic block in control-flow analysis represents a linear sequence of instructions in a

program P without any jumps or jump targets (i.e., goto statements in C). In other words,

only the last instruction in a basic block can be a branching statement. A critical basic

block is a basic block that contains one or more critical events/instructions.

Control-flow graphs are used in time-triggered runtime verification to determine the

maximum sampling period that the monitor can operate with while preserving correct

program state reconstruction for checking the set of system properties. The next subsection

describes the operations and procedures used to determine the sampling period.

Consider the C program in Figure 3.1. Figure 3.2(a) shows the resulting control-flow

graph of the C program. The arc weights in the control-flow graph are computed based on

the assumption that the BCET of each line of code is one time unit. Vertices of the graph

in Figure 3.2(a) list the corresponding line numbers of the C program in Figure 3.1.

3.3 Time-triggered Runtime Verification

3.3.1 Transforming Control-flow Graphs

The control-flow graph of P must go through several transformations to identify the max-

imum possible period that a monitor may sample P with while guaranteeing accurate

program state reconstruction.

Let CFGP = 〈V, v0, A, w〉 be a control-flow graph represent to the program P . The first

procedure to perform on CFGP is to determine the critical vertices. A critical vertex is a

14

a
1,2

b
3

c
5-7

d
9

e
10

2 2

1 3

1

(a) CFG (Section 3.2)

a

b
c1

5

c2

6-7

d
9

e

2 2

1

1

2

1

(b) Step 1

(Section 3.3.1)

a

c1

5

c2

6-7

d
9

e

2

2

2

1

LSP = 1

(c) Step 2

(Sections 3.3.1

and 3.3.2)

a

c1

5

d
9

e

LSP = 3

2

2

1

3

(d) Step 3

(Section 3.3.3)

Figure 3.2: Steps for obtaining optimized instrumentation and longest sampling period.

vertex v ∈ V that represents a critical basic block (i.e., the basic block contains instructions

that change one or more variables in VΠ). For a critical basic block/vertex that contain

more than one critical instruction, the vertex must be split into multiple vertices, where

each vertex represents a critical basic block with exactly one critical event/instruction.

Revisiting the program shown in Figure 3.1, if variables b, c, and d are in VΠ, then lines

5, 6 and 9 are critical instructions. Since instructions in lines 5 and 6 are critical and they

both reside in basic block c, c will be split into c1 and c2 as shown in Figure 3.2(b); the

highlighted vertices in the figure denote the critical basic blocks.

After ensuring that each critical vertices in the control-flow graph contain exactly one

critical instruction, the graph is transformed into a critical control-flow graph. A critical

control-flow graph has the following characteristics:

• The initial vertex is non-critical.

• The graph may possible contain a non-critical vertex with out-degree zero (i.e., if the

program terminates).

15

• All other vertices in the graph are critical vertices. Figure 3.2(c) shows the corre-

sponding critical control-flow graph of Figure 3.2(b).

The function T (CFG , v) is defined to facilitate the transformation of a control-flow

graph into a critical control-flow graph. The inputs of T are the current control-flow

graph, CFG , and a non-critical vertex v ∈ V that should be removed from CFG , where

V is the set of vertices in CFG . T (CFG , v) is only applicable when v ∈ V \{v0} and the

out-degree of v is positive. The output of T (CFG , v) is a modified control-flow graph,

CFG ′ = 〈V ′, v0, A′, w′〉, and is obtained by the following ordered steps:

1. Let A′′ be the set A∪ {(u1, u2)|(u1, v), (v, u2) ∈ A}. Observe that if an arc (u1, u2) ∈
A, then A′′ will contain parallel arcs (such arcs can be distinguished by a simple

indexing or renaming scheme). Parallel arcs are eliminated in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =

w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

(3.1)

3. If there exist parallel arcs from vertex u1 to u2, only include the arc with minimum

weight in A′′.

4. Finally, the set of arcs and vertices are updated:

A′ = A′′\ {(u1, v), (v, u2) | u1, u2 ∈ V } (3.2)

V ′ = V \{v} (3.3)

Special Case: If u and v are two non-critical vertices and (u, v), (v, u) ∈ A, then

removing one of the vertices, e.g., u, results in the self-loop (v, v). This self-loop may

safely be removed. A loop that does not contain critical instructions does not affect the

sampling period.

Applying T (CFG , v) on all non-critical vertices V \{v0} with positive out-degrees in

CFGP results in the critical control-flow graph of P . For the example program in Fig-

ure 3.1, the corresponding critical control-flow graph obtained by first ensuring that all

critical vertices contain exactly one critical instruction followed by applying the transform

T (CFG , v) is shown in Figure 3.2(c).

16

3.3.2 Determining the Longest Sampling Period (LSP)

The longest sampling period (LSP) is the maximum sampling period the monitor can

sample with and preserve correct program state reconstruction. In other words, the longest

sampling period is the minimum timespan between two successive changes of any two

variables in VΠ (i.e., the minimum distance between all pairs of critical vertices). The

longest sampling period may be computed using either the control-flow graph or critical

control-flow graph of a program P . Definition 2 formally defines the longest sampling

period using both types of control-flow graphs.

Definition 2 Let CFGP = 〈V, v0, A, w〉 be the control-flow graph of a program P such

that each critical vertex contains exactly one critical event/instruction. Let Vc ⊆ V be the

set of vertices that correspond to critical basic blocks of CFGP ; and Πc be the set of paths

〈vh → vh+1 → · · · → vk−1 → vk〉 in CFG such that vh, vk ∈ Vc and vh+1, . . . , vk−1 ∈ V \Vc.
The longest sampling period (LSP) for CFGP is

LSPCFGP
= min

π∈Πc


∑

(vi,vj)∈A
vi,vj∈π

w(vi, vj)

 (3.4)

Alternatively, apply the transformation function T (CFG , v) to CFGP on the applicable

non-critical vertices to create the critical control-flow graph of P , CFG ′P = 〈V, v0, A, w〉.
Again, let Vc ⊆ V be the set of critical vertices in CFG ′P . The longest sampling period

(LSP) for CFG ′P is

LSPCFG′P
= min{w(v1, v2)|(v1, v2) ∈ A ∧ v1 ∈ Vc} (3.5)

Recall that the critical control-flow graph of the program in Figure 3.1 is shown in

Figure 3.2(c). The arc weights w(c1, c2) = 1 and w(c2, d) = 2 are the possible values of the

longest sampling period for this program. Therefore, by Definition 2, the longest sampling

period for the program is 1. In other words, if the monitor samples this program with a

periodicity of 1, all potential property violations can be detected.

17

SP

time1 ni j

Figure 3.3: Illustrating redundant samples in time-triggered runtime verification.

3.3.3 Increasing the Longest Sampling Period

While sampling at the longest sampling period computed from the critical control-flow

graph guarantees correct program state reconstruction, it may impose a significant amount

of monitoring overhead. Consider the execution trace shown in Figure 3.3, where the critical

events are marked on the timeline as circles. Assume that the timespan between events i

and j ultimately determines the longest sampling period. The monitor must sample with

this sampling period (or smaller) to preserve correct program state reconstruction. To

minimize the monitoring overhead, the monitor should sample with the longest sampling

period (i.e., to minimize total number of samples at run time). Figure 3.3 illustrates when

the monitor would sample the program with the longest sampling periodThe dotted ovals

around some of the arrows (i.e. samples taken by the monitor) are samples where the

monitor does not do any meaningful work because no critical events occurred during those

sampling periods. Such samples are called redundant samples.

To reduce the number of redundant samples, the sampling period must be increased. To

preserve the correctness in monitoring and program state reconstruction while increasing

the sampling period, another graph transformation function is defined. This function

is known as the instrumenting transformation. Let IT (CFG , v) be the instrumenting

transform function. This function may be applied to critical vertices in the critical control-

flow graph, CFG ′P . IT (CFG , v) consists of the following ordered steps:

1. Let (u, v) ∈ A, where v is a critical vertex. Apply transformation T (CFG ′P , v).

2. Append an instruction i′ : a′ → a to the sequence of instructions corresponding to

basic block u, where a′ is an auxiliary memory location. The instructions of basic

block u is now instu = instu〈i, i′〉.

18

Note that adding the extra instruction i′ does not affect the calculation of the sampling

period. This is because adding instrumentation only increases the best case execution time

of a basic block. By maintaining the calculated sampling period, no critical instruction is

overlooked.

Unlike non-critical vertices, the issue of loops involving critical vertices need to be

handled differently. Suppose that u and v are critical vertices and (u, v), (v, u) ∈ A.

Consider removing u. This results in a self-loop (v, v), where w(v, v) = w(u, v) + w(v, u).

The loop iterates an unknown number of times at run time, so it is difficult to determine

the upper bound on the size of auxiliary memory required to collapse vertex v. To ensure

correctness, the transformation IT is forbidden for critical vertices that have self-loops.

Figure 3.2(d) illustrates this instrumenting transformation on critical vertex c2. Apply-

ing T (CFG , v) with v = c2, the resulting graph returned removes c2 and an arc is added

directly between vertices c1 and d, with the sum of weights of arcs (c1, c2) and (c2, d) in

the previous graph (see Figure 3.2(c)). The second step of the transformation inserts an

instruction to save the critical event that is in c2, thereby effectively increasing the longest

sampling period to 3.

The maximum violation detection latency (i.e., the time elapsed between the occurrence

of a property violation and the detection of the violation) of Π, the availability of auxiliary

memory and other system constraints limit the number of times IT (CFG , v) can be applied

to increase the longest sampling period.

19

Chapter 4

Heuristics for Time-triggered

Runtime Monitoring

4.1 Introduction

In the literature, deploying monitors for runtime verification involves instrumenting the

program under inspection, so that upon occurrence of events (e.g., change in a variable’s

value) that may change the truthfulness of a property, the monitor is called to (re-)evaluate

the property; this method is known as event-triggered runtime verification, because each

change prompts a re-evaluation. Event-triggered runtime verification suffers from two

drawbacks: (1) unpredictable overhead, and (2) possible bursts of events at run time. These

defects can lead to undesirable transient overload situations in time-sensitive systems such

as real-time embedded safety-critical systems. To address these issues, Bonakdarpour et

al. introduced a notion of time-triggered runtime verification [18], where a monitor runs

in parallel with the program and samples the program state periodically to evaluate a set

of system properties.

The main challenge in time-triggered runtime verification is to guarantee accurate pro-

gram state reconstruction when the monitor samples the program. [18] introduced an op-

timization problem where the objective is to find the minimum number of critical events

that need to be buffered for a given sampling period. Consequently, the time-triggered

20

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

1 20 50 70 100

 9.4

 9.5

 9.6

 9.7

 9.8

Ex
ec

ut
io

n
Ti

m
e

[S
ec

]

Vi
rtu

al
 M

em
or

y
U

sa
ge

 [M
B]

Sampling Period [LSP]

Execution Time
Memory Consumption

Figure 4.1: Memory usage vs. sampling period [18].

monitor can successfully reconstruct the state of the program between two successive sam-

ples using the buffering scheme returned by solving the optimization problem. [18] proved

that this optimization problem is NP-complete and proposed a transformation of this prob-

lem to an instance of the integer linear programming (ILP) problem, which is described

in Section 4.2. Transforming this problem enables the capability of employing powerful

ILP-solvers to identify the minimum buffer size and instrumentation instructions for state

reconstruction. It is possible to solve the corresponding ILP model for some applications,

but for larger applications, the complexity of the problem poses a serious stumbling block.

The intractability of the optimization problem prompted an investigation of applying

efficient (i.e., polynomial-time) heuristics to identify near-optimal solutions for the opti-

mization problem. In [18], the authors observed that the impact of increasing the monitor’s

sampling period significantly reduced the overall execution time of the monitored program

with a very small (almost negligible) increase in runtime memory usage of the monitored

program. Figure 4.1, taken from [18], shows the total execution time and memory usage of

blowfish, a benchmark program from MiBench [46], for target sampling periods of 1, 20, 50,

70, and 100 times the LSP . When the target sampling period is increased to 100× LSP ,

the monitored program’s memory usage only increased by 4%. Other experimental data

21

in [18] show similar patterns in the results. This observation suggests that nearly optimal

solutions to the optimization problem are likely sufficiently effective.

With this motivation, three polynomial-time heuristics were developed to find near-

optimal solutions to the optimization problem defined in [18]. All three heuristics are

over-approximations and, hence, sound (they do not cause overlooking of events to be

monitored). The first heuristic is a greedy algorithm that aims at instrumenting vari-

ables that participate in many execution branches. The second heuristic is based on a

2-approximation algorithm for solving the minimum vertex cover problem. Intuitively, this

heuristic instruments variables that are likely to cover all cases where variable updates

occur within time intervals less than the target sampling period. The third heuristic is a

genetic algorithm, an evolutionary heuristic where the evolution of the population aims to

minimize the number of variables that need to be instrumented and buffered.

The collected experimental data show that these three heuristics are significantly faster

than the ILP-based solution described in [18]. More importantly, the solutions returned

by all three algorithms lead to a negligible increase in instrumentation overhead and total

memory usage at run time as well as negligible increase in the total execution time of the

monitored program. Also, the experimental data show that extra instrumentation instruc-

tions are evenly distributed between samples. Moreover, the genetic algorithm generally

produces instrumentation schemes closest to the optimal solution as compared to the other

heuristics. The experimental results empirically suggest that the NP-completeness of the

optimization problem is not an obstacle when applying time-triggered runtime verification

in practice.

Organization. The rest of this chapter is organized as follows. Section 4.2 summarizes

the integer linear programming model used by Bonakdarpour et al. in [18]. Section 4.3

describes and illustrates the three heuristics, which include the greedy and minimum vertex-

cover heuristics, as well as the genetic algorithm. Experimental results are presented and

analyzed in Section 4.4. Section 4.5 finishes the chapter with some concluding remarks.

22

4.2 Optimizing Memory Overhead in Time-triggered

Runtime Verification

Given a critical control-flow graph, the goal of [18] is to optimize two factors through a

set of IT (CFG , v) transformations: (1) minimizing auxiliary memory, and (2) maximizing

sampling period. Bonakdarpour et al. showed that this optimization problem is NP-

complete [18]. The remainder of this section is organized as follows. Section 4.2.1 briefly

states the integer linear programming problem in its general form. After that, Section 4.2.2

describes the integer linear programming model used by the authors in [18] to solve the

optimization problem. Chapter 4 extends this work by exploring more efficient algorithms

to compute near-optimal solutions for this problem.

4.2.1 Integer Linear Programming

The integer linear programming (ILP) problem is of the form:
Minimize c.z

Subject to A.z ≥ b

(4.1)

where A (a rational m × n matrix), c (a rational n-vector) and b (a rational m-vector)

are given, and z is an n-vector of integers to be determined. In other words, solving this

problem involves finding the minimum of a linear function over a feasible set defined by a

finite number of linear constraints. It can be shown that a problem with linear equalities

and inequalities can always be put in the above form, implying that this formulation is

more general than it might look.

4.2.2 Integer Linear Programming Model

Let CFG ′P = 〈V, v0, A, w〉 be the critical control-flow graph of a program P . In the ILP

mapping of the optimization problem, the following sets of integer variables are defined:

23

• x = {xv|v ∈ V }, where xv is a binary integer variable. xv ∈ {0, 1}. If xv = 1, then

v is removed from V and the critical event in the basic block corresponding to v

is buffered as history in auxiliary memory. If xv = 0, then v remains in V and no

instrumentation is required to save the critical event in the basic block corresponding

to v in auxiliary memory.

• a = {av|v ∈ V }, where av are integer variables that represent the weight of arcs

originating from vertex v.

• y = {yv, y′v|v ∈ V } are choice variables, where yv and y′v are integer variables. The

use of choice variables are described later.

4.2.2.1 Objective Function

The objective function of this ILP model is:

min
∑
v∈V

xv (4.2)

Minimizing Equation 4.2 will minimize the set of vertices removed from CFG ′P . The set of

vertices removed indicate the critical events in the program P that must be instrumented

to save the event into auxiliary memory to increase the effective longest sampling period

while preserving the correctness of program state reconstruction.

4.2.2.2 Initial Basic Block Constraints

The initial basic block has several unique constraints. The vertex v0 corresponds to the

initial basic block in the program P . The following constraints are imposed on v0.

xv0 = 0 (4.3)

av0 = w(v0) (4.4)

These two constraints ensure that the initial basic block is never included in the set of re-

moved (i.e., instrumented) vertices because the monitor should sample the at the beginning

of the program to extract the initial values of the variables in VΠ.

24

4.2.2.3 Constraints on Arc Weights and Internal Vertices

After performing the necessary instrumenting transformations (i.e., IT (CFG , v)) on CFG ′P ,

the effective longest sampling period should be equal or larger that the target sampling

period that the user specifies. Let SP be the target longest sampling period. Then for

every arc (u, v) ∈ A,

au + SP · xv ≥ SP (4.5)

In other words, the solution should ensure that all arc weights become at least SP . If

any instance of this constraint cannot be met, then no solution exists such that P can be

sampled at SP while preserving correctness in program state reconstruction.

Whenever a vertex is removed by applying the transformation IT (CFG , v), the arc

weights will change. The arc weight of vertex v, av, is subject to two different cases:

Case 1 If xv = 0 then av = w(v)

Case 2 If xv = 1 then av = w(v) + w(u), where (u, v) ∈ A. Even though vertex v is re-

moved upon applying IT (CFG , v), av is used to retain the value of the newly created

arc for simplicity. Also, outgoing arcs from u automatically satisfy Equation 4.5.

To enforce mutual exclusivity of these two cases in the model and correct arc weights,

the set of choice variables, y, are used. The choice variables in this model exhibit the

following properties:

Property 1: yv and y′v are such that one of them is zero and the other is au. This property

enforces mutual exclusivity.

Property 2: If xv = 1, then yv = au and y′v = 0. If xv = 0, then yv = 0 and y′v = au.

A special data structure, called Special Ordered Set Type 1 (sos1(. . .)) [47], is used to

enforce the first property. This data structure ensures that at most one variable can take

on a non-zero value. The constraints of the two properties may be expressed as:

yv + y′v = au (4.6)

sos1(yv, y
′
v) (4.7)

1 ≤ xv + y′v ≤ au (4.8)

25

The following constraints implement Cases 1 and 2, respectively.

w(v) + au − y′v = av (4.9)

yv + w(v) = av (4.10)

These five constraints are duplicated for each incoming arc to vertex v. Since the depth of

nested conditional statements is not normally high, it is unlikely that models of programs

would cause an explosion in the number of a-variables in the model.

4.2.2.4 Loop Constraint

To ensure that self-loops are not removed, one more constraint is added to the ILP model.

For each cycle v1 → v2 → · · · → vn → v1, at most n − 1 vertices can be removed using

IT (CFG , v):
n∑
i=1

xvi ≤ n− 1 (4.11)

During the construction of the (critical) control-flow graph, cycles are already detected, so

there is no need to explore the graph again to identify them.

4.3 Heuristics

In order to tackle the intractability of the optimization problem for larger software systems,

[18] proposed a mapping of the problem to an instance of ILP. The ILP model enabled

the authors to utilize state-of-the-art ILP-solvers to solve the models for relatively small

benchmark programs. Some additional experiments were conducted on programs from the

same benchmark using this ILP mapping. The results are tabulated in Table 4.1. The

ILP solver’s performance quickly degrades as the size of the critical control-flow graph

increases.

With the observation described in Section 4.1 that trading off small amounts of mem-

ory can significantly increase the effective longest sampling period, three heuristics were

explored. Each heuristic is described in the remainder of this section. All three heuristics

take a control-flow graph G and a desired sampling period SP as input and return a set

26

Subroutine 4.1 PruneCFG(G,SP)

1: for v ∈ CFG .V do

2: if (w(u, v) > SP ∀(u, v) ∈ CFG .A) ∧ (w(v, u) > SP ∀(v, u) ∈ G.A) then

3: G = CollapseNode(G,v)

4: end if

5: end for

6: return G

U of vertices to be deleted as prescribed by the transformation IT (CFG , v) defined in

Section 3.3.3. This set identifies the location where additional instructions should be in-

terleaved in the program under examination to buffer critical events for the time-triggered

monitor to process upon the next sample it takes.

In the remainder of this section, the control-flow graph shown in Figure 4.2(a) will be

used to illustrate how the various heuristics work. In the greedy and minimum vertex

covered based heuristics, both of the heuristics initially go through a procedure referred to

as pruning the input control-flow graph. Pruning a control-flow graph involves removing

all vertices whose weights of all its incoming and outgoing arcs are greater than or equal

to SP by applying the transformation T (CFG , v) defined in Section 3.3.1. In the two

heuristics that prune the input control-flow graph, such vertices may be safely ignored

because the longest sampling period is unaffected by these vertices. The procedure to

prune a control-flow graph is shown in Subroutine 4.1. Subroutine 4.1 calls Subroutine 4.2

to ‘collapse’ (or remove) the selected node from the current control-flow graph. Note

that Subroutine 4.2 is equivalent to the function T (CFG , v). For the example shown in

Figure 4.2(a), Figure 4.2(b) shows the resulting graph after pruning when SP = 3. Vertex

h in this case is removed because both the incoming and outgoing arcs are greater than or

equal to SP .

27

Subroutine 4.2 CollapseNode(G,node)

1: Incoming = {u : (u, node) ∈ G.A}
2: Outgoing = {v : (node, v) ∈ G.A}
3: for u ∈ Incoming do

4: for v ∈ Outgoing do

5: if (u, v) ∈ G.E then

6: w(u, v) = min{w(u, v), w(u, node) + w(node, v)}
7: else

8: w(u, v) = w(u, node) + w(node, v)

9: end if

10: end for

11: end for

12: Destroy all incoming and outgoing arcs to node

13: Remove node from G

14: return G

a

cb d

e f hg

i j k

l

2
2

2

1 1 1 5

1 2 3 3

2
2

2

(a) Example.

a

cb d

e f g

i j k

l

2
2

2

1 1 1

8

1 2 3

2
2

2

(b) Prune CFG for SP = 3.

Figure 4.2: CFG used for illustrating heuristics.

28

Heuristic 4.3 Greedy

Input: A critical control-flow graph G = 〈V, v0, A, w〉 and target sampling period SP .

Output: A set U of vertices to be deleted from G.

1: U := {};
2: G := PruneCFG(G, SP);

3: while (MW (G) < SP ∧ U 6= V) do

4: v := GreedySearch(G);

5: G := CollapseVertex(G, v);

6: U := U ∪ {v};
7: end while

8: if (U = V) then declare failure;

9: return U ;

4.3.1 Heuristic 1: Greedy Heuristic

The first heuristic presented is a simple greedy algorithm (see Heuristic 4.3). The ex-

planation of the heuristic is illustrated by using the example control-flow graph shown in

Figure 4.2(a) and SP = 3:

• First, it prunes the input control-flow graph G (Line 2). After pruning the graph in

Figure 4.2(a), the graph shown in Figure 4.2(b) is obtained.

• Next, it exploresG to find the vertex, v, incident to the maximum number of incoming

and outgoing arcs whose weights are strictly less than SP (Line 4). The intuition

behind the selection of this vertex to delete/collapse is that such a vertex results in

removing a high number of arcs whose weights are less than SP ; this should have

a greater (if not the greatest) impact on increasing the longest sampling period of

the graph. From the pruned graph shown in Figure 4.2(b), vertex c would be the

first selected candidate to greedily collapse because it has a total of 3 incoming

and outgoing arcs combined that are less than SP (see Figure 4.3(a)). The other

29

Subroutine 4.4 GreedySearch(G,SP)

1: bestcount = 0

2: node = ∅
3: for v ∈ G.V do

4: if |{a : (u, v) ∈ V.A, u ∈ G.V ∧w(u, v) = SP}∪{a : (v, u) ∈ V.A, u ∈ G.V ∧w(v, u) =

SP}| > bestcount then

5: bestcount = |{a : (u, v) ∈ V.A, u ∈ G.V ∧ w(u, v) = msp} ∪ {a : (v, u) ∈ V.A, u ∈
G.V ∧ w(v, u) = msp}|

6: node = v

7: end if

8: end for

9: return node

candidates for collapsing have fewer than 3 incoming and outgoing arcs whose weights

are less than SP .

• Then, it collapses vertex v identified on Line 4. This operation (Line 5) results in

merging incoming arcs to v with outgoing arcs from v in the fashion described in the

transformation function T (CFG , v). Applying this transformation on vertex c in the

example results in the graph shown in Figure 4.3(b).

• Obviously, the basic block corresponding to vertex v contains a critical instruction

that requires buffering (i.e., added instrumentation to save the event into memory).

Thus, v is added to U (Line 6). Note that Lines 5 to 6 is performs actions that are

very similary to the transformation IT (CFG , v).

• Lines 3-7 are repeated until the longest sampling period of G is greater than or

equal to SP (i.e., the minimum arc weight currently in the graph after applying

the transformation). The terminating condition is expressed within the while-loop

condition on Line 3. In the running example, this heuristic terminates after the set

of vertices {b, c, d, e, i, j, k} are removed from G. The effective control-flow graph is

shown in Figure 4.3(c).

• If the graph cannot be further transformed, (i.e., only the source and sink vertices re-

main in the graph), then the graph’s structure will not permit increasing the sampling

30

period to SP and the algorithm declares failure.

a

cb d

e f g

i j k

l

2
2

2

1 1 1

8

1 2 3

2
2

2

(a) Greedily select.

a

b d

e f g

i j k

l

2 2

1

8

1 2 3

2
2

2

3 3

(b) Collapse node.

a

f g

l

6

3 3

12

4 5

(c) Solution.

Figure 4.3: Illustrations of Heuristic 1.

31

Subroutine 4.5 Approximate-Vertex-Cover(G)

cover = ∅
arcs = G.A

while arcs 6= ∅ do

(u, v) = randomly select arc to remove from arcs, u, v ∈ G.V
cover = cover ∪{u, v}
remove all incoming and outgoing arcs from u, v

end while

return cover

4.3.2 Heuristic 2: Minimum Vertex Cover Heuristic

The second heuristic that was explored is an algorithm based on a solution to the minimum

vertex cover problem. The minimum vertex cover problem is defined as follows:

Given a (directed or undirected) graph G = 〈V,E〉, the goal is to find the minimum set

U ⊆ V , such that each edge in E is incident to at least one vertex in U .

The minimum vertex cover problem is NP-complete, but there exists several approxima-

tion algorithms that find nearly optimal solutions. [48] describes a 2-approximation algo-

rithm for the minimum vertex cover problem. This heuristic employs the 2-approximation

algorithm in [48] to determine an approximate minimum vertex cover for the control-flow

graph under examination. The pseudocode for this approximation algorithm is shown in

Subroutine 4.5.

Heuristic 4.6 presents the minimum vertex cover based heuristic as pseudocode. This

algorithm works as follows and is illustrated using the example control-flow graph shown

in Figure 4.2(a).

• First, it prunes G (Line 2). Figure 4.2(b) shows the resulting graph after pruning

the graph in Figure 4.2(a).

• Next, an approximate minimum vertex cover of graph G is computed (Line 4), de-

noted as vc. The graph that is used to determine the minimum vertex cover consists

of arcs whose weights are strictly less than SP are considered. The subgraph that

32

Heuristic 4.6 Vertex Cover Based
Input: A critical control-flow graph G = 〈V, v0, A, w〉 and desired sampling period SP .

Output: A set U of vertices to be deleted from G.

1: U := {};
2: G := PruneCFG(G, SP);

3: while (MW (G) < SP ∧ U 6= V) do

4: vc := Approximate-Vertex-Cover(G);

5: for each vertex v ∈ vc do

6: G := CollapseNode(G, v);

7: U := U ∪ {v};
8: end for

9: end while

10: if (U = V) then declare failure;

11: return U ;

is generated from the pruned graph in Figure 4.2(b) is shown in Figure 4.4(a). The

intuition behind determining the minimum vertex cover is that collapsing all vertices

in vc may result in removing all arcs whose weights are strictly less than SP because

the graph is pruned and the vertex cover vc covers all arcs of the graph. The approx-

imation minimum vertex cover algorithm adopted from [48] is a non-deterministic

randomized algorithm and may produce different covers for the same input graph.

To improve the solution, Line 4 is invoked multiple times (this parameter may be

changed by the user) and of the generated approximate minimum vertex covers, the

heuristic selects the smallest vertex cover. This is abstracted away from the pseudo-

code. Figure 4.4(b) shows an approximate minimum vertex cover from the subgraph

in Figure 4.4(a).

• Then, similar to Heuristic 4.3, vertices v ∈ vc are collapsed (Lines 5-7). The graph

transform operation (Lines 5-7) results in merging incoming arcs to v with outgoing

arcs from v in the fashion described by transformation function T (CFG , v). The

33

basic block corresponding to vertex v contains a critical instruction that needs to

be buffered in memory through additional instrumentation. Thus, v is added to U

(Line 7). Figure 4.4(c) shows the graph that results upon collapsing all vertices in

the vertex cover shown in Figure 4.4(b).

• Lines 3-8 are repeated until the minimum arc weight(s) of G are greater than or equal

to SP . In other words, the heuristic will repeat until the effective graph’s longest

sampling period is at least SP . This termination condition is expressed in the while-

loop condition on Line 3. One possible solution that this heuristic may return after

processing the graph in Figure 4.2(a) is shown in Figure 4.4(d).

• If the graph cannot be collapsed further (i.e., all vertices are collapsed), then the

graph’s structure will not permit increasing the sampling period to SP and the algo-

rithm declares failure.

34

a

cb d

e f g

i j k

l

2
2

2

1 1 1

1 2

2
2

2

(a) Generate vertex cover subgraph.

a

cb d

e f g

i j k

l

2
2

2

1 1 1

1 2

2
2

2

(b) Approximate minimum vertex cover.

a

d

g

l

6 7

3

2

105

(c) Collapse all nodes in vertex cover.

a

g

l

6 7

3

12

5

(d) Solution.

Figure 4.4: Illustrations of Heuristic 2.

35

4.3.3 Heuristic 3: Genetic Algorithm

The final heuristic that was considered for approximating a (near-)optimal instrumentation

scheme is a genetic algorithm (GA). Genetic algorithms are search heuristics that adopt a

process that is evolutionary-like. In this context, the heuristic aims at collapsing the fewest

number of vertices in a critical control-flow graph G such that the longest sampling period

in the resulting graph G′ (after collapsing the selected vertices) is equal to or greater than

the target (i.e., desired) sampling period SP .

The optimization problem is mapped to the following necessary facets of a genetic

algorithm; the subsequent subsections will describe these facets in greater detail:

Chromosomes: A chromosome represents the list of vertices in a critical control-flow

graph, G. Each bit in a chromosome maps to a vertex in G. When a bit’s value is

set to true, it represents the condition where the corresponding vertex is selected to

be collapsed in G.

Fitness Function: The fitness function of a chromosome is the number of collapsed ver-

tices represented by the chromosome. The fittest chromosome is one that has the

fewest number of bits set to true for all chromosomes in the population.

Reproduction: Both crossover and mutation are used to generate new generations of

chromosomes.

Termination: The genetic algorithm terminates when the upper limit on the number of

generations is reached.

4.3.3.1 Chromosomes

Let G = 〈V, v0, A, w〉 be a critical control-flow graph. Each chromosome in the genetic

model has |V | entries. Each entry is a tuple 〈vertex id, SPmin, value〉 that represents a

vertex in G. Vertex id is the vertex identifier, min-SP is the minimum weight of the

incoming and outgoing arcs of the vertex and value is a boolean value that indicates if the

vertex is collapsed in G. If value = true for a vertex v, then v is collapsed and auxiliary

memory is used to temporarily store the event until the monitor flushes the history buffer.

36

The chromosome’s longest sampling period is defined as the longest sampling period of the

control-flow graph obtained by collapsing the vertices in the chromosome. In this genetic

model, each chromosome’s longest sampling period must be always at least SP .

4.3.3.2 Initialization (Seeding)

The number of chromosomes created in each generation is chosen by the user. Let |G|
denote the size of a generation. In the initialization step of this genetic algorithm, |G|
chromosomes are randomly created. To generate these random chromosomes, a set of

vertices are arbitrarily collapsed in G so that the chromosomes’ longest sampling period is

at least SP . The generation of an arbitrary initial chromosome follows these three steps:

1. Find the set of vertices, U ⊆ V where umin-SP < SP , ∀u ∈ U .

2. Randomly choose a vertex u ∈ U to collapse in G to produce a new control-flow

graph G′ = T (G, v).

3. Calculate the longest sampling period of G′, LSPG′ . If LSPG′ < SP , return to step

one and operate on G′.

4.3.3.3 Selection/Fitness Function

Since the goal of solving this optimization problem is to transform a graph such that LSP ≥
SP with as few collapsed vertices as possible, the chromosome’s fitness is characterized by

the number of value in the chromosome’s tuple are set to true. Hence, the fitness function

of a chromosome chr is defined as:

Fchr =

|V |∑
i=1

chr.value (4.12)

Fchr represents the number of nodes collapsed in chr. Consequently, if Fchr is smaller,

then the chromosome is more fit.

37

4.3.3.4 Reproduction

Both genetic operators, crossover and mutation, are used to evolve the current generation

into the next generation. Reproduction/evolution in this genetic algorithm first modifies

the chromosomes by crossover. The resulting chromosomes are then mutated to form the

next generation of chromosomes as required.

Crossover. New chromosomes are formed by applying one-point crossover. Two parents

are randomly chosen for crossover. In the crossover, the two parents are split into halves;

the two children are produced by swapping one of the two halves between the parents. For

each child, if the child chromosome’s longest sampling period is at least SP , the child will

be added to the set of chromosomes of the next generation; if this condition is not satisfied,

the child will be mutated.

Mutation. The mutation process takes the children passed over by the crossover process

and mainpulates each child by the following steps:

1. Find the set of vertices, U ⊆ V where umin-SP < SP ∀u ∈ U .

2. Randomly select a vertex u ∈ U to collapse by T (G, u).

3. Find the set of collapsed vertices S in the chromosome for vertices where smin-SP >

SP , S ⊆ U .

4. Randomly select a vertex s ∈ S to expand, meaning that s is restored (as a vertex)

to the control-flow graph represented by the child chromosome.

5. Check if the chromosome’s longest sampling period, LSP chr, is at least SP . If

LSP chr < SP , return to step 1 and continue until the chromosome’s longest sam-

pling period is at least SP or when the maximum number of mutations allowable is

reached.

6. If the resulting chromosome’s longest sampling period is at least SP when it reaches

step 5, it is added to the next generation.

Crossover and Mutation Limitations. Sometimes the crossover and mutation pro-

cesses fails to create |G| chromosomes to populate the next generation. When this occurs, it

38

means that fewer than |G| modified chromosomes satisfy the sampling period restriction for

chromosomes. In this case, the genetic algorithm chooses the most fit chromosomes from

the current generation and adds them to the next generation to create a population of |G|
chromosomes. In the case that duplicates chromosomes appear in this process, it discards

the duplicate and randomly creates new chromosomes as described in Section 4.3.3.1.

4.3.3.5 Termination

For this genetic algorithm, termination can occur when one of two conditions are met:

• The highest ranking solution’s level of fitness does not change over a fixed number

of generations; the number of generations is defined by the user.

• The maximum number of permitted generations is reached. This number is also user-

defined. In this case, the chromosome across all generations with the best fitness value

is returned.

4.4 Experimental Results

Experiments were conducted to compare the effectiveness of the heuristics to the optimal

method of solving the optimization problem. The toolchain that was developed consists of

the following:

• The tool CIL [49] was first used to generate the control-flow graph of a given C

program.

• Next, tools were developed to transform the control-flow graph into the critical

control-flow graph corresponding to the set of critical variables that the monitor

needs to observe at run time.

• For optimally solving the problem, a component in the toolchain generated the ILP

model (using the method described in [18]) corresponding to the critical control-flow

graph. Then, this model is solved using lp solve [47].

39

• For solving an instance of the optimization problem using the heuristics, the critical

control-flow graph is passed to the respective modules.

• The result of solving the problem using any of the above methods returns the set of

instructions and variables in the program that need to be instrumented to store the

corresponding critical events in auxiliary memory.

• The program is then instrumented using the returned instrumentation scheme.

• To simulate a time-triggered software monitor, gdb’s [50] breakpoint mechanism was

used to pause the program’s execution at run time while the monitor extracts the

necessary information from auxiliary memory and program state; gdb is controlled

by a Python script.

Using this toolchain, experiments were conducted on case studies from the embedded

software benchmark suite, MiBench [46]. The target sampling period used for all of the case

studies presented is 40 × LSP , where LSP is the longest sampling period of the program

(see Definition 2). All experiments in this section are conducted on a personal computer

with a 2.26 GHz Intel Core 2 Duo processor and 6 GB of main memory.

4.4.1 Performance of Heuristics

Table 4.1 compares the performance of the ILP-based solution [18] with the heuristics pre-

sented in Section 4.3 for various programs from MiBench. The first column in the table

shows the size of the critical control-flow graph of programs in terms of the number of

vertices. With each approach, the time spent to solve the optimization problem (in sec-

onds) was logged. The performance of the heuristics are characterized by the suboptimal

factor (SOF). SOF is defined as sol
opt

, where sol and opt are the number of vertices requir-

ing instrumentation returned by a heuristic and the ILP-based solution (i.e., the optimal

solution), respectively.

Clearly from Table 4.1, all three heuristic algorithms perform substantially faster than

solving for the exact optimal solution. On average, Heuristic 1, Heuristic 2, and the genetic

algorithm yield in speedups of 200 000, 7 000, and 9, respectively, where the speedup is

defined as the ratio between the execution time required to solve the ILP problem and

40

Table 4.1: Performance of different optimization techniques.
CFG ILP Heuristic 1 (Greedy) Heuristic 2 (VC) Genetic Algorithm

Size(|V |) time (s) SOF time (s) SOF time (s) SOF time (s) SOF

Blowfish 177 5316 − 0.0363 7.8 0.8875 8 383 2.5

CRC 13 0.35 − 0.0002 3.5 0.0852 3 0.254 1.5

Dijkstra 48 1808 − 0.0064 1.2 0.1400 1.2 116 1.7

FFT 47 269 − 0.0042 1.7 0.1737 1.8 74 1.1

Patricia 49 2084 − 0.0054 1.4 0.1369 1.6 140 1.5

Rijndael 70 3096 − 0.0060 1.6 0.2557 2.1 370 1.9

SHA 40 124 − 0.0039 2.2 0.1545 2.2 46 1.3

Susan 20 259 ∞ − 3 181 N/A 26 211 N/A 923 N/A

the time required to generate an approximate solution using one of the heuristics. The

execution times of Heuristic 2 are based on running Approximate-Vertex-Cover 500 times to

cope with the randomized vertex cover algorithm (see Line 4 in Heuristic 4.6). Table 4.1

shows that for large programs, such as Susan, solving for the optimal solution becomes

infeasible because the size of the problem is too large to cope with. All three heuristics,

however, are able to generate some approximate solution that can be used to instrument

the program for time-triggered runtime verification.

In general, the genetic algorithm produces results that are closer to the optimal solution

than Heuristic 1 and Heuristic 2. The spread of the SOFs for the conducted experiments

is much smaller for the genetic algorithm. For the conducted experiments, the worst SOF

for the genetic algorithm is 2.5 (i.e., for Blowfish), which indicates that this solution will

instrument at 2.5 times more locations in the program than the optimal solution. With the

exception of Blowfish, Heuristic 1 and Heuristic 2 also perform well; the SOF in Table 4.1

ranges from 1.2 to 3.5. Based on the conducted experiments, it cannot be concluded that

the performance of Heuristic 1 and Heuristic 2 suffers as the size of the problem increases.

The SOFs for Susan were not reported in Table 4.1, but the results from the three heuristics

were recorded. Heuristic 1 and Heuristic 2 indicate that the target sampling period may

be satisfied by collapsing 104 and 180 vertices, respectively, while the genetic algorithm

produced a solution that requires 222 vertices to be collapsed. The SOFs for Dijkstra also

indicate an anomaly in the overall trend perceived in Table 4.1. Therefore, the performance

of the heuristics likely depends on the structure of the critical control-flow graph. For Susan,

41

the number of vertices being collapsed is approximately 0.5% to 1% of |V |, which indicates

that the instrumentation overhead should be small.

4.4.2 Analysis of Instrumentation Overhead

The execution times and memory usage of the instrumented benchmark programs were

also collected during experimentation. Figure 4.5 shows the execution times and mem-

ory usage of four of the eight benchmark programs used in the experiments. Each plot

in Figure 4.5 contains the total execution times and memory usage for the unmonitored

program, the program monitored with a sampling period of LSP , and the program moni-

tored at 40× LSP with the inserted instrumentation points indicated by the optimal and

heuristic solutions. The benchmark program results not shown in Figure 4.5 exhibit similar

trends as Figure 4.5(c).

All instrumented benchmark programs with no history always run slower than the

instrumented programs that support a target sampling period of 40 × LSP as illustrated

in Figure 4.5. This is expected because time-triggered runtime monitoring without history

requires the monitor to sample at higher frequencies to preserve monitoring correctness.

Monitor invocations are much more expensive than buffering events in auxiliary memory.

Figure 4.5 also shows that the variation of the execution times of the instrumented

benchmark programs based on the optimal and heuristic solutions (i.e., optimal (ILP),

Heuristic 1, Heuristic 2 and genetic algorithm) are negligible. Therefore, using suboptimal

instrumentation schemes does not significantly impact the execution time of the program

in comparison to the optimally instrumented program.

As shown in Figure 4.5, utilizing the instrumentation schemes returned by solving the

ILP or running the heuristics result in an increase in the memory usage during program

execution in comparison to both the un-monitored program and when the program is

monitored in a time-triggered fashion without the use of auxiliary memory to buffer events.

This is expected because to increase the sampling period of the monitor, some critical events

must be retained in auxiliary memory to ensure that the program can be correctly verified

at run time. With the exception of Blowfish, the memory usage increase is negligible for

the benchmark programs.

42

 0

 1

 2

 3

 4

 5

 6

 7

Unmonitored program

No history (LSP)

ILP (LSPx40)

Heuristic 1 (LSPx40)

GA (LSPx40)

Heuristic 2 (LSPx40)

 10

 12

 14

 16

 18

 20

 22

 24

 26

Ex
ec

ut
io

n
Ti

m
e

[S
ec

]

Vi
rtu

al
 M

em
or

y
U

sa
ge

 [M
B]

Sampling Type

Execution
Memory

(a) Blowfish

 0

 1

 2

 3

 4

 5

 6

 7

Unmonitored program

No history (LSP)

ILP (LSPx40)

Heuristic 1 (LSPx40)

GA (LSPx40)

Heuristic 2 (LSPx40)

 7

 7.2

 7.4

 7.6

 7.8

 8

Ex
ec

ut
io

n
Ti

m
e

[S
ec

]

Vi
rtu

al
 M

em
or

y
U

sa
ge

 [M
B]

Sampling Type

Execution
Memory

(b) Dijkstra

 0

 2

 4

 6

 8

 10

 12

 14

Unmonitored program

No history (LSP)

ILP (LSPx40)

Heuristic 1 (LSPx40)

GA (LSPx40)

Heuristic 2 (LSPx40)

 9

 9.2

 9.4

 9.6

 9.8

 10

Ex
ec

ut
io

n
Ti

m
e

[S
ec

]

Vi
rtu

al
 M

em
or

y
U

sa
ge

 [M
B]

Sampling Type

Execution
Memory

(c) FFT

 0

 2

 4

 6

 8

 10

Unmonitored program

No history (LSP)

ILP (LSPx40)

Heuristic 1 (LSPx40)

GA (LSPx40)

Heuristic 2 (LSPx40)

 9

 9.2

 9.4

 9.6

 9.8

 10
Ex

ec
ut

io
n

Ti
m

e
[S

ec
]

Vi
rtu

al
 M

em
or

y
U

sa
ge

 [M
B]

Sampling Type

Execution
Memory

(d) Rijndael

Figure 4.5: The impact of different instrumentation schemes on memory usage and total

execution time.

Using the instrumentation schemes generated by the heuristics, the increase in memory

usage is negligible during program execution with respect to the optimally instrumented

program, except for Blowfish. The variation of memory usage for all benchmark programs

except for Blowfish generally spans from 0 MB to 0.1 MB. Even though the memory usage of

Blowfish instrumented with the schemes produced by Heuristic 2 and the genetic algorithm

is relatively larger than the optimal scheme, an increase of 15 MB of virtual memory is

still negligible to the amount of memory that is generally available machines used to verify

43

software programs. From the experimental data collected for the three heuristics, no

generalizations can be made. In other words, none of the heuristics generally yield the

best instrumentation scheme. The best sub-optimal instrumentation scheme depends on

both the input control-flow graph and the heuristic that is used to produce an approximate

solution.

Figure 4.6 shows the percentage increase in the number of instrumentation instructions

executed and the percentage increase in the maximum size of history between two consec-

utive samples with respect to the optimally instrumented benchmark programs. Note that

logarithmic scales are used in the charts in Figure 4.6. Observe that Susan is not shown in

the figure because the ILP model for the program could not be solved using the machine

the experiments were conducted on. Blowfish performed the poorest with respect to the two

measures when the instrumentation schemes generated by Heuristic 1 and Heuristic 2 were

used. In most cases, the percentage increase in the number of instrumentation instructions

that are executed and the maximize size of history are below 50% if the two largest per-

centages are removed from each set. If a few more outliers are removed, then most of the

percentage increases for both measures will be below 20%. In addition, observe that the

percentage increase in the number of instrumentation instructions executed is proportional

to the increase in the maximum size of the history between two consecutive samples. This

implies that the extra instrumentation instructions (compared to the optimal solution) are

evenly distributed among sampling points.

Recall that the collapsed vertices during the transformation IT (CFG , v) (see Sec-

tion 3.3.3) determine the instrumentation instructions added to the program under in-

spection. These instructions in turn store changes in critical variables to the history.

Although one may argue that auxiliary memory usage at run time must be directly re-

lated to the number of collapsed vertices (i.e., instrumentation instructions), this is not

necessarily true. This is because the number of added instrumentation instructions dif-

fers in different execution paths. In the extreme case, one execution path may include no

instrumentation instructions and another path may include all such instructions returned

by solving the problem instance. In this case, the first path will build no history and the

second will consume the maximum possible auxiliary memory. This observation also holds

in the conducted analyses on other types of overhead and the total execution time. This

is why the genetic algorithm produced the best instrumentation scheme for the Blowfish

44

 1

 10

 100

Heuristic 1 Heuristic 2 Genetic Algorithm

In
c
re

a
s
e
 i
n
 I
n
s
tr

u
m

e
n
ta

ti
o
n
 E

x
e
c
u
ti
o
n
 [
%

]

Optimization Algorithm

Blowfish
CRC

Dijkstra
FFT

Patricia
Rijndael

SHA

(a) Increase in the number of execution of instru-

mentation instructions.

 1

 10

 100

Heuristic 1 Heuristic 2 Genetic Algorithm

In
c
re

a
s
e
 i
n
 M

a
x
im

u
m

 L
e
n
g
th

 o
f
H

is
to

ry
 [
%

]

Optimization Algorithm

Blowfish
CRC

Dijkstra
FFT

Patricia
Rijndael

SHA

(b) Increase in the maximum size of history between

two samples.

Figure 4.6: The impact of sub-optimal solutions on execution of instructions to build

history and its maximum size.

benchmark (see Table 4.1), but the benchmark used substantially more memory than the

greedy heuristic at run time (see Figure 4.5(a)). This is also explains why the amount

of auxiliary memory used by a monitored program is not proportional to the number of

instrumented critical instructions (see Figure 4.6).

The experimental results empirically demonstrate that the NP-completeness of

the optimization problem is likely not an obstacle when applying time-triggered

runtime verification in practice.

45

4.5 Concluding Remarks

In this chapter, three efficient (polynomial-time and space) algorithms were presented that

address the NP-complete problem of optimizing the instrumentation of programs in the

context of time-triggered runtime verification [18]. The need for instrumentation is re-

quired to record events between two consecutive samples at run time so that monitoring

correctness is preserved. The presented algorithms were inspired by different techniques for

determining near-optimal instrumentation schemes, which include using a greedy approach,

determining the minimum vertex cover, and biological evolution. A total of eight programs

from MiBench [46] were used to rigorously benchmark the proposed heuristics. The results

show that the solutions returned by all three algorithms led to negligible increase in in-

strumentation runtime overhead, total runtime memory usage, and total execution time

of monitored program. Moreover, the genetic algorithm yielded in more consistent results

compared to the other two heuristics. In summary, the empirical results illustrate that

the NP-completeness of the optimization problem is likely not an obstacle when applying

time-triggered runtime verification in practice.

46

Chapter 5

Hybrid Runtime Monitoring

5.1 Introduction

The main challenge in augmenting a system with runtime verification is to contain its

runtime overhead. Most monitoring approaches in the literature are event-triggered (ET),

where the occurrence of a new critical event (e.g., change of value of a variable) triggers the

monitor to verify a set of logical properties. Consider the timing diagrams in Figure 5.1(a),

where the dots 1 through n along the timeline represent the critical events that occur for

an execution trace of the program under scrutiny at run time. The calls to the monitor

are added as instrumentation instructions in the program. As shown in the figure, there

is a burst of events in this execution trace from event i to event j. The burst of critical

events that occur from i to j leads to frequent monitor invocations and activity, which

causes high execution overhead and unpredictability of the program’s timing behaviour.

Navabpour et al. [18] introduced an approach that uses time-triggered (TT) monitoring

for runtime verification. Time-triggered runtime verification makes the runtime monitor-

ing overhead controllable and predictable, and makes monitoring tasks schedulable. In

this method, a monitor samples the program at periodic time intervals. This time interval,

known as the sampling period (SP), should guarantee that the monitor is capable of ob-

serving all critical events. Time-triggered monitoring is especially desirable for designing

real-time systems, where time predictability and scheduling plays a central role in system

47

time

- critical event
- monitor invocation (ET)

- monitor invocation (TT)

frequent monitor
activity

1 ni j

- ‘redundant’ sample
- mode switch (ET to TT)
- mode switch (TT to ET)

(a) Event-triggered monitoring.

SP

time1 ni j

(b) Time-triggered monitoring.

time1 ni j

(c) Hybrid monitoring.

Figure 5.1: Comparing different methods of monitoring.

correctness. Figure 5.1(b) shows the interactions that occur between the program and a

TT monitor. Navabpour et al. [18] present a technique to decrease the overhead of time-

triggered monitor, which involves buffering a selected subset of critical events in auxiliary

memory. With buffering enabled, the monitor can effectively sample at a lower sampling

frequency, thereby, reduce the overall monitoring overhead. The monitor preserves cor-

rectness because it is configured to read the buffered critical events when it samples the

program in addition to the current program state so that property evaluation occurs for

all critical program state changes [18]. From Figure 5.1(b), it is evident that the mon-

itoring activity between events i and j is significantly less than what an event-triggered

48

monitor would require. Navabpour et al. [18] observed that in some cases, time-triggered

runtime verification (TTRV) may also reduce the cumulative runtime overhead effectively.

However, time-triggered runtime verification does not guarantee a reduction in monitor-

ing overhead. Consider the example shown in Figure 5.1 and the target sampling period

adopted for Figure 5.1(b): there are some ‘redundant’ samples that the monitor takes. A

‘redundant’ sample is an invocation of the monitor, where the monitor does not have any

critical events to process. In other words, the monitor does not do any meaningful work.

The dashed ovals in Figure 5.1(b) mark the redundant samples in this example. In exe-

cution traces where the critical events are sparse and sporadic, time-triggered monitoring

incurs a lot of unnecessary overhead.

From Figures 5.1(a) and 5.1(b), it is evident that both event- and time-triggered mon-

itoring techniques have both advantages and disadvantages with respect to the monitor’s

execution overhead. Event-triggered monitoring tends to be advantageous in situations

where critical events occur sparsely because the monitor is active only when the program

encounters a critical event; time-triggered monitoring tends to be better when there are

many critical events to process within a short time frame.

With this motivation, this chapter proposes a novel technique called hybrid runtime

verification (HyRV) that exploits the benefits of both ETRV and TTRV to reduce the

runtime overhead. The goal of this technique is to supply a program under scrutiny with

a more efficient monitor that supports both ET and TT modes of operation. This ‘hybrid’

monitor may switch from one mode to another at run time depending upon the current

execution path. HyRV automatically obtains the locations to switch modes in the program

by solving a doubly exponential optimization problem; this method accounts for all mon-

itoring and switching costs in terms of execution time overhead. The main challenge in

formulating the optimization problem is threefold:

1. Determining the precise timing behaviour of the program under inspection,

2. Identifying the overhead of all required activities for implementing an ET or TT

monitor (e.g., cost of monitoring mode switching, sampling, monitor invocation),

3. Identifying the execution subpaths that are likely to be suitable for ET and TT

monitoring modes.

49

The solution to the problem is an instrumentation scheme for a program that may switch

monitoring modes at runtime. For instance, in Figure 5.1(c), the reduction in monitoring

activity will likely reduce the overall monitoring execution overhead. Obviously, using

hybrid monitoring will incur overhead costs in performing mode switches. In this example,

a mode switch occurs right before i and right after j to switch from ET to TT and TT to

ET monitoring modes, respectively.

A fully implemented toolchain of this technique leverages static analysis techniques

and integer linear programming (ILP) to solve the optimization problem. The inputs to

the toolchain are a C program and a set of variables to monitor. The toolchain outputs

the program source code augmented with the instrumentation scheme that may toggle

the monitoring mode at runtime to reduce the monitoring overhead. The experiments

conducted on a benchmark suite for real-time embedded programs strongly validate the

effectiveness of this technique.

Organization. The rest of the chapter is organized as follows. Section 5.2 introduces

the HyRV optimization problem. Experimental results and analyses are presented in Sec-

tion 5.3. Finally, in Section 5.4 offers some concluding remarks.

5.2 Hybrid Runtime Verification

The goal of hybrid monitoring in runtime verification is to select the monitoring scheme

that minimizes the expected total overhead incurred from executing the monitor. Given

an execution path in advance, the optimal solution with minimum overhead is already a

complex problem. Therefore, for any general control-flow graph, the problem of finding

the optimal solution is is even more difficult, especially when loops are present. In the

case that the loops are unbounded, this problem is unsolvable. If all lower and upper loop

bounds are given, the problem is still likely not in NP with respect to the size of the graph.

The optimization problem is likely not in NP because the verification of a certificate

that includes an instrumentation scheme and an integer denoting maximum allowable

monitoring overhead requires enumerating all execution paths in the worst case, which is

exponential in the size of the problem’s input. Hence, the complexity of this optimization

50

problem is likely to be at least doubly exponential (one for execution path explosion and

one for solving an integer program).

In order to tackle the high computational complexity of the problem, a heuristic is

introduced that aims to return a monitoring scheme where the monitoring overhead is equal

or better (i.e. lower) than monitoring exclusively in either ET or TT mode. This heuristic

involves solving an instance of the integer linear programming problem. The sub-optimality

stems from how the program is subdivided into subpaths to estimate the monitoring cost

incurred by sampling. The rest of this section is organized as follows. First, in Section 5.2.1,

the monitoring overhead cost incurred at run time is divided into different types/categories.

Then, Section 5.2.2 presents a transformation of the optimization problem (for reducing

the runtime overhead of monitoring by integrating event- and time-triggered techniques)

to an ILP model.

5.2.1 Overhead Runtime Costs

HyRV classifies the overhead costs incurred from monitoring as follows:

• Cevent : the cost incurred to handle critical events (i.e., in TT mode, this includes the

costs of writing and retrieving the history, and the property evaluation; in ET mode,

this includes calling the monitor and the property evaluation),

• Cswitch : the cost incurred from switching between ET and TT modes and vice versa,

and

• Csample : the cost incurred from sampling (i.e. preempting and resuming the program

under scrutiny) in TT mode.

The cost estimates are derived in terms of the best-case execution time of the cor-

responding instructions. In particular, these costs are calculated in the same fashion as

determining the arc weights of a control-flow graph (see Definition 1). The objective func-

tion with respect to these costs is:

min (Cevent + Cswitch + Csample) (5.1)

51

For the rest of this chapter, let CFGP = 〈V, v0, A, w,F〉 be a control-flow graph cor-

responding to a program P . Each vertex corresponds to a basic block containing one and

only one critical instruction. The definitions of V , v0, A, and w correspond to the ones

described in Defintion 1 (see Figure 3.2(b) for an example). F is a function F : (u, v)→ N,

(u, v) ∈ A, u, v ∈ V , that defines the expected number of times P will execute the basic

block corresponding to v immediately after executing the basic block corresponding to u.

Figure 5.2 illustrates a CFG , where the critical vertices are highlighted, and the set of

numerical values within parentheses defines the function, F(u, v). The function F can be

evaluated for a program using standard techniques such as profiling and symbolic execu-

tion; if these are infeasible, the user may define this function or specify a uniform function

over the input domain.

To derive expressions for the overhead costs defined in the objective function, the cost

of monitoring is broken down into five elementary cost values, which capture the costs

incurred from performing specific interactions between the program and the monitor:

• cET : cost of invoking monitor to check a single critical event in ET mode

• chist: cost of saving a critical event into the history buffer in TT mode

• cTT : cost of processing the history buffer at a sample in TT mode

• cE→T : cost of a switch from ET mode to TT mode

• cT→E: cost of a switch from TT mode to ET mode

5.2.2 Utilizing Integer Linear Programming as a Heuristic

The ILP problem is of the form:
Minimize c.z

Subject to A.z ≥ b

(5.2)

where A (a rational m × n matrix), c (a rational n-vector) and b (a rational m-vector)

are given, and z is an n-vector of integers to be determined. In other words, solving this

52

problem involves finding the minimum of a linear function over a feasible set defined by a

finite number of linear constraints. It can be shown that a problem with linear equalities

and inequalities can always be put in the above form, implying that this formulation is

more general than it might look.

The remainder of this section describes the mapping of the optimization objective

(Equation 5.1) stated in Section 5.2.1 to ILP.

5.2.2.1 ILP Variables

Two binary variables xv and yv are defined for each v ∈ V in CFGP . If xv = 1, then the

monitor will operate in ET mode whenever the corresponding basic block executes, and if

yv = 1, the monitor will operate in TT mode whenever the program is executing the basic

block. The following constraint expresses the mutual exclusivity of monitoring modes for

v ∈ V :

xv + yv = 1 (5.3)

5.2.2.2 Constraint of Handling Critical Events

Equation 5.4 expresses the cost incurred at each critical event in P :

Cevent =
∑
v∈Vc

∑
(u,v)∈A
u∈V

[F(u, v) · (cET · xv + chist · yv)] (5.4)

where Vc ⊆ V is the set of nodes that correspond to the critical basic blocks in CFGP .

The number of times that P is expected to transit from the set of nodes u to v, where

(u, v) ∈ A, determines the expected number of times that the basic block corresponding

to v will execute. Equation 5.3 and Equation 5.4 guarantee that the cost incurred for the

critical event in v is exclusively cET or cTT if the monitor is operating in ET or TT mode

at that point in the program, respectively.

53

5.2.2.3 Constraints of Switching Monitoring Mode

The following equation expresses the cost of switching between ET and TT modes:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · xv1 · yv2 + cT→E · yv1 · xv2)] (5.5)

There exists a mode switch between basic blocks v1 and v2 when xv1 = yv2 = 1 or yv1 =

xv2 = 1. The former case implies that the monitor switches from ET mode to TT mode

and the latter case implies that the monitor switches from TT mode to ET mode. Note

that a switch may occur between any two connected vertices; solving the optimization

problem ensures that the switches are optimal. Equation 5.5 is non-linear; to linearize this

expression, let pv1,v2 , qv1,v2 , rv1,v2 , and sv1,v2 be all binary variables and rewrite Equation 5.5

as:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · pv1,v2 + cT→E · qv1,v2)] (5.6)

subject to:

xv1 + yv2 + 2rv1,v2 ≥ 2 (5.7)

pv1,v2 + rv1,v2 = 1 (5.8)

xv1 + yv2 − 2(1− rv1,v2) < 2 (5.9)

yv1 + xv2 + 2sv1,v2 ≥ 2 (5.10)

qv1,v2 + sv1,v2 = 1 (5.11)

yv1 + xv2 − 2(1− sv1,v2) < 2 (5.12)

Equations 5.7 through 5.9 ensure that if xv1 = yv2 = 1, then pv1,v2 = 1, i.e., a switch

from ET to TT mode occurs between v1 and v2 and incurs the cost, cE→T . Similarly, the

constraints reflected in Equations 5.10 through 5.12 ensure that if there exists a switch

from TT to ET mode, then qv1,v2 = 1 and the switch will add the cost, cT→E.

54

5.2.2.4 Constraints of Sampling Cost in TT Mode

Finally, Equation 5.13 captures the cost incurred from the sampling the monitor does in

TT mode:

Csample =
∑

π∈Π′(CFGP)

(cTT · Fπ ·Nsampπ) (5.13)

where Π′(CFGP) denotes the set of all subpaths in CFGP that satisfy the following five

conditions if π = v1 → v2 → · · · → vk, π ∈ Π′(CFGP):

1. k ≥ 2

2. indegree(vi) = outdegree(vi) = 1, 2 ≤ i ≤ k − 1

3. indegree(v1) 6= 1 ∨ outdegree(v1) 6= 1

4. indegree(vk) 6= 1 ∨ outdegree(vk) 6= 1

5. for each (vi, vj) ∈ A, (vi, vj) appears in exactly one π ∈ Π′(CFG)

In other words, Π′(CFGP) returns the set of longest simple linear subpaths within

CFGP . For example, Π′(CFGP) of the control-flow graph shown in Figure 5.2 is:

Π′(CFG) = {〈a→ b→ c→ d〉, (5.14)

〈d→ e→ f〉,
〈f → d〉,
〈d→ g → h→ f〉,
〈f → i→ j〉}

Moreover, in Equation 5.13, Fπ is the expected number of times that π will execute at

run time. Fπ = F(vi, vj), where (vi, vj) is any arc on path π. Nsampπ expresses the number

of samples that the monitor takes when P executes π once:

Nsampπ =
∑

γ=〈vi→...→vj〉,
γ∈Γπ

[
W (γ) + chist ·

∑j
m=i yvm

SP
· xvi−1

· xvj+1
·

j∏
l=i

yvl

]
(5.15)

55

a b c d e f

g h

i j
100

(1)

100

(1)

100

(1)

1

(1)

2 (4)

5

(1)
3

(4)

100

(1)

3

(4)
2(4)

100

(1)

Figure 5.2: CFG used for illustrating ILP model.

where W (γ) returns the sum of weights of all arcs on the path γ ∈ Γπ; vi−1 and vj+1 denote

the immediate predecessor and successor of vi, vj ∈ V , respectively; and SP is the target

sampling period of the monitor when it is operating in TT mode. If vi−1 does not exist in

π, xvi−1
= 1. Similarly, xvj+1

= 1 if vj+1 does not exist in π. Γπ is the set of enumerated

paths in π ∈ Π′(CFG) of length 2 or greater. Note that |Γπ| = Θ (|π|2).

Consider Π′(CFGP) for the control-flow graph shown in Figure 5.2. Then, Γπ for the

subpath π = 〈d→ g → h→ f〉 is:

Γπ = {〈d→ g → h→ f〉, (5.16)

〈d→ g → h〉,
〈g → h→ f〉,
〈d→ g〉,
〈g → h〉,
〈h→ f〉}

Considering the example where π = 〈d→ g → h→ f〉; if γ ∈ Γπ starts with d or ends

with f , then the terms xvi−1
and xvi+1

are ignored by substituting them with the value of

1, respectively. Nsampπ is linearized by the linearization technique employed for Cswitch (see

Equations 5.7 through 5.12).

56

5.3 Implementation and Experimental Results

The proposed hybrid monitoring approach was empirically tested and verified by applying

this technique on a subset of programs from the SNU Real-time benchmark suite [51] on

an embedded development platform. Section 5.3.1 describes the experimental setup and

the toolchain. Then, Section 5.3.2 presents and analyzes the results collected from the

experiments.

5.3.1 Experimental Setup

Figure 5.3 depicts the constructed toolchain used to generate instrumentation schemes from

the model described in Section 5.2. The toolchain generates the program’s control-flow

graph with estimated execution times of basic blocks by statically analyzing the program’s

source code with clang and llvm [52]. A custom CodeSurfer [53] plugin was written to de-

termine the location of the critical events the monitor should track at run time based on

the set of user-defined critical variables. The model generator takes this information along

with the estimated monitoring costs to produce the corresponding model for the program.

The toolchain then uses Yices [54], an SMT solver, to identify an approximate solution (i.e.,

an instrumentation scheme) to the optimization problem described in Section 5.2. Yices

is not an out-of-the-box optimization solver, but it is wrapped with additional code that

performs a binary search to derive the optimal value of a model; the solutions converged

significantly quicker using this particular implementation than the ILP solver, lp solve. A

custom-written clang tool then takes the instrumentation scheme and instruments the pro-

gram source with the necessary instructions required to monitor the program accordingly.

The monitor and programs were compiled and executed on the Keil uVision simula-

tor that emulates the behaviour of the MCB1700 development platform, which houses an

ARM Cortex-M3 processor. Note that the observed execution time across multiple runs of

the experiment remains constant because the hardware platform provides accurate timing

behaviour of instructions, and in each experiment, the only tasks running were the pro-

gram under inspection and the monitor. Therefore, the results are presented here without

reporting statistical measures.

The performance analysis was conducted on a subset of programs in the SNU-RT [51]

57

clang llvm-opt

CodeSurfer

Model
Generator yices Instrument

Script

program
source
*.c *.h

list of critical
event locations

CFG with estimated
execution times and weights

instrumentation
scheme

instrumented
program

source
*.c *.h

list of critical variables

yices model
speci�cation

monitoring
costs

Figure 5.3: HyRV instrumentation toolchain for C applications.

benchmark suite. Six programs were selected from the suite with different sizes: bs, fibcall,

insertsort, fir, crc, and matmult. The largest program has 250 lines of code, and the smallest

has 20. Two sets of variables were selected for monitoring for each program:

1. A set containing the most frequently changing variables

2. A set containing the program variables that change the most infrequently

Instructions that potentially change the value of these variables form the set of critical

instructions monitored in the experiments. For each program, the monitoring overheads

were measured using the cost configurations (listed in Table 5.1) and its’ associated instru-

mentation schemes. The cost configurations are dependent on the implementation of the

monitor (e.g., running on the same processor, distributed). Table 5.1 summarizes the six

cost configurations that were considered for the experiments to demonstrate that the in-

strumentation schemes may change as a result of the relative differences in the elementary

monitoring costs.

5.3.2 Experimental Results

The experimental results are classified based on the generated instrumentation scheme and

runtime overhead:

1. The first class consists of cases where the heuristic suggests a hybrid monitor and

the monitor indeed significantly outperforms an ET or TT monitor in practice (see

Figure 5.4).

58

Configuration chist cET cTT cE→T cT→E

1 50 100 100 100 100

2 50 100 100 150 150

3 50 150 150 100 100

4 50 150 150 150 150

5 50 250 250 100 100

6 50 250 250 150 150

Table 5.1: Monitor cost configurations [clock cycles].

2. The second class consists of cases where the heuristic suggests either an ET or TT

monitor and the suggested solution indeed outperforms other monitoring modes (see

Figure 5.5).

3. The third class consists of cases where the returned solution either exhibits slight

improvements over other monitoring modes or slightly underperforms in practice

(see Figure 5.6).

For the rest of this section, the results of one program from each of the three classes are

used to discuss the experimental results. The three other programs that are not discussed

in great depth in the following text exhibit results that fall within one of the three classes.

5.3.2.1 Hybrid Monitor with Significant Improvement

The program representing this class (i.e., crc with CFG of the size 65 vertices and 82 arcs)

has two characteristics: it has (1) two tight loops, each containing one critical instruction,

and (2) a relatively large initialization function that contains only non-critical instructions.

Intuitively, if the program is monitored by an ET monitor, then the tight loops in the

program will cause monitor invocations for each iteration. This is an instance where a

burst of events creates a large overhead over a short period of time (similar to the timeline

in Figure 5.1). In such cases, an ET monitor suffers.

On the contrary, the large initialization function does not contain critical events; hence,

a TT monitor would suffer from redundant sampling overhead. With these observations,

59

0

10000

20000

30000

40000

50000

CET = CTT = 100 CET = CTT = 150 CET = CTT = 250

T
ot

al
M

on
it

or
in

g
O

ve
rh

ea
d

[c
lo

ck
cy

cl
e]

Monitoring Cost

ET-only

TT-only (SP = 10, LSP)

HyRV (SP = 10, LSP,Cx→y = 100)

HyRV (SP = 10, LSP,Cx→y = 150)

TT-only (SP = 20, LSP)

HyRV (SP = 20, LSP,Cx→y = 100)

HyRV (SP = 20, LSP,Cx→y = 150)

Figure 5.4: Monitoring overhead of crc for three monitoring modes under all cost configu-

rations.

the combination of these two monitoring modes should be able to exploit the benefits of

employing a hybrid monitor. The experimental results shown in the plot in Figure 5.4

validates the motivation behind introducing hybrid runtime verification. As can be seen,

in all cost configurations, the hybrid monitor incurs significantly less overhead than both

the ET monitor and TT monitor operating with the same sampling period. Another inter-

esting observation is that increasing the cost of ET and TT monitor invocations does not

greatly increase the overhead of the hybrid monitor. This is because the hybrid monitor

only samples when the program reaches its tight loop, which reduces the cost of monitoring

frequently occurring critical events by buffering them into memory before sampling; addi-

tionally, the monitoring scheme reduces the number of redundant samples by letting the

monitor run in ET mode when critical events are infrequent. In such cases, the behaviour of

hybrid monitoring is quite robust in this case when the cost of monitor invocation increases.

60

0

5000

10000

15000

20000

25000

30000

CET = CTT = 100 CET = CTT = 150 CET = CTT = 250

T
ot

al
M

on
it

or
in

g
O

ve
rh

ea
d

[c
lo

ck
cy

cl
e]

Monitoring Cost

ET-only

TT-only (SP = 10, LSP)

HyRV (SP = 10, LSP,Cx→y = 100)

HyRV (SP = 10, LSP,Cx→y = 150)

TT-only (SP = 20, LSP)

HyRV (SP = 20, LSP,Cx→y = 100)

HyRV (SP = 20, LSP,Cx→y = 150)

Figure 5.5: Monitoring overhead of insertsort for three monitoring modes under all cost

configurations.

5.3.2.2 Time-triggered Monitor with Significant Improvement

The common characteristic of the member programs of this class (i.e., bs, fibcall, insertsort,

and matmult) is that the programs have dense and evenly distributed critical instructions

throughout its’ entirety. This makes the use of TT mode a suitable choice to monitor

this class of programs. Figure 5.5 shows the overhead of monitoring insertsort with three

monitoring modes (ET-only, TT-only, and hybrid) for all cost configurations. The rest

of the programs in this class also exhibit similar monitoring overhead patterns. From

Figure 5.5, one can observe that the corresponding solution returned by the heuristic

correctly detects the even distribution of events and suggests that the monitor should

exclusively operate in TT mode for all cost configurations. Another observation in these

experiments is that the number of redundant samples for these programs is either zero

or close to zero. The low number of redundant samples again validates the choice of

monitoring these programs by having the the monitor operate in time-triggered mode.

61

0

20000

40000

60000

80000

100000

120000

CET = CTT = 100 CET = CTT = 150 CET = CTT = 250

T
ot

al
M

on
it
or

in
g

O
ve

rh
ea

d
[c

lo
ck

cy
cl

e]

Monitoring Cost

ET-only

TT-only (SP = 10, LSP)

HyRV (SP = 10, LSP,Cx→y = 100)

HyRV (SP = 10, LSP,Cx→y = 150)

TT-only (SP = 20, LSP)

HyRV (SP = 20, LSP,Cx→y = 100)

HyRV (SP = 20, LSP,Cx→y = 150)

Figure 5.6: Monitoring overhead of fir for three monitoring modes under all cost configu-

rations.

5.3.2.3 Hybrid Monitor with Mixed Behaviour

The program representing this class (i.e. fir with CFG of the size 24 vertices and 27 arcs)

does not clearly belong to the previous two classes. The number of redundant samples for

this program reduces by a factor of six as the sampling period increases from 10 × LSP

to 20 × LSP . This brings the overheads of ET and TT modes to a comparable level

and makes the ILP model outcome highly sensitive to the elementary monitoring costs.

Figure 5.6 shows the monitoring overhead of fir under the three modes of monitoring for

different cost configurations. One can observe that when the sampling period is 10×LSP ,

the model correctly chooses ET mode for the monitoring schemes. However, if we set

the sampling period to 20 × LSP , then the ILP model provides a hybrid solution for all

three cost configurations. The proposed hybrid solutions have slightly higher overheads in

comparison to ET mode, but perform as good as TT mode except for two cases in practice.

The reason for this discrepancy lies in the fact that our approach is a heuristic algorithm

and, hence, finds suboptimal solutions in some cases. Note, however, that this discrepancy

does not dramatically affect the usefulness of our approach.

62

5.4 Concluding Remarks

This chapter presented an approach that combines two techniques in the literature of run-

time verification to reduce the overhead: (1) the traditional event-triggered (ET) approach,

and (2) the time-triggered (TT) method for real-time systems. Hybrid runtime verification

is a technique that can effectively exploit the advantages of both approaches to reduce the

overhead of runtime monitoring. To this end, an optimization problem that takes into

account the cost of different monitoring interactions (i.e., monitor invocation in ET, sam-

pling and building history in TT, and mode switching) was formulated. In particular, the

objective of the problem is to minimize the cumulative overhead in all execution paths

using the aforementioned costs.

Since solving the general problem can be computationally unsolvable (e.g., due to the

existence of unbounded loops) or expensive (i.e., not in NP), an integer linear programming

heuristic was proposed to find suboptimal but effective solutions to the problem by trans-

forming it into an instance of the integer linear programming problem. The experimental

results on a subset of the SNU-RT benchmark suite showed that hybrid monitoring can

effectively reduce the runtime monitoring overhead; in cases where hybrid schemes are not

beneficial, the heuristic can determine, with relatively good accuracy, whether exclusively

an ET or TT monitor would yield in lower overhead given a target sampling period.

63

Chapter 6

Conclusions

Chapters 4 and 5 presented new techniques that may be applied to the field of runtime veri-

fication. In Chapter 4, three different heuristics were developed to address the intractability

of solving the problem of minimizing the number of events that require buffering in time-

triggered runtime verification to preserve correct program state reconstruction [18]. The

three heuristics (greedy, vertex-cover based, and genetic) preserve correctness in program

state reconstruction and significantly improve the efficiency of generating a feasible instru-

mentation scheme for time-triggered runtime verification. This efficiency comes with at

the cost of sub-optimally instrumenting the program; however, experimental results and

analyses show that sacrificing optimality in instrumentation still results in similar run time

performance with respect to the optimal scheme.

Chapter 5 introduced the concept of hybrid runtime verification, where the combina-

tion of event- and time-triggered monitoring techniques are used to reduce the cost of

runtime monitoring. Event-triggered monitoring is advantageous when critical events are

sporadic and time-triggered monitoring is more efficient when critical events are bursty.

The technique presented in Chapter 5 statically analyzes a program and aims to determine

a monitoring scheme that yields in near-optimal overhead. Experimental results and anal-

yses in Section 5.3 show that hybrid runtime verification is feasible and in some cases can

dramatically reduce the observed monitoring overhead at run time.

64

Chapter 7

Future Work

The runtime monitoring techniques presented in this thesis share one common limitation:

the heuristics/algorithms that solve the respective optimization problems heavily rely on

static analysis. Particularly, the presented algorithms are very sensitive to the input execu-

tion time estimates and the frequency distribution of the paths the program under scrutiny

takes at run time. Future work in these areas of runtime verification should explore more

sophisticated mechanisms and algorithms to address this issue.

In the experiments that were conducted for reducing the memory utilization of the

monitor for time-triggered runtime verification (see Section 4.4), it was evident that some of

the solutions did not strongly correlate to the measured memory utilization of the monitor

because no weights were applied to the control-flow graph to give more importance to basic

blocks that are more likely to execute at run time. The heuristics and ILP model indirectly

assumes that the execution of the basic blocks are equally likely at run time. In hybrid

runtime monitoring, the formulation introduced the notion of frequencies/weights to give

frequently executing basic blocks higher priority with respect to optimizing the monitor’s

execution overhead with respect to time. However, this requires extensive program profiling

for good accuracy, which may be infeasible for larger programs or a large range of system

input and disturbances.

In a recent paper published by Navabpour et al. [20], they proposed a method that

uses symbolic execution [45, 55] to alter the monitor’s sampling period at run time by

evaluating the program state on-the-fly. For the SNU-RT benchmark suite [51] that they

65

used in their experiments, they discovered that the maximum number of feasible paths

in the programs was 8, which is a number that is significantly less than the number of

all paths in a control-flow graph. Furthermore, this method will enable the monitor to

dynamically switch ‘modes’ (or sampling periods) so the monitor may operate at different

frequencies at the same program point depending on the state of the program. The two

problems that were explored in this thesis could benefit from leveraging the idea of using

symbolic execution:

• Reduction in the amount of time required to solve problem instances; given the results

of [20], it could make hybrid runtime verification more scalable.

• Improved solution accuracy. The accuracy comes from utilizing the program state at

run time as opposed to fixing the instrumentation and monitoring schemes statically

(i.e., before run time). Dynamically selecting the instrumentation and monitoring

schemes would likely reduce monitoring overhead by making ‘better’ decisions, pro-

vided that the cost of conditionally instrumentation program points are kept rela-

tively low in comparison to other monitoring costs.

Symbolic execution occurs prior to run time and may still present a barrier to time-

triggered and hybrid runtime verification because of the resources that are required to

compute feasible and (near-)optimal instrumentation schemes. With that said, other dy-

namic solutions for time-triggered and hybrid runtime verification may scale better for

larger programs under inspection. Leveraging existing work on learning algorithms, prob-

abilistic models, and control theory (i.e., discrete-event systems) may alleviate some of

the cost required to generate effective and efficient time-triggered and/or hybrid runtime

verification solutions.

66

References

[1] G. Tassey, “The economic impacts of inadequate infrastructure for software testing,”

National Institute of Standards and Technology, RTI Project, no. 7007.011, 2002.

[2] R. Charette, “Why software fails [software failure],” Spectrum, IEEE, vol. 42, no. 9,

pp. 42–49, 2005.

[3] ——, “This car runs on code,” IEEE Spectrum, vol. 46, no. 3, p. 3, 2009.

[4] B. Bonakdarpour and S. Fischmeister, “Runtime monitoring of time-sensitive systems

– tutorial supplement,” in Proc. of the 2nd International Conference on Runtime

Verification (RV), San Francisco, USA, 2011.

[5] E. M. Clarke and J. M. Wing, “Formal methods: state of the art and future

directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643, dec 1996. [Online].

Available: http://doi.acm.org/10.1145/242223.242257

[6] M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal

of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S1567832608000775

[7] E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic,” in Logics of Programs, ser. Lecture Notes in Computer

Science, D. Kozen, Ed. Springer Berlin / Heidelberg, 1982, vol. 131, pp. 52–71,

10.1007/BFb0025774. [Online]. Available: http://dx.doi.org/10.1007/BFb0025774

67

http://doi.acm.org/10.1145/242223.242257
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://dx.doi.org/10.1007/BFb0025774

[8] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded Model

Checking,” ser. Advances in Computers. Elsevier, 2003, vol. 58, pp. 117–148. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0065245803580032

[9] J. Burch, E. Clarke, K. McMillan, and D. Dill, “Sequential circuit verification using

symbolic model checking,” in Design Automation Conference, 1990. Proceedings., 27th

ACM/IEEE, jun 1990, pp. 46–51.

[10] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” Comput-

ers, IEEE Transactions on, vol. C-35, no. 8, pp. 677–691, aug 1986.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking without

BDDs,” in Tools and Algorithms for the Construction and Analysis of Systems,

ser. Lecture Notes in Computer Science, W. Cleaveland, Ed. Springer Berlin

/ Heidelberg, 1999, vol. 1579, pp. 193–207, 10.1007/3-540-49059-0 14. [Online].

Available: http://dx.doi.org/10.1007/3-540-49059-0 14

[12] S. Colin and L. Mariani, “Run-Time Verification,” in Model-Based Testing of Reactive

Systems, ser. Lecture Notes in Computer Science, M. Broy, B. Jonsson, J.-P. Katoen,

M. Leucker, and A. Pretschner, Eds. Springer Berlin / Heidelberg, 2005, vol. 3472,

pp. 525–555. [Online]. Available: http://dx.doi.org/10.1007/11498490 24

[13] A. Pnueli and A. Zaks, “PSL model checking and run-time verification via

testers,” in Proceedings of the 14th international conference on Formal Methods, ser.

FM’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 573–586. [Online]. Available:

http://dx.doi.org/10.1007/11813040 38

[14] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification for LTL and TLTL,”

ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp. 14:1–14:64, Sep. 2011. [Online].

Available: http://doi.acm.org/10.1145/2000799.2000800

[15] ——, “Comparing LTL Semantics for Runtime Verification,” J. Log. and

Comput., vol. 20, no. 3, pp. 651–674, Jun. 2010. [Online]. Available: http:

//dx.doi.org/10.1093/logcom/exn075

[16] K. Havelund and A. Goldberg, “Verify Your Runs,” in Verified Software:

Theories, Tools, Experiments, B. Meyer and J. Woodcock, Eds. Berlin,

68

http://www.sciencedirect.com/science/article/pii/S0065245803580032
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1007/11813040_38
http://doi.acm.org/10.1145/2000799.2000800
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1093/logcom/exn075

Heidelberg: Springer-Verlag, 2008, pp. 374–383. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-540-69149-5 40

[17] D. Giannakopoulou and K. Havelund, “Automata-based verification of temporal prop-

erties on running programs,” in Automated Software Engineering, 2001. (ASE 2001).

Proceedings. 16th Annual International Conference on, Nov. 2001, pp. 412–416.

[18] B. Bonakdarpour, S. Navabpour, and S. Fischmeister, “Sampling-based runtime

verification,” in Proceedings of the 17th international conference on Formal methods,

ser. FM’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 88–102. [Online].

Available: http://dl.acm.org/citation.cfm?id=2021296.2021308

[19] S. Navabpour, C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister,

“Efficient Techniques for Near-Optimal Instrumentation in Time-Triggered Runtime

Verification,” in Runtime Verification, ser. Lecture Notes in Computer Science,

S. Khurshid and K. Sen, Eds. Springer Berlin Heidelberg, 2012, vol. 7186, pp.

208–222. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-29860-8 16

[20] S. Navabpour, B. Bonakdarpour, and S. Fischmeister, “Path-aware Time-triggered

Runtime Verification,” in Runtime Verification, ser. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, to appear in 2013.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: A Hard Real-Time

Runtime Monitor,” in Runtime Verification, ser. Lecture Notes in Computer Science,

H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Roşu,

O. Sokolsky, and N. Tillmann, Eds. Springer Berlin / Heidelberg, 2010, vol. 6418,

pp. 345–359. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16612-9 26

[22] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka,

and E. Zadok, “Runtime verification with state estimation,” in Proceedings

of the Second international conference on Runtime verification, ser. RV’11.

Berlin, Heidelberg: Springer-Verlag, 2012, pp. 193–207. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-29860-8 15

[23] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-MaC: A

Run-time Assurance Tool for Java Programs,” Electronic Notes in Theoretical

69

http://dx.doi.org/10.1007/978-3-540-69149-5_40
http://dx.doi.org/10.1007/978-3-540-69149-5_40
http://dl.acm.org/citation.cfm?id=2021296.2021308
http://dx.doi.org/10.1007/978-3-642-29860-8_16
http://dx.doi.org/10.1007/978-3-642-16612-9_26
http://dx.doi.org/10.1007/978-3-642-29860-8_15

Computer Science, vol. 55, no. 2, pp. 218–235, 2001. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1571066104002543

[24] K. Havelund and G. Roşu, “Monitoring Java Programs with Java PathExplorer,”

Electronic Notes in Theoretical Computer Science, vol. 55, no. 2, pp. 200–

217, 2001. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1571066104002531

[25] O. Kupferman and M. Y. Vardi, “Model Checking of Safety Properties,” Form.

Methods Syst. Des., vol. 19, no. 3, pp. 291–314, oct 2001. [Online]. Available:

http://dx.doi.org/10.1023/A:1011254632723

[26] K. Havelund and G. Roşu, “Monitoring Programs Using Rewriting,” in Proceedings

of the 16th IEEE international conference on Automated software engineering, ser.

ASE ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 135–. [Online].

Available: http://dl.acm.org/citation.cfm?id=872023.872572

[27] ——, “Synthesizing Monitors for Safety Properties,” in Proceedings of the 8th

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, ser. TACAS ’02. London, UK, UK: Springer-Verlag, 2002, pp. 342–356.

[Online]. Available: http://dl.acm.org/citation.cfm?id=646486.694486

[28] V. Stolz and E. Bodden, “Temporal Assertions using AspectJ,” Electron. Notes

Theor. Comput. Sci., vol. 144, no. 4, pp. 109–124, May 2006. [Online]. Available:

http://dx.doi.org/10.1016/j.entcs.2006.02.007

[29] G. Roşu, F. Chen, and T. Ball, “Synthesizing Monitors for Safety Properties:

This Time with Calls and Returns,” in Runtime Verification, ser. Lecture Notes in

Computer Science, M. Leucker, Ed., vol. 5289. Springer Berlin Heidelberg, 2008,

pp. 51–68. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89247-2 4

[30] K. Havelund and G. Roşu, “Efficient Monitoring of Safety Properties,” Int. J. Softw.

Tools Technol. Transf., vol. 6, no. 2, pp. 158–173, Aug. 2004. [Online]. Available:

http://dx.doi.org/10.1007/s10009-003-0117-6

[31] W. Zhou, O. Sokolsky, B. Loo, and I. Lee, “Dmac: Distributed monitoring

and checking,” in Runtime Verification, ser. Lecture Notes in Computer Science,

70

http://www.sciencedirect.com/science/article/pii/S1571066104002543
http://www.sciencedirect.com/science/article/pii/S1571066104002531
http://www.sciencedirect.com/science/article/pii/S1571066104002531
http://dx.doi.org/10.1023/A:1011254632723
http://dl.acm.org/citation.cfm?id=872023.872572
http://dl.acm.org/citation.cfm?id=646486.694486
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1007/978-3-540-89247-2_4
http://dx.doi.org/10.1007/s10009-003-0117-6

S. Bensalem and D. Peled, Eds. Springer Berlin Heidelberg, 2009, vol. 5779, pp.

184–201. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04694-0 13

[32] “Monitoring, Checking, and Steering of Real-Time Systems,” Electronic Notes in The-

oretical Computer Science, vol. 70, no. 4.

[33] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-

MaC: A Run-Time Assurance Approach for Java Programs,” Formal Methods

in System Design, vol. 24, pp. 129–155, 2004. [Online]. Available: http:

//dx.doi.org/10.1023/B%3AFORM.0000017719.43755.7c

[34] M. d’Amorim and G. Roşu, “Efficient Monitoring of ω-Languages,” in Computer

Aided Verification, ser. Lecture Notes in Computer Science, K. Etessami and

S. Rajamani, Eds. Springer Berlin / Heidelberg, 2005, vol. 3576, pp. 311–318,

10.1007/11513988 36. [Online]. Available: http://dx.doi.org/10.1007/11513988 36

[35] Y. Falcone, J.-C. Fernandez, and L. Mounier, “Runtime Verification of Safety-

Progress Properties,” in Runtime Verification, ser. Lecture Notes in Computer

Science, S. Bensalem and D. Peled, Eds. Springer Berlin Heidelberg, 2009, vol.

5779, pp. 40–59. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04694-0 4

[36] Z. Manna and A. Pnueli, “A hierarchy of temporal properties (invited paper, 1989),”

in Proceedings of the ninth annual ACM symposium on Principles of distributed

computing, ser. PODC ’90. New York, NY, USA: ACM, 1990, pp. 377–410. [Online].

Available: http://doi.acm.org/10.1145/93385.93442

[37] E. Chang, Z. Manna, and A. Pnueli, “Characterization of temporal property classes,”

in Automata, Languages and Programming, ser. Lecture Notes in Computer Science,

W. Kuich, Ed. Springer Berlin / Heidelberg, 1992, vol. 623, pp. 474–486, 10.1007/3-

540-55719-9 97. [Online]. Available: http://dx.doi.org/10.1007/3-540-55719-9 97

[38] M. B. Dwyer, A. Kinneer, and S. Elbaum, “Adaptive Online Program Analysis,” in

Proceedings of the 29th international conference on Software Engineering, ser. ICSE

’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 220–229. [Online].

Available: http://dx.doi.org/10.1109/ICSE.2007.12

71

http://dx.doi.org/10.1007/978-3-642-04694-0_13
http://dx.doi.org/10.1023/B%3AFORM.0000017719.43755.7c
http://dx.doi.org/10.1023/B%3AFORM.0000017719.43755.7c
http://dx.doi.org/10.1007/11513988_36
http://dx.doi.org/10.1007/978-3-642-04694-0_4
http://doi.acm.org/10.1145/93385.93442
http://dx.doi.org/10.1007/3-540-55719-9_97
http://dx.doi.org/10.1109/ICSE.2007.12

[39] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-Based Runtime

Verification,” in Verification, Model Checking, and Abstract Interpretation,

ser. Lecture Notes in Computer Science, B. Steffen and G. Levi, Eds.

Springer Berlin / Heidelberg, 2004, vol. 2937, pp. 277–306. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-24622-0 5

[40] E. Bodden, L. Hendren, and O. Lhoták, “A Staged Static Program Analysis

to Improve the Performance of Runtime Monitoring,” in ECOOP 2007 Object-

Oriented Programming, ser. Lecture Notes in Computer Science, E. Ernst, Ed.

Springer Berlin / Heidelberg, 2007, vol. 4609, pp. 525–549. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-73589-2 25

[41] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem, “Collaborative runtime

verification with tracematches,” in Proceedings of the 7th international conference

on Runtime verification, ser. RV’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.

22–37. [Online]. Available: http://dl.acm.org/citation.cfm?id=1785141.1785146

[42] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A. Smolka, S. D. Stoller,

and E. Zadok, “Software monitoring with controllable overhead,” Int. J. Softw.

Tools Technol. Transf., vol. 14, no. 3, pp. 327–347, Jun. 2012. [Online]. Available:

http://dx.doi.org/10.1007/s10009-010-0184-4

[43] H. Zhu, M. Dwyer, and S. Goddard, “Predictable Runtime Monitoring,” in Real-Time

Systems, 2009. ECRTS ’09. 21st Euromicro Conference on, Jul. 2009, pp. 173–183.

[44] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok, and

J. Seyster, “Adaptive runtime verification,” in Proc. 3rd International Conference on

Runtime Verification (RV’12), Istanbul, Turkey, sep 2012.

[45] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,

no. 7, pp. 385–394, Jul. 1976. [Online]. Available: http://doi.acm.org/10.1145/

360248.360252

[46] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “MiBench: A free, commercially representative embedded benchmark

suite,” in Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE

72

http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-540-73589-2_25
http://dl.acm.org/citation.cfm?id=1785141.1785146
http://dx.doi.org/10.1007/s10009-010-0184-4
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252

International Workshop, ser. WWC ’01. Washington, DC, USA: IEEE Computer

Society, 2001, pp. 3–14. [Online]. Available: http://dx.doi.org/10.1109/WWC.2001.15

[47] “ILP solver lp solve,” http://lpsolve.sourceforge.net/5.5/.

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

3rd ed. The MIT Press, 2009.

[49] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate language

and tools for analysis and transformation of c programs,” Proceedings of Conference

on Compilier Construction, 2002.

[50] “GNU debugger,” http://www.gnu.org/software/gdb/.

[51] “SNU Real-Time Benchmarks,” http://www.cprover.org/goto-cc/examples/snu.html.

[52] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program

Analysis and Transformation,” in International Symposium on Code Generation and

Optimization: Feedback Directed and Runtime Optimization, 2004, p. 75.

[53] GrammaTech Inc., “CodeSurfer R©,” http://www.grammatech.com/products/

codesurfer/.

[54] SRI, “Yices: An SMT Solver (1.0.34),” http://yices.csl.sri.com/index.shtml.

[55] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs,” in Proceedings of the 8th

USENIX conference on Operating systems design and implementation, ser. OSDI’08.

Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855741.1855756

73

http://dx.doi.org/10.1109/WWC.2001.15
http://lpsolve.sourceforge.net/5.5/
http://www.gnu.org/software/gdb/
http://www.cprover.org/goto-cc/examples/snu.html
http://www.grammatech.com/products/codesurfer/
http://www.grammatech.com/products/codesurfer/
http://yices.csl.sri.com/index.shtml
http://dl.acm.org/citation.cfm?id=1855741.1855756

	List of Tables
	List of Figures
	Introduction
	Summary of Contributions
	Outline

	Related Work
	Reducing Runtime Verification Overhead
	Time-triggered Runtime Verification

	Preliminaries
	Checking System Properties at Run Time
	Control-flow Analysis
	Time-triggered Runtime Verification
	Transforming Control-flow Graphs
	Determining the Longest Sampling Period (LSP)
	Increasing the Longest Sampling Period

	Heuristics for Time-triggered Runtime Monitoring
	Introduction
	Optimizing Memory Overhead in Time-triggered Runtime Verification
	Integer Linear Programming
	Integer Linear Programming Model

	Heuristics
	Heuristic 1: Greedy Heuristic
	Heuristic 2: Minimum Vertex Cover Heuristic
	Heuristic 3: Genetic Algorithm

	Experimental Results
	Performance of Heuristics
	Analysis of Instrumentation Overhead

	Concluding Remarks

	Hybrid Runtime Monitoring
	Introduction
	Hybrid Runtime Verification
	Overhead Runtime Costs
	Utilizing Integer Linear Programming as a Heuristic

	Implementation and Experimental Results
	Experimental Setup
	Experimental Results

	Concluding Remarks

	Conclusions
	Future Work
	References

