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Abstract 
The actual service loading histories of most engineering components are characterized by variable 

amplitudes and are sometimes rather complicated. The goal of this study was to estimate the fatigue 

life of nickel-chromium-molybdenum 30CrNiMo8HH steel alloy under axial and pure torsion 

variable amplitude loading (VAL) conditions. The investigation was directed at two primary factors 

that are believed to have an influence on fatigue life under such loading conditions: load sequence 

and mean stress. The experimental work for this research included two-step loading, non-zero mean 

strain loading, and VAL tests, the results of which were added to previously determined fully 

reversed strain-controlled fatigue data. The effect of load sequence on fatigue life was examined 

through the application of the commonly used linear damage accumulation rule along with the 

Manson and Marco–Starkey damage accumulation methods, the latter of which takes load sequence 

into account. Based on the two-step experimental results, both the Manson and Marco–Starkey 

methods were modified in order to eliminate the empirically determined constants normally required 

for these two methods. The effect of mean stress on fatigue life was investigated with the use of three 

life prediction models: Smith–Watson–Topper (SWT), Fatemi–Socie (FS), and Jahed–Varvani (JV). 

The cycles from the VAL histories were counted using a rainflow counting procedure that maintains 

the applied strain sequence, and a novel method was developed for the estimation of the total energy 

density required for the JV model. For two-step loading and for all three fatigue models employed, 

the modified damage accumulation methods provided superior fatigue life predictions. However, 

regardless of the damage accumulation method applied, the most satisfactory fatigue life correlation 

for VAL was obtained using the energy-based JV model. 
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Chapter 1 
Introduction 

1.1 Background 
In solid mechanics, the term “fatigue of materials” refers to the cumulative damage occurring under 

cyclic loading conditions. The investigation of failure due to fatigue includes consideration of a 

number of metallurgical aspects, such as dislocations, slip bands, and microcracks. Real-world 

engineering components are subjected to cyclic loading with, in most cases, variable amplitudes. 

Structures such as aircraft, automobiles, offshore structures, and nuclear power stations are all subject 

to fluctuating loading. The consequences of fatigue failure can be catastrophic: sudden failure in an 

aircraft engine, an automobile wheel, or a nuclear pipe could lead to significant loss of life and 

property. Consideration of failure due to fatigue is therefore an essential element in the design of 

components that are subjected to cyclic loading. 

A number of approaches have been proposed and categorized with respect to determining fatigue 

damage: stress-based, strain-based, and energy-based. Stress-based approaches were developed as 

early as 1850 and are considered the simplest fatigue prediction methods. However, those approaches 
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were created as a means of predicting fatigue life at low loading levels and hence are appropriate only 

for the high-cycle fatigue (HCF) regime. For the low-cycle fatigue (LCF) regime in which plastic 

strain is dominant, strain-based approaches are more suitable. Both stress and strain terms are 

associated with energy-based and critical plane approaches, and the deformation behaviour of the 

material is therefore incorporated into these fatigue-damage models. Whichever approach to fatigue 

prediction is utilized, a number of fatigue parameters must be obtained through constant amplitude 

loading (CAL) experiments. 

While engineering structures are subject primarily to variable amplitude loading (VAL), which can be 

generated from external conditions such as wind gusts, road roughness, or ocean waves, fatigue 

characterization experiments are nevertheless conducted under CAL. The prediction of  fatigue life 

under VAL based on the fatigue properties obtained from the results of CAL experiments requires the 

consideration of several  additional parameters, including the load sequence effect, the mean stress 

effect, and appropriate cycle counting and damage accumulation methods. 

1.2 Motivation 
Nickel-chromium-molybdenum 30CrNiMo8HH steel alloy provides excellent tensile and yield 

strength, along with a high degree of hardness, stiffness, and fatigue resistance. These properties have 

led to its wide use in a variety of engineering components, such as power trains, chemical plants, 

drive shafts, aircraft structures, and turbine blades [1]. Because the cost of failure of such components 

could be enormous, all expected failure modes including fatigue must be taken into consideration 

during the design process. 

The typical type of loading for the above applications of the alloy is VAL. For fatigue prediction 

modeling, fully reversed CAL experiments are usually performed in order to determine fatigue 

properties. For VAL histories, however, the amplitudes are constantly changing, thus entailing a high 

possibility of non-zero mean stress. The estimation of the fatigue life of a component subjected to 

VAL requires that the load sequence and mean stress effects be accounted for. The majority of the 

available studies related to VAL account for mean stress based on the damage prediction model 

utilized; however, the application of the simplest damage accumulation method fails to incorporate 

the effect of load sequence. 

The estimation of fatigue life under VAL is a topic of ongoing interest, with no universally accepted 

approach. The lack of knowledge about this topic with respect to 30CrNiMo8HH steel alloy and the 
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interest expressed by General Dynamics Land Systems (GDLS) led to a decision to attempt to shed 

addition light on the estimation of fatigue life under VAL relative to this material. For this research, 

the load sequence effect was examined using a variety of damage accumulation methods, and the 

mean stress effect was explored using three different fatigue life prediction models. 

1.3 Plan and Objectives 
The main objective of this research was to acquire insight into the estimation of the fatigue life of 

30CrNiMo88HH steel under VAL. For the fatigue parameters obtained from fully reversed CAL tests 

to be used for fatigue life predictions under VAL, the effects of two factors must be taken into 

consideration: load sequence and mean stress. Monotonic and fully reversed CAL data were already 

available from previous studies of 30CrNiMo88HH steel [1, 2]. Several strain-controlled two-step 

and non-zero mean strain experiments were conducted in order to investigate the effects of load 

sequence and mean stress on fatigue life, respectively. The final step was to conduct axial and 

torsional VAL experiments for evaluation purposes. The specific objectives of this study can thus be 

summarized as follows: 

1. Obtaining the monotonic properties from the available data and performing additional 

experiments as necessary. 

2. Determining the strain-based and energy-based fatigue properties of 30CrNiMo88HH steel 

alloy based on the CAL data available. 

3. Examining the effect of load sequence on fatigue life based on the two-step fatigue data 

through the application of several damage accumulation methods along with a cycle counting 

method that maintains the applied strain sequence. 

4. Applying three fatigue life prediction models to the mean strain data and evaluating their 

predictions. 

5. Developing proper fatigue model for 30CrNiMo88HH that combines the life prediction 

models, the damage accumulation approaches, and the cycle counting method in order to obtain 

optimal fatigue life correlations under VAL conditions. 
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1.4 Thesis Layout 
This thesis is comprised of five chapters. The current chapter summarizes the importance of taking 

fatigue failure into account in the design process and the value of considering the approaches 

available in the literature. It also explains the motivation behind the research and its specific 

objectives. The literature review provided in  Chapter 2 introduces the factors that affect fatigue life 

under VAL and the methods available for taking those factors into account. Monotonic, cyclic, and 

fatigue properties are described along with the fatigue life prediction models currently 

employed.  Chapter 3 defines the material investigated and presents the testing procedures, followed 

by a discussion of the experimental results, material properties, and observations based on the tests 

conducted. Chapter 4 contains an analysis of the findings of the experiments performed along with 

suggested methods for estimating fatigue life. The last chapter includes the summary, conclusions, 

and recommendations for possible future research. 
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Chapter 2 
Literature Review 

2.1 Introduction 
The current chapter includes an overview of variable amplitude loading (VAL) and the factors that 

require consideration with respect to the estimation of fatigue life. Section   2.2 discusses the elements 

included in VAL histories, including cycle counting, damage accumulation, and the effects of mean 

stress. Monotonic, cyclic, and fatigue properties are then presented in section   2.3. Section  2.4 

introduces the three fatigue life prediction models employed in this study: Smith–Watson–Topper 

(SWT), Fatemi–Socie (FS), and Jahed–Varvani (JV). The chapter concludes with an analysis of the 

methods used for estimating plastic energy density. 
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2.2 VAL Elements 
Because the fatigue properties of engineering materials are determined through experiments 

conducted under constant amplitude loading (CAL), additional factors must be taken into account 

when the fatigue life is estimated for a component subjected to VAL conditions. VAL blocks are 

comprised of varied loading amplitudes in a specific order with, in most cases, a non-zero mean stress 

level. The estimation of fatigue life under such loading conditions must therefore include 

consideration of the effects on fatigue life of the load sequence and the mean stress. Another 

consideration associated with the prediction of fatigue life under VAL conditions is the development 

of a method of extracting CAL cycles from the VAL histories, a method known as cycle counting. 

2.2.1 Cycle Counting Methods 
Although most service loading histories are VAL in nature, fatigue properties are obtained through 

sets of experiments under CAL conditions. For these fatigue properties to be used for the estimation 

of fatigue lives under actual service loading, the VAL histories must be decomposed into CAL cycles 

by means of a cycle counting method. With the use of a damage accumulation method, the overall 

damage caused by the VAL block can then be ascertained based on the sum of the individual amounts 

representing the damage caused by each cycle counted. The damage accumulation methods are 

explained in detail in the subsection  2.2.2. Several approaches have been proposed for counting 

cycles, some of which are discussed below. 

Early literature reports of cycle counting approaches include methods such as level-crossing counting, 

peak counting, and simple range counting. Examples of the application of these methods are available 

in [3-5]. The method most commonly used, however, is the rainflow counting method, first proposed 

by Matsuishi and Endo in 1968 [6]. This method is based on the decomposition of the VAL history 

into peaks and valleys, followed by the counting of the cycles based on the ranges of the reversals. A 

variety of procedures and algorithms associated with the rainflow counting method are reported in the 

literature [7-10]. However, the procedure most frequently used is the one described in ASTM 

Standard E1049-85 [10], which is known as the simplified rainflow counting for repeating histories 

and is illustrated in Figure  2.1. 
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Figure  2.1: Simplified rainflow counting method [10]: (a) original history; (b) rearranged 
history; (c), (d), (e) cycle counting and removal of cycles counted; (f) counting results 

The counting steps for the example shown in the figure can be summarized as follows: 

1. Rearrange the original VAL history (Figure  2.1 (a)) to start with the highest peak (or lowest 

valley) and move the preceding reversals to the end of the history (Figure  2.1 (b)). 

2. Start counting from the first point and count the cycle if the range of the reversal is equal to 

or greater than the previous range (Figure  2.1 (c)). 

3. After a cycle has been counted, remove the preceding reversal (e.g., EF in Figure  2.1 (c)) and 

start the counting again. 
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4. The cycle counting is completed after the last (largest) cycle (DGD in Figure  2.1 (e)) has 

been counted. 

Although the above counting procedure is recommended by ASTM for repeated VAL blocks, the 

rearrangement of the history could change the effect of the load sequence on fatigue life, especially 

for longer VAL blocks or for blocks that contain several repeated cycles.  

Another rainflow counting algorithm for longer VAL blocks was proposed by Glinka and Kam [11]. 

Their method involves no rearrangement of the histories or prior knowledge of the complete VAL 

history. Because load sequence was one of the factors under investigation in the research for this 

thesis, an approach similar to that of the Glinka–Kam algorithm was utilized for counting the cycles, 

as discussed in detail in section  4.2. 

2.2.2 Damage Accumulation and Load Sequence Effect 
Each counted CAL cycle obtained based on the methods described in the previous section causes 

individual damage that is dependent on its amplitude and mean stress levels. The overall damage 

caused by the VAL block can then be obtained from the sum of those individual damage amounts. 

The term damage accumulation refers to the method by which the individual damage amounts are 

summed. Numerous approaches to damage accumulation have been reported in the literature [5, 12],  

some of which require empirically determined constants and are quite complicated. The approaches 

discussed in the following subsections are among those that can be implemented simply: the linear 

damage rule, Manson’s approach, and the Marco–Starkey theory. 

2.2.2.1 Linear Damage Rule (Miner’s Rule) 
The linear damage rule, also known as Miner’s rule, was proposed initially by Palmgren in 1924 [13] 

and later by Miner in 1945 [14]. It states that the damage fraction caused by 𝑛𝑖 cycles at applied stress 

amplitude 𝜎𝑖 (or 𝜀𝑖 in strain-controlled tests) is defined as  

 𝐷𝑖 =
𝑛𝑖
𝑁𝑓𝑖

 ( 2.1) 

where 𝑛𝑖 = number of applied cycles at the 𝑖𝑡ℎ loading level 
 𝑁𝑓𝑖 = fatigue life until failure at the applied loading level 
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Miner’s rule assumes that failure occurs when the summation of the damage fractions at different 

loading levels equals one (∑ 𝐷𝑖𝑖 = 1). For the two-step loading test shown in Figure  2.2, with a 

known number of applied cycles at the first step (𝑛1), the number of cycles at the second step (𝑛2) 

can be estimated based on Miner’s rule as 

 𝑛2 = �1 −
𝑛1
𝑁𝑓1

�𝑁𝑓2 ( 2.2) 

 

Figure  2.2: Two-step loading: (a) CAL stress blocks; (b) S–Nf curve [4] 

Although it is still widely used as a damage accumulation method, the linear damage rule has 

associated deficiencies. First, it fails to account for the effect of load sequence on fatigue life. For 

example, it predicts identical fatigue life for both two-step high-low (HL) and low-high (LH) tests, 

which is inconsistent with experimental observations [3, 12, 15]. The second drawback of the linear 

damage rule is the assumption of a constant rate of damage accumulation regardless of past histories. 

Experiments show that, for the HL tests, the sum of the damage fractions is less than one, but for the 

LH tests, it is greater than one [5, 12, 15]. Miner’s rule also ignores the reduction in the endurance 

limit caused by the inclusion of some cycles above the endurance limit of the virgin material [16]. 
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2.2.2.2 Manson’s Approach 
To overcome some of the shortcomings of Miner’s rule, Manson et al. [17, 18] proposed a cumulative 

damage approach based on the modification of the stress–life line (or the fatigue life curve in 

general). They suggested rotating the S–N line about a convergence point, which is considered to be a 

material constant. Figure  2.3 shows schematically the application of Manson’s approach for two-step 

loading. 

 

Figure  2.3: Applying Manson’s approach to two-step loading: (a) HL; (b) LH [18] 

As can be seen from the figure, the new S–N line (dashed line) can be obtained based on the two 

points it passes through. The first point, regarded as a material constant, is located on the original line 

and is suggested to fall within the range of 102–103 cycles. The second point is obtained as 

 𝑁(𝑥) = 𝑁1 − 𝑛1 ( 2.3) 

where 𝑁1 = fatigue life until failure at the 1st stress level 
 𝑛1 = number of cycles applied at the 1st step 
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In two-step loading experiments, the revised S–N line includes consideration of the effect of the load 

sequence on fatigue life because it predicts lower fatigue life for the HL test than for the LH test. 

Manson’s approach also accounts for the reduction in the endurance limit through the extension of the 

modified S–N line to meet the fatigue life at the knee of the original fatigue curve. However, 

experimental results show that the reduction in the fatigue limit is not as great as suggested with this 

approach [16]. A drawback of Manson’s approach is the empirically determined constant that is 

required for the convergence point. For this research, this deficiency was overcome by relating the 

convergence point to the second point, as discussed in section  4.3. 

2.2.2.3 Marco–Starkey Theory 
Another attempt to address the shortcomings of Miner’s rule was the first nonlinear damage 

accumulation theory, which was proposed by Marco and Starkey [19]. This theory is based on 

experimental observations that show that the sum of the damage fractions (𝑛𝑖 𝑁𝑖⁄ ) is less than one for 

HL tests but greater than one for LH tests. The method can be expressed as the following power 

relation: 

 𝐷 = �
𝑛𝑖
𝑁𝑖
�
𝑥𝑖

 ( 2.4) 

where 𝑥𝑖 is a value related to the 𝑖𝑡ℎ loading level obtained based on empirical relations. 

Multiple damage curves result from Equation ( 2.4) at different values for the exponents 𝑥𝑖, as shown 

in Figure  2.4. 
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Figure  2.4: Nonlinear damage curves for the Marco–Starkey theory [19] 

This figure shows that the critical value at which failure is expected to occur is dependent on the 

sequence of the applied load. Based on the Marco–Starkey theory, for the HL test (𝜎1𝜎3), the critical 

value predicted is expected to be less than one, whereas for the LH test (𝜎3𝜎1), the critical value is 

expected to be greater than one, results that agree with experimental observations. However, 

performing the additional experiments required in order to find the values for the exponents 𝑥𝑖 can be 

considered a disadvantage of this approach. As a means of avoiding extra experiments, the 

modification incorporated for this research was to relate the values for the exponents to the predicted 

values of the fatigue lives rather than to those of the applied load. Section  4.3 provides details. 

2.2.3 Effect of the Mean Stress 
Mean stress, which is the mean value of the maximum and minimum stresses, is an important factor 

that affects fatigue life during both load-controlled and strain-controlled tests, and it is very likely to 

be found in VAL histories. For axial loading, it is believed that tensile mean stress causes greater 

damage, which consequently decreases fatigue life, while compressive mean stress increases it [3, 4, 

20, 21]. In the high-cycle fatigue (HCF) regime, the effect of mean stress can be examined through 

either load-controlled or strain-controlled tests because the response of the material is primarily 
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elastic. However, in the low-cycle fatigue (LCF) regime during strain-controlled tests, the mean stress 

effect becomes noticeable only if half-life mean stress exists [20, 22]. Depending on the type of mean 

loading, two distinct phenomena can be observed. For load-controlled tests with positive mean stress, 

cyclic creep (or ratcheting strain) is expected, whereas in strain-controlled tests with positive mean 

strain, mean stress relaxation is more likely [4, 23]. Figure  2.5 shows these two phenomena 

schematically. 

 

Figure  2.5: Phenomena associated with mean loading:  
(a) cyclic creep; (b) mean stress relaxation [23] 

Mean stress relaxation and cyclic creep affect fatigue life in opposite ways. While mean stress 

relaxation eliminates the effect of the applied mean strain, cyclic creep causes additional damage to 

the material, which results in a reduction in fatigue life [22]. In stress-life approaches, the modified 

Goodman diagram [4] is commonly used as a means of incorporating the effects of  mean stress in the 

HCF regime [24]. 
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During strain-controlled fatigue tests, mean stress relaxation (Figure  2.5 (b)) is a common 

phenomenon that indicates a decrease in the mean stress over subsequent cycles. The rate of mean 

stress relaxation becomes significant in the LCF regime, which negates the effect of the applied mean 

strain [3, 25]. A number of methods have been proposed in order to account for the effect of mean 

stress on fatigue life during strain-controlled tests. Assuming that the effect of mean strain on fatigue 

life is noticeable only in the HCF regime, Morrow [26] suggested subtracting the mean stress, 𝜎𝑚, 

from the elastic component of the Coffin–Manson equation, as presented in the Equation ( 2.5). 

 𝜀𝑎 =
𝜎𝑓′ − 𝜎𝑚

𝐸
�2𝑁𝑓�

𝑏 + 𝜀𝑓′�2𝑁𝑓�
𝑐
 ( 2.5) 

where 𝜎𝑓′ = fatigue strength coefficient 
 𝜎𝑚 = mean stress 
 𝑏 = fatigue strength exponent 
 𝜀𝑓′  = fatigue ductility coefficient 
 𝑐 = fatigue ductility exponent 
 2𝑁𝑓 = number of reversals to failure 
 

Another suggestion for addressing the mean stress effect is to subtract it from both the elastic and the 

plastic terms, as proposed by Manson and Halford [27]: 

 𝜀𝑎 =
𝜎𝑓′ − 𝜎𝑚

𝐸
�2𝑁𝑓�

𝑏 + 𝜀𝑓′ �
𝜎𝑓′ − 𝜎𝑚
𝜎𝑓′

�
𝑐/𝑏

�2𝑁𝑓�
𝑐
 ( 2.6) 

For the three damage models employed in the research for this thesis, the mean stress effect was taken 

into account in different ways. In the SWT and FS models, the correction for mean stress is 

determined based on the maximum stress on the critical planes, whereas in the JV model, the positive 

elastic energy is the parameter that covers the effect of mean stress on fatigue life, as discussed in 

section  2.4. 
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2.3 Monotonic, Cyclic, and Fatigue Properties 
The properties of any material are typically determined through sets of experiments conducted in pre-

specified conditions. Monotonic properties are established through the application of a gradually 

increasing load/displacement until the point of failure, whereas cyclic and fatigue properties are 

ascertained through sets of CAL experiments conducted with differing applied load/strain levels. The 

following subsections provide a brief description of the testing procedures and the determination of 

the properties. 

2.3.1 Monotonic Properties 
For monotonic tension and compression properties, tests involve controlling the stress rate, strain rate, 

or crosshead speed, whereas for monotonic torsion properties, tests typically entail regulating the 

torque and measuring the angle of twist. Additional details about monotonic axial and torsional 

experiments are available in ASTM standards [28] and [29], respectively. The yield strength revealed 

by monotonic tests is commonly defined based on the 0.2 % strain offset. Figure  2.6 shows a 

schematic of the engineering and the true stress–strain curves. 

 

 

Figure  2.6: Monotonic properties [3] 
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The engineering axial strain is calculated from the applied/measured displacement as 

 𝜀 =
∆𝑙
𝑙0

 ( 2.7) 

where ∆𝑙 = applied/measured displacement 
 𝑙0 = extensometer gage length 

The engineering shear strain is calculated from the angle of twist as 

 𝛾 = ∅ ×
𝜋

180
 ( 2.8) 

where ∅ is the applied/measured angle of twist in degrees. 

For solid-bar specimens, the axial stress can be calculated as 

 𝜎 =
4𝐹
𝜋𝐷2

 ( 2.9) 

where 𝐹 = applied/measured axial load 
 𝐷 = diameter of the solid-bar specimen 
 

The engineering axial and shear stresses for tubular specimens can be calculated as 

 

𝜎 =
4𝐹

𝜋(𝐷𝑜2 − 𝐷𝑖2)
 

𝜏 =
16𝑇

𝜋(𝐷𝑜 − 𝐷𝑖)(𝐷𝑜 + 𝐷𝑖)2
 

( 2.10) 

where 𝐷𝑜 = outer diameter of the tubular specimen 
 𝐷𝑖 = inner diameter of the tubular specimen 
 𝑇 = applied/measured torque 
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2.3.2 Cyclic Properties 
Cyclic properties are determined through strain-controlled CAL experiments. The cyclic stress–strain 

curve is commonly represented by the Ramberg–Osgood equation, which can be written for axial 

loading in the following form: 

 𝜀𝑎 = 𝜀𝑎𝑒 + 𝜀𝑎
𝑝 =

𝜎𝑎
𝐸

+ �
𝜎𝑎
𝐾′�

1
𝑛′  ( 2.11) 

where 𝐾′ = strength coefficient 
 𝑛′ = strain hardening exponent 
 𝐸 = elastic modulus 
 𝜀𝑎 = strain amplitude 
 𝜎𝑎 = stress amplitude 
 𝜀𝑎𝑒 = elastic strain amplitude 
 𝜀𝑎

𝑝 = plastic strain amplitude 
 

The Ramberg–Osgood coefficients (𝐾′ & 𝑛′) can be calculated by plotting the true plastic strain 

amplitudes against the true stress amplitudes in a log–log scale and fitting a line through the data 

points. The stress intercept at 𝜀𝑎
𝑝=1 represents the strength coefficient, and the slope of the line 

represents the strain hardening exponent, as shown in Figure  2.7.  

 

Figure  2.7: Coefficients of cyclic stress–strain curve: (a) axial; (b) shear 
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The plastic strain amplitudes can be calculated as 

 𝜀𝑎
𝑝 = 𝜀𝑎 − 𝜀𝑎𝑒 = 𝜀𝑎 −

𝜎𝑎
𝐸

 ( 2.12) 

For the calculation of pure torsion loading, Equations ( 2.11) and ( 2.12) are applied after the axial 

parameters have been replaced with the shear parameters. 

2.3.3 Fatigue Properties 
Depending on whether the damage fatigue model employed is stress-based, strain-based, or energy-

based, a number of fatigue properties can be calculated. For stress-based models, the axial stress–life 

curve can be represented in the form 

 𝜀𝑎 =
𝜎𝑓′

𝐸
�2𝑁𝑓�

𝑏
 ( 2.13) 

where 𝜎𝑓′ = fatigue strength coefficient 
 𝑏 = fatigue strength exponent 
 2𝑁𝑓 = number of reversals to failure 
 

Stress-based fatigue properties (𝜎𝑓′ & 𝑏) can be determined by plotting the stress amplitudes against 

the fatigue life reversals in a log–log scale and then fitting a line through the data points. The fatigue 

strength coefficient and the fatigue strength exponent are derived from the stress amplitude intercept 

at 2𝑁𝑓 = 1 and from the slope of the line, respectively. For pure torsion loading, Equation ( 2.13) is 

applied after the replacement of the axial fatigue parameters with the shear parameters. The stress-

based fatigue properties are shown schematically in Figure  2.8. 
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Figure  2.8: Stress–life curve: (a) axial curve; (b) shear curve 

In strain-based approaches, the strain–life curve, also known as the Coffin–Manson curve, is used for 

predicting fatigue life. The Coffin–Manson fatigue life equation for axial loading can be written as 

 𝜀𝑎 =
𝜎𝑓′

𝐸
�2𝑁𝑓�

𝑏 + 𝜀𝑓′�2𝑁𝑓�
𝑐
 ( 2.14) 

where 𝜎𝑓′ = fatigue strength coefficient 
 𝑏 = fatigue strength exponent 
 𝜀𝑓′  = fatigue ductility coefficient 
 𝑐 = fatigue ductility exponent 
 2𝑁𝑓 = number of reversals to failure 
 

Strain-based fatigue parameters (𝜎𝑓′, 𝑏, 𝜀𝑓′  & 𝑐) can be obtained by plotting the elastic and plastic 

strain amplitudes against the fatigue life reversals in a log–log scale and then fitting a straight line 

through each set of points. The intercepts of the elastic and plastic strain lines at 2𝑁𝑓 = 1 represent 

𝜎𝑓′/𝐸 and 𝜀𝑓′ , respectively. The fatigue strength and fatigue ductility exponents are calculated from the 

slopes of the elastic and plastic strain lines, respectively. For pure torsion loading, Equation ( 2.14) is 

applied after the axial fatigue parameters have been replaced with the shear parameters. Figure  2.9 

shows a schematic of the strain–life curve. 
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Figure  2.9: Strain–life curve: (a) axial curve; (b) shear curve 

The energy-based fatigue life prediction model employed is based on the total energy density 

(∆𝐸𝑡 = ∆𝐸𝑝 + ∆𝐸𝑒+) as the damage-controlling factor. As in the Coffin–Manson equation, the total 

energy–life curve for axial loading can be written as 

 ∆𝐸𝐴 = 𝐸𝑒′(2𝑁𝐴)𝐵 + 𝐸𝑓′(2𝑁𝐴)𝐶 ( 2.15) 

where ∆𝐸𝐴 = total strain energy density 
 𝐸𝑒′  = fatigue strength coefficient 
 𝐵 = fatigue strength exponent 
 𝐸𝑓′  = fatigue toughness 
 𝐶 = fatigue toughness exponent 
 2𝑁𝐴 = number of reversals to failure 

Energy-based fatigue parameters (𝐸𝑒′ , 𝐵, 𝐸𝑓′  & 𝐶) are calculated in the same manner as the Coffin–

Manson parameters. The fatigue strength coefficient is calculated from the intercept of the positive 

elastic energy line, and the fatigue strength toughness is derived from the intercept of the plastic 

energy line at the first reversal, respectively. The slopes of the positive elastic and plastic energy lines 

represent the fatigue strength and the fatigue toughness exponents, respectively. For pure torsion 

loading, Equation ( 2.15) is applied after the replacement of the axial fatigue parameters with the shear 

parameters. Figure  2.10 shows a schematic of the energy-based fatigue properties. 
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Figure  2.10: Total energy–life curve: (a) axial curve; (b) shear curve 

2.4 Fatigue Life Prediction Models 
Several methods have been developed and categorized for determining fatigue failure, including 

stress-based, strain-based, and energy-based approaches. Stress-based approaches, which are the 

simplest and were the earliest developed, have been established for low loading levels (HCF regime). 

One of the stress-based approaches commonly used is the maximum equivalent stress parameter [4], 

in which the von Mises equivalent stress is the damage-controlling factor. The von Mises equivalent 

stress for tension–torsion loading can be given as [3] 

 𝜎𝑒𝑞 = �𝜎2 + 3𝜏2 ( 2.16) 

where 𝜎 = axial stress component 
 𝜏 = shear stress component 

For higher applied loads (LCF regime), such as stresses localized at notches, the relation between 

stress and strain is no longer linear, an observation that has led to the development of strain-based 

fatigue life prediction approaches, in which the applied strain is split into elastic and plastic 

components (Equation ( 2.12)). An example of a strain-based approach is the maximum equivalent 

strain parameter [4] in which the von Mises equivalent strain is the factor that controls fatigue 

damage. The von Mises equivalent strain for tension–torsion loading may be expressed as [3] 
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 𝜀𝑒𝑞 = �𝜀2 +
𝛾2

3
 ( 2.17) 

where 𝜀 = axial strain component 
 𝛾 = shear strain component 

An explanation of fatigue life prediction based on the previously mentioned maximum equivalent 

stress and maximum equivalent strain parameters for 30CrNiMo8HH steel under uniaxial and 

multiaxial loading is available in [2].  

A third generation of fatigue life prediction models combines stress and strain components so that the 

material deformation behaviour is incorporated into the damage models. These fatigue damage 

models can be classified as energy-based models, including the subset known as critical plane 

approaches. Fatigue life predictions provided by energy-based models are generally more acceptable 

than those resulting from stress-based and strain-based models, especially for multiaxial loading 

conditions [4]. In the work conducted for this thesis, three energy-based models were employed for 

estimating fatigue life under VAL conditions. A brief description of each model follows. 

2.4.1 Smith–Watson–Topper Model 
The Smith–Watson–Topper (SWT) model [30], also known as the SWT parameter, is a critical plane 

fatigue model that includes consideration of the plane of maximum axial strain as the failure plane. 

This model was first proposed as a means of incorporating the effects of mean stress through the 

maximum normal stress on the critical plane, but it can also be used for predicting fatigue life under 

multiaxial loading [31]. The SWT parameter can be written as 

 𝜎𝑛,𝑚𝑎𝑥
∆𝜀1

2
=
𝜎𝑓′

2

𝐸
�2𝑁𝑓�

2𝑏 + 𝜎𝑓′𝜀𝑓′�2𝑁𝑓�
𝑏+𝑐

 ( 2.18) 

where 𝜎𝑛,𝑚𝑎𝑥 = maximum normal stress on the maximum axial strain plane 
 ∆𝜀1 = maximum principal strain range 
 𝜎𝑓′ = axial fatigue strength coefficient 
 𝑏 = axial fatigue strength exponent 
 𝜀𝑓′  = axial fatigue ductility coefficient 
 𝑐 = axial fatigue ductility exponent 
 2𝑁𝑓 = number of reversals to failure 
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2.4.2 Fatemi–Socie Model 
The second fatigue life prediction model considered in this research is the critical plane model 

proposed by  Fatemi and Socie (FS) [32], which is a modified version of the previously proposed 

Brown–Miller model [33]. Fatemi and Socie suggested that the critical plane is the plane at which the 

shear strain and normal stress are both at their maximum values. The FS model can be expressed as 

 𝛾𝑚𝑎𝑥 �1 + 𝑘
𝜎𝑛,𝑚𝑎𝑥

𝜎𝑦
� =

𝜏𝑓′

𝐺
�2𝑁𝑓�

𝑏𝑠 + 𝛾𝑓′�2𝑁𝑓�
𝑐𝑠 ( 2.19) 

where 𝜎𝑛,𝑚𝑎𝑥 = maximum normal stress on the maximum shear strain plane 
 𝛾𝑚𝑎𝑥 = maximum shear strain 
 𝜎𝑦 = yield strength 
 𝑘 = constant 
 𝜏𝑓′  = shear fatigue strength coefficient 
 𝑏𝑠 = shear fatigue strength exponent 
 𝛾𝑓′  = shear fatigue ductility coefficient 
 𝑐𝑠 = shear fatigue ductility exponent 
 2𝑁𝑓 = number of reversals to failure 

The constant 𝑘 can be obtained by fitting the uniaxial data against the pure torsion data, and it can 

also be estimated from the formula in [34] as 

 𝑘 = �

𝜏𝑓′

𝐺 �2𝑁𝑓�
𝑏𝑠 + 𝛾𝑓′�2𝑁𝑓�

𝑐𝑠

1.3
𝜎𝑓′

𝐸 �2𝑁𝑓�
𝑏 + 1.5𝜀𝑓′�2𝑁𝑓�

𝑐
− 1�

𝐾′(0.002)𝑛′

𝜎𝑓′�2𝑁𝑓�
𝑏  ( 2.20) 

where 𝐾′and 𝑛′ are the Ramberg–Osgood coefficients discussed in subsection  2.3.2. 

2.4.3 Jahed–Varvani Model 
Unlike the fatigue life equations for SWT and FS models, the expression of fatigue life proposed by 

Jahed and Varvani (JV) [35] includes both axial and shear energy-based fatigue properties. The 

damage controlling factor in the JV model is the total energy density, which includes both plastic and 

positive elastic energy densities, as shown in Figure  2.11. This definition of total energy density as a 

damage parameter was first proposed by Golos and Ellyin [36, 37].  
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Figure  2.11: Plastic and positive elastic energy densities [22] 

The JV fatigue life equation can be expressed as 

 𝑁𝑓 =
∆𝐸𝐴
∆𝐸

𝑁𝐴 +
∆𝐸𝑇
∆𝐸

𝑁𝑇 ( 2.21) 

where ∆𝐸𝐴 = total energy density due to purely axial loading 
 ∆𝐸𝑇 = total energy density due to purely torsion loading 
 ∆𝐸 = ∆𝐸𝐴 + ∆𝐸𝑇 
 𝑁𝐴 = fatigue life obtained under purely axial loading 
 𝑁𝑇 = fatigue life obtained under purely torsion loading 
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The fatigue life values (𝑁𝐴 & 𝑁𝑇) are obtained from the total energy–fatigue life curves discussed in 

subsection ( 2.3.3): 

 
∆𝐸𝐴 = 𝐸𝑒′(2𝑁𝐴)𝐵 + 𝐸𝑓′(2𝑁𝐴)𝐶  

∆𝐸𝑇 = 𝑊𝑒
′(2𝑁𝑇)𝐵𝑠 + 𝑊𝑓

′(2𝑁𝑇)𝐶𝑠 
( 2.22) 

where 𝐸𝑒′  = axial fatigue strength coefficient 
 𝐵 = axial fatigue strength exponent 
 𝐸𝑓′  = axial fatigue toughness 
 𝐶 = axial fatigue toughness exponent 
 𝑊𝑒

′ = shear fatigue strength coefficient 
 𝐵𝑠 = shear fatigue strength exponent 
 𝑊𝑓

′ = shear fatigue toughness 
 𝐶𝑠 = shear fatigue toughness exponent 

Plastic energy, also known as cyclic energy, can be calculated based on the hysteresis loop area using 

trapezoidal integration, whereas positive elastic energy is calculated as 

 ∆𝐸𝑒+ =
𝜎𝑚𝑎𝑥2

2𝐸
 ( 2.23) 

where 𝜎𝑚𝑎𝑥 is the maximum hysteresis loop stress. 

2.4.3.1 Plastic Energy Estimation 
Depending on the behaviour of the material, a variety of approaches have been proposed for the 

estimation of plastic energy density. For Masing materials [38] (Figure  2.12), in which hysteresis 

loops can be approximated by doubling the cyclic stress–strain curve, the plastic energy density can 

be computed as [39] 

 ∆𝑊𝑝 = �
1 − 𝑛′

1 + 𝑛′
� ∆𝜎∆𝜀𝑝 ( 2.24) 

where ∆𝜎 = axial stress range 
 ∆𝜀𝑝 = axial plastic strain range 
 𝑛′ = strain hardening exponent (subsection  2.3.2) 
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Figure  2.12: Behaviour of Masing materials [22] 

For non-Masing materials (Figure  2.13 (a)), Lefebvre and Ellyin [40] proposed a method for 

estimating plastic energy density. Their approach is based on a new cyclic stress–strain curve (master 

curve) that contains all of the loading branches of the hysteresis loops at different strain amplitudes 

(Figure  2.13 (b)). This master curve can be obtained by changing the location of the hysteresis loops 

so that all the linear portions and the upper branches are matched. A new coordinate system is then 

established, with its origin located at the lowest point of the smallest hysteresis loop, as shown in 

Figure  2.13 (b).   

 

Figure  2.13: Estimation of plastic energy for non-Masing materials:  
(a) non-Masing material; (b) master curve [22] 
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After the new coordinate system has been established, new cyclic stress–strain properties for the 

master curve are calculated based on its origin. Hence, the master curve equation, which is a doubled 

Ramberg–Osgood equation, can be written as 

 ∆𝜀∗ =
∆𝜎∗

𝐸
+ 2 �

∆𝜎∗

2𝐾∗�

1
𝑛∗

 ( 2.25) 

where all asterisk superscripts indicate that those values are related to the new coordinate system.  𝐾∗ 

and 𝑛∗ are calculated as explained in subsection  2.3.2. 

The Lefebvre–Ellyin method for estimating plastic energy density can then be expressed as 

 ∆𝑊𝑝 = �
1 − 𝑛∗

1 + 𝑛∗
� ∆𝜎∆𝜀𝑝 +

2𝑛∗

1 + 𝑛∗
𝛿𝜎0∆𝜀𝑝 ( 2.26) 

where 𝛿𝜎0 = increase in the proportional limit (Figure  2.13 (b)) 
 𝑛∗ = strain hardening exponent (new coordinate system) 
 ∆𝜎 = axial stress range (original coordinate system) 
 ∆𝜀𝑝 = axial plastic strain range (original coordinate system) 
 

The increase in the proportional limit 𝛿𝜎0 is dependent on the applied strain amplitude and can be 

calculated as 

 𝛿𝜎0 = ∆𝜎 − ∆𝜎∗ = ∆𝜎 − 2𝐾∗ �
∆𝜀𝑝

2
�
𝑛∗

 ( 2.27) 

Another method of estimating plastic energy is through the use of a cyclic plasticity model for 

approximating the elasto–plastic response of the material. Noban et al. [2] employed the two 

plasticity models developed by Mroz [41] and Chaboche [42] in order to model the cyclic behaviour 

of 30CrNiMo8HH steel, and they concluded that the estimation produced by the Chaboche model is 

more appropriate under multiaxial loading conditions. For this research, another method of estimating 

total energy density under uniaxial loading is discussed in section  4.4. 
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2.5 Previous Studies of Variable Amplitude Loading 
A number of studies have been conducted with respect to the prediction of fatigue life under VAL. 

Bannantine and Socie [43, 44] proposed a method for the estimation of fatigue life under multiaxial 

VAL. Their approach was based on the application of the SWT and FS critical plane models, and they 

applied the linear damage rule for damage accumulation. Depending on the fatigue model employed, 

the rainflow counting method was used to determine either the axial or shear cycles. Łagoda and 

Macha [45] examined the fatigue life of 30CrNiMo8 steel under bending-torsion VAL. They 

employed the rainflow counting method and Miner’s rule and concluded that the most satisfactory 

fatigue life correlation was obtained based on the maximum shear and normal stresses on the fracture 

plane. A new method that requires no cycle counting was suggested by Tchankov and Esselinov [46]. 

They considered an incremental dissipated energy measurement as the damage-controlling factor, 

with the suggestion that failure would occur if this dissipated energy reaches a critical level. The 

application of the Tchankov–Esselinov approach to random loading conditions, however, requires 

additional VAL experiments. For S45C steel under multiaxial VAL, Kim and Park [47] applied two 

shear-based multiaxial fatigue parameters: Kandil–Brown–Miller [48] and FS. They reported 

adequate fatigue life estimations from both parameters provided that the rainflow method is used for 

counting the cycles obtained from the shear strain history and that the linear damage rule is applied 

for damage summation. Another method of counting the cycles for a multiaxial VAL was proposed 

by Lee et al. [49]. Their suggestion was to count the cycles from both normal and shear histories and 

to adopt the one that produces the higher damage value. Colin and Fatemi [50] successfully applied 

the SWT parameter along with the rainflow counting method and the linear damage rule in order to 

predict the fatigue life of stainless steel 304L and aluminum 7075-T6 under VAL. 

In most of the VAL studies available, the effect of load sequence on fatigue life is often ignored 

because of the application of the linear damage rule for computing the accumulated damage. The 

work conducted for this thesis has shed additional light on the effect of load sequence through the 

application of a variety of damage accumulation methods that include consideration of load sequence. 
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Chapter 3 
Experimental Program 

3.1 Introduction 
This chapter provides detailed information about the material under investigation, the testing 

equipment, and the experimental results. Section  3.2 explains the hardness, chemical composition, 

and specimen geometry of the material. The testing machine and the extensometers utilized, along 

with their capacities, are presented in section  3.3. Section  3.4 describes the testing program and the 

experimental results, including those produced by the monotonic, constant amplitude loading (CAL), 

two-step, mean strain, and variable amplitude loading (VAL) experiments. The monotonic, cyclic, 

and fatigue properties are discussed in subsections  3.4.1 and  3.4.2. 
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3.2 Material and Specimens 
The material investigated is 30CrNiMo8HH steel alloy with a Vickers hardness number (VHN) and 

chemical composition as presented in Table  3.1 and Table  3.2, respectively. All two-step, mean 

strain, and VAL experiments were performed on tubular specimens with the geometry shown in 

Figure  3.1. The monotonic and CAL experiments had already been conducted during previous studies 

of the same material [1, 2]. The monotonic and axial fatigue experiments were performed on solid-bar 

specimens, whereas the pure torsion tests were performed on the same tubular specimens used for the 

previous tests, as shown in Figure  3.1. 

Table  3.1: Vickers hardness number of 30CrNiMo8HH steel 

Test Test Average Overall Average 
SP29 266.0  
SP57 261.6 262.5± (4.6) 
SP58 259.8  

 

 

Table  3.2: Chemical composition of 30CrNiMo8HH steel [1] 

 C Cr Ni Mo Si Mn P S Fe 
wt% 0.26–0.33 1.8–2.2 1.8–2.2 0.3–0.5 <0.4 <0.6 <0.035 <0.035 Balance 

 

 

 

Figure  3.1: Specimen geometry [mm] 
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3.3 Testing Equipment and Standards 
All tests were performed on an Instron 8874 Axial–Torsion Fatigue Testing System with axial and 

torsional capacities of up to 25 KN and 100 Nm, respectively, and V-grooved jaw faces were used for 

gripping the tubular specimens. The frequencies for all tests ranged from 0.5 Hz to 1.0 Hz, and the 

cyclic axial and biaxial tests were performed based on ASTM-E606 [51] and ASTM-E2207 [52], 

respectively. Figure  3.2 shows the biaxial testing machine. 

 

Figure  3.2: Testing machine 

Two uniaxial and biaxial extensometers were used for controlling the strain in all tests, with Instron’s 

uniaxial extensometer (Figure  3.3 (a)) for control of the strain in the axial two-step and axial mean 

strain tests. For the torsional two-step, torsional mean strain, and VAL tests, the strain was controlled 

with Epsilon’s axial–torsion extensometer (Figure  3.3 (b)). The uniaxial extensometer has a 10 mm 

gage length and a ±1.0 mm axial extension capacity, whereas the biaxial extensometer gage length is 

20 mm and its axial extension and rotational capacities are ±1.0 mm and ±3.0º, respectively. Vishay 

M-Coat D was used to protect the surfaces of the specimens at the contact points and to help hold the 

extensometers.  
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Figure  3.3: Extensometers employed: (a) uniaxial; (b) biaxial 

3.4 Experimental Results and Material Properties 
The objective of this research was to estimate the fatigue life of 30CrNiMo8HH steel alloy under 

VAL by taking into account the VAL components (section  2.2). For this research, the monotonic 

behaviour and the CAL fatigue data for the material under investigation were already available based 

on previous studies [1, 2]. To examine the effects of load sequence and mean stress on fatigue life, 

two sets of strain-controlled two-step and non-zero mean strain axial and pure torsion loading 

experiments were conducted. A set of VAL experiments were then performed in order to evaluate the 

procedure for estimating fatigue life. The failure criterion for all cyclic tests was considered to be 20 

% load or torque drop. 

3.4.1 Monotonic Tests 
Solid-bar and tubular specimens were used for tensile and torsional monotonic tests, respectively. The 

geometry of the solid-bar specimens is available in [1], and that of the tubular specimens is shown in 

Figure  3.1. The tensile tests were performed under strain-controlled loading for which the applied 

strain rate was within 0.015 ± 0.006 mm/mm/min, as recommended by ASTM standard [28], whereas 

the torsion monotonic test was performed under rotation-controlled loading. The monotonic 

properties of the material obtained from the tests were tabulated as shown in Table  3.3, and the axial 

and shear monotonic stress–strain curves are depicted in Figure  3.4. 
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Table  3.3: Monotonic properties 

Axial 𝜎𝑦 [MPa] 𝜎𝑢𝑙𝑡 [MPa] 𝐸 [GPa] 

 895.345  
± (8.094) 

1027.860  
± (10.523) 

195.382  
± (7.977) 

Shear 𝜏𝑦 [MPa] 𝜏𝑢𝑙𝑡 [MPa] 𝐺 [GPa] 

 443.499 
± (27.576) 

613.743 
± (9.536) 

71.615 
± (0.544) 

 
 

 

Figure  3.4: Monotonic stress-strain curves: (a) axial curve; (b) shear curve 

3.4.2 Constant Amplitude Loading Tests 
All CAL fatigue experiments were performed under strain-controlled fully reversed loading, at 

standard laboratory temperature and humidity levels. Most of the tests were conducted in the low-

cycle fatigue (LCF) regime, in which the strain amplitudes ranged from 0.34 % to 1 % and 0.69 % to 

1.39 % for the cyclic tension–compression and the cyclic shear experiments, respectively. In addition 

to the fully reversed axial and pure torsion data, a set of multiaxial proportional and nonproportional 

fatigue data are available in [1, 2]. The CAL experimental data (Table  3.4) were used in order to 

calculate the cyclic curve parameters as well as the strain-based and energy-based fatigue properties. 
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Table  3.4: Fully reversed CAL experimental results [2] 

Test 𝜀𝑎 (%) 
[mm/mm] 

𝛾𝑎 (%) 
[rad] 

𝜎𝑎 
[MPa] 

𝜏𝑎 
[MPa] 

𝑁𝑓 
[cycles] 

Axial 0.71 0 703 0 1221 
Axial 0.72 0 708.80 0 1649 
Axial 0.46 0 652 0 3064 
Axial 0.51 0 654.5 0 2191 
Axial 0.40 0 624 0 12732 
Axial 0.34 0 624 0 25686 
Axial 0.42 0 634 0 11484 
Axial 1.00 0 720 0 500 
Shear 0 1.06 0 372.01 1414 
Shear 0 1.06 0 372.78 1833 
Shear 0 1.06 0 377.62 2341 
Shear 0 0.79 0 357.17 5200 
Shear 0 0.80 0 359.88 5500 
Shear 0 1.39 0 401.69 793 
Shear 0 1.38 0 407.48 1100 
Shear 0 0.69 0 341.11 13748 

 
The cyclic curve can be represented by the Ramberg–Osgood equation (Equation ( 2.11)): 

 𝜀𝑎 = 𝜀𝑎𝑒 + 𝜀𝑎
𝑝 =

𝜎𝑎
𝐸

+ �
𝜎𝑎
𝐾′�

1
𝑛′  ( 3.1) 

 
For 30CrNiMo8HH steel, the Ramberg–Osgood parameters, namely, the strength coefficients and the 

strain hardening exponents, were calculated and tabulated as shown in Table  3.5, and the cyclic axial 

and shear experimental data as well as the cyclic curves are shown in Figure  3.5. 

Table  3.5: Cyclic stress–strain parameters 

Axial 𝐾′ [MPa] 𝑛′ 

 925.356 0.052 

Shear 𝐾𝑠′ [MPa] 𝑛𝑠′  

 722.400 0.125 
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Figure  3.5: Cyclic stress–strain curves 

The strain–life curve is commonly represented by the Coffin–Manson curve (Equation ( 2.14)): 

 𝜀𝑎 =
𝜎𝑓′

𝐸
�2𝑁𝑓�

𝑏 + 𝜀𝑓′�2𝑁𝑓�
𝑐
 ( 3.2) 

The strain-based fatigue properties and the strain-life curves for 30CrNiMo8HH steel are available in 

Table  3.6 and Figure  3.6, respectively. 

Table  3.6: Strain-based fatigue parameters 

Axial 𝜎𝑓′ [MPa] 𝜀𝑓′  𝑏 𝑐 

 951.160 1.064 -0.041 -0.733 

Shear 𝜏𝑓′  [MPa] 𝛾𝑓′  𝑏𝑠 𝑐𝑠 

 608.063 0.277 -0.057 -0.470 
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Figure  3.6: Strain–life curves: (a) axial curve; (b) shear curve 

As with the strain–life curve, based on Equation ( 2.15), the total energy–life curve can be expressed 

as 

 ∆𝐸𝐴 = 𝐸𝑒′(2𝑁𝐴)𝐵 + 𝐸𝑓′(2𝑁𝐴)𝐶 ( 3.3) 

 
The energy-based fatigue properties of 30CrNiMo8HH steel were calculated and are presented in 

Table  3.7, and the energy–life curves, together with the experimental results, are shown in Figure  3.7. 

Table  3.7: Energy-based fatigue parameters 

Axial 𝐸𝑒′  [MJ/m3] 𝐸𝑝′  [MJ/m3] 𝐵 𝐶 

 2.262 3651.153 -0.081 -0.774 

Shear 𝑊𝑒
′ [MJ/m3] 𝑊𝑒

′ [MJ/m3] 𝐵𝑠 𝐶𝑠 

 2.734 1353.355 -0.132 -0.647 
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Figure  3.7: Total energy–life curves: (a) axial curve; (b) shear curve 

 

3.4.3 Two-Step Loading Tests 
The load sequence effect is one of the factors that must be considered with respect to the estimation 

of fatigue life under VAL. To this end, several strain-controlled axial and pure torsion two-step 

loading experiments were conducted at different strain amplitudes, as shown schematically in 

Figure  3.8. The high-low (HL) tests (Figure  3.8 (a)) were conducted first with pre-specified 𝑛1 cycles 

for the first step and then continued at the second step until failure. The low-high (LH) experiments 

(Figure  3.8 (b)) were then performed, with the number of cycles for the first step, 𝑛1, being equal, in 

most cases, to the 𝑛2 values obtained from the HL tests. A comparison of the fatigue life results of the 

HL and LH tests reveals the load sequence effect. 
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Figure  3.8: Two-step experiments: (a) HL test; (b) LH test 

3.4.3.1 Axial Two-Step Tests 
A set of strain-controlled HL and LH experiments were performed in order to investigate the effect of 

load sequence on fatigue life under axial loading. Different strain amplitudes were applied for the first 

and second steps, with the number of pre-specified cycles for the HL first steps differing according to 

the applied strain amplitudes. The applied strain amplitudes were 0.45 % to 0.50 % and 0.25 % to 

0.33 % for the high step and low step, respectively. The axial two-step experimental results are 

presented in Table  3.8, and a sample of the hysteresis loops for the two steps is shown in Figure  3.9 

( Appendix A includes the hysteresis loops for the other tests).  

Table  3.8: Axial two-step experimental results 

 1st step 2nd step 1st step 2nd step 1st step 2nd step  

Test 𝜀𝑎 (%) 
[mm/mm] 

𝜀𝑎 (%) 
[mm/mm] 

𝜎𝑎 
[MPa] 

𝜎𝑎 
[MPa] 

𝑛1 
 [cycles] 

𝑛2 
 [cycles] 

𝑁𝑓 
[cycles] 

SP7-HL 0.50 0.25 623.73 451.03 1000 20480 21480 
SP8-LH 0.25 0.50 493.61 603.52 20500 2034 22534 
SP9-HL 0.45 0.30 605.63 496.69 2000 13130 15130 

SP10-LH 0.30 0.45 566.97 597.18 13000 4105 17105 
SP5-LH 0.33 0.45 571.50 626.97 8500 664 9164 

 

0 50 100 150
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fatigue life Nf [cycles]

St
ra

in
 [%

]

 

 

1st step
2nd step

0 50 100 150 200 250
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fatigue life Nf [cycles]
St

ra
in

 [%
]

 

 

1st step
2nd step

𝑛1 𝑛2 𝑛1 𝑛2

(a) (b)

 38 



 

 

Figure  3.9: SP7-HL hysteresis loops:  
[ɛa_high = 0.50 %; ɛa_low = 0.25 %] 

A comparison of the experimental results for tests SP7 and SP8 (Table  3.8) reveals that the number of 

cycles at the higher step is doubled in the LH test, and the same effect can be observed when the SP9 

and SP10 results are compared. The overall fatigue life results produced by the LH experiments could 

have been even higher if the number of cycles at the lower step had been increased. The fatigue life 

results of the axial two-step experiments show that load sequence does have an influence on fatigue 

life and that it should be taken into account when VAL conditions are present. 

3.4.3.2 Shear Two-Step Tests 
A similar procedure was used for the examination of the effect of load sequence on fatigue life under 

pure torsion loading. The amplitudes for the shear two-step experiments ranged from 1 % to 1.35 % 

for the higher step and from 0.50 % to 0.67 % for the lower step. A combination of a variety of strain 

amplitude steps and the associated fatigue life values observed were tabulated as shown in Table  3.9. 

A sample of the half-life hysteresis loops is depicted in Figure  3.10, and illustrations of additional 

loops are included in  Appendix A. 
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Table  3.9: Torsional two-step experimental results 

 1st step 2nd step 1st step 2nd step 1st step 2nd step  

Test 𝛾𝑎 (%) 
[mm/mm] 

𝛾𝑎 (%) 
[mm/mm] 

𝜏𝑎 
[MPa] 

𝜏𝑎 
[MPa] 

𝑛1 
 [cycles] 

𝑛2 
 [cycles] 

𝑁𝑓 
[cycles] 

SP22-HL 1.35 0.67 378.69 306.90 1033 3344 4377 
SP25-LH 0.68 1.35 341.99 380.07 2975 1461 4436 
SP26-HL 1.18 0. 59 376.66 299.15 1000 4632 5632 
SP27-LH 0.59 1.18 337.71 370.30 5631 1642 7273 
SP19-HL 1.00 0.50 372.92 282.61 1003 32731 33734 

 
 

 

Figure  3.10: SP19-HL hysteresis loops:  
[ɣa_high = 1.00 %; ɣa_low = 0.50 %] 

As with the axial loading, the load sequence under torsional loading can be observed when SP22 is 

compared with SP25 and when SP26 is compared with SP27. Although the number of cycles of the 

lower step in the HL and LH experiments is not identical, the number of cycles resulting at the higher 

step is greater from the LH experiments. The influence of load sequence is thus important with 

respect to both axial and pure torsion loading and should therefore be taken into account in the design 

of components subjected to VAL.  
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3.4.4 Mean Strain Loading Tests 
Mean stress is another factor likely to be present in a VAL scenario, which should thus also be 

accounted for in an estimation of fatigue life. A set of non-zero mean strain experiments were 

performed in order to quantify the effect of mean stress on fatigue life. To distinguish between the 

effect on fatigue life of strain amplitude and that of mean strain, a two-level factorial design [53] was 

employed for the testing procedure. A brief description of this experimental design follows, and the 

experimental results are presented in the next subsections. 

In the two-level factorial design, for each factor under investigation, namely the strain amplitude (𝜀𝑎) 

and the mean strain (𝜀𝑚), two levels (high and low) were selected and combined to form a set of four 

tests. It was assumed that the change in each factor is linear over the range of the levels selected. To 

eliminate any misleading interaction relations between the effects of the two factors under 

investigation, coded values (–1 & +1) were chosen for the statistical analysis. The results of the four 

experiments that resulted from the combination of the applied strain amplitudes and mean strains for 

the axial experiment are shown schematically in Figure  3.1, and the coded values were calculated 

based on Equation ( 3.4). 

 

Figure  3.11: Two-level factorial experiments at intersections of  
(a) uncoded values and (b) coded values 
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 𝜀𝑐𝑜𝑑𝑒𝑑 =
2(𝜀 − 𝜀𝑎𝑣𝑒)

(𝜀ℎ𝑖𝑔ℎ − 𝜀𝑙𝑜𝑤)
 ( 3.4) 

where 𝜀 = uncoded value of strain amplitude or mean strain 
 𝜀𝑎𝑣𝑒 = average value of the two levels selected 
 𝜀ℎ𝑖𝑔ℎ = higher level of strain amplitude or mean strain 
 𝜀𝑙𝑜𝑤 = lower level of strain amplitude or mean strain 

 
The underlying regression model for the two-level factorial design for axial loading can be written in 

the polynomial form 

 𝑁𝑓 = 𝛽0 + 𝛽1𝜀𝑎 + 𝛽2𝜀𝑚 + 𝛽12𝜀𝑎𝜀𝑚 + 𝑒1 ( 3.5) 

where 𝛽𝑖 = parameters to be determined 
 𝜀𝑎  = coded values of the strain amplitude  
 𝜀𝑚 = coded values of the mean strain 
 𝜀𝑎𝜀𝑚 = term refers to the interaction effect of the two factors under investigation 
 𝑒1 = term refers to a random error 

 
The purpose of the two-level factorial design employed for this study was to determine an empirical 

relation that relates the applied strain amplitude and the mean strain to the fatigue life observed. The 

same procedure can also be used for an estimation of the level of plastic energy density based on the 

applied strain amplitude and the mean strain. The experimental results obtained from the axial and 

torsional mean strain experiments are summarized in the following subsections. 

3.4.4.1 Axial Mean Strain Test Results 
Several axial mean strain experiments were performed in order to investigate the effect of mean stress 

on fatigue life. The set was comprised of the four factorial design experiments described above 

(Figure  3.11) along with additional tests at different levels of mean strain and strain amplitude, 

including a zero mean strain test. The applied strain amplitudes and mean strains for all of these 

experiments ranged from 0.30 % to 0.50 % and from 0.15 % to 0.25 %, respectively. The 

experimental results from the mean strain experiments are summarized in Table  3.10, in which the 

boldfaced rows represent the four factorial design experiments. Initial and half-life hysteresis loop 

samples are shown in Figure  3.12, and additional samples are included in  Appendix A. 
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Table  3.10: Axial mean strain experimental results 

 Uncoded values Coded values     

Test 𝜀𝑎 (%) 
[mm/mm] 

𝜀𝑚 (%) 
[mm/mm] 𝜀𝑎 𝜀𝑚 𝜎𝑎 

[MPa] 
𝜎𝑚 

[MPa] 
∆𝐸𝑝 × 10−2  

[MJ/m3] 
𝑁𝑓 

[cycles] 
SP4 0.30 0.15 -1 -1 540.06  71.54 33.35 24045 
SP12 0.40 0.15  1 -1 579.89 -2.56 149.10 4538 
SP15 0.30 0.25 -1  1 538.27  133.59 24.58 25869 
SP13 0.40 0.25  1  1 571.87  12.58 146.48 6826 
SP3 0.33 0.20 -0.34 0.13 561.91  98.33 45.85 11151 
SP6 0.40 0.20  1 0.13 572.63  13.43 141.00 10376 
SP11* 0.40 0.25  1  1 580.39  5.57 203.36 5525 
SP14 0.50 0.25  2.55  1 622.78 -10.19 405.31 1932 
SP16* 0.30 0.15 -1 -1 553.71  32.20 66.98 15633 
SP55 0.30 0 -1 -4 574.01 -31.38 27.49 41122 

 
 

 

Figure  3.12: SP4 hysteresis loops:  
[ɛa = 0.30 %; ɛm = 0.15 %] 

 
Since the correlation between the applied strain amplitude and fatigue life is commonly represented 

by a power law function, a logarithmic transformation was incorporated into Equation ( 3.5), from 

which the parameters 𝛽𝑖 can be found through linear regression. 
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The first four rows in Table  3.10 can be written in the form 

 

𝛽0 − 𝛽1 − 𝛽2 + 𝛽12 + 𝑒1 = log10( 24045) 

𝛽0 + 𝛽1 − 𝛽2 − 𝛽12 + 𝑒2 = log10( 4538) 

𝛽0 − 𝛽1 + 𝛽2 − 𝛽12 + 𝑒3 = log10( 25869) 

𝛽0 + 𝛽1 + 𝛽2 + 𝛽12 + 𝑒4 = log10( 6826) 

( 3.6) 

which can be presented in the  matrix form 

 𝑋 𝛽 + 𝑒 = 𝑦 ( 3.7) 

The parameters 𝛽𝑖  must be estimated such that the sum of squired errors (𝐿) is minimized, where 

 𝐿 = �𝑒𝑖2 = 𝑒𝑡
4

𝑖=1

𝑒 = �𝑦 − 𝑋 𝛽�
′
�𝑦 − 𝑋 𝛽� ( 3.8) 

The partial derivative 𝜕𝐿
𝜕 𝛽

= 0 results in  

 𝛽 = (𝑋𝑡𝑋)−1𝑋𝑡𝑦 ( 3.9) 

The derivation of Equation ( 3.9) is explained in greater detail in [53], section 10.3. 

The same procedure was used to relate plastic energy to the applied strain amplitudes and the mean 

strains. Both empirical formulations are as follows: 

 
log10�𝑁𝑓� = 4.0712 − 0.3257𝜀𝑎 + 0.0523𝜀𝑚 + 0.0364𝜀𝑎𝜀𝑚 

log10(𝑊𝑝) = −0.1867 + 0.3564𝜀𝑎 − 0.0350𝜀𝑚 + 0.0312𝜀𝑎𝜀𝑚 
( 3.10) 

Based on the analysis of variance (ANOVA) table and the residual plots (error in fatigue life 

prediction) [53], the interaction terms (𝜀𝑎𝜀𝑚) in Equations ( 3.10) are insignificant and can be omitted. 

On the other hand, the mean strain term cannot be omitted because the residual plots, which should 

show random error distributions, will instead indicate a decreasing trend (Figure  3.13 (b)) after the 

removal of those terms. Thus, 

 
log10�𝑁𝑓� = 4.0712 − 0.3257𝜀𝑎 + 0.0523𝜀𝑚 

log10(𝑊𝑝) = −0.1867 + 0.3564𝜀𝑎 − 0.0350𝜀𝑚 
( 3.11) 

where 𝜀𝑎 and 𝜀𝑚 are the coded values of the axial strain amplitude and mean strain, respectively.  
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Figure  3.13: Residual plots: (a) including the ɛm term; (b) excluding the ɛm term 

The logarithmic transformation was not applied with respect to the mean strain, so the empirical 

formulas can be used for zero mean strains as well. The coded values for strain amplitudes and the 

mean strain can hence be calculated as 

 𝜀𝑎 =
2 �log10(𝜀𝑎_𝑢𝑛𝑐𝑜𝑑𝑒𝑑) − log10(0.003 × 0.004)

2 �

log10 �
0.004
0.003�

 ( 3.12) 

 𝜀𝑚 =
2 �𝜀𝑚_𝑢𝑛𝑐𝑜𝑑𝑒𝑑 − �

0.0015 + 0.0025
2 ��

0.0025 − 0.0015
 ( 3.13) 
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The experimental data shown in normal font in Table  3.10 were used as a means of evaluating the 

empirical relations presented in the Equation ( 3.11) formulas. The fatigue life and plastic energy 

density predictions based on the empirical relations were within a factor of 2 of the results from the 

mean strain tests (Figure  3.14 (a)). For the zero mean strain experiments, however, the fatigue life and 

plastic strain predictions were less satisfactory (Figure  3.14 (b)). These findings imply that the 

Equation ( 3.11) formulas cannot be used for a determination of the zero mean strain loading.  

 

Figure  3.14: Predictions of fatigue life and plastic strain based on the axial empirical relations:  
(a) non-zero mean strain tests; (b) zero mean strain tests 
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3.4.4.2 Shear Mean Strain Test Results 
As with axial loading, some shear mean strain tests were performed in order to study the effect of 

mean stress on fatigue life. The test parameters ranged from 0.60 % to 0.80 % for the applied shear 

strain amplitudes and from 0.25 % to 0.50 % for the shear mean strains. A zero mean strain test was 

also included. The experimental results for the shear mean strain tests were tabulated as shown in 

Table  3.11, in which the first four rows represent the experiments suggested based on the factorial 

design (as in Figure  3.11). Figure  3.15 shows an example of the stress–strain responses resulting from 

the shear mean strain experiments.  Appendix A includes the stress–strain responses for the other tests. 

Table  3.11: Shear mean strain experimental results 

 Uncoded values Coded values     

Test 𝛾𝑎 (%) 
[rad] 

𝛾𝑚 (%) 
[rad] 𝛾𝑎 𝛾𝑚 𝜏𝑎 

[MPa] 
𝜏𝑚 

[MPa] 
∆𝑊𝑝 × 10−2  

[MJ/m3] 
𝑁𝑓 

[cycles] 
SP30 0.60 0.25 -1 -1 325.52 14.62 96.52 14485 
SP31 0.80 0.25  1 -1 343.43 1.31 276.70 9705 
SP34 0.60 0.50 -1  1 320.20 15.97 111.04 11480 
SP33 0.80 0.50  1  1 345.67 5.67 271.77 4993 
SP29 0.40 0.25 -3.82 -1 286.32 75.80 16.57 42786 
SP56 0.60 0 -1 -3 329.33 -1.29 147.60 17827 

 
 

 

Figure  3.15: SP33 hysteresis loops:  
[ɣa = 0.80 %; ɣm= 0.50 %] 
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The empirical relations that indicate the links between fatigue life and plastic strain density on one 

hand and the applied strain amplitude and mean strain on the other can be derived based on the same 

procedure used for axial mean strain (Equations ( 3.6) to ( 3.13)). After the regression parameters have 

been determined and the interaction terms omitted, the two formulas can be written as 

 
log10�𝑁𝑓� = 3.9766 − 0.1339𝛾𝑎 − 0.0974𝛾𝑚 

log10(𝑊𝑝) = 0.2266 + 0.2115𝛾𝑎 + 0.0133𝛾𝑚 
( 3.14) 

Good fatigue life and plastic energy density correlations were calculated from the above equations for 

the experiments involving non-zero mean strain. However, for pure shear loading with zero mean 

strain, the fatigue life was overestimated, as shown in Figure  3.16 (b). 

 

Figure  3.16: Predictions of fatigue life and plastic strain based on the shear empirical relations:  
(a) non-zero mean strain tests; (b) zero mean strain tests 
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3.4.4.3 Mean Strain Observations 
The two-level factorial design employed facilitated a comparison of the independent effects of strain 

amplitude and mean strain. The effects of strain amplitude on fatigue life can be seen when the results 

of the experiments with the same mean strain are matched against those of the experiments involving 

different strain amplitudes, i.e., SP12 versus SP4 and SP13 versus SP15 in Table  3.10, and SP31 

versus SP30 and SP33 and SP34 in Table  3.11. As expected, the fatigue life decreases at higher strain 

amplitudes, as shown in Figure  3.17. 

 

Figure  3.17: Effects of strain amplitude on fatigue life:  
(a) pure axial loading; (b) pure torsion loading 
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Similarly, the effect of the applied mean strain on fatigue life can be seen when the test results for the 

same strain amplitudes are compared with those for different mean strains. In the axial loading 

experiments, the effect of mean strain on fatigue life can be observed from an examination of SP15 

versus SP4 and SP13 versus SP12, whereas in the pure torsion loading experiments, the mean strain 

effect is evident from a comparison of SP34 versus SP30 and SP33 versus SP31. Figure below shows 

the comparison of the axial and shear mean strain test data. 

 

Figure  3.18: Effects of mean strain on fatigue life:  
(a) pure axial loading; (b) pure torsion loading 
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Since it is believed that tensile mean stress is detrimental with respect to fatigue life, it was expected 

that higher levels of tensile mean strain would result in lower fatigue life values. However, as can be 

seen from Figure  3.18 (a), the fatigue life increased slightly at higher positive mean strains. On the 

other hand, the fatigue life values observed based on the pure shear loading experiments were 

unsurprisingly lower at higher levels of mean strain (Figure  3.18 (b)). 

In an attempt to explain the unexpected observations at higher levels of tensile mean strain, a number 

of factors, including maximum stress, mean stress, stress amplitude, and plastic energy, were 

compared. At higher fatigue life values (SP13, SP15), both the maximum and mean stresses were 

found to be also higher (Figure  3.19 (a) & (b)), which fails to account for the improvement in fatigue 

life. On the other hand, the stress amplitudes for the same tests are smaller than those at lower mean 

strains (Figure  3.19 (c)). This difference means that, for the mean strain ranges applied, the effect of 

the mean strain can be attributed to the stress amplitude rather than to the mean strain. The fact that 

higher stress amplitudes can be observed at lower mean strain levels can be attributed to the 

dependency of the level of cyclic softening on the strain amplitude and the mean strain levels. 

Stabilized plastic strain energy densities listed in Table  3.10 (areas of hysteresis loops) were 

compared to the fatigue life observations. A comparison of SP4 versus SP15 and SP12 versus SP13 in 

Table  3.12 reveals that the plastic energy densities calculated at higher mean strains are less than 

those at lower mean strains. In other words, plastic energy can be considered an additional parameter 

that explains the slight improvement in fatigue life at higher tensile mean strain values. 

Table  3.12: Comparison of plastic energy in mean strain experiments 

Test 𝜀𝑎 (%) 
[mm/mm] 

𝜀𝑚 (%) 
[mm/mm] 

𝑁𝑓 
[cycles] 

𝐸𝑝 × 10−2 
[MJ/m3] 

SP4 0.30 0.15 24045 33.35 
SP12 0.40 0.15 4538 149.10 
SP15 0.30 0.25 25869 24.58 
SP13 0.40 0.25 6826 146.48 
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Figure  3.19: Comparison of stress levels in mean strain experiments:  
(a) maximum stress; (b) mean stress; (c) stress amplitude 
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Despite the arguments discussed above, the improvement in fatigue life at higher tensile mean strains 

cannot be generalized for all mean strain levels. This premise was confirmed through axial and shear 

zero mean strain tests, the results of which were compared with those of the non-zero mean strain 

tests, as shown in Figure below 

 

Figure  3.20: Effect of mean strain on fatigue life, including zero-mean strain tests: 
(a) pure axial loading; (b) pure torsion loading 
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Figure  3.21: SP28 loading blocks: (a) first block; (b) subsequent blocks 
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loading history for the SP57 test. 

 

Figure  3.22: SP57 Loading block 
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For all VAL experiments, the maximum applied strain amplitudes for the axial and shear strain tests 

were 0.37 % and 1.24 %, respectively. Table  3.13 shows the experimental results obtained from the 

VAL histories, and Figure  3.23 shows a sample of the hysteresis loops obtained from one VAL test. 

Additional results are included in  Appendix A. 

Table  3.13: VAL experimental results 

Test Max 𝜀𝑎 (%) 
[mm/mm] 

Max 𝛾𝑚 (%) 
[rad] 

𝑁𝑓 (no. of blocks) 
[cycles] 

SP17 0.37 0 3903 
SP18 0.30 0 12616 
SP28 0 1.24 439 
SP57 0 1.24 7 
SP58 0.27 0 229 

 

 

Figure  3.23: SP28 hysteresis loops 
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Chapter 4 
Fatigue Life Prediction 

4.1 Introduction 
This chapter presents the methods suggested and analysis used for predicting fatigue life. Section  4.2 

provides details about the cycle counting method employed, including a flow chart and a sample of 

the counting results. Proposed modifications to damage accumulation methods are explained in 

section  4.3, along with their application to Manson’s approach and the Marco–Starkey theory. A 

description and evaluation of an enhanced energy estimation method for the Jahed–Varvani (JV) 

model are included in section  4.4. Section   4.5 concludes the chapter with the presentation and 

discussion of the fatigue life estimation results for the constant amplitude loading (CAL), two-step, 

mean strain, and variable amplitude loading (VAL) experiments. 
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4.2 Cycle Counting Method 
One of the primary factors under investigation in this study was the effect of load sequence on fatigue 

life. Since the stress–strain response of the material under VAL consists of several overlapping 

hysteresis loops (Figure  3.23), an appropriate cycle counting method that retains the applied strain 

sequence was required. Although the rainflow counting procedure suggested in ASTM standard [10] 

is commonly used, it requires that the applied VAL history be rearranged. 

To examine the effect of load sequence on fatigue life, a rainflow counting procedure with no 

rearrangement of the loading history was employed. Figure  4.1 illustrates the flow chart that explains 

the counting of the cycles, which is performed through the following steps: 

1. Read the loading block (repeated block) and count the number of data points in the block. 

2. Provided that the first point in the block is zero, start the counting from the second point. 

3. Count the cycle if the second strain range is equal to or greater than the previous range, and 

also if the signs of the two slopes differ. 

4. Calculate the maximum strain, minimum strain, strain amplitude, and mean strain for each 

cycle counted. 

5. Remove the counted cycle from the VAL history and begin counting again. 

6. If the last point in the loading block is reached, end the counting process (loop). 

7. From the lowest point to the highest point, add the last (largest) cycle that encompasses all 

previously counted cycles. 
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Figure  4.1: Rainflow counting flow chart 
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End

Change counter n
n = n+1

Change counter m
m = m+1

R2 > R1
&

S1*S2 < 0

D(n) ≠ D(end)

S1*S2 < 0

Yes

No

Yes

No
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Figure  4.2: SP28 cycle counting steps 
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Figure  4.2: SP28 cycle counting steps (continued) 
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Figure  4.2: SP28 cycle counting steps (continued) 
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As can been seen from Figure  4.2, the counting method employed corresponds to the formation of 

closed hysteresis loops under VAL conditions. The code for counting the VAL cycles was developed 

in MATLAB and is included in  Appendix B, and the cycle counting results for the SP28 shear test are 

listed in Table  4.1. 

Table  4.1: SP28 cycle counting results 

Cycles 
counted 

𝛾𝑎 (%) 
[rad] 

𝛾𝑚𝑎𝑥  (%) 
[rad] 

𝛾𝑚𝑖𝑛 (%) 
[rad] 

𝛾𝑚𝑒𝑎𝑛 (%) 
[rad] 

∆𝛾 (%) 
[rad] 

1 0.67 0.87 -0.46  0.20 1.33 
2 0.42 0.30 -0.54 -0.12 0.84 
3 0.15 0.08 -0.22 -0.07 0.30 
4 0.84 0.36 -1.31 -0.48 1.68 
5 0.11 0.43  0.21  0.32 0.22 
6 1.00 0.82 -1.17 -0.17 2.00 
7 1.24 1.17 -1.32 -0.07 2.49 

4.3 Damage Accumulation Method 
Three damage accumulation methods were applied for the two-step and VAL experiments. The first 

method was the widely used Miner’s rule, which does not account for the effect of load sequence on 

fatigue life. The other two methods were modified versions of Manson’s approach and the Marco–

Starkey theory. The three methods are discussed in detail in subsection  2.2.2, and the modifications 

applied to Manson’s approach and the Marco–Starkey theory are explained below. 

In Manson’s approach, the convergence point (point A) is considered to be a material constant that 

must be obtained experimentally. This point is located on the virgin curve, with a suggested range 

from 102 to 103 cycles on the fatigue life axis [17, 18]. However, fatigue life predictions based on 

Miner’s rule (as discussed later in section  4.5.2) imply that the effect of load sequence under pure 

shear loading is negligible compared to its effect under axial loading. The proposal was therefore to 

relate the number of reversals at point A to the number of reversals at point B. As can be seen from 

Figure  4.3, decreasing the distance between point A and point B increases the rotation angle between 

the virgin and the damaged curves. The most satisfactory fatigue life correlations were obtained when 

the number of reversals at point A was considered equal to 90 % of the number of reversals at point B 

for axial loading and 10% of the number of reversals at point B for shear loading.    
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Figure  4.3: Applying Manson’s approach to two-step loading  
(S–2Nf curve) 

 

For the 𝑆– 2𝑁𝑓 curve shown in Figure  4.3, the damaged curve can be obtained from the line passing 

from point A through point B to the point corresponding to 106 cycles. Two coordinates are required 

for points A and B, which, for axial loading, can be obtained as 

 

𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑥) = 2𝑁𝑓1 − 2𝑛1 

𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑦) = 𝜎1 
( 4.1) 

where 2𝑁𝑓1 = number of reversals to failure at the 1st step stress amplitude 
 2𝑛1 = number of reversals applied at the 1st step 
 𝜎1 = applied stress amplitude at the 1st step 
 

 

𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥) = 90% 𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑥)  

𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑦) = 𝜎𝑓′�𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥)�𝑏 
( 4.2) 

For shear loading, Equations ( 4.1) and ( 4.2) are applied after the axial fatigue parameters are replaced 

with the shear parameters and after the number of reversals at point A is changed (𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥) =

10% 𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑥)). 
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For the Smith–Watson–Topper (SWT), Fatemi–Socie (FS), and JV models employed in this study, 

the damaged fatigue life curve shown in Figure  4.4 can also be obtained from two points, each of 

which has three coordinates: elastic, plastic, and number of reversals. The number of reversals (x-

coordinate) at point B and point A are defined as in Equations ( 4.1) and ( 4.2). However, the elastic 

and plastic coordinates at the two points are dependent on the fatigue life curve and are defined 

according to Equations ( 4.3), ( 4.4), and ( 4.5). 

 

 

Figure  4.4: Applying Manson’s approach for two-step loading  
(ɛa –2Nf    ;    ɣa –2Nf    ;    ΔEAX –2Nf    ;    ΔESH –2Nf curves) 

 

𝑃𝑜𝑖𝑛𝑡 𝐵 𝑆𝑊𝑇  (𝑦𝑒) =
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( 4.3) 
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𝑃𝑜𝑖𝑛𝑡 𝐵 𝐹𝑆 (𝑦𝑒) =
𝜏𝑓′

𝐺
�2𝑁𝑓1�

𝑏𝑠
 

𝑃𝑜𝑖𝑛𝑡 𝐵 𝐹𝑆 �𝑦𝑝� = 𝛾𝑓′ �2𝑁𝑓1�
𝑐𝑠

 

𝑃𝑜𝑖𝑛𝑡 𝐴 𝐹𝑆 (𝑦𝑒) =
𝜏𝑓′

𝐺
�𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥)�𝑏𝑠  

𝑃𝑜𝑖𝑛𝑡 𝐴 𝐹𝑆 �𝑦𝑝� = 𝛾𝑓′�𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥)�𝑐𝑠  

( 4.4) 

 

 

𝑃𝑜𝑖𝑛𝑡 𝐵 𝐽𝑉  (𝑦𝑒) = 𝐸𝑒′�2𝑁𝐴1�
𝐵 

𝑃𝑜𝑖𝑛𝑡 𝐵 𝐽𝑉  �𝑦𝑝� = 𝐸𝑝′ �2𝑁𝐴1�
𝐶

 

𝑃𝑜𝑖𝑛𝑡 𝐴 𝐽𝑉  (𝑦𝑒) = 𝐸𝑒′�𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥)�𝐵 

𝑃𝑜𝑖𝑛𝑡 𝐴 𝐽𝑉  �𝑦𝑝� = 𝐸𝑓′�𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑥)�𝐶 

( 4.5) 

where 2𝑁𝐴1  is number of reversals predicted at the 1st step due to purely axial loading. 

For shear loading, Equation ( 4.5) is applied after the axial fatigue parameters have been replaced with 

the shear parameters based on the fatigue life predicted due to purely torsional loading, 𝑁𝑇1. 

The Marco–Starkey theory [19] is based on a determination of a technique for calculating a critical 

value at which failure occurs. In Miner’s rule, this critical value is equal to one. However, for two-

step loading, the critical value was found to be less than one for high-low (HL) tests and greater than 

one for low-high (LH) tests [3]. The nonlinear damage theory proposed by Marco and Starkey can be 

expressed as the following power relationship previously provided as Equation ( 2.4): 

 𝐷 = ��
𝑛𝑖
𝑁𝑓𝑖

�
𝑥𝑖

 ( 4.6) 

where 𝑥𝑖 is a quantity related to the 𝑖𝑡ℎ loading level (obtained experimentally). 

Determining the value of the exponents 𝑥𝑖  through numerous experiments could be costly and time-

consuming. In this research, the proposal was to relate the nonlinear exponents to the predicted 

fatigue life values rather than to the applied strain amplitudes, with no additional experiments needed 

in order to obtain the values for the nonlinear exponents. The suggested method can be expressed as 
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 𝐷 = ��
𝑛𝑖
𝑁𝑓𝑖

�
1 𝑥𝑖⁄

 ( 4.7) 

where 𝑥𝑖 = 1 for the shortest predicted life (highest applied strain) 

 𝑥𝑖 = 0.1 for the longest predicted life (lowest applied strain), with infinite lives  
ignored 

 0.1 < 𝑥𝑖 < 1 for the predicted fatigue life values between the shortest and longest fatigue 
life values  

 

Associating the exponent 𝑥𝑖 = 1 with the highest level of the loading block makes this method 

applicable for CAL conditions. The change in the values of 𝑥𝑖  from 0.1 to 1 can be a linear, 

exponential, logarithmic, or power-law function. The closest correlations between the predicted and 

the observed fatigue life values for the two-step and VAL tests are obtained when a linear trend is 

assumed, as explained in subsections  4.5.2 and  4.5.4. 

Schematic representations of Equation ( 4.7) at different values for 𝑥𝑖, together with its application for 

HL, LH, and VAL conditions, are shown in Figure  4.5 and Figure  4.6. 

 

Figure  4.5: Schematic representation of Marco–Starkey damage curves 
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Figure  4.6: Application of the Marco–Starkey theory for (a) HL, (b) LH, (c) VAL 

Figure  4.6 shows that (𝐷1′ + 𝐷2′) is less than one for the HL loading but greater than one for the LH 

test, which agrees with the experimental observations. The fatigue life for the two-step experiments 

can therefore be estimated as 

 𝑁𝑓 = �(𝐷1′ + 𝐷2′) −
𝑛1
𝑁𝑓1

�𝑁𝑓2 + 𝑛1 ( 4.8) 

For the VAL history (Figure  4.6 (c)), in which the whole block is repeated until the point of failure, 

the predicted fatigue life can be calculated as 

 
𝑁𝑓 =

𝐷1′ + 𝐷2′ + 𝐷3′

� 𝑛1𝑁𝑓1
+ 𝑛2
𝑁𝑓2

+ 𝑛3
𝑁𝑓3

�
 ( 4.9) 
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4.4 Total Energy Estimation Method 
In strain-based approaches, the fatigue life observed is related to the amplitude of the applied strain, 

whereas in the energy-based JV model, the fatigue life is related to the total energy density (∆𝐸𝑝 +

∆𝐸𝑒+). Mean stress relaxation and cyclic softening are associated with 30CrNiMo8HH steel, and high 

levels of mean stress relaxation were observed with negligible half-life mean stress for the majority of 

the mean strain experiments conducted (excluding SP3, SP4, and SP15 for axial loading, and SP29 

for shear loading), as shown in Figure  4.7. The assumption was therefore that the applied mean strain 

has no significant effect on the total energy density, and a relationship was proposed between the total 

energy density and the applied strain amplitude, in a manner similar to that employed with a Coffin–

Manson curve. Figure  4.8 shows the axial and shear total energy–strain amplitude curves, and the 

total energy densities were determined based on the applied strain amplitude, as indicated in Equation 

( 4.10).  

 
Figure  4.7: Mean stress relaxation: (a) axial loading; (b) shear loading 
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Figure  4.8: Total energy–strain amplitude curves:  
(a) pure axial loading; (b) pure torsion loading 

 
∆𝐸𝐴 = 5.677(𝜀𝑎)0.313 + 107(𝜀𝑎)2.851 

∆𝐸𝑇 = 9.398(𝛾𝑎)0.514 + 3.551 × 105(𝛾𝑎)2.411 
( 4.10) 

where ∆𝐸𝐴 = total axial energy density 
 ∆𝐸𝑇 = total shear energy density 
 𝜀𝑎 = applied normal strain amplitude 
 𝛾𝑎 = applied shear strain amplitude 
 

The evaluation of these formulas was based on a comparison of the predicted total energy densities 

with the total energy densities observed (calculated), as shown in Figure  4.9. The figure indicates that 

the total energy density predictions based on Equations ( 4.10) are in very good agreement with the 

values calculated. This formula was therefore employed for subsequent estimations of the total energy 

density for the counted cycles obtained from the VAL histories. 
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Figure  4.9: Predicted versus calculated total energy density:  
(a) pure axial loading; (b) pure torsion loading 

4.5 Fatigue Life Predictions 
This section presents the fatigue life predictions derived from the three fatigue models employed: 

SWT, FS, and JV, which were discussed in detail in section  2.4. The predictions include those based 

on CAL, two-step, mean-strain, and VAL tests. To estimate the fatigue life results of two-step and 

VAL experiments, the three fatigue damage models were combined with the three damage 

accumulation methods: Miner’s rule, the modified Manson’s approach, and the modified Marco–

Starkey theory. The cycle counting method discussed in section  4.2 was also essential for the VAL 

tests. For all tests, the fatigue life estimations were then compared with the observed life values. 

4.5.1 Constant Amplitude Loading Tests 
The axial and shear CAL data for this research were available from previous studies of 

30CrNiMo8HH steel alloy [1, 2]. All CAL experiments were strain controlled and primarily in the 

LCF regime. Table  3.4 lists the CAL experimental results. The fatigue life predictions produced by 

the SWT, FS, and JV models were compared to the observed values, as shown in Figure below.  
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Figure  4.10: Fatigue life predictions for CAL tests:  
(a) SWT; (b) FS; (c) JV 

As can be seen in Figure  4.10 (a), the SWT predictions for axial loading are within a factor of 2 but 

are overestimated for pure torsion loading because SWT predictions are based on axial fatigue 

properties with no additional parameters to account for shear loading. Although the FS fatigue 

damage model predicts fatigue life based only on shear fatigue properties, it also attempts to 

overcome SWT shortcomings through the use of a constant k, obtained from the fitting of the uniaxial 

data against the pure torsion data. This method results in improved fatigue life predictions for axial 

tests (Figure  4.10 (b)). The fatigue life equation proposed by Jahed and Varvani utilizes both axial 

and shear energy-based fatigue properties and hence produces superior fatigue life correlations, as 

illustrated in Figure  4.10 (c). 
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4.5.2 Two-Step Loading Tests 
The fatigue life estimations for the HL and LH axial and pure torsion loading experiments required 

the application of a fatigue damage prediction model in conjunction with the damage accumulation 

method. The Miner’s, Manson’s, and Marco–Starkey damage accumulation methods discussed in 

subsection  2.2.2 and  4.3 were combined with the SWT, FS, and JV fatigue damage prediction models  

in order to produce the fatigue life estimations for the two-step tests. The experimental results for the 

axial and shear two-step experiments are shown in Table  3.8 and Table  3.9, respectively.  

If load sequence in fact has no effect on fatigue life, the Miner’s rule approach would be expected to 

result in good fatigue life correlations. However, Figure  4.11 shows that the fatigue predictions for 

the HL axial loading tests (SP7 and SP9) are overestimated compared to those for the LH axial tests. 

On the other hand, disregarding the SWT fatigue predictions, the fatigue life predictions for the pure 

torsion two-step loading experiments are satisfactory for both the HL and LH tests. With respect to 

the applied strain amplitudes, these findings mean that load sequence has a greater effect on axial 

loading than on shear loading. 
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Figure  4.11: Miner’s rule and fatigue life predictions for two-step loading:  
(a) SWT; (b) FS; (c) JV 

In an attempt to overcome the shortcomings of the Miner’s rule approach by accounting for the effect 

of load sequence on fatigue life, two other damage accumulation methods were considered: a 

modified version of Manson’s approach and a method based on modifications to the Marco–Starkey 

theory. 

Manson’s approach accounts for the effect of load sequence through a rotation of the fatigue life 

curve that is dependent on the pre-loading cycles. To avoid any experimentally determined constants, 

the convergence point between the virgin and the damaged curves was related to the known second 

point, as explained in section  4.3. Figure  4.12 shows that the application of the modified Manson’s 

approach improved the fatigue predictions produced for the HL axial tests while maintaining 

acceptable limits for most of the fatigue life predictions from the other experiments.  
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Figure  4.12: Manson’s approach and fatigue life predictions for two-step loading:  
(a) SWT; (b) FS; (c) JV 

The Marco–Starkey theory is another damage accumulation method that takes into account the effect 

of load sequence on fatigue life through the definition of multiple damage curves (Figure  2.4) that are 

dependent on the applied strain amplitudes. As explained in section  4.3, this theory was modified by 

relating the damage curves to the fatigue life predictions, which eliminates the experimentally 

determined constants required for this method. A slight improvement in the fatigue life predictions 

produced for the HL axial experiment can be noticed when the modified Marco–Starkey theory is 

applied, but the fatigue life estimations for some pure torsion two-step loadings were inaccurately 

underestimated, as shown in Figure  4.13. 
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Figure  4.13: Marco–Starkey theory and fatigue life predictions for two-step loading:  
(a) SWT; (b) FS; (c) JV 

4.5.3 Mean Strain Loading Tests 
The SWT, FS, and JV fatigue damage models employed were expected to take into account the mean 

stress effect. In the SWT and FS models, the mean stress effect is incorporated with the normal stress 

on the critical planes, whereas in JV model it is considered through the positive elastic energy. The 

results of the axial and shear mean strain experiments are shown in Table  3.10 and Table  3.11, 

respectively. The fatigue life predictions from the three fatigue damage models employed are shown 

in Figure  4.14. 
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Figure  4.14: Fatigue life predictions for mean strain tests:  
(a) SWT; (b) FS; (c) JV 

As can be seen from Figure  4.14, some of the experimental results are correlated within a factor of 2, 

but others are overestimated. The SWT predictions (ignoring the pure torsion data) are satisfactory for 

approximately half of the tests, whereas the FS predictions are slightly overestimated for the axial 

tests. Superior fatigue life predictions for the mean strain data were obtained from the JV model with 

a narrower scatter band. The fatigue life overestimations can be attributed to the low values of mean 

stress at the stable hysteresis loops due to the mean stress relation behaviour of the 30CrNiMo8HH 

steel alloy. 
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4.5.4 Variable Amplitude Loading Tests 
The estimation of fatigue life for the VAL tests required a combination of fatigue damage prediction 

models, cycle counting, and the damage accumulation method. Since load sequence was one of the 

factors under investigation, the cycle counting method employed in this research maintains the 

sequence of the applied cycles, as explained in section  4.2. The stable hysteresis loops used in the 

SWT and FS models were extracted from the actual VAL history (e.g., Figure  4.2), whereas the total 

energy density estimations used in the JV model were based on Equation ( 4.10), as discussed earlier 

in this chapter. The experimental results obtained from the VAL tests were tabulated as shown in 

Table  3.13, and the fatigue life estimations produced by the three damage accumulation methods and 

the three fatigue damage models are discussed below. 

The fatigue life estimations based on Miner’s rule are shown in Figure  4.15. The fatigue life 

predictions based on the SWT model are overestimated for all VAL tests, whereas the predictions 

obtained from the FS model are satisfactory for pure torsion loading but none conservative for axial 

loading. The fatigue life estimations produced by the JV model are satisfactory for both axial and 

pure torsion loading. 
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Figure  4.15: Miner’s rule and fatigue life predictions for VAL:  
(a) SWT; (b) FS; (c) JV 

 

The modified Manson’s approach was then applied in combination with the three fatigue damage 

models in order to determine fatigue life predictions for the VAL tests. For experiments SP17, SP18, 

and SP28, the loading blocks consist of several randomly generated cycles with no repeated cycles 

within the loading block (2𝑛1 = 2 in Equation ( 4.1)). Therefore, point B, used for modifying the 

fatigue life curve, is located approximately on the virgin curve (2𝑁𝑓1 − 2 ≈ 2𝑁𝑓1), and hence both 

point A and point B are on the virgin curve. This circumstance resulted in fatigue life estimations 

equivalent to those based on Miner’s rule, as can be seen from a comparison of Figure  4.15 and 

Figure  4.16. No significant improvement in fatigue life predictions was noticeable in the results 

produced for the VAL block with repeated cycles (SP57 and SP58). 
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Figure  4.16: Manson’s approach and fatigue life predictions for VAL:  
(a) SWT; (b) FS; (c) JV 

 

The final step was to use the modified Marco–Starkey theory as the damage accumulation method for 

predicting the fatigue life for the VAL tests. A detailed discussion of this theory can be found in 

subsection  2.2.2.3 and section  4.3. Although the fatigue life predictions for the two-step loading 

experiments based on this damage accumulation method were not promising (Figure  4.13), the 

modified method based on the Marco–Starkey theory did improve the fatigue life predictions 

produced by the SWT, FS, and JV models for the VAL tests, as can be seen in Figure below.  
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Figure  4.17: Marco–Starkey theory and fatigue life predictions for VAL: 
 (a) SWT; (b) FS; (c) JV 
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Chapter 5 
Summary, Conclusions, and 
Recommendations 

5.1 Summary 
Accurate estimations of the fatigue life of a component subjected to variable amplitude loading 

(VAL) require the incorporation of several factors included in VAL histories. This study investigated 

the effects of load sequence and mean stress on the fatigue life of nickel-chromium-molybdenum 

30CrNiMo8HH steel alloy. The monotonic and constant amplitude loading (CAL) data were available 

from a previous study, and three sets of additional experiments were performed: two-step loading, 

non-zero mean strain loading, and VAL. Three fatigue life prediction models were also employed: 

Smith–Watson–Topper (SWT), Fatemi–Socie (FS), and Jahed–Varvani (JV). The fatigue life 

predictions for the axial CAL data were within the desired scatter band of 2, with the exception of a 

few overestimated data points predicted by the FS model. With respect to the pure torsion CAL data, 

only the fatigue life predictions produced by the JV and FS models were satisfactory. 
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The determination of the effect of load sequence on fatigue life was based on a comparison of the 

fatigue life results of the two-step high–low (HL) and low–high (LH) tests. The individual damage 

amounts were summed according to the Miner, Manson, and Marco–Starkey damage accumulation 

methods. Miner’s rule is considered the simplest method but it fails to account for the effect of load 

sequence, and hence resulted in overestimated fatigue life predictions for the HL axial loading data. 

Manson’s approach and the Marco–Starkey theory were modified based on the fatigue life 

observations from the two-step experiments in order to eliminate the use of empirically determined 

constants. The application of the modified damage accumulation approaches resulted in all three 

fatigue models producing improved two-step fatigue life predictions.  

A number of non-zero mean strain experiments were performed in order to monitor the effect of mean 

stress on fatigue life. To help distinguish between the effect of strain amplitude and that of mean 

strain, a two-level factorial design was used for this set of experiments. The statistical analyses of the 

non-zero mean strain experiments revealed two empirical relations that correlate the applied strain 

amplitude and mean strain with fatigue life and plastic energy density. When the empirically derived 

relations were evaluated, it was concluded that those correlations cannot be generalized for zero mean 

strain loading, and the effect of mean stress on fatigue life was therefore considered using the three 

fatigue models employed. With the exception of the SWT prediction for shear data, the fatigue life 

predictions for the mean strain data ranged from the acceptable limit of ±2 to values that are slightly 

overestimated. A narrower scatter band was produced by the JV model. 

For the VAL experiments, the cycles were counted using a rainflow counting procedure, which does 

not change the sequence of the applied strain. This procedure follows exactly the stress–strain 

response of the material so that the hysteresis loops for the counted cycles can be extracted from the 

test output. A new method for estimating the total energy density required for the energy-based JV 

model was developed. This method assumes that the applied mean strain has no significant effect on 

the total energy density so that the total energy density can therefore be related to the applied strain 

amplitude. Those correlations resulted in very good agreement between the estimated and the 

calculated total energy densities, so they were incorporated into the VAL fatigue life predictions 

based on the JV model. Satisfactory fatigue life estimations were obtained by the SWT and FS 

models after the application of the modified Marco–Starkey damage accumulation theory. For all the 

damage accumulation methods employed, the fatigue life predictions produced by the JV model were 

accurate within a factor of 2. 
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5.2 Conclusions 
Based on the experimental observations and the fatigue life prediction procedures, the following 

conclusions can be drawn: 

1.  For all types of loading considered in this study, the most satisfactory fatigue life correlation 

are obtained using the energy-based JV model. This finding can be attributed to the fact that 

the JV fatigue life equation includes both axial and shear energy-based terms. The fatigue life 

estimations based on the FS model are also sound for both axial and shear data. With the 

SWT model, only the fatigue life predictions for axial loading are acceptable. 

2. The comparison of the results of the HL and LH experiments demonstrate that load sequence 

does have an effect on fatigue life. The application of the linear damage rule shows that the 

effect of load sequence under axial loading is more significant than its effect under pure 

torsion loading. Because some of the fatigue life estimations obtained from the linear damage 

approach under VAL are satisfactory, it appears that the load sequence effect could vary 

depending on the applied VAL history. 

3. Mean stress relaxation can be observed for 30CrNiMo88HH steel with, in some cases, 

negligible half-life mean stress. Nevertheless, the applied mean strain still has an influence on 

fatigue life, as indicated by the overestimated fatigue life predictions for the mean strain 

loading tests. 

5.3 Recommendations 
The following future research is recommended: 

1. For estimations of fatigue life under VAL based on the SWT and FS models, the half-life 

hysteresis loops were extracted from the test output, whereas for the JV model, the total 

energy densities were estimated using the proposed formulas. It is recommended that 

plasticity models be applied in order to estimate the cyclic stress–strain response of the 

material. Based on the results of previous work, the plasticity models developed by Mroz and 

Chaboche are recommended for 30CrNiMo8HH steel. 

2. To omit the empirically determined constants, the Manson and Marco–Starkey damage 

accumulation methods were modified based on the experimental observations from the two-
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step loading tests. The possibility of generalizing those modifications for other materials 

should be investigated. 

3. Due to time limitations, multiaxial VAL was not included in this study. The assessment of 

fatigue life under multiaxial VAL requires further analysis with respect to counting the cycles 

from the applied VAL histories. One of the methods suggested in the literature is to perform 

the counting for both axial and torsional VAL histories and then to adopt the one that 

produces the greater damage total. 
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Appendix A 
Hysteresis Loops 

 

Figure A.1: Two-step hysteresis loops for axial loading 
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Figure A.2: Two-step hysteresis loops for shear loading 
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Figure A.3: Hysteresis loops for axial mean strain 
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Figure A.3: Hysteresis loops for axial mean strain (continued) 
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Figure A.4: Hysteresis loops for shear mean strain 
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Figure A.5: Counted cycles and hysteresis loops for VAL  
[without repeated cycles] 
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Figure A.5: Counted cycles and hysteresis loops for VAL  
[without repeated cycles] (continued) 
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Figure A.5: Counted cycles and hysteresis loops for VAL  
[without repeated cycles] (continued) 
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Figure A.6: VAL history and hysteresis loops [with repeated cycles]; same counted cycles as for 
SP28 but with each cycle counted (except the largest) repeated 50 times within the block 
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Figure A.6: VAL history and hysteresis loops [with repeated cycles] (continued); same counted 
cycles as for SP17 but with each cycle counted (except the largest) repeated 50 times within the 

block  
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Appendix B 
MATLAB Code for the Rainflow 

Counting Method 
This appendix includes the MATLAB code that counts and plots the cycles obtained from the VAL 

history. The input file for this program is an Excel file with only one column containing the VAL data 

points, as shown in Figure B.1.  

 

Figure B.1: SP28 input file for VAL history 
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% UNIVERSITY OF WATERLOO 
% FATIGUE & STRESS ANALYSIS LABORATORY (FATSLAB) 
% MECHANICAL & MECHATRONICS ENGINEERING DEPARTMENT (MME) 
  
clc 
clear all 
  
disp('**************************************'); 
disp('*      RAINFLOW COUNTING METHOD      *'); 
disp('*   (WITHOUT HISTORY REARRANGEMENT)  *'); 
disp('*      AUTHOR: ELFAITORI IBRAHIM     *'); 
disp('**************************************'); 
  
% -------------------------- INPUT DATA ---------------------------------- 
  
% THE INPUT FILE FOR VAL HISTORY CONTAINS ONLY ONE COLUMN FOR VAL BLOCK.  
% THE VAL BLOCK (REPEATED BLOCK) MUST NOT START WITH ZERO. 
% SPECIFY THE INPUT FILE INCLUDING ITS PATH  
% (e.g., 'E:\Rainflow_input\VAL.xlsx') 
input_file = ''; 
  
% THE OUTPUT LOCATION CONTAINS THE COUNTING RESULTS IN AN EXCEL FILE AND 
% THE FIGURES THAT SHOW THE COUNTING STEPS. 
% SPECIFY THE OUTPUT LOCATION (e.g., 'E:\Rainflow_output') 
output_location = ''; 
  
% --------------------- END INPUT. SAVE AND RUN -------------------------- 
  
% READING VAL HISTORY 
data = xlsread(input_file); 
data = [0;data]; 
t = 1:length(data); 
  
% PLOTTING VAL HISTORY BEFORE COUNTING  
h1=figure; 
plot(t,data,'-b','LineWidth',1) 
hold on 
plot([1 length(data)],[0 0],'k-') 
xlim([1 length(data)]) 
xlabel('Time [sec]') 
ylabel('Strain [%]') 
  
% SAVE VAL BEFORE COUNTING 
file=strcat(output_location,'/Figure',num2str(1)); 
print(h1,'-dtiff',file) 
  
% PLOT VAL HISTORY AGAIN AND HOLD ON 
h2=figure; 
plot(t,data,'-b','LineWidth',1) 
hold on 
plot([1 length(data)],[0 0],'k-') 
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xlim([1 length(data)]) 
xlabel('Time [sec]') 
ylabel('Strain [%]') 
hold on 
  
data0 = data; 
t0 = t; 
  
i=1; 
m=2; 
n=3; 
p=2; 
  
% WHILE LOOP FOR COUNTING.  
% THE COUNTING WILL END IF THE LAST POINT IN VAL HISTORY IS REACHED 
while data(n) ~= data(end) 
     
    slope1 = (data(n)-data(m))/(t(n)-t(m)); 
    slope2 = (data(n+1)-data(n))/(t(n+1)-t(n)); 
     
    range1 = abs(data(n)-data(m)); 
    range2 = abs(data(n+1)-data(n)); 
     
%   CRITERIA FOR COUNTING 
    if range2 >= range1 && slope1*slope2 < 0 
         
%       CALCULATE RANGE, MAX, MIN, MEAN, AND AMPLITUDE FOR COUNTED CYCLE  
        DltStrain(i) = range1; 
        MaxStrain(i) = max(data(n),data(m)); 
        MinStrain(i) = min(data(n),data(m)); 
        MeanStrain(i) = (MaxStrain(i)+MinStrain(i))/2; 
        StrainAmp(i) = (MaxStrain(i)-MinStrain(i))/2; 
         
%       MARK THE COUNTED CYCLE ON THE FIGURE 
        xx = t(n) + (data(m)-data(n))/slope2; 
        fill([t(m) t(n) xx],[data(m) data(n) data(m)],'y')    
        box on 
         
%       SAVE THE FIGURE 
        file=strcat(output_location,'/Figure',num2str(p)); 
        print(h2,'-dtiff',file) 
        p=p+1; 
        hold off 
         
%       PLOT ANOTHER FIGURE FOR THE NEXT COUNTING STEP 
        h2=figure; 
        plot(t0,data0,'-b','LineWidth',1) 
        hold on 
        plot([1 t0(end)],[0 0],'k-') 
        xlim([1 length(data0)]) 
        xlabel('Time [sec]') 
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        ylabel('Strain [%]') 
         
%       REMOVE THE COUNTED CYCLE FROM THE HISTORY 
        data(m:n) = [];  
        t(m:n) = [];  
                
        hold on 
         
%       PLOT DASHED LINE AFTER REMOVING THE COUNTED CYCLE 
        plot(t,data,'--k','LineWidth',.5) 
         
        i=i+1; 
        m = 2; 
        n = 3; 
         
    end 
     
    if slope1* slope2 < 0 
        m = m+1; 
    end 
     
    n = n +1; 
      
end 
  
% SAVE THE LAST FIGURE AFTER THE COUNTING ENDS 
file=strcat(output_location,'/Figure',num2str(p)); 
print(h2,'-dtiff',file) 
  
% ADD THE LAST (LARGEST) CYCLE THAT ENCOMPASSES ALL COUNTED CYCLES 
DltStrain(i) = max(data0)-min(data0); 
MaxStrain(i) = max(data0); 
MinStrain(i) = min(data0); 
MeanStrain(i) = (max(data0)+min(data0))/2; 
StrainAmp(i) = (max(data0)-min(data0))/2; 
  
% COUNTING RESULTS 
results = [StrainAmp' MaxStrain' MinStrain' MeanStrain' DltStrain']; 
  
% SAVE COUNTING RESULTS IN AN EXCEL FILE 
heading = {'Amplitude','Maximum','Minimum','Mean','Range'}; 
file2=strcat(output_location,'/Counting results.xlsx'); 
xlswrite(file2,heading,'A1:E1') 
  
interval = ['A',num2str(2),':','E',num2str(i+1)]; 
  
xlswrite(file2,results,interval) 
  
% COUNTING IS OVER! 
disp('Done! Open the output folder for counting results and figures') 
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