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Abstract

The resources and localization abilities available in modern smartphones have provided a
huge boost to the popularity of location-based applications. In these applications, users
send their current locations to a central service provider and can receive content or an
enhanced experience predicated on their provided location. Privacy issues with location-
based applications can arise from a central entity being able to store large amounts of
information about users (e.g., contact information, attributes) and locations (e.g., available
businesses, users present). We propose an architecture for a privacy-friendly location hub
to encourage the development of mobile location-based social applications with privacy-
preserving features. Our primary goal is to store information such that no entity in our
architecture can link a user’s identity to her location. We also aim to decouple storing data
from manipulating data for social networking purposes. Other goals include designing an
architecture flexible enough to support a wide range of use cases and avoiding considerable
client-side computation.

Our architecture consists of separate server components for storing information about
users and storing information about locations, as well as client devices and optional com-
ponents in the cloud for supporting applications. We describe the design of API functions
exposed by the server components and demonstrate how they can be used to build some
sample mobile location-based social applications. A proof-of-concept implementation is
provided with in-depth descriptions of how each function was realized, as well as experi-
ments examining the practicality of our architecture. Finally, we present two real-world
applications developed on the Android platform to demonstrate how these applications
work from a user’s perspective.
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Chapter 1

Introduction

1.1 Background

With the evolution of smartphones into powerful, pervasive computing devices that people
can always have at their disposal, a broad range of applications making use of capabilities
offered by smartphones has materialized. Many of these applications make use of local-
ization features (which can determine a device’s geographical location with varying levels
of accuracy) that the majority of smartphones contain. Localization in varying degrees of
accuracy can be done using the strengths of signals from nearby cellular network base sta-
tions, broadcasts from visible Wi-fi access points or by calculating latitude and longitude
coordinates from signals emitted by Global Positioning System (GPS) satellites. With
GPS, the location of a smartphone can be determined to within 10 metres [21]. This level
of accuracy provides rich opportunities for location-aware applications and services whose
functionalities are enhanced by the usage of users’ location data [47].

The availability of localization has encouraged the development of smartphone applica-
tions driven by users’ location data. To make use of these applications, users send requests
to a service provider that include their current location. One possible outcome is that the
service provider can reply to the user with content that is associated with or filtered based
on her location. The service provider can also update the user’s state in the application,
which may trigger events at the current time or in the future. Many popular location-based
applications fall into the following categories:

• Mobile Social Networking. These applications facilitate social interaction be-
tween users that are geographically close to each other. Friend location and proxim-
ity detection features help users that are already connected by the social network’s
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notion of friendship meet in person. Interest matching can also be employed to
make more specific matches between friends, as well as provide a social discovery
service for users in close proximity with similar interests. FourSquare [5] and Google
Latitude [8] are real-world examples of applications that provide friend location ser-
vices. Location-based social networking applications have received a lot of attention
recently in the smartphone development community [43]. Popular applications for
meeting nearby people in the Google Play [10] store for Android smartphones include
Badoo [3], Skout [13], and myYearbook [11].

• Content Storage and Delivery. These applications are often based on provid-
ing information about points of interest or enriching data by attaching a location
(geotagging). Content that is served to users (either on request or through push no-
tifications) is filtered based on their current locations and additional criteria they add.
Functionalities that can be provided in this manner include location-based search,
location-based recommendations relating to points of interest and location-targeted
advertising. A popular implementation of location-based search is the functionality
provided by Google Maps [9] that finds points of interest matching keywords pro-
vided by a user near her current location. Location-based advertising is often served
through mobile frameworks such as the Google AdMob Ads SDK for Android [7].

• Navigation. These applications calculate the best possible route from the user’s
current location to her desired destination. Turn-by-turn directions are provided to
the user and obstructions such as traffic and construction may be taken into account.
Applications for the Android smartphone platform that provide navigation features
include Waze [15], Garmin Mobile [6] and Google Maps [9].

The benefits of location-based services stem from the inherent relevance that proximity
has in many use cases. When a user is searching for content that she would like to use in
the near future, results that are more than a short distance away from her current location
are unlikely to be useful. A similar argument applies to a user wishing to meet others
with similar interests. From the perspective of mobile advertisers, a user is more likely to
be engaged by an advertisement related to a nearby point of interest. The availability of
location data for users also allows for the serving of ads that are both location-sensitive
and time-sensitive (i.e. a short-lived deal that is only valid at a certain location).

The most concerning drawback of location-based services is the privacy problem pre-
sented by the frequent use of localization features on smartphones. A user must provide her
location in order to request any information from an application or use any of its features.
The service provider component of the application that receives all of the users’ requests
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can build up large amounts of location data along with timestamps indicating when the
user made the request. This data allows the service provider to localize users (know their
location at a particular point in time), build up traces of users’ movement and even track
users. The service provider may also have identifying information and attributes (such as
interests) that users have provided during registration or are part of their profiles in a social
application. Knowledge of a user’s location at particular times, especially when combined
with other information about the user (such as their interests and identity), can be used by
malicious entities to violate the user’s self-determination of their own information. Data
about a user can be collected from application requests, stored over a long period of time,
and aggregated or statistically analyzed to learn more about the user than she may have
intended.

In existing research, there are many examples of techniques that can be used to violate
a user’s privacy given some collection of her location information that has been obtained
by an adversary (either a malicious service provider or a third-party that has received data
a user did not intend for it to have). An alarming amount of information about a user’s
home and work locations, activities and relationships can be inferred from data that the
service provider has available [36, 45]. An adversary can even determine a user’s home
location and identity when given pseudonymized [38] or anonymized [53] location data and
some outside information (such as a movement profile [23, 53]). Golle and Partridge used
data from the U.S. Census Bureau to determine the size of an individual’s anonymity set
in the general population given an inference of home and/or work locations [44]. Within a
census block, a user was unique if both home and work locations were known. A user still
faces privacy risks from only occasionally exposing her location to a location-based service
as her home location and points of interest were identifiable from such a limited set of data
points [26]. Gruteser and Hoh showed how trajectory information could be used to link a
user’s periodic anonymous location samples [32].

From a practical standpoint, there are recorded cases of users’ sensitive data, including
location, being misused for an unintended purpose (i.e. a purpose users did not consent to
when they originally agreed to provide data) [4]. Static analysis (i.e. tracing of sensitive
data through decompiled code) of 24,350 Android applications done by Gibler et al. [30]
found 57,299 potential privacy leaks in 7,414 applications. 939 applications contained a
total of 3,405 potential location data leaks. This analysis only traced through code without
any consideration for its structure, which means the number of leaks during a live run of
the code could be much more significant. For example, consider that if location data
was being processed in a loop (which is quite common because many applications receive
data from GPS hardware that makes a phone’s location available as much as once per
second) and being leaked during each iteration, the number of leaks generated by one
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small piece of code could be very large. Many of the leaks were found to be in advertising
libraries that allow developers to generate revenue by serving in-application ads. These
advertising libraries use users’ locations to target them with specific ad categories in order
to maximize the chance that the user will click on the ad. Dynamic taint analysis (tracking
of sensitive data from its source through applications to an outgoing network transmission)
also presented some alarming results [25]. Among a random sample of 30 applications taken
from a collection of the top 50 applications in each Android Market (now the Google Play
Store) category (a total of 1,001 applications), half of them exposed location information to
advertisers without declaring this intention in the End-User Licensing Agreement (EULA)
shown at installation time. The leaking of data to advertisers is especially concerning
because many applications that are not location-based services (such as Angry Birds [1,2],
a very popular mobile game) are offered in a free, ad-supported version as well as a paid,
ad-free version [39]. In a sense, this practice is putting a price on users’ privacy without
them even realizing it. This problem emphasizes the need for a privacy-friendly architecture
for building any application that touches a user’s location data.

1.2 A Privacy-Friendly Architecture for Mobile Social

Networking Applications

Providers of location-based services (either as the primary focus of an application or one
of many functions) essentially become location hubs. Essentially, this means that they
are centralized repositories of location information collected through servicing application
requests. These service providers also store identifying information about the users making
requests, which is undesirable from a privacy standpoint. This research focuses on designing
a privacy-friendly location hub (i.e. a location hub which provides features to protect
users’ location data from misuse) that can be accessed as needed by applications requiring
location-based functionality. We also aim to make our design flexible and simple enough
to encourage development of privacy-friendly applications.

Our design consists of an architecture built with protecting the association between
a user’s identity and her location in mind. The foundation of our architecture is two
entities, one which stores information about users and another which stores information
about locations. These entities expose basic API functions that can be used as building
blocks for mobile social networking applications that prioritize privacy preservation. Users
communicate directly with these entities to store data in such a way that no entity learns
both their identity and location and can either directly retrieve data or ask an applica-
tion’s supporting cloud component to retrieve data on their behalf to participate in social
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networking activities. In addition to basic get/set functions for data, our architecture also
provides a callback framework to support scenarios where a user wishes to be notified when
a condition is met (e.g., another person that wishes to play basketball checks in) at their
location. A wide range of location-based mobile social applications can be built using the
constructions provided by our architecture. We make the following contributions:

• We present the design of a privacy-friendly architecture for building mobile social
applications that stores data about users and data about location separately.

• We implement the complete architecture and provide experimental results regarding
the performance of the architecture. Our implementation is deployed using Python
code for server components and the Android platform for the mobile devices.

• We build two real-world applications to demonstrate the practical use of our archi-
tecture.

In the next chapter, we look at some of the previous research that provides a foundation
for our work. In Chapter 3 we describe the architecture of our system in detail. We
detail our implementation of the system and provide results from experiments on the
implementation in Chapter 4. Finally, we discuss possible future work in Chapter 5 and
conclude in Chapter 6.
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Chapter 2

Related Work

This chapter discusses existing research into strategies for protecting privacy in location-
based services, online social networks and on smartphones, which are areas that either
feature prominently in our work or show interesting parallels. Then it explores privacy-
preserving methods for specific applications that focus on location information. We con-
clude by examining architectures that incorporate some of the previously discussed research
and are similar in spirit to our work.

2.1 Location Privacy in Location-Based Services

Privacy issues in location-based services have been addressed in the past by data protection
mechanisms and location privacy frameworks, but many of these approaches either fail to
provide the necessary protection for users [51] or are inflexible in terms of supporting a wide
variety of use cases. For example, the protocols presented for private proximity detection
of friends [40, 41, 54] do not support any other location-based applications (e.g. matching
of strangers, local search).

Reducing precision

The user’s coordinates are replaced with a larger geographical area in a pre-determined
division of space. For example, a location-based service could provide users with a grid that
maps GPS coordinates onto labelled 1 kilometre-wide squares and users would only provide
the identifier of the square they are located in while making a request [24]. This approach
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is not appropriate because the results from most location-based applications become less
useful (or completely useless in the case of navigation) as precision is reduced. Without
some form of anonymization, the amount of precision that would have to be removed in
order to guarantee sufficient privacy would significantly reduce the flexibility to support a
wide range of applications of any system employing this approach [38].

Spatial and Temporal Cloaking

The goal of this type of approach is to ensure that every request to the location-based
service cannot be differentiated from a threshold number of other requests. This scheme
has the same goal as the k-anonymity principle, in which every record in an anonymized
database must be indistinguishable from k−1 other records. A trusted anonymizer [31] or a
decentralized mix network [17,49] is employed to remove any identifying information in the
request and to reduce the precision of either the spatial (location coordinates) or temporal
(timestamp of the request) data based on how tolerant the particular location-based service
is of imprecisions in either dimension. For example, a social networking application where
a user is trying to meet other people in her area is fairly intolerant of location imprecision
because the user probably does not want to travel far to meet up with a match provided
by the application. On the other hand, the application can tolerate time imprecision (the
delay necessary for the anonymizer to build up enough similar requests) because the user
has already committed to spending time in the area to meet people and a little bit of
extra time will not be an issue. The benefit of the multi-dimensional cloaking approach
is that it can be tuned to meet the needs of different types of applications. However, the
k-anonymity approach has been shown by research to be inappropriate as a method for
protecting location privacy [51].

Private Information Retrieval

Queries to a location-indexed database owned by an application are executed using Private
Information Retrieval (PIR) protocols [28, 37, 42]. When PIR is used for a query, the
database cannot learn any information about which records were retrieved [20]. Approaches
using PIR typically tile the geographical area that the location-based service covers with a
grid of a pre-determined (by either the user or the application) granularity. Each location
that has data associated with, or Point of Interest (POI), is stored as one record in a
location-indexed database and each record is mapped to the region containing it. To
retrieve points of interest, a user maps her location to grid square and requests all records
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mapped to that region using PIR techniques. The main drawback of using PIR in location-
based services is that it is not a good solution for services where data changes frequently,
as writes to a PIR-enabled database require expensive recalculation to re-map records.

Secure Multiparty Computation

Calculations on spatial data are performed such that the inputs remain private to whoever
provided them but all entities know the result. Typically, inputs are encrypted and algo-
rithms with the ability to manipulate ciphertext are used. Approaches based on Secure
Multiparty Computation (SMC) have been used in the context of location data to deter-
mine the intersection of spatial datasets such that all parties only know the result [29], to
determine if two users are within a threshold distance without either user revealing her
location to the other [40,41,54], and finding a fair meeting point without revealing any of
the users’ locations to a third party or other participants [18]. The main drawback of SMC
is that techniques are application-specific and would not generalize well to a wide range of
location-based services.

Summary

The location privacy protection mechanisms presented above are either not flexible to
support many use cases or are insufficient for protecting users’ location privacy. Both
of these problems motivate a different approach to providing location privacy protection
because this work aims to provide the means to develop applications with effective privacy
features fitting a wide selection of use cases. Reducing precision only supports use cases that
can tolerate imprecision in location data. Spatial and temporal cloaking addresses some
of the problems of imprecision tolerance by allowing both location data (i.e. geographical
coordinates) and temporal data (i.e. the time when a location data point was acquired) to
be obfuscated based on the needs of a particular application [31]. However, this approach
relies on the concept of hiding a user among a set of other users, which is shown to be
susceptible to attacks presented by Shokri et al. [51]. Private Information Retrieval only
efficiently supports use cases where the database of location data is not frequently changed.
Approaches that utilize SMC are tailored to fit the needs of particular applications. This
is impractical for a generalized architecture because each new use case would need to have
an SMC-based algorithm added to accommodate it.
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2.2 Data Protection in Online Social Networks

Protecting users’ sensitive data in online social networks has also been the subject of
considerable research. While our work does not focus on privacy in traditional online
social networks, ideas along the lines of privacy by design and separating storage of data
from social networking functionality are still applicable.

Tootoonchian et al. [52] proposed Lockr, which employs the principle of decoupling
content that a user stores in online social networks (OSNs) from the functionality it pro-
vides. Lockr obfuscates the social graph from OSNs by using social attestations to form
relationships between users. When a user requests content belonging to another user, she
must present a social attestation. The social attestation is proven to be a property of the
presenter in zero knowledge and compared to access control lists associated with content
by their creators to determine if the owner of the attestation should be able to view the
content.

Baden et al. [16] presented Persona, which is a social network designed specifically with
privacy in mind. Each user partitions her friends into groups based on logical combinations
of attributes. All data stored in the social network is encrypted using attribute-based
encryption, in which each access structure, formed from a logical combination of attributes,
is assigned a key and an item of data is encrypted with the key matching the desired access
structure.

Shakimov et al. [48] presented Vis-à-Vis, a privacy framework for online social networks
in which each user has her own Virtual Individual Server (VIS). A VIS runs in the cloud,
stores the user’s social network data, and interacts with entities requesting the user’s data.
Location is treated as a special attribute and users can define hierarchical groups that they
are willing to share their location in varying granularities with. However, running a VIS
in the cloud has a financial cost for a user, which is undesirable because existing social
networks are free to use and a user may not be willing to pay for privacy. Also, the user’s
cloud provider can see her data, which may not provide sufficient privacy for some users.

2.3 Privacy for Smartphones

Application-agnostic solutions have been developed at the operating system level for deal-
ing with leakage of sensitive data. The idea behind low-level tracking is to monitor the flow
of sensitive data and react appropriately without modifying any applications. However, our
work focuses on privacy built into applications and reactive approaches that act externally
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on applications (that were not developed with privacy in mind) at runtime do not fit in
with that model. Also, reactive approaches require modification of a smartphone’s oper-
ating system to provide hooks for data monitoring. Such a requirement presents a barrier
to widespread deployment because users may not want to perform the risky operation of
loading a custom operating system on their smartphones. The two approaches presented
below both provide monitoring of the propagation of sensitive data but differ in how they
address reacting to possible privacy leaks.

Enck et al. [25] presented TaintDroid, an operating system extension for the Android
smartphone platform that tracks which running applications are handling and sending
sensitive data. Data that has the potential to be sensitive (e.g., GPS coordinates) is
labelled (tainted) at the source and interactions with applications and other data are
dynamically monitored to determine if sensitive information is being leaked. The goal is
to be able to identify misbehaving third-party applications without incurring too much of
a performance penalty. TaintDroid takes advantage of the different layers in the Android
system architecture to track data without having to perform static analysis of untrusted
application code. At each level, the monitoring method is designed to exploit the semantics
of data transmission at that level (e.g., between declared variables, messages between
applications, between methods, between files). This approach only addresses monitoring
of sensitive data and notification of possible privacy leaks but leaves the reaction to such
notifications to the discretion of whoever is performing the monitoring.

Hornyack et al. [34] designed AppFence, which acts as an agent that determines whether
or not an application requesting particular data should be granted access. In addition, if
an application is granted access to data, AppFence also decides if the application should
be allowed to transmit the data out on the network interface. Applications that only
manipulate data locally on the smartphone (such as a contact list viewer) can function
normally under this model. If an application is denied access to data, shadow data is
substituted in place of private information in a manner such that a consistent view of data
is presented to each application (but may be differ across multiple applications) and the
modification is difficult to detect. External transmission of data is detected by monitoring
network stack activity and outgoing network communication. Experiments assess user-
visible differences between applications run with and without AppFence privacy controls.
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2.4 Specific Mobile Social Applications Built With

Location Privacy in Mind

Location privacy is a focus in the area of mobile social applications. Interesting solutions
for location sharing with privacy by design have been presented. These solutions are not
flexible and are tied to specific applications, which make them inappropriate for building
a comprehensive privacy framework that supports many use cases.

Cox et al. [22] designed SmokeScreen, which is a decentralized application designed
specifically for the privacy-preserving location sharing use case. Each user assigns each of
their friends to cliques representing levels of trust and negotiates a secret key for each clique.
When the user would like to share her location, she computes a clique signal for each clique
she would like to share their location with using that clique’s secret key and broadcasts it
using short-range signalling capabilities (such as Bluetooth or Wi-Fi) on her device. Any
users that are in the area will detect the clique signals and can determine who created
them if they in are in any of the cliques represented by the signals. In order for a user to
share a location with a stranger, she must broadcast an opaque identifier in addition to
her clique signals. Any user that detects this identifier can make a request to a centralized
broker for the identity of the user who created it. The broker coordinates exchanges of
location information based on which opaque identifiers users have made requests for.

Protocols using secure multiparty computation mentioned in section 2.1 have also been
incorporated into specific location-privacy friendly applications. Examples include private
proximity testing [40,41,54] and Fair Rendez-Vous Point determination [18].

2.5 Privacy-Friendly Frameworks for Mobile Location-

Based Applications

There are many academic solutions that utilize privacy by design for mobile location-based
applications that are application-specific. However, the need for solutions that support a
wide variety of use cases has led to the creation of more generalized frameworks. These
frameworks provide data storage and public API functions that are used to manage data.
Also, the concepts of preventing third parties from knowing enough information to deter-
mine both a user’s identity and her location and decoupling storage of data from social
networking functionality are employed.
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Puttaswamy and Zhao [46] designed a framework for location-based mobile social ap-
plications with the goal of avoiding location data being stored unencrypted on untrusted
third-party servers. In their solution, servers in location-based services are encrypted data
stores and the users employ offline key exchange to share their decryption keys with their
friends. Two cryptographic building blocks and a narrow storage system interface form
the basis of the system. A friendship proof is used as a cryptographic validation of the
social connection between two users and a transaction proof is attached to each item of
encrypted data that is used to cryptographically establish ownership. The storage system
interface simply allows users to put encrypted attributes (information about users) in their
profiles, get encrypted attributes from stored profiles, store encrypted data to a location,
and retrieve encrypted data from a location. One problem with this system is that a user
must download all encrypted data at a location and attempt to decrypt each item with all
keys in their possession to read data produced by her friends, which can be quite expensive
computation-wise. Another problem with the design is that it can only be used to build
applications where users request data and receive results immediately. Functionality where
users can register triggers for certain conditions (like other users arriving at their location)
and have data pushed to them when the conditions are met is not supported. Applications
that are supported only include those that operate on existing real-world connections and
not scenarios involving strangers being matched. Data about users and data about loca-
tions are stored on the same server, which presents a traffic analysis problem. If a user
first updates her encrypted location attribute that is part of her profile and then adds an
entry for herself to the location database, the server can link the two updates.

Jaiswal and Nandi [35] proposed an approach that divides knowledge of a user’s location
and a user’s queries to a location-based service (which may contain identifying informa-
tion and data about interests and social relationships) between two non-colluding entities.
One entity is responsible for creating and maintaining a mapping between actual locations
and pseudonymized locations (unique identifiers assigned to regions in a grid overlaying
the physical location space) while the other is responsible for creating and maintaining
mappings between actual identifiers and pseudonymized identifiers (unique identifiers as-
signed to each user and business in the location-based service). Users register triggers
with an application that specify which pseudonymized identifiers they are interested in.
A matching service determines if any pseudonymized identifiers of interest are located in
the same region as the user. The matching service is provided by multiple non-colluding
components (possibly contributed by the end users themselves) because a single entity with
access to all user requests could infer the mapping between pseudonymized locations and
actual locations. This system supports returning results to the user at the time of their
query (pulling) as well as pushing matches to users when they change location. However,
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it does not provide functionality for users registering triggers related to the activities of
businesses or other users and having matches pushed to them when the conditions of the
trigger are met. Whereas the authors mention that their approach can be employed for lo-
cating nearby friends, this claim is questionable. The problem is that, as mentioned above,
the architecture assumes that the LBS provider knows the locations of the entities that
should be located. Whereas this is a reasonable assumption for businesses, the assumption
cannot be made if the located entity is a user. The assumption would conflict with the
goal of the architecture, that is, preventing the LBS provider from knowing users’ loca-
tions. Functionality-wise, the focus of Trust No One is on locating nearby businesses (or
friends). It is unclear whether and how other geosocial applications can be implemented in
the architecture. The system also does not prevent an adversary from registering many fake
users, contributing the majority of the components in the decentralized matching service
and collecting enough queries to use statistical techniques like those presented by Shokri
et al. [50] to mount attacks on the pseudonymized locations.

Guha et al. [33] presented Koi, a platform that uses privacy-preserving location-based
matching to avoid exposing fine-grained GPS coordinates to smartphone applications. Koi
follows a similar principle to the work of Jaiswal and Nandi [35], which specifies that no
entity in the system can know both a user’s identifying information and location. The two
main components in Koi are a phone agent that runs on the user’s device and a service
based in the cloud. The phone agent provides functionality to the applications for regis-
tering and updating items, which are attributes of an entity in the system, and triggers,
which instruct the cloud service to complete a callback when a match to a desired item is
found. The cloud service employs two non-colluding sub-components. The matcher assigns
and maintains a mapping of random unique identifiers to each registered item or trigger
(regID) as well as a mapping of unique identifiers to each registered attribute of an item or
trigger (attrID). The combiner performs matchings on the obfuscated data when a trigger
is registered by querying the matcher for attrID’s associated with those mapped to by the
trigger and the user that created the trigger (identified by regID’s) and iteratively elimi-
nating regID’s that don’t match. Once the process is complete, the combiner only provides
the matcher with matching regID’s and not the attrID’s that contributed to the match
to ensure that the matcher does not learn any associations between users and locations
(since location is an attribute). The phone agent on the device of the user that created the
trigger is then notified of the match through the registered callback. Koi can support any
matching algorithm because the matcher has plaintext attributes available while answering
the combiner’s queries about relationships between attributes. Applications implemented
using the Koi platform include a private mobile social network, as well as proof-of-concept
navigation and local search and advertising services. Koi’s main weakness is its suscepti-
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bility to traffic-analysis attacks, as the matcher can link attributes (which could include
location) to a user by observing which attributes and users get updated/matched close in
time. Similarly, since the matcher sees all location updates, it may be able to link nearby
updates as being submitted by the same user and can track and ultimately re-identify a
user [27].

Summary

The works presented by Puttaswamy and Zhao [46], and Jaiswal and Nandi [35] are work-
shop papers that do not address how a privacy-friendly architecture could be deployed
in practice, which is a fundamental contribution of this work. The Jaiswal and Nandi
work also does not address the same variety of uses cases that this work covers and does
not sufficiently address the possibility of an adversary being able to reverse the mapping
from actual locations to pseudonymized locations. The research by Guha et al. [33] was
developed concurrent to this work and includes a full implementation, but is susceptible
to traffic-analysis attacks in which the matcher can learn a user’s location in addition to
already knowing her identity. In the architecture presented by this work, the goal is to
avoid all entities from learning both a user’s identity and her location.
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Chapter 3

Architecture

3.1 Introduction

In this chapter, we present the design of our privacy-friendly architecture for mobile social
networking applications. The chapter is organized as follows. We state our design goals in
section 3.2 and follow by presenting a high-level system model in section 3.3. In section 3.4,
we describe the threat model and trust assumptions. We elaborate on the basic system
model and describe the functionality of all entities in detail in section 3.5. The security
analysis is presented in section 3.6 and we finish by discussing use cases for our architecture
in section 3.7.

3.2 Design Goals

The main goal of our system is to design a privacy-friendly location hub that supports
many types of mobile social networking applications. In this section, we elaborate on finer
details of this overall goal.

Privacy-Friendly By Design

At the highest level, we classify being privacy-friendly as having less privacy than theoret-
ical application-specific, privacy-preserving protocols but more privacy more privacy than
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widely deployed location hubs for geosocial applications (such as Foursquare). 1 There
are two possible approaches to building privacy-friendly applications. One option is to
attempt to limit data access and transmission to and from existing applications through
external privacy controls. The other option is to build applications with privacy in mind
from the beginning. The first option is reactive and may cause some applications not to
function properly because they are being denied information that the original developers
assumed they would have, which is undesirable from a functionality standpoint. Our goal
is to create a location hub that encourages an approach to application development in the
spirit of the second option. The location hub should provide the functionality applications
need in a privacy-friendly way by design.

Decouple Data Storage From Social Networking Functionality

Existing social networks store all of a user’s information and also manipulate stored data to
provide social networking functionality for the user. Our goal is to present an alternative
to this model that enhances privacy. Essentially, our architecture should store data in a
manner consistent with our privacy goals and act as a gatekeeper for that data. Applica-
tions that perform social-networking-related functions should be able to request data and
should only be granted access to information as desired by the original creator.

Division of Information

A user’s location is not sensitive with no other information associated with it, and the same
is true for a user’s identity. However, when a user’s location is linked to a user’s identity,
then there are privacy concerns. Our goal is to store and provide data in our architecture
such that no entity should know both a user’s identity and her location.

Avoid Significant Consumption of Client-Side Device Resources

Although the resources available in smartphones are steadily increasing, asking a device
to perform a large number of computations (especially cryptographic operations) can still
cause problems. Many users run power and memory-hungry applications (e.g., music play-
ers, games) that may not behave as users expect if another application with significant

1A privacy-friendly architecture that is both general and as privacy-preserving as existing academic
application-specific protocols is future work.
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resource-based needs is running at the same time. In our framework, cryptographic oper-
ations are likely to cause the most computational load and drain on power resources. Our
goal is to reduce or avoid decryption by trial and error. More specifically, we would like to
avoid a scenario where a client downloads a batch of data and has to try many or all of her
decryption keys on all items of data in the batch in order to produce a human-readable
collection of data.

Support Many Application Use Cases

Privacy protocols that are designed for specific applications exist in research. However,
many of these solutions are complex and inappropriate for use as a foundation for develop-
ing privacy-friendly applications. Our goal is to build a flexible architecture that exposes
basic functions that can be combined to meet the needs of many applications. This simple
model for building functionality eases the development of privacy-friendly applications,
which is desirable in real-world deployment.

3.3 System Model

This section gives a high-level overview of the entities in our system and the communica-
tions between them. We intend for our system to be used to develop location-based mobile
social applications in which users will want to store both information about themselves
and information about locations (e.g., if the user is present at a location, a review a user
has for a business at a location). To ensure that no entity can know both a user’s identity
and her location (division of information goal), there are two separate entities, U and L,
for storing information about users and information about locations. In addition, U and L
only store information and do not provide any social networking functionality. Information
is requested from both based on the needs of protocols of applications running on other
entities.

3.3.1 Overview of Components

Our architecture consists of the following entities:

• U: The user-indexed database that stores information about users.

• L: The location-indexed database that stores information about locations.
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• Device Di: Runs mobile social networking application k by interacting with U and
L and maybe with Ck under the control of user i.

• Ck: Optional component of mobile social networking application k that runs in the
cloud under the control of application provider k. For simplicity, C will be used to
indicate a particular Ck or a notable set of some or all of them.

A high-level outline of communications between the entities, all of which are secured
with SSL, is shown in figure 3.1.

User-
Indexed
DB (U)

Device
i (Di)

Cloud
Component

(C)

Location-
Indexed
DB (L)

Get/Set Data About Users

Application-Specific
Communication

Get/Set Data
About Locations

Responses to Application-
Specific Requests

Application-Specific Requests

Anonymizing
Proxy

Location-
Hiding Proxy

Figure 3.1: System Architecture

3.3.2 Notation

The following notation is used frequently when discussing our framework:

• uidi: A unique identifier with user i in U. For simplicity, uid will be used to refer to
unique identifiers for users in general.

• cidk: The unique identifier associated with application k in U. For simplicity, cid
will be used to refer to unique identifiers for applications in general.
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• ttl: The time-to-live value required by some API functions that indicates how long
the creator would like the data item to persist before it expires and can no longer be
returned in responses to API requests to retrieve data.

3.4 Threat Model

In our system, U, L, and C are honest-but-curious and do not collude. The public interfaces
of these entities will perform according to specification, but any of them may try to discover
additional information using any data they store or requests they handle. U is trusted to
store information about users, but should not learn information about users’ locations or
other sensitive user information. L is trusted to keep information about locations, but
should not learn information about users. Ck can learn information about users’ identities
but not users’ locations. Di is fully trusted to store and manipulate information for user
i and will not share information that it knows about other users. U, L, and C will not
register users in the system or collude with existing users in an attempt to learn more
information.

We assume that all entities in the system have a key pair with all public keys certified
by a common trusted Certification Authority in a Public Key Infrastructure. In addition,
we assume that no entity will share its private key with another entity and entities will
have the necessary public keys and certificates available when needed for SSL connections
and verifying signatures.

To meet the goal of decoupling data storage from social networking functionality, at-
tribute values in U must be encrypted with information-specific keys. We assume that users
have access to out-of-band methods for managing and exchanging information-specific keys,
as key distribution and key revocation are out of the scope of this research. Users will share
information-specific symmetric keys with other users that they trust (i.e., their friends) so
that their data can be used for social networking purposes, but U (which stores data)
cannot decrypt it. We do not address the possibility of the existence of certain attribute
names or the lengths of encrypted attributes revealing any extra information.

There are a few assumptions made about how users interact with a location-based
service built using our architecture. We assume that users do not update their location
with L (check in) at a location that is considered sensitive. For example, we assume a
user will not check in at her own home or the home of any other user because background
information external to the architecture can tie users to home locations. If users wish to
store their home location in the system, they can put an encrypted value in U and give

19



the key out when they wish to share it. Another assumption that we make is that users
do not check in frequently along a contiguous route (i.e., we do not address the possibility
of a user being re-identified through a tracking attack).

3.5 Architecture Details

This section presents each entity in our system in full detail. First, we present the design
and the public API of the User-Indexed Database. Then we discuss the the design and the
public API of the Location-Indexed Database. We go on to describe the responsibilities of
cloud components and devices at a high level. To finish, we detail some operations that
are useful to many applications.

3.5.1 User-Indexed Database

U provides storage for information about users in the form of a set of attributes. Attributes
may be general and usable for many different applications (e.g., location) or application-
specific (e.g., Facebook could register an attribute type for wall comments that is only
requested by operations in their application components). A piece of data stored with U is
indexed by a unique identifier (which could be based on the users’ public keys) associated
with its creator and an attribute name (e.g., “interest”, “location”, “friend”). A user could
also have attribute names specific to which other users have access (e.g., “location friends”,
“location colleagues”, “location family”) as defined by particular applications. Each at-
tribute name can have multiple values and values can be encrypted with a symmetric key
specific to the particular identifier and attribute name. User attribute entries contain a
timestamp that indicates when they expire. For simplicity, user attribute entries cannot
be explicitly deleted but their expiry times can be updated. Therefore, an entry could
effectively be deleted by updating its expiry time to the current time.

When Di makes a request to L, its IP address (which could have geolocation performed
on it) must be masked. This can be accomplished by accessing U through a proxy. All
requests made to U by Di must be signed using Di’s private key in order to prevent
other users from adding information about user i to the database. Requests made by Ck

must be signed using Ck’s private key to ensure that a user’s data is not retrieved by an
unauthorized cloud component. A timestamp with the current time is also included in
all requests and U maintains a log of timestamps a user has presented. Every request is
checked against the log to avoid replay attacks. Anyone can retrieve a piece of encrypted
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information but will only be able to decrypt it if the creator of that data has given them
the correct keys.

Tags

Tags are attached to data stored in L to mark data as having been created by a user
without revealing that user’s identity. For example, a user can provide her tag when she
checks in at a location so that L cannot know her identity but her entry can later be
retrieved and used for location-based social networking operations by an entity that has
the means to turn her tag back into her identity.

Tags are generated on request by U and mappings between tags and identities are
maintained (either implicitly in the design of the tag or stored explicitly). U is the only
entity that knows how to reverse the mapping. A user must request a new tag for each
time she stores information in L. U also provides an access-controlled means for C to
determine which user is associated with a given tag if needed for social networking func-
tionality. Typically, Di initiates a location-based social networking operation with C. C
then retrieves data that is annotated with tags from L, requests the identities associated
with tags from U and attaches these identities to data in the response to Di. Di can
use the identities to select the correct decryption key and each item of data in the batch
returned from C only needs to have one decryption operation applied. This meets our goal
of avoiding unnecessary decryption operations that do not result in human-readable data.

Public API Provided by U

U provides the following public interface to allow other entities to access and manipulate
data:

• tag ← createTag(uidi): Create a tag for user i, remember the mapping from tag
to uidi and expiry time (using a standard time-to-live), and return the tag. The
mapping could be remembered by storing uidi within the tag (e.g., in an encrypted
way). This function is typically called by Di.

• whitelist(uidi, cidk): Add application k to the whitelist for user i. By whitelisting
application k, a user informs U that she is using this application and hence U is
allowed to hand over this user’s tag-to-uidi mapping to Ck. This function is typically
called by Di.
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• uidi ← getIdentity(tag, cidk): Return the identifier associated with a tag. This
function will succeed only if application k has been whitelisted by user i. This
function is typically called by an individual Ck.

• setAttribute(uidi, attribute, value, ttl): U stores the attribute/value pair
indexed by uidi until it expires. The expiry time of the entry is calculated using the
ttl. If this function is called multiple times for the same attribute/value pair the
expiry time of the entry is updated using the new ttl. Values are encrypted, and
only authorized users (e.g., friends) would have the decryption key. However, this is
transparent to U. This function is typically called by Di.

• value ← getAttribute(uidi or cidk,uidj,attribute): Return the value(s) for
the given uidj/attribute pair as requested by user i or application k. There is no
access control for this function but it may be added later since the observation that
an attribute changes its value may leak information (e.g., if a user’s value for the
attribute name “location” changes at 8AM, then it can be reasonably assumed that
the user has just left her home). This function is typically called by Di or Ck and
the identifier parameter is only used to make sure the entity making the request is
registered with U.

3.5.2 Location-Indexed Database

L provides storage for information about locations in the form of a set of attributes. As with
U, attributes can be applicable to different use cases (e.g., “checked in”) or application-
specific (e.g., Yelp could register an attribute type for reviews of particular locations). A
predetermined set of locations is registered with L. A piece of data stored with L is indexed
by a representation of a registered location (e.g., GPS coordinates, address, labeled region)
and an attribute name (e.g., “checked in”, “for sale”, “tourist information”). Values can
be compound data types that contain a user’s tag so that an application that retrieves the
data can trace back to the original creator as well as other relevant information (e.g., a de-
scription of an item for sale or a tourist guide). Attributes also have associated timestamps
to indicate when they expire. For simplicity, attribute entries cannot be explicitly deleted
but will be ignored and removed automatically from the database after their expiry time.

When Di makes a request to L, its IP address (which could be used as identifying
information) must be masked. This can be accomplished by building an SSL tunnel through
U or accessing L through a proxy. Di must also encrypt location data in all requests with
L’s public key to avoid C from learning user i’s location during social networking operations
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where C makes requests to L on Di’s behalf. C cannot learn user i’s location because of
our goal that no entity learn both a user’s identity and her location.

L provides a callback operation for social networking applications. The idea behind this
functionality is to allow C (on behalf of Di) to register with L for a particular condition
(e.g., a new value being added for an attribute name) and to be notified when that condition
is met. At the most basic level, the condition could be a new value being added for an
attribute name at a location. Like attribute entries, callback entries have an expiry time
and cannot be explicitly deleted. However, entries will be ignored once they expire and
are deleted automatically. During registration, C must provide a URL for a public API
function (handler) to which L can send an HTTPS request (in a predetermined format)
for callback handling when the condition is met (for more details, see section 4.2.2). After
each data storage operation, L must check all non-expired callbacks to see if any have
been triggered (i.e., they match the attributes that were set). For any callbacks that
are triggered, then L must call the associated handler. Once L has called the handler
to complete the callback operation, C can do application-specific processing and provide
results to users.

Public API Provided by L

L provides the following public interface to allow other entities to access and manipulate
data:

• setAttribute(tag, location, attribute, value, ttl): L remembers the at-
tribute/ value pair for the given location until it expires (the expiry time is calculated
using the ttl value). Sample attribute are “present”, “reviews”, “ads”, or “coupon”.
L may have to remember multiple values for a particular location/attribute combi-
nation (e.g., multiple reviews). For the attribute “present”, the value would be a tag.
For the attribute “review”, the value would be a review (annotated with a tag if it is
encrypted). The tag parameter is recorded by L only for later reference to prevent
tag replay attacks where false information is added for an existing tag.

The value could also include a tag that identifies the creator of the value (e.g., for an
encrypted review, this would make it easier to locate the decryption key). If there is
such a tag, the tag could come appended with an additional entry that has more fine-
grained expiration information (than ttl) about the stored information, but without
L being able to learn this expiration information. This is a defence against traffic
analysis attacks by L, where an entry expires and a user then inserts a new one. To
implement this feature, a tag could be a public key, with the key pair created by
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U, and U remembers the corresponding private key (and identity). Here, the fine-
grained expiration information would be encrypted by Di with the tag (i.e., public
key).

L does not consider validity of the submitted values (e.g., whether a tag is valid).
This function is typically called by Di.

• token ← registerCallback(location, attribute, handler, ttl): L remem-
bers a callback for the given location/attribute pair until it expires (the expiry time
is calculated using the ttl value). The location parameter must be encrypted with
L’s public key and may accept a description of a geographical region (defined by GPS
coordinates and a radius). Namely, L calls the handler whenever an attribute for the
location/attribute pair is set using the above function. The handler is a public API
function provided by C. The function returns a token that can be used to uniquely
identify the callback.

• value(s) ← getAttribute(location, attribute): Return the value(s) stored
for a location/attribute pair. The location parameter must be encrypted with L’s
public key. The location data provided must be either consistent with L’s represen-
tation of location or L must be able to recognize the representation and convert it
appropriately to a format that is internally recognizable (e.g., the location parame-
ter may accept a description of a geographical region). To return a particular value,
the location provided should map to the same location that was used for the value
when it was stored with setAttribute. If GPS coordinates are used to classify lo-
cations, then L may also employ GIS support that allows it to determine the nearest
neighbour(s) to a location provided in a query.

3.5.3 Cloud Components and Devices

Ck is the optional component of mobile social networking application k that runs in the
cloud if required for scalability or privacy reasons. For example, consider an application
for matching users with similar interests at the same location that only reveals information
about a user to other users that she has been matched with. If a device were to perform
matching operations on behalf of a user, the protocol would either need to run on un-
encrypted data from all colocated users (which violates the privacy requirement of only
revealing such data if a match is made) or secure multiparty computation on encrypted
data (which imposes too much of a computational load on the device). A cloud component
supporting this application that has been whitelisted by individual users (i.e., can decrypt
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their attributes) can match users on plaintext attributes and only reveal information about
a user to users she has been matched with. In addition, a cloud component has more com-
putational power (that can also be easily scaled) than a device and can process a large
number of matching operations.

At the very least, a cloud component must support identification of users by uid as all
information it receives will contain a uid or a tag that maps back to a uid. Also, a cloud
component must store a mapping for each user i from uidi to the user’s certificate and
verify the identity of requestors. Some cloud components may also manage callbacks on
behalf of users and manipulate data returned from callbacks to provide social networking
functionality.

The device Di (owned by user i) is responsible for accepting requests through a user
interface, communicating with the necessary entities for the application the user is running,
and presenting the results to the user in a human-readable form (on the user interface).
The design of the device component is left to the developers of the application. There is
no public API for the communication between Di (for any user i) and C. It is up to the
developers of each application to design their own protocol.

3.5.4 Operations Common to All Applications

Our framework is designed to support the functionality of many applications but there are
some operations that are useful to all applications.

Registration

To register a user i with the architecture, Di generates a symmetric key for each attribute
type (e.g., interest, friends, contact information). Then Di contacts U to provide their
public certificate and identity as well as a list containing cidk for each application k that
they will be using. U verifies that the certificate belongs to the user, assigns a new unique
identifier uidi to the user (which could be based on the user’s public key), adds the desired
applications to the user’s whitelist and returns the identifier to the Di. Then Di uses uidi
to register its public certificate, and symmetric keys as appropriate with C (i.e., a user
only provides keys for attributes that they want the cloud component to know). All of
these operations must be cryptographically signed so that U and C can verify that Di is
the owner of the private key matching the certificate it provided.
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Making Social Connections

Social networking applications are built on a foundation of users making connections to
each other. In most social networks, social connections are made by becoming “friends”. In
our architecture, users connect by sending each other their uids, and attribute keys (used
to encrypt attribute values stored in U) for the attribute types they would like their friends
to view. This process does not have to be symmetric, as user i can send her “location”,
“birthday”, and “interests” attribute keys to user j but user j can send a subset of those
keys or keys for a completely different set of attributes to user i. For two users i and j
that are friends to use functionality based on existing social connections of a particular
application k that has a supporting cloud component Ck, both Di and Dj must whitelist
Ck and send it their “friend” attribute keys. To register user i as a friend of user j, Di

must call U’s setAttribute(uidi,‘‘friend’’,<encrypted uidj>,ttl) and Dj must call
U’s setAttribute(uidj, ‘‘friend’’,<encrypted uidi>,ttl) (where uid in the value

parameter are encrypted using the sender’s “friend” attribute key) and the ttl value is
high to allow the connection to persist for a long time.

Location Update

Our framework is designed as a location hub in which a user updates her location from
any compatible application and that information can be used by other applications. When
the user wishes to update her location, Di must obtain coordinates from its localization
hardware and request a new tag from U. The next step, which is only done if Di is running
an application that requires this functionality, is to register a callback for the user’s location
with the appropriate C. Then the user must call L’s setAttribute function with her tag,
location, the attribute name “present”, her tag as the attribute value and a time-to-live
value (indicating how long the location update will persist). As mentioned in section 3.4,
the user should update her location with L only sporadically and only if the location
is public to avoid tracking and re-identification attacks. Finally, the user must call U’s
setAttribute(uidi, ‘‘location’’,<encrypted location>,ttl) where her location is
her coordinates encrypted with a symmetric key specific to her “location” attribute and
the ttl value is short to allow for frequent location changes (a user can refresh her location
update by registering again for the same location but with a different tag).

26



3.6 Security Analysis

The main focus of our architecture security-wise is the division of information goal, which
states that none of U, L or C can know both a user’s identity and her location. Using our
previously stated trust assumptions, we study each of these entities in turn and discuss if
this goal is met.

U knows a user’s identity because providing identifying information was required during
registration and each request must include a user’s identifier (uid). When a user stores her
location in U, she encrypts it with a symmetric key specific to the “location” attribute.
For U to discover her location, it would have to collude with L to look up the location
where the user’s most recent tag was seen or collude with the user’s friends to decrypt
her stored location, both of which we rule out using our threat model. We also ruled out
U registering a user in the system in the threat model. If U could register a user in the
system, it could become friends with a user to obtain her decryption keys and also use
the attack described later in this section (registering finely-spaced triggers) to get matched
with a user and determine her location. U could query several locations in L around a
known home location for a user (which could be public) and compare results with recently
registered tags. However, we assumed that U is honest-but-curious and does not become
a user of the system so this does not fit into our model and U would get caught by L.

L receives requests to set attributes about locations from users that are annotated with
tags. Users make requests through an anonymizing proxy so L cannot use any connection-
based information (such as an IP address) to identify them. Only U can reverse map tags
back into identities so L cannot find out a user’s identity in this manner. L could also
collude with U or a C that the user has whitelisted (and can therefore call U’s getIdentity
to get the identity behind the tag) but we ruled out collusion in the threat model. L could
also attempt to query U’s getIdentity, which is prevented because U ensures that a
registered cloud component is calling the function. We ruled out L registering a user in
the system in the threat model. If L could register a user in the system, it could set a large
number of common attribute name/attribute value pairs with U and register for matching
at many locations with C in an attempt to get matched with other users (and therefore
learn their identities).

C receives a user’s identifier during registration and can see attributes in plaintext if a
user has provided C with decryption keys. In all requests to C containing a location, the
coordinates are encrypted with L’s public key and are passed to L during a subsequent
operation. C could query several locations in L around a known home location for a user
(which could be public) and call U’s getIdentity to see if any of the returned tags match
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the user’s identifier. C could also register and become friends with the user or collude with
the user’s existing friends to get the decryption keys for the user’s location attribute that
has been retrieved from U. We rule out both of these scenarios in the threat model.

Separating U from L addresses the traffic analysis threat that exists in related work
by Guha et al. [33], and Puttaswamy and Zhao [46] because requests with identifying
information and requests with locations are handled by different entities. If an adversary is
a user of the system, she can register many callbacks for different attributes in locations that
are close together to try and get matched with a particular user. Rate-limiting at C could
solve this problem. However, she cannot impersonate another user without their private
key because to communicate with U all requests must be signed and when communicating
with L, a tag is required (which is issued by U). The adversary also cannot find out the
location of a user who is not a friend because she does not have the decryption key for the
attribute stored in U and we assume in the threat model that no other entity will collude
with the adversary to provide them with the decryption key. Threats presented by C being
able to register users in the system are identical those presented in the threat assessment
for U.

As for threats not coming from entities in the system, a passive adversary can only
learn which entities are communicating with each other but cannot learn anything because
all communications are secured with SSL. An active adversary cannot launch a replay
attack at U because a timestamp must be included in all requests (which are signed, so
the timestamp can’t be modified by the adversary). U verifies that a timestamp has not
been presented before by the user making the request. A non-user can check in with L
with a fake tag because there is no way to check if a provided tag is valid. However, a
non-user cannot register callbacks unless a malicious C does so on their behalf but this
violates the honest-but-curious model.

3.7 Use Cases

Our first goal was to present an architecture that exhibited privacy by design to encourage
development of applications that consider privacy preservation a priority. We later stated
an additional goal of making our system flexible enough to support many use cases. In
this section, we describe how a variety of applications can be realized using our framework
to show how these two goals have been met.
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3.7.1 Friend Locator

Suppose user i and user j are friends (i.e., they have exchanged decryption keys), user j
has made a recent location update, and user i would like to locate user j. Di makes a
getAttribute request to U with uidi, uidj and the attribute name “location”. U returns
user j’s encrypted location and Di can decrypt to learn user j’s location.

3.7.2 Friend Proximity Detection

A proximity detection application notifies a user if she is within a threshold distance of any
of her friends. Suppose Di and Dj are friends and are frequently updating their locations.
If Di wishes to be notified when Dj is within a threshold distance, one of the following
procedures could be used:

1. Di calls U’s getAttribute(uidi,uidj,‘‘location’’), decrypts the returned loca-
tion and compares it to the user’s current location. If the distance between the two
locations is within a threshold value, Di is notified. This solution does not scale well
if user i has many friends and Di has to compare her location to all of their locations.

2. Suppose Di and Dj have both whitelisted a supporting cloud component C. Di sends
its proximity detection requests with its location and threshold distance (encrypted
with L’s public key), and values indicating how often and for how long they would
like proximity detection protocols to run to C. C calls U’s getAttribute(uidi,
uidj, ‘‘friend’’) to get a list of Di’s friends and stores it for later use. L’s
getAttribute function must be designed such that the location parameter accepts
a region (defined by GPS coordinates and a radius). In addition, L’s location-aware
database must be able to execute a query that returns all entries at locations within
the specified distance of a set of coordinates. C calls getAttribute(<encrypted

(coordinates,distance)>,‘‘present’’) and gets a list of tags within distance

of coordinates. C calls U’s getIdentity with the list of tags and gets a mapping
of tags to uids for uids that have whitelisted it. C determines which of these uids
belong to users that are friends with user i (which may include user j) and sends a
notification with this list of uids to Di. If uidj is included in the set, then Di notifies
user i. This solution could work but investigation to determine how well it scales as
the number of users, requests and entries in L’s database increases would have to be
done.
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3. Suppose Di and Dj have both whitelisted a supporting cloud component C. Di sends
its proximity detection requests with its location and threshold distance (encrypted
with L’s public key), and values indicating how often and for how long they would
like proximity detection protocols to run to C. C calls U’s getAttribute(cidk,
uidi, ‘‘friend’’) to get a list of Di’s friends and caches this data for later use.
L’s registerCallback function must be designed such that the location parameter
accepts a region (defined by GPS coordinates and a radius). In addition, L’s location-
aware database is able to execute a query that returns all registered locations within
the specified distance of a set of coordinates.

L’s callback storage is modified to permit locations to be regions and queries are
able to determine if coordinates for a check-in are inside callback regions. C calls L’s
registerCallback(<encrypted (coordinates, distance)>, ‘‘present’’,

<handler>, ttl) (where the ttl is the value the user specified for how long to
run proximity detection protocols) L adds a callback for attribute “present” to the
database for a circle-shaped region with coordinates as the centre and distance as
the radius, and returns the token for the callback to C. A mapping γ from callback
tokens to uid is stored for later reference.

When the callback is triggered (by a check-in to a location inside its associated
region), L calls C’s callback handler with a list of tokens for triggered callbacks as
well as tags registered with the attribute “present” at that location.

The handler calls U’s getIdentity function to get a list λ of mappings from tags
to uid. C uses cached attributes for user i to determine if any uid in λ or γ are
friends. If any friends are found, C stores the result for later retrieval by Di. If the
smartphone platform Di is running on supports it, C can send a push notification to
Di immediately when a match is found.

The main drawback of this approach is that the query to determine which callbacks’
regions are matched by location check-in can take a long time if there are many
callbacks in the database.

3.7.3 Matching Service

The purpose of this type of application is to match users at the same location (who can be
friends or strangers) with each other based on attributes. For example, if Alice wishes to
play basketball at a nearby park, she can indicate to the application that she is interested
in basketball and give her location. She can then be matched with other users at the same
location that are also interested in basketball.
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A cloud component C provides a public API function that allows Di to register user
i for matching at a particular location. We assume that Di has whitelisted C and given
C the necessary decryption keys for user i’s attributes stored with U. When a user i
registers for matching, they provide uidi, coordinates encrypted with L’s public key (so
that C cannot learn her location) as well as a value indicating how long they would like
their callback request to persist before it expires. A signature over all parameters is also
required. Once C has received a registration request, it verifies that the signature matches
the certificate associated with uidi, retrieves user i’s attributes by sending a getAttribute

request to U and caches them for later use in matching. Then C sends a request to L’s
registerCallback function with the encrypted location, the attribute name “present”
(which indicates that the attribute represents a user checked in at a location), the time-to-
live value and the URL of a public API function that L can call to complete the callback. L
returns a token, and C records the association between that token and uidi before sending
the token to Di. Di then sends a setAttribute request with their coordinates (encrypted
with L’s public key), the attribute name “present” (which indicates that they would like
to check in to the location), their tag and a time-to-live value. This is done to immediately
trigger callbacks and generate results for user i.

When callbacks are triggered by L, C’s handler is called with a list of tags that are
present at the location as well as all matching callback tokens. The handler calls U’s
getIdentity function to get a list λ of mappings from tags to uid. Then each callback
token is mapped to a uidi, and the attributes associated with uidi are then matched against
the attributes of all users in λ. Any matching algorithm can be used because Ck can see
plaintext attributes for users. Then the results of the match are stored and C provides a
public API function that allows Di to retrieve this data.

Example

Suppose user i and user j are both at location ` and have at least one common interest
stored with U. Matching application k is supported by cloud component Ck.

1. Di calls whitelist(uidi, cidk) and gives the decryption key for the attribute “inter-
est” (stored with U) to Ck.

2. Di performs a location update with the callback registration step included.

3. Dj does steps (1) and (2).

4. Dj’s location update triggers callback handling for location `. L calls Ck’s callback
handler with the list of all tags checked in at location `.
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5. Ck calls U’s getIdentity with the list of tags received from L and gets a set λ of
mappings from tags to identities for all users that have whitelisted it.

6. Ck uses users’ interests that were cached during callback registration to perform
matching. Since both user i and user j were at location ` and whitelisted Ck, they
are in the set to be matched. Matching occurs and results (matching attributes for
sets of users) are stored. At least one result is stored for users i and j because they
have (a) common interest(s).

7. If the platforms Di and Dj are running on support push notifications, Ck can send
them their match results immediately. Otherwise, Di and Dj periodically poll Ck to
retrieve their matching results.

3.7.4 Local Search

A local search application provides information about points of interest. A user provides her
location and keywords (e.g., “restaurant”, “coffee shop”, “shopping”) and the application
returns results that are close to her current location. Points of interest can register using
L’s setAttribute function with an empty tag (since they are not users), the attribute
name “point of interest”, useful information as the value and a time-to-live value that will
allow the entry to persist far into the future. We assume that data is not encrypted or,
in the case of a paid application, only paying users have the decryption key. 2 A device
can retrieve local search information by calling L’s getAttribute function with its current
location and attribute name “point of interest”.

3.7.5 Social Recommendations

A social recommendations application allows users to write a review or give an opinion (e.g.,
ratings of 1–5 stars) of points of interest (e.g., restaurants, stores, attractions). Describing
how to build this functionality using our framework is best described by the following
example:

Scenario

User i writes a review and Di stores it in L. User j would like to read reviews about a
location. User i and user j are friends, which means they have each others’ decryption

2How an application manages keys to maintain this restriction is out of the scope of this work.
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keys. The social recommendations application k is supported by cloud component Ck.

Generating a Review

A review is generated as follows:

1. Di calls whitelist(uidi, cidk) and gives the decryption key for the attribute name
“friend” (stored with U) to Ck.

2. Di calls createTag(uidi).

3. Di stores an encrypted review with L using setAttribute(tag, location, ‘‘review’’,

(tag,<review text>),ttl) where the ttl value indicates how long they would like
their review to persist. The value <review text> is encrypted with Di’s attribute
key for attribute name “review”. Alternatively, Di can store a public review with L
using setAttribute(tag, location, ‘‘public review’’, <review text>),ttl

and leaving <review text> unencrypted.

Reading a Review

To retrieve public reviews (which are unencrypted), Dj calls getAttribute(location,

‘‘public reviews’’). For encrypted reviews, Dj follows these steps:

1. Dj sends its location (encrypted with L’s public key to avoid Ck learning its location)
to Ck.

2. Ck calls getAttribute(location, ‘‘reviews’’) with the encrypted location and
gets back data in the form {(<review text>, tag)}, where <review text> is en-
crypted with the attribute key of the writer.

3. For each tag that is attached to an encrypted review, Ck calls getIdentity(tag,

cidk) and receives the identity of the review writer if she has whitelisted Ck.

4. For each received identity, Ck calls U’s getAttribute function with the attribute
“friends” to get a list of the writer’s friends.

5. If a writer (e.g., Di) lists Dj as a friend, C passes on the encrypted review and the
identity of the writer to Dj.

6. Dj uses the review decryption key received from Di to decrypt the review.
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3.7.6 Advertising

An advertising application allows a business to post advertisements to specific locations
annotated with keywords indicating the area of interest (e.g., coffee, clothing, daily deals).
Users that check in at a location can be served advertisements registered at that location
that match their interests. In a deployed system, L would, in general, keep track of who
stores what information and how often this information is accessed. Then the owner of the
information could billed accordingly. However, the details are future work.

Scenario

Assume A is the advertiser and has posted an ad to Di’s location.

Approach I

1. A registers the ad with L with one entry for each interest they wish to attach to the
ad as follows:

• setAttribute(<empty tag>, location, ‘‘ad health’’, <ad text>, ttl).

• setAttribute(<empty tag>, location, ‘‘ad soccer’’, <ad text>, ttl).

2. Di directly queries L based on its current location and user i’s interests.

The advantage of this solution is that it is simple to implement. The drawback is that
L can link requests if a person asks for multiple interests at each location. Therefore, users
should send only limited number of requests per location.

Approach II

We assume that the identity of the advertiser does not reveal the location where his ads
are posted (e.g., the brand name of McDonald’s does not reveal the locations where the
company places ads). One goal is to avoid L linking multiple requests that contain interests,
which we achieve by using a cloud component to make requests to L on the user’s behalf.
Another goal is to prevent the cloud component from seeing the text of the ad, as the text
could reveal the location where the ad was placed.

34



1. A registers the ad with L using setAttribute(<empty tag>, location, ‘‘ad’’,

<advertiser, advertise ID, <interest1, interest2, ...>>), where advertiser
represents
contact information (e.g., URL) for A, the advertise ID represents the ID of the
specific ad regarding that location, and the interest list <interest1, interest2,

...> is used to match potential clients’ interests. We assume A could run multiple
ads at different locations, which are indexed by advertise ID.

2. Di calls whitelist(uidi, cidk) and gives the decryption key for the attribute “inter-
est” (stored with U) to Ck.

3. Di makes a request to Ck with her current location (encrypted using L’s public key).

4. Ck passes the encrypted location to L and asks for ads registered at that location.

5. L sends Ck a collection of data where each entry is of the form <advertiser,

advertise ID, <interest1, interest2, ...>>. Note that the actual contents of
ads are not contained within the list.

6. Ck performs interest matching between Di and the ads. If Ck finds a matching ad
placed by advertiser A, Ck sends A’s public key and contact information, as well as
the advertise ID of the ad, to Di (we assume that Ck has stored all advertisers’
public keys).

7. Upon receiving A’s public key and contact information from Ck, Di verifies the
identity of A.

8. Di requests the ad from A using the advertise ID and downloads the ad text from
A through an anonymization network or proxy.

9. Di presents the ad text to the user.

During the whole process, A only knows Di’s location but not Di’s identity (since all
communication between Di and A is either assisted by Ck or anonymized) and Ck knows
Di’s identity but not Di’s location.

The main drawback of this scheme is that a business that only posts ads at a small
number of locations (e.g., a small local business) cannot participate without causing pri-
vacy problems for users. If Ck can find out an advertiser’s locations using their contact
information, they can narrow down or pinpoint the location of any user requesting an ad
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for that advertiser. The simplest solution to this problem is to have a third party with con-
tact information that does not trace back to any companies post ads on behalf of smaller
companies with few locations.
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Chapter 4

Implementation and Experiments

4.1 Introduction

This chapter presents the implementation and evaluation details of the key components of
our framework. In section 4.2 the implementations of the user-indexed database server (U),
location-indexed database server (L), a sample cloud component (C) and device client (D)
are discussed. In section 4.3 we present results from performance measurements executed
on our framework. Section 4.4 describes proof-of-concept applications implemented using
our framework.

4.2 Implementation

The server and cloud components (U, L, and C) are written in the Python programming
language using the CherryPy web application framework and use the PostgreSQL object-
relational database system for storage of persistent data. Each of these components exposes
a WSGI interface with SSL support that can be accessed using HTTPS requests. All
communications between components package data using protocol buffers [12] in the bodies
of HTTPS POST requests. For symmetric-key encryption operations, AES in CFB mode
(with random initial vector values) with 128-bit key size is used. RSA with 2048 bit
key size is used for public-key encryption and the SHA-256 hash function is used for all
hashing operations. Signing operations use SHA-256 with RSA. Self-signed certificates
and associated private keys have been generated for each entity (users, cloud components,
servers) using OpenSSL and are used for signing API requests, verifying signatures and
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establishing HTTPS connections. In our prototype self-signed certificates are sufficient for
experiments, but certificates verified by a known certificate authority would be necessary
for a real-world implementation.

4.2.1 Implementation of the User-Indexed Database Server

All users and cloud components provide a certificate during registration and are assigned a
unique identifier by U. Mappings between uid and user certificates as well as between cid
and cloud component certificates are stored in the database. All requests to API functions
provided by U must include the unique identifier of the sender (uid or cid) and a timestamp
(to avoid replaying of messages). Authentication to verify the identity of the user or cloud
component making the request is also used for all API functions. To authenticate a request,
U queries the database for the certificate associated with the identifier (uid or cid) provided
in the request and verifies that the signature was produced by the corresponding private
key. U rejects the request if it contains a timestamp for an earlier or identical time to
the most recent timestamp (in the Timestamp column of the User Verification table) they
have remembered for the provided identifier. Otherwise, U continues with the request
and updates the stored timestamp for the identifier to match the one in the request. For
simplicity in our prototype implementation, each user has only one symmetric key used
to encrypt all of her attribute values. In a real-world deployment, each user would have a
different key for each attribute name.

A set of database tables supports the operations of U. The main table is the collection
of user attributes. Each row represents one attribute for a user, identified by uid. See Ta-
ble 4.1 for more details about the composition of each row. Other tables used by U include
a table listing which users have whitelisted which applications (Whitelist) and lists of users’
and applications’ certificates (User Verification and Application Certificates, respectively)
to be used for verifying signatures on requests. See Table 4.2 for more information about
the User Verification table and Table 4.3 for more details about the other tables.

Individual API operations are implemented as follows:

• getTag: This function accepts uidi from Di and concatenates this identifier with
the current time in milliseconds. This value is then encrypted with symmetric-key
encryption using a secret key only known by U and returned to Di.

• whitelist: This function accepts uidi from Di as well as all the cid of the cloud
components for the applications they would like to whitelist. U stores an entry in
the Whitelist table indicating that the device client has whitelisted C.
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uid Attribute Name Attribute Value Expiry Time
12345 interest < encrypted value > 2012-09-19 00:00:00
12345 friend < encrypted value > 2012-09-19 00:00:00
12346 location < encrypted value > 2012-08-01 12:15:00
12347 interest < encrypted value > 2012-12-31 15:00:00
12347 interest < encrypted value > 2012-12-31 15:00:00

Table 4.1: Table of User Attributes in U

uid Certificate Timestamp
12345 < Certificate Data > 1348594480
12346 < Certificate Data > 1348137280
12347 < Certificate Data > 1348137255
12348 < Certificate Data > 1348458329

Table 4.2: Table of User Verification Information in U

Whitelist Cloud Component Certificates
uid cid cid Certificate
12345 9000 9000 < Certificate Data >
12345 9002 9001 < Certificate Data >
12346 9000 9002 < Certificate Data >
12347 9002 9003 < Certificate Data >

Table 4.3: Other Tables of Data in U
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• getIdentity: This function accepts a list of tags from a cloud component C as well
as its cid. U decrypts all tags using its secret key and queries the Whitelist table
in the database with the list of identifiers derived from decrypting the tags. The
database responds with only the identifiers for users that have whitelisted C. A set
of mappings indicating which tags correspond to which identifiers is returned.

• setAttribute: This function accepts uidi from Di as well as the name of the at-
tribute Di would like to modify, the desired value encrypted with Di’s attribute key
and a timestamp indicating when Di would like the attribute to expire. U calls a
stored procedure in the database to determine if an attribute is new for Di or being
updated and inserts a record into the User Attributes table or modifies an existing
one as appropriate.

• getAttribute: This function accepts a unique identifier (uid or cid) from the en-
tity making the request (could be C or Di) as well as lists of uids and attribute
names. For each requested uid, U retrieves the attribute values for the requested
attribute names from the User Attributes table. A set of mappings from uid to a list
of all of the (attribute name,attribute value) pairs returned for that uid (of the form
{(uid,{(attribute name, attribute value)}}) is returned to the user. This op-
eration was implemented to support batch operations because a wider variety of use
cases is supported. For example, our implementation supports situations where a
user wants particular attributes for one of her friends or many attributes for multiple
friends.

4.2.2 Implementation of the Location-Indexed Database Server

The database backend of L uses the PostGIS extension to add support for indexing records
by location and performing calculations on the location data in records. All locations in
requests to L must be encrypted with L’s public key. The database has a table that lists
the GPS coordinates (latitude, longitude) of all places that D can check into (using the
setAttribute function) as well as a unique identifier for each location to make book-
keeping easier. During API calls, L performs a nearest-neighbour query on provided GPS
coordinates to get the identifier for the nearest location that can be checked into. This
function could easily do a k-nearest-neighbours search to implement the functionality of
many location based services, which present a user with a list of nearby locations and allow
the user to choose which one to check into.

A proxy server is available that permits clients to issue an HTTPS CONNECT com-
mand (with L’s hostname and port) in order to hide their IP addresses from L. For security
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reasons, the configuration file only permits connections from the IP addresses of our test
clients to L. This is sufficient for experiments but in a real-world implementation a more
sophisticated authentication scheme would be required to handle a large number of clients.

A set of database tables supports the operations of L. The first table is a list of registered
locations that users can check into, indexed by coordinates. Each row represents one
location and lists a unique identifier that is used to identify the location in other tables
and a common (human-understandable) name in addition to the GPS coordinates. See
Table 4.4 for sample data. Location updates are stored in the Location Check-In table,
which is indexed by the identifier assigned in the Location Directory table. Each entry
includes an attribute name as well as an attribute value and expiry time. See Table 4.5
for more details about the data in this table. The final table used by L stores information
about registered callbacks. Each entry represents a particular callback and includes a
unique identifier for the callback, the location, contact information for the cloud component
that registered the callback and an expiry time (to the nearest minute). See Table 4.6 for
sample data. To help ensure that L is only dealing with legitimate cloud components, all
applications must register their cloud components’ public certificates, which are stored in
a table identical to the Cloud Components Certificates table in U.

Individual API operations are implemented as follows:

• registerCallback: This function accepts a location, an attribute name for which
to register a callback and the URL of a callback handler The callback handler URL
must reference a public API function exposed by C that accepts HTTPS requests in
a predetermined format. C must also provide a signature over all parameters so that
L can verify (using the Cloud Components Certificates table) that it is a registered
cloud component. In addition, L should verify that the hostname provided by C
matches the common name registered in C’s certificate. L adds a record to the
Location Callbacks table and returns the automatically assigned row identifier to C
(this acts as a callback identifier).

• setAttribute: This function accepts a location from Di as well as a name represent-
ing which attribute Di would like to modify, the desired value, and a ttl value (in
hours). L inserts a record into the Location Check-In table with the attribute name,
attribute value, and expiry time provided in the request. Then L triggers callback
processing by querying the Location Callbacks table for all callbacks registered at the
location. Callback details are grouped using contact information (e.g., callbacks are
grouped together only if they have identical cloud component hostname and handler
values) and L sends one message to each cloud component/handler combination with
a list of identifiers for the callbacks that were triggered.
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• getAttribute: This function accepts a location from Di as well as a key representing
which attribute Di would like to retrieve values for. L queries the Location Check-In
table to get all records for the identifier and the desired attribute.

4.2.3 Implementation of the Cloud Service

The main function of C is to act as an agent for a particular application and manage
callbacks on behalf of devices. C receives a callback request from Di with the user i’s
unique identifier (assigned by U), retrieves the user’s attributes from U and caches them
for later callback processing. A callback (which must include a URL of an API function
exposed by C that can accept an HTTPS request to complete the callback) is registered
with L. The returned callback identifier is stored with the user’s identifier in a database
table and the identifier is returned to Di so that it can be used to retrieve results at a later
time (see Table 4.7).

When a callback registered by C is triggered at L, a list of identifiers representing
triggered callbacks are sent to the handler and application-specific processing can be applied
by C. Results are stored for later retrieval by the application running on a device.

Callback ID uid
1 12345
2 12346
3 12347
4 12348

Table 4.7: Callbacks Table in C

4.2.4 Implementation of the Device Client

The Device Client (D) was built using the Android platform. Cryptographic keys are
stored in a Bouncy Castle keystore object (the only format supported by Android). The
keystore is added to the application as an asset and loaded in the code to assist with
creating SSL sockets and performing cryptographic operations. A basic GUI is provided
with a field where an identifier can be entered to cause the application make requests as if
it is the user specified by the identifier.
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Since the Android operating system does not permit network operations in the main
thread of the application, all HTTPS requests must be executed in a separate task or
thread. Requests are first constructed and then passed along with the method name of
a handler for processing the specific results from the request to an asynchronous task
to be executed. The asynchronous task uses Java reflection to call the results handler
with the raw data returned from the request. This design allows an asynchronous task to
remain flexible enough to handle all types of requests and avoids having to write a different
asynchronous task for every API function that could be called.

4.2.5 Challenges

The M2Crypto library was used for cryptographic operations in Python code because it can
be instructed to not automatically add padding to plaintext when doing AES encryption.
PyCrypto, the standard python cryptography library, exhibited unexpected behaviour with
respect to padding plaintext and was producing ciphertext that could not be decrypted us-
ing Java cryptography libraries and was not producing reasonable decryptions of ciphertext
produced by Java libraries. We were unable to determine what was causing the problem so
using a different library was required. However, M2Crypto’s automatically added padding
was also not correct, but a library function was provided that did pad plaintext correctly.
We wrote our own function for removing padding since M2Crypto’s automatic removal of
padding is also incorrect.

The implementation of the Bouncy Castle open-source cryptography library provided
in Android is outdated and does not operate properly with keystores created with later ver-
sions of the library. Updated functionality cannot be provided by adding an external JAR
file to the Android application without causing class loading conflicts with the Bouncy Cas-
tle library objects built into the Android operating system. However, a repackaged Bouncy
Castle library, Spongy Castle [14], is available which renames the namespace to eliminat-
ing class loading errors and causes no problems when added to an Android application.
Spongy Castle can also be provided to external cryptographic tools to create keystores
that can be accessed easily from inside applications. When trying to add longer keys to a
keystore using command line tools on the development computer, invalid key exceptions
were raised. This problem was fixed by installing the Java Cryptography Extension (JCE)
Unlimited Strength Policy Files in the Java Virtual Machine (JVM) on the development
computer. Fortunately, the Android JVM supports unlimited strength cryptography by
default.

One of our original implementation goals was to use both SSL server and client au-
thentication during HTTPS requests. The CherryPy framework does not provide native
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support for SSL client authentication and the only extension available requires a file con-
taining certificates for all possible clients that can be searched to determine if a connection
at socket level is coming from a legitimate client. This does not scale well, as there could
be many clients using our system. Also, client connections are handled at the socket level
and an exception is thrown in the client after a failed attempt instead of being handled
gracefully in an application-specific way. Our solution was to assign all users of the sys-
tem private and public keys and use cryptographic signatures at the application level to
authenticate clients.

The usage of asynchronous tasks to handle network connections can cause several
threads access a connection object at the same time. The documentation of the suggested
client class, AndroidHttpClient, claims that the client connection manager provided by
default is thread-safe. However, the application only properly executed half of the requests
being attempted by 10 threads simultaneously and threw exceptions for the rest. Using
our own custom client class, which is extended from the Apache HttpClient class to use the
thread-safe client connection manager provided by the standard Java libraries to eliminated
the problem.

The application polls the cloud service for results from callback processing. Although
native push-messaging is available on the Android platform, use is restricted heavily and
it is difficult to configure.

4.3 Experimental Evaluation

In this section, we discuss the experimental evaluation of our framework. We performed
experiments to determine the server processing overhead as well as the end-to-end (E2E)
processing time at the client for each of the API functions offered by U and L. Analysis of
the time taken to run operations in the cloud component C associated with the matching
service application was also done. During experiments, L and C were run on a 3.4 GHz
quad-core machine with 4 GB of RAM and U was run on a 2.4 GHz dual-core machine
with 4 GB of RAM. The client was run on a Nexus One device with Android 2.3.6 installed
and comparison measurements were collected using a client written in Python connected
to the same wireless network and running on a 2.4 GHz dual-core machine with 4 GB of
RAM. For Python code, execution times were measured using the cProfile library. In the
Android client, the system function for getting time in milliseconds was used to calculate
execution times. For each function in the server entities and Python client, we performed
500 trials. Due to issues with instability over a large number of consecutive executions of
each function, only 250 trials were performed for each function on the Android client.
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4.3.1 Experiments on U

In the first round of experiments on API functions provided by U, getIdentity was
executed with only one tag in the request and getAttribute was called for a uid/attribute
name pair that only returned one attribute value. Since getIdentity is only called from a
cloud component, measurements were only done using Python test code (to mimic a cloud
component written in Python) and not performed on the Android client. The results are
shown in Table 4.8.

Function Server Time Python Client E2E Android Client E2E
createTag 1.0 ms ± 0.0 ms 27 ms ± 7 ms 180 ms ± 30 ms
whitelist 7 ms ± 2 ms 39 ms ± 7 ms 180 ms ± 20 ms
getIdentity 4.0 ms ± 0.0 ms 40 ms ± 5 ms –
getAttribute 2.9 ms ± 0.5 ms 23 ms ± 4 ms 180 ms ± 20 ms
setAttribute 7 ms ± 1 ms 31 ms ± 9 ms 180 ms ± 30 ms

Table 4.8: Server Processing and end-to-end times for baseline measurements on API
functions offered by U. Each column lists the mean execution times (± the standard
deviation) across all trials.

More details about what operations were taking significant time during server process-
ing are as follows:

• createTag: The only operation that registered measurable server processing time
was verification of the user’s identity because it involves cryptographically verifying
the signature of the requestor.

• whitelist: 78% of the server processing time was spent inserting a new entry into
the Whitelist table. The most significant portion of the rest of the time (about 15%)
was spent verifying the user’s identity.

• getIdentity: Verifying the identity of the cloud component making the request took
about 40% of the server processing time and checking the whitelist took about 35%
of the time.

• getAttribute: Verifying the user’s identity takes up 35% of the server processing
time while retrieving the attribute from the database occupies 40% of the rest of the
time.
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• setAttribute: 70% of the server processing time was spent calling the stored pro-
cedure in the database to insert or update the attribute. The only other operation
to register in the measurements was verifying the user’s identity (15%).

Some of the differences between the Android and Python clients can be attributed
to the amount of computation time the Android application uses to maintain its state.
Traceview (an Android profiling tool) showed that a lot of time was spent making calls
to UI-related functions and other functions for keeping the application running. The rest
of the differences are probably caused by the differences in computational power available
(i.e. the Android device has less resources available and a lot of applications competing
for them).

For one batch experiment, we tested getAttribute for a user/attribute pair with an
increasing number of results to determine how the amount of data being returned affects
the execution of the function. The number of returned results was increased until the test
became unstable on the Android device. In a real-world deployment, if a user requested
all attributes for a large number of her friends (e.g., if she had 200 friends averaging 50
attributes each), it could be possible to get 10000 attributes returned from the server. The
timing results are shown in Table 4.9 and the breakdown of the server processing time is
displayed in Figure 4.1.

Attributes Returned Server Time Python Client E2E Android Client E2E
10 3.0 ms ± 0.0 ms 23 ms ± 1 ms 290 ms ± 90 ms
100 10.1 ms ± 0.4 ms 40 ms ± 2 ms 400 ms ± 200 ms
500 45 ms ± 2 ms 82 ms ± 6 ms 800 ms ± 400 ms
1000 85 ms ± 3 ms 139 ms ± 7 ms 1050 ms ± 70 ms
5000 420 ms ± 80 ms 590 ms ± 20 ms 4700 ms ± 600 ms
10000 600 ms ± 200 ms 900 ms ± 300 ms 11000 ms ± 3000 ms

Table 4.9: Server processing and end-to-end times for measurements on U’s getAttribute
function with varying numbers of attributes returned. Each column lists the mean execu-
tion times (± the standard deviation) across all trials.

For the other batch experiment, we tested getIdentity with an increasingly large list
of tags to determine how the amount of data being processed affects the execution of the
function. The number of tags in the request was increased until the test became unstable.
With more than 350 tags in the request, the CherryPy web server framework had trouble
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Figure 4.1: Server processing time (mean percentage of total processing time taken with
error bars showing standard deviation) breakdown for U’s getAttribute function with
varying numbers of attributes returned.

Number of Tags Server Time Python Cloud E2E
10 3.0 ms ± 0.4 ms 32 ms ± 1 ms
50 7.0 ms ± 0.4 ms 36 ms ± 3 ms
100 11.1 ms ± 0.7 ms 42 ms ± 2 ms
250 25 ms ± 1 ms 52 ms ± 5 ms
300 29 ms ± 1 ms 61 ms ± 5 ms
350 34 ms ± 2 ms 64 ms ± 6 ms

Table 4.10: Server processing and end-to-end times for measurements on U’s getIdentity
function with a varying number of tags in the request. Each column lists the mean execu-
tion times (± the standard deviation) across all trials.
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decoding the large amount of incoming data. The timing results are shown in Table 4.10
and the breakdown of the server processing time is displayed in Figure 4.2.

For basic functions involving the minimum amount of data, our architecture performs
well with unnoticeable latency at the clients. In functions involving addition of data to
the system, database insert operations occupied the greatest portion of the execution.
Otherwise, execution time was split between retrieving information from databases (if
necessary) or cryptographically verifying a requestor’s identity.

Increasing the batch size of data returned from getAttribute causes encoding data for
transport and retrieving data from the database to dominate the server’s execution time
and cryptographic operations used to verify the identity of the user making the request
to become negligible. From the standpoint of the Android device, the time spent waiting
for a request to return a large number of attributes becomes too high for impatient users
(the waiting time is almost 5 seconds for 5000 attributes). Either the speed of the function
needs to be increased or expectations of users have to be managed (e.g., perhaps only allow
users to retrieve attributes for a limited number of friends at one time).

With getIdentity, increasing the number of tags in the request causes processing the
tags (which involves decrypting each tag and determining if it is expired) to dominate
the server processing time. Encoding data for transport becomes noticeable at requests
containing 200 tags and other operations (mostly consists of checking the whitelist with
the uid of all unexpired tags and the identifier of the requesting cloud component) become
less significant. Verifying the identity of the requesting cloud component is negligible for
requests containing more than 250 tags.

4.3.2 Experiments on L

For the first round of experiments on API functions provided by L, getAttribute (which
returns results in a batch) was executed for a location and attribute for which there was
only one entry to determine a baseline. setAttribute was executed for a location that did
not have any callbacks registered to get an application-independent measurement (callback
processing time is included in this function). Since registerCallback is always called on
a user’s behalf by C, no measurements were done with the Android client. The results are
shown in Table 4.8.

More details about what operations were taking significant time during server process-
ing are as follows:
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Function Server Time Python Client E2E Android Client E2E
getAttribute 17 ms ± 5 ms 35 ms ± 8 ms 240 ms ± 60 ms
setAttribute 43 ms ± 5 ms 63 ms ± 7 ms 500 ms ± 100 ms
registerCallback 24 ms ± 4 ms 110 ms ± 10 ms –

Table 4.11: Server Processing and end-to-end times for API functions offered by L. Each
column lists the mean execution times (± the standard deviation) across all trials.

• setAttribute: 43% of the server processing time was spent inserting a record for the
attribute. The most significant portion of the rest of the time was spent decrypting
the location parameter (42%) and a small amount of time (2%) was spent determining
which registered location was closest to the provided coordinates.

• getAttribute: The most significant amount time (73%) was spent performing cryp-
tographic operations. The only other notable operation was retrieving information
from the database (8%).

• registerCallback: 47% of the server processing time was spent inserting a record
for the callback being registered into the database. Notable portions of the rest of
the time were spent performing cryptographic operations (42%) and mapping GPS
coordinates to registered locations (4%).

As we observed in experiments on U, database operations consumed significant time in
functions. However, cryptographic operations took up much larger portions of time than in
U because L uses public-key cryptography to decrypt locations received in requests (U only
uses symmetric cryptography in its functions). Nearest-neighbour queries to determine
the registered location in the database closest to the coordinates provided in a request
also were noticeable in server processing times. From the viewpoint of the user, none of
the operations required noticeable time on the Android device, which contributes to the
practicality of our architecture.

4.3.3 Experiments on C

We built a cloud component to support a matching service. A public API exposes op-
erations for matching registration and retrieving match results (for Di), and processing
callbacks (for L). The motivation for performing execution time measurements on C is to
observe how a real-world use case implemented using our architecture behaves in terms
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of practicality. Matching of two users is done by directly comparing attribute/value pairs
until one common pair is found (match was successful) or each pair belonging to a user
has been compared against all of the other user’s pairs and no common pairs were found
(match was unsuccessful).

We tested the function exposed to Di for matching registration and measured an exe-
cution time of 190 ms ± 20 ms at C. The Python test client and Android client observed
end-to-end times of 240 ms ± 40 ms and 600 ms ± 70 ms, respectively. From a user’s
perspective, neither of these times are noticeable enough to be impractical.

To test callback processing at C, we set up a scenario where 2 users with 5 attributes
each were checked in at and had registered for matching for the same location. The
execution time for the callback processing operation initiated upon the registration and
check in of the second user was measured at C (77 ms ± 7 ms) and L (130 ms ± 6 ms).
The matching protocol performed well for this simple scenario. More experimentation
with larger and more complicated matching scenarios is future work. We also used the
same scenario to measure the time needed at a client to complete all of the operations
necessary to receive a match with another user (registering for matching at and checking
into a location, and retrieving results). From a user’s perspective, the Android client takes
a noticeable amount of time (1400 ms ± 200 ms) which needs to be improved upon in the
future to make our matching service practical. In comparison, the Python client took less
than half as long (510 ms ± 50 ms) to complete the same operations.

More details about what operations were taking significant time during server process-
ing are as follows:

• Registering Callbacks: 63% of the server processing time was spent registering a
callback with L. The only other notable operation was requesting user attributes
from U (35%).

• Processing Callbacks: The greatest portion of the processing time (75%) was con-
sumed by calling U’s getIdentity and waiting for the results. The only other
notable operation was matching the two users (21%).

Neither of these processing time breakdowns are surprising, as the most significant
portion of time in both cases is spent waiting for calls to API functions in other entities to
complete.
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4.4 Proof-of-Concept Applications

In this section, we describe proof-of-concept applications implemented using the Android
platform. We created a friend locator and a matching service to demonstrate real-world
applications that can be built using our framework.

4.4.1 Friend Locator

The friend locator application provides a GUI interface (shown in Figure 4.3) with a map
and a text box where uidi, where user i is whose location we are retrieving, can be entered.
Symmetric keys for decrypting data are pre-loaded into the device. To initialize the friend
locator protocol, the user must use the Android menu key on the device to pop up the menu
(shown in Figure 4.4) and press the ”Locate!” button. Then the device retrieves encrypted
coordinates from U for the desired user. The application decrypts the coordinates and
displays a graphic on a map widget to indicate the location of user i (shown in Figure 4.5).

4.4.2 Matching Service

The matching service provides a GUI interface (shown in Figure 4.6) with a text box where
uidi, where user i is registering for matching, can be entered. There is a button that can
be pressed to initiate the registration for matching by sending a request to C. For testing
purposes, coordinates were hard-coded but in a real-world application coordinates would
be requested from localization hardware on the device. Once C has returned a callback ID,
the application stores it for later reference. The user can press another button to request
matching results from C using the stored callback ID. The set of uidj where user j was
matched with user i are displayed in a list (shown in Figure 4.7) . Selecting individual
items in the list pops up a dialog box with more information about the user associated
with the uid in the list item (shown in Figure 4.8).
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Figure 4.3: Friend Locator Welcome
Screen

Figure 4.4: Pop-Up Menu Button For
Initializing Friend Locator
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Figure 4.5: Map View Showing Friend’s
Location

Figure 4.6: Matching Service Welcome
Screen
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Figure 4.7: Matching Service Screen Figure 4.8: Details of a Successful Match
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Chapter 5

Future Work

Our current design and implementation still leave areas that could be improved on in the
future.

5.1 Design

The expectations in the threat model could be weakened. If we eliminate the tracking
threat of a user checking in frequently along a route, our architecture could be used to
implement a navigation application (currently our threat model precludes this type of
application). We could also weaken the honest-but-curious threat model applied to U, L,
and C if we could prevent entities in the system from making requests that are not part
of defined protocols such as:

• C making requests to L that are not on behalf of a user

• U making any request to L

Other aspects of our design could be improved on in the future. Overall, we would
like our architecture to be general enough to support many application use cases and
have privacy preservation properties that are as strong as an application-specific solution.
Adding rate-limiting at C would prevent rogue users from registering large numbers of
callbacks over a small area in order to be matched with (and therefore learn information
about) a lot of users. Figuring out a way for L to verify if a tag provided in a request is valid
would prevent non-users from checking into registered locations. It would also improve the
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overall privacy of the system if we could avoid C learning the social graph (i.e., who is
friends with whom) and an entity (that cannot decrypt a stored attribute value) learning
extra information from the mere existence of an attribute name or the encrypted attribute
value.

5.2 Use Cases

Our sample applications could be improved in a few areas. For some applications, billing or
other monetization features would have to be added in the future for the business aspects
of deploying the applications to be viable. In the matching service, we would like to add a
way of avoiding stale matches in a scenario where a user moves on to a new location before
the callback for their old location has expired.

5.3 Implementation

Our implementation is considered proof-of-concept and there are some features that need
to be added. All requests to U from Di must be routed through a location-hiding proxy.
Registration is currently done by manually adding entries to the databases in U and
C. In the future, a user should be able to register from their device or a web portal.
The implementation of L’s setAttribute currently does not have the tag parameter
so checking for tag replay attacks still needs to be done. We also wish to implement the
remaining use cases we presented and examine their real-world functionality. On the device,
location coordinates are hard-coded for testing purposes but a deployed application would
need to make use of localization hardware to determine a user’s location. Management
of separate keys for each user and attribute is not currently implemented, but should
be included. When L’s setAttribute is called, it triggers callbacks, makes requests to
the appropriate handlers (at cloud components that support applications) and then blocks
while waiting for these requests to complete. Ideally, setAttribute should trigger callbacks
in a separate thread and then return immediately so that the user-observed execution time
is not application-dependent.

It is possible that the lengths of encrypted values in U may leak information so more
analysis needs to be done to see if unrestricted access to encrypted values is a privacy
issue. If a large amount of data is sent in a request to any of our entities, the server
framework has trouble decoding the request and often throws an exception. Research into
the issue suggests that there is a bug in the CherryPy framework that needs to be worked
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around (perhaps by splitting requests with large amounts of data into multiple requests).
We determined in experiments that database operations are often a bottleneck, so in the
future we would like to investigate the possibility of reducing the number of database
operations. Finally, more experimental analysis to determine how well our system would
scale to a large numbers of users (and their associated attributes and callbacks), registered
locations, and applications (with supporting cloud components) should be conducted.
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Chapter 6

Conclusions

Location-based applications for smartphones are becoming very popular because an appli-
cation can enhance a user’s experience if it knows her location. However, allowing a service
provider (which supports an application) to collect a user’s location on a frequent basis
(given that they already have identifying information for the user) is a privacy concern.
Our architecture is designed with privacy as the primary feature and it provides a platform
for building privacy-friendly mobile location-based social applications. Secondary goals in-
clude being able to support many application use cases and not requiring unreasonable
amounts of computation from a mobile device. The public API functions of entities in
our system and details showing how applications can be built using these functions are
presented. We provide a working implementation of the complete architecture and proof-
of-concept applications with the server components in Python and the device application
on the Android platform. Finally, we present results from experiments investigating the
execution time of basic operations and the real-world practicality of our architecture.
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