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Abstract

Time delays are of long-standing interest in the study of control systems since they
appear in many practical control problems and tend to degrade overall system performance.
In this thesis, we consider two distinct problems involving uncertain time delays.

The first problem that we consider is the achievable delay margin problem, which is
determining the longest delay for which stability can be maintained when using a linear
time invariant (LTI) controller. This problem has been considered in continuous-time,
where bounds (often tight) have been found for plants with non-zero right half plane poles.
In this work, we consider the discrete-time case, where we prove that an LTI controller
exists which stabilizes the plant and the plant with a one step delay if and only if the plant
has no negative, real unstable poles.

The second problem that we consider is stabilizing any continuous-time single-input
single-output LTI plant with an arbitrarily large time delay and gain. To solve this prob-
lem, we propose a simple generalized hold whose resulting discretized system is amenable
to adaptive control. Furthermore, by exploiting the structure of the resulting discretized
system, we propose purpose built estimators for the unknown gain and delay, which al-
lows us to not only provide bounded-input bounded-output (BIBO) closed-loop stability,
but also guarantees the exponential decay of any plant initial conditions, robustness to
un-modelled dynamics, and tolerance to occasional, possibly persistent, jumps in the gain
and delay. Furthermore, for the case of a first order plant, a similar, but suitably modi-
fied controller is shown to tolerate continuous variation of the unknown delay while still
providing BIBO closed-loop stability.
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Chapter 1

Introduction

This thesis is in the field of control systems engineering. The most basic (and common)
problem in control systems engineering is to regulate the behaviour of a dynamic system,
often referred to as a plant. One such plant is an airplane, where a control objective is for
the autopilot to maintain a constant speed, altitude and course. While this seems simple,
there are many effects which work to degrade the desired behaviour; for example, wind
may blow on the airplane, sending it off course, and noise affects the sensors on the plane,
resulting in imperfect measurements. A well designed controller can be built to mitigate
these problems, and thereby allow the plane to travel as close as possible to its desired
path. To design this controller, a nominal model of the plant is found, and then a controller
is designed based on the model.

Unfortunately, regardless of the time or money spent modelling a system, the physical
system will deviate from the nominal model, and without care, the control objective may
no longer be met. As such, it is important to be able to design a controller that will
maintain performance despite this uncertainty, and thereby, make the controller robust to
plant uncertainty. It is also important to ask: can we make the system behave in the way
that we want it to? Intuitively, it is not realistic to demand that an oil tanker behave
like a butterfly, and in fact, it can be shown through performance limitations that such
behaviour, with a linear controller, is impossible due to the dynamics of the oil tanker.

In this thesis, we consider two distinct problems involving systems with an unknown
time delay. The first problem is in the area of fundamental performance limitations for
the class of linear time invariant (LTI) controllers; specifically, given a single-input single-
output (SISO) plant with an unknown time delay, we ask what is the maximum duration of
the unknown time delay for which stability can be maintained using a single LTI controller?
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The second is a robust control problem: given any SISO LTI plant with an unknown
time delay and gain with arbitrarily large known upper bounds, the goal is to provide a
controller design algorithm which stabilizes the plant for every allowable gain and delay;
we also consider a variant of this problem for a first order plant in which the delay is
allowed to vary continuously. We describe both of these problems in more detail later in
the introduction.

The remainder of this chapter is organized as follows. In Section 1.1, we provide some
background material on time delays, with a primary focus on systems with uncertain time
delays, in Sections 1.2 and 1.3 we elaborate on the two aforementioned problems, and
finally, in Section 1.4 we provide an outline for the remainder of this thesis.

1.1 Time Delays

Time delays were first studied in the 1700s by famous mathematicians such as Euler,
Bernoulli and Condercat in their attempts to better understand and solve differential equa-
tions. This was a natural area of study since a continuous-time delay is one of the simplest
types of infinite dimensional systems, a class of systems which required new mathematical
machinery in order to solve. Furthermore, infinite dimensional systems arise from a wide
range of physical problems, such as in the study of electromagnetics, heat transfer, beams,
making them of critical importance for many engineering problems. In the context of more
modern control systems, time delays remain an important area of study since they occur
in many control systems, with various causes ranging from measurement delays, signal
transmission delays, computational delays, inherent process delays, etc.

While there are a few applications where time delays can be intentionally added to the
controller in order to improve system performance, e.g., see [41] and [44], a delay more
typically degrades system performance, harms robustness, and in a loose sense destabilizes
the system e.g., see [20] and [19]. As such, quantifying and trying to overcome the negative
impact of time delays has garnered much interest from control researchers. Work in this
area dates back to at least the 1950’s with the well known Smith Predictor - see [47].

In this thesis, we consider time delays in both the continuous-time and discrete-time
settings; delays in these settings have very different representations and introduce different
problems despite having similar physical meanings and causes. To see this difference,
consider the transfer function representation of a fixed time delay in both time settings.
For a continuous-time delay of τ seconds, the transfer function is given by

e−sτ ,

2



which is not a real rational transfer function, and is infinite dimensional. For a discrete-time
delay of n samples, the transfer function is given by

1

zn
;

unlike the continuous-time delay, this is a real rational transfer function, and the resulting
system is finite dimensional; in fact, it is merely n poles at the origin, which means that
the resulting model order increases as the length of the delay increases. In addition to the
different model orders, it is also important to note that a continuous-time delay can be
any positive real number, whereas a discrete-time delay can only be a positive integer. As
a result of these two fundamental differences, techniques that work for a continuous-time
delay do not necessarily transfer over to a discrete-time delay, and vice versa.

Despite the differences in the mathematical representation of discrete-time delays and
continuous-time delays, the control problems associated with them are quite similar. One
area of particular interest are time delays of an uncertain duration; this is a very natural
problem since it is often the case that the exact length of the delay may not be known
a priori. For example, a signal transmission delay may vary with geographic location
or other traffic on a computer network. So, instead of a specific, known delay, there is
instead a range of possible delays for the control engineer to consider when designing a
stabilizing controller. Fortunately, in many of these cases, an upper bound on the maximum
delay duration may be known, for example, a network protocol can be designed so that
it guarantees a maximum transmission delay, and this knowledge can be invaluable for
designing a controller. Naturally, there has been considerable research on systems with
uncertain but bounded delays including synthesizing controllers, e.g., see [33], analyzing the
stability of such systems, e.g., see [42], and combining an uncertain delay with other plant
uncertainties, often using complicated linear matrix inequalities (LMI), e.g., see [38, 31].

Communication delays are often unknown and time varying; this is especially true
when using a network to transmit information as interference from other network traffic
can result in a time varying delay. Since a network operates using digital equipment, it
is most naturally modeled in discrete-time; however, since networks often operate with a
much shorter period than the control system, many papers consider the network delay to be
a continuous-time delay [22, 49, 13]. Many results on time varying continuous-time delays
consider state feedback controllers, see [23], with much of the recent research using LMI’s
to prove their results [8, 43, 12, 21, 51, 20]. While LMI’s are able to handle additional plant
uncertainty and time variations of the plant parameters, the results tend to be difficult to
interpret, are only solvable via computer analysis and they provide little to no intuition.
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1.2 The Achievable Delay Margin Problem

Chapter 3 is focused on the Delay Margin problem, which is a robust stabilization prob-
lem with uncertainty in the length of a time delay. There are two types of delay margin
problems, controller dependent and controller independent (which we will also refer to
as the Achievable Delay Margin problem). While we focus on the more fundamental con-
troller independent problem, it is extremely useful to first consider the controller dependent
problem.

The controller dependent delay margin problem is simple; we describe the problem in
continuous-time, though the problem statement easily translates to discrete-time as well.
Given a plant P and any stabilizing controller C, we are interested in the smallest delay
for which the system becomes unstable. This is a very useful quantity, since if τ̄ is the
smallest τ such that C no longer stabilizes Pe−sτ̄ , then we know that C stabilizes Pe−sτ

for all τ ∈ [0, τ̄).

For a SISO LTI continuous-time system, it is well known that the solution to this
problem can be found using a simple Nyquist argument. Given a SISO LTI plant P (s) and
a SISO LTI stabilizing controller C(s), let {ω1, ..., ωq} denote the frequencies where

|P (jω)C(jω)| = 1,

and then let φi ∈ (0, 2π) denote the phase margin of each ωi (i.e., P (jωi)C(jωi) =
ej[−π+φi)]). The delay margin of this plant controller combination is then

min{φi
ωi

: i = 1, ..., q}.

This is easily seen by observing that for a delay of τi := φi
ωi

seconds that

P (jωi)C(jωi)e
jτiωi = −1, for all i = 1, ..., q.

Hence, for every delay τi, the Nyquist plot of P (s)C(s)e−sτi passes through −1, ensuring
that P (s)C(s)e−sτi is unstable, so clearly the controller dependent delay margin is less
than or equal to min{τi : i = 1, ..., q}. Finally, since the added delay produces a continuous
deformation of the Nyquist plot and P (s)C(s) is closed loop stable, P (s)C(s)e−sτ must be
stable for all

τ ∈ [0,min{τi : i = 1, ..., q}).

Unfortunately, this elegant solution for the controller dependent delay margin does not
translate to discrete-time systems (due to the lack of continuity in the delay variation),
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nor to continuous delays in a sampled data system (due to the delay also modifying the
magnitude of the system). These differences makes extending the controller independent
delay margin results of [35] to the corresponding discrete-time and sampled data problems
very difficult; this is discussed in more detail in Chapter 7 where we present some open
problems.

While the controller dependent delay margin is a useful quantity to know after a con-
troller has been designed, it does not provide any insight into what is achievable for a
class of controllers. For the answer to this question, we consider the controller independent
(or achievable) delay margin problem. For this problem, given a plant P , the question
is: given a class of controllers (linear time invariant, non-linear time varying, etc.), what
is the maximum possible delay margin achievable by a controller of this class? In [34], it
is proven that there exists a fundamental delay margin limitation for a SISO LTI plant
with an open right half plane pole when using static state feedback, with an explicit bound
only provided for a first order plant. In [35], it is proven that there exists a fundamental
delay margin limitation for a SISO LTI plant with a non-zero unstable pole when using
LTI dynamic output feedback. In that work, explicit bounds (often tight) are found for
various combinations of unstable poles and right half plane zeros; for example, a plant
with a single unstable pole p has an achievable LTI delay margin of 2

p
. Turning to time

varying controllers, in [37], it was proven that a linear periodic output feedback controller
can provide an arbitrarily large delay margin.

In Chapter 3, we consider the achievable delay margin problem for a LTI controller
in the discrete-time setting. Unfortunately, as discussed above, the proof method of [35]
breaks down when applied to the discrete-time case. Fortunately, we will be able to partially
solve the problem in discrete-time by using a classic result on simultaneous stabilization
for two plants, where we find a necessary and sufficient condition for an LTI discrete-time
plant to have a non-zero delay margin. This also highlights the difference between the
discrete-time and continuous-time problems, since any LTI continuous-time plant P and
any LTI stabilizing controller C have a non-zero delay margin; as a result, the achievable
delay margin is always non-zero in continuous-time which is not the case in discrete-time.

1.3 Stabilizing any LTI Plant with an Arbitrarily

Large Unknown Gain and Delay

Due to difficulties solving the general achievable delay margin problem in both the discrete-
time and sampled data settings, we turned our attention to a controller synthesis problem
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for any continuous-time LTI plant with an unknown, upper bounded continuous-time delay.
More formally, the problem is as follows: given any τ > 0 and any LTI plant P (s), the
goal is to design a controller which stabilizes P (s)e−sτ for every τ ∈ [0, τ ]. Clearly, from
the results of [35], we know that if P (s) has a non-zero unstable pole, that this problem is
not solvable using an LTI controller for τ sufficiently large; however, in [37] this problem
was solved for an arbitrarily large τ through the synthesis of a linear periodic output
feedback controller. However, the controller proposed in [37] has some drawbacks, namely
its complexity increases as the desired delay margin increases, the gain can be extremely
large, even for simple cases, and it requires a period at least two times longer than the
maximum length of the unknown delay τ ;1 that being said, it does demonstrate that using
non-LTI control can have benefits for increasing the maximum allowable uncertain delay
for which stability can be maintained.

Because [37] solves the problem when the only uncertainty is the unknown delay, in
order to increase the difficulty of the problem we also consider an unknown, arbitrarily
large gain. Problems involving uncertain gains have a very long history in control systems
engineering, and in fact, it was one of the first robustness measures considered, with work
dating back to before World War II with the development of feedback amplifiers and the
work of Bode [3] and Nyquist [40] themselves. Like the unknown delay, this problem can
easily be stated on its own: given any g ≥ 1 and any LTI plant P (s), the goal is to design
a controller which stabilizes gP (s) for every g ∈ [1, g].

If we only consider an uncertain gain, it is well known that an LQR-optimal state
feedback controller provides infinite2 gain margin in the continuous-time setting [24, 54];
however this result does not translate to discrete-time plants [46]. In the case of output
feedback, [26] shows that when using LTI control there is a fundamental gain margin
limitation for non-minimum phase continuous-time plants; furthermore, through the use
of the bilinear transformation, it can be easily seen that a similar limitation exists for all
strictly proper discrete-time plants. However, numerous papers have shown that a linear
time varying output feedback controller exists which provides an arbitrarily large gain
margin for continuous-time plants, e.g. [53, 45, 52], and similarly, in [25] it was shown that
a linear periodic output feedback controller exists which provides an arbitrarily large gain
margin for bi-proper discrete-time systems.

In Chapters 4, 5 and 6, we consider the combined problem, that of an uncertain gain
and uncertain delay: given any τ > 0 and g > 1, and any SISO LTI plant P (s), the

1This creates performance problems since the large period means that the potentially unstable system
runs in open loop for at least 2τ seconds.

2Note that this is a stronger result than arbitrarily large, as no knowledge of an upper bound of the
unknown gain is required a priori.
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goal is to design a controller which stabilizes gP (s)e−sτ for every τ ∈ [0, τ ] and g ∈ [1, g].
This combined problem poses new difficulties and creates certain trade-offs. For example,
consider [35], which designed a first order LTI controller, parameterized by ε > 0, for
the plant 1

s−p , p > 0; this controller provides a delay margin within ε of the maximum

achievable delay margin of 2
p
, but as observed by the authors, as ε → 0, the gain margin

provided by this controller tends to zero. As often occurs in control systems engineering,
maximizing performance in one area tends to come with trade-offs in other areas.

Various robust control techniques have been used in order to synthesize controllers for
systems with uncertain delays and various forms of plant uncertainty, such as H∞ tech-
niques [32], linear matrix inequalities [39, 13], and adaptive control [50, 7, 6, 4]. However,
as far as we are aware, there is currently only one controller that can solve the combined
problem with an arbitrarily large unknown gain and delay [4]-[6]. In that work, using
the backstepping methodology, an infinite dimensional, non-linear, time varying adaptive
controller is proposed and shown to achieve asymptotic tracking for any LTI plant with
an unknown arbitrarily long delay and with unknown A and B matrices lying in a known,
linearly parameterized observable/controllable set; however, since [6] uses many classi-
cal adaptive control techniques, it is unlikely to provide bounded-input bounded-output
(BIBO) stability, handle un-modelled dynamics or tolerate jumps in the unknown gain and
delay.

In Chapter 4, we use a generalized hold to convert the problem under discussion into one
amenable to classical adaptive control techniques; while our controller is finite dimensional,
it suffers from many of the same deficiencies as [4]-[6]. To combat these deficiencies, in
Chapter 5, using a similar hold to the one in Chapter 4, we design a purpose built controller
which will handle noise, un-modelled dynamics and occasional jumps in the unknown gain
and delay. In Chapter 6 we again consider the combined gain/delay problem, but we allow
the time delay to be time varying and the goal is to find explicit bounds on the allowable
time variation of the delay in terms of the pole location and the maximum length of the
unknown delay.

1.4 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we define the notation
used throughout this thesis and provide a definition and discussion of pathological sam-
pling. In Chapter 3 we consider the achievable delay margin problem in discrete-time. In
Chapters 4 - 6, we consider the problem of stabilizing an LTI plant with an arbitrarily large
uncertain gain and delay. We start with Chapter 4, where we present a generalized hold

7



which allows us to weakly stabilize the system using an off-the-shelf adaptive controller.
In Chapter 5, using a similar generalized hold, we design a new adaptive controller from
scratch, yielding a controller which not only provides BIBO stability, but also guarantees
the exponential decay of the plant initial conditions. In Chapter 6, we allow the delay to
be continuously varying, and then design a controller which BIBO stabilizes the system if
the time variation satisfies an explicit bound in terms of the maximum length of the delay,
the rate of change of the delay, and the location of the plant pole. In Chapter 7 we present
some unsolved achievable delay margin problems in both the discrete-time and sampled
data settings. Finally, in Chapter 8 we present some concluding remarks and propose some
future work.
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Chapter 2

Preliminaries

2.1 Notation

We first define various sets of numbers, to this end, we let:

• R denote the set of real numbers,
• R+ denote the set of non-negative real numbers,
• Z denote the set of integers,
• Z+ denote the set of non-negative integers,
• N denote the set of natural numbers,
• C denote the set of complex numbers,
• C+ denote the set of complex numbers with a positive real part,
• C− denote the set of complex numbers with a negative real part,
• D denote the set of complex numbers with magnitude less than one,
• D denote the set of complex numbers with magnitude greater than one.

We now turn to defining our vector norm; since we almost always want to use the
infinity norm, we define the norm of a vector x ∈ Rn as ‖x‖ = maxi=1,2,··· ,n |xi| and the
corresponding induced norm of a matrix A ∈ Rn×m is given by ‖A‖ = max{‖Ax‖ : x ∈
Rm, ‖x‖ = 1}. With the vector norm defined, we want to define the various sets of
sequences and functions used throughout this thesis. We let `(Rn) denote the set of Rn

valued sequences on Z+, and we will always denote a sequence in Rn using a Greek letter
and a [·] for the argument (i.e., ψ[k]). We define the infinity norm of a sequence ψ ∈ `(Rn)
as ‖ψ‖∞ = supk≥0 ‖ψ[k]‖, and we say that a sequence ψ ∈ `∞(Rn) if ‖ψ‖∞ < ∞. We
let PC(Rn) denote the set of piecewise continuous functions from R to Rn and AC(Rn)
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denote the set of absolutely continuous functions from R to Rn; we write a function in
PC(Rn) (AC(Rn)) using a Roman letter and (·) for the argument (i.e., y(t)). We define
the infinity norm of a function f ∈ PC(Rn) (f ∈ AC(Rn)) as ‖f‖∞ = supt≥0 ‖f(t)‖, and
we say that a function f ∈ PC∞ (or f ∈ AC∞) if f ∈ PC (f ∈ AC) and ‖f‖∞ < ∞. To
simplify notation, we will often drop the dimensions from our spaces. To further distinguish
between continuous-time and discrete-time, we adopt the standard convention of using solid
lines to denote continuous-time signals and dashed lines to denote discrete-time signals.

In order to discuss stability of a non-linear time varying system, we require the notion
of the gain of such a system starting with zero initial conditions at time zero. To this end,
the gain of G : PC∞ → PC is defined by

‖G‖ := sup

{
‖Gu‖∞
‖u‖∞

: u ∈ PC∞, ‖u‖∞ 6= 0

}
.

We will also require a special version1 of the “sign” function which maps R to {−1, 1}:

sgn(x) =

{
1 if x ≥ 0

−1 if x < 0.

Finally, we let Hn×m
∞ (D) denote the set of n × m complex-valued functions that are

bounded and analytic on D, Hn×m
∞ (D) denote the set of n×m complex-valued functions

that are bounded and analytic on D and Hn×m
∞ (C+) denote the set of n × m complex-

valued functions that are bounded and analytic on C+. We let RHn×m
∞ (D) denote the

subset consisting of the real rational elements of Hn×m
∞ (D), RHn×m

∞ (D) denote the subset
consisting of the real rational elements of Hn×m

∞ (D) and RHn×m
∞ (C+) denote the subset

consisting of the real rational elements of Hn×m
∞ (C+). We will often drop the D, D or

C+ since the correct space should be clear from the context, and since the use of these
spaces normally occurs when analyzing SISO systems, we are normally interested in H1×1

∞ ,
so when the dimensions are 1× 1 we simply write H∞ (or RH∞).

2.2 Stability

In this thesis, we have many different time settings and notions of stability. In particular,
Chapter 3 considers the stability of an LTI discrete-time system, Chapter 4 considers the
asymptotic regulation of a non-linear time varying continuous-time system’s output to zero,

1Normally sgn(0) is defined to be zero.
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Chapters 5 and 6 consider bounded-input bounded-output stability of a non-linear time
varying continuous-time system, and Chapter 7 considers both discrete-time and sampled
data systems. Due to these different time paradigms and notions of stability, we will define
the notion of stability at an appropriate place in each chapter.

2.3 Pathological Sampling

Throughout this thesis, we often consider the stability of a continuous-time system which
is controlled via a digital controller and a zero order hold. To analyze such a system, it
is common practice to create an equivalent discrete-time model through analysis of the
system behaviour at integer multiples of the sampling period. We would like to say that if
this resulting discrete-time model is stable, then so too is the original sampled data system.
It turns out from [11] that so long as we choose an ‘appropriate’ sampling time, that if the
discretized system is stable, then the original sampled data system is stable as well.

To define these ‘appropriate’ sampling times, consider a SISO continuous-time plant P ,
with a state space representation given by

ẋ = Ax+Bu (2.1)

y = Cx+Du (2.2)

with (A,B) controllable and (C,A) observable.

Definition 2.1. A sampling period T is non-pathological (with respect to A) if, whenever
µ ∈ C is an eigenvalue of A, none of the points

{
µ+ j2πk

T
: k ∈ N, k 6= 0

}
is an eigenvalue

of A. Otherwise, we say that the sampling period T is pathological (with respect to A).

To see the benefits of choosing a non-pathological sampling period T , consider the
solution to the state equation (2.1) with a constant input ν[k] starting from time kT and
ending at time (k+1)T as well as the solution to the output equation (2.2) at time kT , i.e.,
the solution at the sampling points when a zero-order-hold is applied at the plant input:

x((k + 1)T ) = eAT︸︷︷︸
=:Ad

x(kT ) +

∫ (k+1)T

kT

eA(kT+T−v)Bdv︸ ︷︷ ︸
=:Bd

ν[k]

y(kT ) = Cx(kT ) +Dν[k].

If T is non-pathological with respect to A, then from [11], it follows that (A,B) control-
lable implies that (Ad, Bd) is controllable, and (C,A) observable implies that (C,Ad) is
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observable. In Chapters 4 and 5, we use a hold that is very similar to a zero-order-hold,
so the concept of non-pathological sampling is still of critical importance.
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Chapter 3

Achievable Delay Margin

In this chapter, we consider the achievable delay margin problem in the discrete-time
setting, which is that of determining the maximum allowable length of an unknown delay
for which a single LTI controller can maintain stability. In continuous-time, [35] found
upper bounds on the achievable delay margin problem for many cases, many of which were
tight bounds; of particular interest is the case of a plant with a single, real unstable pole
where a tight upper bound was found. Our original goal was to extend these results to the
discrete-time setting; unfortunately, this has mainly proved unsuccessful, as the methods
employed in [35] do not translate from the continuous-time setting to the discrete-time
setting1. However, as published in [17], we have been able to prove a necessary and
sufficient condition for when the discrete-time achievable delay margin is non-zero, which
highlights the difference between the continuous-time case (where the achievable delay
margin is always non-zero) and the discrete-time case.

This chapter is organized as follows. We start by formally stating the discrete-time delay
margin problem and then we present some important results on simultaneous stabilization.
Using the simultaneous stabilization results, we then ascertain when the achievable delay
margin is non-zero, as well as show that those tools provide no further insight into the
problem for longer delays.

1We will revisit this issue in great detail in Chapter 7 where we present numerous open achievable delay
margin problems in both the discrete-time and sampled data settings.
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3.1 Problem Setup

This section formally defines the discrete-time achievable delay margin problem. We start
with a discrete-time SISO finite-dimensional linear time invariant (FDLTI) plant G0 with
a state space representation given by

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k],
(3.1)

with A, B, C, and D of appropriate dimensions. We make a standing assumption through-
out this chapter that (A,B) is stabilizable and that (C,A) is detectable. We also require
versions of this plant with an input delay: with n ∈ N, let Gn have the following state
space representation:

x[k + 1] = Ax[k] +Bu[k − n]

y[k] = Cx[k] +Du[k − n].

We also need transfer function representations of G0 and Gn, which we would normally
write in the z-domain; however, it will be easier to prove the main theorem if the unstable
region is the interior of the closed unit disk. To that end, define λ := z−1, which leads
naturally to the following transfer functions:

G0[λ] = λC(I − λA)−1B +D, (3.2)

Gn[λ] = λn(λC(I − λA)−1B +D) = λnG0[λ], n ∈ N. (3.3)

To define stability in this chapter, we consider the feedback setup shown in Figure 3.1
and say that a controller K stabilizes a plant G if the transfer function from[

d
w

]
→
[
y
u

]
belongs to H2×2

∞ (D), i.e.,

(1 +KG)−1, K(1 +KG)−1, G(1 +KG)−1, KG(1 +KG)−1 ∈ H∞(D).

We now formally define the delay margin problem, adopting the notation from [35]. If
a controller K stabilizes a plant G0, then the delay margin is

DM(G0, K) := max{n ≥ 0 : K stabilizes G0, G1, · · · , Gn}.
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Figure 3.1: The discrete-time delay margin problem setup.

While DM(G0, K) is a useful quantity to know about a particular plant/controller combi-
nation, a more fundamental property of the plant is

DM(G0) := max{DM(G0, K) : K is FDLTI and stabilizes G0},

which is simply the maximum achievable delay margin when using a stabilizing FDLTI
controller.

We would like to easily compute DM(G0). To proceed, it is helpful to note that
DM(G0) is actually a classic simultaneous stabilization problem.

Definition 3.1. We say that the set of LTI plants G is simultaneously stabilizable if there
exists a real, rational, proper transfer function K[λ] that stabilizes every G[λ] ∈ G.

For example, to see if DM(G0) ≥ 3, one is really asking the question of does there
exist a single FDLTI controller K that stabilizes G0, G1, G2, and G3. Unfortunately, while
the simultaneous stabilization problem is well studied, a tractable test that provides nec-
essary and sufficient conditions for determining when any set of plants G is simultaneously
stabilizable only exists when G has two elements (e.g. see [48] and [9]), while it has been
shown [2] that the problem is “rationally undecidable” for the case when G has three or
more elements2. Hence, we first focus on trying to determine when DM(G0) > 0.

2Of course, if the elements of G have rich structure, as they do here, perhaps more can be proven.
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3.2 The Approach

The problem of determining if DM(G0) is non-zero is simply a two plant simultaneous
stabilization problem, since

DM(G0) > 0⇔ G0 and G1 are simultaneously stabilizable.

We will use the standard two plant simultaneous stabilization results presented in [48],
which converts the simultaneous stabilization problem to a strong stabilization problem.

Definition 3.2. A plant G[λ] is strongly stabilizable if there exists a stable controller
D[λ] ∈ H1×1

∞ (D) that stabilizes G[λ] (in which case we say that D[λ] strongly stabilizes
G[λ]).

We now require a stable coprime factorization [9] of G0[λ], so we choose polynomials3

N0[λ], M0[λ], X0[λ] and Y0[λ] satisfying

G0[λ] =
N0[λ]

M0[λ]
and N0[λ]X0[λ] +M0[λ]Y0[λ] = 1. (3.4)

Observe that M0[λ] and N0[λ] are clearly coprime and that M0[0] 6= 0.

We can now state the two lemmas that give necessary and sufficient conditions for G0[λ]
and Gn[λ] = λnG0[λ], n ∈ N to be simultaneously stabilizable:4

Lemma 3.1. G0[λ] and Gn[λ] = λnG0[λ] are simultaneously stabilizable if and only if

(λn − 1)M0[λ]N0[λ]

λnN0[λ]X0[λ] +M0[λ]Y0[λ]
(3.5)

is strongly stabilizable.

Proof. Using the coprime factorization given by (3.4), we apply Theorem 5.4.2 from [48],
with Nn[λ] = λnN0[λ] and Mn[λ] = M0[λ]. Since the system is SISO, the left and right
coprime factorizations are the same, so we define

A[λ] := λnN0[λ]X0[λ] +M0[λ]Y0[λ],

3Note that we can choose polynomials here instead of the typical proper transfer functions for the
coprime factorization due to our use of λ instead of z.

4Note that we present this result for an n sample delay; for the question of when is the achievable delay
margin non-zero, we will of course use these results with n = 1.
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B[λ] := (λn − 1)M0[λ]N0[λ].

We then use the remark immediately following Theorem 5.4.2 of [48], which implies that
G0[λ] and Gn[λ] are simultaneously stabilizable if and only if

B[λ]

A[λ]
=

(λn − 1)M0[λ]N0[λ]

λnN0[λ]X0[λ] +M0[λ]Y0[λ]

is strongly stabilizable, as desired.

Lemma 3.2. A discrete-time FDLTI plant G[λ] is strongly stabilizable if and only if
G[λ] has an even number of real poles (counting multiplicities) between every pair of
consecutive real zeros that lie in [−1, 1].

Proof. The result is given for continuous-time in Corollary 3.2.2 of [48]. An extension to
discrete-time (in particular for λ = z−1)5 using the bilinear transform s = 1−λ

1+λ
is stated in

the last paragraph of Section 3.2 of [48].

Lemma 3.2 allows us to convert the simultaneous stabilization problem of two plants
into a strong stabilization problem of a single “new” plant which is easily solvable. To
make solving the strong stabilization problem even easier, we require a result relating the
sign of a real polynomial when evaluated at two points to the number of real zeros between
those two points, which we do in the following result:

Lemma 3.3. Given a real polynomial f and two real numbers a < b for which f(a) 6= 0
and f(b) 6= 0, we have that f has an even number of real zeros (counting multiplicities)
in the interval [a, b] if and only if f(a) and f(b) have the same sign.

Proof. Let a, b ∈ R be arbitrary and satisfy a < b, f(a) 6= 0 and f(b) 6= 0.

First suppose that f has no zeros over [a, b]. By the continuity of f , it follows that the
sign of f can not change on [a, b], so f(a) and f(b) have the same sign.

Now suppose f has zeros on [a, b]. Using the Fundamental Theorem of Algebra, we
can write f as a product of two real polynomials g and h, with g monic and with zeros

5Note that the author of [48] defines z to be the same as the λ used here.
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only in [a, b] and h with no zeros in [a, b]. Hence, there exists an integer k ∈ N, and
zi, . . . , zk ∈ (a, b) (possibly repeated) so that g has the form

g(z) =
k∏
i=1

(z − zi).

Since h has no zeros on [a, b], it is clear that f(a) and f(b) have the same sign iff g(a)
and g(b) have the same sign, or equivalently iff g(a)g(b) > 0. However, clearly g(b) > 0, so

f(a)f(b) > 0⇔ g(a) > 0

⇔
k∏
i=1

(a− zi) > 0

⇔ (−1)k > 0

⇔ k is even

⇔ g has an even number (counting multiplicities) of zeros on [a, b]

⇔ f has an even number (counting multiplicities) of zeros on [a, b].

3.3 When is the Achievable Discrete Time Delay

Margin Non-Zero?

We now have all the tools required to prove when the discrete-time achievable delay margin
is non-zero.

Theorem 3.1. A discrete-time plant G0 with a state space representation given by (3.1)
has DM(G0) = 0 if and only if A has a real eigenvalue in (−∞,−1].

Proof. Recall from (3.2) and (3.3) that G0 and G1 have transfer functions given by

G0[λ] := λC(I − λA)−1B +D,

G1[λ] := λ(λC(I − λA)−1B +D) = λG0[λ].
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Next, observe that DM(G0) > 0 if and only if G0[λ] and λG0[λ] are simultaneously stabi-
lizable, so with N0, M0, X0 and Y0 polynomials satisfying (3.4), by Lemma 3.1 G0[λ] and
λG0[λ] are simultaneously stabilizable if and only if

G[λ] :=
(λ− 1)M0[λ]N0[λ]

λN0[λ]X0[λ] +M0[λ]Y0[λ]
(3.6)

is strongly stabilizable.

We will now use Lemma 3.2, which states that G[λ] is strongly stabilizable if and
only if there is an even number of real poles (counting multiplicities) between every pair
of consecutive real zeros of G[λ] for λ ∈ [−1, 1]; furthermore, we will use Lemma 3.3 to
check the condition required by Lemma 3.2. To that end, we define the numerator and
denominator polynomials of G:

n[λ] := (λ− 1)N0[λ]M0[λ], (3.7)

d[λ] := λN0[λ]X0[λ] +M0[λ]Y0[λ]. (3.8)

Recalling that M0[0] 6= 0 since G is causal, it is easy to check that n and d are coprime,
so the poles of G and the zeros of G are given by the zeros of d and n respectively. Let
λi, i = 1, ..., k, denote the real zeros of n[λ], ignoring multiplicities, which lie in [−1, 1],6

and assume, without loss of generality, that λ1 < λ2 < ... < λk. There are three ways that
such a λi can arise:

Case 1: λk = 1.

Case 2: N0[λi] = 0, which corresponds to a real zero of G0[λ] in D.

Case 3: M0[λi] = 0, which corresponds to a real pole of G0[λ] in D.

In order to apply Lemma 3.3 we need to determine the sign of d[λ] at each λi. Evaluating
d[λ] for each λi, and making use of (3.4), gives the following results:

Case 1: At λk = 1,

d[λk] = λkN0[λk]X0[λk] +M0[λk]Y0[λk]

= 1.

6Note that {λi} 6= ∅ since n[λ] will always have a zero at λ = 1.
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Case 2: If N0[λi] = 0 then

d[λi] = λiN0[λi]X0[λi] +M0[λi]Y0[λi]

= λiN0[λi]X0[λi] + 1−N0[λi]X0[λi]

= 1.

Case 3: If M0[λi] = 0 then

d[λi] = λiN0[λi]X0[λi] +M0[λi]Y0[λi]

= λi (1−M0[λi]Y0[λi]) +M0[λi]Y0[λi]

= λi (3.9)

6= 0 (since G0 is causal).

Note from Cases 1-3 that for d[λi] < 0, λi must satisfy Case 3 and λi ∈ [−1, 0).

(⇒) Suppose DM(G0) = 0. By Lemma 3.2 there exists an integer i ∈ {1, 2, . . . , k − 1} so
that the interval (λi, λi+1) contains an odd number of real poles of G, or equivalently an
odd number of real zeros of d. By Lemma 3.3, this means that d[λi] and d[λi+1] must have
different signs; hence, exactly one of λi or λi+1 is both negative and satisfies Case 3; let λ
denote that quantity, and note that λ ∈ [−1, 0). Therefore, by Case 3 M0[λ] = 0, which
means that G0 has a pole at λ; since (A,B) is stabilizable and (C,A) detectable, A has an
eigenvalue at 1/λ ∈ (−∞,−1].

(⇐) Suppose that A has a real eigenvalue at v ∈ (−∞,−1]. Since (A,B) is stabilizable
and (C,A) detectable by hypothesis, M0(λ) has a zero at 1/v ∈ [−1, 0). Hence, 1/v is a
zero of n and therefore an admissible λi; furthermore, observe that

d[1/v] = 1/v < 0.

Observe that n also has a zero at one, which we label λk, and that d[λk] = d[1] = 1.
Hence, there must exist an integer j ∈ {1, 2, . . . , k − 1} for which d[λj] and d[λj+1] have
opposite signs. From Lemma 3.3, d has an odd number of zeros on the interval (λj, λj+1).
By Lemma 3.2 it follows that G is not strongly stabilizable, so by Lemma 3.1 it follows
that G0 and G1 are not simultaneously stabilizable and hence DM(G0) = 0.

Theorem 3.1 can be thought of as a performance limitation for any plant with a negative
real unstable pole, but it also has important ramifications when designing a controller for
a discrete-time system with an unknown delay, as described by the following Corollary.
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Corollary 3.1. If a FDLTI controller K[λ] has a pole in [−1, 0) and stabilizes G0[λ],
then

DM(G,K) = 0.

Proof. Suppose that K has the required properties. Since K stabilizes G0, it follows
immediately that G0 stabilizes K; by Theorem 3.1 this means that

DM(K) = 0,

which means that
DM(G0, K) = DM(K,G0) = 0.

3.3.1 Continuous-Time Plant with a Discrete-Time Delay

Theorem 3.1 has an interesting implication for a sampled data system (employing a sampler
and zero-order-hold with the same period) with a discrete-time delay, as shown in Figure
3.2. Such a setup (a continuous-time plant with a discrete-time delay) can arise from many
practical problems, for example, controlling a vehicle using complicated image processing
or controlling an airplane using a sensor network. Consider a SISO continuous-time plant
P , with state space representation given by

ẋ = Acx+Bcu

y = Ccx+Dcu,

with (Ac, Bc) controllable and (Cc, Ac) observable. From [11], we can analyze the stability
of the sampled data system by determining the stability of an appropriate discrete-time
(discretized) system so long as the sampling period T is non-pathological7 with respect to
Ac. To that end, following the procedure from [11], we apply the hold to the plant P and
solve at the sampling points, yielding a discretized (and discrete-time) plant G. Doing so,
we get that the A matrix of the discretized plant G is given by

A = eAcT ;

hence, for any non-pathological sampling period T , it follows that all real eigenvalues of Ac
will become positive real eigenvalues of A and any non-real eigenvalues of Ac will become

7See Section 2.3 for a definition of pathological sampling.

21



−
K H

G

w yw
S

u d

udy

Figure 3.2: The sampled data with a discrete-time delay problem setup.

non-real eigenvalues of A. As such, it immediately follows that for any non-pathological
sampling period T that A has no negative real eigenvalues. Hence, by Theorem 3.1 there
will always exist a controllerK[λ] that can stabilizeG[λ] and λG[λ] for any non-pathological
sampling period. This means that, for sampled data systems with a discrete-time delay,
so long as the sampling period is non-pathological, we get a result that is analogous to
continuous-time, namely, that the achievable delay margin is always strictly greater than
zero.

In Chapter 7 we will consider the other sampled data problem, namely, controlling a
continuous-time plant with a continuous-time delay using a discrete-time controller. In
contrast to the problem of a continuous-time plant with a discrete-time delay, which is es-
sentially a special case of the pure discrete-time problem, the problem of a continuous-time
plant with a continuous-time delay with a discrete-time controller bears little resemblance
to the pure discrete-time problem.

3.4 Longer Delays

Now that we know when the discrete-time achievable delay margin is non-zero, the next
step is to try to determine an upper bound on the delay margin for a general discrete-time
plant, with the seemingly most natural approach being to continue within the simultane-
ous stabilization framework. Unfortunately, as shown by [2], this problem is, in general,
rationally undecidable, i.e., we can’t convert the problem into an equivalent easily solvable
problem as was the case for two plants. However, it is certainly the case that for three
or more plants to be simultaneously stabilizable, it must be that every pairwise combina-
tion of plants must be simultaneously stabilizable, so some insight may be gained using
the same technique that we used to prove when the achievable delay margin is non-zero.
Unfortunately, as shown in the following theorem, if a discrete-time plant has no negative,
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real, unstable poles, then any two delayed versions of the plant are always simultaneously
stabilizable, i.e., a pairwise application of the simultaneous stabilization result does not
help find an upper bound on the achievable delay margin.

Theorem 3.2. For any discrete-time plant G0 with a state space representation given by
(3.1) and such that A has no negative real eigenvalues in (−∞,−1], it follows that for
every m ∈ Z+ and n ∈ N that Gm[λ] = λmG0[λ] and Gn[λ] = λnG0[λ] are simultaneously
stabilizable.

Proof. Let G0 given by (3.1) be such that A has no negative real eigenvalues in (−∞,−1].
Since we can create a G̃0[λ] := λmG0[λ] with the state space representation of G̃0[λ] also
having no negative real eigenvalues in (−∞,−1], without loss of generality, we set m = 0
and let n ∈ N be arbitrary.

We employ the same method as the proof of Theorem 3.1, namely, we use (3.4) to get a
co-prime factorization of G0[λ], and then we apply Lemma 3.1 to convert the simultaneous
stabilization problem of G0[λ] and Gn[λ] into a strong stabilization problem for the plant

G[λ] :=
(λn − 1)M0[λ]N0[λ]

λnN0[λ]X0[λ] +M0[λ]Y0[λ]
. (3.10)

We will now use Lemma 3.2, which states that G[λ] is strongly stabilizable if and
only if there is an even number of real poles (counting multiplicities) between every pair
of consecutive real zeros of G[λ] for λ ∈ [−1, 1]; furthermore, we will use Lemma 3.3 to
check the condition required by Lemma 3.2. To that end, we define the numerator and
denominator polynomials of G:

n[λ] := (λn − 1)N0[λ]M0[λ], (3.11)

d[λ] := λnN0[λ]X0[λ] +M0[λ]Y0[λ]. (3.12)

Recalling that M0[0] 6= 0 since G is causal, it is easy to check that n and d are coprime,
so the poles of G and the zeros of G are given by the zeros of d and n respectively. Let
λi, i = 1, ..., k, denote the real zeros of n[λ], ignoring multiplicities, which lie in [−1, 1],8

and assume, without loss of generality, that λ1 < λ2 < ... < λk. There are three ways that
such a λi can arise:

8Note that {λi} 6= ∅ since n[λ] will always have a zero at λ = 1.
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Case 1: λn − 1 = 0; if n is odd, then there is one λi, namely, λk = 1, if n is even,
then there are two λi, namely, λ1 = −1 and λk = 1.

Case 2: N0[λi] = 0, which corresponds to a real zero of G0[λ] in D.

Case 3: M0[λi] = 0, which corresponds to a real pole of G0[λ] in D.

In order to apply Lemma 3.3 we need to determine the sign of d[λ] at each λi. Evaluating
d[λ] for each λi, and making use of (3.4), gives the following results:

Case 1: If λn − 1 = 0 then we always have λk = 1 and

d[λk] = λnkN0[λk]X0[λk] +M0[λk]Y0[λk]

= 1.

In addition, if n is even, then we have λ1 = −1 and

d[λ1] = λn1N0[λ1]X0[λ1] +M0[λ1]Y0[λ1]

= 1.

Case 2: If N0[λi] = 0 then

d[λi] = λniN0[λi]X0[λi] +M0[λi]Y0[λi]

= λniN0[λi]X0[λi] + 1−N0[λi]X0[λi]

= 1.

Case 3: If M0[λi] = 0 then

d[λi] = λniN0[λi]X0[λi] +M0[λi]Y0[λi]

= λni (1−M0[λi]Y0[λi]) +M0[λi]Y0[λi]

= λni (3.13)

6= 0 (since G0 is causal).

Observe from Cases 1-3 that for d[λi] < 0, λi must satisfy Case 3, with λi ∈ [−1, 0) and
n odd. Since A has no negative real eigenvalues in (−∞,−1], it follows that G0[λ] has no
poles in [−1, 0), so there does not exist a λi ∈ [−1, 0) such that M0[λi] = 0, which means
that, for every i = 1, 2, · · · , k we have that d[λi] > 0. It then immediately follows from
Lemma 3.3 that there is an even number of real poles between each pair of real zeros of
G, so by Lemma 3.1 it follows that G is strongly stabilizable. Hence, from Lemma 3.1, G0

and Gn are simultaneously stabilizable.
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There is one other interesting application of the simultaneous stabilization results for
discrete-time plants with a negative, real unstable pole.

Theorem 3.3. For any discrete-time plant G0 with a state space representation given
by (3.1) it follows for any m ∈ Z+ and n ∈ N such that n − m is even, we have that
Gm[λ] = λmG0[λ] and Gn[λ] = λnG0[λ] are simultaneously stabilizable.

Proof. Let G0 given by (3.1) be arbitrary. Since we can create a G̃0[λ] := λmG0[λ], without
loss of generality, we set m = 0 and let n ∈ N be an arbitrary even number.

We employ the same method as the proof of Theorem 3.2, namely, we use (3.4) to get a
co-prime factorization of G0[λ], and then we apply Lemma 3.1 to convert the simultaneous
stabilization problem of G0[λ] and Gn[λ] into a strong stabilization problem for the plant

G[λ] :=
(λn − 1)M0[λ]N0[λ]

λnN0[λ]X0[λ] +M0[λ]Y0[λ]
. (3.14)

We will now use Lemma 3.2, which states that G[λ] is strongly stabilizable if and
only if there is an even number of real poles (counting multiplicities) between every pair
of consecutive real zeros of G[λ] for λ ∈ [−1, 1]; furthermore, we will use Lemma 3.3 to
check the condition required by Lemma 3.2. To that end, we define the numerator and
denominator polynomials of G:

n[λ] := (λn − 1)N0[λ]M0[λ], (3.15)

d[λ] := λnN0[λ]X0[λ] +M0[λ]Y0[λ]. (3.16)

Recalling that M0[0] 6= 0 since G is causal, it is easy to check that n and d are coprime,
so the poles of G and the zeros of G are given by the zeros of d and n respectively. Let
λi, i = 1, ..., k, denote the real zeros of n[λ], ignoring multiplicities, which lie in [−1, 1],9

and assume, without loss of generality, that λ1 < λ2 < ... < λk. There are three ways that
such a λi can arise:

Case 1: λn − 1 = 0; since n is even, we have two λi’s, namely λ1 = −1 and λk = 1.

Case 2: N0[λi] = 0, which corresponds to a real zero of G0[λ] in D.

9Note that {λi} 6= ∅ since n[λ] will always have a zero at λ = 1.
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Case 3: M0[λi] = 0, which corresponds to a real pole of G0[λ] in D.

In order to apply Lemma 3.3 we need to determine the sign of d[λ] at each λi. Evaluating
d[λ] for each λi, and making use of (3.4), gives the following results:

Case 1: If λn − 1 = 0, we have λk = 1, so

d[λk] = λnkN0[λk]X0[λk] +M0[λk]Y0[λk]

= 1,

and we have λ1 = −1, yielding

d[λ1] = λn1N0[λ1]X0[λ1] +M0[λ1]Y0[λ1]

= 1.

Case 2: If N0[λi] = 0 then

d[λi] = λniN0[λi]X0[λi] +M0[λi]Y0[λi]

= λniN0[λi]X0[λi] + 1−N0[λi]X0[λi]

= 1.

Case 3: If M0[λi] = 0 then

d[λi] = λniN0[λi]X0[λi] +M0[λi]Y0[λi]

= λni (1−M0[λi]Y0[λi]) +M0[λi]Y0[λi]

= λni (3.17)

> 0 (since G0 is causal and n is even).

Observe from Cases 1-3 that for every i = 1, 2, · · · , k we have that d[λi] > 0. It then
immediately follows from Lemma 3.3 that there is an even number of real poles between
each pair of real zeros of G, so by Lemma 3.1 it follows that G is strongly stabilizable.
Hence, from Lemma 3.1, G0 and Gn are simultaneously stabilizable if n is even.

The result shown in Theorem 3.3 may appear quite odd at first. However, intuition
into why this is occurring can be found by considering the step responses of a plant with a
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Figure 3.3: Step response of a discrete-time plant with a pole at −1 for various delays.

negative, real unstable pole. For example, in Figure 3.3, we plot the step response of the
plant

G[z] =
1

z + 1

along with the step response for a one sampled delay version G[z]z−1 and a two sampled
delayed version, G[z]z−2 (note that we introduce scaling factors of 1.1 and 1.2 respectively
to separate the various step responses shown in Figure 3.3). It is easy to see that when the
delay is odd that the plant output is completely out of phase with the nominal (un-delayed)
version of the plant, whereas when the delay is even, the only difference is the initial startup
period, after which, the response is exactly in phase. So, intuitively, stabilizing G[z] and
G[z]z−1 appears more difficult than stabilizing G[z] and G[z]z−2, which is borne out by
the results of Theorem 3.1 and Theorem 3.3.
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3.5 Conclusions and Future Work

In this chapter, we set up the discrete-time delay margin problem, noted that it is a classical
simultaneous stabilization problem, and using a classical result in that area, we determined
when the achievable discrete-time delay margin is non-zero. We were also able to show that
the most obvious extension of the simultaneous stabilization results to cases with longer
delays provides no further insight into the problem. The key result of this chapter, namely
Theorem 3.1, was reported in [17].

Since necessary and sufficient conditions for the general n-plant simultaneous stabiliza-
tion problem has been proven to be rationally undecidable [2], we abandoned this approach
in favour of trying to apply the tools developed in [35] for the continuous-time problem to
the discrete-time (and sampled data) problems. Unfortunately, while these tools provide
great insight into the possible solution for the problem, we have been unable to prove
anything using them; a brief description of this work is placed in the penultimate chapter.

As a result of the difficulties encountered with solving the achievable delay margin
problem in both the discrete-time and sampled data settings, in the next three chapters,
we turn our attention to a different problem, that of stabilizing a plant with an arbitrarily
large uncertain time delay and an arbitrarily large uncertain gain. However, we would still
like to solve the discrete-time achievable delay margin problem, and it is an area for future
research.
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Chapter 4

Gain and Delay Margin - Adaptive
Control

In this chapter, we formally state the problem of stabilizing any SISO LTI continuous-time
plant with an arbitrarily long unknown delay and unknown gain. Unlike in the next two
chapters where we must know the sign of the unknown gain a priori, in this chapter, we
merely require an upper and lower bound on the magnitude of the unknown gain and
require no knowledge of its sign. To solve this problem, we propose the use of a simple
generalized hold together with a sampler which, when applied to a continuous-time plant,
converts the problem into a classical discrete-time adaptive control problem. Unfortunately,
due to the lack of convexity of the set of admissible discretized plant models, the simplest
adaptive controllers (for example, a classical pole placement adaptive controller) can not
guarantee any form of stability, but more advanced adaptive controllers can; to that end,
we will prove that the output asymptotically approaches zero through the use of our hold,
a sampler and an adaptive controller proposed in [30].

This combined gain and delay margin problem has only one current solution in the
literature, [5, 4], which considers a linearly parameterized uncertainty set in the A and B
state space matrices along with an unknown but upper bounded time delay; however, that
controller is infinite dimensional and does not consider noise. While we don’t consider noise
in this chapter, we achieve a similar stability result to [5, 4], namely asymptotic stability,
except we do so using a finite dimensional controller. In Chapters 5 and 6, using a nearly
identical generalized hold, we design finite dimensional controllers which provide a much
stronger notion of stability, namely BIBO stability.

Since we will be using off the shelf adaptive controllers in this chapter (in particular
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the adaptive controller from [30]), we require a forward (and backward) shift operator. To
this end, following the notation of [18] we define q as the forward shift operator and q−1

as the backward shift operator, i.e., qν[k] = ν[k + 1] and q−1ν[k] = ν[k − 1].

This chapter is organized as follows. In Section 4.1 we formally state the problem. In
Section 4.2, we give our generalized hold and sampler. In Section 4.3 we discretize the
plant and show that the resulting discrete-time model is observable and controllable for
all non-pathological sampling periods. In Section 4.4 we state the adaptive controller and
show that it weakly stabilizes the system, in Section 4.5 we provide some simulations and
finally, in Section 4.6 we provide some conclusions and discuss some future work.

4.1 The Problem

Our SISO LTI plant G is described by

ẋ(t) = Ax(t) + gBu(t− τ)
y(t) = Cx(t),

}
(4.1)

with x(t) ∈ Rn the plant state, u(t) ∈ R the plant input, and y(t) ∈ R the plant output.
Here, τ represents an uncertain delay which lies in [0, τ ] and g an uncertain gain which
lies in [−g,−1] ∪ [1, g].1 Because of the presence of the delay, the initial condition of the
plant is not only on the state, but also on the input; more specifically, the plant initial
conditions are x(0) = x0 and u(θ) = u0(θ) for θ ∈ [−τ , 0). For simplicity of exposition, in
this chapter we assume that u0(θ) = 0 for θ ∈ [−τ , 0);2 we remove this restriction when we
return to this problem in Chapters 5 and 6. We also assume that (A,B) is controllable and
that (C,A) is observable. We define G0(s) := C(sI − A)−1B, which is the plant transfer
function with no delay and no extra gain. Our set of uncertainty is

G :=
{
ge−sτG0(s) : τ ∈ [0, τ ], g ∈ [−g,−1] ∪ [1, g]

}
.

In this chapter, we consider a weak notion of stability: for each G ∈ G, we have that
there are no unbounded signals and that

{u(t), y(t), x(t)} → 0 as t→∞.

If we design a controller K which achieves this, then we say that K weakly stabilizes G.
The goal of this chapter is to design a controller K which weakly stabilizes G.

1We can always write the unknown gain interval in this form by making the positive and negative
intervals symmetric and then absorbing the magnitude of the lower bound into B.

2We do this to avoid having a different discretization for the first period of the system.
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4.2 The Sampler and Hold

Our control scheme relies on using a generalized ‘pulse’ hold as shown in Figure 4.1 b). In
contrast to the normal zero order hold shown in Figure 4.1 a) which outputs a constant
value during each period, the hold we propose does the same over the first part of the period,
but then outputs zero for the remainder of the period. As a result, our hold depends on
two quantities of time, T2 > 0 and T3 > τ ,3 with an overall period of T = T2 + T3 seconds.
The quantity T2 > 0 denotes the length of time the hold is ‘on’, and can be chosen freely,
although there is an inherent trade-off between the performance of the system, which
depends on the overall period T , and the size of the control signal, which grows as T2 → 0.
The quantity T3 > τ must be chosen to be longer than the maximum possible delay;
this is done so that during each period, the plant receives exactly one pulse regardless of
τ ∈ [0, τ ]; this eliminates any dependence on the delay in the discretized A matrix that
occurs when using a normal zero order hold with a time delay, e.g., [1] or equations (7.7)-
(7.8). Finally, we must impose a restriction on the overall period T ; namely, that T is
non-pathological4 with respect to A. Since T2 > 0 and T3 > τ are otherwise free and since
A has a finite number of eigenvalues, we can always choose T2 and T3 such that T = T2 +T3

is non-pathological with respect to A.

We define the hold H : `(R)→ PC(R) by

(Hν)(t) :=

{
ν[k] t ∈ [kT, kT + T2]
0 t ∈ (kT + T2, kT + T )

(4.2)

for k ≥ 0 and the sampler S : PC(R)→ `(R) by

(Sy)[k] := y(kT ), k ≥ 0. (4.3)

4.3 Discretizing the Plant

We would now like to discretize the plant (4.1) using the sampler (4.3) and hold (4.2) for
k ≥ 0; doing so yields:

3We adopt this unusual notation in preparation for the next chapter where we use a similar hold which
requires an additional quantity of time (to be labeled T1) at the beginning of each period.

4See Section 2.3 for a definition of pathological sampling.
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Figure 4.1: Showing the output of a) a normal zero order hold, b) the ‘pulse’ hold used in
this chapter.
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x(kT + T )︸ ︷︷ ︸
=:χ[k+1]

= eAT︸︷︷︸
=:Ad

x(kT )︸ ︷︷ ︸
=:χ[k]

+

[
eAT e−Aτ

∫ T2

0

e−AvgBdv

]
︸ ︷︷ ︸

=:Bd(τ,g)

ν[k]

yn(kT )︸ ︷︷ ︸
=:ψ[k]

= Cx(kT ),


(4.4)

with an initial condition χ[0] = x0. We will also require a representation of the discretized
plant using our shift operator q−1, so to this end, we define

G(τ,g)[q
−1] := q−1C(I − q−1Ad)Bd(τ, g). (4.5)

We know by assumption that (A,B) is controllable and (C,A) is observable, but is
(Ad, Bd(τ, g)) controllable and (C,Ad) observable? Before answering this question, first
consider what happens when we apply a zero-order-hold with period T , as shown in Figure
4.1 a), to the plant (4.1) with g = 1 and τ = 0.

Proposition 4.1. [11] If T is non-pathological with respect to (4.1), then (C, eAT ) is

observable and (eAT ,
∫ T

0
eAvBdv) is controllable.

For our case, since T was chosen so that it is non-pathological with respect to A, it
clearly follows from Proposition 4.1 that (C,Ad) is observable. However, we must per-
form more analysis to determine if (Ad, Bd(τ, g)) is controllable for all τ ∈ [0, τ ] and
g ∈ [−g,−1] ∪ [1, g]; we do so in the following lemma:

Lemma 4.1. (Ad, Bd(τ, g)) is controllable and (C,Ad) is observable for all τ ∈ [0, τ ] and
g ∈ [−g,−1] ∪ [1, g].

Proof. Let τ ∈ [0, τ ] and g ∈ [−g,−1]∪ [1, g] be arbitrary, and recall that T was chosen to
be non-pathological with respect to A. Since τ and g are fixed, to simplify notation in the
proof, we write Bd instead of Bd(τ, g).

Since Ad = eAT , and T is non-pathological, clearly by Proposition 4.1 (C,Ad) is ob-
servable.
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For controllability, we prove the result using the Jordan form of the original continuous-
time system. Since (A,B) (and hence (A, gB)) is controllable by hypothesis and u is scalar
valued, there must be only one Jordan Block per eigenvalue. Let the n distinct eigenvalues
of A be denoted by λ1, λ2, · · · , λn, with λi having multiplicity mi for each i = 1, 2, · · · , n.
Then there exists an invertible matrix X ∈ Cn×n such that

J =


J1 0 · · · 0

0 J2
. . .

...
...

. . . . . .
...

0 · · · 0 Jn

 = X−1AX,

with each Ji ∈ Cmi×mi of the form

Ji =


λi 1 0 · · · 0

0 λi 1
. . . 0

...
. . . . . . . . .

...
0 0 · · · λi 1
0 0 · · · 0 λi

 ∈ Rmi×mi .

Applying the similarity transform X to (4.1) and defining x̃ := X−1x yields

˙̃x(t) = X−1AXx̃(t) +X−1gBu(t− τ)
y(t) = CXx̃(t).

It will be useful to segment X−1gB, so to that end, with B̂i ∈ Cmi we can write

X−1gB =


B̂1

B̂2
...

B̂n

 ;

furthermore, we can segment Bi: for each i = 1, 2, · · · , n, we write

B̂i =


b̂i1
b̂i2
...

b̂imi

 .
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Since (A,B) is controllable, it follows from the Popov-Belevitch-Hautus (PBH) test that
each b̂imi , i = 1, 2, · · · , n is non-zero.

Now define
Ãd := eJT

and

B̃d :=

∫ T2

0

eJ(T−τ−v)gX−1Bdv;

clearly (Ad, Bd) is controllable if and only if (Ãd, B̃d) is controllable. Examining Ãd more
closely yields

Ãd =


eJ1T 0 · · · 0

0 eJ2T
. . .

...
...

. . . . . . 0
0 · · · 0 eJnT

 ,
with

eJiT =


eλiT TeλiT T 2

2!
eλiT · · · Tmi−1eλiT

(mi−1)!

0 eλiT TeλiT
. . . . . .

...
. . . . . . . . . . . .

0 0 · · · eλiT TeλiT

0 0 · · · 0 eλiT

 .

It will also be useful to segment B̃d, which we do in the natural way: with B̃i ∈ Cmi for
each i = 1, 2, · · · , n, we write

B̃d =


B̃1

B̃2
...

B̃n

 ;

we further partition B̃i: for each i = 1, 2, · · · , n we write

B̃i =


b̃i1
b̃i2
...

b̃imi

 .
Since T is non-pathological with respect to A, the eigenvalues of each eJiT , namely eλ1T ,
eλ2T , · · · , eλnT differ from each other. Furthermore, since Ãd is block diagonal, (Ãd, B̃d) is
controllable if and only if every (eJiT , B̃i) is controllable for every i = 1, 2, · · · , n.
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Using the PBH test, it follows for each i = 1, 2, · · · , n that

(eJiT , B̃i) is controllable ⇔ rank[λiI − eJiT B̃i] = mi.

Since

eλiT I − eJiT =


0 −TeλiT −T 2

2!
eλiT · · · −Tmi−1eλiT

(mi−1)!

0 0 −TeλiT . . . . . .
...

. . . . . . . . . . . .

0 0 · · · 0 −TeλiT
0 0 · · · 0 0


clearly has rank mi−1 with an empty bottom row, it follows that rank[λiI−eJiT B̃i] = mi

if and only if b̃imi is non-zero. Therefore, (Ãd, B̃d) is controllable if and only if b̃imi is non
zero for every i = 1, 2, · · ·n.

For λi 6= 0, Ji is invertible, and

B̃i = −eJiT e−Jiτ (e−JiT2 − I)J−1
i gBi. (4.6)

We are interested in b̃imi , which is the bottom entry of B̃i. We can compute this easily
since all the matrices in (4.6) are upper triangular, so b̃imi is merely the product of all the
bottom right entries, namely,

b̃imi = −eλiT e−λiτ (e−λiT2 − I)λ−1
i gb̂imi ,

which is non-zero since T and T2 are greater than zero and finite, b̂imi 6= 0 and g ∈
[−g,−1] ∪ [1, g].

For λi = 0, Ji is not invertible, so we are interested in the bottom term (b̃imi) of

B̃i = −eJiT e−Jiτ
∫ T2

0

e−JivdvgBi,

which is exactly
b̃imi = −eλiT e−λiτT2gb̂imi ,

which again is clearly non-zero since T and T2 are greater than zero and finite, b̂imi 6= 0,
and g ∈ [−g,−1] ∪ [1, g].

36



4.4 The Controller

With our discretized plant being controllable and observable for all τ ∈ [0, τ ] and g 6= 0,
we now want to design an adaptive controller K which weakly stabilizes G. To do so, we
will use the adaptive controller from Kreisselmeier [30], and for simplicity, we adopt the
notation from that work. We will discuss why we chose the Kreisselmeier [30] controller
after showing that for each pair (τ, g) ∈ [0, τ ] × [−g, 1] ∪ [1, g], the resulting discretized
plant satisfies the assumptions required by [30]:

Lemma 4.2. For every τ ∈ [0, τ ] and g ∈ [−g,−1] ∪ [1, g] we have that there exists
polynomials

A∗[q−1] = 1 + a∗1q
−1 + a∗2q

−2 + · · ·+ a∗nq
−n

B∗[q−1] = b∗0 + b∗1q
−1 + b∗2q

−2 + · · ·+ b∗nq
−n

such that

G(τ,g)[q
−1] =

B∗[q−1]

A∗[q−1]
,

and qnA∗[q−1] and qnB∗[q−1] are coprime.

Proof. Let τ ∈ [0, τ ] and g ∈ [−g,−1] ∪ [1, g] be arbitrary.

From Lemma 4.1, it follows immediately that (Ad, Bd(τ, g)) is controllable and (Ad, C)
is observable. Hence, the poles of G(τ,g)[q] are exactly the eigenvalues of Ad, and the zeros of
G(τ,g)[q] must not be eigenvalues of Ad. So, A∗[q−1] and B∗[q−1] are coprime, as desired.

Lemma 4.2 shows that after applying our sampler and hold that we have a very natural
problem for adaptive control. Unlike most adaptive control problems, we actually know the
coefficients of the polynomial A∗[q−1] = q−1 det[I−q−1eAT ], so we only have a maximum of
n+ 1 unknown parameters (as opposed to 2n+ 1 for the general problem). Unfortunately,
since the general problem contains plants that are non-minimum phase (and whose resulting
discretizations are also non-minimum phase), for the general problem we can not use a
model reference adaptive controller (MRAC), though this does not rule out the use of a
classical pole placement adaptive controller. Furthermore, from Lemma 4.2 we know that
for all τ ∈ [0, τ ] and g ∈ [−g,−1] ∪ [1, g] that A∗[q−1] and B∗[q−1] are coprime; however,
in general we can not construct a convex set which contains these models and for which

37



A∗[q−1] and B∗[q−1] are always coprime; recall that most classical adaptive algorithms
require this in order to carry out parameter projections with the desirable features needed
to prove that the controller works. To see our convexity problem, consider the plant

ẋ(t) =

[
0 −1
1 0

]
x(t) + g

[
1
1

]
u(t− τ)

y(t) =
[

1 0
]
x(t)

 (4.7)

with g = 10 and τ = 8.5. The nominal version of this plant has a continuous-time transfer
function given by

G0(s) =
s+ 1

s2 + 1
,

and a resulting uncertainty set given by5

G =
{
ge−sτG0(s) : τ ∈ [0, 8.5], g ∈ [1, 10]

}
.

With this uncertainty set, we set T2 = 0.05 and T3 = 8.55, and apply the hold (4.2) to
various plants in G; in particular, we vary the delay from zero to 8.5 with the gain at its
lower and upper bounds. In Figure 4.2, we plot the resulting values for the discretized B
matrix, namely

Bd =

[
Bd1

Bd2

]
,

with the grey region denoting the possible plant models. Clearly the smallest convex set
which contains the grey region includes the origin, which corresponds to Bd = 0, so the
corresponding B∗[q−1] = 0, which means that A∗[q−1] and B∗[q−1] are not coprime.6

Because of the lack of a convex set of plants for which A∗[q−1] and B∗[q−1] are coprime,
we must use an approach which does not require convexity. We adopt the approach of
Kreisselmeier (see [30], [28], and [29]) wherein the controller is guaranteed to work with-
out requiring any projections of the plant parameter estimates. For simplicity of proving
the result, we will use the first controller of this type, the one presented in [30]; further-
more, while it should be possible to exploit our knowledge of the polynomial A∗[q−1] to
improve performance, we will not exploit this knowledge here except in setting up the
initial conditions on the plant estimator.

The controller topology from [30] is shown in Figure 4.3. Each of the four controller
blocks will be described from right to left, starting with the two adaptive identifiers; the

5We restrict the gain to be positive only to aid in illustrating the convexity problem.
6It should be noted that if the plant only has real eigenvalues, then this problem does not occur.
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Figure 4.2: Showing the convexity problem that we have.
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Figure 4.3: The controller and feedback setup of [30].

plant identification is described in Section 4.4.1 and the controller identification is described
in Section 4.4.2. The mismatch error is then described in Section 4.4.3, followed by both
the NLTV and linear control components in Section 4.4.4. Our overall control scheme is
then given by those components, along with the hold (4.2) and sampler (4.3) given earlier
in this chapter. To present this controller here, we adopt the notation and verbiage from
[30].

4.4.1 Identification of the Plant

We start by defining a vector of the actual coefficients of A∗[q−1] and B∗[q−1]:

θ∗1 :=



−b∗0
−b∗1

...
−b∗n
a∗1
a∗2
...
a∗n


;
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clearly, the goal is to design an estimation scheme that estimates θ∗1. To do so, at each
time step we use information from the current and past plant input ν and output ψ; this
requires us to use information before time 0 which we do not know, so for the purposes of
setting up the controller, for k < 0 we replace ν[k] and ψ[k] with zero.7 We then define
the following vector for k ≥ 0:

v1[k] :=



ν[k]
q−1ν[k]

...
q−nν[k]
q−1ψ[k]
q−2ψ[k]

...
q−nψ[k]


, (4.8)

and note that
v1[k]θ∗1 + ψ[k] = 0.

With ai[k] an estimate of a∗i and bi[k] an estimate of b∗i , we define our estimate of θ∗1 for
k ≥ 0:

θ1[k] :=



−b0[k]
−b1[k]

...
−bn[k]
a1[k]
a2[k]

...
an[k]


. (4.9)

At each time step, and with an arbitrary initial condition on the estimate, i.e., θ1[0] ∈
R2n+1, we update these estimates recursively for k ≥ 0 using

θ1[k + 1] = θ1[k]−
v1[k]

(
v
′
1[k]θ1[k] + ψ[k]

)
1 + v

′
1[k]v1[k]

. (4.10)

For the initial condition on θ1, since we know A∗[q−1] exactly, it is a reasonable idea to set
the corresponding initial conditions of θ1 accordingly, i.e., a1[0] = a∗0, etc.

7These are not the actual plant initial conditions; we choose these values so that we can run the
algorithm starting from time zero.
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4.4.2 Identification of the Controller

Here we list the required parts of the controller; for more insight into how this section of
the controller works, the reader is encouraged to look at [30, 10]. Let

P [q−1] := 1 + p1q
−1 + p2q

−2 + · · ·+ p2nq
−2n

be an arbitrary polynomial such that q2nP [q−1] has all its zeros in the open unit disk. Since
A∗[q−1] and B∗[q−1] are coprime, it follows that there exists unique polynomials R∗, S∗,
C∗ and D∗:

R∗[q−1] := 1 + r∗1q
−1 + r∗2q

−2 + · · ·+ r∗nq
−n,

S∗[q−1] := s∗1q
−1 + s∗2q

−2 + · · ·+ s∗nq
−n,

C∗[q−1] := c∗1q
−1 + c∗2q

−2 + · · ·+ c∗nq
−n,

D∗[q−1] := d∗1q
−1 + d∗2q

−2 + · · ·+ d∗nq
−n,

such that

P = A∗R∗ −B∗S∗,
q−2n = A∗C∗ +B∗D∗.

Our goal is to estimate the coefficients of the polynomials R∗, S∗, C∗ and D∗ using infor-
mation from the plant input and output; this again requires us to use information before
time zero which we do not know, so for the purposes of setting up the controller, for k < 0
we again replace ν[k] and ψ[k] with zero. Define for k ≥ 0:

v2[k] :=



q−2nν[k]
...

q−3n+1ν[k]
q−2nψ[k]

...
q−3n+1ψ[k]
Pν[k]

...
q−n+1Pν[k]
Pψ[k]

...
q−n+1Pψ[k]



, (4.11)
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and

θ∗2 :=



r∗1
...
r∗n
−s∗1

...
−s∗n
−c∗1

...
−c∗n
−d∗1

...
−d∗n



.

We would like to estimate θ∗2; to that end, we define estimates of θ∗2:

θ2 :=



r1
...
rn
−s1

...
−sn
−c1

...
−cn
−d1

...
−dn



. (4.12)

At each time step, and with an arbitrary initial condition on the estimate, i.e., θ2[0] ∈ R4n,
we update these estimates recursively for k ≥ 0 using

θ2[k + 1] = θ2[k]−
v2[k]

(
v
′
2[k]θ2[k] + ν[k − 2n+ 1]

)
1 + v

′
2[k]v2[k]

. (4.13)
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4.4.3 Identification of the Mismatch Error

To avoid dealing with polynomials in the shift operator q−1, we replace it by the complex
variable λ and define the following polynomials in λ:

A(k, λ) := 1 + a1[k]λ+ a2[k]λ2 + · · ·+ an[k]λn,

B(k, λ) := b0[k] + b1[k]λ+ b2[k]λ2 + · · ·+ bn[k]λn,

R(k, λ) := 1 + r1[k]λ+ r2[k]λ2 + · · ·+ rn[k]λn,

S(k, λ) := s1[k]λ+ s2[k]λ2 + · · ·+ sn[k]λn,

and let

Q(k, λ) := A(k, λ)R(k, λ)−B(k, λ)S(k, λ)− P (λ)

=
n∑

i,j=0

(ai[k]rj[k]− bi[k]sj[k])λi+j −
2n∑
i=0

piλ
i

=:
2n∑
i=1

qi[k]λi,

where a0[k] = r0[k] = p0 = 1 and s0[k] = 0, and then define the identification mismatch
error

e[k] :=

(
2n∑
i=1

(qi[k])2

) 1
2

. (4.14)

4.4.4 The Control Law

The control law is given by

R(k, q−1)ν[k] = S(k, q−1)ψ[k] + f(m[k], e[k], k) (4.15)

m[k + 1] = σm[k] + |ν[k]|+ |ψ[k]| (4.16)

where m[0] ≥ 0 and σ ∈ (0, 1) are arbitrary and

f(m[k], e[k], k) :=

{
(1 +m[k])e[k] when k = 0, 4n, 8n, · · ·
0 otherwise.

. (4.17)
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Our controller K is then given by the sampler (4.3), the adaptive identification of
the plant given by (4.8), (4.9) and (4.10), the adaptive identification of the controller
parameters given by (4.11), (4.12) and (4.13), the identification mismatch error given by
(4.14), the control law given by (4.15), (4.16) and (4.17), and the the hold (4.2) as shown
in Figure 4.3. This control scheme has initial conditions given by θ1[0], θ2[0], m[0], and
ν[−1] = ν[−2] = · · · = ν[−3n+ 1] = ψ[−1] = ψ[−2] = · · · = ψ[−3n+ 1] = 0.

4.4.5 The Main Result

Theorem 4.1. For the plant given by (4.1) and using the controller K in the feedback
structure shown in Figure 4.3, we have for each G ∈ G that

sup
k≥0
‖ν[k]‖ <∞,

sup
k≥0
‖ψ[k]‖ <∞,

sup
k≥0
‖θ1[k]‖ <∞,

sup
k≥0
‖θ2[k]‖ <∞,

sup
k≥0
‖m[k]‖ <∞,

and asymptotic regulation is achieved, i.e.

{u(t), y(t), x(t)} → 0 as t→∞.

Proof. Let τ ∈ [0, τ ], g ∈ [−g,−1] ∪ [1, g] and x0 ∈ Rn be arbitrary.

By Lemma 4.1, the discrete-time plant is observable and controllable with order n.
Since the plant order n is known and the controller is identical to that of [30], using the
result of Lemma 4.2 our problem satisfies the requirements required by [30], so we can
apply the main theorem from that work: for arbitrary initial conditions, the trajectory

{ν[k], ψ[k], θ1[k], θ2[k],m[k]}
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of the adaptive control system is bounded uniformly in time, i.e.,

sup
k≥0
‖ν[k]‖ <∞,

sup
k≥0
‖ψ[k]‖ <∞,

sup
k≥0
‖θ1[k]‖ <∞,

sup
k≥0
‖θ2[k]‖ <∞,

sup
k≥0
‖m[k]‖ <∞,

and asymptotic regulation is achieved on the discrete-time signals, i.e.

{ν[k], ψ[k]} → 0 as k →∞.

We now need to show that the continuous-time signals also go to zero as t gets large. From
the hold (4.2), it clearly follows that since ν[k] → 0 as k → ∞, that u(t) → 0 as t → ∞.
Furthermore, since (C,Ad) is observable, it follows that

ψ[k]
ψ[k + 1]

...
ψ[k + n− 1]

 =


C
CAd

...
CAn−1

d


︸ ︷︷ ︸

=:O

χ[k] +


0 0 · · · 0

CBd 0 · · · 0
CAdBb CBd · · · 0

...
...

. . .
...

CAn−2
d Bd CAn−3

d Bd · · · CBd




ν[k]
ν[k + 1]

...
ν[k + n− 2]

 ;

since {ν[k], ψ[k]} → 0 as k →∞, and O is invertible, it follows that χ[k]→ 0 as k →∞.
Solving the continuous-time plant state equation (4.1) with a starting time of kT , it follows
that

‖x(t)‖ ≤ e‖A‖t‖χ[k]‖+

∥∥∥∥∫ t

kT

eA(t−v)Bdv

∥∥∥∥ |ν[k]|, t ∈ [kT, kT + T );

since {ν[k], χ[k]} → 0 as k →∞, it follows that x(t)→ 0 as t→∞. Finally, since

y(t) = Cx(t),

it follows that y(t)→ 0 as t→∞.

Remark 1. Theorem 4.1 states that we can provide (4.1) with an arbitrarily large delay
margin, and an arbitrarily large gain margin with no requirement that the sign of the gain
be known. However, BIBO stability is not proven.
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4.5 Simulations

We simulate the above controller for the plant

G0 =
1

s− 1
,

with the uncertainty set

G :=
{
ge−sτG0(s) : τ ∈ [0, 0.3], g ∈ [−20,−1] ∪ [1, 20]

}
,

with a plant initial condition of y(0) = 1, and with controller initial conditions of ψ(−1) =
ψ(−2) = ν(−1) = ν(−2) = 0, θ1(0) = 0 and θ2(0) = 0. We set T2 = 0.1 and T3 = 0.35 for
an overall period T = 0.45, and then run the simulation with τ = 0.2 and g = −5, with the
results shown in Figure 4.4. As can be seen, despite the desired delay margin being much
smaller than the achievable LTI delay margin of 2 and the lack of noise, the controller
still struggles to weakly stabilize G. Attempts to simulate this controller on higher order
systems or with longer delays have for the most part failed due to numerical issues, and this
controller, while theoretically sound, does not appear to work very well for our problem.

4.6 Conclusions and Future Work

In this chapter, we considered the problem of stabilizing an LTI continuous-time plant
with an uncertain gain and delay. Since the continuous-time plant is infinite dimensional,
trying to use classical continuous-time adaptive control is difficult. Instead, we use a
simple generalized hold to convert the infinite dimensional continuous-time problem to a
finite dimensional discrete-time problem of known order. Since we can not form a convex
uncertainty set which contains only observable/controllable models, we need to use one of
the more complicated adaptive controllers. Unfortunately, while the controller is proven
to weakly stabilize the uncertain plant, the transient response is extremely poor and the
algorithm is numerically sensitive. The key results of this chapter, Lemma 4.1 and Theorem
4.1 are based on work that we presented in [14].

In the next Chapter, using essentially the same hold, we will develop a new and better
estimation scheme designed specifically for our problem which will allow us to estimate
the two unknown parameters (τ and g) directly, which not only provides much better
performance, but will also allow us to handle noise, guarantee the exponential decay of the
plant initial conditions, tolerate jumps in the gain and delay, and will provide robustness
to un-modelled dynamics.
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Figure 4.4: The output and control signal.
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For future work, we would like to consider a larger uncertainty set, namely, uncertainty
in the A and B matrices of the plant, which is the uncertainty set considered in [5, 4]. We
would also like to consider different adaptive controllers in the hope of achieving better
performance, especially in simulation.
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Chapter 5

Stabilizing a Plant with an
Arbitrarily Large Gain and Delay
with a Novel Estimator

In this chapter, we consider a nearly identical problem to that of the previous chapter,
namely, given a SISO LTI controllable/observable continuous-time plant and a desired gain
and delay margin, find a controller which will achieve these margins. Unlike in the previous
chapter, we require a priori knowledge of the sign of the unknown gain, but the controller
we propose achieves a much stronger notion of stability; indeed, the proposed controller not
only achieves BIBO stability, but it also guarantees the exponential decay of the plant initial
conditions. Furthermore, in contrast to the previous chapter, the proposed controller is
able to achieve uniform bounds on all important signals, can handle un-modeled dynamics
and can tolerate switches in the unknown gain and delay.

The approach adopted here is motivated by the rudimentary approach to the first
order case considered in our earlier work [14] and the result presented in Chapter 4. In
[14], by applying an unimplementable impulse hold to a first order plant with an unknown
but upper bounded time delay, we were able to derive a simple update equation which
estimated the time delay at each time step. Using this estimate, we were then able to
generate a control signal which guaranteed that the plant output decayed exponentially for
an arbitrary initial condition with no noise. In Chapter 4 (which is also based on the work
presented in [14]), we were able to use a ‘pulse’ hold which created a very natural discrete-
time adaptive control problem; however, despite only having two unknown parameters, a
standard adaptive controller requires estimates of at least n unknown parameters for an
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nth order plant, and due to problems with projecting, we potentially require estimates of
up to 2n+1 unknown parameters. The controller that we propose in this chapter combines
these two concepts; namely, we use a ‘pulse’ hold to discretize the plant as done in Chapter
4, and then use that model to estimate the two unknown plant parameters directly at each
time step, similar to the approach adopted in [14]. While the proposed controller that we
present is (mildly) nonlinear and periodic, it has a number of desirable features:

• It has modest complexity, and mainly depends on solving very simple update equa-
tions; hence, the approach is practical to scale to systems with a high order.

• Despite being non-linear, it provides BIBO stability and guarantees the exponential
decay of the plant initial conditions, even in the presence of noise.

• It is robust to un-modeled dynamics and other plant uncertainty.
• It tolerates infrequent but possibly persistent switches in the unknown gain and

delay.
• It updates the estimate of the delay and gain at each time step, so it should be able

to tolerate time variations in the gain and delay parameters.

This chapter is organized as follows. In Section 5.1, we formally state the problem.
In 5.2, we briefly consider the first order case1 to help provide intuition for Section 5.3,
where we state our proposed controller. In Section 5.4 we prove that our proposed con-
troller achieves an arbitrarily large delay and gain margin, that it is robust to un-modeled
dynamics and that it can tolerate jumps in the unknown gain and delay. In Section 5.5,
we provide many simulations, and finally in Section 5.6 we provide some conclusions and
discuss some future work.

5.1 Problem Formulation

We start by solving the basic problem, i.e., no additional plant uncertainty and no jumps
in the unknown gain and delay, so our SISO LTI plant G is described by

ẋ(t) = Ax(t) + gBu(t− τ)
y(t) = Cx(t),

}
(5.1)

with x(t) ∈ Rn the plant state, u(t) ∈ R the plant input, and y(t) ∈ R the plant output.
Here, τ represents an uncertain delay which lies in [0, τ ] and g an uncertain gain which
lies in [1, g].2 Because of the presence of the delay, the initial condition of the plant is not

1In Chapter 6 we will prove a result with a time varying delay for a first order plant.
2We can always write the unknown gain interval in this form by absorbing any lower gain bound and

the sign into B.
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only on the state, but also on the input; more specifically, the plant initial conditions are
x(0) = x0 and ud(θ) = u0(θ) for θ ∈ [−τ , 0). We also assume that (A,B) is controllable and
that (C,A) is observable and we define G0(s) := C(sI −A)−1B, resulting in the following
uncertainty set:

G :=
{
ge−sτG0(s) : τ ∈ [0, τ ], g ∈ [1, g]

}
.

We consider the standard feedback structure: the controllers are input-output of the
form

u = Ky.

To define stability, we introduce noise at the two plant/controller interfaces as shown in
Figure 5.1. Due to the input delay, the input noise d has an initial condition d(θ) = d0(θ)
for θ ∈ [−τ , 0), and we define the stacked noise vector3

w(t) :=

[
w(t)

d(t− τ)

]
.

With zero initial conditions on the plant, i.e., x0 = 0, u0(θ) = d0(θ) = 0 for θ ∈ [−τ , 0),

we let Φ(τ, g) be the closed loop map from

[
d
w

]
→
[
y
u

]
.

Definition 5.1. We say that K stabilizes G if Φ(τ, g) is uniformly bounded, i.e.

sup
τ∈[0,τ ],g∈[1,g]

‖Φ(τ, g)‖ <∞.

The goal of this chapter is to design a controller K which stabilizes G.

5.2 High Level Idea

To help provide intuition into the controller design philosophy, it is useful to briefly consider
a first order plant. We will revisit this problem in the next chapter (Chapter 6) with the
additional difficulty of allowing the delay to be time varying and with the explicit goal of
finding a simple relationship between the unstable pole location, the upper bound on the
unknown delay and the time variation of the delay for which stability is maintained. For
now, we will simply provide an outline of the procedure, as it provides great insight into

3We delay d by τ seconds so that d from time −τ to ∞ is included in the norm of w.
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Figure 5.1: The feedback setup considered in this paper.

the higher order case. So, with a > 0, b 6= 0 and c = 1,4 a first order plant in G (with the
input and output noise added) is given by

ẋ(t) = ax(t) + gb(u(t− τ) + d(t− τ))
yw(t) = x(t) + w(t),

}
(5.2)

with initial conditions of x(0) = x0 and (for simplicity) d(θ) = u(θ) = 0 for θ ∈ [−τ , 0).5

Our control scheme relies on using a generalized “pulse” hold, so with T2 > 0, T3 > τ
and the period T := T2 + T3,6 we define the hold H : `(R)→ PC(R) by

(Hν)(t) :=

{
ν[k] t ∈ [kT, kT + T2]
0 t ∈ (kT + T2, kT + T )

(5.3)

for k ≥ 0 and the sampler S : PC(R)→ `(R) by

(Syw)[k] := yw(kT ), k ≥ 0. (5.4)

Applying this hold and sampler to (5.2) and combining the state and output equations

4Without loss of generality we can assume that c = 1 since it can easily be absorbed into b.
5The input initial condition will be allowed to be non-zero for the general case as well as for the result

presented in Chapter 6.
6The reasons for using the unusual nomenclature of T2 and T3 will become clear once we analyze the

higher order case in the next section.
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yields the following discretized plant:

yw(kT + T )︸ ︷︷ ︸
=:ψ[k+1]

= eaT︸︷︷︸
=:ad

yw(kT )︸ ︷︷ ︸
=:ψ[k]

+ ge−aτ︸ ︷︷ ︸
=:α−1

ba−1eaT (1− e−aT2)︸ ︷︷ ︸
=:bd

ν[k]+

w(kT + T )︸ ︷︷ ︸
=:ω[k+1]

−eaT w(kT )︸ ︷︷ ︸
=:ω[k]

+ bgeaT
∫ T

0

e−avd(kT + v − τ)dv︸ ︷︷ ︸
=:ζ[k]

, (5.5)

with initial condition ψ[0] = x0. It will also be useful to define a single noise term, so we
let η[k] := ω[k + 1]− eaTω[k] + ζ[k], yielding

ψ[k + 1] = adψ[k] + α−1bdν[k] + η[k]. (5.6)

The basic idea is similar to what we used in [14], namely, we solve (5.6) at each time
step for α under the hypothesis that there is no noise, and then use this solution to define
an estimate of this quantity: with arbitrary initial conditions ψ[−1] ∈ R and ν[−1] ∈ R,
for k ≥ 1 define

α̌[k] :=

{
bdν[k−1]

ψ[k]−adψ[k−1]
if ν[k − 1] 6= 0 and ψ[k]− adψ[k − 1] 6= 0

eaτ otherwise.
(5.7)

Since there is noise, we saturate α̌[k] into the range of permissible values, namely,
[(g)−1, eaτ ], yielding our final estimate of

α̂[k] =


1
g

α̌[k] < 1
g

α̌[k] α̌[k] ∈ [1
g
, eaτ ]

eaτ α̌[k] > eaτ .

(5.8)

To design the control signal, we assume that there is no noise, which means that α̂[k] = α,
and then choose ν[k] to drive ψ[k + 1] to zero at the next time step:

ν[k] := −adα̂[k]ψ[k]

bd
, k ∈ Z+. (5.9)

When we apply the controller (5.7), (5.8), (5.9) when the noise is zero, the output ψ[k]
goes to zero in two time steps. When we apply the controller in the presence of noise, in
general α̂[k] 6= α, and the output ψ[k] will typically not go to zero. While we won’t do so
here, fortunately, we can prove that:

1. When the state is large with respect to the noise, the estimate α̂[k] is close to α.
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2. There exists constants λ ∈ (0, 1), c1 > 0 so that when the estimate α̂[k] is ‘close
enough’ to α, we have |ψ[k + 1]| ≤ λ|ψ[k]|+ c1‖η‖∞.

3. Regardless of the estimate, the output grows by a bounded amount over a single
time step.

With these three properties, we can than show that the controller K, consisting of the
sampler given by (5.4), the hold given by (5.3), the estimator given by (5.7) and (5.8), and
the control signal given by (5.9), stabilizes G.

In the remainder of this chapter, we will apply a similar control scheme to higher order
plants. However, a few complications arise when attempting to do so, namely:

• We no longer have full access to the state, so we use a state estimator; this is made
difficult since the discretized B matrix is unknown due to the uncertainty in the
delay and gain.

• In the first order case, ge−aτ is a strictly positive real number, and as a result, we are
able to estimate the combined quantity (or in fact, its inverse). In the higher order
case, ge−Aτ is an n× n matrix, so we estimate g and τ separately.

• In the first order case, it was easy to construct a control signal using the estimate of
ge−aτ ; in the higher order case, we use pole placement.

Fortunately, these problems are not insurmountable, and in the next section we propose a
control scheme that resolves all three of these issues, and thereby solves the problem.

5.3 The Controller

We now consider the higher order case. As in the first order case, if we incorporate the
input and output noise into the plant model, we obtain

ẋ(t) = Ax(t) + gB(u(t− τ) + d(t− τ))
yw(t) = Cx(t) + w(t),

}
(5.10)

with initial conditions of x(0) = x0, u(θ) = u0(θ) and d(θ) = d0(θ) for θ ∈ [−τ , 0). In
addition, we require one further property from A, namely, that it has at least two distinct
real eigenvalues, p1 6= 0 and p2 6= 0, with multiplicity one.

Remark 1. If A does not have two real distinct eigenvalues with multiplicity one, then
we can add a filter W (s) at the plant output so that G(s)W (s) has two real poles with
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multiplicity one. The simplest way to do this is to set

W =


s+ λ

s+ 2λ
if A has one real distinct eigenvalue

(s+ λ)(s+ 3λ)

(s+ 2λ)(s+ 4λ)
if A has no real distinct eigenvalues,

(5.11)

and then choose λ > 0 so that G(s) and W have no pole-zero cancellations.

Henceforth, without loss of generality, we partition A (by carrying out a similarity
transformation if necessary) as follows:

A =

 p1 0 0
0 p2 0
0 0 Ar

 . (5.12)

Our proposed control scheme is given in Figure 5.2; the controller is periodic of period
T . We will describe each block of the controller in detail, but for now, we present the basic
idea. We start with a generalized hold H and a higher frequency sampler S which only
operates over the first part of the period, as described in more detail in Sub-section 5.3.1. In
Sub-section 5.3.2, we apply the sampler and hold to the plant to yield a discretized model.
Using this discretized plant model, in Sub-section 5.3.3 we analyze the state feedback
gain associated with a pole placement problem, and in Sub-section 5.3.4 we design a state
estimator. In Sub-section 5.3.5 we introduce our control law, which we use along with
the discretized state model to construct a delay estimator in Sub-section 5.3.6 and a gain
estimator in Sub-section 5.3.7; we then use the gain and delay estimates to construct
the state feedback gain estimate (as introduced in Sub-section 5.3.3) in Sub-section 5.3.8.
Finally, we summarize the control scheme in Sub-section 5.3.9.

5.3.1 The Sampler and Hold

We are interested in applying a generalized hold and an almost normal sampler to a plant
in G; a relevant question then is “Since (A,B) is controllable and (C,A) is observable, is the
same true for the discretized system?” If we are using a zero-order hold and a normal sam-
pler, then from [11], the answer is yes so long as the sampling period is ‘non-pathological’;7

it turns out that we have a very similar requirement for our simple generalized hold H,
which is parameterized by three quantities of time, T1, T2, and T3, which satisfy the fol-
lowing:

7See Section 2.3 for a definition of pathological sampling.
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Figure 5.2: The feedback setup used for the higher order case.

i) T1, T2, and T3 are all positive,
ii) T3 > τ ,

iii) T = T1 + T2 + T3 is non-pathological (with respect to A).

We define the hold H : `(R)→ PC(R) by

(Hν)(t) :=


0 t ∈ [kT, kT + T1)
ν[k] t ∈ [kT + T1, kT + T1 + T2)
0 t ∈ [kT + T1 + T2, kT + T )

(5.13)

for k ≥ 0. Figure 5.3 provides an illustration of the output of the hold over the first period.

The purpose of the sampler S is to allow us to estimate the plant state at time kT ; to
accomplish this goal, we run the sampler at a period h, and we impose the following three
constraints on h:

i) T
h

must be an integer so that h is synchronous with T .
ii) h must be non-pathological with respect to A so that (C, eAh) is guaranteed to be

observable.
iii) h < T1

n
so that we can obtain at least n samples over the interval [kT, kT + T1).8

8Note that if there is no noise and zero initial conditions, then for every τ ∈ [0, τ ], we have that
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Figure 5.3: Showing the output from the hold given by (5.13).

With these restrictions in place, we define the sampler S : PC(R)→ `(R) by

(Syw)[jh] := yw(jh), j ∈ Z+. (5.14)

Remark 2. While any combination of T1, T2, T3, T, and h that satisfy the above constraints
is acceptable for proving stability, these parameters do have an impact on the performance
of the system.

T : Since the system updates its estimate of the gain and delay every T seconds, the
overall period should be made as small as possible. However, while we can theoreti-
cally make T as close as we want to τ , doing so will not normally provide the best
performance.

T3: There is no drawback for making this as small as possible, so we can choose T3 to be
as close as we wish to τ .

T2: Larger values of T2 produce a smaller control signal, which creates the obvious trade-
off.

h: The estimate of the state x(kT ) is obtained by multiplying the inverse of the observ-
ability matrix (associated with the pair (C, eAh)) by a vector of samples of y; hence,
the effect of the noise on the error of this estimate is reduced by having a large h,
which creates an obvious trade-off.

T1: With h selected, there is no drawback for making this as small as possible, so we can
choose T1 as close as we wish to n× h.

u(t− τ) = 0 for t ∈ [kT, kT + T1); this property is critical for the design of our state estimator.

58



5.3.2 Discretizing the Plant

We would now like to discretize the plant (5.10) using our sampler and hold:9

x(kT + T )︸ ︷︷ ︸
=:χ[k+1]

= eAT︸︷︷︸
=:Ad

x(kT )︸ ︷︷ ︸
=:χ[k]

+

[
eA(T−T1)e−Aτ

∫ T2

0

e−AvgBdv

]
︸ ︷︷ ︸

=:Bd(τ,g)

ν[k]+

[∫ T

0

eA(T−v)gBd(kT + v − τ)dv

]
︸ ︷︷ ︸

=:ζ[k]∈R1×n

+δ[k]

∫ 0

−τ
eA(T−v)gBu0(v)dv︸ ︷︷ ︸

=:φ

yw(kT )︸ ︷︷ ︸
=:ψ[k]

= Cx(kT ) + w(kT )︸ ︷︷ ︸
=:ω[k]

.


(5.15)

Our discretized plant has the initial condition χ0 = x0; it is also useful to note that

‖φ‖ ≤ gτe‖A‖τ‖B‖︸ ︷︷ ︸
=:cφ

sup
θ∈[−τ ,0)

|u0(θ)|, (5.16)

and recalling that w(t) :=

[
w(t)

d(t− τ)

]
it is easy to obtain the following bounds:

‖ω‖∞ ≤ ‖w‖∞, ‖ζ‖∞ ≤ gTe‖A‖T‖B‖︸ ︷︷ ︸
=:cζ

‖w‖∞. (5.17)

Since (C,A) is observable by assumption, and T is chosen to be non-pathological with
respect to A, it follows from [11] that (C,Ad) is observable. Verifying that (Ad, B(τ, g)) is
controllable requires some work. To this end, define the set of all possible Bd(τ, g):

B =

{
geA(T−T1−τ)

∫ T2

0

e−AvBdv; g ∈ [1, g], τ ∈ [0, τ ]

}
.

Proposition 5.1. (Ad, Bd) is controllable for every Bd ∈ B.

Proof. In Lemma 4.1, with T non-pathological with respect to A and T2 > 0 it was proven
that the pair (Ad, ge

AT e−Aτ
∫ T2

0
e−AvBdv) is controllable for all g ∈ [1, g] and τ ∈ [0, T−T2).

In our case, we are interested in (Ad, ge
AT e−A(T1+τ)

∫ T2
0
e−AvBdv); since T1 +τ ∈ [0, T−T2),

the result follows immediately.

9Due to the initial condition on the plant input, we have an extra term in the state equation, given by

δ[k]
∫ 0

−τ e
−avgbu0(v)dv (here δ[k] is the standard discrete-time pulse sequence).
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5.3.3 The Pole Placement Problem

In the case of perfect information, we can use state feedback to provide closed-loop stability.
To this end, fix β[z] to be an nth order monic Schur polynomial (with real coefficients),
and then for τ ∈ [0, τ ] and g ∈ [1, g], we let F (τ, g) represent the unique element of R1×n

which satisfies
det [zI − Ad −Bd(τ, g)F (τ, g)] = β[z].10

While Ad is known exactly, we only have running estimates of τ and g since in general,
τ and g are unknown; as a result, we only have estimates of Bd(τ, g) and F (τ, g) as well.
An important issue which will arise is the accuracy of our estimate of F in terms of the
accuracy of our estimates of τ and g. To explore this issue, we define the set

F :=
{
F ∈ R1×n : characteristic polynomial of Ad +BdF is β[z] for some Bd ∈ B

}
.

Lemma 5.1. B and F are compact and there exists a constant c1 > 0 such that for all
τ1, τ2 ∈ [0, τ ] and g1, g2 ∈ [1, g], we have that

‖F (τ2, g2)− F (τ1, g1)‖ ≤ c1 (|τ1 − τ2|+ |g1 − g2|) .

Proof. From the definition of Bd(τ, g), it is clear that it is an analytic function of (τ, g) ∈
[0, τ ] × [1, g]. Lemma 3 from [36] states that F (τ, g) is an analytic function of Bd(τ, g),
which means that F (τ, g) is an analytic function of (τ, g) on the compact set [0, τ ]× [1, g].
The result now follows immediately.

In later sections, we will provide estimation algorithms for τ , g, Bd(τ, g) and F (τ, g).
We will label our estimate of the latter (at time k) by F̂ [k], and restrict it to take values
in F . To this end, we make the following definition:

Definition 5.2. F̂ : Z+ → R1×n is admissible if its range is contained in F .

Last of all, we would like to upper bound F ∈ F and Bd ∈ B; since both are compact,
the following two quantities are finite:

f := sup {‖F‖ : F ∈ F} , b := sup {‖Bd‖ : Bd ∈ B} . (5.18)

10By Proposition 5.1, we have that (Ad, Bd(τ, g)) is controllable, which implies that F (τ, g) is unique.
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5.3.4 Estimating the State χ

To estimate χ[k] = x[kT ] we will follow the approach outlined in [37]. During the initial
part of the period, i.e., t ∈ [kT, kT + T1), the sampler S samples the output yw(t) every
h seconds, generating a total of n samples. Furthermore, we are guaranteed that the
controller input to the plant (even with the unknown delay) is zero over this time period.11

Since we chose h to be non-pathological with respect to A, it follows that (C, eAh) is
observable. Assuming no noise, we have

yw(kT )
yw(kT + h)

...
yw(kT + (n− 1)h)


︸ ︷︷ ︸

=:Y(kT )

=


C

CeAh

...

C
(
eAh
)n−1


︸ ︷︷ ︸

=:Oh

x(kT );

our observability assumption ensures that Oh is invertible, so we can solve for x(KT ),
yielding x(kT ) = χ[k] = O−1

h Y(kT ); of course, we have noise in our actual system, so we
set

χ̂[k] = O−1
h Y(kT ), k ≥ 0, (5.19)

and then define the state estimation error χ̃[k] := χ̂[k]− χ[k].

Lemma 5.2. There exists constants c2 > 0 and c2 > 0 such that

‖χ̂[k]− χ[k]‖ = ‖χ̃[k]‖ ≤ c2‖w‖∞ + δ[k]c2 sup
θ∈[−τ ,0)

|u0(θ)|, k ≥ 0.

Proof. For k ≥ 1 and ` ∈ {0, 1, · · · , n− 1}, in the presence of noise, it follows from (5.10)
and the fact that u is off during the first T1 seconds of each period, that

yw(kT + `h) = CeA`hχ[k] + w(kT + `h) + C

∫ `h

0

eA(`h−v)gBd(kT + v − τ)dv,

11Due to the initial condition on the input u, this is only true for k ≥ 1, and of course, the plant will
still be affected by noise over this time frame.
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so using (5.19) we have

χ̃[k] = O−1
h


ω(kT )

ω(kT + h)
...

ω(kT + (n− 1)h)

+O−1
h


0

C
∫ h

0
eA(h−v)gBd(kT + v − τ)dv

...

C
∫ (n−1)h

0
eA((n−1)h−v)gBd(kT + v − τ)dv

 .
Hence,

‖χ̃[k]‖ ≤ ‖O−1
h ‖ × ‖w‖∞ + ‖O−1

h ‖ × ‖C‖(n− 1)he‖A‖(n−1)hg‖B‖ × ‖d‖∞
≤ ‖O−1

h ‖
(
1 + ‖C‖(n− 1)he‖A‖(n−1)hg‖B‖

)︸ ︷︷ ︸
=:c2

‖w‖∞.

Now, consider the case of k = 0 with ` ∈ {0, 1, · · · , n−1}. By solving the system equation
(5.10) starting from zero, yw(`h) has an extra term:

yw(`h) = CeA`hχ[0] + w(`h) + C

∫ `h

0

eA(`h−v)gBd(kT + v − τ)dv+

C

∫ −τ+`h

−τ
eA(−τ+`h−v)gBu0(v)dv;

it is easy to check that χ̃[0] is as above but with an extra term of

O−1
h



0

C

∫ −τ+h

−τ
eA(−τ+h−v)gBu0(v)dv

...

C

∫ −τ+(n−1)h

−τ
eA(−τ+(n−1)h−v)gBu0(v)dv


,

whose norm is upper bounded by

‖O−1
h ‖ × ‖C‖τge

‖A‖τ‖B‖︸ ︷︷ ︸
=:c2

sup
θ∈[−τ ,0)

|u0(θ)|,

which completes the proof.
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5.3.5 The Control Signal

In the case of perfect information, our ideal control law is clearly ν[k] = F (τ, g)χ[k].
However, in order to estimate τ and g, we require an additional probing signal, yielding

ν[k] = F (τ, g)χ[k] + ρsgn(F (τ, g)χ[k])‖χ[k]‖. (5.20)

We will now show that this stabilizes the plant if ρ > 0 is small enough;12 in the following
sub-sections, we will make (5.20) ‘adaptive’ by replacing τ and g by on-line estimates.

Applying (5.20) to (5.15), with u0(θ) = 0 for θ ∈ [−τ , 0), d = 0 and w = 0, results in
the following closed loop system:

χ[k + 1] = (Ad +Bd(τ, g)F (τ, g))χ[k] + ρBd(τ, g)sgn(F (τ, g)χ[k])‖χ[k]‖. (5.21)

We want to find the values of ρ > 0 so that for every τ ∈ [0, τ ] and g ∈ [1, g] the origin of
(5.21) is a globally exponentially stable equilibrium point13. To do so, first let P (τ, g) be
the unique positive definite solution to the Lyapunov equation

(Ad +Bd(τ, g)F (τ, g))
′
P (τ, g)(Ad +Bd(τ, g)F (τ, g))− P (τ, g) = −I. (5.22)

Proposition 5.2. There exists positive constants c3 and c4 such that for every τ ∈ [0, τ ],
g ∈ [1, g] and χ ∈ Rn we have that

(i) c3I ≤ P (τ, g) ≤ c4I

(ii) c3 ≤ ‖P (τ, g)‖ ≤ c4

(iii) c3‖χ‖2 ≤ χ
′
P (τ, g)χ ≤ c4‖χ‖2.

Proof. It is well known that the discrete-time Lyapunov equation can be rewritten as a
linear equation [27], and that P (τ, g) is a continuous function of Bd(τ, g)F (τ, g); since
the latter is a continuous function of τ and g, it follows that P (τ, g) is also a continuous
function of τ and g, so λmin[P (τ, g)] and λmax[P (τ, g)] are as well. Since [0, τ ] × [1, g] is a

12We choose ρ > 0 so that both terms on the RHS of (5.20) have the same sign; this means, in particular,
that ν[k] = 0 iff χ[k] = 0.

13Although the end-goal of the paper is to prove that the adaptive version of (5.20) stabilizes G, this
related notion of stability is sufficient for the preliminary analysis.
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compact set and P (τ, g) is positive definite (so λmin[P (τ, g)] > 0) for every admissible τ
and g, if we define

γ
1

:= inf
g∈[1,g],τ∈[0,τ ]

λmin[P (τ, g)] > 0 and γ1 := sup
g∈[1,g],τ∈[0,τ ]

λmax[P (τ, g)] <∞,

then it follows that
γ

1
I ≤ P (τ, g) ≤ γ1I.

Since this says that the Euclidean norm of P (τ, g) lies in the interval [γ
1
, γ1] (which does

not include zero), using the fact that all norms on Rn×n are compatible, we conclude that
there exists strictly positive constants γ

2
and γ2 so that for all τ ∈ [0, τ ] and g ∈ [1, g], we

have
γ

2
≤ ‖P (τ, g)‖ ≤ γ2.

Last of all, observe that for all χ ∈ Rn, we have

γ
1
χ
′
χ ≤ χ

′
P (τ, g)χ ≤ γ1χ

′
χ,

and since
‖χ‖2 ≤ χ

′
χ ≤ n‖χ‖2,

it follows that
γ

1
‖χ‖2 ≤ χ

′
P (τ, g)χ ≤ nγ1‖χ‖2.

Defining
c3 := min{γ

1
, γ

2
}

and
c4 := max{nγ1, γ2}

completes the proof.

We would also like to bound ‖Ad+Bd(τ, g)F (τ, g)‖; since Bd(τ, g) ∈ B and F (τ, g) ∈ F
and B and F are compact sets, it follows that

a := sup
τ∈[0,τ ],g∈[1,g]

‖Ad +Bd(τ, g)F (τ, g)‖ <∞. (5.23)

With these constants, we can define

ρ :=
−nc4a+

√
nc4(nc4a

2 + 1)

nc4b
, (5.24)

which leads to the following lemma:
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Lemma 5.3. If ρ ∈ (0, ρ), then for all τ ∈ [0, τ ] and g ∈ [1, g], the origin is a globally
exponentially stable equilibrium point of (5.21).

Remark 3. The condition on ρ is equivalent to requiring that ρ > 0 and satisfies

nc4ρ
2b

2
+ 2nc4ρba < 1. (5.25)

Proof. Fix τ ∈ [0, τ ] and g ∈ [1, g]; for convenience, we will drop all (τ, g) arguments.

Let
V (χ[k]) = χ

′
[k]P (τ, g)χ[k],

then

∆V (χ[k]) = V (χ[k + 1])− V (χ[k])

= χ
′
[k]
(

(Ad +BdF )
′
P (Ad +BdF )− P

)
χ[k]+

ρ2sgn(Fχ[k])2B
′

dPBd‖χ[k]‖2 + 2ρB
′

dP (Ad +BdF )χ[k]sgn(Fχ[k])‖χ[k]‖.

Using the solution to the Lyapunov equation (5.22), using Proposition 5.2 to upper bound
‖P‖, (5.23) to upper bound ‖Ad +BdF‖, and (5.18) to upper bound ‖Bd‖, it follows that

∆V (χ[k]) ≤ (−1 + nc4ρ
2b

2
+ 2nc4ρba)‖χ[k]‖2,

so clearly if ρ > 0 is such that nc4ρ
2b

2
+ 2nc4ρba < 1, then the origin is a globally

exponentially stable equilibrium point of (5.21); using the quadratic formula and recalling
that ρ > 0, it follows that we require

ρ ∈

(
0,
−nc4a+

√
nc4(nc4a

2 + 1)

nc4b

)
which is exactly equivalent to ρ ∈ (0, ρ).

We can now give our actual control law; it has the same general form as (5.20) except
we replace the state with its estimate and we replace F (τ, g) with an admissible function
F̂ [k].14 So, with ρ ∈ (0, ρ) the control law is given by

ν[k] = F̂ [k]χ̂[k] + ρsgn(F̂ [k]χ̂[k])‖χ̂[k]‖∞
u(t) = (Hν)(t) t ∈ [kT, (k + 1)T ), k ≥ 0.

}
(5.26)

14We will make the choice of F̂ precise after we define the gain and delay estimators.
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Observe that using (5.18) to bound ‖F̂ [k]‖, we see that

|ν[k]| ∈ [ρ‖χ̂[k]‖, (ρ+ f)‖χ̂[k]‖], k ≥ 0; (5.27)

this means, in particular, that ν[k] = 0 if and only if χ̂[k] = 0. Furthermore, using Lemma
5.2 to bound ‖χ̂[k]‖, we can further refine (5.27), at least for k ≥ 1:

|ν[k]| ∈ [ρ(‖χ[k]‖ − c2‖w‖∞), (ρ+ f)(‖χ[k]‖+ c2‖w‖∞)], k ≥ 1. (5.28)

5.3.6 Estimating τ with τ̂

To find τ̂ [k], we examine the update equation for the first two states (χ1 and χ2), and solve
them for τ . To do so, we partition

B =


b1

b2
...
bn

 ,
define

b̃1 := b1p
−1
1 (1− e−p1T2)(e−p1T1),

b̃2 := b2p
−1
2 (1− e−p2T2)(e−p2T1),

recall that χ[k] = χ̂[k]− χ̃[k] and then write the first two state equations for k ≥ 2 as15

e−p1T (χ̂1[k]− χ̃1[k]− ζ1[k − 1]) = χ̂1[k − 1]− χ̃1[k − 1] + b̃1ge
−p1τν[k − 1], (5.29)

e−p2T (χ̂2[k]− χ̃2[k]− ζ2[k − 1]) = χ̂2[k − 1]− χ̃2[k − 1] + b̃2ge
−p2τν[k − 1]. (5.30)

If ν[k − 1] 6= 0, we divide (5.29) by (5.30), yielding an equation for τ which is valid for
k ≥ 2:16

τ =
1

p2 − p1

ln

(
b̃2(e−p1T (χ̂1[k]− χ̃1[k]− ζ1[k − 1])− χ̂1[k − 1] + χ̃1[k − 1])

b̃1(e−p2T (χ̂2[k]− χ̃2[k]− ζ2[k − 1])− χ̂2[k − 1] + χ̃2[k − 1])

)
. (5.31)

15We restrict k ≥ 2 to avoid the extra term in (5.15) that arises from the plant initial conditions.
16This restriction ensures that the denominator of the logarithm term in the equation which follows is

non-zero as well.
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Since we do not know χ̃ or ζ, we set these terms to zero in the estimation algorithm; let
χ̂[−1] ∈ Rn be arbitrary and then define τ̌ [k] for k ≥ 0 as follows17:

τ̌ [k] :=

{
1

p2−p1 ln
(∣∣∣ b̃2(e−p1T χ̂1[k]−χ̂1[k−1])

b̃1(e−p2T χ̂2[k]−χ̂2[k−1])

∣∣∣) if e−p2T χ̂2[k]− χ̂2[k − 1] 6= 0

τ if e−p2T χ̂2[k]− χ̂2[k − 1] = 0,
(5.32)

which we then saturate into the range of possible delays:

τ̂ [k] =


0 τ̌ [k] < 0
τ̌ [k] τ̌ [k] ∈ [0, τ ]
τ τ̌ [k] > τ.

(5.33)

Defining the delay estimate error as τ̃ [k] := τ̂ [k]−τ , we can now compare τ given by (5.31)
and τ̂ [k] given by (5.32) and (5.33), which we do in the following Lemma.

Lemma 5.4. There exist constants c5 > c2 and c6 > 0 so that for every g ∈ [1, g],
τ ∈ [0, τ ], and admissible F̂ , when the control law (5.26) is applied to the plant (5.10),
the closed loop system has the following property: for every k ≥ 2,

‖χ[k − 1]‖ > c5‖w‖∞ ⇒ |τ̂ [k]− τ | = |τ̃ [k]| ≤ c6‖w‖∞
‖χ[k − 1]‖

.

Remark 4. If w = 0, then Lemma 5.4 says that if the plant state at time (k − 1)T is
non-zero, then the estimate τ̂ [k] of τ is exact.

Remark 5. If the noise is non-zero, i.e. ‖w‖∞ 6= 0, then it will be useful to normalize
signals by the noise: for a generic signal f we define

f :=
f

‖w‖∞
.

Remark 6. Note that the only property of F̂ used in Lemma 5.4 is that its range lies in
F .

Proof. Let τ ∈ [0, τ ], g ∈ [1, g], w ∈ PC∞ and k ≥ 2 be arbitrary.

17We use the magnitude inside the logarithm term to ensure that τ̌ [k] ∈ R when the system is affected
by noise.
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We first consider the case of w = 0; it follows immediately that ζ = 0. From Lemma
5.2, it is clear that

χ̂[k − 1] = χ[k − 1]

and
χ̃[k − 1] = 0;

hence, if
χ[k − 1] 6= 0,

then
ν[k − 1] 6= 0

and it follows from (5.29) that

e−p2T χ̂2[k]− χ̂2[k − 1] 6= 0.

As a result, the right hand side of (5.32) is exactly equal to the right hand side of (5.31),
so,

|τ̌ [k]− τ | = |τ̂ [k]− τ | = 0.

Now we consider the case of w 6= 0. Since

|τ̌ [k]− τ | ≥ |τ̂ [k]− τ |,

we will compare τ̌ [k] to τ . To do so, we start by showing that if ‖χ[k−1]‖ is large enough,
then

e−p2T χ̂2[k]− χ̂2[k − 1] 6= 0.18

To this end, we re-write (5.30) as

e−p2T χ̂2[k]− χ̂2[k− 1] = e−p2T χ̃2[k] + e−p2T ζ2[k− 1]− χ̃2[k− 1] + b̃2ge
−p2τν[k− 1], (5.34)

and then use Lemma 5.2 to bound ‖χ̃[k]‖ and ‖χ̃[k − 1]‖ and (5.17) to bound |ζ2[k − 1]|,
yielding∣∣e−p2T χ̂2[k]− χ̂2[k − 1]

∣∣ ≥ −e−p2T (c2 + cζ)‖w‖∞ − c2‖w‖∞ + |b̃2|e−|p2|τ |ν[k − 1]|. (5.35)

If we substitute the lower bound on |ν[k−1]| given in (5.28) into equation (5.35), we obtain∣∣e−p2Tχ̂2[k]− χ̂2[k − 1]
∣∣ ≥ (−e−p2T (c2 + cζ)− c2)‖w‖∞ + |b̃2|e−|p2|τρ(‖χ[k− 1]‖ − c2‖w‖∞).

(5.36)

18We do this so that τ̌ [k] is given by the top line of (5.32).
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It is easy to check that if

‖χ[k − 1]‖ >
[(
e−p2T (c2 + cζ) + c2

)
|b̃−1

2 |e|p2|τρ−1 + c2

]
︸ ︷︷ ︸

=:γ1

‖w‖∞,

then the right hand side of (5.36) is positive, which means that

e−p2T χ̂2[k]− χ̂2[k − 1] 6= 0.

Henceforth suppose that k ≥ 2 is such that ‖χ[k − 1]‖ > γ1‖w‖∞; therefore,

τ̌ [k] =
1

p2 − p1

ln

(∣∣∣∣∣ b̃2(e−p1T χ̂1[k]− χ̂1[k − 1])

b̃1(e−p2T χ̂2[k]− χ̂2[k − 1])

∣∣∣∣∣
)
. (5.37)

We now normalize all the signals in (5.31) and (5.37) by ‖w‖∞, but we first define

q1[k] := −e−p1T χ̃1[k] + χ̃1[k − 1]− e−p1Tζ1[k − 1],

q2[k] := −e−p2T χ̃2[k] + χ̃2[k − 1]− e−p2Tζ2[k − 1],

and note that we can use Lemma 5.2 to bound ‖χ̃[k]‖ and (5.17) to bound |ζi| yielding:

|qi[k]| ≤ c2e
(max{|p1|,|p2|}T ) + c2 + cζe

(max{|p1|,|p2|}T )︸ ︷︷ ︸
=:γ2

, i = 1, 2. (5.38)

We now normalize, and after some minor re-arranging we can re-write (5.31) as

e(p2−p1)τ =

(
b̃2

b̃1

)(
e−p1T χ̂1[k]− χ̂1[k − 1] + q1[k]

e−p2T χ̂2[k]− χ̂2[k − 1] + q2[k]

)
(5.39)

and (5.37) as

e(p2−p1)τ̌ [k] =

∣∣∣∣∣
(
b̃2

b̃1

)(
e−p1T χ̂1[k]− χ̂1[k − 1]

e−p2T χ̂2[k]− χ̂2[k − 1]

)∣∣∣∣∣ . (5.40)

Using (5.39) and (5.40), we can compare e(p2−p1)τ and e(p2−p1)τ̌ [k] with the knowledge that
if these two quantities are ‘close’, then τ and τ̌ [k] will also be ‘close’ (to be formalized at
the end of the proof); since e(p1−p2)τ > 0, it follows that19

∣∣e(p2−p1)τ̌ [k] − e(p2−p1)τ
∣∣ ≤ ∣∣∣∣e−p1T χ̂1[k]− χ̂1[k − 1]

e−p2T χ̂2[k]− χ̂2[k − 1]
− e−p1T χ̂1[k]− χ̂1[k − 1] + q1[k]

e−p2T χ̂2[k]− χ̂2[k − 1] + q2[k]

∣∣∣∣
∣∣∣∣∣ b̃2

b̃1

∣∣∣∣∣ ,
19Here we use the fact that that if γ3 > 0 and γ4 ∈ R, then ||γ4| − γ3| ≤ |γ4 − γ3|.
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so defining

f1[k] :=
(
e−p1T χ̂1[k]− χ̂1[k − 1]

)
q2[k]−

(
e−p2T χ̂2[k]− χ̂2[k − 1]

)
q1[k] (5.41)

f2[k] :=
(
e−p2T χ̂2[k]− χ̂2[k − 1]

) (
e−p2T χ̂2[k]− χ̂2[k − 1] + q2[k]

)
(5.42)

it follows that ∣∣∣∣∣ b̃1

b̃2

(
e(p2−p1)τ̌ [k] − e(p2−p1)τ

)∣∣∣∣∣ ≤ |f1[k]|
|f2[k]|

. (5.43)

We now upper and lower bound f1 and f2 respectively. Substituting (5.34) into f2 given
by (5.42) yields

f2[k] =
(
−q2[k − 1] + ge−p2τ b̃2ν[k − 1]

)(
ge−p2τ b̃2ν[k − 1]

)
.

Hence, using (5.38) to bound |q2[k]|, and (5.28) to lower bound ν[k − 1], it follows that

|f2[k]| ≥
[
|b̃2|e−|p2|τρ(‖χ[k − 1]‖ − c2)− γ2

] ∣∣∣|b̃2|e−|p2|τρ(‖χ[k − 1]‖ − c2)
∣∣∣ , (5.44)

so clearly if
‖χ[k − 1‖ > γ2|b̃−1

2 |e|p2|τρ−1 + c2︸ ︷︷ ︸
=:γ5>c2

,

then |f2[k]| > 0. Henceforth, suppose that k ≥ 2 is such that

‖χ[k − 1]‖ ≥ max{γ1, γ5};

then there exists constants γ6 > 0, γ7, γ8 ∈ R, which are independent of τ and g, such
that

|f2[k]| ≥ γ6‖χ[k − 1]‖2 + γ7‖χ[k − 1]‖+ γ8. (5.45)

We now turn to f1 given by (5.41). Using

e−p1T χ̂1[k]− χ̂1[k− 1] = e−p1T χ̃1[k] + e−p1T ζ1[k− 1]− χ̃1[k− 1] + b̃1ge
−p1τν[k− 1], (5.46)

its equivalent for the second state (5.34), and (5.28) to upper bound ν[k − 1], it follows
that

f1[k] = (b̃1ge
−p1τν[k − 1] + q1[k])q2[k]− (b̃2ge

−p2τν[k − 1] + q2[k])q1[k]

= (b̃1ge
−p1τν[k − 1])(q2[k])− (b̃2ge

−p2τν[k − 1])(q1[k])

⇒ |f1[k]| ≤ γ2g
(
|b̃1|e|p1|τ + |b̃2|e|p2|τ

)
(f + ρ)︸ ︷︷ ︸

=:γ9

(‖χ[k − 1]‖+ c2)

⇒ |f1[k]| ≤ γ9‖χ[k − 1]‖+ c4γ9︸︷︷︸
=:γ10

. (5.47)
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Combining (5.43), (5.45) and (5.47) we have that∣∣∣∣∣ b̃1

b̃2

(
e(p2−p1)τ̌ [k] − e(p2−p1)τ

)∣∣∣∣∣ ≤ |f1[k]|
|f2[k]|

≤ γ9‖χ[k − 1]‖+ γ10

γ6‖χ[k − 1]‖2 + γ7‖χ[k − 1]‖+ γ8

.

We now need to convert the bound given above to one on |τ̂ k]− τ |. First, note that∣∣e(p2−p1)τ̂ [k] − e(p2−p1)τ
∣∣ ≤ ∣∣e(p2−p1)τ̌ [k] − e(p2−p1)τ

∣∣ ;
using the Fundamental Theorem of Calculus, we have that∣∣e(p2−p1)τ̂ [k] − e(p2−p1)τ

∣∣ ≥ |τ̂ [k]− τ | × min
θ∈[0,τ ]

[
|p2 − p1|e(p2−p1)θ

]
≥ |τ̂ [k]− τ | × |p2 − p1|e−|p2−p1|τ︸ ︷︷ ︸

=:γ11

,

so clearly

|τ̂ [k]− τ | ≤

∣∣∣∣∣ b̃2

b̃1γ11

∣∣∣∣∣ γ9‖χ[k − 1]‖+ γ10

γ6‖χ[k − 1]‖2 + γ7‖χ[k − 1]‖+ γ8

.

Since the right hand side times ‖χ[k−1]‖ tends to γ9
γ6
> 0 as ‖χ[k−1]‖ → ∞, we conclude

that there exists constants c6 > 0 and c5 > γ5 > c2, which are independent of τ and g, so
that

|τ̂ [k]− τ | ≤ c6

‖χ[k − 1]‖
=

c6‖w‖∞
‖χ[k − 1]‖

if ‖χ[k − 1]‖ > c5‖w‖∞.

5.3.7 Estimating g with ĝ

We perform a similar analysis to estimate g with ĝ. Using (5.30) and assuming that
ν[k − 1] 6= 0, we solve for g:

g =
e−p2T (χ̂2[k]− χ̃2[k]− ζ2[k − 1])− χ̂2[k − 1] + χ̃2[k − 1]

b̃2e−p2τν[k − 1]
, k ≥ 2. (5.48)
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Since we do not know χ̃, ζ or τ , in order to estimate g we set the first two terms to zero
and replace τ with τ̂ ; we let ν[−1] ∈ R be arbitrary, and recalling that χ[−1] ∈ Rn is
arbitrary from the delay estimator, we define for k ≥ 0:

ǧ[k] :=

{
e−p2T χ̂2[k]−χ̂2[k−1]

b̃2e−p2τ̂ [k]ν[k−1]
if ν[k − 1] 6= 0

g if ν[k − 1] = 0,
(5.49)

which we then saturate into the range of possible gains, yielding

ĝ[k] =


1 ǧ[k] < 1
ǧ[k] ǧ[k] ∈ [1, g]
g ǧ[k] > g.

(5.50)

Defining the gain estimate error as g̃[k] := ĝ[k]− g, we can now compare g given by (5.48)
and ĝ[k] given by (5.49) and (5.50), which we do in the following Lemma.

Lemma 5.5. There exist constants c7 > c5 > c2 and c8 > 0 so that for every g ∈ [1, g],
τ ∈ [0, τ ], and admissible F̂ , when the control law (5.26) is applied to the plant (5.10),
the closed loop system has the following property: for every k ≥ 2,

‖χ[k − 1]‖ > c7‖w‖∞ ⇒ |ĝ[k]− g| = |g̃[k]| ≤ c8‖w‖∞
‖χ[k − 1]‖

.

Remark 7. If w = 0, then Lemma 5.5 says that if the plant state at time (k − 1)T is
non-zero, then the estimate ĝ[k] of g is exact.

Remark 8. Note that the only property of F̂ used in Lemma 5.5 is that its range lies in
F .

Proof. Let τ ∈ [0, τ ], g ∈ [1, g], w ∈ PC∞ and k ≥ 2 be arbitrary.

We first consider the case of w = 0; it follows immediately that ζ = 0. From Lemma
5.2 it is clear that

χ̂[k − 1] = χ[k − 1]

and
χ̃[k − 1] = 0;

hence, if
χ[k − 1] 6= 0,
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from (5.28) it is clear that
ν[k − 1] 6= 0,

and as a result, the right hand side of (5.49) is exactly equal to the right hand side of
(5.48), so

|ǧ[k]− g| = |ĝ[k]− g| = 0.

Now we consider the case of w 6= 0. Since

|ĝ[k]− g| ≤ |ǧ[k]− g|,
if we can show the result for ǧ[k], it will hold for ĝ[k] as well. If

‖χ[k − 1]‖ > c2‖w‖∞,
then from (5.28) it is clear that

ν[k − 1] 6= 0,

so ǧ[k] is given by the top line of (5.49) and g is given by (5.48); henceforth, we shall
assume that

‖χ[k − 1]‖ > c2‖w‖∞.
We now normalize by ‖w‖∞, and re-write (5.48) as

g =
e−p2T (χ̂2[k]− χ̃2[k]− ζ2[k − 1])− χ̂2[k − 1] + χ̃2[k − 1]

b̃2e−p2τν[k − 1]
(5.51)

and (5.49) as

ǧ[k] =
e−p2T χ̂2[k]− χ̂2[k − 1]

b̃2e−p2τ̂ [k]ν[k − 1]
. (5.52)

We now compare (5.51) and (5.52), which, with some minor re-arranging becomes

|ǧ[k]− g| =

∣∣∣∣∣
(
e−p2T χ̂2[k]− χ̂2[k − 1]

) (
e−p2τ − e−p2τ̂ [k]

)
b̃2e−p2τ̂ [k]e−p2τν[k − 1]

−

e−p2τ̂ [k]
(
χ̃2[k − 1]− e−p2T (χ̃2[k] + ζ2[k − 1])

)
b̃2e−p2τ̂ [k]e−p2τν[k − 1]

∣∣∣∣∣ . (5.53)

Next, note that the state equation (5.30) can be used to remove χ̂ from (5.53):

|ǧ[k]− g| =

∣∣∣∣∣∣
(e−p2τ − e−p2τ̂ [k])

(
e−p2T (χ̃2[k] + ζ2[k − 1])− χ̃2[k − 1] + b̃2ge

−p2τν[k − 1]
)

b̃2ge−p2(τ+τ̂ [k])ν[k − 1]
−

e−p2τ̂ [k]
(
χ̃2[k − 1]− e−p2T (χ̃2[k] + ζ2[k − 1])

)
b̃2ge−p2(τ+τ̂ [k])ν[k − 1]

∣∣∣∣∣ .
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Using Lemma 5.2 to bound χ̃, and using (5.28) to bound |ν[k − 1]|, we have that

|ǧ[k]− g| ≤

∣∣∣∣∣∣
(e−p2τ − e−p2τ̂ [k])

(
e−p2T (c2 + cζ) + c2 + |b̃2|ge|p2|τ (ρ+ f)(‖χ[k − 1]‖+ c2)

)
|b̃2|e−2|p2|τρ(‖χ[k − 1]‖ − c2)

∣∣∣∣∣∣+∣∣∣∣ e|p2|τ (e−p2T (c2 + cζ) + c2)

|b̃2|e−2|p2|τρ(‖χ[k − 1]‖ − c2)

∣∣∣∣ . (5.54)

Clearly, there exist constants c7 > c5 > c2 and γ1 > 0 such that if ‖χ[k − 1]‖ > c7,
20 we

have

|ǧ[k]− g| ≤
∣∣e−p2τ − e−p2τ̂ [k]

∣∣ ( γ1

‖χ[k − 1]‖ − c2

+ γ1

)
+

γ1

‖χ[k − 1]‖ − c2

.

But ∣∣e−p2τ − e−p2τ̂ [k]
∣∣ ≤ e|p2|τ |τ̂ [k]− τ |,

so if ‖χ[k − 1]‖ > c7, we have

|ǧ[k]− g| ≤ e|p2|τ
(

γ1

‖χ[k − 1]‖ − c2

+ γ1

)
|τ̂ [k]− τ |+ γ1

‖χ[k − 1]‖ − c2

;

using Lemma 5.4 to bound |τ̂ [k]− τ |, and recalling that |ĝ[k]− g| ≤ |ǧ[k]− g| yields that if

‖χ[k − 1]‖ > c7

then

|ĝ[k]− g| ≤ e|p2|τc6γ1

(‖χ[k − 1]‖ − c2)‖χ[k − 1]‖
+

e|p2|τc6γ1

‖χ[k − 1]‖
+

γ1

‖χ[k − 1]‖ − c2

.

Hence, there exists a constant c8 > 0 so that if ‖χ[k − 1]‖ > c7 > c2, then

|ĝ[k]− g| ≤ c8

‖χ[k − 1]‖
=

c8‖w‖∞
‖χ[k − 1]‖

.

20We restrict c7 > c5 so that we can apply the result of Lemma 5.4 later in the proof.
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5.3.8 Estimating F with F̂ [k]

To find F̂ [k], we use the estimates τ̂ [k] and ĝ[k] and a simple two step procedure. At each
time step, we start by finding our estimate, B̂d[k], of Bd:

B̂d[k] := ĝ[k]eA(T−T1)e−Aτ̂ [k]

∫ T2

0

e−AvBdv, (5.55)

and then, since B̂d[k] ∈ B, we find the unique choice of F̂ [k] ∈ F such that the eigenvalues
of

Ad + B̂d[k]F̂ [k]

are at the zeros of β[z].

Remark 9. While any polynomial β[z] with all zeros inside the open unit disk is sufficient
for us to prove stability, the performance of the system can be improved by the choice of
pole locations. One possible method is as follows:

• Given suitably chosen weighting matrices Q and R, let FLQR be the LQR optimal
feedback gain for

χ[k + 1] = Adχ[k] +Bd(0, 1)ν[k].

• Set β[z] = det (zI − (Ad −Bd(0, 1)FLQR))−1.

It will be beneficial when proving the result to define a feedback error; recalling that
F (τ, g) ∈ F is the unique element of F so that the characteristic polynomial of

Ad +Bd(τ, g)F (τ, g)

are at the zeros of β[z], we define the feedback gain error by

F̃ [k] := F̂ [k]− F (τ, g).

5.3.9 Summary of Proposed Controller K

A description of the controller K is given by the following algorithm, with each step
corresponding to the same numbered block in Figure 5.2. Our controller runs for k ∈ Z+

and has an arbitrary initial condition χ̂[−1] ∈ Rn and ν[−1] ∈ R:

1. For k ∈ Z+, the state x(kT ) = χ[k] is estimated using the sampler (5.14) and (5.19):

χ̂[k] = O−1
h Y(kT ). (5.56)
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2. Using the state estimate χ̂[k], we find τ̌ [k] using (5.32):

τ̌ [k] :=

{
1

p2−p1 ln
(∣∣∣ b̃2(e−p1T χ̂1[k]−χ̂1[k−1])

b̃1(e−p2T χ̂2[k]−χ̂2[k−1])

∣∣∣) if e−p2T χ̂2[k]− χ̂2[k − 1] 6= 0

τ if e−p2T χ̂2[k]− χ̂2[k − 1] = 0,
(5.57)

and saturate it to find τ̂ [k] using (5.33):

τ̂ [k] =


0 τ̌ [k] < 0
τ̌ [k] τ̌ [k] ∈ [0, τ ]
τ τ̌ [k] > τ.

(5.58)

3. Using the state estimate χ̂[k] and τ̂ [k], we find g̃[k] using (5.49):

ǧ[k] :=


e−p2T χ̂2[k]− χ̂2[k − 1]

b̃2e−p2τ̂ [k]ν[k − 1]
if ν[k − 1] 6= 0

g if ν[k − 1] = 0,

(5.59)

and saturate it to find ĝ[k] using (5.50)

ĝ[k] =


1 ǧ[k] < 1
ǧ[k] ǧ[k] ∈ [1, g]
g ǧ[k] > g.

(5.60)

4. Using τ̂ [k] and ĝ[k], we find B̂d[k] using (5.55):

B̂d[k] := ĝ[k]eA(T−T1)e−Aτ̂ [k]

∫ T2

0

e−AvBdv, (5.61)

and then using B̂d[k], we find the unique choice of F̂ [k] such that the eigenvalues of
Ad + B̂d[k]F̂ [k] are at the zeros of β[z].

5. Using F̂ [k] and χ̂[k], we apply the control signal (5.26):

ν[k] = F̂ [k]χ̂[k] + ρsgn(F̂ [k]χ̂[k])‖χ̂[k]‖∞
u(t) = (Hν)(t) t ∈ [kT, (k + 1)T ), k ≥ 0.

}
(5.62)

Our controller K is formally given by the sampler (5.14), the state estimator (5.56),
the delay estimator (5.57) and (5.58), the gain estimator (5.59) and (5.60), the estimate
of Bd given by (5.61) and the corresponding F̂ [k], the control signal (5.62) and the hold
(5.13)
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5.4 The Main Result

Theorem 5.1.

(i) K stabilizes G.
(ii) There exist constants c > 0 and λ < 0 so that when the controller K is applied to

the plant (5.10), for every g ∈ [1, g], τ ∈ [0, τ ], plant initial conditions x0 ∈ Rn

and u0(θ) satisfying supθ∈[−τ ,0) |u0| < ∞, controller initial conditions χ̂[−1] ∈ Rn

and ν[−1] ∈ R and for every w ∈ PC∞, we have that

(a) τ̂ , ĝ, B̂d, F̂ and χ̂ ∈ `∞.21

(b) |ν[k]| ≤ ceλkT
(
‖x0‖+ supθ∈[−τ ,0) |u0(θ)|

)
+ c‖w‖∞, k ≥ 0.

(c) ‖x(t)‖ ≤ ceλt
(
‖x0‖+ supθ∈[−τ ,0) |u0(θ)|

)
+ c‖w‖∞, t ≥ 0.

Proof. Let τ ∈ [0, τ ], g ∈ [1, g], x0 ∈ Rn, w ∈ PC∞, χ̂[−1] ∈ Rn, ν[−1] ∈ R and u0(θ) such
that supθ∈[−τ ,0) |u0(θ)| <∞ be arbitrary. We start by proving some intermediary results.

Applying the control signal (5.62) to the discretized plant (5.15), recalling that F̂ [k] =
F̃ [k] + F (τ, g) and that χ̂[k] = χ̃[k] + χ[k], the state of the closed loop system for k ≥ 2 is
given by

χ[k + 1] = Adχ[k] +Bd(τ, g)ν[k] + ζ[k] (5.63)

= (Ad +Bd(τ, g)F (τ, g))χ[k] +Bd(τ, g)F̃ [k]χ[k] +Bd(τ, g)F̂ [k]χ̃[k] + ζ[k]︸ ︷︷ ︸
=:f1[k]

+

ρBd(τ, g)sgn(F̂ [k](χ[k] + χ̃[k])‖χ[k] + χ̃[k]‖︸ ︷︷ ︸
=:f2[k]

. (5.64)

Using the triangle inequality and Lemma 5.2 to bound ‖χ̃[k]‖, it follows that

‖f2[k]‖ ≤ ρb‖χ[k]‖+ ρbc2‖w‖∞. (5.65)

We would also like a similar sort of bound on f1:

Claim 1. There exists positive constants c9 and c10 so that for every k ≥ 2,

‖χ[k − 1]‖ > c9‖w‖∞ ⇒ ‖f1[k]‖ ≤ c10‖w‖∞. (5.66)

21Note that τ̌ and ǧ may not belong to `∞; however both of these signals are intermediary in nature
and are used in the description of K to enhance clarity.
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Proof. Let k ≥ 2 be arbitrary. Taking the norm of f1 and using (5.17) and (5.18) yields

‖f1[k]‖ ≤ b‖F̃ [k]‖‖χ[k]‖+ b‖F̂ [k]‖‖χ̃[k]‖+ cζ‖w‖∞.

From Lemma 5.2, clearly ‖χ̃[k]‖ ≤ c2‖w‖∞, and since F̂ [k] ∈ F , it follows from (5.18) that

‖f1[k]‖ ≤ b‖F̃ [k]‖‖χ[k]‖+ (bfc2 + cζ)︸ ︷︷ ︸
=:γ1

‖w‖∞. (5.67)

To finish proving the result, we need to bound ‖F̃ [k]‖; to do so, we use Lemma 5.1 which
states that

‖F̃ [k]‖ ≤ c1(|τ̃ [k]|+ |g̃[k]|),
and then we use Lemmas 5.4 and 5.5, which state that if

‖χ[k − 1]‖ > c7‖w‖∞,

then

|τ̃ [k]| ≤ c6‖w‖∞
‖χ[k − 1]‖

and

|g̃[k]| ≤ c8‖w‖∞
‖χ[k − 1]‖

.

Hence for ‖χ[k − 1]‖ > c7‖w‖∞ it follows that

‖F̃ [k]‖ ≤ c1(c6 + c8)‖w‖∞
‖χ[k − 1]‖

,

so

‖f1[k]‖ ≤

bc1(c6 + c8)︸ ︷︷ ︸
=:γ2

‖χ[k]‖
‖χ[k − 1]‖

+ γ1

 ‖w‖∞. (5.68)

Taking the norm of both sides of (5.63) (with k replaced by k − 1), and using (5.28) to
upper bound |ν[k − 1]| it follows that

‖χ[k]‖ ≤ (‖Ad‖+ b(ρ+ f))‖χ[k − 1]‖+ (c2b(ρ+ f) + cζ)‖w‖∞; (5.69)

so if ‖χ[k − 1]‖ > c7‖w‖∞, then

‖χ[k]‖
‖χ[k − 1]‖

≤ (‖Ad‖+ b(ρ+ f)) +
(c2b(ρ+ f) + cζ)

c7︸ ︷︷ ︸
=:γ3

,
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so returning to (5.68), we have that if ‖χ[k − 1]‖ > c7‖w‖∞, then

‖f1[k]‖ ≤ (γ2γ3 + γ1)︸ ︷︷ ︸
=:c10

‖w‖∞. (5.70)

Finally, using (5.69), it is clear that if ‖χ[k − 1]‖ ≤ c7‖w‖∞, then

‖χ[k]‖ ≤ ((‖Ad‖+ b(ρ+ f))c7 + c2b(ρ+ f) + cζ)︸ ︷︷ ︸
=:c9

‖w‖∞,

so, if ‖χ[k]‖ > c9‖w‖∞, then ‖χ[k − 1]‖ > c7‖w‖∞, and (5.70) holds.

Recalling that P (τ, g) is the unique positive definite solution to (5.22), we analyze the
Lyapunov function V (χ[k]) := χ

′
[k]P (τ, g)χ[k].

Claim 2. There exists constants c11, δ > 0 and λ1 ∈ [0, 1) so that for all k ≥ 2,

√
V (χ[k + 1]) ≤

{
λ1

√
V (χ[k]) + c11‖w‖∞, if

√
V (χ[k]) > δ‖w‖∞

c11

√
V (χ[k]) + c11‖w‖∞, if

√
V (χ[k]) ≤ δ‖w‖∞

Proof. Let k ≥ 2 be arbitrary. We will drop the τ and g arguments from most terms and
functions going forward to enhance readability.

We start by bounding the growth of
√
V (χ) over a single time step; to do so, we take

the norm of both sides of (5.63) and use (5.28) to upper bound |ν[k]|, yielding:

‖χ[k + 1]‖ ≤
(
‖Ad‖+ b(f + ρ)

)
‖χ[k]‖+

(
bc2(f + ρ) + cζ

)
‖w‖∞. (5.71)

From Proposition 5.2, it is clear that√
V (χ[k])

c4

≤ ‖χ[k]‖ ≤

√
V (χ[k])

c3

,

so√
V (χ[k + 1]) ≤

(√
c4√
c3

(‖Ad‖+ b(f + ρ))

)
︸ ︷︷ ︸

=:γ1

√
V ([χ[k]) +

(√
c4bc2(f + ρ) + cζ

)︸ ︷︷ ︸
=:γ2

‖w‖∞. (5.72)
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Next, we consider
∆V [k] := V [k + 1]− V [k],

yielding:

∆V [k] = χ
′
[k]((Ad +BdF )

′
P (Ad +BdF )− P )χ[k] + f

′

1[k]Pf1[k] + f
′

2[k]Pf2[k]+

+2χ
′
[k](Ad +BdF )

′
Pf1[k] + 2χ

′
[k](Ad +BdF )

′
Pf2[k] + 2f

′

1[k]Pf2[k].

Taking the infinity norm on the right hand side, using Proposition 5.2 to upper bound
‖P‖, and then using the Lyapunov equation (5.22) yields

∆V [k] ≤ −‖χ[k]‖2 + nc4‖f1[k]‖2 + nc4‖f2[k]‖2 + 2nc4‖(Ad +BdF )‖ × ‖χ[k]‖ × ‖f2[k]‖+
2nc4‖f1[k]‖ × ‖f2[k]‖+ 2nc4‖(Ad +BdF )‖ × ‖χ[k]‖ × ‖f1[k]‖. (5.73)

We would like to use the bound on ‖f1[k]‖ from Claim 1; to this end, using Proposition
5.2 it follows that

‖χ[k]‖ ≥
√
V (χ[k])
√
c4

,

so if √
V (χ[k]) >

√
c4c9‖w‖∞

then
‖χ[k]‖ > c9‖w‖∞.

Defining
δ :=

√
c4c9,

henceforth, we restrict √
V (χ[k]) > δ‖w‖∞,

which means that the left hand side of (5.66) holds. Using (5.66) to upper bound ‖f1[k]‖,
the upper bound on ‖f2[k]‖ from (5.65) and the upper bound on ‖Ad +BdF‖ from (5.23),
from (5.73) we obtain

∆V [k] ≤ (−1 + nc4ρ
2b

2
+ 2nc4aρb)‖χ[k]‖2 + (nc4c

2
10 + nc4ρ

2b
2
c2

2 + 2nc4c10ρbc2)‖w‖2
∞+

2(nc4ρ
2b

2
c2 + nc4c10a+ nc4aρbc2 + nc4c10ρb)‖χ[k]‖‖w‖∞; (5.74)

observe that, using (5.25), the weight on ‖χ[k‖2 is negative. To eliminate the cross terms
from (5.74), we note that, for any ε > 0:

(ε‖χ[k]‖ − ε−1‖w‖∞)2 ≥ 0 ⇔ 2‖χ[k]‖‖w‖∞ ≤ ε2‖χ[k]‖2 + ε−2‖w‖2
∞,
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so, returning to (5.74), it follows for any ε > 0 that

∆V [k] ≤
[
−1 + nc4(ρ2b

2
+ 2aρb+ ε2(ρ2b

2
c2 + c10a+ aρbc2 + c10ρb))

]
‖χ[k]‖2+

nc4(c2
10 + ρ2b

2
c2

2 + 2c10ρbc2 + ε−2(ρ2b
2
c2 + c10a+ aρbc2 + c10ρb))‖w‖2

∞.

Recalling from Remark 3 that ρ was chosen so that

nc4(ρ2b
2

+ 2aρb) < 1,

it follows that by choosing ε > 0 sufficiently small, we can define γ3 ∈ (0, 1) and γ4 > 0 so
that

∆V [k] ≤ −γ3‖χ[k]‖2 + γ4‖w‖2
∞. (5.75)

This, in turn, implies that

V (χ[k + 1]) ≤
(

1− γ3

c4

)
V (χ[k]) + γ4‖w‖2

∞.

Hence,√
V (χ[k + 1]) ≤ max{0, 1− γ3

c4

}︸ ︷︷ ︸
=:λ1∈[0,1)

√
V (χ[k]) +

√
γ4‖w‖∞,

√
V (χ[k]) > δ‖w‖∞. (5.76)

Defining
c11 := max {γ1, γ2,

√
γ4}

and combining (5.72) and (5.76) completes the proof.

Claim 3. There exists constants c12 > 0 and λ1 ∈ [0, 1) so that

‖χ[k]‖ ≤ c12λ
k
1

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c12‖w‖∞, k ≥ 0.

Proof. From Claim 2, it is clear that for k ≥ 2:√
V (χ[k + 1]) ≤ λ1

√
V (χ[k]) +

{
c11‖w‖∞, if

√
V (χ[k]) > δ‖w‖∞

(c11 − λ1)
√
V (χ[k]) + c11‖w‖∞, if

√
V (χ[k]) ≤ δ‖w‖∞

≤ λ1

√
V (χ[k]) +

{
c11‖w‖∞, if

√
V (χ[k]) > δ‖w‖∞

[c11δ + c11] ‖w‖∞, if
√
V (χ[k]) ≤ δ‖w‖∞

≤ λ1

√
V (χ[k]) + (c11δ + c11)‖w‖∞, k ≥ 2. (5.77)
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Recursively applying (5.77) and noting that |λ| < 1, yields√
V (χ[k]) ≤ λk−k01

√
V (χ[2]) + (1− λ)−1(c11δ + c11)‖w‖∞ k ≥ 2. (5.78)

From Proposition 5.2, it is clear that

√
c3 ‖χ[k]‖ ≤

√
V (χ[k]) ≤

√
c4‖χ[k]‖,

so (5.78) yields

‖χ[k]‖ ≤ λk−2
1

√
c4

c3︸︷︷︸
=:γ1

‖χ[2]‖+

(
c11δ + c11√
c3(1− λ1)

)
︸ ︷︷ ︸

=:γ2

‖w‖∞, k ≥ 2. (5.79)

Using the discretized state equation (5.15), (5.28) to upper bound |ν[1]|, (5.27) and Lemma
5.2 to upper bound |ν[0]|, (5.16) to upper bound φ, and (5.17) to upper bound ‖ζ‖∞, we
have that

‖χ[2]‖ ≤ (‖Ad‖+ b(ρ+ f))︸ ︷︷ ︸
=:γ3

‖χ[1]‖+ (bc2(ρ+ f) + cζ)︸ ︷︷ ︸
=:γ4

‖w‖∞,

‖χ[1]‖ ≤ γ3‖x0‖+ γ4‖w‖∞ + (bc2(ρ+ f) + cφ)︸ ︷︷ ︸
=:γ5

sup
θ∈[−τ ,0)

|u0(θ)|.

Since λk−2
1 ≤ λ−2

1 for k ≥ 0, it follows from (5.79) that

‖χ[k]‖ ≤ λk−2
1 γ1γ3‖χ[1]‖+ (λ−2

1 γ1γ4 + γ2)‖w‖∞, k ≥ 1

≤ λk1 λ
−2
1 γ1γ

2
3︸ ︷︷ ︸

=:γ6

‖x0‖+ λk1 λ
−2
1 γ1γ3γ5︸ ︷︷ ︸

=:γ7

sup
θ∈[−τ ,0)

|u0(θ)|+

(λ−2
1 γ1γ4(1 + γ3) + γ2)︸ ︷︷ ︸

=:γ8

‖w‖∞, k ≥ 0.

Hence, defining
c12 := max{γ6 + γ7, γ8},

it follows that

‖χ[k]‖ ≤ c12λ
k
1(‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|) + c12‖w‖∞, k ≥ 0.
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We are now in a position to prove (ii), starting with (ii)-(a). Since, for all k ≥ 0, we
have that τ̂ [k] ∈ [0, τ ] and ĝ[k] ∈ [1, g], it follows immediately that τ̂ , ĝ ∈ `∞. Furthermore,
since B̂d[k] ∈ B for all k ∈ Z+, it follows from (5.18) that B̂d ∈ `∞; similarly, since F̂ [k] ∈ F
for all k ∈ Z+, it follows from (5.18) that F̂ ∈ `∞. Finally, from Lemma 5.2, we have for
k ≥ 0 that

‖χ̂[k]‖ ≤ ‖χ[k]‖+ c2‖w‖∞ + δ[k]c2 sup
θ∈[−τ ,0)

|u0(θ)|,

and since Claim 3 implies that χ ∈ `∞, it follows that χ̂ ∈ `∞, so we conclude that (ii)-(a)
holds.

We now consider (ii)-(b) and (c). We start by bounding the control signal ν; from
(5.28) we have that

|ν[k]| ≤ (ρ+ f)︸ ︷︷ ︸
=:γ1

‖x(kT )‖+ c2(ρ+ f)︸ ︷︷ ︸
=:γ2

‖w‖∞, k ≥ 1,

and using (5.27) and Lemma 5.2, it follows that

|ν[0]| ≤ γ1‖x(kT )‖+ γ2‖w‖∞ + γ1c2 sup
θ∈[−τ ,0)

|u0(θ)|,

so
|ν[k]| ≤ γ1‖x(kT )‖+ γ2‖w‖∞ + δ[k]γ1c2 sup

θ∈[−τ ,0)

|u0(θ)|, k ≥ 0.

Using Claim 3 to bound ‖x(kT )‖ and observing that δ[k] ≤ λk1 for k ≥ 0, we obtain

|ν[k]| ≤ c12γ1λ
k
1

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (γ1c12 + γ2)︸ ︷︷ ︸

=:γ2

‖w‖∞ + λk1γ1c2 sup
θ∈[−τ ,0)

|u0(θ)|

for k ≥ 0. So (ii)-(b) follows if we set

γ1 := γ1(c12 + c2)

and

λ :=
1

T
ln(λ1),

we have that

|ν[k]| ≤ γ1λ
k
1

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ γ2‖w‖∞ (5.80)
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Now we turn to bounding the plant state. While Claim 3 provides a bound on ‖x(kT )‖,
we need a bound on the inter-sample behaviour. Solving (5.10) yields

x(t) = eA(t−kT )x(kT ) +

∫ t

kT

eA(t−θ)B[u(θ − τ) + d(θ − τ)]dθ, t ∈ [kT, kT + T ),

which implies that

‖x(t)‖ ≤ e‖A‖T‖x(kT )‖+ Te‖A‖T‖B‖ sup
θ∈[kT,KT+T )

(|u(θ − τ)|+ |d(θ − τ)|), t ∈ [kT, kT + T ).

By the definition of w, we have for all k ≥ 0 that supθ∈[kT,KT+T ) |d(θ − τ)| ≤ ‖w‖∞, and
clearly,

sup
θ∈[kT,KT+T )

|u(θ − τ)| ≤ |ν[k]|+ δ[k] sup
θ∈[−τ ,0)

|u0(θ)|,

so using Claim 3, (5.80), and noting that δ[k] ≤ λk1 for k ≥ 0, we have that there exists
positive constants γ3 and γ4 so that

‖x(t)‖ ≤ γ3e
λkT

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ γ4‖w‖∞, t ∈ [kT,KT + T ), k ≥ 0,

so it follows immediately that

‖x(t)‖ ≤ γ3e
−λT︸ ︷︷ ︸

=:γ3

e−λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ γ4‖w‖∞, t ≥ 0. (5.81)

Defining
c := max {γ1, γ2, γ3, γ4}

and using (5.80) and (5.81) proves (ii)-(b) and (c) respectively.

Finally, part (i) follows immediately from parts (ii)-(b) and (ii)-(c).

Using the results of Theorem 5.1, we can show that the controller K is both robust to
some plant uncertainty and that it can tolerate infrequent but possibly persistent jumps
in the unknown gain and delay, which we do in the following two sub-sections.
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5.4.1 Robustness to Plant Uncertainty

We will now show that the controller K is robust to small plant uncertainties. In order to
set up our plant uncertainty model, we first note that since the nominal plant G0 is finite
dimensional and linear that there exists stable transfer functions22 M0, N0, X0 and Y0 such
that

G0 = N0M
−1
0 = M−1

0 N0 and N0X0 +M0Y0 = 1.

Using this co-prime factorization, our (quite general) uncertainty set on the nominal plant
is given by

G0(δN , δM) :=
{

(N0 + ∆N)(M0 + ∆M)−1 : ‖∆N‖ ≤ δN , ‖∆M‖ ≤ δM
}
,

resulting in an overall uncertainty set

G(δN , δM) :=
{
ge−sτG(s) : τ ∈ [0, τ ], g ∈ [1, g], G ∈ G0(δN , δM)

}
.

We will show that there exists constants δN > 0 and δM > 0 such that K stabilizes
G(δN , δM).

We proceed by denoting the controller (including the sampler and hold) by K and
write the unknown gain and delay as its own block as shown in Figure 5.4. Defining
u(t) := gu(t − τ), and d(t) := gd(t − τ),23 we can convert the setup of Figure 5.4 to that
of Figure 5.5 with the controller Kd incorporating K as well as the gain and delay. With
zero initial conditions on the plant, i.e., x0 = 0, u0(θ) = d0(θ) = 0 for θ ∈ [τ , 0) it follows

that the map from

[
d
w

]
→
[
y
u

]
is uniformly bounded (with respect to τ ∈ [0, τ ] and

g ∈ [1, g]) if and only if the map from

[
d
w

]
→
[
yw
u

]
is uniformly bounded; hence we

proceed by analyzing the latter map. From Theorem 5.1, we have that the map from[
d
w

]
→
[
yw
u

]
is uniformly bounded if G = G, i.e., ∆N = ∆M = 0, so we start by using

22For brevity, we will not distinguish between a transfer function and its corresponding map from
PC∞ → PC.

23Since d(θ) = 0 for θ ∈ [−τ , 0) we do not lose any meaningful part of d with this transformation.
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Figure 5.4: The basic feedback setup with the gain and delay separated from the plant.

Gain & udK
y

yw

w
Kd

Delay
G ∈ G0

u

d

Figure 5.5: The converted feedback setup.
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Figure 5.5 to write yw and u for the nominal plant G0; doing so yields

yw = G0

(
u+ d

)
+ w

⇔ yw = G0Kd(yw) +G0d+ w

⇔ (1−G0Kd) yw = G0d+ w

⇔ yw = (1−G0Kd)
−1 (G0d+ w

)
⇔ yw = (1−M−1

0 N0Kd)
−1(M−1

0 N0d+ w)

⇔ yw =
[
M−1

0 (M0 −N0KD)
]−1

(M−1
0 N0d+ w)

⇔ yw = (M0 −N0Kd)
−1(N0d+M0w), (5.82)

and u as

u = Kdyw

⇔ u = Kd(M0 −N0Kd)
−1(N0d+M0w). (5.83)

Since the map from

[
d
w

]
→
[
yw
u

]
is uniformly bounded, it follows by analyzing (5.82)

and (5.83) (first with d = 0 and w free, and then with w = 0 and d free) that

(M0 −N0Kd)
−1M0, (5.84)

(M0 −N0Kd)
−1N0, (5.85)

Kd(M0 −N0Kd)
−1M0, (5.86)

Kd(M0 −N0Kd)
−1N0, (5.87)

are all uniformly bounded. Combining (5.84) and (5.85) it follows that

(M0 −N0Kd)
−1
[
M0 N0

]
is uniformly bounded

⇒ (M0 −N0Kd)
−1
[
M0 N0

] [ Y0

X0

]
is uniformly bounded

⇒ (M0 −N0Kd)
−1 is uniformly bounded, (5.88)

and similarly, combining (5.86) and (5.87), it follows that

Kd(M0 −N0Kd)
−1
[
M0 N0

]
is uniformly bounded

⇒ Kd(M0 −N0Kd)
−1
[
M0 N0

] [ Y0

X0

]
is uniformly bounded

⇒ Kd(M0 −N0Kd)
−1 is uniformly bounded. (5.89)
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We now recompute the closed loop system equations for a plant in G0(δM , δN); this yields

yw = [M0 + ∆M − (N0 + ∆N)Kd]
−1 [(N0 + ∆N)d+ (M0 + ∆M)w],

= [M0 −N0Kd + (∆M −∆NKd)]
−1 [(N + ∆N)d+ (M + ∆M)w

]
=
{[

1− (∆M −∆NKd)(M0 −N0Kd)
−1
]

[M0 −N0Kd]
}−1×[

(N + ∆N)d+ (M + ∆M)w
]

= (M0 −N0Kd)
−1
[
1−∆M(M0 −N0Kd)

−1 + ∆NKd(M0 −N0Kd)
−1
]−1×[

(N + ∆N)d+ (M + ∆M)w
]
, (5.90)

and

u = Kd(M0 −N0Kd)
−1
[
1−∆M(M0 −N0Kd)

−1 + ∆NKd(M0 −N0Kd)
−1
]−1×[

(N + ∆N)d+ (M + ∆M)w
]
. (5.91)

From (5.88) and (5.89) it follows that (M0−N0Kd)
−1 and Kd(M0−N0Kd)

−1 are uniformly
bounded, so clearly, there exists δN > 0 and δM > 0 such that

δM sup
τ∈[0,τ ],g∈[1,g]

‖(M0 −N0Kd)
−1‖+ δN sup

τ∈[0,τ ],g∈[1,g]

‖Kd(M0 −N0Kd)
−1‖ < 1,

so that [
1−∆M(M0 −N0Kd)

−1 + ∆NKd(M0 −N0Kd)
−1
]−1

is uniformly bounded. Finally, since M0, N0, ∆N and ∆M are all bounded, it follows

immediately for such a choice of δM and δN that the map from

[
d
w

]
→
[
yw
u

]
is uniformly

bounded, and hence, K stabilizes G(δM , δN).

5.4.2 Jumps in the Gain and Delay

It turns out that the proposed controller has the very desirable property that it can tolerate
a degree of variation in the gain and the delay; we consider the case of occasional, possibly
persistent, jumps in the gain and delay. To this end, define T PCTs

to be the set of all
piecewise constant functions from R → [0, τ ]× [1, g] for which discontinuities are at least
Ts > T seconds apart. This results in the following set of plants:

GPCTs :=

{
ẋ(t) = Ax(t) + g(t)Bud(t− τ(t))
y(t) = Cx(t)

∣∣∣∣ (τ, g) ∈ T PCTs

}
.
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A plant G ∈ GPCTs with noise is given by

ẋ(t) = Ax(t) + g(t)B(u(t− τ(t)) + d(t− τ(t)))
yw(t) = Cx(t) + w(t),

}
(5.92)

The following Proposition bounds the one period growth of the plant state and control
signal for every G ∈ GPCTs :

Proposition 5.3. There exists a constant c13 > 0 such that for every Ts > T , G ∈ GPCTs ,
plant initial conditions x0 ∈ Rn and u0(θ) satisfying supθ∈[−τ ,0) |u0(θ)| < ∞, controller
initial conditions χ̂[−1] ∈ Rn and ν[−1] ∈ R, and every w ∈ PC∞, then

(i) |ν[k]| ≤ c13‖x(kT )‖+ c13‖w‖∞, k ≥ 1

(ii) ‖x(t)‖ ≤ c13‖x(kT )‖+ c13‖w‖∞, t ∈ [kT, (k + 1)T ], k ≥ 1

(iii) |ν[0]| ≤ c13

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞

(iv) ‖x(t)‖ ≤ c13

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞, t ∈ [0, T ].

Proof. Let G ∈ GPCTs , x0 ∈ Rn, χ̂[−1] ∈ Rn, ν[−1] ∈ R, w ∈ PC∞ and u0(θ) such that
supθ∈[−τ ,0) |u0(θ)| <∞ be arbitrary.

We start by proving (i) and (ii); to do so, let k ≥ 1 be arbitrary. Since the output of
the hold is zero over the first T1 seconds of each period24, with minimal effort it can be
proven that the claim of Lemma 5.2 still applies:

‖χ̂[k]‖ ≤ ‖χ[k]‖+ ‖χ̃[k]‖ ≤ ‖χ[k]‖+ c2‖w‖∞,

and (5.28) still applies:

|ν[k]| ≤ (ρ+ f)(‖x(kT )‖+ c2‖w‖∞).

Since ν[k] is the input to the hold (5.13), it follows that

|ud(t− τ(t))| ≤ |ν[k]|+ ‖w‖∞, t ∈ [kT, (k + 1)T ],

24This holds even if there are switches in the gain and delay.
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so, regardless of any switches in the delay and gain, it follows for t ∈ [kT, (k + 1)T ] that

‖x(t)‖ ≤
∥∥eAT∥∥ ‖x(kT )‖+

∥∥∥∥∫ t

0

eA(t−θ)gBud(θ − τ)dθ

∥∥∥∥
≤
∥∥eAT∥∥ ‖x(kT )‖+

∥∥∥∥∫ t

0

eA(t−θ)gB(|ν[k]|+ ‖w‖∞)dθ

∥∥∥∥
≤
∥∥eAT∥∥ ‖x(kT )‖+ gTe‖A‖T‖B‖(|ν[k]|+ ‖w‖∞)

≤
[∥∥eAT∥∥+ gTe‖A‖T‖B‖(ρ+ f)

]
‖x(kT )‖+ gTe‖A‖T‖B‖(c2(ρ+ f) + 1)‖w‖∞.

Defining

c13 := max{
∥∥eAT∥∥+ gTe‖A‖T‖B‖(ρ+ f), gTe‖A‖T‖B‖(c2(ρ+ f) + 1), ρ+ f, c2(ρ+ f)}

yields

|ν[k]| ≤ c13‖x(kT )‖+ c13‖w‖∞ k ≥ 1

‖x(t)‖ ≤ c13‖x(kT )‖+ c13‖w‖∞ t ∈ [kT, (k + 1)T ], k ≥ 1.

We now turn to proving (iii) and (iv); to do so, let k = 0. Since the output of the hold
is zero over the first T1 seconds of each period25, with minimal effort it can be proven that
the claim of Lemma 5.2 still applies:

‖χ̂[0]‖ ≤ ‖x0‖+ c2‖w‖∞ + c2 sup
θ∈[−τ ,0)

|u0(θ)|,

and (5.27) still applies:

|ν[0]| ≤ (ρ+ f)(‖x0‖+ c2‖w‖∞ + c2 sup
θ∈[−τ ,0)

|u0(θ)|).

Since ν[0] is the input to the hold (5.13), it follows that

|ud(t− τ(t))| ≤ |ν[0]|+ ‖w‖∞ + sup
θ∈[−τ ,0)

|u0(θ)|, t ∈ [0, T ],

25This holds since regardless of any switches in the gain and delay, τ ∈ [0, τ ].
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so, regardless of any switches in the delay and gain, it follows that for t ∈ [0, T ]:

‖x(t)‖ ≤
∥∥eAT∥∥ ‖x0‖+

∥∥∥∥∫ t

0

eA(t−θ)gBud(θ − τ)dθ

∥∥∥∥
≤
∥∥eAT∥∥ ‖x0‖+ gTe‖A‖T‖B‖(|ν[0]|+ ‖w‖∞ + sup

θ∈[−τ ,0)

|u0(θ)|)

≤
[∥∥eAT∥∥+ gTe‖A‖T‖B‖(ρ+ f)

]
‖x0‖+ gTe‖A‖T‖B‖((ρ+ f)c2 + 1)‖w‖∞+

gTe‖A‖T‖B‖(1 + (ρ+ f)c2) sup
θ∈[−τ ,0)

|u0(θ)|

≤ c13‖x0‖+ c13‖w‖∞ + [(ρ+ f)c2 + 1](gTe‖A‖T‖B‖) sup
θ∈[−τ ,0)

|u0(θ)|.

Defining
c13 := max

{
c13 + [(ρ+ f)c2 + 1](gTe‖A‖T‖B‖), (ρ+ f)(1 + c2)

}
completes the proof.

Before proving that our controller can tolerate switches in (τ, g), we first need to find
a minimum time between these switches. To do so, suppose that (τ, g) has a discontinuity
on [0, T ) but none on [T, Ts) and that d = w = u0 = 0. For t ∈ [0, T ), from Proposition
5.3 we have that ‖x(t)‖ ≤ c13‖x0‖, while for t ∈ [T, Ts], we can apply Theorem 5.1, so
‖x(t)‖ ≤ ceλ(t−T )‖x(T )‖. Combining these two intervals, it follows that

‖x(t)‖ ≤ cc13e
−λT eλt‖x0‖ t ∈ [0, Ts],

⇒ ‖x(Ts)‖ ≤ cc13e
−λT eλTs‖x0‖,

so ‖x(Ts)‖ will be less than ‖x0‖ if

cc13e
−λT eλTs < 1;

so we fix such a Ts, and for convenience we choose it to be an integer multiple of T . We
now define cs := cc13e

−λT and then choose λ < 0 so that

cse
λTse−λTs = 1

⇒ cse
λTs = eλTs . (5.93)
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Theorem 5.2.

(i) K stabilizes GPCTs .

(ii) There exists constants c > 0 and λ ∈ [0, 1) so that when the controller K is applied
to the plant (5.92), for every (τ, g) ∈ T PCTs

, plant initial conditions x0 ∈ Rn, and
u0(θ) satisfying supθ∈[−τ ,0) |u0| < ∞, controller initial conditions χ̂[−1] ∈ Rn and
ν[−1] ∈ R and for every w ∈ PC∞, we have that

(a) τ̂ , ĝ, B̂d, F̂ and χ̂ ∈ `∞.26

(b) |ν[k]| ≤ ceλkT
(
‖x0‖+ supθ∈[−τ ,0) |u0(θ)|

)
+ c‖w‖∞, k ≥ 0.

(c) ‖x(t)‖ ≤ ceλt
(
‖x0‖+ supθ∈[−τ ,0) |u0(θ)|

)
+ c‖w‖∞, t ≥ 0.

Proof. Let (τ, g) ∈ T PCTs
, x0 ∈ Rn, χ̂[−1] ∈ Rn, ν[−1] ∈ R, w ∈ PC∞ and u0(θ) such that

supθ∈[−τ ,0) |u0(θ)| <∞ be arbitrary.

We start by formally stating the switching times for (τ, g); to do so, we must consider
two cases, that of a finite number of switches and that of a infinite number. To handle
this in the simplest way possible, if there is an finite number of switches, we define new
switches27 after the final switch to create an infinite number of switching times for both
cases. To this end, if there is a finite number of switches, let κ denote the number of
switches, let tκ denote the time of the final switch and then define new switching times

ti+1 := ti + Ts, i ≥ κ,

So, regardless of the number of switches, we define the monotonically increasing sequence
of switching times

{ti}∞i=1.

It will also be useful to denote the last integer multiple of the period T before each switch
occurs, so to that end, we define

ki =

⌊
ti
T

⌋
, i ∈ N.

We start by proving (ii)-(c). To do so, we first bound the state for t ∈ [0, k2T ] and then
consider two cases for the first period:

26Note that τ̌ and ǧ may not belong to `∞; however both of these signals are intermediary in nature
and are used in the description of K to enhance clarity.

27Of course, these new switches do not actually alter the value of (τ, g).
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Case 1: k1 = 0 (Switch in first period)

We split the interval [0, k2T ] into two intervals, t ∈ [0, T ] and t ∈ [T, k2T ]. For t ∈ [0, T ],
we apply Proposition 5.3 (iv), yielding

‖x(t)‖ ≤ c13

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞, t ∈ [0, T ]

≤ c13e
−λT eλt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞, t ∈ [0, T ] (5.94)

‖χ[1]‖ ≤ c13

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞. (5.95)

For t ∈ [T, k2T ], since our controller is periodic with period T ,

u(θ) = 0 for θ ∈ [T − τ , T ),

and
sup

θ∈[kiT−τ ,kiT )

|d(θ)| ≤ ‖w‖∞

so we can apply Theorem 5.1 starting at time T :

‖x(t)‖ ≤ ceλ(t−T )‖χ[1]‖+ c‖w‖∞, t ∈ [T, k2T ]. (5.96)

Substituting (5.95) into (5.96) and recalling the definition of cs yields

‖x(t)‖ ≤ cc13e
−λT eλt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (cc13e

−λT eλt + c)‖w‖∞, t ∈ [T, k2T ]

≤ cse
λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (cs + c)‖w‖∞, t ∈ [T, k2T ] (5.97)

and combining (5.97) and (5.94) yields for t ∈ [0, k2T ]

‖x(t)‖ ≤ (cs + c13e
−λT )eλt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (cs + c+ c13)‖w‖∞. (5.98)

Case 2: k1 ≥ 1 (No switch in first period)
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For t ∈ [0, k1T ], we apply Theorem 5.1, so

‖x(t)‖ ≤ ceλt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c‖w‖∞, t ∈ [0, k1T ]. (5.99)

‖χ[k1]‖ ≤ ceλk1T

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c‖w‖∞. (5.100)

For t ∈ [k1T, k2T ], we use the same logic as Case 1, namely, we split the interval into two
parts, t ∈ [k1T, (k1 + 1)T ] and t ∈ [(k1 + 1)T, k2T ]. For t ∈ [k1T, (k1 + 1)T ], we apply
Proposition 5.3 (ii) yielding

‖x(t)‖ ≤ c13‖χ[k1]‖+ c13‖w‖∞, t ∈ [k1T, (k1 + 1)T ]

≤ c13e
−λT eλ(t−k1T )‖χ[k1]‖+ c13‖w‖∞ t ∈ [k1T, (k1 + 1)T ] (5.101)

‖χ[k1 + 1]‖ ≤ c13‖χ[k1]‖+ c13‖w‖∞, (5.102)

and for t ∈ [(k1 + 1)T, k2T ] since,

u(θ) = 0 for θ ∈ [(k1 + 1)T − τ , (k1 + 1)T ),

and
sup

θ∈[kiT−τ ,kiT )

|d(θ)| ≤ ‖w‖∞

we can apply Theorem 5.1 starting at time (k1 + 1)T :

‖x(t)‖ ≤ ceλ(t−(k1+1)T )‖χ[k1 + 1]‖+ c‖w‖∞, t ∈ [(k1 + 1)T, k2T ]. (5.103)

Substituting (5.102) into (5.103) and recalling the definition of cs yields

‖x(t)‖ ≤ cc13e
−λT eλ(t−k1T )‖χ[k1]‖+ (cc13e

−λT + c)‖w‖∞, t ∈ [(k1 + 1)T, k2T ]

≤ cse
λ(t−k1T )‖χ[k1]‖+ (cs + c)‖w‖∞, t ∈ [(k1 + 1)T, k2T ]. (5.104)

Combining (5.104) and (5.101) yields

‖x(t)‖ ≤ cse
λ(t−k1T )‖χ[k1]‖+ (cs + c+ c13)‖w‖∞, t ∈ [k1T, k2T ]. (5.105)

Substituting (5.100) into (5.105) yields for t ∈ [k1T, k2T ]

‖x(t)‖ ≤ ccse
λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (ccs + cs + c+ c13)‖w‖∞. (5.106)
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Defining
cs := max{ccs, (cs + c13e

−λT ), (ccs + cs + c+ c13)},

we combine (5.106) and (5.99) yielding

‖x(t)‖ ≤ cse
λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ cs‖w‖∞, t ∈ [0, k2T ] (5.107)

By noting the definition of cs and the fact that λ ≤ λ we can combine both cases by
merging (5.107) and (5.98); we thus conclude that in both cases

‖x(t)‖ ≤ cse
λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ cs‖w‖∞, t ∈ [0, k2T ], (5.108)

‖χ[k2]‖ ≤ cse
λk2T

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ cs‖w‖∞. (5.109)

For t ≥ k2T , we perform a similar analysis. For each of i = 2, 3, · · · we split the interval
into two parts, t ∈ [kiT, (k1 + 1)T ) and t ∈ [(k1 + 1)T, ki+1T ). For t ∈ [kiT, (k1 + 1)T ), we
apply Proposition 5.3 yielding

‖x(t)‖ ≤ c13‖χ[ki]‖+ c13‖w‖∞
≤ c13e

λ(t−(ki+1)T )‖χ[ki]‖+ c13‖w‖∞, t ∈ [kiT, (ki + 1)T ], i ≥ 2. (5.110)

In particular, this means that

‖χ[(ki + 1)T ]‖ ≤ c13‖χ[ki]‖+ c13‖w‖∞, i ≥ 2. (5.111)

For t ∈ [(k1 + 1)T, ki+1T ), since our controller is periodic with period T ,

u(θ) = 0 for θ ∈ [kiT − τ , kiT ),

and
sup

θ∈[kiT−τ ,kiT )

|d(θ)| ≤ ‖w‖∞,

we can apply Theorem 5.1 starting at time (ki + 1)T ; doing so for i ≥ 2 yields

‖x(t)‖ ≤ ceλ(t−(ki+1)T )‖χ[ki + 1]‖+ c‖w‖∞, t ∈ [(ki + 1)T, ki+1T ]. (5.112)
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Substituting (5.111) into (5.112) yields for i ≥ 2

‖x(t)‖ ≤ cc13e
−λT eλ(t−kiT )‖χ[ki]‖+ (cc13e

−λT + c)‖w‖∞
≤ cse

λ(t−kiT )‖χ[ki]‖+ (cs + c)‖w‖∞, t ∈ [(ki + 1)T, ki+1T ]. (5.113)

Since c ≥ 1 (so c13e
−λT ≤ cs), we can combine (5.110) and (5.113), yielding for i ≥ 2

‖x(t)‖ ≤ cse
λ(t−kiT )‖χ[ki]‖+ (cs + c)‖w‖∞, t ∈ [kiT, ki+1T ]. (5.114)

Evaluating (5.114) at t = ki+1T and noting that (cs + c) ≤ cs yields

‖χ[ki+1]‖ ≤ cse
λ(ki+1−ki)T‖χ[ki]‖+ cs‖w‖∞, i ≥ 2. (5.115)

Applying (5.115) recursively from i = 2 and noting that

cse
λ(ki+1−ki)T ≤ eλ(ki+1−ki)T ≤ eλTs , i ≥ 2,

yields

‖χ[k3]‖ ≤ cse
λ(k3−k2)T‖χ[k2]‖+ cs‖w‖∞,

‖χ[k4]‖ ≤ cse
λ(k4−k3)T‖χ[k3]‖+ cs‖w‖∞

≤ c2
se
λ(k4−k2)T‖χ[k2]‖+ cs(cse

λ(k4−k3)T + 1)‖w‖∞
≤ c2

se
λ(k4−k2)T‖χ[k2]‖+ cs(e

λTs + 1)‖w‖∞,
‖χ[k5]‖ ≤ cse

λ(k5−k4)T‖χ[k4]‖+ cs‖w‖∞
≤ c3

se
λ(k5−k2)T‖χ[k2]‖+ cs(c

2
se
λ(k5−k3)T + cse

λ(k5−k4)T + 1)‖w‖∞
≤ c3

se
λ(k5−k2)T‖χ[k2]‖+ cs(e

2λTs + eλTs + 1)‖w‖∞,
...

...

‖χ[ki]‖ ≤ ci−2
s eλ(ki−k2)T‖χ[k2]‖+ cs

(
i−3∑
j=0

(eλTs)j

)
‖w‖∞, i ≥ 2

≤ eλ(ki−k2)T‖χ[k2]‖+

(
cs

1− eλTs

)
︸ ︷︷ ︸

=:γ1

‖w‖∞, i ≥ 2. (5.116)

Substituting (5.109) into (5.116) yields

‖χ[ki]‖ ≤ cse
λkiT

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (cs + γ1)︸ ︷︷ ︸

:=c15

‖w‖∞, i ≥ 2, (5.117)
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and substituting (5.117) into (5.114) for t ∈ [kiT, ki+1T ], i ≥ 2 yields

‖x(t)‖ ≤ cse
λ(t−kiT )‖χ[ki]‖+ (cs + c)‖w‖∞

≤ cse
λ(t−kiT )c15e

λkiT

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (cse

λ(t−kiT )c15 + cs + c)‖w‖∞

≤ csc15e
λt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ (csc15 + cs + c)‖w‖∞, (5.118)

then defining
γ := max{csc15 + cs + c, cs},

we can combine the ranges of (5.118) and (5.108) yielding

‖x(t)‖ ≤ γeλt

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ γ‖w‖∞, t ≥ 0. (5.119)

Using Lemma 5.3 (i) and (iii), it follows for k ≥ 0 that

|ν[k]| ≤ c13‖χ[k]‖+ δ[k]c13

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13‖w‖∞,

and evaluating (5.119) at time kT , we have for k ≥ 0 that

‖χ[k]‖ ≤ γeλkT

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ γ‖w‖∞,

hence

|ν[k]| ≤ c13(1 + γ)eλkT

(
‖x0‖+ sup

θ∈[−τ ,0)

|u0(θ)|

)
+ c13(1 + γ)‖w‖∞.

Defining c := c13(1 + γ), it is clear that b) (ii) and (iii) hold; furthermore, parts a) and b)
(i) follow immediately from parts b) (ii) and (iii), completing the proof.

5.5 Simulations

We will now perform numerous simulations demonstrating the effectiveness of our proposed
controller. We start by considering the nominal plant

G0 =
s− 2

s2 − 1
, (5.120)
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which has a state space representation given by

A =

[
−1 0

0 1

]
B =

[
−
√

2√
2

]
C = [−1.0607−0.3535] .

If we use an LTI controller, then from Theorem 15 of [35], this plant has an LTI delay
margin less than one, and from [26], it has an LTI gain margin less than four. We will
perform numerous simulations on this plant with different ranges for the unknown gain
and delay, jumps in the unknown gain and delay, and with plant uncertainty. To perform
the simulations on this plant, we set ρ = 10−7, place our eigenvalues at 0.05 ± 0.05j, set

the plant initial conditions to u0 = d0 = 0, x0 =

[
1
1

]
, set the controller initial conditions

to ν[−1] = 1, and χ[−1] =

[
0
0

]
. For each simulation, we will state the uncertainty set,

state the time parameters T1, T2, T3, T and h that define our sampler and hold, the value
of τ and g used, the magnitude of the noise and how we introduce it.

Example 5.1. We start by performing a simulation at double the LTI delay margin but
with a known gain, i.e., our uncertainty set is given by

G =
{
ge−sτG0(s) : τ ∈ [0, 2], g = 1

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in
an overall period T = 2.4, we fix τ = 1 and we run the simulation with no noise for the first
30 periods (a total of 72 seconds), then we add random noise with a maximum magnitude
of 10−2 as shown in Figure 5.6. As can be seen, the controller quickly drives the output
to zero with no noise, and clearly stabilizes the system with reasonable performance even
when subject to noise.

Example 5.2. Using the plant (5.120), we now consider providing ten times the LTI delay
margin, so our uncertainty set is given by:

G =
{
ge−sτG0(s) : τ ∈ [0, 10], g = 1

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.195, T3 = 10.005, resulting
in an overall period T = 10.5, we fix τ = 8 and we run the simulation with random noise
starting at time zero and with a maximum magnitude of 10−2 with the results shown in 5.7.
While the controller continues to stabilize the system, there is a significant degradation in
the performance when compared to Example 5.1. However, this performance degradation is
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Figure 5.6: Example 5.1: the output, control signal and estimation errors for a simulation
at double the LTI delay margin.
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to be expected, which can easily be seen by considering the response to the initial condition
after the first period which is given by

x(T ) = eATx0;

in particular, using our initial condition, for Example 5.1, we have that

x(T ) =

[
0.0907
11.02

]
and for this case, we have that

x(T ) =

[
2.756× 10−5

36136

]
.

Due to the effect of the initial condition on our estimators, our control signal is not ‘good’
until the start of the third period; as a result, it takes approximately 2T + T1 + τ seconds
for the plant to receive a stabilizing control signal. If we assume that the control signal
and noise are zero for the first two periods, 28 we have that

x(2T + T1 + τ) =

[
1.884× 10−13

5.3067× 1012

]
,

which is slightly worse than what we observe in Figure 5.7. Since T is close to the same size
as τ , even if it only takes two or three times the length of the unknown delay to estimate
it accurately, the transient performance will be poor due to the difficulty of the problem.

Example 5.3. Using the same plant (5.120), we now consider the case of only having an
unknown gain. Since the LTI gain margin is four [26], we perform the first simulation at
double this value, so our uncertainty set is given by

G =
{
ge−sτG0(s) : τ = 0, g ∈ [1, 8]

}
.

To perform the simulation, we set h = 0.25, T1 = 0.25, T2 = 0.245, T3 = 0.005, resulting
in an overall period T = 0.5, we fix g = 4.5 and we run the simulation with no noise for
the first 30 periods (a total of 15 seconds), then we add random noise with a maximum
magnitude of 10−2 as shown in Figure 5.8. Despite also being at twice the LTI margin (like
the simulation of Figure 5.6), we can see that the performance is significantly improved
from Example 5.1, which is mainly due to the reduction of the controller period from 2.4
seconds to 0.5 seconds; since it still takes approximately three periods for our controller to
lock into the unknown gain or delay, this means that the plant has far less time to ‘blow
up’ when we only have an unknown gain.

28Of course, our control signal has an impact on the plant, so our state does not get quite as large as
this simple calculation predicts.
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Figure 5.7: Example 5.2: the output, control signal and estimation errors for a simulation
at ten times the LTI delay margin.
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Example 5.4. Using the same plant (5.120), we now consider a more extreme uncer-
tainty set for our unknown gain, namely, one thousand times the LTI gain margin, so our
uncertainty set is given by

G =
{
ge−sτG0(s) : τ = 0, g ∈ [1, 4000]

}
.

To perform the simulation, we set h = 0.25, T1 = 0.25, T2 = 0.245, T3 = 0.005, resulting
in an overall period T = 0.5, we fix g = 4000 and we run the simulation with no noise for
the first 30 periods (a total of 15 seconds), then we add random noise with a maximum
magnitude of 10−2 as shown in Figure 5.9. Comparing the results to that of the previous
example the maximum size of the output is approximately 1000 times worse while our
desired margin increased by 500. So the larger size of uncertainty had a negative impact
on the performance which was greater than the increase in margin, but not by a large
amount. It should also be noted that the nature of our controller can also be clearly seen
in the output spikes; we zoom in on one such spike in Figure 5.10. As can be seen at the
start of Figure 5.10, the output gets small, y(86) = −0.385, and the noise then causes the
controller to get a poor estimate of g; this in turn creates a poor control signal, leading
to the output quickly increasing in size. Two periods later (t = 87), the previous output
(and hence the previous state) is large, and from Lemma 5.5, our estimate of the unknown
gain is greatly improved, which produces a control which rapidly drives the output back
towards zero.

Example 5.5. Using the same plant (5.120), we now consider the case when we have both
an unknown gain and delay. We start with a simulation at double the LTI delay margin
of two [35] and the LTI gain margin of eight [26] simultaneously, so our uncertainty set is
given by

G =
{
ge−sτG0(s) : τ ∈ [0, 2], g ∈ [1, 8]

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in
an overall period T = 2.4, we fix τ = 1, g = 4.5 and we run the simulation with no noise
for the first 30 periods (a total of 72 seconds), then we add random noise with a maximum
magnitude of 10−2 as shown in Figure 5.11. As can be seen, the initial condition is quickly
driven back towards zero, and the controller maintains stability once the noise is added
in. It is interesting to note the differences between the results of Figure 5.11 to those of
Figure 5.6, which is the same delay margin and operates at the same period, except with a
known gain. As can be seen, the transient performance is actually improved when the gain
is added in (in particular because the control signal is smaller due to the initial estimate
of the gain), but the noise performance is worse by approximately the size of the unknown
gain, i.e., a factor of 4.5.
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Figure 5.9: Example 5.4: the output, control signal and estimation errors for a simulation
at one thousand times the LTI gain margin.
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Figure 5.11: Example 5.5: the output, control signal and estimation errors for a simulation
at twice the LTI delay and gain margins.
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Example 5.6. Using the same plant (5.120), we consider a much more extreme uncertainty
set of ten times the LTI delay margin and one hundred times the LTI gain margin, resulting
in the uncertainty set:

G =
{
ge−sτG0(s) : τ ∈ [0, 10], g ∈ [1, 400]

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.195, T3 = 10.005, resulting in
an overall period T = 10.5, we fix τ = 8, g = 200, and we run the simulation with random
noise starting at time zero and with a maximum magnitude of 10−2 with the results shown
in 5.12. It is interesting to compare the results shown here to those of Example 5.2 shown in
Figure 5.7; while adding in the unknown gain degraded the performance, the degradation is
essentially equal to the size of the unknown gain, i.e., the maximum output in Figure 5.12
is essentially 200 times larger than the maximum output in Figure 5.2. This re-enforces
the point that while the unknown gain affects the performance, the primary driver of the
performance is the maximum length of the unknown delay.

The next set of examples now consider switches in the unknown gain and delay.

Example 5.7. Still using the nominal plant (5.120), we start by performing a simulation
with only an unknown delay at twice the LTI delay margin of two seconds and with a
switch every 20 seconds, resulting in an uncertainty set for the delay and gain of

T PCTs = {τ ∈ [0, 2], g = 1 : Ts = 20} ,

and an overall uncertainty set

GPCTs :=

{
ẋ(t) = Ax(t) + g(t)Bud(t− τ(t))
y(t) = Cx(t)

∣∣∣∣ (τ, g) ∈ T PCTs

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting
in an overall period T = 2.4, and we run the simulation with noise starting from time
zero and with a maximum magnitude of 10−2 as shown in Figure 5.13. Despite the fact
that our switching time of 20 seconds is probably far smaller than what is required to
apply Theorem 5.2, the controller easily handles the switches, with performance that is
approximately ten times worse than Example 5.1 which had the same desired delay margin
and controller settings except with a fixed delay. In particular, the switching can cause
difficulties as it can extend the poor estimate phase by switching the unknown delay just as
the estimate converges to the previous delay value; however, our controller works very well
at quickly estimating the delay after a switch, resulting in very reasonable performance.
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ĝ

g

ĝ

Figure 5.12: Example 5.6: the output, control signal and estimation errors for a simulation
at ten times the LTI delay margin and 100 times the LTI gain margin.
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Figure 5.13: Example 5.7: the output, control signal and estimation errors for a simulation
at two times the LTI delay margin with jumps every 20 seconds.
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Example 5.8. Still using the nominal plant (5.120), we perform a simulation with only an
unknown gain at twice the LTI gain margin of eight and with a switch every 2.1 seconds,
resulting in an uncertainty set for the delay and gain of

T PCTs = {τ = 0, g ∈ [1, 8] : Ts = 2.1} ,

and an overall uncertainty set

GPCTs :=

{
ẋ(t) = Ax(t) + g(t)Bud(t− τ(t))
y(t) = Cx(t)

∣∣∣∣ (τ, g) ∈ T PCTs

}
.

To perform the simulation, we set h = 0.25, T1 = 0.25, T2 = 0.245, T3 = 0.005, resulting in
an overall period T = 0.5, and we run the simulation with no noise starting at time zero
and with a maximum magnitude of 10−2 as shown in Figure 5.14. Despite the fact that
our switching time of 2.1 seconds is probably far smaller than what is required to apply
Theorem 5.2, as can be seen, the controller easily handles the switches, with performance
that is again only moderately worse than Example 5.3 which had the same desired gain
margins except with a fixed gain.

Example 5.9. Still using the nominal plant (5.120), we perform a simulation with both
an unknown gain and delay at twice their respective LTI margins and with a switch every
20 seconds, resulting in an uncertainty set for the delay and gain of

T PCTs = {τ ∈ [0, 2], g ∈ [1, 8] : Ts = 20} ,

and an overall uncertainty set

GPCTs :=

{
ẋ(t) = Ax(t) + g(t)Bud(t− τ(t))
y(t) = Cx(t)

∣∣∣∣ (τ, g) ∈ T PCTs

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in an
overall period T = 2.4, and we run the simulation with noise starting from time zero and
with a maximum magnitude of 10−2 as shown in Figure 5.15. Once again, our controller
tolerates these switches, and the performance is comparable to that of Examples 5.7 where
we only considered an unknown delay with switching; furthermore, the performance is only
moderately worse than Example 5.5 where the delay and gain were fixed.

Example 5.10. Still using the nominal plant (5.120), we again perform a simulation with
both an unknown gain and delay at twice their respective LTI margins; however, this time
we consider much more frequent jumps in the gain and delay by setting Ts = 7 seconds,
resulting in an uncertainty set for the delay and gain of

T PCTs = {τ ∈ [0, 2], g ∈ [1, 8] : Ts = 7} ,
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Figure 5.14: Example 5.8: the output, control signal and estimation errors for a simulation
at two times the LTI gain margin with jumps every 2.1 seconds.
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g

ĝ

Figure 5.15: Example 5.9: the output, control signal and estimation errors for a simulation
at two times the LTI gain and delay margins with jumps every 20 seconds.
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Figure 5.16: Example 5.10: the output, control signal and estimation errors for a simulation
at two times the LTI gain and delay margins with jumps every 7 seconds.

and an overall uncertainty set

GPCTs :=

{
ẋ(t) = Ax(t) + g(t)Bud(t− τ(t))
y(t) = Cx(t)

∣∣∣∣ (τ, g) ∈ T PCTs

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in
an overall period T = 2.4, and we run the simulation with noise starting form time zero
and with a maximum magnitude of 10−2 as shown in Figure 5.16. While the controller was
able to stabilize the system despite switches in the gain and delay every seven seconds,
the performance is clearly much worse than Example 5.9 where the switches were every 20
seconds.

Our next example considers the case of plant uncertainty.
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Example 5.11. Using the nominal plant (5.120), we perform a simulation at twice the
LTI delay and gain margin of the nominal plant with a fixed delay and gain; however, this
time we consider plant uncertainty. We start by performing a co-prime factorization on
the plant G0 yielding:

N =
s− 2

(s+ 10)2
and M =

(s− 1)(s+ 1)

(s+ 10)2
.

We then set

∆N =
0.02s

s+ 10
and ∆M =

0.005s

s+ 10
,

so

‖∆N‖
‖N‖

= 0.3922 and
‖∆M‖
‖M‖

= 0.005.

Using this uncertainty, our actual plant has a transfer function given by

Gact =
0.0199(s+ 61.62)(s− 1.623)

(s+ 1.023)(s− 0.9729)
(5.121)

and we use the following state space representation for the simulation:

A =

[
−0.0498 0.9950

1 0

]
, B =

[
2
0

]
, C = [0.5965−0.9851] .

To better see the difference between the nominal plant given by (5.120) and the actual
plant given by (5.121), we show the two Bode plots in Figure 5.17; while both plants are
similar at low frequency, we can see a significant difference at higher frequencies, and

sup
ω∈R
‖G0(jω)−Gact(jω)‖ = 0.0798.

Furthermore, while our nominal plant has a LTI delay margin of two and a LTI gain
margin of four, our actual plant has a LTI delay margin of 0.8234 and a LTI gain margin
of 2.7829, so our simulation is at nearly 2.5 times the actual LTI delay margin and almost
three times larger than the actual LTI gain margin. To perform the simulation, we set
h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in an overall period T = 2.4, and we
run the simulation with noise starting form time zero and with a maximum magnitude of
10−2 as shown in Figure 5.18. Despite the uncertainty, including both of the real plant
eigenvalues which are critical for our estimation scheme, we see that our controller stabilizes
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Figure 5.17: The Bode plot of the nominal and actual plants
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Figure 5.18: Example 5.11: the output, control signal and estimation errors for a simulation
at two times the LTI gain and delay margins with plant uncertainty.
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the system with reasonable performance when compared to Example 5.5 which considered
the same uncertainty in the gain and delay but with a known plant model. Furthermore,
while our nominal A matrix was diagonal, as required for our gain and delay estimators, we
performed the simulation with a non-diagonal A matrix without difficulty, which highlights
the fact our controller only relies on the plant input in order to function.

Example 5.12. Using the nominal plant (5.120), we perform a simulation at the LTI
delay and gain margin; however, this time we consider plant uncertainty and switches in
the unknown gain and delay. We use the same uncertainty model as the previous example,
yielding an actual plant given by (5.121), except this time we allow the unknown gain and
delay to switch every 20 seconds. To perform the simulation, we set h = 0.3, T1 = 0.3,
T2 = 0.195, T3 = 1.005, resulting in an overall period T = 1.5, and we run the simulation
with noise starting form time zero and with a maximum magnitude of 10−2 as shown in
Figure 5.19. Despite throwing both jumps in the gain and delay and plant uncertainty, we
see that the controller stabilizes the system with reasonable performance.

Example 5.13. Using the same plant (5.120), we perform a simulation where we allow the
delay to slowly vary, with a maximum delay and gain at twice the respective LTI margins.
To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 2.005, resulting in an
overall period T = 2.4, we run the simulation with no noise starting at time zero and with
a maximum magnitude of 10−2 and with the delay and gain varying as shown in Figure
5.20. While we did not prove that our controller can handle continuous changes in the
gain and delay, the simulation results suggest that our controller can handle slowly varying
changes in the gain and delay, albeit with some performance degradation in comparison
to the fixed delay case of Example 5.5. In the next chapter, we consider the problem of a
continuously varying delay for a first order plant.

Example 5.14. For this example, we consider the plant

G0 =
s− 2

(s− 4)(s+ 1)
,

which has an LTI delay margin less than 1
3

and a LTI gain margin of four; furthermore,
unlike our previous simulations, we now have the unstable pole to the right of the unstable
zero, which is a much more difficult problem.. We will perform a simulation with τ = 0.5
and g = 4, yielding the uncertainty set

G =
{
ge−sτG0(s) : τ ∈ [0, 0.5], g ∈ [1, 4]

}
.

To perform the simulation, we set h = 0.3, T1 = 0.3, T2 = 0.095, T3 = 0.505, resulting in
an overall period T = 0.9, and we run the simulation with no noise starting at time zero
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Figure 5.19: Example 5.12: the output, control signal and estimation errors for a simulation
at the LTI gain and delay margins with plant uncertainty and jumps in the unknown gain
and delay.
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Figure 5.20: Example 5.13: the output, control signal and estimation errors for a simulation
at twice LTI gain and delay margins with a slowly varying time delay and gain.
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Figure 5.21: Example 5.14: the output, control signal and estimation errors for a simulation
at 1.5 times the LTI delay margin and at the LTI gain margin with the unstable pole to
the right of the non-minimum phase zero.

and with a maximum magnitude of 10−2 as shown in Figure 5.21. As can be seen, the
performance is clearly worse than for the previous plant, however despite the difficult to
control plant, our controller stabilizes the system and handles the noise reasonably well.

5.6 Conclusions and Future Work

In this chapter, we propose a control scheme that can provide an arbitrarily large gain and
delay margin for a given SISO LTI controllable/observable continuous-time plant. The
proposed controller uses a generalized hold to produce a discrete-time model which has
the delay showing up in a single location. Using this discrete-time model, we are able
to estimate the delay and gain at each time step, from which we can calculate a control
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signal. This controller, while mildly non-linear and periodic, is relatively simple and not
only provides BIBO stability, but also guarantees the exponential decay of the initial
conditions even when subject to noise; furthermore, the controller is robust to un-modeled
dynamics and handles infrequent but possibly persistent jumps in the unknown gain and
delay. As far as the authors are aware, this is the only controller that can provide BIBO
stability for any SISO LTI controllable/observable plant with an arbitrarily large delay and
gain. This work is presented in [16].

For future work, we would like to prove that our controller can maintain stability in the
face of slowly varying gains and delays, as suggested by the provided simulation; we do so in
the next chapter using a similar controller that only works on a first order plant. We would
also like to improve the performance of the controller, which may be possible by exploring
the optimal location of the closed loop eigenvalues, or by using previous information on
the gain and delay estimates to improve the estimate when the state is small. Finally, we
would like to extend this result to multi-input multi-output systems.
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Chapter 6

Gain and Delay Margin - Time
Varying

In this chapter, we consider a very similar problem to the one considered in the previous
chapter. In the previous chapter, we designed a controller which BIBO stabilized an nth

order plant with a fixed input delay, although we did allow occasional jumps in the unknown
gain and delay. In this chapter, we design a controller which BIBO stabilizes a first order
plant with a continuously varying output delay satisfying an explicit bound in terms of the
maximum length of the unknown delay and the location of the plant pole.

The controller presented in this chapter is loosely based on our preliminary work in [14]
and the results of Chapter 5. In [14], we considered a first order system with a unknown
but upper bounded time varying delay, and to solve the problem, we proposed an un-
implementable impulse hold to find an explicit bound on the allowable time variation of
the delay in terms of the maximum length of the unknown delay and the location of the
unstable plant pole; however, in that work, we did not consider noise. In contrast to that
work, in this chapter we adopt a similar approach to that of Chapter 5, by replacing the
impulse hold with a ‘pulse’ hold, we are able to prove that our proposed controller BIBO
stabilizes the first order plant if the time variation of the delay satisfies an explicit bound
in terms of the maximum length of the unknown delay and the location of the plant pole.
While the controller that we propose in this chapter is similar to the controller of Chapter
5, it has one key difference; namely, since the system is first order, we no longer require
separate estimates of the gain and delay.

This chapter is organized as follows. In Section 6.1 we formally state the problem and
define stability, in Section 6.2 we provide our controller, in Section 6.3 we prove that our
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controller stabilizes the system under suitable constraints on the rate of change of the time
delay, in Section 6.4 we simulate our proposed controller, and finally, in Section 6.5 we
provide our conclusions and future work.

6.1 Problem Formulation

We are interested in stabilizing a SISO, LTI unstable plant which has an unknown, upper
bounded, time varying delay τ(t) ∈ [0, τ ] and an unknown, upper and lower bounded,
fixed gain g ∈ [1, g].1 In contrast to the previous two chapters where we considered an
input delay, in this chapter we consider an output delay in order to simplify the analysis
when the delay varies continuously; in particular, this avoids having the time varying delay
stretch/compress the input as seen by the plant. As such, with a > 0, b 6= 0, c = 1,2 our
plant G is described by

ẋ(t) = ax(t) + gbu(t)
y(t) = x(t− τ(t)),

}
(6.1)

with x(t) ∈ R the plant state, u(t) ∈ R the plant input, and y(t) ∈ R the plant output.
Because of the presence of the delay, the initial condition of the plant is not only on the
state at time zero, but also on the state starting at time −τ ;3 more specifically, the plant
initial condition is given by x(θ) = x0(θ) for θ ∈ [−τ , 0]; it is natural to require that
x0 ∈ AC∞([−τ , 0]). Finally, we impose a constraint on the rate of change of the delay;
to this end, we restrict τ(t) to be absolutely continuous so that the derivative of τ(t) is
defined almost everywhere, and where it is defined, we require it to be at least τl ≤ 0 and
at most τu ≥ 0. This results in the following constraints on τ(t):

• τ(t) is absolutely continuous for all t ≥ 0.
• τ(t) ∈ [0, τ ] for all t ≥ 0.
• τ̇(t) ∈ [τl, τu] for almost all t ≥ 0.

So, we define the following set of admissible time-varying delays:

T := {τ ∈ AC∞ | τ(t) ∈ [0, τ ] for all t ≥ 0; τ̇ ∈ [τl, τu] for almost all t ≥ 0} ,
and the corresponding set of admissible plant models:

G(τ , τu, τl, g) :=

{
ẋ(t) = ax(t) + gbu(t)
y(t) = x(t− τ(t))

∣∣∣∣ τ ∈ T , g ∈ [1, g]

}
.

1We can always write the unknown gain interval in this form by absorbing any lower gain bound and
the sign into b.

2Since we can absorb c into b, without loss of generality we let c = 1.
3This is done so that the same initial condition applies for all possible delays.
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Figure 6.1: The feedback setup considered in this paper.

We consider the standard feedback structure: the controller is input-output of the form

u = Ky.

The notion of stability in this chapter is very similar to that of Chapter 5, but to formally
define stability in this chapter, we introduce noise at the two plant/controller interfaces as
shown in Figure 6.1. With the noise added, a plant in G(τ , τu, τl, g) is described by:

ẋ(t) = ax(t) + gbu(t) + gbd(t)
yw(t) = x(t− τ(t)) + w(t), t ≥ 0

}
(6.2)

with an initial condition x0 ∈ AC∞([−τ , 0]). To aid in handling the noise, it will be

convenient to define the stacked noise vector w :=

[
d
w

]
.

With zero initial conditions on the plant, i.e., x0 = 0, with τ ∈ T and with g ∈ [1, g]

we let Φ(τ, g) be the closed loop map from

[
d
w

]
→
[
y
u

]
.

Definition 6.1. We say that K stabilizes G(τ , τu, τl, g) if Φ(τ, g) is uniformly bounded,
i.e.

sup
τ∈T ,g∈[1,g]

‖Φ(τ, g)‖ <∞.

The goal of this paper is to design a controller K which stabilizes G(τ , τu, τl, g).
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Figure 6.2: The feedback and controller setup considered in this paper.

6.2 The Controller

Our proposed controller K is shown in Figure 6.2; it is non-linear as well as periodic with
period T . This controller uses a modified zero-order hold H, along with a regular sampler
S as described in Sub-section 6.2.1. In Sub-section 6.2.2, we apply the sampler and hold
to the plant, yielding a discretized plant model; using the resulting discretization, in Sub-
section 6.2.3 we estimate the delay at the previous sample point and in Sub-section 6.2.4
we use the delay estimate to design a control signal. Finally, in Sub-section 6.2.5 we find
a bound on the estimation error.

6.2.1 The Sampler and Hold

The hold H is a partial period pulse parameterized by two quantities of time, T1 and T2.
The quantity T1 > 0 is the duration of the pulse, and the quantity T2 > τ is set so that
only one pulse arrives at the plant during each period. The resulting period of the hold is
given by T := T1 + T2, and we define the hold H : `(R)→ PC(R) by

(Hν)(t) :=

{
ν[k] t ∈ [kT, kT + T1]
0 t ∈ (kT + T1, kT + T ),

k ≥ 0. (6.3)

Unlike the hold, the sampler S : PC(R) → `(R) is completely standard and is given
by

(Syw)[k] := yw(kT ), k ≥ 0. (6.4)
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6.2.2 Discretizing the Plant

We now discretize the plant (6.2) using the hold (6.3) and the sampler (6.4). We sample
the output at integer multiples of the period T , yielding

yw(kT )︸ ︷︷ ︸
=:ψ[k]

= x(kT − τ(kT )) + w(kT )︸ ︷︷ ︸
=:ω[k]

, k ≥ 0. (6.5)

Since the system is first order, we will combine the state and output equations into a
single equation. To do so, we require a solution of the state equation (6.2) starting at time
kT − τ(kT ) and an end time of kT + T − τ(kT + T ); due to the initial condition, the
discretization for k = 0 will be different than for k ≥ 1.

We start with the k ≥ 1 case. To do so, we define τ [k] := τ(kT ) and ∆[k] := τ [k] −
τ [k + 1], yielding for k ≥ 1:

x((k + 1)T − τ [k + 1])︸ ︷︷ ︸
=:χ[k+1]

= ea(T+∆[k]) x(kT − τ [k])︸ ︷︷ ︸
=:χ[k]

+

∫ kT+T−τ [k+1]

kT−τ [k]

gbea(kT+T−τ [k+1]−q)ud(q)dq

= ea(T+∆[k])χ[k] +

∫ T1

0

gbea(T−τ [k+1]−q)ν[k]dq+∫ T+∆[k]

0

gbea(T+∆[k]−q)d(kT − τ [k] + q)dq︸ ︷︷ ︸
=:ζ[k]

= ea(T+∆[k])χ[k] + eaT
b

a
(1− e−aT1) ge−aτ [k+1]︸ ︷︷ ︸

=:α[k+1]

ν[k] + ζ[k], (6.6)

Combining (6.5) and (6.6) yields for k ≥ 1:

ψ[k + 1] = ea(T+∆[k])ψ[k] + eaT
b

a
(1− e−aT1)α[k + 1]ν[k] + ζ[k]− ω[k + 1]− ea(T+∆[k])ω[k]︸ ︷︷ ︸

=:η[k]

.

(6.7)
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For the k = 0 case, we obtain an expression for χ[1]:

x(T − τ [1])︸ ︷︷ ︸
=:χ[1]

= ea(T−τ [1])x0(0) +

∫ T−τ [1]

0

gbea(T−τ [1]−q)ud(q)dq

= ea(T−τ [1])x0(0) +

∫ T1

0

gbea(T−τ [1]−q)ν[0]dq +

∫ T−τ [1]

0

gbea(T−τ [1]−q)d(q)dq︸ ︷︷ ︸
=:ζ[0]

= ea(T−τ [1])x0(0) + eaT
b

a
(1− e−aT1)α[1]ν[0] + ζ[0]. (6.8)

Using (6.8) and (6.5), we obtain the following equations for ψ[0] and ψ[1]:

ψ[0] = x0(−τ(0)) + ω[0] (6.9)

ψ[1] = ea(T−τ [1])x0(0) + eaT
b

a
(1− e−aT1)α[1]ν[0] + ζ[0] + ω[1]︸ ︷︷ ︸

:=η[0]

. (6.10)

Combining (6.7) and (6.10), and using (6.9) for the initial condition of ψ[0] = x0(−τ(0)) +
ω[0] yields the final model:

ψ[k + 1] =


ea(T−τ [1])x0(0) + eaT

b

a
(1− e−aT1)α[1]ν[0] + ζ[0] + ω[1], k = 0

ea(T+∆[k])ψ[k] + eaT
b

a
(1− e−aT1)α[k + 1]ν[k] + η[k], k ≥ 1

(6.11)

It is also be useful to bound the noise term, η; for every τ ∈ T and g ∈ [1, g] we have
that

‖η‖∞ ≤
(
ea(T+τ) + 1 + g

∣∣∣∣ ba
∣∣∣∣ (ea(T+τ) − 1)

)
︸ ︷︷ ︸

=:cw

‖w‖∞ (6.12)

6.2.3 Estimating the Gain and Delay

To estimate the gain and delay, we adopt a similar approach to our preliminary work [14],
namely, at time k, we solve (6.7) (shifted backwards by one time step) for α[k] (recall
that α[k] = ge−aτ [k]) under the hypotheses that there is no noise and that the delay is
time invariant; since there may be noise and the delay may be time varying, here we will
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also saturate the estimate to yield α̂[k]. To this end, consider (6.7) shifted backwards
by one time step under the hypotheses that there is no noise, the time delay is fixed (so
ea(T+∆[k−1]) = eaT ), and ν[k − 1] 6= 0:

ψ[k] = eaTψ[k − 1] +
b

a
eaT (1− e−aT1)α[k]ν[k − 1]

⇔ α[k]
b

a
eaT (1− e−aT1)ν[k − 1] = ψ[k]− eaTψ[k − 1]

⇔ α[k] =
ψ[k]− eaTψ[k − 1]

b
a
eaT (1− e−aT1)ν[k − 1]

. (6.13)

With initial conditions ν[−1] ∈ R and ψ[−1] ∈ R, we use (6.13) to define our unsaturated
estimate α̌[k] for k ≥ 0 as follows:

α̌[k] :=

{
ψ[k]−eaTψ[k−1]

b
a
eaT (1−e−aT1 )ν[k−1]

if ν[k − 1] 6= 0

g if ν[k − 1] = 0;
(6.14)

since geaτ [k] ∈ [e−aτ , g], we then saturate α̌[k] yielding our final estimate:

α̂[k] =


e−aτ α̌[k] < e−aτ

α̌[k] α̌[k] ∈ [e−aτ , g]
g α̌[k] > g.

(6.15)

A natural question is: how close is our estimate α̂[k] to the actual value α[k]? Before we
can answer this question we must introduce our control law, which we do in the following
section.

6.2.4 The Control Law

The control law will be a time-varying output feedback law of the form ν[k] = F [k]ψ[k].
To derive the control law, we will proceed under the hypothesis that ν has this form and
that there is no noise. If this is the case, then (6.7) becomes

ψ[k + 1] = eaT e−aτ [k+1]eaτ [k]ψ[k] + eaT
b

a
(1− e−aT1)α[k + 1]ν[k]

= eaT e−aτ [k+1]

(
eaτ [k] +

gb

a
(1− e−aT1)F [k]

)
ψ[k].
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It is clear that eaT e−aτ [k+1] 6= 0 regardless of τ ∈ T , so to ensure that the RHS is zero we
require that

0 = eaτ [k] +
gb

a
(1− e−aT1)F [k]

⇔ F [k] =
−a

b(1− e−aT1)α[k]
;

since we do not know α[k], we replace it by our estimate α̂[k], yielding the control law:

ν[k] =
−aψ[k]

α̂[k]b(1− e−aT1)
, k ≥ 0. (6.16)

The controller K is then given by the sampler (6.4), the estimator (6.14) - (6.15), the
control signal (6.16) and the hold (6.3), with initial conditions ν[−1] ∈ R and ψ[−1] ∈ R.

6.2.5 The Estimator Accuracy

With the control law provided, we can now ascertain how close α̂[k] is to the actual value
α[k], which we do in the following Lemma.

Lemma 6.1. If ψ[k − 1] 6= 0, and k ≥ 2 then

|α̂[k]− α[k]| ≤
∣∣α̂[k − 1](1− ea∆[k−1])

∣∣+
α̂[k − 1]cw‖w‖∞
eaT |ψ[k − 1]|

.

Proof. Let k ≥ 2 be such that ψ[k − 1] 6= 0. Next, note that

|α̂[k]− α[k]| ≤ |α̌[k]− α[k]|,

so it suffices to prove that |α̌[k]− α[k]| is less than the RHS of the Lemma statement.

From the control law (6.16) and the fact that α̂[k − 1] ∈ [e−aT , g], it is clear that
ψ[k− 1] 6= 0 implies that ν[k− 1] 6= 0. To proceed, we require an expression for α[k] when
the system is affected by noise; solving (6.7) for α[k] yields:

α[k] =
ψ[k]− eaT ea∆[k−1]ψ[k − 1]− η[k − 1]

b
a
eaT (1− e−aT1)ν[k − 1]

. (6.17)
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Since ν[k − 1] 6= 0, the top line of (6.14) yields an expression for α̌[k], so

|α̌[k]− α[k]| =

∣∣∣∣∣ ψ[k]− eaTψ[k − 1]
b
a
eaT (1− e−aT1)ν[k − 1]

− ψ[k]− eaT ea∆[k−1]ψ[k − 1]− η[k − 1]
b
a
eaT (1− e−aT1)ν[k − 1]

∣∣∣∣∣ ; (6.18)

from (6.16) we have that the denominator simplifies to

−eaT ψ[k − 1]

α̂[k − 1]
,

so (6.18) yields

|α̌[k]− α[k]| =

∣∣∣∣∣
{
−eaT (ea∆[k−1] − 1)ψ[k − 1]− η[k − 1]

}
α̂[k − 1]

eaTψ[k − 1]

∣∣∣∣∣
≤
∣∣α̂[k − 1](1− ea∆[k−1])

∣∣+
α̂[k − 1]cw‖w‖∞
eaT |ψ[k − 1]|

, (using (6.12))

which completes the proof.

6.3 The Main Result

Theorem 6.1. If

τl ∈
(
−1

aT
ln(1 + e−aT ), 0

]
and τu ∈

[
0,
−1

aT
ln(1− e−aT )

)
,

then

(i) K stabilizes G(τ , τu, τl, g).
(ii) There exist positive constants c1 and γ and a negative constant λ such that for

every τ ∈ T , g ∈ [1, g], for every initial condition x0 ∈ AC∞([−τ , 0]), and for

every w =

[
w
d

]
∈ PC∞, we have that when the controller K is applied to the

plant (6.2)

(a) α̂ ∈ `∞,4

(b) |ν[k]| ≤ c1e
λkT
(
supθ∈[−τ ,0] |x0(θ)|

)
+ c2‖w‖∞,

(c) |yw(t)| ≤ γeλt
(
supθ∈[−τ ,0] |x0(θ)|

)
+ c‖w‖∞.
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Remark 10. Note that since τl ≤ 0 and τu ≥ 0, it follows that if the time delay is fixed
(but still unknown) then Theorem 6.1 always holds, i.e., the proposed controller stabilizes
G(τ , 0, 0, g) for an arbitrarily large fixed time delay and gain.

Remark 11. The maximum size of the unknown gain g has no impact on the stability
result, i.e., we can tolerate the exact same time variation in the delay regardless of g;
however, as g increases, we expect that the transient performance will degrade.

Proof. Fix τl ∈
( −1
aT

ln(1 + e−aT ), 0
]

and τu ∈
[
0, −1

aT
ln(1− e−aT )

)
. Let τ ∈ T , g ∈ [1, g],

d, w ∈ PC∞, ψ[−1] ∈ R, ν[−1] ∈ R and x0 ∈ AC∞([−τ , 0]) be arbitrary.

We start by analyzing the startup of the system, i.e., we would like expressions bounding
|ψ[0]| and |ψ[1]|. Using (6.9) for |ψ[0]|, it immediately follows that

|ψ[0]| ≤ |x0(−τ(0))|+ |ω[0]|.
≤ sup

θ∈[−τ ,0]

|x0(θ)|+ ‖w‖∞. (6.19)

For |ψ[1]| (given by (6.10)), using the control signal (6.16), the bound on |ψ[0]| given by
(6.19) and the fact that α̂[0] and α[1] lie in [e−aτ , g] regardless of the initial condition, it
follows that

ψ[1] = ea(T−τ [1])x0(0)− eaT b
a

(1− e−aT1)α[1]
a(x0(τ(0)) + ω[0])

b(1− e−aT1)α̂[0]
+ η[0]

|ψ[1]| ≤ eaT
∣∣∣∣e−aτ [1] − α[1]

α̂[0]

∣∣∣∣ sup
θ∈[−τ ,0]

|x0(θ)|+ eaT
α[1]

α̂[0]
|ω[0]|+ |η[0]|

≤ eaT (1 + geaτ ) sup
θ∈[−τ ,0]

|x0(θ)|+ (eaTgeaτ + cw)‖w‖∞. (6.20)

With the bound on |ψ[1]|, we can now analyze the system update equation for k ≥
2. Using the bottom part of (6.11), the definition of ν[k] given by (6.16), recalling the
definitions ∆[k] := τ [k] − τ [k + 1] and α[k] := ge−aτ [k], we can now obtain a bound on
|ψ[k]| for k ≥ 2, namely

ψ[k + 1] = eaTα[k + 1]

(
1

α[k]
− 1

α̂[k]

)
ψ[k] + η[k], k ≥ 1

⇒ |ψ[k + 1]| ≤ eaTα[k + 1]

∣∣∣∣ 1

α[k]
− 1

α̂[k]

∣∣∣∣ |ψ[k]|+ cw‖w‖∞, k ≥ 1 (6.21)

≤ eaT
α[k + 1]

α[k]

1

α̂[k]
|α̂[k]− α[k]| |ψ[k]|+ cw‖w‖∞, k ≥ 1. (6.22)

4Note that α̌ may not belong to `∞; however this signal is intermediary in nature and is used in the
description of K to enhance clarity.
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It will be extremely useful to bound the maximum one time step growth of |ψ[k]|:

Claim 4. There exists a constant c4 so that

|ψ[k + 1]| ≤ c4|ψ[k]|+ cw‖w‖∞, k ≥ 1.

Proof. Due to the saturater on α̂[k], it follows that
∣∣∣ 1
α[k]
− 1

α̂[k]

∣∣∣ < eaτ , and since α[k+1] ≤ g,

from (6.21) it follows immediately that

|ψ[k + 1]| ≤ eaTgeaτ︸ ︷︷ ︸
=:c4

|ψ[k]|+ cw‖w‖∞, k ≥ 1.

Before proceeding further, it will be useful to bound |ψ[2]| in terms of the initial con-
dition; using (6.20) and the result of Claim 4, it follows immediately that

|ψ[2]| ≤ c4e
aT (1 + geaτ )︸ ︷︷ ︸

=:c8

sup
θ∈[−τ ,0]

|x0(θ)|+
[
c4(eaTgeaτ + cw) + cw

]︸ ︷︷ ︸
=:c9

‖w‖∞. (6.23)

Using Lemma 6.1 to bound |α̂[k]− α[k]| , we can further refine (6.22) so long as ψ[k −
1] 6= 0:

|ψ[k+1]| ≤ eaT
α[k + 1]

α[k]

α̂[k − 1]

α̂[k]

(∣∣1− ea∆[k−1]
∣∣+

cw‖w‖∞
eaT |ψ[k − 1]|

)
|ψ[k]|+cw‖w‖∞, k ≥ 2.

(6.24)
For reasons that will become clear later in the proof, it will be important to determine
when

eaT
∣∣1− ea∆[k−1]

∣∣+
cw‖w‖∞
|ψ[k − 1]|

< 1,

which we show in the following claim.

Claim 5. There exists constants β > 0 and ρ ∈ [0, 1) so that if |ψ[k]| > β‖w‖∞ then
ψ[k − 1] 6= 0 and

eaT
∣∣1− ea∆[k−1]

∣∣+
cw‖w‖∞
|ψ[k − 1]|

< ρ, k ≥ 2.
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Proof. Let k ≥ 2 be arbitrary.

From the choice of τl and τu, it follows that there exists an ε ∈ (0, 1) so that

τl >
−1

aT
ln
(
1 + (1− ε)e−aT

)
τu <

−1

aT
ln
(
1− (1− ε)e−aT

)
We start by obtaining a bound on eaT

∣∣1− ea∆[k−1]
∣∣ using the bounds on the delay

derivatives, τu and τl; to do so we must analyze two cases:

Case 1: Increasing delay: τ [k] ≥ τ [k − 1]

For this case, we have that

τ [k − 1] ≤ τ [k] ≤ τ [k − 1] + τuT

⇒ 0 ≤ −∆[k − 1] <
−1

a
ln
(
1− (1− ε)e−aT

)
⇒ 0 ≥ ∆[k − 1] >

1

a
ln
(
1− (1− ε)e−aT

)
,

so

eaT
∣∣1− ea∆[k−1]

∣∣ = eaT
(
1− ea∆[k−1]

)
< eaT

(
1− eln(1−(1−ε)e−aT )

)
= eaT

(
1− 1 + (1− ε)e−aT

)
= 1− ε.

Case 2: Decreasing delay: τ [k] ≤ τ [k − 1]

For this case, we have that

τ [k − 1] ≥ τ [k] ≥ τ [k − 1] + τlT

⇒ 0 ≥ −∆[k − 1] >
−1

a
ln
(
1 + (1− ε)e−aT

)
⇒ 0 ≤ ∆[k − 1] <

1

a
ln
(
1 + (1− ε)e−aT

)
,

so

eaT
∣∣1− ea∆[k−1]

∣∣ = eaT
(
ea∆[k−1] − 1

)
< eaT

(
eln(1+(1−ε)e−aT ) − 1

)
= eaT

(
1 + (1− ε)e−aT − 1

)
= 1− ε.
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Combining both cases, it is clear that

eaT
∣∣1− ea∆[k−1]

∣∣ < 1− ε,

so if

|ψ[k − 1]| > 2

εcw︸︷︷︸
=:β1

‖w‖∞,

then

eaT
∣∣1− ea∆[k−1]

∣∣+
cw‖w‖∞
|ψ[k − 1]|

< 1− ε+
cwε

2cw
< 1− ε

2︸ ︷︷ ︸
=:ρ

.

All that remains is to convert the bound on |ψ[k − 1]| to one on |ψ[k]|. To do so,
consider Claim 4 (with k replaced with k− 1): it implies that if |ψ[k− 1]| ≤ β1‖w‖∞ then

|ψ[k]| ≤ c4β1 + cw︸ ︷︷ ︸
=:β

‖w‖∞,

which means that if |ψ[k]| > β‖w‖∞, then |ψ[k − 1]| > β1‖w‖∞ which completes the
proof.

Claim 6. There exists constants c7 > 0 and ρ ∈ [0, 1) such that

|ψ[k]| ≤ c7ρ
k

(
sup

θ∈[−τ ,0]

|x0(θ)|

)
+ c7‖w‖∞, k ≥ 0.

Proof. We start by bounding the one step growth of the output for k ≥ 2. To do so, we
must consider two cases:

Case 1: |ψ[k]| > β‖w‖∞.

From Claim 5, we have that ψ[k− 1] 6= 0, so (6.24) holds; applying the rest of of Claim
5 to (6.24) yields

|ψ[k + 1]| ≤ ρ
α[k + 1]

α[k]

α̂[k − 1]

α̂[k]
|ψ[k]|+ cw‖w‖∞, k ≥ 2.

Case 2: |ψ[k]| ≤ β‖w‖∞.
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We apply Claim 4 yielding

|ψ[k + 1]| ≤ c4|ψ[k]|+ cw‖w‖∞, k ≥ 2;

since ψ[k] ≤ β‖w‖∞, it follows that

|ψ[k + 1]| ≤ (c4β + cw) ‖w‖∞, k ≥ 2,

and since

ρ
α[k + 1]

α[k]

α̂[k − 1]

α̂[k]
|ψ[k]| ≥ 0,

it follows that

|ψ[k + 1]| ≤ ρ
α[k + 1]

α[k]

α̂[k − 1]

α̂[k]
|ψ[k]|+ (c4β + cw) ‖w‖∞, k ≥ 2.

We can combine both cases, yielding an expression valid regardless of the size of |ψ[k]|:

|ψ[k + 1]| ≤

ρα[k + 1]

α[k]

α̂[k − 1]

α̂[k]︸ ︷︷ ︸
=:acl[k]

 |ψ[k]|+ (c4β + cw) ‖w‖∞, k ≥ 2. (6.25)

Defining the state transition matrix

φcl(k, j) := acl[k − 1]× acl[k − 2]× · · · × acl[j], k ≥ j ≥ 2, (6.26)

it follows that

φcl(k, j) = ρ
α[k]

α[k − 1]

α̂[k − 2]

α̂[k − 1]
ρ
α[k − 1]

α[k − 2]

α̂[k − 3]

α̂[k − 2]
× · · · × ρα[j + 1]

α[j]

α̂[j − 1]

α̂[j]

= ρk−j
α[k]

α[j]

α̂[j − 1]

α̂[k − 1]

≤ ρk−jg2e2aτ , (6.27)

so it follows that the solution of (6.25) satisfies

|ψ[k]| ≤ |φcl(k, 2)||ψ[2]|+
k−1∑
j=2

|φcl(k − 1, j)| (c4β + cw) ‖w‖∞

≤ ρk−2g2e2aτ |ψ[2]|+ g2e2aτ (c4β + cw) ‖w‖∞
k−1∑
j=2

ρk−1−j

≤ ρk−2g2e2aτ |ψ[2]|+ g2e2aτ (c4β + cw)
1

1− ρ
‖w‖∞, k ≥ 2. (6.28)
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To complete the proof, we use (6.23) to replace |ψ[2]| in (6.28) yielding

|ψ[k]| ≤ ρk−2g2e2aτ (c8 sup
θ∈[−τ ,0]

|x0(θ)|+ c9‖w‖∞) + g2e2aτ (c4β + cw)
1

1− ρ
‖w‖∞

≤ g2e2aτc8ρ
−2︸ ︷︷ ︸

=:γ3

ρk sup
θ∈[−τ ,0]

|x0(θ)|+ g2e2aτ

(
c9 + (c4β + cw)

1

1− ρ

)
︸ ︷︷ ︸

=:γ4

‖w‖∞, k ≥ 2.(6.29)

Defining
c7 := max{γ3, γ4, e

aT (1 + geaτ )ρ−1, eaTgeaτ + cw, 1},

it follows from (6.29) and the bounds on |ψ[0]| and |ψ[1]| given in (6.19) and (6.20) that

ψ[k] ≤ c7ρ
k sup
θ∈[−τ ,0]

|x0(θ)|+ c7‖w‖∞, k ≥ 0,

as desired.

We are now in a position to prove (ii), starting with (ii)-(a). Since, for all k ≥ 0, we
have that α̂[k] ∈ [e−aτ , g], (ii)-(a) clearly holds.

We now consider (ii)-(b). Using (6.16) and noting that 1
α̂[k]
≤ eaτ ≤ eaT we have that

|ν[k]| ≤
(

aeaT

b(1− e−aT1)

)
︸ ︷︷ ︸

=:c10

|ψ[k]|, k ≥ 0.

Using Claim 6, defining λ := 1
T

ln(ρ) and c1 := c10c7 it follows that

|ν[k]| ≤ c1e
λkT

(
sup

θ∈[−τ ,0]

|x0(θ)|

)
+ c1‖w‖∞, k ≥ 0, (6.30)

so (ii)-(b) holds.

Now we turn to (ii)-(c). While Claim 6 provides a bound on |ψ[k]| = |yw(kT )|, we need
a bound on the inter-sample behaviour; we start with the k ≥ 1 case. From the second
equation of (6.2), we have that

yw(t) = x(t− τ(t)) + w(t), t ≥ 0,
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and solving the first equation of (6.2) for t ∈ [kT, kT + T ) yields

x(t− τ(t)) = ea(t−τ(t)−kT+τ(kT ))x(kT − τ(kT )) +

∫ t−τ(t)

kT−τ(kT )

gbea(t−τ(t)−q)ud(q)dq; (6.31)

recalling that x(kT −τ(kT )) = yw(kT )−w(kT ), we can re-write (6.31) for t ∈ [kT, kT +T )
as

yw(t) = ea(t−τ(t)−kT+τ(kT ))(yw(kT )− w(kT )) + w(t) +

∫ t−τ(t)

kT−τ [k]

gbea(t−τ(t)−q)ud(q)dq. (6.32)

Taking the magnitude of (6.32), using Claim 6 to bound yw(kT ) and using (6.30) to bound
|ν[k]|, and extending the integral limits to the maximum possible interval, we obtain:

|yw(t)| ≤ ea(T+τ)|yw(kT )|+ (1 + ea(T+τ))‖w‖∞ +

∫ kT+T

kT−τ
gbea(kT+T−q)(|ν[k]|+ ‖w‖∞)dq

≤ ea(T+τ)|yw(kT )|+ (1 + ea(T+τ))‖w‖∞ +
gb

a
(ea(T+τ) − 1)|ν[k]|+

gb

a
(ea(T+τ) − 1)‖w‖∞

≤
(
ea(T+τ)c7 +

gb

a
(ea(T+τ) − 1)c1

)
e−λT︸ ︷︷ ︸

=:γ6

eλt

(
sup

θ∈[−τ ,0]

|x0(θ)|

)
+

[
(1 + ea(T+τ)) +

gb

a
(ea(T+τ) − 1)(1 + c1) + c2

7e
a(T+τ)

]
︸ ︷︷ ︸

=:γ7

‖w‖∞, t ∈ [kT, kT + T ).

We can perform a nearly identical analysis for the k = 0 case, which we omit for space
reasons, so defining γ := max{γ6, γ7} we conclude that (ii)-(c) holds.

Finally, part (i) follows immediately from parts (ii)-(b) and (ii)-(c).

6.4 Simulation

To explore the performance of our proposed controller, we will perform four simulations
on the nominal plant

ẋ(t) = x(t) + gud(t)
yw(t) = x(t− τ(t)) + w(t), t ≥ 0

}
(6.33)
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Figure 6.3: The bounds on τl and τu as a function of the maximum delay for the plant
(6.33).

This plant has no gain margin limitation, but Theorem 15 of [35] proves that this plant
has an LTI delay margin of two.5

Before performing the simulations, we first plot the bounds on τl and τu given by
Theorem 6.1 for the plant (6.33) as a function of the maximum size of the unknown delay;
since we can make the period as close as we want to the maximum length of the unknown
delay τ , we will calculate τl and τu with T = τ , as shown in 6.3. As can be seen, while the
allowable time variation is small around the LTI delay margin of two, it rapidly increases
as the delay is made smaller.

Example 6.1. For this simulation, we set the maximum delay equal to the LTI delay
margin of two and the maximum gain to four. Our uncertainty set for the delay is then

5In [35], an LTI controller, parameterized by δ > 0, was constructed which provides a delay margin of
at least 2− δ; however, the gain margin provided by this controller was shown to tend to zero as δ tends
to zero. Hence, while there is no gain margin limitation when there is no delay, we expect that there will
be one when there is a delay, especially when it is unknown.
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given by

T := {τ ∈ AC∞ | τ(t) ∈ [0, 2] for all t ≥ 0; τ̇ ∈ [τl, τu] for almost all t ≥ 0} ,

and our overall uncertainty model is given by:

G(τ , τu, τl, g) :=

{
ẋ(t) = ax(t) + gbu(t)
y(t) = x(t− τ(t))

∣∣∣∣ τ ∈ T , g ∈ [1, 4]

}
.

To design our controller, we set T1 = 0.1, T2 = 2.001 resulting in an overall period
T = 2.101. With this period, Theorem 6.1 states that the controller stabilizes G if
τl ∈ (−0.05493, 0] and τu ∈ [0, 0.06211), so to perform the simulations, we set τl = −0.05438
and τu = 0.06149 and run the simulation with random noise with a maximum magnitude
of 10−2, with a plant initial condition x(θ) = 0.1 for θ ∈ [−τ , 0], with controller initial
conditions ψ[−1] = 0, ν[−1] = 1, and with the unknown gain set to 2.5, with the results
and τ shown in Figure 6.4. Despite changing the delay at 99% of the maximum allowed
by Theorem 6.1 for almost every time step, we can see that the controller stabilizes the
system and handles the noise.

Example 6.2. For this simulation, we set the maximum delay equal to four, which is twice
the LTI delay margin, and the maximum gain to four. Our uncertainty set for the delay is
then given by

T := {τ ∈ AC∞ | τ(t) ∈ [0, 4] for all t ≥ 0; τ̇ ∈ [τl, τu] for almost all t ≥ 0} ,

and our overall uncertainty model is given by:

G(τ , τu, τl, g) :=

{
ẋ(t) = ax(t) + gbu(t)
y(t) = x(t− τ(t))

∣∣∣∣ τ ∈ T , g ∈ [1, 4]

}
.

To design our controller, we set T1 = 0.1, T2 = 4.001 resulting in an overall period
T = 4.101. With this period, Theorem 6.1 states that the controller stabilizes G if
τl ∈ (−0.004004, 0] and τu ∈ [0, 0.004071), so to perform the simulations, we set them
to 90% of the maximum allowed,6 namely τl = −0.003604 and τu = 0.003664 and run
the simulation with random noise with a maximum magnitude of 10−2, with a plant initial
condition x(θ) = 0.1 for θ ∈ [−τ , 0], with controller initial conditions ψ[−1] = 0, ν[−1] = 1,
and with the unknown gain set to 2.5, with the results and τ shown in Figure 6.5. Despite
the controller taking a considerable amount of time to handle the initial condition, the
controller stabilizes the system and handles the noise with little difficulty.

6In the next example, we will see that the output behaves in an unexpected manor when we approach
the limits of τl and τu give by Theorem 6.1.
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Figure 6.4: Example 6.1: the output, control signal and estimation errors with τ equal to
the LTI delay margin.
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Figure 6.5: Example 6.2: the output, control signal and estimation errors with τ equal
to two times the LTI delay margin with τu and τl at 90% of the maximum allowed by
Theorem 6.1.
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Figure 6.6: Example 6.3: the output, control signal and estimation errors with τ equal
to two times the LTI delay margin with τu and τl at 99% of the maximum allowed by
Theorem 6.1.

Example 6.3. For this simulation, we consider the same uncertainty set as the previous
example except we will allow the delay to vary at 99% of the maximum allowed by Theorem
6.1 instead of 90%. To design our controller, we set T1 = 0.1, T2 = 4.001 resulting in
an overall period T = 4.101. With this period, Theorem 6.1 states that the controller
stabilizes G if τl ∈ (−0.004004, 0] and τu ∈ [0, 0.004071), so to perform the simulations, we
set τl = −0.003964 and τu = 0.004030 and run the simulation with random noise with a
maximum magnitude of 10−2, with a plant initial condition x(θ) = 0.1 for θ ∈ [−τ , 0], with
controller initial conditions ψ[−1] = 0, ν[−1] = 1, and with the unknown gain set to 2.5,
with the results and τ shown in Figure 6.6. While the output continues to grow during
the first 500 seconds, this type of behaviour is predicted in the proof of Theorem 6.1 via
the telescoping product shown in equations (6.26) and (6.27). Despite this initial increase
in the output, the controller clearly stabilizes the system and handles the noise with little
difficulty.
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Figure 6.7: Example 6.4: the output, control signal and estimation errors for a randomly
varying delay.

Example 6.4. For this simulation, we set the maximum delay to 0.8, and the unknown gain
to four. Unlike the previous two examples, this time we allow the delay to vary randomly
at each simulation time step of 0.001 seconds. While this scenario was not proven in
Theorem 6.1, simulations suggest that stability is maintained for random delays of up to
approximately half the LTI delay margin. To design the controller for this simulation,
we set T1 = 0.1, T2 = 0.801 resulting in an overall period T = 0.901, and we run the
simulation with random noise with a maximum magnitude of 10−2, with a plant initial
condition x(θ) = 0.1 for θ ∈ [−τ , 0], with controller initial conditions ψ[−1] = 0, ν[−1] = 1,
and with the unknown gain set to 2.5; the results are shown in Figure 6.7, and as can be
seen, despite the extreme variation in the delay, the controller stabilizes the system.
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6.5 Conclusions and Future Work

In this chapter, we propose a controller which stabilizes a first order unstable LTI
continuous-time plant with an uncertain arbitrarily large time varying delay and an arbi-
trarily large uncertain gain. The proposed controller uses a simple generalized hold which
enables a simple update law for estimating the unknown gain and delay at each time step,
which is then used for a simple feedback control law. This controller, while mildly non-
linear and periodic, not only provides BIBO stability, but also guarantees the exponential
decay of the plant initial conditions so long as the delay varies less than a simple for-
mula relating the maximum delay duration, the location of the unstable pole and the time
variation of the delay. The work is reported in [15].

For future work, we would like to consider uncertainty and time variations in the
pole location, time variations in the gain, and proving the maximum delay for which
the controller can maintain stability when the delay is random.
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Chapter 7

Open Problems

In this chapter, we formally state two problems related to the achievable delay margin of
discrete-time and sampled data systems. We already considered the discrete-time prob-
lem in Chapter 3, where we showed that determining the achievable discrete-time delay
margin is a natural simultaneous stabilization problem, and using a classic simultaneous
stabilization result, we provided a simple necessary and sufficient condition for when the
discrete-time achievable delay margin is non-zero. However, we also showed in Chapter 3
that using existing simultaneous stabilization results provide no new insight into the solu-
tion to the general problem, even for the simplest case of a first order plant with a single
unstable pole. As for the sampled-data problem, in Chapter 3 we briefly considered the
case of a continuous time plant with a discrete-time controller and delay; that problem,
so long as the sampling period is non-pathological, would be solved with a solution to the
discrete-time problem. So, in this chapter, we consider the other sampled data problem,
that of a continuous-time plant with a continuous-time delay and a discrete-time controller.
While we do not solve either problem, in both cases, we show how the proof method used
to solve the continuous-time problem in [35] breaks down.

This chapter is organized as follows. In Section 7.1, we will explain how [35] was
able to solve the continuous-time delay margin problem for the simplest unstable plant,
namely 1

s−p , with p > 0. In Section 7.2, we re-state the discrete-time delay margin problem
previously introduced in Chapter 3, and show how the proof method used to solve the
continuous-time problem in [35] breaks down for the plant 1

z−p , p > 1, in the discrete-time
setting. In Section 7.3, we formally state the sampled data delay margin problem, and
again, we show how the proof method employed in [35] breaks down and in Section 7.4,
we summarize the chapter and discuss some future work.
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Figure 7.1: The continuous-time delay margin problem setup.

7.1 Continuous-Time Achievable Delay Margin

We first want to quickly summarize how [35] was able to solve certain cases of the
continuous-time achievable delay margin problem. To do so, we will first formally state the
continuous-time problem, so, with P0(s) the nominal plant, our set of admissible delayed
plants is given by:

Pτ :=
{
e−sτP0(s) : τ ∈ [0, τ ]

}
.

To define stability, we consider the feedback setup shown in Figure 7.1, and we say that a
controller C(s) stabilizes a plant P (s) if the transfer function from[

d
w

]
→
[
y
u

]
belongs to H2×2

∞ (C+), i.e.,

(1 + PC)−1, C(1 + PC)−1, P (1 + PC)−1, PC(1 + PC)−1 ∈ H∞(C+).

With stability defined, the controller dependent delay margin1 is given by

DM(P0, C) := sup{τ ≥ 0 : C stabilizes Pτ},

and the more fundamental plant property, the achievable delay margin is given by

DM(P0) := sup{DM(P0, C) : C is FDLTI and stabilizes P0}.
1See Section 1.2 for the solution to the continuous-time controller dependent delay margin.
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In [35], for the nominal plant

P0(s) =
1

s− p
, p > 0,

the authors were able to prove that DM(P0) = 2
p
,2 by employing the inner transfer function

Bα(s) =
1− αs
1 + αs

, α ≥ 0. (7.1)

and applying the following logic:

(i) Any controller C(s) that stabilizes P0(s) also stabilizes P0(s)Bα(s) for α = 0.
(ii) The closed loop poles of P0(s)C(s)Bα(s) move continuously in α.

(iii) Hence, C(s) stabilizes P0(s)Bα(s) for small α as well.
(iv) For α = p−1, P0(s) and Bα(s) have an unstable pole/zero cancellation. As a result,

there exists an α∗ ∈ (0, p−1) and a ω∗ ∈ R such that

B∗α(jω∗)P0(jω∗)C(jω∗) = −1.

(v) Therefore, C(s) does not stabilize P0(s)B∗α(s).
(vi) Find the smallest value of τ ∗ such that e−jω

∗τ∗ = B∗α(jω∗), and note that since both
functions have magnitude one on the imaginary axis, that we simply need to equate
their phases.

(vii) By equating their phases, we can show that τ ∗ ≤ 2α∗; since α∗ ≤ 1
p

it follows that

τ ∗ ≤ 2
p
.

(viii) Observe that
e−jω

∗τ∗P0(jω∗)C(jω∗) = −1,

and hence, the system is unstable with a delay of τ ∗ seconds.
(ix) Since the upper bound on α∗ and τ ∗ is controller independent, DM(P0) ≤ 2

p
.

As will be seen in the next two sections, attempts to extend this logic to the discrete-
time and sampled data problems fail.

7.2 Discrete-Time Achievable Delay Margin

We start by re-stating the discrete-time achievable delay margin problem first introduced
in Chapter 3; unlike in that chapter, we can consider transfer functions in z instead of

2This bound is in fact tight, as also shown in [35] by constructing a controller which provides a delay
margin arbitrarily close to 2

p .
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Figure 7.2: The discrete-time delay margin problem setup.

λ = z−1. Let the real rational and proper transfer function G0[z] denote the nominal
plant, and let

Gn[z] := z−nG0[z], n ∈ N,

denote the delayed versions of the nominal plant.

To define stability in this chapter, we consider the feedback setup shown in Figure 7.2
and say that a controller K stabilizes a plant G if the transfer function from[

d
w

]
→
[
y
u

]
belongs to H2×2

∞ (D), i.e.,

(1 +KG)−1, K(1 +KG)−1, G(1 +KG)−1, KG(1 +KG)−1 ∈ H∞(D).

To formally define the delay margin, we adopt the notation from [35]. If a controller
K stabilizes a plant G0, then the delay margin is

DM(G0, K) := max{n ≥ 0 : K stabilizes G0, G1, · · · , Gn}.

While DM(G0, K) is a useful quantity to know about a particular plant/controller combi-
nation, a more fundamental property of the plant is

DM(G0) := max{DM(G0, K) : K is FDLTI and stabilizes G0},

which is simply the maximum achievable delay margin when using a stabilizing FDLTI
controller.
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We want to employ the same technique used to solve the continuous-time problem
summarized in Section 7.1, to the discrete-time delay margin problem. To that end, define
an n sample discrete-time delay

Fn[z] =
1

zn
, (7.2)

and the discrete-time inner transfer function,

Bα[z] :=
1− αz
z − α

, α ∈ [0, 1) (7.3)

which is the discrete-time analogue of (7.1) used for the continuous-time problem summa-
rized in Section 7.1. Applying the logic used for the continuous-time problem yields:

(i) Any controller K[z] that stabilizes G0[z] also stabilizes G0[z]K[z]Bα[z] for α = 0.
(ii) The closed loop poles of G0[z]K[z]Bα[z] move continuously in α.

(iii) Hence, K[z] stabilizes G0[z]Bα[z] for small α as well.
(iv) For α = p−1, G0[z] and Bα[z] have an unstable pole/zero cancellation. As a result,

there exists an α∗ ∈ (0, p−1) and an Ω∗ ∈ R such that

B∗α(ejΩ
∗
)G0(ejΩ

∗
)K(ejΩ

∗
) = −1.

(v) Therefore, K[z] does not stabilize G0[z]B∗α[z].

Unfortunately, step (vi) of Section 7.1 converted to the discrete-time setting requires
us to find a permissible delay n∗ such that

e−jΩ
∗n∗ = B∗α[ejΩ

∗
];

while this equation has a solution for n∗ ∈ R, it does not (in general) have a solution
for n∗ ∈ N. In other words, the proof employed in [35] utilizes the fact that the delay is
allowed to vary continuously so that it continuously deforms the resulting Nyquist plot.
In discrete-time, since the allowable delays take on integer values, the delay can not vary
continuously, and as a result, a change in the delay does not continuously deform the
Nyquist plot.

As a result of the difficulties in applying the simultaneous stabilization results to three
or more plants and the difficulties in extending the approach adopted in [35], the discrete-
time achievable delay margin problem remains open.
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Figure 7.3: A block diagram of the feedback control problem with a time delay.

7.3 Achievable Delay Margin for Sampled Data Sys-

tems with a Continuous-Time Delay

In this section we consider the sampled data delay margin problem with a continuous-time
delay as shown in Figure 7.3. Like the discrete-time problem described in the previous
section, we will show that extending the proof method employed in [35] fails, although the
failure occurs for a different reason than the discrete-time case.

Using the feedback setup shown in Figure 7.3, we say that a finite dimensional LTI
controller D stabilizes a plant P if the map from[

w1

w2

]
→
[
y
u

]
has a bounded norm. Since P and D are LTI, this definition is equivalent to the normal
notion of bounded input bounded output stability (i.e., if ‖w1‖∞ < ∞ and ‖w2‖∞ < ∞
then ‖y‖∞ <∞ and ‖u‖∞ <∞).

Given a nominal plant P0(s), our uncertainty set is the same as the continuous-time
case, namely,

Pτ :=
{
e−sτP0(s) : τ ∈ [0, τ ]

}
;

the controller dependent delay margin is then given by

DM(P0, D, T ) := sup{τ > 0 : D stabilizes P0(s)e−sτ , τ ∈ [0, τ)},

and the controller independent delay margin is given by

DM(P0, T ) := sup{DM(P0, D, T ) : D stabilizes P0}.
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From [11], we can determine the stability of a sampled data system by analyzing an
appropriate discrete-time system. So to that end, consider a continuous-time linear plant
P0 with a state space representation

ẋ = Ax+Bu

y = Cx+Du,

with (A,B) controllable and (C,A) observable; to save space, we will denote P0(s)’s state
space representation by (A,B,C,D). We define the discretization of P0 with a sampling
rate of T seconds by G0, which has a state space matrices given by

Ad := eAT

Bd :=

∫ T

0

eAtBdt

Cd := C

Dd := D, (7.4)

and a corresponding transfer function G0[z] = Dd + Cd(zI − Ad)
−1Bd. Recalling the

definition of pathological sampling given in Section 2.3, it follows from [11] that if T is
non-pathological with respect to A, then the map[

w1

w2

]
→
[
y
u

]
has bounded norm (and hence the system given by Figure 7.3 is closed loop stable) if and
only if the transfer functions

(1 +G0D)−1, G0(1 +G0D)−1, G0D(1 +G0D)−1 and D(1 +G0D)−1

all belong to H∞(D). From now on, we will assume that T is non-pathological.

We now need a discretization of the delayed version of P0(s), namely
Pτ (s) := P0(s)e−sτ ∈ Pτ ; to simplify the calculations, we will restrict P0(s) to be strictly
proper, so Pτ has the following state space representation:

ẋ = Ax+Bu(t− τ)

y = Cx. (7.5)

We would like to discretize this delayed plant, in order to obtain a discrete-time model
Gτ [z], using the same integration technique that yields (7.4), so that we can use the

151



stability results from [11]. To do this, we use the method outlined in pages 38-42 of [1];
first define

d :=
⌈ τ
T

⌉
and

τ ′ := τ modulo T,

so that we can write the delay as

τ = (d− 1)T + τ ′, τ ′ ∈ (0, T ], d ∈ N,

and then define

Φ = eAT

Γ0 =

∫ T−τ ′

0

eAsBds

Γ1 = eA(T−τ ′)
∫ τ ′

0

eAsBds. (7.6)

If τ ∈ (0, T ), then d = 1 and τ = τ ′, and the state space representation for Gτ is[
x(k + 1)
u(k)

]
=

[
φ Γ1

0 0

]
︸ ︷︷ ︸

=:Aτ

[
x(k)

u(k − 1)

]
+

[
Γ0

I

]
︸ ︷︷ ︸

=:Bτ

u(k); (7.7)

if τ ≥ T , and hence d =
⌈
τ
T

⌉
> 1, we get the following state space representation:

x(k + 1)
u(k − d+ 1)
u(k − d+ 2)

...
u(k − 1)
u(k)


=



φ Γ1 Γ0 0 · · · 0
0 0 I 0 · · · 0
0 0 0 I · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · I
0 0 0 0 · · · 0


︸ ︷︷ ︸

:=Aτ



x(k)
u(k − d)

u(k − d+ 1)
...

u(k − 2)
u(k − 1)


+



0
0
0
...
0
I


︸ ︷︷ ︸

:=Bτ

u(k). (7.8)

In both cases, Cτ is given by
Cτ = [C 0],

and
Gτ [z] = Cτ (zI − Aτ )−1Bτ .
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With this discretization, and using [11], it follows that

DM(P0, D, T ) = sup{τ > 0 : D stabilizes Gτ , τ ∈ [0, τ ]}.

In order to show the difficulties in applying the proof method of [35] to this problem,
we will consider the simplest problem, namely, a first order plant with a single unstable
pole: with p > 0, let

P0(s) =
1

s− p
, (7.9)

which has a state space representation given by

ẋ = px+ u

y = x

Using (7.4), it is easy to show that the discretized version of P0, denoted by G0, has a
transfer function given by

G0[z] =
epT − 1

p(z − epT )
. (7.10)

To discretize Pτ , we apply (7.6) yielding

Φ = epT

Γ0 =

∫ T−τ ′

0

epsds

=
epT (e−pτ

′ − e−pT )

p

Γ1 = ep(T−τ
′)

∫ τ ′

0

epsds.

=
epT (1− e−pτ ′)

p
, (7.11)

with a state space representation given by (7.7) if τ < T or (7.8) if τ ≥ T . However, if we
look at the x(k + 1) term of (7.7) and (7.8), we get the following expression in both cases:

x[k + 1] = Φx[k] + Γ1u[k − d] + Γ0u[k − d+ 1].
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Since y = x for this first order problem, we can find the transfer function, denoted Gτ [z],
of the discretized plant, which is given by

Gτ [z] =
Y [z]

U [z]

=
Γ1 + zΓ0

zd(z − Φ)

=
epT [1− e−pτ ′ + z(e−pτ

′ − e−pT )]

p(z − epT )zd
. (7.12)

Finally, we isolate the effect of the delay in discrete-time by recalling that d :=
⌈
τ
T

⌉
and

τ ′ := τ modulo T and then defining the sampled data delay:

∆τ [z] :=
Gτ [z]

G0[z]

= epT
1− e−pτ ′ + z(e−pτ

′ − e−pT )

zd(epT − 1)
. (7.13)

We would like to use this delay function to find a bound on DM(P0, T ) using the same
method employed in [35] and described in Section 7.1. When we tried to apply this method
to the discrete-time problem in Section 7.2, the method failed due to the non-continuous
nature of a discrete-time delay. Fortunately, it is easy to show that ∆τ (e

jΩ) is continuous
in the delay for all Ω ∈ [0, π), so this is no longer the problem. However, there is a new
difficulty introduced by ∆τ , namely, unlike both a continuous-time and discrete-time delay,
∆τ is not an inner function as seen in the Bode plot of ∆τ shown in Figure 7.4. As a result,
unlike the continuous-time and discrete-time problems, we can not simply equate it with
another inner function, i.e., we can not complete step (vi):

∆τ [e
−jΩ∗τ∗ ] = B∗α[ejΩ

∗
],

since for almost all values of τ ∗, we have that

|∆τ [e
−jΩ∗τ∗ ]| 6= |B∗α[ejΩ

∗
]|.

So, just as for the discrete-time problem, there is no current solution to this problem.

7.4 Conclusions and Future Work

In this chapter, we briefly summarized the proof used in [35] to solve the continuous-time
delay margin problem, and then considered the same problem in two different settings,
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namely, discrete-time and a sampled data setup. In both cases, we demonstrated how the
proof fails to translate to each problem, and as a result, they remain unsolved and are a
topic of future research.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we considered two different problems involving unknown time delays. The
first problem was the so-called achievable delay margin problem, which is determining
the maximum allowable unknown delay for which a single LTI controller can maintain
stability. The second problem was finding a controller design algorithm which stabilizes
any continuous-time LTI plant with an arbitrarily large unknown time delay and gain.

For the achievable delay margin problem, we first considered the problem in the discrete-
time setting. After setting up the problem, we noted that this is a special case of the
classical simultaneous stabilization problem, which has a simple, elegant and necessary
and sufficient test for the case of two plants; using this test, we were able to determine
that the discrete time achievable delay margin is non-zero if and only if the discrete-time
plant has no real, negative unstable poles. Unfortunately, no necessary and sufficient
conditions exist for the simultaneous stabilization problem of three or more plants, and
we were unable to glean any further insight into the discrete-time achievable delay margin
problem from further application of the two plant simultaneous stabilization test. Since
the achievable delay margin problem has been solved in the continuous-time setting [35]
(though for some plant configurations the bounds are not tight), we also attempted to
solve the discrete-time and sampled-data achievable delay margin problems by extending
the proof used in [35] to these different settings. Unfortunately, for both the sampled-data
and discrete-time settings, we were able to explain why the proof used in [35] does not
extend to these new time settings.
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For the second problem of stabilizing any continuous-time LTI plant with an arbitrarily
large unknown gain and delay, we were able to convert the infinite dimensional continuous-
time problem into a finite dimensional discrete-time one through the use of a simple gener-
alized hold. Furthermore, the resulting discrete-time problem was one amenable to a class
of classical adaptive controllers, but not to many of the more popular adaptive controllers
due to the lack of convexity in the resulting discrete-time uncertainty set. Using an ad-
missible off-the-shelf adaptive controller, we were able to obtain a weak form of stability
for any LTI plant with an unknown but upper bounded time delay and gain; unfortu-
nately, the performance was poor in simulation. Hence, we next considered the use of
novel estimators for the unknown gain and delay, and using those estimates, we were able
to design a purpose built adaptive controller which not only provided BIBO stability, but
also guaranteed the exponential decay of the plant initial conditions, tolerated occasional
jumps in the unknown gain and delay, and was robust to un-modelled dynamics. Finally,
for the first order case, through the use of a similar, but simplified estimator, we were able
to prove toleration to continuous variations in the unknown delay, and found an explicit
bound on the rate of change of the delay in terms of the maximum allowable delay and the
unknown plant pole for which the controller BIBO stabilized the closed loop system.

8.2 Future Work

For the discrete-time achievable delay margin problem, we would like to solve the general
problem, as done in [35] for the continuous-time case. To do so, we would likely start with
the simple case of a plant with a single unstable pole. While the proof method from [35]
breaks down, it does provide insight into the possible solution for this case, and we believe
that there does exist a fundamental limit on the achievable delay margin in the discrete-
time setting. Furthermore, if we can obtain a solution to the simplest case, we believe that
it should be possible to leverage that solution for different plant configurations, and as a
result, solve the general problem. For the sampled-data problem, since the proof method
of [35] breaks down differently from the discrete-time problem, a clever argument may be
able to salvage a solution for the plant P (s) = 1

s−p , p > 0; however it may still be difficult
to extend the result to any continuous time plant with a single unstable pole, let alone the
general problem. Of course, we would still like to obtain a solution to the general problem
in the sampled-data setting.

For the second problem, that of stabilizing any LTI plant with an arbitrarily large
unknown gain and delay, we would like to extend the results presented here in numerous
ways. For the results of Chapter 4, we would like to consider a larger uncertainty set,
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namely, linearly parameterized unknown A and B matrices along with the arbitrarily large
time delay. We would also like to explore different adaptive controllers with the hope of
obtaining a better form of stability, or at least better performance in simulation. For the
results of Chapter 5, we would like to show that the proposed controller can tolerate slow
variations in the unknown gain and delay; indeed, from our simulations, it appears that the
controller can tolerate such variations. We would also like to consider ways to improve the
performance of the controller, for example, we would like to consider tracking of certain
types of inputs, for example, a step input; we would also like to improve the transient
behaviour of the controller by considering factors like the placement of the eigenvalues
or by some clever manipulations of the delay and gain estimates to mitigate the effect
of a poor estimate. We would also like to consider larger uncertainty sets, for example,
dropping the requirement that we know the sign of the unknown gain, or including some
uncertainty in both the A and B state space matrices. We would also like to extend this
design to multi-input multi-output systems. For the first order case considered in Chapter
6, we would like to consider uncertainty in the pole location, as well as randomly varying
delays.
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Appendix A

List of Acronyms

This thesis uses numerous acronyms; for convienence, they are listed below:

LTI Linear Time Invariant

FDLTI Finite Dimensional Linear Time Invariant

LTV Linear Time Varying

NLTV Non-Linear Time Varying

SISO Single-Input Single-Output

LMI Linear Matrix Inequality

BIBO Bounded Input Bounded Output

RHS Right Hand Side

LHS Left Hand Side

PBH Popov-Belevitch-Hautus

Table A.1: List of Acronyms
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[1] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems (3rd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[2] V. Blondel and M. Gevers. Simultaneous Stabilizability of Three Linear Systems
is Rationally Undecidable. Mathematics of Control, Signals, and Systems (MCSS),
6(2):135–145, June 1993.

[3] H. W. Bode. Relations Between Attenuation and Phase in Feedback Amplifier Design.
Bell System Technical Journal, 19(3):421–454, July 1940.

[4] D. Bresch-Pietri and M. Krstic. Adaptive Tracking Controller for Systems with Un-
known Long Delay and Unknown Parameters in the Plant. In American Control
Conference, 2009. ACC ’09., pages 2575 –2580, june 2009.

[5] D. Bresch-Pietri and M. Krstic. Delay-Adaptive Predictor Feedback for Systems with
Unknown Long Actuator Delay. Automatic Control, IEEE Transactions on, 55(9):2106
–2112, sept. 2010.

[6] Delphine Bresch-Pietri and Miroslav Krstic. Adaptive Trajectory Tracking Despite
Unknown Input Delay and Plant Parameters. Automatica, 45(9):2074 – 2081, 2009.

[7] Chengyu Cao and N. Hovakimyan. Stability Margins of Adaptive Control Architec-
ture. Automatic Control, IEEE Transactions on, 55(2):480 –487, feb. 2010.

[8] Yong-Yan Cao and You-Xian Sun. Robust Stabilization of Uncertain Systems
with Time-Varying Multistate Delay. Automatic Control, IEEE Transactions on,
43(10):1484 –1488, oct 1998.

[9] John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback Control Theory.
Macmillan, New York, NY, 1992.

162



[10] H. Elliott. Direct Adaptive Pole Placement with Application to Nonminimum Phase
Systems. Automatic Control, IEEE Transactions on, 27(3):720 – 722, jun 1982.

[11] Bruce Francis and Tryphon Georgiou. Stability Theory for Linear Time-Invariant
Plants with Periodic Digital Controllers. IEEE Transactions on Automatic Control,
35(9):820–832, 1988.

[12] E. Fridman and U. Shaked. An Improved Stabilization Method for Linear Time-Delay
Systems. Automatic Control, IEEE Transactions on, 47(11):1931 – 1937, nov 2002.

[13] Huijun Gao, Tongwen Chen, and James Lam. A New Delay System Approach to
Network-Based Control. Automatica, 44(1):39 – 52, 2008.

[14] D. Gaudette and D. E. Miller. Sampled Data Adaptive Controllers for Systems with
Unknown Time Delays. In Proceedings of the IFAC World Congress, pages 7654–7659,
Milan, Italy, August 2011. IFAC.

[15] D. L. Gaudette and D.E. Miller. Stabilizing a First Order System with an Arbitrarily
Large Time Varying Delay and an Uncertain Gain. In preperation, Systems and
Control Letters.

[16] D. L. Gaudette and D.E. Miller. Stabilzing any SISO LTI Plant with an Arbitrarily
Large Gain and Delay. Under Review, IEEE Transactions on Automatic Control.

[17] D.L. Gaudette and D.E. Miller. When is the Achievable Discrete-Time Delay Margin
Nonzero? Automatic Control, IEEE Transactions on, 56(4):886 –890, april 2011.

[18] Graham C. Goodwin and Kwai Sang Sin. Adaptive Filtering Prediction and Control.
Dover Publications, Inc., New York, NY, USA, 1984.

[19] K. Gu, V. L. Kharitonov, and J. Chen. Stability of Time-Delay Systems. Birkhauser
Verlag AG, Basel, Switzerland, 2003.

[20] Keqin Gu and Silviu-Iulian Niculescu. Survey on Recent Results in the Stability and
Control of Time-Delay Systems. Journal of Dynamic Systems, Measurement, and
Control, 125(2):158–165, 2003.

[21] Qing-Long Han and Kequin Gu. Stability of Linear Delayed Systems with Time-
Varying Delay: a Generalized Discretized Lyapunov Functional Approach. Asian
Journal of Control, 3(3):170–180, September 2001.

163



[22] Li-Sheng Hu, Tao Bai, Peng Shi, and Ziming Wu. Sampled-Data Control of Networked
Linear Control Systems. Automatica, 43(5):903 – 911, 2007.

[23] M. Ikeda and T. Ashida. Stabilization of Linear Systems with Time-Varying Delay.
Automatic Control, IEEE Transactions on, 24(2):369 – 370, apr 1979.

[24] R.E. Kalman. When is a Linear Control System Optimal? ASME Journal of Basic
Engineering, 86:51–60, mar 1964.

[25] P. Khargonekar, K. Poolla, and A. Tannenbaum. Robust Control of Linear Time-
Invariant Plants Using Periodic Compensation. Automatic Control, IEEE Transac-
tions on, 30(11):1088 – 1096, nov 1985.

[26] P. Khargonekar and A. Tannenbaum. Non-Euclidian Metrics and the Robust Stabiliza-
tion of Systems with Parameter Uncertainty. Automatic Control, IEEE Transactions
on, 30(10):1005 – 1013, oct 1985.

[27] G. Kitagawa. Algorithm For Solving Matrix Equation X=FXFT+S. International
Journal of Control, 25(5):745–753, 1977.

[28] G. Kreisselmeier. An Indirect Adaptive Controller with a Self-Excitation Capability.
Automatic Control, IEEE Transactions on, 34(5):524 –528, may. 1989.

[29] G. Kreisselmeier. Parameter Adaptive Control: a Solution to the Overmodeling Prob-
lem. Automatic Control, IEEE Transactions on, 39(9):1819 –1826, sep. 1994.

[30] G. Kreisselmeier and M. Smith. Stable Adaptive Regulation of Arbitrary nth-Order
Plants. Automatic Control, IEEE Transactions on, 31(4):299 – 305, apr. 1986.

[31] Bohyung Lee and Jang Gyu Lee. Delay-Dependent Stability Criteria for Discrete-Time
Delay Systems. In American Control Conference, 1999. Proceedings of the 1999, pages
319 –320, 1999.

[32] Y.S. Lee, Y.S. Moon, W.H. Kwon, and P.G. Park. Delay-Dependent Robust H∞
Control for Uncertain Systems with a state-delay. Automatica, 40(1):65 – 72, 2004.

[33] W. Michiels, K. Engekborghs, P. Vansevenant, and D. Roose. Continuous Pole Place-
ment for Delay Equations. Automatica, 38:747–761, 2002.

[34] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose. Continuous Pole Place-
ment for Delay Equations. Automatica, 38(5):747 – 761, 2002.

164



[35] Richard H. Midddleton and Daniel E. Miller. On the Achievable Delay Margin Us-
ing LTI Control for Unstable Plants. IEEE Transactions on Automatic Control,
52(7):1194–1207, July 2007.

[36] D.E. Miller. Near Optimal LQR Performance for a Compact Set of Plants. Automatic
Control, IEEE Transactions on, 51(9):1423 –1439, sept. 2006.

[37] D.E. Miller and D.E. Davison. Stabilization in the Presence of an Uncertain Arbitrarily
Large Delay. Automatic Control, IEEE Transactions on, 50(8):1074 – 1089, aug. 2005.

[38] H. Mukaidani. An LMI Approach to Guaranteed Cost Control for Uncertain De-
lay Systems. Circuits and Systems I: Fundamental Theory and Applications, IEEE
Transactions on, 50(6):795 – 800, jun. 2003.

[39] H.N. Nounou and M.N. Nounou. Resilient Adaptive Control of Uncertain Time-Delay
Systems - a Delay-Dependent Approach. In Decision and Control, 2008. CDC 2008.
47th IEEE Conference on, pages 4001 –4006, dec. 2008.

[40] H. Nyquist. Regeneration Theory. Bell System Technical Journal, 11(1):126–147,
January 1932.

[41] N. Olgac and B. T. Holm-Hansen. A Novel Active Vibration Absorption Technique:
Delayed Resonator. Journal of Sound Vibration, 176:93–104, September 1994.

[42] N. Olgac and R. Sipahi. An Exact Method for the Stability Analysis of Time-Delayed
Linear Time Invariant Systems. IEEE Transactions on Automatic Control, 47(5):793–
797, 2002.

[43] M.N.A. Parlakci. Robust Stability of Uncertain Time-Varying State-Delayed Systems.
Control Theory and Applications, IEE Proceedings -, 153(4):469 – 477, july 2006.

[44] K. Pyragas. Control of Chaos via an Unstable Delayed Feedback Controller. Phys.
Rev. Lett., 86(11):2265–2268, Mar 2001.

[45] Mauro Rossi and Daniel E. Miller. Gain/Phase Margin Improvement Using Static
Generalized Sampled-Data Hold Functions. Systems & Control Letters, 37(3):163 –
172, 1999.

[46] U. Shaked. Guaranteed Stability Margins for the Discrete-time Linear Quadratic
Optimal Regulator. Automatic Control, IEEE Transactions on, 31(2):162 – 165, feb
1986.

165



[47] Otto J.M. Smith. Closer Control of Loops with Dead Time. Chemical Engineering
Progress, 53(5):217–219, 1957.

[48] M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press
Series in Signal Processing, Optimization, and Control. MIT Press, Cambridge, MA,
1985.

[49] E. Witrant, C. Canudas-de Wit, D. Georges, and M. Alamir. Remote Stabilization
Via Communication Networks with a Distributed Control Law. Automatic Control,
IEEE Transactions on, 52(8), aug. 2007.

[50] H. Wu and K. Mizukami. Linear and Nonlinear Stabilizing Continuous Controllers
of Uncertain Dynamical Systems Including State Delay. Automatic Control, IEEE
Transactions on, 41(1):116 –121, jan 1996.

[51] Lin Xiao, A. Hassibi, and J.P. How. Control with Random Communication Delays
via a Discrete-Time Jump System Approach. In American Control Conference, 2000.
Proceedings of the 2000, volume 3, pages 2199–2204 vol.3, 2000.

[52] Wei-Yong Yan, B.D.O. Anderson, and R.R. Bitmead. On the Gain Margin Improve-
ment Using Dynamic Compensation Based on Generalized Sampled-Data Hold Func-
tions. Automatic Control, IEEE Transactions on, 39(11):2347 –2354, nov 1994.

[53] Chang Yang and P.T. Kabamba. Multi-channel Output Gain Margin Improvement
Using Generalized Sampled-Data Hold Functions. Automatic Control, IEEE Trans-
actions on, 39(3):657 –661, mar 1994.

[54] Cishen Zhang and Minyue Fu. A Revisit to the Gain and Phase Margins of Linear
Quadratic Regulators. Automatic Control, IEEE Transactions on, 41(10):1527 –1530,
oct 1996.

166


	List of Tables
	List of Figures
	Introduction
	Time Delays
	The Achievable Delay Margin Problem
	Stabilizing any LTI Plant with an Arbitrarily Large Unknown Gain and Delay
	Outline

	Preliminaries
	Notation
	Stability
	Pathological Sampling

	Achievable Delay Margin
	Problem Setup
	The Approach
	When is the Achievable Discrete Time Delay Margin Non-Zero?
	Continuous-Time Plant with a Discrete-Time Delay

	Longer Delays
	Conclusions and Future Work

	Gain and Delay Margin - Adaptive Control
	The Problem
	The Sampler and Hold
	Discretizing the Plant
	The Controller
	Identification of the Plant
	Identification of the Controller
	Identification of the Mismatch Error
	The Control Law
	The Main Result

	Simulations
	Conclusions and Future Work

	Stabilizing a Plant with an Arbitrarily Large Gain and Delay with a Novel Estimator
	Problem Formulation
	High Level Idea
	The Controller
	The Sampler and Hold
	Discretizing the Plant
	The Pole Placement Problem
	Estimating the State
	The Control Signal
	Estimating the Delay
	Estimating the Gain
	Estimating the Feedback Gain
	Summary of Proposed Controller

	The Main Result
	Robustness to Plant Uncertainty
	Jumps in the Gain and Delay

	Simulations
	Conclusions and Future Work

	Gain and Delay Margin - Time Varying
	Problem Formulation
	The Controller
	The Sampler and Hold
	Discretizing the Plant
	Estimating the Gain and Delay 
	The Control Law
	The Estimator Accuracy

	The Main Result
	Simulation
	Conclusions and Future Work

	Open Problems
	Continuous-Time Achievable Delay Margin
	Discrete-Time Achievable Delay Margin
	Achievable Delay Margin for Sampled Data Systems with a Continuous-Time Delay
	Conclusions and Future Work

	Conclusions and Future Work
	Conclusions
	Future Work

	APPENDICES
	List of Acronyms
	References

