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Abstract 

Pure magnesium (Mg) and its alloys with calcium (Ca) and both Ca and zinc (Zn) have 

potential as bioresorbable bone implant materials provided the corrosion rate can be 

controlled. Thus, corrosion behaviour was investigated for pure Mg, Mg-2Ca, and Mg-2Ca-

1Zn cast alloys subjected to either no heat treatment or to solutionizing and aging heat 

treatment. In addition, corrosion behaviour was investigated for surface modifications 

involving the deposition of silver (Ag) nanoparticles. These materials and constructs were all 

nominally biocompatible in that they would not elicit a strong and immediate adverse tissue 

reaction when implanted in bone. 

Static immersion tests in Hanks’ balanced salt solution were performed to evaluate the 

corrosion behaviour. The Mg-2Ca alloy exhibited the highest corrosion rate when compared 

with pure Mg and Mg-2Ca-1Zn for any length of immersion time. For short immersion times 

(48 hours), solutionizing followed by natural aging reduced the corrosion rate of Mg-2Ca 

alloy, but this heat treatment did not seem to have an effect on the corrosion rate of Mg-2Ca-

1Zn alloy. As well, for short immersion times (48 hours), solutionizing and artificial aging 

also did not seem to have a large effect on corrosion rates for either Mg-2Ca or Mg-2Ca-1Zn, 

when compared to solutionizing and natural aging. Corrosion behaviour of surface-modified 

samples was sensitive to certain features of the Ag depositions. It was found that when the 

deposited Ag tracks were thick and wide, the corrosion rate of Ag-deposited samples 

increased significantly when compared to samples without any Ag deposition. However, 

when the Ag tracks were thinner and somewhat narrower, the corrosion rate did not appear to 
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be much higher than that of samples without Ag deposition. Therefore, controlled Ag 

deposition may not be too detrimental to the corrosion behaviour of Mg and Mg alloys. 

The corrosion product morphology appeared to be similar for both the samples deposited 

with Ag and samples without any Ag. Needle-like formations were observed in small areas 

on the corroded surfaces. X-ray diffraction revealed Mg(OH)2 as the main corrosion product. 

Because energy dispersive X-ray analysis consistently revealed multiple elements in the 

corrosion products (such as Mg, O, Ca, P, small amounts of C, and sometimes Cl), it was 

concluded that other compounds (possibly hydroxyapatite, magnesium chloride, and/or 

magnesium- and calcium-containing phosphates) may have formed in addition to the 

Mg(OH)2. 
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Chapter 1 

Introduction 

Metallic materials have commonly been used for bone implants, particularly for those 

requiring load-bearing capabilities. Metallic materials are selected for these applications 

because of their appropriate mechanical properties; such as high tensile and yield strength, 

and resistance to fatigue and creep [1]. Stainless steels, titanium alloys, and cobalt-chromium 

alloys are among the most common metallic materials used for implants and medical devices 

[1]. 

However, for implant applications such as bone fracture fixation plates, the use of these 

metals can be associated with several adverse effects, including stress-shielding in the 

surrounding bone and hypersensitivity to the metals [2].  Because of these effects, a second 

surgery is often required to remove the implant after the bone has healed [2]. 

Understandably, this second surgery would lead to increased patient morbidity as well as 

increased health care costs [3].  

In most cases, it would be ideal if an implant could provide the necessary support needed 

to assist with bone healing, gradually resorb while the bone heals, and then ‘disappear’ after 

the bone tissue completely heals, thus eliminating the need for implant removal. Such a 

scenario could be achieved through the use of bioresorbable implants. Some ceramics have 

been used as bioresorbable implant materials, such hydroxyapatite and tricalcium phosphate 

[4]. Bioresorbable ceramics are attractive because of their ability to degrade in the body 

either slowly or rapidly, and also because they can be resorbed by osteoclasts due to their 
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similarity to bone’s mineral components [4]. Several polymers have also been used as 

bioresorbable implant materials, such as polylactic acid and polyglycolic acid, and they have 

been used for sutures and in tissue engineering [4]. 

The main limitations in using polymers and ceramics as implant materials arise from their 

mechanical properties. Because of the relatively low strength and stiffness of most polymers, 

they are generally not used for load-bearing applications, and ceramics are limited by their 

brittleness as well as their low tensile strength [4]. Since metals appear to be advantageous as 

materials for load-bearing implants due to their superior mechanical properties, a 

bioresorbable metal would appear to fill the niche for a load-bearing implant that can also 

resorb into the body and eliminate the need for implant removal. Magnesium (Mg) and its 

alloys are metallic materials that have potential as bone implant materials. There are a 

number of reasons for this potential. 

First, Mg is one of the major essential elements in the human body [5]. It is needed by the 

body for a number of important metabolic processes. An average adult human stores 

approximately 24 g of Mg in the body, with approximately 60-65% of that stored in bone [6]. 

Mg is obtained from a multitude of foods, with the recommended daily intake for average 

adults being 300-420 mg [6]. Some studies have shown that supplementary Mg may have 

beneficial effects on bone density, and thus, elevated levels of Mg may help reduce the risk 

of osteoporosis [6]. The upper level of serum Mg is controlled by the kidneys, which excretes 

excess Mg in the urine. Because of the body’s ability to excrete excess Mg efficiently, 

complications of hyper-magnesium are rare [3] but can happen [7]. 
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Second, the mechanical properties of Mg and its alloys are believed to be suitable for 

load-bearing bone implant applications. Their modulus of elasticity is much closer to that of 

cortical bone than other conventional metallic implant materials [8], such as stainless steels, 

titanium alloys, and cobalt-chromium alloys (Table 1). This reduces the possibility of stress 

shielding of the surrounding bone. 

Table 1: Elastic moduli and tensile strength of various implant materials compared 

with that of cortical bone (data adapted from [8]) 

Material 

Modulus of 

Elasticity (GPa) 

Tensile 

Strength (MPa) 

Cortical Bone 10-20 100-200 

Magnesium 41-45 185-232 

Stainless steels 193 480-834 

Cobalt alloys 195-210 655-1400 

Titanium alloys 100-105 550-985 

 

Finally, Mg and its alloys have the ability to corrode in the physiological environment, 

making them suitable materials for bioresorbable implant applications. Unfortunately, Mg 

tends to corrode too rapidly in the human body. This may lead to the evolution of hydrogen 

gas with an accumulation of gas bubbles at the implant site which can lead to delayed healing 

along with necrosis of surrounding tissues [9] and a premature degradation of the implant 

with loss of support for the damaged bone.  

The present thesis examines ways to control the corrosion behaviour of Mg and some of 

its alloys. The investigations include heat treatment, silver (Ag) nanoparticle deposition and 

alloy development. (Ag was chosen because it has been noted to have good antimicrobial 
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properties, and could lead to a reduced chance of bacterial colonization [10] at an implant 

site.) The findings of the present thesis will provide bone implant designers with supporting 

information to facilitate their application of Mg and its alloys. 

There were three main objectives in this work. The first objective was to evaluate the 

corrosion behaviour of pure Mg and two biocompatible alloys with calcium (Ca) and both Ca 

and zinc (Zn) (Mg-2Ca and Mg-2Ca-1Zn) in as-cast and heat treated conditions. The second 

objective was to examine the effect of a surface modification strategy (involving the 

deposition of Ag nanoparticles in a particular pattern) on the corrosion behaviour of as-cast 

pure Mg, and as-cast and heat treated Mg-2Ca(-1Zn) alloys. The third objective was to 

identify the corrosion products that formed during the corrosion reaction. 

In the chapters to follow, a review of the literature will first be presented, with 

discussions regarding early uses of Mg as orthopaedic implant materials, limitations 

surrounding the successful use of Mg, and current strategies used by researchers to overcome 

these limitations. The experimental procedures followed in this work will then be described 

in detail, followed by a presentation of results and discussion. Finally, concluding remarks 

will be given based on the findings in this work. 
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Chapter 2 

Literature Review 

The early uses and current limitations of Mg as a potential bioresorbable implant material 

(mainly, poor corrosion resistance) are presented. Several strategies have been employed by 

various researchers to help improve the corrosion resistance of Mg and these strategies are 

also described. 

2.1 Magnesium as a Bioresorbable Implant Material 

According to Staiger et al. [3], the application of Mg as a bioresorbable orthopaedic 

implant material began in the early 1900s, first by Lambotte in 1907, Troitskii and Tsitrin in 

1944, and Znamenski in 1945. These early attempts at implants, such as plates and screws 

using pure Mg (Lambotte), Mg alloyed with cadmium (Troitskii and Tsitrin), and Mg alloyed 

with aluminum (Znamenski) were used to treat various bone fractures [3]. Some of these 

cases were not successful with rapid corrosion of the Mg and the production of hydrogen gas 

accumulating as subcutaneous bubbles. However, other cases demonstrated the potential of 

Mg as a bioresorbable implant material with fusing of fractures, no adverse inflammatory 

reactions to the implant, and no significant increases in serum magnesium levels [3]. Despite 

showing potential, the idea of Mg as an implant material was abandoned (likely due to the 

hydrogen gas formation) when stainless steels appeared as other potential implant materials 

[11]. 

Recently, perhaps because of a greater understanding of corrosion behaviour and 

strategies for improving corrosion resistance, interest in Mg as an implant material has been 
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regained. Surprisingly, Mg has so far seen the most application in blood vessel stents [12]. 

Bioresorbable Mg stents are often preferred over permanent stents that tend to interact with 

adjacent tissue leading to long-term endothelial dysfunction [13,14] and chronic 

inflammatory reactions [14]. The Mg stents, on the other hand, can provide the necessary 

support for the vessel while it heals/remodels and then resorb away, which reduces the risk of 

late restenosis [13]. Some animal studies, such as the one performed by Waksman et al. [15], 

in which stents made of magnesium, zirconium, yttrium, and rare earth elements were 

implanted into the coronary arteries of pigs, have demonstrated the safety of bioresorbable 

Mg stents. Clinical studies such as the one performed by Peeters et al. [13] (where 20 

patients with critical limb ischemia received resorbable stents made of Mg and rare earth 

elements (Figure 1)) have further shown the potential and promise of Mg bioresorbable 

stents. 

 

Figure 1: Bioresorbable Mg stent (Biotronik).  

Reproduced with permission from the Journal of Endovascular Therapy. [13] ©Copyright (2005). International 

Society of Endovascular Specialists. 
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For bone implant applications, however, it is generally believed that Mg corrodes too 

rapidly in the physiological environment [16,17]. Because of this, improving the corrosion 

resistance of Mg and its alloys has become a prominent area of research, particularly for bone 

implant applications in orthopaedics. 

2.2 Improving the Corrosion Resistance of Magnesium 

Since rapid corrosion in the human body is currently one of the greatest limitations of Mg 

as a successful bone implant material [3,16,18], many researchers are focusing exclusively 

on modifying the in vivo corrosion properties. There have been several different strategies for 

improving the corrosion properties; two main strategies (alloying and surface modifications) 

are discussed in this section. 

2.2.1 Alloying 

In addition to the conditions of the environment, the corrosion behaviour is also 

affected by the alloy chemistry [19]. Therefore, proper alloying provides a way of 

controlling the corrosion rate of common Mg alloys. Several researchers have studied 

various alloys to determine which alloy systems have more desirable corrosion 

behaviour. Alloy systems that have been investigated for biomedical applications include 

aluminum (Al)-containing Mg alloys, alloys with rare earth (RE) elements, and alloys 

including manganese (Mn), zinc (Zn), and calcium (Ca). Elements such as Al, zirconium 

(Zr), yttrium (Y), and neodymium (Nd) have been understood to improve corrosion 

resistance [20]. Other elements have been shown to enhance the mechanical properties; 

for example, Mn enhances ductility, Ca can help grain refinement and enhance 
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precipitation strengthening, additions of Zn increase strength, and lithium (Li) improves 

ductility [19]. Although optimizing these changes in mechanical properties is not as 

important as controlling corrosion resistance, it does suggest that for a given application, 

it may be possible to reduce the surface area and mass of Mg alloy thus providing some 

indirect reduction of corrosion rate. 

Many of the alloys being studied by researchers were “mostly commercial alloys 

which have been developed for the needs in transportation industry” [19], which may 

explain the prominence of biomedical studies in the literature using alloys containing 

elements that are thought to be not biocompatible or even having toxic effects on the 

human body. Such elements are Al (which has been linked to dementia [9] and 

Alzheimer’s disease [21]), Zr (which has been associated with several types of cancer 

[9]), and several rare earth (RE) elements (such as praseodymium, cerium, and lutetium, 

which have been said to be toxic [9]). 

Mg Alloys Containing Aluminum and/or Rare Earth Elements 

As mentioned, several groups of researchers have investigated Al-containing Mg 

alloys [11,16,22]. Xin et al. [16] focused on the electrochemical behaviour of an Al-

containing Mg alloy, AZ91 (9 wt. % Al, 1 wt. %Zn). They systematically investigated the 

electrochemical behaviour in the hopes of contributing to the understanding of the alloy’s 

corrosion process. They observed the precipitation of magnesium and calcium 

phosphates, as well as magnesium oxide as corrosion products. They also commented on 

the marked effect that the secondary β-phase (Mg17Al12) had on corrosion; the β-phase 
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can act as a local cathode while the Mg matrix acts as the local anode, creating a micro-

galvanic couple and thus accelerating the corrosion of the matrix.  

Witte et al. [11] carried out an investigation with two aluminum-containing alloys 

(AZ31 and AZ91) as well as two alloys containing RE elements (WE43 and LAE442). In 

this study, their approach focused on investigating the degradation mechanism in vivo 

and, in particular, observing the bone-implant interface to reveal the effects of the 

corroding alloys on the bone [11].  They implanted these alloys into the femora of guinea 

pigs, and found that the LAE442 implant corroded more slowly than the AZ31, AZ91, 

and WE43 alloy implants [11]. 

Other researchers have performed investigations with other alloys containing rare 

earth elements as well. Zhang et al. [23] investigated an Mg-Zn-Y alloy with relatively 

low Zn content. They tested these alloy samples for their mechanical and corrosion 

properties, and performed microstructure characterization. Their findings indicated Y 

additions played a strong role in the grain refinement of the alloy and could have a 

beneficial effect on the alloy’s tensile strength and elongation. They identified the 

presence of the secondary ‘I-phase’ (Mg3Zn6Y) which they observed to have a 

strengthening effect on the alloy [23]. In addition, they noted that the corrosion resistance 

was better when only a single secondary phase was present rather than having both 

secondary phases present (i.e., the I-phase and W-phase). In particular, the alloy which 

exhibited the lowest corrosion rate had only the I-phase as the secondary phase present 

[23]. 
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Wu et al. [24] investigated fourteen different alloys based on the AZ91D alloy to 

determine the effect of Ca and RE additions on the mechanical properties, microstructure, 

and corrosion properties. They added various amounts of Ca to the AZ91D alloy 

(AZ91D-xCa), various amounts of RE to the AZ91D (AZ91D-xRE), and then various 

amounts of Ca to an AZ91D alloy with 1 wt. % RE (AZ91D-1RE-xCa). They compared 

results from these alloys with those of the base AZ91D alloy. This systematic approach 

yielded results which very clearly showed the individual effects of the Ca additions, RE 

additions, or both on the resultant properties. The results from the immersion tests, 

electrochemical polarization tests, tensile tests, and microstructural characterization 

revealed several key results.  The addition of up to 1 wt. % Ca caused an increase in the 

ultimate tensile strength and elongation (compared to the base AZ91D) due to the 

resultant fine grained structure and presence of the Mg17Al12 phase [24]. As well, the 

corrosion resistance of the AZ91D-xCa alloys improved with Ca additions of up to 2 wt. 

%. Furthermore, the additions of RE elements resulted in an improvement in the ultimate 

tensile strength and a decrease in the elongation.  The corrosion rate also decreased with 

RE additions up to 1 wt. %. The effects of the Ca and RE additions on corrosion 

resistance were illustrated in detail (Figure 2). In general, when considering additions of 

both RE and Ca, Wu et al. found that the additions of both improved the ultimate tensile 

strength as well as corrosion resistance of the alloys; the improved corrosion resistance 

was said to be attributed to the formation and presence of the Al2Ca phase. 



 

 11 

 

Figure 2: Corrosion results as functions of Ca and RE additions to AZ91D alloy [24] 

Reprinted from Materials Science and Engineering A, 408, Wu, G., Fan, Y., Gao, H., Zhai, C., Zhu, Y.P., 

The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion 

behavior of AZ91D, Pages 255-263, Copyright (2005), with permission from Elsevier. 

 

In another study, Quach et al. [18] investigated an Mg-Y-RE alloy, which consisted 

of Y, Nd, Zr, and trace amounts of other elements, in two different corrosive media 

(simulated body fluid and artificial plasma). In this investigation, the focus was on the 

effects of the different media as well as possible corrosion protection through anodizing. 

It is reasonable to contend that the investigation of alloys containing potentially 

harmful elements is useful in contributing to the general understanding of Mg corrosion 

mechanisms and, as such, studies involving these types of alloys have some value. 
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However, it is not advisable for clinical use as bioresorbable implants, as the elements in 

such implants are meant to dissolve into the body without causing adverse (long- or 

short-term) reactions or effects. Therefore, when choosing elements to create a suitable 

Mg alloy for bioresorbable implant applications, it would be sensible to consider only 

alloys containing biocompatible and non-toxic elements. Zn, Ca, and Mn are a few 

elements that are thought to be biocompatible and well-tolerated in the human body [9]. 

Mg Alloys Containing Calcium, Zinc, and Manganese 

Indeed, many researchers have focused on Mg alloys containing some of the elements 

that have been thought to be biocompatible and non-toxic (Mn, Zn, and Ca). For 

example, Zhang et al. [25] investigated the Mg-Zn-Mn-Ca alloy system. Through 

mechanical testing and electrochemical measurements, they obtained several important 

results. First, it was noted that Ca (up to 0.5 wt. %) acted as a grain refiner [25] 

(consistent with other reports that Ca played a role in grain refinement [19]). Second, the 

ratio of Zn to Ca played a key role in determining the type of phases that would form in 

the alloy. These phases could be primary Mg (α-Mg) plus lamellar eutectic (Ca2Mg6Zn3) 

or primary Mg (α-Mg) plus divorced eutectic (Mg2Ca + Ca2Mg6Zn3) [25]. 

Electrochemical tests were performed in Hanks’ balanced salt solution (Figure 3) and 

revealed that the Mg-1.5Zn-1.1Mn-1.0Ca alloy (Alloy III) had a higher corrosion 

resistance than either Mg-2.0Zn-1.2Mn-0.5Ca (Alloy II) or Mg-1.8Zn-1.1Mn-0.3Ca 

(Alloy I) [25]. The authors believed that the presence of the Mg2Ca phase led to 

decreased mechanical properties (tensile strength and ductility) but increased corrosion 

resistance [25]. 
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Figure 3: Electrochemical polarization curves showing higher corrosion resistance 

for the alloy with highest Ca content (“Alloy III”) [25] 

Reprinted from Materials Science and Engineering A, 497, Zhang, E., Yang, L., Microstructure, 

mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application, 

Pages 111-118, Copyright (2008), with permission from Elsevier. 

 

Binary Magnesium-Calcium Alloys 

The binary alloy system Mg-Ca has been of interest to several researchers, and many 

studies have focused on different Mg-Ca alloys [26-30]. Good resistance to high 

temperature oxidation (compared with pure Mg) [31] and an ability to age harden 

attracted some interest to these alloys [26]. As well, it was suggested that the Ca ions 

released from a degrading Mg-Ca implant may be beneficial to the bone healing process 

[32]. Wan et al. [26] investigated binary Mg-Ca alloys with varying Ca contents (0.6, 1.2, 

1.6, and 2.0 wt. %). X-ray diffraction (XRD) analysis performed on their solutionized and 

artificially aged samples revealed the presence of pure (α) Mg and Mg2Ca phases (Figure 
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4) as would be predicted by the Mg-Ca phase diagram [26]. Their study involved 

microstructure characterization (Figure 5), three-point bending and compression tests, 

and corrosion testing in simulated body fluid involving electrochemical measurements. 

 

Figure 4: XRD patterns for various Mg-Ca alloys [26] 

Reprinted from Materials and Design, 29, Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., Zhou, X., 

Preparation and characterization of a new biomedical magnesium-calcium alloy, Pages 2034-2037, 

Copyright (2008), with permission from Elsevier. 
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Figure 5: Microstructure of solutionized and artificially aged Mg-0.6Ca (top left), 

Mg-1.2Ca (top right), Mg-1.6Ca (bottom left), and Mg-2.0Ca (bottom right) [26] 

Reprinted from Materials and Design, 29, Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., Zhou, X., 

Preparation and characterization of a new biomedical magnesium-calcium alloy, Pages 2034-2037, 

Copyright (2008), with permission from Elsevier. 

 

Wan et al. [26] found that the Mg-0.6Ca alloy had the highest polarization resistance 

(Figure 6), which was projected to mean that this alloy had the highest corrosion 

resistance of those tested [26]. They related this corrosion resistance of the alloy to the 

presence (and amount) of the Mg2Ca phase present, stating that “the decline of corrosion 

resistance with excessive calcium is likely to be attributed to the large amount of Mg2Ca” 

[26]. In addition to influencing corrosion behaviour, the mechanical properties also 
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appeared to be influenced by the Mg2Ca phase since the bending strength decreased with 

increasing Ca content [26]. Overall, the authors indicated that the Mg-0.6Ca alloy seemed 

to be the best of the alloys tested [26]. 

 

Figure 6: Electrochemical test results showing polarization resistance of the various 

Mg-Ca alloys tested compared with pure Mg [26] 

Reprinted from Materials and Design, 29, Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., Zhou, X., 

Preparation and characterization of a new biomedical magnesium-calcium alloy, Pages 2034-2037, 

Copyright (2008), with permission from Elsevier. 

 

Li et al. [27] also studied various binary Mg-Ca alloys (Mg-1Ca, Mg-2Ca, and Mg-

3Ca). Their study involved the characterization of microstructure, tensile tests, in vitro 

corrosion tests, cytotoxicity tests, and finally, animal tests (in which 18 rabbits received 

the Mg-Ca alloy implants in their femoral shafts). In characterizing the microstructures, 

as in the work by Wan et al. [26], they identified two phases present in the alloys: α-Mg 

and Mg2Ca (Figure 7).  
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Figure 7: Microstructure of as-cast (a) Mg-1Ca, (b) Mg-2Ca, and (c) Mg-3Ca [27] 

Reprinted from Biomaterials, 29, Li, Z., Gu, X., Lou, S., Zheng, Y., The development of binary Mg-Ca 

alloys for use as biodegradable materials within bone, Pages 1329-1344, Copyright (2008), with permission 

from Elsevier. 

 

Li et al. [27] found that the yield strength, ultimate tensile strength, and elongation all 

decreased with increasing Ca content. Also, in vitro corrosion tests (static immersion tests 

and electrochemical measurements) revealed that the microstructure of the alloys had 

significant influences on corrosion behaviour. They found that corrosion rate was higher 

when more of the Mg2Ca phase was present (12.56 mm/year for as-cast Mg-1Ca, 12.98 

mm/year for as-cast Mg-2Ca, and 25.00 mm/year for as-cast Mg-3Ca, as calculated from 

the results of their electrochemical tests). The results from the electrochemical 

measurements indicated that the surface films on the Mg-1Ca offered more corrosion 

protection than surface films on the Mg-2Ca and Mg-3Ca alloy samples, suggesting that 

the Ca content of 1% was optimal. Li et al. [27] also suggested that processing via hot 

rolling and hot extrusion may also increase corrosion resistance. For example, their Mg-

1Ca alloy, that had been processed via hot extrusion, exhibited a much slower rate of 

hydrogen evolution (and thus, a slower corrosion rate) than as-cast Mg-1Ca (Figure 8). 
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Figure 8: Hydrogen evolution during immersion of as-cast Mg-1Ca and hot 

extruded Mg-1Ca [27] 

Reprinted from Biomaterials, 29, Li, Z., Gu, X., Lou, S., Zheng, Y., The development of binary Mg-Ca 

alloys for use as biodegradable materials within bone, Pages 1329-1344, Copyright (2008), with permission 

from Elsevier. 

 

Ternary Magnesium-Calcium-Zinc Alloys 

Recently, studies involving the ternary Mg-Ca-Zn alloy system have emerged [32-

38]. Mg-Ca-Zn alloys would be favourable for use as bioresorbable implant materials not 

only because of the inclusion of alloying elements thought to be biocompatible, but also 

because the precipitation hardening ability of binary Mg-Ca alloys could be significantly 

enhanced with Zn additions (Figure 9) [39]. The age hardening response of these ternary 

alloys was attributed to the formation of the Ca2Mg6Zn3 phase by Bamberger et al. [40], 

who studied the precipitation hardening in several Mg-Ca-Zn alloys with Ca content 

ranging from 0.3-1.2 wt. % and Zn content ranging from 0.2-1.9 wt. %.  However, in a 

study by Langelier et al. [41], the Mg6Ca2Zn3 phase was not detected during non-

isothermal heat treatments of the Mg-2.1Ca-0.9Zn alloy. Instead, Guinier-Preston (GP) 
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zones were formed and were said to be responsible for the hardening of the alloy up to 

peak-aged condition [41]. 

 

Figure 9: Microhardness results versus aging time for Mg-2Ca, Mg-2Ca-1Zn, and 

Mg-2Ca-2Zn [39] 

Reprinted from Proceedings from 2010 TMS Annual Meeting & Exhibition, Agnew, S., Neelameggham, 

N.R., Nyberg, E.A., Sillekens, W., The effect of Zn Additions on Precipitation Hardening of Mg-Ca 

Alloys, Copyright (2010), with permission from Wiley. 

 

Geng et al. proposed the Mg-4.0Zn-0.5Ca alloy as a “high performance structure 

material as well as a biomaterial” [42]. The mechanical properties of the Mg-4.0Zn-

0.5Ca alloy (in both the as-cast and hot extruded conditions) were determined. Geng et 

al. found that the as-cast alloy exhibited good tensile strength and ductility (211 MPa and 

17% elongation respectively), and that hot extrusion further improved both tensile 
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strength and ductility (273 MPa and 34% elongation). Resultant stress-strain curves from 

their tensile tests performed at room temperature are shown in Figure 10. 

 

Figure 10: Resultant stress/strain curves of the Mg-4.0Zn-0.5Ca alloy [42] 

Reprinted from Materials Letters, 63, Geng, L., Zhang, B.P., Li, A.B., Dong, C.C., Microstructure and 

mechanical properties of Mg-4.0Zn-0.5Ca alloy, Pages 557-559, Copyright (2009), with permission from 

Elsevier. 

 

As well, Geng et al. [42] found that the average grain size of the α-Mg phase decreased 

dramatically from 120-150 μm for the as-cast alloy to 8-12 μm after hot extrusion. They 

also observed the refinement of a second phase (thought to be Ca2Mg6Zn3) after hot 

extrusion. These microstructural changes were attributed to dynamic recrystallization in 

the alloy during the hot extrusion process. Geng et al. demonstrated that this alloy had 

very good mechanical properties that could be improved by hot extrusion thus indicating 

that it had the potential to serve as load-bearing implant materials. Although the authors 

asserted that this alloy could be used as a biomaterial, their study did not include 

corrosion testing or even any mention of how this alloy might fare in the corrosive 



 

 21 

physiological environment. However, there have been several other research groups that 

have investigated the corrosion behaviour of similar Mg-Zn-Ca alloys. 

Du et al. [32] investigated the effects of the addition of 2 wt. % Zn on the mechanical 

properties and corrosion resistance of Mg-3Ca alloys. They observed an increase in the 

ultimate tensile strength (from 118 ± 5 MPa to 145 ± 5 MPa) as well as elongation (from 

0.26 ± 0.04 % to 0.57 ± 0.04 %). Through corrosion tests (immersion tests and 

electrochemical measurements) performed in Hanks’ solution, it was revealed that the 

corrosion resistance of the Mg-3Ca-2Zn alloy was significantly better than the binary 

Mg-3Ca alloy. The improved corrosion resistance was attributed to the formation and 

presence of the Ca2Mg6Zn3 phase in the ternary alloy, which was thought to be cathodic 

to both α-Mg and Mg2Ca. As shown in Figure 11, the Mg-3Ca alloy samples were 

completely destroyed after immersion in Hanks’ solution for only 24 hours, while the 

Mg-3Ca-2Zn alloy samples stayed intact.  

 

Figure 11: Samples after 24 hours of immersion in Hanks’ solution: (a) Mg-3Ca and 

(b)  Mg-3Ca-2Zn [32] 

Reprinted from Materials Chemistry and Physics, 125, Du, H., Wei, Z., Liu, X., Zhang, E., Effects of Zn on 

the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical 

application, Pages 568-575, Copyright (2011), with permission from Elsevier. 



 

 22 

 

Zhang et al. [35] studied the mechanical and corrosion properties of various Mg-xZn-

1.0Ca alloys, with varying Zn content (x = 0, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0). It was found 

that the amount of Zn had a marked effect on the mechanical properties of the ternary 

alloy. The Zn content of 4 wt. % resulted in the highest ultimate tensile strength and 

percent elongation (182 ± 5 MPa and 9.1 ± 2.5 % respectively). Immersion in Hanks’ 

solution with electrochemical measurements revealed that the alloys with lower Zn 

content had higher corrosion resistance than the ternary alloys with the highest Zn 

content as well as the binary Mg-1.0Ca alloy, indicating that some small amount of Zn is 

beneficial for corrosion resistance. 

Brar et al. [8] studied the corrosion behaviour of the Mg-15Zn-2Ca (ZX152) alloy. In 

their static immersion corrosion tests, this alloy was compared with commercially pure 

Mg (99.95%) in Hanks’ solution. They also compared their results with those obtained by 

Xin et al. [16] for the AZ91 alloy. The authors showed that their ZX152 alloy had a 

lower corrosion rate than pure Mg and AZ91 (Figure 12). 
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Figure 12: Corrosion rates of Mg-15Zn-2Ca, pure Mg, and Mg-9Al-1Zn [8] 

Reprinted from JOM, 61, Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., Manuel, M.V., 

Magnesium as a biodegradable and bioabsorbable material for medical implants, Pages 31-34, Copyright 

(2009), with kind permission from Springer Science and Business Media. 

 

Brar et al. [8] also compared corrosion layer features of their ZX152 and pure Mg 

samples. They found that the pure Mg sample showed a more uniform corrosion 

mechanism while the ZX152 displayed more of a pitting type of corrosion behaviour 

(Figure 13). It was suggested that the eutectic phase present in ZX152 may have been 

more corrosion resistant than the Mg-rich matrix, thus explaining why ZX152 showed 

“preferential” pitting corrosion behaviour rather than uniform corrosion as in the pure Mg 

sample. 
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Figure 13: Corrosion morphology at the surface of (a) pure Mg and (b) ZX152 after 

immersion in Hanks' solution [8] 

Reprinted from JOM, 61, Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., Manuel, M.V., 

Magnesium as a biodegradable and bioabsorbable material for medical implants, Pages 31-34, Copyright 

(2009), with kind permission from Springer Science and Business Media. 

 

Because the presence of second phases in the alloy seemed to result in preferential 

corrosion, and because this type of non-uniform corrosion may lead to quick losses in 

strength [43], Gu et al. [43] asserted that it would be important to investigate other Mg-

based materials that could corrode in a more uniform manner (as well as continuing to 

have good mechanical properties and low corrosion rates). Gu et al. proposed that Mg-

based bulk metallic glasses may be more suitable because such materials, in addition to 

possibly having improved mechanical and corrosion properties, would likely exhibit 

more uniform corrosion behaviour due to the nature of the “single-phase, chemically 

homogenous alloy system” [43]. The Mg-based bulk metallic glass Mg-Zn-Ca 

(Mg66Zn30Ca4 and Mg70Zn25Ca5) were investigated and found to exhibit more 
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uniform corrosion morphologies than the pure Mg. The Mg66Zn30Ca4 alloy exhibited 

the most uniform corrosion. 

2.2.2 Surface Modifications 

Modifying the surface of the implant is another strategy to delay the onset of 

corrosion of a material. Many different coatings and surface modification treatments for 

Mg have been used in industry for the purposes of improving wear and corrosion 

resistance, such as electrochemical plating, ion implantation, conversion and hydride 

coatings, organic and polymer coatings, painting, and polymer plating [44]. However, 

many of such strategies are used for industrial applications and thus the resultant surfaces 

may contain elements or compounds that are not biocompatible. 

The modification of Mg implant surfaces is an important area of research, not only 

because corrosion resistance needs to be improved, but also because it is the surface of 

the implant that initially interacts with the surrounding body fluids and tissues. It is 

therefore reasonable to say that the implant surface and accompanying properties are 

likely to influence the cellular reactions at the implant site, and ultimately, influence the 

success of the implant, particularly in terms of tissue integration [1] and consequent 

ability to achieve implant fixation. This seems sensible, as the atoms on the surface of a 

material can be viewed as lacking “near neighbour atoms on one side of the surface” [4]. 

The atoms on a surface have a higher free energy than atoms inside the material, and in 

an attempt to reduce their free energy (and thereby reach a more favourable energy state), 
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the atoms on the surface tend to bond with reactive atoms/molecules available [4] at the 

implant-tissue interface. 

According to Paital et al. [1], surface modifications of implants can be classed into 

categories depending on what surface properties are adjusted or modified; two such 

categories are physiochemical and morphological.  

Physiochemical modifications are considered first and involve changing surface 

properties such as energy, charge and composition to modify the material and/or 

biological responses [1]. Many surface modification strategies fall into this category, 

including surface coatings and ion implantation. 

Surface coatings have been investigated for biomedical Mg alloys, with many 

focusing on calcium phosphate coatings, which are hoped to enhance bone cell activity 

and tissue integration. Techniques for coating calcium phosphates onto titanium alloys 

have been documented, such as ion beam assisted deposition, plasma spray deposition, 

sol-gel derived coatings, and microarc oxidation [1]. 

While it is widely recognized that calcium phosphate coatings can enhance an 

implant’s biocompatibility and have positive effects on bone growth [45], Cui et al. [46] 

sought to determine if such calcium phosphate coatings could also alter the degradation 

behaviour of Mg alloys. In their investigation, calcium phosphate coatings were created 

on AZ31 alloy samples by immersion of the samples in supersaturated calcification 

solution (the solutions were composed of Ca2
+
, H2PO4

-
, HCO3

-
, Na

+
, NO3

-
) [46]. Three 

solutions, with varying ratios of Ca to phosphate (H2PO4
-
), were used to create coatings 

with slightly different compositions and properties. In the degradation behaviour test, 
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coated samples (as well as the non-coated samples for comparison) were immersed in a 

solution of sodium chloride (NaCl) for up to 15 days, while refreshing the solution every 

three days. While characterization of the coatings revealed slightly different compositions 

and phase structures, Cui et al. found that the corrosion behaviour of all the coated 

samples was similar. Figure 14 illustrates the corrosion behaviour of two sample types: 

one with and one without a coating. Figure 15 shows a comparison of the mass loss due 

to corrosion versus time for all the coated and uncoated samples.  

 

Figure 14: Corroded samples after immersion in NaCl solution [46] 

Reprinted from Frontiers of Materials Science in China, 2, Cui, F.Z., Yang, J.X., Jiao, Y.P., Yin, Q.S., 

Zhang, Y., Lee, I.S., Calcium phosphate coating on magnesium alloy for modification of degradation 

behavior, Pages 143-148, Copyright (2008), with kind permission from Springer Science and Business 

Media. 
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Figure 15: Mass loss results comparing coated and uncoated samples after 

immersion in NaCl solution [46] 

Reprinted from Frontiers of Materials Science in China, 2, Cui, F.Z., Yang, J.X., Jiao, Y.P., Yin, Q.S., 

Zhang, Y., Lee, I.S., Calcium phosphate coating on magnesium alloy for modification of degradation 

behavior, Pages 143-148, Copyright (2008), with kind permission from Springer Science and Business 

Media. 

 

The authors estimated that, after 15 days of immersion, the mass loss of the uncoated 

samples was approximately five times greater than the coated samples, indicating that 

coating with calcium phosphate can significantly improve the degradation behaviour of 

the AZ31 alloy [46]. 

Anodizing is another surface modification process that can improve corrosion 

resistance. This electrolytic process results in the formation of a thick and stable oxide 

film [44]. The resultant oxide film formed during anodization is porous. To attain better 

corrosion resistance, sealing of this film is often necessary; this can be done in several 

ways (such as boiling in water) [44]. Anodizing is typically used to improve wear and 
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corrosion resistance of aluminum and magnesium alloys, as well to improve paint 

adhesion for dyeing/colouring treatments [44].  

Several research groups have utilized the anodizing process on Mg and Mg alloys for 

improving the corrosion resistance for biomedical applications [9,18,47,48]. Song [9] 

investigated the effect of anodizing on commercially pure Mg samples. The samples were 

anodized in a bath containing 1.6 wt.% K2SiO3 + 1 wt.% KOH. The resultant anodized 

coating showed to contain magnesium oxides/hydroxides as well as silicon 

oxides/hydroxides (less than 30%) [9]. The thickness of the coating was approximately 

4μm [9]. The hydrogen evolution during immersion tests (lasting 1 month) was 

monitored, as hydrogen evolution rate is said to be proportional to corrosion rate [9]. As 

the evolution of hydrogen gas was not detected during the immersion tests, the author 

concluded that the coating was successful in delaying the degradation of the pure Mg 

substrates [9]. 

Similarly, Quach et al. [18] sought to provide temporary corrosion protection for a 

Mg-Y-RE alloy, creating a thin hydroxide film via a galvanostatic anodizing treatment. 

The anodizing bath used in this process was a solution of 0.1 M NaOH + 0.05 M Na3PO4 

[18]. The resultant hydroxide film was approximately 350-400 nm thick, consisting of 

mainly magnesium and oxygen [18]. Immersion tests in both simulated body fluid and 

artificial plasma indicated an increase in initial corrosion resistance of the alloy for both 

corrosive solutions [18]. 

In addition to increasing the initial corrosion resistance of Mg alloys, anodizing can 

also play a role in controlling the precipitation of corrosion products on the implant 
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surface. A study by Hiromoto et al. [49] showed that by varying the voltage during 

anodizing in a NaOH bath, both rough and smooth anodized films were produced on their 

pure Mg samples. Consequently, it was demonstrated that more calcium phosphate 

precipitated on the rough, porous anodized film than the smooth film during immersion in 

artificial plasma [49]. 

Similar to anodizing, microarc oxidation (MAO) is a process in which oxide ceramic 

coatings are produced on the surface of metals by a “plasma-chemical and 

electrochemical process” [1]. This technique is used on metals such as Mg, Al, and Ti 

alloys, improving the wear and corrosion resistance of the metals [50]. As such, some 

researchers have investigated the effect of MAO on the corrosion resistance of Mg alloys 

for biomedical applications [50,51]. 

Zhang et al. (2007) were interested in the effect MAO has on the corrosion and wear 

resistance of the AZ91D alloy, particularly from the biomedical standpoint, as they state 

that there was not much literature on the “corrosion and wear resistance of AZ91D 

magnesium alloy with and without MAO coating in simulation body fluid” [50]. As such, 

they test for the effect of MAO on corrosion and wear resistance of this AZ91D alloy 

through immersion, electrochemical and wear testing. Figure 16 shows an image of the 

oxide coating on their samples. 
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Figure 16: The coating on the AZ91D samples processed by MAO [50] 

Reprinted from Journal of Materials Science, 42, Zhang, X.P., Zhao, Z.P., Wu, F.M., Wang, Y.L., 

Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in 

Hank’s solution, Pages 8523-8528, Copyright (2007), with kind permission from Springer Science and 

Business Media. 

 

Their results indicated that the corrosion resistance of the AZ91D alloy improved as a 

result of the MAO coating, compared with untreated AZ91D; from the immersion tests, 

the mass loss of the MAO treated samples was 15 times less than the mass loss of the 

untreated samples after 21 days of immersion in Hanks’ solution (Figure 17) [50]. Other 

results indicated that the wear resistance of the MAO treated samples improved as well, 

compared to the untreated samples [50]. 
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Figure 17: Mass loss results of MAO treated and untreated AZ91D alloy immersed 

in Hanks’ solution [50] 

Reprinted from Journal of Materials Science, 42, Zhang, X.P., Zhao, Z.P., Wu, F.M., Wang, Y.L., 

Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in 

Hank’s solution, Pages 8523-8528, Copyright (2007), with kind permission from Springer Science and 

Business Media. 

 

In an effort to further improve the corrosion resistance of Mg, Shi et al. [51] 

implemented a two-step process, involving first the coating of pure Mg by MAO, and 

then the sealing of pores of the resultant oxide layer with a TiO2 sol-gel coating. Their 

two-step process resulted in a composite coating that was determined to be approximately 

12 μm thick [51]. Images of the MAO coating (before TiO2 sealing) and the TiO2 sealed 

coating are shown in Figure 18. Characterization of the coating by thin-film XRD 

revealed that the porous MAO layer of the coating contained MgO and MgF2 [51]. 
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(a)                                                         (b) 

Figure 18: Coating by MAO on pure Mg samples:  (a) without sealing and (b) with 

sealing [51] 

Reprinted from Journal of Alloys and Compounds, 469, Shi, P., Ng, W.F., Wong, M.H., Cheng, F.T., 

Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol-

gel TiO2 sealing, Pages 286-292, Copyright (2009), with permission from Elsevier. 

 

The results of the electrochemical tests by Shi et al. [51] revealed that, after 12 hours of 

immersion in Hanks’ solution, the corrosion resistance of the MAO-TiO2 coated Mg 

samples was approximately 30 times higher than that of bare samples. It was therefore 

concluded that this coating significantly enhanced the corrosion resistance of pure Mg 

[51]. 

Ion implantation is another surface modification method that has been experimented 

with in the past. Ion implantation of iridium into Ti-6Al-4V has been reported to improve 

the corrosion resistance [52]. It has also been said that implantation of Ca ions into 

titanium implants may help improve the bone conductivity of the Ti implants [52]. 

Hanawa [52] also noted that the precipitation of calcium phosphates on Ti surfaces is 

accelerated with implanted Ca ions, and it has been observed that “large amounts of new 

bones are formed early on calcium-ion-implanted titanium, compared to un-implanted 
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titanium” [52]. For biomedical Mg alloys, Wan et al. [53] performed a study to 

investigate the effect of zinc ion implantation on the mechanical and corrosion properties 

of Mg-Ca alloys. They noted that, while the implantation of zinc ions improved the 

surface hardness and modulus of the Mg-Ca alloys, the implanted Zn ions also decreased 

the corrosion resistance of the Mg-Ca alloys [53]. The authors therefore indicated that 

“zinc is not a favourable element for the ion implantation of biomedical Mg-Ca alloys” 

[53]. 

 Another group of researchers also utilized the ion implantation technique to observe 

the effect on corrosion resistance of biomedical Mg alloys. Mao et al. [54] prepared Mg-

1.0Ca-0.3Zn alloys and implanted Ag ions into the surface. Ag was chosen for this effort 

because Ag was believed to have the ability to reduce the adhesion of bacteria on the 

surface [54].  The Ag-ion implanted Mg-1.0Ca-0.3Zn was characterized for mechanical 

properties; it was found that both the hardness and the elastic modulus at the surface of 

the samples were improved in the Ag-ion implanted samples (versus samples without Ag-

ion implantation) [54]. Corrosion properties were also investigated by corrosion tests 

performed in simulated body fluid. Electrochemical measurements indicated that the 

polarization resistance of the Ag-ion implanted samples was higher than that of un-

implanted samples, indicating a higher corrosion resistance for the samples with Ag-ion 

implantation [54]. The increased corrosion resistance of the Ag-ion implanted samples 

was partly attributed to the Ag ions ‘dissolving’ into the alloy’s surface, potentially 

reducing the electrochemical potential difference between the matrix and second phases 

[54]. 
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Ag has long been regarded as having antibacterial properties [55]. The use of Ag as 

some type of coating on potential implant materials for antibacterial purposes is not new. 

For example, in a study by Colmano et al. [56], the effects of Ag on the behaviour of the 

bacteria staphylococcus aureus on stainless steel pins implanted into the femurs of rabbits 

were investigated [56]. Indeed, there have been various studies involving the 

incorporation of Ag onto the surfaces of various materials in efforts to reduce bacterial 

complications associated with implants [57,58]. Hydroxyapatite coatings containing Ag 

deposited onto Ti substrates have been investigated by Chen et al. [57] as well as Bai et 

al. [58], with Chen et al. [57] reporting reduced amounts of the bacteria staphylococcus 

epidermidis and staphylococcus aureus on the Ti surfaces with Ag (compared with the Ti 

surfaces without Ag) in their bacterial adhesion study [57]. To the best of the author’s 

knowledge at the present time, there were not many studies in the literature involving the 

use of Ag on biomedical Mg alloys other than that presented by Mao et al. [54]. 

Other types of surface modifications are often of interest when the success of a 

potential implant depends on the interaction with surrounding cells. Morphological 

modifications involve altering the features on a surface from a mechanical viewpoint, 

such as by creating pores, pits, and adjusting surface roughness [1]. Figure 19 shows 

different types of nano-patterns created by Choi et al. to investigate “the exclusive effect 

of the nanotopographical three-dimensionality to cell behaviours” [59]. Based on their 

observations, Choi et al. commented on the new possibilities for biomaterial design that 

can be opened based on the observed ability to control cell interactions (e.g., adhesion 

and growth) simply by altering the nano-scale surface topographies [59]. 
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Figure 19: Different types of nano-patterns created by Choi et al. [59] 

Reprinted from Biomaterials, 28, Choi, C.H., Hagvall, S.H., Wu, B.M., Dunn, J.C.Y., Beygui, R.E., Kim, 

C.J., Cell interaction with three-dimensional sharp-tip nanotopography, Pages 1672-1679, Copyright 

(2007), with permission from Elsevier. 

 

Indeed, it has been shown that the responses of cells can be altered depending on the 

topographic features of the substrates [60]. For example, Teixeira et al. [60] 

demonstrated that epithelial cells cultured on different substrates responded differently 

when exposed to substrates with different topographic features (which can be very easily 

seen in Figure 20) [60]. 
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Figure 20: Different responses of epithelial cells on substrates with varying 

topographic features [60] 

Reprinted from Biomaterials, 27, Teixeira, A.I., McKie, G.A., Foley, J.D., Bertics, P.J., Nealey, P.F., 

Murphy, C.J., The effect of environmental factors on the response of human corneal epithelial cells to 

nanoscale substrate topography, Pages 3945-3954, Copyright (2006), with permission from Elsevier. 

 

As in the case of the epithelial cells studied by Teixeira et al. [60], it has been shown 

that the response of human osteoblast-like cells were influenced by the features of a 

hydroxyapatite surface [61]. In vitro cell cultures revealed that the size of the 

hydroxyapatite particles could influence the proliferation and apoptosis of the osteoblast-

like cells [61]. The concept of cells being influenced by the topographic features of the 

substrate or implant on which they are exposed to bears importance when designing bone 
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implants, as the different topographic features may well affect the integration of an 

implant to the surrounding bone. 

2.3 Concluding Remarks 

Review of the literature revealed much research involving the use of different alloys and 

surface modification techniques. The same approach was used for the present research. Ag 

was chosen for the surface modification technique because of its antibacterial properties. Ag 

was deposited onto substrates in a particular pattern based on the concept of altered cell 

responses to topographical patterns as discussed in the literature. Only one variation of Ag 

deposition pattern was used in this work (i.e., the deposition of Ag nanoparticles was done in 

only one pattern for all of the samples tested). Three different materials were chosen based 

on the inclusion of elements believed to be biocompatible: pure Mg, Mg-2Ca, and Mg-2Ca-

1Zn. Static immersion testing was chosen as the main evaluation method for use in the 

present research. Mass loss measurements were used to measure and assess corrosion 

behaviour, and pH testing was conducted to compare corrosion behaviour among different 

materials. Corrosion in the physiological environment was of interest; therefore, testing was 

performed in a solution that mimics body fluids. However, proteins were not included in 

these tests. In the interest of time, immersion tests were only performed for up to 14 days.  
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Chapter 3 

Fabrication and Experimental Procedures 

This chapter outlines the procedure followed for the fabrication of samples. Because a 

number of samples were created for a variety of conditions, a list of all the samples that were 

fabricated is provided. Finally, the experimental procedures for the immersion tests (along 

with immersion conditions) are described.  

3.1 Materials and Sample Preparation 

Cast pure Mg plates (from Timminco Ltd., Toronto, ON) and gravity cast Mg-2Ca and 

Mg-2Ca-1Zn alloys (cast at CANMET-MTL, Hamilton, ON) were used in this work. The 

composition of these materials is given in Table 2.  

Table 2: Elemental composition of the materials used 

 Element (Wt. %) 

Material Mg Ca Zn Fe Ni Cu Si Al Sn Cd 

Pure Mg 99.95 0.001 0.003 0.001 0.0002 0.0002 0.001 0.001 0.001 0.0001 

Mg-2Ca Bal. 2.3 < 0.05 - - - - - - - 

Mg-2Ca-1Zn Bal. 2.1 0.9 - - - - - - - 

 

Samples of pure Mg were cut from the cast plates into pieces with approximate 

dimensions of 10 mm x 10 mm x 3 mm using a hand saw. Alloy samples were cut from cast 

(25.4 mm diameter) rods into discs using a band saw. The band saw was then used to cut 

each disc into four pieces, making quarter-circle shapes with an approximate thickness of 3 

mm.   
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Samples remaining in the as-cast condition were then ground and polished. Alloy 

samples to be heat treated (described in the following section) were done so first, and then 

followed by grinding and polishing, to allow for the removal of oxides formed on the 

surfaces during the heat treatment. The surfaces of the samples were ground with waterproof 

SiC paper, using water during the initial grinding steps and then an alcohol-based lubricant 

(Struers DP-Lubricant Yellow) for the final grinding step, which was done with 1200 Fine 

Grit SiC paper from Leco. Following grinding, the samples were washed with ethanol and 

then polished with diamond abrasive from Leco (up to 1 μm), again using the alcohol-based 

lubricant. In between each polishing step (and after final polishing), the samples were 

washed with ethanol in an ultrasonic cleaner. Microstructures of the samples were observed 

using optical microscopy after polishing. Figure 21 shows the polished (a) pure Mg and (b) 

alloy samples as an example.  

  
(a) (b) 

Figure 21: Cut and polished samples: (a) pure Mg and (b) Mg-2Ca and Mg-2Ca-1Zn 
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3.2 Heat Treatments 

Sets of Mg-2Ca and Mg-2Ca-1Zn samples were heat treated to observe the effect of 

solutionizing and artificial aging (S&AA) or solutionizing and natural aging (S&NA) on 

corrosion, compared to samples in the as-cast (AC) condition. The alloy samples were first 

solutionized at 480°C for 24 hours and quenched in water at room temperature. Some 

samples were then immediately artificially aged to near peak-aged condition (at 200°C for 

1.5 hours [39], followed by a water quench). Other samples were stored at room temperature 

for 72 hours after solutionizing; these samples are identified as naturally aged. The heat 

treatments were done in air, with the samples packed in magnesium oxide powders in an 

attempt to minimize high-temperature oxidation of the sample surfaces during the heat 

treatment. Following the heat treatment, the samples were ground and polished, as mentioned 

in Section 3.1. 

The surface modification involving the deposition of Ag nanoparticles was carried out 

after polishing. After deposition of Ag nanoparticles, the samples underwent a heat treatment 

(herein referred to as the ‘sintering treatment’) to allow for sintering of the Ag nanoparticles. 

(The surface modification and sintering treatment are described in more detail in Section 

4.3.) Samples not undergoing Ag deposition, as well as those remaining in the as-cast 

condition, were also subjected to the sintering treatment to ensure consistent thermal history 

among all samples.  

For the alloys, it should be noted that the Ag deposition was only done on the samples 

that were solutionized and naturally aged. In an effort to not be wasteful of resources, 

corrosion tests were initially performed on S&AA and S&NA alloy samples without any Ag 
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deposition (for both Mg-2Ca and Mg-2Ca-1Zn) to observe which heat treatment yielded 

better corrosion resistance. Details and results of this corrosion test are described in later 

sections, but to summarize here, significant differences in corrosion results between S&AA 

and S&NA samples after 48 hours of corrosion were not detected for either Mg-2Ca or Mg-

2Ca-1Zn. Therefore, solutionizing and natural aging was the chosen heat treatment for alloy 

samples to be deposited with Ag, with two advantages in mind. The first was the elimination 

of a processing step (or potential manufacturing step) (i.e., artificial aging), saving time and 

energy. The second advantage was the idea that the sintering treatment itself could be utilized 

for precipitation hardening of the solutionized material, and could produce material in the 

peak-aged condition if implemented appropriately. In contrast, if an alloy piece were 

solutionized, artificially aged, and then subjected to the sintering treatment, the material 

would be over-aged and would possess inferior mechanical properties. 

Table 3 summarizes all of the samples made for subsequent corrosion testing. The left 

column lists the samples fabricated without any surface modification (herein referred to as 

‘uncoated’ for simplicity). At least 7 samples were made for each of the conditions listed in 

the left column, with at least 4 being allotted for mass loss testing, and at least 3 being 

allotted for pH testing (these tests are explained in a later section). The column on the right 

lists the samples that were made with Ag. At least 4 samples (for mass loss testing) were 

made for each of these conditions. The Ag deposition process used to make these samples is 

described in the next section. 
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Table 3: Summary of fabricated samples 

Uncoated Samples 
 (No Ag) 

Ag-Deposited Samples 

As-cast pure Mg 
As-cast Mg-2Ca 
As-cast Mg-2Ca-1Zn 

As-cast pure Mg 
As-cast Mg-2Ca 
As-cast Mg-2Ca-1Zn 

S&NA Mg-2Ca 
S&NA Mg-2Ca-1Zn 
S&AA Mg-2Ca 
S&AA Mg-2Ca-1Zn 

S&NA Mg-2Ca 
S&NA Mg-2Ca-1Zn 

 

3.3 Surface Modification 

Ag nanoparticles were deposited onto the surfaces of polished samples using the 

Optomec Maskless Mesoscale Material Deposition (M
3
D) machine. In this process, an Ag 

ink (a mixture of Ag nanoparticles in suspension, purchased from Cabot) was used. The Ag 

nanoparticles (approximately 20 nanometers in diameter) were suspended in an ethylene 

glycol carrier; this suspension was mixed with deionized water to achieve the appropriate 

viscosity before being used in the M
3
D machine. Figure 22 shows the set-up of the machine 

and Figure 23 shows a close-up view of the deposition head and nozzle above the substrate. 
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Figure 22: M
3
D machine 

 

 

Figure 23: Close-up view of the deposition head and nozzle over the substrate 
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The ultrasonic atomizer was used for the fabrication of the samples in this work. As seen 

in Figure 22, a vial containing the Ag nanoparticle suspension is placed in the ultrasonic 

atomizer. Ultrasonic waves generated by the atomizer are transferred to the vial (and thus, the 

Ag nanoparticle suspension); this causes the suspension to aerosolize [62]. Tiny droplets 

containing the Ag nanoparticles form a dense mist in the vial [62]. The generated mist is 

carried through the tube and toward the deposition head by flowing N2 gas. Inside the 

deposition head, a sheath gas (N2) focuses the flowing stream (Figure 24) and directs it 

through the nozzle and onto the substrate below [62]. 

 

Figure 24: Inside the deposition head: Sheath gas focuses flowing stream of Ag 

nanoparticle suspension droplets [62] 

Reprinted from Journal of Micromechanics and Microengineering, 18, Alemohammad, H., Aminfar, O., 

Toyserkani, E., Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted 

maskless microdeposition, Pages 1-12, Copyright (2008), with permission from IOP Publishing Ltd. 

doi:10.1088/0960-1317/18/11/115015 
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The diameter of the nozzle that was used in this work was 150 μm. The process 

parameters that were used are listed in Table 4 below. 

Table 4: Process parameters used for Ag deposition 

  Pure Mg Mg2Ca Mg2Ca1Zn 

Process Velocity [mm/s] 2-3 3 3 

Platen (Substrate) 
Temperature [°C] 

70 60 70 

Flow Controller:  
Sheath [ccm] 

50 50 50 

Flow Controller:  
Atomizer [ccm] 

10-12 15-16 10 

Atomizer Power [V] 50 48 50 

 

Ag nanoparticles were deposited onto the polished substrates in a cross-hatch pattern, 

with a line spacing of 120 μm (as shown in Figure 25). One layer of Ag was deposited in this 

pattern on each sample. 

     

Figure 25: Cross-hatch pattern of Ag nanoparticles deposited onto substrates 

After the deposition process, samples were subjected to a heat treatment (‘sintering 

treatment’) to allow for sintering of the Ag nanoparticles and complete evaporation of the 

liquid carrier. This sintering treatment was done in a tube furnace (MTI High Temperature 

Tube Furnace (GSL—1500X-50, Richmond, CA)), under argon atmosphere to prevent 

Ag tracks 

Mg 

Substrate 

240 μm 120 μm 
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oxidation of the polished and Ag-deposited surfaces. Following recommendations from the 

manufacturer of the Ag ink (which proposed appropriate time and temperature ranges for 

satisfactory sintering of the nanoparticles), the samples were sintered at 190°C for 30 

minutes. In this process, Ag-deposited samples were placed in the furnace and the 

temperature was set to ramp up to 190°C in 10 minutes, held at 190°C for 30 minutes, and 

then finally furnace cooled. 

3.4 Summary of the Fabrication Process 

To summarize the fabrication process, Figure 26 shows the steps taken to create both (a) 

the uncoated samples and (b) the samples deposited with Ag. 

 

Figure 26: Fabrication process of samples (a) without Ag deposition and (b) with Ag 

deposition 
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Prior to corrosion testing, the deposited Ag tracks were characterized for width and 

thickness. Prepared samples were viewed under an optical microscope (Olympus), and image 

analysis software (Image-Pro 6.3) was used to measure the width of the deposited Ag tracks. 

Optical profilometry (WYKO NT 1100 optical profiling system, manufactured by Veeco) 

was used to measure the thickness of the Ag tracks. Table 5 lists the parameters used for 

optical profilometry. 

Table 5: Optical profilometry parameters 

 Parameter Option 

Measurement 
Options 

Measurement Type VSI (Infinite Scan) 
Resolution Full 

Objective 20x 

Field Of View 1.0x 
VSI Options Scan Options 1x Speed 

 Single Scan 
Primary Scan Backscan 2 μm 

Length 4 μm 

Modulation Threshold 1% 
 

3.5 Immersion Corrosion Testing 

Corrosion testing was performed on all the fabricated samples listed in Table 3. The 

objective of the corrosion testing was to examine the effects of alloying, heat treatment, and 

Ag deposition on corrosion behaviour. These observations were made by comparing a 

particular group of samples with another. For example, the corrosion results of as-cast pure 

Mg, as-cast Mg-2Ca, and as-cast Mg-2Ca-1Zn could be compared with each other to 

evaluate the effect of the alloying elements Ca and Zn on the corrosion behaviour. Figure 27 

summarizes all of the comparisons of interest in this work. 
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Figure 27: Comparisons of sample groups (left side) and observed effects (right side). 

For all sample groups, n=4 for mass loss tests and n=3 for pH tests. 

 

Samples were tested using static immersion tests; this type of testing has been referred to 

as the most commonly used method of testing orthopaedic implant materials [45]. In this type 

of testing, samples are placed into stationary containers of a corrosive medium for specified 

amounts of time. In this work, two different immersion tests were performed: mass loss tests 

and pH tests.  
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3.5.1 Immersion Testing Conditions for Mass Loss Tests and pH Tests 

 Prior to any corrosion testing, all samples were cleaned with ethanol in an ultrasonic 

cleaner. All but one of the immersion conditions were common to both the mass loss tests 

and the pH tests. These conditions are described in this section. 

Test Solution 

The corrosion medium used in all immersion tests was Hanks’ balanced salt solution 

(purchased from Lonza). Hanks’ solution was chosen because of its similarity in 

concentrations of inorganic components (salts) to those in human blood plasma. Table 6 

lists the concentration of components in the Hanks’ solution that used in this work. 

Hanks’ solution had been used by other researchers for in vitro corrosion studies 

[8,9,32,35,63,64]. Using Hanks’ solution in the present research would have allowed 

comparisons with those previous studies. 

Table 6: Composition of Hanks' solution used for immersion tests 

Components Concentration [mg/L] 

CaCl2∙2H2O 186 
KCl 400 
KH2PO4 60 
MgSO4∙7H2O 200 
NaCl 8000 
NaHCO3 350 
Na2HPO4∙7H2O 90 
Glucose 1000 

 

Test Temperature 

It has been shown that corrosion rate of Mg is affected by the temperature at which 

corrosion takes place [65]. Because of this, and to mimic the physiological environment, 
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the test solution was held at 37°C (body temperature) using a water bath (Fisher 

Scientific Isotemp Economy Analog-Control) for the duration of the immersion tests. 

Ratio of Exposed Surface Area to Volume of Test Solution 

An important factor during immersion testing is the ratio of exposed surface area of a 

sample to the volume of test solution (herein referred to as surface-area-to-solution-

volume ratio (SA:SV ratio)). It has previously been shown that the corrosion rates of Mg 

can be greatly affected by the SA:SV ratio [63]; Yang et al. [63] measured the mass loss 

of Mg-1Mn-1Zn samples in Hanks’ solution with different SA:SV ratios and showed 

much different mass loss results when the ratio was changed (Figure 28). 

 

Figure 28: Effect of SA:SV ratio on mass loss measurements. [63] 

Reprinted from Materials Science and Engineering C, 29, Yang, L., Zhang, E., Biocorrosion behavior of 

magnesium alloy in different simulated fluids for biomedical application, Pages 1691-1696, Copyright 

(2009), with permission from Elsevier. 
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Because of this, it was important that the SA:SV ratio be kept consistent among all 

samples for all immersion tests performed. In this work, a ratio of 1mm
2
:1mL was 

chosen. To measure the surface area, an image of a sample placed directly beside calipers 

(open to 10 mm) was taken. Image analysis software (Image-Pro 6.3) was used to 

measure the surface area of the sample in pixels, which was then converted to mm
2
. 

3.5.2 Immersion Testing for pH Measurement 

During static immersion testing in which the test solution is never changed, a rise in 

pH accompanies the corrosion reaction of Mg, as OH
–
 ions are released into the solution 

as corrosion proceeds [29]. Thus, monitoring the change in pH levels during corrosion is 

a good indicator of how quickly the corrosion reaction happens, and can be a good tool 

for comparing the corrosion behavior of different materials. Indeed, pH tests have often 

been performed by researchers in the past when carrying out immersion tests [27,43,54]. 

In an effort to determine the extent to which the pH level evolves during the corrosion 

reaction of different samples, samples were placed in beakers of Hanks’ solution for 336 

hours. In order to measure pH evolution, the Hanks’ solution remained unchanged 

throughout the duration of the test. pH values were measured at various time points using 

a bench-top pH meter (Omega PHB-550R pH/mV/Temp Meter) with an accuracy of ± 

0.02. The pH meter was calibrated every few days using buffer solutions of pH 7 and 10. 

At least 3 samples per alloy/condition were tested. The result reported for a certain 

alloy/condition at a given time point was the average of the tested samples within that 

group, plus or minus the standard deviation. 
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3.5.3 Immersion Testing for Mass Loss Measurements 

As noted before, in a confined corrosion environment, the release of OH
–
 ions results 

in the consequent rise in pH level, which causes the corrosion rate to decrease as the 

corrosion reaction proceeds [29]. However, in the human body, homeostasis maintains a 

pH level of around 7.4 [5]. It would therefore be inaccurate to attempt to predict in vivo 

mass loss (and thus, corrosion rates) by way of in vitro immersion tests if the pH of the 

test solution was not controlled. In fact, it has been said that “corrosion rates measured in 

vitro are of little relevance to the physiological condition if the in vivo pH levels are not 

maintained” [29]. Therefore, for the mass loss tests in this work, efforts to maintain 

physiological pH throughout the duration of immersion testing were made by replacing 

the Hanks’ solution every 24 hours, a practice that has been done by several other 

researchers in the past [32,45]. It may be worthy to mention that while the mass loss tests 

would indeed be more physiologically relevant (since the test solution was replenished 

every day), the pH tests (in which the test solution was not changed) can still provide 

some insight into the corrosion reaction, particularly when comparing different alloys or 

samples.  

Because Ag was only deposited on the top surface of each sample, the sides and 

bottom of the samples were masked off using 3M high adhesion tape, leaving only the 

top (Ag-deposited) surface exposed. The samples were then placed in beakers containing 

appropriate amounts of Hanks’ solution and immersed for 48, 168, and 336 hours. For a 

given alloy/condition, at least 4 samples of that particular alloy/condition were tested for 

each time point. 
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In order to obtain mass loss data from the immersion tests, the samples were weighed 

prior to immersion using a scale with an accuracy of ± 0.5 mg. After immersion for the 

specified duration (i.e., 48, 168, or 336 hours), the samples were taken from the Hanks’ 

solution, rinsed gently with distilled water, and dried with a light stream of air at room 

temperature. The corrosion products that formed during the corrosion reaction were 

chemically removed by submersing the corroded sample into a solution of CrO3 (200 

g/L) + AgNO3 (10 g/L), a step that has been done by many other researchers in the past 

[48,50]. After corrosion product removal, the samples were weighed again for the final 

mass. The mass loss of a particular sample was simply the difference between the initial 

mass and final mass. Because the samples were not all exactly the same size with 

identical surface area prior to corrosion (since samples were cut and polished by hand), 

the calculated mass loss value after immersion was divided by the initial surface area to 

normalize the mass loss values across all samples (Equation 1). 
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The mass loss (average ± standard deviation) was reported for each 

material/condition at a given time point. When comparing mass loss values of one 

material/condition type with another (e.g., comparing uncoated as-cast Mg-2Ca with 

uncoated S&NA Mg-2Ca) for a given immersion time, p-values were calculated to 

determine if any differences observed were statistically significantly different. To do so, 

an F-test was first performed on the two data sets of interest to determine equality of 

(1) 
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variance within the data sets. The t-test (either assuming equal or unequal variance) was 

then performed on the same sets of data according to the results of the prior F-test. As is 

commonly done, t-test results yielding p < 0.05 was considered to be statistically 

significantly different. In cases where three different conditions were compared (e.g., 

mass loss values of Mg-2Ca in the as-cast, solutionized and naturally aged, and 

solutionized and artificially aged conditions), single-factor analysis of variance 

(ANOVA) was used to determine if any significant difference existed among the three 

values. Again, a p-value of less than 0.05 was considered significant. All statistical tests 

were performed using Microsoft Excel 2007 statistics (http://office.microsoft.com/en-

ca/excel-help/about-statistical-analysis-tools-HP005203873.aspx). 

 

3.6 Characterization of the Corrosion Products and Corrosion Product 

Morphology 

To observe the morphology of the corrosion products on the samples’ surfaces, corroded 

samples were viewed under the scanning electron microscope (SEM) (using both secondary 

electron and back-scattered electron modes) before the removal of the corrosion products. To 

identify the corrosion products formed during immersion, the corrosion products (while still 

intact on the samples) were analyzed using energy dispersive x-ray (EDX) analysis. 

X-ray diffraction (XRD) analysis (Rigaku, AFC-8 generator, Cu target, wavelength 

0.1542 nm, 2 kW, 50 kV, 40 mA) was used to determine the phases of the corrosion 

products. Initial attempts to examine the corrosion products directly on corroded samples 

http://office.microsoft.com/en-ca/excel-help/about-statistical-analysis-tools-HP005203873.aspx
http://office.microsoft.com/en-ca/excel-help/about-statistical-analysis-tools-HP005203873.aspx
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(i.e., before corrosion product removal, while the corrosion products were still adhered to the 

sample) were unsuccessful, as strong, distinct signals could not be obtained. Instead, extra 

samples of particular conditions (e.g., as-cast Mg-2Ca with Ag deposition) were fabricated 

and subjected to immersion for extended periods of time (approximately 30 days) to allow as 

much corrosion product to form as possible. During this time, much of the corrosion products 

that formed flaked off of the sample and settled at the bottom of the beaker, away from the 

sample itself. After immersion, this excess corrosion product was carefully collected and 

packed onto sticky tape on a mount to be placed in the XRD unit. Care was taken to place 

enough corrosion products onto the mount so that the thickness of the corrosion products 

placed on each mount (approximately 1 mm) was consistent among samples.  
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Chapter 4 

Results and Discussion 

The results of all of the immersion tests are presented in this chapter, and the effects of 

the alloying elements, heat treatments, and Ag deposition on corrosion are discussed. As 

well, the morphology of the corrosion products after immersion is shown, and the 

identification of the corrosion products is discussed. 

4.1 Immersion Corrosion Tests 

Immersion corrosion results in this section are presented according to Figure 27 (i.e., a 

material/condition type compared with another to observe the effect of alloying, heat 

treatment, or Ag deposition). Mass loss results (mg/cm
2
) are presented in conjunction with 

the results of corresponding pH tests for uncoated samples, which can, in some ways, act as 

confirmation of mass loss results. 

4.1.1 Effect of Alloying Elements on Corrosion in the As-Cast Condition 

Mass loss results of as-cast pure Mg and as-cast Mg-2Ca samples were compared to 

observe the effects of the addition of 2 wt. % Ca to pure Mg (Figure 29).  

Table 7 lists the p-values calculated to compare pure Mg with Mg-2Ca at the three 

different time points. 
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Figure 29: Mass loss results for as-cast pure Mg and as-cast Mg-2Ca (without Ag 

deposition) at three different immersion times 

 

Table 7: p-values comparing mass loss results of as-cast pure Mg and as-cast Mg-

2Ca at three immersion time points (without Ag deposition) 

As-cast Pure Mg vs. As-cast Mg-2Ca 
Time [h] p-value (t-test) Conclusion 

48 0.00032 Statistically significant difference 
168 0.00227 Statistically significant difference 

336 0.00029 Statistically significant difference 
 

Statistically significant differences were detected between as-cast pure Mg and as-

cast Mg-2Ca samples for all three time points, with the Mg-2Ca samples corroding much 

more rapidly than pure Mg, revealing that the addition of 2 wt. % Ca severely worsens 

the corrosion rate of Mg. This result corresponds well with other results in the literature; 

for example, Wan et al. [26] showed that Mg-2Ca alloy had lower corrosion resistance 
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than pure Mg (Figure 6) in their electrochemical tests on pure Mg and various binary Mg-

Ca alloys. The fast corrosion rate of Mg-Ca alloys has been attributed to the presence of 

the Mg2Ca phase [26]; the Mg2Ca phase can clearly be seen in the microstructure of the 

tested Mg-2Ca samples (Figure 30).  

  

Figure 30: Microstructures of (a) pure Mg and (b) as-cast Mg-2Ca prior to 

immersion testing 

 

The presence of the second phases (Mg2Ca) within the α-Mg matrix resulted in 

micro-galvanic couples within the microstructure. Microelectrochemical testing has 

identified the Mg2Ca phase to be more anodic than α-Mg [29,66] (which is atypical as 

many common intermetallics present in Mg alloys have been shown to be cathodic to α-

Mg [66]). Because the network of the Mg2Ca phase (which is distributed around the grain 

boundaries) serves as local anodes to the surrounding α-Mg matrix, the Mg2Ca phases 

would corrode preferentially, creating a corrosion channel, and thus leading to serious 

corrosion at the grain boundaries [32].  

The results from the pH tests further confirm that the Mg-2Ca samples corroded more 

rapidly than pure Mg. The evolution of pH during immersion for pure Mg and Mg-2Ca is 

120 µm 

(a) (b) 
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shown in Figure 31. The pH rises rapidly at the start of immersion for both pure Mg and 

Mg-2Ca and plateaus after approximately 50 hours of immersion. However, the corrosion 

of Mg-2Ca causes the pH level to rise to a value much higher than that of pure Mg (due 

to the release of more OH
-
 ions), which indicates that much more corrosion has occurred 

with the Mg-2Ca samples than pure Mg. 

 

Figure 31: pH test results for as-cast pure Mg and as-cast Mg-2Ca 

 

The mass loss results of as-cast Mg-2Ca and as-cast Mg-2Ca-1Zn samples were then 

compared to observe the effects of the addition of 1 wt. % Zn to the Mg-2Ca alloy. These 

results are seen in Figure 32. Table 8 lists the p-values calculated to compare Mg-2Ca 

with Mg-2Ca-1Zn at the different time points. 
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Figure 32: Mass loss results for as-cast Mg-2Ca and as-cast Mg-2Ca-1Zn (without 

Ag deposition) at three different immersion times 

 

Table 8: p-values comparing mass loss results of as-cast Mg-2Ca and as-cast Mg-

2Ca-1Zn at three immersion time points (without Ag deposition) 

 

As-cast Mg-2Ca vs. As-cast Mg-2Ca-1Zn 

Time [h] p-value (t-test) Conclusion 
48 0.00036 Statistically significant difference 

168 0.00249 Statistically significant difference 
336 3.5213 x 10-8 Statistically significant difference 

 

Again, statistically significant differences were detected between as-cast Mg-2Ca and 

as-cast Mg-2Ca-1Zn samples for all three time points, with the Mg-2Ca-1Zn samples 

corroding much more slowly than Mg-2Ca. This reveals that the addition of just 1 wt. % 

Zn to Mg-2Ca alloy dramatically improves the corrosion rate. This result corresponds 

well with other results in the literature; a study by Du et al. (2011) revealed that the 
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corrosion resistance of the Mg-3Ca alloy is improved after the addition of 2 wt. % Zn to 

the alloy [32]. The improved corrosion properties were attributed to the formation and 

presence of the Ca2Mg6Zn3 phase in the Mg-3Ca-2Zn alloy [32], as seen in Figure 33. 

The Ca2Mg6Zn3 phase was believed to contribute to the improved corrosion properties by 

reducing the volume fraction of the Mg2Ca phase as well as interrupting the Mg2Ca 

network, thus preventing the fast dissolution of the anodic Mg2Ca [32]. 

 

Figure 33: SEM image of the eutectic structure in as-cast Mg-3Ca-2Zn alloy [32] 

Reprinted from Materials Chemistry and Physics, 125, Du, H., Wei, Z., Liu, X., Zhang, E., Effects of Zn on 

the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical 

application, Pages 568-575, Copyright (2011), with permission from Elsevier. 

 

Examination of the as-cast Mg-2Ca-1Zn samples (tested in this work) under SEM 

revealed a microstructure similar to that found by Du et al. [32] (Figure 33), and EDX 

analysis performed on the phases revealed that the ‘white’ (brighter) phase was rich in Zn 

(Spectrum 1 in Figure 34). Those brighter areas in the microstructure shown in Figure 34 

(indicated by black arrows) are thus thought to be the Ca2Mg6Zn3 phase as well, and it 
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was believed that the presence of this phase in the samples tested contributed to the 

improved corrosion performance of the Mg-2Ca-1Zn alloys. 

 

Figure 34: EDX results of the three phases in Mg-2Ca-1Zn alloy. 

 

Once again, the results from the pH tests confirm that the Mg-2Ca-1Zn samples 

corroded more slowly than Mg-2Ca. The evolution of pH during immersion for Mg-2Ca 

and Mg-2Ca-1Zn is shown in Figure 35, showing much higher pH values for the Mg-2Ca 

samples when compared with Mg-2Ca-1Zn throughout the duration of the test. 
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Figure 35: pH test results for as-cast Mg-2Ca and as-cast Mg-2Ca-1Zn 

 

The mass loss results of as-cast pure Mg and as-cast Mg-2Ca-1Zn samples were then 

compared (Figure 36). Table 9 lists the p-values calculated to compare pure Mg with Mg-

2Ca-1Zn at the three time points. 
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Figure 36: Mass loss results for as-cast pure Mg and as-cast Mg-2Ca-1Zn (without 

Ag deposition) at three different immersion times 

 

Table 9: p-values comparing mass loss results of as-cast pure Mg and as-cast Mg-

2Ca-1Zn at three immersion time points (without Ag deposition) 

As-cast Pure Mg vs. As-cast Mg-2Ca-1Zn 
Time [h] p-value (t-test) Conclusion 

48 0.03266 Statistically significant difference 

168 0.28724 No significant difference detected 
336 0.05216 No significant difference detected 

 

Although it appears in Figure 36 that Mg-2Ca-1Zn exhibited slightly more mass loss 

than pure Mg over all time points, a statistically significant difference was only detected 

for the samples immersed for 48 hours. After 48 hours, statistically significant differences 

could not be detected. This might suggest that the addition of Zn to the binary Mg-2Ca 

alloy improved the corrosion performance so much so that it was relatively comparable to 
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the corrosion performance of pure Mg. However, further testing with larger sample sizes 

would be necessary to prove (or disprove) this, as it was difficult to confidently draw a 

conclusion from Figure 36 and Table 9 alone. 

4.1.2 Effect of Heat Treatments on Corrosion of Alloy Samples 

As described in Chapter 4, a preliminary immersion corrosion test was performed to 

determine which heat treatment (solutionizing and naturally aging or solutionizing and 

artificially aging) to select for fabrication of heat treated samples to be deposited with 

Ag. Sets of (uncoated) samples were heat treated via both heat treatments, then subjected 

to immersion corrosion for 48 hours. Figure 37 shows the mass loss measurements of 

Mg-2Ca samples (in the as-cast, S&NA, and S&AA conditions) after 48 hours of 

immersion. 



 

 67 

 

Figure 37: Mass loss measurements for Mg-2Ca alloy (as-cast, S&NA, S&AA) after 

48 hours of immersion 

 

Single-factor ANOVA was used to determine if any significant difference among the 

three conditions could be detected. A p-value of 1.16E-07 was calculated, indicating a 

significant difference of at least one of the conditions (p < 0.05). From Figure 37, it was 

clear that the mass loss of the as-cast Mg-2Ca was significantly higher than that of both 

heat treated groups. This might be explained by considering the microstructures of the 

un-corroded Mg-2Ca samples. The Mg2Ca phase was apparent in both the as-cast sample 
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and the S&NA sample (Figure 38), but it was clear that the as-cast sample had a greater 

volume fraction of the Mg2Ca phase than the S&NA sample had.  

 
 

Figure 38: Microstructure of un-corroded Mg-2Ca: (a) as-cast and (b) S&NA 

 

The difference in the amount of Mg2Ca phase present in these samples was due to the 

solutionizing heat treatment, during which a large proportion of the Mg2Ca phase 

dissolves into the matrix. The amount of second phases present at equilibrium in Mg-2Ca 

(and ternary Mg-Ca-Zn alloys) as a function of temperature has previously been 

calculated using FactSage (Figure 39) by Langelier et al. [39]. The amount of the Mg2Ca 

phase is clearly shown to decrease with increasing temperature. The samples in this work 

were solutionized at 480°C for 24 hours; according to Figure 39, a large proportion of the 

Mg2Ca phase would have dissolved into the matrix at such a temperature (as compared 

with the as-cast Mg-2Ca). 

120 µm 120 µm 
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Figure 39: Equilibrium second phases for Mg-2Ca, Mg-2Ca-1Zn, and Mg-2Ca-2Zn 

as calculated by FactSage [39] 

Reprinted from Proceedings from 2010 TMS Annual Meeting & Exhibition, Agnew, S., Neelameggham, 

N.R., Nyberg, E.A., Sillekens, W., The effect of Zn Additions on Precipitation Hardening of Mg-Ca 

Alloys, Copyright (2010), with permission from Wiley. 

 

Since the as-cast samples had more Mg2Ca than the S&NA samples, it was reasonable 

that the as-cast samples corroded faster than the S&NA samples after 48 hours, since the 

Mg2Ca phase, as the local anodes, corroded preferentially. With a higher surface area of 

the anode (versus surface area of the cathode), more corrosion would indeed be expected 

to occur. This was supported by the results of Li et al. [27], in which as-cast Mg-1Ca, 

Mg-2Ca, and Mg-3Ca were tested (Figure 7), with the authors reporting that “an 

increasing content of Mg2Ca phase led to a higher corrosion rate” [27]. This notion that 
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the presence (and amount) of the Mg2Ca phase has deleterious effects on the corrosion 

behaviour of Mg alloys has been supported by many different researchers [27,32,37].  

Because the mass loss between the S&NA samples and S&AA samples did not 

appear to be statistically significantly different, solutionizing and natural aging was the 

heat treatment chosen for the remainder of the Mg-2Ca samples to be immersion tested. 

Figure 40 shows the mass loss test results for as-cast Mg-2Ca compared to S&NA Mg-

2Ca after 48, 168, and 336 hours of immersion. Table 10 lists the p-values calculated to 

compare the mass loss results at the three different time points. Statistically significant 

differences were observed after 48 hours and 168 hours of immersion. However, the 

difference did not appear to be significantly different after 336 hours. 

 

Figure 40: Mass loss results for as-cast Mg-2Ca and S&NA Mg-2Ca (without Ag 

deposition) at three different immersion times 
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Table 10: p-values comparing mass loss results of as-cast Mg-2Ca and S&NA Mg-

2Ca at three immersion time points (without Ag deposition) 

As-cast Mg-2Ca vs. Solutionized and Naturally Aged Mg-2Ca 
Time [h] p-value (t-test) Conclusion 

48 0.00075 Statistically significant difference 

168 0.03573 Statistically significant difference 
336 0.31139 No significant difference 

 

The results from the pH tests of the same materials (Figure 41) indicated a similar 

result. The pH increased significantly more rapidly for the as-cast samples than the 

S&NA samples for the first (approximately) 100 hours, but both plateau to about the 

same value towards the end of the test. 

 

Figure 41: pH test results for as-cast Mg-2Ca and S&NA Mg-2Ca 
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These pH results correspond well with the mass loss results, in which the difference in 

mass loss no longer appeared significant after 336 hours of immersion. As explained 

earlier, the difference in corrosion performance near the beginning of the immersion test 

could be explained by considering the difference in the microstructure of Mg-2Ca before 

and after heat treatment (Figure 38); the as-cast samples corroded more quickly than the 

S&NA samples because of the higher amount of the Mg2Ca phase. Because the Mg2Ca 

phase is more electrochemically active than the α-Mg matrix, the Mg2Ca phase would 

have corroded preferentially in the early stages of the corrosion reaction, which could 

explain why the as-cast samples corroded more quickly than the heat treated samples (as 

was noted before). However, the mass loss did not appear to be significantly different 

after longer immersion times; it was speculated that a partially protective layer had 

formed on the surfaces of the samples after a certain period of time, thus slowing down 

the corrosion process for both sample types. 

Figure 42 shows the mass loss measurements of Mg-2Ca-1Zn samples (in the as-cast, 

S&NA, and S&AA conditions) after 48 hours of immersion. 
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Figure 42: Mass loss measurements for Mg-2Ca-1Zn alloy (as-cast, S&NA, S&AA) 

after 48 hours of immersion 

 

Again, single-factor ANOVA was used to determine if any significant difference 

existed among the three conditions. A p-value of 0.498 was calculated, indicating that a 

significant difference could not be detected among these three conditions (p > 0.05). This 

might be explained by, again, considering the microstructure of Mg-2Ca-1Zn before and 

after heat treatment. When observing the microstructures of as-cast Mg-2Ca-1Zn and 

S&NA Mg-2Ca-1Zn prior to immersion (Figure 43), it was noted that, while the second 

phases were present in both types of samples (and thus, the existence of micro-galvanic 

couples), there did not appear to be very much difference in terms of the amount of the 
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phases within the matrices between the sample types. Because of this, it seemed 

reasonable that the mass loss rates of these sample types did not appear to be significantly 

different. 

 
 

Figure 43: Microstructure of un-corroded Mg-2Ca-1Zn: (a) as-cast and (b) S&NA 

 

Because the mass loss between the S&NA samples and S&AA samples did not 

appear to be significantly different, solutionizing and natural aging was the heat treatment 

chosen for the remainder of the Mg-2Ca-1Zn samples to be immersion tested (again, for 

reasons described in Chapter 4). Figure 44 shows the mass loss results for as-cast Mg-

2Ca-1Zn compared to S&NA Mg-2Ca-1Zn after 48, 168, and 336 hours of immersion. 

Table 11 lists the p-values calculated to compare the mass loss results at the three 

different time points. Statistically significant differences were not detectable for all three 

time points. The fact that the difference between as-cast and heat treated Mg-2Ca-1Zn 

samples was not as apparent as the Mg-2Ca samples may be explained by the FactSage 

calculations as displayed in Figure 39. The decrease in volume fraction of the Mg2Ca 

phase with increasing temperature for the Mg-2Ca-1Zn alloy is not as pronounced as that 
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of the Mg-2Ca alloy. In other words, in the Mg-2Ca-1Zn alloy, less Mg2Ca phase 

dissolves into the matrix with heat treatment as compared to the Mg-2Ca alloy, thus a fair 

amount of the anodic Mg2Ca phase remains in the microstructure of the Mg-2Ca-1Zn 

alloy after heat treatment. Therefore, it was reasonable that the difference in corrosion 

behaviour was not as pronounced (i.e., no significant difference was detected) in the Mg-

2Ca-1Zn alloy after heat treatment. 

 

Figure 44: Mass loss results for as-cast Mg-2Ca-1Zn and S&NA Mg-2Ca-1Zn 

(without Ag deposition) at three different immersion times 

 

Table 11: p-values comparing mass loss results of as-cast Mg-2Ca-1Zn and S&NA 

Mg-2Ca-1Zn at three immersion time points (without Ag deposition) 

As-cast Mg-2Ca-1Zn vs. Solutionized and Naturally Aged Mg-2Ca-1Zn 
Time [h] p-value (t-test) Conclusion 

48 0.99029 No significant difference 
168 0.22358 No significant difference 

336 0.42521 No significant difference 
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The results from the pH tests (Figure 45) seemed to confirm this observation. No 

significant difference in pH values between as-cast and S&NA Mg-2Ca-1Zn was 

observed throughout the duration of the test. 

 

Figure 45: pH test results for as-cast Mg-2Ca-1Zn and S&NA Mg-2Ca-1Zn 
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First, uncoated pure Mg samples were compared with pure Mg samples with Ag 

deposition. These results are shown in Figure 46, and Table 12 lists the calculated p-

values used to compare the samples at the different time points. Statistically significant 

differences between the uncoated samples and Ag-deposited samples were not detected 

for all three time points. 

 

Figure 46: Mass loss results for as-cast pure Mg (with and without Ag deposition) at 

three different immersion times 

 

Table 12: p-values comparing mass loss results of as-cast pure Mg (with and without 

Ag deposition) at three immersion time points 

As-cast Pure Mg: Uncoated vs. With Ag Deposition 

Time [h] p-value (t-test) Conclusion 
48 0.43271 No significant difference 

168 0.72110 No significant difference 
336 0.12169 No significant difference 
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Uncoated as-cast Mg-2Ca samples were then compared to as-cast Mg-2Ca samples 

with Ag deposition. The mass loss results for these samples are shown in Figure 47.  

Table 13 lists the calculated p-values. Again, statistically significant differences between 

the uncoated samples and Ag-deposited samples were not detected for all three time 

points. 

 

Figure 47: Mass loss results for as-cast Mg-2Ca (with and without Ag deposition) at 

three different immersion times 

 

Table 13: p-values comparing mass loss results of as-cast Mg-2Ca (with and without 

Ag deposition) at three immersion time points 

As-cast Mg-2Ca: Uncoated vs. With Ag Deposition 

Time [h] p-value (t-test) Conclusion 

48 0.83691 No significant difference 
168 0.66388 No significant difference 

336 0.68406 No significant difference 
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Uncoated Mg-2Ca samples (in the S&NA condition) were then compared to those 

with Ag deposition. The mass loss results for these samples are shown in Figure 48.  

Table 14 lists the calculated p-values. In this case, there appeared to be a significant 

difference between the uncoated samples and Ag-deposited samples after 48 hours of 

immersion. However, significant differences were not detected for samples immersed for 

168 and 336 hours. 

 

Figure 48: Mass loss results for S&NA Mg-2Ca (with and without Ag deposition) at 

three different immersion times 

 

Table 14: p-values comparing mass loss results of S&NA Mg-2Ca (with and without 

Ag deposition) at three immersion time points 

As-cast Mg-2Ca: Uncoated vs. With Ag Deposition 
Time [h] p-value (t-test) Conclusion 

48 0.00618 Statistically significant difference 
168 0.05670 No significant difference 

336 0.08499 No significant difference 
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Uncoated as-cast Mg-2Ca-1Zn samples were compared to as-cast Mg-2Ca-1Zn 

samples with Ag deposition. These mass loss results are shown in Figure 49, and  

Table 15 lists the calculated p-values. A statistically significant difference appeared for 

the samples immersed for 336 hours, but significant differences could not be detected 

between sample immersed for 48 and 168 hours. 

 

Figure 49: Mass loss results for as-cast Mg-2Ca-1Zn (with and without Ag 

deposition) at three different immersion times 

 

Table 15: p-values comparing mass loss results of as-cast Mg-2Ca-1Zn (with and 

without Ag deposition) at three immersion time points 

As-cast Mg-2Ca: Uncoated vs. With Ag Deposition 

Time [h] p-value (t-test) Conclusion 
48 0.09372 No significant difference 

168 0.07575 No significant difference 
336 0.01227 Statistically significant difference 
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Finally, uncoated Mg-2Ca-1Zn samples (in the S&NA condition) were compared to 

S&NA Mg-2Ca-1Zn samples with Ag deposition. These results are shown in Figure 50, 

with Table 16 listing the calculated p-values. In this case, a significant difference was 

observed between the uncoated samples and Ag-deposited samples after 168 and 336 

hours of immersion, but a significant difference was not detected for samples immersed 

for 48 hours. 

 

Figure 50: Mass loss results for S&NA Mg-2Ca-1Zn (with and without Ag 

deposition) at three different immersion times 

 

Table 16: p-values comparing mass loss results of S&NA Mg-2Ca-1Zn (with and 

without Ag deposition) at three immersion time points 

As-cast Mg-2Ca: Uncoated vs. With Ag Deposition 

Time [h] p-value (t-test) Conclusion 
48 0.27792 No significant difference 

168 0.01522 Statistically significant difference 

336 0.03045 Statistically significant difference 
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Overall, the fact that significant differences between uncoated samples and samples 

deposited with Ag were detected in some comparisons (e.g., S&NA Mg-2Ca immersed 

for 48 hours) but not others (e.g., S&NA Mg-2Ca immersed for 168 and 336 hours) 

points to the possibility that Ag may indeed have had an effect on the corrosion 

behaviour, but this effect may depend on the Ag depositions themselves (i.e., the 

individual characteristics of the Ag tracks). Further analysis of the mass loss results and 

re-examination of all of the samples tested provided more insight on the possible effect of 

Ag deposition on corrosion behaviour. 

4.1.4 Variations Within Sample Groups 

In reviewing all of the mass loss results when comparing uncoated samples with 

samples with Ag-deposition (Figure 46 through Figure 50), an observation was made 

regarding the size of the error bars associated with the mass loss results: in general, the 

error bars tended to be quite large for the groups of Ag-deposited samples, and in almost 

all cases, they were larger than those associated with the uncoated samples. This 

observation suggested that the corrosion behaviour of the substrates was likely very 

sensitive to the Ag deposition. 

Whether or not Ag deposition affected corrosion behaviour seemed to depend heavily 

on the characteristics of the Ag tracks themselves. In many comparisons, no significant 

difference was detected between a group of uncoated samples and the corresponding 

group of Ag-deposited samples. However, if each Ag-deposited sample within that group 

was examined, differences in the characteristics of the Ag tracks were found among the 
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different samples. These differences in Ag track characteristics were due to 

inconsistencies from the M
3
D machine during the Ag deposition process. Although 

efforts were made during this process to produce consistent Ag tracks among all samples 

(e.g., using the same processing parameters, checking the Ag tracks of the first few 

samples produced each session under an optical microscope, rejecting bad samples, etc.), 

it was very difficult to produce numerous samples with exactly identical Ag tracks. 

Because of this, the variation of mass loss results within a given group of Ag-deposited 

samples was partly attributed to the fact that inconsistencies in Ag track characteristics 

among samples existed. Relating the mass loss result of an individual sample to the 

characteristics of the Ag tracks on that same sample (and doing so for every single 

sample tested), it was found that, in general, corrosion was more severe for samples on 

which the Ag tracks were thicker, denser, and more ‘solid’ in appearance compared to 

samples on which the Ag tracks were thinner and sparser. 

To illustrate, the pure Mg samples immersed for 168 hours were examined (refer to 

Figure 46). The mass loss of each individual (Ag-deposited) sample was plotted and 

shown in Figure 51. Examining the samples immersed for 168 hours, it was obvious that 

one sample in this group (called Sample 7A) exhibited a much higher mass loss than the 

other samples in that group. 
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Figure 51: Individual mass loss results of pure Mg samples with Ag deposition 

 

As mentioned prior, the characteristics of the Ag tracks on each individual sample had 

been examined using optical microscopy and optical profilometry. Figure 52 shows the 

optical microscopy images of the Ag tracks on the pure Mg samples prior to being 

subjected to 168 hours of immersion. It was observed that the Ag tracks on Sample 7A 

(the sample with the highest mass loss) were thicker and more solid than the tracks on the 

other three samples within that group (that exhibited less mass loss). 
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Pure Mg Sample 7A 
Highest Mass Loss 

Mass Loss: 3.0719 mg/cm
2
 

Pure Mg Sample 7B 

Lowest Mass Loss 

Mass Loss: 0.9214 mg/cm
2
 

Pure Mg Sample 7C 
Mass Loss: 0.9510 mg/cm

2
 

Pure Mg Sample 7D 
Mass Loss: 1.0019 mg/cm

2
 

Figure 52: Optical microscope images of the Ag tracks on the pure Mg samples 

prior to immersion for 168 hours 

 

Optical profilometry allowed for the thickness of the Ag tracks to be measured. X and 

Y profile plots were obtained, which essentially showed the cross-section of the observed 

Ag tracks on a particular sample. For illustration purposes, Figure 53 shows the X and Y 

120 µm 120 µm 

120 µm 120 µm 
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profile plots of Sample 7A and Sample 7B to compare the thickness and width 

characteristics of the samples that exhibited the highest and lowest mass loss, 

respectively. The peaks on the profile plots represent the Ag tracks on the samples, with 

the y-axis representing the thickness (or height) of the tracks and the x-axis representing 

the width. Observing these profile plots, it was clear that the Ag tracks on Sample 7A 

were generally both thicker and wider than the tracks on Sample 7B. 

 

 
 

 

 

 
Pure Mg Sample 7A  
(Highest Mass Loss) 

Mass Loss: 3.0719 mg/cm
2
 

500-600 nm Thickness 

15-20 µm Width 

 

 

 

 

 

 

Pure Mg Sample 7B  
(Lowest Mass Loss) 

Mass Loss: 0.9214 mg/cm
2
 

400-500 nm Thickness 

5-10 µm Width 

Figure 53: X and Y profile plots of the Ag tracks on two pure Mg samples immersed 

for 168 hours 
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 To further illustrate how much of an effect the characteristics of the Ag tracks can 

have on corrosion behaviour, the group of pure Mg samples immersed for 336 hours was 

examined next. From Figure 51, it was clear that Sample 14B exhibited the highest mass 

loss and Sample 14D exhibited a much lower mass loss. The optical microscope images 

of the Ag tracks on these samples are shown in Figure 54. In this case, it was extremely 

obvious that the Ag tracks on Sample 14B were much thicker, denser, and more solid 

than the tracks on Sample 14D, which had a more ‘splattered’ appearance. In terms of 

mass loss, Sample 14B indeed exhibited much more mass loss than Sample 14D. 

 
Pure Mg Sample 14B 

Highest Mass Loss 

Mass Loss: 8.2430 mg/cm
2
 

 
Pure Mg Sample 14D 

Lowest Mass Loss 

Mass Loss: 1.7328 mg/cm
2
 

 

Figure 54: Optical microscope images of the Ag tracks on two of the pure Mg 

samples prior to immersion for 336 hours 

 

After analyzing other samples in addition to these pure Mg samples shown above, it 

was observed that, generally, samples with very thick, dense, and solid Ag tracks 

exhibited more mass loss (i.e., more severe corrosion) than samples with thinner, less 

120 µm 120 µm 
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dense tracks. In fact, the mass losses exhibited by samples with thinner, less dense tracks 

were often quite close to those of samples without any Ag deposition at all. The set of 

S&NA Mg-2Ca samples immersed for 168 hours was taken as an example to illustrate 

this observation. Figure 55 shows the individual mass loss results of the uncoated 

samples (U7A, U7B, U7C, and U7D) and samples with Ag deposition (7A, 7B, 7C, and 

7D) that were immersed for 168 hours. While samples 7A, 7B, and 7C (with Ag 

deposition) had mass loss values that were much higher than the uncoated samples, 

Sample 7D (with Ag deposition) had a mass loss value within the range of those 

exhibited by the uncoated samples. Again, the difference in mass loss results within the 

group of Ag-deposited samples was attributed to the differences in the characteristics of 

the Ag tracks (Figure 56); the Ag tracks on Samples 7A, 7C, and 7B (highest mass loss) 

were thicker and more solid than the Ag tracks on Sample 7D (lowest mass loss), which 

had a slightly splattered, non-solid appearance. 

 

Figure 55: Individual mass loss results of uncoated samples and samples with Ag 

deposition that were immersed for 168 hours  

0 

10 

20 

30 

40 

50 

60 

U7A U7B U7C U7D 7A 7B 7C 7D 

M
as

s 
Lo

ss
 [

m
g/

cm
2
] 

Solutionized + Naturally Aged Mg-2Ca Samples 



 

 89 

 
S&NA Mg-2Ca Sample 7A 

 

Mass Loss: 53.3711 mg/cm
2 

 
S&NA Mg-2Ca Sample 7B 

Highest Mass Loss 

Mass Loss: 56.3014 mg/cm
2 

 
S&NA Mg-2Ca Sample 7C 

 

Mass Loss: 48.7432 mg/cm
2
 

 
S&NA Mg-2Ca Sample 7D 

Lowest Mass Loss 

Mass Loss: 23.6947 mg/cm
2
 

Figure 56: Optical microscope images of the Ag tracks on the S&NA Mg-2Ca 

samples prior to immersion for 168 hours 

 

The idea that different Ag track characteristics could affect the corrosion behaviour 

was further supported by considering the surface morphology of the corroded samples. 

Figure 57 shows the surface of an uncoated sample (U7C) after the removal of the 

120 µm 
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corrosion products, while Figure 58 shows the surfaces of the corresponding Mg-2Ca 

samples with Ag deposition after immersion. The surface morphology of the sample with 

thin Ag tracks (Sample 7D in Figure 58) quite closely resembles that of an uncoated 

sample (Figure 57), appearing to corrode in a similar manner, while the samples with 

thicker, denser, and more solid Ag tracks clearly corroded much more severely. 

 

Figure 57: Surface of a corroded Mg-2Ca sample (without Ag deposition) after 168 

hours of immersion 
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S&NA Mg-2Ca Sample 7A 

 

Mass Loss: 53.3711 mg/cm
2 

 
S&NA Mg-2Ca Sample 7B 

Highest Mass Loss 

Mass Loss: 56.3014 mg/cm
2 

 
S&NA Mg-2Ca Sample 7C 

 

Mass Loss: 48.7432 mg/cm
2
 

 
S&NA Mg-2Ca Sample 7D 

Lowest Mass Loss 

Mass Loss: 23.6947 mg/cm
2
 

Figure 58: Surfaces of corroded Mg-2Ca samples (with Ag deposition) after 168 

hours of immersion 
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For these S&NA Mg-2Ca samples immersed for 168 hours (from Figure 58), it was 

obvious that three of the Ag-deposited samples had Ag tracks that were similar to one 

another, with one sample (7D) having very different Ag track characteristics. If Sample 

7D were temporarily disregarded, and the mass loss results of the remaining Ag-

deposited samples in that group were compared to those of the uncoated samples, it was 

then found that the mass loss of the Ag-deposited samples was significantly higher (p < 

0.05) than that of the uncoated samples (Figure 59). 

 

 

 

 
(a) 

All Ag-deposited samples considered 

(b) 

Only Ag-deposited samples with similar 

Ag track characteristics considered 

Figure 59: Mass loss results of S&NA Mg-2Ca samples (uncoated and with Ag-

deposition) immersed for 168 hours 
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Considering this, it was speculated that depositing Ag nanoparticles on Mg (and Mg-

based) substrates indeed had an effect on corrosion. In the cases where the Ag tracks 

were thick, dense, and solid, corrosion behaviour was significantly worse than 

corresponding samples without Ag deposition. However, when the Ag tracks were 

thinner/smaller, the corrosion behaviour of an Ag-deposited sample more closely 

resembled its corresponding uncoated sample. 

It should be noted that the large variation in mass loss results associated with the Ag-

deposited samples could be minimized through better control of the Ag depositions 

during the sample fabrication stage. Before the immersion tests were performed in this 

work, it was unclear how much the different Ag track characteristics could affect the 

corrosion/mass loss results, if at all. However, after reviewing all of the results, the extent 

to which different Ag track characteristics can affect corrosion seemed very apparent, and 

appeared to have quite a large effect on the corrosion/mass loss results. Knowing this, it 

would beneficial in the future to examine and characterize the Ag tracks on each and 

every sample after deposition, and reject samples that have Ag tracks that do not fit 

certain prescribed criteria (for example, track thickness must be within a certain range). 

In doing so, any sample with inferior Ag tracks could be eliminated from the sample 

group, which would likely lead to corrosion/mass loss results with smaller variation. 

However, there has been some benefit from the variation that has arisen in the present 

work due to the differences in the Ag track characteristics. The current results indicate 

that if the Ag depositions are controlled well enough to be thin/sparse, then the 

subsequent corrosion behaviour will not be affected greatly. 
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Ag has been thought to be beneficial to the mechanical properties when added to Mg 

alloys by improving its age hardening ability [67]. However, results presented by Shaw 

[68] indicated that when Ag is alloyed with Mg, the corrosion rate of this binary alloy in 

NaCl solution increases with increasing Ag content.  

Also, Ben-Hamu et al. [69] studied the effects of the additions of Ag (up to 3 wt. %) 

on the corrosion behaviour of Mg-6Zn alloys. Similarly, it was found that the addition of 

Ag to these alloys resulted in increased corrosion rates when compared with binary Mg-

6Zn (Figure 60) [69]. The lowered corrosion resistance of the alloys with Ag was 

attributed to the presence of the Ag17Mg54 phase, which acted as local cathodes to the α-

Mg due to the electrochemical potential difference between the two phases [69]. 

 

Figure 60: Corrosion results showing the effect of Ag additions to Mg-6Zn alloy [69] 

Reprinted from Materials Science and Engineering A, 435-436, Ben-Hamu, G., Eliezer, D., Kaya, A., Na, 

Y.G., Shin, K.S., Microstructure and corrosion behavior of Mg-Zn-Ag alloys, Pages 579-587, Copyright 

(2006), with permission from Elsevier. 
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Because of the electrochemical potential difference between Mg and Ag, galvanic 

couples were created on the surfaces of the Ag-deposited samples in the present work. 

The Ag tracks would serve as local cathodes while the exposed Mg substrate served as 

local anodes, which would result in the preferential corrosion of the exposed Mg areas. 

Because this galvanic couple was obviously not present on the uncoated samples, it 

seemed reasonable that the corrosion of the Ag-deposited samples would be more severe 

than that of the uncoated samples. It was also noticed that corrosion seemed to be much 

worse when the Ag tracks were thick and solid compared to when the Ag tracks were thin 

and had a splattered appearance. This might well be explained by the fact that the ratios 

of anode (Mg) to cathode (Ag) area are different when Ag tracks are thick and dense 

versus thin and ‘splattered’. Indeed, it has been said that as the ratio of the cathodic area 

to the anodic area increases, corrosion of the anode becomes increasingly rapid and 

severe [70], which would explain why the samples with thicker Ag tracks (i.e., higher 

cathode-to-anode ratio) corroded more severely than the samples with thinner Ag tracks 

(i.e., smaller cathode-to-anode ratio). 

Another factor that likely contributed to the variation in mass loss results within a 

group of samples was the existence of inhomogeneities in the substrate material. This was 

particularly evident for the alloy materials. During the polishing step of the sample 

fabrication process of the Mg-2Ca and Mg-2Ca-1Zn alloy samples, small and irregular 

areas of roughness were frequently observed across the freshly polished surfaces (Figure 

61 (a) and (b)). Upon examining these surfaces under SEM (Figure 61 (c) and (d)), it was 
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revealed that these areas were in fact areas of micro-porosity that had formed during the 

casting of the raw material.  

  

  
(a) (b) 

  
(c) (d) 

Figure 61: Areas of roughness on (a) Mg-2Ca and (b) Mg-2Ca-1Zn surfaces after 

polishing. Corresponding SEM images of (c) Mg-2Ca and (d) Mg-2Ca-1Zn samples 

showing micro-porosity 

 

It has been said that micro-porosity would have severe negative effects on the 

corrosion behaviour of Mg alloys [71]. Understandably, more corrosion would occur at a 



 

 97 

region of micro-porosity because the actual surface area at such a region is greater [71], 

resulting in more severe local corrosion.    

As was mentioned, the alloy samples were cut into quarter-circle shapes from discs of 

the cast rods. Because the areas of porosity were not evenly distributed over the face of 

the cast rods, it was clear that some samples would have had larger areas of porosity than 

others within a sample group. It was therefore reasonable to suggest that the variation in 

mass loss results could be partly attributed to uneven areas of porosity within the cast 

structure of the alloy samples.  

4.2 Corrosion Products and Corrosion Product Morphology 

As mentioned in Chapter 4, samples were removed from the Hanks’ solution after 

immersion for prescribed amounts of time, rinsed gently with distilled water, and dried in a 

light stream of air. The dried corroded samples possessed a layer of loosely adhered 

corrosion products that appeared white and powdery. As an example, an as-cast Mg-2Ca 

sample immersed for 336 hours is shown in Figure 62. 
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Figure 62: White corrosion products on the surface of an as-cast Mg-2Ca sample after 

336 hours of immersion 

4.2.1 Corrosion Product Morphology 

Before corrosion product removal, corroded surfaces were viewed under SEM to 

obtain some understanding of the corrosion products. The corrosion product morphology 

was very similar across all samples (regardless of substrate type), showing large amounts 

of round corrosion product particles building up on a crackled surface, such as that seen 

in Figure 63. This crackled surface (with corrosion products) is typical of corroded Mg 

surfaces after immersion tests and has been observed by several other researchers [32,63]. 

The crackled appearance has been attributed to dehydration of the surface layer (during 

drying of the sample after immersion) and to the vacuum inside the SEM chamber [72]. It 

was worth noting that the physical characteristics of the corrosion products were typical 

for both uncoated samples as well as samples with Ag deposition; that is, under the SEM, 

the Ag tracks could not be seen (Figure 64), as they were covered by the growing 
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corrosion products. It is also likely that some of the Ag reacted and was incorporated into 

the corrosion products. 

 
 

Figure 63: SEM images of corroded surfaces of (a) Mg-2Ca after 48 hours of 

immersion and (b) uncoated Mg-2Ca-1Zn after 14 days immersion 

 

 

Figure 64: SEM image of Mg-2Ca-1Zn sample with Ag deposition after 48 hours of 

immersion 

 

Although the corroded surfaces of all the samples largely resembled those in Figure 

63 and Figure 64 (with more white corrosion products built up for samples with faster 

(a) (b) 
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corrosion rates and/or samples immersed for longer periods of time), needle-like 

formations were found upon closer inspection with the SEM. These needle-like 

formations were formed among the round corrosion product particles in very small areas 

on almost all of the samples. Majority of these needle-like formations were seen as 

clusters in seemingly isolated areas (Figure 65 (a)), while in other areas, the needle-like 

formations appeared to have grown across larger surfaces (Figure 65 (b) and (c)). 

 

 
 

Figure 65: SEM images showing needle-like formations on various corroded 

samples. 

  

(a) 

(b) (c) 
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4.2.2 Identification of the Corrosion Products 

XRD performed on the corrosion products formed during immersion revealed that the 

main corrosion product was magnesium hydroxide (Mg(OH)2) (Figure 66), and was 

present on all of the samples tested, regardless of alloy and regardless of whether the 

samples were uncoated or had Ag deposition. The formation of Mg(OH)2 was expected, 

since the corrosion reaction of Mg in aqueous environments has been illustrated by the 

chemical equation below [19] (which shows Mg(OH)2 as a corrosion product along with 

hydrogen gas): 

Mg(s) + 2H2O(aq) ↔ Mg(OH)2(s) + H2(g) 
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Figure 66: XRD patterns of the corrosion products 

 

However, XRD also revealed several other peaks on two of the tested samples that could 

not be identified conclusively (seen on the last two traces in Figure 66). It was possible 

that these peaks represented certain compounds that were not contained in the database 

that was used for identification. The peak labelled with the green square for the S&NA 

Mg-2Ca (with Ag) sample may be due to the Ag deposition (for example, the possible 

formation of an Ag salt), as this peak was not present on any of the other traces. 

Pure Mg (Uncoated) 

As-Cast Mg-2Ca (Uncoated) 

As-Cast Mg-2Ca (with Ag) 

As-Cast Mg-2Ca-1Zn (Uncoated) 

S&NA Mg-2Ca (with Ag) 

     Mg(OH)2 

Unidentified 

2θ [deg] 

Sol’n+NA Mg-2Ca (Uncoated) 
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EDX performed on the corrosion products consistently showed the presence of other 

elements in the corrosion products as well (Table 17). In addition to magnesium and 

oxygen, significant amounts of calcium and phosphorus were detected, as well as small 

amounts of carbon, and even smaller amounts of sodium and chloride (but not in all 

areas). This therefore indicated that the corrosion products consisted of other compounds 

as well (i.e., in addition to Mg(OH)2) but were not successfully detected or identified by 

XRD analysis. 

Table 17: EDX results of the corrosion products formed on corroded samples 

Sample Type 
Elements 

C O Na Mg P Cl Ca 

Without Ag 

Deposition 

Pure Mg 11.11 36.65 1.92 17.51 14.01 1.78 18.02 

Mg-2Ca 10.68 42.09 1.12 5.56 15.77 -- 24.77 

Mg-2Ca-1Zn 21.31 34.42 0.99 1.67 15.37 -- 26.24 

With Ag 

Deposition 

Pure Mg 11.83 42.73 2.57 5.17 13.51 2.20 22.00 

Mg-2Ca 11.80 39.57 0.78 4.79 16.76 -- 26.30 

Mg-2Ca-1Zn 18.95 37.65 1.09 2.21 14.53 -- 25.56 

Needle-like formations -- 45.32 -- 44.65 -- 10.03 -- 

 

In the work by Li et al. [27], in which as-cast Mg-1Ca and Mg-2Ca alloys were 

immersed in simulated body fluid, the formation of both Mg(OH)2 and hydroxyapatite on 

the surfaces was confirmed by XRD (Figure 67). Chemical analysis on the corrosion 

products also revealed the presence of carbon, oxygen, magnesium, phosphorus, and 

calcium [27], much like the EDX results in the present work. 
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Figure 67: XRD results of the corrosion products formed on Mg-2Ca, confirming 

the presence of Mg(OH)2 and hydroxyapatite [27] 

Reprinted from Biomaterials, 29, Li, Z., Gu, X., Lou, S., Zheng, Y., The development of binary Mg-Ca 

alloys for use as biodegradable materials within bone, Pages 1329-1344, Copyright (2008), with permission 

from Elsevier. 

 

Similarly, in the work by Zhang et al. [73], Mg-6Zn alloy was immersed in simulated 

body fluid for 30 days. XRD performed on the corroded samples also confirmed the 

presence of Mg(OH)2 and hydroxyapatite as the corrosion products [73] (Figure 68).  
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Figure 68: XRD results of corrosion products formed on Mg-6Zn, confirming the 

presence of Mg(OH)2 and hydroxyapatite [73] 

Reprinted from Materials Science and Engineering C, 29, Zhang, S., Li, J., Song, Y., Zhao, C., Zhang, X., 

Xie, C., Zhang, Y., Tao, H., He, Y., Jiang, Y., Bian, Y., In vitro degradation, hemolysis and MC3T3-E1 

cell adhesion of biodegradable Mg-Zn alloy, Pages 1907-1912, Copyright (2009), with permission from 

Elsevier. 

 

Wang et al. [74] also found that hydroxyapatite and Mg(OH)2 had formed in the 

corrosion products after pure Mg substrates were immersed in simulated body fluids. In 

addition, they also found needle-like clusters on the surfaces of the samples [74], shown 

in Figure 69 . Chemical analysis performed on these clusters revealed a relatively high Cl 

content (along with high Mg and O content), leading the authors to suggest that the 

clusters might contain MgCl2 [74]. This is plausible since the Cl
-
 ions present in 

simulated body fluids can transform Mg(OH)2 into MgCl2 via the following chemical 

equation [14]:  

Mg(OH)2 + 2Cl
-
  MgCl2 + 2OH

- 
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Figure 69: Needle-like clusters formed on surfaces of pure Mg after 3 days of 

immersion in simulated body fluid [74] 

Reprinted from Materials Letters, 62, Wang, Y., Wei, M., Gao, J., Hu, J., Zhang, Y., Corrosion process of 

pure magnesium in simulated body fluid, Pages 2181-2184, Copyright (2008), with permission from 

Elsevier. 

 

Given the fact that EDX performed on the needle-like formations in the present work also 

revealed relatively large amounts of Mg, O, and Cl (Table 17), it was conceivable that 

MgCl2 was also present in the needle-like formations. 

In an investigation by Hiromoto et al. [75], hydroxyapatite crystals were intentionally 

grown on the surfaces of pure Mg and AZ31 alloy in order to evaluate the effect of the 

hydroxyapatite coating on corrosion behaviour. The SEM images of the hydroxyapatite-

coated surfaces obtained by Hiromoto et al. are shown in Figure 70.  
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Figure 70: Hydroxyapatite grown on surfaces of AZ31 (a,c) and pure Mg (d) [75] 

Reprinted from Surface & Coatings Technology, 205, Hiromoto, S., Tomozawa, M., Hydroxyapatite 

coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution, 

Pages 4711-4719, Copyright (2011), with permission from Elsevier. 

 

The hydroxyapatite crystals in Figure 70 bear a close resemblance to the needle-like 

formations found on the corroded samples of the present work (Figure 65). It has been 

reported that hydroxyapatite can precipitate in simulated body fluids after immersion for 

certain amounts of time [74], so it is very likely that hydroxyapatite had indeed formed 

after long periods of immersion in this work. 

It was also possible that Mg- and/or Ca-containing phosphates were present in the 

corrosion products. Mg- and Ca-containing phosphates have been reported as corrosion 
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products from several other researchers [32,63]. For example, Yang et al. [63] immersed 

Mg-1Mn-1Zn alloy samples in Hanks’ solution, and the resultant corroded surface is 

shown in Figure 71 (a). EDX analysis showed the presence of Mg, Ca, P, and O, and 

XRD analysis indicated the presence of Ca3Mg3(PO4)4 in the corrosion products  (Figure 

71 (b)) [63]. 

  

Figure 71: (a) Corroded surface of Mg-1Mn-1Zn after immersion in Hanks' 

solution, and XRD results of the formed corrosion products [63] 

Reprinted from Materials Science and Engineering C, 29, Yang, L., Zhang, E., Biocorrosion behavior of 

magnesium alloy in different simulated fluids for biomedical application, Pages 1691-1696, Copyright 

(2009), with permission from Elsevier. 

 

Likewise, Du et al. [32] also believed that Mg- and Ca-phosphates were present in the 

corrosion products after their investigation involving the immersion of Mg-3Ca-2Zn 

alloys in Hanks’ solution (resultant corroded surface is shown in Figure 72). Chemical 

analysis revealed the presence of Mg, Ca, P, and O [32]. The authors suggested that the 

Mg and Ca ions released from the alloy during the corrosion reaction could have 

(a) (b) 
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combined with the phosphate ions from the Hanks’ solution to form the Mg- and Ca-

containing phosphates [32]. 

 

Figure 72: Corroded surface of Mg-3Ca-2Zn after immersion in Hanks’ solution for 

different times [32] 

Reprinted from Materials Chemistry and Physics, 125, Du, H., Wei, Z., Liu, X., Zhang, E., Effects of Zn on 

the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical 

application, Pages 568-575, Copyright (2011), with permission from Elsevier. 

 

Finally, in the work of Zhang et al. [35], Mg-xZn-1Ca alloys (with varying Zn contents) 

were immersed in Hanks’ solution. XRD analysis performed on the corrosion products 

revealed that Mg(OH)2, hydroxyapatite, and a type of Mg- and Ca-containing phosphates 

had all formed on the surfaces of the samples (Figure 73) [35].  
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Figure 73: XRD results of the corrosion products formed on Mg-xZn-1Ca alloys [35] 

Reprinted from Materials Science and Engineering C, 31, Zhang, B., Hou, Y., Wang, X., Wang, Y., Geng, 

L., Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with 

different compositions, Pages 1667-1673, Copyright (2011), with permission from Elsevier. 

 

Given the similarities among the immersion tests and results of the present work and 

those presented in the literature, it was possible that the corrosion products formed in the 

present work (along with the already confirmed Mg(OH)2) could have been a type of Mg- 

and/or Ca-containing phosphate, MgCl2, and/or hydroxyapatite. Further examination 

would confirm this. The formation of a larger amount of corrosion products (via longer 

immersion times) before examination with XRD would be recommended, as it was 

believed that the limited amount of corrosion products that had formed and were 

available for XRD examination in the present work was not sufficient and thus hindered 

the ability to successfully detect the other compounds within the corrosion products.  
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Chapter 5 

Conclusions 

The corrosion behaviour of pure Mg, Mg-2Ca, and Mg-2Ca-1Zn has been studied in this 

work using static immersion tests in Hanks’ solution. The effect of Ag nanoparticle 

deposition on corrosion behaviour was also studied. As well, the characteristics of the 

corrosion products were examined using SEM, EDX, and XRD. 

The mass loss of the as-cast uncoated Mg-2Ca was shown to be statistically significantly 

higher than that of as-cast uncoated pure Mg and Mg-2Ca-1Zn. More severe corrosion of the 

Mg-2Ca alloy was attributed to the presence of the Mg2Ca phase. The addition of 1 wt. % Zn 

to the Mg-2Ca alloy improved the corrosion behaviour significantly.  

Solutionized and naturally aged Mg-2Ca samples exhibited statistically significantly less 

mass loss than as-cast Mg-2Ca samples during the earlier stages of immersion, but no 

statistically significant differences were detected at longer immersion times. For the Mg-2Ca-

1Zn alloy, the solutionizing and natural aging treatment did not appear to enhance corrosion 

resistance for any length of immersion. 

Ag depositions indeed seemed to have an effect on the corrosion behaviour. The 

corrosion behaviour of the substrates seemed to be very sensitive to the Ag track 

characteristics; the extent to which Ag depositions can affect corrosion depended on the 

characteristics of the Ag tracks. When more Ag was present on the substrates (i.e., the Ag 

tracks were sufficiently thick and dense, and thus, the sample possessed a higher cathode-to-

anode ratio), the mass loss values were statistically significantly higher than corresponding 
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samples without any Ag deposition. However, if the Ag tracks were thin and sparse (i.e., the 

sample possessed a smaller cathode-to-anode ratio), then the mass loss values of those Ag-

deposited samples tended to be closer to corresponding uncoated samples and statistically 

significant differences were not detected. Therefore, it was believed that Ag deposition could 

be a suitable surface modification for antibacterial purposes if the Ag track characteristics 

were very carefully controlled. 

White and powdery corrosion products formed on all of the samples tested. The corrosion 

product morphology appeared to be very similar for samples with and without Ag deposition. 

Small needle-like formations were also found on certain areas of the corroded samples. XRD 

analysis indicated that the main corrosion product was Mg(OH)2. However, EDX analysis 

consistently revealed other elements in the corrosion products as well (Mg, Ca, O, P, small 

amounts of C, and sometimes Cl). As such, it was probable that other compounds (possibly 

hydroxyapatite, MgCl2, and/or Mg- and Ca-containing phosphates) were also present in the 

corrosion products along with Mg(OH)2 but could not be detected. This was possibly due to 

reasons pertaining to sample preparation (e.g., the amount of corrosion product that could be 

collected after a feasible time period for corrosion was insufficient). 
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Chapter 6 

Recommendations for Future Work 

Because the corrosion behaviour of Mg and Mg alloys was sensitive to the characteristics 

of the Ag tracks, it is recommended to perform corrosion tests to determine what the Ag 

track characteristics would have to be (e.g., how thin or thick) in order to consistently cause a 

significant difference in corrosion behaviour (when compared to uncoated samples). These 

key track characteristics could then be used to create Ag-deposited samples with 

thinner/smaller Ag tracks so that the corrosion behaviour is not significantly deteriorated. 

Also, because corrosion behaviour did not appear to significantly deteriorate if the Ag tracks 

were thin, in vitro bacterial culture tests would be recommended to determine if the small 

amount of Ag (not causing a significant difference in corrosion) is enough to have an 

antibacterial effect.  
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