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Abstract 

Undesirable landing area (e.g., a hole, a fragment of glass, a water puddle, etc) creates the 
necessity for an alternate foot placement planning and execution. Previous study has 
proposed that three determinants are used by the central nervous system (CNS) for planning 
an alternate foot placement: minimum foot displacement, stability and maintenance of 
forward progression. However, validation of these determinants is lacking. Therefore, the 
general purpose of the series of studies presented here is to validate and test the generality 
of the decision algorithm of alternate foot placement selection developed previously. The 
first study was designed to validate the use of a virtual planar obstacle paradigm and the 
economy assumption behind minimum foot displacement determinant. Participants 
performed two blocks of trials. In one block, they were instructed to avoid stepping in a 
virtual planar obstacle projected in the screen of a LCD monitor embedded in the ground. 
In another block, they were instructed to avoid stepping in a real hole present in walkway. 
Behavioral response was unaffected by the presence of a real hole. In addition, it was 
suggested that minimum foot displacement results in minimum changes in EMG activity 
which validates the economy determinant. The second study was proposed to validate the 
stability determinant. Participants performed an avoidance task under two conditions: free 
and forced. In the free condition participants freely chose where to land in order to avoid 
stepping in a virtual obstacle. In the forced condition, a green arrow was projected over the 
obstacle indicating the direction of the alternate foot placement. The data from the free 
condition was used to determine the preferred alternate foot placement whereas the data 
from the forced condition was used to assess whole body stability. It was found that long 
and lateral foot placements are preferred because they result in a more stable behavior. The 
third study was designed to validate the alternate foot placement model in a more complex 
terrain. Participants were required to avoid stepping in two virtual planar obstacles placed 
in sequence. It was found that participants used the strategy of planning the avoidance 
movement globally and additional determinants were used. One of the additional 
determinants was implementation feasibility. In the third study, gaze behavior was also 
monitored and two behaviors emerged from this data. One sub-group of participants fixated 
on the area stepped during adaptive step, whereas another sub-group anchor their gaze in a 
spot ahead of the area-to-be avoided and used peripheral vision for controlling foot landing. 
In summary, this thesis validates the three determinants for the alternate foot placement 
planning model and extends the previous model to more complex terrains. 
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Unobstructed gait has been extensively studied in the last decades. Winter (1991), 

for instance, has catalogued detailed descriptions of walking under these stable conditions 

and provided a good understanding of the principles of organization in locomotion control. 

For example, it was found that knee and hip moments-of-force covary to maintain vertical 

support against gravity and trunk stability (Winter 1987). However, normal daily activities 

require the locomotor control system to complete more demanding tasks than straight-path 

and unobstructed walking. In order to further understand the dynamics of control, it is 

necessary to examine the transitory changes in locomotor behavior. Changes in locomotion 

direction (Patla et al. 1991, Hollands et al. 2002; Fajen and Warren 2003), increase in 

ground clearance to adapt gait pattern when stepping over obstacles (Patla et al. 1991; Patla 

and Rietdyk 1993; Austin et al. 1999), step length modulation (Lee et al. 1982; Warren et 

al. 1986; Patla et al. 1989a, 1989b), and alternate foot placement when avoiding an 

undesirable area on the ground (Patla et al. 1999; Moraes et al. 2004) are typical strategies 

used to maintain locomotion in a cluttered terrain. These tasks are referred to as locomotor 

adaptive strategies. The study of adaptive locomotion allows us to understand how 

locomotor output is modulated to meet the demands of the environment and how 

locomotion is controlled. Adaptive locomotion allows us identifying the main factors that 

affect locomotion planning and execution. 

 

Visual control of adaptive locomotion 

 

 Vision is the most adequate sensory system to guide locomotion since it provides 

information about animate and inanimate features at a distance. Vision provides 

exteroceptive information that is used to locate objects in the external environment relative 
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to one another. It also provides exproprioceptive information about the position and 

movement of a part of the body relative to the external environment (Patla 1997). 

 The contribution of vision to locomotion has been the focus of several studies in the 

motor control field. In essence, two major aspects have been addressed: the nature of visual 

information, and how visual information is acquired during locomotion (Patla 1991). The 

nature of visual information is associated with mechanisms of relevant information 

extraction from the environment such as surface characteristics, terrain layout, and obstacle 

characteristics. For instance, disruption in the terrain layout provided by the optic array 

indicates the presence of an obstacle (Gibson 1958). Patla and Vickers (1997) have shown 

that individuals do not fixate on the obstacle when stepping over it or even one step before 

they encounter it. Gaze is fixated on the obstacle during the approach phase and it is 

alternated with travel gaze fixations, which is a gaze behavior where the gaze moves along 

at the same speed of locomotion. Furthermore, visually inferred information such as 

compliance or frictional characteristics of a surface is important in determining an 

undesirable landing area (Patla 1991). The acquisition of visual information is related to the 

spatio-temporal characteristics of visual sampling (Patla et al. 1996). Different studies have 

shown that environmental sampling is not continuous; but rather, it is intermittent (Patla et 

al. 1996; Patla 1991, 1997; Thomson 1980). The importance of intermittent sampling is 

illustrated by the fact that we are able to walk and see the surrounding scenery at the same 

time. Patla et al. (1996) have shown that the total duration of visual samples of the 

environment varied from 10% (no obstacle or foot placement requirement in the pathway) 

to 40% (presence of a hole in the pathway) of the movement time which was similar in both 

conditions. In addition, step length and width modifications do not affect the number or 

duration of visual samples (Patla et al. 1996).  
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One of the first studies that has addressed the issue of visual control of adaptive 

locomotion is the work done by Lee et al. (1982). They were the first to identify the visual 

regulation of step length when performing a locomotor task which required great accuracy 

(i.e., hitting takeoff board in long jumping). They found an increase in the toe-board 

distance variability from the beginning to a few steps before the take-off board 

(stereotyped-based mode of control) which was followed by a decrease in the variability 

(visually-based mode of control) culminating with a very small variability at the take-off 

step. Variability reduction was considered the result of visually adjusting the length of the 

final steps in order to zero-in on the board. This assumption is based on the idea that 

absence of visual information would result in a consistent increase in foot placement 

variability. In fact, absence of accurate foot placement requirement during unobstructed 

straight line walking results in a constant increase in foot placement variability (Moraes et 

al. 2004) as well as removal of the take-off board during the triple jump (Maraj 1999). 

Several studies have followed the seminal work of Lee et al. (1982) and have pointed out 

the consistent pattern of foot placement variability during the approach phase of long 

jumping (Berg et al. 1994; Hay 1988; Hay and Koh 1988; Maraj et al. 1998; Montagne et 

al. 2000; Scott et al. 1997) and walking to a target (Moraes et al. 2004), indicating a switch 

from a stereotyped- to a visually-based mode of control during the approach phase. The 

first phase is directed towards reaching an optimal running speed, whereas the second 

allows step length to be adjusted to zero-in on the board. More recently, Montagne and his 

group (Montagne et al. 2000; de Rugy et al. 2000) have suggested a perception-action 

coupling mechanism of control where, only when necessary, adjustments are performed. In 

support of continuous visual control, a significant relationship between the total adjustment 

needed and the step number of the adjustment initiation was found indicating that greater 
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amount of adjustment results in earlier regulation of foot placement. They argue that the 

control system has a tolerance level, and step length is only modified when the amount of 

regulation exceeds the tolerance level. 

 

Focus of present study: alternate foot placement selection 

 

 Previous work on step length and width modulation has focused on movement 

implementation when the task was specified either by external cues or was defined a priori. 

Changes in step length and width are essential for adapting locomotion to uneven terrain 

and these are the mechanisms available to the control system to avoid stepping in 

undesirable locations. These changes in step length and/or width with the intention of 

avoiding an undesirable area are termed alternate foot placement. The present study will 

focus on gait adaptations that involve avoiding stepping in undesirable locations. More 

specifically, the parameters involved in selecting/planning alternate foot placement will be 

investigated.  

An undesirable landing area (e.g., a hole, a fragment of glass, a water puddle, etc) 

creates the necessity for alternate foot placement selection, planning and execution. Only 

recently alternate foot placement has begun to be studied and it was found that selection of 

alternate foot placement is not random, but systematic (Patla et al. 1999). For the same 

obstacle shape and size, different dominant choices were found based on where the obstacle 

was positioned in relation to the normal landing position of the foot. It was proposed that 

alternate foot placement is not solely sensory-driven, since visual information by itself is 

not enough to decide where to land (Patla et al. 1999; Moraes et al. 2004). It was originally 

proposed by Patla et al. (1999) that visual and proprioceptive inputs, and a set of internal 

 5



rules containing three determinants are used to select the appropriate output (Figure 1). 

Sensory information is used to identify the obstacle area and to provide a prediction of the 

normal foot placement if no change in step length and width are made. Visual information 

provides information about the location of the obstacle area (Patla 1991, 1997), whereas the 

interaction between vision and proprioception is used to estimate normal foot placement. 

This prediction of future normal foot placement is used to compute the amount of foot 

displacement required for each alternate foot placement option: lengthening (long), 

shortening (short), narrowing (medial), and widening (lateral) the step. This computation is 

necessary to identify which option minimizes foot displacement. Minimum foot 

displacement is one of the determinants used by the control system to select alternate foot 

placement, according to Patla et al. (1999) and Moraes et al. (2004). They have shown that 

people prefer alternate foot placements that minimize foot displacement. In general, it was 

found that if only one option satisfies the minimum foot displacement determinant, that 

option is the preferred one, although there seem to exist some exceptions that will be 

described later. It is assumed that minimizing foot displacement is desirable because it 

would generate an economical movement. Patla et al. (1999) have proposed that minimum 

foot displacement would minimize changes in ongoing muscle activity, which in turn 

would increase movement economy. Different studies have proposed that economy is an 

important parameter in movement planning/execution based on an evolutionary perspective 

(Alexander 2002; Patla and Sparrow 2000). 

Psychophysical studies have shown that the integration of visual and proprioceptive 

information is critical for estimating speed and path distance. Using virtual reality, Sun et 

al. (2003, 2004) have been able to decouple optic flow and proprioceptive information by 

altering the optic flow gain (OFG) projected on a head-mounted display apparatus while 

 6



pedaling a stationary bicycle. Sun et al. (2003) found that decoupling of optic flow and 

proprioception affects speed estimation during self-motion, suggesting that both sensory 

systems are essential for proper speed estimation. In another study Sun et al. (2004) have 

studied the relative contributions of optic flow information and proprioceptive information 

in estimating a relative path length. Removal of proprioceptive information made the 

estimation errors greater, especially at the extremes of the stimulus scale. Therefore, 

availability of proprioceptive information increased accuracy of relative path length 

estimation, even though proprioceptive information was inconsistent with visual 

information. It demonstrates that active movement (locomotion) facilitates visual 

perception of path length traveled as predicted by Gibson (1958).  
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Figure 1. Alternate foot placement model showing the bases for selection and the main determinants. 

 

A recent approach that has emerged as a theoretical reason for the prediction ability 
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of the control system is the concept of forward internal model (Haggard 2001). The forward 

internal model predicts the future state of the motor apparatus based on the efferent copy of 

motor commands, sensory inputs about the current state of the motor system, and a learning 

mechanism to ensure that the forward model accurately reflects the motor system behavior 

and adapts over a long time scale to its changes (Haggard 2001; Miall 1998; Wolpert et al. 

1998). Its output is a sensory prediction that estimates the sensory consequences of the 

motor commands. Therefore, prediction of the future normal foot placement position may 

be the output of an internal model based on visual and proprioceptive information of the 

movement as well as an efferent copy of the locomotor control system. 

The presence of more than one option minimizing foot displacement requires 

additional determinants. The other two determinants are stability and maintenance of 

forward progression (Patla et al. 1999; Moraes et al. 2004). When minimum foot 

displacement is similar for both options in the same plane of motion (i.e., sagittal or 

frontal), long and medial choices are preferred over short and lateral choices, respectively. 

It was proposed that these preferences were stability based since short adjustments could 

result in unstable movements due to the need for reducing forward momentum. If not 

properly controlled, this forward momentum reduction could generate an angular 

momentum that ultimately would lead to a fall. Medial adjustments were preferred because 

they would minimize mediolateral center of mass (COM) acceleration due to reduction of 

the distance between COM and center of pressure (COP) as proposed by the inverted 

pendulum model (Winter 1995). Maintenance of forward progression was shown to be 

important by the preference for making changes in the plane of progression. When 

minimum foot displacement was the same for one option in the sagittal plane and another 

option in the frontal plane, change in the sagittal plane or plane of progression was 
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preferred.  

Although Patla et al. (1999) have proposed that minimum foot displacement was the 

major determinant guiding selection of alternate foot placement, they were unable to 

provide quantitative evidence that would substantiate this. The first quantitative evidence 

for minimum foot displacement was provided by Moraes et al. (2004). They measured the 

amount of foot displacement for each choice and computed the predicted minimum foot 

displacement for each option based on foot length/width and average foot placement 

position during normal walking. They found that for most of the planar obstacles tested the 

dominant choice was the one that resulted in minimum foot displacement. In addition, they 

have shown that minimum foot displacement is not the main factor guiding the selection of 

alternate foot displacement as advocated by Patla et al. (1999). For two of the obstacle 

positions, minimum foot displacement was either medial or lateral and the dominant choice 

was long. Therefore, alternate foot placement choice is a result of finding the solution that 

satisfies all three determinants together.  

When the response had to be selected and implemented under a time constraint, as 

in Patla et al.’s (1999) study (i.e., within one step), the determinants were satisfied in the 

following order: minimum foot displacement, stability, and forward progression. Not all the 

determinants were satisfied in all cases when the foot placement had to be altered quickly. 

For example, in those conditions when the participants chose to step medially (Patla et al. 

1999), they satisfied the first two determinants, but not the last. In contrast, when there are 

no time constraints (obstacle is seen from the starting point) in response planning and 

implementation as in Moraes et al.’s (2004) study, the priority shifts. Forward progression 

becomes the first determinant, followed by stability, and lastly minimum foot displacement. 

Maintenance of forward progression priority is illustrated by the bias toward stepping long-
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medial when the medial choice is more economical as in one of the obstacle positions 

tested. This is understandable, since when adequate time for planning and implementing 

alternate foot placement is available, deviations from the end-point goal can be minimized 

through proactive control during the approach phase. 

Since alternate foot placement implementation basically involves step length/width 

regulation, studies related to control mechanisms of step modulation will be reviewed. Lee 

et al. (1982) proposed that step length changes were achieved by modulating vertical 

impulse during the visually controlled phase since they found a significant correlation 

between flight time and stride length. In addition, they proposed that runners used time-to-

contact (i.e., tau) relative to the board to control gait based on the finding that jumpers 

adjusted a time parameter (i.e., flight time) instead of a space parameter during the 

approach phase. Warren et al. (1986) have provided additional support for this notion by 

requesting participants to step on targets unevenly spaced on the ground. They found the 

adjustments in step length were a consequence of modulating the vertical component of 

impulse applied during the stance phase. Furthermore, they suggested the tau gap (i.e., the 

difference of the tau values for two approaching targets) was used to define vertical impulse 

that would equalize step time to tau gap. 

 Patla et al. (1989a) have expanded on the work by Lee et al. (1982) and Warren et 

al. (1986) by directly measuring the kinetics of step length regulation. They found that not 

only vertical impulse, but also horizontal impulse was regulated to achieve the task demand 

of shortening or lengthening the step. The larger contribution came from vertical impulse as 

postulated by Warren et al. (1986), but a significant contribution was also provided by the 

horizontal impulse component. Patla et al. (1989a) have also shown that there is not a 

single strategy to regulate step length. Participants were faced with early or late visual 
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information cueing step adjustment (i.e., shortening or lengthening). Results indicated that 

the mechanisms used to lengthen the step in the early cue condition were different from the 

late cue condition. In the early condition, the horizontal braking impulse was reduced, 

whereas in the late condition the horizontal push-off impulse was increased. It was 

suggested that the simple mechanism presented by Lee et al. (1982) and expanded by 

Warren et al. (1986) is not entirely adequate. The results from Patla et al. (1989a) suggest a 

complex task-specific modulation of locomotion to alter step length. 

 Modifications in step length and width can be implemented within one step cycle 

(Patla 1991). Step length and width regulation are the strategies available to the central 

nervous system (CNS) to implement an alternate foot placement. The percentage of step 

width regulation is high only for small changes (i.e., 30°) when a visual cue is provided at 

contra-lateral heel contact (CHC). Therefore, there is a limitation on the magnitude of step 

width modulation that can be implemented within one step, probably due to weakness of 

the muscles responsible for implementing the modification (Patla et al. 1991; Patla 1991). 

Step width regulation is achieved by increasing the anterior-posterior (AP) and vertical 

braking impulse in order to reduce the forward velocity and by modulating the medial-

lateral (ML) component accordingly. In addition, Patla (1991) found an increase in gluteus 

medius from narrow to wide (60°) steps during early swing phase.  

Step length regulation is high when a visual cue is provided at CHC, and it is 

independent of the amount of adjustment (+50% and -50%) (Patla 1991). Changes in 

muscle activity of the ipsi-lateral limb when lengthening the step fall into three major 

functional categories: push-off action (late stance), pull-off (early swing), and limb 

deceleration (late swing). The increase in soleus activity during late stance makes the push-

off more vigorous. The increase in biceps femoris activity at late stance increases knee 
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flexion during early swing and this facilitates hip flexion by reducing the moment of inertia 

around the hip joint. During early swing there is an increase in rectus femoris activity in 

order to compensate for the biceps femoris action during late stance. This will ensure 

adequate knee extension at the end of swing phase. During late swing, biceps femoris 

activity is reduced allowing greater knee extension. An increase in soleus activity was also 

observed during late swing in order to adjust foot angle for appropriate landing (Patla 

1991).  

 

Movement planning based on multiple factors 

 

Movement selection and planning is one of the main topics of research in motor 

control and one of the main goals is to understand how a specific movement is adopted 

when more than one option allows a goal to be achieved. Recent models of upper limb 

movements have considered multiple factors when planning a movement (Rosenbaum et al. 

2001a, 2001b; Patla and Sparrow 2000) instead of only one (Uno et al. 1989). Rosenbaum 

et al. (2001a) have proposed a model for manual prehension where the end-posture is 

selected before movement execution and is based mainly on the notion of a constraint 

hierarchy. Constraint hierarchy is defined as a list of prioritized factors necessary to 

perform the task. For example, in a simple reaching task, accuracy (hand-target proximity 

at the time of movement completion) and movement efficiency (expend little energy) are 

the constraints considered. The presence of an obstacle and the intention of avoiding it adds 

a new constraint (i.e., do not collide with the obstacle). The constraints are then considered 

in a different order: 1) accuracy, 2) hand/arm distance from an obstacle, and 3) efficiency. 

Hence, additional constraints redefine the task and weights the priorities differently (i.e., 
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efficiency is less important when avoiding the obstacle). This is consistent with the findings 

of Moraes et al. (2004) who have shown that response time constraint affects the priorities 

placed on satisfying various determinants in the choice of alternate foot placement.  

 

How can alternate foot placement determinants be validated? 

 

Both studies presented previously, related to alternate foot placement, have not 

validated two of the determinants (Patla et al. 1999; Moraes et al. 2004). Moraes et al. 

(2004) have provided validation for the minimum foot displacement determinant, but the 

economy assumption behind this determinant is lacking validation. In addition, the 

generality of these determinants in guiding alternate foot placement in more complex 

terrains needs to be tested. Therefore, the general purpose of the series of studies presented 

here is to understand how people select, plan, and implement alternate foot placements. 

More specifically, the studies presented here were designed to validate and test the 

generality of the determinants for selecting alternate foot placement proposed by Patla et al. 

(1999) and expanded on by Moraes et al. (2004). In the next sections, each of the 

determinants will be discussed, and validation mechanisms will be briefly presented.  

 

Economy assumption for the minimum foot displacement determinant 

 

One of the determinants used for selecting alternate foot placement is minimum foot 

displacement. Minimum foot displacement would require minimum changes in the ongoing 

muscle activity and therefore would increase economy (Patla et al. 1999). It was shown by 

Patla et al. (1999) and Moraes et al. (2004) that the dominant choice coincided with the 
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option that minimized foot displacement. Since in normal walking, the preferred step length 

and width results in minimal metabolic cost (Donelan et al. 2001, 2002; Cavanagh and 

Williams 1982), it is reasonable to assume that movement economy contributes to selection 

of alternate foot placement. 

Different studies have found a significant correlation between metabolic cost 

measured through the rate of oxygen consumption and electromyography (EMG) 

parameters like integrated and average EMG (Henriksson and Bonde-Petersen 1974; 

Kyröläinen et al. 2001; Millet et al. 2002;). Henriksson and Bonde-Petersen (1974) have 

found a significant correlation (0.99) between IEMG (rectus femoris and vastus lateralis) 

and oxygen uptake rate when the load of the cycle ergometer increased. More recently, 

Sengupta and Das (2004) have shown that oxygen uptake and EMG activity of different 

arm and trunk muscles increased when performing a reaching task from normal to extreme 

distances. Although they did not use a correlation analysis, it is clear from their data that 

the increase in oxygen uptake was proportional to the increase in EMG activity. Kyröläinen 

et al. (2001) have found that the biceps femoris activity during braking and push-off phases 

of running correlated positively with the oxygen consumption when speed increased (0.48 

and 0.45, respectively). Furthermore, gastrocnemius activity during the push-off phase was 

also correlated to oxygen consumption (0.45). Therefore, good relationship exists between 

EMG and metabolic cost, suggesting that an EMG index reflecting the overall change in 

muscle activity can be a good indication of movement economy. 

 

Stability determinant validation 

 

When standing, COM projection is within BOS; but when walking, the projection 
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of COM describes a winding trajectory that passes by the internal margin of the foot 

(Winter 1991). Winter (1995) has identified a constant relationship between center of 

pressure (COP) and COM based on an inverted pendulum model. In the inverted pendulum 

model, the difference between COP and COM is proportional to horizontal acceleration of 

COM. The correlation between the value of COP minus COM and horizontal acceleration 

is high and negative. This implies that when COP is located in front of COM, the direction 

of horizontal acceleration of COM is backward, and vice-versa. In practical terms, COP is 

always “tracking” COM and passing in front of it in order to bring COM back to the centre 

of BOS. The same principle is applied in the ML direction. 

According to Karčnik (2004) walking systems are divided into two groups: systems 

that use static stability, and systems that use dynamic stability. In a static walking system, 

the center of mass (COM) projection is always inside the base of support (BOS) defined by 

the points of contact in the ground. The advantage of such system is that stability is not an 

issue when walking. Biped walking is a clear example of a mechanism that depends on 

dynamic stability (Patla 2003). During human walking, COM is inside BOS in the AP 

direction only during double support phase (Winter 1995). During the entire stance/swing 

phase, COM is outside of BOS and proper foot placement is necessary to determine COP 

position in the next support period in order to re-establish balance (Patla 2003; Winter 

1995; Redfern and Schumann 1994). Redfern and Schumann (1994) have proposed that 

foot placement of the swing limb is dependent on the stance limb location relative to the 

pelvis, so that at heel contact the stance and swing limbs have a similar angle relative to the 

pelvis in both frontal and sagittal planes. 

Since the combined head-arms-trunk (HAT) segments correspond to 2/3 of the body 

mass, maintenance of HAT verticality is crucial for stable walking. Winter (1987) has 
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shown that there is a trade-off between hip and knee moment of force in the plane of 

progression in order to maintain support against gravity and HAT stability. In the frontal 

plane, MacKinnon and Winter (1993) have shown that the control of COM acceleration in 

the ML direction is a function of lateral foot placement and this is decided by events during 

the preceding swing phase. Foot placement determines the amount of passive destabilizing 

moment of force due to trunk weight that needs to be actively compensated by hip muscles.  

As mentioned above, stability is one of the determinants used by the control system 

to select alternate foot placement. The continuous change in BOS during walking and its 

relationship to balance restoring mechanisms makes the COM-BOS relationship a good 

indicator of whole body stability. Thus, this relationship will be used to validate the 

stability determinant when selecting alternate foot placement.  

 

Maintenance of forward progression validation 

 

Maintenance of forward progression is related to walking towards an end-point 

goal. Thus, deviations that could affect this end-point goal are believed to be avoided. Patla 

et al. (1999) have shown that people prefer changes in the plane of progression over 

changes in the frontal plane. Bahrami and Patla (2005) have modeled alternate foot 

placement selection and have included a function to penalize alternate foot placements that 

would create a deviation from the end-point goal higher than 1°. The best way to capture 

such deviations is to look at COM trajectory, particularly how it deviates from the end-

point goal. Validation of maintenance of forward progression determinant will be done by 

looking at COM deviation from the straight line path.  
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Studies proposed 

 

The coming chapters will describe the three studies that comprise this thesis, 

followed by a general discussion. The first study (Chapter 2) was proposed to validate the 

virtual planar obstacle paradigm that is used in all studies described here and also in 

previous work done by Patla et al. (1999). The second purpose of this study was to validate 

the economy assumption behind the minimum foot displacement determinant. This study 

will focus on two major output parameters: foot and trunk kinematics and lower limb 

muscle activity. The second study (Chapter 3) addresses the validation of stability and 

maintenance of forward progression determinants by looking at whole body center of mass 

position and velocity. The third study (Chapter 4) addresses the generality of these three 

determinants in a more complex terrain, and also, it focus on the nature of visual 

information by looking at gaze behavior while performing the avoidance task. Each of these 

three chapters is organized as individual articles containing introduction, methods, results 

and discussion sections. The general discussion at the end attends the purpose of organizing 

all the findings in the framework of the alternate foot placement model (Figure 1). 
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Chapter 2 

 

Determinants guiding alternate foot placement selection and the 

behavioral responses are similar when avoiding a real or a virtual 

obstacle 
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Introduction 

 

 Alternate foot placement has been studied using a virtual planar obstacle projected 

on a screen of an LCD monitor (Moraes and Patla 2005; Moraes at al. 2004; Gonçalves et 

al. 2004; Greig et al. 2004) or using a mechanical apparatus and a light projection system 

(Patla et al. 1999). Such a “virtual” obstacle is used to replicate an area that is considered 

undesirable such as a hole in the ground which must be avoided. This paradigm offers 

several advantages. First, it allows us to investigate the effects of available time on alternate 

foot placement selection. Second, different shapes can easily be created to probe the 

selection process. Third, it makes it possible to introduce unexpected changes in obstacle 

location and/or size to explore planning process. Although this paradigm offers an elegant 

approach to studying alternate foot placement, it is important to establish that the responses 

are similar to those occurring in natural environment (Kingstone et al. 2003). The first 

objective of this study is to validate the use of this paradigm, for the purpose of studying 

alternate foot placement selection in the laboratory. In order to do this we compared 

behavioural responses when participants were asked to avoid the virtual planar obstacle and 

to when they were required to avoid stepping in a hole of similar dimension and 

orientation. A hole is a very common obstacle present in sidewalks and trails; improper foot 

placement can compromise stability and result in an injury such as an ankle sprain. Visual 

sampling around the hole has been shown to increase for proper foot placement (Patla et al. 

1996). We controlled when participants saw the hole, real or virtual, by externally 

controlling the LCD goggles worn by the participants. Behavioral data including limb end-

point kinematics and muscle activity of various muscles were collected. Changes in muscle 

activation profiles allowed us to directly assess if, as suggested by our previous work 
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(Moraes et al. 2004; Patla et al. 1999), economy determinant which minimizes energy 

demand, is important in selecting alternate foot placement. 

 Different studies have shown a positive correlation between muscle activity and 

oxygen uptake (Henriksson and Bonde-Petersen 1974; Kyröläinen et al. 2001; Millet et al. 

2002; Sengupta and Das 2004). In general, the increase in metabolic cost is seen as a 

consequence of increased muscle activity associated with the movement (Gottcchall and 

Kram 2003). In fact, Praagman et al. (2003) showed a good linear relationship between 

EMG and oxygen consumption within a muscle, with correlations higher than 0.8 between 

average-EMG and metabolic cost. Therefore, it is expected that changes in 

electromyography (EMG) will be proportional to energy demands required for changes in 

foot displacement. An EMG index involving the net change in muscle activity during 

alternate foot placement will be correlated against foot displacement to further validate the 

economy determinant. 

In addition, the present study addresses the adaptive capabilities of locomotor 

function when individuals internally and intentionally initiate it while walking. Previous 

studies have looked at stride length modulation when the task was defined a priori (Patla et 

al. 1989b; Varraine et al. 2000). In Patla et al’s study participants were requested to 

lengthen the step after an audio cue was presented at different phases of the gait cycle (i.e., 

ipsi- and contralateral heel-contact and toe-off). Varraine et al. (2000) requested 

participants to intentionally modify stride length during two blocks of trials by lengthening 

and shortening the step after every fifth stride. Although these studies investigated the 

control mechanisms of stride modulation, they both used manipulations in which stride 

modulation was defined a priori, and they investigated only stride length modulations. The 

alternate foot placement paradigm offers a different type of manipulation because it asks 
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participants to choose changes in stride length/width in order to avoid an undesirable area; 

stride modulation is not defined a priori. In this scenario, participants need to identify the 

stimulus (i.e., undesirable area), select the appropriate response, and implement it. The 

previous studies do not have this selection response step because it was already defined. 

Additionally, the control mechanisms involved in foot placement modulation in the 

mediolateral direction have not been systematically studied. To date, only one study has 

investigated this phenomenon, and it analyzed only step widening (Patla 1991). Therefore, 

the third purpose of the present study is to analyze how subjects without prior knowledge of 

the task modulate stride length/width while walking on the ground. For this analysis, 

changes in electromyography (EMG) profiles will be used. 

 

Method 

 
Participants 

Eight participants volunteered for this study (6 F and 2 M; age 20.9 years SD 3.4; 

height 1.72 ±0.11 meters; mass 66.2 ±11.4 kilograms). None of the participants had any 

neurological, muscular, or joint disorders that could affect their performance in this study. 

Procedures used in this study were approved by the Office of Research Ethics at the 

University of Waterloo. 

 

Protocol 

 Before starting the experiment, participants were asked to walk on the pathway at a 

self-selected pace; maintaining the same walking pace throughout the experiment. 

Individuals started walking two strides from the obstacle location region such that the right 
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foot would land on the middle of the monitor/hole when present and as illustrated in Figure 

1. A trigger mat was placed at the end of the first stride. Participants performed two blocks 

of trials (real and virtual) and in both blocks they were instructed to avoid stepping on the 

undesirable area. In the real condition, the undesirable area was an actual hole in the 

walkway, whereas in the virtual condition it was a planar virtual obstacle. The planar 

virtual obstacle was projected on a LCD monitor (Samsung SyncMaster™ TFT 181T 

Black) embedded in the walkway. A piece of Plexiglas™ was placed over the monitor so 

that participants could step over it normally. Virtual and real obstacles were white and the 

walkway was covered with a black carpet in order to guarantee good contrast. In both 

conditions, two obstacle sizes in three different locations were used (Figure 1). The 

obstacle sizes were: 1) 38 x 10 cm and 2) 12.5 x 30 cm. Participants wore a pair of LCD 

goggles (Lucent Technologies). The status of the goggles was changed from opaque to 

transparent almost immediately at right heel-contact (HC) on the trigger mat. While 

opaque, the goggles completely prevented the participants from gaining information about 

the visual surroundings and movements of the body through vision.  

At the beginning of each trial, participants stood at the start position (individually 

adjusted) with the LCD goggles closed. The verbal command “Ready” informed the 

participants that the trial was to begin soon. With the subsequent verbal command “Go”, 

they initiated walking (with left limb first) and at the right HC on the trigger mat the LCD 

goggles were opened, so that participants could see the surroundings and plan/implement 

an alternate foot placement if an obstacle was present. Participants had two steps in which 

to plan and implement the alternate foot placement. Participants were instructed to keep 

walking normally until they reached the end of the walkway and to stand there for one 

second before turning around and returning to the start point. The dimensions of the virtual 
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and real obstacles were the same and the depth for the real hole was set at 6 cm. 

Participants performed thirty avoidance trials (five trials per obstacle position) and thirty 

walk-through (WT) trials for each condition. Therefore, probability of obstacle appearance 

was equal to 50%. Trials within each block were completely randomized. The starting 

block was counterbalanced across participants; for four participants the first block of trials 

was with the real hole, whereas for the other four participants the first block of trials was 

the virtual obstacle. Participants were videotaped during the data collection. At the end of 

the experimental session, participants’ feet were traced on a sheet of paper for the predicted 

minimum foot displacement calculations (see below). 

 Ten infrared emitting-diodes (IREDs) markers were placed bilaterally over five 

anatomical landmarks: 5th metatarsal, heel, lateral malleolus, greater trochanter, and greater 

tubercle of humerus. Three OPTOTRAK™ cameras (Northern Digital, Waterloo, Canada) 

were positioned in front of the participants to track the IREDs markers at 60 Hz. Fourteen 

channels of EMG were recorded using adhesive, bipolar, Ag/AgCl surface, disposable 

electrodes, placed bilaterally with a center-to-center spacing of 3 cm over the belly of the 

following muscles: tibialis anterior (TA), medial gastrocnemius (GA), rectus femoris (RF), 

biceps femoris (BF), gluteus medius (GM), adductor longus (AL), and erector spinae at L3-

L4 location (ES). Electrodes’ positioning were based on descriptions provided by Delagi 

and Perotto (1980) and Winter (1991). The signals were A/D converted at a sampling rate 

of 2400 Hz. The EMG data were collected using a differential amplifier (Octopus AMT, 

Bortec Electronics Inc., Calgary, Canada) with the gain varying from 500 to 1000 across 

muscles. This amplifier has an input impedance of ~10 GOhm, and CMRR of 115 dB (at 60 

Hz). 
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Figure 1. A bird’s eye-of-view of the experimental setup is shown on the top. Participants were instructed to 

begin walking with their left foot first. The trigger mat was placed at the region of the first right heel contact 

(RHC). The obstacle was located one stride after the RHC. The bottom left shows the foot placement 

modification vector, which is calculated based on the average foot placement. The bottom right shows the 

location of the six obstacles used in this study relative to the normal landing position of the foot. For P1, P2, 

and P3 obstacle dimensions are the same, only the location is different. The same is the case for obstacles P4, 

P5, and P6. 

 

Data analysis 

Marker coordinates were filtered using a fourth-order zero lag low-pass digital 
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Butterworth filter with a cut-off frequency of 6 Hz. Ankle markers were defined as the limb 

end-point and used to calculate the foot placement modification vector (Figure 1). For each 

obstacle/hole trial, the x and z coordinates of the ankle marker were subtracted from the 

average coordinates of the WT trials at heel-contact; these are called relative coordinates 

(RCs). HC was identified through visual inspection of the feet stick figures using Optofix 

software (Mishac Kinetics). The average values of the coordinates for the WT trials were 

obtained from 10 randomly selected trials within each condition. The RCs were used to 

calculate the foot placement modification vector magnitude and orientation (i.e., angle). 

Vector orientation was used to define the alternate foot placement choice: lateral 

adjustment (0° - <45° and >315° - 360°), long adjustment (45° - <135°), medial adjustment 

(135° - <225°), and short adjustment (225° - <315°). Percentage of adjustments in each 

direction for each obstacle position was calculated relative to the total number of trials 

participants successfully performed for each condition independently. 

In order to quantify whether foot placement modification vector orientation was 

affected by condition, the mean foot placement modification vector orientation (i.e., angle) 

was calculated for each participant for the dominant choice in each obstacle position using 

circular statistics (Batschelet 1981). Next, the absolute difference between the angles for 

the real and virtual conditions was computed and the cosine of this difference was used for 

the statistical analyses. A cosine equal to 1.0 indicates that there is no difference between 

the foot placement modification vector orientation for the real and virtual conditions. 

Predicted minimum foot displacement (PMFD) was calculated for the four options 

(long, short, lateral, and medial) for each obstacle position and condition. PMFDs for two 

obstacle positions are illustrated in Figure 2 and were computed as follows: 
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 ( ) HADAvgLLPMFD xxLong +−=  Equation 1

 ( ) ( )xxShort AvgSLMEDAMDPMFD −−+=  Equation 2

 ( ) FWAvgLaLPMFD zzLateral +−=  Equation 3

 zzMedial MeLAvgPMFD −=  Equation 4

where LL,  SL,  LaL, and MeL define the distance from the center of the obstacle to the 

top, bottom, right, and left edges respectively, HAD is the heel-ankle distance, AMD is the 

ankle-metatarsal distance, MED is the metatarsal-edge distance, FW is the foot width, and 

Avg is the average foot placement in the WT trials. 

 

 

Figure 2. Predicted minimum foot displacement (PMFD) is shown for two different obstacles (P6 on the top 

and P2 on the bottom). The length of the arrow indicates the magnitude of the PMFD in four directions (long, 

short, lateral, and medial). The obstacles limits are also shown for the four possible choices. These limits were 

used in the calculation of the PMFD (see text for details). The foot on the right side shows the markers’ 

locations and the respective distances between them (HAD: heel-ankle distance; AMD: ankle-metatarsal 

distance; MED: metatarsal-edge distance; FW: foot width). MED was calculated as the difference between 

mean foot length and AMD plus HAD. 
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In order to identify the contribution of each step to the final change in foot 

placement, a variable called relative adjustment (RA) was computed (Moraes et al. 2004), 

according to Equations 5 and 6: 

 

N

1N
1N RC

RC
RA −

− =  Equation 5

 ( )
N

1NN
N RC

RCRC
RA −−

=  Equation 6

where RA is the relative adjustment, RC is the relative coordinate, N-1 is the step before 

the adaptive step, and N is the adaptive step. For the long/short adjustments, the RCx (i.e., 

anteroposterior coordinate) was used for RA calculation and RCz (i.e., mediolateral 

coordinate) was used for the RA calculation for the lateral/medial adjustments. 

Trunk markers (greater trochanter and greater tubercle of humerus) were used to 

calculate trunk center of mass (TCOM) position according to Winter (2005). TCOM velocity 

was calculated as the first derivative of TCOM position using the central difference 

procedure. Dynamic stability was quantified as proposed by Hof et al. (2005). In this 

analysis, the TCOM position is extrapolated based on the TCOM velocity direction and 

magnitude. This extrapolated TCOM (XcoM) is given by the following equation: 

 

0

COM
COM

TTXcoM
ω

+=
&

 Equation 7

where TCOM is the actual center of mass position, is the velocity of the center of mass, 

and is equal to 

COMT&

0ω l/g (g is the acceleration due to gravity and is the height of Tl COM). 

Since the TCOM height is not adequate for this calculation, an approximation of  is used. 

According to Hof et al. (2005), in the frontal plane l  is equivalent to 1.34 times the height 

of the greater trochanter; whereas in the sagittal plane it is 1.24 times the height of the 

l
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trochanter. The distance between XcoM and the maximum reach of the center of pressure 

(COP) is then used as a stability index called margin of dynamic stability (MDS). Since we 

do not have COP measures, the maximum reach of COP was estimated based on 5th 

metatarsal and heel markers for the AP and ML directions, respectively. The dynamic 

stability margin (MDS) was calculated at HC. 

Maintenance of forward progression was assessed by calculating the TCOM deviation 

from the AP axis in the transverse plane. TCOM in steps N-1 and N were used to compute 

forward progression deviation at alternate foot placement, whereas TCOM in steps N and 

N+1 were used to compute forward progression deviation after alternate foot placement. 

Negative angle values indicate a deviation to the left, and vice-versa for positive angles. 

EMG signal was full wave rectified and digitally filtered using a fourth-order zero 

lag low-pass Butterworth filter with a cut-off frequency of 10 Hz (Patla et al. 1991). For 

each participant, ten WT trials (the same trials used for the kinematics analysis) were used 

to determine the normal EMG profile for each condition separately (real and virtual). The 

normal EMG profiles were used for identifying changes in muscle activation when 

avoiding the obstacle. For each condition and obstacle position, EMG data were grouped 

according to the choice made and ensemble averaged from right heel-contact on the trigger 

mat to right heel-contact of the alternate foot placement and normalized to the peak value 

of the normal walking (WT trials) as suggested by Yang and Winter (1984). WT trials were 

also ensemble averaged and normalized. For each condition, the normalization values were 

defined based on the correspondent WT condition (i.e., real or virtual). 

Changes in muscle activation were analyzed in four phases of the gait cycle as 

suggested by Patla et al. (1991): 1% - 30% (weight acceptance), 31% - 50% (push-off), 

51% - 80% (pull-off), and 81% - 100% (late swing). Within each sector, the average profile 
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of each muscle of the experimental trial was compared against the normal EMG profile 

plus/minus one standard deviation for the respective muscle. In order to identify a change 

in muscle activation, a four-threshold procedure was used. The first threshold consisted of a 

deviation above or below the normal variability. A deviation was considered as a change in 

muscle activity only if it lasted for at least three data points (second threshold). In the case 

where changes where present above and below the normal variability within the same phase 

of analysis, the net change in muscle activity was computed (third threshold). The net 

change consisted of summing the area above the normal variability and the area below the 

normal variability within the phase of analysis. Positive and negative values for the above 

and below thresholds, respectively, were used to define the EMG difference profile as 

illustrated in Figure 3. Taking the pull-off phase of Figure 3 as an example, the excitation 

area (i.e., positive side) and the inhibition area (i.e., negative side) were summed. In this 

case, the net change was positive, which indicated an increase in muscle activation within 

the pull-off phase. In addition, when more than one positive/negative area was present they 

were added together before computing the net change. Only consistent changes in muscle 

activation across participants were considered as relevant. Therefore, the same net change 

needed to be present in at least N-1 participants who exhibited the same choice defining the 

fourth threshold. 

For the validation of the economy assumption, the relationship between the net 

change in muscle activity within one stride and the amount of foot displacement was 

analyzed. A variable relating the change in muscle activation within the adaptive stride to 

the muscle activation during normal walking was used as an EMG index. Percentage 

change in muscle activation (PCMA) for each muscle was calculated according to Equation 

8: 
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EMG

EMG
PCMA

AreaNormal

Area ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
= Equation 8

where ∆EMGArea is the net change in integrated muscle activation within one stride and 

EMGAreaNormal is the area under the ensemble averaged profile for the WT trials. Changes in 

muscle activation of each muscle were summed in order to get the percentage change in 

total muscle activation (PCTMA) according to Equation 9:  

 ∑
=

=
14

1i
iPCMAPCTMA  Equation 9

where i is the number of muscles analyzed. 

 

Statistical analyses 

For each obstacle position, a two-way (Condition x Choice) chi-square analysis (χ2) 

was carried out in order to identify whether the preferred choice in the real and virtual 

conditions are different. For the PMFD, two-way ANOVAs (Condition x Option) with 

repeated measures in both factors were carried out for each obstacle position separately. 

Since the dominant choice was the same for the P1 and P2 obstacles, they were always 

included in the same analysis. For the cosine of the difference between foot placement 

modification vector orientations for the real and virtual conditions, a one-way ANOVA 

(Step) with repeated measures was carried out for each obstacle position separately, except 

for the P1 and P2 obstacles that were included in the same analysis (two-way ANOVA 

(Obstacle Position x Step) with repeated measures). For all other dependent variables, two-

way ANOVAs (Condition x Step) with repeated measures in both factors were performed 

for each dominant choice per obstacle. The dominant choice for the P5 obstacle was not 

included in any analysis because of the inconsistency among subjects. Some subjects in 
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only one trial chose the dominant adjustment, which is not quite representative. For the 

medial analysis (i.e., P3 obstacle), only six participants were included, since two of the 

participants never chose the medial adjustment for the P3 obstacle in the real condition. 

Significant alpha value was set at 0.05. When main or interaction effects were found, Least 

Squares Means post-hoc analysis was used to identify which treatments differ from one 

another. 
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Figure 3. Top part shows the mean ± 1 standard deviation EMG profiles for the WT data (shaded area) as 

well as the ensemble average profile for the experimental condition for the erector spinae (continuous line) 

from right heel contact on the trigger mat to right heel contact of the alternate foot placement (i.e., one stride). 

Bottom part shows the electromyography (EMG) area that is either above or below the variability for the WT 

trials. Excitation values are positive and inhibition values are negative. 
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Regression analyses between PCTMA and mean foot placement modification vector 

magnitude were carried out independently for the real and virtual obstacle conditions. The 

regression analyses included within and across participants data. Data from all the choices 

made for each obstacle position were used in these analyses. A given pair of data was 

included in the regression analysis only if the participant chose the option in at least two 

trials. 

 

Results 

 

Are the alternate foot placement choices affected by the conditions? 

 The percentage of alternate foot placement choices in each direction is shown in 

Figure 4. Two-way (Condition: real and virtual x Choice: long, short, medial, and lateral) χ2 

analyses for each obstacle separately showed that there was no significant difference in the 

alternate foot placement choices between real and virtual conditions. As expected, lateral, 

medial, short, and long adjustments were the dominant choices for the P1, P3, P4, and P6 

obstacles, respectively. For the P2 obstacle, the dominant choice was the lateral adjustment. 

For the P5 obstacle, there was a slight trend of choosing to step long than short.  

 

Is the predicted minimum foot displacement different between conditions? 

 For the PMFD, the two-way repeated measure ANOVAs (Condition: real and 

virtual x Option: long, short, medial, and lateral) for each obstacle position identified a 

main effect only for option (P1: F3,21 = 423.00, p < 0.0001; P2: F3,21 = 338.48, p < 0.0001; 

P3: F3,21 = 410.54, p < 0.0001; P4: F3,21 = 305.89, p < 0.0001; P5: F3,21 = 35.57, p < 0.0001; 

P6: F3,21 = 200.21, p < 0.0001). Post-hoc analysis showed that for the P1 to P3 obstacles, 
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long and short PMFDs (long = 30.3 cm; short = 27.9 cm) were always larger than medial 

and lateral PMFDs. In addition, long PMFD was larger than short PMFD in these three 

obstacles. For the P1 obstacle, the smallest PMFD was observed for the lateral option (5.3 

cm) followed by the medial option (17.8 cm). For the P2 obstacle, there was no difference 

for the PMFD between lateral (11.3 cm) and medial (11.8 cm) options. For the P3 obstacle, 

the smallest PMFD was found for the medial option (5.8 cm), followed by the lateral option 

(17.3 cm).  
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Figure 4. Top row shows the obstacle location. Percentage values for the four possible choices for each 

obstacle position for the real and virtual conditions are shown in the middle and bottom rows, respectively. 

For each pie graph, the top value is the percentage for long choices, the bottom value is the percentage for 

short choices, the left value is the percentage for medial choices, and the right value is the percentage for 

lateral choices. The shaded area indicates the dominant choice for each obstacle. 

 

For the P4 to P6 obstacles, lateral and medial PMFDs were equal to 24.3 cm and 

24.8 cm, respectively, and they were not different from each other. For the P4 obstacle, 
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short option (7.9 cm) exhibited the smallest PMFD, and the longest PMFD was found for 

the long option (30.3 cm). For the P5 obstacle, the smallest PMFD was observed for the 

short option (17.9 cm), followed by the long option (20.3 cm). For the P6 obstacle, the 

smallest PMFD was observed for the long option (10.3 cm), whereas the longest PMFD 

was found for the short option (27.9 cm). 

 

Are foot placement modification vector magnitude and orientation affected by the 

conditions? 

 Foot placement modification vector distribution for each obstacle position and 

condition for four steps are shown in Figures 5 and 6. For the dominant choices, the 

distributions are similar for the two experimental conditions. In order to identify whether 

the foot placement modification vectors were similar between conditions, the magnitude of 

these vectors and the angle difference between them were statistically analyzed. Mean and 

standard deviation of the dominant choice for each obstacle position are shown in Figure 7. 

For the foot placement modification vector magnitude, the two-way repeated measure 

ANOVA (Condition: P1R, P2R, P1V, P2V x Step: N-1, N, and N+1) for the lateral choice 

(P1 and P2 obstacles) identified main effects of condition (F3,21 = 5.76, p = 0.0049) and step 

(F2,56 = 70.06, p < 0.0001) as well as an interaction effect (F6,56 = 6.73, p < 0.0001). The 

interaction effect showed that in step N-1, foot placement modification vector magnitude 

was larger for the real condition than for the virtual condition for the P1 obstacle. No 

difference between conditions was observed for the other two steps. In addition, foot 

placement modification vector magnitude was larger for the P2 obstacle than for the P1 

obstacle for steps N and N+1. No difference was observed in step N-1. For the P3 (medial 

choice) and P6 (long choice) obstacles, the two-way repeated measure ANOVAs 
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(Condition: P3R / P3V or P6R / P6V x Step: N-1, N, and N+1) identified main effects only 

for step (P3: F2,20 = 7.82, p = 0.0031; P6: F2,28 = 29.40, p < 0.0001). In both analyses, foot 

placement modification vector magnitude for steps N and N+1 were larger than foot 

placement modification vector magnitude for step N-1. For the P4 obstacle (short choice), 

the two-way repeated measure ANOVA (Condition: P4R and P4V x Step: N-1, N, and 

N+1) revealed a main effect of step (F2,28 = 58.16, p < 0.0001) as well as an interaction 

effect (F2,28 = 10.60, p = 0.0004). The interaction effect revealed that there was no 

difference between real and virtual conditions in step N, but for the other two steps there 

were significant differences. In step N-1, foot placement modification vector magnitude 

was larger for the real condition than for the virtual condition and vice-versa in step N+1.  

 The cosine of the foot placement modification vector orientation difference between 

real and virtual conditions was used to identify whether the foot placement modification 

vector orientation was similar between these two conditions. For the P1 and P2 obstacles 

(lateral choice), the two-way repeated measure ANOVA (Obstacle Position: P1 and P2 x 

Step: N-1, N, and N+1) indicated a main effect of obstacle position (F1,7 = 12.78, p = 

0.0090) and step (F2,28 = 17.16, p < 0.0001). The cosine is higher for the P2 obstacle than 

for the P1 obstacle, probably due to the negative value in step N-1 for the P1 obstacle 

(Figure 7). The step effect showed that in step N the foot placement modification vector 

orientation in real and virtual conditions were very similar, which slightly decreased in step 

N+1. In step N-1, there was clearly no similarity between real and virtual conditions for the 

foot placement modification vector orientation. Although Figure 7 shows an almost zero 

cosine value in step N-1 for the P3 obstacle (medial choice), the one-way repeated measure 

ANOVA (Step: N-1, N, and N+1) just failed to achieve significance (p = 0.0779) probably 

due to the very high variability in this step (0.76). For the P4 and P6 obstacles (short and 
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long choices, respectively), the one-way repeated measure ANOVA (Step: N-1, N, and 

N+1) revealed a main effect of step (P4: F2,14 = 6.17, p = 0.0120; P6: F2,14 = 6.27, p = 

0.0114). In both choices, there was no difference between steps N and N+1, which also 

exhibited a very high positive cosine value indicating that the foot placement modification 

vector orientation was similar between the real and virtual conditions. Step N-1 showed a 

smaller cosine than steps N and N+1 in both choices. 
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Figure 5. Vector distribution for four steps (N-2, N-1, N, and N+1) for obstacle positions P1 (first two 

columns), P2 (third and fourth columns), and P3 (last two columns) for the real and virtual conditions. 
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Figure 6. Vector distribution for four steps (N-2, N-1, N, and N+1) for obstacle positions P4 (first two 

columns), P5 (third and fourth columns), and P6 (last two columns) for the real and virtual conditions. 
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Figure 7. A) Mean and standard deviation of the foot placement modification vector magnitude in both real 

(R) and virtual (V) conditions. B) Mean of the cosine of the foot placement modification vector orientation 

difference between real (θR) and virtual (θV) conditions for three steps (N-1, N, and N+1). Data for five 

obstacle positions are shown (P1, P2, P3, P4, and P6). 
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How is the dynamic stability regulated for the avoiding the real versus virtual hole? 

 There was no difference in MDS between the real and virtual condition for all 

choices analyzed. Mean and standard deviation for the MDS in both AP and ML directions 

are shown in Figure 8. For the P1 and P2 obstacles (lateral choice), no main or interaction 

effects were found in the AP direction. In the ML direction, a two-way repeated measure 

ANOVA (Condition: P1R, P1V, P2R, P2V, WTR, WTV x Step: N-1, N, N+1) identified 

main effects of condition (F5,35 = 12.88, p < 0.0001) and step (F2,84 = 76.90, p < 0.0001) as 

well as an interaction effect (F10,84 = 5.22, p < 0.0001). The post-hoc analysis for the 

interaction effect revealed that MDS for step N-1 was greater for the P1 and P2 obstacles 

compared to WT; whereas in step N, MDS increased gradually (WT < P1 < P2). No 

difference was observed in step N+1 among all obstacle positions, except for the 

comparison between P2R and WTR. No difference was found between the real and virtual 

condition. For the P3 obstacle (medial choice), a two-way ANOVA (Condition: P3R, P3V, 

WTR, WTV x Step: N-1, N, N+1) revealed only a main effect of step in the AP direction 

(F2,40 = 3.30, p = 0.0471). In the ML direction, a main effect of condition was found (F3,15 = 

4.86, p = 0.0148). MDS was greater for the WT compared to P3 in both real and virtual 

conditions. No difference was found between the real and virtual condition. For the P4 

obstacle, a two-way repeated measure ANOVA (Condition: P4R, P4V, WTR, WTV x Step: 

N-1, N, N+1) showed no main or interaction effects for the MDS in the AP direction. In the 

ML direction, main effects of condition (F3,21 = 4.66, p = 0.0120) and step (F2,56 = 15.27, p 

< 0.0001) were found. MDS for P4 was greater than WT in both real and virtual conditions. 

No difference was found between the virtual and real condition. For the P6 obstacle, a two-

way repeated measure ANOVA (Condition: P6R, P6V, WTR, WTV x Step: N-1, N, N+1) 

revealed main effect of step in both AP (F2,56 = 3.33, p = 0.0430) and ML (F2,56 = 3.39, p < 
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0.0408) directions. 
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Figure 8. Mean and standard deviation of the margin of dynamic stability (MDS) in the anteroposterior (AP) 

and mediolateral (ML) directions for three steps (N-1, N, and N+1). Data is averaged across conditions for 

each dominant choice per obstacle. (WT: walk through; MDS: margin of dynamic stability) 

 

Is forward progression affected by conditions? 

 No difference between conditions was found for the forward progression analyses. 

For the P1 and P2 obstacles (lateral choices), a two-way repeated measure ANOVA 

(Condition: P1R, P1V, P2R, P2V, WTR, WTV x Step: at alternate foot placement (AFP) 

and after AFP) revealed main (condition: F5,35 = 15.31, p < 0.0001; step: F1,42 = 46.03, p < 

0.0001) and interaction (F5,42 = 4.33, p = 0.0029) effects. Post-hoc analysis for the 

interaction effect revealed that at alternate foot placement there was a deviation towards the 

left for the P1 and P2 obstacles, whereas for WT the deviation was towards the right. In 
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addition, deviation for the left was higher for the P2V than for P1V at alternate foot 

placement. After alternate foot placement, no difference was observed between P1 and P2 

in either real or virtual condition, but both obstacle positions presented a greater deviation 

towards the left than WT. No difference was observed between the real and virtual 

condition. For the P3 obstacle (medial choice), a two-way repeated measure ANOVA 

(Condition: P3R, P3V, WTR, WTV x Step: at AFP and after AFP) identified main effects 

of condition (F3,15 = 6.52, p = 0.0049) and step (F1,20 = 63.34, p < 0.0001). Post-hoc 

analysis for the condition effect showed a greater deviation towards the right than WT for 

the P3 obstacle. For the P4 obstacle (short choices), a two-way repeated measure ANOVA 

(Condition: P4R, P4V, WTR, WTV x Step: at AFP and after AFP) revealed only a main 

effect of step (F1,28 = 106.91, p < 0.0001). The same was observed for the P6 obstacle 

analysis (F1,28 = 114.72, p < 0.0001). 

 

Is the relative contribution of each step to the alternate foot placement adjustment affected 

by the conditions? 

 For the lateral choice (P1 and P2 obstacles), a two-way repeated measure ANOVA 

(Condition: P1R, P1V, P2R, and P2V x Step: N-1 and N) revealed a main effect of step 

(F1,28 = 59.90, p < 0.0001). As seen in Table 1, the major adjustment was made in step N. 

For the medial and short choices (P3 and P4 obstacles), the two-way repeated measure 

ANOVAs (Condition: P3R / P3V or P4R / P4V x Step: N-1 and N) identified main effects 

of step (Medial: F1,10 = 7.00, p = 0.0245; Short: F1,14 = 9.96, p = 0.0070). As observed for 

the lateral choice, the major changes occurred in step N. For the long choice (P6 obstacle), 

there was no main or interaction effects. For the real condition, the RA was very similar for 

steps N-1 and N, but it was larger for step N than for step N-1 in the virtual condition. 
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However, the interaction effect was not statistically significant; probably because of the 

high variability in the real condition. Taken all together, these results indicate that 

adjustments occurred mainly in the adaptive step (i.e., step N).  

 
Table 1. Relative adjustment mean (± standard deviation) for steps N-1 and N for each of the alternate foot 

placement choices. Results for five obstacle positions (P1, P2, P3, P4, and P6) are shown in both real (R) and 

virtual (V) conditions. 

Relative Adjustment Alternate Foot 

Placement Choice 
Obstacle Position 

Step N-1 Step N 

P1R -0.32 ±0.61 1.32 ±0.61 

P1V -0.01 ±0.34 1.01 ±0.34 

P2R 0.12 ±0.28 0.88 ±0.28 
Lateral 

P2V 0.07 ±0.20 0.93 ±0.20 

P3R 0.26 ±0.35 0.74 ±0.35 
Medial 

P3V -0.02 ±0.61 1.02 ±0.61 

P4R 0.26 ±0.44 0.74 ±0.44 
Short 

P4V 0.23 ±0.15 0.77 ±0.15 

P6R 0.49 ±0.30 0.51 ±0.30 
Long 

P6V 0.30 ±0.16 0.70 ±0.16 

 

Are the changes in muscle activity related to the magnitude of the foot placement 

modification vector magnitude? 

 Figure 9 shows the plots of PCTMA versus the mean foot placement modification 

vector magnitude, with the trend line for each condition. For the virtual condition, the slope 

was equal to 4.09 and it was significantly different from zero (t1 = 6.10, p < 0.0001). The 

intercept value (-9.94) was not significantly different from zero (t1 = -0.84, p = 0.41), 

probably because of the high variability (SE = 11.9). The R2 value indicated that changes in 

PCTMA explains 41% of the variability in the foot placement modification vector 

magnitude. The standard error of the estimate was equal to 37.0%, which means that when 

predicting the PCTMA, there will be an error of about 37.0% change in total muscle 
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activation. For the real condition, the slope was equal to 4.59 and it was also significantly 

different from zero (t1 = 5.52, p < 0.0001). The interception value (-13.45) was also not 

significantly different from zero (t1 = -0.88, p = 0.3844), probably due to high variability 

(SE = 15.3). The R2 value explains 35% of the variability and the standard error of the 

estimate was equal to 47.1%. Therefore, significant changes in the mean foot placement 

modification vector magnitude are explained by PCTMA in both conditions.  
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Figure 9. Plot of the percentage change in total muscle activation versus the foot placement modification 

vector magnitude for the virtual (top) and real (bottom) conditions showing the regression line and the 

equation relating these two variables as well as the R2 value. 
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How is alternate foot placement implemented? 

 The changes in muscle activation for the real and virtual conditions were compared 

against the WT data in the real and virtual conditions, respectively. A Pearson correlation 

analysis for the ensemble average profile was performed for each muscle between real and 

virtual WT data in order to check if the baseline data was similar between conditions. As 

expected, the correlation coefficients were very high for all the muscles (RTA = 0.89; RGA 

= 0.96; RRF = 0.85; RBF = 0.85; RAL = 0.85; RGM = 0.94; RES = 0.91; LTA = 0.94; 

LGA = 0.95; LRF = 0.86; LBF = 0.78; LAL = 0.76; LGM = 0.94; LES = 0.92). In addition, 

the coefficient of variation (Winter 1991) was computed for the WT for both conditions 

and statistically compared using a two-way ANOVA (Condition x Muscle). The results of 

this analysis indicated only a main effect for muscle (F13,182 = 3.96, p < 0.0001). Thus, the 

variability is the same in both conditions. Therefore, the control data used to identify 

changes in muscle activation were similar and were not of concern for the differences 

between conditions. 

Changes in muscle activity for each of the four phases are shown in Table 2. 

Figures 10 and 11 illustrate some of the changes in muscle activity for four different 

choices. All of the changes were identified as increases in muscle activity. As expected, 

there was no change during the weight acceptance phase, except for the increase in the right 

gastrocnemius activity during the medial adjustment for the real condition. Most of the 

changes occurred during the pull-off and late swing, but they were not quite consistent 

between conditions. A change that was consistent between conditions was observed for the 

gluteus medius for the lateral adjustment. In addition, two changes were consistent within 

condition. First, there was a consistent increase in left gastrocnemius for the real condition 

for lateral and medial adjustments. Second, there was an increase in left tibialis anterior 
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activity for the virtual condition for the same adjustments. For the short adjustment in the 

virtual condition no change in muscle activity was found. For the long adjustment, there 

was a consistent increase in left tibialis anterior activity during the push-off phase, but all 

other changes were different. 

 
Table 2. Changes in muscle activation for both virtual and real conditions in each stride phase. Arrowhead 

pointing up indicates an increase in muscle response and vice-versa for arrowhead pointing down. Muscle 

changes that are bolded indicate similar changes in the virtual and real conditions for the respective stride 

phase. R and V letters after the obstacle position number stands for real and virtual conditions, respectively. L 

and R letters before the muscle code stands for left and right sides, respectively. (TA: tibialis anterior; GA: 

gastrocnemius; RF: rectus femoris; BF: biceps femoris; AL: adductor longus; GM: gluteus medius; ES: 

erector spinae) 

Stride Phases 
Choices Weight 

Acceptance Push-off Pull-off Late Swing 

Lateral (P1R) ----- ----- ↑LGA ↑RTA, ↑RGM 

Lateral (P1V) ----- ----- ↑RGM ----- 

Lateral (P2R) ----- ↑LGM 
↑RGM, ↑LGM, 

↑LGA 

↑RTA, ↑RGM, 

↑LGA 

Lateral (P2V) ----- ↑LGM, ↑LTA 
↑RGM, ↑LGM, 

↑LTA 

↑RGM, ↑LGM, 

↑LBF, ↑LGA 

Medial (P3R) ↑RGA ↑RES ↑LES, ↑LGA ↑RGM, ↑LES 

Medial (P3V) ----- ----- ↑RAL, ↑LTA ↑LES 

Short (P4R) ----- ----- ↑RBF ----- 

Short (P4V) ----- ----- ----- ----- 

Long (P6R) ----- ↑RAL, ↑LTA 
↑RBF, ↑RGM, 

↑LES, ↑LBF 
----- 

Long (P6V) ----- ↑LGM, ↑LTA ----- 
↑RTA, ↑LBF, 

↑LTA 
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Figure 10. Ensemble average EMG profiles (from right heel contact on the trigger mat to right heel contact of 

the alternate foot placement) for WT (shaded area) and long (continuous line – left side) and short (continuous 

line – right side) adjustments. For the long adjustment, left biceps femoris (LBF) is shown; whereas for the 

short adjustment, right biceps femoris (RBF) is shown. Shaded area corresponds to the mean ± 1 standard 

deviation for the WT data. Vertical dashed lines indicate the four different phases of analysis: 1% - 30% 

(weight acceptance), 31% - 50% (push-off), 51% - 80% (pull-off), and 81% - 100% (late swing). For the long 

adjustment, there is an increase in LBF activity during pull-off and late swing phases. For the short 

adjustment, there is an increase in RBF activity during the end of pull-off phase. 

 

Discussion 

 

In the present study we could systematically assess the validity of using a virtual 

planar obstacle as representative of a real irregular terrain. By validating this paradigm, 

future studies using virtual obstacles can be designed to assess different aspects related to 

the planning and implementation of alternate foot placement. In addition, measurement of 

muscle activity allowed us to directly assess the validity of the economy determinant in 

selecting alternate foot placement. The intentional decision and online control of stride 

modulation is a critical aspect involved with adaptation for cluttered terrains. We were able 

to methodically assess the changes in muscle activity by monitoring a large number of 
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muscles related to changes in stride length and width while subjects walked on the ground. 

This study is the first to address stride length/width modulation following the participants’ 

own selection of the preferred change. The discussion is organized to cover the three 

purposes of the present study. 
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Figure 11. Ensemble average EMG profiles (from right heel contact on the trigger mat to right heel contact of 

the alternate foot placement) for WT (shaded area) and lateral (continuous line – left side) and medial 

(continuous line – right side) adjustments. For the lateral adjustment, right and left gluteus medius (RGM and 

LGM) are shown; whereas for the medial adjustment, left erector spinae (LES) and right adductor longus 

(RAL) are shown. Shaded area corresponds to the mean ± 1 standard deviation for the WT data. Vertical 

dashed lines indicate the four different phases of analysis: 1% - 30% (weight acceptance), 31% - 50% (push-

off), 51% - 80% (pull-off), and 81% - 100% (late swing). For the lateral adjustment, there is an increase in 

RGM activity during pull-off and late swing phases and an increase in LGM during pull-off phase. For the 

medial adjustment, there is an increase in LES and RAL activities during pull-off and late swing phases. 
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 Alternate foot placement selection is not different between real and virtual conditions 

 No statistically significant difference was found between real and virtual conditions 

for the dominant choice and foot placement variables. The only exception was found in step 

N-1, where foot placement modification vector magnitude and orientation were different 

between conditions. This difference is probably not of great relevance since the relative 

adjustment analysis identified a small contribution by step N-1 to the final alternate foot 

placement. The variables associated with all three determinants were also unaffected by the 

conditions. Maintenance of forward progression, stability, and foot displacement were not 

different between the real and virtual condition. In general, behaviorally there is no 

difference between real and virtual conditions. Therefore, the presence of the virtual planar 

obstacle can be used as an analog for the real environment to investigate alternate foot 

placement planning and selection process. 

 

Preference for minimizing foot displacement is economy-related  

For five of the obstacles (P1, P2, P3, P4, and P6) used in the current experiment, the 

dominant choice was the one that resulted in minimizing foot displacement from its landing 

position. The dominant choice coincided with the minimal value of the PMFD. The only 

exception was observed for the long choice in the P5 obstacle. For this particular obstacle, 

short adjustment would result in the minimal PMFD, but long choice was the dominant 

one. The long choice resulted in the second minimal PMFD and the difference between 

long and short PMFD was equal to 2.4 cm. Greig et al. (2004) found that the switch from 

long to short adjustments occurred only when the long adjustment resulted in a foot 

displacement larger than 7 cm compared to the short adjustment. Since the actual difference 

is less than 7 cm, it is possible that there is a threshold for switching from long to short 
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adjustments. This threshold can be economy and/or stability related. Future studies should 

address this issue.  

Foot placement modification vector magnitude was just slightly larger than the 

PMFD. The overall mean difference was equal to 4.4 cm. Thus, participants were placing 

the foot just past the edge of the obstacle as shown by Moraes et al. (2004). This clearly 

supports the idea that people effectively minimize the foot displacement from its normal 

landing spot when avoiding an obstacle. It was suggested that minimization of foot 

displacement is economy related (Patla et al. 1999). Converging evidence suggest that 

movements in general and during locomotion in particular, are planned to minimize the 

associated metabolic cost. For example, metabolic cost is diminished for the preferred step 

length and width (Cavanagh and Williams 1982; Donelan et al. 2001, 2002). Also, when 

learning a new task, metabolic cost diminishes with practice (Lay et al. 2002). In addition, 

during development metabolic cost associated with walking and running diminishes with 

increase in age (Morgan et al. 2004), and at a speed higher than 2 m/s people prefer to run 

than to walk since it is more economical (Alexander 2002). Thus, when adapting gait to 

environmental challenges it is reasonable to suppose that people would prefer the options 

that minimize the metabolic cost. The strong bias towards minimizing energy cost is 

probably a result of the evolution process (Alexander 2002).  

The results of the regression analysis between PCTMA and foot placement 

modification vector magnitude show that increase in foot displacement is associated with 

increase in muscle activity. Therefore, when minimizing the amount of foot displacement, 

participants are also minimizing the changes in the ongoing muscle activity. Since there is a 

good relationship between muscle activation and oxygen uptake (Henriksson and Bonde-

Petersen 1974; Kyröläinen et al. 2001; Millet et al. 2002; Praagman et al. 2003; Sengupta 
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and Das 2004), it is proposed that the decrease in muscle activation observed with the 

decrease in foot displacement decreases the metabolic cost associated with the movement. 

The small variability explained by the PCTMA may be a result of the number of muscles 

monitored. Although the number of muscles monitored in the present study is quite high, it 

is still not as high as the number of muscles involved with the locomotor behaviour. Indeed, 

Winter (1991) has catalogued the EMG activity of 25 muscles (50 bilaterally) during gait, 

not including the upper limb and deep muscles. Clearly, much more than the seven muscles 

(14 bilaterally) are recruited during gait. Ideally, it would be more representative to monitor 

a larger number of muscles, however that is not a simple task. Therefore, the use of a 

representative muscle from each of the major muscle groups proved to be sufficient to 

show the relationship between changes in muscle activity and foot displacement. If it would 

be possible to include more muscles in this analysis, the variability explained by PCTMA 

would be higher and the precision of the estimate would be improved. The fact that the 

intercept was not different from zero is an indication of the robustness of the PCTMA since 

as expected maintenance of normal foot placement would result in no change in muscle 

activity. 

 

Implementation of the alternate foot placement is muscle- and phase-specific in the ipsi- 

and contralateral sides 

 The major changes in EMG activity occurred after left heel contact with the ground. 

This was clearly reflected in the values of the relative adjustment for step N-1. The lateral 

adjustment, which mainly resulted in modulation of step width, was achieved by increasing 

the activity of the right hip abductor during pull-off and late swing as proposed by Patla 

(1991). The enlargement of the foot displacement created an additional contribution of the 
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left hip abductor, but only at the push-off and pull-off phases. This shows that changes are 

muscle and phase-specific for the ipsi- and contralateral muscles as proposed by Patla et al. 

(1989b). The additional contribution of the left gluteus medius resulted in tilting the pelvis 

downward on the left, since the left foot was on the ground during these two phases, 

facilitating the right lower limb to be displaced to the right, therefore reducing the need for 

a much stronger activation of the right gluteus medius, which would create a larger 

destabilizing moment. The increase in right gluteus medius activity was probably related to 

properly landing the foot at the edge of the obstacle. For the real condition, there was an 

increase in the right tibialis anterior activity during the late swing. This increase in ankle 

flexion during swing may have delayed the foot landing (Varraine et al. 2000), contributing 

to enlarging step duration. Indeed step duration was statistically greater (not reported) for 

the real condition compared to normal walking (P1 = 0.56 s; P2R = 0.56 s; WT = 0.53 s). 

The increase in left biceps femoris activity for the virtual condition during late swing may 

be seen as a compensation for the increase in left gastrocnemius during the same phase. 

This increase in left biceps femoris stabilizes the pelvis and prevents a substantial increase 

in the trunk forward velocity. 

It was hypothesized that the medial adjustment, which narrows the step, was 

implemented mainly by the hip adductors. However, the expected increase in the adductor 

longus activity was only consistently observed in the virtual condition during the pull-off 

phase. In both conditions, there was a consistent increase in left erector spinae during late 

swing. For the real condition this increase is more pronounced as it appears also during the 

pull-off phase. It is possible that the increase in left erector spinae contributes to the passive 

movement of the leg more medially. This increase in the left erector spinae activity may 

twist the trunk facilitating the leg movement medially. Since the increase is more 
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pronounced for the real condition, there may be no need for substantial increase in adductor 

longus involvement and the right gluteus medius may eccentrically control foot landing 

during late swing. Patla and Prentice (1995) have described the passive control mechanisms 

of subjects who walked over obstacles. They demonstrated that the increase in hip and 

ankle flexion was achieved through passive forces induced by translational action at the hip 

and rotational action at the knee joint. This clearly shows that the central nervous system 

(CNS) takes advantage of the intersegmental dynamics in order to properly control adaptive 

movements. 

For both lateral and medial adjustments, consistent increases were found in the left 

gastrocnemius and tibialis anterior activity during the pull-off phase for the real and virtual 

conditions, respectively. Gastrocnemius activity at the push-off phase has been shown to be 

greatly related to forward propulsion (Winter 1991; Gottschall and Kram 2003). Although 

not reported, TCOM velocity in the AP direction was statistically greater for the real 

condition than for the virtual condition. Thus, the increase in gastrocnemius activity was 

used to increase TCOM velocity in the AP direction for the real condition since it enhances 

the left limb push-off (the stride phases presented in Table 2 are based on right limb 

events). However, there was no significant difference between real and virtual conditions 

for the TCOM velocity in the AP direction for the P2 obstacle. This was probably because of 

the late increase in left gastrocnemius observed for the virtual condition during the late 

swing. On the other hand, the increase in left tibialis anterior activity for the virtual 

condition is unclear.  

 For the short adjustment in the real condition, there was an increase in right biceps 

femoris during the pull-off phase. Although the pull-off phase combines the end of the 

stance and the early portion of the swing, the changes for the right biceps femoris occurred 
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mainly towards the end of the pull-off phase for the short adjustment. This increase helps in 

decelerating the swing leg, stopping the pendular leg movement so that the foot landed 

earlier than it would have spontaneously (Varraine et al. 2000). The result of this 

mechanism is the reduction in step duration. In fact, step duration was reduced for the short 

adjustment, although these results are not reported here. No change in muscle activation 

was observed for the virtual condition. It is possible that because the stride length 

regulation was small (~9.0%), the changes in muscle activity for implementing the short 

adjustment were within the variability for the normal walking. Varraine et al. (2000) have 

reported changes in stride length slightly greater (12.1%). This hypothesis is reinforced by 

the reduction in the TCOM AP velocity for the short virtual adjustment compared to normal 

walking in both steps (i.e., N-1 and N), whereas for the short real adjustment the only 

difference occurred in step N. The larger TCOM AP velocity for the real condition compared 

to the virtual condition may be a consequence of the increase in leg braking without a 

compensatory mechanism for the trunk. However, this does not affect the TCOM-BOS 

relationship and therefore it is probably within an acceptable range of variation by the CNS.  

 For the long adjustment, a systematic increase in left tibialis anterior during push-

off was observed for both conditions. During this phase the left limb is at late swing and 

during this period the tibialis anterior activity keeps the foot dorsiflexed during the reach 

phase (Winter 1991). This increase enhances ankle dorsiflexion and helps in lengthening 

the step, as proposed by Varraine et al. (2000). For the real condition there was a bilateral 

increase in biceps femoris activity during the pull-off phase. In opposition of what 

happened to the short adjustment, the increase was located more at the beginning of the 

pull-off phase or during the late stance. The increase in right biceps femoris activity during 

late stance, which was previously reported by Patla et al. (1989b) and Varraine et al. 
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(2000), increases the push-off action via action at the hip. The increase in the left biceps 

femoris enhances the support against gravity, since the major changes occurred around 

mid-swing of the right limb. Although the increase in left biceps femoris was located at late 

swing, it occurred mainly on the initial part of the late swing, which is also near to the mid-

swing, and therefore it increases the body support. Varraine et al. (2000) and Patla et al. 

(1989b) have also reported increases in triceps surae activity during push-off. The failure to 

repeat this finding is possibly related to the smaller change in step length in the present 

study (10.0% versus 18.8%). For both virtual and real conditions, an increase in gluteus 

medius was observed in different phases. The meaning of such changes is not completely 

clear. Greig et al. (2004) have reported that the long adjustment also resulted in some 

increase in step width. Perhaps the increase in gluteus medius is related to such a 

mechanism. In the present study an increase of 5.5% in step width was found for the virtual 

condition. However, no increase in step width was found for the real condition. The 

increase in the right adductor longus and left erector spinae activities may have 

compensated for the gluteus medius increase and kept the step width unaltered. The 

increase in the right tibialis anterior activity during the late swing was also observed by 

Varraine et al. (2000). This increase maintains the ankle flexed during lengthening so that 

the foot landed later and, thus, farther. 

 In summary, the changes in muscle activity are quite complex and diverge from 

some previous work and also between conditions. The differences observed for alternate 

foot placement implementation indicate the control system has some flexibility to make the 

necessary changes in order to achieve the same goal. The absence of triceps surae 

involvement in step lengthening is an indication that this muscle group is only requested 

during large changes. The increase in step width for the P2 obstacle created the necessity of 
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incorporating the left gluteus medius for proper achievement of the goal. These two 

examples clearly show that the control mechanisms are muscle- and phase-specific, based 

on the demands of the task. 

 

Summary 

 This study has shown that the virtual planar obstacle paradigm is appropriate for 

research involving alternate foot placement selection and planning. The present study also 

provided validation for the economy assumption behind the minimum foot displacement 

determinant. Preference for minimizing foot displacement is economy-related. 
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Chapter 3 

 

Validating determinants for alternate foot placement selection 

algorithm during human locomotion in a cluttered terrain 
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Introduction 

 

Alternate foot placement selection during locomotion in cluttered environments 

cannot be exclusively sensory-driven (Patla et al. 1999; Moraes et al. 2004). Vision and 

proprioceptive inputs provide information about undesirable landing spots in the pathway 

and the amount of foot displacement in each direction relative to the normal landing 

position necessary to avoid them. However, when more than one option exists for 

minimizing foot displacement, vision and proprioceptive inputs alone are not enough to 

help determine where to step. It has been shown that the selection of alternate foot 

placement is based on three determinants: minimum foot displacement (i.e., economy), 

stability, and maintenance of forward progression (Patla et al. 1999; Moraes et al. 2004). 

When only one option offers the minimum foot displacement from its normal landing spot, 

it is the preferred choice. However, often the amount of foot displacement is similar for 

more than one option. In this case, two additional rules apply. If the minimum foot 

displacement from its normal landing spot is the same for one adjustment in the frontal 

plane and for another in the plane of progression, the preference is to make the adjustment 

in the plane of progression (Patla et al. 1999). If the minimum foot displacement is the 

same within the same plane of movement, the preferred choice is long (i.e., lengthening the 

step) in the plane of progression and medial (i.e., narrowing the step) in the frontal plane 

(Patla et al. 1999). 

Moraes et al. (2004) recently validated the primacy of minimum foot displacement 

in determining the alternate foot placement choice. In this study, the predicted minimum 

foot displacement for each combination of options (i.e., long, short, lateral, and medial) and 

obstacle position was calculated based on the average foot placement during normal 
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walking. The dominant choice minimized the foot displacement from its normal landing 

position for majority of the cases, therefore validating minimum foot displacement as one 

of the determinants used for alternate foot placement selection. The other two determinants 

(i.e., stability and forward progression) have not yet been addressed and, consequently, 

validated. This is one of the focuses of the present study. 

During walking, stability maintenance is a dynamic process due to continuous 

changes in the BOS and COM location. Walking is a cyclical sequence of falling forward 

and recovering balance by properly placing the swing foot, which determines the future 

location of the center of pressure (Patla 2003; Redfern and Schumann 1994; Winter 1995). 

This suggests that COM location relative to the BOS is a good indicator of body balance 

during walking. This measure of stability has been extensively used in studies involving 

insects (see Ting et al. 1994) where it is appropriate to consider static measure of stability 

since they usually have more than two legs on the ground. During single support, COM 

projection is outside the BOS in both anteroposterior and mediolateral directions. Since at 

each heel contact balance is re-established by proper foot placement, it is appropriate to 

measure dynamic stability during double support phase. Thus, in the present study, COM 

projection relative to the BOS during the beginning of double support phase is used to 

assess stability.  

However, only distance parameters may not be adequate to assess dynamic stability. 

During walking, the dynamics of the body play an important role and this can be captured 

by combining COM position and velocity (Pai and Patton 1997; Iqbal and Pai 2000). More 

recently, Hof et al. (2005) have proposed a simple and elegant calculation that captures the 

contribution of COM velocity to dynamic stability, which generates similar predictions as 

proposed by Pai and Patton (1997). They used the current location of COM and its velocity 
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to extrapolate COM position. This extrapolated COM position can then be compared 

against the maximum reach of center of pressure in order to identify whether or not the 

system is stable. Therefore, in addition to the COM-BOS distance, another measure of 

stability was taken by computing the distance between the extrapolated COM position and 

the limit of the BOS, which is called margin of dynamic stability. Furthermore, Patla 

(2003) has shown that more than one step is needed to completely overcome the instability 

generated by different sources of perturbation. During the alternate foot placement task, 

balance may be compromised since there are substantial changes in foot placement 

location. Therefore, in order to unequivocally validate the stability determinant it is 

necessary to assess the COM-BOS relationship and the margin of dynamic stability not 

only in the adaptive step, but also in the subsequent step.  

The preference for changes in the plane of progression over changes in the frontal 

plane has been attributed to maintenance of forward progression (Patla et al. 1999). More 

recently, Moraes et al. (2004) proposed that when making changes in the frontal plane, 

people try to move the foot not only medially, but also forward in order to minimize 

deviation from the forward goal. Although this foot displacement reveals partially supports 

the maintenance of the forward progression determinant, more global measures of body 

trajectory are needed. Maintenance of forward progression is best assessed by examining 

COM trajectory. 

Experimentally, this study introduces a new manipulation through a forced 

condition that 1) removes the selection and planning component of alternate foot 

placement, and 2) provides non-dominant foot placement choices for all participants for 

analyses. In the forced condition, participants are visually cued to select one foot placement 

option. This allows the evaluation of how the planning component impacts the alternate 
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foot placement performance. Since there is a dominant response for each obstacle when 

allowed to choose, the forced condition fills the gaps with non-dominant choices. Thus, the 

purpose of this study is to validate both stability and forward progression determinants 

when selecting alternate foot placement and when foot placement is cued. It is hypothesized 

that these two determinants will have a major influence on selection and execution of 

alternate foot placement.  

 

Method 

 
Participants 

Eight participants volunteered for this study (4 F and 4 M; age 25.4 ±4.7 years; 

height 1.75 ±0.10 meters; mass 69.5 ±6.7 kilograms). Participants did not report any 

neurological, muscular, or joint disorders that could affect their performance in this study. 

The Office of Research Ethics at the University of Waterloo approved the procedures used 

in this study. 

 

Protocol 

Participants were asked to walk on level ground at a self-selected pace on a pathway 

containing a force plate (AMTI, Boston, USA) and an embedded liquid crystal display 

(LCD) monitor (Samsung SyncMaster™ TFT 181T Black) (Figure 1). A piece of 

Plexiglas™ was placed over the LCD monitor so that participants could step normally on it. 

The starting point was adjusted for each participant in order to ensure that the entire left 

foot landed on the force plate and the subsequent right foot landed on the centre of the 

screen. Participants were required to avoid stepping with the right foot on a virtual white 
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planar obstacle that would be displayed in the LCD screen. The obstacle appeared at left 

heel contact (HC) on the force plate (vertical component larger than 5 N), which provided 

one step for implementing the alternate foot placement. The pathway was covered with a 

black rubber carpet that had specific cuts to accommodate the force plate and the LCD 

monitor. The force plate was also covered with the same black rubber carpet. The monitor 

edge was also black. For the trials with no obstacle, the screen background was kept 

completely black. One obstacle labelled mediolateral (ML) was designed to facilitate 

adjustments in the frontal plane; the other obstacle labelled anteroposterior (AP) produced 

foot placement in the sagittal plane. Obstacles were displayed in the middle of the screen. 

Participants performed the task under two conditions: free and forced. In the free condition, 

participants chose the alternate foot placement that was more appropriate for avoiding the 

planar obstacle. In the forced condition, a green arrow projected over the white planar 

obstacle indicated the direction in which the alternate foot placement must be performed 

(Figure 1). The white obstacle and the green arrow were displayed simultaneously at left 

HC on the force plate. For the AP obstacle, two forced conditions were used: long and 

short. For the ML obstacle, two forced conditions were used: medial and lateral. Therefore, 

a total of six conditions were collected: AP free, ML free, long forced, short forced, lateral 

forced, and medial forced. Six trials were collected per condition (36 trials). In order to 

keep a probability of obstacle appearance equal to 20%, 144 walk-through (WT) trials were 

also collected. Trials were completely randomized. 

 Twenty-four infra-red emitting diodes (IREDs) were placed bilaterally on the 

following anatomical landmarks: 5th metatarsal, heel, lateral malleolus, femur head, greater 

trochanter, anterior superior iliac spine, iliac crest, lower rib, greater tubercle of humerus, 

elbow axis, ulnar styloid, and ear. One more IRED was placed at the xiphoid (Figure 1). 
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Three OPTOTRAK™ cameras (Northern Digital, Waterloo, Ontario, Canada) positioned in 

front of the participants were used to track the IRED markers at a sampling frequency of 60 

Hz. The three components of the ground reaction forces and moments under the stance limb 

(i.e., left limb) were also collected with the same force plate used to trigger the obstacle 

display at a sampling rate of 120 Hz. At the end of the experimental session, feet were 

traced on a sheet of paper for posterior measurement of the foot length and width used in 

the calculation of the predicted minimum foot displacement. Participants were videotaped 

while performing the task. 

 

 

Figure 1. Experimental setup showing the force plate and the LCD monitor. The pathway appears in grey 

instead of black for esthetical reasons and the arrows appear in black instead of green. Top right corner shows 

the marker placement of the 25 IREDs (see text for specific location of the markers). Bottom part shows the 

dimensions of the monitor and the planar obstacles used as well as the six experimental conditions. 
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Data analysis 

Videotapes were used to identify the successful trials for all the adjustments in the 

forced condition. In addition, in the unsuccessful trials the errors were classified as follows: 

wrong adjustment, stepped on the obstacle, and others. Wrong adjustments are the trials 

where one adjustment was requested and the participant made some other adjustment. 

Others are trials in which participants missed the force plate, terminated gait just before or 

after the obstacle, or simply did not see the obstacle at all. The percentage for each of these 

parameters was calculated based on the total number of trials across subjects. 

Marker coordinates were filtered using a fourth-order zero lag low-pass digital 

Butterworth filter with a cut-off frequency of 6 Hz. A model with 16 segments was used to 

calculate whole body COM position: feet, legs, thighs, arms, forearms, head, pelvis, and 

trunk modelled with four components (Winter 2005). Anthropometric parameters were 

obtained from Winter (2005). COM velocity was calculated as the first derivative of COM 

position (central difference procedure). HC was determined by visual inspection of the foot 

stick figure using the OptoFix software (Mishac Kinetics, Waterloo, Ontario, Canada). 

Estimation of HC based on the vertical component of the force plate (Fy > 5 N) was used as 

the gold standard in order to validate the visual inspection. Differences between these two 

methods were always within the range of 2 frames (i.e., 0.03 s). 

Ankle markers (i.e., lateral malleolus) were defined as the limb end-point and used 

to calculate the foot placement modification vector (Figure 2). For each experimental trial, 

relative coordinates (RCs) were computed as the subtraction of the ankle coordinates of the 

trial (x and z) from the average coordinates of the WT trials at HC. The average values 

were obtained from 20 randomly selected WT trials. The RCs were used to calculate the 

foot placement modification vector magnitude and foot placement modification vector 
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orientation (i.e., angle). Vector orientation was used to define the adjustment made in the 

free condition. Classification included four directions of adjustment: lateral (0° - 45° and 

>315° - 360°), long (>45° - 135°), medial (>135° - 225°), and short (>225° - 315°). 

Percentage of adjustment in each direction was calculated relative to the total number of 

trials successfully performed by all the participants. The same vector analysis performed 

for the lower limb end-point was performed for the COM at HC. The cosine of the absolute 

difference between foot and COM foot placement modification vector angle was used to 

identify whether or not foot and COM movement vector direction were oriented in the 

same direction. 

 

 

Figure 2. A) It shows the foot placement modification vector for a hypothetical choice in the third quadrant. 

Foot placement modification vector magnitude is calculated as the distance between average foot placement 

and alternate foot placement. Foot placement modification vector angle is defined relative to average foot 

placement. B) It shows the predicted minimum foot displacement needed to clear the obstacle in four 

directions for both obstacles. The magnitude of the arrow indicates the amount of necessary foot 

displacement. 
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The right ankle marker velocity profile was used to determine the onset of change in 

limb trajectory in the AP and ML directions. Velocity data were aligned based on left HC 

on the force plate, since this was the trigger for obstacle appearance. For each experimental 

trial, adjustment onset was defined as the first deviation of the velocity profile from the 

variability range around the mean for the WT trials. For the ML direction, variability was 

defined as one standard deviation whereas for the AP direction two standard deviations 

were used (see left side of Figure 4). This difference is based on the fact that the variability 

is much smaller in the AP direction than in the ML direction.  

Right foot markers (5th metatarsal, lateral malleolus, and heel) and mean data from 

both feet tracings (foot length and width) were used in calculating the predicted minimum 

foot displacement (PMFD) for each option and obstacle (Figure 2). PMFD is defined as the 

perpendicular distance relative to each side of the obstacle necessary to clear it and to land 

the foot just at the edge of the obstacle. 

At HC, feet markers (right and left 5th metatarsal and heel) were used to define the 

BOS. Based on the vertical projection of the COM and BOS location, the AP and ML 

distances of the COM in relation to BOS were computed (see Figure 10 for illustration). In 

the AP direction, positive values indicated that COM was ahead of the anterior margin of 

the BOS and vice-versa for negative values. COM-BOS AP distance in relation to the 

posterior margin of the BOS was also calculated and it was used, combined with the 

distance relative to the anterior margin, to determine the COM location (i.e., inside, behind, 

or ahead of the BOS). For the adaptive step (step N), ML distance was calculated relative to 

right heel marker whereas for the subsequent step (step N+1), ML distance was calculated 

relative to left heel marker. In the ML direction, positive values indicated that COM was 

medial relative to foot and within BOS and vice-versa for negative values. 
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COM-BOS distance calculation includes essentially spatial parameters. However, 

during walking, COM displacement velocity also has to be considered when defining 

stability. Therefore, an additional stability parameter was calculated incorporating COM 

velocity. This parameter was based on the work done by Hof et al. (2005). According to 

these authors, COM location can be extrapolated based on its actual velocity as follows: 

 
0

MOCCOMXcoM
ω

+=
&

 Equation 1

where XcoM is the extrapolated center of mass position, COM is the actual center of mass 

position, is the velocity of the center of mass, and MOC &
0ω is defined by Equation 2: 

 
l

g
0 =ω  Equation 2

where g is the acceleration due to gravity and is the length of the inverted pendulum (in 

our analysis we used the height of the COM).  

l

 Based on the XcoM, margin of dynamic stability (MDS) was calculated at HC as 

follows: 

 XcoMBOSMDS max −=  Equation 3

where BOSmax is the limit of the base of support. Fifth metatarsal and heel markers were 

used to define BOSmax in the AP and ML directions, respectively. For step N (i.e., adaptive 

step), calculations were made relative to right foot; whereas for step N+1, calculations were 

made relative to left foot. Since velocity polarity changes from step-to-step in the ML 

direction, Equation 3 was rearranged for MDS calculation for the left foot 

( ). A positive value for MDS indicates that XcoM is within BOS 

and, therefore, the system is dynamically stable and vice-versa for negative values.  

maxBOSXcoMMS −=

 65



Maintenance of forward progression was estimated as the COM deviation relative to 

the straightforward direction of locomotion. This variable was calculated as the angle 

between the straightforward direction, which is parallel to the AP axis, and the line 

connecting the COM location at HC in steps N and N+1. Positive changes indicate a 

deviation to the right whereas negative changes indicate a deviation to the left. 

The following step parameters were calculated: step length (SL) and step width 

(SD). SL was defined as the difference of the x coordinate between two consecutive heel-

contacts. SW was defined as the difference of the z coordinate between two consecutive 

heel-contacts. For the SW, negative values indicate the presence of a cross-over between 

right and left limbs. Percentage of cross-over was calculated as a proportion to the total 

number of trials for each condition. 

Force plate data were used to calculate braking and propulsive impulses in three 

directions (AP, ML and Vertical). The transition between braking and propulsive impulse 

was defined by identifying the zero crossing point in the AP component of the ground 

reaction force (Figure 5). Braking impulse was obtained by computing the area under the 

curve from HC to zero-crossing whereas propulsive impulse was defined as the area from 

zero-crossing to toe-off (vertical component smaller than 5 N).  

 

Statistical analyses 

For the onset of limb trajectory change, impulse and maintenance of forward 

progression, one-way ANOVAs (Condition) with repeated measures were carried out. For 

the PMFD, a one-way ANOVA (Option) with repeated measures was performed for each 

obstacle position. For the remaining dependent variables, two-way ANOVAs (Condition X 

Step) with repeated measures in both factors were carried out. For each dependent variable, 
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the mean value was calculated per participant and used in the statistical analyses. Medial 

free condition was not used for any statistical analyses because only four participants had 

freely chosen this adjustment. Means and standard deviations of these four participants are 

shown in the graphs for illustrative purposes only. Because comparisons between 

long/short and lateral/medial were not of interest, analyses were divided into two groups: 

medial/lateral and long/short conditions. For the long/short conditions, analyses were split 

because one participant never freely chose to shorten the step for the AP obstacle. 

Therefore, four ANOVAs were carried out: 1) conditions (long forced and short forced) X 

step; 2) conditions (long free and short free) X step; 3) conditions (long forced and long 

free) X step; 4) conditions (short forced and short free) X step. Alpha value was set to 0.05. 

When main or interaction effects were found, Least Squares Means post-hoc was used to 

identify which treatments differ from one another. 

 

Results 

 

What is the dominant choice in the free condition? 

 For the AP obstacle, the dominant choice was the long adjustment (Figure 3). For 

the ML obstacle, the dominant choice was lateral. Both choices were preferred in more than 

50% of the trials. 

 

Are the participants successful in performing the forced condition? 

For the forced condition, the highest success rates for the AP and ML obstacles 

were also observed for long (89.1%) and lateral (79.2%) adjustments, respectively (Figure 

3). The success rates for short and medial adjustments in the forced condition were equal to 
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47.9% and 52.1%, respectively. The highest rates for wrong adjustments were observed for 

short (41.7%) and medial (29.2%) adjustments, which were not the preferred adjustments in 

the free condition. For the short forced condition the wrong adjustment was dominantly 

long (95%). The wrong adjustment in the medial forced condition was more distributed, 

with a higher percentage for lateral (50%), followed by long (28.6%) and short (21.4%) 

adjustments. In addition, 36.4% of the successful trials involving short forced adjustments 

presented a backwards foot movement which is indicative that the original planning 

involved long adjustment, but because of the forced nature of the task participants needed 

to reverse foot trajectory to perform the task properly. 
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Figure 3. Left side shows the percentage of trials for each adjustment in the free condition. Shaded area 

indicates the preferred choice. Right side shows the success rate for the forced condition as well as the 

percentage of wrong adjustments, stepping on the obstacle, and others. 

 

Does the movement planning and initiation time bias the preferred alternate foot 

placement? 

 One-way ANOVAs (Condition) with repeated measures identified a main effect of 
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condition only for the comparison involving short forced and free adjustments (F1,6 = 6.11, 

p = 0.0483). As Figure 4 illustrates, short free adjustments started earlier than short forced 

adjustments. 
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Figure 4. Time histories of the right ankle velocity on the left show the mean plus/minus two standard 

deviations (shaded area) for the AP direction and one standard deviation for the ML direction. One illustrative 

trial of a short forced condition (top) and a lateral forced condition (bottom) are also shown (solid line). The 

point where the solid line deviates from the shaded area was defined as the onset time of limb trajectory 

change. LHC stands for left heel-contact on the force plate, which was the trigger for the obstacle appearance. 

On the right, bar graphs show the means and standard deviations for the AFP onset for the long/short 

conditions (top) and lateral/medial conditions (bottom). 

 

Is the initial response to the appearance of the obstacle specific to the final foot placement 

or is it generic? 

The statistical analyses results for the impulses in all three directions are shown in 
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Table 1. Mean and standard deviation data for AP, ML, and vertical impulses are plotted in 

Figure 5.  

 
Table 1. Output of the ANOVAs for the impulse variable. Probability values in italics indicate the presence of 

main/interaction effects. 

  AP Direction ML Direction Vertical Direction 

Conditions DF F Value Pr > F F Value Pr > F F Value Pr > F 

Braking Impulse        

LonFo / ShoFo / WT 2, 14 5.51 0.0172 2.71 0.1010 8.88 0.0032 

LonFr / ShoFr / WT 2, 12 8.38 0.0053 2.30 0.1424 28.42 <.0001 

LonFo / LonFr / WT 2, 14 4.01 0.0419 3.56 0.0561 5.00 0.0230 

ShoFo / ShoFr / WT 2, 12 14.11 0.0007 1.78 0.2110 26.12 <.0001 

LatFo / LatFr / MedFo / WT 3, 21 5.06 0.0086 8.68 0.0006 14.36 <.0001 

Propulsive Impulse        

LonFo / ShoFo / WT 2, 14 101.96 <.0001 39.65 <.0001 29.65 <.0001 

LonFr / ShoFr / WT 2, 12 70.99 <.0001 15.45 0.0005 73.89 <.0001 

LonFo / LonFr / WT 2, 14 68.79 <.0001 9.68 0.0023 31.05 <.0001 

ShoFo / ShoFr / WT 2, 12 32.68 <.0001 13.69 0.0008 27.64 <.0001 

LatFo / LatFr / MedFo / WT 3, 21 9.77 0.0003 62.09 <.0001 4.43 0.0146 
LonFo = long forced; LonFr = long free; ShoFo = short forced; ShoFr = short free; LatFo = lateral forced; LatFr = lateral free; MedFo = 
medial forced; DF = degrees of freedom 
 

In the AP direction, braking impulse was larger for long (forced and free) and short 

(forced and free) adjustments than for WT. In the vertical direction, braking impulse 

increased for the short adjustments (forced and free) in comparison to WT and long 

adjustments (forced and free). Vertical braking impulse also increased for the long 

adjustments (forced and free) in comparison to WT. ML braking impulse was greater for 

the long forced adjustment than for the WT. The propulsive impulses in all three directions 

increased for the long adjustments and decreased for the short adjustments in comparison to 

WT. There was no difference between forced and free adjustments for both long and short 

adjustments. 
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Figure 5. Mean and standard deviation for the braking (white bars) and propulsive (black bars) impulses in 

the AP direction (top row), vertical direction (middle row), and ML direction (bottom row) for the long/short 

(middle column) and lateral/medial (right column) adjustments. Ground reaction force-time curves are shown 

on the left column and they illustrate the area under each curve used to compute braking and propulsive 

impulses. 

 

AP and vertical braking impulses were greater for lateral (forced and free) and 

medial adjustments than for WT. No difference was found between lateral and medial 

forced adjustments, as well as between lateral forced and free adjustments. In the ML 

direction, braking impulse increased for the lateral (forced and free) adjustments in 
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comparison to WT and medial forced adjustment, which were not different from each other. 

Braking impulses for the lateral forced and free adjustments were not different from each 

other in all three directions. AP propulsive impulse was greater for the lateral adjustments 

(forced and free) in comparison to WT and medial forced adjustment, which were not 

different from each other. In the vertical direction, propulsive impulse was smaller for the 

medial forced adjustment than for the WT and lateral adjustments (forced and free), which 

were not different from each other. ML propulsive impulse increased for lateral 

adjustments (forced and free) and decreased for the medial forced adjustment in 

comparison to WT. No difference between lateral forced and free adjustments were found 

for any direction for the propulsive impulse. 

 

Is the minimum foot displacement different between choices in the sagittal and frontal 

planes? 

 One-way ANOVAs (Option) with repeated measures were carried out for the 

PMFD for each obstacle separately. For the AP obstacle, a main effect of option was 

observed (F3,21 = 4.38, p = 0.0152). Least Squares Means post-hoc analysis identified that 

the PMFD for the long option (23.3 ±2.8 cm) was greater than for the short option (19.1 

±2.9 cm). Also, PMFD for the medial (20.9 ±0.9 cm) and lateral (20.8 ±0.7 cm) options 

were smaller than PMFD for the long option. For the ML obstacle, a main effect of option 

was also observed (F3,21 = 222.97, p < 0.0001). Post-hoc analysis showed a difference 

between all pairwise comparisons, except for the medial (12.4 ±0.9 cm) versus lateral (12.4 

±0.7 cm) options comparison. For the ML obstacle, the mean value for the PMFD for the 

long option was equal to 35.8 ±2.8 cm whereas for the short option it was equal to 31.6 

±2.9 cm. 
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Is the foot placement modification vector magnitude different for dominant and non-

dominant adjustments? 

 The two-way ANOVA (Condition x Step) with repeated measures in both factors 

for the long and short forced conditions identified a main effect of condition (F1,7 = 6.96, p 

= 0.0335) and an interaction effect (F1,14 = 37.27, p < 0.0001). Least Squares Means post-

hoc analysis for the interaction effect identified that the foot placement modification vector 

magnitude was the same in step N (long forced: 27.8 ±4.8 cm; short forced: 24.3 ±7.6 cm), 

but it was larger for the long forced adjustment (31.6 ±6.9 cm) than for the short forced 

adjustment (18.8 ±7.0 cm) in step N+1. For the analysis involving the long and short free 

adjustments, the condition effect just failed to achieve significance (F1,6 = 5.37, p = 

0.0596). Foot placement modification vector magnitude for the long free adjustment (28.7 

cm) tended to be greater than for the short free adjustment (20.8 cm). There was no 

difference between forced and free conditions for both long and short adjustments. 

 For the ANOVA including medial and lateral adjustments, main effects of step 

(F1,21 = 6.26, p = 0.0207) and condition (F1,14 = 11.51, p = 0.0011) as well as an interaction 

effect (F2,21 = 23.15, p < 0.0001) were found. Least Squares Means post-hoc analysis for 

the interaction effect identified that the foot placement modification vector magnitude was 

equal among conditions in step N (lateral forced: 15.7 ±5.1 cm; lateral free: 13.9 ±3.3 cm; 

medial forced: 14.1 ±6.8 cm), but it substantially increased in step N+1 for the medial 

forced adjustment (lateral forced: 14.1 ±3.6 cm; lateral free: 10.2 ±1.9 cm; medial forced: 

28.0 ±11.1 cm). No difference was observed between lateral forced and free adjustments. 
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Are the foot and COM vectors tightly coupled during the execution of the alternate foot 

placement? 

For the long (forced and free) and short free adjustments, there seems to exist a 

good coupling between foot and COM in both steps (N and N+1) (Figure 6). For the short 

forced adjustment, this is not the case in step N. In some of the trials, the foot moves 

backwards in order to achieve the goal of the task whereas the COM moves forward, 

creating a very unstable gait as illustrated in Figure 7, where COM projection on the 

ground is clearly ahead of the BOS. Results of the ANOVAs for the cosine of the absolute 

angle difference are shown in Table 2 and mean values are plotted in Figure 9. The 

interaction effect for the long forced and short forced analysis resulted from the increased 

angle difference for the short forced adjustment in step N (cosine = 0.37). No difference 

was observed between long forced and free adjustments. For the short forced adjustment, 

there was a substantial increase of the angle difference in comparison to short free 

adjustment in step N, but no difference was observed in step N+1.  

Figure 8 shows the foot and COM vector distribution for the lateral and medial 

adjustments. For the lateral adjustment, the existence of decoupling between foot and COM 

in step N in both forced and free conditions is quite clear. A similar decoupling is also 

observed for the medial forced adjustment. For the medial free condition, this is not clear. 

The interaction effect shown in the Table 2 reveals no significant difference between lateral 

forced and medial forced adjustments in step N, but there was a significant difference in 

step N+1, where a tightening coupling was observed for the medial forced adjustment. 

There was no difference between lateral forced and free adjustments. 
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Table 2. Output of the ANOVAs for the cosine of the difference between foot placement modification vector 

orientation and COM modification vector orientation. Probability values in italics indicate the presence of 

main/interaction effects.  

Conditions Effects DF F Value Pr > F 

Condition 1, 7 7.38 0.0299 

Step * 1, 14 7.17 0.0180 LonFo / ShoFo 

Interaction 1, 14 7.12 0.0184 

Condition 1, 6 1.76 0.2326 

Step 1, 12 1.21 0.2922 LonFr / ShoFr 

Interaction 1, 12 1.33 0.2710 

Condition 1, 7 0.85 0.3865 

Step 1, 14 0.00 0.9924 LonFo / LonFr 

Interaction 1, 14 1.61 0.2250 

Condition 1, 6 5.93 0.0507 

Step 1, 12 9.32 0.0100 ShoFo / ShoFr 

Interaction 1, 12 6.44 0.0261 

Condition 2, 14 0.39 0.6818 

Step 1, 21 14.30 0.0011 LatFo / LatFr / MedFo 

Interaction 2, 21 8.67 0.0018 
*N and N+1 
LonFo = long forced; LonFr = long free; ShoFo = short forced; ShoFr = short free; LatFo = lateral forced; LatFr = lateral free; MedFo = 
medial forced; DF = degrees of freedom 
 

Is forward progression of body COM compromised during alternate foot placement? 

The only ANOVA that indicated a main effect of condition was the one including 

long forced and short forced adjustments (F2,13 = 7.58, p = 0.0066). The deviation for the 

long forced adjustment (1.6 ±1.1 degrees) is larger than for the short forced adjustment (0.3 

±1.3 degrees). For the ML obstacle, the one-way ANOVA with repeated measures showed 

a main effect of condition (F3,21 = 39.05, p < 0.0001). Post-hoc analysis indicated that there 

is no difference between lateral forced (-3.4 ±2.4 degrees) and free (-1.6 ±2.2 degrees) 

adjustments, but they are different from the medial forced adjustment (10.2 ±3.8 degrees). 

Lateral forced and medial forced were also different from WT (0.6 ±0.6 degrees). Lateral 

free and WT were not different from each other. 
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Figure 6. Foot and COM vector distribution plots (i.e., polar plots) of individual trials for steps N and N+1 for 

the long (top) and short (bottom) adjustments. Left side shows the forced condition and right side shows the 

free condition. 
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Figure 7. Stick figure in the sagittal plane of a participant performing a short forced adjustment. 
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Figure 8. Foot and COM vector distribution plots (i.e., polar plots) of individual trials for steps N and N+1 for 

the lateral (top) and medial (bottom) adjustments. Left side shows the forced condition and right side shows 

the free condition. 
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Figure 9. Mean cosine of the absolute difference between foot placement modification vector angle and COM 

modification vector angle in steps N (white bars) and N+1 (black bars). 

 

Are the dominant adjustments more stable than the non-dominant adjustments? 

 Mean and standard deviations of the AP and ML distances of the COM relative to 
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BOS are plotted in Figure 10. Table 3 shows the results of the ANOVAs conducted for the 

AP and ML distances of the COM relative to BOS. 

 
Table 3. Output of the ANOVAs for the stability variables. Probability values in italics indicate the presence 

of main/interaction effects. 

   
COM-BOS AP 

Distance 

COM-BOS ML 

Distance 

Margin of 

Stability AP 

Distance 

Margin of 

Stability ML 

Distance 

Conditions Effects DF 
F 

Value 
Pr > F 

F 

Value 
Pr > F 

F 

Value 
Pr > F 

F 

Value 
Pr > F 

Condition 2, 14 14.50 0.0004 3.90 0.0449 18.47 <.0001 0.03 0.9676 

Step * 1, 21 0.15 0.7033 0.93 0.3468 12.21 0.0022 3.41 0.0788 

LonFo  

ShoFo   

WT Interaction 2, 21 2.95 0.0745 1.82 0.1868 6.05 0.0084 1.32 0.2878 

Condition 2, 12 16.16 0.0004 1.74 0.2176 11.16 0.0018 0.44 0.6515 

Step 1, 18 1.32 0.2653 0.39 0.5376 13.05 0.0020 1.73 0.2045 

LonFr  

ShoFr   

WT Interaction 2, 18 8.81 0.0021 1.73 0.2059 1.08 0.3618 1.06 0.3685 

Condition 2, 14 50.84 <.0001 2.67 0.1041 10.00 0.0020 0.19 0.8325 

Step 1, 21 3.65 0.0700 0.15 0.7062 7.14 0.0143 14.25 0.0011 

LonFo 

LonFr  

WT Interaction 2, 21 6.47 0.0065 2.64 0.0951 0.72 0.4999 0.15 0.8652 

Condition 2, 12 22.70 <.0001 0.82 0.4618 28.20 <.0001 0.34 0.7170 

Step 1, 18 4.35 0.0515 0.97 0.3384 49.12 <.0001 0.39 0.5424 

ShoFo 

ShoFr  

WT Interaction 2, 18 2.07 0.1549 1.07 0.3624 14.91 0.0002 0.56 0.5782 

Condition 3, 21 67.19 <.0001 121.26 <.0001 8.75 0.0006 113.61 <.0001 

Step 1, 28 21.91 <.0001 11.98 0.0017 0.56 0.4606 218.81 <.0001 
LatFo / LatFr  

MedFo / WT 
Interaction 3, 28 24.27 <.0001 7.10 0.0011 1.19 0.3322 35.05 <.0001 

* N and N+1. 
LonFo = long forced; LonFr = long free; ShoFo = short forced; ShoFr = short free; LatFo = lateral forced; LatFr = lateral free; MedFo = 
medial forced; DF = degrees of freedom 
 

COM-BOS AP distance: long-short adjustments. Post-hoc analysis for the main 

effect of condition showed that AP distance was larger for short forced adjustment (7.2 cm) 

than for long forced adjustment (4.5 cm) and WT (0.8 cm), which were also different from 

each other. Visual inspection of Figure 10 indicates that the AP distance is similar in steps 

N and N+1 for the short forced adjustment and it diminishes in step N+1 for the long forced 

adjustment. However, the interaction effect just failed to achieve significance (p = 0.07). 
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The post-hoc analysis for the interaction effect for the long and short free analysis indicated 

that AP distance was different among all conditions in step N. In step N+1, there was no 

difference between long free adjustment and WT, but the AP distance was larger for the 

short free adjustment than for the other two conditions. No difference was observed 

between long forced and free adjustments. The interaction effect for this analysis reflected 

the difference between them and WT in step N. For the short forced versus free analysis, 

AP distance was greater for the short forced adjustment than for the short free adjustment, 

which was larger than for the WT. 

COM-BOS AP distance: lateral-medial adjustments. In step N, AP distance for the 

lateral forced adjustment was larger than for the lateral free adjustment, which was also 

larger than for the WT and medial forced adjustment. In addition, AP distance for the WT 

was larger than for the medial forced adjustment. In step N+1, there was no difference 

between lateral forced and free adjustments and WT, but AP distance was greater for the 

WT than for the medial forced adjustment. The negative values for the medial forced 

condition could be seen as a good result since negative values could indicate that COM was 

within BOS. However, that was not the case for the medial forced adjustment, because in 

75% of the trials COM was behind the posterior margin of the BOS in both steps. On the 

other hand, for the medial free adjustment, in 88.9% of the trials, COM was inside BOS in 

step N and ahead of BOS for 66.7% of the trials in step N+1 (Figure 11).  

COM-BOS ML distance: long-short adjustments. ML distance for the long forced 

adjustment was greater than for the short forced adjustment, but it was not different from 

WT. In general, the results for the ML distance for long and short adjustments pointed to 

the fact that adjustments for the AP obstacle were performed mainly in the plane of 

progression. 
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Figure 10. Anteroposterior (AP) and mediolateral (ML) distance of the COM in relation to anterior and lateral 

margins of the base of support, respectively. Left figure illustrates the measurements taken. Bar graphs show 

the mean and standard deviation for long-short adjustments (left column) and lateral-medial adjustments 

(right column) in both steps N (white bars) and N+1 (black bars). Top graphs show the AP distance and 

bottom graphs shows the ML distance. 

 

COM-BOS ML distance: lateral-medial adjustments. ML distance for the lateral 

forced and free adjustments were greater than for the WT and medial forced adjustment in 

both steps. ML distance for the WT was also larger than for the medial forced adjustment. 

Furthermore, there was a difference between steps N and N+1 for lateral forced and free 

adjustments, but no difference was observed between steps for WT and medial forced 

adjustment. In fact, the medial forced adjustment was slightly challenging since, on 

average, COM was not within BOS as illustrated by Figure 11. No difference between 

lateral forced and free adjustments was observed.  
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Figure 11. Transverse view of the COM location in relation to BOS as defined by foot markers for one trial in 

the medial forced (left side) and free (right side) conditions. (L = left foot; R = right foot) 

 

 MDS: long-short adjustments. Mean and standard deviations of the MDS are plotted 

in Figure 12. MDS in the AP direction was smaller for the short forced adjustment than for 

the long forced adjustment and WT in step N, which were not different from each other. In 

step N+1, no difference was found between long and short forced adjustments, but MDS 

was smaller for the short forced adjustment than for the WT. The condition effect for the 

long and short free adjustments analysis indicated that both adjustments reduced the MDS 

compared to WT. The difference between long and short free adjustments just failed to 

achieve statistical significance (p = 0.0552). The condition effect for the long forced and 

free analysis indicated that no difference was found between long forced and free 
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adjustments, although both conditions exhibited a smaller MDS than WT. For the analysis 

involving short forced and free adjustments, the interaction effect indicated that both short 

forced and free adjustments presented a smaller MDS than WT in step N. In addition, MDS 

was smaller for the short forced adjustment than for the short free adjustment. In step N+1, 

no difference was observed between short forced and free adjustments, but both 

adjustments exhibited a smaller MDS compared to WT. In the ML direction, no difference 

for MDS was observed among conditions. 
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Figure 12. Mean and standard deviation for the margin of dynamic stability for the long/short (left column) 

and lateral/medial (right column) adjustments in both steps N (white bars) and N+1 (black bars). Data for the 

AP and ML directions are shown respectively in the top and bottom rows. 

 

 MDS: lateral-medial adjustments. In the AP direction, the condition effect indicated 
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that all three adjustments (lateral forced and free and medial forced) exhibited a smaller 

MDS than WT. In the ML direction, the interaction effect indicated that MDS was larger 

for the lateral adjustments (forced and free) than for the WT and medial forced adjustment 

in step N. In addition, WT exhibited a larger MDS than medial forced adjustment in the 

same step. In step N+1, no difference was observed between lateral adjustments (forced and 

free) and WT, but the medial forced adjustment exhibited a smaller MDS than all other 

three conditions. No difference was found between lateral forced and free adjustments.  

 Are the step parameters modulated according to the alternate foot placement 

adjustments? The statistical analyses results for the step parameters are shown in Table 4. 

Mean and standard deviation data for SL and SW are plotted in Figure 13. As expected, SL 

increased for the long adjustments (forced and free) and decreased for the short adjustments 

(forced and free) in relation to WT. In step N+1, SL was not different among the 

conditions, except for the short forced adjustment, where it increased. In general, SW was 

not affected by the conditions for the AP obstacle. The only exception was observed for the 

long forced adjustment in step N, where it increased in comparison to WT and short forced 

adjustments. For the adjustments in the ML direction, SL was reduced in step N+1 

compared to step N. As expected, SW increased for the lateral adjustments (forced and 

free) and decreased for the medial forced adjustment in comparison to WT in step N. 

Interestingly, it increased even more in step N+1 for the lateral adjustments. For the medial 

adjustment, it was negative in step N+1, indicating that participants crossed their steps. 
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Table 4. Output of the ANOVAs for the step length and width variables. Probability values in italics indicate 

the presence of main/interaction effects. 

   Step Length Step Width 

Conditions Effects DF F Value Pr > F F Value Pr > F 

Condition 2, 14 132.25 <.0001 3.91 0.0446 

Step * 1, 21 0.44 0.5121 0.24 0.6320 LonFo / ShoFo / WT 

Interaction 2, 21 117.29 <.0001 5.02 0.0166 

Condition 2, 12 209.61 <.0001 1.78 0.2099 

Step 1, 18 1.81 0.1947 0.03 0.8642 LonFr / ShoFr / WT 

Interaction 2, 18 40.43 <.0001 0.85 0.4440 

Condition 2, 14 201.99 <.0001 2.87 0.0905 

Step 1, 21 123.21 <.0001 2.22 0.1515 LonFo / LonFr / WT 

Interaction 2, 21 23.70 <.0001 2.76 0.0865 

Condition 2, 12 30.11 <.0001 0.41 0.6714 

Step 1, 18 93.03 <.0001 0.27 0.6067 ShoFo / ShoFr / WT 

Interaction 2, 18 32.84 <.0001 0.42 0.6614 

Condition 3, 21 0.98 0.4197 103.41 <.0001 

Step 1, 28 8.73 0.0063 0.08 0.7758 LatFo / LatFr / MedFo / WT 

Interaction 2, 21 0.35 0.7865 57.67 <.0001 
* N and N+1. 
LonFo = long forced; LonFr = long free; ShoFo = short forced; ShoFr = short free; LatFo = lateral forced; LatFr = lateral free; MedFo = 
medial forced; DF = degrees of freedom 
 

Discussion 

 

 This study was designed to validate the stability and maintenance of forward 

progression determinants when planning the alternate foot placement using the selection 

algorithm proposed by Patla et al. (1999) and expanded by Moraes et al. (2004). When 

participants decided where to place their foot to avoid an obstacle (free condition), allowed 

us to investigate the preferred choice in each plane of movement (i.e., frontal and sagittal) 

when the amount of foot displacement for the alternate foot placement was similar for 

lengthening or shortening the step in the plane of progression, and for widening or 

narrowing the step in the frontal plane. The forced condition removed the planning 
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component of the alternate foot placement and filled the gaps for the non-dominant choice. 

In the forced condition, a green arrow was displayed on the top of the obstacle, indicating 

the direction of alternate foot placement. An arrow as a cue is a common signal for 

indicating directions present in our environment. In fact, Kingstone et al. (2003) noted that 

arrows are a good cue for shifting attention and helping reduce reaction time. Therefore, the 

arrow was an appropriate trigger to cue the location of alternate foot placement. 
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Figure 13. Mean and standard deviation for the step length (top row) and step width (bottom row) for the 

long/short (left column) and lateral/medial (right column) adjustments in both steps N (white bars) and N+1 

(black bars). 

 

Movement planning time does not bias the preferred alternate foot placement 

Onset of deviation in limb trajectory was used as an estimate of the time required 
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for movement planning and initiation of a change. The information processing 

requirements for planning the alternate foot placement for changes within the sagittal plane 

or frontal plane are the same and are not reasons for biasing the preferred choice in each 

plane of movement. In addition, onset time of limb trajectory change was unaffected by 

condition (forced and free). The only exception was observed for the short free adjustment, 

which exhibited an earlier onset (~ 40 ms). The early onset exhibited by short free 

adjustment may be a consequence of the need to appropriately reduce forward momentum 

rather than having less time to plan alternate foot placement. One of the great challenges of 

shortening the step is the proper control of linear forward momentum in order to avoid 

creating a large angular momentum (Patla et al. 1999). It is possible that short free 

adjustments began earlier in order to guarantee more time for the proper control of linear 

forward momentum. As is shown in Figure 7, short forced adjustments produced an 

unstable posture. Patla et al. (1989a) has shown that the success rate for shortening the step 

decreases substantially when the cue is provided 100 ms after contralateral HC. The same 

reduction does not occur when the cue for lengthening the step takes place 100 ms later. 

Therefore, time seems to be a critical parameter when shortening the step length within one 

step cycle. 

Onset time of limb trajectory change was, on average, shorter for changes in the ML 

direction (290 ms) than for changes in the AP direction (370 ms). This time includes 

gathering appropriate sensory information (about obstacle size/orientation; location of the 

foot if no changes are made), running the putative algorithm to arrive at a selection, and 

initiating the change at appropriate time. For instance, the required processing time for the 

long adjustment may be shorter than 370 ms, but there may be an optimum time for its 

implementation. Drew et al. (2004) argued that changes in gait used to avoid obstacles need 
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to be integrated appropriately with the underlying pattern of activity in order to guarantee 

smooth adaptations. Because there may be a need for a more substantial change, 

implementation of the alternate foot placement in the ML direction would be “stronger” 

than in the AP direction and therefore the ankle velocity profile in the ML direction would 

change earlier than in the AP direction. Patla et al. (1999) found that when the same 

amount of foot displacement exists in both the sagittal and frontal planes, changes in the 

sagittal plane are preferred because they can be implemented through the modulation of 

ongoing muscle activity. Alternate foot placement in ML direction would result in more 

substantial changes than in AP direction. 

 

Initial slowing response to all adjustments provides more time for planning and decision-

making 

For all changes in foot placement (i.e., long, short, lateral, and medial) there was an 

increase in braking impulse in the AP and vertical directions. The consistency of this 

change across different conditions suggests that such changes may not be directly related to 

step change implementation, but rather to the gathering of more time for planning alternate 

foot placement. The data available in the literature (Patla 1991; Patla et al. 1989a, 1991) 

show that there is no increase in braking impulse in either AP or vertical directions for 

lengthening the step; no increase in the vertical direction for widening the step; and no 

increase in the AP direction for shortening the step. The studies described in the literature 

used a visual cue to indicate what change to implement (i.e., lengthening, shortening, or 

widening). Hence, decision-making was simple, since each light cue was coupled to a 

specific step parameter modulation. In the present study, participants had to decide what 

modification to make in order to avoid the obstacle; hence, the decision-making process is 
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more complex and would demand more time for processing. It is not the case that 

participants were startled with the sudden obstacle appearance and slowed their movements 

down. Patla et al. (1989a) have shown that braking impulse responses are specific for 

shortening and lengthening the step when using a light cue. Thus, the increased braking 

impulse in the AP and vertical directions could be seen as a strategy for slowing down body 

movement in order to get extra time for planning alternate foot placement.  

However, the amount of change is not consistent across conditions. For instance, in 

the vertical direction the mean increase in braking impulse was equal to 8.4%, 27.3%, 

15.1%, and 19.4% for the long, short, lateral, and medial adjustments, respectively. For the 

short condition, it is clearly higher than for the other conditions, which may also suggest 

that part of the changes in braking impulse in the AP and vertical directions are directly 

related to the alternate foot placement implementation. In addition, the increase in braking 

impulse in the ML direction for the lateral adjustment was equal to 57%. Increasing the 

braking impulse in the ML direction helps reduce the COM displacement on the 

contralateral side; consequently, it facilitates moving COM to the ipsilateral side and the 

lateral adjustment. Furthermore, onset of limb trajectory change occurred earlier than the 

end of the braking period for the short, lateral, and medial adjustments (110 ms on 

average), whereas for the long adjustment it occurred at the same time as the end of the 

braking period (-8 ms on average). Therefore, the changes in the braking impulse are likely 

related to both explanations: 1) to get more time for decision-making, and 2) to implement 

effective changes related to the alternate foot placement. 

 Lengthening the step was accomplished by increasing the propulsive impulse in the 

AP and vertical directions and vice-versa for shortening it. The increase in the AP impulse 

helped in moving the body forward, whereas the increase in the vertical impulse helped in 
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increasing the step duration. The opposite was true for shortening the step (Patla et al. 

1989a). For narrowing and widening the step, the major changes are observed in the ML 

propulsive impulse. For the lateral adjustment, there is an increase of 97.8% in the ML 

propulsive impulse, whereas for the medial adjustment there is a decrease of 143.3% in the 

ML propulsive impulse. The increase in propulsive impulse for the lateral adjustment 

helped move the body laterally (Patla et al. 1991). For the medial direction, the reduction 

and change in polarity of the propulsive impulse reduces the lateral movement of the body 

and moves the body medially. 

 

Amount of foot displacement from its normal landing position is not the sole predictor of 

the preferred alternate foot placement choice 

 Although the PMFD was greater for the long adjustment than for the short 

adjustment, the dominant response was long in the free condition. Patla et al. (1999) 

suggested that when there is only one option that minimizes foot displacement, it is the 

preferred choice. Moraes et al. (2004) proposed that minimum foot displacement is not the 

major determinant guiding the selection of alternate foot placement. They suggested that 

when more steps are available for planning and implementing the alternate foot placement, 

maintenance of forward progression seems to be more important than minimizing foot 

displacement. The present finding suggests the existence of a threshold, where the switch to 

short adjustments occurs only when long adjustments represent a substantial increase in 

step length that may be uneconomical and/or unstable. A recent study by Greig et al. (2004) 

suggested that the switch from long to short occurs when the amount of foot displacement 

for the long adjustment exceeds the short one by more than 7 cm. As the difference in the 

present study is approximately 4 cm, the long preference is not surprising. 
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Foot placement modification vector magnitude was approximately 4.0 cm greater 

for long adjustments as compared to short adjustments. No difference was observed 

between medial and lateral adjustments. In addition, the difference between PMFD and foot 

placement modification vector magnitude was approximately 4.0 cm for the long and short 

adjustments and 2.0 cm for the medial and lateral adjustments. In all adjustments, 

participants tried to minimize foot displacement. Therefore, since the difference between 

PMFD and foot placement modification vector magnitude is the same for long/short and 

lateral/medial adjustments, and long adjustment is preferred even though it results in a 

greater displacement of the foot, the amount of foot displacement from its normal landing 

position is not sole the predictor of the preferred alternate foot placement choice. 

 

Long and lateral adjustments are dominant and more natural to implement than short and 

medial adjustments 

As expected, long adjustment was preferred over short adjustment in the free 

condition, even though long adjustment had a greater predicted minimum foot displacement 

than short adjustment. In addition, lateral adjustment was preferred over medial adjustment, 

which contradicts the medial preference reported by Patla et al. (1999). Predicted minimum 

foot displacement does not bias the lateral choice since there is no difference between 

PMFD for medial and lateral adjustments. This lateral preference is in accordance with the 

results from Reynolds and Day (2005), who studied the visual control of foot trajectory 

from a standing position. In their study, participants were instructed to land the foot on a 

target that could change sideways at foot-off. They found that participants were able to 

make appropriate directional changes, although the magnitude of such changes dramatically 

reduced for the medial (7.4 cm) compared to the lateral (16.9 cm) target location. 
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The reason(s) for this inconsistency between the present study and Patla et al.’s 

study is not yet clear, but some methodological differences can be considered. Patla et al. 

(1999) used a mechanical apparatus with a piece of black cardboard with cuts and lights 

underneath it, indicating the planar obstacle. With such an apparatus, participants could get 

visual cues before the obstacle light was turned on, even though the room light was dim. 

Therefore, they could have used such visual cues to plan and implement the alternate foot 

placement in advance. This contrasts with the current experiment, where participants had 

no clue in advance because of the use of the LCD monitor. Moraes et al. (2004) found a 

medial preference when participants had 3 steps to plan and implement the alternate foot 

placement and they could see it from the beginning of the trial. Another issue may be 

related to stimulus identification (i.e., planar obstacle identification). Schmidt and Lee 

(2005) have suggested that stimulus intensity, i.e., the brightness of a light stimulus, has an 

effect on reaction time. In the original work, a mechanical apparatus with lights underneath 

was used and it created a brighter stimulus than the use of a LCD monitor. Further research 

is needed to identify the reasons for the bias in the frontal plane towards medial or lateral. 

Success rate for the forced condition was much higher for long and lateral 

adjustments, which were the dominant choices in the free condition. For the short and 

medial adjustments, the success rate is low; the adjustments were in the wrong direction. In 

addition, the major wrong adjustments for the short and medial forced conditions are long 

and lateral adjustments, respectively. Therefore, it seems that long and lateral adjustments 

are more natural to implement than short and medial adjustments. During normal walking, 

COM moves forward and laterally along the medial border of the foot, creating a sinusoidal 

pattern (Winter 1991). As a consequence, long and lateral adjustments result in a more 

natural expansion of the COM trajectory since at HC the COM is moving forward and 
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towards the new support limb. 

 

Maintenance of forward progression is consistent even for foot placement changes in the 

frontal plane 

For all adjustments, deviation from forward progression was minimal, except for the 

medial forced adjustment. In the plane of progression, there was no deviation from the goal 

although there is a difference between long and short forced. In addition, Figure 6 shows 

that COM vectors always lie in the plane of progression. In the frontal plane, as illustrated 

in Figure 8, COM continues to move forward, whereas the foot moves sideways in step N. 

This is illustrated by the decoupling between foot placement modification vector 

orientation and COM modification vector orientation (Figure 9). For the medial forced 

condition, the high degree of forward progression deviation was related to the unbalance in 

step N+1. Medial free adjustment resulted in a similar deviation, but in the opposite 

direction, as observed for the lateral adjustment. Thus, maintenance of forward progression 

is one of the major determinants guiding the selection of alternate foot placement. 

 

Stability guides the alternate foot placement choice under time pressure and similar 

minimum foot displacement 

Stability while performing the alternate foot placement was assessed by the AP and 

ML distance of the COM projection on the ground and the BOS defined by feet markers 

(Figure 10). Stability was also assessed by the MDS (Figure 12). The inclusion of the COM 

velocity in the stability analysis did show the same trend observed by the COM-BOS 

distance analysis, with the addition that the findings were more definitive for the MDS 

analysis than for the COM-BOS distance analysis. This is not completely surprising 
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because human locomotion is characterized as a dynamic stable system. Even cockroaches 

with its tripod support ensuring static stability seem to exploit the advantages of dynamic 

stability when running at high speeds (Ting et al. 1994). However, it is important to 

mention that the values of the MDS are slightly higher because we estimated center of 

pressure from heel and fifth metatarsal markers. In their original work, Hof et al. (2005) 

measured directly the limits of center of pressure excursion and used that as the limit of the 

BOS.  

The results of these two analyses clearly show that long adjustments are more stable 

than short adjustments, not only in step N, but also in step N+1, where there is no 

difference between long adjustments and normal walking. In addition, the fact that short 

adjustments do not return to baseline values in step N+1 suggests that they are not 

preferred, because it takes more time to recover from the changes in the locomotor 

behavior. Therefore, the central nervous system has the ability of predicting the 

consequences of shortening or lengthening the step to body stability and uses that 

information not only to choose what to do, but also to anticipate the disturbances, as 

proposed by Patla (2003).  

It was proposed that long adjustment is preferred over short adjustment because the 

latter could lead to a substantial increase in angular momentum if not properly controlled 

(Patla et al. 1999; Moraes et al. 2004). The results for the short forced adjustment clearly 

exemplify this case (Figure 7). The reduced coupling between foot and COM vectors is an 

indication of such instability. In this case, COM continued to move forward while the foot 

moved backwards and stopped at HC. This creates a tendency for the body to fall forwards 

due to an increase in angular momentum. Therefore, shortening the step is not preferred 

because it takes longer to return to baseline value and, under time pressure, may lead to a 
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substantial increase in angular momentum, which may result in a fall if recovery is 

unsuccessful. 

In the ML direction, lateral adjustments are more stable than medial adjustments 

and this is shown by the COM-BOS ML distance, by MDS, and by the cross-over in step 

N+1 (illustrated by the negative step width (Figure 13)). Although the COM is within the 

BOS for the medial free adjustment in step N, it exhibited a very high percentage of cross-

over (45.5%) in step N+1. For the medial forced adjustment, the cross-over percentage was 

even higher (88%). Lateral adjustment is not only stable in step N, but also in step N+1, 

where it shows the same COM-BOS AP distance and MDS in the ML direction as normal 

walking. For the COM-BOS ML distance, it was still greater than for normal walking, but 

this, in fact, increases stability. Although the increased distance of the foot relative to the 

COM may increase the destabilizing moment of force at the hip joint due to the large upper 

body mass (MacKinnon and Winter 1993), appropriate anticipatory control is needed to 

prevent this (Patla 2003). Therefore, the central nervous system again uses its predictive 

capacity to determine the more stable adjustment in the ML direction. 

 Moraes et al. (2004) suggested that medial adjustment was preferred because it 

would minimize COM acceleration in the frontal plane. This is not a wrong assumption 

(acceleration data are not shown, but the COM acceleration was reduced in the frontal 

plane for the medial adjustments), but the major problem with the medial adjustment is 

present in the step following the adaptive one. In particular, the cross-over is a great threat 

to the balance control system because it forces the swing limb to be moved sideways to 

avoid colliding with the support limb in the sequence of the gait cycle. In addition, in 

Moraes et al.’s study (2004), participants could implement the changes within three steps. 

Thus, they could properly accommodate the necessary adjustments and avoid the cross-
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over in the step following the obstacle. 

 It is also clear from the data for all the different adjustments that balance is more 

compromised in the adaptive step. This is not completely surprising since there are 

substantial changes in the gait behavior to accommodate the necessary alterations in foot 

placement. But, it is also interesting to note that the choices which are preferred resulted in 

a quicker return to baseline values in step N+1. Therefore, the central nervous system plans 

for the choice that minimizes threats to stability in step N and also guarantees a faster 

return of the stability parameters to baseline values in subsequent steps (normal walking).  

 Foot displacement from its normal landing position and maintenance of forward 

progression were not affected by the alternate foot placement choices. Stability was the 

only determinant that seemed to be more affected by the alternate foot placement choices. 

Long and lateral preferences exhibited a more stable behavior than short and medial 

adjustments, respectively. Therefore, under time pressure and similar displacement of the 

foot from its normal landing position, stability is the major determinant driving the 

selection of the alternate foot placement. 

 

Externally triggered adjustments amplify potential threats to body stability 

The results for the stability variables during the alternate foot placement in the 

forced condition showed that there was an increase of the AP distance between COM and 

BOS compared to the free condition, except for the long adjustment. This increase in the 

AP distance points to the fact that in the forced condition, COM moved more forward, 

which is a clear indication of decreased stability. Although there is no statistical analysis 

involving medial forced and free adjustments, visual inspection of the Figure 10 indicates 

that medial forced adjustment resulted also in a less stable behavior. In both AP and ML 
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directions, COM was outside of the BOS. The MDS analysis also showed a difference 

between forced and free conditions, but only for the short adjustment.  

The use of an arrow to trigger the alternate foot placement location changed the 

nature of the task. In the condition with the arrow, alternate foot placement was externally 

triggered, since the arrow’s head indicated where to land. This condition is similar to 

experiments requiring participants to modulate step length/width or change in direction 

with a light cue (Patla et al. 1989a, 1991) during locomotion. In the free condition, the 

decision was internally generated, since participants decided where to land. Studies 

involving anticipatory postural adjustment when raising the arm while standing have shown 

a decrease in stability for externally triggered movements (Massion 1992; Nougier et al. 

1999; Slijper et al. 2002). Nougier et al. (1999) requested participants to perform arm 

raising under two conditions. In one condition, participants self-initiated the arm movement 

within a 4 s period. In the other condition, participants raised the arm in reaction to a visual 

signal, which varied within a 4 s period. In the self-initiated condition, the range of the 

center of pressure excursion was smaller and center of pressure was located for a longer 

period of time around the average center of pressure. Furthermore, anticipatory postural 

adjustment was longer for the self-initiated condition and this was attributed to increased 

stability. Therefore, there is a less refined control of stability for externally triggered 

movements, which results in decreased stability.  

We propose that modulation of the postural response is different between internally 

generated and externally triggered alternate foot placement. Neurophysiological studies 

have identified that different regions in the brain are involved with the planning and 

production of internally generated and externally triggered movements (Deiber et al. 1991; 

Cunnington et al. 1996; Jenkins et al. 2000; Obhi and Haggard 2004). Jenkins et al. (2000) 

 97



used regional cerebral blood flow to map the brain areas involved with extension 

movement of the index finger under a self-initiated condition and reaction time condition. 

They found a more extensive involvement of different brain areas for the self-initiated 

index finger extension than for the cued condition. Obhi and Haggard (2004) found that 

when performing a right index finger press, muscle activity diminished during the 

externally triggered movement. They suggested that this reduction in muscle activity 

resulted from decreased activation in the structures responsible for planning and producing 

the movement in the externally triggered condition. Others have suggested that 

hierarchically higher regions of the nervous system controlling the movement play a role in 

regulating the activity of subcortical networks related to the control of posture and 

movement (Prentice and Drew 2001; Drew et al. 2004; Schepens and Drew 2004; Massion 

1992). Prentice and Drew (2001) showed that the activity of several neurons in the 

pontomedullary reticular formation exhibited multiple periods of increased activity. They 

suggested that these cells signal the timing and magnitude of the postural responses, rather 

than specifying a postural response. Therefore, if overall brain activity is reduced during 

externally triggered alternate foot placement, it is possible that the regulation of the 

pontomedullary reticular formation is also reduced, which in turn would affect the 

modulation of the postural response, leading to a less stable behaviour as observed in the 

forced condition for the short, lateral, and medial alternate foot placements. 

 

Summary 

 In general, this study showed that long and lateral adjustments are preferred because 

they result in a more stable adaptation not only in the adaptive step, but also in subsequent 

step. Either medial or short adjustments require at least two steps to return the dynamic 
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balance parameters to baseline values. Additionally, the different alternate foot placement 

choices do not compromise the maintenance of forward progression. 
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Chapter 4 

 

Are alternate foot placement selections for avoiding two sequential 

planar obstacles planned individually or globally? 
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Introduction 

 

 Previous studies involving alternate foot placement have used only one planar 

obstacle in the travel path (Patla et al. 1999; Moraes et al. 2004). These studies suggest that 

alternate foot placement is not solely sensory-driven and that three determinants are crucial 

for alternate foot placement selection: minimum foot displacement, stability, and 

maintenance of forward progression. Visual information is used to identify the undesirable 

landing spot, but it is not enough for selecting an alternate foot placement. The selected 

alternate foot placement incorporates all of these three determinants, weighting them 

properly according to obstacle location and size (Bahrami and Patla 2005). Although there 

seems to be a reasonable understanding of the alternate foot placement determinants for the 

avoidance of one obstacle, their applicability in more complex terrains is largely unknown. 

Thus, this is the first focus of the present study. The generality of these three determinants 

will be evaluated by placing two obstacles in sequence on a walkway. The inclusion of a 

second planar obstacle in the travel path will allow us to identify whether or not the same 

determinants are used or if additional ones are necessary for the second obstacle.  

In addition to exploring if the same determinants are used when two obstacles are 

placed in sequence, the present study also addresses the issue of how alternate foot 

placements on complex terrain are planned. Fajen and Warren (2003) have suggested that 

during the avoidance of an obstacle in the travel path while walking towards a goal, route 

selection emerges from online steering dynamics, independent of explicit path planning. 

This kind of mechanism suggests that obstacles are avoided on an obstacle-by-obstacle 

basis according to when they are encountered in the travel path. However, Patla et al. 

(2004) have suggested that when travelling over complex terrain, individuals seem to plan 

 101



routes that essentially avoid the crowded areas and, therefore, control is not obstacle-by-

obstacle based (or online), but rather it is planned globally. In order to identify whether 

alternate foot placements are planned globally or online, the size of the second obstacle was 

manipulated. By looking at changes in alternate foot placement in the first obstacle due to 

changes in size in the second one, we can suggest how the movement was planned. 

 Although alternate foot placement selection is not solely sensory-driven, visual 

information is essential for two reasons. First, vision is the only sensory system that can 

provide accurate distant environmental information about both animate and inanimate 

objects (Patla 1997; Patla and Vickers 1997, 2003). This is critical in order to identify 

undesirable areas in the pathway in advance and properly plan the avoidance strategy. 

Second, visual information about obstacle location and self-motion combined with 

proprioceptive information about step length and width is used by the central nervous 

system (CNS) to estimate the normal landing position of the foot as well as the necessary 

amount of foot displacement required to avoid the obstacle (Patla et al. 1999; Moraes et al. 

2004). The nature of visual information can be studied by identifying gaze fixation. 

Fixation in a specific location brings the fovea directly to that spot, which enhances visual 

resolution (Findlay and Gilchrist 2003). Previous studies have shown that gaze fixations are 

not random, but rather that individuals fixate in specific locations that provided useful 

information on what is relevant for task accomplishment (Neggers and Bekkering 2001; 

Patla and Vickers 1997, 2003; Hollands et al. 2002; Hayhoe et al. 2003). For instance, 

during a pointing task, gaze precedes and is directed towards the target for the whole 

pointing movement (Neggers and Bekkering 2001); or during locomotion tasks over 

cluttered terrain, fixations are directed systematically to the obstacle and end-point goal 

(Patla and Vickers 1997). In the case where the task is not specified a priori such as in the 
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alternate foot placement situation, the spatial and temporal changes in gaze fixation patterns 

may reveal not only what is relevant and how vision is used to guide limb trajectory, but 

also may aid in understanding the search and planning process for alternate foot placement. 

By monitoring gaze behavior, this study will focus on the detection of relevant visual 

information that the CNS uses in alternate foot placement selection. The third purpose of 

the present study is, therefore, to identify the nature of visual information used in alternate 

foot placement selection.  

 

Method 

 

Participants 

Six participants volunteered for this study (3 F and 3 M; age 21.7 years SD 2.4; 

height 1.71 m SD 0.10; mass 69.9 kg SD 13.9). Participants did not have any neurological, 

muscular, or joint disorders that could affect their performance in this study. None of the 

participants had any visual deficit that would require wearing glasses or lens for correction. 

The Office of Research Ethics at the University of Waterloo approved the procedures used 

in this study. 

 

Protocol 

Participants walked at a self-selected pace on a raised platform (7.90 x 1.20 x 0.10 

m) that contained two LCD monitors that were placed in sequence (Samsung SyncMaster™ 

TFT 181T Black) and embedded in a walkway (Figure 1). A piece of Plexiglas™ covered 

the monitors, allowing participants to step normally over them. The starting point and the 

location of the monitors were adjusted for each participant in order to guarantee that the 
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entire right and left feet landed on the centre of monitors 1 and 2, respectively. A trigger 

mat was placed one stride before monitor 1. The trigger mat was used to control the display 

of the planar virtual obstacles. Six different conditions were tested: 1) AP, 2) APMLS, 3) 

APMLL, 4) ML, 5) MLAPS, and 6) MLAPL. The AP (anteroposterior) condition suited 

adjustments in the sagittal plane (lengthening/shortening the step), whereas the ML 

(mediolateral) condition suited adjustments in the frontal plane (widening/narrowing the 

step) only for the right foot on monitor 1. APMLS, APMLL, MLAPS, and MLAPL 

conditions combined virtual obstacles in both monitors. For example, in the APMLS 

condition, an AP obstacle was displayed on monitor 1, whereas a small (S) ML obstacle 

was displayed in monitor 2. APMLL condition is the same, except that ML obstacle in 

monitor 2 was large (L). Figure 1 shows all the conditions and obstacle sizes used in this 

experiment. Obstacles were projected at the centre of the monitor. For the AP and ML 

conditions, participants were required to avoid stepping with the right foot on a virtual 

planar obstacle displayed in the LCD monitor 1. For the remaining conditions, participants 

were required to avoid stepping with their right foot on the virtual planar obstacle projected 

in monitor 1 and with their left foot on the virtual planar obstacle projected in monitor 2. 

Obstacles were displayed at right heel contact (HC) on the trigger mat, which provided two 

steps for implementing the first adjustment. The pathway was covered with a black rubber 

carpet which had two holes to accommodate both monitors in order to create good contrast 

between the white obstacle and the black background (planar obstacles are shown in black 

in Figure 1 only for esthetical reasons). The edge of the monitors was also black. For the 

trials with no obstacle the monitor background remained completely black. Five trials were 

collected per condition (30 trials). In order to keep a probability of obstacle appearance 

equal to 30%, 70 walk-through (WT) trials were also collected. Trials were completely 
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randomized. Participants were videotaped while performing the task. 

 

 

Figure 1. Left side shows the experimental setup including the trigger mat and both monitors 1 and 2. The top 

right part shows the experimental conditions used. Planar obstacles are shown in black for esthetical reasons, 

although during the experiment they were presented in white, and the walkway as well as the monitor 

background were black. The bottom right part shows one frame of the video image containing the room 

camera on the left, scene camera on the right, and eye camera on the top left. Gaze location is shown on the 

scene camera located between the monitors. 

 

 The head-mounted EyeLink system (SR Research, Osgoode, Canada) tracked the 

movements of the left eye at a rate of 30 Hz while the participants performed the task. This 
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system consists of an eye camera and a scene camera. The scene camera captures the scene 

being viewed by the participant (Figure 1). An infrared illumination beam, which is coaxial 

with the optical axis of the eye camera, and the eye image are reflected from a reflective 

visor positioned to reflect the eye of the participant. The illumination beam generates a 

corneal reflection (CR) from the front surface of the cornea. The separation between the 

pupil center and CR is used to compute the eye line of gaze, which is projected over the 

scene image (Figure 1). The weight of the apparatus mounted on the head of the participant 

was less than 0.5 kg. The images containing the scene camera with the gaze location, eye 

camera, and room camera were interfaced using two digital video mixers (Videonics, model 

MX-1) and recorded in a DVD player at a sampling rate of 30 Hz. Ten infra-red emitting 

diodes (IREDs) were placed bilaterally on the following anatomical landmarks: 5th 

metatarsal, heel, lateral malleolus, greater trochanter, and greater tubercle of the humerus. 

Three OPTOTRAK™ cameras (Northern Digital, Waterloo, Canada) positioned in front of 

the participants tracked the IREDs at a sampling rate of 60 Hz. Optotrak and video data 

were synchronized using a light emitting diode (LED) placed over the gait camera. The 

signal to start Optotrak data collection was also used to turn on the LED. Feet borders were 

traced on a sheet of paper for measuring foot length and width used in the calculation of 

predicted minimum foot displacement. 

 

Data analysis 

Kinematics data were filtered using a fourth-order zero lag low-pass digital 

Butterworth filter with a cut-off frequency of 6 Hz. Shoulder and hip markers were used to 

calculate trunk center of mass (TCOM) using anthropometric parameters provided by Winter 

(2005). TCOM velocity was calculated as the first derivative of COM position (central 
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difference procedure). Heel contact (HC) was determined by visual inspection of the foot 

stick figure using the OptoFix software (Mishac Kinetics). Foot placement modification 

vector magnitude and orientation were calculated based on ankle marker coordinates. For 

each obstacle trial, the AP and ML coordinates of the ankle marker at HC were subtracted 

from the average coordinates of the WT in order to define the relative coordinates (RC). 

The average values were obtained from 10 randomly selected WT trials. The norm (foot 

placement modification vector magnitude) and angle (foot placement modification vector 

orientation) of the RCs were computed as previously shown in chapters 2 and 3 (Figure 4). 

Vector orientation was used to define the adjustment done for each obstacle. For both feet, 

foot placement modification vector angles >45° to 135° and >225° to 315° were classified 

as long and short adjustments, respectively. For the right foot, foot placement modification 

vector angles from 0° to 45° and >315° to 360° were classified as lateral adjustment 

whereas >135° to 225° were classified as medial adjustment. For the left foot, foot 

placement modification vector angles from 0° to 45° and >315° to 360° were classified as 

medial adjustment and >135° to 225° were classified as lateral adjustment. Percentage of 

adjustments in each direction for each foot was calculated relative to the total number of 

trials the participants successfully performed. 

 Predicted minimum foot displacement (PMFD) was calculated as the perpendicular 

distance between the average foot placement and the edge of the obstacle for all four 

options: lateral, long, medial, and short. This measure reflects the minimum amount of foot 

displacement necessary to clear and avoid stepping on the virtual planar obstacle. For this 

calculation foot markers and average foot length and width for each participant extracted 

from the foot tracings were used as well as the obstacle dimensions. PMFD was calculated 

for obstacles in monitors 1 and 2 separately. 
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 Maintenance of forward progression was assessed by measuring the TCOM deviation 

from the straight line, which is parallel to the AP axis. TCOM position at HC in steps N-1 

and N were used to compute the maintenance of forward progression variable. Stability was 

determined by the relationship between TCOM and base of support (BOS), defined by feet 

markers at the beginning of the double support phase for each step. The TCOM-BOS AP 

distance was calculated relative to the anterior margin of the BOS, defined as the line 

connecting the right and left fifth metatarsals. The TCOM-BOS ML distance was calculated 

relative to the heel marker. For right heel contact, the right heel marker was used and vice-

versa for the left heel contact. 

 In order to identify the relative contribution of each step to final foot placement 

adjustment, a variable called relative adjustment (RA) was calculated as proposed by 

Moraes et al. (2004). This variable was calculated separately for the adjustment in monitor 

1 and for the adjustment in monitor 2. This was necessary, since this variable computes the 

relative change based on the final change in foot placement. For the adjustment in monitor 

1, RA was calculated as follows: 

 
N

1N
1N RC

RC
RA −

− =  Equation 1

 
( )

N

1NN
N RC

RCRC
RA −−

=  Equation 2

where RA is the relative adjustment, RC is the relative coordinate, N-1 is the step before 

the adaptive step, and N is the adaptive step for monitor 1. For the long/short adjustments, 

the RCx (i.e., anteroposterior coordinate) was used for RA calculation, and RCz (i.e., 

mediolateral coordinate) was used for the RA calculation for the lateral/medial adjustments.  

For the adjustment in monitor 2, RA was calculated as follows:  
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  where N+1 is the adaptive step for the monitor 2.  

 The gaze data was analyzed frame-by-frame using a DVD player and a television. 

Within each step starting with right HC on the trigger mat, gaze fixations were determined. 

The initial and final frame of each step was defined based on kinematic data from the 

OPTOTRAK system. A fixation was defined as the maintenance of the gaze location 

(Figure 1) in the same spot for at least three frames in sequence (~100 ms). This value was 

the same as previously reported by Patla and Vickers (1997, 2003) and Hollands et al. 

(2002). Fixations were classified into four types: 1) area stepped, 2) areas other, 3) area-to-

avoid, and 4) area ahead. Area stepped was the spot were the participant stepped in order to 

avoid the obstacle. Areas other were the spots near the obstacle where participants chose 

not to step and included all other three options for alternate foot placement. Area-to-avoid 

was defined by the obstacle dimensions. Area ahead was defined as a spot on the ground 

that remained unchanged and was always ahead of the monitor. The percentage of the 

fixation length within each step was calculated relative to step duration. In addition, the 

frequency distribution of the fixation lengths was computed for bins of 100 ms. The final 

parameter measured was the time correspondent to the end of fixation relative to HC of 

alternate foot placement. For the fixations relative to monitor 1, end of fixation was 

computed relative to right alternate foot placement; whereas for the fixations relative to 

monitor 2, end of fixation was calculated relative to left alternate foot placement. 
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Statistical analysis 

 Two-way (Condition x Choice) chi-square (χ2) analyses were carried out for the 

choices in order to identify whether or not the presence of a second obstacle affected the 

alternate foot placement choice in the first one and, also, if the increase in obstacle size in 

monitor 2 affected the alternate foot placement choice. For the former objective, two χ2 

analyses were performed combining the conditions with the same first obstacle 

(AP/APMLS/APMLL and ML/MLAPS/MLAPL). For the latter objective, two χ2 analyses 

were also computed combining the conditions with the second obstacle having the same 

orientation (APMLS/APMLL and MLAPS/MLAPL). In order to identify whether or not 

PMFD was different between options, a one-way ANOVA (Option: long, short, lateral, and 

medial) with repeated measures was carried out for each obstacle and monitor separately. 

Effect of the presence of a second obstacle on alternate foot placement for the first obstacle 

for the foot placement modification vector magnitude and maintenance of forward 

progression was analyzed using a one-way repeated measure ANOVA (Condition: all six 

conditions) for each dependent variable. For the second obstacle, the effect of obstacle size 

on the foot placement modification vector magnitude was analyzed using a one-way 

repeated measure ANOVA (Condition: APMLS, APMLL, MLAPS, and MLAPL). TCOM-

BOS AP and ML distances were statistically analyzed using a two-way repeated measures 

ANOVA (Conditions: all six conditions x Step: N-1 and N) for each dependent variable. 

Relative adjustment was statistically analyzed using a two-way ANOVA (Condition x Step) 

for each obstacle separately. For the first obstacle, all six conditions and two steps (N-1 and 

N) were included; whereas for the second obstacle, four conditions (APMLS, APMLL, 

MLAPS, and MLAPL) and three steps (N-1, N, and N+1) were included. The dependent 

variables were averaged across trials for each participant and the average value was used 
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for statistical analyses. When main effects or interaction effects were found, least-squares 

means post-hoc analyses were carried out to identify the differences. Spearman rank order 

correlations between alternate foot placement choices in step N+1, and TCOM velocity in all 

three directions for steps N-1 and N were carried out. Alpha value was set at 0.05. 

 

Results 

 

Kinematic analysis 

 

What is the minimum foot displacement for the first and second obstacles? 

 For the first obstacle, the one-way ANOVA (Option: long, short, lateral, and 

medial) for the AP and ML obstacles revealed a main effect of option (AP: F3,15 = 21.8, p < 

0.0001; ML: F3,15 = 292.8, p < 0.0001). For both obstacles, post-hoc analysis identified that 

all pairwise comparisons were significantly different, except the comparison between 

lateral and medial options. For the AP obstacle, PMFD for the short option (16.9 cm) was 

smaller than medial/lateral options (20.7 and 21.2 cm, respectively), which in turn were 

smaller than the long option (25.4 cm). For the ML obstacle, the smallest PMFD was 

identified for the medial/lateral options (12.2 and 12.4 cm, respectively), followed by short 

(29.4 cm) and long options (37.9 cm).  

 For the second obstacle, the one-way ANOVA (Option: long, short, lateral, and 

medial) for the ML small and large obstacles revealed main effects of option (MLS: F3,15 = 

136.97, p < 0.0001 | MLL: F3,15 = 96.38, p < 0.0001). For both obstacles, the post-hoc 

analyses showed that all pairwise comparisons were significantly different, except between 

long and short options. The smallest PMFD was observed for the medial option (MLS = 
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10.7 cm; MLL = 14.2 cm), followed by the lateral option (MLS = 14.2 cm; MLL = 17.7 

cm) and then by long/short options (35.1 cm and 32.1 cm, respectively). For the AP small 

and large ANOVAs, only the latter one revealed a main effect of option (F3,15 = 6.69, p = 

0.0044). The smallest PMFD was found for the medial option (19.2 cm), followed by the 

lateral/short options (22.7 cm and 22.9 cm, respectively) and the long option (25.9 cm). For 

the AP small obstacle, the PMFD were equal to 19.2 cm, 19.6 cm, 22.6 cm, and 22.7 cm for 

the medial, short, long, and lateral options, respectively. 

 

Does the presence of a second obstacle affect the selection and/or the magnitude of 

alternate foot placement in the first obstacle? 

 For both AP and ML obstacles in the first monitor, the dominant choice was lateral 

(Figure 2). The two-way χ2 analyses (Condition: AP/APMLS/APMLL or 

ML/MLAPS/MLAPL x Choice: long, short, lateral, and medial) for the first obstacle 

showed that there was no difference among the conditions for the selection of the alternate 

foot placement when the second obstacle was present (Figures 2 and 3).  
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Figure 2. Choice percentage for the conditions with only one obstacle.  
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Figure 3. Choice percentage for the conditions with two obstacles.  

 

Figure 4 shows the foot placement modification vector distribution. The foot 

displacement in step N seems to be unaffected by the presence of a second obstacle for the 

conditions with the same first obstacle. In fact, the one-way ANOVA (Condition: all six 

conditions) for the foot placement modification vector magnitude for the first obstacle 

revealed a main effect of condition (F5,25 = 10.98, p < 0.0001). Foot placement modification 
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vector magnitude was larger for the AP (22.1 cm), APMLS (21.9 cm), and APMLL (22.8 

cm) than for the ML (16.8 cm), MLAPS (18.4 cm), and MLAPL (18.0 cm) conditions.  
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Figure 4. Foot vector distribution for all six conditions from the step on the trigger mat (N-2) to two steps 

after the second obstacle (N+3).  

 

Is there a dominant choice for alternate foot placement with the second obstacle? 

 Although the percentages were quite similar among conditions, there was no 

dominant choice for the second obstacle (Figure 3). Three of the participants systematically 

chose a medial option for the second obstacle independent of obstacle size and orientation. 

One participant chose to step laterally and another one chose to shorten the step when faced 

with the second obstacle. For one participant in the conditions where the second obstacle 

was AP, the dominant choice was shortening the step, while when the second obstacle was 
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ML, the dominant choice was lateral for the small obstacle and long for the large obstacle. 

In summary, five participants showed a systematic dominant choice for the second obstacle 

independent of its size and orientation. However, this dominant choice was not consistent 

among participants. 

 

Does the increase in the second obstacle size affect the alternate foot placement selection 

and/or foot placement modification vector magnitude? 

The selection of alternate foot placement for the second obstacle was not different 

between APMLS and APMLL and between MLAPS and MLAPL conditions (Figure 3). 

The one-way ANOVA (Condition: APMLS, APMLL, MLAPS, and MLAPL) identified no 

main effect of condition for the foot placement modification vector magnitude. The average 

foot placement modification vector magnitude was similar among conditions (APMLS = 

24.1 cm; APMLL = 26.0 cm; MLAPS = 25.0 cm; MLAPL = 24.6). 

 

Does the presence of a second obstacle affect maintenance of forward progression? 

 A one-way repeated measure ANOVA (Condition: all six conditions and WT) 

identified a main effect of condition (F1,29 = 7.62, p < 0.0001) for the maintenance of 

forward progression. Least-squares means post hoc analysis revealed that all experimental 

conditions increased the deviation to the right by 4.5° with respect to WT, due to the lateral 

preference in the first obstacle. In addition, no difference between conditions with one and 

two obstacles was found. 

 

Does the presence of a second obstacle affect stability? 

 The two-way repeated measures ANOVA (Condition: all six conditions and WT x 
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Step: N-1 and N) for the TCOM-BOS AP distance revealed only a main effect of condition 

(F6,30 = 4.99, p = 0.0012). Least squares means post hoc analysis showed that TCOM-BOS 

AP distance decreased similarly for all experimental conditions compared to the WT. In 

other words, independent of the presence of a second obstacle, stability was equally 

reduced for all experimental conditions. For the TCOM-BOS ML distance, the two-way 

repeated measures ANOVA (Condition: all six conditions and WT x Step: N-1 and N) 

identified main effects of condition (F6,30 = 19.49, p < 0.0001) and step (F1,35 = 216.70, p < 

0.0001) as well as an interaction effect (F6,35 = 5.56, p = 0.0004). For the interaction effect, 

no difference was observed among conditions in step N-1, but all experimental conditions 

showed an increased TCOM-BOS ML distance as compared to the WT in step N, due to the 

lateral choice preference.  

 

Do the changes in foot placement in step N-1 contribute to the alternate foot placement in 

step N? 

 The two-way ANOVA (Condition: all six conditions x Step: N-1 and N) for the 

relative adjustment identified a main effect of step (F1,30 = 392.24, p < 0.0001). Alternate 

foot placement was implemented in step N; step N-1 did not contribute to changes in step N 

(Figure 5A). 

 

Do the changes in foot placement in step N-1 and N contribute to alternate foot placement 

in step N+1? 

 For this statistical analysis, only 5 participants were included since one participant 

systematically chose lateral adjustments for both obstacles. For the case of lateral choice in 

both obstacles, relative adjustment of step N is always in the opposite direction compared 
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to the relative adjustment in step N+1. Then, the relative adjustment for this participant in 

step N was always negative, substantially increasing the variability. For all other 

participants, relative adjustment in step N was always positive. The two-way ANOVA 

(Condition: APMLS, APMLL, MLAPS, and MLAPL x Step: N-1, N, and N+1) identified a 

main effect of step (F2,30 = 16.09, p < 0.0001). Post-hoc analysis revealed that irrespective 

of the obstacle condition the relative adjustment was different among the three steps tested 

(Figure 5B). Step N-1 did not contribute to adjustment in step N+1 (-8.0%). Most of the 

contribution came from step N (68.0%) followed by step N+1 (40.0%).  
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Figure 5. Mean and standard deviation for the relative adjustment for the A) first obstacle (N = 6) and B) 

second obstacle (N = 5). 
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Figure 6. Plots of the trunk center of mass (TCOM) velocity versus the alternate foot placement choice for the 

second obstacle. For the MLAPS, MLAPL, and APMLS conditions the TCOM velocity in the ML direction in 

step N-1 is shown. For the APMLL condition, the TCOM velocity in the vertical direction in step N is shown. 

Spearman correlation values with respective probability values are shown for each plot. 

 

Is there any association between alternate foot placement choice in step N+1 and TCOM 

velocity in previous steps? 

 For three conditions (APMLS, MLAPS, and MLAPL), TCOM ML velocity in step N-

1 significantly correlated with the alternate foot placement choices in step N+1 (Figure 6). 

This correlation indicates that for the medial adjustment, TCOM ML velocity reduced in step 

N-1 to facilitate the body displacement to the right. This shows an increase in TCOM ML 

velocity for the medial adjustments facilitating the body displacement to the right. For the 

APMLL condition, the correlation between TCOM ML velocity in steps N-1 and N just 

failed to achieve statistical significance (p = 0.08). However, the TCOM vertical velocity in 
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step N correlated with the alternate foot placement choice in step N+1 (r = -0.94, p = 

0.0051). In addition, TCOM ML velocity in step N significantly correlated with the alternate 

foot placement in step N+1 (r = -0.94, p = 0.0054) for the MLAPS condition. 

 

Gaze analysis 

 

Gaze fixations were classified into four categories and they accounted for all 

fixations observed in the present study. The instants when participants were not fixating in 

one of these four areas, they were either making a saccade or the eyes were blinking and the 

cursor was missing. For each participant, only the fixations that were present in at least 

three trials per condition were used for the average calculations presented in the next 

sections. This criterion was used to guarantee that only consistent gaze behaviors would be 

considered for discussion.  

Gaze analysis revealed an unexpected result. Interestingly, gaze behavior was 

different among participants relative to the final gaze fixation, enabling the establishment 

of two groups: distant and local anchor groups. Three participants systematically anchored 

their gaze at a point on the ground ahead of the obstacle region (distant anchor group). The 

other three participants directed their gaze to the area stepped in the alternate foot 

placement (local anchor group). Figure 7 illustrates the gaze behavior for steps N-1 and N 

for one participant of the local anchor group, and for one participant in the distant anchor 

group for conditions involving the avoidance of one obstacle. Fixations on the area stepped 

dominated step N for the local anchor group; whereas fixations on the area ahead 

dominated the same step for the distant anchor group. The gaze behavior for conditions 

with two obstacles is illustrated in Figure 8. The distant anchor group fixated on a point 
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ahead in step N+1; whereas local anchor group fixated on the area stepped in both steps 

(i.e., N and N+1). Because of this finding, no statistical analysis could be carried out for the 

gaze data since three participants in each group would not be enough for any statistical 

consideration. Therefore, the data is qualitatively described. 

 

Ahead Area Other Area Stepped Area-to-Avoid

Local Anchor
Group

Time (s)

Distant Anchor
Group

-1.2 -0.9 -0.6 -0.3 0.0

Step N-1 Step N

Ahead Area Other Area Stepped Area-to-AvoidAheadAhead Area OtherArea Other Area SteppedArea Stepped Area-to-AvoidArea-to-Avoid

Local Anchor
Group

Time (s)

Distant Anchor
Group

-1.2 -0.9 -0.6 -0.3 0.0

Step N-1 Step N

 

Figure 7. Gaze fixations on different areas for the conditions with one obstacle for one participant in the local 

anchor group (top), and for one participant in the distant anchor group (bottom). Five trials per condition are 

shown. Each line length indicates the fixation duration and each line style corresponds to fixations in different 

areas. Dashed vertical lines indicate the mean step duration interval. The negative time indicates the time 

before right heel contact for alternate foot placement for the obstacle in monitor 1. 
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For conditions with one obstacle, participants of the distant anchor group fixated on 

the area ahead in 93.4% of the trials. For conditions with two obstacles, they fixated on the 

point ahead in 26.7% and 85.0% of the trials for the first and second obstacles, respectively. 

For conditions with one obstacle, participants of the local anchor group fixated on the area 

stepped in 93.4% of the trials. For conditions with two obstacles, they fixated on the area 

stepped in 83.3% and 85.0% of the trials for the first and second obstacles, respectively. 
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Figure 8. Gaze fixations on different areas for the conditions with two obstacles for one participant in the 

distant anchor group (left), and for one participant in the local anchor group (right). Five trials per condition 

are shown. Each line length indicates the fixation duration and each line style corresponds to fixations in 

different areas. Numbers 1 and 2 in front of the fixation area code indicate the fixations relative to the first 

and second obstacles, respectively. Dashed vertical lines indicate the mean step duration interval. The 

negative time indicates the time before left heel contact for alternate foot placement for the obstacle in 

monitor 2. 

 

 For the conditions with one obstacle, the highest percentage of gaze fixation (~60%) 
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in step N for the distant anchor group appeared for the area ahead; whereas for the local 

anchor group it appeared for the area stepped (Figure 9). Only in these two categories did 

all three participants of each group consistently fixate their gazes. The fixations in other 

areas were quite inconsistent among participants within each group. For conditions with 

two obstacles,  the local anchor group fixated on the area stepped for both obstacles 

approximately 60% of the time in steps N and N+1 (obstacles 1 and 2, respectively) (Figure 

10). Again, the fixations in step N-1 were quite inconsistent, with the exception of distant 

local group, where all three participants fixated on the area stepped in obstacle 1 (~25%). 

For the distant anchor group, the fixations on area ahead dominated step N+1, followed by 

fixations on area other. In step N, the distant anchor group systematically fixated in area 

other for the second obstacle. 

 
How long are the fixations for the distant and local anchor groups? 

 For the distant anchor group, slightly more than half of the fixations on the area 

ahead were no longer than 200 ms for the conditions with one obstacle (Figure 11). For the 

local anchor group, fixations on the area stepped were usually quite long (> 500 ms) for 

conditions with one obstacle. For conditions with two obstacles, the distant anchor group 

showed a predominance of fixations on area ahead and area other with a length of usually 

less than 200 ms (Figure 12) for the second obstacle. For the distant anchor group, the 

number of fixations was smaller for the first obstacle than for the second obstacle. The 

local anchor group exhibited a predominance of fixations on area stepped in both obstacles. 

For the first obstacle, fixations on area stepped were equally distributed ranging from 100 

to 500 ms. For the second obstacle, fixations on area stepped were more concentrated, in 

the range of 200 to 400 ms. 

 122



2 1 21 2 2

Step N-1

0

20

40

60

80

100

Ahead Area Other Area Stepped Area-to-Avoid

Pe
rc

en
ta

ge

Distant Anchor Group
Local Anchor Group

3 11 3 1

Step N

0

20

40

60

80

100

Ahead Area Other Area Stepped Area-to-Avoid

Areas

Pe
rc

en
ta

ge
2 1 21 2 2

Step N-1

0

20

40

60

80

100

Ahead Area Other Area Stepped Area-to-Avoid

Pe
rc

en
ta

ge

Distant Anchor Group
Local Anchor Group
Distant Anchor Group
Local Anchor Group

3 11 3 1

Step N

0

20

40

60

80

100

Ahead Area Other Area Stepped Area-to-Avoid

Areas

Pe
rc

en
ta

ge

 

Figure 9. Mean percentage of gaze fixation in different areas relative to step duration for the distant and local 

anchor groups for the conditions with one obstacle. The numbers inside each bar indicate the number of 

participants who exhibited the fixation in the respective step. Since no noticeable difference was observed 

between conditions, the mean value was calculated across conditions. 
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Figure 10. Mean percentage of gaze fixation in different areas relative to step duration for the distant and 

local anchor groups for the conditions with two obstacles. The numbers inside each bar indicate the number of 

participants who exhibited the fixation in the respective step. Since no noticeable difference was observed 

between conditions, the mean value was calculated across conditions. Numbers 1 and 2 in front of the areas’ 

codes in the horizontal axis relate to the first and second obstacles, respectively. (Ah = ahead; Ao = area 

other; As = area stepped; Aa = area-to-avoid) 
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Figure 11. Frequency distributions of the fixation duration for both distant (left) and local (right) anchor 

groups for each fixation area for the conditions with one obstacle. Data are presented across conditions. 
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Figure 12. Frequency distributions of the fixation duration for both distant (left) and local (right) anchors 

groups for each fixation area for the conditions with one obstacle. Top graphs are the distribution of the 

fixations for the first obstacle. Bottom graphs are the distribution of the fixations for the second obstacle. Data 

are presented across conditions. 
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When does the end of gaze fixation occur for the distant and local anchor groups relative to 

heel contact for alternate foot placement? 

 Participants in the local anchor group fixated at the area stepped until approximately 

145 ms (mean value computed from Table 1) before heel contact for the final alternate foot 

placement. The distant anchor group fixated on the area ahead until approximately 50 ms 

before heel contact for the final alternate foot placement (mean value computed from Table 

1).  

 
Table 1. Mean end of fixation in milliseconds (ms) across conditions. Conditions with one obstacle and two 

obstacles were grouped separately. For conditions with two obstacles, end of fixation was calculated relative 

to heel contact for alternate foot placement for steps N and N+1 for fixations in the first and second obstacles, 

respectively. Negative values indicate that fixations terminated before heel contact for alternate foot 

placement. The numbers in parenthesis indicate the number of participants who consistently exhibited the 

fixation behavior.  

End of Fixation (ms) 
Conditions Fixations 

Distant Anchor Group Local Anchor Group 

Ahead -78.0 (3) 0.0 (0) 

Area Other -571.8 (2) -508.0 (1) 

Area Stepped -274.0 (1) -157.8 (3) 

One 

Obstacle 

Are-to-Avoid -751.1 (2) -458.8 (2) 

Ahead 1 -232.2 (1) -143.3 (1) 

Area Other 1 -661.5 (2) -507.5 (2) 

Area Stepped 1 -576.7 (1) -246.9 (3) 

Are-to-Avoid 1 -682.2 (2) -635.8 (2) 

Ahead 2 -21.9 (3) 0.0 (0) 

Area Other 2 -492.2 (3) 0.0 (0) 

Area Stepped 2 -488.8 (2) -133.3 (3) 

Two 

Obstacles 

Are-to-Avoid 2 -467.3 (2) -274.0 (2) 

 

Discussion 

 

 This study addresses two issues associated with alternate foot placement. First, it 
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looks at the generality of alternate foot placement determinants by having participants 

avoid two virtual planar obstacles in the travel path. Second, it addresses the nature of the 

visual information used for selecting and planning alternate foot placement by monitoring 

gaze behavior. The following discussion is organized to address the three major 

conclusions from the present study: 1) alternate foot placement selection for the first 

obstacle is guided by stability, minimum foot displacement, and facilitation of the 

subsequent alternate foot placement, 2) alternate foot placement is planned globally when 

more than one obstacle has to be avoided, 3) individuals use two gaze behavior strategies. 

 

Alternate foot placement selection for the first obstacle is guided by stability and minimum 

foot displacement 

The presence of a second obstacle clearly increased the complexity of the task. This 

increase in complexity generated a more variable behavior among participants for selection 

of alternate foot placement for the second obstacle. Nevertheless, the dominant choice for 

the first obstacle was very consistent and it was unaffected either by the presence of a 

second obstacle or by the size increase of the second obstacle. The lateral dominant choice 

for the ML obstacle coincided with the minimum foot displacement, although a medial 

option would have required the same amount of foot displacement. However, as discussed 

in chapter 3, lateral options are more stable than medial ones. The difference between 

PMFD and the actual foot displacement was equal to 4.1 cm, indicating that participants 

placed the foot just at the edge of the obstacle. The lateral preference for the AP obstacle 

did not coincide with the minimum foot displacement, which was for the short option (16.9 

cm). However, the lateral choice represented the second minimum foot displacement (21.2 

cm) and the difference between the PMFD and the actual foot displacement was equal to 
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0.9 cm. Again, as previously discussed, the lateral preference over the medial option was 

based on stability. Therefore, for the ML and AP obstacles, alternate foot placement 

selection was mainly based on stability and minimum foot displacement. However, 

minimum foot displacement contribution was smaller for the AP obstacle than for the ML 

obstacle for selecting alternate foot placement. Forward progression seemed to be less 

important since it created a deviation of about 4.5° from the straight goal. Although an 

average deviation of 4.5° may seem quite small, model simulations have shown that 

deviations higher than 5.0° may have a great impact in alternate foot placement selection 

and, consequently, may move the gait trajectory from the end-point goal (Bahrami and 

Patla 2005). 

 

The dominant lateral choice for the first AP obstacle facilitates response to the second 

obstacle 

For the first AP obstacle, lateral adjustment preference over short option may be 

due to the presence of the second obstacle, although when only one obstacle was present, 

lateral adjustment was also dominant. It is possible that short adjustment was not chosen 

because it could make it difficult to implement the necessary changes for the second 

obstacle. Short adjustment is accompanied by a reduction in the AP center of mass velocity, 

as shown in chapter 3. This overall velocity reduction may be undesirable since it would 

create the necessity of compensating during the push-off to clear the second obstacle. The 

option of shortening both steps to avoid both obstacles may also be undesirable, since the 

distance between the obstacles could be small and a very precise foot placement would be 

necessary. Therefore, for the AP obstacle, selection of alternate foot placement was dictated 

also by facilitating response to the second obstacle, followed by stability and minimum foot 
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displacement. 

 

Half of the participants selected a route that avoided the crowded area the two obstacles 

represented  

For the second obstacle, the dominant choices were in the ML direction (i.e., lateral 

and medial choices). In all conditions with a second obstacle, the choices in the ML 

direction corresponded to more than 60% of the trials. For APMLS and APMLL 

conditions, the medial option represented the minimum foot displacement (10.7 cm and 

14.2 cm, respectively), followed by the lateral option (14.2 cm and 17.7 cm, respectively). 

Changes in the AP direction would result in foot displacements greater than 30 cm. Only 

one participant systematically chose the short option for these two obstacles (i.e., MLS and 

MLL). However, this participant placed the foot just after the transition point between 

lateral and short adjustments (i.e., 229.4° and 244.0° for the APMLS and APMLL, 

respectively) and, consequently, the amount of foot displacement was reduced by 

approximately 25.0 cm. For the MLAPL condition, the medial option represented the 

minimum foot displacement, followed by lateral and short options. No difference was 

found among options for the MLAPS condition, although the average value for the PMFD 

for the medial option was the smallest one.  

The presence of a second obstacle revealed at least two different strategies used for 

adapting gait on cluttered terrain. First, three participants systematically chose lateral and 

medial adjustments for the first and second obstacles, respectively. Although medial choice 

represented the smallest foot displacement for the second obstacle for APMLS and APMLL 

conditions, the actual foot displacement was much higher than the predicted one (~13.0 

cm). This suggests that these three participants were not trying to minimize foot 
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displacement for the second obstacle. Rather, they planned their movements to avoid the 

crowded area represented by both obstacles as suggested by Patla et al. (2004). In their 

study, Patla et al. (2004) modeled route selection over complex terrain. They found that the 

model that better predicted route selection was one that searched for routes that would 

avoid the crowded areas. Second, the other three participants seemed to minimize foot 

displacement. The average difference between PMFD and actual foot displacement was 

equal to 0.7 cm. However, for one of the participants the dominant choices were lateral for 

both obstacles; for another the dominant choice was short, but the left foot was placed just 

after the transition point between lateral and short options. In both cases, step width was 

substantially increased and this may not necessarily represent a more economical 

movement, since a great change in ML velocity to redirect center of mass would be 

necessary from step N to step N+1. Donelan et al. (2001) have shown that most of the 

metabolic costs (i.e., oxygen consumption) associated with increase in step width relate to 

redirecting the center of mass velocity from one stance limb to the next. Therefore, 

although three participants clearly decided to use a strategy that allowed them to avoid the 

crowded area, the strategy or strategies used by the other three participants are unclear. It is 

possible that minimization of foot displacement for the second obstacle was not the primary 

goal, but rather resulted due to some undefined strategy.  

 

Alternate foot placement is planned globally when more than one obstacle has to be 

avoided 

 Two findings support the notion that movements were planned globally. First, 

relative adjustment was greater in step N than in step N+1. This suggests that modifications 

in step N contributed substantially to the adjustments in step N+1. Second, TCOM ML 
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velocity in step N-1 was modulated according to the alternate foot placement in step N+1. 

Although foot placement did not change for step N-1, changes in TCOM velocity were 

implemented to facilitate alternate foot placement in step N+1. Therefore, since changes in 

previous steps (N and N-1) were related to alternate foot placement in step N+1, it is 

reasonable to suggest that alternate foot placements were planned globally as opposed to 

online. This conclusion disputes Fajen and Warren (2003), who proposed that obstacle 

avoidance is an online process and that path planning is unnecessary. However, recent work 

by Patla et al. (2004) suggests that route selection in a cluttered environment involves path 

planning. Rietdyk and Patla (1994) provided further evidence of global planning as 

opposed to online control. In their study, participants were requested to make changes in 

step length in only one or two steps while running. They concluded that the requirements of 

a subsequent step cycle alter the gait modifications employed to complete the current step 

cycle. In general, the modifications were different not only as a result of altered foot 

placement during the second step, but they were dependent also on the location of the 

second foot placement (i.e., lengthening versus shortening). 

 

Individuals seemed to use two gaze behavior strategies 

One interesting finding of this study was that more than one gaze behavior strategy 

emerged. Half of the participants systematically fixated on the area stepped on during the 

adaptive step (local anchor group), while the remainder fixated on a spot just ahead of the 

monitor area (distant anchor group). Intuitively one would try to establish a relationship 

between one of the anchor groups and the three participants who chose always a medial 

alternate foot placement for the second obstacle. However, such relationship was inexistent 

since the participants who chose medial adjustments were not in the same gaze group. The 
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local and distant anchor groups fixated on the area stepped on until approximately 145 ms 

and 50 ms, respectively, before landing the foot (Table 1), then moved their eyes to another 

location or simply started looking to the end point of the walkway. Therefore, both group 

participants guided foot placement online during the adaptive step. 

By anchoring the gaze on a spot ahead, the distant anchor group probably used their 

peripheral visual field--more precisely the lower visual field--for planning alternate foot 

placement. Crowe et al. (2000) showed that in a maze solution task, the number of turns in 

the maze had a negative effect on the distance traveled by the eye (measured from fixation-

to-fixation points), suggesting that “saccades may “cut corners” and skip over path turns” 

(p.819). This suggests that peripheral vision was used to analyze the path interval within 

the maze. Several studies have suggested that the lower visual field has a pronounced 

advantage over the upper visual field for controlling visually guided movements such as 

pointing, interception of moving targets, reaching and grasping (Danckert and Goodale 

2001, 2003; Brown et al. 2005). These authors have also suggested that lower visual field 

information is processed in the dorsal stream, which is action related, according to Goodale 

and Milner (1992). Therefore, the use of the lower visual field is also appropriate for 

controlling lower limb movements. 

Four different gaze fixation locations were observed in the present study, although 

only one was consistently present for each group. Patla (2005) has suggested that these 

different fixation locations serve specific purposes. Fixations on the obstacle (i.e., area-to-

avoid) serve two purposes. First, it provides information about the size/shape of the 

obstacle. Second, it is used to estimate the relative distance to the target. This relative 

distance information coupled with normal step length and width information derived from 

proprioceptive sources can be used to estimate where the foot would land relative to the 
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obstacle if no changes to the stepping patterns were made. Fixations on other areas can be 

used to estimate how far the foot would have to be displaced from its normal landing spot 

for each of the four options of stepping long, short, medial, or lateral. These two pieces of 

information (i.e., normal landing position and amount of foot displacement for each option) 

are critical, since it has been proposed that minimizing foot displacement is one of the 

major parameters used when selecting alternate foot placement (Patla et al. 1999; Moraes et 

al. 2004).  

 

Alternate foot placements seem to be defined a priori and are independent of obstacle 

configuration 

The absence of consistent gaze behavior during the approach phase and the high 

contribution of step N to the adjustment in step N+1 suggest that alternate foot placement 

was defined a priori and gaze data were not systematically used to identify obstacle 

location and other landing options. For local anchor group for the conditions with one 

obstacle, most of the fixations on area stepped were quite long (≥ 500 ms). This suggests 

very little foveal search for other possibilities. Further evidence is provided by the 

behavioral data. Four of the participants systematically chose the same combination of 

alternate foot placement, independent of obstacle configuration (lateral/medial for three and 

lateral/lateral for the other). Therefore, fixations during the approach phase were used to 

eventually check obstacle location and amount of foot displacement to other options, but 

alternate foot placement seems to be defined a priori.  

 

Complexity of the task and limited time seem to eliminate travel gaze fixation 

The mechanisms by which the visual system extracts relevant information from the 
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environment for adaptive locomotion has been recently addressed in tasks involving 

stepping over obstacles, specific foot placement requirements, and steering (Patla and 

Vickers 1997, 2003; Patla 2004; Hollands et al. 2002). These studies have revealed a 

common behavior that they call “travel gaze fixation”. This gaze behavior consists of 

fixating on some point ahead on the travel path and it moves concurrently with the gait 

speed. They argue that this behavior would provide the information about self-motion 

necessary to regulate locomotion speed. Fixation on the area ahead presented in the current 

study is not the same as the travel gaze fixation observed by Patla and Vickers (1997, 2003) 

and Hollands et al. (2002). In travel gaze fixation, the fixation point moves along with the 

participant. Fixation on area ahead is an anchor point and it does not move along with the 

participant. Interestingly, in the present study, travel gaze fixation was never present. This 

absence is quite surprising since Patla and Vickers (1997, 2003) and Hollands et al. (2002) 

have shown that travel gaze fixation dominates in tasks involving stepping over an obstacle 

in the travel path and in tasks requiring change in locomotion direction. Two aspects may 

explain the difference. First, in the present study, only the steps near the obstacles were 

analyzed. Patla and Vickers (1997, 2003) and Hollands et al. (2002) analyzed more steps 

during the approach phase. Second, task requirements were simpler in the previous studies 

than they were in the present study. For instance, Patla and Vickers (1997) required 

participants to step over an obstacle placed several steps ahead them. An additional novel 

finding of the current study, therefore, seems to be that when task complexity is increased 

along with a decrease in time to accomplish it, travel gaze fixation behavior does not seem 

to occur. Further analysis aimed at examining gaze behavior throughout a longer portion of 

the path is needed to determine if fixation on the area of interest is limited only to the steps 

closer to the obstacle region or if it appears throughout the task. 
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Summary 

 In summary, when two obstacles to be avoided were presented in sequence, subjects 

used the strategy of planning the avoidance movement globally. Interestingly, two groups, 

based on the gaze fixations in the adaptive step, emerged from the present study. For one, 

the last fixation was systematically focused on the area stepped upon; and for the other, the 

last fixation was always at a point ahead of the monitor area. These two groups represent 

two different strategies that can be used to extract relevant information for the fine-tuning 

of foot placement. In addition, task complexity and time pressure seemed to eliminate the 

occurrence of travel gaze fixations. 
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The series of studies presented here are the first to address systematically how 

adaptations in gait behavior are selected, planned and implemented. Previous work in 

adaptive locomotion has focused on how we react to unexpected perturbations (Cham and 

Redfern 2001; Marigold et al. 2003; Oates et al. 2005) or how we proactively control 

locomotion to avoid or accommodate uneven terrains (Mohagheghi et al. 2004; Patla et al. 

1991; Prentice et al. 2004). In the latter case, though, the environment or task specified 

what the subject should do. However, in the absence of these specifications, the challenge 

for the control system is increased. In real life we are usually faced with the possibility of 

choosing what to do in order to avoid an undesirable area. This selection possibility has not 

been systematically investigated before, as pointed out by Elsinger and Rosenbaum (2003). 

Previous work on the selection of alternate foot placement has shown that 

individuals systematically choose an area to step on according to obstacle size and position 

relative to the normal landing spot (Patla et al. 1999; Moraes et al. 2004). The choices are 

not random, then; rather they are very systematic. In addition, these authors have also 

proposed that three determinants were used when selecting alternate foot placement: 

minimum foot displacement, stability, and maintenance of forward progression. The 

present thesis addressed two main purposes: 1) to validate the alternate foot placement 

determinants originally proposed by Patla et al. (1999), and 2) to test the generality of these 

determinants when more than one step has to be modified. Three studies were presented in 

the preceding chapters and they were designed to assess different aspects of the alternate 

foot placement model (Figure 1). 
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Figure 1. Expanded alternate foot placement model showing the bases for selection and the determinants. 
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The first study (Chapter 2) addressed three issues. First, it validated the virtual 

planar paradigm through the comparison of real and virtual scenarios. Second, it addressed 

the validation of the economy determinant in alternate foot placement selection. Third, it 

addressed alternate foot placement implementation through the analysis of changes in 

muscle activity. The second study (Chapter 3) addressed the validation of the stability 

determinant in alternate foot placement selection. It also addressed how the removal of the 

alternate foot placement selection component would affect movement planning and 

implementation. The third study (Chapter 4) tested the generality of the three previously 

described determinants by asking participants to avoid two planar obstacles in sequence. In 

addition, it addressed the nature of the visual information, which relates to both obstacle 

size/shape identification and movement implementation. 

 

Use of a virtual planar obstacle is representative of a real scenario 

 

 The first study described in this thesis validated the use of the virtual planar 

obstacle paradigm as representative of a real situation. In this case, a real situation was 

represented by a hole six centimeters deep. The results presented in Chapter 2 clearly 

showed that behaviorally there was no difference between the conditions using a hole (real 

condition) and the virtual planar obstacle (virtual condition). The only parameter that 

seemed to be affected was TCOM velocity in the AP direction, possibly for the purpose of 

allowing the subject to move away from the hole area as fast as possible. It would be 

interesting to further investigate the reasons for this increase in TCOM velocity in future 

studies, although at this point there is no reasonable formulated hypothesis for this increase. 
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Gathering information for selecting and planning alternate foot placement 

  

In the experiments reported in this thesis, the undesirable area was defined by the 

limits of a virtual planar obstacle displayed in the screen of a LCD monitor. Vision is the 

only sensory system through which individuals can identify this undesirable area because it 

can provide information about a bright stimulus at a distance (i.e., exteroceptive 

information) (Patla 1997). Fixation on the area-to-avoid directs the obstacle to the fovea, 

increasing obstacle size and shape resolution. In fact, Patla (2005) has shown that when 

several steps are available for selecting and implementing alternate foot placement, obstacle 

fixations frequently occurred three steps before the obstacle. Yet, in the study reported here, 

where gaze behavior was monitored, such consistency in obstacle fixation was not shown. 

Perhaps time pressure and the use of a default response may explain this absence of 

obstacle fixation. Since participants had only two steps to plan and implement alternate foot 

placement for the first obstacle, it is possible that reduced available time reorganized the 

alternate foot placement search strategy. In addition, since participants used a default 

response, there was no need for systematic obstacle fixation. The obstacle fixations that 

eventually emerged might be necessary for the checking of previous estimates of obstacle 

size and location. 

Although there was no consistent fixation on the obstacle, obstacle identification 

would be necessary in order for the individual to start implementing the necessary changes 

to achieve the goal of avoiding the obstacle, even if the response was defined a priori. In 

this case, peripheral visual information can be used to provide information about object 

location (Danckert and Goodale 2001, 2003; Brown et al. 2005) and this information was 

then used as one of the inputs in the alternate foot placement model. 
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Validity of the determinants and their relative task-specific weighting 

 

 The present study has shown that participants systematically exhibits a preference 

for lateral adjustments over medial adjustments when the minimum foot displacement is 

satisfied for both options. This finding is particularly striking in the second experiment 

(Chapter 3), where one of the conditions was similar to the Patla et al. (1999) study. Patla et 

al. (1999) found that when only one step was available for alternate foot placement, medial 

adjustments were preferred. We were unable to replicate this finding in the present study. 

As speculated upon in Chapter 3, this difference might be related to the mechanical 

apparatus that could provide some cue before the light is turned on. Another issue may be 

related to stimulus identification (i.e., planar obstacle identification). Schmidt and Lee 

(2005) have suggested that stimulus intensity, i.e., the brightness of a light stimulus, has an 

effect on reaction time. In the original work, a mechanical apparatus with lights underneath 

was used and it created a brighter stimulus than the use of a LCD monitor. Since no 

difference was found between real and virtual conditions for the dominant choices, the 

stimulus intensity was appropriate for the present study. However, the overall impact of 

stimulus intensity needs to be addressed in future studies in order to get a better 

understanding of this aspect of alternate foot placement.  

 Patla et al. (1999) and Moraes et al. (2004) have suggested that three determinants 

are critical for selecting alternate foot placement: minimum foot displacement, stability, 

and maintenance of forward progression. Moraes et al. (2004) have provided the first 

quantitative evidence that alternate foot placement is selected to minimize foot 

displacement, although it is not the main determinant as advocated by Patla et al. (1999). 

The first study suggests that people try to minimize foot displacement in order to increase 
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economy. It was found that changes in muscle activity were correlated with changes in foot 

displacement. Also, for almost all obstacles tested in the different experiments, the 

dominant choice was in the same direction as the predicted minimum foot displacement 

(PMFD). Not only that, but the actual foot displacement was just slightly bigger than the 

PMFD, suggesting that during the process of alternate foot placement, the information 

about foot displacement in all four directions is used and the control system effectively 

minimizes foot displacement. The fact that minimum foot displacement is used in the 

decision algorithm suggests that this information needs to be estimated. Patla et al. (1999) 

and Moraes et al. (2004) have suggested that visual information combined with 

proprioceptive information is used to estimate what would be the normal landing position 

of the foot, and then, based on this, foot displacement in any direction is computed. In fact, 

Patla (2005) has shown that individuals fixate gaze on the obstacle and potential locations 

for alternate foot placement, and he suggests that these fixations are used to identify normal 

landing positions in the absence of an obstacle and the amount of foot displacement for 

each option (i.e., long, short, lateral, and medial). A mechanism by which this visual and 

proprioceptive information could be integrated in order to estimate future foot placement is 

the forward internal model (Wolpert et al. 1995; Witney et al. 2001). The outputs of such a 

forward internal model could be used for the selection of alternate foot placement that 

minimizes foot displacement. 

The three determinants above are ordered relative to the task, and precedence occurs 

by defining the determinant that is the first, second and third priorities. Eventually, two 

determinants may have the same contribution and therefore they are weighted equally. This 

idea of defining a set of priorities is not completely new. In fact, Rosenbaum et al. (2001a, 

2001b) have proposed a prioritized list of requirements or what they called a constraint 
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hierarchy, which is used to select the goal-end posture in upper limb movements. In other 

words, the constraint hierarchy defines the task functionally by identifying what the 

priorities are when performing it. For instance, in the case of reaching for the off switch of 

a rotating electric saw, it is most important not to collide with the saw, it is less important 

to reach the switch, and it least important to move with little effort (Rosenbaum et al. 

2001b). The idea of a constraint hierarchy is also important because it assumes multiple 

constraints rather than one, as in previous prevailing ideas in motor control research (Uno 

et al. 1989). Although the constraint hierarchy was originally conceptualized for the 

planning of a movement with a specified goal, this idea may also be adapted to alternate 

foot placement selection. In fact, Bahrami and Patla (2005) have modeled alternate foot 

placement selection based on these three determinants by properly weighting them 

according to task priorities, like those used in the constraint hierarchy. By using this model, 

they were able to correctly predict 80% of the choices.  

 The studies of Patla et al. (1999) and Moraes et al. (2004) suggest that the number 

of steps available for implementing alternate foot placement affects the determinants’ 

priorities. When only one step was available for implementing alternate foot placement, 

priorities were satisfied in the following sequence: minimum foot displacement, stability, 

and maintenance of forward progression. However, when more than one step was available, 

maintenance of forward progression was the most important determinant, followed by 

stability and minimum foot displacement. The results of the experiments reported here 

provide additional combinations for the determinants’ priorities in different contexts. The 

results of the second experiment show that under time pressure (i.e. one step) and similar 

foot displacement for the same plane, stability is the first priority, followed by minimum 

foot displacement and maintenance of forward progression. In fact, all three experiments 
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showed that when the foot displacement is the same for options in the same plane, lateral 

and long choices are preferred. The results of the second experiment show clearly that this 

preference is stability based. Therefore, when similar foot displacements are found for more 

than one option in the same plane of motion, stability is the main determinant guiding 

alternate foot placement selection.  

Predictability of potential instabilities associated with some choices may be 

obtained by forward internal models and the control system uses this information to make 

either a long or lateral adjustment when similar foot displacement could be achieved in the 

same plane of motion. Winter (1995) has shown that the posture control system can 

anticipate instabilities generated by the movements as observed in the low variability 

present for the support moment and the high variability present in the individual hip and 

knee moments of force. This high variability is the result of a trade-off between hip and 

knee for trunk control and support against gravity (Winter 1987). Therefore, predictive 

information about foot displacement and stability are used in the alternate foot placement 

selection stage in order to choose the response that is more appropriate to the specific 

obstacle size and location. 

 In addition, the third experiment showed that the presence of a second obstacle had 

an impact in the determinants’ priorities for the first obstacle. When minimum foot 

displacement was present in the frontal plane for more than one option, stability was the 

first priority, followed by minimum foot displacement and maintenance of forward 

progression. However, when the minimum foot displacement was present for options in the 

sagittal plane, the first priority was none of the previous determinants, but rather a new one, 

facilitation of the subsequent alternate foot placement. This determinant was followed by 

stability, minimum foot displacement and maintenance of forward progression. For the 
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second obstacle, the strategy used seems to be different, depending on the individual. The 

only consistent strategy was observed for three participants. They seemed to select the 

choice for the second obstacle according to the following determinants sequence: 1) avoid 

the crowded area and 2) stability. Maintenance of forward progression and minimum foot 

displacement seem to have almost no contribution for the choice for the second obstacle. 

Therefore, the priorities in each of these contexts are slightly different and even new 

determinants seem to emerge with task complexity. These findings have an important 

impact for modeling purposes and also applications in robotics, particularly in making 

robots more adaptable to cluttered terrains by allowing them to search for and select the 

options that satisfy these determinants. Theoretically, these findings indicate that it is 

important to look at multiple parameters when studying movement selection and planning.  

 

Alternate foot placement implementation 

 

 The goal of movement implementation is to transform the selected response into 

neural commands to the effector system. One point of interest is the decreased stability 

associated with the removal of alternate foot placement selection. It was proposed that 

externally-triggered alternate foot placement affects postural control modulation since it 

could diminish the overall activation of the brain areas involved with locomotion control. 

Movement implementation was studied at a neurophysiological level by looking at changes 

in muscle activity. Several muscles of both limbs and trunk were monitored while 

performing the alternate foot placement task. Changes were phase and muscle specific, 

although they varied between real and virtual conditions. Drew et al. (1996, 2004) have 

suggested that the descending command from the motor cortex appears to functionally 
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interact with the central pattern generator (CPG) to adapt basic locomotion. Moreover, this 

cortical motor command was found to control specific components of gait by influencing 

the activity of a single muscle or a small group of muscles acting around a single joint 

(Drew et al. 1996). However, the control system seems also to have some flexibility in 

terms of implementing the changes to achieve a goal. It is well established in 

biomechanical textbooks that different combinations of force generations in agonist and 

antagonist muscles may result in the same net moment of force and, consequently, in the 

same movement. The concept of motor equivalence (Abbs and Cole 1987) may be helpful 

for understanding the use of different combinations to achieve the same goal, although it 

does not explain why individuals performed differently in the real and virtual conditions. 

Motor equivalence represents the use of variable means to achieve an invariant end. The 

differences observed here between real and virtual conditions stress the fact that different 

muscle combinations or synergies may be used in order to achieve the same goal and its use 

may be related to the current state of the system. It seems that there is no unique way to 

implement a movement in order to achieve a goal. Although while at the muscle level the 

implementation may be slightly different, the behavioral result seems to be unaffected. 

 

Final guidance of foot to avoid the obstacle 

 

 Visual information was shown to be used online for controlling alternate foot 

placement. However, two different strategies emerged from the gaze study. First, half of the 

participants fixated on the area stepped upon until almost the point of heel contact for 

alternate foot placement. Second, the other half of the participants anchored their gaze on 

an area ahead of the monitor and they were assumed to use the lower visual field for 
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controlling alternate foot placement. This finding is interesting because it reveals the nature 

of the strategies used and clearly shows that people use visual information differently. The 

reasons for these differences are unknown and future studies should be designed to address 

this issue more systematically. 

 

Conclusions 

 

 The three studies presented here allowed us to validate the three determinants used 

by the control system to select alternate foot placement when avoiding stepping on an 

undesirable location. Individuals tried to minimize foot displacement for the sake of 

economy as well as choosing the option that was more stable, and they attempted to 

minimize deviations from the end-point goal (i.e., maintenance of forward progression). In 

addition, the presence of a second obstacle showed that choices for the first one were 

related to these determinants, but the choices for the second obstacle were not. Therefore, 

the determinants are quite appropriate to model the choices when only one obstacle is 

present in the pathway. However, studies involving more obstacles with different 

configurations are needed to expand the determinants used in those cases. Therefore, the 

generality of the determinants seems to be restricted to one obstacle in the travel path. 

 

Future studies 

 

 Although the present findings validated and expanded the alternate foot 

displacement determinants, the generality of these determinants may be further investigated 

by looking at different walking speeds and carrying loads. Additionally, the use of an 
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extensive travel path with several obstacles in sequence can provide better understanding of 

the global and local planning mechanisms. Also, the use of odd shapes, which are more 

similar to daily life obstacles, should be investigated to further validate the alternate foot 

placement determinants. 
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