
Quantum Key Distribution Data

Post-Processing with Limited

Resources: Towards Satellite-Based

Quantum Communication

by

Nikolay Gigov

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering - Quantum Information

Waterloo, Ontario, Canada, 2013

c© Nikolay Gigov 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Nikolay Gigov

ii



Abstract

Quantum key distribution (QKD), a novel cryptographic technique for secure distribution

of secret keys between two parties, is the first successful quantum technology to emerge

from quantum information science. The security of QKD is guaranteed by fundamental

properties of quantum mechanical systems, unlike public-key cryptography whose security

depends on difficult to solve mathematical problems such as factoring. Current terrestrial

quantum links are limited to about 250 km. However, QKD could soon be deployed on a

global scale over free-space links to an orbiting satellite used as a trusted node.

Envisioning a photonic uplink to a quantum receiver positioned on a low Earth orbit

satellite, the Canadian Quantum Encryption and Science Satellite (QEYSSat) is a collab-

orative project involving Canadian universities, the Canadian Space Agency (CSA) and

industry partners. This thesis presents some of the research conducted towards feasibility

studies of the QEYSSat mission.

One of the main goals of this research is to develop technologies for data acquisition

and processing required for a satellite-based QKD system. A working testbed system helps

to establish firmly grounded estimates of the overall complexity, the computing resources

necessary, and the bandwidth requirements of the classical communication channel. It

can also serve as a good foundation for the design and development of a future payload

computer onboard QEYSSat.

This thesis describes the design and implementation of a QKD post-processing system

which aims to minimize the computing requirements at one side of the link, unlike most

traditional implementations which assume symmetric computing resources at each end.

The post-processing software features precise coincidence analysis, error correction based

on low-density parity-check codes, privacy amplification employing Toeplitz hash functions,

and a procedure for automated polarization alignment.

The system’s hardware and software components integrate fully with a quantum optical

apparatus used to demonstrate the feasibility of QKD with a satellite uplink. Detailed

computing resource requirements and QKD results from the operation of the entire system

at high-loss regimes are presented here.
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Chapter 1

Introduction

This thesis is organized into five main chapters. The current chapter provides background

information on quantum key distribution (QKD) focusing on theoretical aspects of the

protocols as well as some practical aspects of satellite-based QKD. Chapter 2 describes

the experimental apparatus employed to model QKD with a satellite uplink. Chapter 3

details the design and implementation of a QKD post-processing system which aims to

minimize the computing requirements at the satellite side of the link. Chapter 4 provides

estimates of the computing resources required onboard the satellite as well as the classical

communication requirements. Finally, in chapter 5, a detailed performance analysis of the

entire QKD testbed system is presented.

1.1 Secure Communication

Secure communication is paramount to modern society. The rapid growth of electronic

transactions and interactions has come with rising concerns about security and privacy.

All kinds of information, from personal data to trade secrets, is regularly transmitted

over public communication channels, and yet, it needs to be protected from unauthorized

use. Secure communication is by no means new to the modern age, however, lately, its

importance has greatly increased due to the sheer amount of sensitive data exchanged on

a daily basis.

For centuries, many different cryptographic techniques have been employed (with vari-

able success) to ensure confidentiality between communicating parties. Today, we rely

heavily on public-key cryptosystems and protocols such as RSA, TLS, AES, to name a

few. Although very practical and suitable for high traffic rates, most of those protocols

do not actually guarantee provable security. Instead, they are deemed secure, because to

1



break them an adversary needs to solve difficult mathematical problems such as factoring

of large integers. The measure of security in those schemes is the amount of computa-

tional power available to the adversary and the time necessary to solve the underlying

problems [1]. Thus, cryptographic standards need to be regularly updated as computing

technology moves forward.

There is one classical encryption scheme which is provably secure. Invented in 1882 by

Frank Miller, re-discovered and patented in 1917 by Gilbert Vernam, and proven optimal

in 1949 by Shannon [2], the Vernam cipher is a symmetric-key scheme in which both

communicating parties share a random secret key (or pad). To encrypt messages, the key

bits are simply XOR-ed1 with the message bits. Security is only guaranteed if the secret

key is used once, and hence the scheme is also known as the one-time pad. Thus, the size

of the shared key has to be greater than or equal to the length of the message—a major

limitation which has prevented the widespread use of one-time pad encryption. In other

words, for this scheme to be employed successfully, large amounts of key must be securely

distributed among communicating parties [1]. Classically, there is no reliable way to do so

other than physically transporting the key in a safe way (e.g. via trusted couriers), however,

quantum information science has turned up a surprising solution which is discussed in the

next section.

1.2 Quantum Key Distribution

Quantum key distribution (QKD), a novel cryptographic technique for secure distribution

of secret keys between two parties (traditionally named Alice and Bob), is the first suc-

cessful quantum technology to emerge from quantum information science. QKD employs

quantum states to encode and transmit secure key bits. The security of QKD is guaranteed

by fundamental properties of quantum mechanical systems. Intuitively, any intermediate

measurement of a quantum state disturbs that state.

More formally, the no-cloning2 property [3] of quantum states guarantees that an ad-

versary cannot obtain a copy of the secret key without introducing detectable errors in

the system. The amount of errors in the quantum communication channel is described

by the quantum bit error ratio (QBER) which is analogous to the BER of classical chan-

nels. If the QBER is above a certain threshold (near 17% [1]), Alice and Bob assume that

1The bitwise XOR operation, often denoted with a ⊕ symbol, is equivalent to bitwise addition modulo

two.
2The No-Cloning theorem [3] of quantum information asserts that, assuming the rules of quantum

mechanics, it is not possible to copy an unknown quantum state with perfect fidelity.
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the eavesdropper (commonly named Eve) has intercepted the communication, and hence

the quantum exchange must be restarted. For QBER values below the threshold, the le-

gitimate parties apply classical post-processing techniques to clean the key of errors (see

section 3.6) and to reduce Eve’s information about the key below an infinitesimal value

(see section 3.7). For a comprehensive review of QKD and its security, see for example [1].

Unlike classical cryptography, QKD is able to provide long-term security [4] in addition

to being immune against future attacks employing quantum computers3. If an eaves-

dropper does not acquire the secret key during its establishment, there is no amount of

computational power which will allow her to obtain it at a later time. This statement is not

true for common cryptographic protocols. If Eve were to capture RSA-encrypted [6] data

and corresponding public-key communication today, she could start solving the underlying

factoring problem and, within a few years, gain access to the secret message which may

still contain valid sensitive information.

1.2.1 QKD Protocols

As mentioned, QKD utilizes quantum states as carriers of secure key bits. In principle,

the state of any quantum mechanical system could be employed. In practice, quantum

states of light are almost always used [1], because they can be transmitted at the fastest

possible speed with little decoherence over an optical fiber [7] or a free-space link [8] with

direct line of sight between the transmitter and the receiver. Most QKD protocols are

discrete-variable, based on photon polarization states, however, continuous-variable [9, 10]

ones, in which real amplitudes are measured instead of discrete events [1], have also been

developed and demonstrated. In general, QKD protocols accomplish the following three

steps:

1. Raw Key Exchange: Quantum states are created, transmitted over a quantum chan-

nel, and measured to establish a raw key.

2. Key Sifting : Only a subset of the measurements are selected according to the specifics

of the protocol. This step produces the sifted key.

3. Classical Post-Processing : Also known as key distillation, this step consists of classi-

cal procedures called error correction and privacy amplification, which are employed

to clean the sifted key of errors and to eliminate the information leaked out to the

3In 1994, Peter Shor formulated a quantum algorithm for fast (polynomial-time) factorization of

integers[5]. If and when scalable quantum computers are built, many commercial cryptographic schemes

such as RSA will be rendered completely insecure.
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Polarization State Dirac Notation Basis Bit Value

Horizontal |H〉 H/V (+) 0

Vertical |V 〉 H/V (+) 1

Diagonal |D〉 D/A (×) 0

Anti-Diagonal |A〉 D/A (×) 1

Table 1.1: BB84 polarization state encoding.

adversary (see chapter 3). At the end of this step, Alice and Bob share an identi-

cal secure key, or, if the QBER is above a security threshold determined by formal

proofs of the QKD protocol’s security [1], the sifted key is discarded and the proto-

col restarts at step 1. Note that Alice and Bob require an authenticated4 classical

communication channel to complete this step.

QKD protocols differ only in the first two steps, while classical post-processing is generally

studied separately.

BB84

The first QKD protocol, BB84, is named after its creators Bennett and Brassard who

invented QKD in 1984. BB84 is a prepare-and-measure scheme in which Alice encodes each

bit from her random key in one of the four polarization states as displayed in table 1.1.

Given this encoding, the protocol consists of the following steps [1]:

1. Raw Key Exchange: Alice uses a random number generator to create a random key.

Employing a single-photon source, she encodes each bit of the key (0 or 1) with the

polarization state encoding from table 1.1 and transmits the photon over to Bob

via the quantum channel. She makes random basis choices which she records. Bob

measures each received photon randomly in either the + or × basis.

2. Key Sifting : Alice and Bob communicate their basis choices over a classical channel.

They discard those measurements (about half) which are performed in non-matching

bases.

3. Classical Post-Processing : As in the general case, Alice and Bob perform error correc-

tion (EC) and privacy amplification (PA) using the classical communication channel.

4Authentication prevents Eve from modifying any messages exchanged over the classical communication

channel. A small amount of secret key is needed to authenticate each party. That is why QKD is sometimes

referred to as a key-growing procedure.
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If the QBER is above the security threshold, the sifted key is discarded and the

protocol is restarted.

1.2.2 BB84 with Decoy States

A significant drawback of BB84 as formulated above is the assumption that each informa-

tion carrier is a single photon. In practice, it is very difficult to create high-rate sources of

perfect single photons.

In quantum mechanics, states containing exactly n photons are known as Fock states,

denoted as |n〉 in Dirac notation. Pulsed lasers are the most convenient high-frequency and

high-intensity sources of monochromatic light for QKD. However, instead of Fock states,

a pulsed laser generates coherent states of the form

|√µ eiθ〉 ≡ |α〉 = e−µ/2
∞∑
n=0

αn√
n!
|n〉 (1.1)

where µ = |α|2 is the average photon number [1] per laser pulse. Thus, there is a non-

zero probability that each resulting pulse of light contains more than one photon. This

imperfection gives rise to the photon number splitting attack [11], in which Eve captures

one photon from each multi-photon pulse, stores it, and measures it (in the correct basis)

after Bob’s basis choices have been revealed. Hence, to minimize the multi-photon emission

probability, the laser pulses are attenuated and phase-randomized. This kind of source,

called a weak coherent pulse (WCP) source, is Poissonian, and the probability that a pulse

contains n photons is given by

P (n|µ) =
µn

n!
e−µ (1.2)

However, signal attenuation severely limits the length of the quantum channel and hence

the total distance over which QKD can be performed. Decoy states [12, 13] were introduced

to overcome this practical problem. The main idea is that Alice can randomly vary the

average photon number of her coherent pulses, while the polarization encoding remains

unchanged from table 1.1. There are different decoy-state schemes, but in the simplest

case, there are only two kinds of states: signal states with average photon number µ,

and decoy states with average photon number ν. Only signal states contribute towards

secure key generation. Both µ and ν still need to be smaller than one to keep the multi-

photon probability low [14], but less attenuation is required for signal pulses (e.g. µ = 0.5)

compared to BB84 without decoy states [13].

5



Since the adversary has no way of measuring the average photon number levels, this

scheme allows the legitimate parties to bound Eve’s information obtained from multi-

photon events. The bound is provided by information-theoretic security proofs [14] and

ultimately relates to the required amount of privacy amplification. A detailed example of

one such protocol and its theoretic bounds is discussed below.

Vacuum+Weak Decoy-State Protocol

The QKD experiment described in this thesis (see chapter 2) implements the vacuum+weak

decoy-state protocol [14], in which the source randomly emits signal states with average

photon number µ, or decoy states that are either vacuum “pulses” or have an average

photon number ν < µ. The authors of [14] show that this protocol behaves close to

optimal in their simulations.

In our implementation, Alice employs a polarization and intensity modulator [15] (see

section 2.2.1), to prepare a random sequence of BB84 polarization encodings which are 92%

signal and 8% decoy states; vacuum states are “sent” between successive laser pulses [16].

The average photon number values (µ = 0.5 and ν = 0.1) are chosen according to the

optimization procedure described in [14].

According to the asymptotic-key formalism from [14], the lower bound for the final

asymptotic secure key rate per laser pulse, R is given by

R = qLµν
{
−Qµ ηEC (Eµ)H2 (Eµ) +QL

1

[
1−H2

(
EU

1

)]}
(1.3)

where

• q is a basis reconciliation factor, which for BB84 is equal to 1/2, since we expect

Alice and Bob to agree on their basis choices for only half of the measurements.

• Lµν = Nµ
Nµ+Nν

is the fraction of all photon detections attributed to signal states.

• Qµ/ν is the gain for signal/decoy states. The gain is calculated as the ratio of number

of photons received by Bob to number of pulses sent by Alice.

• ηEC (Eµ) is the efficiency parameter of the error correction algorithm (see section 3.6).

• H2 is the binary entropy function. Eµ is the QBER estimate for signal states.

• QL
1 and EL

1 are lower bounds of the gain and QBER for single photon pulses.
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The lower bound of the single-photon gain, QL
1 is calculated [14] as

QL
1 =

µ2 e−µ

µν − ν2

(
Qν e

ν −Qµ e
µ ν

2

µ2
− µ2 − ν2

µ2
Y0

)
(1.4)

where Y0 is the vacuum yield. Y0 is determined by the cumulative rate of detector dark

counts and background noise within the coincidence window (see section 3.4), and is mea-

sured between successive laser pulses.

The upper bound on the QBER, EU
1 for single photon states is calculated [14, 17] as

EU
1 (µ) =

EνQνe
ν − E0Y0
νQL

1

µ e−µ (1.5)

EU
1 (ν) =

EνQν

QL
1

− E0Y0
QL

1 e
µ

(1.6)

EU
1 = min

{
EU

1 (µ), EU
1 (ν)

}
(1.7)

where Eν is the QBER estimate for decoy states, and E0 = 0.5 is the vacuum error rate.

In our experiment, the parameters in equations (1.4) and (1.7) are estimated from

experimental data to obtain the asymptotic lower bound for the secret key rate per laser

pulse, R, as defined in equation (1.3). To obtain the secure key rate in bits per secoind, R

is multiplied by the output rate of the WCP source (see section 2.2).

Finite-Size Effects

The expression for the secret key rate per laser pulse given in equation (1.3) follows the

asymptotic-key formalist, in which the rate is calculated assuming the raw key is of infinite

length. This assumption is obviously unrealistic for QKD implementations with finite

resources. In practice, the raw key is broken up into blocks of certain size and the full

protocol is performed on each block of key (see chapter 3). With terrestrial links, Alice

and Bob can simply perform the quantum state exchange step until a sufficient amount of

raw key is established in order to form a large-enough block. With satellite links however,

the parties have only a limited time to establish a key, and significant losses in the channel

lead to short raw keys over a single satellite passage [18] (see section 5.4.2).

The topic of QKD security proofs with finite resources has only been studied re-

cently [19], and ongoing research continues to re-examine all protocols. Unfortunately,
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decoy-state protocols are one of those QKD schemes for which the finite-key analysis is

incomplete. Nevertheless, there have been several attempts at an approximate analy-

sis [14, 17, 20, 21].

Based on finite-size analysis for single-photon sources, current approximations [17, 20,

21] arrive at the following correction to equation (1.3)

R = qLµν
{
−Qµ ηEC (Eµ)H2 (Eµ) +QL

1

[
1−H2

(
EU

1

)]
−Qµ ∆(n)

}
(1.8)

where n is the number of bits in the raw key. ∆(n) is obtained as follows:

∆1(n) = 7

√
log2(2/ε̄)

n
+

2

n
log2(1/εPA) (1.9)

∆2(n) =
1

n
log2(2/εEC) (1.10)

∆(n) = ∆1(n) + ∆2(n) (1.11)

• ∆1(n) is a correction accounting for the smooth min-entropy of n bits [19, 20], which

is the first term in equation (1.9). The second term accounts for privacy amplification.

• ∆2(n) is a correction accounting for additional information leaked out during error

correction.

• The security parameters εEC and εPA are the failure probabilities of error correction

and privacy amplification respectively. The smoothing parameter, ε̄ comes from the

theory of smooth min-entropy and is optimized numerically [17] along with εPE.

In Cai and Scarani’s formalism [17], the maximum failure probability of the entire QKD

protocol is quantified by ε, and is equal to the sum of the failure probabilities for each step

of the protocol:

ε = εEC + ε̄+ nPE εPE + εPA (1.12)

where nPE is the total number of parameters which need to be estimated, and εPE is the

failure probability of the parameter estimation procedure. In a sense, ε is a global security

parameter (for the whole protocol) which can be set according to the cryptographer’s

failure tolerance requirements (e.g. ε = 10−6).
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Furthermore, in a real-world QKD implementation, all measured quantities will be

fluctuating to some extent, so the theoretical bounds might be incorrect if averaged values

are used in the formulas. In other words, another correction is necessary to account for

statistical fluctuations of the parameters involved in the calculation of Eve’s information.

Several authors [18, 21–23] resort to a simple solution, in which 10 standard deviations are

either added to or subtracted from each measured parameter so that the lowest possible

bound for the secure key rate is obtained.

One major problem with this argument is that the amount of fluctuation allowed by

the model has no direct relation to the security of the final key. Sun et al. [21] simply

claim that 10σ should be “good enough” because the probability that the parameters fall

outside the range (measured value ±10σ) is less than 10−25. Other authors [22, 23] also

tend to repeat the 10 σ assumption with no rigorous justification.

Here is a simple example relating to our experiment (see chapter 2) which demonstrates

that this approach might not be ideal. Our quantum receiver exhibits, on average, about 95

background events+dark counts per second. These counts follow a Poissonian distribution,

so the standard deviation is σ =
√

95 ≈ 9.7, and 10 σ ≈ 97. Hence, Y0 is either reduced to

0 or doubled if 10 standard deviations are subtracted or added respectively. The problem

is that, at very high channel loss (e.g. above 55 dB), our legitimate detection rates do

not go far above the background rates, and thus doubling Y0 essentially “cancels out” the

signal.

A better approach, based on the law of large numbers, is proposed by Cai and Scarani [17].

Suppose a parameter λ ∈
{
Qµ/ν , Eµ/ν , Y0

}
is estimated with a finite number m of samples.

Then the estimate λm differs from the ideal value λ∞ by at most δ(m, d):

|λm − λ∞| ≤ δ(m, d) ≡ 1

2

√
2 ln(1/εPE) + d ln(m+ 1)

m
(1.13)

where d is the number of outcomes from the measurement5 of λm. The upper and lower

bounds for each parameter are then given by

λU = min(λ+ δ, 1), λL = max(λ− δ, 0) (1.14)

As mentioned, this analysis still provides only an estimate of the finite-size effects on

the secret key rate. Note that each effect is treated separately and statistical fluctuations

are added-on at the end. So far, for decoy-state QKD, there has been no rigorous treatment

which considers statistical fluctuations from the onset of the security proof.

5A generalized measurement, which in quantum mechanics is performed with a positive-operator valued

measure (POVM) [17]. For example, d = 2 for qubit measurements.
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Figure 1.1: Illustration of QKD with a satellite used as a trusted node. An orbiting LEO

satellite allows locations A and B to communicate securely over a classical link (red) by

establishing a secret key with each location through a free-space QKD uplink.

1.3 Satellite-Based QKD

1.3.1 Motivation and Overview

Although QKD has been demonstrated experimentally and commercially deployed [24, 25],

current implementations are range-limited to quantum links of up to 260 km in optical

fiber [7, 26, 27] and 144 km over free-space [28]. Despite future technological advances, the

range of point-to-point terrestrial links is not expected to grow past 400 km [27]. Beyond

this distance, the signal-to-noise ratio of the quantum channel drops below practical values

due to transmission losses and decoherence effects. In fiber links for example, the loss

grows exponentially with distance [14]. Free-space links are limited by the the curvature

of the Earth, as well as by atmospheric transmission losses.

In classical communications systems, optical repeaters/amplifiers are commonly em-

ployed to periodically boost the classical signal along a long-distance link. Due to the

no-cloning theorem, they cannot be used for QKD. Instead, specially designed quantum

repeaters [29] are required for quantum signals. However, such repeaters require quantum
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memories in order to implement the entanglement swapping protocol—a procedure for

transferring the quantum properties of one quantum system (e.g. photon) onto another

via intermediate quantum teleportation steps. Quantum memories are unfortunately still

at the fundamental research stage and nowhere near the technological maturity [30] nec-

essary for practical QKD applications.

An alternative solution to this scalability problem is to deploy QKD over free-space

links to satellite platforms. Such orbiting intermediate nodes can then bridge multiple

local QKD networks [31, 32] on the ground in order to form a global QKD network. In

recent years, there have been several different proposals [28, 33–41] for satellite-based QKD

involving one or more spacecraft, in either geostationary Earth orbit (GEO) or low Earth

orbit (LEO), used as either trusted or untrusted nodes.

Even though multi-satellite proposals exist[42], initial proof-of-principle missions will

likely employ just one. One intuitive approach is to put a source of entangled photons on an

orbiting spacecraft and use a protocol such as BBM92 [43]. Conversely, if we preserve the

same triangular configuration and reverse the links, quantum uplinks from the ground could

be combined in a Bell state measurement [44] on the satellite, potentially demonstrating

device-independent QKD [45]. The advantage of these schemes is that the satellite does

not need to be trusted—an eavesdropper can be detected even if she has full control of

the satellite. The downside is that, to maximize the total key distribution distance and

elevation angles [18], the spacecraft needs to be placed far away from Earth, likely in

GEO. Such distances and associated losses are unfortunately not yet possible to overcome

technologically.

Alternatively, we can loosen the security requirement a bit and treat the satellite as a

trusted node. In that case, an LEO (altitude of up to 1000 km) spacecraft can establish

a secret key (e.g. via the BB84 protocol) with one or more ground stations as it orbits

around the Earth. In the simplest case, two distant locations A and B can establish a

secret key, X and Y respectively, with the satellite as illustrated in figure 1.1. For A and

B to share a key, the satellite needs to send (X ⊕ Y) to B (over the classical channel), so

that B can obtain X by using its key Y as follows:

(X⊕Y) ⊕ Y = X ⊕ (Y⊕Y) (1.15)

= X ⊕ 0 (1.16)

= X (1.17)

The above procedure essentially amounts to one-time pad encryption (the satellite encrypts

A’s key with B’s key) and decryption (see section 1.1).
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This trusted-node scheme is the most technologically feasible in the near term due to

the shorter free-space link compared to GEO (leading to tolerable channel loss) as well as

the overall reduced complexity (one link established at a time). Its main drawback is that

it is less secure—it requires that the satellite store the secret key obtained from location A

until the key with ground station B is established. Hence, extra precautions must be taken

to ensure that an eavesdropper cannot access the (classical) memory on the spacecraft.

1.3.2 The QEYSSat Mission Proposal

A number of satellite-based quantum communications missions [46–49] are currently under

development and expected to launch in the near future [47]. One such mission is the Cana-

dian Quantum Encryption and Science Satellite (QEYSSat) which envisions a photonic

uplink to an LEO microsatellite that acts as a trusted node for QKD and a platform for

fundamental quantum physics experiments [49, 50]. QEYSSat is a collaborative project

involving Canadian universities, the Canadian Space Agency (CSA) and several industry

partners (COM DEV, INO, Neptec).

The proposed spacecraft will carry a special “quantum payload” comprising a quantum

receiver (similar to the one described in section 2.3) capable of analyzing photon polar-

ization, as well as an integrated QKD data acquisition, processing and key management

system necessary to implement the trusted-node scheme illustrated in figure 1.1. The satel-

lite will receive photonic signals sent upwards from optical ground stations, while dedicated

RF stations nearby will provide two-way classical communication links. In the current pro-

posal, QEYSSat is based on COM DEV’s Advanced Integrated Microsatellite (AIM) bus

employed on a similar spacecraft, the Maritime Monitoring and Messaging Microsatellite

(M3MSat) [50].

An important consideration for this mission is the choice between a photonic quantum

uplink (source located on the ground) or downlink (source located on the satellite). De-

tailed analysis and simulations of each link scenario can be found in a recent publication

by Bourgoin et al. [18]. Most studies in the past have concentrated solely on downlink pro-

posals, based on the fact that uplinks suffer from additional loss induced by atmospheric

turbulence. The effects of turbulence on beam propagation are mostly negligible above the

first 20 km of Earth’s atmosphere [51], and hence, uplinks and downlink are affected dif-

ferently. In a downlink, turbulence is present only at the end of the transmission path and

has little impact on the light beam. For an uplink however, turbulence can be a significant

problem, which can be resolved by adaptive optics and/or a good choice of ground station

location [18]. Further details and analysis of all factors affecting beam propagation and

channel loss can be found in [18].
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On the other hand, an uplink implementation is very appealing from a practical point

of view. Current high-frequency photon sources are very complex, have relatively high

power requirements, and often require regular maintenance; all these factors make them

unsuitable (see appendix A) as a satellite payload. Conversely, a source on the ground

can be easily updated as technology progresses. This versatile design allows for different

types of sources to be used, and a range of quantum mechanics experiments to be per-

formed [52]. Furthermore, a quantum receiver is much simpler than a source and many

of its components, such as single-photon detectors, have already flown in space [53]. The

uplink scenario has many additional advantages owing to its reduced complexity and lower

storage, processing, and classical communications requirements (see chapter 4).

In the following chapters, this thesis presents some of the research conducted towards

feasibility studies of the QEYSSat mission. In particular, it focuses on the necessary data

processing algorithms (chapter 3) and their computing resource requirements (chapter 4)

on the satellite. It also details the design (chapter 2) and performance (chapter 5) of a

quantum optical apparatus used to demonstrate the feasibility of QKD with a satellite

uplink.
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Chapter 2

Experimental Apparatus Demonstrating

Satellite Uplink Feasibility

This chapter describes the experimental setup employed to model QKD with a satellite

uplink. Our experiment builds upon an earlier version of the apparatus, detailed in [15, 16,

54]. Its recent evolution includes the addition of a full quantum optical receiver, automated

polarization alignment, more realistic timing synchronization and the implementation of a

full QKD protocol.

Author contributions

Evan Meyer-Scott built and characterized the original photon source [16, 54]. Zhizhong

Yan developed the FPGA-controlled telecom intensity and polarization modulator [15].

Jean-Philippe Bourgoin and Brendon Higgins designed and constructed the new quantum

receiver. Thomas Jennewein and Brendon Higgins provided guidance and supervision

throughout the project.

My main contribution to this experiment was in efficient post-processing as described

in detail in chapter 3. I added more hardware for timing analysis and integrated the live

data streams coming from the source, receiver, time-taggers and GPS units into the QKD

software. I worked with Zhizhong Yan to analyze the polarization state distribution and

QBER stability of the telecom modulator (section 2.2.1), and I optimized the decoy-state

levels for better key rates. I performed the QKD experiment together with Jean-Philippe

Bourgoin, and analyzed the data using my newly developed QKD post-processing system

(see chapter 3).
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2.1 Overview

The quantum components of a practical QKD system typically consist of a quantum source,

a transmission medium (quantum channel) and a quantum receiver. Most discrete-variable

QKD implementations employ either a weak coherent pulse (WCP) source [7, 55–58], or a

source emitting entangled photon pairs [42, 59–63]. The quantum signals are transmitted

either over optical fiber [7] or over a free-space link [8] with direct line of sight between the

transmitter and the receiver. Quantum receivers typically incorporate two or more photon

detectors which are characterized by their detection efficiency (at a given wavelength) and

dark count rate1.

In the challenging case of a satellite uplink (see section 1.3), the quantum source is

required to have a very high repetition rate to overcome the considerable losses in the

free-space channel. In addition, the emitted photons should have short pulse widths to

enable accurate temporal filtering (see section 3.4). A decoy-state WCP source imple-

mented with a mode-locked laser, such as a titanium-sapphire (Ti:Sapph) laser, can satisfy

these requirements. However, this kind of source produces unwanted phase correlations be-

tween consecutive laser pulses, and thus violates an important assumption of QKD security

proofs [57, 64].

To overcome this shortcoming, our source has a hybrid design based on a process known

as sum-frequency generation (SFG) or upconversion in which the absorption of multi-

ple photons of lower energy (longer wavelength) results in the emission of higher-energy

(shorter wavelength) photons. As described in [15, 16, 54] and section 2.2.2, the source

combines two laser beams—one coming from a mode-locked Ti:Sapph laser at 810 nm, and

another generated by a continuous wave (CW) telecom laser operating at 1550 nm—to

produce photons at 532 nm. In this design, phase randomization is provided by the CW

telecom laser. Intensity and polarization modulation (section 2.2.1) is also accomplished

at the telecom band for which fast and reliable commercial modulation components are

readily available. The resulting wavelength (532 nm) of the output light is engineered in

such a way as to be suitable for single photon detectors with the best figure of merit [65].

The output photons are sent over a short (≈ 1 m) free-space channel with controllable

loss, which attempts to emulate the high-loss environment of a satellite uplink. After

the lossy link, the remaining photons are detected with our quantum receiver (section 2.3).

The receiver contains low-dark-count thin silicon avalanche photo diode (Si-APD) detectors

whose efficiency is optimal for photons of wavelength around 532 nm.

1A detector dark count is a false-positive detection event which is intrinsic to the detector and not

caused by external light.
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2.2 Weak Coherent Pulse Source

Our weak coherent pulse (WCP) source consists of two subsystems, an FPGA-controlled

intensity and polarization telecom modulator (section 2.2.1) and an upconversion com-

ponent (section 2.2.2). Both components work in unison to produce a pseudo-random

sequence of polarization states encoded in short, phase-correlation-free light pulses.

2.2.1 Modulation Subsystem

Our high-speed telecom modulation system is built with commercially available ectro-

optic (EO) amplitude and phase, lithium niobate waveguide modulators arranged in a

balanced Mach-Zehnder interferometer (MZI) configuration. As depicted in figure 2.1

(a), the polarization of the input light coming from a tunable CW telecom laser is first

manually adjusted (via FPC 1) so that each arm of the polarization beam splitter (PBS)

receives equal beam intensity. Before entering the insulated and temperature-controlled

box, the beam goes through the intensity modulator which implements signal and decoy

states (see section 1.2.2). Within the box, each MZI arm contains a phase modulator.

This configuration allows, for example, the control of the relative phase between H and V

polarizations produced when the two beams recombine at the polarization beam combiner

(PBC). Thus, any of the four polarization states (H, V, D or A) required for decoy-state

BB84 can be generated by applying a certain combination of voltage settings to the EO

phase modulators, while the signal/decoy levels are controlled by the voltage setting of the

intensity modulator.

The settings of all modulators are controlled by a field programmable gate array

(FPGA) driver circuit. The FPGA system clock is driven by an external 76 MHz TTL

signal derived from the mode-locked Ti:Sapph laser and a pulse shaping circuit. The dig-

ital encodings produced by the FPGA are translated to corresponding analog signals via

fast digital-to-analog converter (D/A) circuits. Finally, the analog signals are amplified by

three RF driving amplifiers (DRVs) which are DC coupled to the corresponding RF ports

(IM, PM A and PM B) on the EO modulators.

The FPGA is programmed to produce a pseudo-random sequence of polarization states

(H, V, D or A) in which the signal (µ = 0.5) or decoy (ν = 0.1) level settings of the average

photon number per pulse also vary in a pseudo-random way. Furthermore, decoy states

account for about 8% of the total number of modulated pulses. For timing synchronization,

the FPGA board periodically produces a single TTL signal indicating that 128 states have

been modulated. This signal is accurately timed-stamped by Alice’s time-tagging unit and
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Figure 2.1: (a) Schematic representation of the FPGA-controlled intensity and polariza-

tion telecom modulator from [15]. Yellow and blue lines represent standard single-mode

and polarization-maintaining fiber (SMF and PMF) respectively. Red × marks denote

FC/PC connectors. Manual fiber polarization controllers (FPC 1 and FPC 2) are located

at the input and output fibers. A mode-locked Ti:Sapph laser with repetition rate of

≈76 MHz drives the FPGA controller board, which in turn drives the intensity (IM), and

phase (PM A and PM B) modulators. (b) and (c) Photographs of the modulators and

polarization beam splitters/combiners (PBS/PBC) where (c) shows the interior of the in-

sulated box, temperature-controlled by a Thorlabs TC-200 controller, containing two phase

modulators, a PBS and a PBC.
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Figure 2.2: Generation of decoy-state BB84 states through upconversion of two pump laser

beams in a polarization-compensated PPKTP crystal pair. The 810 nm beam (marked red)

is produced by a pulsed Ti:Sapph laser, while the modulated 1550 nm beam (marked yellow)

originates from a CW telecom laser. The resulting photons (green) at 532 nm inherit

desirable properties from each pump source: the Ti:Sapph laser provides high repetition

rate and short pulse width, while phase randomization, and intensity and polarization

modulation are accomplished on the telecom side. Figure from [15].

is eventually used by the coincidence algorithm (see section 3.4) to generate matching pairs

of photon emission–detection events.

2.2.2 Upconversion Subsystem

Once the 1550 nm photon beam has been modulated (as per the previous section), it

is combined through SFG with another beam coming from a pulsed Ti:Sapph laser at

810 nm to produce upconverted green photons at 532 nm. The two laser beams are brought

together into two orthogonal type-I periodically-poled (PP) potassium titanyl phosphate

(KTP) crystals. The resulting upconversion process is illustrated in figure 2.2. Details on

how SFG works can be found, for example, in [54]. In accordance with our decoy-state

BB84 QKD scheme (section 1.2.2), the beam power of each pump laser is adjusted so that

the average photon number of the output pulses is around 0.47.

The main idea behind this hybrid design is to impart desirable properties from each

pump source to the resulting photons. As mentioned, the Ti:Sapph laser provides high

repetition rate and short pulse width, while the CW telecom laser ensures phase random-

ization. The polarization of the 810 nm photons coming from the Ti:Sapph is fixed at

+45◦, i.e. at the diagonal (D) state:
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Figure 2.3: System-level schematic of the WCP source as part of the overall decoy-state

BB84 QKD system. After Alice produces her desired photon states via telecom modulation

and upconversion, she measures 1% of the green photons for source characterization, dis-

cards 9% and sends the remaining 90% of upconverted photons over the quantum channel

where the loss is controlled through a movable lens. Bob then detects transmitted light

with the quantum receiver. Both parties communicate classically over the LAN. Figure

modified from [16, 54] with permission.
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Figure 2.4: A lens mounted on a translation stage allows for control of the loss in the

quantum channel by manipulation of the beam size. To the right, upconverted green

photons exit a coupler to the single mode fiber carrying the output beam. The quantum

receiver is located further away to the left.

|D〉 =
|H〉+ |V 〉√

2
(2.1)

Since the output intensity of the 532 nm photons depends linearly [66] on the input intensi-

ties of the 810 nm and 1550 nm photons, we can modulate the output beam by keeping the

Ti:Sapph intensity stable and using fast telecom modulators (see section 2.2.1) to modify

the polarization and intensity of the 1550 nm beam.

Figure 2.3 displays a system-level schematic of the WCP source as part of the overall

decoy-state BB84 QKD system. Alice prepares a sequence of photon states via telecom

modulation (figure 2.1) and upconversion (figure 2.2). The reference signal from the FPGA-

controlled modulation system is time-stamped by the time-tagger unit. The resulting time-

tags are transferred in real-time to Alice’s computer over USB where they are analyzed

(together with the ones from Bob) to produce the raw and sifted keys (see chapter 3).

Using two 90-10 fibre beamsplitters connected in series, Alice splits off and measures 1%

of the green photons for source characterization, discards 9% and sends the remaining 90%

of upconverted photons over the quantum channel to Bob. The loss in the quantum channel

is controlled through a lens mounted on a translation stage (figure 2.4). The position of the

lens determines the size of the light beam arriving at the quantum receiver (section 2.3).

Bob detects a very small fraction of this beam. After the quantum transmission, Alice and
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Figure 2.5: Schematic representation of our quantum receiver implementing measurement

of the BB84 polarization states: horizontal (H), vertical (V), diagonal (D) and anti-diagonal

(A). A wave plate triplet placed in motorized rotation stages is used for our automated

polarization alignment procedure.

Bob communicate classically over the local area network (LAN) to complete the classical

post-processing steps of the QKD protocol (see chapter 3).

2.3 Quantum Receiver

Once Alice has prepared and sent her quantum states with her WCP source as described

in section 2.2, Bob must measure the transmitted qubits to complete the quantum part of

the QKD protocol. Traditionally, QKD experiments implement Bob’s measurement with

optical elements arranged in a single plane on a breadboard. However, such configuration

is not very suitable for a satellite payload as it is not very compact. As a proof of concept,

our quantum receiver is built from commercially available components organized in a three-
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dimensional robust frame. It features spectral filtering, passive basis choice, automated

polarization alignment, and few moving parts. A design schematic of the receiver is shown

in figure 2.5 and photographs are provided in figure 2.6.

The quantum receiver is built with several Thorlabs cage systems. Each consists of four

6 mm-thick stainless steel rods which form a rectangular box or cage along the direction

of the optical axis. Each box is terminated on both sides by rigid square elements (with

30 mm or 60 mm sides) to which the rods attach. Optical components are mounted along

this structure [67]. The receiver is made up of three subsystems attached together to a

small (12 in × 6 in) breadboard:

• Telescope

• Polarization compensation unit

• Polarization measurement module (i.e. “Bob module”)

The telescope collects a small portion of the uncollimated input beam coming from the

source and reduces its diameter before passing it on to the polarization compensation unit.

The telescope consists of two lenses located at the extremities of a 60 mm cage. The large

lens has a 2 in diameters and a 250 mm focal length, while the small lens has a 6 mm

diameter and a 10 mm focal length.

The polarization compensation unit consists of a wave plate triplet: a half wave plate

(HWP) placed between two quarter wave plates (QWPs). The wave plates are mounted

on motorized rotation stages which are controlled by a Newport XPS Universal High-

Performance Motion Controller/Driver [68]. The triplet is employed in our automated

polarization alignment procedure described in section 3.5. In brief, this set of wave plates

can implement an arbitrary polarization correction and a change-of-basis for measuring

circular polarizations.

Bob’s polarization analysis module is used to measure incoming photons, and hence

to decode the quantum information they carry. As illustrated in figure 2.5, the quantum

state of each photon is collapsed to one of the four BB84 polarization states: horizontal

(H), vertical (V), diagonal (D) and anti-diagonal (A).

In the BB84 protocol, Bob needs to select which basis, H/V or D/A, to use for each

polarization measurement. Since we aim to have few moving parts, our receiver implements

the basis choice passively with a non-polarizing pentaprism beam splitter. In addition to

the standard two ports (which each receive ≈ 47.5% of the input beam), this custom beam

splitter has a third port which could potentially be used for beacon detection or for a

source going in the reverse direction.
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Figure 2.6: Photographs of the quantum receiver. The green arrows indicate the direction

of the input beam which enters the receiver through the telescope. The beam then under-

goes polarization compensation via the motorized wave plate triplet before it is analyzed

by the passive basis choice “Bob module”.

23



At each of the two main ports of the pentaprism, one for each measurement basis,

there is a 30 mm cage system containing a 5 mm polarizing beam splitter cube (PBS) and

a pair of perpendicular detection cage units. As shown in figure 2.6, to implement the

measurement in the D/A basis, the cage system at the straight-through (primary) output

of the pentaprism is rotated 45◦ around the optical axis. The measurement in the H/V

basis is accomplished at the secondary output.

Each of the detection cage units is terminated with a narrow-band filter (for spectral

filtering) and a thin silicon single photon avalanche diode (SPAD) module from Micro

Photon Devices (MPD) [69] attached to an X-Y translation stage for precise position

alignment. To focus the beam onto the 50 µm active area of the detector, a 50 mm focal

length lens is placed in front of each detector. At the output wavelength (532 nm) of our

WCP source, these detectors have a high figure of merit [65], H > 108, and hence they have

high detection efficiency (≈ 48%), low dark count rate (10-25 counts per second), and low

timing jitter (<100 ps) allowing for precise temporal filtering (see section 3.4). Detection

events from the SPAD modules are time-stamped with our fast time-tagging hardware

(see section 3.1) which has a timing resolution of 76 ps. Each time stamp (denoting when

the event happened) and channel information (indicating which detector was triggered)

is transferred out of the time-tagger over a standard USB link and read in by the QKD

software (see chapter 3).
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Chapter 3

Data Acquisition and Processing

Our QKD system consists of two main sub-systems traditionally named Alice and Bob. In

our setup, Alice is the “ground-station” component acting as the quantum source, while

Bob is the “satellite” component acting as the quantum receiver. Data are collected by

Alice and Bob via dedicated timing hardware (section 3.1). In addition to the time-tagging

infrastructure, computing facilities on each side are required to implement a full QKD post-

processing protocol (section 3.2). In a real system, there will be a ground-station server and

a low-power embedded computer onboard the satellite. In our lab system, two standard

x86-64 desktop computers are used on each side and the local area network (LAN) acts

as a classical communication channel (section 3.3). However, the desktop computer on

Bob’s side is only used to record the experimental data, while all the satellite-side data

processing is done by a low-power ARM-based board.

3.1 Data Acquisition Hardware

This project is done in partnership with DotFast Consulting, which is providing the hard-

ware, firmware and driver software used for time-tagging of significant events (e.g. photon

detections) with sub-nanosecond precision. Such precision is needed to correctly identify

corresponding events from the source and receiver systems within a very narrow time win-

dow (coincidence window). Good resolution is required for temporal filtering, to ensure

that a high signal-to-noise ratio for the quantum signal is obtained. The overall accuracy of

the event timestamps, or time-tags, is mainly affected by the jitter in the photon detectors

and the clock synchronization of the time-tagging devices at the source and the receiver.
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Figure 3.1: QKD data acquisition hardware in a NIM crate. Bob’s time-tagger (on the

left) attaches precise time-stamps to signals produced by the single-photon detectors in

the quantum receiver (section 2.3) and the GPS unit. Alice’s time-tagger (middle) is

connected to the second GPS unit, the FPGA modulator (section 2.2) and the adjacent

single-photon detector (SPD). Both time-taggers output their data streams (towards Alice

or Bob’s computer) via a standard USB link. On the right is a four-channel SPD used to

detect characterization photons split-off from the source as shown in figure 2.3.
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3.2 Post-Processing Protocol Overview

The quantum part of our QKD scheme ends when the source and the receiver finish ex-

changing quantum signals in the form of polarized photons (see section 1.2). The rest of

the QKD protocol is purely classical and is done in software. The software is designed to

perform the following general steps [1]:

1. Storage of time-tags and corresponding measurement results.

2. Exchange of timing information between Alice and Bob and extraction of coincident

photon detection events (coincidences). This step produces the raw key.

3. Exchange of basis information for each coincidence and sifting down to only those

events where the same polarization basis choice was made. The sifted key is produced.

This step and the previous are performed by the coincidence analysis algorithm, which

is described in detail in section 3.4.

4. Execution of a one-way error correction algorithm based on low density parity check

(LDPC) codes [70]. Bob computes his syndrome information and sends it to Al-

ice who performs belief propagation decoding [71, 72]. The error-corrected key is

produced. The LDPC error-correction algorithm is discussed in section 3.6.

5. Estimation of the quantum bit-error ratio (QBER) of the channel and execution of

Toeplitz matrix based [73] privacy amplification (see section 3.7) is performed by

Alice and Bob. This final step gives the final key.

3.3 Software Design

The design of the software follows the general rule that Alice must perform as many of

the computation-intensive tasks as possible, since the ground station can be made rich in

computing resources with relative ease. Hence, Alice must execute the timing analysis,

coincidence searching, sifting and belief propagation decoding algorithms. Alice is also

responsible for time-tag readout at a very high rate (the source rate, as seen in section 2.2,

is very high in an uplink scenario), as well as real-time display of statistics from the

experiment.

The design of our data acquisition and processing system is depicted in figure 3.2. It

consists of two time-tagger units, two x86-64 computers and an ARM board connected via

the local-area network (LAN). Each time-tagger unit is connected to the 10 MHz and one
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LAN/Internet

Classical Channel

Time-Tagger
1

Time-Tagger
2

GPS satellite(s)Alice Bob

Classical Communication

Authentication
supported

Large C# Program

  - Performs timing analysis/coincidence search
  - Performs QKD core functionality: 
    sifting, error correction, privacy amplification
  - Communicates with Bob over the classical

  

    channel
  - Performs as many of the computation-
    intensive tasks as possible

  - Keeps track of various statistics and logs

  - Displays live statistics from the experiment

  - Configures time-tagger unit and reads in data

Small C# Program

  - Configures time-tagger unit and reads in data
  - Runs an XML-RPC server providing a 

simplified API for time-tag readout

Efficient C program (separate process)

  - XML-RPC client for data readout
  - Optimized QKD core: 
    sifting, error correction, privacy amplification
  - Perform as few computation-intensive
    tasks as possible
  - Small client for classical communication

GPS Receiver
1

GPS Receiver
2

Photon Source Receiver
Quantum Signal

Figure 3.2: High-level software design. Alice’s software (which runs on relatively powerful

hardware) consists of an integrated solution written in C#, designed to perform as much

as possible the computationally intensive operations of the QKD protocol. Bob’s software

(which runs on modest low-power hardware) consists of a small C# layer handling platform-

dependent operations, acting in unison with an efficient C program that performs the

necessary portions of the QKD protocol at the receiver side.
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pulse-per-second (1 PPS) signals coming from a GPS receiver. The signals from the source

are connected to Alice’s time-tagger and the four outputs of Bob’s detectors are connected

to Bob’s time-tagger.

Alice’s software consists of a C# program originally based upon a software package writ-

ten by Chris Erven at IQC, which has been significantly modified/rewritten and greatly

expanded. It is currently capable of performing data recording, automated polarization

alignment (section 3.5), coincidence and sifting algorithms (section 3.4), LDPC error cor-

rection (section 3.6), privacy amplification (section 3.7) as well as displaying live statistics

from the experiment.

Bob’s software is separated into two components: a driving control environment and an

embedded component. The driving control component is written in C#. It is responsible

for all platform-dependent tasks, e.g. loading Windows time-tagger drivers, configuring

time-taggers, reading out time-tags and displaying live statistics in Windows widgets. With

our setup, we aim to simulate/estimate in some way the limited-resource environment

on the satellite. The actual satellite design is not yet established, so Bob’s embedded

software component needs to be implemented in a platform-independent way. It can then

be executed as a separate entity on the x86-64 desktop computer or on our low-power ARM

developer board. The embedded component is written entirely in C, which will allow it to

be easily ported to the platform of choice for the satellite mission. Ideally, we would have

preferred to use a single embedded system for Bob. However, the lack of Linux drivers for

the time-tagging hardware led us to adopt the present design. For better abstraction and

ease of implementation, the embedded component communicates with the environment

via remote-procedure calls (RPC). If needed, the RPC layer can be replaced by a more

appropriate mechanism, once the satellite bus design is finalized.

With this setup, we have been able to test the embedded code on an ARM-based devel-

oper board running a basic version of Linux. Since Bob’s embedded component runs in a

standalone process, its usage of computing resources can be accurately monitored. More-

over, the driving control environment component can keep track of the bandwidth used for

classical communication. The implementation of Bob’s software has been completed up to

and including the privacy-amplification stage of the protocol. We use this implementation

to guide our analysis of the computing requirements of Bob’s part of the QKD protocol.

Those are presented and thoroughly discussed in chapter 4.
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Figure 3.3: Screenshot of the software control panel at Alice (ground). Data rates at dif-

ferent channels of the time-tagger unit are displayed on the left, along with the time-tagger

status. The 4×4 matrix in the top middle displays the observed state characterization; the

numbers in blue represent the number of events when Alice and Bob’s state measurement

and basis choice coincide. The automated polarization alignment controls are located in

the top right corner. Below the running statistics such as QBER and channel loss is the

timing analysis panel, which displays the resulting coincidence histograms.
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Time-tag/Character Channel

...
...

1 27

9 27

5 27

7 27

1 27

3 27

. 27

17963731085 4

0 27

0 27

, 27

4 27

3 27

17983901285 2

2 27

8 27

. 27

7 27

4 27

3 27

18004666905 3

8 27

18007903317 1

, 27

N 27

, 27
...

...

Table 3.1: Sample data stream, collected from the experimental apparatus,

containing interleaved photon detection time-tags and serial messages. Serial

messages appear on channel 27, while channels 1 to 4 correspond to pho-

ton detections. Here, the data stream contains a section of the message:

$GPGGA,195713.00,4328.7438,N,08033.2876,W,0,07,00.0,00314.1,M,,,,*12 in the National

Marine Electronics Association (NMEA) 0183 message format
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3.4 Timing Analysis and Coincidence List Generation

Let us focus our attention to the problem of timing alignment of photon detection signals.

In our case, the source is producing quantum signals at rates of up to 76 MHz, while the

detection rates at the receiver usually vary from a few hundred counts per second up to

about 100 kHz depending on the loss in the quantum channel. The goal is to identify

exactly which photon emitted from the source corresponds to a given detection event at

the receiver. This task poses some practical challenges:

• Clock Rate Synchronization: Alice and Bob’s time-tagger clocks might not count

time at the same rate, leading to timing drifts.

• Frame Synchronization: Both time-taggers don’t start counting time at the exact

same instance, so Alice and Bob’s timing frames have an initial fixed offset.

• High Rate Periodic Source: The data acquisition hardware cannot operate at the

Ti:Sapph laser’s 76 MHz output rate.

• Variation in the Photons’ Time-of-Flight (TOF): In the lab, the photons’ TOF is

always constant, but in a real system the TOF will be continuously changing due to

the fast motion of the satellite (see figure 3.4).

To alleviate the unfeasibly heavy load on the time-tagger at the source, only one in 128

Ti:Sapph laser pulses is tagged. The signals in between are assumed to have been emitted

at regular intervals, that is, we assume that the laser’s period is stable for about 1.664 µs.

As discussed in section 2.2, the desired polarization and signal/decoy state of each pulse

in the known (only to Alice) sequence of 128 pulses is produced by the modulator.

For clock rate synchronization, the time-tagging units’ internal clocks are aligned to a

time-base signal of 10 MHz provided by a GPS receiver at each side. Frame synchronization

is achieved with the 1 PPS signal provided by the GPS receivers. Each GPS receiver also

supplies position data, which is used in conjunction with the time information to estimate

the distance between Alice and Bob, and hence, the TOF of the photons between the

source and the receiver.

As shown in table 3.1, the GPS time and position information is recorded within the

time-tagging system, thereby locking all time measurements to the time base of the time-

tagging system. This is important because the GPS data packet, containing position, speed

and direction of motion, and the corresponding time-stamp can be used to improve the
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Figure 3.4: Radial distance r(t) versus time plot (top) and corresponding timing offset

function δ(t) (bottom) for a “best” duration satellite pass [18] over Ottawa. Based on the

satellite’s radial distance data (top), the TOF of photons relative to an arbitrarily chosen

reference point (e.g. r0 = 500 km) gives the relative timing offset at each data point. A

smooth timing offset function δ(t) is obtained using a high-order polynomial fit (as shown

here), or an even more precise satellite-orbit model. An offset δ(ti) can then be added to

each time-tag ti coming from Bob’s time-tagger.
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orbit prediction, and hence, to calculate the TOF of photons to an error of at most 100 ns.

The main source of error is the jitter in 1 PPS signals coming from the GPS receiver.

Moreover, timing signals sent over a beacon laser to the satellite can be recorded on the

time-tagging system on the ground and the satellite, and provide additional information

about the TOF of optical signals. It is expected that this optical time-transfer can be

accurate to about 50 ns. Depending on the power budget and the bandwidth of the

beacon link, this accuracy might be significantly better (less than 1 ns).

3.4.1 Coincidence Algorithm

In our current lab system, photon detections are accurate to 78 ps, but 1 PPS signals are

accurate to 100 ns. Thus, additional analysis is required to identify corresponding emission

and detection events to within a desired coincidence window of about 0.3 ns to 2 ns. The

algorithm for alignment of photon detections at the satellite receiver with signals sent from

the ground source is a computationally expensive task. It is therefore best to assign it to

Alice on the ground. The algorithm is based on the timing information from Bob’s time-

tags, Alice’s transmitted photon states, Alice and Bob’s GPS timing and position data,

as well as a small subset (≈5%) of Bob’s measured outcomes. Sampling Bob’s outcomes

is necessary to identify the correct offset, because the WCP source currently employed

is periodic with a period of approximately 13 ns (as mentioned, the 1 PPS signals are

accurate to 100 ns).

Our implementation employs a histogram-based optimizing coincidence search within

a predefined time range (about 100 ns wide). Moreover, the information from the sampled

outcomes also comes in handy during the error correction stage of the QKD protocol (see

section 3.6). As discussed in section 1.3, all detection events are stored on the satellite

while it flies over an optical station and are only downloaded to the ground station server

when the satellite flies over an RF station. It is therefore essential that the coincidence

algorithm is executed in parallel on multiple frames, each frame containing a second’s worth

of data. The challenge becomes to distribute the data evenly among multiple computing

tasks/threads, without disrupting the temporal order of the frames. Our solution is to

assign an index to each frame:

Iframe = UTCsecond (mod Nq) (3.1)

Here, UTCsecond is the “seconds” field of the Coordinated Universal Time (UTC) time-

stamp contained in the GPS data packet and Nq is the total number of processing queues

on the ground. Each queue is serviced by a C# Task [74], the CoincidenceTask, which in
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our case is mapped to a physical thread by the operating system (Windows 7). Since both

Alice and Bob have access to the GPS data packet, they can easily compute Iframe for

each frame and thus establish the correct ordering. Alice processes the frames in parallel

as soon as they arrive, while Bob requests the results from the queues in a round-robin

fashion. Each coincidence task

1. Generates a coincidence histogram as shown in algorithm 3.1.

2. Finds the correct peak from the histogram. As seen in figure 3.5, coincidence peaks

appear every 13 ns, matching the period of the Ti:Sapph laser. Only one peak has

the correct offset and QBER estimates from the previous step are needed to identify

it. This procedure is outlined in algorithm 3.2

3. Performs basis sifting. With the unbiased BB84 protocol (see section 1.2), about half

of the coincident events are discarded due to basis mismatch.

4. Generates the coincidence lists for Alice and Bob. Each list contains indices of the

emission/detection events which make up the sifted key. Bob’s coincidence list is

enqueued on the correct output queue. Bob can then receive the list over the classical

channel.

5. Performs decoy-state analysis and parameter estimation.

Algorithm Complexity

Even though the coincidence algorithm is performed on the ground, it needs to be suf-

ficiently efficient so that timing data is processed as soon as it is downloaded from the

satellite. Recall that all post-processing has to be accomplished within the duration of

the satellite pass over an RF station. The scalable parallelization (as discussed earlier) of

the coincidence algorithm ensures that its runtime can be reduced by simply adding more

CPU cores.

It is also important to analyze the overall complexity of processing one frame of data.

From algorithms 3.1 and 3.2, it can be seen that the runtime is linear in the number of

Bob’s time-tags. To show this result, let us define the following parameters treated as

constant factors:

• hs = histogram span [seconds]

• hb = histogram bin size [seconds]
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Algorithm 3.1: Coincidence histogram generation

Data: Two arrays of of timing and basis information, corresponding GPS data

packets and “1 PPS” signals for Alice and Bob

Result: A coincidence histogram, each column/bin storing a list of coincidences,

(emission, detection) event pairs, and estimated QBER

1 startShift = AlicePPS − BobPPS

/* the histogram span is the size of the time window covered by the

entire histogram, much larger than the coincidence window */

2 minShift = startShift − histogramSpan

3 maxShift = startShift + histogramSpan

4 foreach time-tag bi in Bob’s time-tag array b do

/* a0 is the first time-tag in Alice’s time-tag array a */

5 minIndex = (bi + minShift − a0) / sequencePeriodMax

6 j = minIndex

7 while all possible offsets for bi are accounted for in the histogram do

8 for k from 0 to sequenceLength do

9 AliceTag = aj + k ∗ sequencePeriod / sequenceLength

10 shift = AliceTag − bi

11 if shift < minShift then

/* shift is outside the left (negative offset) boundary of

the histogram */

12 k = k + (minShift − shift) / (sequencePeriod / sequenceLength)

13 end

14 else if shift > maxShift then

/* shift is outside the right (positive offset) boundary

of the histogram */

15 break (while loop)

16 end

17 else

/* update histogram bin (coincidence matrix, QBER

estimate, coincidence list) for that offset */

18 UpdateHistogram (shift, i, k)

19 end

20 end

21 end

22 end
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Algorithm 3.2: Coincidence peak finding

Data: A coincidence histogram as produced by algorithm 3.1, the size of the

coincidence window

Result: A subset of the histogram bins forming the correct coincidence peak, in the

form of a HistogramPeak object (optimalPeak)

/* Group consecutive histogram bins based on the coincidence window to

create all possible HistogramPeak objects. At creation, the offset

of a HistogramPeak is computed from a weighted average of the bin

counts */

1 peakSize = coinWindow / histogramBinSize

2 for i = 0 to (histogramLength − peakSize) do

3 peakList.Add(HistogramPeak(i, peakSize, histogram))

4 end

/* Sort the list of HistogramPeak objects by number of coincidences */

5 peakList.Sort()

6 topFraction = coinWindow / TiSapphPeriod

/* The first (topFraction ∗ peakList.Length) HistogramPeak objects in

the sorted peakList now contain the TiSapph peaks which repeat

periodically as seen in figure 3.5 */

7 optimalPeak = peakList[0]

8 minQBER = 1

9 for i = 1 to (topFraction ∗ peakList.Length) do

10 if peakList[i].qber < minQBER then

/* The optimal peak is the one with the smallest QBER */

11 optimalPeak = peakList[i]

12 minQBER = peakList[i].qber

13 end

14 end

15 return optimalPeak
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Figure 3.5: Coincidence histograms at different channel loss levels. Each column in a

histogram represents the number of time-tags having a given timing offset. Note the

significant drop of SNR as the loss in the channel increases and detection events due to

background light become more and more pronounced. Nevertheless, even at 60 dB, the

coincidence algorithm is able to correctly identify the peak (in light blue). This is an

example of temporal filtering.
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• w = coincidence window size [seconds]

• Nb = number of detection events at the receiver (Bob) per one second frame

• Ls = length of repeating pseudo-random sequence

• Tlaser = Period of Ti:Sapph laser

Then the complexity of algorithm 3.1 (step 1)

Θ

(
Ls

⌊
hs

Tlaser

⌋
Nb

)
(3.2)

The complexity of algorithm 3.2 (step 2) is

Θ

(⌊
w

hb

⌋⌊
hs
hb

⌋
log

⌊
hs
hb

⌋)
(3.3)

Steps 3 and 4 consist of simply iterating through all (≤ Nb) coincidence pairs, so the

complexity is Θ(Nb). Finally, step 5 takes constant time.

Thus, the overall complexity (per frame of data) of the coincidence algorithm is Θ(Nb).

Multiple frames are processed in parallel depending on the number of available CPU cores.

3.5 Automated Polarization Alignment

Author Contributions

Brendon Higgins developed the polarization analysis (utilizing existing quantum state to-

mography code written by Nathan Langford) and compensation optimization protocol.

With Brendon’s help, I implemented the motorized stage control software, the alignment

control sequence and time-tag mode synchronization, thereby integrating the automated

polarization alignment procedure into the QKD software.

3.5.1 Overview

As discussed in section 1.2 our QKD scheme employs photon polarization to encode quan-

tum information. A practical problem arises from the fact that the quantum source (sec-

tion 2.2) and receiver (section 2.3) do not necessarily share the same polarization reference

frame. Earth’s atmosphere itself is not birefringent [75, 76] (i.e. it does not substantially
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Investigate a straightforward protocol. Characterize then compensate:

Characterize and compensate

This simplest approach requires compensation at the receiver. (We will see 

shortly that it can be reversed.)

Unknown Polarization Rotation

Source Receiver

Characterization

Compensation

Figure 3.6: Schematic of the automated polarization alignment procedure. The source

produces known polarization states which are then subject to an unknown rotation. The

rotation is characterized through measurements of the received photons. Appropriate com-

pensation is then applied to correctly align the polarization reference frames of the source

and the receiver.

modify photon polarization), however the many optical fibers which are used to guide light

throughout the source can significantly alter photon polarization. Moreover, fiber bire-

fringence is affected by temperature [77], so any change in the lab temperature ultimately

affects the alignment between the source and the receiver. Thus, continuous operation of

the experiment necessitates regular “tuning” of the alignment.

To resolve this problem, we have developed an automated procedure to characterize

and compensate the relative rotation between the two polarization reference frames, as

depicted in figure 3.6. Unlike other implementations which employ an independent strong

laser signal [78], our protocol relies solely on the photon detection statistics of the known

sequence of states prepared by the modulator (as described in section 2.2).

3.5.2 Characterization

The characterization step essentially reduces to quantum state tomography of photon po-

larization qubits [79], a common tool in experimental quantum mechanics and quantum

information processing. Our goal is to best estimate the unitary operator corresponding

to the unknown polarization rotation. The unknown rotation can be represented as an

arbitrary SU(2) unitary U of the form:

U =

[
eiα cos θ eiβ sin θ

−e−iβ sin θ e−iα cos θ

]
(3.4)

If the input polarization state (in density operator form) is ρ, then the state produced by
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the action of the unknown rotation is given by

ρ′ = UρU † (3.5)

As discussed in section 2.2, the source prepares a sequence of known polarization states,

so we have full knowledge of ρ. The idea is to perform measurements on ρ′ in order to

estimate the real-valued angles α, β, and θ which fully describe U . This approximation

is accomplished with maximum likelihood estimation on measurement statistics from an

overcomplete set of outcomes: horizontal (H), vertical (V), diagonal (D, +45◦ from hor-

izontal), anti-diagonal (A, −45◦ from horizontal), right-circular (R), and left-circular (L)

polarizations.

3.5.3 Compensation

Once the unitary is characterized, a set of compensation optics (see section 3.5.4) is used to

implement the inverse of the unitary, thereby canceling out the relative rotation. Similar

to the unknown polarization rotation U , the compensation operation can be represented as

an SU(2) unitary operator, C. Taking into account the action of C, the measured photon

polarization state becomes

ρ′ = CUρU †C† (3.6)

Hence, we want to find C which satisfies CU ≈ I, the identity rotation. If this condition

is met, the output state ρ′ will closely approximate the original input state ρ.

3.5.4 Experimental Implementation

To implement this two-step protocol experimentally, we need to

• Perform measurements in the circular basis, as required for the characterization step

(section 3.5.2). This functionality is not readily provided by the polarization analysis

module in the quantum receiver (section 2.3).

• Compensate for any given polarization rotation, as required for the compensation

step (section 3.5.3).

Both of the above requirements can be fulfilled by a small set of wave plates. In particular,

we employ a sequence of quarter-wave plate (QWP), half-wave plate (HWP), and QWP.

As shown in figure 2.5, the wave plate triplet is placed in motorized rotation stages and
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located at the quantum receiver, just prior to the measurement. This triplet can implement

an arbitrary polarization rotation and can also be used to achieve a change-of-basis for

measuring circular polarizations.

With this setup, the characterization process is done in two stages: linear polarization

measurements are taken first, followed by measurements in the circular basis. The com-

pensation operation C is fully determined by the rotation angles of the three wave plates:

φ1, φ2, φ3. We estimate the angles with an optimizing search over a range of values for φ1,

φ2, φ3, where we maximize the fidelity between ρ and ρ′. The alignment optimizer is imple-

mented as a stand-alone executable written in C. The QKD software invokes this analysis

program, providing measurement statistics, and obtaining optimal wave plate angles.

To preserve the correct binning of measurement outcomes, we designed a simple set of

modes which Bob applies as special bit-masks to each time-tag. Alice then interprets the

bit-masks and displays the measurement statistics accordingly. Those time-tag modes are:

• QKD mode: the standard operation mode of the experiment.

• POLN LINEAR mode: polarization alignment in progress, measurements of linear

polarizations.

• POLN CIRCULAR mode: polarization alignment in progress, measurements of cir-

cular polarizations.

Below is the full alignment control sequence from Alice’s point of view. She is the one

in control of the protocol, while Bob is programmed to simply follow her commands.

1. Turn the wave plates to their calibrated optic axis positions, in order to measure

linear polarizations.

2. Send a message telling Bob that the experiment is in POLN LINEAR mode.

3. Wait until the CoincidenceTask collects enough data in this mode.

4. Turn the wave plates for measurement of circular polarizations. This is accomplished

by rotating the second QWP by 45◦.

5. Send a message telling Bob that the experiment is in POLN CIRCULAR mode.

6. Wait until the CoincidenceTask collects enough data in this mode. When done, go

back to QKD mode

42



7. All the counts are summed up and the stand-alone optimizer is invoked. If the

optimizer succeeds, set the wave plates to their optimal values; otherwise, revert to

their original values.

8. Send a message telling Bob that the experiment is back to the regular QKD mode.

It is also important to exclude detection events recorded while the wave-plates are

rotating. For this purpose, the stage control task at Bob sends messages to the data

acquisition task telling it when the wave-plates started and stopped moving, and a special

INVALID mask is applied to the time-tags during rotation.

Note that only the measurement and motorized stage rotation is performed at the

receiver end. Bob only has to transmit his measurement statistics (which reduce to a 24

32-bit integers) to Alice on the ground. There, it is processed as outlined above and the

compensation settings (φ1, φ2, φ3) are transmitted back to the receiver.

Integrating this automated alignment procedure into the QKD software has significantly

improved our ability to achieve low QBER at various loss regimes. Manual alignment is

close to impossible at high loss due to the low SNR and high sensitivity to background

light. Furthermore, some form of automated polarization alignment will be crucial in

future experiments with moving receiver (eventually on a satellite), since in those cases,

the orientation of the reference frames as well as the loss in the quantum channel will be

varying with time.

3.6 Error Correction

The next step in the QKD post-processing protocol (section 3.2) is error correction. The

broad topic of coding theory is a field in itself and has been studied extensively, especially

in the classical world. This section provides a brief overview of error correction in QKD

and focuses on our specific implementation employing low-density parity-check (LDPC)

codes. We found that LDPC codes are very suitable for satellite-based QKD due to low

communication overhead and the inherent asymmetry in the amount of processing required

at each side.

3.6.1 Overview

After transmission of quantum signals over the free-space quantum channel, Alice and

Bob establish their respective raw keys. Those keys are not identical as they contain
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Figure 3.7: Schematic representations of the binary symmetric channel (BSC). The noise

vectorN follows a Bernoulli(1−q, q) distribution. As shown on the right, q is the probability

of a bit-flip error, i.e. the crossover probability. In our error correction model, Bob on the

satellite is assumed to have the error-free sifted key X, while Alice on the ground holds

the “noisy” sifted key Y which needs to be corrected to match X (based on some limited

information about X).

several types of errors. Intrinsic errors due to basis mismatch are eliminated by the sifting

procedure which in our implementation is incorporated into the coincidence algorithm

(section 3.4). Without the presence of an eavesdropper, the remaining errors are caused by

the unavoidable imperfections in the physical realization of the quantum source, channel

and measurement. Some examples of these are:

• Imperfections in the state preparation procedure at the source (section 2.2). Small

fluctuations in the laser spectra and modulator voltage settings as well as room

temperature variations cause the source to sometimes produce incorrect states.

• Polarization reference frame misalignment is only approximately corrected with the

automated polarization algorithm (section 3.5).

• At the receiver, imperfect polarizing beam splitters, detector dark counts and stray

background light can lead to accidental coincidences.

An eavesdropper can also cause discrepancies in the key, however, Alice and Bob have

no way of distinguishing between different error sources. For security reasons, they must

assume that all key disparities are due to eavesdropping. Note that in order to compensate

for key errors, it is not necessary to perform quantum error correction [80, 81], even though

such a scheme (albeit impractical in this case) could potentially be implemented. Alter-

natively, the communication channel1 is modelled as a classical binary symmetric channel

1Here, the term communication channel does not refer to the physical medium for information trans-

mission, but rather to the information theoretic statistical model consisting of input, {x}, and output,
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(BSC) [82] with crossover probability q = QBER as shown in figure 3.7. An important

difference from classical coding theory is that the transmitter does not encode informa-

tion in “codewords” which (in a classical scenario) are typically transmitted over the noisy

channel and decoded at the receiver. Instead, we assume that Bob (the receiver) already

holds a “correct” version of the key, while Alice (the transmitter) attempts to reconcile her

key. During this key reconciliation process, partial information about Bob’s key is revealed

over the classical channel.

Nevertheless, Shannon’s channel coding theorem [83], also known as the noisy-channel

coding theorem, still applies in this context. It sets a fundamental upper bound on the key

rate as well as a lower bound on the amount of information (about Bob’s key) which needs

to be disclosed in order to correct the key. Error correcting codes are generally ranked

based on their efficiency, denoted ηEC(q), which specifies how well they perform relative to

the channel capacity, C = maxp(x) I(X : Y ). For example, a value of ηEC(q) = 1 indicates

that the code can achieve the optimal key rate (i.e. the code operates at capacity), while

ηEC(q) > 1 implies that the code rate is below the Shannon limit and additional information

needs to be leaked out to successfully correct the key. Shannon’s coding theorem also tells

us that a value of ηEC(q) < 1 is unfeasible. Apart from their efficiency, error correcting

codes are also evaluated based on their classical communication requirements (which is

generally related to their interactivity) and their computational complexity for each party.

The most common error correction algorithm employed in QKD until recently has been

the Cascade protocol. It is first proposed in an early form in [84] and fully developed by

Brassard and Salvail [85]. Further optimizations are explored in [86, 87]. Cascade is an

iterative, interactive reconciliation protocol. At each round, Alice and Bob divide up their

sifted key into blocks (the choice of block length has been the main area of optimization).

They proceed to compute and communicate their block parities. In the case of a parity

mismatch—implying an odd number of errors—they recursively perform binary search on

smaller and smaller blocks to locate one error, all along exchanging parities over the classical

channel. With that error corrected, subsequent rounds may uncover further disparities.

This cascading search is the underlying reason for the Cascade name. The number of

iterations is chosen in such a way as to keep the probability of residual errors below a small

threshold [85]; a number of rounds under 20 is usually sufficient.

The optimized Cascade protocol has an acceptable efficiency in the range (1.14, 1.22],

dependent on the QBER [88]. However, it suffers from several other shortcomings which

make it impractical for long-distance links with limited classical communication capabili-

ties, as is the case with satellite-based QKD. As mentioned, Cascade is very interactive,

{y}, alphabets and a transition probability matrix p(y|x) for each element of the two.
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so its real-world performance is strongly dependent on the latency of the classical channel.

To make matters worse, the number of required interactions increases with the QBER and

so does ηEC(q) as seen in figure 4 in [88]. Furthermore, Cascade is a symmetric procedure,

i.e. both parties go through the same steps, so it requires equal amount of data processing

resources at each end. This symmetry is not an obstacle in ground implementations, but

may be problematic for satellite links.

In an effort to do away with some disadvantages of Cascade, Buttler et al. [89] proposed

Winnow—a different reconciliation algorithm which attempts to apply techniques from

coding theory in the context of QKD. Winnow is significantly less interactive than Cascade

as it eliminates the binary search step. Similarly to Cascade, both parties divide their key

into blocks and exchange the parities. In the case of a parity mismatch, instead of binary

search, Alice and Bob compute Hamming’s syndromes [82] which are used to identify

the location of an error within a block. Some optimizations relating to the block length

choice are discussed in [90]. Even though Winnow eases the bandwidth requirement for

the classical channel, it suffers from worse efficiency ηEC(q) compared to Cascade.

More recently, QKD commercialization has led to increasingly higher key rates and a

pursuit for faster and more efficient error correction. A powerful tool in the modern coding

theory toolbox, forward error correcting codes, such as LDPC codes, have been adapted for

use in QKD with great success. Good codes have been obtained which perform very close

to the Shannon limit [88, 91] with ηEC(q) < 1.1, taking full advantage of the advancements

in the broader field. LDPC codes, discussed in detail in the next section, also turn out

to be well suited for satellite links because of their low communication overhead and the

ability to perform most of the processing at one side of the channel.

Author Contributions

I designed and implemented our LDPC-based error correction protocol based on published

research by Elkouss [88, 91, 92], Martinez-Mateo [93–95], Pearson et al. [71, 96] and many

other unpublished LDPC resources publicly available on the Internet. I modified Hu et

al.’s open-source Progressive-Edge Growth (PEG) software [97, 98] and employed it for

parity-check matrix construction. I significantly enhanced and optimized the C# decoder

developed by Chris Erven [99], which was in turn based on the Matlab code provided by

Philip Chan in his Masters thesis [100].
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3.6.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were first proposed fifty years ago by Gallager [101]

but did not gain traction due to the limited hardware capabilities at the time. It was

not until MacKay and Neal [70] rediscovered them in 1997 that LDPC codes became

more popular. They have recently been widely adopted for classical communication and

optimized for a variety of classical channels. This increased interest was due to MacKay

and Neal [70] showing that LDPC codes are in fact capacity-approaching, i.e. they can

perform close to the Shannon limit, similar to the much more complex turbo codes invented

in 1993 by Berrou et al. [102].

In the context of QKD, LDPC codes were first introduced by Pearson et al. [71, 96]

at BBN Technologies as part of the DARPA network, where Cascade proved to be very

impractical over long distances with high key rates. Other QKD experiments [10, 72]

and commercial implementations [24, 25, 103] have followed suit. Recent work by Elk-

ouss [88, 91, 92] and Martinez-Mateo [93–95] has dramatically improved the codes’ achiev-

able efficiency, reported in [88] to be as low as ηEC ≈ 1.02 (only 2% from the Shannon

limit) for some QBER values.

As implied by their name, LDPC codes are linear2 block codes which are fully specified

by a low-density, binary M ×N parity-check matrix H with entries

Hij ∈ F2 = {0, 1}. (3.7)

The sparse parity-check matrix H is used to compute an M -bit syndrome

s = Hx (mod 2) (3.8)

where x is Bob’s N -bit sifted key (column) vector. Each syndrome bit si contains parity

information from the corresponding parity-check equation (see section 3.6.4) defined by

the ith row of H.

The LDPC error correction protocol employed in our high-loss QKD experiment is

comprised of the following steps:

1. Alice at the “ground station” prepares a parity-check matrix H as discussed in sec-

tion 3.6.3. She then transmits H in a compact form to Bob over the classical channel.

2. For each block in his sifted key, Bob on the “satellite” efficiently computes an array

of syndromes (section 3.6.4) and streams it down to Alice.

2In classical coding theory, a binary block code C(n, k) with block length n, dimension k and size

|C| = 2k is linear if C is a k-dimensional subspace of the n-dimensional binary vector space (F2)n, i.e.

C(n, k) ⊆ (F2)n.
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3. Alice attempts to reconcile her sifted key assuming that Bob’s sifted key is “correct”.

For each N -bit block of sifted key, Alice’s goal is to resolve Bob’s key vector x, based

on her key vector y, Bob’s syndrome s, the parity-check matrix H, and the QBER

estimate from the coincidence analysis step (section 3.4). To accomplish this task,

Alice employs a procedure known as belief propagation—an iterative message passing

decoding algorithm which is described in section 3.6.3.

All of the above steps are integrated into the QKD software (section 3.3), however, due

to the limited capabilities of the computer used at Alice, the error correction procedure

is done offline (i.e. not in real time). Furthermore, it is interesting to note that, in the

context of QKD, we assume that all communication performed over the classical channel is

error-free. Hence, the classical channel implementation (e.g. an RF link) must guarantee

that this condition is met by possibly employing standard classical error correcting codes.

3.6.3 Ground-Side Processing

Following our architectural principle of offloading hard computations to the ground station

server, we have assigned Alice the tasks of constructing an LDPC matrix and syndrome

decoding. Those are both computationally expensive tasks which are fortunately quite

suitable for parallelization and hardware acceleration.

Parity-Check Matrix Design

As mentioned, an LDPC code is described by a parity-check matrix H. As depicted in

figure 3.8, H can be conveniently visualized with a Tanner [104] graph, an undirected

bipartite graph in which each edge connects a key node3 kj (representing a bit in the sifted

key) with a check node ci representing a set of bits from the key used in the corresponding

parity-check equation. For example, assume Bob has a 6-bit sifted key vector

x =



x1

x2

x3

x4

x5

x6


(3.9)

and H is as given in figure 3.8. Then, the parity-check equations producing the 4-bit

syndrome s are

3The key nodes are also commonly referred to as “message”, “bit” or “symbol” nodes in the literature.
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parity-check matrix key nodes 

Figure 3.8: Tanner graph representation of a parity-check matrix H. A key node (gray

circle) represents a bit in the sifted key block vector. A check node (square) is connected

to all key nodes involved in a given parity-check equation (corresponding to a row of H).

The number of ones in H is equal to the number of edges in the graph.

s1 = x2 ⊕ x4 ⊕ x5 (3.10)

s2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 (3.11)

s3 = x1 ⊕ x4 ⊕ x6 (3.12)

s4 = x3 ⊕ x5 ⊕ x6 (3.13)

where ⊕ signifies addition modulo 2 (equivalent to the binary XOR operation). Thus, we

can easily observe that the number of edges in the Tanner graph corresponds to the number

of non-zero entries in H.

The degrees (i.e. the number of incident edges) of the vertices in the graph determine

the degree distribution of the code. If the degrees of all key and check nodes are respectively

constant, i.e. deg(kj) = dk and deg(ci) = dc for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, then

the code is (dk, dc)–regular, and hence there are dk ones in each column and dc ones in

each row of H. The parameters dk and dc are commonly referred to as the column weight

and the row weight of H respectively. Randomly generated, regular LDPC codes were

the first studied [70], however, irregular ones with carefully selected non-constant degree

distributions have been shown to have better performance [105].

A family of irregular LDPC codes is generally specified with two generating polynomi-
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als [91, 95, 105]:

λ(x) =

dmax
k∑
j=2

λjx
j−1 ,

dmax
k∑
j=2

λj = 1 (3.14)

ρ(x) =

dmax
c∑
i=2

ρix
i−1 ,

dmax
c∑
i=2

ρi = 1 (3.15)

where 0 ≤ λj ≤ 1 is the fraction of edges (in the Tanner graph) incident to key nodes

of degree j, and 0 ≤ ρi ≤ 1 is the corresponding fraction for check nodes. Also, dmax
k =

maxj{deg(kj)} and dmax
c = maxi{deg(ci)} are respectively the maximum key and check

node degrees.

In the context of QKD, the rate of the code is equal to the ratio of unrevealed key bits

to the total number of bits per block. There are M rows in H, which correspond to M

parity-check equations. Hence, a total of M sifted key bits are revealed per block and the

code rate is given by:

R =
N −M
N

(3.16)

The coding rate of a family of LDPC codes can also be expressed in terms of the corre-

sponding degree distributions [91, 95]:

R = 1−
∑dmax

c
i=2 ρi/i∑dmax
k
j=2 λj/j

(3.17)

More importantly, for the case of our channel model (figure 3.7), the rate is closely related

to the code’s efficiency and the QBER:

ηEC(q) =
1−R
H(q)

(3.18)

where H(q) is the binary Shannon entropy

H(q) = −q log2 q − (1− q) log2(1− q) (3.19)

Good LDPC code families for the BSC are published in [91, 95, 105], where the authors

employ genetic algorithms called density evolution [106] and differential evolution to search

for optimal degree distributions. Table 3.2 presents a subset of these distributions (with

slight modifications) at various code rates which are used in our experiment. According

to table 3.2 and equation (3.18), codes can be selected based on how closely their rate

corresponds to the QBER estimate for a predefined efficiency value.
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Rate λ(x)

0.40 0.18175x+ 0.14733x2 + 0.05443x3 + 0.07073x4 + 0.06869x6 + 0.13514x8

+ 0.15958x34 + 0.18235x39

0.50 0.15967x+ 0.12187x2 + 0.11261x3 + 0.19087x4 + 0.07706x9 + 0.33792x24

0.55 0.16880x+ 0.20994x2 + 0.18095x5 + 0.03846x14 + 0.02635x15 + 0.23454x17

+ 0.05815x18 + 0.08280x30

0.60 0.11653x+ 0.12565x2 + 0.10851x3 + 0.05342x4 + 0.07272x6 + 0.03479x7

+ 0.07299x8 + 0.07526x17 + 0.11712x31 + 0.22301x44

0.65 0.10451x+ 0.15652x2 + 0.08057x3 + 0.00056x4 + 0.12151x8 + 0.10485x12

+ 0.10719x14 + 0.00771x20 + 0.31656x50

0.70 0.09169x+ 0.17141x2 + 0.06839x3 + 0.12052x4 + 0.18747x10 + 0.20828x27

+ 0.15224x29

0.80 0.09420x+ 0.18088x2 + 0.11972x5 + 0.08550x6 + 0.09816x7 + 0.07194x16

+ 0.34960x25

0.90 0.07689x+ 0.28096x2 + 0.08933x4 + 0.19620x6 + 0.30631x7 + 0.05031x11

Table 3.2: Generating polynomials corresponding to optimized degree distributions for

different code rates, slightly modified from [91, 95].
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A major challenge for satellite-based QKD is the limited length of the sifted key pro-

duced over a single satellite pass [18]. Finite-size effects [19] aside, this limitation restricts

the efficiency of LDPC codes since most optimization schemes assume infinite block lengths.

As seen in chapter 5 and [18], the achievable sifted key length over a single satellite pass is

around 20, 000 to 100, 000 bits, while good efficiencies have been reported for block sizes

in the order of 106 [91]. Large block sizes are beneficial because the sum-product decoding

algorithm (discussed later on) operates optimally over Tanner graphs without any cycles;

as the block length is finite, this condition is impossible to satisfy. Intuitively, the length

of the smallest cycle in the Tanner graph, i.e. the girth of the graph, should be as large as

possible [95].

Progressive Edge-Growth Matrix Construction

For small block sizes, randomly constructed parity-check matrices have a much greater

chance of containing many small cycles in their Tanner graphs. To solve this problem, Hu

et al. [97, 107] proposed an efficient construction procedure—the progressive edge-growth

(PEG) algorithm—which takes a combinatorial approach to produce large-girth Tanner

graphs. As its name suggests, the PEG algorithm progressively (i.e. edge-by-edge) creates

edges between key and check nodes [97]. PEG is a greedy algorithm in the sense that each

step aims to maximize the local girth of the subgraph containing the currently considered

key node. However, in [97], Hu et al. also outline a non-greedy version of the algorithm in

which a desired target girth value for the resulting Tanner graph can be specified.

The PEG algorithm takes as inputs the block size n (i.e. the number of key nodes) and

the key node degree distribution λ(x) given by equation (3.14), such as the distributions

found in table 3.2, to produce a key-node-degree sequence. The algorithm then repeats the

following two steps until the desired number of edges have been created [95, 97]:

1. Subgraph Expansion: Starting from a key node kj, the subgraph is expanded such

that the key node is connected to the most distant check node. Check nodes produc-

ing short cycles are detected and avoided, and a set N l

kj
of candidate check nodes

producing long cycles is created. N l
kj

is the set of check nodes reachable from the

key node kj after subgraph expansion up to depth l.

2. Edge-Selection: Update N l

kj
according to the key-node-degree sequence and by se-

lecting candidate check nodes with the lowest degree.

An improved version of this algorithm is presented in [94] where the check node degree

distribution ρ(x) given by equation (3.14) is also taken into account.
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Our QKD software incorporates a modified version of Hu et al.’s open-source PEG

parity-check matrix construction software [97, 98] employing the optimal degree distribu-

tion profiles shown in table 3.2. The PEG construction has significantly improved the

performance of our LDPC codes with moderate block lengths around 30, 000 to 50, 000

bits. However, for block sizes under 30, 000, a major difficulty becomes to produce ma-

trices corresponding to Tanner graphs without cycles of length four; yet, still satisfying

the desired degree distribution profiles as given in table 3.2. Intuitively, as the size of the

parity-check matrix is increased, the degree distribution profile constraints become easier

to satisfy, because the required number of edges grows linearly with the block size, while

the total number of entries in H grows quadratically.

Belief Propagation Decoding

Recall that according to the protocol described in section 3.6.2, after Alice has produced

a PEG-generated parity check matrix, H, and Bob has computed and sent down his syn-

drome, s, Alice needs to reconcile her key, y, so that it matches Bob’s key, x. The

reconciliation is accomplished with a syndrome decoding algorithm which takes H, s and

y as inputs and, when successful, produces an estimate, x̂, of Bob’s key.

The most straightforward way to proceed is to use maximum-likelihood decoding, where

the decoder aims to maximize Pr(X = x̂|Y = y) and hence the probability that x̂ = x

(see figure 3.7). Unfortunately, given our channel model, there is no known efficient (i.e.

polynomial-time) algorithm to accomplish this task. In fact, general maximum-likelihood

decoding is an NP-complete problem for the BSC [95, 108].

Alternatively, Gallager [101] suggests the use of message-passing decoding algorithms

which have been shown to work efficiently when the codes have sparse parity-check matri-

ces. Message-passing algorithms are iterative algorithms in which messages are propagated

between key and check nodes (and vice versa) along the edges of the Tanner graph. When

the messages contain probabilities (or beliefs), the technique is called belief propagation [95].

For LDPC decoding, the most common belief propagation implementation is known as the

sum-product algorithm, described in detail in [70]. In the context of QKD, Pearson [71]

proposed a small change to this algorithm in order to impose additional parity constraints.

A review of the sum-product decoding algorithm for QKD is presented below following

notation similar to [70, 100] and [95].

Define the following index sets:

Ni = {j | H(i, j) = 1}, i ∈ {1, . . . ,M} (3.20)

Mj = {i | H(i, j) = 1}, j ∈ {1, . . . , N} (3.21)
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Hence, Ni indicates which bits from Bob’s sifted key vector x participate in the ith parity-

check equation, as determined by the non-zero entries in the ith row of H. Conversely,

Mj specifies which parity-check equations incorporate the key bit xj, as determined by

the non-zero entries in the jth column of H.

Let p0 and p1 be initial (a priori) probability vectors such that

ptj = Pr(xj = t|yj), t ∈ {0, 1} (3.22)

and observe that

p1j = 1− p0j (3.23)

Similarly, q0 and q1 are the final (pseudo-posterior) probability vectors produced by the

decoding algorithm.

Furthermore, Q0 and Q1 are two matrices storing the messages going from key to check

nodes. Each message Qt
ij (t ∈ {0, 1}) contains the probability that xj = t based on the

information from the parity-check equations in Mj\{i}. Correspondingly, the matrices

R0 and R1 store the messages passed in the opposite direction—from check nodes to key

nodes. Each message Rt
ij (t ∈ {0, 1}) contains the probability that the ith parity-check

equation is satisfied given that xj = t is fixed and the probability distribution

{Qt
ij′ | j′ ∈ Ni\{j}} (3.24)

for the remaining key bits is separable [70].

The sum-product algorithm has an initialization stage followed by two sequential message-

passing steps, which are executed iteratively until successful decoding or until a predefined

number of iterations has been reached.

1. Initialization: Suppose the initial QBER estimate is q, then p0 and p1 are initialized

as

∀t ∈ {0, 1}, ∀j ∈ {1, . . . , N}, ptj =

 1− q if yj = t

q if yj 6= t
(3.25)

Also, the initial messages from key to check nodes are set to

∀t ∈ {0, 1}, ∀j ∈ {1, . . . , N}, ∀i ∈Mj, Qt
ij = ptj (3.26)
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2. Horizontal step: The decoder calculates the probability messages going from check

to key nodes. Let

Qδ = Q0 −Q1 (3.27)

then the following probabilities are computed:

∀i ∈ {1, . . . ,M}, ∀j ∈ Ni, Rδ
ij = (−1)si

∏
j′∈Ni\{j}

Qδ
ij′ (3.28)

∀i ∈ {1, . . . ,M}, ∀j ∈ Ni, R0
ij =

1 +Rδ
ij

2
(3.29)

∀i ∈ {1, . . . ,M}, ∀j ∈ Ni, R1
ij =

1−Rδ
ij

2
(3.30)

where Rδ is a sparse matrix storing intermediate results, and si is the ith bit in Bob’s

syndrome, s. In equation (3.28) the sign of Rδ
ij is changed whenever si = 1. This is

the modification for QKD suggested by Pearson [71].

3. Vertical step: The decoder calculates the probability messages going from key to

check nodes as follows:

∀t ∈ {0, 1}, ∀j ∈ {1, . . . , N}, ∀i ∈Mj, Qt
ij = αij p

t
j

∏
i′∈Mj\{i}

Rt
i′j (3.31)

Next, the pseudo-posterior probability vectors are computed:

∀t ∈ {0, 1}, ∀j ∈ {1, . . . , N}, qtj = αj p
t
j

∏
i∈Mj

Rt
ij (3.32)

where αij and αj are normalization factors which are added to ensure that

∀j ∈ {1, . . . , N}, ∀i ∈Mj, Q0
ij +Q1

ij = 1 (3.33)

and

∀j ∈ {1, . . . , N}, q0j + q1j = 1 (3.34)

4. Termination Condition: Based on the pseudo-posterior probabilities obtained in

equation (3.32), the estimate, x̂, of Bob’s key is subsequently updated:

∀j ∈ {1, . . . , N}, x̂j =

 1 if q1j >
1
2

0 if q1j ≤ 1
2

(3.35)
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The algorithm terminates with SUCCESS if Alice’s syndrome matches the syndrome

obtained from the estimate x̂, i.e. when

Hy = Hx̂ (3.36)

If the maximum number of iterations has been reached and the above condition is

not satisfied, the algorithm terminates with FAILURE. Otherwise, a new iteration

begins at the horizontal step.

Note that it is not necessary to store H itself as the index sets Ni and Mj al-

ready contain the full information given by the parity-check matrix. The six matrices

Q0, Q1, Qδ, R0, R1, Rδ are sparse (with non-zero entries in the same locations as H), and

Ni,Mj indicate the positions of the non-zero entries across all of them.

In our QKD software, the sum-product decoder can be run in parallel on multiple

blocks of sifted key, in a way similar to the coincidence algorithm (section 3.4.1). The

computational complexity per block scales linearly with the block length, because H is

sparse and the row weights are kept under a small constant value (usually less than 50).

3.6.4 Satellite-Side Processing

On the satellite, the required computation is minimal—as desired. All Bob needs to do is

compute his syndromes after obtaining H from Alice on the ground. This operation can

be accomplished with a simple matrix multiplication:

s = Hx (mod 2) (3.37)

However, this computation does not take advantage of the sparseness of H.

There is a more efficient way to calculate the syndrome if H is stored in the adjacency

list format. The procedure is presented in algorithm 3.3. Since the row weights of H

never exceed a small constant value, the innermost foreach loop in algorithm 3.3 executes

a bounded number of iterations. Thus, the computational complexity per block scales

linearly with the block size.

Another benefit of this approach is that Alice does not need to transmit the full matrix

H to the satellite. Following the notation from the previous section, Alice effectively sends

Bob only the N index sets Mj containing the non-zero entries in each column j of H.
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Algorithm 3.3: Efficient syndrome computation

Data: A binary parity-check matrix H represented in the adjacency list format, a

binary vector x storing a block of sifted key

Result: A binary vector containing the syndrome s = Hx

/* Initialize s to a 0-filled vector */

1 s = 0

/* adjList[j] holds a list of indices i for which H[i, j] = 1 */

2 for j = 1 to x.length do

3 if x[j] == 1 then

4 foreach index i in adjList[j] do

5 s[i] = s[i] XOR 1

6 end

7 end

8 end

9 return s

3.7 Privacy Amplification

If the information reconciliation step described in section 3.6 terminates successfully, Alice

and Bob share the error-corrected key

kEC = x̂ = x (3.38)

However, kEC is only partially secure, since some information might have been leaked out

to the eavesdropper, Eve, either during the quantum signal exchange (as evidenced by the

QBER which we must attribute to Eve) or during error correction, where we assume that

all parity information is known to Eve.

A procedure known as privacy amplification [109–111] is employed to reduce Eve’s

partial information about kEC. As depicted in figure 3.9, privacy amplification consists

of applying a compression function f to the partially-secure, error-corrected key kEC to

produce a provably secure key kF of length L < N , where N is the key block size. The

length L of the final secure key is the subject of study of QKD security proofs [19, 64,

112, 113] as discussed in section 1.2. Due to finite-size effects, N needs to be kept above

a certain value (usually on the order of 105) and that has to be taken into account when

selecting a hash function.

Privacy amplification is unfortunately a symmetric procedure which needs to be per-

formed by both parties. Thus, a great amount of work has gone into reducing its complexity.
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Figure 3.9: Privacy amplification in general. After the error correction step, Alice and Bob

randomly choose a common compression function f , which is applied to the reconciled key

kEC to produce the final secure key kF of length L < N .

3.7.1 Two-Universal Hash Functions

There are several considerations when selecting the hash function

f : {0, 1}N → {0, 1}L (3.39)

Firstly, f needs to be chosen such that Eve’s information about kF is reduced below some

infinitesimal value. In Shor-Preskill’s[64, 112] and Scarani-Renner’s[19, 113] formalisms,

the key can be secured by a special family of functions called two-universal hash func-

tions [1, 114].

Definition 1. A family of functions

F = {fr | r ∈ N, fr : A→ B}

is two-universal if

Pr{fr(x) = fr(x̂)} ≤ 1

|B|
, ∀ x 6= x̂ ∈ A

Two-universal hash functions are used for privacy amplification in the following way:

1. After the information reconciliation step, Alice and Bob share the error-corrected

key kEC and Eve has an estimate k̂EC.

2. Alice and Bob choose f from the two-universal set and communicate it publicly.

They then share a shorter final key kF = f(kEC).
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3. Eve’s estimate k̂F = f(k̂EC), has a very low probability of coinciding with kF, since

by two-universality (definition 1),

Pr(kF = k̂F) ≤ 1

2L
(3.40)

Thus, Eve has the same chances of obtaining the key as if she chose randomly from

the set {0, 1}L of all potential final keys [1].

Note that f must be chosen randomly with uniform probability from the set of two-universal

hash functions after the measurement, so that Eve cannot adapt her eavesdropping strat-

egy.

3.7.2 LFSR Implementation

When QKD post-processing is done with limited resources, major considerations for the

choice of hash function are the computational complexity and the amount of classical com-

munication required. In our QKD implementation, the privacy amplification procedure

roughly follows the methodology outlined in [114], however, we made some modifications

to their model (which had some inaccuracies) and developed a different matrix multiplica-

tion procedure presented in algorithm 3.4. In brief, we employ the Toeplitz matrix [115]

construction implemented efficiently with a linear feedback shift register (LFSR).

Definition 2. A diagonal-constant matrix or Toeplitz matrix is a matrix which has

constant descending left-to-right diagonals. An L×N Toeplitz matrix can be written in the

following form:

Tr =



rL rL+1 . . . . . . . . . . . . rN+L−2 rN+L−1

rL−1 rL
. . . . . . rN+L−3 rN+L−2

... rL−1
. . . . . .

...
...

r2
...

. . . rL rL+1 rN−2

r1 r2 . . . rL−1 rL rL+1 . . . . . . rN−1


L×N

In [73], Krawczyk shows that Toeplitz matrices are in fact two-universal hash functions.

Note that the Toeplitz matrix Tr above is completely defined by the (N +L−1)-bit vector

r = (r1, r2, . . . , rN+L−1) (3.41)
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so there is no need to store Tr or to transmit the entire matrix over the classical channel.

Thus, these matrices are very suitable for privacy amplification.

A simplification to the construction in definition 2 is proposed by Hayashi et al. [116,

117]. It has been shown that a matrix of the following form

Hr = (IL|Tr) =



1 0 . . . . . . 0 rL rL+1 . . . . . . . . . . . . rN−2 rN−1

0 1
. . .

... rL−1 rL
. . . . . . rN−3 rN−2

... 0
. . . 0

...
... rL−1

. . . . . .
...

...
...

. . . 1 0 r2
...

. . . rL rL+1 rN−L−1

0 . . . . . . 0 1 r1 r2 . . . rL−1 rL rL+1 . . . . . . rN−L


(3.42)

i.e. a concatenation of an identity matrix IL and a Toeplitz matrix Tr, is also two-universal,

however, it requires only N − 1 bits to define.

Using the streamlined Toeplitz construction from equation (3.42), we have implemented

the following privacy amplification protocol:

1. After the information reconciliation step, Alice generates a random binary string

r = (r1, r2, . . . , rN−1) (3.43)

of length N − 1.

2. Alice transmits r over the classical channel to Bob.

3. Alice and Bob use r and an LFSR to compute the final secure key

kF = Hr kEC (3.44)

as described in figure 3.10 and algorithm 3.4.

Note that step 3 involves the same amount of computation on the satellite as on the

ground, and hence, it could potentially create a bottleneck on the satellite. Fortunately,

the matrix multiplication in equation (3.44) can be implemented with efficient bitwise

operations and an LFSR. Figure 3.10 depicts our implementation graphically. The full

procedure is given in algorithm 3.4.
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Algorithm 3.4: LFSR-based privacy amplification

Data: Error-corrected key vector kEC, (N − 1)-bit random binary string r. Both

stored in 32-bit unsigned integer arrays. The final key length L.

Result: Final key vector kF = Hr kEC

1 temp = 0, kF = 0

2 numLFSRUnits = (N-L)/32

3 for i = 1 to numLFSRUnits do

4 lfsr[i] = r[L/32 + i]

5 temp = temp + LookupBitCount ( lfsr[i] AND kEC[L/32 + i] )

6 end

7 if ( 1 AND kEC[1] ) 6= 0 then

8 temp = temp + 1

9 end

10 if ( temp MOD 2 ) 6= 0 then

11 kF[1] = 1

12 end

13 for i = 2 to numLFSRUnits do

14 temp = 0

15 sbit = GetNextInputBit (r)

16 for j = 1 to numLFSRUnits do

17 fbit = 0

18 if ( lfsr[j] AND 0×80000000 ) 6= 0 then

19 fbit = 1

20 end

21 lfsr[j] = lfsr[j] LSHIFT 1

22 lfsr[j] = lfsr[j] OR sbit

23 sbit = fbit

24 temp = temp + LookupBitCount ( lfsr[j] AND kEC[L/32 + j] )

25 end

26 if ( (1 LSHIFT (i MOD 32)) AND kEC[i] ) 6= 0 then

27 temp = temp + 1

28 end

29 if ( temp MOD 2 ) 6= 0 then

30 kF[i] = kF[i] OR (1 LSHIFT (i MOD 32) )

31 end

32 end

33 return kF
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input 

Figure 3.10: LFSR-based implementation of Toeplitz matrix multiplication.

Definition 3. A linear feedback shift register (LFSR) is a shift register in which the

input bit is a linear function of the register’s previous state.

The main idea behind our memory-constrained privacy-amplification implementation

is to never store full matrices. The identity portion of each row of Hr = (IL|Tr) takes up

no space and can be accounted for with a simple AND operation (see algorithm 3.4). We

represent the Toeplitz matrix Tr, which is embedded in Hr from equation (3.42), as an

(N − L)-bit logical LFSR. Initially, the LFSR contains the bit vector

rinit = (rL, rL+1, . . . , rN−1) (3.45)

and the remaining bits from r are used as input for the LFSR

rinput = (rN−L−1, rN−L−2, . . . , r1) (3.46)

Since (N − L) bits cannot fit in a single register, the logical LFSR is broken up into

multiple 32-bit LFSR blocks as illustrated in figure 3.10. Each block is designed to fit

inside a register on a processing unit. The register size of 32 is chosen because that number

is widely supported across multiple platforms including our low-power ARM test board.

64-bit platforms are also available, and with single instruction, multiple data (SIMD)

extensions, the register can be as large as 128 bits. The only drawback to using larger

registers is that the granularity is reduced, as the values of N and L need to be multiples

of the register size.
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After initialization, algorithm 3.4 computes each row of the multiplication Sr kEC by

performing a bitwise AND of each LFSR unit and the corresponding section of kEC, while

keeping track of the bit count (implemented with an efficient table lookup). Each row of

Sr produces a bit in the final key. For the next row, all LFSR units are shifted. The first

unit gets an input bit from rinput and all other units get a feedback bit from their leftmost

neighbor as shown in figure 3.10. The process continues until no more bits are left in rinput.

Nevertheless, this is still an Θ(N2) algorithm. However, the constant is very small, on the

order of 1
4000

.

Tsurumaru [114] suggests a further optimization which can be applied, assuming that

both parties are able to quickly compute fast Fourier transforms (FFTs). It consists of

embedding the Toeplitz matrix Tr from definition 2 in a circulant matrix Cr and breaking

up the multiplication as described in [118]:

k
′

F = Cr k
′

EC (3.47)

= F−1F Cr F
−1F k

′

EC (3.48)

= F−1 diag(Fr)F k
′

EC (3.49)

where k
′

EC is just kEC padded with zeros at the bottom to match the dimensions of Cr.

Similarly, the desired result of the computation, i.e. kF, is found in the top L bits of k
′

F.

In terms of complexity, this approach is faster as it runs in time Θ(N log2N). However,

it requires access to an FFT engine. FFT can be implemented without hardware acceler-

ation, but it still requires floating-point support, which was something we did not want to

assume. Hence, we stuck with the Θ(N2) algorithm which works well with smaller block

sizes due to the small constant factor (see chapter 4).
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Chapter 4

Post-Processing Resource Requirements

Important practical consideration for the implementation of a QKD receiver on a satellite

platform are the computational resource requirements of the satellite-side QKD protocol

as well as the communication bandwidth needed to accomplish all classical post-processing

steps. The software stack implementing the QKD protocol (chapter 3) is designed in such

a way that computing resource requirements and network bandwidth usage can be accu-

rately estimated. Estimates of the computing resources required onboard the satellite are

discussed in section 4.1. Classical communication requirements are provided in section 4.2

4.1 Satellite-Side Resources

Recall that in the proposed uplink scenario discussed in section 1.3, optical signals are sent

from the ground when the satellite orbits over an optical ground station, while classical

communication is performed (at a later time) when the satellite orbits over one or more RF

ground stations. Hence, the satellite system needs to store all time-tags accumulated during

the optical station flyover, and then perform all steps of the QKD protocol during an RF

station flyover (when a classical communication link is present). The estimates described

in sections 4.1.1 and 4.1.2 assume that each flyover lasts approximately 5 minutes.

4.1.1 Memory Requirements

In terms of memory requirements, Bob must store: time-tags, measurement basis, photon

detections (stored as bit values), LDPC matrix, and the privacy amplification Toeplitz

matrix [115] which is efficiently implemented with a shift register [73]. Full details of our

protocol implementation are provided in chapter 3.
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Parameter Value Unit

Time-tag precision 78 picosec

Time register width 34 bit

Channel register width 3 bit

Total bits per time-tag 37 bit

Total with byte alignment 40 bit

Duration of measurement 300 sec

Maximum received average time-tag rate 100 kHz

Maximum total memory usage 150 Mbyte

Table 4.1: Memory requirements for time-tag storage.

Data Storage

The time-tagging hardware (see section 3.1) produces time-tags of size up to 64 bits.

However, to save memory (and classical communication traffic) it is possible to reduce that

number significantly, at the expense of additional computation steps. One simple scheme is

to store the full time-tag only at the beginning of every second of data collection, together

with additional information provided by the GPS receiver (which outputs a data packet

every second). The memory requirements for this scheme and supporting parameters are

provided in table 4.1.

Error Correction

Our one-way error correction scheme is based on low-density parity check (LDPC) codes

(see section 3.6). Its advantage is a significant reduction of computation steps on the

satellite and a reduction in classical communication. On the satellite side, an M by N

sparse parity check binary matrix needs to be stored. It is applied to parts of the key

(blocks of size N) to produce syndrome vectors of size M . Thus, the size of the matrix

varies based on the choice of block size N and the channel QBER, q. From Shannon’s

channel coding theorem [83] applied to the binary symmetric channel [82], we can deduce

a closed form estimate of the size of the LDPC matrix based on the QBER [88],

M = NηECH(q) (4.1)

Here, ηEC is the error correction efficiency and H is the binary entropy function.
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Parameter Value Unit

Sifted key rate 40 kHz

Sifted key buffer 1.5 Mbyte

Block size, N 40000 bit

Error correction efficiency, ηEC 1.2

QBER, q 0.07

Syndrome length, M 14296 bit

Maximum row weight, Wr 100

LDPC parity-check matrix 5.7 Mbyte

Total (maximum) memory usage 7.2 Mbyte

Table 4.2: Memory requirements for error correction. This memory usage can be signifi-

cantly reduced at the expense of worse error correction efficiency and hence lower final key

rate.

We can efficiently store the sparse parity check matrix in the adjacency list format

where only the indices of each non-zero element in each row are stored. There are at most

WrM such indices, and each index is stored in at most 32 bits. Sample numbers are shown

in table 4.2. Note that the block size N can be made significantly smaller at the expense

of possibly increasing the value of ηEC (i.e. by having worse error correction efficiency).

Privacy Amplification

In this final stage of the QKD protocol, Bob on the satellite receives a random binary string

of length equal to the length N of the sifted key. Then he uses an LFSR to implement a

Toeplitz matrix (as discussed in section 3.7) and applies it to his key. Due to the efficient

matrix implementation, at most N bits need to be stored per block. Thus, the total

memory usage based on the parameters indicated in table 4.2 would be 40 kbit.

Total Memory Requirements

Summarizing the estimates above, the total maximum memory required for QKD on the

satellite computer is about 157 Mbyte. Therefore, the recommended total system memory

should be at least 256 Mbyte. This number will ultimately depend also on the memory

requirement of the on-board operating system. Based on the survey in appendix A of state

of the art space-grade computing hardware, this memory requirement is well within our

current technological capabilities.
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Type of operation Asympt. number Estimate Estimated number of

of operations of constant operations per second

Comparison O(n) 5 500,000

memcpy O(n) 1 100,000

Logical AND/OR O(n) 2 200,000

Assignment O(n) 5 500,000

Addition/Subtraction O(n) 3 300,000

Total operations O(n) 16 1,600,000

Table 4.3: Worst-case computational requirements for time-tag processing, where n is the

raw key rate.

4.1.2 Computing Requirements

The current state of the satellite-side software (Bob) allows us to obtain estimates of the

number of operations required to perform QKD. The estimates are provided in terms of

asymptotic analysis of the underlying algorithms. Exact numbers in terms of clock cycles or

number of basic instructions per second will be highly dependent on the specific processing

architecture used for the onboard computer. Our implementation currently runs both on

a standard x86 desktop computer, and on a low-power embedded ARM platform.

Time-Tag Processing

The processing of time-tags is a linear algorithm, so it is only dependent on the total

number of detected time-tags. To estimate the number of operations per second, we assume

a raw key rate of 100 kHz. Worst-case estimates of the number of operations are given in

table 4.3.

Sifting

Sifting is also a linear process. It is dependent on the sifted key rate, which is assumed to

be at most 40 kHz. Worst-case estimates are shown in table 4.4.

Error Correction

The error correction algorithm (see section 3.6) on the satellite side consists of multiplying

a sparse binary matrix (the LDPC parity check matrix) by a binary vector (a block of
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Type of operation Asympt. number Estimate Estimated number of

of operations of constant operations per second

Comparison O(m) 4 160,000

Addition/Subtraction O(m) 3 120,000

Bit shift O(m) 1 40,000

Logical AND/OR O(m) 2 80,000

Assignment O(m) 5 200,000

Total operations O(m) 15 600,000

Table 4.4: Worst-case computational requirements for sifting, where m is the sifted key

rate.

Type of operation Asympt. number Estimate Estimated number of

of operations of constant operations per second

Comparison O(WrN) 100 4,000,000

Logical XOR O(WrN) 50 2,000,000

Assignment O(WrN) 50 2,000,000

Total operations O(WrN) 200 8,000,000

Table 4.5: Worst-case computational requirements for error correction. M ×N is the size

of the LDPC parity check matrix H. Wr < 100 is the maximum row weight of H.

sifted key). As discussed in section 4.1.1, the size of the matrix (M ×N) depends on the

QBER and the desired error correction efficiency according to equation (4.1). Assuming

parameter values as indicated in table 4.2 and the sparse-matrix multiplication procedure

described in algorithm 3.3, we obtain the computational estimates shown in table 4.5.

Privacy Amplification

Our privacy amplification implementation (section 3.7) is based on a hashing algorithm

with Toeplitz matrices [115] which is implemented with a shift register [73, 119]. The

hashing algorithm operates on the error corrected key of size N . The resulting final key

length L depends on several factors (QBER, error correction efficiency, sifted key length).

In practice, L < N
2

for our loss levels.

Using parameter values as in table 4.2, we obtain the privacy amplification estimates

in table 4.6.
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Type of operation Asympt. number Estimate Estimated number of

of operations of constant operations per second

Comparison O( (N − L)L ) 1/32 12,500,000

Addition O( (N − L)L ) 2/32 25,000,000

Bit shift O( (N − L)L ) 1/32 12,500,000

Logical AND/OR O( (N − L)L ) 3/32 37,500,000

Assignment O( (N − L)L ) 6/32 75,000,000

Total operations O( (N − L)L ) 13/32 162,500,000

Table 4.6: Worst-case computational requirements for privacy amplification (assuming a

32-bit computing architecture). N is the error-corrected key length, L is the final key size.

Total Computational Requirements

Based on the above estimates, the overall worst-case computational requirement of the

QKD protocol for the satellite receiver is approximately 173 million operations per second.

Different architectures/compilers might translate these operations into a different number

of basic processor instructions, but experience suggests that for these requirements to be

satisfied a clock speed of at least 750 MHz is necessary.

4.2 Classical Communication Requirements

Any QKD system requires a reliable classical channel to execute all post-processing steps.

In a satellite-based scenario, classical communication bandwidth is a very important factor.

When designing our concept system, we aimed to minimize the uplink (ground to satellite)

bandwidth as it is expected to be quite limited for a small satellite. Downlink (satellite to

ground) bandwidth is expected to be reasonable.

To evaluate the communication requirements of our post-processing system (chapter 3)

at different possible key rates, experimental data is collected (using the apparatus described

in chapter 2) for 300 seconds at a receiver detection rate of about 150 kHz. A subset of the

data is then used to produce lower key rates in the range we expect to find for satellite-

based QKD. Specifically, each one second chunk of data is truncated accordingly to achieve

the desired raw key rate. The full QKD protocol is then performed on the resulting data

subsets and detailed uplink and downlink bandwidth statistics are collected and recorded.
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Parameter Value Unit

Time-tag precision 78 picosec

Time register width 34 bit

Channel register width 3 bit

Total bits per time-tag 37 bit

Total with byte alignment 40 bit

Duration of measurement 300 sec

Maximum average received time-tag rate 100 kHz

Time to stream 100k time-tags (2 Mbit/s link) 2 sec

Time to stream 100k time-tags (5 Mbit/s link) 0.8 sec

Time to stream 5 min worth of time-tags (2 Mbit/s link) 600 sec

Time to stream 5 min worth of time-tags (5 Mbit/s link) 240 sec

Table 4.7: Communication requirements for the transmission of raw time-tags from the

satellite to the ground.

4.2.1 Downlink

The largest portion of the downlink communication requirements come from the transmis-

sion of raw tags from the satellite to the ground station. Parameter estimates are provided

in table 4.7.

Table 4.8 summarizes downlink communication statistics collected from experimental

data at different raw key rates. Our estimates and results show that at least a 5 Mbit/s

downlink is required to be able to transmit and process all of the QKD data (collected

during the optical station flyover) in a single RF-station flyover.

4.2.2 Uplink

As mentioned, the satellite uplink bandwidth is expected to be limited, so our system

aims to minimize the upload rate. Table 4.9 displays uplink communication statistics

collected from experimental data at different raw key rates. Our results show that the

uplink requirement is indeed much lower than that for downlink. Our recommended uplink

bandwidth is 100 kbit/s, however the statistics for raw key rates above 50 kHz are provided

for scalability purposes only, as we do not expect the average observable rates to exceed

50 kHz over a single satellite pass.
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Raw key Time-tag data GPS data EC data Total Data rate

rate (Hz) (byte) (byte) (byte) (byte) (kbit/s)

10,000 14,850,000 16,632 65,512 14,932,144 402

20,000 29,700,000 16,632 132,176 29,848,808 804

30,000 44,550,000 16,632 254,764 44,821,396 1,207

40,000 59,400,000 16,632 322,566 59,739,198 1,609

50,000 74,250,000 16,632 389,568 74,656,200 2,011

60,000 89,100,000 16,632 519,086 89,635,718 2,414

70,000 103,950,000 16,632 452,386 104,419,018 2,813

80,000 118,800,000 16,632 519,086 119,335,718 3,214

90,000 133,650,000 16,632 596,898 134,263,530 3,617

100,000 148,500,000 16,632 654,722 149,171,354 4,018

Table 4.8: Downlink (satellite to ground) communication statistics resulting from process-

ing 300 seconds of QKD data.
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Figure 4.1: Downlink classical communication data rates for different raw key rates.

71



Raw key Coincidence EC data PA data Total Data rate

rate (Hz) data (byte) (byte) (byte) (byte) (kbit/s)

10,000 369,915 20,400 24,000 414,315 11

20,000 738,671 20,400 49,500 808,571 22

30,000 1,107,418 20,400 72,300 1,200,118 32

40,000 1,476,168 20,400 98,100 1,594,668 43

50,000 1,844,910 20,400 122,400 1,987,710 53

60,000 2,213,661 20,400 144,600 2,378,661 63

70,000 2,582,413 20,400 171,600 2,774,413 74

80,000 2,951,164 20,400 192,000 3,163,564 84

90,000 3,319,908 20,400 216,900 3,557,208 95

100,000 3,688,662 20,400 243,300 3,952,362 105

Table 4.9: Uplink (ground to satellite) communication statistics resulting from processing

300 seconds of QKD data.
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Figure 4.2: Uplink classical communication data rates for different raw key rates.
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Chapter 5

Experimental Results

This chapter discusses the performance of each component of our high-loss QKD system

as well as our QKD results. Sections 5.1, 5.2 and 5.3 examine the performance of the

WCP source, the quantum receiver and the satellite-side software component respectively.

Section 5.4 presents our QKD rates obtained at various loss regimes.

5.1 WCP Source Performance

The performance of our WCP source was first characterized in [16, 54]. However, the

experimental apparatus has since evolved as discussed in chapter 2. In the previous version

of the experiment [16, 54], polarization measurements were performed one measurement

basis at a time due the lack of full quantum receiver, which has been added recently

(section 2.3). Moreover, here, the FPGA-controlled modulator (section 2.2.1) is modified

so that it produces a 128-state sequence of signal and decoy states with a different profile

than the 256-state sequence used in [16, 54]. To verify the quality of the source output,

we take measurements to ensure that the new sequence exhibits the desired signal/decoy

levels and state visibilities.

To measure the signal/decoy levels, we analyze the timing information of photon de-

tections coming from Alice’s fiber splitter (see figure 2.3). The resulting histogram is

displayed in figure 5.1. The histogram is produced by binning the time differences between

time-tags of detection events and the time-tag of the nearest reference pulse (which marks

the beginning of a new sequence) coming from the modulator. Signal and decoy states

are clearly identifiable as shorter (under 2 × 105 counts) or longer bars in the histogram,

which correspond to the two different values of average photon number per pulse (µ = 0.5
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Figure 5.1: Timing histogram of photon detections coming from the fiber splitter at the

WCP source. Decoy states are clearly identifiable as shorter bars (under 2 × 105 counts)

in the histogram, while the taller bars correspond to signal states in the sequence. The

counts in time bin 127 correspond to a special reset state produced by the modulator to

delimit consecutive sequences.

and ν = 0.1). The measured locations of decoy states in the histogram agree with the

modulation sequence programmed into the modulator.

We use the quantum receiver (section 2.3) to measure the visibilities of the polarization

states produced by the source. When the 810 nm Ti:Sapph laser is in continuous wave

mode (i.e. not model-locked), the output photons at 532 nm have visibility of over 99% in

both bases. In the normal mode-locked state, the modulator is driven at the Ti:Sapph laser

frequency of 76 MHz. In this regime, visibility of >98% is maintained in the rectilinear

(H/V) measurement basis and >95% in the diagonal (D/A) basis.

Figure 5.2 displays the temporal variation of the QBER1 averaged over both bases. We

can see that the QBER is stable over long periods of several hours (it averages at 1.8±0.9%

in the last 160 minutes) and it only degrades due to changing room temperature/humidity

in the lab. A large temperature gradient affects the birefringence in the many optical fibers

which leads to the misalignment of the polarization reference frames of the source and the

receiver (see section 3.5).

1QBER and visibility are linearly related: QBER = 1−Visibility
2
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Figure 5.2: Stability measurement of the overall QKD system-wide QBER over a prolonged

period of time (6 hours) at 25 dB total channel loss. When the QBER rises significantly due

to changing lab temperature/humidity and laser spectrum drifts, we apply the automated

polarization procedure (section 3.5) to correct the alignment and reduce the QBER.

5.2 Quantum Receiver Performance

The performance of the quantum receiver is initially tested with polarized light produced

by placing a polarizer in front of the output beam of a strong laser at 532 nm and shining

this beam at the receiver through a neutral density (ND) filter to reduce the intensity. Our

tests show that the visibility is high (> 98%) in all four polarization states considered for

the BB84 protocol (H, V, D and A).

Due to the experimental nature of the optomechanical components utilized, some occa-

sional fine adjustments of the alignment of the optical path are required to maintain high

visibility. A professionally machined rigid framework would not suffer from this problem.

Nevertheless, the receiver’s alignment has been observed to be stable over several days.

Furthermore, the quantum receiver is tested as part of the overall high-loss QKD system

using the WCP source described in section 2.2, the QKD software detailed in chapter 3

and the polarization alignment software2. As illustrated in figure 5.2, our automated

polarization alignment procedure works very well to improve the QBER in the case of

alignment drifts between the polarization reference frames of the source and the receiver.

2As discussed in section 3.5, the quantum receiver contains the wave plate triplet which is used for our

automated polarization alignment procedure.
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Raw key Sifted key QBER Processing OS overhead Memory usage

rate (Hz) rate (Hz) (%) time (sec) (sec) (Mbyte)

10,000 3,538 4.4 46.7 14.4 25.98

20,000 7,186 4.8 65.4 16.2 43.06

30,000 10,586 4.6 86.7 18.3 59.11

40,000 13,833 4.9 115.9 18.4 75.63

50,000 17,512 5.0 157.1 21.5 93.74

60,000 21,145 4.9 206.1 21.8 110.30

70,000 24,552 4.8 257.7 23.5 125.38

80,000 28,276 4.7 323.5 24.6 141.92

90,000 32,489 4.8 408.3 26.6 158.44

100,000 35,527 5.1 481.9 29.2 175.04

Table 5.1: Computation statistics resulting from processing 300 seconds of QKD data. The

processing time, OS overhead and memory usage of the satellite-side QKD process have

been measured with the Linux time command. The operating system (OS) overhead is the

time taken up by OS-level facilities invoked by the QKD process.

5.3 Satellite-Side Software Performance

The satellite-side software component is tested on an inexpensive ($150), low-power (2 W)

embedded system, namely the Freescale IMX53 QSB single-board computer. This board

features a single-core, 1 GHz ARM processor with 1 Gbyte of RAM and standard 100 Mbit

Ethernet connectivity [120]. The measured performance, displayed in figure 5.3, is in line

with our expectations and the computing resource requirements detailed in chapter 4. In

fact, the current bottleneck is not at Bob’s side but rather at the computer on Alice’s side

and at the network communication link between Alice and Bob. In a future implemen-

tation, the computer/server at Alice can be made significantly more powerful than our

current desktop PC.

As discussed in section 4.2, we use the weak coherent source and quantum receiver

to collect experimental QKD data for 300 seconds at a receiver detection rate of about

150 kHz. Each one second chunk of this data is then truncated to produce lower key rates

in the range we expect for satellite-based QKD [18]. The full QKD protocol is performed

on the resulting data subsets at predefined raw-key rates to obtain computation statistics

for a range of rates. The focus in this section is on software performance and not on QKD

rates, which are the topic of section 5.4.
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T(n) = 4E-08n2 - 4E-05n + 46.12

R² = 0.9996
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Figure 5.3: Performance of the satellite-side QKD process running on a Freescale IMX53

embedded ARM board. The processing time scales quadratically with the raw-key rate.

The R2 value of 0.9996 indicates a very strong correlation, that is, a very good fit of the

trend line. This data used for software performance evaluation only. In reality, we do not

expect the raw key length to exceed 10 megabits over a single satellite pass.

Table 5.1 shows detailed memory and CPU usage for the satellite-side QKD process.

The runtime is graphically depicted in figure 5.3. As seen in section 4.1.2, privacy am-

plification is asymptotically quadratic in the block size/raw-key length. All the other

post-processing steps behave linearly. Hence, it is expected that the performance of the

overall QKD process scales quadratically with the raw-key length as observed in figure 5.3.

Note that figure 5.3 explores very large raw key length values (over 25 Mbit) for scalability

purposes. In reality, we do not expect the raw key length to exceed 10 megabits over a

single satellite pass [18].
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5.4 QKD Results

We test the performance of the entire high-loss QKD system (detailed in chapter 2) com-

prising the WCP source (section 2.2), the quantum receiver (section 2.3) and the QKD post-

processing system (chapter 3) including the polarization alignment software (section 3.5).

We measure the QKD rates for various fixed losses above 28 dB, and with channel loss

continuously varied to emulate a satellite pass.

Note that the previous version of the experiment [16] provides similar results, but [16]

only infers the performance of the QKD protocol in these high-loss conditions by employ-

ing a different coincidence analysis and without implementing the error-correction and

privacy amplification steps of the protocol. In this experiment, our aim is to use the newly

constructed quantum receiver to demonstrate full QKD in action. Similarly to [16], our

primary focus is on high-loss regimes which are expected for QKD with a satellite uplink

as shown in link analysis and simulations [18].

5.4.1 QKD at Fixed Loss Levels

Table 5.2 summarizes our QKD results for fixed total channel loss between 28.9 dB and

56.1 dB. The secure key rates, plotted in figure 5.4, vary between 2 kbit/s at 28.9 dB and

1 bit/s at 56.1 dB. The coincidence window for each measurement is chosen according to

the optimal curve given in figure 5 in [16].

The QBER values tend to increase with channel loss due to lower signal-to-noise (SNR)

ratio. However, the QBER decreases as the size of the coincidence window gets smaller,

because of better temporal filtering—smaller coincidence window means less background

photon detection events are accidentally included in the sifted key.

Secure key lengths are calculated through the weak+vacuum decoy-state asymptotic

key rate formalism [14] discussed in section 1.2.2, including the error correction efficiency,

ηEC ∈ [1.3, 1.7], achieved by the LDPC algorithm (see section 3.6.2). Note that [16] assumes

the use of the Cascade error correction protocol (see section 3.6.1) with a fixed ηEC = 1.22,

and hence, the secure key rates reported there are slightly higher.

5.4.2 Emulating a Satellite Pass

To emulate a satellite pass, the loss in the quantum channel is slowly and continuously

varied with the movable lens (figure 2.4) from 60 dB to 25 dB and back. Then, a curve

fit of the per-second loss data is produced and points from that curve are systematically
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Loss QBER Coincidence Sifted key rate Secure key rate Secure key rate

(dB) (%) window (ns) (bit/s) (bit/s) (bit/laser pulse)

28.9 2.9 1.60 16,659 2,015 6.24× 10−5

34.8 2.6 1.50 3,064 538 1.78× 10−5

40.1 2.2 1.40 1,145 159 6.58× 10−6

45.4 2.7 1.25 393 56 1.70× 10−6

50.1 4.3 1.20 119 17 5.17× 10−7

52.0 3.9 0.70 49 8 2.60× 10−7

54.0 2.8 0.40 18 7 1.92× 10−7

56.1 2.1 0.30 8 1 2.71× 10−8

Table 5.2: Sifted and secure key rates and associated statistics for a range of fixed loss

levels. The raw key rate (not shown) is about double the sifted key rate. The coincidence

window is chosen according to the optimal curve given in figure 5 in [16]. Note that the

QBER increases with channel loss and decreases with coincidence window size.
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Figure 5.4: Average sifted and secure key rates versus total channel loss in high-loss regimes.
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Figure 5.5: Loss curves for an upper quartile [18] satellite pass (blue) and our experimental

data (green).

selected to closely match the expected loss curve (blue in figure 5.5) of an upper-quartile

satellite pass [18]. The resulting loss curve is displayed in green in figure 5.5.

Each selected point corresponds to a one-second chunk of QKD data collected during

the long measurement with variable loss. Those one-second chunks are then put together

to produce the green loss curve in figure 5.5. Effectively, we piece together multiple chunks

of QKD data (taken at various loss levels) to produce a continuous data set which closely

resembles QKD data from a satellite uplink.

With our 76 MHz WCP source, assuming poor atmospheric conditions, and including

finite-size effects without statistical fluctuations [14] (see section 1.2.2), we obtain 16.08 kbit

of secure key for a typical good (upper quartile) pass [18, 49].
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Chapter 6

Conclusion and Outlook

The latest advances in computing and communications technology have come with a grow-

ing demand for security and privacy. Quantum key distribution (QKD) promises to deliver

unconditional security guaranteed by the fundamental laws of physics; however, its point-

to-point range is currently limited to terrestrial links of up to 260 km.

The research presented in this thesis contributes towards a potential global-scale de-

ployment of QKD over free-space links to an orbiting satellite. As part of ongoing feasibility

studies of the Canadian Quantum Encryption and Science Satellite (QEYSSat) mission,

this work focuses on the necessary data processing algorithms and their computing resource

requirements on the spacecraft. It also details the design, implementation and performance

analysis of a complete QKD testbed system employing a decoy-state BB84 scheme under

high loss to demonstrate the feasibility of QKD with a satellite uplink. Our experiment

helps to establish good estimates of the overall complexity, the computing resources nec-

essary, and the bandwidth requirements of the RF links. Thus, it provides a foundation

for the future development of the quantum payload onboard QEYSSat.

The QKD post-processing subsystem described in this thesis aims to minimize the

computing requirements at one side of the link, unlike most traditional implementations

which assume symmetric computing resources at each end. It features precise coincidence

analysis, error correction based on low-density parity-check codes, privacy amplification

employing Toeplitz hash functions, and a procedure for automated polarization alignment.

Our main result is that the necessary processing power and memory requirements are

well within the capabilities of modern low-power computing technology. We estimate that

a CPU with at least 750 MHz clock is needed on the satellite and at least 256 Mbyte of

memory. We conclude that, in the worst case, an RF link with 5 Mbit of downlink and

100 kbit of uplink bandwidth is required. As a proof of concept, we ran the satellite-side
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QKD software on an ARM board (consuming 2 W of power) and measured its perfor-

mance while executing a full QKD protocol. Our performance results are promising and

our implementation is platform-independent, so it can be ported to any space-qualified

computing system.

Furthermore, the entire QKD system was tested at a range of fixed high losses and was

able to generate a secure key at up to 56.1 dB of loss in the quantum channel. We also

performed tests under varying-loss conditions similar to those in a real satellite uplink. We

obtained 16.08 kbit of secure key for an upper-quartile pass, with a communication time

of less than 5 minutes, a realistic duration of a satellite key exchange.

In the future, a number of areas in our current satellite-based QKD testbed system

could be improved:

• WCP Source: Our Ti:Sapph laser has a repetition rate of 76 MHz, however, Ti:Sapph

lasers operating at several GHz have recently become available [121]. Since the

modulation subsystem is capable of running at those frequencies, the WCP source

can in principle be upgraded with a simple replacement of the current Ti:Sapph laser.

• Modulator : The current pseudo-random sequence should be replaced with a truly

random one which never repeats.

• Receiver : The compensation components of the automated polarization alignment

system should be moved from the receiver to the source. The overall stability of the

receiver should be improved, and the receiver should be tested outdoors preferably

on a moving platform.

• Data Processing Software: Hardware-specific acceleration techniques such as SIMD

extensions could improve the performance results by a factor of three to four. The

coincidence algorithm should be adapted to work with a moving receiver. GPU

acceleration could be used for LDPC decoding on the ground. The optimized version

of the privacy-amplification algorithm with FFTs should be implemented.

• Data Processing Hardware: A fully integrated prototype of the payload data pro-

cessing system should be developed. The computer could be based on an existing

space-qualified SOC such as the REACT card by Neptec Technologies [122] featuring

a 1.2 GHz PowerPC MPC8548, 512 MB of DDR2 RAM with built-in error correction,

as well as an on-board FPGA that can be used to port DotFast’s existing time-tagging

solution.

These improvements will further demonstrate the technological readiness of satellite-

based QKD and bring the QEYSSat proposal closer to a concrete mission in space.
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Appendix A

A Survey of Computing Hardware Used in

Space Applications

Computing hardware has been a key part of spaceflight missions since the early days

of space discovery. In fact, the computer industry owes at least part of its early de-

velopment to the NASA space exploration programs and their challenging data process-

ing requirements [123, 124]. While the first NASA missions relied on low-level, custom

logic to perform only the most essential tasks, many modern spacecraft incorporate high-

performance, general-purpose computing hardware. Those computers are used for various

functions: navigation, attitude control, sensor/scientific instruments data processing, gen-

eral system control, communication protocols, just to name a few. This transition towards

high-performance processing, in-flight software updates and remote-controlled instruments

has allowed space missions to become more complex. It has also made them much more

flexible, as software changes are a lot cheaper and faster to implement than costly hardware

modifications [123].

Another driver for improvement of space computing hardware has been the need for

autonomous operations. The risk to human life in manned missions and the remote lo-

cations of places of interest (e.g. the round-trip communication delay between Earth and

Mars is about 40 minutes) has pushed NASA to focus on unmanned, robotic space ex-

plorations. However, autonomous systems such as the recent Mars rovers require a lot of

onboard processing power to be able to make complex decisions with stringent real-time

constraints, without the possibility of immediate feedback and assistance from mission

control on Earth [125, 126].

On the other hand, there are some significant difficulties which hold back the penetra-

tion of new technologies into the space exploration domain. Modern computer components
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Year Mission CPU RAM Operating System

1969 Apollo 11 1 MHz Custom, 16-bit 36 KB Custom

1981 Space Shuttle 4.77 MHz Intel 8086 1 MB Custom

1997 Sejourner 0.1 MHz Intel 80C85 512 KB Custom cyclic executive

2004 Spirit/Opportunity 20 MHz IBM RAD6000 128 MB VxWorks

2006 CALIPSO 160 MHz 603r PowerPC 128 MB VxWorks

2011 Curiosity 200 MHz IBM RAD750 256 MB VxWorks

Table A.1: Main computer components in several past NASA missions [123, 124, 126, 127].

as they are cannot be deployed in space because they are not build to withstand all the

damaging effects of the harsh environmental conditions (see section A.1). Additional en-

gineering and qualification is required to make those systems more durable and reliable.

This process is unfortunately both costly and time-consuming. Manufacturers also have

little economical incentive to move forward, as the market for space-grade computers is

rather small. Hence, commercial computing solutions on the ground continue to be several

technological generations ahead of the ones used in space.

This chapter provides a survey of computing solutions used in space. It is not meant

as an extensive study (due to its limited scope), so it mostly refers to NASA-associated

projects and missions and omits references to other countries’ space programs (published

information about those is not very abundant). Section A.2 presents a brief history of

computing hardware used by NASA in the past. In section A.3, the transition from custom-

built hardware towards partially hardened commercial off-the-shelf components is reviewed

as well as the associated fault-tolerant design techniques. Finally, section A.4 gives an

overview of what is state-of-the-art in space-grade computer technologies.

A.1 Main Challenges

Space-grade computers face many challenges in the harsh, limited-resource environments

which they need to endure. During takeoff, and optionally landing, systems are subject to

severe vibrational strain. Once in outer space, temperatures can vary from 4 K to 400 K.

Hence, components have to be engineered and built to much higher reliability standards.

Usually, this involves using more durable materials and an extensive qualification effort.

Spacecraft also experience various radiation effects. On Earth, the planet’s magnetic

field and atmosphere provide a natural cosmic radiation shield. In space, high-energy par-

ticles can damage sensitive digital electronics (e.g. memory chips), which can render a
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spacecraft unusable. The most common are bit-flip errors caused by single-event upsets

(SEUs) [128]. Other single event effects such as single-event latchup (SEL), single-event

burnout (SEB) and single-event gate rupture (SEGR) are more rare but also more dam-

aging. Unfortunately, modern RAM chips are semiconductor-based, volatile and not very

reliable, so for very high radiation environments (e.g. closer to the Sun) older ferrite-

core memories are often used. Radiation hardening is the technique used to design and

manufacture radiation-resistant hardware components. It consists of shielding sensitive

components from electro-magnetic radiation and other forms of interference [128].

Furthermore, space-grade systems need to respect stringent weight, size and power

constraints. In fact, a recent study for the Mars Pathfinder mission has shown that reducing

the total spacecraft mass, volume and power (by employing newer microelectronics) can

not only reduce the overall mission cost but also allow for a more wide-ranging explorations

of Mars [129].

By their nature, spacecraft are usually placed in remote locations and not accessible

for maintenance and repair, so fault-tolerance, self-diagnostics and remote testability have

become critical for a mission’s success [123, 125]. The elements of fault-tolerant bus design

are examined in section A.3.

A.2 A Brief Historical Overview

For over 50 years, developments in analog and digital electronics have propelled achieve-

ments in space explorations. However, for the first 15 years of NASA missions, there are

no general purpose computers onboard [123, 130]. In those early stages of space discov-

ery, during the 1960s and 1970s, the main challenge is to design and manufacture basic

electronic circuits which could withstand the vibrations of a rocket launch and the hostile

conditions in space (as discussed in section A.1). In that time, several research initiatives

are created in US government labs to established the requirements and space qualification

framework for spacecraft computers. The most notable project is the Self Test And Repair

Computer (STAR) project, created at the Jet Propulsion Laboratory (JPL), California

Institute of Technology [130]. Interestingly, the concept of fault-tolerance first emerges out

of STAR research on reliability of computer systems.

During the 1980s, the trend of exponential growth in commercial computing hardware

becomes the norm—validating the so called Moore’s law, which predicts that transistor

counts on integrated circuits will double every two years. This development pushes NASA

to depend more and more on the commercial sector to supply highly reliable spacecraft

computers, rather than designing and building custom components and interfaces [123].
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One such collaboration with industry, and IBM Federal Systems in particular, gives rise to

the Generic Very High Speed Integrated Circuit (GVHSIC) project. The outcome of the

initiative is the Common Flight Computer (CFC)—a four-chip, central-control computer

deployed on the famous Cassini mission to Saturn and its moon Titan [130].

The strong partnership with IBM leads to a generation of PowerPC-based spacecraft

computers in the 1990s and 2000s. IBM Federal Systems becomes Lockheed Martin Federal

Systems and several single-board computers are developed for the Mars rover missions:

Spirit, Opportunity and Curiosity [126, 130]. As seen in table A.1, those are all based

on the IBM RAD architecture—a PowerPC-based architecture designed with radiation

hardening in mind. For the first time, the exploration vehicles are using VxWorks—a

commercial real-time operating system (RTOS) developed by Wind River Systems [131].

Moreover, all additional software is written in the C programming language. This is a big

step forward from the custom cyclic executive operating systems and assembly-code level

programming employed on previous missions.

Most recently, NASA/JPL’s Center for Integrated Space Microsystems, has been work-

ing on a more generic flight control system, the X2000 System Flight Computer (SFC),

under the Outer Planets Program, originally intended for the Europa Orbiter Project

(meant to launch in 2003 but later delayed to 2008) [130, 132]. X2000 is unique in the

sense that its design is purposefully based around cutting-edge commercial off-the-shelf

(COTS) components with the goal of improving performance and reducing overall devel-

opment and manufacturing costs [132, 133]. The X2000 SFC is described in more detail in

section A.3.3.

A.3 Transition Towards COTS Components

As mentioned in the previous section, building spacecraft computers with COTS com-

ponents is a logical, economically justified step. COTS solutions have many advantages:

state-of-the-art performance, much lower cost (both immediate and recurring), wide avail-

ability of commercial hardware and software components, as well as an established and

predictable upgrade path [127, 133].

On the other hand, the challenge with COTS is that such components are not designed

and built to high reliability standards. Recently, there have been significant efforts to-

wards developing fault-tolerant computing systems out of unreliable COTS parts mainly

by incorporating various forms of redundancy and self-testability into the designs. In the

next few sections, we look at two such COTS-based spacecraft computers, the CALIPSO
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Figure A.1: 4-way voting design (left) and recovery resynchronization logic (right) on the

CALIPSO satellite single-board computer [127].

single-board computer (SBC) (section A.3.2) and the JPL X2000 avionics system (section

A.3.3).

A.3.1 Common Data Bus Failure Modes

In [133], the authors from NASA/JPL identify the most common critical spacecraft data

bus failure modes resulting from radiation effects such as SEUs:

• Invalid Messages : Invalid data is found in messages sent over the data bus

• Non-Responsiveness : A response to a message returns late (i.e. fails to satisfy its

real-time constraint)

• Babbling : An uncontrolled data stream causes a communication delay or interruption

on the data bus

• Conflict of Node Address : Two or more nodes (e.g. processors, micro-controllers,

memory blocks, etc.) on the bus have the same address
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Figure A.2: JPL’s X2000 avionics system architecture (left) and multi-layer fault-tolerance

strategy (right) [133].

Those common failures are the ones to design against when applying fault-tolerant

techniques. According to Chau et al., it is now a standard procedure for NASA/JPL

engineers and scientists to perform the so called failure mode effect and criticality analysis

(FMECA) for each spacecraft computer design [133].

A.3.2 The CALIPSO Satellite SBC

A good example of a fault-tolerant COTS-based spacecraft computer is the Payload Con-

troller Processor flying onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) mission. As per table A.1 the CALIPSO SBC features the 603r

PowerPC processor (manufactured by Motorola on the 0.25 µm CMOS/EPI HyperMOS

2.0 process) running at 160 MHz core frequency and the VxWorks RTOS [127]. Redun-

dancy is central to the SBC design employing a 4-way voted processor system as depicted

in figure A.1.

The main idea behind the CALIPSO COTS-based SBC design is detecting and am-

plifying/correcting low level effects at the higher system level. As a result, performance

is often traded-off for improved reliability and higher radiation-tolerance [127]. The SBC

features the following radiation-effect mitigating design elements [127]:

• Memory Error Correction and Scrubbing : Volatile SD-RAM and non-volatile EEP-

ROM are protected with Single-bit Error Correction Double-bit Error Detection
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(SECDED). Non-volatile flash memory is redundant (mirrored components) and pro-

tected with Reed-Solomon error correcting codes.

• Hardened Critical Components : Designated critical system components such as the

processor voter ASIC as well as the memory and IO controllers (see figure A.1 left)

are radiation hardened.

• AC/DC Parameter / Frequency Derating : Several component parameters are derated

(or de-tuned) to lower levels. The maximum CPU frequency is reduced to 80% and

the SDRAM clock frequency and refresh rates are derated to reduce power, increase

reliability and minimize the risk of radiation-induced timing delays [127].

• Multiple Processor Voting : As depicted in figure A.1, four COTS (i.e. non-hardened)

PowerPC processors are used in a voting scheme to greatly reduce the effects of

single-event phenomena such as SEUs (see section A.1).

• Resynchronization: A combination of hardware and software logic (figure A.1 right)

performs processor resynchronization in the event of a voting disagreement. A dis-

agreeing processor is temporarily taken out of the voting scheme and recovered in

under 1 ms. In addition, all voting processors are periodically scrubbed (or resyn-

chronized) as a preliminary measure against buildups of SEUs. The refresh interval

is not fixed—it is selected based on satellite orbit parameters and predicted SEU

rates for a given orbit [127].

This successful design of the CALIPSO SBC based on the COTS 603r PowerPC has

been upgraded with the next generation 7447A (SOI) G4-PowerPC processor running at

1 GHz and it can be readily deployed in future satellite missions [127].

A.3.3 The X2000 Avionics System

Another successful COTS-based fault-tolerant spacecraft computer design comes from

NASA/JPL. JPL’s goal in designing the X2000 is to achieve a flexible and scalable ar-

chitecture, which can be reused in many future NASA missions and ultimately reduce the

long-term costs of space explorations [130]. According to its designers, Chau et al., the

X2000 is a “distributed, symmetric system of multiple computing nodes and device drivers

that share a common redundant bus architecture” [133].

The X2000 avionics system depicted in figure A.2 shares many of the fault-tolerant

architectural elements found on the CALIPSO SBC described in the previous section. The

X2000, manufactured by British Aerospace Federal Systems, features the newer generation
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Power PC 750 processor. Similar to the CALIPSO SBC, it employs industry standard

mechanical and electrical interfaces as well as COTS serial bus architectures. Specifically

Compact PCI (cPCI) is used for the local computer bus, while IEEE 1394 and I2C are the

system buses [130, 133].

IEEE 1394, a fast bus operating at 50-400 Mbit/s, is used for communicating space-

craft attitude, scientific data and other timing critical communication. I2C is a slower bus

operating at 100-400 kbit/s; it is used for communicating overall spacecraft health data

collected by onboard sensors [132]. As shown in figure A.2, the buses connect multiple com-

puting subsystems or nodes: flight computers, memory blocks, micro-controllers, optical

communication units, sensor banks and scientific instruments.

The fault-tolerant features of the X2000 avionics system can be summarized in the

following four layers [133]:

1. Native Fault Detection: The IEEE 1394 and I2C buses already have some built-in

fault detection. Invalid messages and non-responsiveness failure modes (see section

A.3.1) are detected using bus capabilities such as cyclic redundancy checks (CRC)

and acknowledgment.

2. Enhanced Fault Containment : The system’s fault containment capacity is increased

by an additional layer of hardware and software implemented on top of the native

bus capabilities. This layer is designed to detect conflicts of node addresses on the

two buses and babbling—failure modes which are more challenging. This layer also

contains a baseline recovery mechanism for low-level faults on each bus [133].

3. Mutually Assisted Fault Recovery : On their own, the IEEE 1394 and I2C buses

have some shortcomings, but on the X2000 they are designed to aid each other in

the isolation and recovery of difficult faults. For example, due to IEEE 1394’s tree

topology, a failed node or link can disrupt communication between the bus network

sub-trees, making it hard to isolate faults. However, the I2C bus can be used for

backup communication; likewise, the IEEE 1394 bus can be used to assist the I2C

bus [133].

4. Fault Control through System-Level Redundancy : Both buses are fully physically

redundant as illustrated in figure A.2 by parallel data lines. To save power, only one

set of the buses is active at a time. However, when one bus fails, the backup set

is powered up and used while the failed bus set is diagnosed and reset to a healthy

state, possibly by eliminating a faulty link or node in the process [132, 133].
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Figure A.3: Space Micro ProtonX-Box PowerPC SBC design and avionics suite cards [134].

The X2000 COTS-based architecture has been extensively evaluated. Quantitative

models show that reliability levels of a 32-node instance of the system are more than

0.9999 at the end of an 11-year mission, compared to a reliability of 0.86 for similar-size

non-fault tolerant systems [133].

A.4 Modern Commercial Payload Processing Hardware

OEM Specifications OS

Neptec 1.2 GHZ PPC, FPGA Linux

IBM/BAE RAD750 PowerPC VxWorks

SpaceMicro 8-core PowerPC, FPGA, DSP VxWorks

CPU Tech PowerPC 440 Linux

Table A.2: Modern space-grade single-board computer manufacturers [122, 126, 134, 135].

State-of-the-art commercial spacecraft computing systems employ many of the fault-

tolerant design elements discussed in the previous section. While certain critical compo-
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nents are still radiation-hardened, many are COTS-based and feature cutting-edge hard-

ware and software as summarized in table A.2. Most commercial payload processing sys-

tems today are comprised of multiple blades or slices (figure A.3 right) hosted in a com-

pact chassis [128]. A great example is the REACT processor card by the Ottawa-based

company Neptec Technologies. Their PowerPC-based card features a 1.2 GHz PowerPC

MPC8548, 512 MB of DDR2 RAM with built-in error correction, as well as an on-board

field-programmable gate array (FPGA) and an extensive list of connectivity features [122].

The most advanced space-qualified SBCs on the market today come from Space Mi-

cro [134]. Their Proton series SBCs offer high-end processing systems for a wide range of

avionics applications. As depicted in figure A.3, Space Micro Proton designs employ top

of the line PowerPC processors, and they also include FPGAs, digital signal processors

(DSPs) and modern interconnects such as PCI express, SpaceWire and RapidIO [134].

A.5 Conclusion

Throughout its history, NASA has relied extensively on analog and digital electronics for

all its space exploration programs. Even though payload processing systems have signif-

icantly evolved over the last 50 years, they still face the same challenges in the hostile

environment of outer space. At first, all components of a spacecraft computer had to be

fully radiation hardened and were a few technological generations behind. However, fault-

tolerant COTS-based designs such as the CALIPSO SBC and the X2000 avionics system

have shown that unhardened commercial computing hardware can be intelligently engi-

neered to work reliably in space. The move to COTS components has led to dramatically

improved spacecraft computing performance and an overall reduction of mission costs. To-

day, very high-performance COTS-based space-qualified SBCs can be readily purchased by

commercial suppliers such as Neptec and Space Micro.
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