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Abstract

Throughout the last decade, vehicle localization has been attracting significant attention

in a wide range of applications, including Navigation Systems, Road Tolling, Smart Park-

ing, and Collision Avoidance. To deliver on their requirements, these applications need

specific localization accuracy. However, current localization techniques lack the required

accuracy, especially for mission critical applications. Although various approaches for im-

proving localization accuracy have been reported in the literature, there is still a need

for more efficient and more effective measures that can ascribe some level of accuracy to

the localization process. These measures will enable localization systems to manage the

localization process and resources so as to achieve the highest accuracy possible, and to

mitigate the impact of inadequate accuracy on the target application.

In this thesis, a framework for fusing different localization techniques is introduced in

order to estimate the location of a vehicle along with location integrity assessment that

captures the impact of the measurement conditions on the localization quality. Knowledge

about estimate integrity allows the system to plan the use of its localization resources so

as to match the target accuracy of the application. The framework introduced provides

the tools that would allow for modeling the impact of the operation conditions on estimate

accuracy and integrity, as such it enables more robust system performance in three steps.

First, localization system parameters are utilized to contrive a feature space that con-

stitutes probable accuracy classes. Due to the strong overlap among accuracy classes in

the feature space, a hierarchical classification strategy is developed to address the class

ambiguity problem via the class unfolding approach (HCCU). HCCU strategy is proven to

be superior with respect to other hierarchical configuration. Furthermore, a Context Based

Accuracy Classification (CBAC) algorithm is introduced to enhance the performance of the
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classification process. In this algorithm, knowledge about the surrounding environment is

utilized to optimize classification performance as a function of the observation conditions.

Second, a task-driven integrity (TDI) model is developed to enable the applications

modules to be aware of the trust level of the localization output. Typically, this trust

level functions in the measurement conditions; therefore, the TDI model monitors specific

parameter(s) in the localization technique and, accordingly, infers the impact of the change

in the environmental conditions on the quality of the localization process. A generalized

TDI solution is also introduced to handle the cases where sufficient information about the

sensing parameters is unavailable.

Finally, the produce of the employed localization techniques (i.e., location estimates,

accuracy, and integrity level assessment) needs to be fused. Nevertheless, these techniques

are hybrid and their pieces of information are conflicting in many situations. Therefore,

a novel evidence structure model called Spatial Evidence Structure Model (SESM) is de-

veloped and used in constructing a frame of discernment comprising discretized spatial

data. SESM-based fusion paradigms are capable of performing a fusion process using the

information provided by the techniques employed. Both the location estimate accuracy

and aggregated integrity resultant from the fusion process demonstrate superiority over

the employing localization techniques. Furthermore, a context aware task-driven resource

allocation mechanism is developed to manage the fusion process. The main objective of

this mechanism is to optimize the usage of system resources and achieve a task-driven

performance.

Extensive experimental work is conducted on real-life and simulated data to validate

models developed in this thesis. It is evident from the experimental results that task-driven

integrity assessment and control is applicable and effective on hybrid localization systems.
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Chapter 1

Introduction

Over the last ten years, vehicle localization has been attracting attention in a wide range

of applications. As reported in [2–17], a number of localization techniques have been

developed to serve a variety of applications. Recently, the need for pinpointing a vehicle’s

location has become more important and in many cases a matter of safety; for instance,

for emergency response systems, such as the eCall system, to deliver on their task they

need reliable and accurate location estimates. Such expectation is now shared by other

applications, including, accident avoidance and management, navigation systems, location

sensitive billing systems, location based services.

In this chapter, a brief overview about vehicle localization techniques is presented. The

motivation behind this work and its objectives are also provided. The chapter is concluded

with an outline of the thesis.

1.1 An Overview of Vehicle Localization

Since Global Positioning System (GPS) is universally available and vehicles have enough

power to operate its receivers, it has become a de facto standard for vehicle localization.
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GPS was developed and operated by the U.S. Department of Defense [18]. GPS is based on

a network of satellites that transmit continuous coded information that makes it possible

to identify locations on Earth by measuring the distances from the satellites, and the

GPS receiver who also has the ability to obtain information about its own velocity and

direction. A GPS network consists of 24 satellites arranged in six orbital planes, as depicted

in Figure 1.1, so that at any given time, a minimum of five satellites can be observed by a

GPS receiver at any location in the world. According to the accuracy required, different

types of GPS receivers have been developed.

Figure 1.1: GPS satellites arranged in six orbital planes.

Basic GPS receivers often have multiple radio channels so that the receiver can observe

multiple GPS satellites at once and obtain a pseudo-range measurement from each satellite

signal. Leva [19] and Hoshen [20] show two different techniques by means of which a GPS

receiver can compute its location from four pseudo-range measurements, the minimum

number of localization measurements required in three dimensions. However, if the signal

from one of the GPS satellites is obstructed, it is difficult to identify the location of the
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GPS receiver from only three measurements. Therefore, more advanced receivers with

six or more radio channels have been developed. The extra channels provide a degree of

redundancy that can be accessed in case one or more of the four required signals are lost.

While this increase in the complexity of the hardware in the GPS receiver adds to the

cost, it does not necessarily guarantee accurate location measurements. The pseudo-range

measurement is still prone to many errors and hence has a typical accuracy range of 10 to

50 meters.

GPS errors can be categorized as either global or local. Global errors are produced

when satellite signals originate and travel to the Earth, whereas local errors are dependent

on the environment surrounding the receiver. The extent of the effect of global errors on

receiver measurements varies from one geographical area to another due to ionospheric

delays, tropospheric delays, ephemeris, and satellite clocks. Local errors may arise as a

result of multipath effects, due to lack of a Line of Sight (LOS) or to the receiver hardware

itself. More details about global and local GPS measurement errors are given in [21–25].

Most global errors can nevertheless be avoided, and accurate location measurements can

be obtained using a Differential GPS receiver (DGPS). A DGPS consists of two receivers

that observe the same GPS satellites. One of these receivers is stationary and the other,

which is used to measure the locations, is roving. The stationary receiver resides at a

known location and obtains the pseudo-range from the satellites’ signals so that it can

identify a global error by comparing the measurements with its location. It then transmits

the global error correction to the roving receiver so that the roving one can correct its

measurements. In the best cases, accuracy increases to the level of tens of centimeters

when a DGPS is used. However, this type of receiver has some drawbacks, such as the cost

of the communication channels between the stationary receiver and the roving receivers

and the cost of the hardware. Moreover, DGPS receivers must be covered by the same GPS
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satellites in order to be correlated (i.e., to have the same global error). This requirement

thus ties up the roving receiver and allows it to move only in a bounded area. A significant

disadvantage is that the DGPS can not correct local errors since multipath effects happen

immediately around the roving receiver, and hardware errors are individual.

Another method for achieving improved localization is by means of a Dead Reckoning

System (DRS), which has been adopted in some applications. With this method, the loca-

tion estimation is computed based on how far the vehicle has moved from a known position

given the directions and distances traveled over small periods of time. Since this method

is simple and inexpensive, it has been utilized in a wide range of applications. A crucial

disadvantage of this method is that errors in the direction and/or distance measurements

affect the final location estimation. Furthermore, since measurement errors accumulate

over a period of time, this method is recommended for use only over short periods of time.

A number of localization techniques that do not rely on GPS signals have been inves-

tigated [26, 27]. These techniques rely instead on an estimation of the distance between

two objects (e.g., a sender and a receiver in a wireless network), a method inspired by the

localization approaches used in cellular networks [28–31]. These approaches are based on

radio-location methods, such as Time of Arrival (TOA), Angle of Arrival (AOA), Received

Signal Strength (RSS), or Time Difference of Arrival (TDOA) [32]. Once the distances be-

tween an object and other reference points are obtained, trilateration can be performed in

order to estimate the relative location of the object. However, radio-location methods still

suffer from errors such as the multipath effect or Non-Line of Sight (NLOS), interference

and hardware measurement errors.
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1.2 Research Motivation

Vehicle location information is vital in many applications, including emergency response,

location-based services, navigation, and assisted driving. Such emerging systems can not

operate at the level required without reliable, accurate localization.

The eCall project, which facilitates automated emergency calls from cars in Europe,

is one example of developing emergency systems. With this system, vehicles perform

an automated call to the nearest emergency centre if a collision happens anywhere in

Europe. Collision information, such as airbag deployment, measurements from impact

sensors, and the vehicle’s GPS coordinates, can be delivered through the automated call so

that assistance can reach the victims. Nevertheless, the crucial piece of information, which

is the exact location of the vehicle, is often not accurate when a GPS receiver is used in

urban canyon environments [33].

Location-Based Services (LBS) are another example of emerging systems that rely

mainly on vehicles’ location information. According to [34,35], in such systems, when the

driver of a vehicle wishes to request a specific service from road-service providers, such

as gas prices or restaurant menus, he or she can send a query over a Vehicular Ad hoc

Network (VANET) to the provider’s server. However, it is not possible to provide the

desired services without knowledge of the accurate location of the vehicle requesting the

service.

Despite the current advancements in localization techniques, more robust and widely

available location information is required due to major developments that are emerging in

Intelligent Transportation Systems (ITS), such as

� vehicle collision warning
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� security distance warning

� cooperative cruise control

� automatic parking

� road pricing

1.3 Research Objectives

Of the vehicle localization techniques proposed in the literature, the most prevalent are

those based on radio signals, such as GPS, DGPS, TOA, TDOA, and AOA. These methods

are based on physical measurements related to the radio signal that travels from a sender

to a receiver. Nevertheless, all these methods are extremely sensitive to multipath signals,

which are produced in multipath environments where many high rise buildings and/or

trees are present, such as in urban areas. In such environments, the sender radio-signals

are reflected and/or diffracted before they reach the receiver. Vehicle localization in urban

canyon environments is thus a rather challenging problem.

Fusion of more than one localization technique to achieve higher and more reliable

localization accuracy has been reported in the literature. Therefore, incorporating inde-

pendent sources of location information in the fusion process has been proposed by many

researchers. For example, the Inter-Vehicle Communication Assisted Localization (IVCAL)

incorporates a GPS measurement, an Inertial Navigation System (INS) measurement, and

a relative distance measurement between the vehicle and a selected set of vehicles in its

vicinity [13]. IVCAL is able to greatly diminish the multipath effect and other errors

caused by the GPS receiver and the INS measurements.
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Fusion, however, is itself a challenging issue. As Basir mentioned in [36], “A sensory sys-

tem which uses more than one sensor to perform its sensory tasks is constantly confronted

with two important questions. Firstly, how it should combine the information gathered by

the different sensors, so as to obtain the finest possible sensory information? Secondly, how

it should distribute the workload associated with the sensory tasks among its sensors so

that the best performance in terms of speed and quality is achieved?” Along this view on

fusion a reliable hybrid vehicle localization system is sought as the main objective which

will be pursued as follows:

1. Conduct an extensive survey of the localization and tracking techniques that have

been reported in the literature.

2. Classify the localization techniques based on the location information sources.

3. Identify performance criteria so that the outstanding issues of vehicle localization

can be addressed in a practical context.

4. Develop a confidence measure that captures the integrity of the vehicle location

estimate produced by localization techniques.

5. Study a variety of fusion techniques, especially those used at the decision level, such

as ones based on the Bayesian, artificial intelligence, and evidential theories.

6. Design and develop a fusion technique that will integrate the different location esti-

mates obtained by the different localization techniques. This fusion technique should

be resilient to the stochastic behavior of the availability and uncertainty of the esti-

mates produced by these techniques. Consequently, this fusion technique will be able

to produce more accurate location estimates than those of the individual techniques.
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7. Develop a framework that will provide vehicle location information with specific

Quality of Service (QoS) that is required by a certain application or task. This

framework is aimed to maintain the system aggregated integrity using the above

developed components.

1.4 Thesis Outline

The thesis comprised of seven chapters:

Chapter 1 provides a brief overview on vehicle localization and its applications. The mo-

tivation behind this research work and its objectives are also introduced.

Chapter 2 contains background and a literature review that present a variety of fusion

techniques in the context of the vehicle localization problem, in addition to highlighting

important research gaps.

Chapter 3 presents a high level concept of a novel framework for fusing different localiza-

tion techniques while maintaining a target level of quality set by a task or application.

Chapter 4 presents the development of two novel classification algorithms that are capa-

ble of determining the localization accuracy using information pertained to measurement

conditions. The efficacy of the classification algorithms is shown in two case studies.

Chapter 5 discusses the development of an approach for capturing the impact of observa-

tion conditions on the localization performance and to consequently determine an integrity

index with respect to the localization accuracy claimed by a technique. Experimental re-

sults for another two case studies are also provided.

Chapter 6 introduces the concept of location estimates meta-fusion scheme in light of

the integrity assessment and aggregation of these estimates. A new evidence structure is

developed in this chapter to handle the fusion of localization quality indexes. Furthermore,
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task-driven resource allocation is introduces to the fusion process.

Chapter 7 contains conclusions derived from the research work and presents suggestions

for future work.
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Chapter 2

Background and Literature Review

2.1 Introduction

The focus of much recent research in localization systems has been to increase accuracy

through the use of multiple localization modalities. This chapter provides a literature review

of multi-modality based localization techniques and establishes a categorization of such

techniques based on type of measurement and the strategy employed to fuse measurement

from the various localization sources.

GPS as a source of localization measurements and the Kalman Filter (KF) as a tool for

fusing measurements from multiple sources have been quite predominant in a large body of

reported localization research work. A key feature that makes the Kalman Filter an attrac-

tive fusion tool is its ability to produce a minimum square error for linear measurements

under zero mean Gaussian noise contamination [37].
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2.2 Motion and GPS Measurement Data Fusion

DGPS and Assisted GPS (A-GPS) are two advanced types of GPS that provide a high level

of accuracy and fast retrieving rate. Nevertheless, using a GPS receiver as the sole vehicle

localization measurement source may turn to be unreliable, especially in urban canyons

and other areas where the satellite signal can be distorted or lost. A number of solutions

have been reported in the literature that proposed augmenting GPS measurements with

information about the vehicle’s motion in order to improve localization accuracy. In what

follows I provide a summary of a number of such solutions.

2.2.1 DRS and GPS Integration

A DRS is a localization technique that estimates the next location of a mobile object over

a series of short time intervals, given the object’s direction, speed, and previous location.

DRS is simple and known for producing incremental error and hence needs to be reset

periodically. It is therefore suitable for use over short periods of time.

One approach to resetting the cumulative localization error is to combine DRS with

GPS whereby GPS measurements are used to reduce the DRS cumulative error; when the

GPS measurement is unavailable, the DRS estimates the location using sensors such as

wheel odometers, a flux-gate compass, a gyroscope, and an accelerometer [38].

2.2.2 INS and GPS Fusion

INS employs a computing unit and motion sensors to estimate its location without relying

on any external reference once it is initialized using for example a GPS measurement. To

avoid the accumulated error caused by the measurements of internal sensors in INS, the INS
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location estimate is fused with measurement data from other sources. As discussed in [39]

fusing INS and GPS can take the form of a loosely or tightly coupled system architecture.

An example of a system that fuses INS and GPS is the real-time kinematic global

positioning system which uses an Extended Kalman Filter (EKF) to fuse data [40]. In this

system, GPS latency is defined as the time required for the satellite signals to travel to

Earth and the time required for the computation of the location; GPS latency varies with

the number of observed satellites. Therefore, the GPS latency is encapsulated in the EKF

state so that the fusion of the INS and GPS data is synchronized with the readings of the

sensors.

It is possible to fuse ordinary GPS INS by means of a KF [41]. In this case the com-

putational complexity of the EKF can be reduced by preprocessing the INS measurements

and inputting them into the KF as a linear component. However, preprocessing the INS

measurement adds to the computational cost of the solution.

2.2.3 Other Motion Sensors and DGPS Fusion

Integrating the INS of a dynamic model with a differential GPS (DGPS) has also been

investigated [42] as opposed to the kinematic models typically used in the literature. Due

to the nonlinearity of the dynamic model, an EKF is used. In a regular INS, the motion

sensors consist of an accelerometer and yaw rate. Due to the accelerometer noise and other

motion sensors, such as six wheel-speed encoders, a steering angle encoder, and an optical

yaw rate gyro, are used instead [42]. This location estimator maintains a localization

accuracy of as low as 0.9 m for up to 100 m when the vehicle moves in a straight line and

the system relies more on the dynamic model than on the GPS measurements. However, the

localization errors become larger along curves as a result of the slow sampling frequency of
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the GPS and the non-linearity approximation of the EKF. Furthermore, multipath effects

are not addressed.

In [4] a method of positioning a vehicle on undulating ground by fusing DGPS data and

motion sensor data is proposed. A fibre optic gyro, a roll pitch sensor, and wheel encoders

are used as motion sensors. The positioning accuracy is improved by compensating for the

error for each sensor. The error is determined by means of a KF, which is also utilized as

a fusion unit.

In [43] an Artificial Neural Network (ANN) is chosen as a tool for detecting errors and

noises in INS measurements using a DGPS as a guide to the true location of the vehicle

during a training phase. The work reported in [43] is similar to that reported in [40] in that

preprocessing operations are performed on the measurements before they are fused. An

assumption that is made in this method is that the DGPS data is always either available or

unavailable due to an outage in satellite signal. However, in urban areas, satellite signals

are often available but quite often are contaminated by multipath noises, which effects the

quality of the ANN learning.

2.3 Fusion of Landmark, DRS, and GPS Measure-

ments

The detection and and recognition of landmarks provide spatial information related to the

local environment. It is therefore possible to integrate spatial information with localization

measurements from DRS and GPS in order to improve localization accuracy [11, 44–48].

Two approaches for detecting and augmenting landmarks for vehicle localization systems

are presented next along with a localization technique that attempts to detect visible

satellites (i.e., satellites with LOS) for use in the positioning process.
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2.3.1 Laser Scanners, Digital Maps, and GPS/DRS

Due to the accumulated error caused by the long satellite outages in GPS/DRS localization

systems, digital maps are utilized to perform localization during such outages [46]. A laser

scanner mounted on a vehicle scans major objects in the vehicle’s environment. The system

matches these landmarks with other landmarks in the digital map that represent the region

of interest. If there is a match, the vehicle location is estimated by correlating the identified

landmarks.

However, segmentation is not a trivial job, especially in situations where landmarks

are merged with background objects. Moreover, the system must be trained by having it

traverse the regions of interest [47] to extract landmarks (features, such as traffic signs and

the posts of traffic lights) that can later be used as reference points.

In [45], a vehicle equipped with an autonomous navigation system and a laser scanner

is reported. The laser scanner is used to detect the edges of sidewalks and estimate the

distance between the edge of the sidewalk and the vehicle. Distance measurements are

utilized to improve the accuracy of a localization system that comprises GPS, DRS, and

Geographic Information System (GIS). The GIS data contains digitized information such

as abstract road maps, road edges, and other landmarks. Landmark information is created

through a learning stage. During the testing stage, the EKF fusion technique produces an

innovation value from which the system determines whether to accept the fusion location

estimate. If the GPS data is corrupted by multipath signals or is unavailable, only the

DRS location estimate is utilized. The vehicle location estimate is used to select the

region of interest from the GIS database that contains the landmark information. To

improve the vehicle location estimate, a matching scheme is performed to compare the

GIS-extracted landmarks (i.e., sidewalk edges) with those extracted by the laser scanner,
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and the estimated distances between the sidewalk edge and the vehicle are then used in

fixing the vehicle location. Although the memory constraints are overcome by using the

GIS, the accuracy of the estimate of the distances is not consistent due to occluding objects

between the laser scanner and the edge of the sidewalk. The training phase required for

any traversed region is also not insignificant.

2.3.2 Vision, Digital Maps, and GPS/DRS

Visual data is also utilized in localization techniques since digital images can provide a wide

range of information about the surrounding environment. Due to the time required for

image processing [11], only key images are maintained and linked to the GIS database [45].

Again, both GPS/DRS are used and the proximity of the vehicle location estimate to the

roads in the GIS database is examined. The road segment closest to the location estimate is

then selected, and key images of that road are extracted in order to compare their features

with the features of the images taken during the navigation stage. The weakness of this

strategy appears when the curvature of the vehicle’s path is significant, especially when

the vehicle turns in orthogonal intersections.

Visual features can, however, be blended with other location measurements, such as

GPS and DRS data in the EKF formulation [48]. The main advantage of this strategy is

that the uncertainty of all the information sources is kept local to the EKF, namely, in the

error covariance matrix, which guarantees a minimum mean square error estimate. In [48],

the EKF structure is derived and validated where the curvature of the roads is employed

as a visual feature. It is shown that when the roads are curvy, the vehicle location estimate

is dramatically improved. On the other hand, if the road traversed is not curved, then the

accuracy of the location estimate remains the same as that produced by the GPS/DRS

fusion localization technique.
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2.3.3 Satellite Visibility and DGPS

In urban areas, GPS multipath signals cause unpredictable localization errors due to the

NLOS satellite signals. An approach to mitigate the effect of NLOS signals is the lo-

calization system driven by tracking visible GPS satellites using an infrared camera. An

omni-directional infrared camera mounted on the top of a vehicle is used to recognize ob-

stacles and their height and to detect visible satellites by observing their positions with a

satellite orbit simulator [49]. This method allows the system to exclude any radio waves

emitted by invisible satellites to improve the localization accuracy.

The vehicle localization system used in this approach has high degree of accuracy since

it employs a DGPS receiver. However, in high rise building areas, the availability of location

estimates is low due to the lack of enough visible satellites, and even with enough visible

satellites, the geometric configuration of the constellation may result in a high Dilution of

Precision (DOP).

2.4 Cooperative Localization

Cooperative Localization is a recent location estimation approach that has been imple-

mented in vehicular positioning and wireless communication systems. This localization

scheme is suitable for scenarios which involve the coexistence of several entities that inde-

pendently provide location information. The goal is to localize a mobile node or to enhance

its location estimate given that it shares relative spatial information with nearby nodes

(e.g., other vehicles or mobile network towers).
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2.4.1 Radio Signal Measurement Data Fusion

Radio localization methods have been studied extensively for cellular networks in a wide

range of applications (e.g., for CDMA networks see [28–32, 50–55] and for GSM networks

see [56]). An example of these systems is a localization system that estimates the locations

of emergency calls initiated by cellular phones. The system operates on the principle

that measurements from different Base Stations (BS’s) are combined in order to compute

the location of a Mobile Station (MS). The base stations typically have different levels of

uncertainty in their measurements, which are minimized as a result of the fusion process.

The relative spatial information in this system is based on the measurements from radio

signals, such as RSS, TOA, TDOA, and AOA. In some of these GPS-less approaches, a

mix of two or more different types of radio signal measurements is utilized in order to relax

constraints such as the synchronization of the BS’s.

In the following subsections detailed models for some of these techniques are given.

(xm, ym) signifies the MS location. The locations of n base stations: (BS1, BS2, BS3, . . . ,

BSn) are denoted by {(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)}, respectively. For simplicity

and without loss of generality, locations are represented by two coordinates, x and y, in

the Cartesian coordinate system.

TOA Data Fusion

Time of arrival measurements are based on the time of flight of a signal as it travels between

a source and a destination. Since the signal travels at the speed of light (c), it is possible

to compute the distance between the two points as follows:

di = (ti − tm)c (2.1)
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where tm signifies the signal sending time from the MS, ti signifies the signal arrival time

at the BSi, and i signifies the BS’s index (i.e., i = {1, 2, . . . , n}).

According to [32], the TOA technique can be employed using three BS’s, the minimum

number of reference points in two dimensions (Figure 2.1), in order to estimate the MS

location by computing the distances between each BS and the MS (i.e., d1, d2, d3), as per

Equation 2.1, and then formulating the following optimization problem:

x̂m, ŷm = arg min
xm,ym

3∑
i=1

(
di −

√
(xi − xm)2 + (yi − ym)2

)2

(2.2)

MS
(xm,ym)

BS1

(x1,y1)

BS2

(x2,y2)BS3

(x3,y3)

d1

d2

d3

Figure 2.1: The TOA localization method.

Nevertheless, due to possible NLOS propagation conditions, the actual Euclidean dis-
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tances between the MS and the BSi is less than or equal to (ti − tm)c. This inequality

creates more than one solution for the optimization problem in 2.2, all of which reside in a

bounded area, as shown in Figure 2.1. A constrained version of the optimization problem

in 2.2 is proposed in [28, 57] in order to increase the localization accuracy; however, the

geometric arrangement of the BS’s may produce poor location estimates due to the shape

of the bounded area that contains the MS. This shortcoming might be avoided using more

BS’s. The next method, described below, utilizes more than three BS’s in estimating the

MS location so that ambiguity in the distance computation is reduced.

In [50,53] the Cartesian coordinate system is represented as follows. The location of one

of the base stations is assumed to be the origin (e.g., BS1 be the origin: (x1, y1) = (0, 0))

and the locations of the other objects in the network are computed with respect to the

origin. Hence, the distances (d1, d2, d3. . . . , dn) can be used to estimate the location of the

MS by solving the following set of equations:

d2
1 = x2

m + y2
m

d2
2 = (x2 − xm)2 + (y2 − ym)2

d2
3 = (x3 − xm)2 + (y3 − ym)2

...
d2
n = (xn − xm)2 + (yn − ym)2

(2.3)

After rearranging terms, the above equations can be written as follows:
x2 y2

x3 y3
...

...
xn yn


[
xm
ym

]
=

1

2


k2

2 − d2
2 + d2

1

k2
3 − d2

3 + d2
1

...
k2
n − d2

n + d2
1

 (2.4)

where k2
i = x2

i + y2
i . Equation 2.4 can be expressed in a matrix form

Hx = b (2.5)
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where H =


x2 y2

x3 y3
...

...
xn yn

, x =

[
xm
ym

]
, and b = 1

2


k2

2 − d2
2 + d2

1

k2
3 − d2

3 + d2
1

...
k2
n − d2

n + d2
1

.

Equation 2.5 represents an overdetermined system (i.e., n > 2). Practically, such a

system has no exact solution. Therefore a linear least squares method is used to estimate

the location of the MS as follows:

x̂ =
(
HTH

)−1
HTb (2.6)

where (.)T signifies matrix transpose and (.)−1 signifies matrix inverse.

Alternative techniques, such as the maximum likelihood are reported in [54,55]. In [58],

terrestrial time of arrival (TOA) measurements are fused with the GPS localization using

a weighted least square estimator to improve the final localization accuracy.

TDOA Data Fusion

TDOA is preferable to the TOA due to the fact that TDOA does not require synchroniza-

tion between the MS and BS’s, Figure 2.2. Instead, it takes advantage of the synchroniza-

tion of the CDMA cellular network BS’s to compute the difference between the time of

arrivals of the MS signal at the BSi and BS1, where i ∈ {2, 3, . . . , n}. The difference in the

distance is therefore defined as follows:

di1 ≡ di − d1

= (ti − tm)c− (t1 − tm)c
= (ti − t1)c

(2.7)

It can be seen that the difference is not affected by errors in the MS clock time tm.

Substituted Equation 2.7 in Equation 2.3, and then expanding and rearranging the terms
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BS1

(x1,y1)

MS
(xm,ym)

BS2

(x2,y2)

BS3

(x3,y3)

d
3=

ct3

d2=ct2

d1=ct1

d21=c(t2- t1)

d31=c(t3- t1)

Figure 2.2: The TDOA localization method.

produce the following set of equations:
x2 y2

x3 y3
...

...
xn yn


[
xm
ym

]
= d1


−d21

−d31
...
−dn1

+
1

2


k2

2 − d2
21

k2
3 − d2

31
...

k2
n − d2

n1

 (2.8)

which can be expressed in a matrix form as follows:

Hx = d1c + r (2.9)
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where H =


x2 y2

x3 y3
...

...
xn yn

, c =


−d21

−d31
...
−dn1

, and r = 1
2


k2

2 − d2
21

k2
3 − d2

31
...

k2
n − d2

n1

.

Similarly, Equation 2.9 can be solved using the following linear least squares formula-

tion:

x̂ =
(
HTH

)−1
HT (d1c + r) (2.10)

The solution of Equation 2.10 is determined in two steps. First, the estimate of the MS

is determined in terms of d1, which is substituted in the quadratic expression d2
1 = x2

m+y2
m

to compute d1. Second, the value of d1 is substituted back in Equation 2.10 to solve for

x̂ [50].

AOA Data Fusion

AOA techniques estimate the location of an MS by measuring the angle of signal arrival

from the MS at several BS’s by means of an antenna array. The MS location is then

estimated through the intersection of the straight paths leaving from at least two BS’s, as

depicted in Figure 2.3. However, combining only two AOA measurements may introduce

a large amount of uncertainty with respect to the MS location estimate, especially when

the MS is close to the line connecting the two BS’s. Moreover, this localization method

requires the MS to be in LOS with the participating BS’s, since reflected or diffracted

signals result in misleading information. For this reason, it is preferable for the AOA to

be combined with another localization method, such as TOA or TDOA.
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Figure 2.3: The AOA localization method.

RSS Data Fusion

RSS based localization is a method that employs mathematical models that describe the

path loss as a function of distance. Since these models translate the received signal power

into a distance between an MS and a BS, the MS must lie on a circle centred at the BS.

Employing three or more BS’s provides an estimate for the MS location.

RSS is well known for being drastically affected by multipath fading and shadowing

(multipath signals). The error caused by multipath signals can be reduced by using prior

knowledge available on the contours of the signal strength centred at the BS’s [59]. How-

ever, such knowledge assumes a specific surrounding environment that can change due to
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change in weather, moving objects, such as trucks, as well as new buildings and other

barriers.

Fingerprinting (FP)

This localization method is a pattern recognition, or pattern matching, technique. The

underlying concept of fingerprinting is that the radio signal propagation characteristics of

an MS are unique in terms of TOA, AOA, and RSS when captured at different BS’s [28,56].

Such characteristics can therefore be used as a signature to indicate the location of an MS

[60]. The FP method has two phases: a training phase and localization phase [61–64]. In

the training phase, a database is created to index the different patterns in the characteristics

of the radio signal propagation. In the localization phase, the signature of the MS is matched

with the patterns in the database. The challenging aspect of this method is assuring that

the system can distinguish between similar patterns that represent different locations.

Of course, the more exhaustive training phase is (i.e., recording a signature for every

small area in the environment), the more accurate the MS location estimate is. The main

drawback of this method is the requirement to continually update the database as the

configuration of the BS’s changes when BS’s are removed or new ones are added [65].

Nevertheless, this method is becoming more attractive for indoor applications because the

database creation can be more comprehensive and manageable [65–67].

2.4.2 VANET Localization Using Relative Distances
Measurements

This approach takes advantage of the emerging VANET environments. The distances

between VANET nodes are estimated and exchanged among vehicles along with preliminary

estimates of the vehicles’ locations. Vehicles can then use this information to construct local
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relative position maps that contain the vehicles and their neighbours. This strategy has

initially emerged in Wireless Sensor Networks (WSN), but recently, a number of solutions

have been proposed for use in VANET [13,68,69]

Vehicle Localization in VANET

A VANET based localization method was introduced in [68] for localizing vehicles with

no GPS receivers, or those whose location can not be determined because satellite signals

have been lost, for instance, in a tunnel. With this method, vehicles that are not equipped

with GPS determine their own locations by relying on information they receive from ve-

hicles that are equipped with GPS. Vehicles within transmission range can measure the

distances between each other using one of the radio-location methods presented in [32]. By

finding its closest three neighbours the unequipped vehicle can compute its position using

trilateration.

Cooperative Vehicle Position Estimation

The work reported in [70] presents a method of distributed vehicle localization in VANET.

The method utilizes RSS measurements to estimate the distances between one vehicle and

others in its coverage area. It is assumed that vehicles initially estimate their own locations

using a GPS receiver and then exchange their location information so that they can perform

an optimization technique in order to improve their location estimates.

This technique demonstrated robustness of location estimates. However, it lacks the

ability to detect and avoid the effect of multipath signals in the GPS measurements,

which drastically degrades the localization accuracy in multipath environments (e.g., urban

canyons).
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In [71] an algorithm (i.e., IVCAL) has been proposed to mitigate the multipath effect

in the location estimates of vehicles in VANET . A KF and an inter-vehicle communica-

tion system collaborate in order to increase the robustness and accuracy of the localization

of every vehicle in the network. The two main components that allow the inter-vehicle

communication system and the KF to interact are the Multipath Detection Unit (MDU),

which detects the existence of a multipath effect in the output of the KF, and the Lo-

calization Enhancement Unit (LEU), which obtains the neighbours’ information from the

inter-vehicle communication system and feeds an optimized location estimate back to the

KF (Figure 2.4).
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Figure 2.4: Block diagram of the inter-vehicle communication assisted localization tech-
nique.

As in [11] and [45], KF innovation is used as an indication of the contamination of the

GPS measurement, and it has therefore been used as a learning pattern for the MDU in

IVCAL. An uncertainty measure is also utilized in order to specify a subset of the most

accurate network neighbours that can be used as anchors to enable vehicles to improve
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their location estimates.

Lack of adequate location anchors and/or prolonged multipath conditions remain un-

solved problems that continue to degrade localization accuracy.

2.5 Multi-Level Fusion Approaches

As it has been reported above, a verity of multi-modality localization methods have evolved

in recent years. Typical modalities include satellite signals, VANET communication, vision

features, laser rays, etc. This variety of information has motivated the concept of multi-

level fusion.

For instance, in [72], a data-fusion model is proposed in the form of a three-level fusion

localization system. In the first level, a variety of location information is gathered as row

data and processed separately using local filters that are suitable for each type of location

information. As with the system in [39], the second level combines the output of the first

level and produces a better location estimate. In [72], the results are then fused in the

third level based on contextual information (e.g., digital maps and traffic information). In

this scheme, the final location estimate is fed back to the second level in order to improve

future estimations.

Multi Level fusions aims to tackle data fusion as a hierarchical process so as to allow for

combining measurements at various levels of abstraction in a simple manner. The estimates

in the lowest-level filters are evaluated for reliability. The fusion of these estimates in

higher-level filters will then be more robust.
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2.6 Integrity of Localization Systems

Due to the inherent errors in the positioning information, a level of uncertainty in location

estimates is inevitable. Therefore, it is essential to measure the confidence of the positioning

information in order to identify any hidden anomalies. To achieve this task, a level of trust,

integrity, in every estimate must be determined.

In the last two decades, a significant effort has been made in aviation to develop in-

tegrity monitoring systems [73, 74]. Integrity is defined as a measure of the trust which

can be placed in the correctness of the information supplied by the total system; integrity

includes the ability of a system to provide timely and valid measurements to users [75].

Three key components have been proposed for integrity monitoring: 1) fault detection,

2) fault isolation, and 3) removal of faulty measurement sources from the estimates [76].

The European Geostationary Navigation Overlay Service (EGNOS) and the Wide Area

Augmentation System (WAAS), [74], are developed to form a redundant source of infor-

mation for the Global Navigation Satellite Systems (GNSS) in order to perform integrity

monitoring by providing correction information.

During the last decade, monitoring the integrity of land-vehicles’ localization has at-

tracted attention due to the increasing demand for highly reliable accurate location data.

Since roving in dense urban environments may limit access to the signals from augmen-

tation systems such as EGNOS or WAAS, other means of measuring integrity have been

proposed [77–80].

For instance, [81] and [82] present a localization solution based on the fusion of GNSS

and INS sensors. In this fusion process an interactive multimodel method is used. Different

covariance matrices are used as a response to change in the noise behaviour. The proposed

integrity measure is based on the covariance matrix of the EKF estimation error.
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Relying on the error covariance matrix can be misleading especially when experiencing

unmodeled environment noise. In other words, it is not possible in many cases to detect,

isolate, and remove the estimation faults, let alone the unavoidable false alarms.

Also, in [80] a binary integrity decision-maker is proposed for a map-matching local-

ization technique in which multihypothesis road-tracking method combines proprioceptive

sensors (odometers and gyrometers) with GPS and map information. In this work, the

integrity represents high or low confidence of the location estimate. The candidate tracks

or roads are associated with a probability that is computed using the multihypothesis

road-tracking method. If one credible road exists and the normalized innovation is below a

prespecified threshold, the technique declares high confidence location estimate. However,

the lack of granularity in the integrity measure limits the range of the integrity-level based

application that can use this method.

Integrity monitoring of map-matching localization has also been proposed and tested

in [77]. However, in this work three indicators has been monitored to achieve this task:

distance residuals, heading residuals, and an indicator related to uncertainty of the map

matched position. Due to the linguistic nature of these indicators, they have been combined

using a fuzzy inference model to produce a value between 0 to 100 to indicate the integrity of

the system. The derivation of the integrity threshold has been determined experimentally

to be 70, where the type of the environment experienced during the experiment was not

specified. The threshold value, nevertheless, might be different from one environmental

condition to another, and dependent on the type of sensors used. More importantly, the

integrity needed for localization is application/task dependent. For instance, the demand

on navigation systems to produce accurate localization is more critical in urban areas,

where road networks tend to be dense, than that on highways and rural areas.

Knowledge of the observation conditions that influence the accuracy performance of a
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localization system is a key issue in evaluating the integrity of location estimation. In the

following section, some operational parameters have been studied in the literature in terms

of their ability to capture localization accuracy attributes.

2.6.1 Localization Accuracy Assessment

A fuzzy inference method to evaluate the accuracy of location estimate obtained by a GPS

receiver is presented in [25, 83]. The decision about the accuracy of the location estimate

is made based on the Geometric Dilution of Precision (GDOP) and the Signal to Noise

Ratio (SNR). The fuzzy system output is defined as a reliability factor which indicates the

amount of trust in the location estimate.

Chang et al. [84] use the number of visible satellites as a measurement conditions indi-

cator. When the number of visible satellites drops below four, the pseudo-range and clock

bias of some invisible satellites are estimated. In order to solve the GPS positioning prob-

lem, both the altitude and the speed of the vehicle are assumed to be constant. Of course,

these two assumption are seldom valid, particularly in urban environments. Furthermore,

the persistence of such environmental conditions for a long period of time degrades the

estimation performance of the pseudo-range and clock bias, and consequently negatively

affects the performance of the localization process. Thus, accuracy in this case cannot be

taken for granted. Meguro et al. [49] attempt to mitigate the location estimate errors by

eliminating the error source(s). To achieve this task, an IR camera is used to identify which

satellite is introducing multipath signals so that its reading is discarded. Nevertheless, in

high-rise building environments, where multipath effects are most prevalent, the number of

satellites with LOS to the GPS receiver can be insufficient. Consequently, using only these

satellites in such an environment introduces high DOP and therefore strongly diminish

the accuracy of the available measurements [85, 86]. In general, eliminating the number
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of observed satellites may lead to a situation in which the availability of highly accurate

location estimates is reduced – a performance requirement that is crucial to mission critical

applications [15,23,72].

Costa [87] proposed a simulation model to represent the channel of the GPS, upon which

the path status (e.g., clear, shadowed,or blocked) and positioning error are estimated. The

estimation process utilizes a digital elevation model, buildings’ databases, and a vegetation

model, in addition to number of observed satellites and their SNR. The estimations of the

simulation model is comparable to the ground truth measurements; however, it can not be

used during the absence of buildings’ databases and the other prerequisites of the simulation

model, which limits the mobility of such technique.

Tzoreff et al. [88] proposed a model that describes the vehicle path to achieve more ac-

curate localization in urban environments. The model demonstrates superior performance

even in the presence of one satellite with LOS. Nevertheless, satellites with NLOS – a

common issue in urban areas [24, 71,89] – are not considered.

2.7 Performance Criteria and Benchmarking

From the discussion above it is clear that vehicle localization is an increasingly growing

area of research. Nevertheless, there is a number of outstanding issues that still need to

be addressed. In order to put these outstanding issues in practical context I propose the

following performance criteria.

2.7.1. Accuracy: Accuracy of a vehicle location estimate is defined as the degree of close-

ness of a vehicle’s location estimate to its actual (true) location.

2.7.2. Availability: Availability of a vehicle location estimate is defined as the ratio of

the number of estimates produced to the number of estimates expected per one unit of time.
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2.7.3. Response Time: Response time is the time required by a localization technique to

produce a location estimate.

2.7.4. Integrity: Integrity is defined as the level of confidence that can be placed in the

correctness of the location estimate [75, 77,90].

Based on the above performance criteria, a benchmark can be established in order

to compare the performance of different localization techniques. Such comparison does

not only consider reported best achievable accuracy localization performance, but also ex-

amines the integrity performance of these techniques. Table 2.1 provides a comparison

summary of the modality used, best case accuracy, environmental constraints to indicate

availability, need for synchronization where response time must be considered, and depen-

dency on infrastructure.

Table 2.1: Specifications of Localization Techniques.

Modality(ies) Best Case Accuracy(m) Availability Synch. Infr.str.

GPS 10-20 [19,20] Out Door-Open Sky Yes No
DeadReckoning (DR) Worsen with time [38] Anywhere No No

DGPS with Visible Satellites 0.01-7.6 [49] suburban-Open Sky Yes Yes
DGPS+DR+Map Matching 0.5-5 [91] Out Door-Open Sky N/A Yes
GPS+Vision+Map Matching 0.5-1 [45,92] Out Door-Open Sky No Yes

Cellular Localization 90-250 [56]; 25-69 [28] Under Network Coverage Yes Yes
Location Services Submeter [93] In Door N/A Yes

Relative Ad hoc Localization 2-7 (Simulation [13,70]) Suburban Yes No

Table 2.2 reports emerging applications and their requirements with respect to localiza-

tion accuracy only. It is evident from Tables 2.1 and 2.2 that current localization techniques

do not live up to the required integrity.

As it is shown in Table 2.1, synchronization is a prerequisite in the fusion process of

some multi-sensory systems. However, the synchronization issue is out of the scope of this

thesis since it has been thoroughly investigated and covered in the literature (cf. [40,57,94]).

32



Table 2.2: Applications Requirement for Location Estimates [72].

Application
Required Accuracy

Low(10-20 m) Medium (1-5 m) High (1 m or less)

Message Routing (VANET) X
Data Dissemination X
Map Localization X
Road Pricing X
Coop. Cruise Control X
Coop. Intersection Safety X
Blind Crossing X
Platooning X
Collision Warning Sys. X
Vision Enhancement X
Automatic Parking X

2.8 Task Driven Localization Integrity

From the above discussion it is obvious that for localization systems to meet the expec-

tations of emerging applications it is imperative that they employ diverse location mea-

surement sources and effective strategies to fuse these sources so as to achieve the QoS

expected of them. Of course, this QoS is multi-dimensional as it pertains to expected

accuracy, availability, response time and integrity. The QoS as a function of these perfor-

mance criteria is application and task dependent. The more stringent the required QoS

is with respect to a given performance criterion, the more resources are needed and the

higher the computational cost is. This presents a challenge for the system as calls for effec-

tive use of resources to achieve the target QoS. For example, there are applications where

accuracy can be traded for faster response time. On the other hand, there are applica-

tions where response time is not as important as accuracy (offline vehicle track mapping).

There are also applications where both requirements, accuracy and response time, can not
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be compromised for any other gain.

Indeed, task or goal driven localization is about effective allocating system resources

and planning of localization tasks such that the system mission is achieved with maximum

integrity possible. This strategy to performance is the core of this research work. In order

for this strategy to work it is imperative that the impact of the environment is not ignored.

Without modeling the impact of the environment on the system, the system can not be

guaranteed to achieve its target performance, and even worse as it may falsely determine

its task is accomplished. Thus, modeling the impact of the environmental conditions on

the system is a central issue to this research work.

2.9 Summary

In this chapter, a variety of reported localization techniques are presented and classified

based on the type of the measurement of the location information used.

Although, techniques that incorporate fusion of motion sensory data with GPS lo-

calization have demonstrated improvement in performance, there are still situations that

can have a negative effect on their localization accuracy. Incremental localization errors

in motion-sensor data and the multipath effect in urban canyon environments contribute

significantly to such location estimate errors, which necessitates augmenting the initial

location data with other sources of location information in order to overcome these short-

comings.

Digital maps and visual features enhance GPS-DRS localization by recognizing land-

marks in the surrounding environment and matching them with others in a reference GIS

map. A key problem associated with this scheme is that the landmark segmentation process

is complex an ill conditioned process.
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Range location methods offer localization performance that provides relatively accurate

location estimates in urban areas. NLOS is often the main problem in such localization

techniques. Lack of adequate location anchors and/or prolonged multipath conditions are

challenges that continue to effect localization accuracy.

Multi-level fusion schemes are promising as they employ multiple location measurement

phenomena. However, these schemes have given birth to new challenges in the localization

problem in terms of resource management, and task driven performance.

In the next chapter, a proposed framework for vehicle localization is presented. The aim

is to develop a vehicle localization system that can optimize and plan the use of its resources

so as to achieve the performance requirements of the localization task or application.
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Chapter 3

Task-Driven Localization Through
Integrity Assessment and Control

3.1 Introduction

It is well understood that the techniques presented in Chapter 2 can estimate the loca-

tion of vehicles relatively accurately in some situations if they are given adequate time

to perform the task. However, they may not perform as well in other situations. The

deficiencies of these localization techniques are uncorrelated as they are expected to be

of diverse phenomena, and/or utilize different algorithmic paradigms. This motivates the

development of systems that can take advantage of this diversity to achieve a reliable and

accurate performance.

In this chapter, a high level concept of a novel framework for fusing different localization

techniques is proposed. What distinguishes this framework from existing ones is its ability

to take into account the impact of the measurement conditions on the individual techniques.

Thus, it is able to optimize the fusion process so as to maximize the accuracy and integrity

of the localization estimates.
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Most of the fusion techniques reported in the literature employ an instance of KF

or EKF to fuse location measurements [11, 40, 79, 95]. The integrity of the estimation

is represented by the covariance matrix of the estimation error or the innovation. For

example, in [11, 40, 95] the acceptance of the location estimate is evaluated through a

binary decision maker that utilizes the innovation covariance matrix. In [79], an interactive

multimodel filter (IMM-EKF) provides an estimate based on a weighted combination of

these models. The weights are determined using a probabilistic model. The integrity of

the location estimate is evaluated based on the error covariance matrix. It is important to

note that KF and EKF assume low order nonlinearity of the measurement model and that

the contaminant noise is of a zero mean Gaussian distribution; an assumption that does

not hold in many real-life situations. Furthermore, it is often the case that the location

measurement noise is time-varying, as such the error covariance matrices can not be relied

on to provide insight into the measurement process integrity [96]. Time variant noise

covariance matrices are proposed to tackle this issue; however, it is impossible to know a

priori all the degrees of noise the system can experience. The objective of this research work

is to develop a task-driven multi-modality localization system. Integrity in this system of

location estimation is captured by means of a reliability model. The model accounts for

the reliability of each modality as a function of the required integrity objectives as well as

the impact of the measurement conditions on each modality [97,98].

3.2 Problem Formulation

Consider a localization system that employs a set of N localization techniques, indexed

by the set Ψ = {T1, T2, . . . , TN}. The system is to estimate the current location of a

vehicle. Let Xt be the true location of the vehicle at time t. Each technique Ti uses its
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measurement resources to compute an estimate Zi,t+∆ti . ∆ti signifies the time it takes

technique Ti to compute the estimate. Each technique Ti declares a quality index ξi to its

location estimate. It is conceivable that the quality indices of the different techniques to

be unequal. For example, a GPS based technique may not produce location estimates with

qualities equal to that of a map matching based localization technique. The goal of the

system is to manage its set of techniques so as to compute a location estimate that meets

a target quality Ξs.

Figure 3.1 depicts a block diagram of the system. The system consists of three log-

ical layers: (1) Primary Localization layer which provides preliminary location estimates

using the localization techniques in Ψ; (2) Integrity Monitoring layer which computes the

reliability of the vehicle’s location estimates produced by the Primary Localization layer-

a process that captures the impact of measurement conditions; and (3) Estimate Fusion

and Management layer which interacts with the application task to ensure that the task’s

expected localization accuracy and integrity are achieved by executing a proper fusion

scheme. The following sections discuss these layers in more details.

Primary Localization Layer

Integrity Monitoring Layer
Estimate 

Fusion and 
Managemen

Layer

Application

GPS INS MAPs

QoS

Final Locatoin Estimate

Source Selection

Integrity Index

Sensing Parameters

Pri. Loc. Est.

Figure 3.1: The structure of the proposed framework.
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3.3 Primary Localization Layer

The primary localization layer contains system’s localization techniques which are parti-

tioned in the form of a set of Primary Localization Units (PLUs), as can be seen in Figure

3.2. Any localization technique, such as those mentioned in Chapter 2, can be used in any

given PLU. These primary localization units receive localization requests from the Esti-

mate Fusion and Management layer. PLUs are constructed from techniques that are based

on different phenomena/algorithms to ensure minimum correlation. A primary localization

unit can share its information sources with other units; it can constitute a single modality

or multiple-modalities. An example of a single modality PLU is one that estimates the

PLU1 PLU2 PLUN

Loc-Req

GPS INS MAPs

Localization command 
from the estimate fusion 
and management Layer

The integrity monitoring layer

Preliminary location 
estimates

Calibration 
command from the 
estimate fusion and 
management layer

Figure 3.2: Primary localization layer.

vehicle location from a GPS information source. IVCAL is an example of a PLU that

utilizes three modalities: GPS, INS, and Inter-Vehicle Communication (IVC) .

Central to the PLU functionality is determining the accuracy of the primary location

estimate. Novel classification algorithms are introduced in Chapter 4 to assess the local-

ization accuracy of PLUs.
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3.4 Integrity Monitoring Layer

Central to the proposed framework is the integrity monitoring layer. Here, an Integrity

Monitoring unit (IMU) is used to monitor the performance of a primary localization

unit(Figure 3.3). The monitoring process takes into consideration the impact of the

IMU1 IMU2 IMUN

The primary localization layer

The estimate fusion and management layer

Figure 3.3: Integrity monitoring layer.

measurement conditions on the PLU, as well as its integrity historical profile. The the-

oretical formulation for the integrity monitoring units, as well as experimental results to

demonstrate this concept, is presented in Chapter 5.

3.5 The Estimate Fusion and Management Layer

The Estimate Fusion and Management layer (EFM) is responsible for determining an effec-

tive integration (Meta-Fusion) strategy for fusing the estimates produced by the different

primary localization units so as to achieve the required localization accuracy and integrity

(Figure 3.4). The estimate fusion and management processes the location estimates pro-

duced by the different primary localization units in conjunction with their integrity assess-

ments. Therefore, this layer employs a synchronization handler to manage timing issues
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Figure 3.4: Estimate fusion and management layer.

among the different PLUs. Given the task’s target accuracy and integrity, as well as that

of the various PLUs, a measurement and fusion scheme is computed such that the scheme

produces a location estimate that meets the task requirements. This layer will be intro-

duced in Chapter 6 where localization accuracy, integrity, and consumed energy and cash

are the QoS parameters considered.

3.6 Summary

In this chapter, a novel framework for vehicle location estimation is presented. The aim of

this framework is to utilize localization technique diversity and localization source diversity

to achieve robust localization performance that meets the application task’s integrity and
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accuracy constraints. It is expected that this framework will overcome some of the draw-

backs of existing localization techniques. Central to the effectiveness of the framework is

its ability to capture estimate reliability in computing the vehicle location. Furthermore,

channel discounting, in the light of localization integrity assessment, will allow the frame-

work to maximize the quality of estimate fusion as well as to address integrity aggregation

among the different estimates. In the next two chapters, the development of the localiza-

tion accuracy classification and the reliability assessment model are introduced along with

testing and examples of their implementations.
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Chapter 4

Localization Accuracy Classification:
A Context Based Approach

4.1 Introduction

The localization accuracy of any system depends heavily on both the technique it uses to

compute locations and the measurement conditions in its surroundings. However, while

localization techniques have recently started to demonstrate significant improvement in lo-

calization performance (cf. [49,71,83,85,99,100]), they continue to be severely impacted by

the measurement conditions in their environment. Indeed, the impact of the measurement

conditions on the localization accuracy in itself is an ill conditioned problem due to the

incongruent nature of the measurement process.

Reliable assessment of localization accuracy is a paramount prerequisite for any attempt

that aims to improve localization process. Two main contributions are introduced in this

chapter: 1) localization system parameters and location estimates are used to contrive a

feature space representation of probable accuracy classes, and 2) two novel classification

algorithms are proposed to classify the accuracy performance of a localization system based

on a set of features that are computed from the system measurement process. The first
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algorithm processes the feature space so as to identify class similarity, [101], among the

different accuracy classes in the features space. A hierarchical classification algorithm is

introduced to partition the feature space such that the classification process is performed

in stages, over which the pattern space is merged and split according to the degree of

similarity (i.e., overlap) among the different accuracy classes. Subsequently, the other

classification algorithm efficiently employs contextual information about the measurement

conditions to enhance the accuracy classification process.

The remainder of this chapter is organized as follows. Section 4.2 discusses the creation

of feature space using measurements obtained during the localization process. Section

4.3 presents the formulation of the classification problem and introduced to novel accu-

racy classification algorithms. Section 4.4 and Section 4.5 explore two case studies in

which the introduced classification algorithms are implemented on two different localiza-

tion techniques. Experimental work and comparative results are provided in each case

study. Section 4.6 summarizes the chapter and provides concluding remarks.

4.2 Feature Space Representation of Accuracy Classes

Accuracy is often determined as a real (i.e., continuous) figure. In practice, however, ap-

plications require specific margin/band(s) of accuracy. Therefore, the accuracy estimation

problem is defined here as that of classification. Consider a localization technique, Ti,

that has n operational parameters deemed to influence the accuracy performance. These

parameters are used to construct a feature space where each pattern is represented by a

point in n−dimensional space. Since the parameters are impacted by the measurement

conditions, the feature space allows us to observe trends among the collected samples in

this space so as to define predictive governing relationships between a measurement and

44



its accuracy index (class), Figure 4.1.

Measurement
(Parm1, Parm2,…, 

Parmn) Location Estimate

Ti



Localization System Feature Space

Figure 4.1: Mapping the location estimate process into feature space of accuracy classes.

Patterns of accuracy classes are known for being strongly overlapped (i.e., similar

classes) to the extent that patterns can not be distinguished as to which class they belong

to. Figure 4.2 shows an example of the classes overlap in the feature space of GPS accu-

racy classes. In the following section, the accuracy classes disambiguation and enhanced

location accuracy classification algorithms are presented.

4.3 Context Driven Accuracy Classification

The localization accuracy classes exhibit a significant degree of overlap in the feature

space. Thus the process of mapping a Localization measurement to an accuracy class

using a naive classification strategy, such as a flat or non-similarity guided hierarchical

classifiers, Figure 4.3, is error-prone. To address this issue we propose a context driven

hierarchical classification strategy, whereby class unfolding and contextual information are

used to regularize the classification process such that the classification error is minimized.
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Figure 4.2: Example of accuracy classes’ similarity (GPS measurements).

ABC
DE

Class A        Class B     Class C       Class D            Class E

(a) Flat classifier (h).

AB-
CDE

CDE

Class C          Class D    Class E

AB

Class A          Class B

(b) Hierarchical classifier (~).

Figure 4.3: Multi-class flat classifier versus multi-class hierarchical classifier.

4.3.1 Hierarchical Classification using Class Unfolding

Consider a data set of patterns indexed by the set P={p1, . . . , pK}, where K represents the

number of patterns in P . Let C={c1, . . . , cM} be a set of class labels, such that label(pk)=q,

q ∈ C. Let Gq be the set of patterns {pk} such that label(pk)=q, q ∈ C, for all k = 1, . . . , K.

The goal is to design a hierarchical multi-class classifier ~ that classifies each pattern pk

such that ~(pk) = q implies pk ∈ Gq. The error rate, ε, of classifier ~ is defined as the

46



probability of misclassifying pattern pk (Equation 4.1).

ε(~) = Pr(~(pk) = q|pk /∈ Gq) (4.1)

The basic idea is to utilize a tree of binary base classifiers (h’s) (e.g., linear classifica-

tion, neural networks, or SVC), producing an equivalent of a multi-class classifier [102].

Each binary classifier constitutes a node in the binary tree and decides whether a pattern

belongs to a specific class q ∈ C. In what follows, we explain the construction of the

hierarchical classifier using class unfolding (HCCU) (Figure 4.4), that minimizes the error

rate ε, regardless of the base classifier used.

k rootp Class

(1)h

( 2 )h

( 1)Mh 

(1)

selClass

( 2)

selClass

( 1)M

selClass  ( )M

selClass

(1)

ResidualClass

( 2)M

ResidualClass 

( 2)

ResidualClass








1c 2c Mc

k rootp Class

Figure 4.4: Hierarchical classifier using class unfolding.

Classifier Construction

As seen in Figure 4.2 it is possible for measurements from different classes to posses similar

features. The extent of such similarity is class dependent. This similarity information plays

an important role in the construction of the HCCU. The similarity between class q and

class ω, ζqω, is defined as the number of patterns from class q that fall into the convex hull
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of ω (Figure 4.5). Conversely, the similarity between class ω and class q, ζωq , is defined as

the number of patterns from class ω that fall into the convex hull of class q. Generally

speaking, ζωq 6= ζqω.

Patterns of class w

Patterns of class q 

Patterns of class q fall in 
the convex hull of class w

Convex hull of class w

Figure 4.5: Classes similarity measure.

As a first step in the construction process, all measurements are collapsed into one

class, i.e, Classroot. A binary decision process is employed to split the measurements into

subclasses such that the similarity between these subclasses is minimized and the similarity

between measurements of any given subclass is maximized. From Classroot two classes are

generated

Class
(0)
Sel = φ

Class
(0)
Residual = C

At each stage i, i = 1, . . . ,M − 1, Class
(i)
Sel and ClassiResidual are computed as follows:

48



Class
(i)
Sel = arg min

q∈C−S(i−1)
ζqr , ∀r = (C − S(i−1) − q) (4.2)

Class
(i)
Residual = Class

((i−1)
Residual − Class

(i)
Sel (4.3)

S(i) = S((i−1)
⋃

Class
(i)
Sel (4.4)

where S(i) is a set of labels that have been selected in upper levels of ~ (e.g., at level i,

S(i) = {φ,Class(1)
sel, Class

(2)
sel, . . . Class

(i)
sel}). This completes the design of the HCCU.

Accuracy Classification

Classifying the accuracy of a new measurement x is a binary decision process that recur-

sively traverses the tree starting from the root. At each level j the similarity between x

and class
(j)
Sel and that between x and Class

(j)
Residual is tested. This process is iterated until

a matching class is found (Algorithm 4.3.1).

Algorithm 4.3.1 : Accuracy Classification
1: Input: pattern x;
2: Output: Accuracy Class ŷ ;
3: for i = 1 : M − 1 do
4: ŷ = h(i)(x);

5: if ŷ == Class
(i)
sel then

6: return ŷ;
7: end if
8: /*x ∈ Class(i)

Residual*/
9: end for

10: return Class
(M)
sel ;
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There remain situations that give rise to degraded accuracy classification due to local-

ization system performance sensitivity to objects in the surroundings. Generally speaking,

the impact of environmental factors on the localization system tends to be stochastic in

behaviour. This suggests the possibility of minimizing the impact of such influence by

augmenting the measurement process by temporal contextual information.

4.3.2 Context Based Accuracy Classification (CBAC)

This algorithm is developed to enhance the performance of the proposed HCCU based

on contextual information about the surrounding. The surrounding affects the localization

system parameters, based on which the HCCU deduces a decision about the localization ac-

curacy. Therefore, the deduced decision can be utilized as an index that is associated with

certain state. A state can be defined as one that captures the effect of the surroundings.

The contextual information is signified here by a set of states, each state represents envi-

ronmental context in which a localization system produces a specific localization accuracy

(i.e., c1,. . . , cM).

To capture the impact of the surrounding on the accuracy classification process a num-

ber of delayed signals (ỹk’s) are introduced. These delayed signals are used to compute a

state uncertainty index.

First, an HCCU classifier: ~1, ỹk = ~1(xk), is used to determine the accuracy class of

the localization measurement xk. A delayed signal window Wk,L = (ỹk, . . . , ỹk−L) of the

last L + 1 contextual states is constructed; ỹk is the accuracy class of the most recent

localization measurement.

The extent of the impact of the environment on the localization accuracy will manifest

itself as a degree of randomness in the output of the classifier ~1. In order to quantify
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the uncertainty in the decision made by classifier ~1, this randomness is computed as the

information entropy of the delayed signal window as follows:

HWk,L
= −

M∑
i=1

Pr(ci|Wk,L) logM Pr(ci|Wk,L) (4.5)

where Pr(ci|Wk,L) is the probability that the current localization measurement, pk, belongs

to class ci, given the delayed signal window Wk,L. Pr(ci|Wk,L) is computed based on the

frequencies of the classification decisions in Wk,L.

A zero value of HWk,L
signifies the fact that the classifier decision is consistent through-

out the window, consequently, indicating classifier persistence. The higher is HWk,L
the

less persistent is the classifier about its decision. This persistence factor is used to compute

the state uncertainty index f(k,L) as follows:

A = arg max
i
Pr(ci|Wk,L), ∀ci ∈ C

B = arg max
i
Pr(ci|Wk,L), ∀ci ∈ C − cA (4.6)

f(k,L) =


A−

(
HWk,L

2

)
when A > B

A+
(
HWk,L

2

)
when A < B

This index captures two important cues, namely, the contextual state, and the degree

of uncertainty around the contextual state. For example, consider three accuracy classes:

c1 (Accurate), c2 (Marginally-Accurate), and c3 (Inaccurate). f(k,L) = 1 signifies the fact

that the classifier is quite certain that the environment is such that it coerces the system

to produce location estimate with an accuracy class of type c1. On the other hand, a value

of 1.5 signifies the fact that the environment is such that it coerces the system to produce
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a localization accuracy between type c1 (Accurate) and c2 (Marginally-Accurate). Thus,

the accuracy feature space is augmented by this state uncertainty index so as to make the

process of accuracy classification be a function of both the localization measurement xk

and the condition of the working environment around the localization system (indexed by

f(k,L)). This augmented feature space is used by another HCCU classifier: ~2 to determine

the accuracy of the GPS measurement xk.

Figure 4.6 depicts CBAC where two HCCU classifiers (~1 and ~2) collaborate to de-

termine the accuracy class of localization measurements. The pseudo code for testing the

proposed CBAC is depicted in Algorithm 4.3.2.

CBAC Input:

CBAC Output:

SUI 
Computation

kp

( , )k Lf

ˆky

State Uncertainty Index (SUI)  Unit

1Z

2Z

LZ

ky
1

2

Figure 4.6: Context Based Accuracy Classification (CBAC) schema.

The validation of the introduced accuracy classification algorithms is conducted next,

via two case studies. The first case study revolves around the dynamics of accuracy per-

formance of a GPS receiver while the second one evaluates the accuracy classification of

an FP localization technique.
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Algorithm 4.3.2 : Pseudo Code for Testing CBAC

1: Input: Testing patterns xk’s;
2: Output: Accuracy class ŷk’s;
3: /*Note: ỹk is the output of ~1 and ŷk is the ultimate output of the CBAC*/
4: /*CBAC needs the first L measurements to initialize the delayed signal window using

~1*/
5: for k = 1 to L do
6: ỹk = ~1(xk);
7: ỹk → delayed signal window;
8: end for
9: /*Start feeding ~2*/

10: loop
11: k + +;
12: ỹk = ~1(xk);
13: ỹk → delayed signal window;
14: /*Calculate Pr(ci|Wk,L)′s, HWk,L

, and f(k,L) as in equations 4.5 and 4.6*/
15: /*Construct pattern for ~2*/
16: x̂k = (xk, f(k,L));
17: ŷk = ~2(x̂k);
18: end loop

4.4 Case Study 1: GPS Accuracy Classification

The selection of GPS as the localization technique for this study is a result of the inherent

status GPS enjoys as a basic building block in most of localization systems. Thus, degra-

dation in GPS localization accuracy performance has the potential of negatively impacting

the performance of the overall system.

The following section explains the GPS error components, and presents the features

introduced in this work. These features are used collectively to infer the GPS receiver

accuracy, Figure 4.7.
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Reciever Surrounding Environment:
Buildings, tunnels, trees,...

GPS Receiver

Processing 
NMEA 

sentenses

Location Estimate
(x,y)

Location Estimate Accuracy
(Accurate, Marginally Accurate, or 

Inaccurate)

Figure 4.7: System Model: GPS receiver’s surrounding environment has an impact on the
location estimate accuracy.

4.4.1 Errors in GPS Location Estimate

As the signals of the GPS satellites travel to the GPS receiver, several error components

accumulate in the pseudorange code ρcode, and thus this code is a noisy estimate of the

range, r, from the satellite to the receiver. These error components are summarized in the

following equation

ρcode = r + δeph + δiono + δtrop − sT + δmp + vrcvr (4.7)

where δeph signifies the satellite ephemeris error. The ephemeris error is caused by the

difference between the actual GPS satellite position and the anticipated position. δiono

and δtrop signify the ionospherical and tropospherical errors, respectively; these spherical

errors are caused by reduction in the speed of the satellite signal. The signal originally

travels at the speed of light, s, but the speed is reduced when crossing the ionosphere

and troposphere layers. The receiver clock error is signified by T. The multipath error is
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signified by δmp. The multipath error is caused by the delay of the signal arrival due to its

reflection off building surfaces in the area. The error component vrcvr signifies the receiver

measurement noise which is device dependent.

As per [21, 22], the magnitude of δeph is about 3 m, δiono is about 5 m, and δtrop is

about 2 m. However, the range of the error caused by the receiver clock error depends

on the value of T . In [103], it is reported that this error range can be reduced to less

than 1 m. The Selective Availability (δSA) error, which previously was used to capture

artificial falsification, was not incorporated. This error was eliminated in 2000 [104] and

thus is no longer relevant for computing the ρcode. In [21], it is reported that differential

GPS can eliminate the common GPS error components (i.e., δeph, δion, and δtrop), while

the multipath and device-noise error components remain dominant in ρcode. Furthermore,

the multipath component becomes severely pronounced in multipath environments. In

particular, the multipath error has unknown distribution and bias in some situations [25].

Indeed, the GPS localization error ranges from a few meters in open sky environments to

over 80 meters in urban canyons.

Data Set Creation

To accomplish the localization accuracy inference task, a total of 6520 GPS measurements

have been collected as a data set using a vehicle equipped with a standard GPS receiver

(SiRFstarIII Evaluation Receiver). The vehicle is driven in various environmental condi-

tions so as to obtain a comprehensive insight into the behaviour of GPS localization error

in a wide range of conditions. The data set consists of approximately two equal parts. The

first part of the data set has been collected in an open sky environment over a segment of

the highway 401 between the city of Waterloo and the city of Toronto, Ontario. The other

part of the data set has been collected in environments with various degrees of multipath
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signals (e.g., suburbs and downtown areas of the city of Toronto). This process will allow

for investigating possible relationships between receiver parameters and the measurement

conditions.

Parameters of interest are obtained from the GPS receiver measurements, using the

National Marine Electronics Association (NMEA) sentences for every location estimate.

The extracted parameters include: number of satellites used in the localization process,

DOP, the mean and standard deviation of the SNR of the satellites used in the localization

process, and the speed of the vehicle reported by the GPS receiver. Table 4.1 depicts the

meta data of the extracted parameters.

Table 4.1: Meta Data of the gathered GPS parameters.

Parameter
Statistics Range

Mean STD Min Max
Speed (km) 62.22 53.48 0.02 135.00
σ
SNR

(db) 13.18 5.36 1.79 31.04
µ
SNR

(db) 26.67 5.35 11.30 44.40
No. of Sat. 9.80 2.13 4 12

DOP 1.41 0.94 0.80 11.95

For each measurement, the traced road segment is known, and thus is considered as a

ground truth. The error in the location estimate is defined as the shortest distance between

the reported GPS location estimate and the traced road segment (Figure 4.8).

This error computation ignores error components along the road direction. However,

these components tend to be small compared to the amount of error nominally experienced

orthogonal to the vehicle direction. This characteristic of the GPS error is due to the

constellation of the GPS satellites and the high-rise buildings on the sides of the road

segment [89], where satellite signals reach the receiver after bouncing off buildings in the

surrounding. The error computed for each sample is mapped to an accuracy class (i.e,
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Figure 4.8: GPS Localization Error.

Accurate, Marginally-Accurate, and Inaccurate). In what follows we describe the approach

we used to analyze the measurement samples collected, to construct the accuracy feature

space.

GPS Localization Error Analysis

Principle Component Analysis (PCA) is an orthogonal transformation that converts a set

of observations of possibly correlated variables into a set of values of uncorrelated vari-

ables called principle components. The first principal component is the one with maximum

variance, and each succeeding component in turn has the highest variance possible under

the constraint that it is orthogonal to (uncorrelated with) the preceding components [105].

Based on the assumption that the location measurements are jointly normally distributed,

PCA is applied to the measurements to determine the three most prominent GPS param-

eters. Table 4.2 depicts the GPS parameters and their significance after applying PCA.

It can be seen that the most indicative parameters are speed, Signal to Noise Ratio mean
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(i.e., µ
SNR

) and Signal to Noise Ratio standard deviation (i.e, σ
SNR

).

Table 4.2: The basis of the PCA space versus the GPS parameters’ significance.

PCA-1 PCA-2 PCA-3 PCA-4 PCA-5
Standard Deviation 53.60 6.10 2.94 1.58 0.56

Speed 0.998 -0.055 0.033 -0.028 0.002
σ
SNR

0.024 0.803 0.594 -0.031 0.006
µ
SNR

0.059 0.592 -0.803 -0.016 -0.006
No. of Sat. 0.028 0.031 0.009 0.923 -0.382

DOP -0.009 -0.011 0.005 -0.382 -0.924

Figure 4.9 depicts the transformed GPS measurements in a space spanned by the first

three principle components. It can be seen that the measurements constitute three groups

in this three dimensional space.

Figure 4.9: Data projection on the first three Principal Components.

A K-means clustering algorithm (K=3, since visual inspection of the measurements in

the PCA space reveals a tendency to group into three clusters) [106] is used to segment the
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PCA measurement space into three clusters. Figure 4.10 shows the three labelled clusters,

where cluster-1 is marked by red ’o’, cluster-2 is marked by blue ’x’, and cluster-3 is marked

by green ’+’.

Without loss of generality, we consider the three GPS accuracy bands depicted in Table

4.3. The following analysis can be applied to finer accuracy bands.

Figure 4.10: Clusters in the PCA feature space.

Table 4.3: Three classes of localization accuracy.

Accurate Marginally-Accurate Inaccurate
Error Range 0-10 (m) 10-20 (m) >20 (m)

As stated earlier, the objective is to develop a classification process that can map a

GPS measurement to an accuracy class. In order to design such classifier we analyze the

three PCA measurement clusters in the context of the desired accuracy bands. Ideally,

we would like the accuracy of all measurements of any given cluster to strictly fall into

the same accuracy band. Figure 4.11 and Table 4.4 depict the clusters composition of the
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Figure 4.11: Associating accuracy indexes to the clusters in the PCA feature space.

Table 4.4: Associating accuracy indexes to the clusters in the PCA feature space.

Accurate Marginally-Accurate Inaccurate
Cluster-1 96.91% 3.09% 0.00%
Cluster-2 29.66% 24.26% 46.08%
Cluster-3 52.70% 17.18% 30.12%

three accuracy bands. It can be seen that 96.91% of cluster-1 population belongs to the

Accurate measurements class, 3.09% belongs to the Marginally-Accurate measurements

class, and 0.0% of this cluster belongs to the Inaccurate measurements class. However, the

population of both cluster-2 and cluster-3 consists of a mix of measurements belong to the

three accuracy classes with various degrees. Therefore, given this distribution of the three

accuracy bands across the three clusters, error in determining the accuracy class of a GPS

measurement is expected to be high if the measurement happens to be from either cone

of the two clusters – cluster-2 and cluster-3. Given such cluster decomposition, the class

labels set is constructed as C = {c1 : Accurate, c2 : Marginally-Accurate, c3 : Inaccurate}.
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This overlap between the three accuracy bands (classes) in the parameters space (fea-

tures) makes it impossible for any linear classifier to assign a GPS measurement to a unique

accuracy band based on these five parameters, with acceptable confidence level, despite

the fact that these parameters include the three most prominent ones. Kernel based clas-

sification methods such as Support Vector Classifiers (SVC) [101] are expected to provide

decent performance in such space configuration; nevertheless, the computational require-

ment of such kernel based classifiers prevents them from being a viable choice in embedded

environments such as the ones typically used in GPS systems.

4.4.2 HCCU and CBAC Validation on GPS Measurements

Both the flat and the introduced hierarchical classifiers are employed in this comparative

study. First, the setup of the real-life experiment conducted is explained. The base classifier

used in the flat and hierarchical classifiers in this study is then described. Comparative

results and discussions are presented in the conclusion of this section.

Experiment Setup

A roving vehicle equipped with a standard GPS receiver (SiRFstarIII Evaluation Receiver)

has been used to collect the measurements for this experiment. A Lenovo SL400 Laptop

connected to the GPS receiver over a USB port has been used to store the NMEA sentences

to be processed later (offline). The experiment has been carried out over an area that

comprises various observation conditions. The GPS error classification under open sky

environments has been tested over a segment on highway 401 between the city of Waterloo

and the city of Toronto, Ontario. The suburbs and downtown areas of the city of Toronto

have been used to test the GPS error classification under adverse environmental conditions.
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Base Classifiers Implementation

The base classifiers used to facilitate the comparison among the classification algorithms

introduced in this work are chosen to be FeedForward Neural Networks (FFNNet) with

back-propagation learning algorithm [107]. FFNNet has the ability to classify linearly

inseparable patterns, not to mention its efficiency in designing embedded systems due to

its computational complexity. Each FFNNet classifier consists of three layers (i.e., input,

hidden, and output layers). The number of nodes in the input layer is equal to the number

of features in the pattern of interest. The size of the hidden layer has been determined

based on minimizing the error rate using a cross validation method [101]. The size of the

hidden layer, which provides the least error rate, is found to be between 20 and 25 nodes.

The number of nodes in the output layer is equal to the number of classes of interest. The

input layer employs a linear activation function; both the hidden and output layers employ

hyperbolic tangent sigmoid activation functions (i.e., tansig function).

Comparative Results

The goal here is to classify the GPS measurements in the data set into different classes of

localization accuracy using the two classification algorithms introduced in Section 4.3. To

maintain a generalized independent data set evaluation, the training and testing procedures

are performed using a tenfold cross-validation approach in which equal size of patterns from

each class are randomly selected. The selected patterns are divided into ten partitions

(i.e., folds); every time, one partition is used for testing and the remaining partitions are

used for training. The results are added up, and then, the classification performances are

evaluated. The comparisons are conducted over two use cases. In the first use case, GPS

measurement accuracy classification is approached as a two-class problem, whereby a GPS

measurement is to be classified as either highly accurate (i.e, Accurate band), or inaccurate
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(in this case it views the two bands Marginally-Accurate and Inaccurate as one band).

Such use case is relevant in applications that demand highly accurate location estimates,

such as refining and updating digital maps and landmarks’ localization. Since only two

classes are considered in this use case, the performance of a flat classifier is compared

with that of CBAC. In Use Case-2 the GPS accuracy classifications is approached as a

three-class problem. The output of the classification process should be one of three classes:

Accurate, Marginally-Accurate and Inaccurate. This use case is relevant in applications

where Marginally-Accurate GPS measurements meet the required accuracy to the extent

the system can achieve higher availability. Such achievement can significantly improve the

fusion techniques’ performance as presented in Chapter 6.

The evaluation of the classification performance is based on the classification Error

Rate ε. Two types of error rate are used in the comparison: 1) Class Error Rate, and 2)

Overall Error Rate. Class ci Error Rate is defined as

εci =
# of misclassified patterns ∈ ci

# of patterns ∈ ci
× 100

The overall Error Rate is defined as

ε =

∑
ci∈C # of misclassified patterns ∈ ci∑

ci∈C # of patterns ∈ ci
× 100

Results for Use Case-1

The performance of the flat classifier is shown in Figure 4.12 for various observation con-

ditions: (a) Open Sky environment, and (b) Canyon environment. Figure 4.13 depicts the

performance of CBAC for the two classes over the same observation conditions. It can be

seen that both classifiers perform well in Open Sky environments (e.g, highway 401). On

the other hand, CBAC performed consistently well even in canyon areas. This was not the

case for the flat.
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(b)

Figure 4.12: Accurate and inaccurate location estimate classification performance using
FFNNet. (a) Open Sky environment. (b) Urban canyon environment.
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Figure 4.13: Accurate and inaccurate location estimate classification performance using
CBAC. (a) Open Sky environment. (b) Urban canyon environment.
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The error rates are calculated using a tenfold cross-validation on 1000 measurements

from each class. Table 4.5 shows a gain of 12% of the overall error rate by using CBAC.

Table 4.6 presents the confusion matrix for Use Case-1. As can be seen, the error rate per

class is improved for both classes.

Table 4.5: High accuracy versus non-high accuracy classification.

Error Rate
εAccurate εInaccurate ε

Flat 14.80% 9.30% 12.05%
CBAC 13.90% 7.30% 10.60%

Table 4.6: Confusion matrix for Use Case-1.

Classification

Actual Classifier Accurate Inaccurate

Accurate
Flat 852 148

CBAC 861 139

Inaccurate
Flat 93 907

CBAC 73 927

Results for Use Case-2

In this case, the classification task is more challenging as the patterns are to be classified

into one of three classes, namely, Accurate, Marginally-Accurate and Inaccurate (i.e., c1,

c2 and c3, respectively). Due to the difficulty of obtaining multipath environment mea-

surements, a tenfold cross-validation is applied on 800 measurements from each class.

The effectiveness of HCCU is first presented by comparing its error rate with that of a

flat and other hierarchical classifiers. The hierarchical classifiers used in this comparison

are shown in Figure 4.14. It can be seen in Table 4.7 that HCCU outperforms non-

similarity guided classifiers. It is worth mentioning here that if a hierarchical classifier is
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(a) Similarity guided (~1 23).
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(b) Non-similarity guided (~2 13).
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(c) Non-similarity guided (~3 12).

Figure 4.14: Possible structures of a three classes hierarchical classifier.

Table 4.7: HCCU vs. non-similarity guided classifiers.

Overall Error Rate
Flat ~2 13 ~3 12 HCCU (~1 23)

26.96% 28.04% 26.04% 25.33%

not structured carefully, its performance can be worse than that of a flat classifier (e.g.,

the performance of ~2 13).

Next comparison is between the performance of a flat classifier and that of the in-

troduced classification algorithms. In the first implementation, the proposed hierarchical

classifier is implemented without contextual information (i.e., HCCU). In the second im-

plementation CBAC is augmented with contextual information.

The error rate of the classifiers used in Use Case-2 are also evaluated using a tenfold

cross-validation. Table 4.8 depicts the class error rates and the overall error rate for the

three classifiers (flat, HCCU, and CBAC), in addition to other conventional classifiers. It is

clear that HCCU improves the classification performance compared with the flat classifier.

Furthermore, CBAC performs the best where it achieves 17.77% performance improvement

compared with the flat classifier.

The confusion matrix of the three classifiers is shown in Table 4.9. As to the confusion
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Table 4.8: Three levels of accuracy performance classification.

Classifiers Error Rate
εc1 εc2 εc3 ε

RBF Network 26.88% 54.01% 23.00% 34.63%
Bayesian Network 22.12% 56.50% 24.13% 34.25%

Trees-J48 20.50% 37.90% 28.24% 28.88%
Flat 21.00% 38.38% 21.50% 26.96%

HCCU 19.63% 35.75% 20.63% 25.33%
CBAC 17.63% 32.63% 16.25% 22.17%

Table 4.9: Confusion matrix for Use Case-2.

Classification

Actual Classifier c1 c2 c3

c1

Flat 632 106 62

HCCU 643 91 66

CBAC 659 74 67

c2

Flat 94 493 213

HCCU 78 514 208

CBAC 86 539 175

c3

Flat 7 165 628

HCCU 3 162 635

CBAC 2 128 670

matrix, for c1, CBAC fails to improve the misclassification of c1 as c3 by 8%. This short-

coming is recovered by the 34.45% improvement in classifying c1 as c1 or c2. Classifying

c2 and c3 is improved using CBAC in all aspects. This improvement comes at the cost

of memory space, where CBAC needs 2 × (n − 1) multiples of a space needed by a flat

classifier to classify n classes.

Figure 4.15 shows the performance of the HCCU, where Figure 4.16 depicts the per-
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formance of CBAC under the same measurement conditions.
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(b)

Figure 4.15: Classifying the three levels of accuracy using HCCU.(a) Open Sky environ-
ment.(b) Urban canyon environment
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(b)

Figure 4.16: Classifying the three levels of accuracy using CBAC.(a) Open Sky environ-
ment.(b) Urban canyon environment
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4.5 Case Study 2: FP Accuracy Classification

FP localization is selected in this study over other localization methods due to its cost

effectiveness in terms of computational power and hardware requirements, in addition to

its robustness to multipath environments [61,62,66,108]. Furthermore, FP is not subjected

to limitations in either the magnitude of the localization error (e.g., trilateration-based

localization), the accumulated error (e.g., DRS), or the signal availability (e.g., GPS).

The following section explains the affecting parameters on the FP localization errors.

These parameters can be collectively used as features to infer FP localization accuracy.

4.5.1 Error in FP Location Estimate

FP localization is a pattern recognition/matching method in which parameters of interest,

such as RSS, are measured in real-time and compared with similar type of measurements

for pre-defined locations to estimate the location of a mobile object. The challenging aspect

of this method is assuring that the system can distinguish between similar patterns that

represent different locations. Such similar patterns, for example, typically exist when weak

signals are received from remote BSs.

Typically, FP localization utilizes parameters obtained from cellular networks due to

the high availability of their radio signals in indoor and outdoor environments. In cellular

networks, the different types of towers and network architectures contribute the most to

the discrepancy in degrees of localization accuracy. For example, macrocells of about 3 km

radii are typically deployed in rural areas and over intercity highways, while microcells of

about 300 m radii are commonly deployed in urban areas to serve more customers per unit

area [57, 109]. As a result, urban cellular networks are characterized by their dense BSs
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and strong RSS compared with those of rural and intercity areas – a condition that helps

produce more accurate FP localization in urban areas.

4.5.2 Generation of FP Localization Data Set

In this case study, I maintain the hypothesis that the number of detected BSs and RSS

can be used to infer FP localization accuracy. This hypothesis is validated here empiri-

cally by applying CBAC on a data set consisting of FP localization errors associated with

measurements used in the localization process (i.e., number of BSs and RSS). This data

set is created as a vehicle travels from the city of Waterloo to the downtown of the city of

Toronto via a segment of highway 401. The simulation steps are depicted in Figure 4.17.

The details of each step of the data set creation are presented next.

Generate number of 
detected BSs and 

RSS

Recognition of cellular 
coverage type

FP localization error 
generation

Step 1 Step 2 Step 3

FP AccuracyNum of BSs, RSS

FP Localizatoin Accuracy Data Set

Figure 4.17: FP localization data set creation.
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Step 1: Generation of Number of Detected BSs and RSS

The simulation scenario involves a vehicle travels through roads covered by cellular net-

works with various degrees of BSs’ density. The density of the cellular networks is simulated

based on Canadian cellular towers map provided in [1], Figure 4.18.

Figure 4.18: Canadian cellular towers map [1].

Towers of Rogers cellular network are considered in this simulation due to their high

degree of availability, compared with other companies’ networks, over the area of interest.

The density of the cellular network is categorized into four categories, namely, macrocells

density (i.e., over highway 401), microcell low-density (i.e., over small cities), microcell

medium-density (i.e., over Toronto suburb areas), and microcell high-density (i.e., over

downtown of the city of Toronto). The cellular network measurements, number of detected

BSs and RSS, are generated randomly using the distributions depicted in Table 4.10, which

are elicited from the information provided in [1] and [57].
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Table 4.10: Probability distributions used in the simulation.

Category Measurements Distribution Type Distribution Parameters

macrocells density
Num. of BSs Discrete Uniform n = 2, a = 1, b = 2

RSS Gaussian µ = 5 db, σ = 10 db

microcell low-density
Num. of BSs Discrete Uniform n = 3, a = 2, b = 4

RSS Gaussian µ = 15 db, σ = 10 db

microcell medium-density
Num. of BSs Discrete Uniform n = 3, a = 3, b = 5

RSS Gaussian µ = 35 db, σ = 7 db

microcell high-density
Num. of BSs Discrete Uniform n = 5, a = 4, b = 8

RSS Gaussian µ = 45 db, σ = 7 db

Step 2: Recognition of Cellular Coverage Type

This step simulates a typical behaviour of an FP localization technique. As the information

about the number of detected BSs and RSS is captured by an MS, an FP localization

technique is able to estimate the location of that MS. However, in simulation, the mapping

process from network measurements to location estimate can be misleading. The reason

is that the magnitude of the location estimate error is often based on the category of the

covering cellular network. In other words, it is possible to map similar measurements from

different network categories to contrasted localization errors [57]. This ambiguous situation

results from the similarity in the signals’ interference/attenuation levels affected by omni

and directional antennas, receiving distance, and the existance of LOS/NLOS. Thus, the

recognition of the cellular network category is pivotal in simulating realistic FP localization

errors.

To handle such the linguistic ambiguous measurements (e.g., strong-week RSS, and low-

medium-large number of BSs) a Fuzzy Inferencing System (FIS), Mamdani model [110],

is used to produce a crisp value between 0 and 1. The crisp value is used to decide on
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the network category from which the measurement is obtained. The decision is made by

dividing the range between 0 and 1 into four pins where each pin represent specific category,

4.19. The pin where the crisp value falls is selected as the recognized network category.

0                      0.3                      0.5                     0.7                   1.00

Crisp value

Macrocell
densty

Microcell 
low-densty

Microcell 
Mid-densty

Microcell 
high-densty

Figure 4.19: Network category decision making.

The FIS is designed so that the engineering knowledge of the measurement conditions

is embedded in the FIS in a form of knowledge base. This knowledge base consists of a

number of rules, such as the following

IF x is Ai AND y is Bi THEN z is Ci

where x and y signifies fuzzified measurements of interest, and z signifies the output vari-

able; Ai, Bi, and Ci are fuzzy sets introduced by Zadeh in [111] that governs the ith rule.

The fuzzification of the measurements and evaluation of the rules are performed using S-

Norm operator of the FIS. The aggregation step is performed using summation method to

maintain the contribution of each membership to the sets of output variable. The decision

crisp value is computed by defuzzifying the aggregated output using mean of maximum

method [112], which selects the set with the highest membership.

Figure 4.20 depicts the membership functions of fuzzy sets belonging to each input

variable in the FIS, namely, Number of BSs and RSS. The membership functions of fuzzy

sets belonging to the output of the FIS are shown in Figure 4.20. The rules embedded

in the knowledge base are presented in Table 4.11. Furthermore, as an example, Figure

4.22 depicts a scenario of having 2 detected BSs and RSS equals to 20db. Accordingly, the
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corresponding crisp value equals 0.26 which signifies macrocell density over highway.

FIS Variables

NumOfTowers

SignalNoiseRatio

BestEnv

SubarbEnv

CityEnv

HighwayEnv

1 2 3 4 5 6 7 8

0

0.5

1

Membership function plots

input variable "NumOfTowers"

Low Mid High

(a) Number of detected BSs.

FIS Variables

NumOfTowers

RSS

BestEnv

SubarbEnv

CityEnv

HighwayEnv

-40 -30 -20 -10 0 10 20 30 40 50 60 70

0

0.5

1

Membership function plots

input variable "RSS"

Low Mid High

(b) Received signal strength in db.

Figure 4.20: Membership functions used in the FIS for the fuzzy sets of the input variables.

FIS Variables

NumOfTowers

RSS

Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Membership function plots

output variable "Output"

Highway Small-City Suburb Downtown

Figure 4.21: Membership functions used in the FIS for the sets of the output variable.
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Table 4.11: FIS knowledge base rules.
XXXXXXXXXXXXNum of BSs

RSS
Low Medium High

Low Highway Highway Suburb
Medium Highway Small city Downtown
High Small city Suburb Downtown

1

Output = 0.26

2

3

4

5

6

7

8

9

1 8 -40 70

NumOfTowers = 2 RSS = 20

0 1

Figure 4.22: Example of producing crisp value for a network measurements.

Step 3: Generation of FP Localization Errors

The magnitude of the localization error is generated using independent and identical zero-

mean-Gaussian distributed random variable for each network category. Figure 4.23 depicts

the distributions used for each network category. Once the magnitude of the localization

error, |Locerr|, is generated then the location estimate of the FP,ZFP,t, is computed by
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adding |Locerr| to the actual location of the vehicle, Xt as in equation 4.8

ZFP,t = Xt +

[
|Locerr| cos(γ)
|Locerr| sin(γ)

]
(4.8)

where γ is uniformly distributed between 0 and 2π. This completes the creation of the FP

localization dataset.
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Figure 4.23: FP localization error distribution per network category.

The FP technique simulated above is executed to locate a vehicle using real traces over

different areas with various measurement conditions. The location estimate is computed

every 1 second providing an actual location for each estimate. Figure 4.24 shows the output

of the location estimation in two different measurement conditions. In the following section,

the classification algorithms developed in this chapter are implemented on the output of

the FP localization to assess the localization accuracy.
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Ground truth

FP localization

Road map
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(a)

Ground truth

FP localization

Road map

0 0.5 1 Km

(b)

Figure 4.24: FP localization simulation in various measurement conditions.(a) Downtown
Toronto. (b) A segment of highway 401, Ontario

4.5.3 CBAC Validation on FP Measurements

As seen in the previous section, FP localization can relatively perform quite well in urban

canyons since it accommodates well multipath environments [109, 113, 114]. Hence, FP
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technique is a good candidate for a hybrid localization system that uses GPS technology.

In this section, I will implement the CBAC algorithm on the FP data set to validate the

efficacy of the algorithm on FP measurements. FP data set will be utilized, in the follow-

ing chapters, as another source of location information for the hybrid vehicle localization

system.

Experiment Setup

The traces of the vehicle used in Case Study 1 are used as ground truth. The FP localization

simulator is used to generate location estimates with various accuracies in the different

measurement conditions. Without loss of generality, two bands of localization accuracy

are considered in this case study, namely, c1 for errors less than or equal to 20 meters, and

c2 for errors greater than 20 meters. Figure 4.25 depicts the overlap (i.e., class similarity)

between the two accuracy classes.

Figure 4.25: Classes overlap in the feature space of the FP measurements.
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Comparative Results

FFNNet base classifiers are used in the flat and CBAC classifiers. The training and testing

phases are conducted using a tenfold cross-validation method where ensemble size equals

to 2500 pattern per each class. Three other conventional classification methods are used to

classify the same patterns using 10-fold cross-validation. Table 4.12 shows the classification

error rate of each classifier. It can be seen that CBAC outperforms the other classifiers. The

confusion matrices of the flat classifier and CBAC, in Table 4.13, show slight improvement

using CBAC; however, both have significantly improve the classification process compared

with the other classification methods.

Table 4.12: FP accuracy classification performance.

Classifiers Error Rate
εc1 εc2 ε

RBF Network 12.76% 13.04% 12.90%
Bayesian Network 11.76% 9.28% 10.52%

Trees-J48 13.60% 5.08% 9.34%
Flat 13.56% 4.88% 9.22%

CBAC 13.36% 5.04% 9.20%

Table 4.13: Confusion matrix of CBAC versus flat classifier.

Classification

Actual Classifier c1 c2

c1

Flat 2161 339

CBAC 2166 334

c2

Flat 122 2378

CBAC 126 2374
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4.6 Summary

This chapter deals with localization accuracy classification. The objective here is to pro-

vide localization systems with a methodology for evaluating the accuracy of their location

estimate so as to allow the target application to intelligently process such estimates in its

decision making strategy. An analysis of the localization error of two typical localization

techniques in various environments is provided. The relationship between the localization

measurements and the error in its location estimation is investigated.

The chapter proposes a hierarchical classification strategy to address the class am-

biguity problem via class unfolding approach (HCCU). The proposed HCCU strategy is

proven to be superior with respect to other hierarchical configuration. Furthermore, in

this chapter, a Context Based Accuracy Classification (CBAC) algorithm is proposed to

enhance the performance of the classification process. In this algorithm, knowledge about

the surrounding environment is utilized to optimize classification performance as a function

of the observation conditions. The chapter presents experimental results to validate the

effectiveness of the proposed accuracy classification algorithms.

The strong correlation and overlap between localization process measurements obtained

under different measurement conditions make the accuracy classification an extremely hard

problem and uncertain in many scenarios. It is pivotal for the target applications to obtain

an integrity measure that assess the degree of trust placed in such a decision (i.e., location

and accuracy estimates) in order to allow for intelligent fusion process. Next chapter will

investigate the provision of localization integrity.
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Chapter 5

Modeling the Impact of Observation
Conditions on Localization Integrity

5.1 Introduction

It is typical in vehicle localization that location measurements obtained from multiple

sensors (e.g, GPS, Vision, Inertial, etc) are combined together to compute accurate vehicle

location. However, such improved accuracy can only be attained under nominal observation

conditions. For example, some researchers have proposed augmenting GPS localization

systems with vision sensors [115]. The vision sensors would use visual features to determine

the location of the object. Nevertheless, a situation may ensue in which the vision sensors’

localization accuracy deteriorates (e.g., under occlusion and/or poor lighting). Thus, it is

obvious that for such multi-sensor system to achieve reliable performance consistently, it

must determine the impact of the observation conditions on both sensors. To achieve this

task, a degree of trust (i.e., integrity) in every estimate must be determined and utilized

in real-time during the fusion process.

If one can deduce the observation conditions under which a technique’s estimate was

made, engineering knowledge about the technique in the context of this observation con-
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dition can help in quantifying the integrity of the technique in producing the required

accuracy [98, 116]. Such integrity deduction process, nevertheless, is itself uncertain due

to the complexity and the inherent ill-posedness of the localization measurement process.

I maintain that a multi-state stochastic model can be used to synthesize the dynamics

of such uncertainty. The states of this model represent possible localization performance

under certain observation conditions; the state transitions of this model represent the dy-

namics of the environment in changing from one state to another (i.e., from one condition

to another). Therefore, a Markovian model constitutes a viable option for modeling this

stochastic process, as the Markovian model has an inherent measure for quantifying the

probability of being in a subset of its states [97].

In this chapter, a Markovian model is proposed to capture the impact of observation

conditions on the localization performance and to consequently determine a reliability

index with respect to the localization accuracy claimed by a technique. In this research

work, the reliability index quantifies the integrity of a localization technique.

The remainder of this chapter is organized as follows. The derivation of the Markovian

model is introduced in Section 5.2. In Section 5.3, the derived Markovian model is used to

construct two instances of localization techniques. Localization quality indexes for the two

techniques are computed and a variety of road segment scenario simulations are presented

in Section 5.4. Section 5.5, presents a real-time adaptive Markovian model using non-

parametric transition probability distributions. Finally, concluding remarks are provided

in Section 5.6.
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5.2 Task Driven Integrity

The proposed model captures the stochastic uncertainty in sensory measurements as it

pertains to the observation conditions, and the impact of these conditions on the accuracy

of location estimates. The point of interest here is the association between the observation

conditions and the quality of decisions made based on any sensory measurements produced

under such conditions. The hypothesis in this case is that since the vehicle is expected

to be in similar environmental conditions frequently, the stochastic uncertainty of the

localization process can be modeled as a set of states. The transitions among these states

are governed by a probabilistic behaviour. This probabilistic behaviour can be learned and

used to predict the accuracy of the system in localizing objects in its environment based

on the likelihood of the environment being at a given state.

Markovian model analysis can yield a variety of useful performance measures that

describe the operation of systems. These performance measures include, but are not limited

to, system reliability, mean time to failure, mean time between failures, and probability of

being in a given state at a given time.

A discrete Markovian model is therefore used in this work to provide a reliability mea-

sure for location estimation provided by vehicle localization systems. The derivation details

of the proposed model and the assumptions made in this work are presented next.

5.2.1 Assumptions and Notation

Consider a localization technique that produces location estimates with accuracy Acc which

takes value in [Acc1, Acc2,. . ., Accn], depending on the measurement conditions at which

the estimate is made. The objective here is to model the localization accuracy of that

technique as it changes from one level to another. A Markovian model with n states is
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therefore used. Let state Si, {Si|i ∈ {1, 2, . . . , n}}, of the Markovian model represent a

localization accuracy Acci. To compute the reliability of a location estimate meeting a

certain level of accuracy, one needs to know the average time, τ , during which the model

does not visit states of lesser accuracy. In probability theory, this average time is referred

to as the mean first-passage time [117]. The reciprocal of τ is known as the failure rate:

a failure stat is a state that represents a level of accuracy below that required by the

application task. Reliability can then be measured using the failure rate, as follows:

Reliability = 1− failure rate (5.1)

In the following we present the computation of the mean first-passage time which is used in

Equation 5.1 to calculate the reliability measure of delivering accuracy Acc performance.

5.2.2 The Mean First-Passage Time Computation

Without loss of generality, let S = {S1, S2, . . . , Sn} be an ordered list of a Markovian model

states. Each state represents an accuracy level and the states are ordered in a descending or-

der as a function of accuracy, i.e, best-to-worst: Θ = {Acc1, Acc2, . . . , Accn}, where Acci−1 6

Acci (Figure 5.1). Let ϑ be the target accuracy of a location estimate. As depicted in Fig-

1 nn-1M2

1 2 1 ...  ...  M n nAcc Acc Acc Acc Acc    

Set S Set r

Figure 5.1: States of a Markovian model ordered according to the representation of accu-
racy from the best-to-the worst.

ure 5.1, the states are divided into two sets: s = {Si|Acci 6 ϑ} and r = {Si|Acci > ϑ}.
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Let SM , SM ∈ s, be the state with the largest accuracy index (i.e., AccM > Acci, ∀si ∈ s).

The goal is then to compute the mean first-passage time for the set r (i.e., the mean

return time to any state Si ∈ r). Therefore, a new Markovian model is generated from

the original Markovian model as follows. The states Si ∈ r are collapsed into one failure

state SF , The number of states in the resultant Markovian model is reduced to M + 1:

S̃ = {S1, S2, . . . , SM , SM+1 = SF}. The transition probabilities of the new Markovian

model S̃ are computed as follows.

Definition 5.2.1. In a Markovian model, the limiting probability, π, is the probability dis-

tribution of the model being in any state when it reaches statistical equilibrium, regardless

of the initial state.

Definition 5.2.2. In a Markovian model, the transition probability, Pij, is the probability

that the next state is Sj, given that the current state is Si (i.e., P (Sj/Si)).

The limiting probability can be computed by solving the following linear system of

equations [117]:

π = πP (5.2)
n∑
i=1

πi = 1 (5.3)

where

π = [π1, . . . , πn]

and

P =

P11 . . . P1n
...

. . .
...

Pn1 . . . Pnn


Once the values of π are computed, the limiting probability of state SF , πM+1, is
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calculated as follows

π(M+1) =
n∑

i=M+1

πi (5.4)

The limiting probabilities (π1, . . . , πM) do not change. Hence, the transition probabili-

ties P(M+1)i, P(M+1)(M+1), and Pi(M+1) in the resultant Markovian model must be calculated

as follows:

P(M+1)i =
πi −

∑M
j=1 πjPji

π(M+1)

, where i = 1, . . . , M (5.5)

P(M+1)(M+1) = 1−
M∑
j=1

P(M+1)j (5.6)

Pi(M+1) = 1−
M∑
j=1

Pij , where i = 1, . . . , M (5.7)

τ can be computed as the time the model spends in states Si ∈ s, before transitioning

to state SF

τ = 1 +
M∑
j=1

P(M+1)jTj(M+1) (5.8)

where P(M+1)j is the transition probability from state SF to state Sj ∈ s and Tj(M+1) is the

mean visit time to transition from Sj ∈ s to SF . This mean visit time Tj(M+1) is a unique

solution for the following set of linear system of equations:

Tj(M+1) = 1 +
M∑
i=1

PjiTi(M+1), j = 1, . . . ,M (5.9)

which can be expressed in a matrix form as follows.

T = e + QT (5.10)
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and consequently,

T = (I−Q)−1e (5.11)

where I is the identity matrix, T =
[
T1(M+1), T2(M+1), . . . , TM(M+1)

]T
, e = [ 1, 1, . . . , 1]T

with the same size of T, and Q is the M ×M sub-matrix of P (qij = Pij ∀i, j = 1, . . . ,M).

These calculations complete the computation of the mean first-passage time and thus

the failure rate and the reliability of providing accuracy ϑ. Since different levels of lo-

calization accuracy might be required by the various application tasks, the reliability of

providing these levels can be evaluated similarly and the produce is what we call Task-

Driven Integrity (TDI).

5.3 Two Case Studies

To implement the proposed TDI assessment model the parameters of the model need to be

estimated under nominal and non-nominal observation conditions (cf. [97]). Two examples

of the TDI model are constructed: a single-source localization technique (stand alone

GPS system) and a multi-source localization technique (i.e., Inter-Vehicle Communication

Assisted Localization (IVCAL) [71]).

5.3.1 Single Source Scenario: A GPS Receiver Integrity Assess-
ment

In this section, a TDI model for a GPS receiver is constructed and compared with the

baseline GPS localization quality index. Typically, the error in the location estimate pro-

duced by a GPS receiver is caused by various factors, including the satellite ephemeris

error, the ionospherical and tropospherical errors, the receiver clock error, and the multi-

path error [71]. In GPS localization systems, the location estimate accuracy is calculated
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based on two factors (Equation 5.12): 1) the Dilution of Precision (DOP), and 2) the User

Equivalent Range Error (UERE) (cf. [22]).

Localization Accuracy = DOP × UERE (5.12)

The DOP is a function in the satellites’ positions and therefore is computed based on

the geometry of the constellation with respect to the receiver. The UERE is defined as

the root mean square of the sum of the variances of the aforementioned error types. It is

worth mentioning here is that the UERE is assumed to be the standard deviation of a zero

mean Gaussian distribution. Therefore, if the value of the DOP is equal to 1, then the

actual location is at most far from the estimate by a distance equal to the value of UERE

with 68% confidence level. For the same estimate and the same DOP value, the confidence

level can be as large as 95% if the localization error tolerance is increased to 2×UERE.

This confidence level is utilized by many researchers as a degree of the trust placed in the

estimate.

Nevertheless, the UERE measurement is not supported by all GPS receivers. Often,

the UERE value is estimated statistically and used, as in Equation 5.12, under the as-

sumption of a zero-mean Gaussian distribution. However, when a vehicle travels through

different environmental conditions, the validity of this assumption is questionable due to

the multimodal distribution of the localization error.

The model quantifies the integrity of producing two accuracy levels. To maintain a

fair comparison between the two approaches of modeling the localization uncertainty, the

TDI model will also utilize only the DOP value to compute the integrity of the system in

estimating the GPS location with respect to two levels.

A TDI model with three states is constructed for a two level accuracy localization
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application. Two states of the Markovian model represent the target accuracy levels, and

the third one represents any accuracy value that is below the target accuracy performance,

Figure 5.2. Hence, this Markovian model can capture the best to worst measurement

conditions.
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Figure 5.2: (a)Three states Markovian model for GPS-TDI assessment model.

The transition probabilities (i.e., Pij) shown above are calculated based on the DOP

value. Therefore, Pij = P (Sj/Si, DOP ); however, the GPS receiver calculates the consec-

utive estimates independently; Hence, Pij = P (Sj/DOP ). The latter probability can be

calculated using Bayes’ rule as follows

P (Sj/DOP ) =
φ(DOP/Sj)Pr(Sj)∑3
k=1 φ(DOP/Sk)Pr(Sk)

(5.13)

where φ(DOP/Si) signifies the probability density function of the likelihood of the DOP

given the accuracy band Si, and the Pr(Si) signifies the a priori probability of that accuracy

band Si. The a priori probabilities and the likelihoods functions of the DOP, given a specific

accuracy band, can be determined statistically from measurements collected in different

environmental conditions as presented in Section 5.4.1. This completes the design of the
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GPS-TDI model.

5.3.2 IVCAL Integrity Assessment

In this section, the TDI assessment model is constructed for the IVCAL system. IVCAL

is a multi-modal system that mitigates the effect of the multipath signals in the location

estimation by utilizing a Multipath Detection Unit (MDU). Details of the components and

operations of the IVCAL technique can be found in [71].

In IVCAL, two issues affect the accuracy of the localization: the observation conditions

(nominal versus non-nominal), and errors in the MDU decisions. The KF innovation value

is used in order to observe whether the satellite signals are contaminated by multipath

signals. In practice, it is difficult to obtain sufficient patterns of different environments,

such as clear sky, suburban landscape, and urban canyons, and use them to train the

MDU of IVCAL. Instead, the two extremes, open sky and urban canyon environments, are

used in the MDU training process as two classes of patterns that belong to two different

environments. Accordingly, the MDU can classify most of the observations that belong to

these two environmental conditions. This type of observation conditions is considered to be

nominal observation conditions. In other environmental conditions, where the multipath

signal is severe enough to affect the satellite signals, the MDU is more susceptible to making

incorrect decisions; hence this type of observation conditions is considered as non-nominal

observation conditions. Table 5.1 lists possible observation conditions for IVCAL as well

as the MDU decisions and the Markovian states for each case.

As depicted in Table 5.1, IVCAL uses a KF to determine a vehicle’s location when the

MDU detects no multipath signals, and IVC when multipath signals are detected. It can

therefore be concluded that a TDI assessment model of IVCAL has four states with four

different levels of localization accuracy (Figure 5.3).
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Table 5.1: IVCAL observation conditions and multipath detector decisions.

Observation conditions Nominal Non-Nominal

Environment state Clear Multipath Clear Multipath

MDU decision Clear Multipath Multipath Clear

positioning approach KF Inter-Vehicle Comm. Inter-Vehicle Comm. KF

Markovian states S0 S2 S3 S1

Nominal Observation 
Conditions

Non-Nominal Observation 
Conditions

S0 S2

P02

P20

S1 S3

P13

P31

P32

P23

P10

P01

P30

P03

P12

P21

Figure 5.3: The Markovian model for the TDI assessment model of IVCAL.

The next step is to calculate the value of the transition probability of the Markovian

model, Pij. To calculate the value of Pij, the KF innovation value is used as an indicator

of the observation conditions, and the MDU decision error is used as an indicator of the

correctness of the decisions made. The two indicators are considered to be independent

random events. Consequently, the four states of the Markovian model are divided into

two groups: one represents the level of accuracies in the nominal observation conditions,

and the other represents the level of accuracies in the non-nominal observation conditions.

Each group contains two states: multipath and non-multipath. This approach simplifies

the calculation of the original transition probabilities.

In the following subsection, the calculation of the probability of transition between the
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nominal and non-nominal groups of states and between the multipath and non-multipath

decision states is explained.

Nominal/Non-Nominal State Transitions

The transition probability, depicted in Figure 5.4, depends on the IVCAL’s KF innovation

value
−→
λ and how this value deviates from the distribution of the innovation value in open

sky environments or multipath environments (i.e., the two extremes). Therefore, the non-

K=P(Nom/ζ)
J=1-K

J

K J

K

Non-Nominal 
Observation 
Conditions

Nominal 
Observation 
Conditions

Figure 5.4: Transition between two groups of states that signify nominal and non-nominal
observation conditions.

nominal observations are produced by innovation values lying in the midway between the

two extremes of the KF innovations. The norm of the KF innovation (i.e., λ =‖
−→
λ ‖) can

be thus considered as a random variable that has different ranges, as depicted in Figure

5.5 according to the measurement conditions.

It can be seen that the values of λ in nominal measurement conditions are separated

by other values of λ in non-nominal observation conditions. This configuration of λ values

makes the process of calculating a transition probability to a nominal condition state a

92



Non-
Nominal 

Conditions

Nominal Conditions

0
MHD-∆

Nominal
Conditions

a b d e

MHD+∆


c

MHD

Open sky Env.

Multipath Env.

Figure 5.5: Kalman filter innovation values and the corresponding measurement conditions.

difficult task. If we can segregate the nominal and the non-nominal observation conditions

given λ, the calculation of the transition probability is much easier. Therefore, another

random variable ζ, which is a function of λ, will be used rather than λ:

ζ =| λ−MHD |

where MHD is the innovation value that has equal Mahalanobis distance to the two

extremes of the nominal observation distributions. In general the Mahalanobis distance is

computed as follows:

Mahalanobis Distance =
√

(y − ȳ)TΣ−1(y − ȳ)

where y is a multivariate vector, ȳ is the means vector, and Σ is the covariance matrix of

the target distribution.

Figure 5.6 depicts the value range of ζ with respect to the different measurement con-

ditions. It can be seen that the nominal and non-nominal observation conditions are well

segregated.
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Non-Nominal 
Conditions

0 
B&d
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Figure 5.6: The separation of the observation conditions.

In Figure 5.5, points (b) and (d) are the most uncertain points with respect to the

observation conditions depicted in the figure. The probability of being in nominal observa-

tion conditions should therefore be 0.5. Points (a) and (e) should have a high probability

of being in nominal observation conditions. Point (c) is the most certain point with respect

to the system being in non-nominal observation conditions, and as a result, the probability

of going into a nominal observation condition state must be very small.

For the purpose of computing such a probability, a cumulative probability distribution,

ϕ, for a normal probability density function, φ, is assumed (Figure 5.7). The mean and

Nominal Conditions
Non-Nominal 
Conditions

0 
B&d

c a e

Figure 5.7: Probability distribution to compute P (Nom/ζ).

standard deviation (STD) of φ are µφ = ∆ ≤ σλ/2 and σφ = 0.34 × ∆, respectively,

where σλ is the STD of the less spread nominal distribution. Accordingly, the value of the
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probability being in a nominal observation condition, denoted by K = P (Nom/ζ):

K = ϕ(ζ)

=

∫ ζ

−∞
φ(ν)dν (5.14)

=

∫ ζ

−∞

1√
2πσφ

e
−

(ν−µφ)
2

2σ2
φ dν

Intuitively, the probability of transition going into a non-nominal observation condition

state is equal to J = 1−K.

Table 5.2 presents the mapping of some values of λ into ζ and the respective values of

the transition probability P (Nom/ζ). Figure 5.8 further shows the change in the transition

probability P (Nom/ζ) with respect to ζ.

Table 5.2: Mapping from λ to ζ and calculating P (Nom/ζ) when ∆ = 10 m.

Observation Conditions λ ζ P (Nom/ζ)

(a)Nominal 5 15 0.92
(b)Uncertain 10 10 0.50
(c)Non-Nominal 20 0 2.13×10−3

(d)Uncertain 30 10 0.50
(e)Nominal 40 20 0.99

Transition Between Multipath and Non-Multipath States

The transition probability required in this subsection is the transit probability between

two states that signify the accuracy in a multipath (S2, or S3) and non-multipath (S0, or

S1) environment, as shown in Figure 5.3. These two states reside in either the nominal

observation conditions group or in the non-nominal observation group of states. The
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Figure 5.8: P (Nom/ζ) distribution.

transition probability is based mainly on the correctness of the decision made by the

MDU, which classifies the environment as multipath or non-multipath.

The MDU, internally, has two parameters: γm which provides a figure that signifies the

amount of the multipath effect, and γc which provides a figure that signifies the likelihood

of being in a clear sky environment. The MDU compares the values of γm and γc and

selects the largest for making its decision. Using the values γm and γc, it is possible to

calculate the probability of the correctness of the decision as follows:

N = P (Multipath/γm, γc) =
γm

γm + γc
(5.15)

L = P (Clear/γm, γc) =
γc

γm + γc
(5.16)

It should be noted that the two probabilities sum to one and that they can build the

two-state Markovian model depicted in Figure 5.9.
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L=P(Clear/vm, vc)
N=1-L

N

L

N

L Clear Multipath

Figure 5.9: Two-state Markovian model that signifies the level of accuracy in multipath
and non-multipath environments.

Transition Probabilities of the IVCAL Markovian Model

The two events described in the two previous subsections are assumed to be independent

since they are generated from two independent entities in IVCAL. It is therefore possible

to group the two events in one Markovian model that contains the four states shown in

Figure 5.3. The transition probability distribution of this Markovian model is the joint

probability of the transition probabilities depicted in Figures 5.4 and 5.9. Table 5.3 shows

the values of the transition probabilities for the four-state Markovian model.

Table 5.3: Transition probability distribution for the four-state Markovian model of IV-
CAL.

P00 = LK P01 = LJ P02 = NK P03 = NJ

P10 = LK P11 = LJ P12 = NK P13 = NJ

P20 = LK P21 = LJ P22 = NK P23 = NJ

P30 = LK P31 = LJ P32 = NK P33 = NJ

Now, due to the sequential filtering of IVCAL, The TDI measure (ρt) at time t must

be influenced by the previous location estimate integrity (ρt−1) and the instant integrity

estimate υ produced by the proposed TDI model. The following expression shows how ρt

97



is calculated:

ρt = υ × ραt−1, 0 < α < 1 (5.17)

where α signifies a memory factor maintains a time window that makes ρt influenced only

by the recent integrity measurements.

5.4 Task-Driven Integrity Implementation

In the following subsections, the implementation of the TDI assessment model is described

in order to show the viability of the instances constructed above. The model is applied on

measurements of GPS receiver to compare it with the baseline GPS quality index used in

the community. The model is also applied on more complicated localization technique (i.e.,

IVCAL technique) that provides a location estimate with different qualities depending on

the surrounding environment.

5.4.1 The GPS-TDI Model Implementation

The distribution of the DOP value is assumed to be Gaussian over the different accuracy

bands. The moments of the likelihood functions and the a priori probabilities are computed

out of the real-life data collected in downtown Toronto (Ontario - Canada) and over a

segment of the highway 401 between the city of Waterloo (Ontario - Canada) and the city

of Toronto.

The GPS-TDI Model Quality indices

The accuracy bands of interest are assumed to be 10 m, 20 m, and greater than 20 m.

The first band is equivalent to one UERE value, which normally used for a standalone
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standard GPS receiver. The second band is equivalent to 2× UERE value. However, the

integrity produced by the GPS-TDI of these accuracy levels is dynamic as the measurement

conditions change.

The distributions of the DOP value over these bands is studied by collecting measure-

ments from different environmental conditions (e.g., open sky, suburban, and urban areas).

The sample size used in this study is equal to 4300 which comprises of 2445 measurements

in band S1, 662 measurements in band S2, and 1193 measurements in band S3. From each

band, half of the measurements is randomly selected to calculate the statistics of the DOP

value for each band. The remainder of the measurements are used in the testing of the

TDI model (i.e., Holdout Cross-Validation testing method). The random selections and

testing phases are repeated 100 times, and the model outputs are averaged to validate the

model consistency. Table 5.4, depicts the statistics used in the GPS-TDI model for one of

the 100 iterations.

Table 5.4: A GPS-TDI quality index and respective DOP statistics.

Index State Pr(Si) The DOP distributions’ statistics(m)

10 m S1 0.5683 µ = 1.2043
σ = 0.9

Between 10 and 20 m S2 0.1543 µ = 1.5838
σ = 1.2347

Greater than 20 m S3 0.2774 µ = 2.3129
σ = 1.1473

Results and Comparison

The performance of the GPS-TDI assessment model for subset of the testing data is shown

in Figure 5.10. The magnitude of the localization error is depicted in (a) for the three

99



bands. In Figure 5.10(b), it can be seen that the integrity index of the relaxed accuracy

(i.e., 20 m) is always above the stricter one (i.e., 10 m). The integrity measure appears

to be relatively high and stable for the errors below 10 m. When the localization error

becomes larger than 10 m, the indices become heavily fluctuating and on average the tight

index reads between 0 and 0.4, where the relaxed accuracy index reads between 0.4 and

0.9.
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Figure 5.10: The TDI measure for two quality levels of GPS receiver: (a) The magnitude
of the localization error. (b) The GPS-TDI measure for the quality indices.

To validate the TDI measure in this experiment we show the consistency of the integrity

measure. This is conducted by extracting the data points indicated by certain level of

integrity and calculate the percentage of points that have a localization error falling in the
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claimed accuracy band. This computation is done for each level of integrity between 0.5

and 1.0 with step equal to 0.05. These percentages are averaged over 100 experiments. The

standard deviation of each integrity level is also computed to examine the uncertainty of the

integrity assessment. The resultant statistics are shown in Figure 5.11 where the integrity

assessment is signified by the curves and the uncertainty is signified by the vertical bars. It

can be seen that as the GPS-TDI model output increases, its value becomes closer to the

statistical percentage of localization errors fall within the accuracy claimed. Furthermore,

as the GPS-TDI measure increases the indices become more certain about their readings.
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Figure 5.11: The GPS-TDI assessment model validation.

Figure 5.12 shows the inconsistency of the confidence measure when the accuracy com-

putation is relying on in Equation 5.12. The vertical axes signifies the percentage of the

data points that fall within the accuracy claimed, and the horizontal axis signifies the

different values of the parameter UERE. The green line signifies the performance when
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Figure 5.12: Uncertainty modeling using the DOP and UERE values in stochastic envi-
ronmental conditions.

1× UERE is used, and the red dashed-line signifies the performance when 2 × UERE is

used. As it can be seen, regardless of the index of UERE used, there is no value for the

UERE where the confidence theory can be validated (i.e., 1 × UERE ≡ 68% confidence

and 2 × UERE ≡ 95% confidence). Obviously, the reason for this violation is the dynamic

environment that causes stochastic measurement conditions.

GPS-TDI Performance Sensitivity to GPS Parameters

The performance of GPS-TDI is shown above while only DOP is used to assess the system

integrity. However, other GPS parameters, sensitive to the measurement conditions, can

be used to improve the GPS-TDI performace. Therefore, different combinations of µSNR,

σSNR, and DOP, as a multivariate vector, are used in Equation 5.13 and the GPS-TDI is
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evaluated respectively. Figure 5.13 shows the performance of the GPS-TDI when different
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Figure 5.13: The sensitivity of the GPS-TDI performance to the GPS parameters used in
the integrity assessment process.
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GPS parameters are used. As seen, regardless of the GPS parameters used, the certainty

of the integrity assessment increases with the increase in the level of integrity. Using

DOP only results in highly uncertain integrity assessment when the level of integrity is

below 0.7. The µSNR and σSNR introduce higher degrees of precision to the GPS-TDI

measure; however, they could not maintain better accuracy. Obviously, using the three

parameters (i.e., DOP, µSNR, and σSNR) all together produces the best performance in

terms of precession and accuracy.

Numerically, the performance sensitivity to the parameters used is evaluated by com-

puting the root mean square distance (RMSD) between the integrity statistical evaluation

and the integrity model output.

RMSD =

√
‖TDIStat − TDImodel‖2

n
(5.18)

where n is the number of pins used to descretize the model output. The smaller the RMSD

is the superior the integrity assessment performance is. Further numerical details about

the performance sensitivity are listed in Table 5.5.

Table 5.5: GPS-TDI performance sensitivity to the GPS parameters.

Params used RMSD
Uncertainty

Min Average Max
DOP 0.38 0.00 0.10 0.18
DOP and µSNR 0.39 0.01 0.04 0.07
DOP and σSNR 0.56 0.00 0.04 0.07
µSNR and σSNR 0.33 0.01 0.04 0.07
DOP, µSNR, and σSNR 0.21 0.01 0.04 0.06
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5.4.2 The IVCAL-TDI Model Implementation

For the IVCAL-TDI model, the qualities of localization were first determined through a

number of experiments in which the environmental conditions are simulated. The dif-

ferent quality levels are represented by a set, which is called quality index: ξIV CAL =

{κ1, κ2, κ3, κ4}. The IVCAL-TDI model was then tested in a variety of simulated road

segment scenarios. The results and comparisons are also provided in this section.

The Quality Index of IVCAL-TDI Model

The elements of the IVCAL quality index, κi, were computed and represented by a table in

which rows signify the levels of quality. Each row contains the Markovian state associated

with the respective quality of the localization. Prior to providing the IVCAL quality index,

we first present the experiments performed to obtain this index.

The Simulation of the Observation Conditions:

The environmental conditions depicted in Table 5.1 were simulated in order to obtain

localization error statistics. These statistics constitute the IVCAL quality index. In the

simulations, the GPS measurement error is modeled as a random variable eGPS, where

eGPS ∼


N(0 m, 152) Open area environments
N(0 m, 502) Slight multipath might not be detected by the MDU
N(0 m, 802) Multipath might be detected by the MDU
N(0 m, 1502) Severe multipath environments

 (5.19)

Each vehicle in the simulations starts with a location estimate that contains an error

modeled by a zero mean Gaussian random variable with a 5 m STD.
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Experiment 1

The first experiment was performed in order to determine the localization error while the

IVCAL system is in state S0, Figure 5.14, during which no high buildings or obstacles exist

in the environment surrounding the vehicle, and the MDU of IVCAL detects no multipath

signals. Consequently, IVCAL uses only the KF location estimate.
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Figure 5.14: Vehicle localization error in an open area using a KF.

Experiment 2

The second experiment simulates the environmental conditions of state S1 in the Marko-

vian model. In this environment, the MDU might not detect the multipath effect where

eGPS ∼ N(0m, 502), and hence, localization is performed using only the KF. During the

simulations, the vehicles pass through 500 m of open area, followed by 500 m of a mul-

tipath region, and then enter another 500 m of an open area, and so on. An example of

such an environment is a town centre full of buildings that are not very high (four to seven

stories). The magnitude of the computed localization error in this environment is depicted

in Figure 5.15. It can be seen that the error increases whenever the vehicle passes through

a multipath region due to the misrepresentation of the observation noise in the KF.
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Figure 5.15: Vehicle localization error in a medium height building environment using a
KF.

Experiment 3

To simulate a mild multipath that can be detected by the MDU, the GPS error is modeled

as eGPS ∼ N(0m, 802), and IVC is used when a vehicle goes through multipath regions.

As can be seen in Figure 5.16, some spikes appear in the localization error when IVC is

used, due to the bad alignment of the anchors used in the localization process. The average

localization error is nevertheless better than that in the previous experiment because of the

ability of IVCAL to improve the localization process even in open areas. This environment

is an example of a typical suburban region where high buildings are not consolidated in

one area.
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Figure 5.16: Vehicle localization error using IVC in regions with scattered high buildings.

107



Experiment 4

In this experiment, the environmental conditions of state S2 were simulated: an area

with a strong multipath effect. To model such an environment, the following scenario is

implemented. Vehicles pass through 500 m of road segments that resemble regions with

high building where the STD of the GPS error is 150 m. These regions are interlaced with

500 m of open areas in order to maintain number of anchors for the other vehicles in the

multipath regions. Figure 5.17 shows the magnitude of the localization error during 300

seconds of the total time of the experiment while a vehicle was passing through interlaced

open-sky and multipath regions.
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Figure 5.17: Vehicle localization error in severe multipath regions using IVC.

IVCAL Quality Index Values:

The statistics in the previous experiments are calculated in terms of the magnitude of the

localization error. They include the maximum value obtained, the mean, and the STD.

Table 5.6 presents the states of the IVCAL Markovian model and their respective statistics.

The states are arranged from best to worst based on the localization performance repre-

sented by the statistics, assuming that the value representing the application requirements,

ϑ, is based only on the average error.
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Table 5.6: IVCAL quality index.

Index State Localization error statistics(m)

κ1 S0 Max = 9.30
µ = 2.19
σ = 1.42

κ2 S3 Max = 25.25
µ = 4.40
σ = 3.31

κ3 S1 Max = 20.00
µ = 5.39
σ = 3.30

κ4 S2 Max = 32.10
µ = 5.86
σ = 4.53

IVCAL-TDI Testing

To test the IVCAL-TDI model, a comprehensive experiment that includes a variety of

environmental conditions was performed and is explained in this section. The following

assumptions were used for the simulations of IVCAL: 1) vehicles are using IVCAL to

estimate their locations; 2) IVCAL is working over an infrastructure called VANET that

facilitates wireless communication among vehicles; 3) vehicles are equipped with a standard

GPS receiver, an inertial navigation system, and a radio transceiver; 4) the radio coverage

is 500 m in open areas.

Road Segments’ Scenarios:

The simulation covers a 5 km portion of a straight road. Vehicles travelling this road

experience different local environments, such as an open area with no multipath effect, an

inner-city area where high buildings cause a severe multipath effect, and a suburban area

that causes a mild multipath effect. These different environments are depicted in Figure
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5.18, which shows that vehicles travel from left to right, passing through five open sky

regions, three mild multipath regions, and two severe multipath regions. Based on statistics

Skyscraper

Skyscraper

5km

500m 500m 500m 500m500m

Figure 5.18: Road segment scenarios for testing the integrity model.

obtained from the real-life measurements the GPS error used in the severe multipath regions

follows the distribution eGPS ∼ N(0 m, 1502), in the mild multipath regions follows the

distribution eGPS ∼ N(0 m, 652), and in no-multipath regions follows the distribution

eGPS ∼ N(0 m, 152).

The road consists of two lanes in one direction for vehicles with different speeds. The

right lane contains vehicles travelling at 50 km/h, and vehicles in the left lane are travelling

at a higher speed: 60 km/h. The simulation uses 100 vehicles uniformly distributed on

each lane to comprise VANET. The simulation period is equal to the time required for a

vehicle to pass through 5 km at a speed of 50 km/h: 360 seconds.
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IVCAL-TDI Results and comparisons:

The localization error was calculated for a vehicle travelling through the road depicted in

Figure 5.18 from left to right in the right lane. Each time the IVCAL technique produces a

location estimate, the integrity of that estimate is evaluated in terms of the quality indices.

The memory factor (α) was set to 0.7 for IVCAL.
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Figure 5.19: The TDI measure for three quality levels of IVCAL: (a) The magnitude of
the localization error. (b) The TDI measure for the location estimate using IVCAL.

Figure 5.19 (a), shows the magnitude of the vehicle localization error using IVCAL.

It can be seen that the error changes with time, and the change differs depending on the

environment surrounding the vehicle. In multipath environments, the change is abrupt,

and the error is large. However, the change is smooth in open sky environments since the

KF estimate is selected by the MDU.

Figure 5.19 (b) shows the IVCAL-TDI assessment of the vehicle location estimate,

ranging from 0 to 1, plotted against time. Since IVCAL provides four levels of accuracy (in

terms of the average localization error), the best three levels (i.e., κ1, κ2, and κ3 in Table

5.6) were selected to be assessed here. κ1 is the most restricted accuracy, which represents
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an average location error (ALE) 6 2.19 m. The integrity of κ1 is represented by the blue

line in the figure. The red line in the figure represents the integrity of κ2, which is less

accurate: ALE 6 4.40 m. The green line in the figure represents the integrity of κ3, which

has the worst accuracy of the three levels: ALE 6 5.39 m. The fourth accuracy (i.e., κ4)

is not considered here since, in all the experiments, it is guaranteed that IVCAL can not

make the accuracy worse than this level (ALE 6 5.86 m) on average. It can be seen how

the integrity values for the location estimates are affected by the environment: the greater

the multipath effect is, the less reliable the estimate is. It can also be seen that the more

restricted the level of accuracy, the less reliable the location estimate is for that level of

accuracy.

Figure 5.20 shows an enlarged version of a portion of Figure 5.19. In part (b) of this fig-

ure, it is clear that the IVCAL-TDI measure needs some time to recover from the multipath

effect meanwhile IVCAL was producing high accuracy localization. In other words, the

IVCAL-TDI measure sometimes underestimates the quality of the localization technique.

Therefore, the affect of the memory factor on the IVCAL-TDI measure performance has

been examined through the following experiment.
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Figure 5.20: The impact of sequential localization on the integrity measure.
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To examine the estimate of the IVCAL-TDI measure for the system integrity, the range

of the measure (i.e., 0 to 1) has been divided into 10 equal pins. For each pin, the following

statistics is calculated for every level of quality κi:

� Number of Estimates (NoEl,i)= number of estimates produced with TDI value falls

in the pin l for κi.

� Miss Detection (MDl,i)= number of estimates that has errors exceeds κi and falls in

pin l.

� Statistical Integrity Measure (SIMl,i)= 1 -
MDl,i
NoEl,i

, where l = 1, . . . , 10.

The IVCAL-TDI is evaluated by comparing it to the SIM. The above experiment has

been repeated many times with different values of α in order to examine its effect on the

IVCAL-TDI measure. The values of α used in the experiment ranges from 0.01 to 0.99

with increment of 0.01. Figure 5.21 shows averaged results of this experiment. It can be

concluded from this figure that the IVCAL-TDI measure becomes more indicative as the

value for the memory factor is in the range between 0.75 and 0.85. Yet, it can be seen that

Figure 5.21: The impact of the memory factor on the TDI.
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the IVCAL-TDI measure on average is conservative since most of the time it is less than

the SIM when α is between 0.75 and 0.85.

5.5 Generalized Task-Driven Integrity Implementa-

tion

In the case studies presented above, quite a few assumptions that do not hold in many real-

life situations have been made. For example, a governing normal distribution is assumed

for the sensing parameters used in the integrity assessment. It is often the case that the

location measurement noise is time variant, as such the error distributions can not be

relied on to provide insight into the measurement process uncertainty. Furthermore, the

construction of the TDI model is not a trivial task as the engineering knowledge of the key

environmental impacts on the system performance need to be known a priori. This task

is more challenging when the environmental events are large in number and correlated.

In sequential localization techniques, the choice of the memory factor constitutes another

burden in the design of the TDI model.

To relax the aforementioned assumptions, a generalized construction of the TDI model

is proposed and implemented here. The basic idea revolves around maintaining a dynamic

Markovian model that keeps track of the recent recognized accuracies. In order to ac-

complish this task an accuracy classifier, such as those presented in Chapter 4, is used to

determine the instantaneous localization accuracy. The distribution of the model’s transi-

tion probabilities is estimated based on the historical profile of the events determined by

the accuracy classifier. Thus, the resultant distribution is non-parametric distribution.
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5.5.1 Non-Parametric Transition Probability Distribution
Estimation

In this section, the transition probabilities’ computation is described using the recent

recognized localization accuracies. A historical time window is used to keep k values,

signifying the recent sequence of transitions from one state (i.e., accuracy level) to another.

For example, the following window Wt is captured at time t and it contains k consecutive

transitions

Wt =
[
S1

3 , S
2
3 , S

3
1 , S

4
2 , . . . , S

k−1
4 , Sk1

]
where the superscript signifies the time index and the subscript signifies the state index.

The size of the window (i.e., k) should be neither too large to reflect the impact of the

current environment conditions, nor small to facilitate statistical computations.

Accordingly, the probability P t
ij that the localization accuracy (i.e., state) will change

from Si to Sj is evaluated according to the observed transition frequency in the historical

window:

P t
ij = %tij/%

t
i (5.20)

where %tij signifies the number of transitions from Si to Sj in Wt, and %ti signifies the number

of transitions from Si regardless the next state in Wt.

Since

%tij 6 %ti, and
∑
j

%tij = %ti

then

P t
ij 6 1, and

∑
j

P t
ij = 1

which satisfy the stochastic matrix conditions.

The caveat of this computation is that the transition matrix can easily lose its ergodicity ,
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[117], due to the lack of transition information about a subset of the accuracy states.

Typically this situation happens when the system is stuck in a subset of the Markovian

states which increases the sparsity of the transition matrix. Therefore, two adjustments are

performed on the transition matrix to hinder the development of non-ergodic Markovian

model.

1. The first adjustment is performed on rows with some entries equal to zero. To avoid

having zeros in row i we substitute the respected entries with a very small positive

value (0 < ∆� 1) as below.

P̃ij =
∆

# of zeros in row i
, ∀j where Pij = 0 (5.21)

and the non-zero entries of row i are adjusted as follows

P̃ij = Pij −
∆

# of non-zeros entries in row i
, ∀j where Pij 6= 0 (5.22)

2. The second adjustment is performed on rows containing nothing but zeros, which

signify isolated states. Such situation happens, for example, when a vehicle travels

on a highway or open-sky environments while using GPS for localization. Neverthe-

less, in real-life, there is always the possibility of visiting the isolated states. This

possibility is maintained by Equation 5.21. At the same time those isolated states

should maintain transition probabilities to the states appeared in Wt. The value of

this transition probabilities, in row i, must be set according to the states’ incoming

probabilities, which are computed as follows.

Pj =
∑
i

Pij, ∀j = 1, . . . n (5.23)

where n is the number of states in the Markovian model.Two sets of indices must be
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maintained to perform the adjustment: the first set indicates the states with some

incoming probability

J = {j|Pj 6= 0}

while the second set indicates the states with zero incoming probability,

J ′ = {j|Pj = 0}

Now the transition probabilities of row i can be set as follows.

P̃ij =
Pj∑
k∈J Pk

× (1−∆), ∀j ∈ J (5.24)

P̃ij =
∆

Cardinality of J ′
, ∀j ∈ J ′ (5.25)

An example of a Markovian model with five states is presented in Figure 5.22 in which

the adjusted Markovian model is shown where ∆ = 10−3.
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S3S2

0 0.25 0.75 0 0

0.9 0.1 0 0 0

1 0 0 0 0

0 0 0 0 0
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 
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Figure 5.22: Example of adjusting non-informative Markovian model.
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5.5.2 Parametric versus Non-parametric Distributions TDI Per-
formance

The TDI model proposed in this section is tested on the GPS data set depicted in Section

4.4.1. CBAC is used here for GPS accuracy classification – the output of which is utilized

to estimate the transition probabilities using non-parametric distribution. The size of the

historical window ranges from 10 seconds to 180 seconds with 5 second steps. The validation

of the TDI model is averaged over the different window sizes used. Figure 5.23.(a) shows

the performance of the proposed TDI model using non-parametric distribution for two

accuracy levels: 10 m and 20 m; where the curves depicts the average value and the

bars signify the uncertainty using the STD among the different window sizes. It can be

seen that the TDI measure becomes independent on the window size as the integrity level

increases. Despite the lack of any information about the underlying distribution of the
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Figure 5.23: GPS-TDI model performance for different approaches of computing transition
matrices.

118



GPS parameters, the TDI measure shows a decent degree of ability to assess the integrity

of the localization, especially at the accuracy level of 20 m.

Figure 5.23.(b) shows the performance of the TDI model when Gaussian distribution

is used for the sensing parameters (i.e., GPS, µSNR, and σSNR). As seen, the assessment

using non-parametric distribution is very conservative at the accuracy level of 10 m, that

is to say when the integrity level is above 0.4 the actual integrity is way above 0.9. On

the other hand, the assessment of the 20 m accuracy level is comparable between the two

approaches when both are above 0.6. These observations must be taken in consideration

and used as rules to recover the shortcomings of the usage of non-parametric distribution

in estimating transition probabilities in the IMUs.

5.6 Summary

Localization process has always a chance to fail to provide the required level of perfor-

mance with respect to the applications, as the environmental conditions unexpectedly

change. Therefore, a task-driven integrity (TDI) model is introduced in this chapter. The

TDI model enables the applications modules to be aware of the trust level of the local-

ization output. TDI model monitors specific parameter(s) in the localization technique

and, accordingly, infers the impact of the change in the environmental conditions on the

quality of the localization process. A generalized TDI solution has also been introduced in

this chapter for the cases where information about the sensing parameters is unavailable

or insufficient.

TDI model is implemented and tested on two different localization techniques. It is

evident from the experimental results presented in this chapter that the proposed IMUs

are capable of capturing the stochastic uncertainty in the location estimates and indicating
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its integrity as to specific quality requirements. I consider TDI measure as a key for further

research in many interesting areas, such as fusion dynamic uncertain information sources,

like the ones that will be introduced in Chapter 6.
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Chapter 6

Estimates Fusion and Management

6.1 Introduction

This chapter introduces the estimate fusion and management layer. The goal of this layer is

to process, in the light of QoS required, the location and accuracy estimates obtained from

the primary localization layer as well as the integrity level produced by the integrity mon-

itoring layer. Based on the classification algorithms developed in Chapter 4 and integrity

assessment model developed in Chapter 5, the information obtained from two location

sources is assessed and used in the fusion process.

Effective fusion performance can only be achieved if adequate and appropriate a priori

knowledge is available. Although, at least in some situations, assumptions can be made

with respect to a priori and a posteriori probabilities (cf. Section 5.3), these assumptions

can turn out to be unreasonable in many other situations, especially if we are to allow for

non-probabilistic estimators in the PLU layer (cf. Section 4.5). Therefore, the focus in

this chapter will be on Dempster-Shafer evidence theory (DSET) as an extension to the

Bayes theory. One important aspect of DSET is that reasoning or decision making can be

carried out with incomplete and/or conflicting pieces of evidence – a reality that is quite
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common in localization problems. A new evidence structure, derived from DSET, called

Spatial Evidence Structure Model, SESM for short, is introduced in this chapter to handle

the fusion of localization quality indexes.

The remainder of this chapter is organized as follows. Section 6.2 provides an overview

on the mathematical formulation of the DSET. Section 6.3 presents the development of

the location information based evidence structure. In Section 6.4, three approaches for

the fusion of location estimates are explained. Section 6.5, introduces the concept of task-

driven resource allocation to the fusion process. Section 6.6 summaries the chapter and

provides concluding remarks.

6.2 Dempster-Shafer Evidence Reasoning

Dempster-Shafer Theory is a mathematical theory of evidence. This theory is introduced

by Dempster, [118], and extended later by Shafer [119]. DSET manages uncertainty while

dealing with conflict through three levels: 1) representing evidence by focal elements and

masses (basic probability assignments); 2) combing evidence by the Dempster’s rule of

combination; and 3) making decisions by certain decision rules.

Let Θ = {θ1, . . . , θn} be a frame of discernment. 2Θ is the power set, denoted by Ω

composed of all possible subsets of Θ. For example

Θ = {y1, y2, y3}

then

Ω = {φ, {y1} , {y2} , {y3} , {y1, y2} , {y1, y3} , {y2, y3} , {y1, y2, y3}}

where φ is the empty set.
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Elements in Θ are assumed to be mutually exclusive and exhaustive. The mass function

m is defined as a mapping of the power set elements to a number between 0 and 1, as follows

m : Ω→ [0, 1] (6.1)∑
A⊆Ω

m(A) = 1 (6.2)

m(φ) = 0 (6.3)

Subset A with non-zero mass is called a focal element or focal for short. Focal elements

and their masses constitute an evidence structure, expressed in form:

{(A,m(A))|A ⊆ Ω,m(A) > 0} .

Thus, (A,m(A)) is signifies a piece of evidence and the value of m(A) represents the degree

of evidential support with which a specific element of Ω belongs to the exact set A, not to

subsets of A. The belief function Bel is defined as

Bel : Ω→ [0, 1] and Bel(A) =
∑
B⊆A

m(B) (6.4)

where A ⊆ Θ, B ⊆ Θ, and A 6= φ. The plausibility function Pls is defined as

Pls : Ω→ [0, 1] and Pls(A) = 1−Bel(Ā) =
∑

B∩A 6=φ

m(B) (6.5)

The belief function Bel(A) measures the total amount of probability that must be dis-

tributed among the elements of A, and it constitutes a lower limit function on the probabil-

ity of A. On the other hand, the plausibility function Pls(A) measures the maximal amount

of probability that can be distributed among the elements in A, and it constitutes an up-

per limit function on the probability of A. Therefore, the interval span [Bel(A), P ls(A)]

reflects uncertainty, which describes the unknown with respect to A. In addition to quan-
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tifying uncertainty, belief can be used to make decisions at the pingnestic level in which a

probability distribution, called pignistic probability, BetP , is transferred from an evidence

structure [120,121] as follows.

BetP : Ω→ [0, 1] and BetP (A) =
∑
B⊆Ω

|A ∩B|
|B|

×m(B) (6.6)

where | · | denotes the cardinality. Note that the pignistic probability is normalized to one

(i.e.,
∑

A⊆Ω BetP (A) = 1).

The Dempster’s rule combines independent evidence by

⊕ni=1 mi(A) =
1

1−K
∑

B1∩···∩Bn=A

m1(B1) · . . .mn(Bn) (6.7)

where B1, . . . , Bn ⊆ Θ and

K =
∑

B1∩···∩Bn=φ

m1(B1) . . .mn(Bn)

K signifies a basic probability mass associated with conflicts among the source of evi-

dence. The above rule of evidence combination satisfies the commutative and associative

properties:

m1 ⊕m2 = m2 ⊕m1 (6.8)

m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3 (6.9)

To handle conflict of information sources, a discounting scheme has been introduced in

DSET such that Bel(A) = (1−α)×Bel(A), ∀A ⊂ Θ, and Bel(Θ) = 1. Accordingly, mass

functions are usually modified in the following manner [119,120,122,123]:

mα(A) =

{
(1− α)×m(A), if A ⊂ Θ

α + (1− α)×m(Θ), if A = Θ
(6.10)
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where α ∈ [0, 1] signifies a discounting factor, and mα(A) signifies the discounted mass of

m(A). The larger α is, the more discounted a non frame of discernment focal is while the

more mass is assigned to the frame of discernment.

Remark 6.2.1. Dempster’s rule of combination strongly emphasizes the agreement be-

tween multiple sources and ignores all the conflicting evidence through the normalization

factor K. Therefore, the use of the Dempster rule has come under serious criticism when

significant conflict in the information is encountered [124, 125]. Consequently, researchers

have developed modified Dempster rules that attempt to represent the degree of conflict

in the final result [126]. For example, Yager proposed in [125] an alternative evidence

combination rule that allocates conflict to the frame of discernment (Θ) instead of to the

empty set (φ). Thus, mass associated with conflict is interpreted as the degree of ignorance.

Without loss of generality, the modified combination rules for two sources of information

become as follows.

K =
∑

B∩D=φm1(B) ·m2(D),

m(φ) = 0,

m(A) =
∑

B∩D=Am1(B) ·m2(D), A 6= φ,Θ,

m(Θ) = (
∑

B∩D=Θm1(B) ·m2(D)) +K

(6.11)

where A, B, and D ⊆ Θ.

6.3 Spatial Evidence Structure Model (SESM)

A new evidence structure model is proposed under the assumption that each location

information source provides three pieces of information: location estimate denoted by Zi,

localization accuracy denoted be Acci, and integrity level denoted by ρi (see Figure 6.1).
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The location estimate and the accuracy are determined by the respective PLUs, while the

integrity level is specified by the corresponding IMUs. It is worth mentioning here is that

a vehicle location estimate can be confined to any type of spatial data, such as points

of road-segments’ intersections, lines signifying road segments, or areas covering places of

interest. Without loss of generality and to avoid errors caused by map-matching processing,

I will consider the location estimate to be within an area of interest. The three pieces (i.e.,

Zi, Acci, and ρi) of information are utilized in building the spatial evidence structure as

explained below.
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
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Source1 = (Z1, Acc1, ρ=0.9)

Source2 = (Z2, Acc2, ρ=0.7)

Source3 = (Z3, Acc3, ρ=0.8)

Figure 6.1: Data provided by each location information source.

6.3.1 Frame of Discernment in SESM

Since the final result of any localization process is a location, then the frame of discernment

must encompasses all possible locations that the object of interest (e.g., vehicle) can be

in. However, spatial data is continuous which makes it unsuitable for DSET. Therefore,

the domain of spatial data of interest must be discretized. Fortunately, the localization
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accuracy provided by a source of information can be used to split the spatial data domain

into two areas. As in Figure 6.2, A1 is a circle centred at the location estimate, Z1, with

radius equal to the accuracy value, Acc1, and Ā1 signifies the remaining area of the area of

interest. Hence, the actual location of the vehicle can be in one of these areas. Accordingly,

Θ1 =
{
A1, Ā1

}
, and Ω1 =

{
φ, {A1} ,

{
Ā1

}
,
{
A1, Ā1

}}
.

1
A

1
A

Figure 6.2: Discretizing the area of interest using localization accuracy.

Consider another source of information that provides A2 which is centred at location

estimate, Z2, with radius equal to Acc2 where Acc2 6= Acc1. Therefore, Θ2 =
{
A2, Ā2

}
,

and Ω2 =
{
φ, {A2} ,

{
Ā2

}
,
{
A2, Ā2

}}
. Since Ω1 6= Ω2, it is impossible to combine the data

provided by the two sources. Hence, one must create a universe of discourse that covers

the area of interest to facilitate the combination process.

To accomplish this task, one needs to discretize the area of interest into smaller areas

called cells denoted by χ(j), where j is a unique identification number. The shape of these

cells must be selected so that they become mutually exclusive and exhaustively cover the

area of interest. For simplicity I selected the cells’ shape to be a square. Each cell is

represented by its centre; however, the vehicle is considered to be anywhere within a cell.

Therefore, the size of the cells is chosen as small to reflect high accuracy. On the other

hand, as the cell size becomes smaller, the number of these cells increases dramatically
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which raises the computation complexity. Thus, the cell size is selected to be comparable

with the best accuracy required by the application (i.e., ϑ). Figure 6.3 shows the minimal

cell size when the accuracy required is at least 10 m. The resultant frame of discernment

depicted in Figure 6.4, Θ =
{
χ(1), . . . , χ(L2)

}
, is independent of the location accuracy

provided by the PLUs.

( )j
 10

 m

14.14 m

Figure 6.3: Example of square cell dimension when 10 m accuracy is needed.
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Figure 6.4: Discretizing the area of interest using mutual exclusive and exhaustive cells.
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6.3.2 Evidence Construction in SESM

The next aspect of the spatial evidence structure model is the formation of the evidences

provided by the sources of information in terms of focal elements, subsets of Θ, and their

respective mass function, m(·). Both, the integrity level and localization accuracy provided

by the sources of information are utilized here to accomplish this task.

Consider a source of information, ISi, claims location estimate equals Zi, localization

accuracy equals Acci, and integrity level equals ρi. The Euclidean distance between the

centre of χ(j) and Zi is denoted by dj,i. For each ISi, let the cells χ(j) that have dij ≤ Acci be

collectively supported by the integrity level ρi. Therefore, a simple support function [119]

is used to set the mass function. A simple support function is a special case of a mass

function, where the evidence only supports a certain subset E of Θ, and zero mass is

assigned to all subsets of Θ other than E (i.e., the focal elements using a simple support

function are {{E} , {Θ}}). So, for any D ⊆ Θ the mass function is as follows.

mi(D) =


ρi if D = E, where E =

{
χ(j)|dij ≤ Acci

}
1− ρi if D = Θ

0 otherwise

(6.12)

As an example, in Figure 6.4 where we have two location sources, IS1 and IS2, it can

be seen that χ(j) ∈ E1 while it is not the case for IS2 (i.e., χ(j) /∈ E2).

6.3.3 SESM Combination Rule

As seen above, each source, ISi, has two focal elements, {{Ei} , {Θ}}. Typically in

Dempster-Shafer combination rule, conflicts among sources of information are completely

ignored, which leads to counterintuitive results in some situations when significant conflict

exists. R. Yager’s modified combination rule depicted in Equation 6.11 is adopted here to
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avoid such issue. Yager’s combination rule for n sources is shown below.

K =
∑

∩ni=1Aih=φ

m1(A1h) · · · · ·mn(Anh), (6.13)

my(φ) = 0, (6.14)

my(Dr) =
∑

∩ni=1Aih=Dr

m1(A1h) · · · · ·mn(Anh), r = 1, . . . , R (6.15)

my(Θ) =

 ∑
∩ni=1Aih=Θ

m1(A1h) · · · · ·mn(Anh)

+K (6.16)

where Aih ∈ {{Ei} , {Θ}}, and Dr ⊂ Θ. This combination rule produces R + 1 focal

elements including Θ. The pignistic probabilities, BetP (Dr), of the resultant focal elements

are computed as in Equation 6.6 to make a decision about the fused location estimate,

accuracy, and aggregated integrity:

� The focal with the highest BetP is selected as a winning focal, D∗

D∗ = arg max
Dr

BetP (Dr), where r = 1, . . . , R + 1

� The centroid of the cells in the winning focal is considered to be the fused location

estimate

Zf =

∑
χk∈D∗ centre of χk

|D∗|

� The accuracy of Zf is considered to be equal to the distance between Zf and the

farthest χk ∈ D∗

� The aggregated integrity is set to be equal to BetP (D∗) since the pignistic probability

reflects the belief transferred from the contributing location sources [120].
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This completes the SESM fusion that yields the three pieces of information we are interested

in, namely, location estimate, localization accuracy, and aggregated integrity.

6.4 Location Estimates Fusion Paradigms

In this section different hybrid vehicle localization systems are considered for the real-life

vehicle traces presented in the two previous chapters. The sources of location information

used in providing the preliminary localization are a GPS receiver and the simulated FP

measurements presented in Chapter 4. The localization accuracy is determined using

CBAC algorithm while the localization integrity is assessed using both the TDI model and

the generalized TDI model presented in Chapter 5. The accuracy bands evaluated by the

integrity models are 10 m and 20 m for the GPS measurements, and 20 m for the FP

measurements. The following subsections are focused on various approaches to the fusion

process within the fusion layer. Comparative results are also provided.

6.4.1 SESM Based Fusion

The fusion process here is fed with the location estimates and the integrity levels for

different accuracy bands as in Figure 6.5. Since the IMUGPS is evaluating two nested

accuracy bands for the same PLUGPS location estimate, GPS data is considered to be

coming from two dependent location information sources. Due to the dependency among

the two sources, each source is fused independently with the data produced by the PLUFP .

The fusion result with the least uncertainty is selected.

The pseudo code 6.4.1 shows the fusion paradigm steps where ⊕SESM(ξi, ξj) means

building the spatial evidence structure model and performing the combination rule depicted

in section 6.3.3 for the two quality indexes ξi and ξj.
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Figure 6.5: SESM fusion paradigm using GPS and FP measurements.

Algorithm 6.4.1 : Pseudo Code for Fusing GPS and FP measurement using SESM

1: Input: ξ1 =(ZGPS, Acc10m, ρ10m), ξ2 =(ZGPS, Acc20m, ρ20m), and ξ3 =(ZFP , Acc20m,
ρ20m);

2: Output: Zf , Accf , and ρf ;
3: /*Fuse FP and GPS10m:*/
4: [Z1, Acc1, ρ1,m

y
10(·)] = ⊕SESM(ξ1, ξ3);

5: /*Compute Bel (D∗1) and Pl (D∗1) using my
10(·)*/

6: Uncertainty(1) = Pl (D∗1)−Bel (D∗1);
7: /*Fuse FP and GPS20m:*/
8: [Z2, Acc2, ρ2,m

y
20(·)] = ⊕SESM(ξ2, ξ3);

9: /*Compute Bel (D∗2) and Pl (D∗2) using my
20(·)*/;

10: Uncertainty(2) = Pl (D∗2)−Bel (D∗2);
11: f = arg mini=1,2 Uncertainty(i);

Moreover, this paradigm is performed on the hybrid vehicle localization system while

the generalized TDI (GTDI) is used in the IMUGPS. Figure 6.6 shows the performance

of SESM in terms of the cumulative distribution function, CDF, of the localization error.

As seen, the CDF of the localization error is computed for the GPS localization, FP

localization, average between the GPS and FP location estimates, the GPS and FP SESM

fusion using TDI for the GPS accuracy, and the GPS and FP SESM fusion using GTDI for

both the GPS and FP accuracies. The average between GPS and FP localization produced
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intuitive result that falls between the performance of the GPS and FP. SESM fusion,

while using TDI to attribute the GPS accuracy, outperforms the GPS-only localization

especially for errors larger than 10 m. When GTDI is used in SESM fusion the performance

degraded below that of GPS-only localization. This degradation is due to the increase in

the uncertainty of evaluating the localization integrity when GTDI is used (cf. Figure 5.23).

It is worth mentioning here that the usage of GTDI is more practical in many situations

indicated in the previous chapter. It is mentioned in Chapter 5 that such degradation can

be handled by enforcing a number of rules that guide the fusion process. The tuning of

the fusion process is tackled in the following section.
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Figure 6.6: Localization error performance for SESM paradigm.
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6.4.2 Channel Selection Guided SESM Fusion

The inaccurate information provided by the GTDI about certain source of location in-

formation causes a significant degradation in the fusion process performance. Therefore,

inaccurate sources must be excluded in the fusion process. As a first step to improve the fu-

sion process, a Channel Selection (CS) mechanism is utilized here. In GTDI, the significant

effort spent on classifying the localization accuracy is not perfectly utilized. Thus, the CS

mechanism is used to select the source with better accuracy based on the CBAC output.

In the case where sources provide comparable accuracies, fusion is performed. The fusion is

performed one time by simply linearly averaging the location estimates, and another time

by implementing SESM based fusion but this time there would not be dependent sources

since they are already filtered out using CBAC.

Table 6.1 depicts the set of rules enforced in the CS mechanism. These rules are

extracted based on the observations made on the performance of the GTDI shown in Figure

5.23. For example, GPS localization has a very high integrity level when its accuracy is

declared as 10 m; however, the GPS integrity level is not as high when accuracy is declared

as 20 m. Consequently, GPS channel is selected whenever 10 m accuracy is declared while

fusion between GPS and FP estimates is performed when both declare 20 m accuracy –

the remaining situations are listed in the table below.

Table 6.1: CS rules for GPS-FP fusion when GTDI is used.`````````````̀FP bands
GPS bands

LocErr ≤ 10 m 10 m < LocErr ≤ 20 m LocErr > 20 m

LocErr ≤ 20 m ξGPS Fuse(ξGPS , ξFP ) ξFP
LocErr > 20 m ξGPS ξGPS Fuse(ξGPS , ξFP )

The CDFs of the CS guided fusion are depicted in Figure 6.7. The improvement in the

localization error using CS guided fusion is significant with respect to the GPS localization
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and the paradigm of SESM with only GTDI models. It is noticed that CS guided SESM

fusion is less accurate than CS guided linear mixed fusion (denoted by CS-LinMix), yet it

outperforms the SESM fusion with TDI model of GPS.
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Figure 6.7: Channel selection guided fusion versus pure SESM performances.

6.4.3 Source Discounting for CS Guided SESM Fusion

The relative degradation in the fusion performance, when SESM fusion is used, provides

irrefutable evidence on the existence of discredited sources of information. The fact of

having discredited sources of information is a common issue in data fusion paradigms.

Fortunately, DSET is able to handle this issue using source discounting mechanism shown

in Equation 6.10. Since we have two sources of information (i.e., ISGPS and ISFP ), two

135



discounting factors must be determined, namely, αGPS and αFP , as such the overall local-

ization performance gets improved. To accomplish this task, an optimization problem is

formulated as follows.

[α
GPS

, α
FP

] = arg max
α
GPS

,α
FP

∫ L̂E

0

CDFcsf (l̂e) dl̂e (6.17)

s.t.

0 ≤ α
GPS

, α
FP
≤ 1,

CDFcsf (l̂e) = fun(⊕csf )|
m
y
α
GPS

(·),myα
FP

(·)

where l̂e signifies the resultant localization error after performing the fusion process, L̂E

signifies an upper bound for the variable l̂e, CDFcsf

(
l̂e
)

signifies the cumulative distri-

bution function of the localization error when CS guided SESM fusion (i.e., ⊕csf ) is used,

and my
αi

(·) signifies the Yager’s modified mass function when α
i

is used as a discounting

factor.

The aim of Problem 6.17 is to maximize the probability of obtaining smaller error than

certain value (e.g., L̂E). The objective function is complex, non-smooth, and may have

many local maxima due to the different combination rules shown in Table 6.1 as well as the

mass evaluation rules depicted in equations 6.14 to 6.16. Hence, derivative (i.e., traditional)

based optimization methods will not work in solving this problem. In such cases, especially

when the search space is spanned by large number of variables, global optimization methods

[127], such as 1) stochastic methods: simulated annealing, direct Monte-Carlo sampling,

etc., and 2) heuristics/metaheuristics: evolutionary algorithms, swarm-based optimization

algorithms, to name few, are expected to produce optimal solution. Fortunately, the search

space of this optimization problem is constrained and spanned by only two variables: αGPS

and αFP . Therefore, the search space is sampled and the objective function is evaluated for
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each sample to investigate the surface of the objective function. As depicted in Figure 6.8,

the objective function is maximized when αGPS is greater than 0.8 and αFP is less than 0.2.

In other words, the GTDI assessment of the GPS localization is much less credited that

the GTDI assessment of the FP localization when the performance accuracy is classified as

between 10 m and 20 m. It is also observed that the objective function becomes insensitive

to the change in both αGPS and αFP when they are greater than 0.5 and 0.4, respectively.

This insensitivity to the evidence provided by the ISi is a result of discrediting these

sources to the extent that Θ, the set signifying complete ignorance, becomes always the

winner set (D∗ = Θ) so that the result of the fusion process is the same regardless of the

change in the tuning parameters: αGPS and αFP .

Figure 6.8: Objective function surface as a function in αGPS and αFP .
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Thus, the discounting factors are set to the values 0.8 and 0.2 for αGPS and αFP ,

respectively. The CS guided SESM fusion is implemented while using these discounting

factors, denoted by CS − alpha − SESM , and then compared with the previous fusion

paradigm. Figure 6.9 shows the comparison between the fusion processes developed in this

chapter in terms of their CDF of localization error. As seen, the CS−alpha−SESM fusion

significantly outperforms all the implemented fusion methods when errors are larger than

12 m and that is because source discounting factors are more effective when the accuracy

is worse than 10 m.
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Figure 6.9: The effect of source discounting on the fusion process performance in terms of
CDFs of localization error.
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6.4.4 Comparative Results

Several comparisons are conducted in this section among the localization methods men-

tioned above. The comparisons are categorized into two categories that present the im-

provement in the localization error and the improvement in the claimed accuracy and

integrity levels.

Improvement in Location Accuracy Bands:

The performance of the implemented fusion methods are further investigated from a closer

point of view. The percentage of improvement per localization error bands depicted in

Table 4.3 is calculated. Since FP localization error is much worse than that of the GPS,

only GPS error bands are compared with the fusion results. Error band covering errors

less than 10 m is denoted by b1, error band covering errors between 10 m and of 20 m is

denoted by b2, and error band covering errors larger than 20 m is denoted by b3.

In terms of location error minimization, the percentage of the errors shifted from b3

to both b2 and b1 is computed. The same computation is done to the errors in b2. Table

6.2 depicts the figures of these computations per each fusion paradigm. It can be seen

that SESM fusion outperforms SESM-GTDI fusion due to the extra information provided.

Nevertheless, CS fusion versions recover from the degradation caused by SESM-GTDI

fusion, especially when source discounting is used.

Table 6.2: Improvement in the localization bands after the fusion process.

Error bands SESM SESM-GTDI CS-LinMix CS-SESM CS-alpha-SESM

b3 −→ b2 38.53% 27.06% 38.38% 24.54% 38.00%
b3 −→ b1 25.08% 18.96% 18.96% 18.43% 32.11%
b2 −→ b1 39.95% 30.21% 30.21% 29.35% 51.16%
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Another statistic called Gain-bi is calculated, Equation 6.18. Gain-bi signifies the per-

centage of the change in the number of measurements falling in band bi after performing

the fusion process.

Gain-bi =
size of band bi using GPS− size of band bi after fusion

size of band bi using GPS
× 100 (6.18)

Figure 6.10 shows the performance of fusion methods in terms of Gain-bi per each band.

Positive gains indicate increasing the size (number of measurements) of the band; while

negative gains indicate shrinking the size (number of measurements) of the band. Few

concluding remarks can be obtained from this chart:

� the significant improvement in the localization process happens in decreasing the

huge errors in b3 to b2,

� part of the measurements in b3 and b2 have been gained in b1 – a gain that does not

seem large due to the extremely large number of samples in b1–,
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Figure 6.10: The statistics of band gains after performing estimate fusion.
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� SESM-GTDI fusion, which is using GTDI for GPS integrity assessment, significantly

degrades the performance in b1 and b3 as a result of giving stronger evidence to FP

localization which is typically much less accurate than GPS localization, and

� CS fusion versions clearly recover from the aforementioned degradation in all bands,

though CS versions are still using GTDI for GPS integrity assessment.

Improvement in Integrity Assessment and Aggregation:

The fusion process produces two pieces of information which are the claimed localization

accuracy and the integrity aggregated. In this section, comparisons between the GPS

performance and the fusion paradigms are presented. First, localization accuracy is con-

sidered. Three accuracy indexes are used in this comparison: Acc1 ≤ 10m, Acc2 ≤ 20m,

and Acc3 > 20m. The performance metric used here is the number of false alarms produced

by a technique when claiming specific accuracy index. A false alarm is counted if the actual

location is outside the accuracy band specified by the claimed index. Table 6.3 shows the

Table 6.3: Accuracy false alarm comparison.

Technique Statistic
Accuracy Index

Acc1 Acc2 Acc3

GPS
No. of Claim 2356 3477 824

False alarm 39 780 260

CS-LinMix
No. of Claim 2356 4109 192

False alarm 39 492 72

CS-SESM
No. of Claim 2356 3902 399

False alarm 39 558 160

CS-alpha-SESM
No. of Claim 2356 4002 299

False alarm 39 381 178
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statistics collected from the experimental work. The techniques have similar performance

in terms of Acc1; however, it can be seen that the fusion techniques achieved a significant

improvement in Acc2 and Acc3 in terms in lessening the false alarms. Furthermore, the

increase in claiming Acc2 instead of claiming Acc3, when estimate fusion paradigms are

used, confirms the localization improvement presented in the previous section. Amongst

the estimate fusion paradigms, CS-LinMix is the best in diminishing the false alarm rate

of claiming specific accuracy band.

Second, improvement in estimation integrity level is investigated. Intuitively, integrity

is aggregated via fusion and becomes higher in level than that of the individual sources.

This statement is verified by showing the instantaneous integrity level of the accuracies

claimed by the PLUGPS and the fusion paradigms. Figure 6.11 depicts six snapshots of

integrity assessment provided by the different techniques. The snapshots are taken while a

vehicle is travelling through different environment conditions. The GPS-GTDI assessment

is represented by the solid red line in the figure while the integrity claimed by the fusion

paradigms is represented by the blue-marked solid line, dotted-dashed line, and dashed

line. It can be clearly seen that fusion paradigms produce higher level of integrity, when

they report their location estimate and accuracy, compared with the GPS-GTDI integrity

levels in almost all snapshots regardless of the measurement conditions. The integrity of

CS-LinMix fusion paradigm achieves the highest level – a performance that supports the

results of the accuracy false alarm rates presented above. The integrity levels reported

by the CS-SESM and CS-alpha-SESM fusion paradigms are higher than the GPS-GTDI

integrity and below that of the CS-LinMix fusion paradigm in most of the cases. It is worth

mentioning here is that despite the lower integrity level reported by CS-alpha-SESM fusion

paradigm with respect to CS-LinMix fusion paradigm the former paradigm achieved better

localization error performance as per Figure 6.9. This observation reveals the fact that the
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Figure 6.11: Integrity aggregation compared with GPS integrity level in different measure-
ment conditions.

different fusion paradigms can be used to achieve different goals. For example, if the target

is to minimize the localization error as much as possible and the application can tolerate

some false alarms, such as in navigation systems, then CS-alpha-SESM fusion paradigm
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is the best choice. On the other hand, if the target is to minimize the accuracy false

alarms and increase the estimate trust level, such as in vehicular critical applications, then

CS-LinMix is the best choice among the developed paradigms.

6.5 Task-Driven Resource Allocation

The aim of the localization approaches investigated up to this section is to achieve the

best localization in terms of accuracy and integrity. In practice, other factors must be con-

sidered in the evaluation of the localization performance, such as the power consumed to

process the data, the service cost of accessing cellular networks, the speed of processing the

data, etc. We call these factors performance criteria, which are function in the localization

technique at hand and the state of nature (i.e., position and measurement conditions).

Most of the current localization techniques, single or multi-modality systems, consider one

performance criterion at a time using fusion and/or channel selection paradigms. Conse-

quently, one might ask which is the best modality or technique’s assignment to improve

specific performance criterion. The issue becomes more challenging when more than one

conflicting criterion is considered simultaneously. A multicriteria formulation is introduced

in the next section to answer the aforementioned question.

6.5.1 A Multicriteria Formulation

Consider a localization system that employs a set of N localization techniques available

under the disposal of the estimate fusion and management layer. These techniques are

indexed by the set Ψ = {T1, . . . , Tn, . . . , TN} and estimating the true location Xt at time t.

Each technique Ti uses its measurement resources to compute an estimate Zi,t and provide a

quality index ξi,t which is in terms of different criteria βm (i.e., ξi,t = (β1, . . . , βm, . . . , βM)).
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A binary selection vector, Vt = (v1, . . . , vN) where vn ∈ {0, 1} and
∑

n vn = 1, is used to

select Ti that optimize ξi,t. Therefore, each criterion βm is function in Xt and Vt as follows.

βm = f(Xt, Vt), m = 1, . . . ,M (6.19)

Nevertheless, the solution of optimizing the group of criteria βm simultaneously may

do not exist due to conflicts among the criteria. It is also possible to quickly consume

the resources of the system while providing quality very much beyond the demand of the

system. A key for intelligence of such system is its capability to utilize its different resources

according to the different needs of the task at hand. This is what we call Task-Driven

Resource Allocation. In order to tackle the two aforementioned issues, it is imperative to

combine the criteria functions in one problem and incorporate the demands of the task at

hand with respect to each criterion so that a Pareto-optimal solution can be obtained.

6.5.1. Pareto-optimal solution: A vector V ∗t is said to be a Pareto-optimal for the

multicriteria problem in 6.19 if and only if there is no vector Vt that can improve any

βm, m = {1, . . . ,M}, without worsening at least one βk, k = {1, . . . ,M} − {m}.

Without loss of generality, the demands of the localization tasks considered here con-

stitute the target performance needed by a task/application. Basir and Shen investigated

in [128] other types of demands, such as soft and hard task demands. The task target is

signified by the vector Ξt = (η1, . . . , ηM) where ηm signifies an assumed demand on the mth

performance criterion. Thus, the objective function becomes as follows.[
M∑
m=1

(βm (Xt, Vt)− ηm)d
] 1
d

(6.20)

where 1 ≤ d ≤ ∞ and the the value of d specifies the distance type between the task

demand levels represented by Ξt and the functional-efficient solutions. For example, if d is
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set to 2, the objective function is simply the Euclidean distance metric.

In some situations the task may further provide some important information structure

on the set of criteria functions. This means that the criteria functions do not possess

the same level of importance. In such situation, the objective function is updated to

accommodate a weighting scheme for all criteria functions:[
M∑
m=1

(Wm (βm (Xt, Vt)− ηm))d
] 1
d

(6.21)

where W1, . . . ,WM are chosen to satisfy the importance structure induced by the problem

on the set of criteria functions. The more important is a criterion function the heavier

weight it is assigned. It is often assumed that 0 < Wm < 1 and
∑

mWm = 1. Consequently,

the Pareto-optimal solution V ∗t for the multicriteria optimization problem can be stated as

follows.

V ∗t = arg min
Vt

[
M∑
m=1

(Wm (βm (Xt, Vt)− ηm))d
] 1
d

(6.22)

s.t.

Vt = (v1, . . . , vn, . . . , vN), where vn ∈ {0, 1} ,∑
n

vn = 1, and∑
m

Wm = 1, wher 0 < Wm < 1 and m = 1, . . . ,M

It is possible to generate Pareto-optima for the criteria functions by varying the weights

Wm in the optimization problem of Equation 6.22.
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6.5.2 Task-Driven Resource Allocation Implementation

The effectiveness of task-driven resource allocation is presented here using four single/multi

modality localization techniques, namely, GPS, FP, CS-LinMix fusion, and CS-alpha-SESM

fusion. Using such techniques in one system yields contrasted power consumption due to

their different computational complexity, and incurs some financial cost in accessing cellular

networks. The criteria functions chosen in this implementation are in terms of accuracy,

integrity, power consumption, and financial cost per every location estimate. Table 6.4

depicts the assumed power consumption and financial cost per every location estimate for

the selected techniques, as reported in [129–131]

Table 6.4: Power and financial cost of the chosen techniques.

Technique Power Consumption (mW) Cash Cost (¢)
GPS 370 free
FP 500 0.5
CS-LinMix 920 0.5
CS-alpha-SESM 1070 0.5

Both CS-LinMix and CS-alpha-SESM utilize FP technique which scans the cellular

network towers and accesses data bases to obtain a preliminary location estimate; hence,

they incur the same assumed cash cost. The 0.5 in the three localization techniques

represents the service cost of the localization. Moreover, the two fusion paradigms utilize

both GPS and FP data in order to produce a location estimate; therefore, their power

consumption is equivalent to the summation of the consumption of the GPS, FP, and

the consumption resultant from the computation process. Due to constructing the frame

of discernment and performing all the SESM-related operations, the consumption of the

computation process in CS-alpha-SESM is considered to be equivalent to that of CS-LinMix

(50 mW) multiplied by three.
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The application querying the vehicle location performs different tasks upon which spe-

cific demands are set. Given these demands, the pre-knowledge about the power consump-

tion, and cash cost, as well as the real-time accuracy and integrity assessment, the estimate

fusion and management is able to assign the adequate technique(s) and plane to achieve

the target demand, Figure 6.12.
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Figure 6.12: Task-driven integrity assessment and control for hybrid vehicle localization
system.

The efficacy of the task-driven integrity assessment and control localization is examined

over four use cases. Each use case presents certain task/application’s target demands for

a vehicle travelling first in the downtown of the city of Toronto and then leaves to the

city of Waterloo through highway 401. Table 6.5 depicts the demands set by the use cases

in terms of the performance criteria. Without loss of generality, the entry ∞ signifies

no constraints on the performance criterion. Also, the value zero signifies spend/obtain

the minimal possible value of the designated performance criterion. As explained in the

previous section, the criteria functions may possess different levels of importance. These
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Table 6.5: Localization demands for different use cases.``````````````̀Use Cases
Criteria

Cash Power Accuracy Integrity

Super performance ∞ ∞ 0.00 meters 100%
Navigation system 0.00 ¢/service ∞ 20.00 meters 90%
Limited resources 0.25 ¢/service 0.00 mW 15.00 meters 70%
Running out of power ∞ 0.00 mW 10.0 meters 100%

levels of importance are maintained using the weighting vector shown in Equation 6.22.

The results of these use cases are then presented in terms of the CDF of the localization

error, the consumed energy, and the cash spent. The techniques chosen to achieve the

target performance are also depicted for each use case.

Use Case 1- Super Performance:

In this use case, there are no constraints on the cash or power consumption, and the

localization performance is needed to be the best. Since the information provided about

accuracy and integrity has some level of uncertainty and we know that fusion paradigms

produce better localization, more weight is given to the cash and power consumption than

is given to the accuracy and integrity criteria functions: W = [0.1, 0.1, 0.4, 0.4].

The CDF of the localization error of the task-driven localization as well as the other four

techniques is shown in Figure 6.13. It can be seen that the task-driven fusion for this use

case outperforms the CS-alpha-SESM in the error band less than 12 m, and outperforms

the CS-LinMix in the error band greater than 12 m. In other words, task-driven fusion

produces a logical balance between the two fusion paradigms.

Figure 6.14 shows a comparison among the different localization techniques in terms of

the energy consumed and the money spent in sub-figures (a) and (b), respectively, while the

sub-figure depicts the selection of the localization technique over the time of the experiment.
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Since no constraints are enforced in this experiment on the cash or the power consumption,

the cellular network is accessed all the time to improve the localization process, and the

energy consumed is just below that of the CS-alpha-SESM due to the utilization of CS-

LinMix in some situations which require less power consumption. In general, both CS-

alpha-SESM and CS-LinMix alternate the localization task in the multipath area (i.e.,

downtown Toronto) based on the accuracy and integrity assessment. In the open sky

environment the CS-alpha-SESM is chosen to produce the best localization possible.
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Figure 6.13: Comparison between the CDF of localization error of use case 1 and that of
the other localization techniques.
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Figure 6.14: Task-driven localization performance in use case 1 with respect to the other
localization techniques in terms of (a) consumed energy, and (b) cash spent. (c) selection
of the localization techniques made by the Pareto-optimal solution.

Use Case 2- Navigation System:

In vehicles’ navigation systems the power consumption does not constitute any constraint

since the car battery covers the power needed. The localization accuracy does not need to
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be very accurate, but the integrity needs to be relatively high. Often, there is no interest

in spending cash in such use case except in multipath environment where GPS coverage

and integrity become very weak. Therefore, more weight is assigned to the power and

cash criteria and higher weight than in use case 1 is given to the accuracy and integrity:

W = [0.2, 0.2, 0.35, 0.25] . Figure 6.15 depicts the performance in terms of CDF of the

localization error. As seen, the performance of use case 2 is extremely good when errors

are less than 12 m. For larger errors, task-driven localization significantly improves the

GPS performance.
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Figure 6.15: Comparison between the CDF of localization error of use case 2 and that of
the other localization techniques.
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Figure 6.16 shows the dynamics of the task driven localization as to the change in

the criteria functions. This dynamic behaviour can be seen in the non-linear increase in

the consumed energy and cash. It is obvious that the consumption rate is high in the
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Figure 6.16: Task-driven localization performance in use case 2 with respect to the other
localization techniques in terms of (a) consumed energy, and (b) cash spent. (c) selection
of the localization techniques made by the Pareto-optimal solution.
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multipath environment where task-driven localization is mainly switching between GPS

and CS-LinMix fusion. FP and CS-alpha-SESM are not selected due to their relative

high cash cost and energy consumption, respectively. On the highway, the task-driven

localization chooses only GPS localization since it surpasses the target performance.

Use Case 3- Limited Resources

This scenario exemplifies the utilization of smartphones which are equipped with a GPS

or A-GPS receiver and have an access to the cellular networks. Such smartphones provide

location based services to car drivers or pedestrians. In such cases, localization accuracy is

relatively relaxed to the range of 20 m but with good level of integrity. Power consumption

is an issue and, therefore, it is strongly constrained. Cash is also spent with caution, so

relatively more weight is assigned to the cash spending and power consumption: W =

[0.2, 0.2, 0.25, 0.35].

It is expected in such use case that the task-driven localization will focus on the uti-

lization of GPS and FP localization and avoid the fusion paradigms due to their high

consumed energy and cash cost. Figure 6.17 shows a comparison between the different

localization techniques in terms of the CDF of the localization error. It can be seen that

the performance of the task-driven localization is way better than the FP localization.

GPS localization is, also, significantly improved in the large error band – such error band

is commonly experienced in urban canyons.
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Figure 6.17: Comparison between the CDF of localization error of use case 3 and that of
the other localization techniques.

It is evident from Figure 6.18 that task-driven localization consumes less energy that FP

localization especially when the multipath effect becomes lesser. In terms of cash spending,

the task-driven localization spends less than half of what the other techniques spend using

cellular network assess. In sub-figure (c), it is clear that task-driven relies only on GPS

and FP localization in multipath environments. In open sky environment, during this use

case, the sole localization technique used is GPS .
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Figure 6.18: Task-driven localization performance in use case 3 with respect to the other
localization techniques in terms of (a) consumed energy, and (b) cash spent. (c) shows the
selection of the localization techniques made by the Pareto-optimal solution.

Use Case 4- Running Out of Power

Here I present an adverse scenario in which the conflict among the target criteria is

increased. Assume that cash spending is allowed to obtain the best accuracy and in-
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tegrity level, while the system is running out of power. The question, then, is how to

maintain the highest possible quality of localization while keeping the power consump-

tion low. The weights assigned to the criteria functions are equal in this use case (i.e.,

W = [0.25, 0.25, 0.25, 0.25]) so that decisions are based only on the distance between the

target performances and the criteria functions.

Figure 6.19 shows the performance of the different localization techniques in terms of the

CDF of the localization error. The balance between utilizing the resources in task-driven

localization can be seen in producing accuracies similar to those of the fusion paradigms
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Figure 6.19: Comparison between the CDF of localization error of use case 4 and that of
the other localization techniques.
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in the low error band, and significantly improving the localization in the large error band.

As shown in Figure 6.20, the power consumption is kept as low as that of the FP

localization in the multipath environment , where on the highway CS-LinMix is used due to

its low power consumption with respect to CS-alpha-SESM and its high accuracy/integrity
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Figure 6.20: Task-driven localization performance in use case 4 with respect to the other
localization techniques in terms of (a) consumed energy, and (b) cash spent. (c) shows the
selection of the localization techniques made by the Pareto-optimal solution.
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with respect to GPS localization. Due to the relaxed constraint on the cash spending, the

task-driven localization utilizes the cellular network access in all localization requests.

6.6 Summary

This chapter presented the details of the proposed estimates fusion and management layer.

The lack of complete information about the techniques’ performance, in addition to the

possible conflicts among the evidences, constitute the main reason of employing Dempster-

Shafer Evidence Theory (DSET) in the fusion process. A novel evidence structure model

called Spatial Evidence Structure Model (SESM) is developed in this chapter to deal with

spatial data. SESM-based fusion paradigms are also introduced. These paradigms are ca-

pable of utilizing the information provided by the primary localization units and integrity

monitoring units in the fusion process. Both the location estimate accuracy and aggre-

gated integrity of the fusion process demonstrate superiority over the individual primary

localization units.

The developed fusion paradigms extend the degree-of-freedom of managing the fusion

process to the extent of controlling the system resources so as to achieve a task-driven per-

formance. It is evident from the experimental results that task-driven integrity assessment

and control is applicable and effective on hybrid localization systems.
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Chapter 7

Conclusions and Future Directions

Vehicle localization has recently attracted significant attention in a wide range of applica-

tions, which can not deliver on their requirements without a specific level of localization

accuracy. Commonly used localization techniques may not provide the accuracy level re-

quired by many of such applications. This goal, however, may seem tractable in some

situations through fusion techniques, but at the cost of fast resource depletion.

Therefore, the main objective of the research work conducted in this thesis is to develop

a novel hybrid vehicle localization system. This hybrid system is capable of combining

vehicle location information, gathered by different sources, so as to achieve the target

localization quality needed for a certain task/application while optimizing the assignment

of the system resources. In the following sections, I summarize the major contributions in

this research work, and I, then, provide some suggestions for future research directions.

7.1 Major Contributions

1. A variety of reported localization techniques have been presented and classified based

on the type of the source of the location information used, such as radio, motion,
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and vision sensors. A set of performance criteria has been introduced to highlight

the research gaps in the reported localization techniques.

2. A novel framework for vehicle location estimation has been presented. The aim of

this framework is to utilize localization technique diversity and localization source

diversity to achieve robust localization performance that meets the application task’s

integrity and accuracy constraints. Central to the effectiveness of the framework is

its ability to capture estimate integrity in computing the vehicle location. Further-

more, channel discounting in the light of localization integrity assessment allows the

framework to maximize the quality of estimate fusion, as well as to address integrity

aggregation out of different sources.

3. A methodology for evaluating the accuracy of location estimate has been provided so

as to allow the target application to intelligently process such estimates in its decision

making strategy. First, localization system parameters and location estimates have

been used to contrive a feature space representation of probable accuracy classes.

This feature space resembles the relationship between the localization measurements

and the error in its location estimation. Second, a hierarchical classification strat-

egy to address the class ambiguity problem via class unfolding approach (HCCU) has

been developed. HCCU strategy is proven to be superior with respect to other hierar-

chical configuration. Furthermore, a Context Based Accuracy Classification (CBAC)

algorithm has been introduced to enhance the performance of the classification pro-

cess. In this algorithm, knowledge about the surrounding environment is utilized to

optimize classification performance as a function of the observation conditions.

4. A task-driven integrity (TDI) model has been introduced. The TDI model enables

the applications modules to be aware of the trust level of the localization output. TDI
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model monitors specific parameter(s) in the localization technique and, accordingly,

infers the impact of the change in the environmental conditions on the quality of

the localization process. A generalized TDI solution has also been developed for the

cases where information about the sensing parameters is unavailable or insufficient.

5. A novel evidence structure model called Spatial Evidence Structure Model (SESM)

has been introduced to deal with evidences in form of spatial data with specific degree

of quality. SESM-based fusion paradigms have been developed with the capability of

performing fusion process on the information provided by the primary localization

layer and integrity monitoring layer.

6. A context aware task-driven resource allocation mechanism has been developed to

manage the fusion process. The main objective of this mechanism is to optimize the

usage of system resources and achieve a task-driven performance. Several practical

use cases have been presented and tested to show the efficacy of a context aware

task-driven resource allocation mechanism. It is evident from the experimental results

that task-driven integrity assessment and control is applicable and effective on hybrid

localization systems.

7.2 Future Research Directions

The research work presented in this thesis has tackled the main aspects declared herein as

research gaps, and has also demonstrated the capabilities of the developed framework in

solving these aspects. Furthermore, this work uncovers other issues that, I believe, deserve

further research work.
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7.2.1 Sensitivity of HCCU/CBAC to Base Classifier Selection

The Base classifiers used in the HCCU and CBAC are FeedForward Neural Networks

(FFNNet) with back-propagation learning algorithm. FFNNet has the ability to classify

linearly inseparable patterns and also they are known for their efficient computational

complexity, especially for embedded systems. Other types of classifiers, such as KNN,

have the potential to be a good candidate as a base classifier. The performance sensitivity

of the upper-level classifiers needs to be investigated as to the choice of the type of base

classifier.

7.2.2 Ambiguous Classes Identification

In the classification problem, the target is to find a classifier h, which geometrically signifies

a hyperplane in the feature space. The classifier h is optimized so that it provides the

minimum classification error,ε(h), while splitting the feature space into number of volumes

equal to the number of classes of interest.

h = arg min
h
ε(y = h(x))

where y ∈ {c1, . . . , cM}. However, as it is noticed in the localization accuracy classification,

the strong correlation and overlap between localization process measurements obtained un-

der different measurement conditions make the accuracy classification an extremely difficult

problem and uncertain in many scenarios.

Identifying volumes in the feature space in which the classification task is highly

uncertain and declaring new classes called Ambiguous Classes ({cambg1 , . . . , cambgk}) for

these volumes will definitely improve the total classification certainty. But this sug-

gestion does not completely solve the issue since it is always possible to classify mea-
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surements as belonging to the Ambiguous Classes. It is pivotal for such set of classes

({c1, . . . , cM , cambg1 , . . . , cambgk}) to incorporate linguistic (i.e., fuzzy) frames of discernment

and investigate the characteristics of the elements of these frames of discernment.

7.2.3 Task-Driven Integrity Model Extension

The construction of the Task-Driven Integrity (TDI) model is not a trivial task as the

engineering knowledge of the key environmental impacts on the system performance need

to be known a priori. This task continues to be more challenging in the case where the

system’s random events happen to be dependent and/or correlated. Furthermore, the

construction complexity of the TDI model exponentially increases as the number of random

events increases. Tentative approach to tend to these issues revolves around the concept

of “divide and conquer”. First, dependency among random events must be investigated.

Second, the impact of the each set of dependent events need to be determined collectively.

A respective integrity module is constructed. Finally, the integrity modules are combined

with the independent events in one TDI model that captures the impact of the modules

and the remaining events on the performance of the system.

7.2.4 Integrity Assessment and Control on VANETs

With the advent of Vehicular Ad hoc Wireless Networks (VANETs), a tremendous amount

of applications, which literally rely on location information, have been proposed in the

research community. The vast majority of the reported work on VANETs’ applications

assume accurate vehicle localization or at most assume small margin of error, such that of

GPS in open sky [132,133] – an assumption that does not hold in many practical situations.

The integrity assessment and control framework developed in this thesis can handle
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the issue of localizing a vehicle in different measurement conditions. Since it is able to

exchange information among vehicles, VANET can be used to improve the localization

process all over the network, in different measurement conditions, using distributed algo-

rithms, as in [71]. Augmenting such distributed localization techniques with accuracy and

integrity assessment mechanisms will not only significantly improve the localization pro-

cess in VANET but also outperform the robustness of the individual-vehicle-based integrity

assessment and control.
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Publication Related to This Thesis

Book chapter

1. Nabil Drawil and Otman Basir (2012). Emerging New Trends in Hybrid Vehicle

Localization Systems, Global Navigation Satellite Systems: Signal, Theory and Ap-

plications, Shuanggen Jin (Ed.), ISBN: 978-953-307-843-4, InTech, PP: 279-298.

Journal Papers

2. Nabil Drawil, Otman Basir, Modeling the Impact of Observation Conditions on Lo-

calization Systems, Information Fusion, Available online 13 October 2012, ISSN 1566-

2535, 10.1016/j.inffus.2012.09.002.

3. Drawil, N. M.; Amar, H. M.; Basir, O. A.; , ”GPS Localization Accuracy Clas-

sification: A Context-Based Approach,” Intelligent Transportation Systems, IEEE

Transactions on , vol.PP, no.99, pp.1-12, 0 doi: 10.1109/TITS.2012.2213815
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Transactions on Intelligent Transportation Systems, vol.11, no.3, pp.678-691, Sept.

2010 doi: 10.1109/TITS.2010.2048562.

5. Haitham Amar, Nabil Drawil, Otman Basir, Traveler Centric Trip planning: A

Situation-Aware System, To be submitted to IEEE Systems Journal 2012
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timate Fusion, to be submitted to IEEE Transactions on Intelligent Transportation
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Conference Papers
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9. Nabil Drawil, Otman Basir, Toward Increasing the Localization Accuracy of Vehicles
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Correction, International IEEE 68th Vehicular Technology Conference: VTC2008-
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