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Abstract

Longitudinal studies, where data on study subjects are collected over time, is increasingly

involving multivariate longitudinal responses. Frequently, the heterogeneity observed in

a multivariate longitudinal response can be attributed to underlying unobserved disease

states in addition to any between-subject differences. We propose modeling such disease

states using a hidden Markov model (HMM) approach and expand upon previous work,

which incorporated random effects into HMMs for the analysis of univariate longitudinal

data, to the setting of a multivariate longitudinal response. Multivariate longitudinal data

are modeled jointly using separate but correlated random effects between longitudinal

responses of mixed data types in addition to a shared underlying hidden process. We use

a computationally efficient Bayesian approach via Markov chain Monte Carlo (MCMC) to

fit such models. We apply this methodology to bivariate longitudinal response data from

a smoking cessation clinical trial. Under these models, we examine how to incorporate a

treatment effect on the disease states, as well as develop methods to classify observations

by disease state and to attempt to understand patient dropout. Simulation studies were

performed to evaluate the properties of such models and their applications under a variety

of realistic situations.
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Chapter 1

Analysis of Longitudinal Data

1.1 Longitudinal Data in Clinical Studies

In the past 50 years, there has been an explosion in the number of clinical studies evaluat-

ing the efficacy or effectiveness of medical interventions, or examining the natural history

of a multitude of diseases. In some studies, the intervention or duration of illness may be

relatively short, requiring very few observations on each subject, recorded cross-sectionally

over a short time period. However, in most studies, the course of treatment or duration of

disease are long enough to measure some aspects of the disease, or response to treatment

over a period of time on each subject. When such repeated measurements are collected

over a period of time, the data are said to be longitudinal.

1.2 Analysis Approaches

The benefits of using longitudinal over cross-sectional data, including the ability to measure

change over time, are numerous and well-documented (Diggle et al., 2002). However,

the correlation between observations of the same subject often complicates the analysis
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of longitudinal data. Independence of observations is a ubiquitous assumption used in

the majority of statistical analysis, and while usually suitable in cross-sectional analyses,

the repeated nature of the observations within a subject in longitudinal studies makes

it quite likely that observations within each subject are correlated. How to account for

this within-subject correlation has resulted in several different approaches to the analysis

of longitudinal data. Each differs slightly in the underlying assumptions, and resulting

interpretation, but are usually aimed at: describing the change of the response variable

over time, estimating the effect of any explanatory variables, and often characterizing the

variability of the response attributable to a subject and/or the nature of the correlation

within a subject between the repeated observations.

With these aims in mind, let Yit be the response variable for subject i = 1, 2, . . . , N

at time t = 1, 2, . . . , ni, where each subject i has ni repeated measurements. Let xit be p

dimensional vector of explanatory variables (possibly time-varying) for subject i at time t.

Three general classes of analysis approaches have been described in the literature (Diggle

et al., 2002), which address the aims of longitudinal data analysis in different ways. A

brief overview of the approaches follows.

1.2.1 Marginal models

Marginal models are one such approach to the analysis of correlated data in general, and

have been used extensively in longitudinal data analysis. This marginal approach focuses

primarily on modelling the marginal expectation of the response, E(Yit), as a function

of the explanatory variables. This marginal expectation of Yit is modelled to depend on

the explanatory variables through a known link function, such that if E(Yit) = µit, then

g(µit) = x
′
itβ, where g is known as a link function.

Similarly, the marginal variance of Yit, V ar(Yit) = v(µit)φ, is assumed to depend only

on a function of the marginal mean of Yit and a scale parameter, φ. Lastly, the correlation

between Yit and Yit′ is assumed to be a function of the marginal means, and perhaps some

2



additional parameters, α, such that Corr(Yit, Yit′ ) = ρ(µit, µit′ ,α).

Under this approach which specifies the marginal mean and variance of Yit in addition

to its correlation structure of the response variable within each subject, a generalized

estimating equation (GEE) (Liang and Zeger, 1986; Zeger and Liang, 1986) for β is given

by:

Sβ(β,α) =
N∑
i=1

(
∂µi
∂β

)′

V −1
i (yi − µi) = 0 (1.1)

where Vi is often referred to as the working covariance matrix of Yi, which depends on

both β and α. The solution of 1.1 is solved iteratively. Given initial estimates for β,

α and φ, updates of β can be solved by 1.1, which can then be used to update α and

φ, and repeated until convergence. Several methods have been discussed in the literature

on how to do the latter update of α, but this iterative process will yield estimates of

β which are as efficient (asymptotically) as estimates when α is known. Further work

has yielded methods where estimation of α and β is done through separate estimating

equations (Prentice, 1988; Zhao and Prentice, 1990).

1.2.2 Mixed effects models

Mixed effects models introduce random effects which are unobservable variables which cap-

ture some aspects of the heterogeneity observed among subjects (Laird and Ware (1982)).

The central assumption of mixed effects models is that conditional on these random ef-

fects, (bi), the longitudinal responses, Yit, are independent, though this assumption can be

relaxed to include situations where Yit|bi and Yit′ |bi, t 6= t
′

are correlated. Furthermore,

we assume that these random effects are mutually independent, and arise from a common

(possibly multivariate) distribution, and are independent of any explanatory variables.

We take a similar initial approach to that of marginal models, where if Yit is from an

exponential family, and given a known link function, g, we introduce random effects, bi

3



such that:

g
[
E(Yit|bi)

]
= x

′

itβ +w
′

itbi

where xit and wit are p and q dimensional vectors of explanatory variables.

In specific circumstances, the random effects can be viewed as nuisance parameters, and

conditional likelihood methods are available, but are not appropriate when subject-specific

effects are of interest. In contrast, the marginal distribution of the response variable can

be obtained by integrating out the random effects of the joint distribution of Yi and bi,

such that the likelihood function can be represented as:

L(Θ;y) =
N∏
i=1

∫
bi

ni∏
t=1

f(yit|bi;β)f(bi; Σ)dbi (1.2)

where Θ is the combined parameters of β and Σ where the latter is the covariance matrix

of the random effects. If yit are Gaussian, and the random effects are assumed to arise

from a (possibly multivariate) Gaussian distribution (Laird and Ware, 1982), then 1.2 has

a closed-form solution, and estimation of Θ is relatively straightforward. On the other

hand, in most other circumstances, 1.2 has no closed-form solution, and the integration

must be evaluated numerically.

1.2.3 Transition models

Transition models are another method used to model longitudinal data. Transition models

focus on modeling the response, yit, conditional on the subjects history, denotedHit, where

for subject i Hit = {yik, k = 1, 2, . . . , t − 1}. Such models are often modeled as a q-order

Markov chain, where the conditional distribution of yit depends only on the most previous

q responses for subject i, {yit−1, yit−2, . . . , yit−q}. An example of a transition model for a

first-order Markov chain is presented in Figure 1.1, where the current observation Yit is

only dependent on the most previous observation.

Even under the Markov assumption, except in special cases, it is usually not possible to

specify the full likelihood directly, and instead, the conditional likelihood is usually used:

4



Yi1 Yi2 Yi3 Yi4 · · ·

Figure 1.1: Simple first-order Markov chain transition model for subjects i. Yit represents

the longitudinal response for subject i at time t

LC(Θ;y) =
N∏
i=1

ni∏
t=q+l

f(yit|Hit).

Focus of such models has often been on binary Markov chains, where, for example, a

first-order Markov chain for a binary response can be modeled as:

logit(Pr(Yit = 1|Yit−1 = yit−1,xit)) = x
′

itβ + yit−1x
′

itα, (1.3)

where here β represents a vector of fixed effects, and α represents any interaction between

the the previous response, yit−1, and one or more of the covariates. Using 1.3 we can

fully specify a transition matrix for a binary Markov chain, such that for any subject with

covariate values xit, we have a transition matrix of the form:p00 p01

p10 p11

 ,

where each component can be determined using α and β, such that:

pc1 =
exp(x

′
itβ + cx

′
itα)

1 + exp(x
′
itβ + cx

′
itα)

. (1.4)

Even when fitting higher order Markov models, fitting such models can be done us-

ing ordinary logistic regression, provided that the transition events are uncorrelated. If

there is heterogeneity between individuals in terms of the transition probabilities, then an

appropriate model may be for example:

logit(Pr(Yit = 1|Yit−1 = yit−1,xit, bi)) = bi + x
′

itβ + yit−1x
′

itα, (1.5)
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where bi is a subject-specific random effect as presented in section 1.2.2, where bi ∼

N(0, σ2
bi

). In this case the heterogeneity between subjects is modeled through the introduc-

tion of random effects, and subsequently makes the transition within a person correlated.

Marginal methods have also been used in this setting to account for the within-subject

correlation (e.g., Azzalini (1994)).

1.3 Joint or Multivariate Responses in Longitudinal

Data Analysis

Thus far, we have only examined the longitudinal models for one response variable. In

many circumstances, more than one response variable is followed longitudinally, and

analysing both jointly may be beneficial. Until recently, methods for multiple longitudinal

outcomes have largely been based on simple approaches where each outcome is analyzed

separately, or by reducing the dimension of the multiple outcomes through a factor anal-

ysis or principal components type of approach. The former approach is reasonably easy

to implement, with the approaches already discussed, but ignores both the correlation

between longitudinal outcomes and/or other features such as measurement error likely to

exist in one or more of the outcomes. Reducing the dimension of the multiple outcomes

is also easy to implement, and can quite often capture much of the correlation between

outcomes. In such models, inference is focused on the principal components, and not the

original outcome variables, often affecting interpretation of the model results and can also

be difficult to implement in situations where the longitudinal data are unbalanced, or when

the outcomes are measured at different time points.

Modelling multivariate responses can be difficult. If the joint distribution of the two

or more responses is known, then inference is relatively straightforward. Such a circum-

stance would allow for inference to be conducted marginally, as well as jointly. In general,

the joint distribution of two or more longitudinal responses is rarely known, and can be
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difficult to obtain for data arising from different data types (e.g. continuous and discrete).

Furthermore, inference is complicated in situations when outcomes are measured at differ-

ent time points and/or are unbalanced.

Several modeling approaches have been developed which jointly model the longitudi-

nal responses by specifying in a number of different ways the joint distribution of the

longitudinal responses (e.g., Chapter 13-16, Fitzmaurice et al. (2006)). One possibility is

the use of a conditional model, where the joint likelihood of the two or more responses is

factorized. For two longitudinal responses, the factorization would typically look like:

f(y1, y2) = f(y1|y2)f(y2) = f(y2|y1)f(y1)

where y1 and y2 are vectors of two different longitudinal responses. Marginal inference is

often difficult, as the parametric form may not be the same for the marginal and conditional

models. Additionally, specification of the factorization can be very complicated in the

setting of more than two responses.

Another frequently used method of modelling multivariate longitudinal responses is

the introduction of latent variables which often simplify the joint distribution by assuming

conditional independence. In a simple scenario, two responses, Y1 and Y2 are said to be

conditionally independent, when given some latent random variable (or random effect) U,

such that:

f(y1, y2) =

∫
b

f(y1, y2|b)f(u)db =

∫
b

f(y1|b)f(y2|b)f(b)db (1.6)

The conditional independence assumption, f(y1, y2|b) = f(y1|b)f(y2|b) is central to many

different multivariate longitudinal models.

These shared random effects can be introduced into both models for Y1 and Y2, for

example that for each subject:

Y1t = β1 + b+ β2t+ ε1t

Y2t = β3 + γb+ β4t+ ε2t

(1.7)
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where in this example, ε1t
iid∼ N(0, σ2

1), ε2t
iid∼ N(0, σ2

2) and b ∼ N(0, σ2
b ). The parameter γ

is used to scale the random effects and define the dependence between responses. In this

example, the correlation within each response, and between each response are:

Corr(Y1t, Y1s) =
σ2
b

σ2
b + σ2

1

Corr(Y2t, Y2s) =
γ2σ2

b

γ2σ2
b + σ2

2

Corr(Y1t, Y2s) =
γσ2

b√
σ2
b + σ2

1

√
γ2σ2

b + σ2
2

=
√
Corr(Y1t, Y1s)

√
Corr(Y2t, Y2s)

(1.8)

Another frequently used method is to again introduce random effects, but instead of shar-

ing the random effect across the longitudinal responses, use separate, but correlated ran-

dom effects in the longitudinal responses (e.g., Gueorguieva and Agresti (2001)). The

conditional independence assumption noted in 1.6 still applies, but 1.7 becomes:

Y1t = β1 + b1 + β2t+ ε1t

Y2t = β3 + b2 + β4t+ ε2t

(1.9)

where in this example, ε1t
iid∼ N(0, σ2

1), ε2t
iid∼ N(0, σ2

2) and (b1, b2)
′ ∼ MVN(0,Σ). Here,

(b1, b2) is multivariate normal, with a covariance matrix, Σ, which allows for the random

effects, b1 and b2 to be correlated.

The correlation within and between responses is similar to 1.8 but, the correlation

between responses is now:

Corr(Y1t, Y2s) = Corr(b1, b2)
√
Corr(Y1t, Y1s)

√
Corr(Y2t, Y2s)

≤
√
Corr(Y1t, Y1s)

√
Corr(Y2t, Y2s)

In these latter two settings, examples of which are described in 1.7 and 1.9, extensions
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to responses of different types (e.g. both continuous and discrete responses), and exten-

sions to more than two response variables are relatively straightforward. Furthermore, the

conditional independence assumption under most circumstances makes the interpretations

of model parameters the same marginally as they would be jointly. In the shared random

effect case, the correlation between responses is only dependent on the correlation within

responses, whereas in the separate random effects case, the correlation structure between

responses is attenuated by the use of separate random effects, and is therefore not depen-

dent solely on the within-response correlation of each response.

In both the shared and separate random effects cases, the conditional independence

assumption stated in 1.6 requires integration to compute the full joint distribution of the

response variables. As was the case in the simple, univariate response setting discussed in

section 1.2.2, there are settings when integrating out the random effects results in a closed-

form solution, but it is often the case that numerical integration is required. When the

number of longitudinal response variables is relatively small, the numerical integration can

often be accomplished without too much trouble, but as the number of responses increases,

the dimension of the integral increases, often making computation difficult. To get around

this computational difficulty, some have advocated modelling all pairs of response vari-

ables, and subsequently using a pseudo-likelihood approach (Fieuws and Verbeke, 2006).

We have presented several analysis approaches which allow for modeling of multivariate

longitudinal data by introduction of latent variables, which can model both between- and

within- variable correlation. However, using a latent variable approach is not the only

way to model such data, and others (e.g., Gray and Brookmeyer (1998, 2000)) have used

marginal approaches to model more than one longitudinal response.
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1.4 Extensions to Mixed Effects and Transition Mod-

els

As can be seen from the discussion above, there exists many different approaches to the

modeling of longitudinal data. In particular, the features of mixed effects often allow for

investigation of subject-specific longitudinal responses and has also immediate extensions

to multivariate longitudinal data, while transition models are often useful in situations

where values for previous response(s) predict a future response. As can be seen in 1.5,

random effects can be easily introduced into transition models for binary responses, allow-

ing for subject-specific transition probabilities. We will be using this idea to incorporate

a latent or hidden transition model which governs two or more observed longitudinal re-

sponses which are also modeled using separate, but correlated random effects as discussed

in 1.9. These types of models will be used to model data arising from a longitudinal

smoking cessation study described in Chapter 2, where heterogeneity can be attributed to

between-subject differences, but also dynamic changes in disease state.
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Chapter 2

Smoking Cessation Clinical Trials

and the Naltrexone Augmentation

Study

2.1 Smoking Cessation Studies

The inhalation of tobacco smoke poses many public health concerns, including the devel-

opment of cancer and cardiovascular disease. In the United States, tobacco smoking (from

herein referred to as simply smoking) is the leading preventable cause of death in adults.

Though the medical community has recommended for some time that chronic smokers quit

smoking tobacco, the prevalence of smoking on adults has exceeded 20% in most devel-

oped countries. This is primarily due to the addictive nature of one of tobacco’s principle

ingredients, nicotine (Benowitz, 1996).

Since becoming a major public health concern in the latter half of the 20th-century,

clinical trials examining the efficacy and/or effectiveness of both behavioral and phar-

maceutical interventions for smoking cessation have been conducted. For pharmaceutical
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interventions, there have been many randomized clinical trials where one or more phar-

maceutical agents are administered and compared amongst themselves and/or a control

group.

One class of these agents is known as nicotine replacement therapies (NRT), which

reduces nicotine withdrawal by replacing the nicotine consumed through smoking most

often transdermally by patch or orally via a gum. Several investigations have attempted

to augment NRT by co-administration with other agents, and have reported cessation

rates higher than patch alone (Stead et al., 2008). Despite the development of such inter-

ventions, many individuals fail to quit smoking over the smoking cessation study period.

Smoking within the first few weeks has been shown to be a strong predictor of failure to

quit smoking during the remainder of the study (Kenford et al., 1994).

2.1.1 Study outcomes

In most such trials, the protocols are structured for a relatively short period of frequent

(e.g., once per week) follow-up for several weeks, sometimes followed by period of less

frequent (once every several months) longer term follow-up, the latter often done after

treatment has been terminated as per the study design. Evaluations of treatment efficacy

are often focused on the short period of frequent follow-up, and most studies investigat-

ing the efficacy of pharmaceuticals evaluate smoking abstinence as their primary study

outcome.

The definition of smoking abstinence is often complicated, and can vary between stud-

ies. Smoking abstinence is usually monitored longitudinally over the study period through

one or more measures of smoking status. These measures may be biochemical or self-

reported.

These longitudinal measurements along with the duration and/or timing of smoking

abstinence are often reduced to a single binary study outcome of smoking abstinence.

Often these definitions are very strict, requiring abstinence throughout the entire study
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period on all outcomes, or complete abstinence after some predetermined time (often one to

two weeks post baseline). Additionally, missing data are often handled in a strict manner,

where patients who dropout of the study for any reason are assumed to have smoked.

2.1.2 Measurements of smoking status

While typically reduced into a single binary study outcome, smoking status is often mon-

itored longitudinally by one or more types of methods. Such methods can be classified as

patient reported or biochemical.

Patient reported: self-reported smoking counts

Patient reported smoking counts are commonly collected in many settings, to describe

smoking cessation, as well as the effect of smoking exposure on health outcomes. Patients

most often record a total number of cigarettes smoked over a well-defined time period (a

day or week). These are often recorded in a diary, and are often subject to well-described

epidemiological biases, and have been shown to generally underreport the prevalence and

amount smoked (Patrick et al., 1994). Self-reported counts are usually whole numbers,

and are often relatively consistent day-to-day within a patient. These counts are often

near notable fractions or numbers of packs (e.g. 1 pack is 20 cigarettes, it is common to

see common fractions of 20 cigarettes (10 - half a pack, 30 = 1.5 packs, etc)) (Wang and

Heitjan, 2008). Since, as previously mentioned, self-reported smoking counts are generally

believed to represent underreporting of the number of cigarettes smoked, smoking status

is usually defined by any smoking reported during some defined time period.

Biochemical: carbon monoxide

Biochemical monitoring is often done through detection of carbon monoxide through oral

respiration, where the subject exhales into an instrument which estimates the concentration

of carbon monoxide (CO) in parts per million (ppm). Smoking status is usually determined
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by a pre-defined threshold, where exceeding this threshold is used to provide evidence

that the participant smoked. Commonly used thresholds are 8 or 10 ppm. While CO is

often found in small quantities in humans due to other exposures to CO, smokers have

significantly higher levels of CO during periods when they have smoked. A limitation of

using CO in smoking cessation studies is due to its relatively short half-life (5-6 hours),

meaning that a CO assessment on a Tuesday would likely fail to detect the presence of

a smoking event even a few days prior, on Friday or Saturday for instance. Further, any

non-smoking related environmental exposure to CO in close time proximity to the study

visit may be detected and falsely interpreted as evidence of smoking.

Biochemical: serum cotinine

Serum cotinine is another biochemical marker of smoking, which detects a metabolite of

nicotine within the blood. It is considered a sensitive and specific method to detect smoking

status, as nicotine exposure is not common in the environment in the absence of tobacco

products. Serum cotinine is often considered the gold standard for measuring smoking

status, since it has a longer half life in plasma than is typical for CO, and has generally

been found to have higher sensitivity and specificity to detect smoking when compare CO

(Jarvis et al., 1987). With that said, confirming smoking status is a difficult task, and

would require 24 hour video surveillance, or something similar to achieve 100% certainty of

an individual’s status at a given time. Further, in smoking cessation studies, it is common

to use NRT via gum or patch for at least a portion of the study, and unfortunately, serum

cotinine has limited utility as a determinant of smoking status during any period which

permits NRT. In addition, obtaining serum cotinine requires blood work, which may be

considered burdensome to many potential study participants.
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2.1.3 Assuming dropouts as treatment failure

As is the case in many clinical studies, subject dropout is common in smoking cessation

studies. It is a very frequent assumption to consider these individuals as treatment failures

(i.e., smokers) when determining smoking status, regardless of the reason for dropout. This

is usually considered to be a conservative assumption, which we do not believe in some

situations is justified, and will be discussed in more detail in section 5.3 in this thesis.

2.2 The Naltrexone Augmentation of Nicotine Patch

Study

O’Malley et al. (2007) conducted a study similar to those described in section 2.1, where

naltrexone augmentation of NRT was evaluated for smoking cessation. At baseline all

subjects enrolled in the study received NRT, and were randomized in a double-blind fashion

to receive placebo, or one of three levels of naltrexone (25, 50 and 100 mg) in a roughly

1:1:1:1 allocation. Subjects were followed six weeks with weekly study visits, where CO

was measured and self-reported smoking count journals were collected. At the conclusion

of the six weeks, the study drugs were discontinued, and follow-up visits were scheduled

at 3, 6 and 12 months. O’Malley et al. (2007) used a composite definition of smoking

abstinence, which used both self-reported and CO to define smoking status, and examined

smoking abstinence over several time periods. Continuous abstinence was defined as no

self-reported smoking from baseline to week 6, and all weekly assessments of CO below

the study’s 10 ppm CO threshold, and prolonged abstinence was defined similarly, but

allowed a grace period from baseline to the second study visit, where smoking information

recorded in that period was ignored.

In total, 673 subjects underwent screening, with 400 proceeding to randomization.

Of these 400, 385 received therapy, with 295 completing the six weeks of therapy. It is
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Figure 2.1: Agreement between self-reported (SR) smoking count (any during a given

week), and having a positive CO test for that week for several CO thresholds
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noteworthy that 354 of the 385 receiving therapy had some sort of evaluable (≥ 1 week)

follow-up as it pertains to both CO and self-reported smoking counts. The analysis that

follows primarily focuses on these 354 subjects. Abstinence rates varied depending on

the definition and duration of abstinence, as well the treatment subgroup, with 41-52%

achieving prolonged abstinence and 39-52% maintaining continuous abstinence. Although,

the authors note a possible treatment effect in the group with the highest dose of naltrexone

when compared to placebo in the treatment completers, naltrexone was not observed

to have any statistically significant treatment effect at any other dose or definition of

abstinence. A possible beneficial effect on weight was also noticed for some subjects taking

naltrexone.

Using the data from this study (O’Malley et al., 2007), we examined the agreement

between the self-reported and CO determinants of smoking status across several different

thresholds of CO. In Figure 2.1, smoking status as determined by self-report (SR) is defined

as self-reported smoking of any cigarettes during the week, and the agreement with the

CO-determined smoking status is investigated across several CO thresholds. As can be

seen in this figure, the agreement between the two measurements is highest for the higher

thresholds of CO, as would be expected, however, the maximum level of agreement is

approximately 80%, and does not appear to depend on the visit week. Similarly in Figure

2.2, a higher level of SR smoking status (> 5 cigarettes on any day of the week specified)

results in a generally higher level of agreement between the SR definition and the different

CO thresholds, with the maximum agreement approximately 90-95% for the higher CO

thresholds.

In Figure 2.3, we can see the effect of the short half-life for CO. Each set of boxplots

represents one study week, with the right most boxes in each plot representing the days

closet to the CO measurement (i.e. day 7 is the day of the CO measurement, and day 6

would be the day before, etc). Day 0 represents individuals who did not report smoking

during the week. A stark increase in both the variability and median is noted on the
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most right hand side of these plots, illustrating the limited period of sensitive detection of

smoking through CO.
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Figure 2.2: Agreement between SR smoking count (more than 5 total cigarettes reported

in the week), and having a positive CO test for that week for several CO thresholds (in

ppm)

We can also assess the agreement between measures, by treating one as a gold standard,
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Figure 2.3: The effect of last day of recorded self-reported smoking by study week on end

of week CO reading (in ppm).

Note: Day 0 represents no self-reported smoking during the specified study week, and day

7 would be the day of the CO measurement.
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and assessing the prediction of the other measure by receiver operator characteristic (ROC)

curves. These curves for each of the SR and CO measures are presented in Figure 2.4,

where we see that the predictive power for one is relatively strong, but not perfect.

2.3 Statistical Methods of Smoking Cessation Data

In most efficacy studies of smoking cessation the primary analyses focus on comparing

the proportion of those subjects who achieved and/or maintained abstinence over some

pre-determined time period among the treatment groups. These analyses can be typically

accomplished through relatively simple methods, but given the complex nature of the lon-

gitudinal data, some methodological literature has been dedicated to smoking cessation

studies. Some of the most relevant literature is described below.

In Borrelli et al. (2002), the issue of study participant dropout is examined in smok-

ing cessation studies. As discussed briefly in section 2.1.3, the definition for abstinence

often assumes that those individuals who dropout of the study prior to the completion of

the treatment period are deemed non-abstainers (i.e., they have smoked). Borrelli fits a

multinomial logistic regression model examining the characteristics of three groups: the

quitters (abstainers), the smokers, and the dropouts. They reported that dropouts differ

from smokers in several ways, but most notably, that individuals who believe the therapy

works (self-efficacy) were more likely to dropout when compared to smokers, while there

was no difference in terms of self-efficacy of smokers and quitters. They also report that

the rate of dropout may differ among treatments, and treating dropouts as smokers may

miss important features that treating them separately would capture.

Qin et al. (2009) reports on modelling two binary smoking observations (i.e., two obser-

vation time points where smoking was observed or not) by using two latent class models.

The joint model of both observation time points conditional on latent class membership

was assumed to be conditionally independent of the dropout of the second observation.
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This model is then compared to other methods (shared parameter model and weighted

GEE) for handling the missing data due to dropout, and found to perform generally bet-

ter.

Liu, Daniels and Marcus (2009) reports of jointly modeling a binary longitudinal re-

sponse and a continuous response variable in the context of a smoking cessation trial. The

focus of their analysis is on a binary longitudinal response (smoking status) and a contin-

uous longitudinal response (body weight). They use a probit form of the binary process

which involves an underlying latent variable which simplifies modeling the two responses

as multivariate normal data. Particular attention is paid to the association between smok-

ing status and body weight, in which case it is noted that the treatment weakens the

association between smoking and weight gain.

2.4 Overview and Motivation

As we have described, smoking cessation studies generate longitudinal data in which data

are collected in order to define smoking status. This is a very blunt way of summarizing

what can be problematic measures of smoking status. Despite this, the dichotomizing

of individuals into groups of smoking status, and often ignoring that individuals may be

transitioning between smoking statuses is a common way to treat these data, both in the

medical and statistical literature. Furthermore, two separate groups may not fully describe

the nature of the treatment effect in such studies. This concern is described in more detail

in section 3.3.4.

There is a need to describe the longitudinal data from smoking cessation studies in a

much more efficient manner which allows for investigating change over time and in general,

more effective use of the longitudinal data generated from such studies. With this in mind

we will explore how to use the measurements used to define smoking status as a multivariate

longitudinal response, that is governed by a hidden process which could closely resemble
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smoking status. In Chapter 3, we will describe a modeling framework to accomplish this,

where the heterogeneity in a multivariate longitudinal response attributable to between-

subject differences in addition to heterogeneity arising from changes in disease state can

be effectively modeled. In Chapter 4, we will discuss the benefits of utilizing multivariate

approaches for these models, when compared to the univariate alternatives. We will also

attempt to assess the utility and meaning of the hidden states to determine if they resemble

some meaningful state that a patient may encounter in a smoking cessation study. In

Chapter 5, we will describe methodologies for predicting hidden states, and we will also

examine how this hidden process approach may be used to handle missing data and dropout

which can be problematic in studies such as smoking cessation. In the last chapter, we

will summarize the findings in the previous chapters and discuss areas of potential future

work.
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Chapter 3

Multivariate Longitudinal Data

Analysis with Mixed Effects Hidden

Markov Models

3.1 Introduction

Longitudinal studies, where data on study subjects are collected over time, is increasingly

involving multivariate longitudinal data where multiple responses are collected repeat-

edly over the study period. Approaches to the analysis of multivariate longitudinal data

have included marginal (e.g., Xu and MacKenzie (2012)) and conditional models (e.g.,

Gueorguieva and Agresti (2001)). Other procedures generally aim to simplify the depen-

dence between responses and therefore often reduce the computational burden involved

in conducting inference in such models (e.g., Fieuws and Verbeke (2006)) or reducing the

dimension of the longitudinal response (e.g., Scott, James and Sugar (2005)). The ad-

vantages of using multivariate longitudinal data are well documented and include a more

complete use of the data collected and the ability to estimate and utilize the dependence

between longitudinal responses, among others.
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While these collected multivariate responses may generally correlate with some mean-

ingful clinical endpoint, they may be inadequate in capturing the relevant endpoint and

the study intervention’s effect on this endpoint. For example, in studies of addiction, the

relevant clinical endpoint is often the relapse or abstinence rates, which are conceptually

understood, but are not effectively measurable. Estimation of these rates is usually done

by attempting to determine the underlying disease states at each study visit via thresholds

of often several measures of abstinence through biochemical or self-reported data. Both

classes of measures used to estimate the disease states are limited by their sensitivity and

specificity due to the potential for misclassification and measurement error.

This type of scenario is quite common in clinical trials, where an underlying or hidden

disease state is modelled via one or more surrogate endpoints or biomarkers, most often by

establishing thresholds of one or more of these responses to define the hidden disease states.

For example, as discussed in Chapter 2, O’Malley et al. (2007) conducted a clinical trial

evaluating a drug’s efficacy for smoking cessation and collected two surrogate endpoints

which had thresholds to define a disease state and the true outcome of interest, smoking

abstinence. This approach often ignores: any unexplained heterogeneity in the responses

by, for example, measurement error or between-subject heterogeneity, the dependence

structure of the responses, and any information pertaining to the subject’s response or

disease state history.

Instead of defining thresholds or cutoffs to define disease states, it may be more efficient

to model the data as generated from these hidden or latent disease states. Latent class

models have successfully been used for multivariate longitudinal data (e.g., Proust-Lima

et al. (2009)), but are generally limited by their static latent states. Recently, hidden

Markov models (HMMs) have been used in the context of longitudinal studies (Altman,

2007; DeSantis and Bandyopadhyay, 2011; Maruotti and Ryden, 2009; Scott, James and

Sugar, 2005; Shirley et al., 2010). Scott, James and Sugar (2005) developed a model for

multivariate continuous longitudinal data by reducing the dimension of the response, and
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modelling the reduced response as a HMM. Dimensional reduction can be challenging

in a general setting, where responses may be of different data types (e.g., binary and

continuous). Alternatively, Altman (2007) develops a general framework for using HMMs

to model univariate longitudinal data by introducing random effects into both the observed

response and hidden state components of the HMM. This work has subsequently been used

by others (DeSantis and Bandyopadhyay, 2011; Maruotti, 2011; Shirley et al., 2010).

Using the general framework described by Altman (2007), we extend her work to

the setting of multivariate longitudinal data. This is done by modelling the observed

longitudinal responses jointly through separate, but correlated, random effects, and a

common hidden Markov process. We apply this type of analysis to data generated from a

smoking cessation clinical trial examining the efficacy of a pharmacological intervention.

In this paper we briefly review previous work done with mixed effects hidden Markov

models (MHMMs) and extend this to the setting of multivariate longitudinal data in

section 3.2. In section 3.3 we justify and outline a Bayesian procedure for computing esti-

mates of such models using Markov chain Monte Carlo (MCMC). In sections 3.4 and 3.5,

respectively, we perform a simulation study to understand the properties of the estimates

generated from such models in a variety of situations, as well as perform an analysis from

a motivating smoking cessation clinical trial example. In section 3.6 we will discuss the

results of our models, simulations and possible limitations and extensions.

3.2 Mixed effects hidden Markov models for multi-

variate longitudinal responses

In this section we will describe a general framework for using mixed effects hidden Markov

models (MHMMs) to describe longitudinal data. HMMs are characterized by two depen-

dent processes. The first being a hidden process, which is usually assumed to adhere to

the Markov assumption. The second, the observed process, which, when conditioned on
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Zi1 Zi2 Zi3 · · ·

Yi1 Yi2 Yi3 · · ·

bi

Figure 3.1: Mixed Effects Hidden Markov Model structure for subject i, with hidden

process Zi, observed process Yi, and random effects, bi

the current value of the hidden process, is independent of any future or past value of the

hidden or observed processes (see Figure 1). HMMs have a great number of applications

(Zucchini and MacDonald, 2009), and as mentioned in the introduction, have recently been

applied to the analysis of longitudinal data (Altman, 2007; DeSantis and Bandyopadhyay,

2011; Maruotti and Ryden, 2009; Scott, James and Sugar, 2005; Shirley et al., 2010).

3.2.1 Model Framework

Let Zit denote the hidden process for subject i, (i = 1, 2, . . . , N) at some common time

points t, (t = 1, 2, . . . , ni). Further, denote Zi to comprise all values of Zit for subject i, and

Z to be all values of Zi for all i. Assume Zit arises from an M−state Markov chain with

transition matrix P and initial probability vector, π. This paper will primarily focus on

HMMs arising from first-order time homogeneous Markov chain hidden processes, where

P (Zit = k|Zi,t−1 = j) = pjk for all t > 1, and P (Zi1 = k) = πk, where j, k = 1, . . . ,M .

Let yit denote a R−dimensional multivariate longitudinal response for subject i at time

t, such that yit = [yi1t, yi2t, . . . , yiRt]
′
. Similar to above, let yi denote all the observations
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for subject i across all longitudinal responses and time points, and y be the collection of

all yi for i = 1, 2, . . . , N .

Suppose that the joint longitudinal responses arise from an HMM such that Yit and

Yit′ were independent given the HMM’s current state, Zit and Zit′ , respectively, for t 6= t
′
.

Further assume that there exists an additional set of i.i.d subject-specific random effects,

bi, where conditional on the current hidden states, Zit, and random effects, bi, each yirt is

independent (see Figure 1) with a distribution, frk(yirt|zit = k), in the exponential family

with canonical parameter, θirtk, and link function hr(.), where:

hr(θirtk) = ηirt = H
′

irtkτr + x
′

irtβrk +w
′

irtkbi . (3.1)

Here τr represents the fixed effect intercept term for each hidden state, as defined through

an M -dimensional hidden state vector, Hirtk, which defines some contrast dependent on

Zit. Typically, we will define Hirtk such that for hidden state k, H
′

irtkτr is the cumulative

sum of the first k elements of τr (see page 36 for more details). Further, xirt is a vector

of covariates at time t for subject i when Zit = k for the rth longitudinal response, and

the associated fixed effect coefficient parameters for these covariates are represented by

βrk, which also could vary over different values of the hidden process. Finally, wirtk is the

row vector of the model matrix for the random effect for the rth longitudinal response for

subject i at time t while in hidden state k.

When R = 1, i.e., the longitudinal response is univariate, this is one of the models

proposed by Altman (2007) where she outlines a procedure to do maximum likelihood

estimation based on an approximation to the marginal likelihood:

L(Θ;y) =
N∏
i=1

∫
bi

αini1
′
fbi(bi|Θ)dbi, (3.2)

by Gauss-Hermite quadrature, where Θ comprises of all parameters of the MHMM, includ-

ing parameters associated with the hidden process, P and π, parameters associated with

the canonical link of the observed processes in (3.1), β and τ , parameters associated with
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the random effects, Σ, and additional parameters associated with the observed process,

unrelated to (3.1), ξ. Here αini is a quantity often referred to as the forward probabilities

(Baum et al., 1970) for subject i, and defined for t = 1 as αi1 = πG(yi11), where,

G(yi1t) = diag[f11(yi1t|zit = 1, bi,Θ), f12(yi1t|zit = 2, bi,Θ), . . . , f1M(yi1t|zit = M, bi,Θ)],

for any t > 0 and recursively for t = 2, 3, . . . , ni, as αit = αi,t−1PG(yi1t).

Extending this structure for R > 1 involves only modifying G(yi1t), and using the

conditional independence assumption, such that

G(yit) = diag[
R∏
r=1

fr1(yirt|zit = 1, bi,Θ),
R∏
r=1

fr2(yirt|zit = 2, bi,Θ),

. . . ,
R∏
r=1

frM(yirt|zit = M, bi,Θ)],

for t > 0.

A common scenario involving R > 1 would be to have separate but correlated random

effects for each distinct longitudinal response. Under the scenario of a single random

intercept in each response, wirtk would simply be a vector of all zeroes, except the rth

entry which would be one. Alternatively, a shared random effect across responses could

also be used, and is accommodated by this parameterization, but the focus of this paper

will be on the case of separate, but correlated random effects. To evaluate L(Θ;y) under

these situations becomes increasingly difficult as R increases, as each evaluation often

involves the computation of N R− (or more) dimensional integrals, most often with no

closed-form solutions. Although better numerical approximations to the integral may be

possible, the integrand is not a relatively simple function of bi due to the inclusion of

the hidden process. Nonetheless, we have been able to fit such models when R = 2 by

a Gauss-Hermite quadrature approximation, but we have found in general as R increases

there is a need for computationally sophisticated methods to fit these models. We will

therefore focus the attention of this paper to other methods for computing such models.
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3.2.2 Motivating Example

A motivating example arises from a pharmacotherapy smoking cessation study, where

smokers were randomized to one of three active treatment groups or a placebo, with

all participants receiving nicotine replacement therapy (O’Malley et al., 2007). After

randomization, subjects were followed for six weeks, with longitudinal follow-up occurring

weekly. At each study visit, patients self-reported daily cigarette use over the previous

week, and a carbon monoxide (CO) test was administered as physiological monitoring of

cigarette intake.

In this example, we will be modelling a bivariate longitudinal response consisting of a

count, Yi1t, of the number self-reported days out of nit in tth week where subject i reported

to smoke at least one cigarette, and Yi2t which consists of the transformed (log[Y + 1]) CO

level at the tth week’s study visit. Under the framework outlined in section 2, we model

these data as follows:

Yi1t|Zit = k, bi ∼ Binomial(nit, θi1tk) where,

logit(θi1tk) = H
′

i1tkτ1 + x
′

i1tβ1k +w
′

i1tkbi

Yi2t|Zit = k, bi ∼ N(θi2tk, σ
2
ε ) where,

θi2tk = H
′

i2tkτ2 + x
′

i2tβ2k +w
′

i2tkbi .

This is only one form of how this complex multivariate longitudinal data could be described.

It has been hypothesized (Hughes et al., 2003; Killeen, 2011) that smoking cessation in-

terventions are described by a three state Markov model with a state space of: regular

use, withdrawal and long term abstinence. While these states are generally understood,

determining the state of a given subject at a given time remains difficult, as self-reported

smoking (Yi1t) is known to generally underreport both the prevalence and intensity of

smoking (Patrick et al., 1994), and the higher CO levels (Yi2t) observed when smoking

have a limited half-life where they are detectable (perhaps as little as 4-6 hours). Further,

in most analyses of these types of data, thresholds of one or more of these longitudinal re-
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sponses define a binary status (smoker/non-smoker) ignoring the intermediate withdrawal

state. Under the models described in this section, we will examine the properties of both

the hidden and observed processes.

3.3 Bayesian Inference

Although it is possible to use maximum likelihood estimation by approximating (3.2) by

numerical integration, it, in general, remains difficult to apply such methods to the frame-

work discussed in section 3.2.1 when the dimension of the longitudinal response exceeds

two, or in many other common scenarios. Indeed, when examining more complicated

random effect structures for a single dimensional longitudinal response under a MHMM,

Altman (2007) relies primarily on stochastic integration to fit such models. While it may

be possible to continue with this approach as R or the number of random effects increase,

we have generally found the Bayesian approach to be more efficient from a computational

perspective, as well as relatively easy to adapt to many other more complicated situations

and models.

3.3.1 Prior Specification

Specifying a prior for Θ is largely dependent on the specific circumstances for the target

of inference. It is often convenient for sampling to choose independent conjugate priors

for each component of Θ. In other circumstances the choice of prior may often depend on

the distributional assumptions of each dimension of the longitudinal response, the chosen

link function, (3.1), or other requirements such as subject-expert knowledge, if available.

In general, it is often convenient to factor [Θ] as:

[Θ, b] = [β, τ ,P ,π, b,Σ, ξ] = [β, τ ]× [P ]× [π]× [b|Σ]× [Σ]× [ξ] . (3.3)
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While there may be certain circumstances where it is merited to use the joint prior of ξ

(such as when two or more responses are normally distributed conditional on their random

effects and hidden states), it is often useful to factorize each component of [ξ] as
∏R

r=1[ξr].

Once the priors have been specified, sampling from the posterior distribution, [Θ|y], can

be done through Gibbs sampling (Geman and Geman, 1984) or similar approaches. If

one could sample the hidden states, z, at each iteration of the Gibbs sampler, one could

then sample each component of Θ, conditional on the current simulated value of the other

parameters, y, and the hidden states, z. After this is completed, the hidden states, z,

must be updated, which will be discussed just below in section 3.3.2. This procedure is

then repeated until stationarity is reached, effectively sampling from the posterior, [Θ|y].

3.3.2 Updating the Hidden States

Taking a Gibbs sampling approach for sampling from the posterior involves alternating

between sampling from [Z|y,Θ, b], and [Θ, b|y, z]. Sampling from the latter is relatively

straightforward, and there are many possible approaches to this which are discussed in

section 3.3.3. On the other hand, updating the hidden states has been well studied in the

Bayesian context using MCMC methods, and Scott (2002) examines two different updating

schemes in the setting of HMMs. The preferred option involves sampling from [Zi|y,Θ]

through a stochastic recursion (Scott, 2002) outlined below, instead of sampling

[Zit|y,Θ, bi, . . . , Zi,t−2, Zi,t−1, Zi,t+1, Zi,t+2, . . .] separately. This method, while more com-

putationally intensive, has been found to mix better in some situations (Cappe, Moulines

and Ryden, 2005; Scott, 2002), and considering the addition of another hidden component

to our models, mainly bi, improving mixing even at the expense of reasonably efficient

computation is a desired attribute.

This update procedure involves computation of forward probabilities discussed in sec-

tion 2.1. Each sequence of hidden states Zi1, Zi2, . . . , Zini can be done separately for each

i. In general, αit(j) = P (Zit = j,yi1, . . . ,yit|bi,Θ), where αit(j) is the jth element of αit.
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Calculating αit is done recursively, and is a function of only Θ, bi and y. For t = ni, we

note that αini(j) = P (Zini = j,yi|bi,Θ) ∝ P (Zini = j|yi, bi,Θ). Therefore, sampling Zini

can be done by calculating αini(j) for each hidden state j, and then normalizing by dividing

by their sum over j,
∑M

j=1 αini(j). Sampling the remaining ni−1 hidden states for subject

i can be reduced to sampling from [Zit|yi, bi,Θ, Zi,t+1, . . . , Zini ] for t = ni−1, ni−2, . . . , 1.

This is done by using an argument originating from Chib (1996), and described in details

by Zucchini and MacDonald (2009) and adapted to the situation we encounter such that:

P (Zit|yi, bi,Θ, Zi,t+1, . . . , Zini) ∝

P (Zit|yi1, . . . ,yit, bi,Θ)P (yi,t+1, . . . ,yini , Zi,ni+1, . . . , Zini |yi1, . . . ,yit, Zit, bi,Θ) ∝

P (Zit|yi1, . . . ,yit, bi,Θ)P (Zi,t+1|Zit, bi,Θ)×

P (yi,t+1, . . . ,yini , Zi,ni+2, . . . , Zini |yi1, . . . ,yit, Zit, Zt+1, bi,Θ) ∝

P (Zit|yi1, . . . ,yit, bi,Θ)P (yi,t+1, . . . ,yini , Zi,ni+2, . . . , Zini |Zt+1, bi,Θ)P (Zi,t+1|Zit, bi,Θ) ∝

P (Zit,yi1, . . . ,yit|bi,Θ)P (Zi,t+1|Zit, bi,Θ).

The last line is familiar, as both of the quantities in the product have been described

previously, where P (Zit = j,yi1, . . . ,yit|bi,Θ) = αit(j), and P (Zi,t+1 = k|Zit = j, bi,Θ) =

pjk from the transition probability matrix, P . Hence, after Zini has been sampled, the

remainder of the hidden states can be sampled in reverse order (t = ni−1, ni−2, . . . , 1) by

computing P (Zit = j|yi, bi,Θ, Zi,t+1 = k) ∝ [αit(j)]pjk for j = 1, . . . ,M , and normalizing

each by their sum over all j. This process can be repeated for each i separately, and once

updated, sampling from the other components of the posterior can be conducted.

3.3.3 Sampling from the Posterior

Under the prior structure discussed in section 3.3.1, we can take a Gibbs sampling ap-

proach, where groups of parameters with priors in conjugate families are sampled from

directly. With all other variables, alternative methods can be used such as adaptive rejec-

tion sampling (Gilks and Wild, 1992), or Metropolis within Gibbs sampling (Smith and
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Roberts, 1993). Given the current values of Θ and b, section 3.3.2 discusses how to sample

from [Z|y,Θ, b]. This is generally one of the most computationally intensive steps.

Under the MHMM assumptions, and applying the form of (3.3), we can get relatively

simple forms of the posterior distributions: [P |Θ−P ,y, z, b] = [P |z], [π|Θ−π,y, z, b] =

[π|z], and [Σ|Θ−Σ,y, z, b] = [Σ|b], where the notation [A|B−A] is used to represent the

conditional distribution of A given all elements in B except A. If conjugate priors are

chosen for P , π, and Σ as we have done below, this often involves directly sampling from

Dirichlet and inverse Wishart distributions (discussed further below).

The full conditional distributions of the other sets of parameters, β, τ , b, ξ will generally

depend on some or all of the other parameters, in addition to the observed data, y and

current simulated hidden states, z. We have found it convenient to sample from the

βr and τr separately for each r. Under this approach, [βr, τr|y, z, b, ξr] ∝ [βr, τr] ×∏N
i=1

∏ni
t=1 frk(yirt|bi,βr, τr, ξr, zit = k), and [bi|y, z,β, τ , ξ,Σ] ∝

[bi|Σ] ×
∏ni

t=1

∏R
r=1 frk(yirt|bi,β, τ , ξr, zit = k). Lastly, sampling from [ξ|.] will largely be

application specific, but will not generally depend on P or π.

Sampling from the Posterior for the Motivating Example

Sampling from the posterior for the example in section 3.2.2 is relatively straightforward.

As above, we will initially choose a relatively uninformative Dirichlet conjugate prior

for all treatment groups or strata, s, with prior hyperparameters ζ
(s)
π and ζ

(s)
u set to

[1, 1, 1] for π(s) and the uth row of P , respectively, and in this setting we will assume

that bi
iid∼ MVN(0,Σ). We also chose a conjugate inverse Wishart(ν0,Ψ0) prior for Σ,

with ν0 = 1 and let Ψ0 be the 2 × 2 identity matrix. Lastly, we chose a flat prior for

β and τ , such that [β, τ ] ∝ 1. In this example, there is also one extra parameter for

r = 2, where ξ21 = 1
σ2
ε
, which will also come from a conjugate family, Gamma(a0, b0), with

a0 = 0.001, b0 = 0.0002.

Once Zi is updated for each i as outlined in section 3.3.2, the following can be sampled
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from the full conditional distributions:

[Σ|b] ∼ InverseWishart(N + ν0,Ψ0 +
N∑
i=1

bib
′

i),

[
1

σ2
ε

|y,β2, τ2, b, z] ∼

Gamma(
(
∑N

i=1 ni + a0)

2
, (b0 +

(
∑N

i=1

∑ni
t=1(yi2t −H

′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2)

2
),

[π(s)|z] ∼ Dirichlet(ζ(s)
π + q(s)),

where q(s) is a M -dimensional vector with mth element
∑N

i=1

∑ni
t=1 1(zi1 = m, vi = s),

[P (s)
u |z] ∼ Dirichlet(ζ(s)

u + q(s)
u ), where P (s)

u is the uth row of P (s),

where q(s)
u is a M -dimensional vector with mth element

N∑
i=1

ni∑
t=2

1(zit = m, zi,t−1 = u, vi = s),

[τ1,β1|y, z, b] ∝
N∏
i=1

ni∏
t=1

(
exp (H

′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi

1 + exp (H
′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

)yi1t
×(

1−
exp (H

′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi

1 + exp (H
′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

)nit−yi1t
,

[τ2,β2|y, z, b, σ2
ε ] ∝

N∏
i=1

ni∏
t=1

exp

(
−

(yi2t −H
′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2

2σ2
ε

)
∼MVN((B̃

′
B̃)−1B̃

′
ỹ2, σ

2
ε (B̃

′
B̃)−1), where

B̃ =
[
H|X

]
and is a

( N∑
i=1

ni

)
× (P + c) matrix(c being the length of xi2t)

with rows comprised of, [H
′

i2tzit
,x

′

i2t],

and ỹ2 is a

( N∑
i=1

ni

)
length vector with elements yi2t −w

′

i2tbi.
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Also, [bi|yi, zi,β, τ , σ2
ε ] ∝

ni∏
t=1

(
exp (H

′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

1 + exp (H
′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

)yi1t
×(

1−
exp (H

′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

1 + exp (H
′
i1tzit

τ1 + x
′
i1tβ1zit +w

′
i1tbi)

)nit−yi1t
×

exp

(
−

(yi2t −H
′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2

2σ2
ε

)
×
[
exp

(
−1

2
b

′

iΣ
−1bi

)]
,

We use a random walk Metropolis within Gibbs steps to sample from the full condi-

tionals of [bi|.] and [βr, τr|.] for r = 1 separately, where r = 2 has a multivariate normal

full conditional distribution which can be sampled from directly. The interpretation of τr

depends on the defined model matrix, Hirt common to all i and t, but not necessarily r

(although we will not examine this here). For instance, the contrasts suggested by Scott

(2002) are similar to the following: H
′
irt1 = [1, 0, 0], H

′
irt2 = [1, 1, 0], and H

′
irt3 = [1, 1, 1]

for Zit = 1, 2 and 3, respectively, and we will use these throughout the remainder of the

paper. To perform sampling for the two steps which require Metropolis within Gibbs sam-

pling, a multivariate normal proposal distribution is used, and updated during a burn-in

period. Approximately 1.5 million iterations are used, and thinned to 50,000 samples.

Trace plots, density estimates, and auto-correlation plots as an assessment of stationarity

and mixing are presented in section 3.7.

3.3.4 Introducing a Treatment Effect for the Hidden Process

Thus far we have only discussed the situation where covariates are introduced to the pa-

rameters associated with the observed component of the MHMM. While this may be useful

in many situations, often the desired treatment contrast may manifest itself through some

function of the transition probabilities. Indeed, in situations where y are surrogate end-

points or biomarkers, defining a treatment effect (via β in (3.1)) in terms of observed

longitudinal responses may be difficult depending on the treatment’s effect on: the un-

derlying hidden process, the observed longitudinal responses, or the relationship between

these observed and hidden responses. In situations where the hidden states resemble the
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underlying true disease outcomes, as they often can, it may be more advantageous to think

about the treatment’s effect on the hidden states.

With the above said, we can define simple treatment effects for a finite number of

categorical time-invariant covariates by defining a subject-specific transition matrix, Pi =∑S
s=1 1(vi = s)P (s), where vi is a variable indicating treatment group membership, and

P (s) is the transition matrix for the sth treatment group. Similarly, a treatment effect

can be defined in terms of the initial probabilities, where πi =
∑S

s=1 1(vi = s)π(s), where

π(s) are the initial probabilities for treatment group s. Often, the HMM is assumed

to be stationary, and/or the initial probability vector is considered a vector of nuisance

parameters, but there may be circumstances where this quantity has a particular meaning.

This scenario is probably most interesting in the setting of a randomized clinical trial

where the hidden states of the study subjects may be considered very homogeneous at

baseline. For instance, at enrollment in the motivating example, all subjects were required

to be current smokers, so in principle the initial probability vector has a very specific

interpretation – being that it is the first week’s transition probability from hidden state

three (the highest smoking state), or something conceptually similar.

Given a large enough sample size in each stratum with a reasonably high frequency

of transitions between states within each strata, it is possible to add as many treatment

groups as needed. Other methods would be required to sample from the posterior in cases

where the desired covariate of interest was non-categorical.

In our motivating example from section 3.2.2, we will examine four different scenarios

involving different ways to look at the treatment effect within the hidden process. Scenarios

include:

I) No treatment effect, where Pi = P and πi = π (common) for all i,

II) Treatment effect in only the initial state probabilities (π(0) and π(1)), with common

transition matrix, P (0) = P (1) = P ,
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III) Treatment effect in only the transition probabilities (P (0) and P (1)), with common

initial state probabilities, π(0) = π(1) = π, and

IV) Treatment effect in both the initial state probabilities (π(0) and π(1)), and the tran-

sition probabilities (P (0) and P (1)).

3.3.5 Label Switching

A well known phenomenon in using MCMC approaches to mixture models including HMMs

is that of label switching. This phenomenon generally occurs because of the invariance of

the likelihood under any relabeling of the mixture components. Several approaches have

been proposed to alleviate this problem, including putting identifiability constraints on the

parameter space, and decision theoretic approaches (Stephens, 2000). Under a MHMM,

we have found label switching to occur only under certain situations. As we shall see,

in our motivating example the modes of most components of the observed multivariate

longitudinal responses are well separated by the hidden states, and we do not generally

observe label switching. This is consistent with an observation noted by Scott, James and

Sugar (2005), who also used Bayesian methodology to examine a HMM with a longitudinal

response, but without between-subject heterogeneity in the observed response; they did

not observe label switching in their study either. Scott, James and Sugar (2005) attributes

this mainly to the increased dimensionality of the observed longitudinal response.

In other settings, we do find label switching to occur, most often when the modes are less

well-separated, and the between-subject heterogeneity is high. When this occurs, after the

sampling is completed, and as is frequently done, we relabel the states by ordering one of

the observed response population means. In the examples examined in this paper we have

a bivariate observed longitudinal response, and generally we have not found that choosing

one response’s parameters over the other to significantly effect the results. Generally,

the ordering of the response’s parameters disagreed at a relatively low frequency (<1%),
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and we picked the continuous response (r = 2) on which to reorder the labels. In other

situations, such as when the dimension of the longitudinal responses increase, this may no

longer be the case, and other strategies may be required.

3.4 Simulation Study

A simulation study was conducted to assess the properties of the estimators derived from

the modeling framework and MCMC sampling methods described above and to assess ro-

bustness in a few situations of possible concern. Data were simulated for a model similar

to those described in the example discussed in section 3.2.2, where the hidden process, z,

and the random effects, b, are first sampled independently (unless stated otherwise), and

given these data, the observed multivariate longitudinal response, y is simulated. Patients

are randomly allocated in a 3:1 (265:89) manner to treatment and placebo, which have

identical population level models with the exception of their respective transition proba-

bility matrices (scenario III in section 3.3.4). As is the case in the motivating example,

the observed process is sampled at six time points (ni = 6 for all i). For the purposes

of this simulation study, data are assumed to not be missing, and 200 simulations from

each situation will be fit using the methodology described in section 3.3.3. The following

situations were examined:

1. The data are generated from a MHMM with well-separated modes (τ1 = [−5, 3, 3],

τ2 = [1.2, 0.2, 1.1]) with a large between-subject heterogeneity in the binomial re-

sponse via independent multivariate normal random effects. The random effects

are i.i.d and have a covariance matrix Σ = [ 8.5 0.5
0.5 0.1 ] with the inverse of the resid-

ual error, 1
σ2
ε
, in the normally distributed response set at 10.0. The hidden process

is generated from a common initial probability vector, π = [0.6, 0.25, 0.15], and

placebo transition matrix P (0) =
[

0.85 0.10 0.05
0.60 0.20 0.20
0.10 0.10 0.80

]
with treatment transition matrix,

P (1) =
[

0.85 0.10 0.05
0.60 0.20 0.20
0.10 0.30 0.60

]
.
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2. The data are generated from a MHMM with less well-separated modes (τ1 = [−3, 1.5, 1.5],

τ2 = [1.2, 0.5, 0.5]) with a smaller between-subject heterogeneity in the binomial re-

sponse via independent multivariate normal random effects. The random effects are

again i.i.d multivariate normal and have a covariance matrix Σ = [ 5.0 0.5
0.5 0.1 ]. The other

sets of parameters, P (0), P (1), π, and 1
σ2
ε

remain the same as situation (1).

3. The data are generated similar to situation (2), but the distribution of the random

effects, bi, are dependent on the initial hidden response, Zi1. For the subjects in

hidden state 1 at time t = 1, the random effects are generated from a mean zero

multivariate normal distribution with covariance matrix, Σ1 = [ 4.5 0.5
0.5 0.1 ]. Conversely,

in those subjects in hidden states 2 or 3 at t = 1, the random effects are generated

from a mean zero multivariate T distribution with 8 degrees of freedom, and covari-

ance matrix, Σ2 = [ 5.5 0.5
0.5 0.1 ]. As in situation (2), with the exception of τ the rest of

the parameters remain set at the same values as is situation (1).

Situation (1) closely describes the motivating example, where the modes of the hid-

den states are well-separated, and there is a great deal of heterogeneity in the binomial

response. As can be seen in Table 3.1, the estimates generated from sampling from the

posterior, π(Θ|y), are generally well-behaved, and the posterior means are generally close

to the true parameter values, while the posterior standard deviations are generally close to

the standard deviation of the posterior means over the simulations. With the exception of

Σ22, the 0.025 and 0.975 posterior quantiles cover the true parameter value very close to

95% of the time, with overall mean coverage (all parameters) of 94.7%. In the exception

(Σ22), the reduced coverage may be due in part to the bias introduced by our prior.

Situation (2) generally resembles situation (1), but the population modes are less well-

separated. As would be expected, for the relevant parameters (τ ,P ,π) the average pos-

terior standard deviations have generally increased with the increased level of uncertainty

pertaining to the hidden states. Additionally, some significant bias can be observed, in

particular for p0
21 and p0

32 the bias is quite large. In both of these parameters (and most
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Table 3.1: Simulation results for 200 runs of Situation (1)

Parameter True Value
Average of

Posterior Means
Average

Posterior S.D.
S.D. of

Posterior Means
95% Posterior

Quantile Coverage

π1 0.60 0.5961 0.0437 0.0436 0.960

π2 0.25 0.2555 0.0423 0.0440 0.955

p012 0.10 0.1075 0.0391 0.0385 0.955

p013 0.05 0.0534 0.0175 0.0178 0.950

p021 0.60 0.5601 0.1115 0.0993 0.955

p023 0.20 0.2033 0.0735 0.0681 0.960

p031 0.10 0.1134 0.0445 0.0440 0.935

p032 0.10 0.1135 0.0466 0.0452 0.960

p112 0.10 0.1042 0.0237 0.0245 0.945

p113 0.05 0.0510 0.0101 0.0093 0.975

p121 0.60 0.5935 0.0631 0.0580 0.960

p123 0.20 0.1976 0.0387 0.0383 0.945

p131 0.10 0.1043 0.0366 0.0356 0.960

p132 0.30 0.3070 0.0455 0.0454 0.955

τ11 -5.00 -4.9905 0.2292 0.2374 0.945

τ12 3.00 2.9859 0.1755 0.1772 0.925

τ13 3.00 3.0311 0.2162 0.2262 0.940

τ21 1.20 1.2028 0.0217 0.0236 0.940

τ22 0.20 0.1983 0.0384 0.0424 0.940

τ23 1.10 1.0987 0.0362 0.0381 0.930

Σ11 8.50 8.5833 0.9981 1.0238 0.955

Σ12 0.50 0.5100 0.0760 0.0648 0.985

Σ22 0.10 0.1092 0.0103 0.0108 0.855

1
σ2
ε

10.00 10.0868 0.3916 0.3939 0.945

where πk is the initial probability of hidden state k, psjk is the j, k transition probability for

the sth treatment group for the hidden states, τrk is the intercept term for response r and

hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is the residual

error associated with response 2.
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others), the bias is in the direction towards the prior mean, which is 1/3 for p0
21 and p0

32.

Indeed, the posterior for these parameters in many, but not all, of these simulated instances

is very flat, and much of the information appears to come from the prior. It should be

noted however, that both p0
21 and p0

32 are parameters associated with the placebo group,

which has a reduced sample size when compared to the treatment group. In the corre-

sponding treatment group parameters, p1
21 and p1

32, while we still observe some bias, it

is considerably less than that observed in the smaller placebo group. This is probably

not too surprising, given that based on a sample size of 89 and six time points, the true

expected frequency of some of these hidden state transitions are as few as 9. Some caution

is therefore merited when using these models when the frequency of such transitions may

be low, but can be effectively monitored from the Zit samples collected during the MCMC

algorithm. In cases where the row totals of the transition frequencies are low, or have high

variance, this may be a situation where significant bias may occur. In such cases, it may

be necessary to reduce the hidden state space, so that the transition frequencies are high

enough, or alternatively incorporate more information into the prior. With this in mind,

we repeated this simulation with a more informative prior, such that the hyperparameters,

ζ
(s)
u , for the transitions probabilities, are [8,1,1], [6,2,2] and [1,1,8] for the first, second and

third rows of P (s), respectively, which we use across both sets of parameters associated

with the placebo and treatment groups (i.e., for both s = 0 and 1). This analysis is also

presented in Table 2 and is denoted ”situation (4)”, and generally reduces any bias ob-

served in the problematic parameters. In spite of the noted bias in many of the transition

probabilities noted in Table 2 for situation (2), it is noteworthy that the coverage proba-

bilities of the 95% quantile range are generally well behaved, albeit many of these intervals

are very wide.

As can be seen in Table 3, in situation (3) we encounter many of the same problems

noted in situation (2). Generally, the parameter estimates are not any more biased than

those in situation (2). This suggests that incorporating additional prior information may
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Table 3.3: Simulation results for 200 runs of Situation (3)

Parameter True Value
Average of

Posterior Means
Average

Posterior S.D.
S.D. of

Posterior Means
95% Posterior

Quantile Coverage

π1 0.60 0.5683 0.0802 0.0761 0.950

π2 0.25 0.2716 0.0751 0.0588 0.985

p012 0.10 0.1403 0.0879 0.0737 0.960

p013 0.05 0.0619 0.0296 0.0247 0.980

p021 0.60 0.4926 0.1586 0.1413 0.945

p023 0.20 0.1970 0.1138 0.0847 0.985

p031 0.10 0.1258 0.0671 0.0613 0.980

p032 0.10 0.1609 0.0995 0.0721 0.985

p112 0.10 0.1296 0.0643 0.0545 0.965

p113 0.05 0.0558 0.0191 0.0173 0.955

p121 0.60 0.5652 0.1119 0.0884 0.975

p123 0.20 0.1810 0.0713 0.0565 0.970

p131 0.10 0.1089 0.0538 0.0410 0.990

p132 0.30 0.3163 0.0884 0.0728 0.985

τ11 -3.00 -3.0422 0.1740 0.1758 0.930

τ12 1.50 1.4147 0.2792 0.2725 0.940

τ13 1.50 1.5726 0.2875 0.2587 0.965

τ21 1.20 1.1990 0.0323 0.0300 0.970

τ22 0.50 0.4575 0.0956 0.0970 0.920

τ23 0.50 0.5482 0.0941 0.1644 0.920

Σ11 - 5.8255 0.6166 0.6550 -

Σ12 - 0.6190 0.0772 0.0992 -

Σ22 - 0.1370 0.0147 0.0209 -

1
σ2
ε

10.00 10.0380 0.5644 0.5286 0.970

where πk is the initial probability of hidden state k, psjk is the j, k transition probability for

the sth treatment group for the hidden states, τrk is the intercept term for response r and

hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is the residual

error associated with response 2. S.D. - standard deviation
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also resolve the biases observed in this situation. Since this situation is a departure from a

modeling assumption (the independence of bi and Zi), it is particularly reassuring to note

that the parameters associated with the observed process have very small bias, and the

95% quantile coverage probabilities are generally well-behaved. Further, we may expect

this departure to also bias the estimates of πk, but this is not any more severe than

what was observed in situation (2). We would expect a similar reduction of the bias in

this situation, as was observed when a more informative prior is used on the transition

probability matrix, P as was seen when contrasting situations (2) and (4) in Table 2.

We performed an additional three simulation situations to better understand the bias

observed in situations (2) and (3). The following situations were examined:

(5) The data are generated from a MHMM with well-separated modes (τ1 = [−3, 1.5, 1.5],

τ2 = [1.2, 0.5, 0.5]) with a large between-subject heterogeneity in the binomial response

via independent multivariate normal random effects. The random effects are i.i.d and

have a covariance matrix Σ = [ 2.0 0.35
0.35 0.1 ] with the inverse of the residual error, 1

σ2
ε
, in

the normally distributed response set at 10.0. The hidden process is generated from a

common initial probability vector, π = [0.6, 0.25, 0.15], and placebo transition matrix

P (0) =
[

0.85 0.10 0.05
0.60 0.20 0.20
0.10 0.10 0.80

]
with treatment transition matrix, P (1) =

[
0.85 0.10 0.05
0.60 0.20 0.20
0.10 0.30 0.60

]
.

(6) Identical to (5) in all respects except the number of observation times is doubled for

each patient, such that ni = 12 for all i.

(7) Identical to (5) except, τ1 = [−5, 3, 3] and τ2 = [1.2, 0.1, 1.10].

The results from these three additional simulations are presented in Tables 3.4 and 3.5.

In each case, the default Dirichlet distribution prior with hyperparameters [1, 1, 1] is used

for π(0), π(1), and the rows of each of P (0) and P (1), which was a case we encountered some

significant bias in our estimates in situations (2) and (3). Situation (5) resembles situation

(2) most closely, but has reduced between-subject heterogeneity (Σ11) on the binomial
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response. While the bias does appear to slightly decrease for both p0
21 and p0

32, the major

difference is noted when comparing the results to situation (6), where the number of

observation times have been doubled, resulting in a quite dramatic decrease in bias. This

is reassuring that given a large enough sample size, the bias is virtually non-existent where

in other similar situations, it had been significant.

Lastly, situation (7) preserves the random effects covariance structure and hidden state

transition probability matrices while increasing the separation of the observed modes in

each of the responses by the hidden states, such that we can compare it directly to situation

(5). We note significantly less bias in this situation when compared to situation (5) for

parameters like p0
21 and p0

32, as well as situation (1), which has the same population modes,

but larger between-subject heterogeneity in the observed response.

Throughout situations (1) to (7) we note consistent bias in the parameter Σ22, often

with lower than expected coverage obtained by the 95% posterior distribution quantiles.

This is likely due to the prior choice for Σ22 which has a mean which is approximately

ten times higher than its true value. We anticipate with a better choice in prior, that this

bias and low coverage would be reduced, if not eliminated, but this illustrates a possible

sensitivity to prior specification, and some care should be taken when choosing a prior

distribution for this and other parameters, especially when the relevant sample size is

relatively small for the specific parameter (e.g., p0
21).

3.5 Results from the smoking cessation motivating

example

In section 3.2.2 we described a motivating example from a smoking cessation clinical trial

(O’Malley et al., 2007) examining a pharmacological intervention’s effect on the rates

of maintained smoking abstinence over six weeks. When introducing methods to model

the treatment effects (section 3.3.4), we enumerated four different ways to incorporate
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Table 3.5: Simulation results for 200 runs of Situation (7)

Parameter True Value
Average of

Posterior Means
Average

Posterior S.D.
S.D. of

Posterior Means
95% Posterior

Quantile Coverage

π1 0.60 0.5894 0.0472 0.0473 0.955

π2 0.25 0.2600 0.0457 0.0461 0.950

p012 0.10 0.1161 0.0423 0.0423 0.935

p013 0.05 0.0521 0.0170 0.0175 0.940

p021 0.60 0.5670 0.1073 0.0979 0.955

p023 0.20 0.2095 0.0712 0.0692 0.955

p031 0.10 0.1081 0.0433 0.0399 0.970

p032 0.10 0.1192 0.0457 0.0424 0.945

p112 0.10 0.1090 0.0273 0.0289 0.945

p113 0.05 0.0517 0.0100 0.0104 0.940

p121 0.60 0.5956 0.0609 0.0594 0.965

p123 0.20 0.1960 0.0376 0.0365 0.960

p131 0.10 0.1007 0.0375 0.0341 0.955

p132 0.30 0.3051 0.0453 0.0393 0.970

τ11 -5.00 -5.0249 0.2266 0.2293 0.970

τ12 3.00 2.9754 0.1938 0.1845 0.965

τ13 3.00 3.0420 0.1798 0.1682 0.965

τ21 1.20 1.2014 0.0213 0.0209 0.965

τ22 0.10 0.1926 0.0374 0.0365 0.960

τ23 1.10 1.1014 0.0353 0.0380 0.940

Σ11 2.00 2.0139 0.2700 0.2692 0.930

Σ12 0.35 0.3436 0.0422 0.0424 0.960

Σ22 0.10 0.1069 0.0098 0.0091 0.915

1
σ2
ε

10.00 10.0168 0.3755 0.3771 0.950

where πk is the initial probability of hidden state k, psjk is the j, k transition probability for

the sth treatment group for the hidden states, τrk is the intercept term for response r and

hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is the residual

error associated with response 2. S.D. - standard deviation
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treatment effects for the hidden states. We fit each of these models as outlined in section

3.3 with a varying number of parameters (18-26 parameters), and present the results in

Table 3.6.

We generally note very little effect of treatment with the exception of perhaps a differ-

ence between p0
32 and p1

32. This quantity represents the transition probability of individuals

transition from the smoking state to the intermediate withdrawal state. Ideally, this would

be high, suggesting the readiness of individuals to stop smoking, even if they had restarted

during the study period. Surprisingly however, the rate is higher in the placebo group,

suggesting that those on treatment actually do worse than those on placebo. From our

MCMC samples, we can estimate quantities like, P (p1
32 > p0

32), which is estimated as

0.072 in model III and 0.067 in model IV. This provides some evidence that the treat-

ment may inhibit abstinence in those subjects who remained or returned to smoking after

the first week of the study period. Without formally performing model selection or hy-

pothesis testing on the two different treatment effects, this single effect remains somewhat

unconvincing.

Using model I, we can estimate the transformed means of the CO levels for each of the

hidden states by using τ2 and the chosen structure of Hirtk. In our case, Hirtk corresponds

to the cumulative sum of the elements of τ2, resulting in estimates of the means of 1.18,

1.53 and 2.63 for the first, second and third hidden states, respectively. By inverting the

log(Y + 1) transformation, the estimates on the untransformed scale are 2.26, 3.63 and

12.95, for hidden states one, two and three, respectively. In most studies a CO threshold

of 8 or sometimes 10 ppm is used as evidence that a subject is smoking, suggesting our

results provide some face validity. Similarly, for the daily self-reported binomial response,

an individual with this response’s corresponding random effect equal to zero would have

an estimated probability of smoking on a single day of 0.005, 0.22 and 0.66 for the first,

second and third hidden states, respectively.
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3.6 Discussion

Overall, we have outlined a general framework for modeling multivariate longitudinal data

in the setting where heterogeneity in the longitudinal responses is explained by random

subject-specific differences or heterogeneity introduced from a given subject transitioning

through multiple disease states. We believe this could have a great number of applications

in the modeling of longitudinal data arising from the study of addiction, where the underly-

ing disease states are conceptually understood to contribute significantly to the underlying

heterogeneity of measured responses, but ultimately are difficult to measure directly. Mod-

eling a multivariate longitudinal response through a MHMM has a degree of flexibility in

accounting for the correlation and heterogeneity between- and within-responses by the

incorporation of the hidden process along with the random effects, that is not present

by using only one of these components in isolation. Others have applied HMMs to the

setting of addiction (DeSantis and Bandyopadhyay, 2011; Shirley et al., 2010), as well as

other diseases where a similar argument can be made pertaining to the underlying dis-

ease states, such as multiple sclerosis (Altman, 2007) and schizophrenia (Scott, James and

Sugar, 2005). While the development of these methods are in their infancy, we believe

they can play an important role in understanding how a treatment works on true clinical

outcomes through understanding how a treatment may affect the modeled hidden states.

Further, these types of models may help to better plan future clinical studies, by, for

example, providing better estimates of sample size requirements (Altman, 2012).

The methods as presented in this paper have several limitations which can be addressed

in future work. First, in univariate responses, Altman (2007) allows for between-subject

heterogeneity in the hidden state process in addition to the observed process. We have

not considered this case, mainly due to the limited number of observation times (six) in

the motivating smoking cessation study. Scott, James and Sugar (2005) take a Bayesian

approach allowing for subject-specific transition matrices under a hierarchal model, and

we believe a similar approach could be adapted to models presented in this paper, if
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the dataset permitted it. In other situations, such as when there is a large number of

observation times, a small hidden state space, little between-subject heterogeneity or well-

separated modes in the observed process, or specific types of hidden process transition

probability matrices, it may be possible to consider the inclusion of random effects in the

hidden process. As we saw during the simulation study in situation (2), one must be

aware of the limitations of such models, when so many forms of heterogeneity are being

accounted for simultaneously. If a homogeneous common transition matrix cannot be

applied to a specific dataset, it may be more worthwhile looking at somewhat simpler

alternatives like increasing the order of the hidden process, which may be more feasible

than using subject-specific transition matrices in certain situations.

Secondly, we were limited in our ability to perform formal hypothesis testing, or other

model selection techniques. Bayes factors and their analogues are usually the basis of

Bayesian hypothesis testing, but are generally reliant upon estimating the integrated like-

lihood of the models in question. The generally poor convergence of estimators such as the

harmonic mean commonly used to estimate the integrated likelihood, along with the com-

plex nature of our likelihood, make hypothesis testing reliant on the integrated likelihood

difficult. Others have proposed information criteria, such as the deviance information cri-

teria (DIC), which have proven difficult to use in models using missing data approaches,

such as mixture and random effects models (Celeux et al., 2006). In our case, not only do

we utilize random effects, our model is a special case of mixture model (a hidden Markov

model). Hypothesis testing and model selection are crucial to wide use of these models,

and is an area of future work.

In our motivating example using a smoking cessation study, we note a possible differ-

ence between the hidden state 3-2 transition probabilities in the placebo and treatment

groups. This was a somewhat surprising result, as we would normally expect the treatment

group to have a beneficial effect, when here it appears it may not. Given the relatively

good performance of our method in the simulation study in this paper, which are fairly
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representative of the data generated from the motivating study, we are confident this noted

difference is not due to a computational issue with our methodology. It is quite possible

that the difference estimated in models III and IV for p1
32 and p0

32 is due to some unmod-

eled missing data mechanism, and is an area we are currently investigating. Also, we note

that in O’Malley et al. (2007) a treatment effect on smoking cessation for the entire study

sample was not found.

Lastly, although maximum likelihood methods could be used for fitting models such as

the ones presented in this paper, we have found, in general, that a Bayesian approach using

MCMC is vastly more computationally efficient. We were able to use such methods, where,

for example, a two hidden state (M = 2) model was fit by approximating the integration in

equation (1) by Gauss-Hermite quadrature, and maximizing the approximated likelihood.

This required at least 140 quadrature points, and took several days (>3) using a state of the

art computer. Alternatively, the models presented in Table 4, some of which have over twice

the number of parameters as the model fit by maximum likelihood, took approximately 9

hours to compute on the same computer.

This improvement in computational efficiency, along with the flexibility and general

applicability of such models, provides a great opportunity for future work and applications

to other disease areas and problems.

3.7 Appendix: Markov Chain Monte Carlo Conver-

gence Diagnostic Plots

3.7.1 Trace and Density Estimation Plots

In order to assess stationarity and mixing of the MCMC sampler, we generated trace and

density estimate plots for each of the 24 main parameters (Θ) from a randomly selected

run of our simulation runs in section 3.4 from situation (2). These plots were generated
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using the coda package in R and are presented in Figures 3.2-3.7.

0 5000 10000 15000 20000

0.
3

0.
6

Iterations

Trace of var1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
4

N = 20000   Bandwidth = 0.008203

Density of var1

0 5000 10000 15000 20000

0.
0

0.
3

0.
6

Iterations

Trace of var2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

3
6

N = 20000   Bandwidth = 0.008845

Density of var2

0 5000 10000 15000 20000

0.
0

0.
3

Iterations

Trace of var3

0.0 0.1 0.2 0.3 0.4

0
10

20

N = 20000   Bandwidth = 0.003631

Density of var3

0 5000 10000 15000 20000

0.
00

0.
10

Iterations

Trace of var4

0.00 0.05 0.10 0.15

0
10

20

N = 20000   Bandwidth = 0.002975

Density of var4

Figure 3.2: Trace and density estimate plots for parameters (from top to bottom): π1

(var1), π2 (var2), p0
12 (var3) and p0

13 (var4).

Overall, there does not appear to be any strong indication that the Markov Chain has
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Figure 3.3: Trace and density estimate plots for parameters (from top to bottom): p0
21

(var1), p0
23 (var2), p0

31 (var3) and p0
32 (var4).

not reach stationarity. The sampling procedure seems to mix reasonably well. Further, we

do not note any multi-modality or phenomena consistent with label switching, although
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Figure 3.4: Trace and density estimate plots for parameters (from top to bottom): τ11

(var1), τ12 (var2), τ13 (var3) and τ21 (var4).

in this same situation in other simulated runs (from different simulated datasets), label

switching did occur.
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Figure 3.5: Trace and density estimate plots for parameters (from top to bottom): τ22

(var1), τ23 (var2), Σ11 (var3) and Σ21 (var4).

3.7.2 Auto-correlation function plots

Using the same MCMC sample as done in section 3.7.1, we also generated estimates for

the auto-correlation function within each posterior sample to assess mixing.
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Figure 3.6: Trace and density estimate plots for parameters (from top to bottom): Σ22

(var1), 1
σ2
ε

(var2), p1
12 (var3) and p1

13 (var4) .

Overall, the estimated auto-correlation function decreases with lag significantly, and

the auto-correlation within a variable is quite negligible by lag 5 in many such parameters.
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Figure 3.7: Trace and density estimate plots for parameters (from top to bottom): p1
21

(var1), p1
23 (var2), p1

31 (var3) and p1
32 (var4).

The most persistent auto-correlations are generally observed in components of τ , which is

not surprising, as the full conditional distributions of these parameters are dependent on
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Figure 3.8: Auto-correlation function plots for the MCMC sampling approach for param-

eters: π1 (1), π2 (2), p0
12 (3), p0

13 (4), p0
21 (5) and p0

23 (6).

both the random effects bi, and the hidden states, Zi.
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Figure 3.9: Auto-correlation function plots for the MCMC sampling approach for param-

eters: p0
31 (7), p0

32 (8), τ11 (9), τ12 (10), τ13 (11) and τ21 (12).
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Figure 3.10: Auto-correlation function plots for the MCMC sampling approach for param-

eters: τ22 (13), τ23 (14), Σ11 (15), Σ21 (16), Σ22 (18) and 1
σ2
ε

(19).
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Figure 3.11: Auto-correlation function plots for the MCMC sampling approach for param-

eters: p1
12 (20), p1

13 (21), p1
21 (22), p1

23 (23), p1
31 (24) and p1

32 (25).
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Chapter 4

Using Multivariate MHMMs for

Classification of the Disease States

4.1 Background

In Chapter 3, we outlined a modeling framework that extended the work of others (Altman,

2007) from modeling univariate longitudinal data as a hidden Markov model (HMM) with

between-subject heterogeneity in the observed process to the setting of multivariate lon-

gitudinal data. Thus far, we have focused on drawing inference from the population-level

parameters governing these models. Under a MHMM, these parameters can be much more

informative than those derived from models which ignore either the dynamic hidden states,

or the between-subject heterogeneity. Indeed, much of the computational complexity of

these models is generated due to the observation- or subject-specific differences generated

from the hidden Markov process, or the random effects. In this chapter we will examine

if the hidden states can be used effectively to draw inference to meaningful disease states.

Further we will examine the utility of a multivariate model over the possible univariate

alternatives.
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4.2 Motivation

As is the case in Chapter 3, we will return to our motivating example of a smoking ces-

sation clinical trial, which evaluated a pharmacological intervention to assist people in

abstaining from smoking. The results in that chapter generally corresponded with the

clinical information used to design such clinical trials. In particular, we found that the

population modes of the observed longitudinal response corresponding to their respective

underlying (but still at that point hypothetical) hidden disease states were quite well sep-

arated. Reassuringly, under model (I) in Table 3.6 in that chapter, for an individual with

the relevant random effect set at zero, the three modeled hidden disease states correspond

with probabilities of smoking on a given day of 0.005, 0.22 and 0.66, respectively. These

roughly correspond with barely smoking at all, smoking one or two days a week, and smok-

ing about five days a week, respectively. Similarly, the carbon monoxide (CO) population

means when untransformed by inverting the (log[Y + 1]) transformation, correspond with

CO levels of 2.26, 3.63 and 12.95 ppm for hidden states, one, two and three, respectively.

It is important to contrast these estimates with thresholds used in the actual study

to define the study’s two disease states – abstinence and smoking. While the study time

period where these definitions are applicable can change, in general, any self-reported

smoking or a CO observation exceeding ten ppm (or, in some studies, that threshold is

set lower, at eight ppm) defines smoking, regardless of any other possible mitigating fac-

tors. Under our model, the population modes of the lowest smoking (hidden state 1) and

the highest smoking (hidden state 3) states have a close correspondence with the study

definitions. Ignoring between-subject heterogeneity of these observed responses, the rates

of misclassification should be minimal between these hidden and study disease states. On

the other hand, the intermediate hidden state (state 2) has population-level means cor-

responding with smoking in the self-reported count, and abstinence in the CO response.

Some further justification is required before further interpreting inference drawn from the

hidden states to those of the diseases states typically found in smoking cessation studies.
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This would include how well each hidden state corresponds with some known evaluable

definition of disease state. Further, discrepancies may suggest other adjustments to the

modeling approach or potential changes to disease state definitions.

Additionally, while the benefits of modeling multivariate longitudinal data are well

described, it is unclear under the modeling framework we described in Chapter 3 if im-

provements are seen by including additional responses. We will begin with this element,

and examine if a multivariate model following a MHMM with separate but correlated

random effects for each response can be justified over the univariate response alternatives.

4.3 Model Considerations

4.3.1 Methodology

In this chapter we will continue to work with one of the examples from the motivating ex-

ample in Chapter 3. In Chapter 3, we initially fit using maximum likelihood estimation (via

a Gauss-Hermite approximation to the marginal likelihood) a model which considered a

bivariate longitudinal response involving cigarette smoking counts and a continuous trans-

formed (log[Y + 1]) longitudinal CO levels. Under the Gauss-Hermite approximation, we

were able to fit a two hidden-state Markov model, with separate but correlated zero-mean

multivariate normal random effects in the observed longitudinal process by extending the

work of others in the univariate settings (Altman, 2007). Increasing the hidden state space

would have also significantly increased the computing time, as not only would the com-

putation of the forward probabilities be more computationally complex, approximating

the gradient or Hessian (when required, for instance, in computing approximate standard

errors for the estimates) would require significantly more evaluations of the likelihood.

We will return to using the cigarette count response in this chapter as further illustra-

tion on how the Bayesian methodology in Chapter 3 can be expanded to handle several dif-

ferent types of responses. Further, we believe that in many situations the cigarette counts
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will contain more information than using the number of days in the previous week a person

smoked, the latter approach used in Chapter 3, where focus was more on demonstrating

the methodology as compared to the strategy in this chapter of a more comprehensive

consideration of modeling the smoking cessation data.

As was the case in Chapter 3, let Zit denote the hidden process for subject i, (i =

1, 2, . . . , N) at some discrete time points t, (t = 1, 2, . . . , ni). Further, denote Zi to com-

prise all values of Zit for subject i, and Z to be all values of Zi across all i. Assume Zit

arises from an M−state Markov chain with transition matrix P and initial probability

vector, π. Again, we will primarily focus on HMMs arising from first-order time homoge-

neous Markov chain hidden processes, where P (Zit = k|Zi,t−1 = j) = pjk for all t > 1, and

P (Zi1 = k) = πk, where j, k = 1, . . . ,M . As was the case in Chapter 3, we will consider

models with a hidden state space of three (M = 3).

Let yit denote a bivariate longitudinal response for subject i at time t, such that

yit = [yi1t, yi2t]
′
, where the first response is a count of cigarettes in week t over a ait day

period, and as was the case in Chapter 3, the second response is a CO level reading.

Similar to above, let yi denote all the observations for subject i across all longitudinal

responses and time points, and y be the collection of all yi for i = 1, 2, . . . , N .

We will follow the same framework as Chapter 3, but apply the new weekly cigarette

count response (Yi1t) as a Poisson count with logarithmic link function in place of the

number of days smoked response such that:

Yi1t|Zit, bi ∼ Poisson(θi1t) where, (4.1)

log(θi1t) = H
′

i1tkτ1 + x
′
i1tβ1k +w

′

i1tkbi + log(ait) and,

Yi2t|Zit, bi ∼ N(θi2t, σ
2
ε ) where, (4.2)

θi2t = H
′

i2tkτ2 + x
′
i2tβ2k +w

′

i2tkbi .
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As was the case in Chapter 3, Yi2t is the transformed (log[Y +1]) CO-levels for subject i

and time t, and τr represents the fixed effect intercept term for each hidden state, as defined

through an M -dimensional hidden state vector, Hirtk (which is dependent on Zit), xirt is

a vector of covariates at time t for subject i when Zit = k for the rth longitudinal response.

The associated fixed effect coefficient parameters for the covariates are represented by βrk,

which also could vary over different values of the hidden process. We will again repeat a

similar set of assumptions, where bi
iid∼ MVN(0,Σ), and will use separate, but correlated

random effects, where wi1tk = [1, 0] and wi2tk = [0, 1] for all i, k and t. Here, an offset

term of log(ait) is used to account for the slightly different number of days between study

visits for each individual (usually six or seven).

As we demonstrated in Chapter 3, such a model can be fit by Gibbs sampling. The

procedure which updates the hidden states outlined in section 3.3.2 can be applied after

updating the forward probabilities to use a Poisson response for r = 1 in place of the

binomial response used in Chapter 3.

Using Gibb sampling, we sample from the posterior, [β, τ ,P ,π,Σ, σ2
ε , b, z|y], by sam-

pling from the following conditionals: [τ1,β1|y, b, z], [τ2,β2|y, σ2
ε , b, z], [P |z], [π|z], [Σ|b],

[ 1
σ2
ε
|y,β, τ , b, z], [b|y,β, τ , b, z,σ2

ε ], and [Z|y,β, τ ,P ,π, σ2
ε , b].

Once Zi is updated for each i as outlined in section 3.3.2, the following can be sampled

as:

[Σ|b] ∼ InverseWishart(N + ν0,Ψ0 +
N∑
i=1

bib
′

i),

[
1

σ2
ε

|y,β2, τ2, b, z] ∼

Gamma(
(
∑N

i=1 ni + a0)

2
, (b0 +

(
∑N

i=1

∑ni
t=1(yi2t −H

′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2)

2
),

[π(s)|z] ∼ Dirichlet(ζ(s)
π + q(s)),
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where q(s) is a M -dimensional vector with mth element
∑N

i=1

∑ni
t=1 1(zi1 = m, vi = s),

[P (s)
u |z] ∼ Dirichlet(ζ(s)

u + q(s)
u ), where P (s)

u is the uth row of P (s),

where q(s)
u is a M -dimensional vector with mth element

N∑
i=1

ni∑
t=2

1(zit = m, zi,t−1 = u, vi = s),

[τ1,β1|y, z, b] ∝
N∏
i=1

ni∏
t=1

{
exp (H

′

i1tzit
τ1 + x

′

i1tβ1zit +w
′

i1tbi + log(ait))
}yi1t

×

e−exp (H
′
i1tzit

τ1+x
′
i1tβ1zit

+w
′
i1tbi+log(ait)),

[τ2,β2|y, z, b, σ2
ε ] ∝

N∏
i=1

ni∏
t=1

exp

(
−

(yi2t −H
′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2

2σ2
ε

)
∼MVN((B̃

′
B̃)−1B̃

′
ỹ2, σ

2
ε (B̃

′
B̃)−1), where

B̃ =
[
H|X

]
and is a

( N∑
i=1

ni

)
× (P + c) matrix(c being the length of xi2t)

with rows comprised of, [H
′

i2tzit
,x

′

i2t],

and ỹ2 is a

( N∑
i=1

ni

)
length vector with elements yi2t −w

′

i2tbi.

Also, [bi|yi, zi,β, τ , σ2
ε ] ∝

ni∏
t=1

{
exp (H

′

i1tzit
τ1 + x

′

i1tβ1zit +w
′

i1tbi + log(ait))
}yi1t

×

e−exp (H
′
i1tzit

τ1+x
′
i1tβ1zit

+w
′
i1tbi+log(ait)) × exp

(
−

(yi2t −H
′
i2tzit

τ2 − x
′
i2tβ2zit −w

′
i2tbi)

2

2σ2
ε

)
×[

exp

(
−1

2
b

′

iΣ
−1bi

)]
,

with [τ1,β1|y, z, b] and [bi|yi, zi,β, τ , σ2
ε ] sampled using a Metropolis within Gibbs step.

Based on this Gibbs sampling approach, we fit this model, and present the posterior

means and standard deviations for each of the parameters in Table 4.1. Further, to com-

pare this bivariate modeling approach to the two component univariate models, we also
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fit these univariate models (cigarette counts only and CO levels only) separately. These

models can be done quite easily by ignoring the unused response’s parameters, and adjust

how sampling of the hidden states, Zit, and random effects, bi are conducted. For example,

for the cigarette-only count model, we can eliminate sampling from the [τ2,β2|y, z, b, σ2
ε ]

and [ 1
σ2
ε
|y,β2, τ2, b, z] full conditional distributions, and modify the random effects covari-

ance structure, Σ to be one-dimensional with its corresponding prior (can remain inverse-

Wishart, or its equivalent Gamma distribution form), with corresponding one-dimensional

zero-mean, normal prior. Updating the hidden states involves modifying the forward prob-

ability formulas, only by ignoring the normally distributed (CO) response, which can be

done quite easily. Lastly, sampling from [bi|yi, zi,β, τ , σ2
ε ] can be done by modifying the

bivariate full conditional to be:

[bi|yi, zi,β, τ , σ2
ε ] ∝

ni∏
t=1

{
exp (H

′

i1tzit
τ1 + x

′

i1tβ1zit +w
′

i1tbi + log(ait))
}yi1t

×e−exp (H
′
i1tzit

τ1+x
′
i1tβ1zit

+w
′
i1tbi+log(ait)) ×

[
exp

(
−1

2
b

′

iΣ
−1bi

)]
.

4.3.2 Results

The results of the two univariate models are presented along side the bivariate models in

Table 4.1. Of particular note, are the stark differences between the transition matrices and

population intercepts of the univariate self-reported (SR) count-only model, and the joint

bivariate model. In the case of the univariate SR count-only model, the population modes

τ1 are quite a bit lower, which for an individuals with a the relevant random effect equal

to zero correspond with a smoking rates of 0.002, 0.030 and 0.085 cigarettes per day in

the first, second and third hidden states, respectively. This is much lower than one would

expect these rates to be, where for instance only 20 (5.6%) study participants reported

smoking fewer than ten cigarettes on the day of randomization. In this case, most of the

heterogeneity of the observed response is modeled via the random effects, where we observe

a large between-subject heterogeneity, with Σ11 = 9.6023. Further, when we predict the
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one-dimensional random effects, bi by their posterior means, and look at the distribution in

Figure 4.1, we find one which is heavily skewed to the right, with many subjects predicted

as having a random effect of around −2. This group of individuals are subjects with very

homogeneous self-reported cigarette count longitudinal trajectories, where they claim they

were abstinent throughout the entire study period. On the other hand, the patients who do

transition to the non-abstinent states are modelled mainly through the heterogeneity in the

random effects. For instance, for the two subjects with random effects predicted to exceed

six, both subjects dropped out after the first study visit. In the one week of available data,

the first subject was predicted to have daily self-reported smoke rates of 0.841, 15.385 and

44.153 in the first, second and third hidden states, respectively. They reported smoking

310 cigarettes over 7 days, for an average daily total of 44.286 cigarettes/day. The second

subject had predicted daily self-reported cigarette rates of 0.708, 12.953 and 37.174, and

reported smoking on average 37.333 cigarettes per day. In both cases, the predicted rates

in the highest hidden state correspond well with the observed values, but the separation

of the population means corresponding with the hidden states are not very qualitatively

different. Further, the distribution of the posterior mean of the random effects is heavily

skewed, suggesting poor model fit.

We also conducted an analysis using only the univariate CO-only response. The results

of this analysis (see Table 4.1) are generally consistent with those presented in Chapter

3, with a couple noted exceptions. First, we note that the second and third hidden state

population modes are quite a bit higher than what was reported in Chapter 3. In Chapter

3, we estimated the modes to be 2.26, 3.63 and 12.95 for the first, second and third hidden

states, respectively, but here they are estimated to be 2.07, 6.21 and 19.72, respectively,

which is much higher in all but the lowest hidden state. The between-subject heterogeneity

as modeled through Σ22 is about half of that reported in Chapter 3’s analyses. In general

terms, the posterior means of the random effects are reasonably symmetric about zero,

and roughly normal.
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Table 4.1: Comparison of the bivariate and the two univariate models

Parameter SR Count Only CO Only Bivariate Model

π1 0.4353 (0.0763) 0.8084 (0.0293) 0.7130 (0.0297)

π2 0.2572 (0.0617) 0.1545 (0.0283) 0.2146 (0.0289)

p012 0.1444 (0.0634) 0.0342 (0.0150) 0.0442 (0.0174)

p013 0.0643 (0.0408) 0.0115 (0.0067) 0.0136 (0.0077)

p021 0.1985 (0.0963) 0.1556 (0.0746) 0.2072 (0.0719)

p023 0.4081 (0.1190) 0.0834 (0.0481) 0.1745 (0.0598)

p031 0.2369 (0.0911) 0.1810 (0.1411) 0.1241 (0.0786)

p032 0.1635 (0.1135) 0.3420 (0.1771) 0.0877 (0.0796)

p112 0.1144 (0.0394) 0.0424 (0.0096) 0.0349 (0.0084)

p113 0.0640 (0.0283) 0.0067 (0.0036) 0.0083 (0.0037)

p121 0.1822 (0.0696) 0.0940 (0.0355) 0.2515 (0.0486)

p123 0.3746 (0.0822) 0.0700 (0.0268) 0.2271 (0.0437)

p131 0.2515 (0.0602) 0.1511 (0.0781) 0.0650 (0.0307)

p132 0.2435 (0.0603) 0.1647 (0.0914) 0.2007 (0.0501)

τ11 -6.4294 (0.4740) - -5.2899 (0.2120)

τ12 2.9067 (0.1597) - 4.4679 (0.2035)

τ13 1.0543 (0.0495) - 1.3101 (0.0434)

τ21 - 1.1207 (0.0210) 1.1851 (0.0221)

τ22 - 0.8546 (0.0446) 0.2959 (0.0474)

τ23 - 1.0557 (0.0752) 0.8782 (0.0569)

Σ11 9.6023 (1.8137) - 2.3318 (0.4179)

Σ12 - - 0.1242 (0.0459)

Σ22 - 0.0526 (0.0083) 0.1048 (0.0111)

1
σ2
ε

- 11.4430 (0.5777) 8.6795 (0.3676)

Each value is the posterior mean (posterior standard deviation), where πk is the initial

probability of hidden state k, psjk is the j, k transition probability for the sth treatment

group for the hidden states, τrk is the intercept term for response r and hidden state k, Σ

is the covariance matrix of the random effects, and σ2
ε is the residual error associated with

response 2.
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Figure 4.1: QQ-normal plot and histogram for the posterior mean of bi for the self reported

cigarette count-only univariate response MHMM model

An interesting comparison of the sources of heterogeneity in the CO response can be

conducted by using some pre-treatment data collected in this study. The study investi-

gators collected up to two screening CO levels, and one baseline measurement, where the

subjects were known to be currently smoking. This provides a very homogeneous set of
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Figure 4.2: QQ-normal plot and histogram for the posterior mean of bi for the CO-only

univariate response MHMM model

observations in terms of disease states which we can compare the variance components

estimated under a MHMM to. We fit a simple linear mixed effects model with a random

intercept and fixed time effect with the nlme package in R to these data such that:

Yi2t = γ0 + bi + γ1tit + εit (4.3)
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Figure 4.3: QQ-normal plot and histogram for the posterior mean of bi for the bivariate

response MHMM model

for t ∈ {−2,−1, 0}, bi
iid∼ N(0,Σ22) and εit

iid∼ N(0, σ2
ε ). We assessed these estimates to

those derived from the CO-only response model in Table 4.1. Under (4.3) the pre-treatment

data provides estimates of γ̂0 = 3.1925, γ̂1 = −0.0005, Σ̂22 = 0.0929, and 1
σ̂2
ε

= 16.1296.

The estimate of Σ22 corresponds closely with those we have estimated in the MHMM-
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based models. On the other hand, γ̂0 = 3.1925 corresponds with a untransformed CO

level of 23.35 which is almost double that which we have previously reported, suggesting

that CO levels in this pre-treatment period may not represent those we observe during the

treatment period. In fact, we rarely see CO-levels above 20 during the treatment period,

with only 21 longitudinal observations exceeding this threshold. Lastly, under (4.3), 1
σ̂2
ε

is

a little higher than what we estimate elsewhere, suggesting there is smaller residual error

during the pre-treatment period, which probably isn’t surprising, as we would expect less

of this source of heterogeneity under a more constant disease status, where the response

may be slightly lagged behind disease status. This analysis was meant to be illustrative

only and in principle could include other covariate effects, in addition to a random time

effect, but was fit to (4.3) mainly for a simple comparison to the models in Table 4.1.

4.4 Classifying the Hidden States

In general, during a clinical study when disease states are classified by using cutoffs of

some surrogate endpoint or biomarker, it may be difficult to determine the true state of

the clinical outcome precisely. Likewise, when using hidden state approaches such as the

ones outlined through this chapter and Chapter 3, except in cases of simulated data, it

will be difficult to evaluate the utility of inference about these hidden states as a classifier

for the true underlying disease states. As discussed in section 4.2, these hidden states

may in some manner closely resemble the thresholds on the observed responses. With

that said, one would expect that inference drawn from hidden state approaches would

roughly correspond with the disease states determined by cutoff approaches (i.e., they

would agree most of the time). When there lacks agreement between the two approaches,

this might illustrate inadequacies of either the modeling approach, the cutoff protocol,

or both. With this in mind, in this section, we will discuss a framework for evaluating

inferences pertaining to the hidden states, when cutoffs are used to define hidden states.
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We will evaluate the agreement of these cutoff-defined disease states, treating the study-

defined disease states as a ’gold-standard,’ noting that in smoking cessation studies, the

only true gold standard would be 24-hour surveillance, which is both impractical and may

not generalize to other populations or settings.

4.4.1 Methodology

The inference we can conduct for the hidden states is mainly generated from a function of

the state or locally decoded probabilities:

φ̂itk = P (Zit = k|yi, bi,Θ) =
1

J

J∑
j=1

1(Z
(j)
it = k) , (4.4)

where Z
(j)
it is the simulated value of the jth iteration of the MCMC algorithm for J total

iterations. From each observation time, we get a vector of M probabilities, and will denote

this φit = [φit1, φit2, . . . , φitM ] with
∑M

m=1 φitm = 1 for each i and t. There are other ways to

compute these quantities, but this one does not require any additional computation during

the MCMC algorithm, and can be quickly and efficiently processed from the MCMC output

once the simulation is completed.

We also define the most probable state as a maximum a posteriori estimator for each

hidden state as:

δ̂it = argmax φ̂itk
k∈{1,2,...,M}

, (4.5)

which can take on any of the discrete values in the hidden state space, such that δ̂it ∈

{1, 2, . . . ,M}, with its value representing the state with highest probability compared to

each of the alternatives individually.
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4.4.2 Results

Using the study-defined disease as a so-called ’gold standard’, we will examine the utility

of using φ̂it and δ̂it as a framework to do inference about the disease states. First, we look

at how δ̂it corresponds with different possible study definitions of smoking. These results

are presented in Table 4.2, where each weekly observation is classified according to several

study definitions as being a smoking or a non-smoking observation. These results are

cross-tabulated against the constant δ̂it values for each observation. We note that generally

the models based on a univariate self-reported response or the bivariate response model

perform the best, with the CO-only model generally performing the poorest across almost

all scenarios. We report two different calculations of accuracy, with agreement assessed in

all observations, equating δ̂it = 2 with smoking observations, and strict agreement which

assesses only those observations with δ̂it = 1 or 3. The relatively strong performance of the

univariate SR only model is somewhat surprising as the results in Table 4.1 were slightly

unexpected, and the model fit appeared to be poor (see Figure 4.1). We believe this may

be due to the absence of CO data, whereby a model fit using only SR is going to be very

sensitive to any non-zero SR observations which defines many of these study definitions.

In the bivariate case, many of the misclassified observations appear to be at least partly

due to δ̂it = 1 allowing some observations with a small SR count of 1-7 cigarettes in a week,

and strict definitions of smoking abstinence would obviously preclude these observations.

We will explore these discrepant cases in more detail later.

Next, using φ̂itk as a classifier we will assess classification performance by receiver op-

erating characteristic (ROC) curves. Figures 4.4 - 4.9 present the ROC curves for each of

the three models considered thus far (the two univariate models and one bivariate model)

broken down by study visit, with area under the curve (AUC) reported for each. Figures

4.4-4.6 use φ̂it1 as a classifier for the study definition of smoking abstinence used in the

motivating smoking cessation study (SR=0 and CO≤10). Figures 4.7-4.9 use φ̂it3 as a clas-

sifier for the study definition of smoking used in the motivating study (SR>0 or CO>10).
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Table 4.2: Breakdown of most probable disease states by different study-defined disease

states under separate univariate and bivariate models

Definition of Smoking Univariate SR Only Univariate CO Only Bivariate

SR>0 or CO>10

NS S

δ̂it = 1 1291 64
δ̂it = 2 16 102
δ̂it = 3 3 299

Strict Agreement: 96.0%
Agreement: 95.3%

NS S

δ̂it = 1 1183 240
δ̂it = 2 127 171
δ̂it = 3 0 54

Strict Agreement: 83.8%
Agreement: 79.3%

NS S

δ̂it = 1 1295 118
δ̂it = 2 17 196
δ̂it = 3 4 151

Strict Agreement: 92.2%
Agreement: 92.5%

SR>1 or CO>10

NS S

δ̂it = 1 1321 34
δ̂it = 2 31 102
δ̂it = 3 85 299

Strict Agreement: 92.8%
Agreement: 91.5%

NS S

δ̂it = 1 1291 132
δ̂it = 2 146 152
δ̂it = 3 0 54

Strict Agreement: 91.1%
Agreement: 84.3%

NS S

δ̂it = 1 1388 25
δ̂it = 2 43 170
δ̂it = 3 12 143

Strict Agreement: 97.6%
Agreement: 95.8%

SR>0 or CO>8

NS S

δ̂it = 1 1273 82
δ̂it = 2 16 102
δ̂it = 3 3 299

Strict Agreement: 94.9%
Agreement: 94.3%

NS S

δ̂it = 1 1183 240
δ̂it = 2 109 189
δ̂it = 3 0 54

Strict Agreement: 83.7%
Agreement: 80.3%

NS S

δ̂it = 1 1280 133
δ̂it = 2 16 197
δ̂it = 3 2 153

Strict Agreement: 91.4%
Agreement: 91.8%

SR>7 or CO>10

NS S

δ̂it = 1 1334 21
δ̂it = 2 65 53
δ̂it = 3 170 132

Strict Agreement: 88.5%
Agreement: 85.6%

NS S

δ̂it = 1 1373 50
δ̂it = 2 196 102
δ̂it = 3 0 54

Strict Agreement: 96.6%
Agreement: 86.1%

NS S

δ̂it = 1 1401 12
δ̂it = 2 145 68
δ̂it = 3 29 126

Strict Agreement: 97.4%
Agreement: 89.9%

SR>0 or CO>20

NS S

δ̂it = 1 1307 48
δ̂it = 2 17 101
δ̂it = 3 3 299

Strict Agreement: 96.9%
Agreement: 96.2%

NS S

δ̂it = 1 1183 240
δ̂it = 2 143 155
δ̂it = 3 1 53

Strict Agreement: 83.7%
Agreement: 78.4%

NS S

δ̂it = 1 1307 106
δ̂it = 2 19 194
δ̂it = 3 7 148

Strict Agreement: 92.8%
Agreement: 92.9%

SR is weekly self-reported smoking; CO is the weekly CO level; NS are non-smoking

observations; S are smoking observations; δ̂it is the most probable hidden state classifier

from (4.5).
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Generally, the bivariate model has a higher AUC in all but one of the instances, with the

univariate model using only the CO levels having the poorest performance. We also note

a lack of concavity in Figure 4.7, and believe this to be at least partially attributable to

the intermediate hidden state.

In Figure 4.10 we represent all four cases (on three distinct subjects) noted in the SR>0

or CO>10 case for the bivariate model fit in Table 4.2 in longitudinal panels for each

patient where the most probable hidden state was state three, but the study definition

defined the visit as being non-smoking. In each row we have each of the longitudinal

responses and locally decoded probability, P (Zit = 3|yi, bi,Θ) of being in the third hidden

state at each study visit. In the first subject, we have a subject where the last two CO

measurements are significantly elevated relative to the first three measurements, despite

the patient reporting they did not smoke, and CO levels remaining below ten. This would

suggest that the hidden states are somewhat sensitive to relative changes in CO levels

over the study period, and is again seen in the next two subjects, where the first one

is not accompanied by a corresponding SR smoking event, but the last one is. We see

a possible strength in this analysis approach, where unexplained significant increases in

CO levels relative to other periods are more easily detected when compared to using a

hard >10 threshold as was done in the study. Additionally, while only one of these cases

was corresponded with SR smoking, the magnitude that P (Zit = 3|yi, bi,Θ) was seen to

increase was also the greatest in this instance. These are the only four cases where the

model would have predicted smoking by classifying each state on the maximum locally

decoded probability.

Alternatively, Figure 4.11 is an illustrative, but representative sample of five subjects

which had a maximally locally decoded probability state of hidden state one, while the

subject was determined to have smoked according to the study definition. In many in-

stances these discrepancies can be explained by (often single isolated) study weeks where

a relatively small number of cigarettes are smoked. Often these subjects report a single
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Figure 4.10: Example longitudinal plot for subjects with one or more visits such that the

most probable hidden state according to the MHMM bivariate longitudinal model was

state three, despite it being a non-smoking visit according to the study definition.

Solid circles represent cases where state three was the most probable state, but the study

definition defines this as being a non-smoking visit. The grey line in the rightmost plots

represents P (Zit = 1|yi, bi,Θ), whereas the black line represents P (Zit = 3|yi,Θ). The

dotted line in the leftmost plot represents the study-defined CO cutoff of ten.

87



1 2 3 4 5 6

0
10

20
30

Time (weeks)

C
O

1 2 3 4 5 6

0
10

20
30

Time (weeks)

S
R

1 2 3 4 5 6

0.
0

0.
4

0.
8

Time (weeks)

P
(Z

_{
it}

=
1 

| y
, .

.)

1 2 3 4 5 6

0
10

20
30

Time (weeks)

C
O

1 2 3 4 5 6

0
40

80
Time (weeks)

S
R

1 2 3 4 5 6

0.
0

0.
4

0.
8

Time (weeks)

P
(Z

_{
it}

=
1 

| y
, .

.)

1 2 3 4 5 6

0
10

20
30

Time (weeks)

C
O

1 2 3 4 5 6

0
10

20
30

Time (weeks)

S
R

1 2 3 4 5 6

0.
0

0.
4

0.
8

Time (weeks)

P
(Z

_{
it}

=
1 

| y
, .

.)

1 2 3 4 5 6

0
10

20
30

Time (weeks)

C
O

1 2 3 4 5 6

0
10

20
30

Time (weeks)

S
R

1 2 3 4 5 6
0.

0
0.

4
0.

8

Time (weeks)

P
(Z

_{
it}

=
1 

| y
, .

.)

1 2 3 4 5 6

0
10

20
30

C
O

1 2 3 4 5 6

0
10

20
30

S
R

1 2 3 4 5 6

0.
0

0.
4

0.
8

P
(Z

_{
it}

=
1 

| y
, .

.)

Figure 4.11: Example longitudinal plot for subjects with one or more visits such that the

most probable hidden state according to the MHMM bivariate longitudinal model was

state one, despite it being a smoking visit according to the study definition.

Solid circles represent cases where state one was the most probable state, but the study

definition defines this as being a smoking visit. The grey line in the rightmost plots

represents P (Zit = 3|yi, bi,Θ), whereas the black line represents P (Zit = 1|yi, bi,Θ). The

dotted line in the leftmost plot represents the study-defined CO cutoff of ten.
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cigarette smoked during the week, have maintained low CO levels during the week, and

report smoking abstinence in the following visits. A case of this happens in each of the

five examples in Figure 4.11, most often occurring during the first two weeks. Frequently,

study definitions of smoking abstinence allow for a grace period during the first couple of

study visits, and these would be largely ignored. While often occurring during the first

few weeks, these discrepancies between the most probable hidden state and study-defined

state do occur in weeks three through six, where, for example, the third row of plots il-

lustrates a subject with all but one week with relatively low self-reported smoking, while

maintaining relatively low CO levels. In this sense, the hidden state decoding is somewhat

forgiving to low self-reported smoking while low CO levels are maintained, and no con-

tinued increases are noted. This is again evident in Table 4.2 where modifying the study

definition to include weeks where only one cigarette was smoked increases the agreement

and strict agreement from 92.5% and 92.2% to 95.8% and 97.6%, respectively. Of the 118

observations with a discrepancy between the most probable state being state 1, with a

study-defined status of smoking, 93 are explained by observations of one cigarette smoked

in a week defining smoking status. About half (13 observations) of these remaining 25

discrepant observations, result when a subject smoked seven or fewer cigarettes in a week,

and the model classified them in hidden state one. The remaining 12 observations are ac-

counted by slightly elevated CO levels, with six of these remaining discrepancies occurring

at a CO level of 11, and all occurring below 17.

An interesting case is that of the last row (subject) in Figure 4.11, where at week 3

the subject reports smoking 16 cigarettes, but maintains a low CO level, and reports no

smoking during the rest of the study visits. This one week of smoking is accompanied

by a stark decrease to nearly zero for P (Zit = 1|yi, bi,Θ), but relatively no change in

P (Zit = 3|yi, bi,Θ), indicating that this observation would be one which has a most

probable hidden state classification of two. This is both reassuring and problematic. It is

reassuring, because changes in one of the component smoking measures can be detected
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effectively, such that the model would not classify this observation as a hidden state 1

observation. We had already seen a case where relative changes in CO levels were detected

as smoking, even when self-reported smoking remained non-existent, and this illustrates

the other case, where CO levels remained low, but self-reported smoking was detected as

non-abstinent. On the other hand, conventional wisdom would generally conclude that this

was a clear case of someone relapsing, but the bivariate MHMM classifies this observation

as being most probably in the intermediate state. This is probably due to two separate but

important issues. The first is likely that the subject returns to self-reported abstinence in

the immediate following weeks. The second is likely that the relapse is not accompanied

by a CO level increase, most probably because the smoking occurred out of the window of

detection. We rest on the side of reassurance, even if we are not entirely convinced that this

observation is emblematic of intermediate smoking state visit, mainly because to classify

this observation as a non-smoking state visit would have been a worse classification. Much

of this is caused by the lack of a study-defined disease state which would closely correspond

with hidden state two, and it is difficult to draw comparisons between this hidden state and

findings in the study. As we argue above, the second hidden state resembles the smoking

state much more so than the non-smoking state both conceptually, and empirically, that

concluding an observation such as this one being in hidden state two is less of an error

than concluding that it is in hidden state one, which there is much evidence against.

4.5 Assessing the Conditional Independence Assump-

tion

Throughout this thesis, we have been relying upon several conditional independence as-

sumption to simplify the modeling approach. One assumption we would like to be able

to assess is the independence of the random effects from the hidden states. One way of

doing this is by plotting the posterior mean for each subject’s random effect by the most
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probable hidden state (δ̂it) at each study visit. These plots are done in Figures 4.12 for

the Poisson SR count response (r = 1) and 4.13 for the Normal CO level response (r = 2),

and are done for the bivariate model examined in sections 4.3.2 and 4.4.2

As can be seen in Figures 4.12 and 4.13, there may be a small dependence of the random

effects on the random effect. In general, the predicted random effects for observations with

δ̂it = 1 have their median below zero, for both responses. This is relatively small when

compared to the overall variance of the random effects distributions, and while the variance

of the random effect distribution does seem to fluctuate over the study visits, there is no

systematic pattern dependent on the most probable hidden state. While boxplots for

δ̂it = 1 do seem to have a larger number of outliers as defined by the boxplots, it also has

the largest number of observations, which may explain this in part.

4.6 Simulation Study

In order to assess the classification properties of these methods, we conducted a simulation

study. We consider two different situations, with the first situation representing a baseline

to compare the latter to. Our first situation is the standard MHMM model where none of

the model assumptions are violated. The second situation resembles a scenario when the

data are contaminated by some unmodelled external process which is dependent on the

hidden process. In this second case, two of the hidden states are contaminated at some

rate such that they resemble the third hidden state. This would correspond to an area of

concern for our motivating dataset, where some observations may have under-reported SR

cigarette counts, or high CO-levels were undetected given its short detection half life.

With this in mind, every run in each of the situations was fit first with the two separate

component univariate longitudinal MHMM models, and then with the bivariate model,

with 100 runs of each done according to the methodology described in section 4.3.1. The

specific details of the two situations are as follows:
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Figure 4.12: Box plot for the Poisson SR count response (r = 1) random effect at each

study visit stratified by the most probable hidden state, δ̂it.
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Figure 4.13: Box plot for the normal CO level response (r = 2) random effect at each

study visit stratified by the most probable hidden state, δ̂it.
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1. The data are generated from a MHMM according to (4.1) and (4.2) with τ1 =

[−3, 2, 1.5] and τ2 = [1.2, 0.5, 0.8]. As was the case in Chapter 3, we will consider

the case where the hidden states are generated as a first-order Markov Chain with a

treatment effect in the transition probabilities such that, P (0) =
[

0.85 0.10 0.05
0.20 0.60 0.20
0.10 0.10 0.80

]
. and

P (1) =
[

0.85 0.10 0.05
0.20 0.60 0.20
0.10 0.30 0.60

]
, with π = [0.60, 0.25, 0.15]. The random effects are i.i.d zero

mean multivariate normal with covariance matrix, Σ = [ 2.0 0.2
0.2 0.1 ], and the inverse of

the variance of the residual error in the second response is 1
σ2
ε

= 10.0

2. The data for the hidden states are generated as in situation (1) with the same

transition probability matrices and initial probability vector. Conditional on the

hidden states, we generated another latent (but unmodeled) source of variation,

which contaminates the model, such that Dirt|Zit = k
iid∼ Bernoulli(κrk), with κr1 =

0, and κrk = 0.1 for k > 1 and r = {1, 2}, such that (4.1) and (4.2) is modified to

have:

Yi1t|Zit, bi ∼ Poisson(θi1t) where,

log(θi1t) = H
′

i1tkτ1 + x
′

i1tβ1k +w
′

i1tbi + log(ait) + (−2)Di1t

Yi2t|Zit, bi ∼ N(θi2t, σ
2
ε ) where,

θi2t = H
′

i2tkτ2 + x
′

i2tβ2k +w
′

i2tbi + (−0.5)Di2t .

Note that the Dirt are sampled independently for each r conditional on Zit, and the

rest of the parameters are set according to the specification in situation (1).

The resulting parameters estimates from each of these situations under univariate and

bivariate MHMMs are presented in Tables 4.3 - 4.4.

In Table 4.3 we examine situation (1), and note bias in many parameter estimates

under both types of univariate response models, and sometimes this can be quite severe.

In all parameters, the bivariate model, which incorporates both of the univariate models’

responses exhibits less bias, and in some cases significantly less bias. The one exception

94



Table 4.3: Comparison of the bivariate and the two univariate models under simulation

through 100 simulation runs for Situation (1)

Parameter True Value SR Count Only CO Only Bivariate Model

π1 0.60 0.4953 (0.0880) 0.6105 (0.1514) 0.5919 (0.0498)

π2 0.25 0.2930 (0.0820) 0.2290 (0.1417) 0.2509 (0.0504)

p012 0.10 0.2149 (0.1118) 0.1823 (0.1748) 0.1052 (0.0457)

p013 0.05 0.1063 (0.0595) 0.0700 (0.0466) 0.0548 (0.0211)

p021 0.20 0.2857 (0.1115) 0.3260 (0.2064) 0.2240 (0.0984)

p023 0.20 0.2580 (0.0939) 0.2716 (0.1790) 0.2344 (0.0870)

p031 0.10 0.1224 (0.0500) 0.1196 (0.0689) 0.1053 (0.0413)

p032 0.10 0.1447 (0.0688) 0.1385 (0.1180) 0.1166 (0.0509)

p112 0.10 0.1681 (0.0643) 0.1691 (0.1616) 0.1000 (0.0282)

p113 0.05 0.0940 (0.0382) 0.0647 (0.0369) 0.0515 (0.0132)

p121 0.20 0.2385 (0.0813) 0.3196 (0.1724) 0.2038 (0.0552)

p123 0.20 0.2329 (0.0703) 0.2193 (0.1215) 0.2109 (0.0440)

p131 0.10 0.1213 (0.0585) 0.1322 (0.0838) 0.1066 (0.0342)

p132 0.30 0.2882 (0.0753) 0.2670 (0.1176) 0.2942 (0.0483)

τ11 -3.00 -3.4546 (0.4085) - -3.0245 (0.1947)

τ12 2.00 2.0566 (0.2933) - 2.0220 (0.1830)

τ13 1.50 1.4987 (0.1393) - 1.5047 (0.0928)

τ21 1.20 - 1.2674 (0.0445) 1.2080 (0.0302)

τ22 0.50 - 0.4125 (0.2364) 0.4795 (0.0572)

τ23 0.80 - 0.7558 (0.2155) 0.7899 (0.0475)

Σ11 2.00 2.4849 (0.3758) - 1.9692 (0.2659)

Σ12 0.20 - - 0.2032 (0.0446)

Σ22 0.10 - 0.1220 (0.0153) 0.1043 (0.0129)

1
σ2
ε

10.00 - 8.8300 (0.5682) 9.5031 (0.4939)

Each value is the average posterior mean (average posterior standard deviation) of the

simulated sample. πk is the initial probability of hidden state k, psjk is the j, k transition

probability for the sth treatment group for the hidden states, τrk is the intercept term for

response r and hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is

the residual error associated with response 2.
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would be that of the estimate for τ13, where the univariate SR count only model has

slightly smaller bias than the bivariate model. In both cases, the bias is very small, and

not problematic in either case. These univariate results bear some resemblance to the

bias we observed in some of the simulations conducted in Chapter 3 under the bivariate

model. Further exploration of this bias, suggested that it was a function of how well-

separated the hidden state modes of the observed response were, the amount of between-

subject heterogeneity, and the number of observation times per subject. The results here,

generally support these conclusions, although it is difficult to quantify the role of the mode

separation and between-subject heterogeneity under these different univariate response

models. The inflated between-subject heterogeneity as estimated through Σ11 and Σ22 is

also interesting. This would be generally consistent with the results we presented in Table

4.1 where we saw the univariate SR only model describe the heterogeneity through the

random effects, and not to nearly the degree expected through the hidden states. With

the limited number of observation times per subjects and multiple sources of heterogeneity

being modeled, this class of model seems to shrink the components of P toward the prior

mean, and compensate by increasing the variance of the random effects. As we noted in

Chapter 3, placing an informative prior on the components of P seemed to significantly

reduce the amount of bias observed. Lastly, we note that under the bivariate model, the

bias is significantly less. In addition to increasing the number of observation times (ni),

and using an informative prior, this study would also suggest that adding an additional

response may assist in reducing any bias observed.

In Table 4.4 under situation (2), we note a similar difference between the the bivariate

and univariate models. With the exception of p0
32 and τ12, the bivariate model has lower

bias than each of the univariate models. We generally note that when bias was observed in

Table 4.3, we tend to see higher bias in Table 4.4 introduced by the contamination process.

With this contamination being hidden state dependent, under the univariate model fits it

is perhaps not surprising to see additional bias introduced to some of the the transition

96



Table 4.4: Comparison of the bivariate and the two univariate models under simulation

through 100 simulation runs for Situation (2)

Parameter True Value SR Count Only CO Only Bivariate Model

π1 0.60 0.5088 (0.1045) 0.6360 (0.0812) 0.6351 (0.0605)

π2 0.25 0.2907 (0.0958) 0.2154 (0.0752) 0.2230 (0.0578)

p012 0.10 0.2424 (0.1203) 0.2077 (0.0955) 0.1122 (0.0538)

p013 0.05 0.1177 (0.0516) 0.0730 (0.0255) 0.0547 (0.0236)

p021 0.20 0.3099 (0.1107) 0.3421 (0.0844) 0.2464 (0.0973)

p023 0.20 0.2906 (0.1103) 0.2706 (0.0973) 0.2702 (0.1054)

p031 0.10 0.1374 (0.0575) 0.1224 (0.0424) 0.1048 (0.0427)

p032 0.10 0.1980 (0.0924) 0.1539 (0.0602) 0.1550 (0.0641)

p112 0.10 0.2037 (0.0919) 0.1662 (0.0817) 0.0917 (0.0399)

p113 0.05 0.1022 (0.0444) 0.0644 (0.0195) 0.0526 (0.0143)

p121 0.20 0.2614 (0.0980) 0.3380 (0.0795) 0.2267 (0.0695)

p123 0.20 0.2348 (0.0851) 0.2469 (0.0774) 0.2302 (0.0574)

p131 0.10 0.1539 (0.0616) 0.1528 (0.0536) 0.1260 (0.0373)

p132 0.30 0.3160 (0.0805) 0.2844 (0.0798) 0.3088 (0.0604)

τ11 -3.00 -3.5384 (0.5381) - -2.9805 (0.2382)

τ12 2.00 1.9934 (0.4420) - 1.9324 (0.2245)

τ13 1.50 1.5799 (0.1357) - 1.5371 (0.0998)

τ21 1.20 - 1.2775 (0.0267) 1.2345 (0.0278)

τ22 0.50 - 0.3812 (0.1350) 0.4578 (0.0927)

τ23 0.80 - 0.7673 (0.1096) 0.7568 (0.0834)

Σ11 2.00 2.5681 (0.4148) - 2.0325 (0.3065)

Σ12 0.20 - - 0.2048 (0.0497)

Σ22 0.10 - 0.1177 (0.0128) 0.1034 (0.0116)

1
σ2
ε

10.00 - 8.4617 (0.4531) 8.4754 (0.4269)

Each value is the average posterior mean (average posterior standard deviation) of the

simulated sample. where πk is the initial probability of hidden state k, psjk is the j, k

transition probability for the sth treatment group for the hidden states, τrk is the intercept

term for response r and hidden state k, Σ is the covariance matrix of the random effects,

and σ2
ε is the residual error associated with response 2.
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probabilities, while the other modeled sources of heterogeneity (Σ11, Σ22 and σ2
ε ) have all

increased. With the exception of a few of the placebo transition probabilities (e.g., p0
23

and p0
32), both of which are associated with the contaminated hidden states, and 1

σ2
ε
, the

bias in the bivariate MHMM is relatively small, and is reassuring, that even when the

data are contaminated by some unmodeled process, the resulting estimates are generally

well-behaved.

Lastly, we present some results pertaining to hidden state classification from the two

simulation situations for each of the univariate and bivariate models in Table 4.5. The

results are generally what one would expect, with the bivariate models generally producing

better hidden state classification results than the univariate models. Further, classifica-

tion was more efficient in the situation without the contaminated data, but still performed

remarkably well in spite of this. In general, classification of observations in the intermedi-

ate state (hidden state 2) was most difficult, irrespective of model or contamination. We

additionally stratified the analysis of situation (2) on whether the observation was con-

taminated. In the non-contaminated observations, we found that the results were slightly

better than the overall AUC assessments. In the contaminated observations, we found

that the φ̂it2 is generally a poor predictor for hidden state two as measured by AUC in

all analyses. Surprisingly, the bivariate model does slightly worse than the univariate

CO model, but this is primarily caused by the fact that the bivariate analysis is ’doubly’

contaminated by both responses, but the univariate models are conducted in the subset

of observations which is contaminated in either of the responses, including the one it is

not considering. When we further restrict the analysis to those observations which are

contaminated within their respective responses, and remove from this analysis those that

are contaminated in the other response, the mean AUC2 C reduces to 0.3986 and 0.4626

in the SR and CO univariate models, respectively.
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4.7 Discussion

Overall, in this chapter we examined the potential utility of using a multivariate approach

to modeling data arising from data where heterogeneity in the responses can be attributed

to between-subject differences and to transition between disease states. We focused on

two areas of concern. The first pertains to the appropriateness of a MHMM multivariate

modeling approach to model data from settings such as a smoking cessation clinical trial.

The second concern is related to suitability of conducting inference about the hidden states,

and whether such inferences are meaningful. Overall, we find that use of a multivariate

model has several advantages over the use of separate univariate models under the same

MHMM framework. Further, we discover that both the locally decoded hidden state

probabilities (φ̂itk), along with most probable hidden state (δ̂it) closely correspond with

the study-defined disease state definitions, and illustrate possible deficiencies for these

definitions.

Although we described in detail in Chapter 3 a modeling framework for multivariate

longitudinal response data under MHMM, it was not clear what benefits such an approach

would have over univariate or other modeling approaches. As we saw in section 4.3 there

are some clear benefits of this approach to modeling data such as those generated from our

motivating smoking cessation example. When comparing the model estimates generated

from the univariate SR and bivariate MHMMs, the hidden states in the bivariate case

clearly have more meaning, when compared to the univariate SR MHMM, which models

most of the heterogeneity in the SR response as being attributable to between-subject

differences. This result is generally observed in the simulation results in section 4.6, where

we often observe bias in the placebo group’s probability transition matrix, P (0), and hid-

den state dependent intercepts, τ . We think this partly due to the limited number of

observation times available for each patient, but note that the bivariate model’s estimates

are generally significantly less biased than either of the SR or CO univariate response

models. Lastly, under a multivariate MHMM there are some significant improvements
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of the posterior distribution of the random effects, which are severely skewed in the uni-

variate SR case, but is much less so under a multivariate approach. The asymmetry we

observe in the SR response random effect, is primarily caused by a very homogeneous

set of observations from patients self-reporting complete abstinence throughout the en-

tire six-week study period. We believe that if the study were continued for a while longer,

some of these subjects would relapse, and this would reduce some of the asymmetry noted.

Alternatively, other non-Gaussian or mixture model approaches could be used, but also

have limitations. Non-parametric approaches have been used to model the random effects

in univariate MHMMs (Maruotti and Ryden, 2009), but have been generally limited to

univariate random effects. Under our current approach of separate but correlated random

effects, this may prove more difficult. The second approach involving mixture models may

be more promising, but one would likely want to consider the possibility that the mixtures

were dependent on the hidden states we have been modeling. With the limited sample size

in this dataset, we believe this would also be difficult, especially considering we believe the

random effect distribution asymmetry is caused by primarily a very homogeneous set of

observations to begin with. The results in section 4.3 along with the simulation results of

section 4.6 demonstrate the advantages of using a multivariate model over the component

univariate models.

The second concern pertains to hidden state inference. In general, the modeling frame-

work we have outlined in Chapters 3 and 4 is going to describe the heterogeneity in the

response under the model assumptions. The hidden states need not describe any specific

disease or other discrete states, but in general, both the plausibility and utility of the mod-

eling approach will be improved greatly if they have some kind of interpretation. Often,

as was the case in the motivating smoking cessation clinical trial, study disease states will

be defined by these longitudinal responses, instead of being viewed as the disease states

generating the longitudinal response, which would ideally be more appropriate. In a case

such as this, there is no gold standard as to which to calibrate the hidden states to, as
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the corresponding longitudinal response used to define the study’s disease states are prone

to error. With that said, a general agreement between the hidden states and the study-

defined disease states would be ideal. We do see such an agreement, with very high areas

under the ROC curve, and a generally high overall agreement, when including or excluding

the intermediate second hidden state which is not study-defined. When we look at cases

of disagreement, we see situations which may be illustrative to inform further work to

improve our model, or provide guidance to conduct future smoking cessation studies. For

the most part, the MHMM approach is more sensitive to relative changes in CO levels

within a subject, and less sensitive to small isolated cases of SR smoking (most often a

single cigarette in a week) when contrasted with the study-defined definitions which are

very strict about any SR smoking, and do not consider relative changes in CO levels, with

only absolute values exceeding the threshold defining smoking. The differences may illus-

trate future work that can be done to improve modeling approaches, by modeling directly

a stricter definition of SR smoking by explicitly defining hidden state one as having a SR

rate of 0. Alternatively, this may also provide some guidance for future studies which may

improve study-defined disease outcomes which use relative changes in CO, or less stringent

definitions of SR smoking, when isolated or small relapses occur.

With that said, the agreement of the hidden states done by either δ̂it or φ̂itk and the

study-defined disease states is quite high. This is quite impressive given that this modeling

approach was largely an unsupervised task, where the data were used to generate the

hidden states, without any explicit labelling of observations. Further, we have been able

to model more effectively an intermediate state which has been hypothesized to exist for

subjects attempting to cease smoking, and may be important in describing a treatment

effect. While other methods have been developed to explain heterogeneity in a longitudinal

response, these approaches have generally used approaches which classify entire trajectories

on one response or several responses of the same type into static groups (e.g., Lin et al.

(2000)). In many settings static groups will be appropriate, but in other settings such as
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smoking cessation, it seems unlikely that this approach would work well. Moreover, in the

general setting, these approaches have been further limited by their ability to use responses

of different data types, such as the discrete and continuous data we have encountered

throughout Chapters 3 and 4.

Overall, we believe the multivariate longitudinal data modeling framework developed

in Chapter 3 provides a good basis to conduct inference, where the hidden states closely

correspond to well understood disease states. Using a multivariate MHMM over the uni-

variate alternatives allows one to conduct inference more efficiently, and generally get more

meaningful results.
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Chapter 5

Using MHMMs for Prediction and

other Missing Data Issues

5.1 Background

In Chapter 3 we described a modeling framework which could describe heterogeneity in

multivariate longitudinal response data from between-subject differences in addition to a

dynamic hidden process. In Chapter 4, we assessed the utility of inference drawn from the

hidden states from these models to describe measurable clinical outcomes, and identified

several areas where the models may provide more insightful inference about the true clinical

outcome of interest instead of the measurable one. However, thus far we have largely

ignored two important issues encountered frequently in longitudinal data analysis. The

first issue we will examine will focus on the prediction of hidden states. The second topic

is somewhat related, and is related to justification and implementation of a method to

account for patient dropout in such studies. We will examine both of the issues in the

context of the same motivating clinical trial discussed throughout the previous chapters.
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5.2 Prediction of Hidden States

5.2.1 Methods

In Chapter 4, we described one way to conduct inference about the hidden states under a

MHMM, by using the locally decoded probabilities,

φ̂itk = P (Zit = k|yi, bi,Θ) =
1

J

J∑
j=1

1(Z
(j)
it = k) , (5.1)

where, Zit is the hidden state for subject i = 1, . . . , N , at time t = 1, . . . , ni, yi is the

complete set of R longitudinal responses for subject i over all t, bi is a vector of random

effects for subject i, Θ comprises all population-level parameters of the MHMM, and J are

the total number of samples generated from the MCMC algorithm described in Chapters

3 and 4.

Prediction of the hidden states in the future can take several forms, but will gener-

ally be some function of the current hidden states (or their decoded probabilities) and

the probability transition matrix for the hidden Markov process, P . For example, one

estimator for P (Zi,t+h = k|yi, bi,Θ) based on the MCMC output would be,

ω̂itk = P (Zi,t+h = k|yi, bi,Θ) =
1

J

J∑
j=1

q
(j)
zitk

, (5.2)

where q
(j)
lk is the (l, k)th entry of P h for the jth MCMC sample. If t + h ≤ ni, and the

data are complete, then one is conditioning on yi,t+h, and the situation is not of much

direct interest, as inference would be more efficiently conducted through φ̂itk. If t+h > ni,

then a more interesting situation would occur and could be utilized when one was trying to

predict post-follow-up hidden state distributions, or impute hidden states from data which

was missing resulting from study dropout. To illustrate this directly, we will evaluate ω̂itk

as a predictor for the the study-defined smoking definition of study visit t+ 1.
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5.2.2 Results

As mentioned previously, using ω̂itk to predict hidden states at time points which are

conditioned on is not so interesting in most situations. In order to evaluate ω̂itk for time

points in the future, we will fit the bivariate MHMM model discussed in Chapter 4 to a

subset of the data considered in those models. In this analysis, we will run the model

fitting procedure by MCMC restricting the observation times to only the first five weeks,

instead of six. This analysis is presented in Table 5.1 alongside the estimates provided in

Table 4.1 from Chapter 4.

In general, the subset analysis involving a maximum of five observation times, has sim-

ilar estimates to those provided in the previously performed analysis involving all six study

visits. In Table 5.1 we obtain what we would expect, that in general the analysis based on

only five time points generally has larger posterior standard deviation, representing more

uncertainty with less data.

We then use the subset model involving only five observation times, to predict the

hidden states in study visit six in the 250 subjects with the available data to perform

these analyses. Likewise to illustrate the differences, we also present the complete data (all

six observation times) analysis, which we would expect to have slightly higher predictive

power, based on the fact that one is conditioning on the observation one is trying to in

essence base prediction on.

As seen in Figure 5.1-5.2, the predictive value of ω̂i6k when conditioned on the longi-

tudinal response at t = 6 is higher than that of the subset analysis which only includes

the first five observation times. Overall, the ability to do prediction when no information

is known about future observations, is still quite good, with both AUCs for ω̂i61 and ω̂i63

exceeding 0.9.
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Table 5.1: Comparison of full observation model and the five week model

Parameter
Bivariate Model
Full Obs. Time.

Bivariate Model
Max(ni) = 5 Subset

π1 0.7130 (0.0297) 0.7228 (0.0314)

π2 0.2146 (0.0289) 0.1932 (0.0304)

p012 0.0442 (0.0174) 0.0511 (0.0214)

p013 0.0136 (0.0077) 0.0182 (0.0102)

p021 0.2072 (0.0719) 0.1888 (0.0783)

p023 0.1745 (0.0598) 0.2129 (0.0746)

p031 0.1241 (0.0786) 0.2201 (0.1159)

p032 0.0877 (0.0796) 0.1973 (0.1356)

p112 0.0349 (0.0084) 0.0348 (0.0096)

p113 0.0083 (0.0037) 0.0119 (0.0050)

p121 0.2515 (0.0486) 0.2688 (0.0550)

p123 0.2271 (0.0437) 0.2124 (0.0484)

p131 0.0650 (0.0307) 0.0900 (0.0409)

p132 0.2007 (0.0501) 0.2429 (0.0640)

τ11 -5.2899 (0.2120) -5.1700 (0.2257)

τ12 4.4679 (0.2035) 4.4182 (0.2017)

τ13 1.3101 (0.0434) 1.2419 (0.0447)

τ21 1.1851 (0.0221) 1.1895 (0.0227)

τ22 0.2959 (0.0474) 0.2816 (0.0529)

τ23 0.8782 (0.0569) 0.8216 (0.0529)

Σ11 2.3318 (0.4179) 2.2239 (0.4090)

Σ12 0.1242 (0.0459) 0.1258 (0.0463)

Σ22 0.1048 (0.0111) 0.1023 (0.0113)

1
σ2
ε

8.6795 (0.3676) 8.7250 (0.4158)

Each value is the posterior mean (posterior standard deviation). where πk is the initial

probability of hidden state k, psjk is the j, k transition probability for the sth treatment

group for the hidden states, τrk is the intercept term for response r and hidden state k, Σ

is the covariance matrix of the random effects, and σ2
ε is the residual error associated with

response 2.
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Figure 5.1: ROC curves for ω̂i61 and ω̂i63 in the complete data analysis

108



P(Z_{i6}=1 | y, ....) and
 Non−Smokers

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC:  0.9085

P(Z_{i6}=3 | y, ....) and
 Smokers

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC:  0.9074

Figure 5.2: ROC curves for ω̂i61 and ω̂i63 in the five observation time subset analysis
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5.3 Missing Data Issues

As mentioned in section 5.1, the motivating smoking cessation study had a somewhat

significant number of subjects who were enrolled in the study who dropped out before the

end of the six week treatment period. In Figure 5.3 we present the patient disposition

for the study, where 385 subjects were randomized to receive placebo or one of three

active treatments. Of these 385, 31 had no evaluable post-treatment initiation data, or

data which contained only one part of the bivariate response we were considering for the

MHMM models. This would occur when the patient submitted their first week’s SR data

(or part thereof), or had their CO measurements taken at the first post-treatment visit,

but did not complete the other component. While this information may be useful in some

contexts, in both of these cases, we have excluded these patients from analysis in Chapters

3-5, because the data was very limited to draw inference from if it existed at all. The

patients may play an important role in the study of smoking cessation treatment, but they

generally will not be able to help us conduct inference in the models we are considering.

Of the remaining 354 subjects we have considered in Chapters 3-5, we had 250 subjects

with complete data. Of the 104 subjects who did not have complete data, 50 had one or

more intermittently missing data. In many instances, these data were recorded as missing

due to a technical or other problem, and we therefore believe the mechanism by which

they are missing is largely ignorable. Not including the 31 subjects who dropped out near

or at week one with no evaluable data, we had an additional 54 subjects who made it

through just 37 days or fewer of the 42-day (6-week) treatment period.

While the problems with missing data extend to the intermittently missing data, we will

primarily focus on those 54 subjects who dropped out prior to the end of the study. In those

subjects, who had intermittent data, as others point out (Altman, 2007), under a missing

at random (MAR) assumption, the only modification that needs to be made to the methods

described in Chapters 3 and 4 is to how the hidden states (Z) are sampled. If observations

are missing between times t and t
′

with 1 ≤ t
′
< t ≤ ni, then the forward probabilities
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Figure 5.3: Patient disposition for the smoking cessation study

become, αit = αi,t′P
hG(yit) where, h = t − t′ , and P h is the h−step transition matrix,

and G(yit) is as defined in Chapter 3. Similarly, the stochastic recursion used to update

the hidden states can be modified in a similar fashion. There is sufficient reason to believe

that the intermittently missing data are missing at random, as very often the missingness

was recorded being due to some technical error, or other external issue unrelated to the

subject’s responses. On the other hand, the missing data mechanism for those subjects

which dropped out, is less clear, and will be focus of further analysis.

Often subjects who drop out are assumed to be smokers, and analyses proceed under

this assumption, even when for instance, evidence of long term abstinence at 3 or 6 months

is obtained. Others (Borrelli et al., 2002) have cited concerns that those individuals who

drop out may be different in a number of ways when compared to either smokers or non-

smokers. One way of assessing these hypotheses, would be to examine the distributions

of φ̂itk for each k at the time of dropout. If the distributions of φ̂itk stratified by those

who completed the study, and those who dropped-out differed in many respects, then
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this may provide some evidence that the subjects who dropped out were a distinguishable

group, and the dropout mechanism is not ignorable. If however, the distributions of φ̂itk

were approximately similar to each other, then this would provide some evidence that

conditional on Zit at the time of dropout, the dropout mechanism may be ignorable. In

Figures 5.4-5.6, we plot histograms of φ̂itk in all observations (overall), in all observations

at t = 6, and in those observations at the time of dropout.

In Figures 5.4-5.6 we note a common ”U”-shaped curve throughout, with most of the

values of φ̂itk being at [0, 1] interval boundaries. While there are a relatively higher number

of observations with φ̂itk values between 0.1 and 0.9 for k = 1 or 2, the sample sizes are

relatively small, and it is difficult to attribute these. While the shapes of these distributions

are generally the same, this does not mean that the hidden state distributions are identical

for each of the groups considered. For instance, for the t = 6 observations, the mean values

of φ̂itk are 0.787, 0.0767, and 0.136 for k = 1, 2, and 3, respectively. At the dropout time,

the mean value of φ̂itk is 0.574, 0.214 and 0.212 for k = 1, 2, and 3, respectively.

In addition to the discussion related to the hidden states at the time of dropout,

there may be additional justification for a MAR assumption for the subjects who dropped

out. In an unpublished analysis (Dubin, 2012), subjects with low adherence to therapy in

the previous week, or with moderate to severe adverse events were found more likely to

dropout. While some of the adverse events may be due to the treatment, many are related

to withdrawal symptoms or craving, and many of these may be modeled effectively by the

hidden states. This along with the analysis of the distributions of φ̂itk may make a MAR

assumption reasonably plausible. Further justification or exploration of the missing data

mechanism is probably merited, and should be undertaken in this and other datasets.

5.3.1 Methods

Under an ignorable missing data mechanism, we can modify the methodologies we have

described previously in Chapters 3 and 4. Without loss of generality, but primarily be-
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Figure 5.4: Histogram of the distribution of φ̂it1 = P (Zit = 1|yi, bi,Θ) overall, at t = 6

and at dropout.
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Figure 5.5: Histogram of the distribution of φ̂it2 = P (Zit = 2|yi, bi,Θ) overall, at t = 6

and at dropout.
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Figure 5.6: Histogram of the distribution of φ̂it3 = P (Zit = 3|yi, bi,Θ) overall, at t = 6

and at dropout.
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cause our focus is on those subjects who drop out of the study, assume that there are no

intermittently missing data, and the missing data are only generated from those subjects

who drop out of the study. Let yOBSi be the observed data for the multivariate longitudinal

response for subject i observed up to time ni, and let yMISS
i be the missing data for the

multivariate longitudinal response for subject i, such that yCi = [yOBSi ,yMISS
i ] are both

combined, and refer to the complete longitudinal response data. Similarly, for the same

common data points as the longitudinal response, let zOBSi be the hidden states for all

observations for t = 1, . . . , ni, and let zMISS
i be the missing data for the hidden states

for subject i, such that zCi = [zOBSi , zMISS
i ] are both combined, and refer to the complete

hidden state data. Assume, that V > ni for all i, where V is the maximum follow-up for

all subjects.

Ideally, we would like to sample from [Θ, bi|yC ], and conduct our inference from the

posterior conditional on the complete data. Since we do not have access to the completed

data, we can impute the missing data to complete it, and approximate sampling from this

posterior. To do this, we add to the approach described in Chapters 3 and 4 to sample from

[zMISS|zOBS, ...] and [yMISS|yOBS, ...]. This is relatively straightforward if the missing

data mechanism is ignorable, and is based on the conditional independence assumptions

contained in the modeling framework. At each iteration, [zOBSi |yOBSi ,Θ, bi] is sampled

as described in section 3.3.2 using the observed longitudinal response data only. We note

that, [zMISS
i |zOBSi ,yOBSi ,Θ, bi] = [zMISS

i |zOBSi ,P ], and Zit′ (ni < t
′ ≤ V ) can be sampled

from P (Zit′ = k|Zi,t′−1 = j) = p
(s)
jk , the (j, k)th entry from the sth treatment group’s

transition matrix, and then iteratively for times t
′
+1, . . . , V , conditioning on the previous

sampled state. Once zMISS
i has been sampled, we can sample from [yMISS

i |yOBSi , zCi ,Θ, bi]

which can be done for each response independently, the components of yMISS
i can be

sampled for time point t > ni such that Yirt|Zit = k ∼ frk(yirt|Θ), where frk(.) is the

density or mass function for response r in hidden state k. At each iteration of sampling

from the posterior by Gibbs sampling, yMISS and zMISS can be generated to complete
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their respective datasets after which yC and zC can be used to sample from each of

the other full conditionals: [τ ,β|yC , b, zC ], [P |zC ], [π|zC ], [Σ|b], [ 1
σ2
ε
|yC ,β, τ , b, zC ] and

[b|yC ,β, τ , b, zC ,σ2
ε ].

We used this methodology to impute the missing data for each of the binomial and

Poisson count models considered in Chapter 3 and 4, respectively. Those results will then

be compared to the complete case and the available data analyses.

5.3.2 Results

As one can seen in Tables 5.2 and 5.3, the results from the complete case, available data

and imputed missing data do not differ substantially, in either models based on the SR

count by a binomial (number of days) model, or a Poisson (cigarette count) model. As

would be expected, the complete case analysis generally has the highest posterior standard

deviation, given it has the smallest number of observations and subjects used. In general,

the imputed missing data analysis has a slightly higher posterior standard deviation in

most parameter estimates, representing increased uncertainty due to the missing data.

5.4 Discussion

Overall, we have seen that prediction of the hidden states can be done in a similar fashion

to how classification of hidden states was done in Chapter 4. Prediction based on estima-

tors such as ω̂itk is relatively effective in discriminating between future smoking and non-

smoking observations as determined by the study-definition, at least for the subsequent

week. Further analysis of properties of ω̂itk to assess its prediction over longer periods

of time, is an area of future investigation. Generalizing these predictions of longer-term

abstinence may be possible, but we believe it to be much more difficult, as the transition

probability matrix and perhaps even the Markov assumption may not be be sustained after

the observation/treatment period of six weeks is completed. To illustrate this, the sta-
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Table 5.2: Bivariate MHMM results for three different missing data scenarios under the

binomial count SR model

Parameter
Complete Cases

N = 250
Available Data

N = 354
Imputed Missing Data

N = 354

π1 0.7662 (0.0459) 0.7569 (0.0408) 0.7495 (0.0422)

π2 0.1862 (0.0439) 0.1787 (0.0386) 0.1829 (0.0405)

p012 0.0273 (0.0168) 0.0234 (0.0140) 0.0236 (0.0143)

p013 0.0099 (0.0069) 0.0124 (0.0074) 0.0132 (0.0078)

p021 0.3734 (0.1191) 0.2799 (0.0978) 0.2506 (0.0917)

p023 0.1714 (0.0821) 0.1881 (0.0763) 0.1847 (0.0768)

p031 0.0691 (0.0631) 0.0661 (0.0605) 0.0601 (0.0559)

p032 0.2983 (0.1175) 0.3076 (0.1180) 0.3016 (0.1167)

p112 0.0413 (0.0120) 0.0421 (0.0114) 0.0425 (0.0113)

p113 0.0033 (0.0031) 0.0045 (0.0033) 0.0048 (0.0035)

p121 0.2617 (0.0650) 0.2669 (0.0640) 0.2698 (0.0641)

p123 0.2210 (0.0626) 0.2041 (0.0581) 0.2108 (0.0592)

p131 0.0833 (0.0411) 0.0768 (0.0378) 0.0744 (0.0364)

p132 0.1180 (0.0630) 0.1158 (0.0606) 0.1235 (0.0598)

τ11 -5.5827 (0.3067) -5.3024 (0.2700) -5.3464 (0.2727)

τ12 3.8310 (0.3094) 3.9877 (0.2854) 3.9975 (0.2921)

τ13 2.1909 (0.3809) 2.1059 (0.3937) 1.9559 (0.4172)

τ21 1.1755 (0.0252) 1.1902 (0.0229) 1.1845 (0.0229)

τ22 0.2987 (0.0758) 0.3116 (0.0819) 0.3118 (0.0810)

τ23 1.0737 (0.0621) 1.1195 (0.0614) 1.1037 (0.0614)

Σ11 6.5650 (1.2101) 6.8945 (1.1307) 6.8228 (1.1296)

Σ12 0.3108 (0.0842) 0.3311 (0.0792) 0.3183 (0.0777)

Σ22 0.1059 (0.0128) 0.1011 (0.0112) 0.0986 (0.0110)

1
σ2
ε

10.3074 (0.5051) 9.9166 (0.4831) 10.0166 (0.4944)

where πk is the initial probability of hidden state k, psjk is the j, k transition probability for

the sth treatment group for the hidden states, τrk is the intercept term for response r and

hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is the residual

error associated with response 2.
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Table 5.3: Bivariate MHMM results for three different missing data Scenarios under the

Poisson count SR model

Parameter
Complete Cases

N = 250
Available Data

N = 354
Imputed Missing Data

N = 354

π1 0.7475 (0.0372) 0.7130 (0.0297) 0.7258 (0.0298)

π2 0.1892 (0.0368) 0.2146 (0.0289) 0.1969 (0.0286)

p012 0.0409 (0.0197) 0.0442 (0.0174) 0.0414 (0.0161)

p013 0.0106 (0.0072) 0.0136 (0.0077) 0.0126 (0.0073)

p021 0.2661 (0.0990) 0.2072 (0.0719) 0.2880 (0.0847)

p023 0.1564 (0.0689) 0.1745 (0.0598) 0.2488 (0.0747)

p031 0.1239 (0.0780) 0.1241 (0.0786) 0.1203 (0.0698)

p032 0.0721 (0.0698) 0.0877 (0.0796) 0.0849 (0.0737)

p112 0.0374 (0.0100) 0.0349 (0.0084) 0.0359 (0.0088)

p113 0.0089 (0.0044) 0.0083 (0.0037) 0.0085 (0.0039)

p121 0.2362 (0.0531) 0.2515 (0.0486) 0.2582 (0.0498)

p123 0.2361 (0.0479) 0.2271 (0.0437) 0.2348 (0.0445)

p131 0.0786 (0.0344) 0.0650 (0.0307) 0.0643 (0.0299)

p132 0.1724 (0.0504) 0.2007 (0.0501) 0.1973 (0.0489)

τ11 -5.4652 (0.2731) -5.2899 (0.2120) -5.1772 (0.2132)

τ12 4.2017 (0.2915) 4.4679 (0.2035) 4.3274 (0.2214)

τ13 1.3120 (0.0632) 1.3101 (0.0434) 1.3068 (0.0441)

τ21 1.1671 (0.0248) 1.1851 (0.0221) 1.1876 (0.0222)

τ22 0.2708 (0.0526) 0.2959 (0.0474) 0.2801 (0.0469)

τ23 0.8727 (0.0575) 0.8782 (0.0569) 0.8791 (0.0526)

Σ11 2.7983 (0.6228) 2.3318 (0.4179) 2.5771 (0.4644)

Σ12 0.1102 (0.0539) 0.1242 (0.0459) 0.1399 (0.0453)

Σ22 0.1036 (0.0117) 0.1048 (0.0111) 0.1052 (0.0109)

1
σ2
ε

9.3642 (0.4317) 8.6795 (0.3676) 8.7176 (0.3707)

where πk is the initial probability of hidden state k, psjk is the j, k transition probability for

the sth treatment group for the hidden states, τrk is the intercept term for response r and

hidden state k, Σ is the covariance matrix of the random effects, and σ2
ε is the residual

error associated with response 2.
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tionary distribution based on estimates of P in either treatment group would be roughly

[0.7, 0.1, 0.2], where typically the longterm abstinence rates are much less (about 20%),

though, admittedly, this is really comparing apples to oranges, as often in the initial study

period the participants are on assigned treatment, whereas in post-treatment follow-up

the participants are typically off treatment.. Some caution is therefore warranted before

attempting to generalize these results to long-term smoking status.

In section 5.3 we discussed missing data issues, and examined the hypothesis put forth

by Borrelli et al. (2002) that subjects who drop out of smoking cessation intervention

studies are distinct from individuals who are classified as smokers or non-smokers in such

studies. An alternative hypothesis could be that the distinct population Borrelli et al.

(2002) observed was actually a mixture of diseases states. We believe we have provided

some evidence for this latter alternative hypothesis. In general, we see that subjects,

regardless of the time at which we observe them, have generally a high propensity to be in

one of the three hidden disease states used in our analyses. Rarely do individuals have a

mixed propensity to be classified in multiple hidden disease states. This observation seems

to generalize to individuals at the time of dropout, and we therefore believe that those

who drop out are actually a mixture of all three hidden states at the time of dropping out.

We would estimate the proportions of this mixture to be about 0.574, 0.214 and 0.212,

which represents a significantly higher prevalence of hidden state two and three than

would be observed in subjects who did not dropout. We believe that this may explain the

observation by Borrelli et al. (2002) about subjects who drop out. We also point out that

a common practice which assumes that subjects who drop out of smoking cessation studies

as smokers is likely not entirely appropriate. In general, we note that those who drop out

are more likely to not be in hidden state one which generally identifies with abstainers, but

at the time of dropout, we generally observe more abstainers than non-abstainers, which

calls into question the legitimacy of this assumption.

Lastly, we examined how to incorporate the additional uncertainty caused by the miss-
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ing data. We suggest an imputation approach which assumes ignorability of the missing

data mechanism, which we believe to be appropriate, since information about the current

disease state seems to be very predictive of future disease states, and this information

seems to generalize to both subjects who dropped out and those who did not in a similar

fashion. This is only one way of conducting analysis to address missing data issues. Other

imputation (e.g., Liu, Taylor and Belin (2000)) and other approaches (e.g., Ibrahim, Chen

and Lipsitz (2001)) could also be used under a MHMM to account for missing data, with

careful attention paid to both the observed and hidden components of the MHMM frame-

work. Implementation and comparisons of different modelling approaches is an area of

future work.

We believe MHMMs provide a unique opportunity to conduct inference as it relates to

prediction of hidden states, and also address issues related to missing data. As we have

shown, this approach provides a good framework for evaluating issues such as ignorability

of the missing data mechanism, and other hypotheses related to subjects who drop out.
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Chapter 6

Mixed Effects Hidden Markov

Models for Multivariate Longitudinal

Data: Summary and Future Work

6.1 Summary

6.1.1 Modelling Framework

In Chapter 3, we described a modeling framework to describe multivariate longitudinal

data, where heterogeneity within the response can be described by between-subject dif-

ferences, in addition to heterogeneity caused by dynamic changes to an underlying hidden

disease state. We restricted our consideration of dynamic models for the hidden disease

states transitions to M -state first-order discrete time Markov models. We believe that this

class of models will describe many situations well, including the study design we considered

– a randomized clinical trial for the study of the treatment of addiction.

The modeling framework built upon the work of others (e.g., Altman (2007); Gue-

orguieva and Agresti (2001)) in both the univariate longitudinal response literature for
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hidden Markov models, and the multivariate longitudinal data literature, where utilizing

separate, but correlated random effects between responses has been used in several set-

tings. As we have shown, computation can be done by maximizing the marginal likelihood,

after integrating over the random effects distribution, but in most situations the computa-

tional burden of fitting such models will be extensive. Under this approach computation

time significantly increases as a function of overall sample size, hidden state space size,

and most importantly the number of responses being considered. In general, it is possible

to fit such models by maximum likelihood estimation with a moderately sized sample, but

for large hidden state spaces or responses with dimension greater than two, the computa-

tion time is significant. Since both of these latter scenarios involving more responses or a

larger hidden state space are common issues one will want to examine under this modeling

framework, we believe other methodologies will need to be utilized in the general setting.

Other approaches to modeling MHMMs, including semi-parametric approaches (Maruotti

and Ryden, 2009) may be useful in univariate responses or for independent random effects

distributions, but with these limitations, they will not generally be applicable to most sit-

uations encountered modeling a multivariate longitudinal response under a MHMM. With

all this in mind, we chose to implement computation through a Bayesian approach using

Markov chain Monte Carlo. This approach is relatively straightforward to implement, and

can be extended quite easily to other more complex settings.

Under the various simulation studies in Chapter 3, this methodology generally per-

formed well, in terms of producing unbiased estimators for the model parameters, and

having approximately frequentist coverage on posterior intervals. In certain situations,

bias was noted in some of the parameter estimates, and was generally the result of a flat

posterior. This occurred mostly in components of the hidden state probability transition

matrix, and we attribute this mainly to the low expected number of transitions observed

in smaller strata (i.e., in our case the placebo group which had 1/3 the number of sub-

jects as those on active treatment). The occurrence of a flat prior and subsequent biased
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estimation can be caused by a number of different factors examined in Chapter 3, and is

something one needs to be aware of when fitting such models. This phenomena did not

occur in the full analysis of the smoking cessation dataset, we believe largely due to the

well-separated modes of the observed response conditional on the hidden response.

In Chapter 4, under different simulation scenarios, there appears to be a clear benefit

of modeling the data as a multivariate response. When compared to the two separate

univariate response models, a bivariate model which modeled both responses simultane-

ously was shown to be superior in many respects, but in particular, the amount of bias

observed in many of the parameters was significantly reduced. This would suggest that

adding a longitudinal response which has some of the heterogeneity explained by the same

underlying disease state to multivariate response MHMMs may improve inference drawn

from such a model.

While we have considered one example where a multivariate longitudinal response is

described by a MHMM, there may be other settings where this is applicable as well. In

general, in the study of substance abuse and addiction, it is common to monitor subjects

over time by self-reported use and biochemical confirmation (e.g., urinalysis), and this

would be another obvious application of our approach. Psychiatric diseases as well often

administer a battery of questionnaires to determine severity and presence of mental illness,

and often these diseases are believed to have multiple dynamic disease states. It may also

be the case, where only a univariate response is available for a particular disease area, and

although a MHMM would apply, no additional responses are available which are known to

describe the disease state. It is often the case that in many of these chronic illnesses, the

dynamic disease states severely affect quality of life in the individuals. In such a setting,

it would seem logical to model the univariate longitudinal response alongside the (possibly

multivariate) quality of life response under a MHMM for multivariate response framework

we describe in Chapter 3.
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6.1.2 Classification and Prediction of Disease States in Smoking

Cessation

In Chapter 4, we examined how well the hidden states describe already utilized disease state

definitions in a smoking cessation clinical trial. We generally relied on estimates from the

locally decoded probabilities of the hidden states. These study-defined disease states are

typically characterized by thresholds of one or more longitudinal responses. While far from

a ’gold-standard’, it would be desirable that the hidden states we model throughout this

thesis roughly correspond to these known definitions, and when discrepancies do occur,

they illustrate differences between the hidden and study-defined disease states. This is

generally the case, where we see a high correspondence between the hidden states and

those defined in the study protocol. Discrepancies typically occur when the MHMM model

detects relative increases in CO-levels as evidence of non-smoking, whereas the study

defined thresholds only consider absolute levels of CO. Similarly, the MHMM hidden states

are generally forgiving for isolated self-reported smoking observation (usually fewer than

7 cigarettes in a week), when not accompanied by an increase in CO-levels, or sustained

SR counts through subsequent weeks.

We believe these discrepancies describe two areas where one may want to improve the

study definitions, or alternatively, enforce stricter adherence to abstinence in the lowest

hidden state within the model approach itself. The close agreement between these two

estimates of disease state, is reassuring, and generally leads one to believe that a MHMM

is useful in the setting of smoking cessation intervention studies. The MHMM approach

also has the additional benefit of modeling the intermediate second hidden state, believed

to describe withdrawal. This state is much more difficult for study investigators to define

and measure, but may play an important role in assisting people in quitting smoking

(Killeen, 2011).

In Chapter 5, we showed how prediction of hidden states can be done similarly to the
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classification of the hidden states. In general, prediction of future hidden states can be

done relatively efficiently, and sampling the hidden states will play an important role in

imputation approaches to addressing the issue of missing data.

6.1.3 Missing Data Issues

Missing data as a whole, but in particular study dropout is a problem frequently en-

countered in longitudinal data analysis, and we encounter it when analysing the dataset

from our motivating example. A MHMM approach allows for a unique opportunity to

test for non-ignorability of the dropout mechanism, by examining the distribution of the

locally decoded probabilities of the hidden states at different time points, including the

time leading up to the study dropouts. This along with other information was used as

a justification for a missing at random (MAR) assumption, which we used to describe a

methodology to impute the missing data (both the observed longitudinal data in addition

to the hidden states) during the analysis procedure. While future work may be required

to further provide justification for the MAR assumption in our setting, the approach we

described could be adapted to whenever such an assumption was appropriate.

6.2 Future Work

We believe that future work falls into three categories. The first obvious area of work

would be to apply and extend the modeling framework to other settings and situations.

The second topic is related to model selection and hypothesis testing, and is an important

topic we have largely ignored. Lastly, we have outlined a very basic procedure for imputing

missing data, and we believe future work could involve examining other situations and

assumptions.
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6.2.1 Model Extensions

We have outlined a framework for modeling multivariate longitudinal data as a MHMM,

but have generally limited our analysis to a bivariate response. In practice, as mentioned

in section 6.1.1, multivariate longitudinal data can consist of many more responses. While

we did observe some definite benefits of analyzing a bivariate response over two univariate

responses under a MHMM, it remains unclear if these benefits will extend to further

dimensions of responses, or other situations. Increasing the dimension of the longitudinal

response will also increase the computational complexity of the MCMC procedure, and it

remains to be seen if the current modeling approach is feasible computationally for large

response numbers. Improvements to sampling approaches may be necessary to accomplish

this, or further modeling assumptions, for instance, pertaining to the variance components

of the random effects, may be required.

Altman (2007) has proposed further extensions for univariate longitudinal response

MHMMs to allow for between-subject heterogeneity of the hidden response also modeled

through random effects. Scott, James and Sugar (2005) proposes a Bayesian hierarchical

approach for describing heterogeneity in the hidden process, that could be adapted to the

modeling framework we have described. We believe these are important generalizations

that allow for increased flexibility in the modeling approach, but were unable to consider it

for our application due to the limited observation time (ni ≤ 6) available for each subject.

Use of such a modeling approach is increasingly difficult as the hidden state space increases,

and large observation time would be required, as a model which allows for heterogeneity

in all transition probabilities would require an additional M(M − 1) random effects in

addition to any random effects used in the observed part of the model.
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6.2.2 Model Selection

Throughout Chapters 3-5, we generally neglected any direct quantitative comparison of

models, largely due to our limited ability to do model selection and hypothesis testing.

Others (Celeux et al., 2006) have noted that using information criteria such as the de-

viance information criteria (DIC) are difficult in models such as random effect or mixture

models. In the setting of a MHMM, the models considered are both a random effect and

mixture model. In addition to this problem, often such approaches will require extensive

computation, and may not be feasible in many settings. Including covariates in these mod-

els is of particular interest, as the choice to include certain covariates in the observed or

hidden components of the model is not always obvious. For the reasons we have outlined,

providing model selection methodology or clarification on how to use already established

methods is an area of future research.

6.2.3 Missing Data Approaches

We provided one approach to accommodate missing data via dropout in Chapter 5 based on

a missing at random assumption. While we believe this assumption to be appropriate for

the dataset we considered, in general a sensitivity analysis should be conducted to consider

other assumptions such as a missing not at random (MNAR) dropout. Future work could

include the consideration of such alternative modeling assumptions (e.g., Ibrahim, Chen

and Lipsitz (2001)), in addition to the sensitivity of the MAR assumption to intermittently

missing data which occurred throughout the study.

6.3 Conclusions

MHMMs have been applied to the analysis of univariate longitudinal data, but can be

extended to the setting of multivariate longitudinal data analysis, provided that conditional

independence assumptions are appropriate. We have taken a Bayesian approach to conduct
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inference, and we believe the approach we have outlined can be adapted and extended to

many other important situations. Future work will focus on these extensions, in addition

to appropriate methods to conduct model selection and addressing subject dropout in such

models.

MHMMs are another class of model which can be used to explain heterogeneity within

a longitudinal response which would largely be inappropriately accounted for by standard

methodologies used for the analysis of longitudinal data. In the setting where data are

generated from individuals transitioning through multiple disease states, we believe that

MHMMs are an important tool for understanding the natural history of the disease, and

identifying the role treatment plays in modifying the disease states.
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