
 

 

Topology-Based Vehicle Systems Modelling 

 

 

 

by 
Edward Kar-Yun Yam 

 
 
 
 
 
 
 
 
 

A thesis 
presented to the University of Waterloo 

in fulfillment of the 
thesis requirement for the degree of 

Master of Applied Science 
in 

Mechanical Engineering 
 

 
 

 
 

 
 

Waterloo, Ontario, Canada, 2012 
© Edward Kar-Yun Yam 2012 



ii 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners 

 

I understand that my thesis may be made electronically available to the public. 

Author’s Declaration  



iii 

 

Abstract 

The simulation tools that are used to model vehicle systems have not been advancing as quickly 

as the growth of research and technology surrounding the advancements of vehicle technology 

itself. A topological vehicle systems modelling package would use Modelica to take advantage of 

the flexibility and modularity of the language, the inherent multi-domain workspace and 

analytical accuracy of model equations. This package is defined through the use of SuperBlocks, 

a generalized model that allows the user to select and parameterize the appropriate sub-system 

directly within the workspace. This palette of SuperBlocks would be implemented within 

MapleSim6 to create MapleCar. This provides a customized balance between speed and accuracy 

after taking advantage of advanced graph-theoretic solutions methods used in MapleSim. 

MapleCar provides several advantages to a user over conventional tools. The 

SuperBlocks would ease the required steps to model a full vehicle system by providing clear, 

simple connections to quickly get a simulation assembled. Next, each SuperBlock is represented 

by a model that contains a replaceable model, a Modelica function which allows its internal 

model to be changed through a user-friendly parameter selection. The combination of sub-

systems accessible directly through a parameter allows a variety of vehicle systems to be easily 

assembled, as well as provide a container for future models to be shared and published. 

A short demonstration of connecting these vehicle SuperBlocks from the MapleCar 

package is provided using MapleSim6. The generalized vehicle component palette provides a 

straight-forward, customizable drag-and-drop interface to assist in generating vehicle models for 

simulation. Conclusions and recommendations are provided at the end. 



iv 

 

Acknowledgements 

I would like to give my thanks to my supervisor Dr. Amir Khajepour for taking me on as his 

graduate student. Dr. Khajepour along with visiting professor Avesta Goodarzi and post-doctoral 

fellow Alireza Kasaiezadeh have used their combined expertise in the field of Automotive 

Research to create the initial proposition of this work which targets some of the issues with 

current software. This grand vision, along with continuous meetings and updates throughout the 

terms, helped guide the development of this new Modelica-based MapleSim package. 

 I would also like to extend my thanks to Professor John McPhee and his research group, 

alongside Orang Vahid and Chad Schmitke from MapleSoft for providing technical assistance 

and vehicle model reference material within MapleSim. Within Dr. Khajepour’s group, I was 

first to work with both MapleSim and Modelica to specifically analyze vehicle dynamics, and 

they provided many helpful insights along the way. 

 Finally, I would like to thank my friends and family for continuously providing spiritual 

and emotional support throughout the years. My friends have been with me since freshmen year 

in undergrad here at the University of Waterloo. I respect each and every one of them, and all 

have begun a successful transition into real life. Laphroaig and Bowmore were always great 

accompaniment during early mornings and stressful nights on campus. My family has strived for 

academic excellence and I hope to make them proud.   



v 

 

Table of Contents 

Author’s Declaration .................................................................................................................... ii 

Abstract ......................................................................................................................................... iii 

Acknowledgements ...................................................................................................................... iv 

Table of Contents .......................................................................................................................... v 

List of Figures ............................................................................................................................... ix 

List of Tables ............................................................................................................................... xii 

1. Introduction ............................................................................................................................... 1 

2. Literature Review ..................................................................................................................... 4 

2.1 Matlab and Simulink ............................................................................................................. 4 

2.1.1 How it Works.................................................................................................................. 5 

2.1.2 How it's Used .................................................................................................................. 5 

2.2 MSC.Adams .......................................................................................................................... 7 

2.2.1 How it Works.................................................................................................................. 7 

2.2.2 How it's Used .................................................................................................................. 8 

2.3 CarSim ................................................................................................................................... 9 

2.3.1 How it Works................................................................................................................ 10 

2.3.2 How it's Used ................................................................................................................ 11 



vi 

 

2.4 Dymola ................................................................................................................................ 12 

2.4.1 How it Works................................................................................................................ 13 

2.4.2 How it’s Used ............................................................................................................... 15 

2.5 Maple and MapleSim .......................................................................................................... 16 

2.5.1 How it Works................................................................................................................ 17 

2.5.2 How it's Used ................................................................................................................ 19 

2.6 Software Discussion ............................................................................................................ 19 

2.6.1 Flexible Design Approach ............................................................................................ 20 

2.6.2 Encapsulated Multi-Domain Simulations ..................................................................... 22 

2.6.3 Flexibility of the Mathematical Model ......................................................................... 24 

2.6.4 Analytical Accuracy ..................................................................................................... 25 

2.6.5 A Unified Platform for Research .................................................................................. 26 

3. Vehicle Modelling and Analysis Using a Topological Approach ........................................ 29 

3.1 Top-Level Definition........................................................................................................... 29 

3.2 The SuperBlock ................................................................................................................... 34 

3.3 Interaction of the SuperBlocks ............................................................................................ 38 

3.4 SuperBlock Palettes............................................................................................................. 39 



vii 

 

3.4.1 Chassis SuperBlock ...................................................................................................... 40 

3.4.2 Suspension SuperBlock ................................................................................................ 42 

3.4.3 Sensors, Controllers ...................................................................................................... 44 

3.4.4 SuperBlock Summary ................................................................................................... 45 

4. Implementation of the Topological Vehicle Modelling and Analysis Tool ........................ 47 

4.1 Package File Structure ......................................................................................................... 47 

4.2 Layout of a SuperBlock Palette ........................................................................................... 49 

4.3 Example of a MapleCar SuperBlock ................................................................................... 49 

4.4 Extending Pre-Existing Packages........................................................................................ 56 

4.5 MapleCar in MapleSim ....................................................................................................... 58 

5. Simulation Examples .............................................................................................................. 60 

5.1 Construction of a Simple Vehicle Model ............................................................................ 60 

5.2 Four-Wheel Steering Model ................................................................................................ 65 

5.2.1 Low-Speed Turning Radius Improvement ................................................................... 67 

5.2.2 High-Speed Straight Line Stability............................................................................... 69 

5.3 Long-Combination Vehicles (LCV) and Road Train Simulations...................................... 74 

6. Conclusions and Recommendations ...................................................................................... 78 

References .................................................................................................................................... 82 



viii 

 

Appendix A – Chassis SuperBlock source code ....................................................................... 84 

Source Code .............................................................................................................................. 84 

Appendix B – Suspension SuperBlock source code ................................................................. 92 

Source Code .............................................................................................................................. 92 

 

  



ix 

 

List of Figures 

Figure 1 - Simulink model of a Bicycle Model with hand-derived equations ................................ 6 

Figure 2 - Look-up table and database selection for a CarSim vehicle model ............................. 11 

Figure 3 - Quick and Easy generation of CarSim results and animations .................................... 12 

Figure 4 - Dymola Workspace ...................................................................................................... 14 

Figure 5 - MapleSim Block Workspace Representation of a 3DRigidSliderCrank ..................... 18 

Figure 6 - Animation of the 3DRigidSliderCrank from MapleSim .............................................. 18 

Figure 7 - Two isolated simulation approaches ............................................................................ 21 

Figure 8 - Hybrid Design approach .............................................................................................. 22 

Figure 9 - Series and Parallel Hybrid Power Management Configurations.................................. 23 

Figure 10 - Major Sub-Systems of a Vehicle [17] ........................................................................ 30 

Figure 11 - Essential Sub-Systems of a 4-Wheel Cart [17] .......................................................... 31 

Figure 12 - Major Sub-Systems required modelling a basic electric vehicle [17]........................ 32 

Figure 13 - Code sample demonstrating a Model with a Replaceable Model .............................. 36 

Figure 14 - Automatic drop-down population with constrainedby modifier ................................ 37 

Figure 15 - Basic coordinates of a simple chassis ........................................................................ 41 



x 

 

Figure 16 - A sample transformation of a chassis component into a trailer ................................. 42 

Figure 17 - Parameters for a suspension SuperBlock as seen in Dymola ..................................... 43 

Figure 18 - MapleCar File Structure ............................................................................................. 48 

Figure 19 - MapleSim models of basic mechanisms – revolute link, slider-crank, and four-bar . 50 

Figure 20 - Kinematic SuperBlock Demo - Interface and Icons .................................................. 51 

Figure 21 - Kinematic Library SuperBlock Demo – component library ...................................... 53 

Figure 22 - Kinematic SuperBlock Source Code .......................................................................... 55 

Figure 23 - Visual description of the SuperBlock ........................................................................ 56 

Figure 24 – Tire SuperBlock Package Structure utilizing the built-in Tire Library Components 57 

Figure 25 – Chassis and Suspension of a simple Roll-Pitch vehicle model ................................. 61 

Figure 26 - MapleSim model of a Simple Vehicle Model (From Tire Examples) ....................... 62 

Figure 27 - The simple vehicle model constructed with SuperBlocks ......................................... 63 

Figure 28 – Parameters for MapleCar SuperBlocks; Left: Suspension, Right: Chassis ............... 64 

Figure 29 - Construction of a Four-Wheel Steer model using SuperBlocks ................................ 66 

Figure 30 - Comparative visualization of various 4WS gains ...................................................... 67 

Figure 31 – Steer Input and Yaw Rates of 4WS a comparative simulation ................................. 68 



xi 

 

Figure 32 - High Speed Four Wheel Steering - Global Path ........................................................ 70 

Figure 33 - High Speed Four Wheel Steering - Yaw Measures ................................................... 70 

Figure 34 - 4WS Car with Trailer ................................................................................................. 72 

Figure 35 - 4WS Car with Trailer - Yaw Rate Difference ............................................................ 73 

Figure 36 - Kinematic Diagram of a Simple B-Double LCV ....................................................... 75 

Figure 37 – Workspace diagram of a LCV ................................................................................... 75 

Figure 38 - Example trajectory of a long combination vehicle .................................................... 76 

 

  



xii 

 

List of Tables 

Table 1 - Software Summary Chart .............................................................................................. 28 



1 

 

Chapter 1 

1. Introduction 

A fundamental component of modern engineering involves the modelling and simulation of 

complex, real-world problems. This holds true for automotive research since vehicle systems are 

very expensive to test, in both time and money. Automotive software tools are used to aid in the 

modelling and simulation stages of a project to predict a working solution before the next phase 

of development is committed. However, these tools vary in modelling approaches, equation 

flexibility, ease of use and connectivity to other tools. The growth and development of some of 

these tools is difficult due to the proprietary nature of the software to retain its users. A new 

automotive modelling system will be proposed to provide several key advantages in the current 

repertoire of tools. 

In the choice of any software, there is a trade-off between the available flexibility the 

software gives to the user and how easy or difficult it is to develop and maintain new vehicle 

models. On one end of the extreme, all of the dynamic equations involved in vehicle dynamics 

can be derived and solved using a differential algebraic solver. This allows for a maximum 

amount of flexibility with an infinite potential for model fidelity, but it would be impossible to 

maintain. On the other hand, software can use a static mathematical model that comprises of 

parameters and look-up tables to transform a generic vehicle into the desired model. This is 

essentially a drop-in solution that requires table selection and parameterization by the user, but 

the amount of flexibility is limited to the developers of the software. A middle ground exists 



2 

 

between these two approaches that include a fast, simple modelling package to provide turn-key 

modular vehicle sub-systems, within an open, flexible physical modelling workspace. 

These complex projects are beginning to break the traditional paradigms of classical 

mechanical engineering. Designing a large integrated system comprised of mechanical, electrical 

and software components into a singular system requires a mechatronics perspective. However, 

this is not only taxing on the capabilities of an engineer but requires the available simulation 

tools to be extremely flexible. It is not uncommon for a large mechatronics project to require a 

chain of software tools, using the results and analysis in one program as a component of input 

into the next program. This is especially true for simulations involving accurate powertrain 

models, or contains multiple levels of control within a model. The inclusion of alternative 

energy, or ‘green’, research only complicates the model workspace when many branches of 

science and engineering are diligently working to popularize better alternatives to the internal 

combustion engine [1][2]. Many complications arise when a researcher must involve switching 

between several software tools in both usability and functionality. 

Proposed in this thesis is a unified vehicle simulation package that assists a user in 

generating vehicle models, as well as accurately simulate the models using MapleSoft’s Maple 

and MapleSim software packages. The implementation of this concept is completed through the 

use of Modelica within MapleSim, which provides a graphical user interface on top of an object-

oriented programming structure that packages algebraic model equations as blocks in a 

workspace. The modelling environment revolves around creating complex physical systems 

comprised of basic physical equation blocks. These systems can then be saved and parameterized 

to resemble a new library of vehicle components. By utilizing advanced functionalities of 



3 

 

Modelica in conjunction with the advanced solver methods of MapleSim, a new modelling 

framework has been designed to allow a user to quickly create vehicle models through a 

programmatic, topological block diagram. This package, currently named MapleCar, provides 

the necessary tools to quickly assemble and deploy a vehicle model in an open and efficient 

modelling environment, which natively includes support to simulate alternative domains within a 

unified workspace. MapleCar consists of multiple sub-packages, each containing a working 

library of components for a particular subsystem of the vehicle. These components are then 

automatically accessible through parameters within SuperBlocks, a generalized, high-level block 

that easily drops into the workspace and connects to neighbouring SuperBlocks. With all these 

features in place, a new hybrid workspace of system-level modelling and component-level 

modelling is formed with clear, organized component libraries to promote the sharing and 

reusability of vehicle models.  

Chapter 2 contains an overview on currently available simulation tools comparing the 

typical functionalities of the software, common applications and shortcomings of each. The 

concept of a topology-based vehicle systems modelling is introduced in Chapter 3 as a package 

that provides a combined workplace for flexible manipulation of model equations while 

maintaining a user-friendly graphical interface. Several conceptual features of modelling using 

topological framework are explained. In Chapter 4, technical details of the package, and the 

structure of the basic Vehicle pallet within Modelica are explained. A working prototype of the 

new design tool is demonstrated in Chapter 5. Finally, a short discussion regarding the future of 

this work as well as concluding statements is provided in Chapter 6.  



4 

 

Chapter 2 

2. Literature Review 

With any new Engineering project, knowing which tools are available, and knowing which tools 

to use is as important as defining the project itself. In addition to this, features that assist users in 

generating models for simulation must be balanced by the software’s openness to freely edit and 

manipulate the model equations. Obtaining an appropriate vehicle model is the first step in any 

vehicle project, but the speed and efficiency of work put into the project is ultimately limited by 

the user’s own understanding of the software. 

2.1 Matlab and Simulink 

Matlab began as an educational tool designed to teach mathematical concepts of linear algebra 

without the need for students to directly learn FORTRAN, an early programming language that 

handled numerical computation at the time. Researchers first adopted its use for control theory 

engineering, but it quickly spread to other areas of research.  

Simulink is an additional tool that operates above the main Matlab environment. Instead 

of the console and text-based environment in Matlab, a visual modelling environment is 

presented with several block libraries. The visualization of mathematical functions is primarily 

used for signal processing and control theory, where various layers of filters and functions are 

easily combined and compiled. Since there is such tight integration with Matlab and C-code, 

connectivity to external libraries and real-time hardware is popular for testing hardware and 

software in the loop experiments.  



5 

 

2.1.1 How it Works 

Matlab is analogous to a programming environment with many mathematical matrix tools and 

functions, appropriately named “Matrix Laboratory.” Much onus relies on the user to effectively 

use the provided tools for relevant analysis. As a large numerical computational engine, the value 

of all the calculations is only understood by the user; little effort is made by the software to 

extract meaning from the computed values. Typical analysis performed in the Matlab 

environment relies on an algorithmic procedure to pass numbers between various functions and 

blocks until a user’s solution is reached. The core of the software is based in the C programming 

language, with an extensive library of prepared functions available to the user. Matlab also 

contains its own scripting language in which users can program and execute large sequences of 

functions or instructions creating a very open and flexible calculation environment.  

2.1.2 How it's Used 

Matlab is not a model generation environment; its purpose is to perform many calculations as 

defined by the user. Simulink, with its extensive list of additional toolboxes, contains a 

SimMechanics package that provides basic tools to assemble multibody models, but it is not a 

popular tool. When applied to vehicle systems dynamics, model equations are either manually 

entered, or another tool is used to generate a model for simulation within Matlab. This is a basic 

example of a software tool chain; a vehicle model is typically constructed in an external 

modelling environment, for example from CarSim or MapleSim, and is compiled as an external 

block inside the Simulink graphical block environment. Matlab does not assist in generating and 

defining vehicle models. 



6 

 

 

Figure 1 - Simulink model of a Bicycle Model with hand-derived equations 

 The flexible nature of the C programming language and extensive compatibility with 

external hardware makes it a preferred environment for hardware in the loop (HIL) or software 

in the loop (SIL) simulations. The library of toolboxes available in Matlab contain prepared 

algorithms and functions for easy testing of many high level concepts; from control engineering 

filters and controllers, to machine learning algorithms and optimization. As for presenting 

simulation results, 2D and 3D graphing tools are provided, as well as a spatial simulation 

environment through a Virtual Reality Modeling Language (VRML) geometry space. 

  



7 

 

2.2 MSC.Adams 

MSC Adams is the “most widely used multibody dynamics and motion analysis software in the 

world” [3]. Developed by MSC.Software Corporation, Adams features a modular software 

environment to separately model, simulate and analyze complex dynamical problems. This 

software is used in all branches of engineering, and is used by 90 of the top 100 manufacturers in 

the world [4]. Accurate simulations are accompanied by a graphical modelling environment that 

can connect with computer-aided design (CAD) models. 

2.2.1 How it Works 

Introductory usage of MSC.Adams would involve three modules of the software suite; 

Adams/View, Adams/Solver and Adams/Postprocessor. Users interact with the Adams/View 

modeling environment to create multibody systems that emulate physical mechanisms. All 

bodies, masses, geometries and joints must be defined in their workspace before the model is 

simulated. Then, Adams/Solver uses classic analytical methods to generate the equations of 

motion for a multibody simulation. All the bodies, markers and joints contribute to parameters in 

a library equations based off the classical physical equations that describe the motion and force. 

Each body defined in the model automatically generates an equation for each degree of freedom 

in the body, while each joint or driver generates corresponding constraint equations. These are 

then simultaneously integrated while applying the joint constraints (depending on the solver 

selection) to generate the results. Optimization techniques to simplify the model equations occur 

after a large number of equations are created in the workspace, but large models can still result in 

an undesirable amount of computation time which complicates its usage in hardware and 

software in the loop simulations. 



8 

 

 The basic Adams software does not provide too much assistance in generating models for 

specific applications; instead, separate modules can be purchased containing dedicated templates 

and toolsets for various industries. For complex machines and advanced kinematic and dynamic 

models, Adams/Machinery provides a library of components to use on top of the standard 

kinematic constraints, such as gears, belts and pulleys. Alternative domains of hydraulic, 

pneumatic and electrical analysis coupled with control theory engineering are available under 

Adams/Mechatronics and Adams/Controls packages to integrate multi-discipline, multi-domain 

components on top of the Mechanical domain presented in Adams/View. With respect to vehicle 

dynamics, MSC.Adams a rich collection of additional packages that target specific types of 

vehicle analysis. The Adams/Car package allows for the assisted generation of a full vehicle 

model or a specific subsystem in the Adams/View interface. Other products include prepared 

simulation environments for the chassis, driveline, suspension, tire, car ride and driver models to 

allow engineers to quickly and rigorously create and test their models.  

2.2.2 How it's Used  

The workflow of Adams.Car hints at a basic topological structure to simulate a vehicle. Separate 

models of subsystems must be loaded and connected together to form a car. This is achieved 

through creating an assembly of models that are connected through communicators. These 

communicators equate and transfer the force and displacement between connected models. In 

addition to the physical sub-systems, a library of tire models is included to handle the complex 

forces that occur between the tire and the ground. The result of the vehicle assembly becomes a 

high-fidelity, mechanical vehicle model that accounts for the kinematic and dynamic behaviours 

of the suspension and chassis. 



9 

 

 This is a great tool to examine mechanical sub-systems within a vehicle since the 

software is designed to accurately perform kinematic and dynamic analysis on multibody system, 

such as the suspension system. Common suspension types that share the same joints and linkages 

can be driven by Hard Points, a parameter set that contains all the physical measures of geometry 

and joint locations. This is useful for using Adams as a tool to generate the characteristic 

suspension curves of a suspension system and perform kinematic and compliance analysis. This 

information describes the subtle motions of translation and rotation when the suspension system 

undergoes a vertical input. This analysis is crucial when a reduced order model of a suspension is 

required [5]. The modularity of the system also provides a great research platform to test 

different suspension designs or create new suspension models [6]. 

2.3 CarSim 

CarSim is a vehicle simulation package that "simulates the dynamic behavior of passenger cars, 

racecars, light trucks, and utility vehicles." [7]. It is accepted as standard software to use when 

any fast, drop-in vehicle model is needed. Within the CarSim interface, passenger vehicles can 

be simulated with a large library of driver models or standard maneuvers, parameter changes can 

be tested across any vehicle sub-system, and over 800 calculated variables can be plotted 

alongside automated visualizations. Parameters of the vehicle model are stored as large database 

entries as look-up tables or simple mathematical functions which allow very fast simulation 

times at the expense of enforcing a timestep and rounding errors. However, a large library of data 

sets for tire models, suspension sets, aerodynamic calculations, etc. collected and refined over 

years of use within industry provides a turn-key solution in quickly starting any vehicle 

simulation.  



10 

 

2.3.1 How it Works 

The simulation philosophy behind this tool differs from most other software. The model 

predominately consists of look-up tables and simple mathematical curves to empirically emulate 

the various non-linear behaviours of a vehicle. Most notably, the characteristic suspension curves 

and tire models contain very complex, non-linear behaviour that is not trivial to simulate. There 

does not exist an all-encompassing tire model to accurately capture the dynamics of the tire 

undergoing various slip angles and loading conditions. Instead, the data obtained from thorough 

tire testing can be loaded as a look-up table such that the simulation can reflect this non-linear 

behaviour. The fine motion of a multi-body suspension model is similarly calculated. The 

response of any selected suspension model within CarSim is based on its kinematic characteristic 

curve. Since non-steerable suspension systems only contain one kinematic degree of freedom, 

every change in displacement and rotation is recorded offline and stored as a look-up table 

during simulation.   



11 

 

 

Figure 2 - Look-up table and database selection for a CarSim vehicle model 

2.3.2 How it's Used 

There are numerous advantages to having the majority of mathematics simplified as a look-up 

table. As long as the vehicle model contains good data, many non-linear dynamics of a full 

vehicle model can be simulated in real-time. This is excellent when a full vehicle model is 

needed for controls and estimator design. When the CarSim model is imported into Matlab and 

Simulink, access to the internal variables and results are available so the vehicle can be 

monitored inside a control loop to evaluate the stability and performance. 



12 

 

 

Figure 3 - Quick and Easy generation of CarSim results and animations 

 However, there are several clear disadvantages to the CarSim vehicle model that limits its 

use in research. Manipulation of the vehicle model equations is limited, and only the pre-defined 

list of variables can be output from the model. This makes the software infeasible to perform 

research that is geared towards particular sub-systems of vehicle. For example, the suspension of 

the vehicle only exists as that look-up table, so it is usually a better choice to utilize an open 

simulation environment to test and engineer various suspension components. 

2.4 Dymola 

Dymola, short for dynamic modelling laboratory, “is a complete tool for modeling and 

simulation of integrated and complex systems” [8] that utilizes the Modelica modelling 

language. Modelica is a “non-proprietary, object-oriented, equation based language to 

conveniently model complex physical systems” [9]. These two entities began from the same 

source, Dymola being the commercial entity to provide licensed software that best uses the 

publicly available language definition produced by the Modelica Association. Dymola has since 



13 

 

been acquired under Dassault Systèmes to increase integration with the computer-aided design 

(CAD) software CATIA, while the Modelica Association continues to maintain development of 

the Modelica modelling language, holds conferences to those who use the software, and 

promotes the open nature of the language and library to users all over the world. 

2.4.1 How it Works 

The standard operation of Dymola revolves around two important tabs in the software, the 

modelling tab and the simulation tab. The modelling tab essentially contains an entire integrated 

development environment (IDE) to provide comprehensive tools to develop models using 

Modelica. An annotated screenshot of the workspace is shown in Figure 4. The left panel shows 

the package browser, which displays all the loaded libraries and packages available to the user, 

and the component browser, which displays the models and sub-models loaded into the currently 

working file. The top command bar has four key workspace panels, the Icon View, the Diagram 

View, the documentation tab and Modelica browser. Each of these panels corresponds to features 

in the Modelica code. The icon of a model contains a small visual image that represents the 

current model. The icon will also show any connectors in the model, which allows connections 

to other models. The diagram of the model contains the active drag-and-drop workspace; 

components from the package browser are dropped and connected into the diagram to assemble 

the physical model. The documentation tab displays information about the active model within a 

dedicated Hypertext Markup Language (HTML) annotation, and the Modelica browser displays 

the entire raw code of the selected model or package. 

 



14 

 

 

Figure 4 - Dymola Workspace 

Modelling in Modelica is unique because it relies on constructing multibody circuits 

much like an electrical network. There are several notable differences when modelling in this 

manner. The software requires the kinematic topology of the mechanical system for simulation 

instead of creating connections through a visualized, geometric space. This simplifies the steps 

needed to generate a model but complicates the visualization of the model during assembly. The 

connections assigned between components represent equated variables instead of input-output 

signal connections. For comparison, the standard block view of Simulink the connection lines 

between blocks simulate a flow of signals put through various stages of function blocks, where 



15 

 

the output is calculated based on the input in a unidirectional procedure. Instead, the Modelica 

modelling language connects the input and output variables in each block such that each block is 

accessing the same variable.  

After the assembly of the model is completed in the modelling tab, all the simulation and 

post-processing functions reside within the simulation tab. The component equations within the 

entire model are automatically assembled into a large matrix to be used to solve and integrate the 

dynamic behaviour of the system. Several optimization techniques are used to reduce the number 

of equations the integrator must solve. After the simulation is complete, the only interaction the 

user must provide is based around the plotting and animation controls to visualize the data. All 

the system variables are available to the user after the simulation is complete, and 3D 

visualization can also be provided. 

2.4.2 How it’s Used 

Dymola provides the best integrated development environment to learn and develop raw 

Modelica code. The open-source nature of Modelica encourages the sharing of publicly available 

packages linked from their website [10]. However, similarly to the commercialization of 

Dymola, Modelon [11] provides professional, licensed toolboxes that encompass all aspects of 

vehicle simulation. The vehicle dynamics library includes an extensive library of predefined 

components and subsystems which can be assembled into any class of wheeled vehicle. 

Modularity of the models is inherent in the modelling language, which allows for the 

development of component level design, to isolate and test a particular subsystem, as well as 

system level design, to assemble and modify several subsystems in a higher topology. The 

largest downside of the software is the lack of popularity of Modelica itself in North America. 



16 

 

Even though large efforts of introduction and documentation surround Modelica, it is difficult for 

users to transition from existing modelling approaches to the physical modelling within Dymola. 

In addition, it is marketed within the suite of products available for CATIA, software typically 

marketed towards the highest level of industry. 

2.5 Maple and MapleSim 

Maple is an analytical computation engine to “analyze, explore, visualize, and solve 

mathematical problems” with an intuitive, clickable interface and document publishing system 

[12]. It is often wrongly compared to Matlab, which can usually perform the same functionalities 

but in an entirely different way. Matlab primarily operates on the manipulation of large, 

numerical matrices which enforces an inherent discretization of signals and results. Most 

operations performed by Maple utilize a symbolic computation engine that can maintain 

analytical accuracy through algebraic simplification before integration. MapleSim is a newer 

physical modelling software package that was developed as an add-on to the Maple symbolic 

computational engine. MapleSim features a block diagram modelling environment to 

automatically generate equations for complex, multi-domain systems. The solving method of 

MapleSim differs from the other software packages by using Graph Theoretic methods to 

automatically and efficiently combine all the component model equations before calculating the 

response. This allows the software to obtain a solution with higher fidelity and shorter 

calculation time, as well as allow the creation for deployable code for use in external simulation 

environments. 

  



17 

 

2.5.1 How it Works 

MapleSim also utilizes Modelica to handle the diagram interface and icon view in the main 

workspace. The workspace is practically identical to that of Dymola, with the exception of how 

the model browser and parameters are displayed in different tabs. The package browser displays 

a modified version of the Modelica standard library with vendor specific changes hidden from 

the user. For multibody simulations in MapleSim, a proprietary library replaces the standard 

Modelica library. This MapleSoft multibody library uses graph-theoretic methods to quickly 

generate a minimum number of equations that describes the simulated model. This method works 

by first examining how each block is connected to one another, determining a set of fundamental 

tree or cut-set equations, and then inserts the constitutive equations of each component into the 

fundamental equation sets [13]. During regular usage, this is a completely automated process that 

occurs during simulation time that is not seen by the user. The minimum numbers of equations 

are efficiently and automatically generated to describe the full system without any interaction. 



18 

 

 

Figure 5 - MapleSim Block Workspace Representation of a 3DRigidSliderCrank 

 

Figure 6 - Animation of the 3DRigidSliderCrank from MapleSim 



19 

 

2.5.2 How it's Used 

MapleSim is generally marketed as a more entry-level simulation tool compared to Dymola. 

Much effort has been put into making the tool as simple and intuitive as possible, such that a new 

user does not require any insight into how the Modelica code functions. As an analysis tool, 

MapleSim features a deep connection with the Maple symbolic computation engine through its 

connectivity to Maple worksheets. This allows for the simplified model equations to be displayed 

to the user and further analyzed in Maple, for example, to perform sensitivity analysis on 

parameters or provide frequency domain analysis directly on the model. This extension of 

analytical mathematical tools does not exist in the other review software. 

The popularity of MapleSim is still somewhat limited due to the issues of marketability. 

It is currently lacking a commercial package as comprehensive as the vehicle dynamics library 

available in Dymola, but contains several independent component libraries, such as Tire 

Component Library [14] and Driveline Component Library [15]. Even though MapleSim offers a 

fast and efficient simulation package, the lack of prepared simulations and required learning 

curve to begin using the software is discouraging for new users. 

2.6 Software Discussion  

The common software packages used in vehicle system dynamics are outlined. Even though each 

package plays a unique role in the field of vehicle systems dynamics, it is not feasible for all the 

tools to be used in parallel due to the numerous licensing costs and lengthy software tool chain 

that unnecessarily taxes a user. Different multibody tools use different approaches to create 

models. In some cases, these skills are not transferrable and contain users to particular software. 



20 

 

The software tool-chain currently required for alternative fuels research long and cumbersome, 

restricting the capabilities of a mechatronics engineer. It is clear there is an opportunity to 

develop a unified software platform that combines assisting a user to generate vehicle models 

while allowing various levels of customization. 

2.6.1 Flexible Design Approach 

For the Multi-Body solvers in the covered software, the approach to model and simulate the 

multi-body problem is shown in Figure 7. The geometric approach is followed in basic packages 

of MSC.Adams and MapleSim, where all the geometric information is used to construct a 

physical model. This model contains all the bodies of motion as well as joints and constraints 

that describe physical system. With the constructed model, the software can then automatically 

assemble and construct a system of equations essentially solving the motion of the system. 

For a numerical solver, such as CarSim or Matlab, the approach to simulate the response 

of a system is dramatically different. Instead of constructing a geometric multi-body model, 

offline data is used instead which contains a look-up table of a determined force or displacement. 

This data is either obtained from empirical testing or a dedicated tool to generate curves of a 

known mechanism. The most notable examples of a numeric approach are the characteristic 

curves of a common suspension configuration, such as the camber, castor, toe-in, track-width 

changes for a double-wishbone suspension system, or the measured response of a tire undergoing 

various loading and slip angles.  



21 

 

 

Figure 7 - Two isolated simulation approaches 

It would be preferred to have both of these options in a hybrid design approach. 

Geometric approach to simulate a geometric model contains all the necessary features to 

generate the characteristic curves of a suspension model. Instead of re-assembling and solving 

the same sub-set of suspension equations, the solution can be recorded offline to be used as a 

look-up table within another simulation. This hybrid approach outlined in Figure 8 would be an 

extremely desired feature in a simulation tool. The potential fluidity of properly re-using the 

results and conclusions will also assist in the overall engineering design cycle when any results 

require any change to the initial model to reiterate another design cycle.  



22 

 

 

Figure 8 - Hybrid Design approach 

2.6.2 Encapsulated Multi-Domain Simulations 

Green energy research involves a marriage of many different simulation domains, which requires 

a list of different software to be used. Hybrid Electric Vehicles (HEVs) involve utilizing a 

traditional internal combustion engine, electric motors, and power sources for each. These 

systems are typically connected in either series or parallel configurations [2] [16].  



23 

 

 

Figure 9 - Series and Parallel Hybrid Power Management Configurations 

For a researcher to simulate the differences of these systems on a full vehicle model, it is 

clear that some sort of software tool chain would be necessary. MSC.Adams/Car or CarSim 

would be great tools to model and simulate the multibody dynamics of the vehicle, but these 

tools would require additional input to model the electrical domains of the system, through 

another package such as MSC.Adams/Mechatronics, or an external signal linked through 

Simulink. With numerous extensions and add-ons built on top of a main mechanical workspace, 

it may not be clear to other engineers how involved the other domains are towards the overall 



24 

 

system when critical connections may be hidden in menus or contain text lists of signal 

connections. It would be advantageous for the workspace to visually reflect the entirety of all 

domains directly in the workspace to instantly convey the scope of the model. 

2.6.3 Flexibility of the Mathematical Model 

For controls and estimation design, the primary focus of the researcher is to work on designing, 

tuning and optimizing a controller to execute complex, high-level algorithms to better a specific 

operation of the vehicle. At the start of every project, the used model is a large simplification to 

capture the main physical response to ensure the controller is operating as intended. Gradually, 

the model increases in fidelity to include more behaviours and effects represented in the real 

world before testing the controller within a full vehicle model or with real hardware. It would be 

desirable to have better control when transitioning between more complex sub-systems to more 

easily test and troubleshoot the finished controller.  

Looking at the mathematical model of CarSim, the vehicle model is essentially the 

assembly of a database of curves and look-up tables which restricts the manipulation of how the 

vehicle is assembled. In fact, the software is limited to simulate cars, which at most contains 2 

axles and an optional trailer. MSC.Adams is fixed on the other end of the spectrum, where the 

mathematical model is automatically assembled through the connection of joints, linkages and 

bodies. Assembly of vehicular sub-systems is aided through various templates and features of 

MSC.Adams/Car, but is very particular on how the mechanism geometry is assembled with 

respect to the body of the vehicle. It would be desirable to have the software assist the 

construction and selection of sub-systems such that the full model can be easily generated. 



25 

 

2.6.4 Analytical Accuracy 

When a model is assembled from various external modelling environments into a single 

simulation, the results and calculations each module must be discretized into very small time 

steps to communicate with one another. Balancing this time step becomes very important when 

the calculation speed is relevant to implementation. For example, executing very fast control 

loops on a moving vehicle requires the control, the vehicle model and calculation environment to 

communicate as close as possible. However, it is easy for calculation and rounding error to occur 

when the models are not effectively synchronized to one another; high frequency signals may get 

lost in translation or errors can compound and drift over time. Unifying the simulation 

environment that specializes in symbolic computation can potentially achieve calculations which 

are more accurate and more efficient when all the different models are constructed and simulated 

in the same workspace.  

  



26 

 

2.6.5 A Unified Platform for Research 

This review above was intended to outline the common products and tools for engineers to use in 

their research, but in this work the research itself is to introduce a new approach in modelling 

and assembling virtual models. The table on the following page outlines how the reviewed 

software targets several key areas of concern with regards to develop a new vehicle dynamics 

simulation tool. 

This selection of software was investigated because they each demonstrate at least one 

key feature cementing its place in industry. MSC.Adams has its beginning as one of the first, 

successful simulation tool to computationally assemble and solve large systems of multibody 

equations. Combined with a visual workspace and CAD geometry, it is one of the benchmark 

simulation tools to verify if other models are operating correctly. A major drawback that the 

software faces is the potentially large computation time involved in large simulations. CarSim is 

great to contrast to this measure since the mathematical model is mostly fixed. Both tools use 

look-up tables to calculate the tire-ground interactions, but the complexity of the suspension and 

other subsystems are essentially calculated offline as lookup tables resulting in extremely fast 

simulation times. This makes CarSim a great turn-key solution when a full-vehicle model is 

needed to quickly setup a complex simulation. 

An area of concern for researchers using these tools will always remain the amount of 

allowed flexibility available within the software itself when new ideas are pursued. For a multi-

axle vehicle, CarSim would not be adequate and requires entirely different software, TruckSim, 

to construct this vehicle. The number of model equation within MSC.Adams can explode 



27 

 

without efficiently reducing the number of system equations which may result in simulation 

times becoming unreasonable. 

It is clear that flexibility and modularity of Modelica would be greatly beneficial in the 

aspect of vehicle dynamics modelling. The concept of a topology-based design naturally mirrors 

the object-oriented programming style of Modelica, as well as provides a graphical framework in 

which the models can naturally be presented in drag-and-drop block diagrams. Dymola would be 

great choice to begin exploring vehicle dynamics with Modelica given the vehicle dynamics 

package maintained by Modelon, but the solver and equation generation would still be hidden if 

model equations were needed. Using MapleSim, the tight integration of the Maple symbolic 

engine provides an open-ended, analytical toolbox to be used an additional outlet when these 

models need to be analyzed. The freedom to insert and extract model equations, publish and 

share completed models and maintain the top level, multi-domain topology would provide a new, 

beneficial environment to research the next generation of vehicles. 

  



28 

 

M
a

p
le

 a
n

d
 

M
a

p
le

S
im

 

M
ap

le
 p

ro
v

id
es

 a
n

 

o
p

en
 s

y
m

b
o
li

c 

co
m

p
u
ta

ti
o

n
 

en
v

ir
o

n
m

en
t.

 

M
ap

le
S

im
 p

ro
v
id

es
 

to
o

ls
 t

o
 h

el
p

 g
en

er
at

e 

p
h

y
si

ca
l 

m
o
d

el
s.

 

M
u

lt
i-

d
o
m

ai
n

 

si
m

u
la

ti
o

n
s 

ar
e 

in
h

er
en

tl
y

 s
u

p
p

o
rt

ed
 

w
it

h
 t

h
e 

M
o

d
el

ic
a 

p
h

y
si

ca
l 

m
o
d

el
li

n
g

 

la
n

g
u
ag

e.
 

E
n

ti
re

 m
o

d
el

 m
u

st
 b

e 

g
en

er
at

ed
 f

ro
m

 t
h
e 

M
u

lt
ib

o
d

y
 

C
o

m
p

o
n
en

t 
p
al

et
te

. 

D
ri

v
e-

li
n

e 
an

d
 T

ir
e 

co
m

p
o
n

en
t 

li
b

ra
ri

es
 

ar
e 

av
ai

la
b
le

. 

T
h

e 
sy

st
em

 

m
ai

n
ta

in
s 

an
al

y
ti

ca
l 

ac
cu

ra
cy

 f
o
r 

as
 l

o
n

g
 

as
 p

o
ss

ib
le

 b
ef

o
re

 

si
m

p
li

fi
ed

 e
q

u
at

io
n

s 

ar
e 

in
te

g
ra

te
d

. 

D
y

m
o

la
 

E
n

ti
re

 m
o

d
el

 

d
es

ig
n

 m
u

st
 a

b
id

e 

b
y

 t
h

e 
M

o
d
el

ic
a 

m
o

d
el

li
n

g
 

la
n

g
u
ag

e.
 

S
u

p
p

o
rt

s 
al

l 

d
o

m
ai

n
s 

m
ai

n
ta

in
ed

 b
y

 t
h

e 

la
te

st
 M

o
d
el

ic
a 

sp
ec

if
ic

at
io

n
. 

C
o

n
ta

in
s 

a 

v
eh

ic
le

 d
y

n
am

ic
s 

li
b
ra

ry
 

m
ai

n
ta

in
ed

 b
y

 

M
o

d
el

o
n

. 

M
ai

n
ta

in
s 

an
al

y
ti

ca
l 

eq
u

at
io

n
s 

fo
r 

al
l 

co
m

p
o
n

en
ts

 

b
ef

o
re

 

in
te

g
ra

ti
o

n
. 

C
a
rS

im
 

T
h
e 

d
es

ig
n
 o

f 
th

e 

v
eh

ic
le

 i
s 

co
m

p
ri

se
d
 e

n
ti

re
ly

 

o
f 

a 
d
at

ab
as

e 
o
f 

lo
o
k

-u
p
 t

ab
le

s 
an

d
 

u
se

r-
d
ef

in
ed

 

cu
rv

es
. 

D
o
es

 n
o
t 

n
at

iv
el

y
 

h
an

d
li

n
g
 a

 f
le

x
ib

le
 

m
u
lt

i-
d
o
m

ai
n
 

en
v
ir

o
n
m

en
t.

 T
h
e 

m
at

h
em

at
ic

al
 

v
eh

ic
le

 m
u
st

 b
e 

ex
p
o
rt

ed
. 

T
h
e 

as
se

m
b
ly

 o
f 

th
e 

m
at

h
em

at
ic

al
 

v
eh

ic
le

 m
o
d
el

 i
s 

p
re

-d
ef

in
ed

. 

S
u
b
-s

y
st

em
s 

ar
e 

ap
p
ro

x
im

at
ed

 a
s 

lo
o
k

-u
p
 t

ab
le

s 
an

d
 

cu
rv

es
 w

h
ic

h
 

tr
ad

es
 s

im
u
la

ti
o
n
 

ac
cu

ra
cy

 f
o
r 

a 

m
as

si
v
e 

re
d
u
ct

io
n
 

in
 s

im
u
la

ti
o
n
 t

im
e.

 

M
S

C
.A

d
a
m

s 

C
o
n
ta

in
s 

an
 o

p
en

 

sp
at

ia
l 

m
o
d
el

li
n
g
 

en
v
ir

o
n
m

en
t 

fo
r 

co
n
st

ru
ct

in
g
 

M
u
lt

ib
o
d
y
 

M
ec

h
an

is
m

s.
 

E
x
te

rn
al

 p
lu

g
-i

n
s 

ar
e 

av
ai

la
b
le

 t
o
 e

n
ab

le
 

si
m

u
la

ti
o
n
s 

o
f 

o
th

er
 

d
o
m

ai
n
s 

in
-l

in
e 

w
it

h
 

th
e 

M
u
lt

ib
o
d
y
 

m
o
d
el

. 

T
h
ro

u
g
h
 t

h
e 

u
se

 o
f 

co
m

m
u
n
ic

at
o
rs

, 

V
eh

ic
le

 m
o
d
el

s 
ca

n
 

b
e 

as
se

m
b
le

d
 a

n
d
 

cu
st

o
m

iz
ed

 w
it

h
 t

h
e 

p
ro

v
id

ed
 v

eh
ic

le
 

te
m

p
la

te
s.

 

T
h
e 

si
m

u
la

ti
o
n
 i

s 

as
se

m
b
le

d
 t

o
 

g
en

er
at

e 
th

e 

an
al

y
ti

ca
l 

eq
u
at

io
n
s 

o
f 

m
o
ti

o
n
 t

h
ro

u
g
h
 

cl
as

si
ca

l 

fo
rm

u
la

ti
o
n
. 

M
a

tl
a

b
 S

im
u

li
n

k
 

M
o

d
el

 d
es

ig
n
 i

s 

en
ti

re
ly

 l
ef

t 
to

 t
h
e 

u
se

r 
fo

r 
eq

u
at

io
n
 

en
tr

y
. 

B
eh

av
io

u
r 

o
f 

th
e 

m
o

d
el

 m
u
st

 b
e 

al
g

o
ri

th
m

ic
al

ly
 

d
ef

in
ed

. 

A
ll

 v
al

u
es

 a
re

 t
re

at
ed

 

as
 r

ea
l 

m
ag

n
it

u
d
es

; 

so
ft

w
ar

e 
d

o
es

 n
o
t 

p
ro

v
id

e 
in

si
g
h
t 

in
to

 

u
n

it
s 

an
d
 d

o
m

ai
n
s.

 

A
ll

 m
o

d
el

s 
m

u
st

 b
e 

g
en

er
at

ed
 o

ff
li

n
e 

an
d
 

en
te

re
d

 a
s 

eq
u
at

io
n
s,

 

u
n

le
ss

 a
n
 e

x
te

rn
al

 

m
o

d
el

li
n

g
 t

o
o
l 

is
 c

o
-

si
m

u
la

te
d
 i

n
 

S
im

u
li

n
k

. 

S
in

ce
 d

at
a 

is
 

m
an

ip
u
la

te
d
 i

n
 l

ar
g
e 

m
at

ri
ce

s,
 a

ll
 

ca
lc

u
la

ti
o
n
s 

ar
e 

 

d
is

cr
et

iz
ed

 a
cc

o
rd

in
g
 

to
 t

h
e 

ti
m

es
te

p
. 

 F
le

x
ib

le
 D

es
ig

n
 

A
p

p
ro

a
ch

 

M
u

lt
i-

D
o
m

a
in

 

S
im

u
la

ti
o

n
s 

F
le

x
ib

il
it

y
 i

n
 

V
eh

ic
le

 M
o

d
el

 

G
en

er
a

ti
o

n
 

A
n

a
ly

ti
ca

l 

A
cc

u
ra

cy
 

Table 1 - Software Summary Chart 



29 

 

Chapter 3 

3. Vehicle Modelling and Analysis Using a Topological 

Approach 

After examining the current status of typical software used in vehicle system dynamics, the idea 

of using a topology-based approach to model and analyze vehicle dynamics was formed. The 

purpose of this design is to combine the publishing and packaging of vehicle components into an 

easy-to-use, drag-and-drop environment where models can be constructed and simulated with 

minimal effort. 

 An open modelling and development environment is required as a basis of constructing 

this modelling framework. As explained in Section 2.5. Modelica will be used to construct the 

hierarchical infrastructure and component referencing which will be presented in MapleSoft’s 

MapleSim. 

3.1 Top-Level Definition 

Any complex, multi-domain vehicle system can be broken down into many simple components. 

All vehicles contain a body or a chassis to model the mass of the vehicle, and a suspension and 

tire system to maintain contact between the vehicle and the ground. As illustrated in Figure 10, if 

the major sub-systems of a vehicle were placed into a block workspace, each block will connect 

to a fixed list of other sub-systems. By preparing a set of models which are flexible, scalable and 

connectible in a consistent manner, a pallet of high-level components can be authored such that 

connecting a set of those blocks can easily assemble a typically vehicle system. 



30 

 

 

Figure 10 - Major Sub-Systems of a Vehicle [17] 

 To maintain stability of the vehicle to the ground, a suspension system is connected 

between the chassis and the tire. Whether the suspension is a simple, linear, spring-damper 

model or a full multi-body dynamic assembly, it must contain at least one multi-body connection 

to a wheel and one multi-body connection to the body. In turn, the tire must be connected to the 

end of the suspension component and interact with the environment. These are both represented 

by their own high-level blocks. Putting this together, a 4-wheel cart is represented as seen in 

Figure 11.  



31 

 

 

Figure 11 - Essential Sub-Systems of a 4-Wheel Cart [17] 

 For driven or piloted vehicles, two additional sub-systems are critical, a component that 

steers the vehicle and a component that powers the vehicle. The component to steer the vehicle is 

governed by a mechanism that changes the angle the wheel around an axis perpendicular to the 

ground. There are many mechanisms to obtain this motion, for example a rack and pinion 

controlling a tie rod, or a sector gear driven recirculating ball connected to a Pitman arm. In any 

case, the result of all these mechanisms remains the same; they provide precise control to the 

driver to steer the vehicle where the input to this sub-system is the steering wheel angle, and the 

output is connected to the suspension tie-rod. Since the essential function of this module remains 

the same, a single high-level block can be used. 

 



32 

 

 For a vehicle that contains a power source, the benefits of a modular topological model 

become evident. In some way, shape or form, torque is generated using an energy source and is 

applied to the wheels. In a conventional, internal combustion engine vehicle, gasoline fuel is 

combusted in cylinders within an engine and torque is applied to the transmission, which 

mechanically transfers this power to the wheels. Note that most of this power train lies outside of 

the standard multi-body domain. Curve fit models, look-up tables or simplified equations are 

used to represent the operation of the engine, and the 1-dimensional rotation domain is used in 

the transmission block. These sub-systems can be contained in their own set of blocks to handle 

these calculations, which will naturally interact with the previously defined high-level blocks. 

 

Figure 12 - Major Sub-Systems required modelling a basic electric vehicle [17] 



33 

 

Battery electric and hybrid electric vehicle research requires an extremely flexible design 

environment. On top of the multi-body vehicle platform, there may be multiple power sources 

that work in series or parallel to most efficiently generate and transmit torque to the wheels. A 

comprehensive study regarding different topologies of electric and hybrid electric vehicles 

outlines the most commonly used configurations [18]. These high-level blocks may contain a 

mix of an internal combustion engine, electric motors and electric generators, which may look 

something like Figure 12. The connecting lines represent the transfer of power between 

components. The workspace of a topology based design vehicle model should reflect these high 

level components in a similar manner. In addition, to provide greater robustness connecting 

compatible models and simplifying the user actions as much as possible, the library of 

compatible models should be directly accessible within the high-level block component, such 

that the topology of the overall system does not drastically change. 

With these fundamental high-level components capturing a general definition of a vehicle 

system, this design approach allows researchers from other fields to quickly and easily setup and 

customize vehicle models for their own use. For example, a control engineer aiming to design an 

estimator to track the mass and inertia of a vehicle through a maneuver may require tweaking of 

a vehicle model to work, but does not want to stray too far into the world of multi-body 

dynamics. Instead of sourcing a vehicle model through another software tool, a vehicle model 

can be put together through an error-checked, drag-and-drop library of components. The fidelity 

and level of vehicle model will be selectable by changing the internal component equations for 

any top-level block providing seamless transition between running the control on a simplified 

full vehicle model, to a potential software-in-the-loop real-time test. The next stage of design 



34 

 

iteration will also work very smoothly as version control of sub-system models can handle the 

refinement of the model. 

By including articulation points on the chassis component, it is possible to further expand 

the possible simulations by chaining multiple vehicles together. A trailer would be modelled as 

another top-level chassis component that connects through a hitch to the lead vehicle. This 

configuration can be scaled up to become a tractor with a semi-trailer by expanding the number 

of axles defined on the chassis block and adding more suspension systems and tires to match a 

physical model. Because of the object-oriented nature of the workspace, multiple trailers can be 

instantiated to create models of Long-Chain Vehicles (LCVs) [19] [20]. With generalized, 

modular, top-level components, an inexperienced user will be able to connect complex models 

together for simulation and analysis. A theoretical extension of this idea can transform the tire-

ground interactions with a tracked vehicle, which may lay the framework for a locomotive. The 

complexity and fidelity of the individual subsystems can be tailored to provide a range of 

accuracy depending on the goals of the researcher. 

3.2 The SuperBlock 

To realize the topology-based design workspace, the generalized high-level blocks must have a 

certain set of features. First, these blocks must allow the change of internal components with a 

simple interface. The selection presented to the user must always be compatible with all the 

current connections that exist on the high-level block. Next, the connection between these 

components should be automatically checked for compatibility. It is meaningless to cross models 

of different domains without a proper transducer. Finally, these top-level blocks must be scalable 



35 

 

and customizable, such that the library of compatible components can be updated and published 

with minimal effort. As explained in Section 2.5, the Modelica physical modelling language can 

be used to include all these features. Each major sub-system will contain a corresponding 

package that contains the high-level model, named a "SuperBlock". 

 The object-oriented nature of Modelica as a programming language, combined with the 

graphical presentation of block icons and diagrams, provides the necessary tools to create these 

SuperBlocks. To ensure the compatibility of internal component equations, the library 

components must use a standardized 'interface’. The technique of creating a standard set of 

interfaces to define a new package is outlined in the Modelica Standard Library [21] to maximize 

reusability of models and enforce basic standards. The suspension interface frame will always at 

least contain two multi-body connections, one to connect to the chassis and one to connect to the 

tire. All suspension systems must then extend this suspension interface frame. The selection of 

the sub-system components can be performed through a combination of two advanced Modelica 

techniques; the technique of “models contain replaceable models”, and the constrainedby
1
 

modifier. 

 To represent a block that can access a library of compatible models within Modelica, a 

technique named 'Models with Replaceable Models' can be used to achieve this effect. In the 

code sample below, the Top-Level class “Super Model” contains the definition of a replaceable 

model, named InternalComponent. Now, every instance of a particular type of 

                                                 

1
 The constrainedby keyword was introduced into the Modelica Specification version 3.0. This keyword was 

previously a vendor specific annotation parameter named choicesAllMatching.  



36 

 

InternalComponent can be replaced through a parameter denoting which model will be used as 

demonstrated in Figure 13. 

 

Figure 13 - Code sample demonstrating a Model with a Replaceable Model 

The drop-down menu for accessing the library of compatible models in the models with 

replaceable models property window can be accomplished in one of two ways. First, all the 

options, or choices, can be hard-coded into the annotation field as shown previously. All of the 

choices must contain the absolute location of the library model, which would require changes to 

the Modelica code for every new component added. The more desired approach for populating 

the drop-down menu is the Modelica keyword constrainedby which is used to automatically 

complete the drop-down list as shown in Figure 14. It works by examining all models in a 

separate package which contains the same partial model. For example, all of the suspension 

models in the internal suspension library must contain a "suspension interface" which is a partial 

model that only contains a multibody connector to the chassis and a multibody connector to the 

tire. When the constrainedby keyword is used in the Suspension SuperBlock pointing to this 

suspension interface, every model in the suspension library package will be checked to see if it 

also extends this "suspension interface”. If a library component does, it will automatically 

appear as a choice in the drop-down menu. Putting this together, once the Top-Level model is 



37 

 

placed in the workspace, compatible sub-systems for that model can be displayed and selected as 

a property without the need to remove and replace the model.  

 

Figure 14 - Automatic drop-down population with constrainedby modifier 

 Automatic error checking of SuperBlock connections can be inherently performed by the 

Modelica programming environment through a customized definition of a new connector. A 

connector is a special model that creates a connection port to use within the component, to 

interact with the component equations and allow connections to other models outside of the 

block. This connection of variables must be consistent between models, since it passes a set of 

analytical variables that must be equated instead of a raw signal value. 



38 

 

3.3 Interaction of the SuperBlocks 

Without any added features, the interaction of SuperBlocks is a natural extension of regular 

Modelica block assembly. The SuperBlocks are connected with regular connection lines in the 

diagram workspace and Connect equations are automatically generated. The method of 

assembling the equations before simulation is dependent on the specific Modelica Vendor, as 

they all have their own implementation of assembling, simplifying and optimizing the system 

equations. However, there are several features that are planned for the SuperBlock framework 

that will increase the functionality of connecting neighbouring SuperBlocks together. 

 Connection lines in a Modelica workspace are only designed to equate variables passed 

within connectors that are perfectly compatible. As stated earlier, connection lines between 

components represent a shared set of variables between the two blocks; a bi-directional 

connection that passes the same variable between both components. This behaviour inherently 

protects components from stray connections. For example, it doesn't make any sense for an 

electrical resistor to be able to connect to a rigid body mass, as the set of variables between both 

components do not match. It is possible to extend this behaviour to protect against stray 

connections between SuperBlock components. Even though it is technically acceptable to 

connect an Axle of the Chassis component with another axle of another Chassis component, it 

doesn't make any realistic sense and should never be allowed. This is achievable with customized 

connectors for each of the SuperBlocks to enforce valid connections. In addition, this allows for 

each connector to have its own icon and colour-code to intuitively instruct the user in the 

diagram workspace. 



39 

 

 A downside to packaging large sub-system equations inside a SuperBlock structure is the 

restriction of access to internal components and variables. Unless frames are created on these 

components, there won't be an easy way to access the variables within the block. An example of 

this is the CG or Center of Gravity frame connected to the mass of the Chassis. Even though it is 

defined in the Chassis, a direct connection to that location isn’t always needed. When a user does 

require this connection, there would be no possible way to attach a probe or connect another 

multibody frame to this location unless the frame is embedded into the SuperBlock. Expandable 

Connectors are a feature that can also mitigate this disadvantage and allow this vehicle package 

to interface with various controls and estimation components. These special frames allow a user 

to connect to any number of variables within the component. The software package can 

automatically determine which variables exist within the block, or the user accurately specifies 

the sub-model and variable name. This variable selection is then used as the set of variables that 

must be equated within the connect equation. The usage of this feature greatly depends on a 

standardized and documented nomenclature for values and variables such that the names of the 

variables are consistent within the program and are understood by the user. Expandable 

connectors offer a highly-customizable option for controllers and estimators to read and access 

the variables from any number of SuperBlocks. 

3.4 SuperBlock Palettes 

The pallet of available SuperBlocks realizes the topology-based vehicle modelling concept in a 

presentable drag-and-drop package. To perform the initial tests of topology-based vehicle 

modelling, the basic definition of the Chassis and Suspension SuperBlocks are outlined below 

with all the desired features that are slated for implementation. A note regarding the SuperBlock 



40 

 

template is provided at the end to propose how this structure will interact with existing 

component libraries already prepared by MapleSoft. 

3.4.1 Chassis SuperBlock 

The chassis SuperBlock is designed to represent a basic model of a generic vehicle body. Most 

simplified chassis models consist of a rigid body, representing the sprung mass, and offsets, 

providing the structural translations from the sprung mass to the axles, which is reflected in this 

component. The coordinate system used is shown in Figure 15. The number of axles for a vehicle 

body is scalable using a set of checkboxes, which changes the number of connections on the 

block. There are several other options to allow common additional features to the model without 

the need to break-open the model, such as front and rear articulation frames, the sensor and 

control frames, and an external multi-body connection to the center of mass. These options 

appear in the property window as check boxes which create or remove the appropriate 

connectors on the block. 



41 

 

 

Figure 15 - Basic coordinates of a simple chassis 

The Chassis SuperBlock is currently limited between 1 and 7 axles. The coordinate axis 

is assumed to be the ISO vehicle standard coordinate axis as shown in Figure 15. Defining the 

dimensions for each axle begins with a definition of an initialization point of the CG location 

within the global space. The other vehicle dimensions, such as the axles and the front and rear 

articulation points, are defined with respect to the CG location. When these user options are 

combined with a set of selectable icons, this model allows the chassis component to represent a 

wide variety of 'vehicles' or body components that are used in various vehicle simulations. 



42 

 

 

Figure 16 - A sample transformation of a chassis component into a trailer 

 In most simplified vehicle models, the sprung mass is typically represented by a single 

rigid body mass. All other internal components that connect to the rigid body mass has an 

appropriate dimension field included in the block properties. With simple images and concise 

labeling, the component property window clearly notifies the user regarding the purpose of each 

option. For more advanced chassis models, we can attach external components to represent other 

models. This allows a single chassis block the ability to represent most vehicle body components 

configurable through a user-friendly graphical interface. 

3.4.2 Suspension SuperBlock 

The suspension for a vehicle is a major area of research, and the Suspension SuperBlock must 

reflect this complexity. The suspension SuperBlock is largely based on the advanced Modelica 

programming technique of utilizing a replacement of internal components using the Models with 



43 

 

Replaceable Models. The SuperBlock has a Suspension Interface that contains connectors to a 

Chassis Component and a Tire component. By definition, all vehicle suspensions must at least 

have these connections. This is a standard Modelica multibody frame and is the constraining 

class for the constrainedBy replacement keyword modifier. Aside from that selection governing 

the selected internal component, there are several other options that toggle connection points for 

the Suspension block. These are the anti-roll bar connection, the Steering rod connection and the 

sensor and control connection points. Once a completed suspension model is in a working state, 

it can be published by placing the model into the appropriate library folder. This allows for very 

secure control over model versions when they are developed and used in separate areas of 

research. 

 

Figure 17 - Parameters for a suspension SuperBlock as seen in Dymola 



44 

 

 Since different suspension configurations have a differing number of parameters or hard-

points, the cleanest way to assign parameters for these suspension systems is through a Record, 

as known in Modelica, or a Parameter Block, as known in MapleSim. After a particular internal 

suspension component is selected, the model property window contains an option to edit the 

properties of the instance of the internal component. In Dymola, there is an edit button beside the 

drop-down selection that opens the property window in the sub-model. In MapleSim, this is 

named the Advanced Variable drop-down option but is currently full of bugs. Note that in this 

sub-model properties window, the options to configure the model is depends on how the internal 

component was authored; it is up to the component to enable all the relevant and useful 

parameters in the property window with a compatible coordinate axis and nomenclature. Since 

different suspension systems of similar topologies only differ by the hard-point values, the 

technique of Models containing Replaceable Models can also be used on the Record, or the 

Parameter Block, so a particular parameter set can be published and stored inside the package. 

This would result in another level of drop-down selection to access a library of suspension 

specific data points.    

3.4.3 Sensors, Controllers 

The idea of integrating sensors, controllers and estimators in the topological workspace is not a 

trivial task. With standard Modelica connectors, all the connections must define their shared 

variables within the model prior to any other connections. Clearly, this would not be appropriate 

to leave up to the user since this requires changing the internal connections every time. There are 

two ways to solve this issue. Accessing parameters within components can be achieved through 

utilizing numerous sensor blocks to measure and obtain a signal connection. This may potentially 



45 

 

clutter the workspace but will be extremely effective in constructing the desired outputs one 

variable at a time. Another potential way to achieve the same result in a cleaner fashion would be 

the usage of expandable connectors in Modelica. The keyword expandable modifies the 

connector such that the parameters shared through the connect equation can dynamically change. 

This works by attempting to match the parameters type-by-type and name-by-name between the 

two connections. Typically, a prompt is displayed to the user to define the connected variables 

when the connection is made. 

 For modelling the behaviour of a driver, basic driver models are typically formulated as 

basic transfer function. This has roots from the early days of driver modelling in control systems 

[22] [23], where the goal of the control system is to minimize the off-track error between the 

vehicle's position and the target path. This can be easily implemented within the Modelica 

workspace due to the symbolic nature of the Modelica programming language. Expandable 

connectors allow for any model signals to be accessed through the connector, which in the driver 

model, will not only include the physical connection of the steering wheel, but may access 

variables from the rest of the workspace. In Dymola, a window prompt provides a helpful list of 

possible variables which could be accessed through this connection. 

3.4.4 SuperBlock Summary 

At this point, it is important to reinforce the idea that this proposition is the outline for a 

framework of models, instead of the representation of a completed library of verified sub-

systems. These SuperBlocks provide the essential building blocks to construct and store 

conventional simplified models of heavily researched vehicle sub-systems. Once ample analysis 

happens to be conducted and concluded on a particular sub-system, this SuperBlock structure 



46 

 

allows the author to easily publish and deploy his or her work for others to use. Several 

additional simulation components are intended to be in the final product. These include the 

drivetrain SuperBlock and the environment SuperBlock. Development of these components 

resides in the next phase of research because the decisions to sort, organize and connect 

powertrain components have not been finalized. The environment block is intended to contain 

information regarding the road condition, target path, and environment visualizations, but 

limitations of the tire component library do not support these features. 

This extra level of abstraction to manipulate the selection of sub-systems in a SuperBlock 

opens the possibility to easily investigate the topological arrangement for any new vehicle. The 

overall framework has had the advanced Modelica concepts tested within Dymola to ensure that 

the Modelica specification can support these features, but since implementation within 

MapleSim will require all the multibody components to change, parts of the Modelica code must 

be rewritten to be compatible. Moreover, since annotations may differ between the different 

Modelica applications, the compatibility of all the features needs to be re-examined. In the next 

chapter, successful implementation will be demonstrated beginning the future for the MapleCar. 

  



47 

 

Chapter 4 

4. Implementation of the Topological Vehicle Modelling and 

Analysis Tool 

The concept for a topology-based vehicle modelling tool began as a simple idea drafted in a 

slide-show presentation.  This presentation outlined the topological commonalities when 

combining models of certain subsystems within a full vehicle model. These modular sub-systems 

were typically not limited to simulations involving only multi-body dynamics; many electrical 

and control elements are required alongside any hybrid or electric vehicle. Using these ideas, a 

proof-of-concept package was designed using the Modelica modelling language, and was 

successfully implemented within the MapleSim simulation platform beginning the development 

of MapleCar. This chapter describes the technical details on how MapleCar is structured and 

deployed within MapleSim. Example simulations are provided in the next chapter using the 

various SuperBlocks in the MapleCar package to demonstrate the beneficial features provided by 

this work. 

4.1 Package File Structure 

A suggested file structure for new packages is outlined in the Modelica Coding Practises guide 

[21]. There are several advantages to dividing any large packages into several files. The package 

will be easy to read from a development point of view, where sub-packages exist as separate 

Modelica files. The order of the import exists in a separate file named package.order. Multiple 

persons would be able to work on updating MapleCar components at the same time using any 



48 

 

revision tracking software since the whole package will be built in modular parts ensuring the 

gradual development of a working package. The file management for the package also opens the 

opportunity to deploy a secured package to users while allowing custom user-defined libraries to 

be included. 

 The file structure for MapleCar is as follows: 

 

Figure 18 - MapleCar File Structure 

 When a folder is loaded as a package, there must be a file named package.mo that 

contains the definition of the package, and must be have the same name as the folder. Refer to 

the Modelica Language Specification [10] for more information regarding specific details related 

to authoring Modelica packages. 



49 

 

4.2 Layout of a SuperBlock Palette 

One of the desired features within the initial MapleCar concept was the functionality of 

representing a high-level sub-system, for example a Suspension, as a single block which would 

have the different types of internal models adjustable through parameters. This idea is essentially 

a programming task to organize and access models in a clear, concise way implemented within 

the MapleSim work environment. For this idea to work, a straight-forward, high-level package 

structure must be defined for the sake of a clear component palette structure. Naturally, each 

high-level vehicle sub-system is represented by its own package, therefore the chassis, 

suspension, tire, and etc. sub-systems each appear as a separate drop-down package on the 

palette tree. 

 Within each of these sub-system palettes, the standard structure is followed with the 

exception of the library component. As seen in Figure 18, each package and sub-package is 

represented as a tree-structure dropdown in the side panel. The library component is the working 

name for the sub-system SuperBlock which accesses the compatible components in the library 

folder. All objects in the package are alphabetically ordered which further demands a 

standardized nomenclature for each model and package, but this is not a pressing issue.  

4.3 Example of a MapleCar SuperBlock 

The individual SuperBlock palettes are based on a generic SuperBlock template that was created 

after the advanced Modelica features were successfully tested in MapleSim6. A second round of 

a proof-of-concept SuperBlock was demonstrated using the proprietary MapleSim multibody 

components which utilize graph-theoretic solution methods. This SuperBlock was named “Planar 



50 

 

Kinematic Library” to clearly demonstrate sub-model equation changes using a drop-down 

parameter. 

 The first step to develop any SuperBlock for MapleCar is to first obtain a working model 

without using any Modelica features. In this case, a set of basic kinematic mechanisms were 

modelled in MapleSim as seen in Figure 19. As mentioned in Chapter 3, it is important to design 

these mechanisms with the same overall interfaces. All of the mechanisms have two multibody 

frames, the left connected to a fixed frame and the right connected to a rigid body mass and a 

tracing visualization. Each of these mechanisms is driven with a single 1-D rotational frame. 

 

Figure 19 - MapleSim models of basic mechanisms – revolute link, slider-crank, and four-

bar 

 Once these library components have been modelled within MapleSim and the base 

interface has been identified, the construction of a SuperBlock can continue. An entire new 



51 

 

package must be declared in accordance to MapleSim package naming conventions. The sub-

packages of the base interface and model icons can be defined as seen in Figure 20. Note that 

extraneous annotations have been removed from frame placements and model graphics.  

 

Figure 20 - Kinematic SuperBlock Demo - Interface and Icons 

Next, the package of library components must be declared using the original MapleSim 

components. It is important to use MapleSim6 in this step as the new Modelica source code can 



52 

 

be viewed within MapleSim6. The exact Modelica code to generate the working MapleSim 

model can be referenced and used within the library package. This will essentially ‘lock-in’ the 

model such that no further changes can be made unless the source code is modified; MapleSim 

cannot edit or change any imported Modelica packages. This library package will be the working 

folder that holds all the components the SuperBlock will access. The constrainedby interface 

must also be declared here matching the same programming technique explained in Chapter 3. 

Figure 21 shows this Modelica code with the first library component, a simple link with a 

revolute joint. When the MapleSim Modelica code is copied, it must be manually updated to 

properly utilize the added partial frame required for the constrainedby modifier. The partial 

frame must be extended in the library component and the connect equations must be updated. 

These changes are highlighted in the same figure. It should be clear that since only 3 connectors 

exist in the base interface, there must be 3 changes in the connect equations. For brevity, the 

source code for the slider-crank and four-bar library components will not be shown.  

 



53 

 

 

Figure 21 - Kinematic Library SuperBlock Demo – component library 

  



54 

 

Finally, the SuperBlock model can be completed using the models with replaceable 

models programming technique as seen in Figure 22. The interface of the SuperBlock should 

match the interface used in the library components. An icon from the icons package should be 

extended to graphically inform the user which SuperBlock this model is. The connection 

equations simply connect the SuperBlock connections with the sub-model connections. Since all 

selected components utilize the same frame, these connection equations will never change. Also 

highlighted in Figure 22 is the optional syntax to create toggleable frames. The simple if 

[Boolean] syntax will enable or disable the connector which will toggle the connection point in 

the workspace. This is primarily how the chassis SuperBlock is programmed; there is no need to 

have a drop-down selection to select how many axles will be displayed when each axle can have 

its own Boolean checkbox parameter. When these optional frames are disabled, MapleSim will 

automatically void the connection such that the simulation will ignore the dangling equation.  

  



55 

 

 

Figure 22 - Kinematic SuperBlock Source Code 

 With this SuperBlock Modelica package imported into MapleSim, all the core 

functionalities desired in the MapleCar package are achieved.  To visually reiterate the 

referencing and selection of these SuperBlock features, Figure 23 shows a basic visual 

description of the SuperBlock. 



56 

 

 

Figure 23 - Visual description of the SuperBlock 

4.4 Extending Pre-Existing Packages 

A tire model library and driveline toolkit currently exists as an external retail toolbox add-on that 

can be used in MapleSim. The Tire component library consists of a set of models that contain 

verified textbook equations to simulate the tire-ground interactions. Currently, vertical road 

excitations cannot be processed with the MapleSoft Tire Component Library so it automatically 

connects to a global, flat ground-plane. Therefore, the only connection needed for these Tire 

Models is a MapleSoft.Multibody frame which always connects to a Maplesoft.Tires.TireBody 

component. Because this consistency in frames is ideal for Topological Vehicle design, these 

models can be used as part of the library components in a SuperBlock model structure. This 



57 

 

essentially encloses the additional toolbox package within its own SuperBlock, which will make 

it easier for a user to quickly switch and test the response of a vehicle with differing Tire models. 

 

Figure 24 – Tire SuperBlock Package Structure utilizing the built-in Tire Library 

Components  

 Another package recently published by MapleSoft is the Drive-line Component Library. 

This library "covers all aspects of the power-train, from the engine to the differential, wheels and 

road loads" [15]. Again, the generic template of a SuperBlock will be used to provide a wrapper 

package to contain a library of completed drive-line transmission systems.  



58 

 

4.5 MapleCar in MapleSim 

A large portion of MapleSim6 was to further develop the integration of the newer Modelica 

Specification along with the recent versions of the Modelica Standard Library. With the latest 

version of MapleSim, loading the MapleCar package is as simple as importing the proper folder. 

The raw Modelica code is parsed and read into the MapleSim workspace and appears as a new 

custom Modelica palette on the left side. As a proof-of-concept package, most of the core 

features are fully functional and vehicle models can be easily constructed and simulated. The 

other SuperBlock packages have all been derived from the given example in this chapter. 

Included in the appendix is the raw source code for several MapleCar SuperBlocks. As with any 

other programming project, the code is expected to evolve over time according to updates to 

MapleSim and Modelica.  

It is important to note that there are many compatibility issues when using custom 

Modelica code within MapleSim6.  Managing any instance of a SuperBlock model only exists on 

the main SuperBlock level. With Dymola, each instantiated SuperBlock has clear controls to 

handle the sub-model instance. This includes modifying the parameters, provide visual feedback 

of the sub-model diagram, and display full run-time visualization of the SuperBlock. The drop-

down parameter generated with the contrainedby option contained an extra edit button to allow 

changes to the selected model’s parameters which would be used within the SuperBlock 

instance. This streamlines using and configuring the SuperBlock in the model since the selected 

component in the parameter list can be viewed and parameterised from a single workspace. This 

feature is also available in the MapleSim through an advanced parameters options button, but it 

does not properly display the selected sub-model. In addition, examining the diagram in any 



59 

 

SuperBlock sub-model will always display the default model even though the selection correctly 

changes the sub-model component. These bugs make working with SuperBlocks very 

troublesome and impractical for any real analysis. However, patches and version updates to the 

software will hopefully rectify these issues such that the MapleCar might eventually become a 

polished product. 

With respect to the actual development of MapleCar, there were countless hurdles to 

overcome. It is very clear that MapleSim was initially intended to not include such intense 

Modelica customization. The Modelica language is a great vehicle to quickly develop an 

application that contains drag-and-drop blocks which contain analytical component equations. 

This is ideal when combined with the power of Maple, a symbolic computation engine. But since 

this work is primarily focused on developing Modelica code, many undocumented nuances had 

to be manually ironed out. The presentation of icons and graphical elements like lines and 

textboxes exist outside the domain of Modelica; application specific elements are used, such as 

fonts, gradients and images, which do not appear in the Modelica code. The workspace 

coordinate system is also modified from the default Modelica specification making the 

construction Modelica based model icons very difficult.  

  



60 

 

Chapter 5 

5. Simulation Examples 

The initial concept for MapleCar has been successfully implemented in MapleSim6. On the 

whole, the project presented here is only the cornerstone and blueprint for the foundation of the 

grand vision provided to both MapleSoft and Dr. Khajepour. Basic examples will be presented, 

demonstrating the model construction procedure and sample analysis using MapleCar. 

Everything that will be simulated uses standard MapleSim components. For each model, there 

exists an equal and equivalent MapleSim model that does not use any of the advanced Modelica 

features. As such, little emphasis will be put on validating any of these results. If there is a 

validated vehicle model in MapleSim provided by another party, it can be organized and placed 

inside the various SuperBlock libraries for use within MapleCar. 

5.1 Construction of a Simple Vehicle Model 

A roll-pitch vehicle model is one of the simplest vehicle models that exists in three dimensions. 

It consists of a lumped sprung mass connected to four spring-mass-dampers at each corner of the 

vehicle. Depending on the specific type of simulation, either a second static spring-mass-damper 

is added to the end to emulate the stiffness and damping of the tire, or an actual tire model is 

used to simulate the motion of the vehicle on a road. This model is provided within the tire 

examples library included with the tire component toolbox and is a great reference to begin 

modelling. The basic components of this simple vehicle model are shown in Figure 25. This 



61 

 

example will demonstrate the needed steps to recreate the same model using MapleCar. 

Furthermore, changes to the suspension models and tire models will be shown. 

 

Figure 25 – Chassis and Suspension of a simple Roll-Pitch vehicle model 

Figure 26 shows the diagram view of the MapleSim model. When looking at the 

MapleSim workspace, it is clear which MapleSim blocks are simplifications of real components. 

The center of mass is a simplification of the chassis shown in the blue border. The suspension is 

simplified in the prismatic joint allowing for one degree of vertical motion shown in the green 

borders. The tire is modelled using the Standard Tire Body and a set of known Tire Models 

within the FTSS sub-model. If a researcher is unsatisfied with the amount of simplifications, the 

components of the vehicle model can be replaced with higher fidelity models. For example, the 

suspension can be replaced with a complete multi-body model, or the steering can be replaced 



62 

 

with the action of rack and pinion mechanism. It is up to the modeller to decide what behaviours 

the vehicle model should capture. 

 

Figure 26 - MapleSim model of a Simple Vehicle Model (From Tire Examples) 

 However, when this model is being used by multiple people and contains components 

from different users, several problems may arise. MapleSim is not strong at conveying the 

definition of shared components and sub-systems to the user. Creating a shared sub-system 

defines a new sub-system within the active MapleSim model. This can then be added into the 

User-Defined MapleSim library. However, when tweaking and updating this MapleSim Library, 

there is no explicit definition from the user for the shared sub-system to be instantiated from the 

current MapleSim model in focus or from a custom User-Defined Library. 



63 

 

 The potential issue with naming convention also applies to the naming of parameters and 

parameter blocks. For large sub-systems, there might be a need to have a large list of parameters. 

However, parameters must be added one at a time and cannot be easily reordered. A uniform 

naming convention must be understood by all the users working with the model. Between 

defining parameters external to a model, within a parameter set or within a sub-model, the 

workspace can very easily hide parameters making complex models difficult to understand. 

Creating components is essentially physical programming of machines and mechanisms and 

requires the same level of care and attention as regular programming. 

 

Figure 27 - The simple vehicle model constructed with SuperBlocks 



64 

 

 With the MapleCar package, the topology of the vehicle is a straight-forward assembly of 

SuperBlocks. A chassis SuperBlock is dropped into the workspace to model the sprung mass of 

the vehicle, and four suspension SuperBlocks are inserted to connect to the chassis. Four tire 

SuperBlocks are connected to the suspensions and a steering SuperBlock connects to the front, 

steerable suspension systems. The conversion to a steerable suspension system is done through a 

checkbox, isSteerable, in the suspension SuperBlock. Once the overall topology of the vehicle is 

assembled, the main simulation does not need any further change 

 

Figure 28 – Parameters for MapleCar SuperBlocks; Left: Suspension, Right: Chassis 

 The same Roll-Pitch vehicle model is easily constructed with high-level SuperBlocks as 

shown in Figure 27. The block icons are very clear in letting the user know what each sub-

system represents as well as having the connectors logically placed with respect to the icon. All 



65 

 

of the important parameters are immediately accessible from the SuperBlocks, and since the 

model of each vehicle sub-system can be changed with a simple drop-down menu, comparative 

analysis between differing tire models can be easily performed. 

5.2 Four-Wheel Steering Model 

The concept of Four-Wheel Steering (4WS) vehicles is a specialized feature designed to improve 

the steering response of a vehicle, increasing straight-line stability at high speeds, and decreasing 

the turning radius of a vehicle at low speeds. Each benefit is achievable through the addition of 

steering to the set of rear-wheels. Depending on the state of the vehicle, the rear-wheels will 

either steer with or against the front-wheel. This is automatically controlled with a computer and 

actuators so its operation is transparent to the driver [24].  

 

  



66 

 

 

Figure 29 - Construction of a Four-Wheel Steer model using SuperBlocks 

 To enable the rear axle of a vehicle to steer, the suspension needs the steering from 

enabled through the checkbox in the parameters list. Furthermore, the selected model must be a 

steerable suspension model. A separate steering mechanism must also be introduced for the rear 

axle. 



67 

 

5.2.1 Low-Speed Turning Radius Improvement 

At very low speeds, a tighter turning radius is preferred for parking and U-Turn maneuvers. This 

is important for cities with smaller streets that may not accommodate low speed maneuverability 

[24]. As we can see in Figure 30, various amounts of negative steering gain results in a tighter 

turning radius (a higher yaw rate) without significantly changing the steering limits on the front 

axle. This occurs because both axles, the front and the rear, contribute to the overall yaw rate of 

the vehicle by creating a larger difference in steer angle compared to a normal front axle 

steering.  

 

Figure 30 - Comparative visualization of various 4WS gains 



68 

 

 

Figure 31 – Steer Input and Yaw Rates of 4WS a comparative simulation 

The above results demonstrate this four-wheel steer action. Notice that in the case of no 

four-wheel steering, where the rear angle gain is 0, the turning radius is the largest in the figure. 

This is clearly reflected in the yaw-rate graph; the peak yaw-rate of the case of no 4WS is about 

0.678 radians per second, whereas with -0.10 rear-wheel steering gain the peak yaw-rate of the 

vehicle is 0.730 radians per second and with -0.20 rear-wheel steering gain the peak yaw-rate is 

0.783 radians per second. The yaw-rate in this result decreases because the model is passively 

rolling resulting in a consistent loss of speed. The model also uses the Fiala tire model which 

includes a basic representation of rolling resistance. However, this increase in peak yaw-rate for 

larger negative steering gain does follow natural intuition of the situation. In a bicycle model, a 

perfect counter symmetric rear steering gain of -1.0 during a maneuver with a steering angle of 



69 

 

90 degrees would cause the bicycle model to spin on the spot; the turning radius of the bicycle 

model would be zero resulting in a perfect spin. 

In any case, the MapleCar package allows for an analysis such as this one to be easily 

assembled and simulated. Using the powerful MapleSim multibody solver combined with the tire 

component library, the parallel simulation of 3 simple vehicle models each with four-wheel 

steering enabled only takes 59 seconds to run a 10 second analysis. For this model, MapleSim 

determines that 423 equations exist within the model. Many of these equations are most likely 

extraneous component equations that results from the extra chassis offsets hidden from the user.  

Simplification of these equations is automatically determined and the solver automatically 

removes 369 equations resulting in 54 equations to determine the entire model. 

5.2.2 High-Speed Straight Line Stability 

At highway speeds, emergency lane change maneuvers may risk the yaw control of the vehicle 

due to the tire slipping. 'Skidding out' is especially dangerous with unexpected changes of road 

condition due to weather conditions. With high speeds, yaw stability is paramount in ensuring 

the safety of its passengers. 

 With a four-wheel steering vehicle, it is preferred for the rear wheels to turn in the same 

direction of the front wheels during high-way speeds. This reduces the amount of yaw 

experienced by the vehicle, converting it into an intentional sideways drift. The result of this 

simulation is shown below. 



70 

 

 

Figure 32 - High Speed Four Wheel Steering - Global Path 

 

Figure 33 - High Speed Four Wheel Steering - Yaw Measures 



71 

 

 In Figure 32, it is clear that the vehicle with a positive 0.1 gain of rear-wheel steering in 

the same direction slightly increases the amount of travel in the lateral direction. Meanwhile, 

looking at the results of the yaw angles experienced between the vehicles in Figure 33, the 

vehicle with 4WS actually turns less at the beginning of the maneuver. This response should 

yield a slightly greater feeling of yaw control when traveling at high speeds. To further 

investigate the straight-line stability of a vehicle at high speeds, a simulation can also be 

performed using a trailer to further examine the benefits of 4WS. 



72 

 

 

Figure 34 - 4WS Car with Trailer 

 In the diagram, a trailer is attached to the vehicle through a rear-articulation joint that is 

enabled through the chassis. The trailer itself contains a single axle with a stiff suspension and a 

front-articulation joint to facilitate the constraint of the hitch. The hitch is modelled between 

these two Chassis models as an ideal spherical joint. The same lane change maneuver is 

performed. 



73 

 

 

Figure 35 - 4WS Car with Trailer - Yaw Rate Difference 

Looking at the difference in magnitude between the two simulations, performing the sine-

steer maneuver at high speeds results in a slightly less yaw rate difference between the car and 

the trailer. If the sine-steer would be periodically continue, the snaking effect might be 

experienced by the trailer. This occurs because a new critical frequency exists in the model due 

to the spherical articulation joint. With a more intelligent controller varying the amount of rear-

steering in the system, this snaking effect may be attenuated to provide even better control for 

the driver. 

In both of these simulations, the total runtime of the software is less than one minute. 

This is a fairly quick total simulation time due to the simplification process automatically 

performed by MapleSim.  The first simulation contains two of the same vehicle models with 

slightly different rear-wheel steering gains. The total number of equations present during 

simulation time is 470. This is clearly an inflated figure since the model contains many 



74 

 

redundant equations due to the extra components within each chassis SuperBlock. In any case, 

MapleSim automatically reduces this large number of equations to only 42 resulting in the short 

overall simulation time.   

5.3 Long-Combination Vehicles (LCV) and Road Train Simulations 

Due to the constantly increasing demand on the transportation of goods, effective strategies to 

improve the payload of each highway vehicle are being explored. Without much change to the 

current vehicle technology, articulated highway vehicles are in the process of being converted to 

road trains, or long-combination vehicles [20] [25]. These vehicles contain the same tractor, but 

instead of only a single semi-trailer being hauled, multiple stages are connected with one 

another. 

The B-Double road train configuration is a slight modification to the standard tractor and 

semi-trailer combination typically seen on roads. With the created vehicle-systems package, 

large and complex simulations can be easily constructed due to the accessible modularity of the 

components. This is ideal for quickly constructing simulations to perform analysis on these 

unique vehicles. Figure 36 shows a basic kinematic diagram of a tractor pulling two trailers 

connected by articulation joints. This model can be quickly assembled in the simulation space 

using the chassis and suspension SuperBlocks to automatically assemble the basic equations to 

model a B-Double road train configuration. In MapleSim, this model will look like Figure 37. 



75 

 

 

Figure 36 - Kinematic Diagram of a Simple B-Double LCV 

 

Figure 37 – Workspace diagram of a LCV 

Reviewing the chassis SuperBlock parameters, modifying the chassis to support 3 axles 

in a LCV model is simple as clicking a few checkboxes and adding more suspension and tire 

SuperBlocks into the workspace. The trailers are the same chassis SuperBlocks with a different 



76 

 

icon to communicate what vehicle it represents. With MapleCar, the initial setup of these large, 

complex simulations becomes a trivial procedure. A simple analysis that is relevant in these 

types of articulated vehicles is investigating off-track error that occurs during low speed 

maneuvers due to the geometry of the trailers connected by their points of articulation. 

 

Figure 38 - Example trajectory of a long combination vehicle 



77 

 

Figure 38 shows the global trajectory of a basic long-chain vehicle from the top. The 

tractor features 3 axles, one in the front and 2 in the rear. Connected behind it is the primary 

trailer measuring 4 meters long. Behind the primary trailer is the secondary trailer, measuring 2.7 

meters. The figure shows an overlay of two snapshots of the result when a sine steer input is 

applied. Off-tracking error will always occur since the trailers are being pulled forward without 

steering. In this short example, a point of concern is the unexpected drift of the trailer when 

turning left. This is the reason trucks make such wide turns; the tractor may clear the corner just 

fine, but the trailer drags closer into the turn and may invade the space of another vehicle. The 

total simulation time of this model is only 140 seconds. 

  



78 

 

Chapter 6 

6. Conclusions and Recommendations 

The software landscape surrounding the software used in automotive engineering is well 

established, but still contains plenty of room for improvement. A large problem is the stagnation 

of innovation regarding the software tools available to engineers; there has been little effect to 

curb the trade-off between speed and accuracy. On one hand, CarSim is great to quickly drop in a 

vehicle model but will always suffer from the discretization and numerical error due to curve fit 

equations and look-up tables. On the other hand, a multi-body analysis tool like MSC.Adams can 

provide a great deal of accuracy numerically solving the dynamics of a model, but will greatly 

suffer from inefficiently solving large, complex models. 

 The purpose of MapleCar is to take the initial step in creating a new modelling 

environment that is not trapped in modifying old methodology to solve new problems. Modelica 

provides a platform to apply innovative programming techniques into a simulation tool without 

sacrificing the use of analytical equations. The flexibility and modularity of components opens 

the door to utilizing a single simulation tool to model a wide variety of vehicles, instead 

requiring a user to continually extend a chain of tools or incorporate add-ons onto their existing 

ones. The SuperBlocks provide convenience to engineers using MapleSim in two important 

ways. First, the customizable, high-level blocks provide an immediate solution to assist a user 

into seeing result from the simulation. It is very intimidating for anybody to begin creating a 

functional vehicle model with no prior saved sub-systems and no immediate visualization. 

Instead of the handful of examples provided by MapleSim that must be cut and pasted together, a 



79 

 

collection of modular components can snap together and a minimum result can be observed. 

From there, it becomes much easier to modify the provided parameters to simulate a particular 

scenario reducing the amount of effort to work with the software. The second advantage 

MapleCar contributes is better handling and packaging of completed models to be shared and 

distributed. Difficulty can arise when a user must manually keep track of which file contains 

which model containing which sub-systems. The task to assemble a new simulation from a 

collection of files resembles programming using notepad and pasting snippets of code from other 

text files. MapleCar provides the first step in creating an integrated development environment to 

ease the modelling of vehicle systems. With this topological organizational structure combined 

with MapleSim, the graph-theoretic methods applied during a simulation to automatically reduce 

and simplify the model equations provides superior efficiency compared to other simulation 

tools. 

 This exciting new perspective on vehicle modelling has great potential. Large, easy to use 

blocks are simply placed and connected in the MapleSim workspace, and the advanced 

multibody solution method utilizing graph-theoretic methods quickly provides a simplified 

collection of system equations. This can then be paired with the many features of Maple to 

perform advanced, analytical analysis on the equations governing the vehicle. These equations 

can also be deployed in various real-time targets using various connectors and compilers. The 

possibilities of this software are limitless, but boundaries and structure must be defined within 

the open sand box of MapleSim for it to continue to grow. 

Working with the MapleSim, it is clear that the free manipulation of Modelica was not 

originally the focus; Modelica was used as a specialized vehicle to facilitate their unique solution 



80 

 

methods. MapleSim6 contains enough compatibility with Modelica to import and execute the 

raw Modelica code developed in this work. However, compatibility must drastically increase for 

this type of package development to proceed. Modelica by itself has the essential features to 

refine the user-friendliness and polish the SuperBlock components, but a huge amount of distress 

surrounds importing Modelica code into the MapleSim environment. The continuation of this 

idea ultimately hinges on the contribution and involvement with MapleSoft. In particular, 

MapleSim should continue to work towards increasing its compatibility with Modelica. Without 

any access to the selected models using the models with replaceable models technique, the 

usability of this tool for real analysis quickly diminishes. 

 The presentation of many aspects of MapleSim and MapleCar is also an issue that needs 

to be addressed. First, without any graphical visualization of CAD geometry inside some of the 

SuperBlocks, the ability to demonstrate and present the different vehicle models during 

simulation using the MapleCar package is not attractive. A strong advantage MapleCar holds 

over other vehicle modelling software is the flexibility and modularity of its components to 

quickly draft and model different vehicle types and topologies. Graphs and charts will never 

properly reflect the visualization of a morphing sedan, compact car, truck or highway vehicle in 

the visualized result. 

 In the end, the initial value of MapleCar will be dependent on the breadth of models 

available to a new user. Therefore, it is important to continue the use of both MapleSim and 

MapleCar to model different components and sub-systems of a variety vehicle models. The 

libraries that exist in the various SuperBlock palettes have their beginnings as regular MapleSim 

models. Without increasing this collection of prepared, MapleCar will only exist as an empty 



81 

 

framework. Moreover, the involvement of engineers not involved with the immediate 

development of MapleCar is important. Continuous feedback on the usability of the tool is 

critical in the success of this idea. This work is ultimately designed to benefit the engineers and 

researchers involved in the modelling and simulation of vehicles. Without their constant input 

and participation, it will be difficult to pitch a product that is not even used by its creators. 

  



82 

 

References 

[1]  B. D. Solomon and A. Banerjee, “A global survey of hydrogen energy research, 

development and policy,” Energy Policy, vol. 34, no. 7, pp. 781–792, May 2006. 

[2]  K. Çağatay Bayindir, M. A. Gözüküçük, and A. Teke, “A comprehensive overview of 

hybrid electric vehicle: Powertrain configurations, powertrain control techniques and 

electronic control units,” Energy Conversion and Management, vol. 52, no. 2, pp. 1305–

1313, 2011. 

[3] “Adams for Multibody Dynamics.” [Online]. Available: 

http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx. [Accessed: 03-Dec-2012]. 

[4]  MSC Software, “Adams - Multibody Dynamics for Functional Virtual Prototyping.” . 

[5]  M. S. Fallah, R. Bhat, and W. F. Xie, “New model and simulation of Macpherson 

suspension system for ride control applications,” Vehicle System Dynamics, vol. 47, no. 2, 

pp. 195–220, 2009. 

[6]  J. J. Zhu, “UWSpace: Study of Vehicle Dynamics with Planar Suspension Systems (PSS),” 

Doctor of Philosophy, University of Waterloo, 2011. 

[7] “CarSim Overview,” CarSim Overview. [Online]. Available: 

http://www.carsim.com/products/carsim/index.php. [Accessed: 03-Dec-2012]. 

[8] “Multi-Engineering Modeling and Simulation - Dymola - CATIA - Dassault Systèmes,” 

Dymola. [Online]. Available: http://www.3ds.com/products/catia/portfolio/dymola. 

[Accessed: 03-Dec-2012]. 

[9] “Modelica,” Modelica Standard Library. [Online]. Available: 

https://build.openmodelica.org/Documentation/Modelica.html. [Accessed: 03-Dec-2012]. 

[10]  Modelica Association, “Modelica Language Specification Version 3.3.” [Online]. 

Available: https://www.modelica.org/documents/ModelicaSpec33.pdf. [Accessed: 03-Dec-

2012]. 

[11] “Modelica Vehicle Dynamics Library.” [Online]. Available: 

http://www.modelon.com/products/modelica-libraries/vehicle-dynamics-library/. [Accessed: 

08-Jan-2013]. 

[12] “MapleSim – High Performance Physical Modeling and Simulation – Technical 

Computing Software,” MapleSim. [Online]. Available: 

http://www.maplesoft.com/products/maplesim/. [Accessed: 03-Dec-2012]. 

[13]  J. McPhee, “On the use of linear graph theory in multibody system dynamics,” 

Nonlinear Dynamics, vol. 9, no. 1, pp. 73–90, 1996. 



83 

 

[14] “MapleSim Tire Library - Maplesoft.” [Online]. Available: 

http://www.maplesoft.com/products/toolboxes/tire_component/. [Accessed: 03-Dec-2012]. 

[15] “MapleSim
TM

 Driveline Library.” [Online]. Available: 

http://www.maplesoft.com/products/toolboxes/driveline/. [Accessed: 03-Dec-2012]. 

[16]  H. Peng, “Configuration, Sizing and Control of Power-Split Hybrid Vehicles,” Proc. 

ICMEM, 2007. 

[17]  A. Khajepour, A. Goodarzi, and A. Kasaiezadeh, “MapleCar Steps ahead,” MapleSoft 

Waterloo, 18-Nov-2011. 

[18]  K. Chau and Y. Wong, “Overview of power management in hybrid electric vehicles,” 

Energy Conversion and Management, vol. 43, no. 15, pp. 1953–1968, Oct. 2002. 

[19]  D. L. Harkey, F. M. Council, and C. V. Zegeer, “Operational characteristics of longer 

combination vehicles and related geometric design issues,” Transportation Research Record: 

Journal of the Transportation Research Board, vol. 1523, no. 3, pp. 22–28, 1996. 

[20]  I. Åkerman and R. Jonsson, “European Modular System for road freight transport–

experiences and possibilities,” TFK report, 2007. 

[21]  M. Tiller, Introduction to Physical Modeling With Modelica. Springer, 2001. 

[22]  R. A. Hess and A. Modjtahedzadeh, “A control theoretic model of driver steering 

behavior,” Control Systems Magazine, IEEE, vol. 10, no. 5, pp. 3–8, 1990. 

[23]  R. Sharp, D. Casanova, and P. Symonds, “A mathematical model for driver steering 

control, with design, tuning and performance results,” Vehicle System Dynamics, vol. 33, no. 

5, pp. 289–326, 2000. 

[24]  Y. Furukawa, N. Yuhara, S. Sano, H. Takeda, and Y. Matsushita, “A Review of Four-

Wheel Steering Studies from the Viewpoint of Vehicle Dynamics and Control,” Vehicle 

System Dynamics, vol. 18, no. 1–3, pp. 151–186, 1989. 

[25]  P. Blow, J. Woodrooffe, and P. Sweatman, “Vehicle Stability and Control Research for 

U.S. Comprehensive Truck Size and Weight (TS & W) Study,” SAE International, 

Warrendale, PA, 982819, Nov. 1998. 

 

  



84 

 

Appendix A – Chassis SuperBlock source code 

The chassis SuperBlock is the generalized component used inside the MapleCar modelling 

package. It features an extensive list of options and parameters to transform this component into 

any desired chassis model.  

Source Code 
package MChassis 

 

package Interfaces 

end Interfaces; 

 

package Icons 

  

  // ///////////////////////////// 

  // // ChassisIcon2 

  // // This model contains the icon of a ‘car’ defined in Modelica basic annotations 

 
 partial model ChassisIcon2 

  annotation( 

    Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}}), 

      graphics={ 

        Polygon( 

          points={{0,461}, {90,447}, {136,419}, {156,412}, {175,338}, {175,194}, 

          {168,180}, {170,121}, {208,103}, {213,79}, {170,89}, {169,-206}, {177,- 

          226}, {175,-386}, {164,-400}, {144,-498}, {0,-507}, {-144,-498}, {-164,-400 

          }, {-175,-386}, {-177,-226}, {-169,-206}, {-170,89}, {-213,79}, {- 

          208,103}, {-170,121}, {-168,180}, {-175,194}, {-175,338}, {-156,412}, {-136,419 

          }, {-90,447}, {0,461}}, 

          lineColor={0,0,255}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={80,80,255}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={ {122,411}, {151,396}, {151,361}, {122,372}, {122,411} }, 

          lineColor={30,30,200}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={50,50,180}, 

          fillPattern=FillPattern.Solid), 



85 

 

        Polygon( 

          points={ {-122,411}, {-151,396}, {-151,361}, {-122,372}, {-122,411} }, 

          lineColor={30,30,200}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={50,50,180}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={ {0,176}, {146,130}, {118,42}, {0,74}, {-118,42}, {-146,130}, {0,176} }, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={0,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{128,24}, {150,87}, {149,-69}, {129,-78}, {128,24}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={00,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{130,-116}, {148,-104}, {151,-271}, {130,-247}, {130,-116}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={00,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-128,24}, {-150,87}, {-149,-69}, {-129,-78}, {-128,24}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={00,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-130,-116}, {-148,-104}, {-151,-271}, {-130,-247}, {-130,-116}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={00,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{0,-266}, {114,-261}, {141,-349}, {128,-375}, {0,-389}, {-128,-375}, {- 

          141,-349}, {-114,-261}, {0,-266}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={00,0,0}, 

          fillPattern=FillPattern.Solid) 

      }) 

     ); 

  end ChassisIcon2; 

 

  // ///////////////////////////// 

  // // TrailerIcon 

  // // This model contains the icon of a ‘trailer’ defined in Modelica basic annotations 



86 

 

 
  partial model TrailerIcon 

    annotation( 

      Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}}), 

      graphics={ 

        Polygon( 

          points={{-20,439},{20,440},{21,375},{0,394},{-18,377},{-20,439}}, 

          lineColor={0,0,255}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={80,80,255}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-192,200},{0,394},{195,200},{153,200},{0,349},{-152,200},{-192,200}}, 

          lineColor={30,30,200}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={50,50,180}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-19,330},{0,349},{21,329},{18,200},{-18,198},{-19,330}}, 

          lineColor={30,30,200}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={50,50,180}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-161,165},{164,165},{163,-401},{-162,-401},{-161,165}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={0,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-192,200},{195,200},{194,-431},{-193,-431},{-192,200}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={0,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{195,-141},{282,-141},{282,-368},{195,-369},{195,-141}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 

          smooth=Smooth.None, 

          fillColor={0,0,0}, 

          fillPattern=FillPattern.Solid), 

        Polygon( 

          points={{-280,-141},{-193,-141},{-193,-368},{-280,-368},{-280,-141}}, 

          lineColor={75,75,75}, 

          linethickness=0.5, 



87 

 

          smooth=Smooth.None, 

          fillColor={0,0,0}, 

          fillPattern=FillPattern.Solid) 

        } 

      ) 

    ); 

  end TrailerIcon; 

end Icons; 

package Library 

/* Insert any specific sprung, chassis models here */ 

end Library; 

 

// ///////////////////////////// 

// // ChassisLibraryFrameTest2 

// // contains the active SuperChassis model without an icon 

 
model ChassisLibraryFrameTest2 

 

  /* initial Conditions and Mass Properties */ 

  inner parameter Real GlobalOffset = {0, 0, 0} annotation (Dialog(tab="CG Properties")); 

  inner parameter Real InitialPosition = {0, 0, 0.75} annotation (Dialog(tab="CG Properties")); 

  inner parameter Real InitialVelocity = {25, 0, 0} annotation (Dialog(tab="CG Properties")); 

  inner parameter Modelica.SIunits.Mass CGMass = 2077 annotation (Dialog(tab="CG Properties")); 

  inner parameter Modelica.SIunits.Inertia CGInertia[3,3] = {{1330, 0, 110}, {0, 1925, 0}, { 

    110, 0, 1925}} annotation (Dialog(tab="CG Properties")); 

 

  /* SUPERCOMPONENT FRAME OPTIONS */ 

  parameter Boolean DisableAxle1 = true annotation(Evaluate=true, Dialog(tab="Frame Options")); 

  parameter Boolean DisableAxle2 = false annotation(Evaluate=true, Dialog(tab="Frame Options" 

    )); 

  parameter Boolean DisableAxle3 = true annotation(Evaluate=true, Dialog(tab="Frame Options")); 

  parameter Boolean DisableAxle4 = true annotation(Evaluate=true, Dialog(tab="Frame Options")); 

  parameter Boolean DisableAxle5 = true annotation(Evaluate=true, Dialog(tab="Frame Options")); 

  parameter Boolean DisableAxle6 = false annotation(Evaluate=true, Dialog(tab="Frame Options" 

    )); 

  parameter Boolean DisableAxle7 = true annotation(Evaluate=true, Dialog(tab="Frame Options")); 

  parameter Boolean DisableFrontArticulation = true annotation(Evaluate=true, Dialog(tab= 

    "Frame Options")); 

  parameter Boolean DisableRearArticulation = true annotation(Evaluate=true, Dialog(tab= 

    "Frame Options")); 

  inner parameter Real AxleDim1 = {0, 0, 0} annotation (Dialog(enable=not DisableAxle1)); 

  inner parameter Real AxleDim2 = {1.45, -0.8, -0.4} annotation (Dialog(enable=not 

    DisableAxle2)); 

  inner parameter Real AxleDim3 = {0, 0, 0} annotation (Dialog(enable=not DisableAxle3)); 

  inner parameter Real AxleDim4 = {0, 0, 0} annotation (Dialog(enable=not DisableAxle4)); 

  inner parameter Real AxleDim5 = {0, 0, 0} annotation (Dialog(enable=not DisableAxle5)); 

  inner parameter Real AxleDim6 = {-1.3, -0.8, -0.4} annotation (Dialog(enable=not 

    DisableAxle6)); 

  inner parameter Real AxleDim7 = {0, 0, 0} annotation (Dialog(enable=not DisableAxle7)); 

  inner parameter Real FrontADim = {1.6, 0, 0} annotation (Dialog(enable=not 



88 

 

    DisableFrontArticulation)); 

  inner parameter Real RearADim = {-1.75, 0, 0} annotation (Dialog(enable=not 

    DisableRearArticulation)); 

  parameter Boolean isCGFrame = true annotation (Dialog(tab="Frame Options")); 

  parameter Boolean isSensorFrame = false annotation (Dialog(tab = "Frame Options")); 

  parameter Boolean isControlFrame = false annotation (Dialog(tab = "Frame Options")); 

 

  // FRAMES 

  TVSMbeta.Connectors.SensorFrame frame_sensor if isSensorFrame annotation (Placement( 

    transformation(extent={{-145,375},{-75,445}}))); 

  TVSMbeta.Connectors.ControlFrame frame_control if isControlFrame annotation (Placement( 

    transformation(extent={{75,375},{145,445}}))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle1L if not DisableAxle1 

    annotation(Placement(transformation(origin={-230.0,332.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle1R if not DisableAxle1 

    annotation(Placement(transformation(origin={230.0,332.5},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle2L if not DisableAxle2 

    annotation(Placement(transformation(origin={-230.0,242.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle2R if not DisableAxle2 

    annotation(Placement(transformation(origin={230.0,242.5},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle3L if not DisableAxle3 

    annotation(Placement(transformation(origin={-230.0,0},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle3R if not DisableAxle3 

    annotation(Placement(transformation(origin={230.0,0},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle4L if not DisableAxle4 

    annotation(Placement(transformation(origin={-230.0,-100},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle4R if not DisableAxle4 

    annotation(Placement(transformation(origin={230.0,-100},extent={{-25.0,-25.0},{25.0,25.0}}, 

    rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle5L if not DisableAxle5 

    annotation(Placement(transformation(origin={-230.0,-212.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle5R if not DisableAxle5 

    annotation(Placement(transformation(origin={230.0,-212.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle6L if not DisableAxle6 

    annotation(Placement(transformation(origin={-230.0,-278.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle6R if not DisableAxle6 

    annotation(Placement(transformation(origin={230.0,-278.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle7L if not DisableAxle7 

    annotation(Placement(transformation(origin={-230.0,-362.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameAxle7R if not DisableAxle7 

    annotation(Placement(transformation(origin={230.0,-362.5},extent={{-25.0,-25.0},{25.0,25.0 

    }},rotation=0))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameFront if not 

    DisableFrontArticulation annotation(Placement(transformation(origin={0,405},extent={{-25.0,- 

    25.0},{25.0,25.0}},rotation=-90))); 

  public Modelica.Mechanics.MultiBody.Interfaces.Frame_b frameRear if not 

    DisableRearArticulation annotation(Placement(transformation(origin={0,-435},extent={{-25.0,- 

    25.0},{25.0,25.0}},rotation=90))); 

  public TVSMbeta.Connectors.CGFrame frameCG if isCGFrame annotation(Placement(transformation( 

    origin={0,0},extent={{-60.0,-80.0},{60.0,40.0}},rotation=0))); 

 

  // COMPONENTS 

  public Maplesoft.Multibody.Bodies.RigidBody RB(Mass=1, Inertia={{1, 0, 0}, {0, 1, 0}, {0, 0, 

    1}}, MechTranTree=Maplesoft.Multibody.Selectors.ICHandling.Guess, InitPos=InitialPosition, 

    VelType=Maplesoft.Multibody.Selectors.VelocityFrame.Inboard, InitVel=InitialVelocity, 

    MechRotTree=Maplesoft.Multibody.Selectors.ICHandling.Ignore, RotType={1, 2, 3}, InitAng={-.0 



89 

 

    , .0, .0}, AngVelType=Maplesoft.Multibody.Selectors.AngularVelocityFrame.Euler, InitAngVel={ 

    0, 0, 0}) annotation(Placement(transformation(origin={45.0,422.5},extent={{-20.0,-20.0},{ 

    20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFLocalOffset(InitPos=GlobalOffset, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={115.0,372.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=-90))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFFrontOffset(InitPos=FrontADim, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={215.0, 

    482.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=-270))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFRearOffset(InitPos=RearADim, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={235.0, 

    242.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=-90))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle1R(InitPos=AxleDim1, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0, 

    542.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle1L(InitPos=AxleDim1.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={65.0,522.5},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle2R(InitPos=AxleDim2, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={345.0, 

    372.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle2L(InitPos=AxleDim2.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={65.0,292.5},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle3R(InitPos=AxleDim3, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0, 

    172.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle3L(InitPos=AxleDim3.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={95.0,162.5},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle4R(InitPos=AxleDim4, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0, 

    52.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle4L(InitPos=AxleDim4.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={105.0,52.5},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle5R(InitPos=AxleDim5, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0 

    ,-70},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle5L(InitPos=AxleDim5.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={105.0,-70},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle6R(InitPos=AxleDim6, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0 

    ,-170},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle6L(InitPos=AxleDim6.*{1, -1, 1}, 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={105.0,-170},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle7R(InitPos=AxleDim7, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, {0, 0, 1 

    }}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={355.0 

    ,-250},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame RBFAxle7L(InitPos=AxleDim7.*{1, -1, 1}, 



90 

 

    RSelect=Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat={{1, 0, 0}, {0, 1, 0}, 

    {0, 0, 1}}, RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin 

    ={105.0,-250},extent={{20.0,-20.0},{-20.0,20.0}},rotation=0))); 

  Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_S if isSteerable annotation (Placement 

    (transformation( 

    extent={{15,-20},{-15,20}}, 

    rotation=90, 

    origin={-65,-110}))); 

equation 

  connect(RB.frame_a, RBFLocalOffset.frame_a) annotation(Line(points={{65.0,422.5},{115.0, 

    422.5},{115.0,392.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFFrontOffset.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{215.0,462.5 

    },{215.0,336.5},{115.0,336.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFRearOffset.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{235.0,262.5 

    },{235.0,342.5},{115.0,342.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle2L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{85.0,292.5},{ 

    115.0,292.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle2R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{325.0,372.5},{ 

    298.0,372.5},{298.0,316.5},{115.0,316.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle1L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{85.0,522.5},{ 

    148.0,522.5},{148.0,336.5},{115.0,336.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle1R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{335.0,542.5},{ 

    298.0,542.5},{298.0,316.5},{115.0,316.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle1L.frame_b, frameAxle1L) annotation(Line(points={{45.0,522.5},{28.0,522.5},{ 

    28.0,532.5},{-2.0,532.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle2L.frame_b, frameAxle2L) annotation(Line(points={{45.0,292.5},{15.0,292.5},{ 

    15.0,442.5},{-5.0,442.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFFrontOffset.frame_b, frameFront) annotation(Line(points={{215.0,502.5},{215.0, 

    540.5},{225.0,540.5},{225.0,584.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle1R.frame_b, frameAxle1R) annotation(Line(points={{375.0,542.5},{411.0,542.5 

    },{411.0,532.5},{455.0,532.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RB.frame_a, frameCG) annotation(Line(points={{67.0,419.5},{165.0,419.5},{165.0,399.5 

    },{255.0,399.5},{255.0,332.5},{450.0,332.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle2R.frame_b, frameAxle2R) annotation(Line(points={{365.0,372.5},{406.0,372.5 

    },{406.0,442.5},{455.0,442.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle3L.frame_b, frameAxle3L) annotation(Line(points={{75.0,162.5},{-5.0,162.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle3R.frame_b, frameAxle3R) annotation(Line(points={{375.0,172.5},{455.0,172.5 

    }},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle3L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{115.0,162.5},{ 

    129.0,162.5},{129.0,337.5},{115.0,337.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle3R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{335.0,172.5},{ 

    115.0,172.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle4L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{125.0,52.5},{ 

    125.0,352.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle4R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{335.0,52.5},{ 

    115.0,52.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle4L.frame_b, frameAxle4L) annotation(Line(points={{85.0,52.5},{-5.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle4R.frame_b, frameAxle4R) annotation(Line(points={{375.0,52.5},{455.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFRearOffset.frame_b, frameRear) annotation(Line(points={{235.0,222.5},{235.0,112.5 

    },{230.0,112.5},{230.0,-0.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle5L.frame_b, frameAxle5L) annotation(Line(points={{85.0,52.5},{-5.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle5R.frame_b, frameAxle5R) annotation(Line(points={{375.0,52.5},{455.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle5L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{85.0,292.5},{ 

    115.0,292.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle5R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{325.0,372.5},{ 

    298.0,372.5},{298.0,316.5},{115.0,316.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle6L.frame_b, frameAxle6L) annotation(Line(points={{85.0,52.5},{-5.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 



91 

 

  connect(RBFAxle6R.frame_b, frameAxle6R) annotation(Line(points={{375.0,52.5},{455.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle6L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{85.0,292.5},{ 

    115.0,292.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle6R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{325.0,372.5},{ 

    298.0,372.5},{298.0,316.5},{115.0,316.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  connect(RBFAxle7L.frame_b, frameAxle7L) annotation(Line(points={{85.0,52.5},{-5.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle7R.frame_b, frameAxle7R) annotation(Line(points={{375.0,52.5},{455.0,52.5}}, 

    color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle7L.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{85.0,292.5},{ 

    115.0,292.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None)); 

  connect(RBFAxle7R.frame_a, RBFLocalOffset.frame_b) annotation(Line(points={{325.0,372.5},{ 

    298.0,372.5},{298.0,316.5},{115.0,316.5},{115.0,352.5}},color={95,95,95},smooth=Smooth.None 

    )); 

  annotation( 

    Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}})), 

    Diagram(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,300.0 

      }})) 

    ); 

end ChassisLibraryFrameTest2; 

 

// ///////////////////////////// 

// // ChassisLibraryVehicle 

// // contains the same ChassisLibraryFrameTest2 but also contains a 'car' icon 

model ChassisLibraryVehicle 

  extends TVSMbeta.MChassis.Icons.ChassisIcon2; 

  extends TVSMbeta.MChassis.ChassisLibraryFrameTest2; 

  annotation( 

    Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}})), 

    Diagram(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}})) 

    ); 

end ChassisLibraryVehicle; 

 

// ///////////////////////////// 

// // ChassisLibraryVehicle 

// // contains the same ChassisLibraryFrameTest2 but also contains a 'trailer' icon 

model ChassisLibraryTrailer 

  extends TVSMbeta.MChassis.Icons.TrailerIcon; 

  extends TVSMbeta.MChassis.ChassisLibraryFrameTest2; 

  annotation( 

    Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}})), 

    Diagram(coordinateSystem(preserveAspectRatio=true, extent={{-200,-400},{200.0,400.0}})) 

    ); 

end ChassisLibraryTrailer; 

 

package Examples 

end Examples; 

 

end MChassis; 

 

 

 

  



92 

 

Appendix B – Suspension SuperBlock source code 

The suspension SuperBlock is the generalized component used inside the MapleCar modelling 

package. It features the use of the advanced Modelica technique, a model with a replaceable 

model, which populates the models within the library package as a selectable parameter.  

Source Code 
 

package MSuspension 

 

package Interfaces 

 

  partial model MBInterface 

    Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_a1 

      annotation (Placement(transformation(origin={-100,0}, extent={{-30,-  35},{30,35}}))); 

    Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_a 

      annotation (Placement(transformation(origin={100,0}, extent={{-30,-  35},{30,35}}))); // 

    annotation( 

      Icon(coordinateSystem(extent={{-100,-100},{100.0,100.0}})), 

      Diagram(coordinateSystem(extent={{-100,-100},{100.0,100.0}})) 

      ); 

  end MBInterface; 

 

  partial model MBInterface2 

    Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_a1 

      annotation (Placement(transformation(origin={-100,0}, extent={{-30,-  35},{30,35}}))); 

    Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_a 

      annotation (Placement(transformation(origin={100,0}, extent={{-30,-  35},{30,35}}))); // 

    annotation( 

      Icon(coordinateSystem(extent={{-100,-100},{100.0,100.0}})), 

      Diagram(coordinateSystem(extent={{-100,-100},{100.0,100.0}})) 

      ); 

  end MBInterface2; 

 

end Interfaces; 

 

package Icons 

  partial model SuspensionIcon2 

    annotation( 

      Icon(coordinateSystem(preserveAspectRatio=true, extent={{-200,-200},{200.0,200.0}}), 

        graphics={ 

          Polygon( 

            points={{-63,175},{-57,170},{-47,175},{-41,170},{-102,27},{-109,37},{-117,28},{- 

            122,37},{-63,175}}, 

            lineColor={30,30,200}, 

            linethickness=0.5, 

            smooth=Smooth.None, 

            fillColor={50,50,180}, 

            fillPattern=FillPattern.Solid), 

          Polygon( 

            points={{-44,158},{129,101},{104,68},{-97,38},{-78,79},{67,95},{-56,132},{-44, 

            158}}, 

            lineColor={30,30,200}, 

            linethickness=0.5, 

            smooth=Smooth.None, 

            fillColor={50,50,180}, 

            fillPattern=FillPattern.Solid), 

          Polygon( 

            points={{-77,-27},{-71,-33},{-63,-25},{-59,-34},{-113,-159},{-119,-152},{-129,- 



93 

 

            157},{-132,-150},{-77,-27}}, 

            lineColor={30,30,200}, 

            linethickness=0.5, 

            smooth=Smooth.None, 

            fillColor={50,50,180}, 

            fillPattern=FillPattern.Solid), 

          Polygon( 

            points={{-65,-48},{66,-77},{66,-93},{73,-105},{86,-105},{92,-96},{93,-82},{109,- 

            87},{97,-127},{-108,-150},{-95,-120},{57,-102},{-74,-73},{-65,-48}}, 

            lineColor={30,30,200}, 

            linethickness=0.5, 

            smooth=Smooth.None, 

            fillColor={50,50,180}, 

            fillPattern=FillPattern.Solid), 

          Polygon( 

            points={{67,61},{95,66},{94,-7},{131,-10},{128,-36},{94,-35},{92,-96},{86,-105 

            },{73,-105},{66,-93},{67,61}}, 

            lineColor={75,75,75}, 

            linethickness=0.5, 

            smooth=Smooth.None, 

            fillColor={00,0,0}, 

            fillPattern=FillPattern.Solid) 

        } 

      ) 

    ); 

  end SuspensionIcon2; 

end Icons; 

 

package Library 

  partial model SuspensionInterface 

    extends TVSMbeta.MSuspension.Interfaces.MBInterface2; 

    outer parameter Integer MirrorRorL; 

    outer parameter Real Stiffness; 

    outer parameter Real Damping; 

    Modelica.Mechanics.Translational.Interfaces.Flange_b frame_F7 annotation(Placement( 

      transformation(origin={-110,-80},extent={{-15.0,-15.0},{15.0,15.0}},rotation=0))); 

    annotation( 

      Icon(coordinateSystem(extent={{-100,-100},{100.0,100.0}})), 

      Diagram(coordinateSystem(extent={{-100,-100},{100.0,100.0}})) 

      ); 

  end SuspensionInterface; 

 

  /* LINEAR SPRING DAMPER - SIMPLE COMPONENT - OFFSET INCLUDED */ 

  model d_LinearSD_Offset 

    extends Library.SuspensionInterface; 

    /* IMPORTS */ 

    import Modelica.Constants.inf; 

    import Pi=Modelica.Constants.pi; 

    import pi=Modelica.Constants.pi; 

    /* PARAMETERS */ 

    inner parameter Real Ks = Stiffness; 

    inner parameter Real Lo = .12; 

    inner parameter Real Kd = Damping; 

    /* Offset */ 

    public Maplesoft.Multibody.Bodies.RigidBodyFrame WCOffset (InitPos={0, 0, -Lo}, RSelect= 

      Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat=[1, 0, 0; 0, 1, 0; 0, 0, 1 

      ], RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={ 

      620.0,10.0},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

    /* MAIN BODY */ 

    public Maplesoft.Multibody.Joints.Prismatic P(TranAxis= 

      Maplesoft.Multibody.Selectors.UnitVector.posZ, Kspring=Ks, L0=Lo, Kdamper=Kd, 

      MechTranTree=Maplesoft.Multibody.Selectors.ICHandling.Guess, InitPos=Lo, InitVel=0) 

      annotation(Placement(transformation(origin={70.0,70.0},extent={{-20.0,-20.0},{20.0,20.0 

      }},rotation=90))); 

  /* EQUATIONS */ 

  equation 

    connect(frame_a1, WCOffset.frame_b) annotation(Line(points={{36.0,378.9774475097656},{ 

      16.0,378.9774475097656},{16.0,375.9774475097656},{-1.0,375.9774475097656}},color={95,95, 



94 

 

      95},smooth=Smooth.None)); 

    connect(WCOffset.frame_a, P.frame_b) annotation(Line(points={{36.0,378.9774475097656},{ 

      16.0,378.9774475097656},{16.0,375.9774475097656},{-1.0,375.9774475097656}},color={95,95, 

      95},smooth=Smooth.None)); 

    connect(P.frame_a, frame_a) annotation(Line(points={{70.0,50.0},{70.0,29.0},{75.0,29.0 

      },{75.0,0.0}},color={95,95,95},smooth=Smooth.None)); 

    annotation( 

      Diagram(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{150.0,150.0}}), 

        graphics), 

      Icon(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{200.0,200.0}}), 

        graphics={Rectangle(extent={{0,0},{200.0,200.0}}, lineColor={0,0,0}),Rectangle( 

        extent={{0.0,0.0},{200.0,200.0}})}) 

      ); 

  end d_LinearSD_Offset; 

 

/* LINEAR SPRING DAMPER WITH STEERING - SIMPLE COMPONENT WITH IDEAL STEERING - OFFSET 

INCLUDED */ 

model d_LinearSDSteering_Offset 

  extends Library.SuspensionInterface; 

  /* IMPORTS */ 

  import Modelica.Constants.inf; 

  import Pi=Modelica.Constants.pi; 

  import pi=Modelica.Constants.pi; 

  /* PARAMETERS */ 

  inner parameter Real Ks = Stiffness; 

  inner parameter Real Lo = .12; 

  inner parameter Real Kd = Damping; 

  inner parameter Real TieRodRatio = 1; 

  /* Offset */ 

  public Maplesoft.Multibody.Bodies.RigidBodyFrame WCOffset (InitPos={0, 0, -Lo}, RSelect= 

    Maplesoft.Multibody.Selectors.RotationMatrixType.Euler, RMat=[1, 0, 0; 0, 1, 0; 0, 0, 1 

    ], RotType={1, 2, 3}, InitAng={0, 0, 0}) annotation(Placement(transformation(origin={ 

    620.0,10.0},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0))); 

  /* MAIN BODY */ 

  public Maplesoft.Multibody.Joints.Prismatic P(TranAxis= 

    Maplesoft.Multibody.Selectors.UnitVector.posZ, Kspring=Ks, L0=Lo, Kdamper=Kd, 

    MechTranTree=Maplesoft.Multibody.Selectors.ICHandling.Guess, InitPos=Lo, InitVel=0) 

    annotation(Placement(transformation(origin={70.0,70.0},extent={{-20.0,-20.0},{20.0,20.0 

    }},rotation=90))); 

  public Maplesoft.Multibody.Joints.Revolute R1(RotAxis= 

    Maplesoft.Multibody.Selectors.UnitVector.posZ, Kspring=0, Ang0=0, Kdamper=0, MechRotTree 

    =Maplesoft.Multibody.Selectors.ICHandling.Ignore, InitAng=.0, InitAngVel=0) annotation( 

    Placement(transformation(origin={139.5,165.5},extent={{-20.0,20.0},{20.0,-20.0}}, 

    rotation=-90))); 

  public Modelica.Mechanics.Translational.Components.IdealGearR2T IGR2T1(useSupportR=false 

    , useSupportT=false, ratio=TieRodRatio) annotation(Placement(transformation(origin={79.5 

    ,125.5},extent={{-20.0,-20.0},{20.0,20.0}},rotation=-90))); 

    /* EQUATIONS */ 

equation 

  connect(frame_a1, WCOffset.frame_b) annotation(Line(points={{36.0,378.9774475097656},{ 

    16.0,378.9774475097656},{16.0,375.9774475097656},{-1.0,375.9774475097656}},color={95,95, 

    95},smooth=Smooth.None)); 

  connect(WCOffset.frame_a, P.frame_b) annotation(Line(points={{36.0,378.9774475097656},{ 

    16.0,378.9774475097656},{16.0,375.9774475097656},{-1.0,375.9774475097656}},color={95,95, 

    95},smooth=Smooth.None)); 

  connect(P.frame_a, R1.frame_a) annotation(Line(points={{70.0,50.0},{70.0,29.0},{75.0, 

    29.0},{75.0,0.0}},color={95,95,95},smooth=Smooth.None)); 

  connect(R1.frame_b, frame_a) annotation(Line(points={{70.0,50.0},{70.0,29.0},{75.0,29.0 

    },{75.0,0.0}},color={95,95,95},smooth=Smooth.None)); 

  connect(IGR2T1.flangeR, R1.flange_b) annotation(Line(points={{69.5,135.5},{69.5,150.5},{ 

    118.5,150.5}},color={0,0,0},smooth=Smooth.None)); 

  connect(IGR2T1.flangeT, frame_F7) annotation(Line(points={{69.5,95.5},{69.5,80.5},{-1.5, 

    80.5}},color={0,127,0},smooth=Smooth.None)); 

  annotation( 

    Diagram(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{150.0,150.0}}), 

      graphics), 

    Icon(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{200.0,200.0}}),graphics 

      ={Rectangle(extent={{0,0},{200.0,200.0}}, lineColor={0,0,0}),Rectangle(extent={{0.0,0.0 



95 

 

      },{200.0,200.0}})}) 

    ); 

  end d_LinearSDSteering_Offset; 

end Library; 

 

// //////////////////////////////////////////////////////////////////// 

// // SuspensionLibrary - is the live superblock for Suspension systems 

model SuspensionLibrary 

  extends TVSMbeta.MSuspension.Interfaces.MBInterface; 

  extends TVSMbeta.MSuspension.Icons.SuspensionIcon2; 

 

  /* SUPERCOMPONENT ANNOTATION OPTIONS */ 

  replaceable model mySuspensionModel = MSuspension.Library.d_LinearSD_Offset constrainedby 

    Library.SuspensionInterface; 

  public mySuspensionModel mySuspensionModel_inst annotation(Placement(transformation(extent 

    ={{-20,-20},{20,20}}))); 

  inner parameter Integer MirrorRorL = 1; 

  inner parameter Real Stiffness = 5000000; 

  inner parameter Real Damping = 200000; 

  parameter Boolean isSteerable = false annotation (Dialog(group="SuperModel Options"),choices 

    (checkBox=true)); 

  parameter Boolean isSensorFrame = false annotation (Dialog(group = "SuperModel Options"), 

    choices(checkBox=true)); 

  parameter Boolean isControlFrame = false annotation (Dialog(group = "SuperModel Options"), 

    choices(checkBox=true)); 

  TVSMbeta.Connectors.SensorFrame frame_sensor if isSensorFrame annotation (Placement( 

    transformation(extent={{-170,130},{-130,180}}))); 

  TVSMbeta.Connectors.ControlFrame frame_control if isControlFrame annotation (Placement( 

    transformation(extent={{130,130},{170,180}}))); 

  Modelica.Mechanics.Translational.Interfaces.Flange_b frame_S if isSteerable annotation ( 

    Placement(transformation( 

    extent={{15,-15},{-15,15}}, 

    rotation=90, 

    origin={-65,-110}))); 

/* EQUATIONS */ 

equation 

  connect (mySuspensionModel_inst.frame_a, SuspensionLibrary.frame_a) annotation(Line( 

    points={{92.0,110.0},{143.0,110.0}},color={0,0,127},smooth=Smooth.None)) ; 

  connect (mySuspensionModel_inst.frame_a1, SuspensionLibrary.frame_a1) annotation(Line( 

    points={{217.0,110.0},{263.0,110.0},{263.0,131.0},{310.0,131.0}})) ; 

  connect (mySuspensionModel_inst.frame_F7, SuspensionLibrary.frame_S) annotation(Line( 

    points={{217.0,110.0},{263.0,110.0},{263.0,131.0},{310.0,131.0}})) ; 

  annotation ( 

    Diagram(coordinateSystem( 

      preserveAspectRatio=true, 

      extent={{-200,-200},{200,200}})), 

    Icon(coordinateSystem( 

      preserveAspectRatio=true, 

      extent={{-200,-200},{200,200}}))); 

end SuspensionLibrary; 

 

package Examples 

end Examples; 

 

end MSuspension; 

 

 

 


