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Abstract

This thesis studies a spin-star model and an open spin-star model. The spin-star model is
exactly solvable, and the approximation methods can be applied and compared with the exact
solution. As this model is shown to be non-Gaussian and non-Markovian, Born-Markovian
approximation is not valid. The comparison of Nakajima-Zwanzig and time-convolutionless
methods show that the performances of those two techniques depend on the specific property
of the model. The open spin-star model is not exactly solvable and the analytical solution
under Gaussian approximation is obtained.
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Chapter 1

Introduction

1.1 Quantum computation

Quantum computing and information theory have became one of the most captivating areas of
quantum mechanics in the past two decades [1, 2, 3]. Research into these areas was triggered
when Peter Shor [4] showed how a quantum algorithm could super-polynomially accelerate
the computations of hard problems more quickly than any known classical algorithm. Besides
their mathematical importance, quantum computing and information theory also successfully
combine fundamental research into quantum mechanics with modern experimental methods,
based on an original idea by Richard Feynman [5]. Those modern experiments include the
observation of interference phenomena in Rabi and Ramsey type experiments and also the
increase in decoherence times by effective shielding of the experimental setups.

The experimental requirements for the implementation of quantum information processing
are daunting as the quantum systems are extremely sensitive to noise from the environment,
which causes decoherence of the quantum information. When the error probability of an
individual quantum gate is lower than the fault tolerance threshold, which is estimated
between 10

�6 and 10

�2, quantum error correction make quantum information processing
possible [1, 6].

David DiVincenzo listed a list of requirements [7], called the DiVincenzo criteria, which
should be fulfilled by experimental setups to qualify as promising candidates for quantum
computing devices:

1. Scalability: a physical system with n well characterized qubits,

2. Initialization: the ability to prepare the state of the qubits to a pure state, such as
|000 . . .i,
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3. Stability : long relevant decoherence times, much longer than the gate operation time,

4. Ability to control : a “universal” set of quantum gates,

5. Ability to measure : a qubit-specific measurement capability.

1.2 Realization of quantum bits

Several different physical systems have been studied for the experimental realization of quan-
tum bits. The nuclear-magnetic resonance technique (NMR) is the earliest and most devel-
oped method [8]. The carriers of quantum information in this physical system are nuclear
spins in molecules. Due to the weak coupling between individual spin and the environment,
a huge ensemble of spins has to be used and strong magnetic fields have to be applied to
the NMR probes. The factorization of 15 into its prime factors 3 and 5 based on a quantum
algorithm has been achieved by the NMR technique [9]. Quantum optical implementations
of qubits [10, 11] also give good results regarding their impressive decoherence times. They
are among the earliest physical systems to realize multipartite entanglement and quantum
cryptography. Atomic or molecular energy levels are used to store quantum information and
external lasers are used to manipulate the qubit. Based on quantum optical systems, ion
traps [12] and optical lattices [13] are also implemented.

The difficulty in scaling up the quantum system from qubits to a many-qubit system has not
yet been solved. Although ion trap quantum registers of at most 8 qubits have been achieved,
at least 20 to 50 qubits are required to perform non-trivial quantum computations [1, 14].
Solid state qubits based on superconducting technology [15, 16, 17, 18, 19, 20] and quantum
dot qubits based on superconducting technology [7, 21] are more promising in order to reach
the scalability.
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1.3 Qubits and Environments

The main difficulty of implementing the qubit is caused by decoherence [22] , which is given by
the interactions between quantum systems and their environments [1]. The combined physical
system, the system of interest and its environment, can be considered as a closed system.
For example, the time evolution operator of this closed system is unitary. As a result, the
decoherence of the central system is due to the entanglement and energy exchange, which
give two kinds of decoherence, dephasing and dissipation, respectively. It is important to
understand decoherence because quantum computers require long dephasing times for the
computations and long dissipation times for the readouts.

1.4 Overview

As mentioned in section 1.3, the unavoidable interaction of quantum system with its envi-
ronment causes difficulties in the practical realizations of quantum information processing.
The quantum coherence could be destroyed and the loss of information could be caused.
As a result, it is important to understand the dynamics of open quantum systems in order
to avoid the loss of information. The time evolution of closed systems can be represented
by the Schrödinger equation; however, the quantum dynamics of an open system cannot be
described by unitary time evolution. When the dynamics of an open quantum system are
discussed, the equation of motion for its reduced density matrix turns out to be an effective
way [23]. There are various exact and approximate approaches that have been developed
[24, 23]. However, there are usually practical difficulties to use the exact approaches which
often involve complicated integro-differential equations and approximation techniques for the
reduced density matrix are practically important.

In this thesis we study two decoherence models: one is an exactly solvable spin-star model,
and the other one is an open spin-star model [25, 26]. The spin-star model is the system
consisting of a single spin-12 particle linearly coupled to a bath of spins and the open spin-star
model refers to the situation that the spin-star system is coupled to a heat bath. We are
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motivated by the importance of spin bath models, which usually describe the decoherence in
solid state quantum information processors.

In the first part of this thesis, we focus on the study of the spin-star model. The spin-
star model is exactly solvable due to its high symmetry, and the reduced dynamics of the
central system show that the spin bath is a non-Gaussian and non-Markovian environment.
Therefore, this model gives an example for the study of the performances of different non-
Markovian techniques. With the help of the exact solution, we are able to discuss the
dependences of various parameters, such as the initial state, the number of spins in the spin
bath, and the coupling strength, on the time evolution of the reduced system dynamics.
In addition, different master equations, which have been developed in the literature, can
be studied with the help of the spin-star model. Specifically, in this thesis we discussed
the Born and Born-Markov master equations, the Nakajima-Zwanzig (NZ) master equation
[27, 28, 29, 30] up to second order in the coupling strength, and the time-convolutionless
(TCL) master equation [31, 32] up to fourth order in the coupling strength. As a result, the
performance of those approaches can be discussed with the help of comparisons to the exact
solution. Although the same spin-star model with similar approaches has been studied in Ref
[26], we focus on these studies by introducing collective operators and discussing different
observers. In the second part we study the open spin-star model. This model is difficult to
be solved analytically in the strong coupling regime. We assume the weak coupling between
the central spin and the spin bath, therefore, the spin bath together with heat reservoir can
be approximated as a Gaussian environment. The reduced dynamics for the central spin is
obtained by using the Gaussian approximation.

This thesis is organized as follows. In chapter 2, we review some definitions critical to the
study in this thesis: decoherence, dephasing, quantum irreversibility and recurrence, in the
theory of decoherence. Next, we study the pure dephasing model in classical and quantum
regime and Gaussian approximations on both regimes. In Chapter 3 we study the spin-star
system. The reduced dynamics of the system is exactly solvable and shows non-Gaussian
and non-Markovian behavior. The exact solutions for parameters with different values are
discussed. We also study various approximation techniques: the Born and the Born-Markov
master equations, the Nakajima-Zwanzig (NZ) [27, 28, 29, 30] and the time-convolutionless
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[31, 32] projection operator techniques. In Chapter 4 the open spin-star model is studied.
The analytical solution with Gaussian approximation for the reduced dynamics of the central
spin is derived.
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Chapter 2

Definitions and Dephasing Model

2.1 Definitions

2.1.1. Decoherence

The coupling of an open quantum system with its environment causes correlations between
the states of the system and the heat bath. These correlations exchange the information
between the open quantum system and its environment, which is similar to a quantum probe
doing indirect measurement on the open system [23]. The system behaves very differently
from its isolated behavior when coupled to the environment. The time-evolution of the
open quantum system is not unitary. This environment-induced, dynamic destruction of
quantum coherence is called decoherence [22]. In the language of state and density matrix,
the superposition of the open quantum system’s states is destroyed after tracing over the
environmental degrees of freedom and the system’s reduced density matrix turns into a
statistical mixture. Decoherence is important because long decoherence times are necessary
for building quantum computers. As a result, it is crucial to study decoherence mechanisms.

2.1.2 Quantum irreversibility and recurrence

In Ref [33] decoherence is defined restrictively by relating it to the term irreversibility. In
addition, irreversibility is related to infinity: a bath of infinite degrees of freedom, i.e., a
bath of infinitely many harmonic oscillators could lead to irreversibility [34, 33]. In addition,
chaos also causes irreversibility [33]. When the system is coupled with a bath displaying
an infinite numbers of freedom, the interacting dynamic is irreversible. The process that
transfers energy from the open quantum system to its environment is called relaxation or
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damping [35]. The term quantum dissipation refers to the process whereby energy flows
only from the system to the environment [35]. The dissipation is an irreversible process.
Quantum relaxation and dissipation are indistinguishable on a short-time scale, which is
much shorter than the relevant time scales. Recurrences, which can lead the quantum state
of the interacting systems back to its initial unentangled state, exist in quantum interacting
processes. If the time scale of the recurrences is much longer than the duration of any
conceivable experiment, the recurrence turns into irreversible decay. Therefore, the time for
recurrences of an interaction process depends on the number of degrees of freedom of the
bath. When the bath is infinite, the recurrence time is infinite. When the bath is finite, then
the recurrence time may be comparable to the relevant time scale and the recurrences need
to be considered.

2.2 Dephasing model

In this section we study the basics of dephasing of a qubit introduced by its environment
using the pure dephasing models. We are following Chapter 4 of Ref [36].

2.2.1 Classical fluctuating noise

The Hamiltonian of the two-level system reads

H =

�

2

�z, (2.2.1)

where � is the energy splitting of the qubit and �z is the Pauli matrix of the qubit. The
eigenstates | "i ( or |1i) and | #i (or |0i ) are denoted as excited and ground state. We
assume ~ = 1 in this thesis.

The density matrix of the qubit is represented as
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⇢ (t) =
X

i,j=0,1

⇢ij (t) |iihj|, (2.2.2)

where ⇢ij (t) are the density matrix elements in the eigenbasis . The von Neumann equation
for the qubit,

@⇢ (t)

@t
= �i [H, ⇢ (t)] , (2.2.3)

determines the unitary time evolution of the qubit’s density matrix as

⇢ (t) = e�iHt⇢ (0) e+iHt. (2.2.4)

The qubit is usually coupled to its environment in the practical physical world. When the
decoherence is arising from a weak coupling of the qubit to many “fluctuators” in the bath,
the central limit theorem (CLT) applies and it is reasonable to assume the fluctuations of the
bath yield Gaussian statistics. In addition, “dephasing” is more important than “relaxation”
in many low temperature physical systems. We write the Hamiltonian added to the free
Hamiltonian of the qubit as

HI =
V (t)

2

�z, (2.2.5)

where V (t) is a stochastic fluctuating variable and V (t) = hV i + �V (t). We assume the
fluctuations of V obey Gaussian distribution with zero mean value, hV i = 0.

At this moment, the coupling variable is assumed as a classical variable, and we will show the
situation that the qubit is coupled to a quantum fluctuating environment in section 2.2.2.

The longitudinal coupling to the external environment destroys the phase coherence of the
qubit, i.e., the diagonal elements of the qubit density matrix is invariant while the off-diagonal
elements gain a phase factor such as
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⇢01 (t) = ⇢01 (0) e
�i�tei'(t), ' (t) = �

ˆ t

0

dt
0
V
⇣

t
0
⌘

. (2.2.6)

As a result, this longitudinal coupling model is a pure dephasing model. For the Gaussian
distributed noise, we have

hei'i = eih'(t)i�
1
2 h�'

2i, , �' (t) = ' (t)� h' (t)i, (2.2.7)

where h. . .i =
´
d' (. . .) p (', t) and it refers to the average over the Gaussian-distributed fluc-

tuations �'. The probability distribution of �', p (', t), equals (2⇡h�'2i)�1/2 exp (��'2/ (2h�'2i)).
Therefore, the two time correlation function h�V (t1) �V (t2)i of �V (t) determines the phase
factor by substituting equation 2.2.7 to 2.2.6:

⇢01 (t) = ⇢01 (0) e
�i�t

exp

 

�1

2

ˆ t

0

dt
0
ˆ t

0

0

dt
00h�V

⇣

t
0
⌘

�V
⇣

t
00
⌘

i
!

. (2.2.8)

When the correlations of the environment decay fast enough, in the long time limit the above
expression can be approximated as

⇢01 (t) t ⇢01 (0) e
�i�t

exp

✓

�t

ˆ 1
�1

dt
0h�V

⇣

t
0
⌘

�V (0)i
◆

= ⇢01 (0) e
�i�te��'t. (2.2.9)

The off-diagonal elements of the system density matrix decay exponentially and the decoher-
ence rate reads
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�' =

ˆ 1
�1

dt
0h�V

⇣

t
0
⌘

�V (0)i (2.2.10)

= h�V �V i!=0,

where the Fourier transform of the correlation function is defined as the noise spectrum:

h�V �V i! =

ˆ 1
�1

dtei!th�V (t) �V (0)i. (2.2.11)

2.2.2 Quantum noise

The classical stochastic description of the noise is valid when the environment is at high
temperatures. However, the back action of the qubit on its environment should be taking into
account and quantum mechanical descriptions are required at low temperatures. We assume
the interaction Hamiltonian between the qubit and the quantum heat bath is longitudinal,
ˆV �z/2, and the total Hamiltonian is

H =

�

2

�z +
ˆV

2

�z +HB. (2.2.12)

When the initial state of the whole system is a product state, ⇢q (0) ⌦ ⇢B (0), one of the
off-diagonal elements for the reduced density matrix can be calculated as

h0|⇢q (t) |1i = h0|TrB
�

e�iHt⇢ (0) eiHt
 

|1i

= h0|TrB
⇢

e
�i

⇣
!0
2 �z+

V̂
2 �z+HB

⌘
t
⇢q (0)⌦ ⇢B (0) e

+i
⇣

!0
2 �z+

V̂
2 �z+HB

⌘
t

�

|1i

= h0|⇢q (0) |1i · e�i!0t · f (t) , (2.2.13)

10



where

f (t) = TrB

⇢

e
�i

⇣
V̂
2 +HB

⌘
t
⇢B (0) e

+i
⇣
� V̂

2 +HB

⌘
t

�

(2.2.14)

Thus, the reduced density matrix for the qubit is

⇢ (t) =

 

⇢00 (0) ⇢01e
�i�tf (t)

⇢10e
i�tf ⇤ (t) ⇢11 (0)

!

. (2.2.15)

2.3 System-environment models

In order to study the decoherence of the qubits, the quantum systems and their environments
need to be modeled theoretically. The open quantum system is usually described by a simple
central system, i.e, a two level system or an oscilltor, which is coupled to an environment.
There are two kinds of environment: one is described by a set of harmonic oscillators and
another one is described by a set of spins. In this thesis, we consider the central system as a
two level system.

2.3.1 Harmonic oscillator bath

One of the standard models for studying the dynamics of a two level system in a dissipative
environment is the Spin-Boson model [37, 38, 39, 40]: the open quantum system is described
by a spin-12 coupled to a bath of harmonic oscillators .

An example is the qubit collectively coupled to the bath modes such that

ˆHI =

X

j

ˆSj ⌦ ˆBj = �̂z ⌦ ˆX (t) , (2.3.1)
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where ˆSj are the system operators, ˆBj are the bath operators and ˆX (t) is a collective bath op-
erator. The collective bath operator, ˆX, can be expressed in terms of bath modes’ coordinate,
q̂i [40]

ˆX (t) =
X

i

ciq̂i. (2.3.2)

Therefore, the Spin-Boson Hamiltonian in the second quantization has the form

H =

1

2

(✏�̂x +��̂z) +
1

2

�̂z ⌦
N
X

i

~�i
⇣

ai + a†i

⌘

+

N
X

i

~!ia
†
iai, (2.3.3)

where a†i and ai are the bosonic creation and annihilation operators of i-th bath mode, �̂x
and �̂z are the Pauli matrices of the central spin. One can denote the eigenstates of �̂z by
|0i and |1i. The energy eigenvalues of the spin-12 are ±E/2 with E =

p
✏2 +�

2.

The microscopic parameters of each harmonic oscillator are connected to the macroscopic
parameters by introducing the spectral density function J (!), and the properties of the bath
can be fully characterized by J (!). For example[40],

J (!) =
X

i

�2i � (! � !i) =
⇡

2

N
X

i=1

c2i
mi!i

� (! � !i) , (2.3.4)

where !i is the resonance frequency of the i-th oscillator.

2.3.2 Spin bath

The harmonic oscillator environment is very important for modeling the decoherence dynam-
ics with Gaussian environments [39]; however, some other non-Gaussian noise sources can
not be modeled by a harmonic oscillator bath.
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When the physical systems are at very low temperature, experiments show that the decoher-
ence is typically dominated by coupling with localized modes, e.g, the hopping background
charges or general quantum bistable fluctuators in superconducting qubits [41, 42, 43, 44, 45],
nuclear spins[46], tunneling charges, defects and paramagnetic electronic impurities. There-
fore, these localized modes could be described as finite-dimensional Hilbert spaces with finite
energy cutoffs and could be mapped onto an environment of spin-12 particles [47]. The spin
bath model can be applied to various physical systems, such as magnetic systems where the
interactions are strong and superconducting systems[47].
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Chapter 3

The Spin-Star Model

In th is chapter we study a simple spin star model, which consists a single central spin-
1
2 system interacting with an environment of N spin-12 particles [26, 25]. The central spin
is located at the center of the whole system and equally coupled to N bath spins. The
bath spins are not coupled with each other. The central spin and its environment live in a
two-dimensional Hilbert space HS and an N -fold tensor product of two dimensional spaces
HB, respectively. In this thesis, we consider an Ising spin-star model which has a diagonal
interaction Hamiltonian. This model is exactly solvable due to its high symmetry, so limit
situations and approximation methods can be applied and compared with the exact solution.
This model is particularly useful to study the spin bath [47] used to describe the decoherence
of solid state qubits, i.e., quantum dots spin qubits [7, 17, 48] and the nitrogen-vacancy center
in diamond [49, 50].

Some similar spin-star systems have already been studied in Ref [26, 51, 52, 53] , where the
analytical solutions are obtained and approximation techniques are applied. For example,
in Ref [51] a spin-star model with XY exchange-type and in Ref [26] an Ising model with
arbitrary coupling constants are studied. Although in Ref [26] the Ising spin-star model with
equal coupling strength has been discussed and various approximation methods are studied,
we focus on the methods based on collective operators [25, 54, 55, 56].

When the correlation time of the environment is much shorter than the characteristic time
of the system, the correlation function can be assumed to be a � function under Markovian
approximation, which suggests that we can neglect the memory effect from the environment
during the evolution of the central system [23]. However, the correlation function of the bath
is constant and the correlation time is infinite for our spin-star model, which implies the
reduced dynamics of the central spin is non-Markovian.

This chapter is organized as follows. Section 3.1 demonstrates the model and introduces the
collective operators. Section 3.2 discusses the exact solutions for three different factorized
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initial states: spin bath at thermal equilibrium state, spin bath at unpolarized state, and
spin bath at ground state. In section 3.3 the short-time limit is studied for the decoherence
factor when the initial state of the spin bath is a thermal equilibrium state at temperature
T . In section 3.4, firstly, the Born approximation is applied and Markovian approximation is
demonstrated to be not applicable; secondly, Nakajima-Zwanzig (NZ) up to second order and
Time-convolutionless (TCL) up to fourth order projection operator techniques are applied
to the factorized initial state with spin in thermal equilibrium state at finite temperature T .
The exact and approximation solutions with various parameters are plotted in section 3.5.
Finally, the discussions and conclusions are presented in section 3.6.

3.1 The model

The interaction Hamiltonian of the Ising spin-star model is

ˆHI = �̂z ⌦
N
X

i

�i
2

�̂(i)
z , (3.1.1)

where �̂z is the Pauli operator for systems, �̂(i)
z is the Pauli operator for i-th bath spin, �i is

the coupling strength between the central spin and i-th bath spin.

The free Hamiltonians for the central spin and the spin bath are

ˆHS =

1

2

!0�̂z (3.1.2)

and
ˆHB =

N
X

i=1

1

2

⌦i�̂
(i)
z , (3.1.3)

where !0 and ⌦i are the energy splitting of the central spin and the i-th spin in the spin
bath, respectively. In this thesis, we use ~ = kB = 1 and we are particularly interested in
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the situation where the bath spins have identical energy splitting and are equally coupled to
the central spin. The collective bath angular momentum operator can be introduced because
the individual spin properties can be deducted from the large pseudo-spin operators.

Figure 3.1.1: The diagram of spin-star configuration consisting a single central spin-12 system
equally coupled with N spin-12 in the spin bath. The spins in the bath are not coupled to one
another.

The N spin-12 can be added to a single large pseudo-spin with angular momentum operators
through [25, 54, 55, 56].

ˆJx =

1

2

N
X

i=1

�̂(i)
x , ˆJy =

1

2

N
X

i=1

�̂(i)
y , ˆJz =

1

2

N
X

i=1

�̂(i)
z . (3.1.4)

Because
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�̂
(i)
± ⌘

�

�̂(i)
x ± �̂(i)

y

�

(3.1.5)

describes the raising and lowering operators of the i-th bath spin,

for collective large spin operators we have

ˆJ± =

ˆJx ± i ˆJy,
h

ˆJz, ˆJ±

i

= ± ˆJ±,
h

ˆJ+, ˆJ�

i

= 2

ˆJz. (3.1.6)

The eigenstates of ˆJz and ˆJ2 are defined as Dicke states [57] |�, j,mi:

ˆJz|�, j,mi = m|�, j,mi (3.1.7)
ˆJ2|�, j,mi = j (j + 1) |�, j,mi, (3.1.8)

and we have

ˆJ+|�, j,mi =

8

<

:

p

(j �m) (j +m+ 1)|�, j,m+ 1i
0

�j  m < j

m = j,
(3.1.9)

ˆJ�|�, j,mi =

8

<

:

p

(j +m) (j �m+ 1)|�, j,m� 1i
0

�j  m < j

m = j,
(3.1.10)

where ˆJ2
=

ˆJ2
x +

ˆJ2
y +

ˆJ2
z is the total angular momentum squared and j the cooperation

number. The allowed values of j are
�

0, 12
�

,
�

1, 32
�

, . . . , N/2 and the allowed values of m are
�j,�j + 1, . . . j.

The total number of permitted (j,m) values is (N/2 + 1)

2 for N even and [(N + 1) /2 + 1] (N + 1) /2

for N odd. The parameter � is introduced to distinguish the degenerate state |j,mi in
eigenspace Mj,m. The dimension of Mj,m is n (j,N) which reads [58, 59, 60]
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n (j,N) =

 

N

N/2� j

!

�
 

N

N/2� j � 1

!

=

N !

�

N
2 � j

�

!

2j + 1

�

N
2 + j + 1

�

!

. (3.1.11)

Therefore, the total Hamiltonian can be written as

ˆH =

!0

2

�̂z + ��̂z ⌦ ˆJz + ⌦

ˆJz, (3.1.12)

where the central spin couples to the collective angular momentum Jz of N spin-12 .

We assume that for t < 0 the system and the environment are decoupled:

⇢ (0) = ⇢q (0)⌦ ⇢B (0) , (3.1.13)

where ⇢q,B (0) are density matrices in Hq,B, and the state ⇢q (0) of the system is pure: | i =
cos

✓
2 |0i+ sin

✓
2e

i�|1i.

3.2 Exact solution for the spin star model

The reduced density matrix describes the state of the central spin is

⇢q (t) = TrB {⇢ (t)} , (3.2.1)

where TrB is the partial trace over the degrees of the freedom of the bath and ⇢ (t) is the
density matrix for the total system at time t. The density matrix ⇢ (t) evolutes under the
unitary evolution:
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⇢ (t) = e�iHt⇢ (0) e+iHt.

One of the off-diagonal system density matrix elements in the eigenbasis of the central spin
Hamiltonian is

h0|⇢q (t) |1i = h0|TrB
�

e�iHt⇢ (0) eiHt
 

|1i

= h0|TrB
n

e�i(
!0
2 �̂z+��̂z⌦Ĵz+⌦Ĵz)t⇢q (0)⌦ ⇢B (0) e+i

(

!0
2 �̂z+��̂z⌦Ĵz+⌦Ĵz)t

o

|1i

= h0|⇢q (0) |1i · e�i!0t · TrB
n

e�i(�+⌦)Ĵzt⇢B (0) e+i(��+⌦)Ĵzt
o

= h0|⇢q (0) |1i · e�i!0t · f (t) (3.2.2)

where f (t) is the decoherence factor defined in chapter 2.

The decoherence factor for another off-diagonal matrix element is

h1|⇢q (t) |0i = h1|⇢q (0) |0i · e+i!0tf ⇤ (t) . (3.2.3)

Note that the diagonal matrix elements are stationary in this pure dephasing model:

h0|⇢q (t) |0i = h0|⇢q (0) |0i, (3.2.4)

and
h1|⇢q (t) |1i = h1|⇢q (0) |1i. (3.2.5)

a. The initial state of spin bath is in the thermal equilibrium at a finite temper-

ature T

When the spin bath is in the thermal equilibrium state at temperature T , the density matrix
of the spin bath is described by

⇢B (0) = e��HB/Z, (3.2.6)
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where � = 1/kBT , Z is the partition function TrB

�

e��HB
�

, and kB is the Boltzmann constant.
We assume kB is 1 in this thesis.

In the eigenbasis of Jz and J2 {|�, j,mi}, the initial density matrix of spin bath, ⇢B (0), reads

⇢B (0) =

1

Z
e��⌦Jz

=

1

Z

X

j

n (j,N)

 

m=j
X

m=�j

e��⌦m|�, j,mih�, j,m|
!

, (3.2.7)

and the partition function reads

Z = TrB

(

X

j

n (j,N)

 

m=j
X

m=�j

e��⌦m|�, j,mih�, j,m|
!)

. (3.2.8)

Note that the bath state is stationary under this interaction: ⇢B (t) = ⇢B (0) , which is because
⇢B (t) commutes with the interaction Hamiltonian HI . The exact solution for decoherence
factor is obtained from equation 3.2.2 by calculating the traces over spin bath in the eigenbasis
of Jz and J2, {|�, j,mi}:

f (t) =

1

Z

X

j

n (j,N)

 

j
X

m=�j

e�(2i�t+�⌦)m

!

(3.2.9)

=

1

Z

X

j

n (j,N)

sin

⇥�

j + 1
2

�

(2�t� i�⌦)
⇤

sin

�

1
2 (2�t� i�⌦)

� , (3.2.10)

where � is the coupling strength, � equals 1/kBT , and ⌦ is the energy splitting of spins in
the spin bath.

Equation 3.2.9 is the exact expression of the decoherence factor. It is a sum of finite number
of functions
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sin

⇥�

j + 1
2

�

(2�t� i�⌦)
⇤

sin

�

1
2 (2�t� i�⌦)

� ,

which is a periodic function. The frequency of the numerator � is slow compared to the
frequency of the fraction (2j + 1)� and is perceived as a pitch. In short, it is perceived as
a periodic variation of the fraction function (the numerator function is an envelope for the
fraction function). As a result, the decoherence factor is also a periodic function and the
periods are determined by the coupling strength �, the number of spins in the spin bath N ,
and the constant �⌦. The coupling strength � determines the slow frequency and the period
of a full recurrence, N and �⌦ together determine the fast oscillations in a full recurrence
period. Because �⌦ is determined by the initial state of environment, the decoherence factor
is affected by the initial state of the spin bath. As a periodic function will always return to
its initial value, 1, at some time, this decoherence process is fully reversible due to the finite
environment. In addition, the decoherence factor does not have an equilibrium value and the
central spin does not have an equilibrium state. In summary, the interaction process between
the central spin and the spin bath is non-Markovian and has a quantum memory effect.

In this model the bath correlation functions can also be calculated exactly. Because the heat
bath density matrix is stationary, the kth order bath correlation function is easily calculated

Qk = TrB
�

Jk
z ⇢B

 

=

1

Z

X

j

n (j,m)

 

j
X

m=�j

mke��m⌦

!

. (3.2.11)

Usually, Q1 refers to the expectation value of bath operator Jz. The bath correlation functions
are time independent due to the stationary bath density matrix and the corresponding bath
correlation time is infinitely long.
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b. The initial state of the spin bath is an unpolarized state (T = 1).

When the initial state of the spin bath is the thermal equilibrium state at infinitely high
temperature, i.e., T = 1 (� ⇠ 0), the initial state of the total system is given by an
uncorrelated product state ⇢S (0)⌦ ⇢B (0) with

⇢B (0) = 2

�NIB. (3.2.12)

Here, IB refers to the unit matrix in HB.

The bath state is also stationary under this interaction: ⇢B (t) = ⇢B (0) , because ⇢B (0)

commutes with the interaction Hamiltonian HI . The exact solution for decoherence factor is
obtained from equation 3.2.2 by calculating the trace over spin bath in the eigenbasis of Jz
and J2:

f (t) =

1

Z
TrB

n

e�2i�Ĵzt⇢B (0)

o

=

1

2

�N

X

j

n (j,N) ·
 

m=j
X

m=�j

e�2i�mt

!

=

1

2

�N

X

j

n (j,N)

sin [(2j + 1)�t]

sin (�t)
. (3.2.13)

Equation 3.2.13 is the exact expression of the decoherence factor for the situation that the
initial state of the bath is an unpolarized state. Similar to the finite temperature case
discussed in part a, it is also a sum of finite number of periodic functions

sin [(2j + 1)�t]

sin (�t)
.

Similarly, we can conclude that the coupling strength � determines the period of a full
recurrence. For this situation, the bath correlation functions can also be calculated exactly.
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Because the heat bath density matrix is stationary, the kth order bath correlation function is
easily calculated as

Qk = TrB
�

Jk
z ⇢B

 

=

1

2

�N

X

j

n (j,m)

 

j
X

m=�j

mk

!

. (3.2.14)

It is easy to read the information from equation 3.2.14: the bath correlation functions are
time-independent and the corresponding bath correlation time is infinitely long.

c. The initial state of the spin bath is its ground state (T = 0)

When the initial state of the spin bath is the thermal equilibrium state at absolute zero
temperature, i.e., T = 0 (� = 1), there is no excitation exist and all the spins in the spin
bath are in their down state.

The initial state of the total system is given by an uncorrelated product state ⇢S (0)⌦ ⇢B (0)

and
⇢B (0) = |�, N

2

,�N

2

ih�, N
2

,�N

2

|. (3.2.15)

The exact solution for decoherence factor is obtained from equation 3.2.2 by calculating the
traces over spin bath in the eigenbasis of Jz and J2:

f (t) = TrB

n

e�2i�Ĵzt⇢B (0)

o

= e�i�Nt (3.2.16)
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The kth order bath correlation function is easily calculated

Qk = TrB
�

Jk
z ⇢B

 

=

✓

�N

2

◆k

. (3.2.17)

It is easy to read the information from equation 3.2.17: the bath correlation functions are
time-independent and the corresponding bath correlation time is infinitely long.

For all of the initial conditions introduced in this section, the slow frequency of the decoher-
ence factors, which gives full recurrences periodically, is independent of the number of spins
in the bath, N, and determined by the coupling strength �. In short, the envelope recurrence
period is determined by the coupling strength �. Note that this is different from the infi-
nite degrees of freedom situation because we could write the bath Hamiltonian as a single
collective operator and the degrees of freedom of the bath is reduced.

3.3 Short time behavior

In this section we will study the short-time behavior for the spin star model with the initial
state of spin bath is in thermal equilibrium at a finite temperature T .

When the interaction between the central spin and the spin bath is on only for a short time
compared to the scale of recurrence period, �t ⌧ 1, the decoherence factor can be expanded
and approximated as

f (t) =

1

Z

X

j

n (j,N)

j
X

m=�j

e�2i�mte��m⌦

=

1

Z

X

j

n (j,N)

j
X

m=�j

 

1 + (�2i�mt) +
(�2i�mt)2

2!

+

(�2i�mt)3

3!

+ · · ·
!

e��m⌦

= 1� 2i�tQ1 � 2�2t2Q2 +
4

3

i�3t3Q3 + · · ·

⇡ e�2i�tQ1�2�2t2Q2 , (3.2.18)
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where Q1 and Q2 are defined in equation 3.2.11.

Then the off-diagonal elements of the central spin density matrix at a short time become

⇢S,01 (t) ⇡ ⇢S,01 (0) e
�i!0te�2i�tQ1�2�2t2Q2 ,

⇢S,10 (t) ⇡ ⇢S,01 (0) e
+i!0te+2i�tQ1�2�2t2Q2 . (3.2.19)

3.3 Open Quantum System Approaches

In this section, various open quantum system methods are studied and applied to the spin-
star system. The theory part of this section follows Ref [23], which is an excellent reference
for studying open quantum system. The master equations for the reduced system density
matrix are derived for the initial state of the spin bath is in thermal equilibrium state at
temperature T.

We start with considering the central spin system S weakly coupled to the spin bath B. The
Hamiltonian of the whole system is assumed to be of the form

H (t) = HS ⌦ IB + IS ⌦HB +HI (t) , (3.3.1)

where HS is the free Hamiltonian of the open system S, HB is the self-Hamiltonian of
the environment B, and H (t) is the interaction Hamiltonian between the system and the
environment.

In the interaction picture, the von Neumann equation for the total density matrix ⇢ (t) is:

d

dt
⇢ (t) = �i [HI (t) , ⇢ (t)] . (3.3.2)
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Note we have omit the index I which used to indicate the interaction picture. Equivalently,
the interaction picture von Neumann equation can be written in its integral form

⇢ (t) = ⇢ (0)� i

ˆ t

0

ds [HI (s) , ⇢ (s)] . (3.3.3)

Inserting the integral form 3.3.3 into equation 3.3.2 and taking the trace over the spin bath
we have

d

dt
⇢S (t) = �iT rB [HI (t) , ⇢ (0)]�

ˆ t

0

dsTrB [HI (t) , [HI (s) , ⇢ (s)]] . (3.3.4)

Note that we do not assume TrB [HI (t) , ⇢ (0)] = 0 in this thesis.

a. Born approximation

In order to eliminate ⇢ (t) from the equation of motion, the Born approximation is performed.
This approximation assumes that the coupling between the central system and the bath is
weak, so that the influence of the central system on the bath is small. Because the density
matrix of the bath ⇢B is only insignificantly affected by the interaction, the density matrix
of the whole system at time t can be approximately written as a product state

⇢ (t) ⇡ ⇢S (t)⌦ ⇢B. (3.3.5)

A closed integro-differential equation for the reduced density matrix ⇢S (t) can be obtained
by inserting the product state into the exact equation of motion:

⇢̇S (t) = �iT rB [HI (t) , ⇢S (0)⌦ ⇢B]�
ˆ t

0

dsTrB {[HI (t) , [HI (s) , ⇢S (s)⌦ ⇢B]]} . (3.3.6)
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The integral equation 3.3.6 can be solved easily as the interaction Hamiltonian in our model
does not depend on time. We get

⇢̇S (t) = �i�Q1 [�z, ⇢S (0)]� 2�2Q2

ˆ t

0

ds (⇢S (s)� �z⇢S (s) �z) , (3.3.7)

where Q1 and Q2 are the expectation value of bath operator Jz and the second order bath
correlation function, respectively, defined in equation 3.2.11.

The equation for decoherence factor f (t) obtained by using Born approximation reads

˙f (t) = �2i�Q1tf (0)� 4�2Q2

ˆ t

0

dsf (s) . (3.3.8)

Taking the Laplace transform of this integro-differential equation, it becomes

sF (s)� f (0) = �2i�Q1
f (0)

s
� 4�2Q2

F (s)

s
, (3.3.9)

where F (s) is the Laplace transform of f (t) . By rearranging the terms, the above equation
becomes

F (s) = f (0)

s� 2i�Q1

s2 + 4�2Q2
. (3.3.10)

The solution of decoherence factor, f (t) , in Born approximation can be solved by taking the
inverse Laplace transform of equation 3.3.10

f (t) = f (0)

✓

cos

⇣

2�
p

Q2t
⌘

� iQ1p
Q2

sin

⇣

2�
p

Q2t
⌘

◆

. (3.3.11)

In some physical models, the integration of the intego-differential equation in the Born ap-
proximation could not be easily solved and time-local master equations are used to approx-
imate the intego-differential equation. For example, the time-local master equation for our
model is obtained by replacing the term ⇢ (s) in equation 3.3.6 with ⇢ (t) and then the time
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evolution of the state of the system at time t only depends on the present state ⇢ (t). Then
we get a time-local master equation for our model

⇢̇S (t) = �iT rB [HI (t) , ⇢S (0)⌦ ⇢B]�
ˆ t

0

dsTrB {[HI (t) , [HI (s) , ⇢S (t)⌦ ⇢B]]} , (3.3.12)

which is called the Redfield equation [61]. The Redfield equation gives the equation of motion
for the docoherence factor

˙f (t) = �2i�Q1f (0)� 4�2Q2tf (t) . (3.3.13)

This time-local equation can be easily solved and its solution is

f (t) = f (0)

✓

exp

�

�2Q2�
2t2
�

� 2i�Q1

exp (2�2Q2t2)

ˆ
exp

�

2�2Q2t
2
�

dt

◆

. (3.3.14)

b. Born-Markovian approximation

In order to obtain a Markovian master equation from Redfield equation, we need to substitute
s by t�s in the integral in equation 3.3.6 and set the upper limit of the integral go to infinity
[23, 55]. Then the integrand disappears fast enough for s � ⌧B. As a result, the Markovian
approximation can be made when the bath correlation function decay fast enough that the
time scale ⌧B over the decay is small compared to the system relaxation time scale ⌧S. We
obtain the Markovian quantum master equation for our model

⇢̇S (t) = �iT rB [HI (t� s) , ⇢S (0)⌦ ⇢B]�
ˆ 1
0

dsTrB {[HI (t) , [HI (t� s) , ⇢S (t)⌦ ⇢B]]} .
(3.3.15)
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The interaction Hamiltonian in our model is time-independent and we get

⇢̇S (t) = �i� [�z, ⇢S (0)]Q1 � 2�2 (⇢S (t)� �z⇢S (t) �z)

ˆ 1
0

Q2ds, (3.3.16)

where Q1 and Q2 are the expectation value of bath operator Jz and second order bath
correlation function, respectively, defined in equation 3.2.11.

In our model, both of the expectation value Q1 and correlation function Q2 do not depend
on time, which has been discussed in section 3.2. Thus,

´1
0 Q2ds is infinite. Therefore, the

Markovian approximation is not valid for our model. As a result, the dynamics of the reduced
density matrix for the central spin is non-Markovian and non-Markovian master equations
are expected.

c. The Nakajima-Zwanzig projection operator technique

When an open system S is coupled to an environment B, the dynamics of the density matrix
⇢ (t) of the total system is specified by

H = H0 + �HI , (3.3.17)

where H0 is the self Hamiltonian of the system and environment, HI is the interaction
Hamiltonian, and � is a dimensionless parameter representing the coupling strength. The
equation of motion in the interaction picture is

d

dt
⇢ (t) = �i� [HI (t) , ⇢ (t)] ⌘ �L (t) ⇢ (t) , (3.3.18)

where the interaction Hamiltonian in the interaction picture representation is written as

HI (t) = exp (iH0t)HI exp (�iH0t) . (3.3.19)
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The Liouville super-operator is indicated by L (t) .

A super-operator P is defined in order to derive an exact equation of motion for the system
density matrix ⇢S by

⇢! P⇢ = TrB {⇢}⌦ ⇢B ⌘ ⇢S ⌦ ⇢B, (3.3.20)

where ⇢B is some fixed state of the reservoir. The super-operator P projects on the relevant
part of the total density matrix such that the reduced density matrix ⇢S of the open system
can be reconstructed by P⇢. The orthogonal super-operator of P , which projects on the
irrelevant part of the density matrix, is denoted by Q,

Q⇢ = ⇢� P⇢. (3.3.21)

Note that the super-operators P and Q are maps in the total Hilbert space H = HS ⌦HB

and have properties

P +Q = I, (3.3.22)

P2
= P , (3.3.23)

Q2
= Q, (3.3.24)

PQ = QP = 0, (3.3.25)

where ⇢B is assumed to be normalized, TrB (⇢B) = 1. The density matrix ⇢B defined in
equation 3.3.20 is an operator in HB. It is called the reference state and usually taken to be
the Gibbs state of the environment. In may applications, it is usually assumed that the odd
moments of the interaction Hamiltonian with respect to the reference state vanish, however,
this assumption is not valid for the choice of the reference state in our model.
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In order to derive a closed equation for the relevant part P⇢ (t), we apply the projection
operators P and Q to the Liouville-von Neumann equation:

@

@t
P⇢ (t) = P @

@t
⇢ (t) = �PL (t) ⇢ (t) , (3.3.26)

@

@t
Q⇢ (t) = Q @

@t
⇢ (t) = �QL (t) ⇢ (t) . (3.3.27)

By inserting the identity I = P +Q between the Liouville operator and the density matrix,
the above equation set can also be written as

@

@t
P⇢ (t) = �PL (t)P⇢ (t) + �PL (t)Q⇢ (t) , (3.3.28)

@

@t
Q⇢ (t) = �QL (t)P⇢ (t) + �QL (t)Q⇢ (t) . (3.3.29)

With a given initial density matrix ⇢ (t0), the solution of equation 3.3.29 can be expressed as

Q⇢ (t) = G (t, t0)Q⇢ (t0) + �

ˆ t

t0

dsG (t, s)QL (s)P⇢ (s) , (3.3.30)

where the propagator

G (t, s) ⌘ T exp



�

ˆ t

s

ds
0QL

⇣

s
0
⌘

�

. (3.3.31)

The chronological time ordering is described by the operator T , which orders any product of
super-operators, i.e., the time arguments increase from right to left. The propagator G (t, s)

satisfies the differential equation

@

@t
G (t, s) = �QL (t)G (t, s) (3.3.32)
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with the initial condition
G (s, s) = I. (3.3.33)

The time evolution of the relevant part of the density matrix is obtained by inserting the
expression for the irrelevant part of the density matrix 3.3.30 into the equation of motion for
the relevant part 3.3.28

@

@t
P⇢ (t) = �PL (t)G (t, t0)Q⇢ (t0) + �PL (t)P⇢ (t)

+�2
ˆ t

t0

dsPL (t)G (t, s)QL (s)P⇢ (s) . (3.3.34)

This is the Nakajima-Zwanzig equation, which is an exact equation of motion for the relevant
degrees of freedom of the reduced system. The inhomogeneous term �PL (t)G (t, t0)Q⇢ (t0)
depends on the initial density matrix and the past history of the system in the time interval
[t0, t]. It is vanishes for the factorized initial state ⇢ (t0) = ⇢S (t)⌦⇢B because P⇢ (t0) = ⇢ (t0)

and Q⇢ (t0) = 0. Then the exact equation for the relevant part of the density matrix is

@

@t
P⇢ (t) = �PL (t)P⇢ (t) +

ˆ t

t0

dsK (t, s)P⇢ (s) , (3.3.35)

where K (t, s) is the memory kernel, a super-operator in the relevant subspace, and reads

K (t, s) = �2PL (t)G (t, s)QL (s)P . (3.3.36)

Notice the second term in equation 3.3.35 does not disappear in this model. This is because
the condition TrB {HI⇢B (0)} = 0 and PL (t)P = 0 do not valid in our model.

Expand the memory kernel in second order, one obtain

K = �2PL (t)QL (s)P +O
�

�3
�

, (3.3.37)
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which gives an equation of motion of second order for the relevant part of density matrix

@

@t
P⇢ (t) =

ˆ t

t0

ds�2PL (t)QL (s)P⇢ (s) + �PL (t)P⇢ (t) (3.3.38)

We can get the Nakajima-Zwanzig projection operator equation in second order by introduc-
ing the expression for the projection operator P and for the generator L (t)

@

@t
⇢S (t) = ��2

ˆ t

0

dsTrB [HI (t) , [HI (s) , ⇢S (s)⌦ ⇢B]]� i�TrB [HI (t) , ⇢S (t)⌦ ⇢B] .

(3.3.39)

d. Time-Convolutionless master equation

Because the Nakajima-Zwanzig equation has the time convolution in the memory kernel,
the equation of motion for the reduced system is difficult to treat. The time-convolutionless
projection operator method is introduced and the dependence of the future time evolution
on the history of the system is removed in the master equation. It is achieved by replacing
the density matrix ⇢ (s) on the right-hand side of equation 3.3.30 by

⇢ (s) = G (t, s) (P +Q) ⇢ (t) , (3.3.40)

where G (t, s) is the backward propagator, which the inverse of the unitary time evolution,
of the whole system. It reads

G (t, s) = T! exp



��
ˆ t

s

ds
0L
⇣

s
0
⌘

�

, (3.3.41)

where T! denotes the anti-chronological time-ordering.
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The irrelevant part of the density matrix can be written as

Q⇢ (t) = G (t, t0)Q⇢ (t0) + �

ˆ t

t0

dsG (t, s)QL (s)PG (t, s) (P +Q) ⇢ (t) . (3.3.42)

By introducing the super-operator

⌃ (t) = �

ˆ t

t0

dsG (t, s)QL (s)PG (t, s) , (3.3.43)

the irrelevant part of the density matrix can be expressed as

[1� ⌃ (t)]Q⇢ (t) = G (t, t0)Q⇢ (t0) + ⌃ (t)P⇢ (t) . (3.3.44)

Because ⌃ (t) has the properties ⌃ (t) |↵=0 = 0 and ⌃ (t0) = 0, the term 1 � ⌃ (t) could be
inverted for small couplings and any situation for small t� t0. Then

Q⇢ (t) = [1� ⌃ (t)]�1 ⌃ (t)P⇢ (t) + [1� ⌃ (t)]�1 G (t� t0)Q⇢ (t0) . (3.3.45)

One can read the information that the irrelevant part Q⇢ (t) of the density matrix can be
determined by the relevant part P⇢ (t) at time t and the initial state Q⇢ (t0) . By introducing
the exact backward propagator G (t, s) , the history dependence of the relevant part in the
Nakajima-Zwanzig equation is removed in the time-convolutionless approach. Insert the
equation of irrelevant part into the equation of motion for the relevant part, we can derive
the exact time-convolutionless (TCL) equation

@

@t
P⇢ (t) = K (t)P⇢ (t) + I (t)Q⇢ (t0) , (3.3.46)

where K (t) is the TCL generator, which is a time-local generator, and reads

K (t) = �PL (t) [1� ⌃ (t)]�1 P . (3.3.47)
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The term I (t) is the inhomogeneity

I (t) = �PL (t) [1� ⌃ (t)]�1 G (t, t0)Q, (3.3.48)

which vanishes for the factorized initial condition ⇢ (t0) = ⇢S (t) ⌦ ⇢B. The exact time-
convolutionless equation for the factorized initial condition is

@

@t
P⇢ (t) = K (t)P⇢ (t) .

The super-operator K (t) only exists when one can invert the operator [1� ⌃ (t)]�1. Assume
⌃ (t) can be expanded as

[1� ⌃ (t)]�1 =
1
X

n=0

[⌃ (t)]n . (3.3.49)

By substituting above expression into equation 3.3.47, we have

K (t) = �
1
X

n=0

PL (t) [⌃ (t)]n P =

1
X

n=1

�nKn (t) . (3.3.50)

In order to determine Kn (t), we expand ⌃ (t) in powers of �.

⌃ (t) =
1
X

n=1

�n⌃n (t) . (3.3.51)

On substituting above equation into equation 3.3.50, we get Kn (t). Here, we use the first
four terms of the expansion derived in Ref [23]:

K1 (t) = PL (t)P , (3.3.52)
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K2 (t) =

ˆ t

0

dt1PL (t)L (t1)P , (3.3.53)

K3 (t) =

ˆ t

0

dt1

ˆ t1

0

dt2PL (t)L (t1)L (t2)P , (3.3.54)

K4 (t) =

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t2

0

dt3(PL (t)L (t1)L (t2)L (t3)P � PL (t)L (t1)PL (t2)L (t3)P

� PL (t)L (t2)PL (t1)L (t3)P � PL (t)L (t3)PL (t1)L (t2)P). (3.3.55)

The corresponding terms for our model are obtained by introducing the expression for the
projection operator P and for the generator L (t)

K1 (t)P⇢ (t) = �i�TrB {[HI , ⇢S (t)⌦ ⇢B]}⌦ ⇢B, (3.3.56)

K2 (t)P⇢ (t) = ��2tT rB {[HI , [HI , ⇢S (t)⌦ ⇢B]]}⌦ ⇢B, (3.3.57)

K3 (t)P⇢ (t) = i�3
t2

2

TrB {[HI , [HI , [HI , ⇢S (t)⌦ ⇢B]]]}⌦ ⇢B, (3.3.58)

K4 (t)P⇢ (t) = �4
t3

6

(TrB {[HI , [HI , [HI , [HI , ⇢S (t)⌦ ⇢B]]]]}⌦ ⇢B

�3TrB {[HI , [HI , T rB {[HI , [HI , ⇢S (t)⌦ ⇢B]]}⌦ ⇢B]]}⌦ ⇢B).(3.3.59)

The second-order, third-order, and fourth-order TCL equation for the reduced density matrix
⇢S (t) are
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@

@t
⇢S (t) = �i�Q1 [�z, ⇢S (t)]� 2�2tQ2 (⇢S (t)� �z⇢S (t) �z) , (3.3.60)

@

@t
⇢S (t) = �i�Q1 [�z, ⇢S (t)]� 2�2tQ2 (⇢S (t)� �z⇢S (t) �z)

+4i�3Q3
t2

2

(�z⇢S (t)� ⇢S (t) �z) , (3.3.61)

@

@t
⇢S (t) = �i�Q1 [�z, ⇢S (t)]� 2�2tQ2 (⇢S (t)� �z⇢S (t) �z)

+2i�3t2Q3 (�z⇢S (t)� ⇢S (t) �z)

+�4
t3

6

�

8Q4 � 24Q2
2

�

(⇢S (t)� �z⇢S (t) �z) . (3.3.62)

The corresponding decoherence factor, f (t), can be solved analytically by using these equa-
tions:

fTCL2 (t) = exp

�

�2i�Q1t� 2�2t2Q2

�

, (3.3.63)

fTCL3 (t) = exp

✓

�2i�Q1t� 2�2t2Q2 + i�3Q3
4

3

t3
◆

, (3.3.64)

fTCL4 (t) = exp

✓

�2iQ1�t� 2Q2�
2t2 + i

4

3

Q3�
3t3 +

✓

2

3

Q4 � 2Q2
2

◆

�4t4
◆

, (3.3.65)

where Q1, Q2, Q3 and Q4 are defined by 3.2.11.
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3.4 Plots and comparisons

In this section exact and approximation solutions are plotted for various parameters, and
the performances of different approximation techniques can be discussed by comparing them
with exact solutions. In the following figures, all the dynamics are plotted in terms of the
dimensionless parameter �t.

3.5.1 Exact Solution

For all of the three initial bath states situations introduced in section 3.2, we consider the
exact solutions of the reduced system density matrix for three different numbers of bath
spins, N = 10, 20, and 100. For the spin bath is initially in a thermal equilibrium state
at a finite temperature situation, three different temperatures, � = 0.001, 0.5, and 3 are
considered. Figure 3.4.1 and 3.4.2 show the plots for the exact solutions of Re (f (t)) and
|f (t) |, respectively, with spin bath is initially in thermal equilibrium at finite temperature
introduced in part (a) of section 3.2.1 and � = 0.001. For each figure, exact solutions for
N = 10, 20, and 100 are plotted. Figure 3.4.3 and 3.4.4 show the plots for the exact solutions
of Re (f (t)) and |f (t) |, respectively, with spin bath is initially in thermal equilibrium at a
finite temperature and � = 0.5. For each figure, exact solutions for N = 10, 20, and 100 are
plotted. Figure 3.4.5 and 3.4.6 show the plots for the exact solutions of Re (f (t)) and |f (t) |,
respectively, with spin bath is initially in thermal equilibrium at a finite temperature and
� = 3. For each figure, exact solutions for N = 10, 20, and 100 are plotted.Figure 3.4.7 and
3.4.8 show the exact solution for Re (f (t)) and |f (t) |, respectively, with spin bath is initially
at an polarized state, which is the infinitely high temperature case, introduced in part (b) of
section 3.2.1. For each figure, exact solutions for N = 10, 20, and 100 are plotted. Figure
3.4.9 shows the exact solutions for Re (f (t)) and |f (t) | with the spin bath is initially in its
ground state, which is introduced in part (c) of section 3.2.1. For each figure, exact solutions
for N = 10, 20, and 100 are plotted.

As can be seen, for all the parameters we have chosen, the evolutions of Re (f (t)) and |f (t) |
always return to their initial value, 1, at a fix time. As the time t is expressed in terms of �

38



in the plots, we can conclude that the full recurrence time for the decoherence factor in our
model is determined by the coupling strength between the central spin and the spin bath.
This result is consistent with the discussions about equation 3.2.9 in section 3.2.

Figure 3.4.1 shows that there is no partial recurrence for Re (t) when the spin bath is ini-
tially in a thermal state at high temperature (� = 0.001). When the temperature decreases
(� = 0.5), it can be seen from Figure 3.4.3 that Re (t) starts to have partial recurrences. And
Figure 3.4.5 shows that Re (f (t)) has collapse and revival at low temperature (� = 3) . This
is because at a very high temperature, the density matrix for the spin bath is an unpolar-
ized state such that the population weight in each eigenstate |�, j,mi is the same. These
results are further confirmed by Figure 3.4.7 and 3.4.9, which plot Re (f (t)) for infinite high
temperature situation and ground state situation.

All the plots show that the increase of the number of spins N in the spin bath will not affect
the period for the full recurrences, but will accelerate the evolution of the decoherence factor.
It can be seen from Figure 3.4.1 and 3.4.2, the decoherence factor with a larger spin number
in the spin bath goes to 0 much faster than it with a smaller number. And for the low
temperature (� = 3) case shown in figure 3.4.5 and 3.4.6, the increase of the spin numbers
will also increase the number of partial recurrences in a period of full recurrence.
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Figure 3.4.1: Comparison of the exact solutions for Re (f (t)) at � = 0.001 with initial state
of spin bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.2: Comparison of the exact solutions for |f (t) | at � = 0.001 with initial state of
spin bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.3: Comparison of the exact solutions for Re (f (t)) at � = 0.5 with initial state of
spin bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.4: Comparison of the exact solutions for |f (t) | at � = 0.5 with initial state of
spin bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.5: Comparison of the exact solutions for Re (f (t)) | at � = 3 with initial state of
spin bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.6: Comparison of the exact solutions for |f (t) | at � = 3 with initial state of spin
bath is at thermal equilibrium for N = 10, 30, and 100.
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Figure 3.4.7: Comparison of the exact solutions for Re (f (t)) with initial state of spin bath
is an unpolarized state for N = 10, 30, and 100.
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Figure 3.4.8: Comparison of the exact solutions for |f (t) | with initial state of spin bath is
an unpolarized state for N = 10, 30, and 100.
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Figure 3.4.9: Comparison of the exact solution for Re (f (t)) with initial state of spin bath is
in its ground state for N = 10, 30, and 100.

3.5.2 Comparison of approximation solutions with the exact solution

Firstly, we compare the exact solutions of Re (f (t)) with NZ2 and TCL2 approximation
solutions for various parameters. Figure 3.4.10 shows the comparison of the exact solution
with NZ2 and TCL2 solutions for Re (f (t)) with � = 0.001 and N = 10. Figure 3.4.11
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shows the comparison of the exact solution with NZ2 and TCL2 solutions for Re (f (t)) with
� = 3 and N = 10. As can be seen, when the spin number is small (N = 10), NZ2 and
TCL2 approximate the short-time behavior of exact solutions well for both high (� = 0.001)

and low (� = 3) temperature well. However, Figure 3.4.10 shows that at high temperature
(� = 0.001), NZ2 diverges from the exact solution after a short time period of time while
TCL2 fits the exact solution well during the time period we plotted. Figure 3.4.11 shows
that at low temperature (� = 3) , TCL2 diverges from the exact solution after a short period
of time while NZ2 fits the exact solution well during the time period we plotted.

Figure 3.4.12 shows the comparison of the exact solution with NZ2 and TCL2 solutions for
Re (f (t)) with � = 0.001 and N = 100. Figure 3.4.13 shows the comparison of the exact
solution with NZ2 and TCL2 solutions for Re (f (t)) with � = 3 and N = 100. As can
be seen, when the spin number is large (N = 100), NZ2 and TCL2 approximate the short-
time behavior of exact solutions well for both high (� = 0.001) and low (� = 3) temperature
well. However, Figure 3.4.12 shows that at high temperature (� = 0.001), NZ2 diverges from
the exact solution after a short time period of time while TCL2 fits the exact solution well
during the time period we plotted. Figure 3.4.13 shows that at low temperature (� = 3) ,

TCL2 diverges from the exact solution after a short period of time while NZ2 fits the exact
solution well during the time period we plotted.

As a result, the number of spins in the spin bath does not affect the performances of NZ2 and
TCL2; however, the temperature for the initial state of the spin bath does. For our model,
TCL2 approximates the exact solution better than NZ2 at a high temperature (� = 0.001)

and NZ2 approximates the exact solution better than TCL2 at low temperature (� = 3).
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Figure 3.4.10: Comparison of the exact solution with NZ2 and TCL2 solutions for Re (f (t))
with � = 0.001 and N = 10.
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Figure 3.4.11: Comparison of the exact solution with NZ2 and TCL2 solutions for Re (f (t))
with � = 3 and N = 10.
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Figure 3.4.12: Comparison of the exact solution with NZ2 and TCL2 solutions for Re (f (t))
with � = 0.001 and N = 100.
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Figure 3.4.13: Comparison of the exact solution with NZ2 and TCL2 solutions for Re (f (t))
with � = 3 and N = 100.
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Figure 3.4.14: Comparison of the exact solution with NZ2, TCL2, TCL3, and TCL4 solutions
for Re (f (t)) with � = 0.001 and N = 10.

3.5 Chapter Discussion

In this Chapter we have discussed the exact solutions, the performances of two different pro-
jection operators, Nakajima-Zwanzig (NZ) and Time-convolutionless (TCL), for an exactly
solvable spin-star model. The structure of the model is the same as the model introduced in
Ref [25], but with different interaction Hamiltonian: a central spin is interacting with a bath
of spins through an Ising coupling, which leads to the pure dephasing of the qubit. In Ref [26]
the same model with same interaction Hamiltonian has been studied, however, we focus on
the approaches by using the collective operator methods. This pure dephasing model can be
solved exactly due to its high symmetry structure. As a result, we can compare the perfor-
mances of NZ and TCL methods with the exact solution directly. The Born approximation
for this model is also studied, however the Born-Markovian approximation is shown to be
not applicable in this model. This is mainly because the time-independent bath correlation
functions. Therefore, the dynamics of the central spin is non-Markovian.
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As pointed in Ref [51], the performances of the perturbation techniques of the decoherence
factor can strongly depend on the specific properties of the model, e.g., the interaction
Hamiltonian, the initial state of the spin environment, and the bath spectral density.

For our model, the TCL expansion to second order gives a more accurate answer than the
second order NZ expansion at a high temperature (� = 0.001) . However, the second or-
der NZ expansion turns out to be more accurate than the second order TCL expansion at
low temperature (� = 3). This can be clarified by considering the Taylor expansion of the
decoherence factor f (t):

f (t) = 1� 2i�tQ1 � 2�2t2Q2 +
4

3

i�3t3Q3 +
2

3

�4t4Q4 + . . . , (3.5.1)

and
Re (f (t)) = 1� 2Q2 (�t)

2
+

2

3

Q4 (�t)
4
+O

�

(�t)6
�

. (3.5.2)

The corresponding expansion obtained from TCL2 is given by

Re (f (t)) = 1� 2

�

Q2 +Q2
1

�

(�t)2 +

✓

2Q4
2 � 4Q2

1Q2 +
2

3

Q4
1

◆

(�t)4 +O
�

(�t)6
�

, (3.5.3)

and NZ2 is given by

Re (f (t)) = 1� 2Q2 (�t)
2
+

2

3

Q2 (�t)
4
+O

�

(�t)6
�

. (3.5.4)

At the high temperature, � = 0.001, the first order correlation function of bath, Q1, is a very
small value and can be neglect. In this situation, the second order coefficients for NZ2 and
TCL2 are both same as the exact solution, however, neither NZ2 or TCL2 give the correct
fourth order coefficients. The fourth order coefficient for TCL2 is closer to the exact fourth
order coefficient at medium and high temperature. In contrast, the fourth order coefficient for
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NZ2 is more accurate at low temperature. Therefore, our model demonstrate the situations
where TCL2 works better and NZ2 works better.

As a result, the specific properties of open quantum systems should be considered when the
applications of the projection operator methods are performed.
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Chapter 4

Outlook: The Open Spin-Star Model

In this chapter we discuss the time evolution of the reduced density matrix for a central spin
(qubit) subjected to the spin-star system, which is again coupled to a thermal bath (a set of
Harmonic oscillators). This nonlinear environment is non-Gaussian and non-Markovian. We
assume the coupling between the qubit and the spin-star system is weak such that the spin-
star system and the Harmonic oscillator bath together can be approximated as a Gaussian
environment. Therefore, we could calculate the reduced density matrix elements by using the
bath correlation function, which is obtained by using quantum regression theorem. Similar
problems have been studied in Ref [62, 63, 64, 65, 66].

4.1 The nonlinear model

In this thesis, we mainly focus on the study of the non-Gaussian pure dephasing model and
therefore the interaction between the qubit and its whole environment is of form:

HI = ��z ⌦ Jz ⌦ IB, (4.1.1)

where � is the coupling strength between the qubit and the spin-star system, �z is the
Pauli matrix for the qubit, Jz is the collective operator for the spin-star system, and IB is
the identity operator in the Hilbert space of the Harmonic oscillator bath. This coupling
Hamiltonian can be simply written as ��z ⌦ Jz.

In our model, the interaction Hamiltonian between the spin-star system and the Harmonic
oscillator bath reads
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H
0

I = Iq ⌦ Jx ⌦
X

i

gi

⇣

a†i + ai

⌘

, (4.1.2)

where Iq is the identity operator in the Hilbert space of the qubit, Jx is the collective operator
of spin bath defined in Chapter 3, a†i and ai are creation and annihilation operators for the
heat reservoir, and gi is the coupling strength between the pseudo-large spin and ith boson
in the heat reservoir.

Figure 4.1.1: The diagram of the open spin-star configuration consisting a single central
spin-12 system equally coupled with N spin-12 in the spin bath, which is again couple to a
thermal bath. The spins in the bath are not coupled to one another.
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Then the Hamiltonian of the whole system is

H =

!0

2

�z + ��z ⌦ Jz + ⌦Jz + Jx ⌦
X

i

gi

⇣

a†i + ai

⌘

+

X

i

!ia
†
iai, (4.1.3)

where !0 is the energy splitting of the central spin and ⌦ is the energy splitting of the spin
in the spin bath.

The environment Hamiltonian of the qubit is

HB = ⌦Jz + Jx ⌦
X

i

gi

⇣

a†i + ai

⌘

+

X

i

!ia
†
iai. (4.1.4)

We are interested in the reduced dynamics of the central spin (qubit), which is obtained from
tracing out all the degrees of freedom of the environment:

h0|⇢q (t) |1i = h0|TrB
�

e�iHt⇢ (0) eiHt
 

|1i

= h0|TrB
n

e�i(
!0
2 �z+��z⌦Jz+HB)t⇢q (0)⌦ ⇢B (0) e+i

(

!0
2 �z+��z⌦Jz+HB)t

o

|1i

= h0|⇢q (0) |1i · e�i!0t · TrB
�

e�i(�Jz+HB)t⇢B (0) e+i(��Jz+HB)t
 

= h0|⇢q (0) |1i · e�i!0t · f (t) , (4.1.5)

where f (t) = he�i(�Jz+HB)te+i(��Jz+HB)ti.

Because the exact solution of f (t) could not be easily obtained for large N , we apply Gaus-
sian approximation to the environment of the central spin (qubit). As a result, the deco-
herence factor f (t) can be obtained by using the two-time environment correlation function
hJz (t+ ⌧) Jz (⌧)i, see Chapter 2.
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4.2 Calculation of the open spin-star system correlation

function

We start with the full Hamiltonian of the Gaussian environment:

ˆHB = ⌦

ˆJz + ˆJx ⌦
X

i

�i

⇣

â†i + âi

⌘

+

X

i

!iâ
†
i âi, (4.2.1)

Notice that if we make rotating-wave approximation (RWA), i.e. ignore the terms J+ai and
J�a

+
i which correspond to simultaneous creation of a photon and atomic excitation, then

above equation becomes to

HB = ⌦Jz +
X

i

!iâ
+
i âi +

X

i

�

�iJ�â
+
i + �iJ+âi

�

(4.2.2)

In this thesis, we consider the weak coupling regime and derive a Lindblad master equation in
Born, Markov, and secular (BMS) approximation describing the time evolution of the large
spin system.

d

dt
⇢S (t) = �i [⌦Jz, ⇢S (t)] + � (n̄+ 1) (2J�⇢S (t) J+ � J+J�⇢S (t)� ⇢S (t) J+J�) (4.2.3)

+ �n̄ (2J+⇢S (t) J� � J�J+⇢S (t)� ⇢S (t) J�J+) .

This is the master equation for the reduced density matrix of the spin-star system. When
n̄ = 0, it can be solved analytically [54]. In this thesis, we assume the temperature of the
heat bath is low and n̄ ⇡ 0. This master equation becomes

d

dt
⇢S (t) = �i [⌦Jz, ⇢S (t)] + � (2J�⇢S (t) J+ � J+J�⇢S (t)� ⇢S (t) J+J�) (4.2.4)
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We solve it by the method of eigenvectors expansion. The collective operators Jz, J+, and
J� are defined in chapter 3 by equations 3.1.7, 3.1.9, and 3.1.10, respectively. By observing
the master equation, the operators Jz , J�, and J+ only generate rates for density matrix
with same j value and only density matrix elements with same j value are involved in the
same master equation. When the initial density matrix of spin-star system is diagonal, this
master equation will not generate undiagonal elements. For the sake of simplicity, we denote
the element of the reduced density matrix for the spin-star system h�, j,m|⇢S (t) |�, j,mi as
⇢j,mm (t), which has enough information for the analysis in this thesis.

In order to solve 4.2.4 by the method of eigenvectors expansion, we take it’s elements in the
eigenstates |�, j,mi:

d

dt
⇢j,m (t) = �C2

j,m+⇢j,m+1 (t)� �
�

C2
j,m� + C2

j,m+

�

⇢j,m (t) , (4.2.5)

where we have defined the eigenvalues of J+ and J� in the eigenstate |�, j,mi as

Cj,m+ =

p

(j �m) (j +m+ 1), (4.2.6)

and

Cj,m� =

p

(j +m) (j �m+ 1), (4.2.7)

respectively.

The equation 4.2.5 is a two-term difference-differential equation and the method of solving
this kind of equation has been shown in Sect 10.3 of Ref [54] and is included in the Appendix
A. We denote ↵j,m = ��

�

C2
j,m+ + C2

j,m�
�

and �j,m = �C2
j,m+. Then the solution of the
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reduced density matrix element ⇢j,m at time t is

⇢j,m (t) = exp {↵j,mt} [⇢j,m (0)

+

X

k=m+1

(1� exp (�t))k�m �j,m�j,m+1 · · · �j,k�1
(k �m)!

⇢j,k (0)]. (4.2.8)

From equation 4.2.8, when the initial density matrix for the reduced density matrix is diag-
onalized, it is still diagonalized at time t. Because the spin-star system operator Jz is also
diagonalized in the eigenspace {|�, j,mi}:

Jz =
X

j

n (j,N)

m=j
X

m=�j

m|�, j,mih�, j,m|, (4.2.9)

the expectation value of the operator Jz is easily calculated as

hJz (t)iS = TrS {Jz⇢S (t)}

=

X

j

n (j,m)

m=j
X

m=�j

m⇢j,m (t) , (4.2.10)

where ⇢j,m (t) is determined by the equation 4.2.8 and a given diagonalized initial density
matrix ⇢S (0) .

The two-time correlation function of operator Jz is calculated by using quantum regression
theorem [23] [54] [55] (see Appendix B)

hJz (t+ ⌧) Jz (t)i = TrS

n

Jz⇢
0
(⌧)

o

, (4.2.11)

where ⇢0
(0) = Jz⇢ (t)

The diagonal elements of ⇢0
(0) is
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⇢
0

j,m (0) = m⇢j,m (t) , (4.2.12)

and the diagonal elements of ⇢0
(⌧) is

⇢
0

j,m (⌧) = exp {↵j,mt} [⇢
0

j,m (0) +

X

k=m+1

(1� exp (�t))k�m �j,m�j,m+1 · · · �j,k�1
(k �m)!

⇢
0

j,k (0)]

= exp {↵j,m⌧} [m⇢j,m (t) +
X

k=m+1

(1� exp (�⌧))k�m �j,m�j,m+1 · · · �j,k�1
(k �m)!

m⇢j,k (t)].

(4.2.13)

Therefore, the two-time correlation function of operator Jz is

hJz (t+ ⌧) Jz (t)i =
X

j

n (j,N)

j
X

m=�j

m⇢
0

j,m (⌧) , (4.2.14)

where ⇢0
j,m (⌧) is obtained by substituting 4.2.8 into 4.2.13.

4.3 Gaussian approximation

With the help of two-time environment correlation function, the Gaussian approximation of
the decoherence factor is (see Chapter 2)

fGaussian (t) = exp

 

�2

ˆ t

0

dt
0
ˆ t

0

0

dt
00hJz

⇣

t
0
⌘

Jz

⇣

t
00
⌘

i
!

, (4.3.1)

where hJz
�

t
0�
Jz
�

t
00�i is the two-time correlation function 4.2.14.
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Chapter 5

Conclusion

This thesis consists of two main parts. In Chapter 3 we have studied an exactly solvable
spin-star model. Firstly, exact solutions of the reduced density matrix for the central spin
has been plotted with various values for coupling strength �, the initial bath temperature T ,
and the number of spins in the spin bath N . It has been shown that the coupling strength
� determines the full recurrence period, while the number of spins N increase the speed of
fast oscillations in a full recurrence period. As a result, we have shown that the spin bath in
our spin-star model is a non-Markovian and non-Gaussian environment. Secondly, we have
applied several open quantum system methods on the spin-star model. The Born-Markov
approximation is shown to be not applicable to our model even with a weak coupling strength,
which is due to the time-independent bath correlation function. Finally, the comparison of
NZ2 and TCL2 with the exact solutions for different regime suggests that the performances
of Nakajima-Zwanzig and time-convolutionless methods depends on the form of the exact
solution.

In Chapter 4 we have studied an open spin-star model. The open spin-star model in this
thesis is not exactly solvable. The spin bath and the heat reservoir together can be approxi-
mated as a Gaussian environment when the central spin is only weakly coupled to the spin
bath. The two-time correlation function of this Gaussian environment is obtained by using
quantum regression theorem. We finally obtained a Gaussian approximation solution for the
reduced dynamics of the central spin in the open spin-star model. More discussions about
this approximation result are expected in the future work.
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APPENDICES

A. Solution of Two-Term Difference-Differential Equation

In this appendix, we solve the equation

˙Cm = ↵Cm + �mCm+1 m = 0, 1, . . . , N, (5.0.2)

assuming that CN+1 = 0.

Taking the Laplace transform of 5.0.2, we have

˜Cm =

1

z � ↵m

h

Cm (0) + �m ˜Cm+1

i

. (5.0.3)

Set m = N in this and use the given condition ˜CN+1 = 0 to obtain

˜CN =

1

z � ↵N

CN (0) . (5.0.4)

Set m = N � 1, N � 2, . . ., successively in 5.0.3 to get

˜Cm =

1

z � ↵m

"

Cm (0) +

N�m
X

k=1

Cm+k (0)

k
Y

l=1

1

z � ↵m+l

�m+l�1

#

. (5.0.5)

The inverse Laplace transform of 5.0.5 gives Cm (t),

Cm (t) = exp {↵mt} [Cm (0)

+

X

k=m+1

(1� exp (�t))k�m �m�m+1 · · · �k�1
(k �m)!

Ck (0)] (5.0.6)
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We can verify the correctness of this solution by substituting it in 5.0.2.
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B. Quantum regression theorem

In this appendix, we consider the two-time correlation function of operators ˆA(S) and ˆB(S)

of system S. By definition,

h ˆA(S)
(t+ ⌧) ˆB(S)

(⌧)i = TrR+S

n

ˆA(S)
(t+ ⌧) ˆB(S)

(t) ⇢̂ (0)
o

. (5.0.7)

The operators are in the Heisenberg picture involved by the total Hamiltonian ˆH:

ˆA (t) = eiĤt/~
ˆAe�iĤt/~. (5.0.8)

By using equation 5.0.8 and the cyclic property of trace, the definition of the two-time
correlation function 5.0.7 leads to

h ˆA(S)
(t+ ⌧) ˆB(S)

(t)i = TrR+S

⇢

ˆA(S)
(⌧) ˆB(S)

exp

✓

� i

~
ˆHt

◆

⇢̂ (0) exp

✓

i

~
ˆHt

◆�

= TrR+S

⇢

ˆA(S)
exp

✓

� i

~
ˆH⌧

◆

ˆB(S)⇢̂ (t) exp

✓

i

~
ˆH⌧

◆�

= TrR+S

n

ˆA(S)
exp

⇣

ˆ

ˆL⌧
⌘⇣

ˆB(S)⇢̂ (t)
⌘o

= TrS

n

ˆA(S)TrR

n

exp

⇣

ˆ

ˆL⌧
⌘⇣

⇢̂
0
(0)

⌘oo

, (5.0.9)

where ⇢̂0
(0) =

ˆB(S)⇢̂ (t).
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