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Abstract

When a tight-binding chain of atoms is subjected to an electric field, its elec-
tronic energy spectrum takes on the form of the Wannier-Stark ladder. For such a
system, successive use of the Dyson equation enables the recursive Green function
to be derived analytically as a continued fraction, which can be expressed as a ratio
of Bessel functions. The site representation of the Green function provides access
to the local density of states. The versatility of this technique is illustrated via its
application to infinite, semi-infinite and finite chains, as well as systems constructed
piecewise from these components. In particular, the Wannier-Stark effect on surface
states, hydrogen chemisorption on electrified substrates and electron transmission

of molecular switches are investigated.
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Chapter 1

Introduction

1.1 Motivation

The main objective of this thesis is the development of a mathematical model for
the description of charge transport along a polymer chain, i.e., a molecular wire,
under the influence of an applied electric field. Previous work [1, 2, 3] on electron
transmission through an impurity embedded in a polymer, without an applied field,
has begun to catalogue desirable properties for potential molecular components

from which molecular electronic (ME) devices might be constructed.

Over the past 20 years, the transdisciplinary field of MEs has emerged as an
important area of research [4, 5, 6, 7]. The future miniaturization of electronic
devices will begin to be dominated by quantum size effects, which will have seri-
ous consequences for the microtechnology industry. Biotechnology requires organic
components, whose presence will not be rejected by living tissues, and which can in-
teract with nature’s multitude of charge-transfer mechanisms. Computer architects

are seeking to increase memory capacity by storing information in the geometries of

1



CHAPTER 1. INTRODUCTION 2

multistable molecules. The discovery of synthetic conducting polymers in the late
1970’s inspired researchers (8] to investigate possible solutions to these and other

ME problems.
The application of applied constant-field theory to ME models is not a straight-

forward procedure. Though the description of a free electron in a linear potential
has been well-established, the application to electrons bound in an electrified solid
has met with less success. First, the analytical work is limited on even the simplest
system, i.e., the infinite one-dimensional crystal in the tight-binding (TB) approx-
imation, with even these results subject to questions of applicability. Secondly,
the mathematics developed have been fairly cumbersome to apply, leading inves-
tigations to often rely heavily on numerical results to establish their conclusions.
Thus, to achieve the desired results for ME, it has become necessary to develop
new techniques in the theory of electrified solids.

Since the previous mathematical details in the theory of electrified solids do not
readily admit applications to many of the problems studied in solid-state physics,
the achievement of an elegant solution with which to analyze electrified solids will

provide access to a broad range of investigations in the solid-state field.

1.2 Thesis Outline

Electrified solids have received much attention over the past 60 years, because some
basic questions have taken a considerable amount of work to be satisfactorily an-
swered. In particular, Wannier’s 1960 prediction [9] that the energy spectrum of an
infinite crystal would be discretized with the application of a constant field initially
failed to receive conclusive experimental verification, which led to considerable de-

bate and a wide assortment of different approaches to rigorously show either the
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existence of either a Wannier-Stark ladder (WSL) or a continuum energy spectrum.
The rest of this chapter is devoted to reviewing the extensive literature on the study
of electrified solids.

In chapter 2, we re-derive the discretization of the energy spectrum into the
WSL for both infinite and finite linear crystals, under the influence of a constant
field.

Chapter 3 develops the required background in Green function (GF) theory and
derives the components in terms of continued-fraction (CF) notation for which we
shall need to obtain solutions in order to describe the electronic structure of an
electrified solid. The mathematics for solving these CFs, Pincherle’s theorem, is
presented in chapter 4, and the results applied to obtain a new analysis of electrified
solids in chapter 5.

In chapters 6 and 7, we explore the broad application of this new method by
deriving results for surface states and chemisorption, respectively, on electrified
solids.

One application of the theory to ME is presented in chapter 8, which leads into

a description of possible future work using this method.

1.3 Literature Review

Investigations into the quantum description of electrified solids began in earnest
following Zener’s [10] work in 1934 on dielectric breakdown. Houston [11] and
Slater [12] began the investigation of aperiodic perturbations to Bloch wavefunc-
tions. Building on these results, James [13] examined the influence of a linear
potential on an infinite crystal using the effective mass approzimation (EMA) and,
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in 1949, predicted quantization of the energy spectrum into equally spaced levels.
Independently, Katsura et al. [14] came to the same conclusion usiilg a one-band
TB approximation by noting that the wavefunction solutions for the infinite crys-
tal had Bessel function coefficients, whose energy-dependent order must be integer
to satisfy normalizability conditions. This first proof of the existence of the WSL
came a decade before Wannier’s prediction [9] and two decades before Hacker and
Obermair [15] rigorously established Wannier’s result. In addition, they predicted
a symmetric deviation from the ezact WSL for finite crystals. Feuer [16] extended
the theory to a two-band TB model, finding that the uncoupled bands generated a
WSL with the spacing perturbed by the interband coupling.

Working in the crystal-momentum representation, derived by Adams [17, 18],
Wannier [19, 20] and Adams and Argyles [21] began developing the wavefunctions
as modified from Bloch functions by the presence of the electric field. Adams [22]
delved into the “physical” interpretation of energy bands and showed that the EMA
solutions were valid only for electric fields sufficiently weak as to satisfy an adiabatic

condition.

In his discussion on Zener tunneling in semiconductors, Kane [23] was able to
derive the WSL condition by solving the equation of motion in momentum space.
In 1960, Wannier was able to combine the WSL result together with his field-
modified wavefunctions, using translational properties of Bloch functions, to give
an extensive description of the effects on a crystal electron due to the application
of a linear potential [9, 24]. This basic derivation has been improved upon and
extended by several authors, including Rees (25], Enderlein et al. [26], Henneberger
and Roseler [27] and Fiddicke and Enderlein [28].

Modifications to Wannier’s theory were employed by Callaway [29, 30], Wannier
and Fredkin [31] and Rauh and Wannier [32] to provide a descripticn of optical
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absorption, whereby the phenomenon could be tested experimentally. The initial
failure to obtain conclusive experimental verification [33, 34, 35] of a discrete WSL
energy spectrum fostered strong criticism of Wannier’s conclusions, led primarily by
Zak [36, 37, 38, 39] and Rabinovitch [40, 41], who predicted instead a continuous
energy spectrum under the influence of a constant applied field [42, 43]. They
argued that Wannier’s derivation (see § 2.1) applied only to the infinite crystal, as
his translational operator technique must fail in the presence of end effects for a
finite chain, and that the arbitrariness of the initial eigenenergy selection allowed
for an entire interval of energies to be chosen, which would generate the continuous

(—o0. ) energy spectrum.

Hacker and Obermair [15] addressed this last issue and rigorously obtained the
WSL result for an infinite crystal by translating Katsura et al’s [14] derivations
into the language of creation and annihilation operators (see § 2.1) and concluded
that discreteness was a valid prediction for single-band models. Davison and his
co-workers (44, 45] modified this approach to include bond perturbations, due to
the presence of the applied field, and overlap integrals to the TB model and still

retained a discrete energy spectrum.

Shockley [46] argued that, away from the ends of a finite crystal, the energy spec-
trum must approximate to the infinite case and hence form a quasi-WSL. Heinrichs
and Jones [47] examined the finite crystal using perturbation theory and developed
a self-consistent CF equation (see § 2.2), which admitted the ezact WSL only for
the infinite case, but were numerically able to show that, well away from end ef-
fects, the discrete spectrum was well approximated by the WSL spacing. Stey and
Gusman [48] were able to solve for the finite-chain energy spectrum analytically,
by introducing Lommel polynomials, and showed that the quasi-WSL for the finite
crystal asymptotically approached the exact WSL. Saitoh [49] and Fukuyama et
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al. [50] extended this work to provide bounds on when discreteness was ensured

and when the Rabinovitch-Zak continuum approximation would hold.

In light of these more rigorous derivations, Rabinovitch [51] analyzed the meth-
ods used in the literature and contended that:
(i) The crystal-momentum representation, while valid for finite crystals, was in-
applicable to the infinite regime.
(i) That discrete levels were due to the finiteness of the crystal and not the
applied field.
(iii) The infinite crystal had a continuous energy spectrum.
Avron et al. [52] furthered this view by claiming that the energy uncertainty is
never smaller than the WSL spacing predicted by the one-band approximation,
and then obtained an absolutely continuous spectrum [53] based on an N-band
analysis, which produced an N interspaced one-band WSL, becoming continuous

for N — oo.

In parallel to the perturbative and TB approaches, Lukes and his co-workers
[54, 55, 56] developed a time-dependent method of calculating the single-particle
GF, in terms of the corresponding Feynman propagator {57}, for a d-potential in a
uniform electric field, which enabled exact expressions to be derived formally for
the density of states (DOS) and energy levels of an electrified Dirac-delta comb po-
tential. Moyer [58, 59, in his GF treatment, invoked first-order perturbation theory
to describe the motion of an electron in an infinite, electrified Kronig-Penney (KP)
lattice. Unlike previous work, the GF approach did not need to assume any ap-
proximations in order to derive the WSL condition, as was shown by Lukes and

Ringwood [60] (see § 2.3).

In the light of the general applicability of the GF solution, and new experimental
evidence of the WSL effect by Maekawa [61], Koss and Lambert [62] and May and
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Vecht [63], Rabinovitch [64], Avron [65], and Zak [66], all conceded that a quasi-
WSL did result, even in the multi-band derivation of the energy spectrum for finite
crystals. Exact numerical solutions to the Schrodinger equation for the applied field
were conducted by Sessa and Sitte [67], again verifying the WSL result.

With the WSL existence controversy resolved, another decade passed before
there was renewed interest in the topic. Emin and Hart [68, 69] decomposed the
linear potential into its periodic effect and (non-periodic) constant site shift, show-

ing that it was only the latter that generated the WSL.

Leo and MacKinnon [70] applied the TB model to a semiconductor superlattice
in support of the experimental evidence obtained by Mendez et al. [71] and Voisin
et al. [72] on such systems. Leavitt et al. [73, 74] and Ritze et al. [75] expanded on
both the experimental and theoretical model for GaAs/Al,Ga,_,As superlattices.

A perturbative investigation of WSLs in infinite diatomic crystals was under-
taken by Zhao [76, 77], who found that, in the 2-band energy spectrum, the WSLs
were interspaced. For finite crystals, he also found that the interband matrix ele-

ments were non-zero[78].

Optical absorption in electrified §-doped semiconductors was examined by Ahn
[79]. Solving the Schrédinger equation for a V-shaped quantum well (QW) in an
electric field, he predicted wide-range tuning of intersubband absorption by control-
ling planar doping, and also the presence of red- rather than blue-shifts associated
with electro-adsorption in ordinary QWs. In a comparative study, Anwar and Ja-
han [80] performed a self-consistent calculation of the DOS of double-barrier QW
structures in magnetic and electric fields, and described the energy redistribution
and a phase-breaking mechanism. An electrified multi-band QW, in the form of
a finite KP structure, was used by Vrubel and Borzdov [81] in their treatment of
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the gradual transition from the quantum confined Stark effect (QCSE) to the WSL
quantization. Stark localization and mixing phenomena between different WSLs in
coupled QWs was reported by Sari et al. [82], who found that at intermediate WSL
values a certain degree of carrier wave-function delocalization exists, while at large
values the WSL states become localized inside individual QWs and a combined

band structure occurs.

Experimentally, Cohen et al. [83] continued the investigation of the optical prop-
erties of a narrow-band GaAs/Al, Ga;_.As superlattice and observed a modified
WSL with both positive and negative orders appearing above the zero-order tran-
sition. QCSE in InGaAs/GaAs QWs under high electric fields was studied by
Kovalianskas et al. [84] using photocurrent and electroreflectance spectroscopies.
Evidence of exciton quenching and carrier tunneling out of the QWs was obtained,
while coupling between quasi-bound and continuum states resulted in an absorption

increase below the barrier band gap.

During the derivations of the present work, Dolcher et al. [85] reported a real-
space GF analysis of WSLs based on a modified Lanczos iterative procedure, which
was applied to 1-dimensional, one- and two-band TB systems, while the GF tech-
nique in the site representation was employed by Gvozdikov [86] to discuss the anal-
ogy between the Landau spectrum of a Bloch electron in a 2-dimensional anisotropic
lattice and the WSL. Meanwhile, Zekri et al. [87] introduced disorder into an elec-
trified KP model and investigated the short-range localization properties and effects

on the transmission coeflicient.



Chapter 2

Wannier-Stark Effect

2.1 Historical Development

The existence of a WSL energy spectrum was central to the results of Wannier,
who employed the translational symmetry [9] of the solutions of the Hamiltonian,
H, describing a particle in a periodic potential that were modified by an applied
field of strength (gradient) «.

The periodic potential problem has been studied in great detalil, e.g., see [88].
Let a be the lattice period in the direction of the applied field, so that the potential
energy function satisfies

V(z +na) = V(z), neZ. (2.1)

Using Rydberg atomic units (Appendix A), the one-dimensional time-independent
Schrodinger equation for an electron of energy E in the potential V(z) may be

written as
¥"(z) + [E - V(z)l¥(z) = 0. (2.2)

9



CHAPTER 2. WANNIER-STARK EFFECT 10

Equation (2.2), subject to (2.1), is a Floquet-type differential equation whose quan-

tal solutions are Bloch functions, which may be written as
¥(z) = ue(z)e™, (2.3)

with k(E), the wavenumber, determined by the boundary conditions, and u.(z) a

periodic function ur(z + na) = ue(z), n € Z. Thus, we have
w(z + a) = ,uk(:c +a)eik(z+a) —_ uk(z)eik(z-l-a)_ (24)
Along the direction of the applied field, the modified Schrodinger equation is,

therefore,
Hy(z) = [p* + V(z) + 7z] ¥(z) = E¥(z). (2.5)

where p = —i9/0z. Consider now the translation operator T(a) = exp(ipa), which

has the commutator

T(a)F(z,p) = F(z + a,p)T(a). (26)
Applying T to (2.5), we have
T(e)Hp(z) = [p* + V(z +a) +1(z +a)] d(z +a) = Bp(z +a),  (27)

to which we apply the periodicity of V', and rewrite to recover the Hamiltonian in
(2.5), namely,

H)(z +a) = [p2 + V(z) +7z] Y(z +a) = (F — av)¢¥(z + a), (2.8)

which implies that ¥(z + a) is also an eigenfunction of H with eigenvalue of E — ay.
Iteration of this procedure, plus application of the inverse translational operator,

T~!(a) = T(—a), leads to the WSL energy spectrum

E + nay, n€Z. (2.9)
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The preceding argument does not take boundary conditions into account, which
left it open to the criticism, primarily from Zak and Rabinovitch {37, 38, 39, 40, 42],
that there is nothing in this derivation to restrict the initial choice of E. In the
absence of the field, the energy spectrum is a continuum, so starting from E' =
E + §E, another WSL could also be generated. Choosing all § E, the continaum

would be recovered, even in the presence of an applied field.
Moreover, the derivation is highly dependent on the translational periodicity of
the crystal. In particular, the Born-von-Karman boundary condition, viz.,

¥(z) =9¥(z+ L), (2.10)

where L = aN is the crystal length, is necessary for the properties of the infinite
case to be valid in the finite situation. Rabinovitch [40] showed that this boundary

condition is incompatible with (2.5). Born-von-Karman gives
¥"(0) =v"(L), (2.11)
while (2.5) can be rewritten to yield
$"(0) = —[E ~ V(0)}%(0) (2.12)
and
¥"(L) = —[E — V(L) — []$(L) = —[E ~ V(0) — Ly]%(0), (2.13)
which leads to a contradiction.

Hacker and Obermair {15] addressed the continuum issue by providing a more
rigorous derivation, showing that the spectrum was indeed a discrete WSL. Consider
the TB approximation for a linear chain of atoms with Coulomb integrals (site

energies) at the atomic sites,

a= (n|H |n), (2.14)
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Fig. 2.1: One-dimensional periodic crystal lattice showing potential V'(z), Coulomb

integral a and resonance integral 3.

and resonance integrals (bond energies) between adjacent sites,
B=(nlHn+1), (2-15)
where [r) is the atomic wavefunction at site z = na (Fig. 2.1). The Hamiltonian is
B =Y [aClCa + B(CCops + Chu Ga)] (2.16)

where C! (C,) is the creation (annihilation) operator for an electron occupying the

Wannier state localized at lattice-site na, w,(z) = w(z — na) (Fig. 2.2).

For the field-induced potential
V(z) = vz, (2.17)
the component with respect to the Wannier functions (WFs) is given by
(n|V '} = naydpp. (2.18)

Thus, the Hamiltonian subject to the applied field can be written, using I’ = av,

as

H=Y [(@+n)CLCn + A(CLCuss + Ty G| (2.19)
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48

b eme v nncdcacastoaa

(m+1)L

{(m-1)T

(m-— 1.)3 m:z (m'+ l)a na
Fig. 2.2: Tilted-band picture of WSL energy spectrum showing Wannier functions,

and localization length L = 48/T [15}

The anticommutation rules for creation and annihilation operators are:
{C.Cr}=bum, {CL,CL}=0, (2:20)
see Appendix B, which allow us to determine commutators of the form
[dc.c.] =c {c. ¢t} - {c.c.} G = Clgjm. (2.21)

Since the creation operators for the eigenfunctions of H diagonalize the Hamilto-

nian, we must have

EC!(E) = [H,C(E)] = [H,)_ am(E)C}]

= [Z {(a+n0)CiCa +£(CLCu1 + €L )}, D0 am(E)C*m]
= Eam(E) {(a +nl [CLC,,C] +8[CLCats, CL] + 8 [CIL-HCn!Cfm] }

=S an(E) [(a +nL)C6mn + BC bmnsr +BCL, Jm,.] . (2.22)

The coefficient of each C!, must be independently zero, so reindexing the final
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term of (2.21) and summing over m, we obtain

a+nll - FE

Gnt1 + I @p+a,y =0, (2.23)
which is the Bessel function (BF) recursion relation for
2
an(E) = Po(B-a)r (—-I‘E) , (2-24)

where P,(z) = AJ,(z) + BY,(z) is any linear combination of BF's of the first and
second kind.

As the a, are the coefficients of the WF's, the normalizability condition requires

that

) " laa(E)? < . (2.25)

The properties of BFs [89] show that B = 0 and 4 = n — (E — «)/T" must be an
integer for (2.25) to hold. Hence, the continuum energy spectrum is not available,
but only those levels in the WSL, viz.,

E=FE, =a+ml, m integer, (2.26)

which produce BF coefficients to the WFs, i.e.,

3n(Bm) = A(=1)""™Jm (2%3) . (2.27)

2.2 Finite-Chain Ladders

The correspondence between the infinite and finite crystal ladders was addressed
by several authors. Heinrichs and Jones [47] provided a TB analysis based on the
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difference equations of a finite chain,

(a4 0T — E)en + Blears +cat) = 0, (2.28a)
(e’ — E)ep +fc = 0, (2.28b)
(@ + (N —1)I' = E)ey-y + fBey-2 = 0, (2.28¢)

where o' is the perturbed Coulomb integral due to the termination of the crystal.

For purposes of this analysis, we take a’ = a.

We immediately see that a necessary condition for an approximate WSL, E =
a + nl', to be the solution is for nI' > B, i.e., when the second term of (2.28a) can

be neglected, which locates the level well away from the end effects at n = 0.

The TB approach is also particularly suited for applying Brillouin- Wigner per-
turbation theory [90], namely, the eigenvalue of a non-degenerate state, |z), can be

calculated via

Hom Hmn Hum Hne Hin
Enanﬂ-*- '————+ +... 2.293'
#n En — €nm mgn (En - enm)(En —_ enmk) ( )
m#k
H.H,
€nm-pg = Hgq + Z __Hgrileg
rénm,...p,q En - e“"‘"W
H,H,.H,
+ +--- ’ 2-29b
'#";».p.q (E"’ - e"’"‘"W)(En - enm--.pq,-,) ( )
s#Enm,..p.q,r

since terms beyond the interaction range are identically zero. Taking the nearest-
neighbour (NN) approximation, only the first two terms of (2.29a) and (2.29b)
survive. The NN Hamiltonian has only tri-diagonal matrix elements,

H,. =a+nl, n=0,1...,N-1, (2.30a)
Hnr = Hm = ﬂ(ar,n'l'l + Jr,n—l)’ n= 13 21 ) N - 2: (230b)
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Ho, = 36,1, (2-30c)
HN-—I,r = ﬁ&-ﬂ-z— (2.30d)

We define the difference between the modified and ezact WSL energies as

AE, =E, —a—nl, (2.31)
whence,
AE, = E, ~Hp = Zgﬂ*ﬁﬂ
mgn n - €am
2 2
__ B B

En — Enntl Eﬂ — €nn—-1

i g

= ‘32 + ﬂz

AE,-T - AE, +T -

En — €nnt1n+2 E, —€n-1,n-2

ﬂz
AE,-T -
. g
— - 7
ABu—(N—2-n)l - o — N =TT
2
s 8
AE,.+T —
_ g : (2.32)
B
AE,+ (n—1)T AB. 3T

This sum of CFs is a self-consistency equation. The exact WSL occurs only when
(2.32) is zero, which is only the case when there are an equal number of terms
in each CF. Hence, for a finite chain, only the center state lies on the true WSL
energy, while for the infinite chain, every allowed energy is a WSL energy.
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The self-consistent form of (2.32) makes it useful, primarily for obtaining nu-
merical results, and leads only to approximate bounds on the location of the energy

spectrum in the finite chain.

Saitoh [49], following the work of Stey and Gusman [48], obtained analytic for-
mulae for the eigenenergies of the finite chair by applying the boundary conditions
to the solutions in (2.24).

The rigid-wall boundary conditions, ag = ay4; = 0, yield the requirement that
Joo Y.,

=0, wv=—(E-a)T, (2.33)
Ine1-v YNgr-o

for non-trivial coefficients, A and B, to exist. By using the Lommel polynomials,
defined by

1
Riu(2) = 572 Yivsu(@) ums(2) ~ Jovu(2)Yimr 2] (2.34)
with z = —23/T, if we multiply (2.33) by 7z /2, we obtain
Ryi1-u(z) =0, (2.35)

whose solutions v = v, for fixed N and z define the ezistence condition for the

energy eigenstates in the spectrum (Fig. 2.3).

The property of Lommel polynomials that
Ryu(z) = (-I)NRN.I-N-M(z) (2.36)

means that the energy spectrum is symmetrically dispersed about the center located

at

N+1

E=a+ T, (2.37)

with the result that
En+ Eny1on =2a+ (N +1)T, (2.38)
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Ry00,1-»(10)

o \[\[V Vol VIV Vm"

Fig. 2.3: Lommel polynomial Rjg0,1-.(10) near center of quasi-WSL v € (40,60)
for chain of N = 100 atoms and field of I' = —3/5.

for all states.

For the periodic boundary conditions, aq = @, and a; = ay4;, we have the
condition
e S T (2.39)
v = JInvpr-v Y1 ~ Yy,
or, multiplying through by —7z/2 and using J,41(z)Y.(z) — Ju(2)Yus1(z) = 2/7z,
we find

By1-(z) — Ry—22-0(z) ~ 2 =0, (2.40)

via (2.34). In this case, we again do not recover the exact WSL, but one that
asymptotically approaches it.
2.3 Green-Function Approach

Using a GF approach, Lukes and Ringwood [60] avoided much of the controversy
surrounding the validity of perturbation methods to derive the WSL result. Be-
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ginning with the 3-dimensional Feynman propagator [54, 57| for a particle in an
electric field, «,

t 2t
(r] e~ ™ [¢') = (4nit) " exp Qi l(r -+ -y-(r+r)— LA (2.41)
4t 2 12
The GF is obtained from the propagator via a Laplace transform, i.e.,
G(r,r',E) = —i / e'Bt (r| e ') dt. (2.42)
0
If we apply a spatial translation R to the coordinates, we obtain

G'(r+R,r'+R,E)

—i/ B (r+Rle ' +R) dt
0
= —1 f Bt (r| e B [r') e TR gt

0

= — / ~ EHTRI (p] o~ |1/) gt
(4]

= G%r,r',E++-R), (2.43)

which is true for any vector R.

The addition of a periodic lattice potential, V(r) = 3, v(r — R;), where R; is
a lattice vector means that the potential is translational invariant only for lattice
vectors, R = R;. The application of the Dyson equation (see § 3.1) leads to an
infinite series in terms of the unperturbed GF and the potential. The translational
properties of the modified GF are

G(r + R, + Ry, E)
= G°(r + Ri,r’ + R, E)
+ 3 [ 6% + Ret”, Eple” ~ R)G(", ¥ + R, E) " -
= Go(rvr'vE""'f : R-t’)
+ Z/GO(I‘+R-i,r"'+R-i, E)v(r’"+ R., — R,~)G°(r"'+ R'"rl +R1,E) P
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+ PO
= Gr,r',E+v-Ry)
+ Z/G"(r,r"’, E+v-Rv(E" —R)G (", f',E+~v-R;)dr'" +---
k
= G(l‘, rlv E+ Y- R.(), (244)
where we have introduced r” = r”” — R; and reindexed the lattice sum with Rz =

R; — R; for all orders of the series. This is an exact result, without making any

assumption other than the lattice periodicity.

The DOS is obtained from the imaginary part of the GF (see § 3.1) via
n(E) = —r'Im /G(r, r',E)dE =n(E +v-Ry), (2.45)

whence, if G is singular at E (see § 3.1), then it is at E + v - R; as well, and not
for R # R;, which is a generalized version of the exact WSL condition.



Chapter 3

Green-Function Method

3.1 Basic Theory

It is often found, when dealing with large systems, that direct application of the
Schrodinger equation becomes cumbersome, requiring perturbation techniques in

order to proceed, which produce only approximate results.

As an alternative, we introduce the GF of the system, which is the inverse to
the Schrodinger equation, and so the solutions contain equivalent information. We

define the Greenian operator to be
G=(E-H)™". (3.1)
The element of (3.1) between two states
G(m,n; E) = (m|(E — H) ™" n) (32)

yields the GF describing the propagation of the system in state |r) to state [m) at

21
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energy E. By introducing the eigenstates of H, |¢z), we can write

Gm,n; E) = (m| |(E - Y |de) (¢kl] [n)
. k

= (m| FZ I6) (B — Bx)™* ml] ), (3.3)
L k

which shows, in particular, that the energy spectrum can be extracted from the poles
of G(m,n; E). At a particular Ej, the residue of the GF is simply the product of
the projections of the k** eigenstate onto the two states connected by the GF, viz.,

(m | die) (¢ [ n).

If we have the solution for a given system, i.e.,

G =(E-H)"", (3.4)
then adding a perturbing potential V to the Hamiltonian gives H = H°+V, which
yields

G=(E-H -V)", (3.5)
whence, via (3.4),
G=(G)*-v)". (3.6)

Operating on the left of (3.6) by (G°)~! — V', we have
(G°)'G-VG =1, (3.7

which, through an application of G° on the left, can be rearranged into the Dyson

equation,

G =G" +G°VG. (3.8)

Since (3.8) is a recursive definition, it can be expanded in an infinite series,

G =G +GVG® + GC°VG°VG® +---, (3.9)
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or, by considering elements of the Greenian via (3.2), we may obtain a system of

coupled GF equations to solve.

3.2 Density of States

There is much useful information about a given system that can be derived from
its electronic density of states, which is accessible from the GF description of the
system. Following [88], consider the trace of G( E) with respect to the eigenfunctions
of H. Using (3.5), we have

Tr(G(E)) = D_ (¢el G(E) ) = Y (#el (E — H) ™" |e)
k k
= Z (E - Eu)™", (3.10)
k

There are singularities at £ = E; along the path of integration, which can be

avoided by using complez energy:
E—E+is (3.11)
where we take the limit s — 0%. Applying this concept to (3.10), we obtain

T (G(E)) = lim Y (B+is— B = lim 3 2= 2t
k

. 3.12
s—0+ - (E-Ek)z+sz ( )

At the poles of (3.12), the real part of the GF is singular, while an evaluation
of the imaginary part gives

Im (Te (G(E))) = lim, 3 oy (3.13)
k

We wish to relate the right-hand side of (3.13) to better known functions. First,

we consider the discrete summation. For k£ = N, we have

e -, E=E 1
> { > ol (3.14)

lim =
=0t (E — EN)z + 42 0, E # Ey.
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For the continuous band, centered at E = Ex and of width 2¢, we have

Entc - —
lim / v "”f > = lim [ta,n-* (—c) —tan™! 5)] =-n. (3.15)
=0t Jp. . (E—EN)" +8° o0t s s

If we contrast (3.14) and (3.15) with the Dirac d-function,

' E = En,
SE—Ey)={ % of (3.16)
0, E # En
and
/ 6(E — En) dE =1, (3-17)
we see that
-3
lim = —nd(E — Eyn). 3.18
""0+(E“‘EN)2+32 1r( N) ( )
Substituting (3.18) into (3.13), we find
1
——Im (Tr (G(E))) -;J(E—Ek), (3.19)
for which the right-hand side defines the total density of states, p(E), vial
p(E)dE = —i—lm (Tx[G(E)]) dE. (3-20)

Since the trace of an operator is independent of the basis, (3.20) will hold with
respect to the atomic orbital (AQ) states. In particular, we define the local density
of states (LDOS) at site n by

1

pa(E) = ~— Im ((nI G(E) [n) = -~ Im [G(n,n; E)]. (3.21)

When (3.21) applies to a site located at an endpoint, it is called a surface density
of states (SDOS).

!The DOS is defined only over the allowed energy spectrum. When this spectrum is discrete,
the measure of the spectrum is weighted by a d-function distribution, which is often included in the

DOS, even when the measure is otherwise suppressed on both sides, to indicate the discreteness

of the eigenenergies.
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3.3 Causal-Surface Green-Function Technique

Recently, Pendry et al. [91] have developed a powerful numerical technique for
approximating the surface GF of multi-dimensional systems by recursively adding
mesh sites to the system from an initial internal seed site. We shall be interested
in following some parts of this methodology to develop the one-dimensional surface
GF into a form from which we can extract analytic results.

The system is defined in terms of regular mesh sites, which are initially consid-
ered isolated from each other. The mesh is chosen, so that the on-site Hamiltonian
elements are known for each isolated site, while the interaction terms are zero. The

seed site (labeled 1) is composed of a single isolated site,

Gi(1,1) =(E - Hu)™', (3:22)
where H,,, = (m| H|n). Here, and henceforth, we shall suppress the E dependence
of the GF for brevity, except where needed.

The next step is to modify the system by adding in a single bond to an adjoining
mesh site (labeled 2), by setting Vi, = Hyz and V3; = Hj;. The result is a two-site

cluster embedded in the mesh of isolated sites.

Applying the Dyson equation, (3.8), we obtain
Gz(l, 1) = Gl(l, 1) + Gl(l, l)leGz(z, 1), (323)

since G;(1,2) = 0. Equation (3.23) is still in terms of an element of the two-site
GF, which can be written as

G2(2,1) = G1(2,2)H1G2(1,1). (3.24)

Inserting (3.24) into (3.23) yields

Ga(1,1) = Gi(1,1) + Gu(1, 1) Hi2G1 (2, 2) Hn Ga(1, 1), (3.25)
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which we iteratively expand into a geometric series and, by assuming convergence

occurs, we solve for the series,

Gz(l, 1) = G1(1, 1) + Gl(l, 1) [H12G1(2, 2)53101(1, 1)]
+ Gi(1,1) [Hy,G1(2, 2) Hy G1(1,1)] [H12G1(2, 2) H21 G1 (1, 1)}

i

Gi1(1,1)
_ _ 3.26
1-— lecl(za 2)H21G1(11 1) ( )

Using this solution in (3.24), we have

G1(2,2)HxG1(1,1)
1 — H1;G1(2,2)H;1G1(1,1)°

Hence, we have obtained two of the non-zero elements for the points in the two-site

G2(2,1) = (3.27)

cluster in terms of the isolated site GFs. The remaining two elements are found

using the same algorithm, namely,
G2(2, 2) = G1(2, 2) + G1(2, 2)Hz;Gz(1, 2), (328)
and
Gz(l, 2) = Gl(l, I)HuGz(z, 2), (3.29)

are obtained by application of (3.8), which we combine into an implicitly defined
equation,

Gz(z, 2) = G1(2, 2) + G1(2, 2)H31G1(1, 1)H13G3(2, 2), (3.30)

which we iterate into a geometric series and solve,

Gz(2, 2) =G, (2, 2) + G1(2, 2) [H31G1 (2, Z)HuGl(l, 1)]
+ Gi(1,1) [H12G1(2, 2) H21 G (1,1)] [H12G1(2, 2) H21 G1 (1, 1))

4+ ..
_ G1(2,2)
- 1-— leGl(2, 2)H31G1(1, 1).

(3.31)
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With the aid of (3.29), this solution yields the fourth GF element of our two-site

cluster,

G1(2,2)H12G1(1,1)

G2 = I HaGi2. D EnGi(L )

(3.32)

This algorithm now generalizes for obtaining elements of Gy4; in terms of the
previously known Gy Greenian elements, where the system is being modified by
adding a direct connection between sites ! and m. Once we have at least a four-site
cluster, however, it becomes possible in higher dimensions that the mesh connection
we are adding is between two sites already in the cluster. In such a case, there
may already be non-zero elements Gy (I,m) and Gy(m,l). To keep track of these

potential interaction, we introduce the matrices

. [ 0 mm] _ [ Gu(l,l) Gu(l,m)

- , (3.33)
H, 0 Gn(m,l) GN(m,m)]

whose components are considered to occupy the ! and m rows and columns, i.e.,
gab = Gn(a,b) when a,b € {I,m}. Keeping this notation for matrix products of h
and g, we can develop the generalized series for the GF, i.e.,

Grnu(i,d) = Gu(i, )+ Y Y [Gn(i,a)hasGu(b, )

ac{l,m)} be{l,m}
+ GN(ia a) [ghg]abGN(ba j) + GN(ia a') [ghghg]abGN(ba .7)
+ .. ]
=GnGid)+ Y, D Gn(i,a)h™ - )7} Gn(b.j),
ac{l,m} be(l,m}

(3.34)

where the summation of the series is shown in Appendix C.

The inverted matrix can be obtained from the components of & and g. We begin
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by inverting h,
0
_, adj(h) 1 0 —Hm m
h™t = = = - (3'35)
det(h) —HinHp -Hy 0 1
Hm
Subtracting g from this yields,
1
—Gn(,1) ' Gn(l,m)
h™l—g = , (3.36)
1
ﬁ.-l: —Gn(m,l) ~Gn(m,m)
which we invert to obtain
—Gy(m,m) Gy(l,m)— L
1 Hou
(A -] ™ =% . (3.37)
1
GN(m, I) bad I,I-; —GN(I, l)
where
A = Gn(L))Gy(m,m)
1 1
—|Gn(lym)—— ) (G A=) 3.38
(ewtm) - =) (Gwtm - =) (3.38)

Since this method relies heavily on the convergence of products of GFs, it is
necessary to keep Gy(I,!)HimnGn(m,m)Hy; from exceeding unity. However, since
Gy is singular at it’s eigenenergies, every non-zero interaction will produce regions
in the energy spectrum where the algorithm will be unstable. In particular, Pendry’s
method cannot access the DOS for a given system, as that is precisely where it

breaks down.
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3.4 Recursive Green-Function Approach

Let us begin with the Greenian for a series of isolated atoms beginning at site M
and continuing to the right up to site N. Let H,, = a, be the site energy for the
atom at site n. In the TB approximation, each site contributes a single AO state,
|n), which form an orthonormal set. Thus, projecting the Greenian onto these
states gives a spatially-based, i.e., at the atomic sites, description of the system.
We label the Greenian by the first and last atom connected in the chain. Since the

initial chain contains only isolated atoms, we have
N
n) (n
Guum = Z l_)(__l_ (3.39)
Of note, this initial Greenian has the following relevant elements

Gum(M, M) = (M|Gun |M) = (E ~ anm) 7,
Gum(M +1,M+1) = (M +1|Gypr M +1) = (E — apyy)7?,
Guu(M+1,M) = Gyu(M,M +1) =0. (3.40)

To generate the full arbitrary chain, we take the current system and increase
the connected chain portion by one site by adding a bond between the chain and
the next isolated atom (Fig. 3.1). Iterating this process allows us to generate a
chain of any finite length, and the convergence of this iterated function system will
yield results for the semi-infinite chain.

The first step is to introduce a bond between the M and M + 1 sites, viz.,
Vs = Bupn [[M) (M + 1| + [M + 1) (M]]. (3.41)
To obtain the new GF, we apply (3.8),

GMn+1 = Gun + Gun Vo1 Grngr s (3.42)
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Qapr QM1 OM42 EM43

O ® [ ] [ ] GM.M
o000 - Grtaess
B M+1
o000 --- Ghrtarsa
Bum1,M+42

(o3.%¢ QAn_1 OQn Ugpy
O =000 - ou

ﬁ MM+1 ﬂn—l,n
n—1 n n+1l

Fig. 3.1: Building a linear chain by adding a bond at each iteration.

to (3.39) with (3.41) and n = M.

At this point, we note that there are two surface atoms, one will be fixed at M
and the other at the site we have just bonded to the chain. We shall concentrate
on the surface site being added at each iteration. Hence, the surface element of the
GF is calculated via

Crasr(M +1,M +1)
= GymM(M+1,M +1)
+ Cree(M + 1, M)BrsresrCranesr(M +1, M + 1)
+ Gum(M +1, M + 1) Bup1Grpm1 (M, M + 1)
= Guu(M+1,M +1)
+ Gup(M +1, M + 1)Bupa1Grp1 (M, M +1), (3.43)

which is equivalent to (3.23). To solve (3.43), we follow the Pendry algorithm, and
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SO require

"Gupma(M,M+1)
= Gua(M,M +1)
+ G (M, M)Brg e +1Grape41(M +1, M +1)
+ Gur(M, M + 1)Bym41G a1 (M, M + 1)
= Gum(M, M)Bryrme1Grumar(M +1, M +1). (3.44)

Whence, inserting(3.44) in (3.43) yields

Gum(M+1, M +1)
= Guu(M+1,M +1)
+ Gum(M + 1, M + 1)B3 4r11Grere (M, M)Grgpg 41 (M + 1, M + 1),
(3.45)

which implicitly defines the GF at the new surface. Here, we depart from the
Pendry algorithm. Instead of expanding into a geometric series, we solve directly
for the modified GF, and so do not introduce any convergence requirements at this
stage. Solving (3.45), we obtain

Gum(M +1,M +1)
1— By as1Grmae(M + 1, M + 1)Gupa(M, M)

1
Grum(M +1,M +1)™" - B3 10 . Guue(M, M)

1 (3.46)

Guma(M+1,M+1)

B oy e
)= o

Following the above procedure, the n'® iteration is applied to the M,n —1 chain
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to give the required elements of Gpy,,, namely,

GM,n(”y n) = GM,ﬂ—-l.(na n) + GM.n—l.(na n— l)ﬂn—l,nGM,n(nr n)
+ GM.n-—l (n, n)ﬂn——l,nGM,n(n - 11 "')
= GM,n—l(n: n) + GM,n—l(n, u)ﬂn—],,nGM'n(n - 1, n), (3.47)

and

Gur(n—1,n) = Gya-1(rn—1,0) + Gua-1(rn —1,n = 1)1 nGumn(n,n)
+ GM,n—-l(n - 1, n)ﬂn-—l,nGM,n(n - 1: n)
= GM-ﬂ-l (n' —1,n- l)ﬂn—l,nGM,n(n, n)- (3.48)

The one-dimensional TB chain has the property that, unless a direct bond exists,
a site will be isolated from the rest of the chain, which means that there can be no
indirect interaction term in the Gps,~; Greenian. This allows us to proceed exactly

as we did for the two-site GF's, so that

Gun(n,n) = Guyp-1(n,n) (3.49)
+ GM,n—I(n: n)ﬂn—l,nGM,n-—l(n - 1) n— l)ﬂn—l,nGM,n(ny n)y

which, since the Gasn-1(n,n) GF is for an isolated atom, yields a solution dependent

only on the surface GF of the previous iteration, whereby,

_ GM.n-l(ny n)
Cutnlmm) = § e (m m)Catni(n —L,m = 1)
1
" Gumpr(n,n) = B2, .Grpa(n—Ln—1)
1

= F=an) - PanCrunaa—Ln1)’ (3.50)

Thus, the process of constructing the surface GF can be considered as an iterating

function (IF). Again, solutions to (3.50) do not require the convergence conditions
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which appear in the Pendry algorithm, so we have complete access to the entire en-

ergy spectrum. An alternate approach to derive this result is given in Appendix D.

The form of the IF in (3.50) generates, in fact, a CF

1
Gun(n,n) = 5
E —a,) ~ n—1ln
B =) B e~ FaniGunan—2n = 3)
1
= 2
(E —an) ~ S
(B —an1) =
_ Bis1nez
(B — apyy) — Piapnr
+1) = 8 ~ang)
(3.51)
which can be represented in standard CF notation [92]
1 n-M+1 a
— a;; ) = . 3.52
a: & ( ) by + gz ( )
b +
] an_M
+
bn—M + :n—M-H
n-M+1
where the components for the TB system are
@ = =B int2-i> bi = E — ant1-i- (3.53)

Note that a; = -8 .,,, which is zero for Gan(n,n), appears in the definition of
the CF, but is formally divided out. Equivalently, we can use the non-zero value of
Bnn+1, which is introduced at the (n + 1)* iteration. Again, division by a; ensures

that this term does not actually appear in the Gasn(n,n) equation.
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M=N+1-m N-1 N

Fig. 3.2: Sequence of linear chains extending to the left from a surface at site N.

So far, we have been developing the surface GF at the dynamic end of our
recursion process. We now turn to the surface located at the beginning of the chain
and consider it’s influence on the GF. Taking n = N fixed,and M = N +1-m
for m > 1, we have a chain of atomic sites of m atoms starting at N and moving
to the left.

Treating m = N + 1 — M as the variable, we can define the IF for the surface
GF as

GN41-mN(N,N) = — Kriv.;.l K (—ﬂim-wn.;; E - aN+1—£) ’ (3-54)
i=1

which forms the sequence of chain GFs shown in Fig. 3.2. Letting m — oo, we

obtain the semi-infinite chain extending to the left with surface at N, i.e.,

Gr-(N,N) = lim Gus1-mu(N,N)

= —Brnn K (-Brs1-insz-6 E — ans1-3) (3.55)
=1
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so long as the GFs in (3.54) converge as m — oo. Thus, we are interested in the

conditions for which the sequence
{Grir1-m N (N, N}, (3-56)

of CF's converges.

Equations (3.54) and (3.55) give the surface GF for chains extending to the left
of site N. To obtain the GF at a surface with the crystal to the right, we repeat

the process for m < N, whence (3.50) becomes
1

Gm ,m) = , 3.57
yielding the CF
1
Gm,N(m2 m) = ﬂz ’
(E _ O'-m) _ m,m+1
(E —ams1) —
 Bawa
(E ~ a-r) — ot
(E - a)v)
1 N-m+1
== K (asb) (3.58)
31 =y
with
a; = _ﬂvzn—z-{»i,m—l-{»iv bi = E — am—14i- (3.59)

Fixing m = M and defining n = N + 1 — M as the variable, (3.58) becomes

GuN-14n(M, M) = ~B3} , 3¢ K (~Bl-z4ips—r4 B ~ ar_14i) (3.60)
i=1
for a finite chain, while letting n — oo gives

Gum+(M, M) = nﬁ_{go GmN-14n(M, M)

= - A-lz—I.M K (—ﬂﬂzl—2+im-1+i; E - aM-H-i) ) (3.61)
i=1
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for the semi-infinite chain to the right.

We are also able to calculate the GF through the chain, i.e.,
Gatn(M,n) = Br s pe [] Bm-1mGatm(m,m). (362)
m=M
We show this by induction. The n = M + 1 case is given in (3.44). If we now
assume (3.62) holds up to n — 1, then

GM,n(Ma n) = GM,n—l(M: n) + GM,n-I(Mwn - l)ﬂn—l.nGM,n(ny n)
+ GM.n-l(Ma n)ﬂn—l,nGM.n(n - 17 n)
= GM,n-l (M: n— l)ﬂn—l,nGM,u(n’ n)

n-1
= [ﬂQI—l'M II ﬂm—l,mGMm(mr m)] ﬂn—l,nGM,n(nv n)

m=M

= ﬁ;f_lM H ﬁm—l,mGM.m(mvm)v (363)

m=M

as required.



Chapter 4

Continued Fractions

4.1 Basic Concepts

CF concepts have been in existence at least since Euclid’s report from c. 290 B.C.

of the method of determining the greatest common divisor of two integers [93].

We develop the mathematical concepts for CF's as a generalization of those used
for series following {92]. Recall that, for a sequence of complex numbers {a,}, the

series is defined as

oo
Y an=ar+ar+--tanteo, (4.1)

n=]

with the partial sums of (4.1) defined by

Pm=zan=al+02+"‘+am- (4.2)
n=1

Convergence of the series (4.1) is defined as the convergence of the sequence of

partial sums {P,} to a complex number P, i.e.,

m=>o0

P=1lim P, =) an. (4.3)
n=1

37
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We define similar concepts for CFs. First, consider the sequence {a,}, with all
a, # 0, and define the CF by

o0

a
Klam1) = T (44)
n=1 1+ —4—
1+
1+°-.
We also can define another type of CF for any sequence {b,} as
> 1
’C(l; b.) = I . (4.5)
n=1 bl + _—T——
bz +
bs + -

These two types of CFs can be considered elements of two one-dimensional sub-
spaces of a broader two-dimensional solution space for the general CF. Given two
sequences, {a,} with @, # 0 and {b,}, we define

. a
K(an; bn) = Iaz - (46)
n=1 b, + —a;
b +

bs + -
The approzimants to (4.6)are defined by

Ky = k(afﬁ bn)'r (4'7)

and convergence of (4.6) is defined via the convergence of the sequence {K,.} to a

complex number,

K = lim K, (4.8)

m—$oco

which leads to the formal definition of a CF [92]

Definition 1 A continued fraction is an ordered pair

[(({an}, {8a}), {K=}] (4.9)
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where {an} and {b,} are given sequences of complez numbers a, # 0, and {K,.} is

the sequence of extended complez numbers, given by
K, = n(o): n=12,..., (410)

where So(w) = w and

Su(w) = Sas (b ‘:'L‘w) ., n=12,.... (4.11)

The continued fraction algorithm is the function X mapping a pair of sequences
({ax}, {bs}) onto the sequence {K,} defined by (4.10) and (4.11). If this sequence

converges to K, we write

K= ié(an; ba), (4.12)
n=1

if it does not converge, the right-hand side of (4.12) still provides the appropriate

notation for discussing CF's.

The relation between three-term recursion relations and CFs has also been
known for a considerable length of time, first appearing around 1150 in Bhascara
II's Lilavati, but was not in widespread use until it was rediscovered by Wallis in

1655.

4.2 Pincherle’s Theorem

In letting the chain become infinite to the left, convergence of the IF in (3.50)
corresponds to the convergence of the CF in (3.55). We are interested in a certain
class of systems for which convergence occurs. These systems satisfy a three-term
recurrence relation, which allows us to use the results of Pincherle’s Theorem (PT)

[92].
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Theorem 4.1 Given a continued fraction

. a
K (@nibn) = ——g—, (413)
n=l b]_ +

b +

whose terms satisfy the three-term recurrence relation
Cn=5b,Cp1 +a,Cr_2, Vn, (4.14)

and if {Y,} and {Z,} aré linearly independent solutions to ({.14) such that

.Y,
n].il}l; 'z—n- = 0, (415)
then
¥ Yo
an;b,) = ——. 4.16
KC (anib) =~ (4.16)
Proof:
Let us define
ay
Sn(w) = (4.17
b+ 72 )
by +
+ - an-lan
n—-1 + htw
In particular, note that
a1
S = .
() = 2 (4.18)

and

Su(w) = Sney (bn‘:‘w) . (4.19)
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Let us also define
A—I = 17 AO = 01

B..]_ = 0, Bo = 1,
and generate the sequences {A,} and {B,} for n > 1 via (4.14) and (4.20). Hence,

(4.20)

A =biAg+a1A_, = ay,
Bl = blBo + 013_1 = bl,

(4.21)

so that
A1 + Ao‘w _ a
31 + Bo‘w - 61 +w

via (4.18), (4.20), and (4.21). In general,

An=boAn-y + arAn_,,
Bn = ann—-I + Gan-z-

= 51(w), (4-22)

(4.23)

Using induction, we suppose we have

A-n——l + Au—zw
Bn1 + Bp—ow

= dn-1 (w), (4.24)

so, forn > 1,

Ant+Aniw (bpAp-y + andnz) + Apw
B, + Bo_w - (ann—l + Gan..j_) + B,w
- (bn + w) An—l. + An—zan
- (bn + w) Bn-l. + Bp-20,

Apy + Apy—22

lbn+‘w
- Gn
B,.. -
1+ B zb,,+w

= Sn-l ( I
b, +w
= n(w): (4-25)

by using (4.19), (4.23), and (4.24). From (4.22) and (4.25), we conclude that

A+ Anyw v

Sn(w) = B“,+Bn..1w’

n>1 (4.26)



CHAPTER 4 CONTINUED FRACTIONS 42
The choice w = 0 allows us to obtain the approximants to (4.13), i.e.,
_An
Sn(0) = B2 = KC (anitn) (4.27)

Since {A,} and {B,} satisfy (4.14), each can be written as a linear combinations

of {Y,.} and {Z,}, viz.,
Aﬂ = alYn + azzﬂy

(4.28)
B, = 1Y, + B22..
Applying (4.28) to (4.20), we find
Yo
0=Ai=ayYo+mZ;, = a;=-ay=,
Zo (4.29)

1= A_I = C!]_Y_l + a2Z..1 = Zo = alY_lzo - alYBZ_l.

Since {Y.} and {Z,} are linearly independent, we must have the Wronskian

Y_12 -YoZ_, #0. (4-30)
Consequently,
_ Zo _ Yo
NV -Yra T Vah-YiZa (4.31)
Similarly,
Y,
0=B_1=/Y1+B:Z2., = Pr=-pi5,
Zy (4.32)
1=By=pY+p620 = 2Z_1=pYZ_,-p5YeZ_,,
which gives
_ Z, Y,
h=~viam-%za P Tvizovay (4.33)

Thus, substituting (4.31) and (4.33) into (4.28), and the result into (4.27), yields

ZOYm - %Zm

Sm(0) = ~Z Yo +VrZm

(4.34)
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Dividing numerator and denominator by Z,, and recalling (4.15), we have
Y,

Zo-" -Ys
lim Sa(0) = lim —22 =-;° : (4.35)
m—poo m—+co —-Z_l—zi + Y_l -1
Finally, using (4.27), we obtain (4.16). a

Corollary 4.1 The finite continued fraction

. ZOYm - },Dzm -
1bg) = .
C @it = v (4.36)
when a,, b,, Y., and Z, satisfy Pincherle’s theorem for the infinite continued frac-
tion.
Proof:
Applying (4.27) to (4.34), yields (4.36). O

4.3 Monatomic Semi-Infinite Chain

To apply the preceding results to the linear monatomic semi-infinite chain to the
left, we consider a, = a and Bn_1, = 8 for all n < M. Inserting these into (3.53),

we find that the three-term recurrence relation, (4.14) becomes
Cn = (E = a)Cp-y — B*C,-1, (4.37)

or

ﬂ-lCn + ﬂCn~2 = 2XC -1, (4.38)

where X = (E — a)/2f.
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Two linearly independent solutions are
Ct=p (X £vVX7- 1)" : (4.39)
Using (4.39), we have

B1Cn +BCo s
=B (X £VETDD) 4+ (X £ \/FTT)H
= (X £ VL) [(X £ VETTI) + (x5 VRS
=~ (x £ VETT) "ax
= 2XCp1, (4.40)

where we have used the property that

X7 1. (4.41)

1
=X
X+tvX:-1 T

To satisfy PT, we must choose minimal and dominant combinations of CZ, so

that (4.15) is satisfied. We note that

cx (xxvX*-1\ _ —\
'CT:?—(X; xz-f) _(X:t\/x—_l) . (4.42)

Therefore, in order to converge to zero, we must choose the minimal solution with

the sign opposite to that of X. Hence,

{ (X —VXE=I)*, X>0
Y, = (4.43)
X +VXEZI), X <0

= B"(X - sgn(X)VEFT)", (4.44)

and

Z, = (X + sgn(X)VXZ - 1)~ (4.45)
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X
) _pn(X)

3 1 0 1 5 X

Fig. 4.1: Density of states for linear semi-infinite chain.

Applying PT to (3.55), along with our choice of a, and 8,_, ., we have

- _g2_X
Gua- (M, M) = ~p7* (-

1
g (X - sgn(X)\/J‘Fz_—_l) -
=[x~ sen(X)VX7 1. (4.46)

= ‘5—2

The LDOS is given by the imaginary part of the GF divided by 7 via (3.21). Since
Gum-(M, M) is real for all | X| > 1, the LDOS at the surface is nonzero only in the
band -1 < X <1, with

pu-(X) = Im [Gae-(M, M)] = —VI= X, (4.47)

which is indeed the correct SDOS for the linear semi-infinite chain [94] which is
shown in Fig. 4.1.
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4.4 Infinite Chain Density of States
Since the GF for the left semi-infinite chain given by (4.46) is independent of M,
(3.61) also yields
Gu+(M, M) = B~* [X — sgn(X)VXE = 1] . VM. (4.48)
We define the Greenian operator, G°, by the superposition of the Greenians of

two noninteracting semi-infinite chains, i.e., Gy- (Gar41)+) for the left- (right-)
hand chain, gives

G’ =Gy- + Gar+1)+ - (4.49)
Note that, the GF's
Go(nr m) = GM_(nv m)7 anm S Mr (4‘50)
G°(n,m) = Gupy+(n, m), Ya,m>M+1, (4.51)
G%(n,m) = G’(m,n)=0, Vn<M<m. (4.52)

Using the Dyson equation, (3.8), we attach the two semi-infinite chains via the

bond-projection operator
V=8[M){(M+1]|+ |M+1){M]]. (4.53)

Thus, using (4.52), we have
Goo(M, M) = G°(M, M) + BG°(M,M)G (M + 1, M), (4.54)

and

Goo(M +1,M) = 8G*(M + 1, M +1)G(M, M), (4.55)

so that

Goo(M, M) = G*(M, M) + BG°(M, M)BG*(M + 1, M + 1)Goo (M, M).  (4.56)
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pn(X)
ot

17T

X

5 I 0 1 2

Fig. 4.2: One-dimensional LDOS for infinite linear chain.

Solving (4.56), we obtain
G'(M, M)
1-82G°(M,M)G°(M +1,M +1)

1

_ -1

=4 BTG (M, M) - BG°(M + 1, M +1)
1

Goo(M, M) =

= ﬂ—l
(x + sgn(X)VX?E — 1) - (x — sgn(X)VXE = 1)
- 1
=# 2sgn(X)VX? -1 (457)

Again, we find that (4.57) has an imaginary part only in theband -1 < X < 1
so that

b

pae(X) = ~Tm [Goo(M, M)] = (4.58)

1
2Vl — X7’
which gives the well-known one-dimensional LDOS for the infinite crystal (Fig. 4.2).



Chapter 5

Electrified Solids

5.1 Methodology

Consider a monatomic chain of N + 1 atoms, whose site energies are a,, = a, with
the first atom located at site M. When a field of gradient + is applied to the chain,
its site energies are altered to a, = a+ (n + M — 1)I, see Fig. 5.1, where I" = 7a,
a being the lattice spacing. The bond energies are considered to be unaffected, so

that Bn-1. = B. We define the reduced field energy to be F =T'/28.

Since n = 1 is the surface atom, where a; = a + MT', the application of these

an and Bn-1na in (3.53) to (4.14) yields the three-term recurrence relation for this

system, namely,
Cn. = [E —a-— (‘ﬂ +M - I)P] Cn-—l - ﬁzCn—za (5'1)
which we can write as

BCo+BCns=2[X —(n+M—-1)F|Coay. - (5.2)

48
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P
-
7T
”
0M+z,’
-
-
aM+r , *
a o’
Mo,
Qs Qe - -
M M+1 M+2

Fig. 5.1: Site energy shift due to applied field.

The solutions to (5.2) are of the form
Cn = ﬂﬂPw{—rﬂ—M (3)

where

z=—F"1

and

v==zX,
P,(z) being any linear combination of the BFs J,(z) and Y, (z).

The large-order asymptotics for J,(z) and Y,(z) [89] are

() = 1 (ez)"
[ ,-—_-21"” 2# ?
e\ *
V(o) + vEm (2)
and so, as n — 0o, we see that

Josnim(T) =0.
n~+oo Y, inim(2)

49

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Thus, by (4.36) and (3.60), we-have

JoiraN(2)Yorn(z) = Josra(Z)Yoqrein(z) (5.9)
Jor -1 (2)Yoimsn(2) = Jirain () Yorna-1(z)

Gumen(M, M) = -~

for the finite chain. Similarly, (4.16) and (3.55) lead to

J_p—m(—2%)
J-v-—M—l(~z)

_ ﬂ_.l e:'(-”—m J-u-—M(z)
- eit(-u-M -1) J.

GM‘(M': M) = ﬂ-l

v—-M-1 (z )

— _p-1 Jy-m(-7)
= - —__J-u—M-x(z), (5.10)

for the semi-infinite chain to the left, while (4.16) and (3.61) yield

Gu+(M, M) = 5~17%, (5.11)

for the semi-infinite chain to the right.

Following (4.49) through (4.56), we solve for G, using the field-modified results
in (5.10) and (5.11),

Ju+M(3)J-u-M(z) (5.12)

— A1
Go(M, M) = -p Sorrem(2)Ip-m(2) + Joara(2) T oot 1(z)

However, the denominator in (5.12) is the Wronskian [89]

WlJ(2), J-u(a)] = ~—sin o, (5.13)
so (5.12) reads
] av

Having found the GF's for the three cases in question, we can now obtain their
LDOS at the site n via (3.21). In all three cases, wherever it is defined, G(M, M; X)
is real valued, i.e., the imaginary part is zero except, perhaps, at the eigenenergies,
Xz, provided by the poles, vy, of the GF via (5.5).



CHAPTER 5. ELECTRIFIED SOLIDS 51

Since all the poles are stmple, we invoke the following result from the theory of
residues [95] to obtain the imaginary part of the GF at its poles.

Theorem 5.1 If f(z) = h(z)/k(z), where h and k are holomorphic in a disk about
a point z = a, with h(a) # 0, k(a) =0, and K'(a) # 0, then

Res(f(z);z =a) = (5.15)

Proof:

Since the residue is defined as the coefficient to the (z—a)™! term in the Laurent

expansion of f(z) about a, we have

= lim h(z) (z—a) _ h(a) (5.16)

e k(Z)— k(@) K(a)

Consider an interval [X_, X;] which contains exactly one solution, Xj. If we
enclose the pole with a clockwise oriented curve that passes through X_ and X,
the contour will be equivalent to integrating along the interval twice. Hence, we

can write
Im G(M, M; X;) = nRes (G(M,M; X); X = X&) (5.17)

Using (5.17), we can express the LDOS, at site n, in reduced energy as
pa(X) = D R(Xe)8(X ~ Xi)/(2B), (5.18)
k

where

IP(Xe) = 2BRes (G(n,n; X); X = X&) . - (5.19)
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is the intensity energy distribution at the atom n, which can also be interpreted as
the electron occupation number of the state k. Since we have one electron associated

with each atomic site, (5.19) satisfies the charge conservation condition,
Y L(X)=1 (5.20)
k

We are now in the position to address the LDOS for the above cases separately.

5.2 Finite Chain

The plots of the LDOS at the n = M = 0 site of a 100-atom chain are presented
in Fig. 5.2 for the various fields indicated. The intensities, I9(Xx), in (5.19) were
obtained by using the exact rational polynomial form of (5.9), which can be derived
from the Wronskian equations for both numerator and denominator, where the

reduced energies, X, are provided by the poles of (5.9}, i.e., the solutions of

Ju-1(2) Yo 100(2) — Sy 400(2) Yo -1(2) = 0. (5-21)

Figure 5.2a depicts the discretized form of the familiar semi-elliptic LDOS for
the zero-field case [88]. On applying the small field F = 0.005, the band picture
of Fig. 5.2b arises, in which the most striking feature is the appearance of the
linear-ramp region of negative slope covering the lower quarter of the quasi-band.
In addition, the quasi-band is rigidly shifted slightly to higher energies, the inten-
sities decaying exponentially beyond the upper-band edge at X = 1. Note also,
the redistribution of the Xi-values, compared with those in Fig. 5.2a. Increasing
the field to F = 0.01, the linear-region in Fig. 5.2c now extends over all the lower
half of the band, and about half its intensities exceed the maximum of those in the

semi-elliptic portion. Doubling the field to F = 0.02, the linear-region completely
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(a) 0.03; I?(Xe) 0.03; I?(Xe)

1 0 1 3 Xk
0.037 I9(Xx)

Fig. 5.2: LDOS at n = 0 site of 100 atom chain. As field increases, semi-elliptical
shape is dominated by linear potential. Field strengths are as indicated.
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-2 -1 0 1 2
e . o « X

F =0.02

T log Ik(Xk)

0l

Fig. 5.3: Logarithmic plot of I{(X:) in Fig. 5.2d showing quasi-band region.

supersedes the semi-elliptic one, as in Fig. 5.2d, and is again accompanied by the
rigid shift to higher X;-values and the exponential tailing above X = 1. More-
over, the I}(X;) values are markedly enhanced to those in the F = 0 situation in
Fig. 5.2a, particularly in the lower half of the quasi-band. In the case of F negative,
the corresponding LDOS plots are those of Fig. 5.2, reflected in the X = 0 vertical
axis.

Although the energy spectrum is discrete, we can identify a quasi-band by look-
ing at the logarithm of (5.19). In the region |Xi. — NF| = 1, log It (X&) undergoes
a transition from an exponential-like decay inside the quasi-band to a dramatically

stronger decay outside the quasi-band (Fig. 5.3).
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5.3 Semi-infinite Chain

Here, we use (5.11) in (5.19) and (5.16), with n = M =0, to obtain

I)(Xe) = 2BRes (Go+(0,0; X); X = Xi)

E Jl’h(z) i (522)

the X-values being the solutions of
Jve—1(z) =0, (5.23)

i.e., the poles of (5.11). This set of solutions, {Xt}2,, exhibits a minimum sep-
aration of F' between solutions and asymptotically approaches the Stark ladder,
X — kF as k — oo, by the properties of BFs [96].

Contrary to the finite and infinite chains’ LDOS plots at the n = 0 site, here
we are concerned with the LDOS at a number of sites in the chain, when the
field is fized at F' = 0.02. Starting at the end site, n = 0, we immediately see that
Fig. 5.4a essentially replicates that of Fig. 5.2d, for this site of the finite chain under
the same field. Moving to the next site at n = 1, Fig. 5.4b shows that a drastic
change has occurred in the LDOS, at this first subsurfaece atom. The distinct
features are the extremely high spike at the lower-band edge followed by a steep
decline to I2(0) = 0 over the bottom half of the quasi-band, while in the top half
we witness the emergence of the first bulk contribution in the form of a discretized
hump. Penetrating the chain further, to the n = 5 site, Fig. 5.4c displays a series of
spike clusters of Gaussian-like (GL) shape, except at the lower-band edge, where
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0.1; INX)

(a) 017 (%) (b)
n=0

I 0 1 3 Xk 3
n=25y

:

-1 0 1 2k

Fig. 5.4: Transition from surface (n = 0) to bulk (» = 10) LDOS of semi-infinite

chain subject to a linear potential of F' = 0.02. Site positions are as shown.
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the dominant spike is again present. We also notice that the envelope through the
GL peak maxima takes on the familiar U-shape of a bulk LDOS. The 7}9(X;) plot
of Fig. 5.4d is for the bulk site at n = 10. As in Fig. 5.4c, we find a series of GL
peaks, each separated by a node (i.e., I}°(Xi) = 0). The number of nodes (and
peaks) increases with n. Note that the bulk character of this LDOS is reflected in
the disappearance of the dominant spike at the lower-band edge, which is connected
with the surface state [88] associated with the end atom at n = 0. The U-shape
envelope is, of course, still retained and the band tailing at the upper-band edge
has become more pronounced, in conjunction with the rigid shift of the quasi-band,

as m Increases.

5.3.1 Infinite Chain

From (5.14) and (5.19), we find that at M =0,

7zJy, (z)J_. (T)

2—=sin(zX)
0X X=X,

sec(vem)dy, (2) -, (2), (5.24)

IR(Xe) =28 |87}

the poles of (5.14) providing the X-values, viz,
sin Upt = 0, (5.25)

ie.,

Xe=kF, k=0,£1,%£2,..., (5.26)

by (5.5) and (5.4). Thus v, = —k, and so

sec(ur) = (—1)F = (—~1)=. (5.27)
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(a) 0.0157 I2(Xe) (b) 0.041 I(Xk)

F = 0.005

(c) 0.2y IP(Xe) (d) 0.6 I2(Xk)

0.1 F=10

Xk ‘ng

Q0 5 0 5 T0%x

| i i,

Fig. 5.5: Occupation number of states for infinite chain. Continuous field transition
from discretized U-shape of zero-field to the localized peak for F > 1 occurs by
combining both U and GL features into multiple Stark-Ladders. Field strengths

0 2

are as indicated.

Since J_.(z) = (—1)*J.(z) [89], it follows from (5.3) that I?(XL) in (5.24) varies
as the probability, |C?|?, giving the link to the k-state occupation number at the
zero atom. Note, (5.26) defines a true WSL, in contrast to the quasi-WSLs given
by the BF conditions in (5.21) and (5.23).

The LDOS are shown in Fig. 5.5 for the F-values indicated. The low-field
(F = 0.005) case of Fig. 5.5a has the U-shape appearance of the F' = 0 situation
(88], and the discrete details are reminiscent of the ' = 0.01 plot of the ground-
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Fig. 5.6: (a) Quasi-band showing localization length L and wavefunction behaviour.
(b) Rectangular hyperbolae FL = +2 bounding shaded region in which (F, L)

values give rise to band state.

state profile obtained numerically by Dolcher et al. [85], including the band tailing
at both band edges. For F = 0.02, in Fig. 5.5b, the fine structure of the discrete
details is resolved, showing the intensity spikes are again clustered into energy
regions, which we identify as the break-up of the single quasi-band into the multiple
mini-bands and were suggested by Moyer [58] as a means of approaching the zero-
field limit in a proper manner. Further increase of the field to F = 0.1 results
in Fig. 5.5¢c, where the heights of the intensity spikes are greatly diminished and
their separation and band tailing markedly enhanced, making the characteristic
U-shape barely discernible. Taking the field to F = 1.0, the quasi-band structure is
reduced to that in Fig. 5.5d, whose few spikes form a single GL distribution about
the central dominant spike at X, = 0, the U-shape being completely destroyed.
Conversely, the single GL peak can be regarded as the basic unit from which the

other WSL spectra are generated.

Let us now address the question of the number of states in the quasi-band
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at a given field strength. The tilted band picture of the WSL (5.26) is shown in
Fig. 5.6a, where X; vs. n is drawn. The upper (lower) band edge is the line
Xi =n+1 (Xp = n —1). Between these lines, the vertical (horizontal) bandwidth
is 2 (L), L being the so-called localization length, over (beyond) which the BF is
oscillatory (damped exponentially). From the geometry of Fig. 5.6a, we see that
the field gradient F = £2/L, or |[FL| = 2. Thus, for a state to be in the band, the
rectangular hyperbolic condition (Fig. 5.6b)

|IFL| <2 ' (5.28)

must be satisfied. Since, in the l-electron approximation, each chain atom con-
tributes one state, the actual number of states in the quasi-band corresponds to
the number over which L (= 2F~!) extends. Hence, when F = 1, L = 2, the
number of states supported by the quasi-band at n = 0 is three, as in Fig. 5.5d,
where the band-tailing states beyond the edges are neglected. Reducing F to 0.1
(Fig. 5.5c), we find 21 states in the band, corresponding to L = 20. Whence, in

general, the number of states in the quasi-band is
N =2[L/2] +1=2[1/|F[] + 1 =2[|z[] + 1, (5-29)

where the square brackets indicate the integer part of the argument.



Chapter 6

Surface States

6.1 Zero-Field Theory

When dealing with a terminated (i.e., finite or semi-infinite) crystal, the sites lo-
cated next to a termination site, or surface, can have significantly different electronic
characteristics than those found at internal sites. Such an electronic difference may
give rise to surface states, which were first considered by Tamm(88]. The basic the-
ory of surface states has recently been described in detail by Davison and Steslicka
(88].

There are two standard ways to generate information about a surface termina-
tion from the known properties of the infinite chain. First, we can consider taking
a cyclic chain of N atoms, breaking a bond and perturbing one, or both, of the
resulting surface sites of the now finite chain (Appendix E). We shall, however,
consider here the second method, namely, by cleaving an infinite chain into two
semi-infinite chains and perturbing the surface site.

In the TB approximation, using the nearest-neighbor Hamiltonian, the recur-

61
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rence relation for the infinite chain is

(E — a)em = B(emr + Em-1), (6.1)

where the coefficients, c,,, arise in the expansion of the crystal wavefunction in

terms of the AO states, namely,

W)=Y caln). (6:2)

To solve (6.1), we assume the power-law solution,
cm = At™, (6.3)
A being the normalization constant, which allows us to rewrite (6.1) as

t2 ~2Xt+1=0. (6.4)

By (4.57), the energy band is restricted to ~1 < X < 1 for the infinite chain,

so we introduce the parameter 8 via

X = cos¥, (6.5)
whence, the roots of (6.4) yield the solutions

ty = e, (6.6)

Combining (6.5) and (6.6), we find

. X +iv1- X3, X| <1, 6.7)
T X —sm(XWXET=T, |X|>1, '
and t_ = t;!. The infinite crystal has the well-known GF [88],
ei[n—mlﬂ
G’(n,m) = (6.8)

—2Bisiné
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We obtain the semi-infinite chain by cleaving the crystal between sites —1 and
0. We ignore the portion for n < —1, setting all the GFs across the cleavage to
zero. The atom at site 0 is now the surface atom, whose site energy we modify to

account for having only one, not two, NN bonds. Thus, the potential is

V = (a' — ) [0) (0] — B ([0) (~1] + |-1) (0]},
= B(z[0) (0] — [0} (1] - [-1)(0[) (6.9)

where
(6.10)

is the dimensionless surface perturbation perameter.

Applying (6.9) to (3.8) for m > 0, and remembering to set cross-gap terms to

zero, we obtain
G(m,m) = G°(m,m) + z6G°(m,0)G(0,m) — BG°(m,~1)G(0,m).  (6.11)
Setting m = 0 yields
G(0,0) = G°(0,0) + z8G°(0,0)G(0,0) — BG®(0, ~1)G(0,0), (6.12)

which, upon rearranging, gives
G°(0,0)

G(0,0) = . 6.
(0.0) 1 - 26G°(0,0) + 8G°(0,-1) (6-13)
Thus, using (6.8) in (6.13), we have the surface GF equation
G(0,0) = 8~ ——, (6.14)
e -z

whose poles locate the surface state, i.e., the condition,

z=e ¥ =cosh—isind =X —iv1- X2 (6.15)
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Rearranging (6.15), and squaring, we find
X —-1=(X—-2z))=X%-2:X + 23, (6.16)

which yields the surface-state energy

2Z2+1 1 1

So far, (6.5) indicates that we are restricted to the region —1 < X <1 in the band.

To access energies outside the band, we allow 8 to become complex, viz.,

b =(+1p, p real > 0. (6.18)
Inserting (6.18) into (6.6), we see that
ty = eF? = eFileFH (6.19)

which, along with (6.15), yields the ezistence condition for a localized surface state
lying outside the energy band, namely,

lz| = Jt-] > 1. (6.20)

Rationalizing (6.14), and using (6.17), we have for | X| < 1,

- iv1— X2 - /1 — X2
G(0,0) = g~ X z-:-t 1 Xz =ﬂ-1X z+ivV1l—-X , (6.21)
(X -2+(1-X?% 22(X, - X)
which, via (3.21), leads to the SDOS inside the band
1 V1-X2
po(X) = (27 pBz) 17(—_—)(—- (6.22)

If | X,| < 1, then the so-called surface resonance state lies embedded in the SDOS
band and (6.22) gives the entire energy spectrum. When |X,| > 1, we have a
discrete localized surface state outside the band, which we describe via (5.18), viz.,

| p(X) = (2B) " I(X)EX - X,), (6.29)
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z= —3/2: g :
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Fig. 6.1: Zero-field SDOS and surface intensities for indicated values of z.

where (5.16) and (5.19) with (6.14) give

R(X) =3 (1 - i,) . (6.24)

As z increases from a large negative value, the surface state approaches the band
from below for z < —1, moves through it when —1 < z < 1, and appears above the
band at z > 1 values (Fig. 6.1).

6.2 Surface-Field Effects

In order to study surface effects on an electrified solid [97], we investigate a semi-
infinite chain to the right, beginning at n = 1, and subject to an applied field of
gradient I, i.e., we have the GF

Gie(1,1) = ﬂ-l"}_’zi’)’_), (6.25)

by setting » = 1 in (5.10).
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We now consider the addition of an isolated atom at the origin, whose site

energy ag = a’. The GF for this isolated atom is

1

2X -z (6.26)

1 _ g

Gu(0,0) = ==

We define an unperturbed Greenian by the superposition of these two systems, so
that
G® = Goo + Gy+- (6.27)

We now attach the isolated atom to the chain, by using the perturbation bond

projection operator

vV =8[0) (1] + [1) (ol], (6.28)
in the Dyson equation (3.8). We wish to obtain the on-site GF at (0, 0), viz.,
o+(0,0) = G°(0.0) + BG°(0,0)Gg+(1,0) + BG°(0,1)G5+ (0,0), (6.29)

where the last term is zero, due to the two systems being initially isolated, so that

G°(0,1) = G%1,0) = 0. To obtain the middle term, we need

G+ (1,0) = G%(1,0) + BG°(1,0)G3+(0,0) + BG°(1,1)G2+(0,0)
= BG°(1,1)G+(0,0). (6.30)

Inserting (6.30) into (6.29) yields
(.)‘* (0’ 0) = Go(oa 0) + ﬂzGo(O! 0)G0(11 I)GS'P (Oa 0)1 (6'31)

which defines GJ,(0,0) implicitly in terms of the G® elements. Solving (6.31), we
find

G°(0,0) 1

%00 = I Fep0cmD P e ALY

(6.32)
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A

Fig. 6.2: Graph of J_x/p_1(—F')/J_x;r(—F~') for F = 0.2. Horizontal z-lines

intersect curves at X corresponding to poles of (6.33).

Using (6.25) and (6.26) in (6.32), we arrive at

i _ 2 1 _ a-1 Jv(z)
G5 (0,0) = @~ @ e — T @)
_ g Ju(z) (6.33)

J,,_1(:B) - ZJ,,(-'D) ’
where we have used the recursion relation (5.2) to combine the BF's in the denom-

Inator.

The energy spectrum, displayed in Fig. 6.2, is given by the poles of (6.33), i.e.,

- Ju—l(z)
T J(z)

Note the similarity with the zero-field case given by (E.17) and Fig. E.2. Unlike the

(6.34)
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zero-field case, no solutions are lost as we vary z. Since there is no band restriction
on the eigenenergies, there is no condition whereby we can distinguish a state as
a surface-state. All states are discrete, and several states may be localized on the

surface site.
We obtain the intensity for the field-modified states by following (5.19), thus,

2
1x) = ez 0,0, x)

—_ es sz(z) . — 8
= 2R (sz-l(z) —edx(®) X")

- Jexy(Z) 7

S e Uexaale) — lex(2))
Juz(z)
J.',;—x(’-') - ZJ.',;(-'") ’

X=X;

=2 (6.35)

where the prime indicates differentiation with respect to order. The surface DOS

can therefore be written as

po(X) = (2B)" ) I(X2)6(X — XT). (6.36)
k

Plots of I(X}) are depicted in Fig. 6.3 for z = 1, i.e., on the upper edge of the
quasi-band, and for the F-values indicated. We see that, as F' decreases from 0.2
to 0.01, the number of spikes increases markedly in the quasi-band, and coalesce

about a surface resonance state at X =z =1 (df. Fig. 6.1).

As z varies over the range —2(1)3, Fig. 6.4 represents the evolution of the
intensity-energy distribution. Initially, a surface state spike exists below the quasi-
band. At z = —1, the state becomes a surface resonance, coincident with the lower
quasi-band edge. When z = 0, there is no surface perturbation, so no surface state
exists. For z = 1, the surface state is aligned with the upper quasi-band edge,
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Fig. 6.3: Surface intensity-energy distributions for z = 1 and F-values indicated.
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Fig. 6.4: Surface intensity-energy distributions for F = 0.2 and z-values indicated.
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and emerges from the edge as the tallest spike in the z = 2 case, being further
removed from it when z = 3. It is therefore apparent that the If(X:) distribution
is very sensitive to the choice of the surface-perturbation parameter and is, in fact,
reminiscent of the SDOS behaviour for the zero-field case [88].



Chapter 7

Chemisorption

7.1 Methodology

We now turn to a problem that is of great relevance to many fields of interest,
including catalysis, epitaxy, and scanning tunneling microscopy. Instead of requir-
ing the surface atom to be of the same material as the bulk of the crystal (§ 6.1),
we consider chemically attaching a different atom to the end of the chain, by the

so-called chemisorption process.

In particular, we wish to quantitatively describe the characteristic changes be-
tween the pre-chemisorption system, i.e., one isolated atom and the crystal sub-
strate, and the combined post-chemisorption system, where the atom is edsorbed

onto the crystal’s surface and is called an adatom.

We assume that the adatom has initially a single electron in its valence state
at an energy &,, and that the crystal has one valence electron associated with
each of the N atomic sites that doubly occupy the delocalized crystal states, thus
filling them up to the Ferm: level (FL), i.e., we neglect temperature effects. When

72



CHAPTER 7. CHEMISORPTION 73

“E
0 i
Y S
*U
€
L S
o

Fig. 7.1: Energy diagram for adatom, including Coulomb repulsion.

chemisorption occurs, the addition of the adatom electron introduces modifications
to the crystal states of O(1/N) and so, for sufficiently large substrates, we can
ignore the chemisorption-induced changes to the crystal parameters, which is not

the case for the adatom.

The adatom-substrate interaction means that the isolated adatom state becomes
accessible to the crystal electrons, and vice-versa, so that a charge transfer, Aq,
takes place between them. The resulting modifications to the adatom state are

accounted for by adopting the Anderson-Newns model [94], and writing
Ear = €a + U(N, o), (7.1)

where o labels the spin of the adatom electron, U is the intra-atomic Coulomb re-
pulsion between two electrons on the adatom, and (N, _,) is the adatom occupation

number of the opposite-spin state.

The value of U is dependent on the properties of the adatom, being the difference
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between its ionization energy, I, and electron affinity, A, (Fig. 7.1), i.e.,

U=1I-A (7.2)

Since we are now dealing with electron-electron interactions, at least on the
adatom, we can no longer describe the system by using a one-electron Hamiltonian.
We do assume that the crystal-state wavefanctions, [¢y) with energies &, have al-
ready been obtained via the TB Hamiltonian. Using these, plus the spin-dependent
adatom states, as a basis set, we turn to the language of second quantization [98]

to describe the chemisorbed system.

Let C!. (C,) be the fermion creation (annihilation) operator for the state n,
n € {a,k} (k=1,...,N), from which we define the number operator, N, = CtC,
(cf. § 2.1 and Appendix B). The Fock Hamiltonian of the chemisorbed system can

then be written as
EL = EMNM + Zekac + z (Vakctwcka + ";:aciccaa) 3 (7°3)
k k

where V,,, denotes the hopping term between states n and m. The total Hamil-
tonian is the sum over both spins, H = )__ H,. We obtain Hartree-Fock solutions
to (7.3) by generating N-particle antisymmetrized wavefunctions through the ap-
plication of the creation operator to the vacuum state, |0). For the ground state,

precisely those states below the FL are included, i.e.,

|80) = [[ L 10), (7.4)

where E,, are the energy eigenvalues and Ey is the Fermi energy. The Schrédinger

equation then becomes

H, |&o) = E |$o). (7.5)



CHAPTER 7. CHEMISORPTION 75

An application of the creation operator C!_, adds an electron of energy E,, to the

system, whence

H,Cl, |®0) = (E + Ens)Cl, [0}, (7-6)
which, using (7.5), leads to

[H,,Ct,] [80) = EnsCl, |%0). (7.7)
Inserting (7.3) into the commutator, we obtain
[H,.Cl,] = €ar [Nao, CL, ] + zk:e,, [Nio, CL, |
+ 3 (Var [C Coo, O] + Vi [, € L)
- e“(;w San+ Y exChybin + ; (V,,,Q,&h + v,;c{,aa,.) . (1.8)
P

where we have used (2.21) and (B.5) to evaluate the commutators. Taking the

adatom and substrate states separately, we find

[IHL”@M] =€“th+2‘/l:acaﬂ n=a
k
[EL,CL,] =Cl, + VaCl,, n=k. (7.9)

Since n may be either the adatom or a crystal state, we expand C}, into all

possible basis states and project back onto the chemisorption state n, i.e.,
Cl, =(nla),Cl +} (n|k),CL, (7.10)
k

where |g), (Jm)) are the unperturbed (perturbed) eigenstates. Applying (7.10) to

both sides of (7.7), we obtain the operator equation

(n 1 a), [Hr, CL 1+ 3 (n | B), (B CL] = B (0 | 0}, Clat B 2k, O,
(7.11)
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which, with the aid of (7.9), becomes

((n | @), €ar + ) (n] k),Vak) C,+Y (nla), Vg +(n|k),ea)Cl,
k k
= En(n]a),Cl, + Ens Y _(n|k),Cl,. (7.12)
E
Equating coefficients of C!, and C,fw in (7.12), we obtain the so-called equations of
motion for (n | a), and (n | k), viz.,
Enr(n|a), = (n|a), 0+ Y (n|F), Vae, (7.13)
Eny (n|k), = (n| k), cc+ (nkl a), Via- (7.14)

Multiplying (7.13) by ,(a | ») and (7.14) by ,(k | »), we use the results to sum

over the entire unperturbed basis, whereupon the completeness property
|(n | a), "+ Z l(n | k), =1, (7.15)
leads to
B = |(n|a), Pear + 3 |(n | k), e
k
+ zkjua | 5} (n | k), Ve + o (K | 2) (n | @), Vi2)
=Y [(n|m),Pem+ ) (Aa | n) (n | k), Var +o(k | n) (n | a), V)
L UM (na), |:, : (7.16)

where we have expanded &,, by (7.1) and m runs over all a and k values.

At this point, we wish to observe the following identity,

(CheCro) = Y (nCh, Co [n)

n
occ
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= 3" (al (tm), (01) (10) o () In)
=Y (nIm), (2| n), (@-17)

ocec

so, in particular, for p = m = a we find
(No) =Y "[(n]|a), %, (7.18)
which inspires the summation of (7.16) over all » and both spins, so that

Sk =Z[Zl(nlm),lzem

no
occ

+ Y (ofa]n) (n | k), Var +o(k [ n)(n | a>.,v,;)]
+UY (Noo) Y l{n]a), I?

occ

=y [Zunlm), em

+Y_(Aaln) (n| k), Vak +o(k | n)(n | a), V,;)]
k
+ 2U(Ng -0 (Nao ), (7.19)

where the symmetry of the last term allows the summation over spin to double the

term.

The energy can be directly calculated from the expectation value of the Fock
Hamiltonian with (7.1) applied, namely,

E=(M)=Z[Z|<n|m>,|=em

+) (ola|n) (n | k), Vak +o(k | n) (n | a), Vk-c)]
k

+ U(N, -0 )(Nao ). (7.20)
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Comparing (7.19) and (7.20) allows us to conclude that the energy of the chemi-
sorbed system can be written as

E=)" En — U(Nu ) (Nopo)Noo ). (7.21)

occ

Using the energy of the unperturbed system,

Ey=e,+2)_ ca, (7.22)
k

occ

we define the chemisorption energy via

AE.=E—Fo=) En—2) &1 —€a—U(Nag)(Nas). (7.23)
no k

oce occ

We now turn to the problem of obtaining (N,,). By (7.18), we see that it is
dependent on the chemisorption wavefunctions |[n). However, through (7.1), the
Hamiltonian (7.3) which generates the [n) is itself dependent on (N, _.), i.e., we

have the self-consistency equation
(Nog) = N ((Ns,—)) = N [N ((Nas))] - (7.24)

In general, there is no enalytical procedure for solving (7.24), so we must obtain
the solutions numerically. We do know, however, that we can always find a non-
magnetic (M) solution, (Ny,) = (N, _,), and may be several additional magnetic
(M) solutions.

The solutions to (7.24) gives a measure of the charge occupying each spin-state
on the adatom. Comparing with the charge of g. = —e from the single electron of
the isolated adatom, we define

Ag=g. (Z(Nw) - 1), (7.25)
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to be the charge transfer to the adatom.

The remaining terms in (7.23) may be obtained directly from the energy spectra
of the unperturbed and chemisorbed systems, which we are able to extract from the
poles of the appropriate GFs. Following the procedures of Chapter 6, we describe
the unperturbed system by the Greenian G;+ and the modified-isolated atom GF,

in this case,
1 ~ g 1
E —¢, 2X — 240

Goo(0,0) = (7.26)

with
“ B
Since the adatom does not have the same bonding properties as the crystal atoms,

(7.27)

we attach the two via a chemisorption bond of energy f3,, so that (6.28) becomes
V =B.[10) (1] + [1) {0]], (7.28)

whence, following (6.29) through (6.32), we obtain
G°(0,0)
1-4;6°(0,006°(1,1)
1

ﬁ~l

G;(()’ 0) =

B71G%(0,0)~t - B26°1G°(1,1)
1

= 0 AR’ (29
where we have defined
1=5. (7.30)
When G°(1, 1) is complez, we introduce the chemisorption functions [94] defined
as
A(X) = 78 ReG*(1, 1; X), . (7.31)
and

A(X) =19’ ImG°(L,1; X), (7.32)
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which allow us to write (7.29) as

= ﬂ-l' 1

2X — z, — A(X) —iA(X)
e 2X — z4 — A(X) +iA(X)
U RX -z — AX) + AX)Y

G2(0,0)

(7.33)

In particular, since the DOS is dependent only on the imaginary part of the GF,

we find
A(X)

[2X — z, — A(X)]? + A(X)?

pa(X) = El; (7.34)

7.2 Field-Enhanced Situation

A semi-infinite chain under any linear potential is physically unrealizable, even as
an approximation. Consider what happens on the surface atom when the field is
switched on. The allowed energy band, corresponding to zero field, discretizes with
a minimum separation of F' between levels. For a semi-infinite chain, this generates
states that have infinite energy. In particular, the FL rises to infinity, i.e., the atoms
become ionized and the crystal disintegrates.

To maintain the integrity of the system, we require that the reduced-energy
FL, Xy, remains within the quasi-band region of the surface atom, defined by the
allowed energy band in zero field, ie., [MF| < 2, as shown in Fig. 7.2. This
condition ensures the existence of at least one delocalized state across the entire
chain.

The surface GF of the m-atom crystal is calculated by applying M = 1 and
N =m —1 to (5.9), which yields

_ g-1Yen1(Z)oim(z) = Jos1(2)Yoim(z)
e S 7 P A B 3 5 o (39)
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Fig. 7.2: Quasi-band region of electrified chain of m atoms from n = 1 to n = m.

The allowed-energy states form a discrete spectrum of m states, which are lo-
cated at the poles of (7.35), viz.,

Yo(2)dotm(z) — Jo(z)Yosm(z) = 0, (7.36)

for which we order the solutions via energy to form the set {X7}pH!.

We now use the finite chain results to describe the chemisorption of an adatom,
located at site n = 0 with modified-site energy ap = €40 = £, + U’ (Na—pr ), to an
electrified substrate, on the right from site M = 1 to m, by a bond Bo; = Ba.
Inserting these into (7.29), we have the adatom GF

1
G;..(0,0) = gt
om(0:0) = B S o Ty G T)
-1 1
= i : 7.37
A 2X -z, — U(N,p) — 'lzﬂGI.m(la 1) ( )
where
s — ~ U
2y = 53 U—2ﬂ. (7.38)
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We note that (7.35) is real-valued everywhere it is defined, which complicates
the extraction of the chemisorption functions. The application of (7.31) is straight-
forward, yielding

. o deem(@)Yel2) — S5V ()
AX) =n"A ReGrm(L1) =1 -y @) — doa (Yo (@)

To obtain A(X), however, we must first look explicitly at the poles of (7.35),

(7.39)

namely,
w0y 1 AX)\ _ .1
En Gym(1,1; X0) = xlﬂolm 7 ) ~Re [ f ﬁA(X)J(X X0) dX
N ﬂ
_ .7 (X - X7) 0
“'nzﬂRes( A X)
= ig 1 (7.40)

n°BAX)
where the last equality holds by Theorem 5.1.
Since A(X) is real everywhere it is defined, so is A(X)~!. Thus, (7.40) is purely
imaginary, and we obtain
A(X) = 0’8 ImGn(1,1;X)
= 7?8 ImG1a(L,1; X{*)6(X — X3)

k:.-l

§(X - X)

2
=B =
z zﬂ[A(X") T
= 517 wzkjr,:(xk)s(X—x::), | (7.41)
where we have defined the surface-intensity energy distribution of the crystal to be

(XD = 2 {n’IAXD) Y} (7.42)
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which, by (7.39), is the same result we obtained in § 5.2.

Furthermore, the existence of A(X) # 0 is limited to where A(X) is undefined,
which prohibits the use of (7.34) to determine the SDOS of the adatom. Instead, we
must locate the poles of (7.33), X, and determine the intensity-energy distribution
on the adatom, I¢(X.), which we use in (5.18) to obtain the adatom SDOS.

The inherent discreteness of the states under an applied field, allows the chemi-
sorption energy to be directly calculated from (7.23) which, in reduced notation,

becomes
AX. =Y AX" -z, - U(Nor)(Nawo ) , (7.43)
where
AXT =) X~ Y XP,, (7.44)
ot K

(X2,) Xno being the (un)perturbed eigenenergies, and Xy = Xf( N+1)/2)> the double

square brackets indicating integer value.

The adatom occupancy is obtained from the intensities on the adatom of the

occupied states of the chemisorbed system, i.e.,

(Noo) = Y (No) = ) 18(Ximo)

occ

= 3"28[26 - N'(Xumo)] ", (7.45)

where, again, the imaginary component of the GF is obtained by differentiating the
denominator of G, this time in (7.37).

The self-consistent curves of (7.24), for the model situation where n = 1(8, = 8)
in (7.37), are displayed in Fig. 7.3 for the F-values indicated. The F = 0 case,
reproduces Newns’ non-magnetic (¥) and magnetic (M) solutions [94]. As the
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Fig. 7.3: Self-consistency curves for 7 = 1 and F-values indicated. (Non-)magnetic
intersections occur for (N,, )(=) # (Na-s)-

field increases, the intersection points are driven towards the point (1,1), so that

the M-points are eventually eliminated.

7.3 H-Ti System

We apply the results of § 7.2 to the system composed of a hydrogen adatom and a
titanium substrate of 100 atoms in length, which will allow fields of up to |F| = 0.02,
expanding on the results given by English et al. [99]. We convert the experimental
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44 Ea ¢ Ba
Expt. 8.60 eV -13.60 eV 129eV 386eV 3.72eV

B Za a n
Reduced | 2.15 eV -2.27 300 38eV 173

85

Table 7.1: Experimental data [94] for chemisorbed H on Ti and corresponding

reduced parameters.

F |[-020 |-015 [-010 |-.005 {.000 [.005 |.010 |.015 | .020
0.546 | 0.567 | 0.584 | 0.607 | 0.632 | 0.658 | 0.687 | 0.720 | 0.762

M 0.872 | 0.794 | 0.759 | 0.720 | N/A | 0.737 | 0.819 | 0.909 | 0.991
0.054 | 0.288 | 0.381 | 0.483 | N/A | 0.574 | 0.547 [ 0.482 | 0.424

Table 7.2: & and M solutions (N,,) and (N;_,) of the H-Ti system.

data to reduced notation in Table 7.1.

Applying these parameters to (7.24), we obtain numerically the self-consistency

curves for values of F by locating the poles of (7.37) and summing the intensities

of the occupied states as (N, _,) is varied as an independent variable. Intersecting

this result with its own inverse, see Fig. 7.4, locates the % and any M solutions.

In fact, the zero field case has only a ¥ solution, but the application of any field,

positive or negative, creates M solutions, see Table 7.2.

Inserting these occupation values back into (7.37), enables the energy eigen-
values of the chemisorbed H-Ti system to be obtained. Delineated in Fig. 7.5a

(Fig. 7.5b) is the behaviour of the chemisorption energy (7.43) (adatom charge
transfer (7.25)) as the field strength varies. The M (M)variation is portrayed by
the solid (broken) line in both figures. With no field, only the ¥ solution exists,
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Fig. 7.4: Self-consistency (adatom occupation number) plots are shown for H~Ti

system with parameter values n = 1.73, z, = —2.27, and I/ = 3.00.
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Fig. 7.5: (a)Variation of H-Ti chemisorption energy with field strength. Solid
(broken) curve represents M (M) solution. (b) Adatom charge transfer versus field
strength for H~Ti. Solid (broken) line depicts ¥ (M) case.

but M solutions appear immediately with the application of F. The field brings
two major effects into play. First, it raises the Fermi level which, on its own, lowers

AX.. Second, it alters the adatom occupancy.

For the M case, the field increases both (N,,) and (N,_, ) along the diagonal, the
latter raising the effective adatom state via (7.1) which, in turn, raises AX.. Under
these competing effects, AX. remains essentially constant, as shown in Fig. 7.5a.
More particularly, X; is slightly more affected for F < 0.010, while the z, effect
takes over for F > 0.010.

We note that both plots show a smooth transition through the F = 0 point
for the ¥ solutions, whereas a cusp appears there in the M curves, due to the
asymmetry of the occupied levels in the presence of the field. States shifted above
the band are above the FL and have only an indirect effect on the energies of the
occupied states. States shifted below the band are, however, filled states and the

field effect is more pronounced when they exist.

In both cases, the field stabilizes the system. Our findings indicate that che-
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misorption reactions can be induced by the presence of a field on a system, which

would otherwise remain inert.

7.4 H-Cr

We next apply field-enhanced chemisorption theory to the system composed of
hydrogen chemisorbing onto a 100-atom chromium substrate, which will admit fields
of up to |F| = 0.015. The conversion of experimental data to reduced notation is

presented in Table 7.3.

As with the H-Ti case, we use (N, _,) as an independent variable at specified
F strengths to solve for (N,,) and then locate the intersection with its own inverse

(Fig. 7.6). These results are tabulated in Table 7.4 for both M and ¥ solutions.

48 €a 4 ¢ Ba
Expt. 6.10 eV -13.60 eV 129eV 4.56 eV 3.75 eV

B Zg U a n
Reduced | 1.525 eV -2.96 423 4.56eV 246

Table 7.3: Experimental data [94] for chemisorbed H on Cr and corresponding

reduced parameters.

F H-.OIS -010 |-.005 | .000 |.005 |.010 {.015

M’T 0.574 | 0.588 | 0.602 | 0.616 | 0.631 | 0.645 | 0.656
N/A |N/A [N/A [N/A |N/A |0.803 | 0.962
N/A |N/A |N/A |N/A |N/A | 0476 | 0.335

M

Table 7.4: ¥ and M solutions (N,,) and (N,_,) of the H-Cr system.
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Fig. 7.6: Self-consistency (adatom occupation number) plots are shown for H-Cr
system with parameter values n = 2.46, z,

—2.96, and U = 4.23.
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Fig. 7.7: Variation of (a) H~Cr chemisorption energy and (b) charge transfer with
field strength. Solid (broken) curve depicts ¥ (M) solution. Point B locates the
bifurcation threshold for M solutions.

Unlike the H-Ti case, H-Cr does not develop M solutions until F > 0.005, where
a bifurcation occurs, and none for negative fields. In particular, since the ¥ curve
for AX. is concave up (Fig. 7.7a), low fields will actually cause the chemisorption
process to be slightly less favourable than at zero-field. Once the M solutions

appear, increasing F will again result in enhanced chemisorption.

In Fig. 7.7b, we see that while the ¥ charge transfer behaves identically to
that of H-Ti under changing field strength, the M curve does not. Indeed, while
the charge transfer increases with F' in the H-Ti case, the M result for H-Cr has a

negative slope.

In both systems, when Aq changes sign, the direction of charge transfer is
reversed. For Aq > 0 (Aq < 0), charge flows to (from) the adatom from (to) the

substrate.
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Molecular Electronics

8.1 Zero-Field Model

Several mechanisms for providing a molecular switch have been previously investi-
gated [100]. Aviram et ol. [100, 101] studied the use of a hemiquinone molecule,
which has two forms that can be controlled by application of a potential field, per-
pendicular to the direction of current, allowing the molecule to be switched from

an acceptor to a donor state.

Potember and his colleagues [100, 102] have prepared crystals of tetracyenoquin-
odimethane (TCNQ) derivatives complexed with metal ions which, under the influ-
ence of high voltage, are converted to TCNQ and metallic atoms, switching from
high to low resistivity.

Much interest has been aroused in photoswitches. Following biological examples,
Shipman considered the molecules used in photosynthesis [103], while Keszthelyi
et al. examined Bacteriorhodopsin [104]. Carter proposed using an organic chro-

mophore [100, 105]. In the presence of light, the charges and double bonds in the

91
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molecule are altered.

Whichever method of switching is used, we may model them all via the change in
the electronic configuration of a single impurity embedded in a conducting polymer.

Using a TB Hamiltonian, and considering only NN effects, the one-dimensional
system ... AAABAAA... corresponds to an impurity B inserted into a periodic
host chain of A atoms. The elements of the conducting polymers, represented by
A, have in reality many orbitals, but for a qualitative view of the impurity effects,
a single-orbital approach is taken. A more detailed analysis of the system will
be required to determine the optimal chemical description of the impurity. In this
model, there are two methods of altering the electronic configuration of an impurity
in the chain. One is to alter the site energy, the other is to change one of the bonds

connecting the impurity to the chain.

Such a system has been examined with equal bonds between the atoms of the
homogeneous chain by Sautet and Joachim [1], and with alternating semiconductor
bonds by English and Davison [3], both using the scattering-matrix technique to
determine the transmission coefficient through the impurity and the change in den-
sity of states. MiSkovié et al. [106, 107] considered the system with two impurities
and the single-impurity system via the many-neighbour approximation, using the
Lippmann-Schwinger (LS) scattering equation in both cases. It is in the context of

this latter theory that we shall proceed.

We take the infinite chain Hamiltonian

H = Y [aln)(n]+8(In) (n + 1] + [n + 1) (n])], (8.1)
which has the well-known GF (cf. § 4.4)
i eiln-—mlﬂ

Go(n,m) = o (8-2)

28 siné -
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If we decompose the eigenfunctions of (8.1) with respect to the AO basis func-

tions, 1.e.,

[6) =) caln), (8.3)

n

the coefficients are plane-wave solutions, c2 = €™, where we have chosen the sign

of 8 to correspond to waves moving to the right.

We modify (8.1) by introducing a localized perturbation, V, well away from the
ends (n — +o0) of the chain, whence, the perturbed Hamiltonian is

H=H+V (8.4)

with eigenfunctions,
) =Y caln). (85)

From these results, we call upon the LS equation (see Appendix F),

W) =14} + GV ), (8.6)

which is equivalent to the Dyson equation, except it applies to the wavefunctions
of the system (cf. (3.8)). Expanding the wavefunctions in (8.6) and multiplying on
the left by (n|, we obtain

e =+ (n|GVim)cm
=+ G {I|Vm)cn, (8.7)
Im

which is the LS relation for the wavefunction coefficients.

In a general scattering situation, incoming waves are transmitted or reflected

according to the characteristics of the system. Consider two independent plane
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) A b) A

T —T — —_—
A C A C
B D B
-~ — - ———— - ——
—- -
n=20 n=20

Fig. 8.1: Scattering amplitudes of incoming and outgoing waves. a) General scat-

tering relationships. b) Scattering due to incoming wave from left only.

waves Ae** from the left and De~"*= from the right, incident upon some perturba-
tion region. The incident waves are scattered into outgoing waves Be~** and Ce'™**,

respectively (Fig. 8.1a), which are related to the incident waves via
C=1tA+7'D
B =rA+1'D, (8.8)

where 7 is the transmission coefficient, r is the reflection coefficient from the left,

and 1’ is the reflection coefficient from the right. In matrix notation, (8.8) becomes

c)-sofa-[0][2] e

which defines the scattering matriz, S(FE).

If we now consider a single incident wave from the left, i.e., D = 0, (8.8) tells
us C = 7A and B = rA. Identifying these amplitudes (Fig. 8.1b) with the AO
wavefunction coefficients in (8.3), we obtain

(8.10)

e +re ™ n— -0
Cn = .
re™, n — 00,
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a,
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0 1 2 n

Fig. 8.2: Model of molecular switch embedded in a linear monatomic chain.

where we have normalized the incident wave by setting A = 1, and replaced the

plane waves with crystal Bloch waves by setting § = ka and z = na.

Restricting the scattering potential to a region near the origin, i.e., (I|V |m) =0
when either |[[ > N or |m| > N for some finite N, we apply (8.2) to (8.7) as

n — —oo, whereby

iné T i(I-n)é
Ca — € +§_2ﬁsinae (U V ) em. (8.11)

Comparing (8.11) to (8.10), we find the reflection coefficient to be
3" e (1| V [m) cm. (8.12)
lm

208 sin 6

T =

Similarly, taking n — oo in (8.7) yields

3 t i(n—
c,,-—)e"a-i-zéme( D8 (1| V [m) cm, (8.13)
Im

which, via (8.10), leads to the transmission coefficient,

i

_ —il8
r=1+ Mge (1| V Im) em. (8.14)

20s

We model a molecular switch by parameterizing the bond and site energies of

the atom at the origin [1, 3] using the perturbation potential (Fig. 8.2)
V = (a, —a)|0) (0] + (p — B) [I=1) (0] +[0) (—1I] + (o' = B) [10) (1] + 1) (0]

= B{2z,[0) (0| + (¢ — 1) [[-1) (O] + [0) (~1[] + (o — 1) [0} (1 + [1) (0[]},
(8.15)
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where 0 = p/f,y = p'/p and

(8.16)

Applying (8.15) to (8.14) yields

t

r =1+ oo d {ecrlo-1)+ [e"“(ay —1)+2z, +¥(a - 1)] + a1(oy — 1)}
=1l+c 1A+ ¢ [e"aA +B+ e'“C] + ¢ C, (8.17)
where
_i(e—-1) _ 1z, _i(oy—1)
= 2me e P me ©T 2o (8:18)

To solve (8.17), we need the three coefficients c_;, ¢o and c¢;, which we obtain
by returning to (8.7) with (8.15) and (8.2). Setting n = —1, we find

ca=e Y tc 1At [A +e%B+ emC] +¢,e¥C. (8.19)
For n = 0, we obtain
co=1+c1A+c[e®A+ B+€e°C| +cC, (8.20)
while n = 1 yields
a=e%+c1e%A+c [ePA+ B +C]+ac’C. (8.21)

Combining (8.19), (8.20) and (8.21) into a matrix equation, we have

e?A—-1 A+e®B+eC eC c-1 e~
A e?A+ B +e9C -1 C o |=-1 1|, (822
e®A e¥A+e®B4+C  C -1 a e

which yields solutions

(26 +1+ ) C* + (—26° +2%)C + (1 - ) B —1
e [(e*® — 1) C* —26¥C + (e — 1) A* — 2¢°A + 1 - B]

,(8.23)

C =
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_ (eiza-l)A-e“ (8.24)
G = o0 [(eiza_l) C2_2eiOC+(ei20_1) A2—2e‘9A+1—B]’ :

_ [(€% = 1) C —¥] [(6¥ — 1) A — €] (5.25)
=@ [(e% ~1)C?* —2e¥C + (e — 1) A —2¢°A+1 - B] ]
which we insert back into (8.17) to obtain
~ [(~2+e ™+ ) A+e™® | C+ (—e® +e®) A+ 1
T (¥ -1)C* - 2e7C + (¥ - 1) A*—2e¥A+1~-B

_ 1 —4ACsin®8 — 2¢(A 4 C)sin 8
e [2i(A’+C?)sinfd —2(A+C)]+1-B

_ (7)(oy)
{2z, + (cos 8 + isinf) [(6 ~1)* + (oy — 1)* + 2(0 — 1) + 2(0y — )]}
tt 2 sin 0
_ (o)ew)
1+ Z_stn_ﬂ {Zz. +2cos# [-;-a'z(y2 +1) - 1] } + %a’z(y2 +1)-1
_ (a)(oy)
- AT (8.26)

v1- X2
where we have defined w = o4/(1 + y?)/2.

The transmission probability is extracted via

4 1
X)=|r*= .
T(X) = || (y+l)21+[z'+x(wz—1)]z’ (8.27)
y w(1l - X?)

which is the same result obtained via the transfer-matrix method [1, 3]. Implement-
ing Azbel’s energy-independent technique [108, 109], we integrate (8.27) over the
energy band, but weighted by the energy-derivative of the Fermi-Dirac distribution,

viz.,
1

F(E, B, T) = EEN D 11

(8.28)
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where T is the absolute temperature and ks is Boltzmann’s constant. Introducing
the dimensionless reduced temperature, { = kyT'/f, the derivative of (8.28) is

of 1 1
_— = . = = - . (8.29)
oE 2 [ (B — Ey) 2 [(X "X!)]
4kyT cosh T 44( cosh ¢
Thus, the effective-transmission probaebility is given by
ta= | T(E) (-;—E f(E, E,,T)) dE = / T((’;)_ o dX:
. bands band 4 cosh? [ 5 I
(8.30)

We shall consider the temperature independent limit { — 0, where (8.29) becomes

a Dirac d-function centered at the Fermi energy. Hence, (8.30) becomes

ter = T(X;). (8.31)

8.2 Embedding Field-Enhanced Regions

Instead of limiting the perturbation region to a single atom, we now consider re-
placing it with a finite chain from n = 0 to n = N, with site (bond) energies o’
(8'), which is attached to the crystal with bond energies 4. The application of
an applied field of gradient I, restricted to this portion of the chain, introduces a
potential difference, ¢ = NT', between the site energies of the crystal leads on either
side of the field region.

As in the chemisorption case, we must ensure that the field strength is such as
to avoid ionization of the crystal. Again, we require the restraint |NT'/(28')| < 2,
which allows at least one state to remain delocalized across the field region. In

fact, for ideal transmission to be possible through the crystal, a state must remain
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delocalized across the entire system. In particular, we must have an overlap between

the allowed energy bands in the crystal leads, whence, [¢| < 4|8|.

We define the energy in the right lead by

_E-a—-9¢ _
===

where U = ¢/(28), and effective wavenumber w via

X' X-U, (8.32)

X' = cosw. (8.33)

The overlap between bands is, therefore, U —1 < X < 1.

Since we set the reduced-field strength relative to 3, the argument of the BF's

now becomes
x=—-n/F =-nN/U, (8.34)
where n = 8'/8.

To use the LS equation, we consider the unperturbed system to consist of three
isolated pieces, the left semi-infinite crystal lead, the finite field-modified region, and
the right semi-infinite lead. A right-moving Bloch wave is introduced at n = —oco.
Since the energy references in the two crystal leads are different, we must be careful

with the normalization of the Bloch waves. The required condition is that the local

probability current must be constant throughout the chain.

Following Caroli et al. [110], we define the probability-current operator to be
proportional to the projected difference between adjacent sites, namely,

Ja=J[ln+1)(n| - |n) (n +1]], (8.35)
which has the expectation value

($lJalh) = J (ch116n — CrCnt) - (8.36)
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An incoming Bloch wave, ¢, = ae’™, in the left lead will have a probability current
Jns-co = Ja* (6™ — €®) = —2iJa?sin ¥, (8.37)
while for an outgoing wave, ¢, = be™, in the right lead
Jpsoo = JB? (e""" - e‘”) = ~2iJbsinw. (8.38)
Requiring (8.37) and (8.38) to be equal leads to the energy-independent solution in

which
1 1

a= , b= . 8.39
sin 8 Vsinw ( )
Thus, (8.10) can be rewritten as
£inf e, e—inf .
’ —o0,
e = stg}ng Vsin 6 (8.40)
T , n — co.
sin w

We now turn to the LS equation to obtain ¢? for the semi-infinite chains from

the infinite system by breaking the bond between n = —1 and = = 0, i.e., we

introduce
V=-8[-1)(0] +[0) (—1[], (8-41)
which gives
ind
& = ~ G (n, —1)c2 ~ BGoo(n,0)c,. (8.42)
sin d
Therefore, we find
1 e’ 1
0 _ 0 o
©= Jang T 2iem6° T Zismoo
S = e~ + 1 + e’ 0 8.43)
-t sin@ 2isinf ° 2isind v (8

Rewriting these as
e +c%, = -2iVsiné,
¢y +e~¥c, = —2ivsinfe™, (8.44)
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we find solutions

&=0 &, =-2iVsn, (8.45)
whereby, (8.42) yields,
o el _ Gilnlé _ 2is;:0, n < -1, (8.46)
"7 Venf 0, n2>0. ‘

The GF's for the crystal leads are determined by cleaving the infinite chain with
the potential

V= —g8[-1) (0 + {0) (1| + [N) (N + 1| + [N + 1) (N]]. (8.47)
With the aid of (3.8), the GFs for the semi-infinite chains are given by

G%(n,m) = Gu(n,m) — BGu(n,—1)G*(0,m) — BGo(n,0)G’(—1,m)
—BG(n, N)G°(N +1,m) — BGo(n, N +1)G*(N,m). (8.48)

In the left lead, where the energy is X = cos 8, we consider n,m < —1 and note
that G° is zero whenever one of the indices is outside the lead. Hence, we have
eln-mié iinlé

_ O
2fmd T aemgC Ch™b (8.49)

G’(n~,m") =

which we use to obtain

glm+1lé %
G(-1,m) = ~2%Bsn6 2ramgC ("Lim)- (8.50)
Solving (8.50) gives
G*(—1,m) = B tefim+118c¥, (8.51)

which in (8.49) results in

esln[& et|m+1|0 e:o _ et[n—mlo

G’(n~,m™) = i3 emnd . (8.52)
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In particular, on setting m = —1, we have
—inf 8 _ ~i(n+1)6

- =2 — B-1,—inf .
G%(n~,-1) TR, B e, (8.53)

Likewise, the right-crystal lead will have X’ = cosw, so, for n,m > N + 1, we
see that

e[n—m[w elln—N 1%

G(nt,m*) = G°(N +1,m), (8.54)

T 2ifsinw | 2isinw
where again any element of G° with an index outside the lead is zero. Setting

n =N +1, (8.54) becomes

jm—N—1[w T

e €

2t(sin w + 2z sin w

G'(N +1,m) =~ G°(N +1,m), (8.55)

which leads to
G°(N 4 1,m) = glefim-N-lveiw, (8.56)

On inserting (8.56) in (8.54), we arrive at

etln—N Jw e;[m—»N —1w e — et]n—m[u

+ ) =
G'(n*,m*) = T : (8.57)
which for m = N + 1 becomes
i(n—N)w _jw _ _i(n—N-1l)w .
Go(n*, N +1) = S e —¢ = flefn=Nw (8.58)

2i3sinw
Having the required components for the crystal leads, we attach them to the
finite region, which we describe through its Greenian Goy, by using the potential

V=4{-1) (0] +i0) (-1], (8.59)

and the unperturbed GF's,

G_1-(n,m), n,m < -1,
Gon(n, m), 0<n,m<N,

G°(n,m) = {
Gvy+(n,m), n,m > N +1,

(8.60)

0, otherwise.
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The LS equation in the left lead, n < —1, is therefore

en- = 2 +8G%(n, —1)co
2i sin nb
Vsin 4
where A = §/8 which, in particular, provides

+ Ae ™,

c-1 = —2iVsin 8 + Ae*c,.
In the field-modified region, the LS equation (8.7) gives
co = dGon(0,0)c_1 + dGon(0, N)en 41,

and

CN = JGON(N, O)C_l + JGoN(N, N)CN.H_.

In the right lead, m > N + 1, we have
em = 8G%(m, N + 1)ey = Aefltm—Nwe,
which at m = N + 1 produces

CN4+1 = /\e'wCN.
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(8.61)

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

The transmission coefficient is obtained from (8.65) by equating it to (8.40), which

leads to

T = AMWsinwe Nvcy.

Inserting (8.63) in (8.62), we obtain the implicit equation

o1 = —2iVsin 8 + A?e®BGon(0,0)c_1 + A’e®BGon(0, N)ex 1,

which yields the solution

—2iv5in 0 + A2e®BGon (0, N)enss

C-1

1 — A2e¥BGon(0,0)

(8.67)

(8.68)

(8.69)
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Using (8.69) and (8.66) in (8.64) leads to
—2iV/sin ABGon(N,0)
1 — A%e¥8Gon(0,0)
[AsewﬂGDN(Oy N)ﬁGON(Nr 0)
1 — A%e¥BGon(0,0)

which is again implicitly defined, so that we may write

CN =

+ ABGon(N, N)] Aeey,  (8.70)

_ =2iVsinAABGon(N, 0)
o = D@.%) , (8.71)
where
D(8,w) = [1 — A*BGon(0,0)e”] [1 — N*BGon (N, N)e™]
— M+ 8Gon(0, N)BGon(N, 0). (8.72)
Thus. the transmission coefficient (8.67) becomes,
~2iV/sin § sin A2 AGon (N, 0)e~ N
T = , (8.73)
D(6,w)
whence, the transmission probability is
_ 2 _ 4sin@sinw*|BGon(N,0)
L % (874
In terms of the reduced energy, (6.5), (8.32) and (8.33)show that
4 — X2\(1 — 2 2
I — it = VA= = (X + 0P)|6Gan(H,0) 6.15)

[DEX)P |
where
D(X) = [1—X*AGon(0,0)(X +ivI=X7)|

x [L= X8Gon(N, N)(X + U +iy/T= (X O]

= M(X +iV1 - X)X + U +iy/1 = (X + U)?)BGon(0, N)BGox(N, 0).
(8.76)
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T(X)
1 y ~
U an
U = 1.2?’ \
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t !
] !
U 7= 1.5
i
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:
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:
5 X
-0.5 0 0.5 1 1.5

Fig. 8.3: Band overlap regions for indicated potential differences.

It now remains only to determine the GF elements of the field-modified region.

Since we have altered the bond and site energies in the finite region, we must
renormalize our parameters according to 8 — 3’ = 7. In particular,
X~z
n

is now the effective energy parameter inside the field region. Along with z — x as

X — (8.77)

defined in (8.34), equation (8.77) requires v — i, where

X-—z N(X-2)

p=x——= 7 (8.78)

With these conversions in mind, we modify the results of § 5.2 to obtain the required

GF elements of the finite chain.

Next, we consider the parameter effects on the transmission probability (8.75).
If the field-modified region material is the same as the leads, ramping the potential
difference, U, narrows the band-overlap region (Fig. 8.3). If we choose U = 1,
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Fig. 8.4: Transmission probability of embedded field-states in (X, A) space with
U =1 for a) identical material, z = 0, n = 1, b) different material, z = —0.25,
7 = 0.75.

the overlap region’s width is half that of the conduction bands, so that N/2 of
the discrete states are embedded in the overlap region. Varying the interface bond
strength, A, we see that as it increases, the separation between the states spreads,
while the states themselves broaden and increase in intensity until full transmission
occurs at A = 1, after which they become narrower and drop in intensity, while

continuing to separate (Fig. 8.4a).

Moving on, we consider altering the material in the field-modified region. Ad-
Jjusting z will rigidly shift the embedded field-states behind the overlap window.
Changing n modifies the band-width of the field region. Forn = 0.75 and z = —0.25
(Fig. 8.4b), we see that the states are shifted downward, leaving little transmission
at the higher energies. The separation between field-states is narrowed and the
states themselves are reduced for low interface bond energies, but sharpened for

A> 1.
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8.3 Field Effect on Molecular Switching
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In this section, we wish to investigate the possibility of securing control of the

transmission probability by means of a single-site impurity inside the field-modified

region. Since (8.75) and (8.76) require only the GF's involving the end sites for the

region, here we only need to construct a finite chain with an embedded impurity in
a linear potential. To do this, we attach finite chains to either side of the impurity

located at site M. Thus, the unperturbed GF is in three parts, i.e.,

(
Gou-1(n,m), 0<nm<M-1,

Gum(M,M), n=m=M,

G%(n,m) = ¢
GM+1,N(n1m)1 M+1 <n,m < N:

{ 0, otherwise,

which we attach via the potential

V = p (1M — 1) (M| + |M) (M — 1]) + ¢ (M) (M +1] + M + 1) (M]).

Using the Dyson equation (3.8), we have
Gon(0,0) = G°(0,0) + pG°(0, M — 1)Gon(M, 0),
which requires us to find
Gon(M,0) = Gon(0, M) = pG°(0, M — 1)Gon(M, M).
The on-site GF at the impurity is given by
Gon(M, M) = G (M, M) [1 + pGon(M — 1, M) + p'Gon(M + 1, M)]

which uses

Gon(M — 1, M) = pG°(M — 1, M ~ 1)Gon(M, M),

(8.79)

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)
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and
Gon(M + 1, M) = p'G*(M + 1, M + 1)Gon (M, M). (8.85)
Inserting (8.84) and (8.85) into (8.83) generates the implicit equation

Gon(M, M) = G°(M, M)
+ [P’G°(M — 1, M - 1) +(p')’G°(M + 1, M +1)] Gon(M, M),

(8.86)
which, on rearranging, gives
_ G°(M, M)
Gon(M, M) = 1-[p*G(M ~1,M - 1) + (¢')’G* (M + 1, M + 1))
1
T M M) T - [PCM-LM -1+ (P M+, M+1)]
(8.87)

Returning to (8.81) and using (8.87), we obtain

Gon(0,0) = G°(0,0)
N p*G°(0, M —1)?
GO(M, M) - [p°C° (M — LM —1) + (¢')’GC(M + LM +1)]

(8.88)
Similarly, we have
Gon(N,N) = G°(N,N) + p'G°(N, M + 1)Gon(M, N), (8.89)
and
Gon(M, N) = Gon(N, M) = p'G°(N, M +1)Gon(M, M), (8.90)

which, by (8.87), yields

GON(N';N) = GO(N,N)
+ (p’)zGﬂ(N, M+ 1)z
G (M, M) - [p°G°(M —1,M — 1) + (p')*G* (M + 1, M +1)]
(8.91)
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T(IX 1)

b)

Fig. 8.5: Field effects on switching parameters for indicated values of the potential

difference, a) y = 0.5 and z, variable, b) 2, = 0.25 and y variable.

The cross-terms involving the end sites are generated by

Gon(0, N) = Gon(N,0) = pG°(0, M — 1)Gon(M, N)
_ pp'G°(0, M — 1)G*(N, M +1)
T G(M M) - [pPPCO(M -1, M 1) + ()G (M +1,M +1)]
(8.92)

Finally, we use the parameters of the impurity (8.15) at site M to show that
G*'(M,M)™! =28(X — z, - MF). (8.93)
Along with the modified results of § 5.2, (8.93) allows us to obtain the GF elements

to insert into (8.75).

Employing (8.31), we choose z, and y as the candidate parameters for describing
the space over which we wish to control the impurity [1, 3]. We take the system
shown in Fig. 8.4b with A = 0.75. Taking X; = 0.25 and o = 0.8, we first set
y = 0.5 and consider the effect of ramping the field on the z, curve (Fig. 8.5a). As
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U is increased, the transmission peak increases in height to a resonance at U = 0.25

before decreasing again.

Turning to the case of z, = X; = 0.25, we treat y as the switching parameter
(Fig. 8.5b). Here, the peak transmission probability is increased both in height and
y location, as U is increased, doubling from U =0to U = 1.



Chapter 9

Conclusion

9.1 Results and Discussion

There has been considerable debate over the modeling of electrified solids. While
numerical computation has gone far in resolving these controversies, we have been
able to provide a greater understanding of the phenomenon by developing a rigorous
analytical GF method to describe the application of a constant field to 1-D crystal

TB models, resulting in exact solutions involving combinations of BF's.

Access to the finite, semi-infinite and infinite chains has generated insight into
the mechanisms by which characteristic energy-spectra properties appear as we
traverse from one type to another. We have also seen how the zero-field properties

arise from those of a large field by passing through intermediate results.

The breadth of application for this method has only been touched upon by
the investigations chosen here. The discretization of the energy band has major
implications in the definition and location of surface states, due to the absence of

traditional existence conditions, but, at the same time, introduces surface resonance
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phenomenon.

In looking at field-enhanced chemisorption, we have found that electrifying the
substrate may enhance the chemisorption process through the creation of magnetic

solutions, or weaken it, depending on the properties of the material.

In ME, we have been able to embed a field-enhanced region into a conducting
material and model the transmission properties through the system using a LS
approach. The transmission probability can be manipulated through the control of

the single impurity-site parameters, thereby producing a molecular switch.

In all three areas, the ability to include field-modified regions will expand the

types of problems accessible to researchers.

9.2 Future Directions

The application of this method is restricted only by meeting the hypotheses of Pin-
cherle’s theorem, which allows us to consider more general systems than the simple
models we have used here. The introduction of alternating bonds gives rise to a
model for semiconductors, allowing the field to perturb the bond energies gives rise
to hypergeometric function solutions instead of BFs [45].

In the surface states and chemisorption treatments, screening effects have been
neglected. The reaction of the electron gas to the applied field will alter the elec-
tronic configuration.

The next step in developing a working ME circuit is to design atomic-level
analogs to other macroscopic electronic devices, e.g., resistors, capacitors, inductors.

The electronic properties of molecular capacitors can be investigated by embed-

ding a short chain of dielectric material in an polymeric molecular wire. The static
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electronic structure can be obtained from the application of our GF approach. To
properly analyze capacitance, however, we must consider the charge build-up and

relaxation time dependence of the material.

By considering molecules based on a stacked benzene-ring structure embedded
in a polymeric chain, a conceptual model for inductors can be developed. When
current flows though this system, energy should be stored through the creation of
an applied field. To obtain the static electronic structure of such a chain under the
influence of an applied field will require the present Green function approach to be
implemented beyond one-dimension. The extension to two dimensions of Pendry’s
causal-surface GF method [91] suggests the direction that such a generalization
should take.

Once the conceptual models for these ME devices have been analyzed, the elec-
tronic structure of candidate designs can be investigated via scanning tunneling
microscopy. Results from such experiments will provide valuable information on

improvements to the theoretical models.



Appendix A

Rydberg Atomic Units

The one-dimensional time-independent Schrodinger equation is given by
h? 5%%(x)
2m  gx®

where ¥(x) is the wavefunction for a particle of mass m, charge ¢ and energy E

affected by a potential V(x).

+ qV(x)¥(x) = E¥(x) (A1)

Often, as in the case of this thesis, the particle we are describing is an elec-
tron, which has a rest mass m = m. & 9.10956 x 10~2%g and a charge ¢ = —e =
—4.80325x 10 %esu. In CGS units, where the permittivity of free space of is not re-
quired to determine the electrostatic field equations, we combine these characteristic
electron values with Planck’s constant, i = h/(2x) &~ 1.05459 x 10~*"erg s, to obtain
a relative length scale based on the Bohr radius ry = k?/(me?) =~ 5.29177 x 10~°cm,
and a relative energy scale based on the Rydberg constant R., = m.e*/2h? =~
2.17991 x 10~ Yerg.

If we convert our length scale to multiples of the Bohr radius,

ﬁz
X = zag = m.,ezt (A.2)
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then, switching to the dimensionless length variable via ¥(z) = /a¥(aoz) =
v/30¥(x), we have

B B PUx) (dz\' B PyY(z)me
2m. 93 = 2m, 8z \dx) = 2m./Ja, 9z* K
4 FY(z)
- ) Al
2k*\/ag Oz® (4-3)
Converting our energy terms to multiples of Rydbergs,
E~ER.="™p (A.4)
- L '
and
V(x) = V(aoz) = --E—V(z)Rm = "“e ° Vi), (A.5)

(A.1) becomes

m.et *Y(z)

2h'a; o + 25: ‘/— V(z)$(z) = 3 \/_.E#J(z) (A.6)
or, rewriting, )
%izﬂ +{E ~ V(z)l¥(z) =0, (A.7)

where all the variables are now dimensionless, lengths normalized to the Bohr ra-
dius, and energies normalized to Rydbergs.
Turning to the application of a constant applied field, €, the electric potential
is given by
P(x) = —ex. (A.8)
To obtain the potential in Rydberg atomic units, the application of (A.5) to (A.8)
yields

—ex = —£2aq = -§¢(z)R,,, (A.9)
so that
#(z) = —q;zE:’z = 7z, (A.10)

which defines the field gradient, .



Appendix B

Creation and Annihilation

Operators

In a collection of Fermi particles, each state, n, can either be empty or occupied,
i.e.. N, € {0,1} is the number of particles in the state n. If we order the states,
the total wavefunction can be labeled by the state occupancy [98],

INy, Nay..., N, ..} (B.1)

We wish to introduce creation operators, C! , with the properties that, if N, =0,
operation will yield the wavefunction with N, = 1 and, if N, = 1, operation gives

zero, since we cannot create a particle in an occupied state. Hence,
Cl|Ny,Nay...y Ny, .oy = (=1)"(1 = Np) [Ny, Nz, ...,1 = N,,...), (B.2)

where the sign is determined by the number of occupied states below n, viz.,

n-1

Yo=Y Nn, (B.3)
m=1
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due to the necessity of requiring Fermi wavefunctions to be antisymmetric.

The conjugate operator, G,, is the annihilation operator, producing a wavefunc-

tion missing a particle in the n'® state, if there was one, or zero, if not.

Cn le,Nz,---me--—) = (‘U""anNth,---,l - Nn7-~'>1 (B'4)

From (B.2) and (B.4), we can construct the number operator for the n'® state,
N, =C'C,, (B.5)
which returns the eigenvalue at state n,

Nﬂllesz--’any-") =N: |N1yN2"°-7Nn’-'") = Nn lNIQNza--'eru'--)v
(B.6)
since N, is either 0 or 1. Note that (B.6) is an eigenvalue equation. Since the N,

operator has only two possible eigenvalues, we can represent it as a 2 x 2 matrix,

Nn=[00], (B.7)
01

with the eigenvectors

|0}, = [Ny, Nay...,0,...) = [ ; ] , 1), =Ny, N,..., 1. ) = (1)
(B.8)
Hence, (B.2) becomes
Crft lo)n = (—l)y" |1)n ' q I]')n = 0? (B'g)

so that

ct = (~1y [‘1’ g] (B.10)
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Thus, we must have

01
G =(-)™ [ ] ; (B-11)
00

which does indeed have the required properties,
G 10), =0, GI1),=(-1)"]0),. (B.12)

We now have enough information to derive the anticommutation rules for the cre-
ation and annihilation operators.
First, we consider operation on a single state. The four relevant equations are
CaCllees\Nuyee) = (L= Na) |-, Ny Y,
CLCaloee s Nusee) = Naloooy Nay.. ),
CaCa v Noyorl) = No(L= Np) |-y Ny ) =0,
C.CLl---  Na,..) = 0. (B.13)

From which we assemble the anticommutators,

{Cm C'l} = {CIN q} =0, {qvcl} =L (B.14)

Next, we consider two states, m < n. We have,

CnCal---y Ny oy Npy o) = (1) NG |- .., Ny ..., 1 = N, . )

= (=1)**"N,Np|...,1 =Np,...,1 = N,,...),
CiCnl---, Ny, Ny .. ) = (<1)" NG |...,1 = Ny ..., Ny, . )

= (—-1)"’“*""“N,,.N,.[...,1.-N,,.,...,l ~N,,...), (B.15)

since the operation of G, first reduces v, by 1, but C, leaves v,, unchanged, hence,

{Cn,Ca} =0. (B.16)
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Similarly,

CtLC ..., Npyeo oy Ny oy = (1)1 - N)C ... ,Nipy ..., 1 = N, L)
= (-1)""(1 - N)(1 = Nm)|...,1 = Nmy ..., 1 = Ny, ),
ChCh 1 Nomyoo o Ny ) = (=1)™(1 = N )CL [y 1 = Ny, N, )
= (=1)** "Y1 = Nu)(1 = No} |-y 1= Npyoo oy 1 = Ny, L),
(B.17)

whence,
{C.,Ct} =0, m<n (B.18)
Finally,
CLCal-e-y Ny ooy Npy oo ) = (=1)*N,Ct |..., Ny ..., 1 = N, .. )
= (=1)"**"N,(1 = Na)}|-..,1 = Np,...,1 = N,...),
CClL | . Ny oy Ny ) = (1) (1 = Np)Cl |- .., 1 = Ny Ny )
= (=1)**=Y1 = Np)N,|...,1 = Npm,...,1 = N,,...), (B.19)

leads to

{Ct.,C.} =0, m<n. (B.20)

Choosing m > n in (B.15) through (B.20) yields the same results. Thus, we have
{Gn, G} ={Crtnaq}=01 {Q,Q}:Jmn, (B.21)

for any m,n.



Appendix C

Summing Series of Matrices

The series form for the elements of the Greenian Gy, given in (3.34) can be written

as

Gn+1(3,7) = GN (4, 57)

+ Y. D" Gnl(i,a) {ha + [hghlas + [hghghles + - -} Gy (b, 5), (C.1)
ae{l,m} be(l,m}

where the bond between mesh sites | and m have been added at the (N + 1)*

iteration.

We wish to consider the summation of the ab elements of products of the h and
g matrices given by (3.33). Since matrix addition is linear, the sum of ab elements

is the ab element of the sum of the matrices, i.e.,
has + [hghl,, + [hghghl,, + -+ = [h + hgh + hghgh +--1],,,  (C.2)

which reduces the problem to considering the matrix series.

Let us define the N* partial sum to be the matrix Sy, and then multiply on
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the right by gk,

N
Sn = h+hgh+hghgh+---+hngh,

i=1
N N+1 '
Sngh =  hgh+ hghgh+---+h][gh +h [] 9h. (C.3)
i=1 =1
The difference between these two equation is simply
N+1
Sn(1 —gh) =h—h ][] gh. (C.4)
i=1

To proceed, we must address the final term in (C.4). We require |det(gh)] < 1in
order for the right-hand side to remain finite as N — co. When this condition is
satisfied, the product converges to 0 so, by multiplying on the right by (1 — gh)™?,
we find that, in the limit N — oo, the series converges to

Sew=h(1—gh)™t =[(1—gh)h™] " =[A1—g]". (C.5)
Hence, the ab element of this result is exactly what appears in (3.34),

[t — 9], = [Seolas = [k + hgh + hghgh + -], . (C.6)

Returning to the condition for convergence, we use (3.33) to expand the deter-

minant into the CF and Hamiltonian elements,

det Gn(l,l) Gy(l,m) 0 H.
ij(m, l) GN(m, m) ng 0
det [ GN(ma I)Hlm GN(lv l)Hml ]

GN(m) m)Hlm GN(’? m)mm
= |Gy (m, ) HimGn (1, m) Him — Gn(l, ) Hyu G (m, m) Him| (C.7)

1 > [det(gh)| =
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Since there will be cases where one.of the mesh-sites being linked is not already
part of the cluster, i.e., Gy(m,l) = Gn(l,m) = 0, the condition in (C.7) includes
the limitation that

IGN([, ) HuGn(m,m)H,| < 1 (C.8)

for convergence of the geometric series.



Appendix D

Matrix-Determinant Approach

The following derivation, based on communications with Dr. A.T. Amos, provides

an alternant derivation of the IF (3.50) for the surface GF element.

Using the LCAO wavefunctions as a basis, the subspace containing the connected
sites between M and n allow us to write the the Schrodinger equation, i.e., the
inverse of the Greenian Gp,, as an n + 1 -~ M,n + 1 — M tri-diagonal matriz,

namely,

M = G2, = EI— Hy,

E—apy B 0
B E—ayy B
0 B

- h . (D1
S (D.1)

B E-—an, I¢)
0 J¢) E-—a,,-

Thus, we need to invert M in order to obtain the Greenian, and so the GF elements

123



APPENDIX D. MATRIX-DETERMINANT APPROACH 124

.. —1)"* detMag . (i]7
Gueali ) = (M), = T SomnCll) (D2)

where the numerator is the i, 7 cofactor of Mp . In particular, for ¢ = j = n being

the last row and column, (D.2) becomes,

_ detMpgn(nin) _ detMprn-y
CMnlmm) = — Mo, detMg,, (D-3)

By artificially defining detMyrar—1 = 1 and detMys pr_2 = 0, the determinants can
be expanded along the n*® row to be

detMpr, = (E — ag)detMag,,—1 — ﬂzdetMM,,,_z, (D.4)

since the matrix is tri-diagonal.

Inserting (D.4) into (D.3), we obtain

G (n ) detMM'"_l 1
n n) = =
" (E ~ an)detMygps — FdetMutns  f_  FdetMan s
detMM.n_l
- (D.5)

" (E-aa) - BGuMailn—1Ln-1)
which reproduces the result in (3.50).



Appendix E

Crystal Orbital Surface States

The properties of an N-atom crystal can be extracted from those of the infinite,
periodic crystal which satisfies the Born-von-Karman boundary conditions (2.10).
Consider a cyclic crystal of N identical sites (Fig. E.1). We start with (6.2) and

note that the AO states are spatial translations of one another, i.e.,

m) = [ Iz} $(z —na) s, (E1)

where ¢(z) is the wavefunction of an isolated atom centered at =z = 0.

Because (6.5) is independent of the sign of 8, and since the periodicity of the
crystal makes the #-interval arbitrary, we need only consider the positive solution
at this time. Thus, the coefficients (6.3) become

cm = Ae™. (E.2)
Recalling the Bloch-Floquet condition (2.4),

(z+a|p)=e"(z|¥), (E.3)
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N
0 N+1
N-1 1
N-2
) .
. .
. .

Fig. E.1: Cyclic representation of 1-dimensional infinite chain satisfying Born-von-
Karman periodic boundary conditions. Breaking single bonds results in N-atom
finite chains with surfaces.
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and utilizing (6.2), (E.1) and (E.2) to expand both sides of (E.3), we have
Y en(z+aln) =Y e*cn(z|m)
3 A / (z+a|2) g’ —na)ds’ = T Actacme / (z | =) (' — ma) dz’
> e / §(z +a—z')p(z' —na)de’ = ) _ efttmd) / §(z — z')¢(z' — ma) dz’

m

D4z~ (n—1)a) = Y gz — ma). (E-4)
Putting m = n — 1, and reordering the second sum, we find
1 = ¢ika-9), (E.5)
so that
6 = ka, (E.6)

indicating that 8 is the effective wavenumber of the crystal wavefunction.

Applying the normalization condition to the wavefunction gives
1= (¢ [¢) =) A%e™™ (m|Ae™ [n) =) A%V5,,, (E.7)
n.m n,m

where we have used the orthonormality of the AO basis wavefunctions. This leads

to
N-1
E A =1, (E.8)
n=0

and so

A= N2 (E.9)

Thus, the wavefunction coeflicients (E.2) for the cyclic crystal are

Ca = N2, (E.10)
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Returning to the structure of the cyclic crystal, we eliminate the bond between
the N and N + 1 atoms (Fig. E.1), which produces a finite chain starting at site

n = 1 and ending at n = N. The recursion relation for the internal sites remains

as above,
(E_a)cn =ﬁ(cn+1 +cn-1)1 n =2133"-1N"' 17 (E.ll)

while the surface sites provide the boundary conditions
(E—~a)e=Pe;, (B~ a)en =Pen-, (E.12)

which breaks the previous cyclic periodicity. The site energies at the surfaces may
be modified, since the surface atoms are bonded to only a single neighbour atom
instead of two. To consider the effects of a single surface at n = 1, where we set
a; = o', we terminate the chain at n = N without modifying the site energy there,
which is equivalent to setting cy4; = 0.

Without periodicity, we need to consider both solutions to (6.4). Taking a linear

combination of the two, the general solution is given by
cn = ae™ + be™™ = A cosnb + Bsinnd. (E.13)

At n = N + 1, the second boundary shows that

_ ,cos(N +1)8
B=-An+ne (E.14)
so (E.13) becomes
_ ,sin(N+1-—n)d
= AN +1)0 (E.15)

In reduced notation, (E.12) takes the form

(2X - 2)e; =cp. (E.16)
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sin(N + 1)8/sin N8
¥ A 3 W 1 VR A
/
7 z
/
4 0
e bk L | SETppe P
N
n/N 2x/N 3n/N 2o

Fig. E.2: Solutions to z = sin(N + 1)§/sin N@, showing N intercepts for |z|.<
N/(N + 1) and N — 1 intercepts otherwise.

With the aid of (6.5) and (E.15), equation (E.16) leads to the eigenvalue equa-

tzon

__sin(N +1)8

~ sinNg
which defines the energy spectrum of the finite crystal.

(E.17)

Graphically, solutions to (E.17) are shown in Fig. E.2. A single solution for any
z occurs between consecutive roots of sin N8, except perhaps in the first and last
intervals, where both numerator and denominator become zero simultaneously at

6 = 0 and 8 = n. We use L’hdpital’s rule to evaluate (E.17) at these points,

sin(N + 1)6 _ (N +1)cos(N +1)8 _J 1+1/N, é8=0,
sin Na 6=0,% - NCOS N0 #=0x - -1~ I/N, 0 = .

(E.18)
Hence, solutions fail to exist in the first interval when z > 1 4+ 1/N and in the
last interval when z < —1 — 1/N. The disappearance of a single solution when



APPENDIX E. CRYSTAL ORBITAL SURFACE STATES 130

{z| > 1+ 1/N is related to the restriction placed on # in (6.5). The missing solution
defines a surface state, which lies outside the energy band of the unperturbed
crystal. Again, to access energies outside the band, we must allow 6 to become

complex. Inserting (6.18) into (6.5), we obtain
X = cos( cosh g — sin ( sinh 4, (E.19)
which must be real, so g # 0 requires
( = mn, m=01,..., (E.20)
or, without loss of generality, places 8 at either endpoint shown in Fig. E.2, i.e.,

0 =ip, 6 =x +1p. (E.21)

Taking the first of these choices, we find that (6.5) becomes
X =coshy, (E.22)

which is strictly above the energy band, and so defines a positive P-state. Since we

are only considering the surface at n = 1, we let N — oo in (E.18), whence,

1)\ e~ (3N+1)u +e*
= i — = o
z }1m (1 + N) =] e, (E.23)

which gives us the ezistence condition for a P-state, viz.,

z>1. (E.24)

Applying our choice of  to (E.15), we find that in the limit N — oo,

e~ (N+1-n)u _ (N+1-n)u e~ (BN+2=n)u _ -nu

e = N0 A e~ AR Ay =A™
(E.25)
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which exhibits exponential decay away from the surface, i.e., the wavefunction is
localized on the surface site, which we take as a defining property of a surface state.

Conversely, if we choose 8 = & + iu, (6.5) yields
X = —coshp, (E.26)

which is always below the band and indicates a negative N-state. The surface
perturbation parameter is again obtained from (E.18), namely,
~ lim (N + 1) cos(N + 1)wcosh(N + 1)u

2T e N cos Nxcosh Ny
( eN+1)u + e—(N+1)u)

. 1
= g (1 + :N?) S +e e
— (E-27)

which leads to the ezistence condition for an N-state,

z< -1 (E.28)

Likewise, the coefficients of the N-state are obtained from (E.15) in the limit
N — oo, with the result that

Cn = A(—1)"e™, (E.29)

which again shows an exponential decay away from the surface, but has an oscilla-

tory feature not present in the P-state case.

These last results have been obtained in the limit as N — co, which transforms
the finite chain into the semi-infinite one, described in § 4.3. In particular, the
energy spectrum becomes the continuous band —1 < X < 1, and it is with respect
to this continuum that the existence conditions (E.24) and (E.28) indicate the

presence of a discrete surface state.



Appendix F

Lippmann-Schwinger Equation

We derive the Lippmann-Schwinger (LS) equation following the procedure given
by Liboff [111]. First, we introduce the Heisenberg picture of Quantum Mechan-
ics, which is equivalent to the usual Schrodinger picture, the difference being that
Heisenberg placed the time evolution with the operators of the system instead of
the wavefunctions.
Subject to a time-independent Hamiltonian, H°, the Schrodinger wavefunction,
|¥(t)), develops via
[9(2)) = eI Ry ta)) (F-1)

so that on differentiating with respect to time, and multiplying by ik, (F.1) becomes
the Schrodinger equation

50 . ] ;
ihgg 19(0) = (8) (B ) T R i)y < B e (R2)
The Heisenberg picture makes use of the unitary operator applied in (F.1),
U = e it-ta)®/R (F.3)
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to transform the Schrodinger wavefunctions and operators. Even if the Hamiltonian
is time-dependent, i.e., (F.1) no longer holds, the Heisenberg wavefunction can be
obtained from the time-independent part of the Hamiltonian via

|®) = U~ [(t)) = /R [y (¢)) . (F.4)

Since the results of quantum mechanics must remain unaltered by the choice of

formalism, we use the operator expectation value

(A)s = (W) Al¥(2)) = (Y(ta)| UTAU [(t0)) = (¥(to)| A [¥(t0)) = (A)m,
(F.5)

to obtain a Heisenberg operator
A =U"AU, (F.6)

from the equivalent Schrédinger operator.

We now introduce the interaction picture perturbation technique. To HC, we

add a time-dependent perturbation, V(¢), with perturbation parameter A, i.e.,
H = H + AV(¢). (F.7)

Since the Hamiltonian is now time-dependent, so also are the Heisenberg wavefunc-

tions. Differentiating (F.4), we find

iﬁgt—[l]?(t)) = —HOei -t /R [y (1)) 4 gile—to)F "‘iﬁg; [ (¢))
= —HPEH-0)B /R [y (1)) 4 eit=t0) B IR |0p£))
= —HOe /R [y (4)) 4 TV /R (B0 4 AV(2)) |9(2))
= A tlBR IRy () =le-taB® [Rile—t)B0 1 4 4))

= AV(t) |E(2)). (F.8)
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Integrating (F.8) from ¢, to ¢ and rearranging, we find
w0 = 1¥(eo) + [ Vi) 19 ar, (F39)
which can be iterated to give a A-perturbation series solution
208 = 19(t0) + 5 190 [ Vir)ar

+ (f\,—i)zl'l'(to)) /c., ‘ L N()V(m)dndn+--.  (F10)

For the LS derivation, we begin with the unperturbed Hamiltonian, H°, and its

corresponding wavefunctions
H® ) = Eol|¢) - (F.11)

A scattering perturbation, V, is introduced via
H(t) = H° + Ve eltl/k (F.12)

where € — 0%, thus giving the desired perturbed Hamiltonian at ¢ = 0, and the
unperturbed Hamiltonian for ¢ = *oo. Since we shall be using (F.9), which gives
an exact A-solution, instead of approximating with the series expansion, we set

A=1
The scattering wavefunctions, which we wish to obtain, viz.,
[¥) = [$(0)) . (F.13)
are extracted from the time-dependent wavefunctions of (F.12), namely,
[(2)) = e |3(0)) . (F.14)

In the limit ¢ — 0, the £ = 0 solutions can be considered eigenstates of the total
Hamiltonian, i.e.,
H|¢) = Ely). (F.15)
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Transforming into the Heisenberg picture via (F.4) and (F.6), we consider ¢, —
+oo, where the Hamiltonian approaches the unperturbed one. Thus, at ¢ = ¢, =

+oc0, we make the connection
[(£o0)) = [4) - (F.16)
This choice of ¢ also allows us to set
[B(2)) = *F /A y(e)), (F.17)

whence,
[€(0)) = [(0)) = l¥) . (F.18)
Inserting (F.16) and (F.18) into (F.9), we obtain

W=+ [ Ve ) an, (F.19)

+o0
for our choices of A and ¢,. Using (F.6), (F.17), (F.14), (F.13) and (F.15), equation
(F.19) becomes the desired LS result, i.e.,

1 . i .
['p) _ I¢) + ;ﬁ/::) (etrﬂ’/ﬁve—clﬂlhe—tfﬂ'/ﬁ) ewn’/n I"p(f)) dr

1 o ir —e|r ~ 7]
= +5 ). e IRy g=elriihe=HIR 14(0)) dir
0

1 . .
—_ I¢)+E A exf!f'/ﬁve—el‘rllhe-rrE/ﬁ|¢) dr

1 . .
=+ /: eF T =BT 4rV 1)

1
= |¢) + mv )

= |¢) + G Vi), (F.20)

where G° is the Greenian for the unperturbed Hamiltonian.
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Maple Source Code

All plots were generated using the MAPLE V release 3 [112] symbolic computation

software.

G.1 Surface States

]

:=0.02;

=0;

:=1;

imdata si+2.in

= v

read ‘si+2.in‘;
Digits:=100:
gc(0):
J:=(n,x)->Bessell(n,x);
djd:=proc(n,x)
k:=0;
g:=0;
h:=0;
vhile g > -55 do
£:=2(-x"2/4) “k*Psi(n+k+1)/(k!*GAMMA (n+k+1)) ;

vV V. V V V V V V V V V V V vV
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k:=k+1;
h:=h+t;
g:= evalf(log10(abs(t/h)));
od;
j:=J(n,x)*1n(x/2)~(x/2) “n*h;
RETURN(j) ;
end:
dj:=(n,X,F)->djd(X/F-n-1,1/F);
dos:=(n,X,F)->evalt(2«F¢J(X/F-n,1/F)/dj(n,X,F));
den:=(n,X,F)~->J(X/F-n-1,1/F);
zero:=proc(site,a,b,field) global P,Start,M,H;
c:=b-a:
Start:=M:
H:=P:
bins:=cail(c/abs(field)):
for n from Start to bins do
A:=a+(n-1)+abs(field):
B:=a+n*abs(field):
da:=den(site,A,field):
db:=den(site,B,field):
if da*db <= 0 then
d:=(A+B)/2:
dd:=den(site,d,field):
while B-A>10"(-50) do
if daxdd <= 0 then

fi:

d:=(A+B)/2:

dd:=den(site,d,field):
od:
H:=[lop(H),[[d,0],[d,dos(site,d,field)]]]:
P:=H:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
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vV V V V V V V Vv Vv Vv

0
o

vV VV V VV V V V V V V V V V V V V V vV VvV

fi:
M:=n+1:
save M,P,‘si+2.in*;
print(n,bins);
od:

end:

zero(0,-2,2,F):

save H,‘si+2‘;

‘mdata si+2

quit;

Chemisorption

N:=100;
F:=0.0125;
2:=-2.96;

U:=4.23;

Eta:=2.46;
Left:=Z*(1+abs(F));
Right:=2.0;

FL:=61;

Fa:=0:
P:=[]:M:=1:T:=0:V:=]:
!mdata £+35.in

‘mdata £+35.in2

read ‘£+35.in°:

read ‘f+35.in2°:
Digits:=100:

build:=proc(first,last,field) local a,n;\
global G,Num,Den,DiffCrys,Diffid;

al[-2):=0:a[-1]:=1:
for n from 0 to last-first do

a[n] :=collect(2*(x-(last-n)*field)*a[n-1]-a[n-2].x):

od:
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Num:=a[last-tirst-1]:
Den:=a[last-first]:
G:=Num/Den:
DitfCrys:=ditf(a[last-first-2]/a[last-tirst-1],x):
DiffAd:=diff(a[last-first-1]/a[last-first],.x):
end:
build({i,N,F):
den:=(eta,site,X)->subs(x=X,Den):
dos:=(eta,X)->subs(x=X,1/(1-eta~2+DiffCrys/2)):
zero:=proc(eta,site,a,b,field) global H,M,P,Fa,Start;
c:=b-a:
Start:=M:
H:=P:
Factor:=Fa:
bins:=ceil(2"Factorsc/abs(field)):
print (Start,bins);
for n from Start to bins do
A:=a+(n-1)*abs(field) /2 Factor:
B:=a+n#*abs(field) /2 Factor:
da:=den(eta,site,A,field):
db:=den(eta,site,B,field):
if da*db <= 0 then
d:=(A+B)/2:
dd:=den(eta,site,d,field):
while B-A>10"(-50) do
if da®dd <= 0 then
B:=d:
else

da:=dd:
fi:
d:=(A+B)/2:
dd:=den(eta,site,d,field):
od:
H:=[op(H),[[d,0],[d,dos(eta,d)]]]:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
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V V.V V V V V V V V V V V V V V V V V V V V V V V V V V V V V VYV VY

P:=H:
fi:
M:=n+1:
save M,P,‘£+35.in°;
print(n);
od:
end:
if T = 0 then
zero(1,0,Left,Right ,F):
C:=H:
T:=1:V:=:
save T,C,V, ‘£+35.in2°¢;
M:=1:P:=[]:
save M,P, “f+35.in*;
fi;
Ek:=sum(C[k] [2][1] ,k=1..FL);

den:=(eta,site,X)->subs(x=X,2*(X-site)*Den-eta~2*Nunm) :

dos:=(eta,X)->subs(x=X,1/(1-eta"~2*DiffAd/2)):
occ:=proc(eta,site,coreng,a,b,field,fermi)\
global K,L,T,V,Start2,M,P,C;
Start2:=T:
K:=V:
for n from Start2 to 26 do
zero{eta,site+coreng*((n-1)/25),a,b,field):
K:=[op(K),[(n~1)/25,sum(B[k] [2] [2] ,k=1..fermi)]]:
V:=K:
T:=n+1:
save T,C,V,‘£+35.in2°¢;
M:=1:P:=[]:
save M,P,‘£+35.in°;
print (point=n);
od:
L:=0:
for n from 1 to 26 do
L:=[op(L), [X[27-n][2],k[27-n][1]]]:
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od:

end:

occ(Eta,Z,U,Left,Right ,F,FL):

cor:=proc() global kx,ky,Self;
kx:={seq(K[i] [1],i=1..26)]:
ky:=[seq(K[i]l[2],i=1..26)]:
nk:=x->subs (n=x,interp(kx,ky,n)):
Self:=fsolve(nk(x)-x=0,x=0..1):

end:

cor(1);

zero(Eta,Z+UsSelf ,Left,Right,F):

En:=sum(H[n] {2][1] ,n=1. .FL);

Delta:=2#(En-Ek) + H[FL+1]1[2][1] - Z - UsSelf~2;

Q:=2*Self-1;

save C,H,K,L,Self,Ek,En,Delta,q, ‘£+35°;

'mdata £+35

quit;

vV V V V V V V V V V V V V V V V V

G.3 Molecular Electronics

:=0.8:

:=0.5:

28:=0.25:

Digits:=100:
build:=proc(first,last,field,bond,site)\

local a,b,n,Numa,Numb,Dena,Denb; global GOO,GNN
,GON,GNO;

a[-2]):=0:a[-1]:=1:b[-2] :=0:b[~1]:=1:

V V V V V V V V V V V Vv VvV Vv
»
<
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VvV V. V V V V V V V V V V V V V VYV V V V V V V VYV V VV V V VYV VYVYV

for n from 0 to last-first do

a[n] :=collect(2+*((X-site)/bond-(last-n)*field)*a[n-1]-

a[n-2].X):

b[n] :=collect(2*((X-site) /bond-(first+n)*field)*b[n-1]-

b[n-2],X):

od:

Numa:=a[last-first-1]:

Numb:=b[last-first-1]:

Dena:=a[last-first]:

Denb:=b[last-first]:

GO0 :=Numa/Dena:

GNN :=Numb/Denb:

GON:=1/b[last-first]:

GNO:=1/a[last-first]:
end:
build(M+1,N,0/(N*w),v,2):
Gnn:=GNN :Gmn : =GON : Gmm : =G00 : Gnm : =GNO :
build(0,M-1,U/(N*w) ,w,2):
g00:=G00 :gOm :=GON : gmm : =GNN : gm0 : =GNO :
GO0 :=g00+s "~ 2*g0Om*gm0/ (2* (X-zs-M*U/N) ~ (s~ 2+gmm+
S~2%y~2+Gmm) ) :
GNN:=Gnn+s~2+y~2+*Gnm*Gmn/ (2+ (X-z5-M*U/N)-(5"2
sgmm+s ~2+y~2%Gmm) ) :
GON:=s5"2¢y*gmO+Gmn/ (2% (X-z8-M*U/N) - (s~ 2*gmm+s
“2%y~2+*Gmm)) :
GNO:=s"2%y*gm0*Gmn/ (2% (X-2s-M*U/N) - (s~ 2*gmm+s
~2%y~2«Gmm)) :
f:=X+Issqrt(1-X~2):
£1:=subs (X=X-U,f):
zet:=sqrt(1-X~2):
zetl:=subs(X=X~-U,zet):
DD:=(1-Y"2/ws£*G00)*(1-Y"2/usL1#GNN)-Y~4/u~2+Ls£1
*GON*GNO :
T:=2#sqrt(zet*zet1)*Y~2/w*GON/DD:
TT:=collect((abs(T))"2,X)# Heaviside (X-U+1)+Heavisid
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> e(1~X)):
> save TT, ‘y30°;
> quit;
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