
Green-Fundion Study of Electrified Solids 

Ryan Alexander English 

A t hesis 

presented to the University of Waterloo 

in fdîülment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Applied Mathematics 

Waterloo, Ontario, Canada, 1997 

@Ryan Alexander English 1997 



National Libraiy 
of Canada 

Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie S e d s  services bibliographiques 

The author has gcanted a non- 
exclusive licence ailowing the 
National Li'brary of Canada to 
reproduce, loan, distnilite or sell 
copies of Wher thesis by any means 
and in any form or format, making 

The author retains ownersbip of the 
copyright in bis/her thesis. Neither 
the thesis nor substantial extracts 
fiom it may be printed or othenivise 
reproduced with the author's 
permission. 

L'auteur a accord6 une licence non 
exclusive permettant a la 
Bibliothècpe naîionale du Canada & 
reproduire, prêter., distzibuer ou 
vendre des copies de sa thèse de 
cpelque d è r e  a sous quelque 
fomie qge ce soit pour mettre des 
exemplaires de cette thèse à la 
disposition des personnes intéressées. 

L'auteur conserve la propriété du 
droit d'auteur qui protège sa thèse. Ni 
h thèse ni des extraits substantiels de 
celleci ne doivent 6tre imprim6s ou 
autrement reproduits sans son 
autorisation, 



The University of Waterloo requires the signatures of al1 persons uskg or pho- 

tocopying this thesis. Please sign beloa, and give address and date. 



Abstract 

When a tight-binding chah of atoms is subjected to an elechic field, its elec- 

tronic energy spectnun takes on the form of the Wannier-Stark ladder. For such a 

system, successive use of the Dyson equation enables the recursive Green funetion 

to be derived analytically a9 a continaed fraction, which can be expressed as a ratio 

of Bessel hrnctions. The site representation of the Green fanction provides access 

to the local density of states. The versatility of this technique is illustrated via its 

application to infinite, semi-infinite and finite chains, as well as systems conshcted 

piecewise h m  these cornponents. Ln particular, the Wannier-Stark eifect on surface 

s t at es, hydrogen chemisorp tion on electrified substrat es and electron transmission 

of molecular suit ches are inves tigated. 
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Chapter 1 

Introduction 

1.1 Motivation 

The main objective of this thesis is the development of a mathematical mode1 for 

the description of charge transport along a polymer chain, i.e., a rnolecular wire,  

under the influence of an applied electric field Previous work [l, 2, 31 on electron 

transmission throngh an impurity embedded in a polymer, without an applied field, 

has begun to catalogue desirable properties for potentid molecular component s 

from which m o l e a h  electronic (ME) devices might be constrncted. 

Over the past 20 years, the transdisuplinary field of MES has emerged as an 

important area of research [4, 5, 6, 71. The hihue miniatukation of electronic 

devices will begin to be dominated by quantum size dects, which wil l  have seri- 

ous consequemes for the mietotechnology indnstry. Biotechn01ogy requires organic 

components, whose presence will not be rejected by living tissues, and which can in- 

t eract with nature's multitude of charge-transfer mechanisms. Cornputer architects 

are seeking to increase memory capacity by storing information in the geometries of 
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multistable moledes. The discovery of synthetic conducting polymers in the late 

1970's inspired researchers [8] to investigate possible solutions to these and other 

ME problems- 

The application of applied constant-field theory to ME mod& is not a straight- 

forward procedure. Though the description of a fiee electron Li a linear potential 

has been ad-estabfished, the application to electrons bound in an electrified solid 

has met with less success. First, the analytical work is iimïted on even the simplest 

system, i-e., the f i t e  one-dimensional aystal in the tight-binding (TB) approx- 

imation, with even t hese results sub ject to questions of applicability- Secondly, 

the mathematics developed have been fairly cumbersome to apply, leadhg inves- 

tigations to often rely heavily on nmmxical resdts to establish th& conclusions. 

Thus, to adiieve the desired resdts for ME, it has become necessary to develop 

new techniques in the theory of electrified solids. 

Since the previous mathematical details in the theory of electrified solids do not 

readily admit applications to many of the problems stndied in solid-state physics, 

the achievement of an elegant solution with which to analyze electrified solids will 

provide access to a broad range of investigations in the solid-state field. 

1.2 Thesis Outline 

Electrified solids have received much attention over the past 60 years, because some 

basic questions have taken a considerable amout of worL to be satisfaetorily an- 

swered. In particular, Wannier's 1960 prediction [9] that the enagy spectrum of an 

infinite aystal wodd be dlsmtized with the application of a constant field initially 

failed to receive conclusive experimental verification, which led to considerable de- 

bate and a wide assortment of different approaches to rigorously show either the 
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existence of either a Wannier-Stark kadder (WSL) or a continuum enetgy spectrum. 

The rest of this chapter is devoted to reviewing the extensive literatate on the stady 

of electrified solids. 

In chapter 2, ne re-derive the disaetization of the energy spectrum into the 

WSL for both infinite and finite linear erystals, under the influence of a constant 

field. 

Chapter 3 develops the required background in Green finetion (GF) theory and 

derives the components in t a s  of continued-fnrction (CF) notation for which we 

s h d  need to obtain solutions in order to describe the electronic structure of an 

electrified solid. The mathematics for solving these CFs, Pincherle's theorem, is 

presented in chapter 4, and the results applied to obtain a new analysis of electrified 

solids in chapter 5. 

In chapters 6 and 7, we explore the broad application of this new rnethod by 

deriving results for swface states and chemlporption, respectively, on electrined 

solids. 

One application of the theory to ME is presented in chapter 8, which leads into 

a description of possible future work asing this method. 

1.3 Literature Review 

Investigations into the quantum description of electrified solids began in earnest 

following Zener's [IO] work in 1934 on dielechic brealdown. Houston [Il] and 

Slater [12] began the investigation of aperiodic perturbations to Bloch wavefnnc- 

tions. Bdding on these results, James [13] examined the influence of a linear 

potential on an inh i te  crystal wing the effective mass approzimation (EU) and, 
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in 1949, predicted quantization of the energy spectmm into equalZy spaced levels- 

lndependently, Katsura et al. (141 came to the same condasion using a one-band 

TB approximation by noting that the wavefiuiction solutions for the infinite q s -  

ta1 had Bessel fnnetion coefficients, whose energy-dependent orda must be integer 

to satisfy normalizability conditions. This fist proof of the existence of the WSL 

came a decade before W;mnier's prediction [9] and h o  decades before Hacker and 

Obermair (151 rigorously established Wannier's resnlt. In addition, they predkted 

a symmetric deviation fkom the ezact WSL for finite crystalp. Feuer [16] extended 

the theory to a two-band TB model, finding that the tmcoupled bands generated a 

WSL with the spaeing perturbed by the interband coupling. 

Working in the crystd-momentam representation, derïved by Adams [17, 181, 

Wannier [19, 201 and Adams and Argy1es [21] began developing the wavefonctions 

as modified &om Bloch htnctions by the presence of the electric field. Adams [22] 

delved into the "physical" interpretation of energy bands and showed that the EMA 

solutions were valid only for electric fields mficiently weak as to satisfy an adiabatic 

condition. 

In his discussion on Zen- tannehg in semiconductors, Kane [23] was able to 

derive the WSL condition by solving the equation of motion in momentum space- 

In 1960, Wannier was able to combine the WSL result together with his field- 

rnodified wavefimctions, using translational properties of Bloch hiadions, to give 

an extensive description of the efEects on a crystal electron due to the application 

of a linear potential [9, 241. This basic derivation has been improved npon and 

extended by several authors, including Rees [25], Enderlein et d. [26], Henneberga 

and Rôseler [27] and Fiddicke and Enderlein [28]. 

Modifications to Wannier's theory were employed by Cdaway [29,30], W d a  

and Redkin [31] and Rauh and W&er [32] to provide a descripticn of optical 
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absorption, whereby the phenornenon codd be tested experimentally. The initial 

failure to obtain conclusive experirnentd v d c a t i o n  [33, 34, 351 of a discrete WS L 

energy spectrum fostered strong aiticism of Wannier's conclusions, led primarily by 

Zak [36, 37, 38, 391 and Rabinovitch [40, 411, who predicted instead a continuous 

energy spectrum under the influence of a constant applied field [42, 431. They 

argued that W;rnnier's derivation (see 5 2.1) applied only to the infinite crystal, as 

his translational operator technique must fail in the presence of end &ts for a 

finite chah, and that the arbitrariness of the initial eigenenergy selection dowed 

for an entire interval of energies to be chosen, which wodd generate the contirnous 

(-00. cn) energy spectrum. 

Hacker and Obermair [15] addressed this last issue and rigorously obtained the 

WSL result for an infinite crystal by translating Katsura et al-% (141 derivations 

into the language of creation and annihilation operators (see 5 2.1) and conduded 

that discreteness was a valid prediction for single-band models. Davison and his 

co-workers [44, 451 modified this approach to inchde bond perturbations, due to 

the preseace of the applied field, and overlap integrah to the TB mode1 and still 

retained a discrete energy spectram. 

Shockley [46] argued that, away from the ends of a finite crystal, the energy spec- 

tnun must approximate to the infinite case and hence form a quosi-WSL. Heinrichs 

and Jones [47] examined the finite crystal using perturbation theory and developed 

a self-consistent CF equation ( s e  5 2.2)' which admitted the ezact WSL only for 

the infinite case, but were numerically able to show that, well away fiom end ef- 

fects, the discrete spectmm wap well approximated by the WSL spacing. Stey and 

Gusman [48] were able to solve for the finite-chain energy speetnim analytically, 

by introducing Lommel polynomials, and showed that the quasi-WSL for the finite 

crystal asymptotically approached the exact WSL. Saitoh [49] and Fuknyama et 



al. [50] extended this work to provide bounds on when discreteness was ensared 

and when the Rabhovitch-Zak continuum app~oximation wodd hold. 

In Light of these more ngorous derivations, Rabinovitch [51] analyzed the meth- 

ods used in the literature and contended that: 

(i) The crys ta-momentum representation, while valid for finite crystals, was in- 

applicable to the infinite regime. 

(ü) That discrete levels were due to the finiteness of the aystal and not the 

applied field. 

(iü) The infinite crystal had a continuous energy spectrum. 

Avron et al. [52] furthered this view by claiming that the energy uncertainty is 

never smaller than the WSL spacing predicted by the one-band approximation, 

and then obtained an absolutely continuous spectmm [53] based on an N-band 

analysis, which produced an N interspaced one-band WSL, becoming continuous 

for N + oo. 

In pardel to the perturbative and TB approaches, Lukes and his ceworkers 

[54, 55, 561 developed a time-dependent method of calcdating the single-partide 

GF, in terms of the corresponding Feynman propagator [57], for a 6-potential in a 

uniform elechic field, which enabled exact expressions to be derived formally for 

the density of states (DOS) and energy levels of an electrified Dirac-delta comb po- 

tential. Moyer [58,59], in his GF treatment, invoked fist-order perturbation theory 

to describe the motion of an electron in an infinite, electrified Kronig-Penney (KP) 

lattice. Uniike previons work, the GF approach did not need to assume any ap- 

proximations in order to derive the WSL condition, as was show by Lukes and 

Ringwood [60] (see 2.3). 

In the light of the general applicability of the GF solution, and new experimentd 

evidence of the WSL d e c t  by Maekawa [61], Koss and Lambert [62] and May and 
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Vecht [63], Rabinovitch [64], Avron [65], and Zak [66], all conceded that a quasi- 

WSL did result , even in the multi-band dexïvation of the en- spectrum for h i t e  

crystals. Exact numerid solutions to the Schriidinger equation for the applied field 

were conducted by Sessa and Sitte [67], again verifying the WSL r e d t .  

With the WSL existence controversy resolved, another decade passed before 

there was renewed interest in the topic. Emin and Hart [68, 691 decomposed the 

Linear potential into its periodic eEect and (non-periodic) constant site shift , show- 
ing that it was only the latter that generated the WSL. 

Leo and MacKinnon [70] applied the TB model to a semiconductor supdattice 

in support of the experimental evidence obtained by Mendez et al. [71] and Voisin 

et al. [72] on such systems. Leavitt et al. [73, 741 and Ritze et  al. [75] expanded on 

both the experimental and theoretical model for GaAs/&Gal-,As superlattices. 

A perturbative investigation of WSLs in infinite diatomic crystals was under- 

taken by Zhao [76, 771, who found that, in the 2-band energy specmim, the WSLs 

were interspaced. For finite crystals, he also found that the interband matrix de- 

ments were non-zero (781. 

Optical absorption in electrified 6-doped semiconductors was examined by Ahn 

[79]. Solving the Schrtidinge. equation for a V-shaped quantum well (QW) in an 

elec tric field, he predicted wide-range tuning of intersub band absorption by control- 

Ling planar doping, and also the presence of red- rather than blue-shifts associated 

with electreadsorption in ordinary QWs. In a coinparative study, Anwar and Ja- 

han [BO] pdormed a self-consistent calculation of the DOS of double-b&er QW 

structures in magnetic and electric fieids, and described the energy redistribution 

and a phase-breaking mechanism. An electrified multi-band QW, in the form of 

a finite KP stnictare, was used by Vmbd and Borzdov [81] in theh treatment of 
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the gradual transition from the quantum confined Stark effect (QCSE) to the WSL 

quantization. Stark locaieation and mixing phenornena between different WSLs in 

coupled QWs was reported by Sari e t  al. [82], who found that at  intermediate WSL 

values a certain degree of carrier wave-fandion delocalization acists, while at large 

values the WSL states become localized inside individual QWs and a combined 

band structure occurs- 

Experimentally, Cohen et  al- [83] continued the investigation of the optical prop 

erties of a narrow-band GaAs/& Gai-,As superlattice and observed a modified 

WSL with both positive and negative orders appearing above the zero-osder han- 

sition. QCSE in InGaAs/GaAs QWs under high electric fields was studied by 

Kovalianskas et al. [84] using photoment and electroreflectance spectroscopies. 

Evidence of exciton quenching and carrier tunneling out of the QWs was obtained, 

while coupling between quasi-bound and continuum states resulted in an absorption 

increase below the barria band gap. 

Dwing the derivations of the present work, Dolcher e t  al. [85] reported a real- 

space GF analysis of WSLs based on a modified Lanczos iterative procedure, which 

was applied to 1-dimensional, one- and &*band TB systems, while the GF tech- 

nique in the site representation was employed by Gvozdikov [86] to dismss the anal- 

ogy between the Landau spectrum of a Bloch electron in a 2-dimensional anisotropic 

lattice and the WSL. Meanwhile, Zelcri et al. [87] introdnced disorder into an elec- 

trified KP mode1 and investigated the short-rage localization properties and &ects 

on the transmission co&cient. 



Chapter 2 

Wannier-Stark Effect 

2.1 Historical Development 

The existence of a WSL energy spectnim was centrd to the results of W;Lnnier, 

who employed the translational symmetry [9] of the solutions of the Hamiltonian, 

Hi, desmbing a particle in a periodic potential that were modified by an applied 

field of strength (gradient) 7. 

The pesiodic potential problem has been studied in great detail, e.g., see [88]. 

Let a be the lattice period in the direction of the applied field, so that the potential 

energy function satihes 

Using Rydberg atomic units (A ppendix A), the one-dimensional tirne-independent 

Schr6dinger equation for an electron of energy E in the potentid V(z) may be 

written as 

$"(z) + [ E  - V(X)]$(Z)  = 0. (2-2) 



Equation (2.2), subject to (2.1), is a Floquet-type differential equation whose quan- 

tai solutions are Bloch fnndions, which may be written as 

with h ( E ) ,  the wavenumber, detennined by the boundary conditions, and uk(z) a 

periodic function uk (z + na) = uk(z), n E Z. Thus, we have 

Along the direction of the applied field, the modified Sdiriidinger equation is, 

t herefore, 

W(x) = [pz + V ( 4  + T l  911(4 = E+(4*  (2-5 

where p = -la/&. Consider now the translation operator T(a)  = exp(ipa), which 

has the commutator 

T(a)F(x,p) = F(x + a,p)T(a)- (2-6) 

Applying T to (2.5), we have 

to which we apply the periodicity of V, and rewrite to recover the Hamiltonian in 

(2.51, namelyy 

which implies that +(x + a) is also an eigenfnnction of H with eigendue of E -ay. 

Iteration of this procednre, plus application of the inverse translationai operator, 

l'-'(a) = T'(-a), leads to the WSL energy spectnun 
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The preceduig argument does not take boundary conditions into accoant, which 

lefk it open to the criticism, primarily fiom Zak and Rabinovitch [37,38,39,40,42], 

that there is nothing in this derivation to restrict the initial choice of E. In the 

absence of the field, the energy speetram is a continuum, so starting fiom Et = 

E + JE, another WSL codd also be generated. Choosing aU JE, the continuum 

would be recovered, even in the presence of an applied field. 

Moreover , the derivation is highly dependent on the translational periodicity of 

the crystaL Ln partidar, the Born-von-Kaman boundary condition, viz., 

where L = UN is the crystal length, is necessary for the properties of the infiate 

case to be valid in the finite situation. Rabinovitch [40] showed that this boundary 

condition is incompatible with (2.5). Born-von-Karman gives 

while (2.5) can be rewritten to yield 

and 

$"y) = -[E - V(L) - k ] $ ( L )  = - [E - V(O) - b ] s l > ( O ) ,  (2.13) 

which leads to a contradiction. 

Hacker and Obermair (151 addressed the continuum issue by providing a more 

ngorous derivation, showing that the spectnim r a s  indeed a d i s m t e  WSL. Consider 

the TB approximation for a linear ch& of atoms with Coulomb integrals (site 

energies) at the atomic sites, 

Q = (4 @ IR) 1 (2.14) 
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Fig. 2.1: Ondimensional periodic c r y s t a l  lattice showing potential V(z) , Coulomb 

integral a and resonance integral P. 

and resonance integrab (bond energies) between adjacent sites, 

where ln) is the atomic wavefimction at site z = na (Fig. 2.1). The Hamiltonian is 

where @n (& ) is the creation (annihilation) operator for an electron occupying the 

Wannier state localized at lattice-site na, wn(z) = w ( t  - na) (Fig. 2.2). 

For the field-induced potentid 

the component with respect to the Wannier fvnctiorrp (WFs) is given by 

(n 1 V In') narbnn8. (2.18) 

Thus, the Hamiltonian subject to the applied field c m  be written, using I? = UT, 
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Fig. 2.2: Tilted-band pictnre of WSL energy spectrum showing Wannier functions, 

and localization length L = 4P/I? [15] 

The anticommutation rules for creation and annihilation operators are: 

see Appendur B, which d o w  us to determine cornmutators of the form 

Since the creation opaators for the eigenfonctions of B diagonalize the HarniIto- 

nian, we must have 

The coefficient of each must be independently zero, so reindeiring the final 
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term of (2.21) and summing over rn, we obtain 

which is the Bessel finction (BF) remsion relation for 

where P&) = AJ,(z) + BY,(z) is aay linear combination of BFs of the f ist  and 

second kind. 

As the a, are the coefficients of the W s ,  the normalizability condition requires 

that 

The properties of BFs [89] show that B = O and p = n - ( E  - a)/I' must be an 

integer for (2.25) to hold. Hence, the continuum energy spectrum is not adable, 

but only those levels in the WSL, viz., 

E r 8, = a + mr, m integer, 

which produce BF coefficients to the WFs, i-e., 

2.2 Finite-Chain Ladders 

The correspondence between the injinite and fniite crystal ladders was addressed 

by several authors. Heinrichs and Jones [47] provided a TB analysis based on the 



clifference equations of a finite chah, 

where a' is the perturbed Coulomb integral due to the termination of the crystd. 

For purposes of this anaiysis, we take a' = a. 

We immediately see that a necessary condition for an approximate WSL, E = 

u + nr, to be the solution is for nï > p, Le., when the second term of (2.28a) can 

be neglected, which locates the level well away fiom the end dects at n = 0. 

The TB approach is &O particdarly snited for applying Brillouin- Wigner per- 

turbation theory [go], namely, the eigendue of a non-degenerate state, In), can be 

calculated via 

+ C H, a. H,* + - - , (2.29b) 
+n,m,..-,p,q ( E n  - ~nrn---pqv) (En - 

since t e r m s  beyond the interaction range are identically zero. Taking the nearest- 

neighbour (NN) approximation, ody the &st two terms of (2.29a) and (2.29b) 

swive .  The NN Hamiltonian ha9 ouly trGdiagonal matrix elements, 



W e  defme the diffaence between the mod3ed and aact WSL energies as 

whence, 

H n m  Rmn AE, = E n - H , = C  
nrfrr 

E n  ~ n m  

This s u m  of CFs is a self-consistency equation. The exact WSL occurs only when 

(2.32) is zero, which is only the case when there are an equal namber of terms 

in each CF. Hence, for a finite ch&, only the center state lies on the true WSL 

energy, while for the infinite chah, every allowed energy is a WSL energy. 
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The self-consistent form of (2.32) maLes it usefi& primarily for obtaining nu- 

merical results, and leads only to approximate boands on the location of the energy 

spectnun in the finite chah 

Saitoh (491, foilowing the work of Stey and Gnsman [Ml, obtained analytic for- 

mulae for the eigenenergies of the finite dain by applykig the boundary conditions 

to the solutions in (2.24). 

The n'9;d-wall boundary conditions, a0 = a~+u+l = O, yield the requirement that 

for non-trivial co&cients, A and B, to exist. By nsing the Lommel polynomials, 

defined by 

J-" Y-" 

J ~ f 1 - w  YN+I-" 

with x = -2Plr. if we mdtiply (2.33) by n x / 2 ,  we obtain 

= O, v = - (E  - a)/î, 

whose solutions v = un for fixed N and z deîine the existence condition for the 

energy eigenstates in the spectrum (Fig. 2.3). 

The property of Lommel polynomials that 

means that the energy spectnun is symmetrically dispersed about the center located 

with the result that 

En + E N + I - ~  = 2 4  + (1': + l)r, 
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Fig. 2.3: Lommel polynomial Rloo,i-u(lO) near center of quasi-WSL v E (40,60) 

for chain of N = 100 atoms and field of I' = +/5. 

for aU states. 

For the periodic botmdary conditions, a0 = 4, and al = a ~ + i ,  we have the 

condition 

or, mdtiplying through by - 7 4 2  and using J,+i(z)Yp(~) - J~(Z)Y~+~ ( z )  = 2 / n x ,  

we find 

&,I-Y(=) - R N - 2 , 2 - v ( ~ )  - 2 = 0, (2.40) 

via (2.34). In this case, we again do not recover the exact WSL, but one that 

asymptotically approaches it . 

2.3 Green-Function Approach 

Using a GF approach, Lukes and Ringwood [60] avoided much of the controversy 

surrounding the validity of perturbation methods to derive the WSL resuit. Be- 



ginning with the tdimensiond Feynman propagator [54, 571 for a particle in an 

electnc field, y, 

(r 1 ë9 Ir') = ( 4 ~ i t ) - ~ ' *  exp 
t - ] . (2.41) 

12 

The GF is obtained from the propagator via a Laplace t r d o r m ,  Le., 

If we apply a spatial translation R to the coordinates, we obtain 

which is true for any vector R. 

The addition of a periodic lattice potential, V(r) = Civ ( r  - Ri), where Ri is 

a lattice vector means that the potential is translational invariant only for lattice 

vectors, R = R+ The application of the Dyson equation (see 3.1) leads to an 

infinite series in terms of the unperturbed GF and the potentid. The translational 

properties of the modXed GF are 
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where we have introduced r"' = r" - and reindexed the lattice snm with R k  = 

Rj - Ri for a l l  orders of the series. This is an exact result, withmt making any 

assumption other than the lattice pexiodicity. 

The DOS is obtained from the imaginary part of the GF (see 5 3.1) via 

n(E)  = -n-'Im G(r, r', E )  dE = n ( E  + 7 - Ri), J (2 -45) 

whence, if G is singular at E (see 3.1), then it is at E + y & as well, and not 

for R # &, which is a generalized version of the exact WSL condition. 
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Green-Function Method 

3.1 Basic Theory 

It is often foand, when dealing with large systems, that direct application of the 

S chrodinger equation becomes cnmbersome, reqniring perturbation techniques in 

order to proceed, which produce only approximate resnlts. 

As an alternative, we introduce the GF of the system, whieh is the invetse to 

the Schrodinger equation, and so the solutions contain equivalent information. We 

define the Greeniun operator to be 

The element of (3.1) between two states 

yields the GF describing the propagation of the system in state ln) to state lm) at 



energy E. By introducing the eigenstates of 8, I4k), we can write 

which shows, in partidar, that the energy spectrum can be extracted fkom the poles 

of G(m, n; E ) .  At a partidm Ek, the residue of the GF is simply the pmduct of 

the projections of the kth eigenstate onto the two states connected by the GF, viz., 

(m 1 h) (#k 1 n). 

If we have the solution for a given system, Le., 

then adding a pertnrbing potential V to the Hamiltonian gives H = Ho + V, which 

yields 

G=(E-@-v)- ' ,  (3-5) 

whence, via (3.4, 

Operating on the left of (3.6) by (Go)-' - V, we have 

which, through an application of Go on the Mt, can be rearranged into the Dyson 

equation, 

G = @ + G O V G .  (3.8) 

Since (3.8) is a recursive definition, it can be expanded in an infinite series, 



or, by considering elements of the Greenian via (3.2), ne may obtain a system of 

coupled GF equations to solve. 

3.2 Density of States 

There is much u s a  information about a given system that can be daived fkom 

its electronic de-ty of stutes, which is accessible from the GF description of the 

system. Following [88], consider the trace of G(E) with respect to the eigenfimctions 

of EL 8.si.g (3.5), we have 

There are singularities at E = Ek dong the path of integration, which can be 

avoided by using complez energy: 

where we take the limit s + Of. Applying this concept to (3.10), we obtain 

At the poles of (3.12), the real part of the GF is singultzr, while an evaluation 

of the imaginary part gives 

W e  wish to relate the right-hand side of (3.13) to better known fnnctions. First, 

we consider the discrete summation. For k = N, ne have 



For the continuous band, centaed at E = EN and of wïdth 2c, we have 

If we contrast (3.14) and (3.15) with the Dirac 6-ninction, 

and 

we see that 

Substituthg (3.18) into (3.13), we h d  

for which the right-hand side defines the total density of states, p(E), via1 

1 
p(E)  dE = -- Im (B [G(E)])  dE- 

Ir 
(3.20) 

Since the trace of an operator is independent of the basis, (3.20) will hold with 

respect to the atomic orbital (AO) states. In parti&, ne defme the local density 

of states (LDOS) at site n by 

1 1 
p,(E) = -- Im ((ni G(E) In)) = -- Im [G(n, n; E)]  . 

?r 7r 
(3.21) 

When (3.21) applies to a site located at an endpoint, it is cded  a surface densdY 

of states (SDOS). 

lThe DOS is defineci only ovez the aiiowed enetgy spectnim. When tbis spectnim is discrete, 

the measure of the spectnim is weigbted by a 6-function distribution, which is oRen indudecl in the 

DOS, even when the measme is otherwise suppressed on both sides, to indicate the discreteness 

of the eigenenergies. 



3.3 Causal-Surface Green-Function Technique 

Recently, Pendry et al. [91] have developed a p o w d  numerical technique for 

approximating the d a c e  GF of multi-dimensional systems by tecursively adding 

mesh sites to the system from an initial intemal seed site. We shall be interested 

in following some parts of this methodology to develop the one-dimensional surface 

GF into a form fbm which we can extract analytic resdts. 

The system is defined in terms of regular mesh sites, which are initidy consid- 

ered isolated fiom each other. The mesh is chosen, so that the on-site Hamiltonian 

elements are known for each isolated site, while the interaction terms are zero. The 

seed site (labeled 1) is composed of a single isolated site, 

where Hm, = (ml IEIi ln). Here, and henceforth, we s h d  suppress the E dependence 

of the GF for brevity, except where needed. 

The next step is to modifjr the system by adding in a single bond to an adjoi-g 

mesh site (labeled 2), by setting Vi2 = Hl* and çZl = HZ1. The resdt is a two-site 

cluster embedded in the mesh of isolated sites, 

Applying the Dyson equation, (3.8), we obtain 

since G1(l, 2) = O. Equation (3.23) is still in terms of an element of the two-site 

GF, which can be written as 



which we iteratively expand into a geometric series and, by assuming convergence 

occms, we solve for the series, 

Using this solution in (3.24), we have 

Hence, we have obtained two of the non-zero elements for the points in the two-site 

cluster in terms of the isolated site GFs. The remaining two elements are found 

using the same algorithm, namely, 

and 

are ob tained by application of (3.8), which we combine into an implicitly defined 

equation, 

G2(2,2) = 4 ( 2 , 2 )  + G1(2,2)H21Gl(l, l)HnGz(2,2), (3.30) 

which we iterate into a geometnc series and solve, 



With the aid of (3.29), this solution yields the fourth GF element of our tw~site  

This algorithm now generalizes for obtaining elements of GN+l in tams of the 

previously known Qinr Greenian eiements, where the system is being modified by 

adding a direct connection between sites 1 and m. Once we have at least a four-site 

duster, howeva, it becomes possible in higher dimensions that the mesh connection 

we are adding is between two sites aheady in the duster. In such a case, there 

may already be non-zero elements GN(l, rn) and &(m, 1). To keep ha* of these 

potential interaction, we introduce the matrices 

whose components are considered to occapy the 1 and rn rows and colnmns, Le., 

g,b = &(a, b)  when a, b { l ,  na). Keeping this notation for matrix prodncts of h 

and g, we c m  develop the generalized series for the GF, ir., 

where the summation of the series is shown in Appendix C. 

The hverted matrix can be obtained fiom the components of h and g. We begin 



Subtracting g fiom this yields, 

where 

Since this method relies heavily on the convergence of products of GFs, it is 

necessary to keep GN(l ,  f ) H i , G ~ ( m ,  m) H' fkom exceeding uni&. However, since 

GN is singular at it's eigenenergies, every non-zero interaction wil l  produce regions 

in the energy spectnim where the algorithm nill be unstable. In particth, Pendry's 

method cannot access the DOS for a given system, as that is preàsely where it 

breaks down- 



3.4 Recursive Green-Function Approach 

Let us begin with the Greenian for a series of isolated atoms beginning at site M 

and continuhg to the right up to site N. Let H, = % be the site energy for the 

atom at site n. ki the TB approximation, each site contributes a single A 0  state, 

In), which form an orthonormal set. Thus, projecting the Greenian onto these 

states gives a spatidy-based, i.e., at the atomic sites, description of the system. 

We label the Greenian by the first and last atom conneded in the chain. Since the 

initial chah contains only isolated atoms, we have 

Of note, this initial Greenian has the following relevant elements 

To generate the fidl arbitrary ch&, we talre the current system and increase 

the connected dain portion by one site by adding a bond between the chah and 

the next isolated atom (Fig. 3.1). Iterating this process allows us to generate a 

chah of any finite length, and the convergence of this iterated function system will 

yield results for the semi-infinite chah. 

The first step is to introduce a bond between the M and M + 1 sites, vk., 

To obtain the new GF, we apply (3.8), 



Fig. 3.1: Bdding a linear chain by adding a bond at each iteration. 

to (3.39) with (3.41) and n = M. 

At this point, we note that there are two surface atoms, one will be fixed at M 

and the other at the site we have just bonded to the chain. W e  s h d  concentrate 

on the surface site being added at each iteration. Hence, the sdace element of the 

GF is calculated via 

which is equident to (3.23). To solve (3.43), we follow the Pendry dgorithm, and 
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Whence, inserting(3.44) in (3 -43) yields 

which impliutly defines the GF at the new surface. Here, we depart fkorn the 

Pendry algorithm. Instead of expanclhg into a geometnc series, we solve directly 

for the modified GF, and so do not introdnce any convergence requirements at this 

stage. Solving (3.45), we obtain 

Following the above procedure, the nth iteration is applied to the M, ra - 1 chain 



to give the reqaired elements of GMtn, narndy, 

The one-dimensional TB chah has the property that, d e s s  a direct bond exists, 

a site wil l  be isolated fkom the test of the chain, which meam that t k e  can be no 

indirect interaction term in the GMln-i Greenian. This allows us to proceed exactly 

as we did for the two-site GFs, so that 

which, since the GMl,-i(n, n) GF is for an Wolated atom, yields a solution dependent 

only on the surface GF of the previous iteration, whereby, 

Thus, the process of constnicting the surface GF can be considered as an iterating 

findion (IF). Again, solutions to (3.50) do not require the convergence conditions 



which appear in the Pendry algorithm, so we have complete access to the entire en- 

ergy spectnun. An alternate approach to derive this r d t  is gïven in Appendix D. 

The form of the IF in (3 -50) generates, in faet, a CF 

which can be represented in standard CF notation [92] 

n-M+l 

- (ai; bi) = a1 
0 2  9 ai ;-1 bl + 

where the components for the TB system are 

Note that al = , which is zero for Gia,&, n), appears in the definition of 

the CF, but is formally divided out. Equivalently, we can use the non-zero value of 

&,+l, which is introduced at the (n + 1)" iteration. Again, division by al ensures 

that this term does not actually appear in the Gna,,(n, n) equation. 



a . . . . .  

Fig. 3.2: Sequence of linear chains extending to the left fiom a surface at site N. 

So fart we have been developing the d a c e  GF at the dynamic end of out 

recursion process. We now turn to the sudace located at the beginning of the chah 

and consider it's S u e n c e  on the GF. Taking n = N fixed, and M = N + 1 - m 

for n 2 1, we have a chab of atomic sites of m atoms starting at N and moving 

to the left . 

Treating m = N + 1 - M as the variable, we can d e h e  the IF for the surface 

GF as 

which forms the sequence of dain GFs shown in Fig. 3.2. Letting m -+ oo, we 

obtain the semi-infinite chah extendhg to the lefk with d a c e  at Ny Le., 



so Iong as the GFs in (3.54) converge as m -t oo. Thas, ne are interested in the 

conditions for which the sequence 

of CFs converges. 

Equations (3.54) and (3.55) give the surface GF for ehains extending to the left 

of site N- To obtain the GF at a surface with the crystal to the righf we repeat 

the process for rn < N, whence (3-50) becornes 

yielding the CF 

with 

Fixing rn = M and defining n = N + 1 - M as the variable, (3.58) becomes 

for a finite chain, while letting n + m gives 



for the semi-inhite chah to the right. 

We are also able to cacnkte the GF throngh the chah, Le., 

W e  show this by induction. The n = M + 1 case is given in (3.44). If we now 

assume (3.62) holds up to n - 1, then 
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Cont inued Fractions 

4.1 Basic Concepts 

CF concepts have been in existence at least since Enclid's report from c. 290 B.C. 

of the method of determining the greatest common divisor of tWo integers [93]. 

We develop the mathematical concepts for CFs as a generalization of those used 

for series foUowing [92]. Recall that, for a seqnence of complex numbers {G), the 

series is defined as 
00 

with the partial sums of (4.1) defined by 

Convergence of the series (4.1) is defined as the convergence of the sequence of 

partial sums {Pm) to a complex number P, Le., 
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W e  define s i m i l a r  concepts for CFs. First, coasider the sequence {G), with alI 

a, # O, and define the CF by 

We &O can dehe  another type of CF for any sequeme {bn) as 

These two types of CFs can be considered elements of two onedirnensional sub- 

spaces of a broader taro-dimensional solution space for the general CF. Given two 

sequences, {G) with 4, # O and we define 

The approzintants to (4.6)are defined by 

and convergence of (4.6) is defined via the convergence of the sequence {Km) to a 

which leads to the formal definition of a CF [92] 

Definition 1 A continued fiaction is an ordered pair 
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where {G) and {bn) a n  giuen sepences of complez numbe~s a, # 0, and {Km) is 

the seqvence of eztended complez numbers, given by 

where &(w) = w und 

The continued fraction algorithm is the fanction K mapping a pair of sequences 

({an), {bn)) onto the sequence {K,) dehed by (4.10) and (4.11). If this sequence 

converges to K, we &te 
QO 

n s l  

if it does not converge, the nght-hand side of (4.12) still provides the appropriate 

notation for discussing CFs. 

The relation between three-term recursion relations and CFs has also been 

known for a considerable length of tirne, first appearing atound 1150 in Bhascara 

II's LiliivatG but was not in widespread use until it was iediscovered by Wallis in 

4.2 Pincherle's Theorem 

In letting the diain become infinite to the left, convergence of the IF in (3.50) 

corresponds to the convergence of the CF in (3.55). W e  are interested in a certain 

class of systems for which convergence occnrs. These systems satisfy a three-term 

recurrence relation, which dows us to use the resdts of Pincherle's Theorem (PT) 

[921. 
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Theorem 4.1 Given a continued fiaction 

luhose t e m  sut* the three-term recurnnce relation 

and if {Y,) and (2,) aré linearly independent solutions to (4.14) o c h  that 

Proof: 

Let us define 

In particular, note that 

and 

S,(w) = Sn-' (5) . 
b,, + w 



Let us &O define 

and grnerate the sequaces {A) and {B,) for n 2 1 via (4.14) and (4.20). Hence, 

so that 

Using induction, we suppose we have 

SO, for n 2 1, 

by using (4.19), (4.23), and (4.24). Ekom (4.22) and (4.25), we condude that 
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The choice w = O allows us to obtain the approximants to (4.13), i.e., 

Since {A} and {B,) satisfy (4.141, each can be wrïtten as a linear combinations 

of {y_) {Zn), *., 
A, = aiYn + ai&, 

Bn = PlY, + 

Since {Y,) and (2.) are linearly independent, we must have the Wronskian 

Consequently, 

which gives 

Thns, substitnting (4.31) and (4.33) into (4.28), and the resnlt into (4.27), yields 
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Dividing numerator and denominator by 2, and recdling (4.15), we have 

CorolIary 4.1 The finite continued fraction 

when G, b,,, Y,, and Zn satiPfy Pincherle's theorem for the i n f i t e  continued frac- 

tzon. 

4.3 Monatomic Semi-Infinite Chain 

To apply the preceding results to the linear monatomic semi-infinite chah to the 

left, we consider a, = a and P , - 1 ,  = P for all n 5 M. Inserthg these into (3.53), 

we find that the three-term recnrrence relation, (4.14) becomes 

where X = ( E  - a)/2p.  
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Two linearly independent solutions are 

Using (4.39), we have 

where we have used the p r o p w  that 

To satis& PT, we must choose minimal and dominant combinations of C,', so 

that (4.15) is satisfied. We note that 

Therefore, in order to converge to zero, we mast choose the minimal solution wïth 

the sign opposite to that of X. Hence, 

and 
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Fig. 4.1: Density of states for linear semi-infinite chai.. 

Applying PT to (3.55), dong with our choice of u, and we have 

GM- (M, M) = -p-a -- ( 3 

The LDOS is given by the imaginary part of the GF divided by 7r via (3.21). Since 

G M - ( M ,  M) is real for all 1x1 2 1, the LDOS at the surface is nonzero only in the 

band -1 5 X 5 1, with 

PM- (X) = 5 1 .  [Gu- (M, M ) ]  = &/Dy 
7r np 

which is indeed the correct SDOS for the hear serni-infinite chah [94] which is 

shown in Fig. 4.1. 



4.4 Infinite Chain Density of States 

Suice the GF for the left semi-infinite dain given by (4.46) is independent of M, 

(3.61) also fields 

DM+ (M, M )  = P-' [X - s ~ R ( x ) ~ x ~ ]  , V M. (4.48) 

W e  define the Greenian operator, Go, by the superposition of the Greenians of 

two noninteracting semi-infinite chains, i-e., &- (G(M+i)+) for the Ieft- (right-) 

hand chain, gives 

Go = GM- + G@f+i)+ - (4.49) 

Note that, the GFs 

Using the Dyson equation, (3.8), we attach the h o  semi-infinite chains via the 

bond-projection operator 

Thus, using (4.52), we have 

so that 

G,(M, M )  = @(M, M )  + PGO(M, M)PGO(M + 1, M + l)G,(M, M). (4.56) 
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P ~ X )  

Fig. 4.2: One-dimensional LDOS for infinite linear chai.. 

Again, we h d  that (4.57) has an imaginary part only in the band -1 5 X 5 1, 

so that 

which gives the well-known one-dimensiond LDOS for the infinite crystal (Fig. 4.2). 
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Elect rified Solids 

5.1 Methodology 

Consider a monatomic chah of N + 1 atoms, whose site energies are a, = a, with 

the first atom located at site M. When a field of gradient 7 is applied to the ch&, 

its site energies are altered to a, = a + (n + M - l)r, see Fig. 5.1, where I' = 7a, 

a being the lattice spacing. The bond energies are considered to be unafEected, so 

that P,-i, = P. We define the reducedfield energy to be F = r/2P. 

Since n = 1 is the surface atom, where al = a + MT, the application of these 

a, and in (3.53) to (4.14) yields the three-term recarrence relation for this 

system, namely, 

which we can write as 



Fig. 5.1: Site energy shift due to appiied field. 

The solutions to (5.2) are of the form 

and 

u = zx, 

Pw (2) being any linear combination of the BFs JP(z) and Y,(+ 

The large-order asymptotics for J'(x) and Y,(x) [89] are 

and so, as n + oo, we see that 



Thus, by (4.36) and (3.60), ne-have 

for the finite chah Similady, (4.16) and (3.55) lead to 

for the semi-infinite chah to the Ieft, while (4.16) and (3.61) yield 

for the semi-infinite chah to the right. 

Folowing (4.49) through (4.56), we solve for G, using the fieid-rnodified results 

in (5.10) and (5.11), 

However, the denominator in (5.12) is the Wronskian [89] 

I 

W[J,(z),  J-&)l = -- sin PT, n2 

so (5.12) reads 

Ge (M, M )  = p-l m J V ~ M  ( ~ ) L - M ( = )  
2 sin(v + M)a 

Having found the GFs for the three cases in question, we can now obtain their 

LDOS at the site n via (3.21). In all three cases, whereverit is defined, G(M, M;  X )  

is real ualued, Le., the imaginary part is zero except, perhaps, at the eigenenergies, 

Xk, provided by the poles, vk, of the GF via (5.5). 



Since ail the poles are simple, we i n d e  the following r d t  fiom the theory of 

residues [95] to obtain the imaginary part of the GF at its poIes. 

Theorem 5.1 If f (2 )  = h(z) /k(z) ,  when h and k a n  

a point z = a, vnth h(a) # O, k(a) = 0, and W(a) # O, 

holomoiphic in a disk about 

then 

Since the residue is defined as the coefEcient to the (z -a)-' term in the Laurent 

expansion of f(z) about a, we have 

Consider an interval [X-, X+] which contains exactly one solution, Xk. If we 

enclose the pole with a clockwise oriented cuve that passes through X- and X+, 

the contour will be equivalent to integrating dong the interval twice. Hence, we 

can write 

Im G(M, M; Xk) = lrRes (G(M, M; X ) ;  X = Xk) . (5.17) 

Using ( 5 . l f ) ,  we can express the LDOS, at site n, in rednced energy as 

w here 

F ( X k )  = 2PRes (G(n, n; X); X = Xk) . 



is the inte-ty energy diitribution at the atom n, which can also be interpreted as 

the electron occupation number of the state k. Since we have one electron associated 

with each atomic site, (5.19) satisfies the charge conservation condition, 

W e  are now in the position to address the LDOS for the above cases separately. 

5.2 Finite Chain 

The plots of the LDOS at the n = M = O site of a 100-atom chah are presented 

in Fig. 5.2 for the various fields indicated. The intensities, Il(&),  in (5.19) were 

obtained by using the exact rational polynomial form of (5.9), which can be derived 

from the Wronskian equations for both numerator aad denominator, where the 

reduced energies, Xk , are provided by the poles of (5.9), Le., the solutions of 

Figure 5.2a depicts the dismetized form of the f d a r  semi-elliptic LDOS for 

the zero-field case [88]. On applying the small field F = 0.005, the band pictare 

of Fig. 5.2b arises, in which the most striking feature is the appearance of the 

linear-ramp region of negative slope covering the lower quarter of the quasi-band. 

Ln addition, the quasi-band is rigidly shifted slightly to higher energies, the inten- 

sities decaying exponentially beyond the upper-band edge at X = 1. Note also, 

the redistribution of the & - d ~ e ~ ,  compared with those in Fig. 5.2a. kicreasing 

the field to F = 0.01, the linear-region in Fig. 5 . 2 ~  now extends over al1 the 1ower 

half of the band, and about haIf its intensities exceed the rnzuchum of those in the 

semi-elliptic portion. DoublLig the field to F = 0.02, the linear-region completely 



Fig. 5.2: LDOS at n = O site of 100 atom ch&. As field inmeases, semi-elliptical 

shape is dominated by h e a r  potential. Field strengths are as indicated. 



Fig. 5.3: Logarithmic plot of g(&) in Fig. 5.26 showing quasi-band region. 

supersedes the semi-elliptic one, as in Fig. 5.2d, and is again accompanied by the 

rigid shift to higher Xk-values and the exponential taïling above X = 1. More- 

over, the $'(&) d u e s  are marlredly d a n c e d  to those in the F = O situation in 

Fig. 5.2a, particularly in the lower half of the quasi-band. In the case of F negative, 

the corresponding LDOS plots are those of Fig. 5.2, reflected in the X = O vertical 

axis - 

Although the energy spectrum is discrete, we can identify a quasi-band by look- 

ing at the logarithm of (5.19). In the region 1 Xk - NF 1 2: 1, log Ik(Xk) undergoes 

a transition fiom an exponential-like decay inside the quasi-band to a dtamatically 

s tronges decay outside the quasi-band (Fig. 5 -3). 



5.3 Semi-infinite Chain 

Here, we use (5.11) in (5.19) and (5.16), wïth n = M = O, to obtain 

c(&) = 2PRes (Go+ (O, O; X); X = Xc) 

the Xk-values being the solutions of 

i.e., the poles of (5.11). This set of solutions, {&)&,, exhibits a zninimum sep  

aration of F between solutions and asymptoticdy approaches the Stark ladder, 

Xk -t C F  as k + oo, by the properties of BFs [96]. 

Contrary to the finite and infinite chains' LDOS plots at the n = O site, here 

we are concerned with the LDOS at  a number of sites in the chain, when the 

field is fized at F = 0.02. Starting at the end site, n = O, we immediately see that 

Fig. 5.4a essentially replicates that of Fig. 5.2d, for this site of the finite chah ander 

the same field. Moving to the next site at n = 1, Fig. 5.4b shows that a drastic 

change has occurred in the LDOS, at this k s t  subsurface atom. The distinct 

features are the extremely bigh spike at the lower-band edge foilowed by a steep 

dedine to I!(O) = O over the bottom half of the quasi-band, while in the top half 

we witness the emergence of the fùst bulk contribution in the form of a discretized 

hump. Penetrating the chain fartha, to the n = 5 site, Fig. 5 . 4 ~  displays a series of 

spike clilsters of Gaussian-like (GL) shape, except at the lower-band edge, where 



Fig. 5.4: Tkansition fiom suface (n = O )  to b J k  (n = 10) LDOS of semi-infinite 

chah subject to a linear potential of F = 0.02. Site positions are as shown. 



the dominant spike is again present. We also notice that the envelope through the 

GL peak maxima takes on the familiar U-shape of a bal i  LDOS. The Ip(Xk)  plot 

of Fig. 5.4d is for the bu& site at n = 10. As in Fig. 5.4c, we find a series of GL 

peaks, each separated by a node (Le., Ii0(Xk) = O). The namber of nodes (and 

peaks) increases with n. Note that the bulk character of this LDOS is refiected in 

the disappearance of the dominant spike at the lower-band edge, which is connected 

with the surface state [88] associated with the end atom at n = O. The U-shape 

envelope is, of course, still retained and the band tailùig at the upper-band edge 

has become more pronounced, in conjunction with the rigid shift of the quasi-band, 

as n increases. 

5.3.1 Infinite Chain 

From (5.14) and (5.19), we find that at M = 0, 

= sec(vka) J&) J-, (z), 

the poles o f  (5.14) providing the Xk-values, viz, 

sin ukn = 0, 

i.e., 

X , = k F ,  k = O , f l , f 2  ,..., 

by (5 .5)  and (5.4). Thus y, = -k, and so 



Fig. 5.5: Occupation number of states for W t e  chah Continuous field transition 

from discretized U-shape of zero-field to the localized peak for F 2 1 occurs by 

combining both U and GL features into multiple Stark-Ladders. Field strengths 

are as indicated. 

Since J J x )  = (-l)"J,(z) [89], it follows fiom (5.3) that g(Xc) in (5.24) varies 

as the probability, IC!)', giving the link to the k-state occupation number at the 

zero atom. Note, (5.26) defines a true WSL, in contrast to the quasi-WSLs given 

by the BF conditions in (5.21) and (5.23). 

The LDOS are shown in Fig. 5.5 for the F-values indicated. The low-field 

(F = 0.005) case of Fig. 5.5a has the U-shape appeatance of the F = O situation 

[88], and the discrete details are reminiscent of the I' = 0.02 plot of the ground- 
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Fig. 5.6: (a) Quasi-band showing localization length L and wavefhction behaviour- 

(b) Rectangular hyperbolae F L  = I2 bounding shaded region in which (F, L) 

d u e s  give rise to band state. 

state profile obtained numericdy by Dolcher et al- [85], including the band tailùig 

at both band edges. For F = 0.02, in Fig. 5.5b, the fine structure of the discrete 

details is resolved, showing the intensity spikes are again dnstered into energy 

regions, which we identify as the break-np of the single quasi-band into the multiple 

mini-bands and were suggested by Moyer [58] as a means of approaching the zero- 

field limit in a proper manner. Further increase of the field to F = 0.1 results 

in Fig. 5.5c, where the heights of the intensity spikes are greatly diminished and 

their separation and band tailing markedly enhanced, making the characteristic 

U-shape barely discernible. Taking the field to F = 1.0, the quasi-band structure is 

reduced to that in Fig. 5.5d, whose few spikes form a single GL distribution about 

the central'dominant spike at Xk = 0, the U-shape being completely destroyed. 

Conversely, the single GL peak can be regarded as the basic unit fkom which the 

other WSL spectra are generated. 

Let us now address the question of the number of states in the quasi-band 



at a given field strength. The tdted band pidure of the WSL (5.26) is shoum in 

Fig. 5.6a, where Xk vs. n is drawn. The upper ( [ m e r )  band edge is the line 

Xk = n + 1 (Xk = n - 1). Between these lines, the vertical (horizontal) bandwidth 

is 2 (C), L being the s-called localizatàon length, o v a  (beyond) which the BF is 

oscillatory (damped exponentially). Eom the geometry of Fig. 5.6a, we see that 

the field gradient F = f 2 /L ,  or [FLI = 2. Th=, for a state to be in the band, the 

rect angular hyperbolic condition (Fig . 5 .6b) 

must be satisfied. Since, in the 1-electron approximation, each chah atom con- 

tnbutes one state, the actaal number of states in the quasi-band corresponds to 

the number over which L (= 2F-') extends. Hence, when F = 1, L = 2, the 

number of states supported by the quasi-band at n = O is three, as in Fig. 5.5d, 

where the band-tailuig states beyond the edges are neglected. Reducing P to 0.1 

(Fig. 5.5c), we find 21 states in the band, correspondhg to L = 20. Whence, in 

general, the number of states in the quasi-band is 

where the square brackets indicate the integer part of the argument. 



Chapter 6 

Surface States 

6.1 Zero-Field Theory 

When dealing wïth a terminated (Le., fiaite or semi-infinite) crystal, the sites 10- 

cated next to a termination site, or surface, can have significantly different electronic 

characteristics than those found at internal sites. Such an dectronic diffaence may 

give rise to surface stutes, which were fist considered by Tamm[88]. The basic the- 

ory of surface states has recently been described in detail by Davison and Stqii%cka 

PSI * 

There are two standard ways to generate information about a sdace  termina- 

tion fiom the known properties of the infinite chain. First, we can consider taking 

a cydic chah of N atoms, breaking a bond and perturbing one, or both, of the 

resulting surface sites of the now finite chah (Appendix E). W e  shall, however, 

consider here the second method, namely, by deaving an infllrite chah into tao 

semi-infinite chains and perturbing the sdace  site. 

In the TB approximation, using the nearest-neighbor Hamiltonian, the recur- 
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rence relation for the infinite cbain is 

where the coefficients, k, arise in the expansion of the crystd wavefunction in 

terms of the A 0  states, narnely, 

To solve (6 . l ) ,  we assume the power-law solution, 

c, = At", 

A being the nonalization constant, which d o w s  us to rewrite (6.1) as 

By (4.57), the energy band is restricted to -1 < X < 1 for the idhite Chain, 

so we introduce the parameter 8 via 

X = COS 0, 

whence, the roots of (6.4) yield the solutions 

t* = pfl. 

Combining (6.5) and (6.6), we find 

and t -  = t;'. The infinite crystal has the well-knon GF [Ml, 
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We obtain the semi-infinite chain by cleaving the crystal between sites -1 and 

O. W e  ignore the portion for n 5 -1, setting all the GFs across the deavage to 

zero. The atom at site O is non the surfBce atom, whose site energy ne modify to 

account for having only one, not two, NN bonds. Thus, the potential is 

where 

is the dimensionless surface perturbation parameter. 

Applying (6.9) to (3.8) for m 2 0, and remembaing to set cross-gap terms to 

zero, we obtain 

G(m, m) = @(m, rn) + zp@(rn, o)G(o, m) - @(m, -1)G(O, m). (6.11) 

G(0, O) = @'(O, O) + @@(O, o)G(o, O) - @(O, -1)G(O, O), (6.12) 

which, upon rearranging, gives 

Thus, using (6.8) in (6.13), we have the surface GF equation 

whose poles locate the surface state, i.e., the condition, 
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Rearranging (6.15), and sqnaring, we find 

which yidds the sdace-state energy 

So far, (6.5) indicates that we are restricted to the region -1 5 X 5 1 in the band. 

To access energies outside the baad, we dow O to become cornplex, viz., 

Inserting (6.18) into (6.6), we see that 

t* = - - efiCeT~, 

which, dong with (6.15), yields the ezistence condition for a localized surface state 

lying outside the energy band, namely, 

Rationalizing (6.14), and using (6.17), we have for IX 1 < 1, 

which 

If lx. 

via (3.21), leads to the SDOS inside the band 

< 1, then the so-cded surface resonance state lies embedded in the SDOS 

band and (6.22) gives the entire energy specmim. When 1X.I > 1, we have a 

dismete localized sudace state outside the band, which we describe via (5.18), viz., 
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Fig. 6.1: Zero-field SDOS and d a c e  intensities for indicated values of s. 

where (5.16) and (5.19) with (6.14) give 

As r increases fkom a large negative valne, the surface state approaches the band 

fiom below for z < -1, moves through it when -1 < z < 1, and appears above the 

band at z > 1 values (Fig. 6.1). 

6.2 Surface-Field Effects 

In order to stndy surface a e c t s  on an electrified solid [97], we investigate a semi- 

infinite chah to the right, begiuning at n = 1, and subject to an applied field of 

gradient î, Le., we have the GF 

by setting n = 1 in (5.10). 
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We now consider the addition of an isolated atom at the origin, whose site 

energy a0 = a'. The GE' for this isolated atom is 

We define an unperturbed Greenian by the superposition of these two systems, so 

t hat 

d = G w + q + -  (6 -27) 

We now attach the isolated atom to the chain, by using the perturbation bond 

projection operator 

v = p [Io) (11 + 11) (011 9 (6.28) 

in the Dyson equation (3.8). We wish to obtain the on-site GF at (O, O), viz., 

where the last term is zero, due to the taro systems being initidy isolated, so that 

GO(O, 1) = @(1,0) = O. To obtain the middle term, we need 

which defines Go+ (O, O) irnplicitly in terms of the 6 elements. Solving (6.31), we 

h d  
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Fig. 6.2: Graph of J-r/P-l (- F-')/ J-XIF(- F-') for F = 0.2. Horizontal z-lines 

intersect c w e s  at Xi corresponding to poles of (6.33). 

Using (6.25) and (6.26) in (6.32), we arrive at 

G;, (O, O) = p-' 
1 J v ( 4  

(2X - 2) - Jy+1(z) = '-' (2X - r )  Ju(z) - Ju+l (z) - 
J Y ( 4  

where we have used the recnrsion relation (5.2) to combine the BFs in the denom- 

inat or. 

The energy spectrum, displayed in Fig. 6.2, is given by the poles of (6.33), i.e., 

Note the similady with the zero-field case given by (E.17) and Fig. E.2. Unlike the 
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zero-field case, no solutions are lost as we vary z. Since there is no band restriction 

on the eigenenergies, there is no condition wheseby we ean dktinguish a state as 

a snrface-state. Al1 states are disaete, and several states may be localized on the 

surface site. 

We obtain the intensity for the field-modified states by following (5.19), thus, 

where the prime indicates differentiation with respect to order. The surface DOS 

can therefore be written as 

Plots of [;(Xi) are depicted in Fig. 6.3 for z = 1, Le., on the upper edge of the 

quasi-band, and for the F-values indicated. W e  see that, as F decreases fÎom 0.2 

to 0.01, the number of spikes increases markedly in the quasi-band, and coalesce 

about a surface resonance state at X = z = 1 (cf. Fig. 6.1). 

As z varies over the range -2(1)3, Fig. 6.4 represents the evolution of the 

intensity-energy distribution. Initially, a surface state spike exists éelow the quasi- 

band. At z = -1, the state becomes a surface resonance, coincident with the lower 

quasi-band edge. When z = O, there is no sarface perturbation, so no s d a c e  state 

exists. For r = 1, the surface state is aligned with the upper quasi-band edge, 
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Fig. 6.3: Surface intensity-energy distributions for z = 1 and F-&es indicated. 
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Fig. 6 -4: Surface intensity-energy distributions for F = 0.2 and z-values indicated. 
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and emerges fiom the edge as the t d &  spike in the z = 2 case, being fùrther 

removed from it when z = 3. It is therefore apparent that the Ii(Xk) distribution 

is very sensitive to the choice of the dace-perturbation parameter and is, in fact , 

reminiscent of the SDOS behavionr for the zao-field case [a$]- 



Chapter 7 

Chemisorption 

7.1 Methodology 

We now turn to a probIem that is of great devance to many fields of interest, 

induding catalysis, epitaxy, and scanning tunneling microscopy. Instead of requir- 

ing the surface atom to be of the same material as the bdk of the aygtd (5 6.1), 
we consider chemically attaching a different atom to the end of the chah, by the 

scxalled chemisorption process. 

In particular, we wish to quantitatively describe the characteristic changes be- 

tween the pre-chemisorption system, Le., one isolated atom and the crystal sub- 

strate, and the combined post-chemisorption system, where the atom is cdsorbed 

onto the crystal's sarface and is d e d  an adatom 

We assume that the adatom has initidy a single electron in its valence state 

at an energy E,, and that the crystal has one dence  dechon associated with 

each of the N atomic sites that doubly occupy the delocalized crystal states, thus 

filling them up to the Fenni level (FL), i.e., we neglect temperature aects. When 



Fig. 7.1: Energy diagram for adatom, including Codomb repuhion. 

chemisorption occurs, the addition of the adatom electron introduces modifications 

to the crystal states of 0 ( 1 / N )  and so, for sdciently large substrates, we can 

ignore the chemisorption-induced changes to the crystal parameters, which is not 

the case for the adatom. 

The adatom-substrate interaction means that the isolated adatom state becomes 

accessible to the crystal electrons, and vice-versa, so that a charge ttonsfer, Aq, 

takes place between them. The resuiting modifications to the adatom state are 

accounted for by adopting the Anderson-Neums mode1 [94], and writing 

where Q labels the spin of the adatom electron, U is the intra-atomic Coulomb re- 

pulsion between hro electrons on the adatom, and (Ma,,) is the adatom occupation 

number of the opposite-spin state. 

The d u e  of U is dependent on the properties of the adatom, being the dinaence 



between its ionkation energy, 1, and electzon afinity, A, (Fig. KI), Le., 

Since we are now dealing with eleçtron-electron interactions, at least on the 

adatom, we can no longer describe the system by using a one-electron Hamiltonian. 

We do assume that the crystal-state wavefimctions, It,bk) with energies EC, have al- 

ready been obtained via the TB Kamiltonian. Using these, plus the spin-dependent 

adatom states, as a basis set, we tuxn to the language of second puntization [98] 

to describe the chemisorbed system. 

Let @t, (Q) be the fermion creation (annihilation) operator for the state n, 

n E {a, k) (k = 1,. . . , N), from which we define the number operator, PI, = @,@, 

(cf. 1 2.1 and Appendix B). The Fock Hamiltonian of the chemisorbed system can 

then be written as 

where V,, denotes the hopping term between states n and m. The total Hamil- 

tonian is the sum over both spins, iüi = x, &. We obtain Hartree-Fock solutions 

t O (7.3) by generating N-particle antisymmetrized wavefanctions tthrough the ap- 

plication of the creation operator to the vacuum state, 10). For the ground state, 

preusely those states below the FL are induded, i.e., 

n 
OCC 

where En are the energy eigenvalues and Ef is the F d  energy. The SchrOdinger 

eqnation then becomes 



An application of the creation opaator Cw adds an electron of energy E, to the 

system, whence 

4@! 1%) = ( E  + Ew)@!! 1%) i ( 7-6) 

which, using (7.5), leads to 

Inserting (7.3) into the commntator, we ob tain 

where we have used (2.21) and (B.5) to evaluate the commatators. Takhg the 

adatom and substrate states separately, we find 

Since n may be either the adatom or a erystal state, we expand @M into all 

possible basis states and project back onto the chemisorption state n, Le., 

where (q)@ (lm)) are the anperturbed (patarbed) eigenstates. Applying (7.10) to 

both sides of (7.7), we obtain the operator equation 



which, with the aid of (7.9), becomes 

Equating coefncients of cw and @b in (7.12), ne obtain the so-called equatiow of 

motion for (n 1 a), and (R 1 k),, viz., 

Multiplying (7.13) by ,(a 1 n) and (7.14) by ,(k 1 n), we use the r e d t s  to snm 

over the entire unperturbed basis, whereupon the completeness property 

1 (n 1 a), I2 + C I (n I k), I2 = 1 7  

leads to 

where we have expanded E, by (7.1) and rn nuis over all a and k dues. 

At this point, we wish to observe the following identity, 



so, in particdar, for p = rn = o we fmd 

n 
occ 

which inspires the snmmation of (7.16) over al l  n and both spins, so that 

u n 
OCC 

r 

where the symmetry of the last term allows the summation over spin to double the 

The energy can be directly calculated fiom the expectation d u e  of the Fock 

Hamiltonian with (7.1) applied, namely, 



Comparing (7.19) and (7.20) allows us to conclude that the energy of the diemi- 

sorbed system can be written as 

Using the energy of the nnperturbed system, 

we define the chemisorption energy via 

M 
OCC k 

occ 

We now tum to the problem of obtaining (N,). By (7.18), we see that it is 

dependent on the chemisorption wavefunctions In). However, throngh (7.1), the 

Hamiltonian (7.3) which generates the In) is itself dependent on (Na,-,), Le., we 

have the self-consistency equation 

In general, there is no analytieal procedure for solving (7.24), so we must obtain 

the solutions nwnerically. We do how, however, that we can always fmd a non- 

magnetic (=) solution, (EiI,) = (&,-,), and may be several additional magnetic 

(M) solutions. 

The solutions to (7.24) gives a measure of the charge occupyîng each spin-state 

on the adatom. Comparing with the charge of q. = -e fiom the single electron of 

the isolated adatom, we define 



to be the charge transfer to the adatom. 

The remaining terms in (7.23) rnay be obtained directly from the energy spectra 

of the unpertatbed and chemisorbed systems, which ne are able to extract fiom the 

poles of the appropriate 

the unperturbed system 

in this case, 

GFs. Folloaing the procedures of Chapter 6, ne describe 

by the Greenian &+ and the modified-isolated atom CF, 

with 

Since the adatom does not have the same bonding properties as the crysta l  atoms, 

we attach the h o  Via a chemhorption bond of energy Pa, so that (6.28) becomes 

whence, following (6.29) throngh (6.32), we obtain 

where we have dehed 

When @(l, 1) is complez, ne kitrodace the chemisotption functiow [94] defined 

and 



which d o w  us to write (7.29) as 

In parti&, since the DOS is dependent only on the imaginary part of the GF. 

we find 

7.2 Field-Enhanced Situation 

A semi-infinite diain under any linear potential is physically unrealizable, even as 

an approximation. Consider what happens on the surface atom when the 6eId is 

swit ched on. The allowed energy band, corresponding to zero field, discretizes with 

a minimum separation of F between le*. For a semi-infinite chah, this genaates 

states that have infinite energy. In partidar, the FL rises to iafiaity, Le., the atoms 

become ionized and the crystal disintegrates. 

To maintain the integrity of the system, we reqaize that the reduced-energy 

FL, X I ,  remains within the quasi-land region of the sdace  atom, defined by the 

allowed energy band in zero field, i.e., 1 MF 1 < 2, as shown in Fig. 7.2. This 

condition ensures the existence of at least one delocalized state across the entire 

chain. 

The surface GF of the m-atom crystal is caldated by applying M = 1 and 

N = m - 1 to (5.9), which yields 



Fig. 7.2: Quasi-band region of electrified chah of m atoms firom n = 1 to n = m. 

The dowed-energy states form a dismete spectram of m states, which are 10- 

cated at the poles of (7.35), viz., 

O m+l for which we order the solutions via energy to form the set (X ) k k 1  

We now use the finite chah results to describe the chemisorption of an adatom, 

located at site n = O with modified-site enagy q = ew = + U(R&,-,), to an 

electrified substrate, on the right from site M = 1 to m, by a bond = Po. 
Inserting these into (7.29), we have the adatom GF 

where 



W e  note that (7.35) is nul-valued everywhere it is defhed, which complicates 

the extraction of the chemisorption functions. The application of (7.31) is straight- 

To obtain A(X), however, we most kst  look expiicitly at the poles of (?.Xi), 

1 
= -z2?r Res (A(x)~(x - Xr ) ; x = x:) 

2r) P 

where the last equality holds by Theorem 5.1. 

Since A(X)  is real everywhere it is deftied, so is A(X)-'. Thns, (7.40) is purely 

imaginary, and we obtain 

where we have defined the surface-intensity energy d a b u t i o n  of the q s t d  to be 



which, by (7.39), is the same r d t  we obtained in f 5.2. 

Furthermore, the existence of A(X) # O is limited to where A(X) is undefied, 

which prohibits the use of (7.34) to determine the SDOS of the adatom. Instead, we 

must locate the poles of (7.33), X,, and determine the intensity-energy distribution 

on the adatom, It(X,),  which we use in (5.18) to obtain the adatom SDOS. 

The inherent discretenes of the states under an applied field, allows the chemi- 

sorption energy to be directly calcnlated fkom (7.23) whïch, in reduced notation, 

becomes 

where 

n 
occ k 

OCC 

(XL) X .  being the (un)perturbed eigenenerpies, and Xf  = XIN,,),zl, the double 

square brackets indicating intega value. 

The adatom occnpancy is obtained from the intensities on the adatom of the 

occupied states of the chemisorbed system, Le., 

m m 
OCC OCC 

m 
OCC 

where, again, the imaginary component of the GF is obtained by diff'entiating the 

denominator of G, this time in (7.37). 

The self-consistent curues of (7.24), for the mode1 situation where q = 1(P, = P )  
in (7.37), are displayed ui Fig. 7.3 for the F-values indicated. The F = O case, 

reproduces Neans' non-magnetic (4W) and magnetic (M) solutions [94]. As the 



Fig. 7.3: Self-consistency m e s  for q = 1 and F-values indicated. (Non-)magnetic 

intersections occur for (Bi,)(=) # (Na-,). 

field increases, the intersection points are &en towards the point (1, l), so that 

the M-points are eventually eliminated. 

7.3 H-Ti System 

W e  apply the results of 5 7.2 to the system composed of a hydrogen adatom and a 

titanium substrate of 100 atoms in length, which will d o w  fields of up to 1 FI = 0.02, 

expanding on the resdts given by English et al. [99]. We convert the experimental 



Table 7.1: Experimental data [94] for chemisorbed H on Ti and corresponduig 

reduced parameters. 

Table 7.2: M and M solutions (W,) and (W.-,) of the H-Ti system. 

data to reduced notation in Table 7.1- 

Applying these parameters to (7.24), we obtain numerically the self-consistency 

curves for values of F by locating the poles of (7.37) and summing the iatensities 

of the occupied States as (Na,,) is varied as an independent variable. Intersecting 

t his result with its own inverse, see Fig. 7.4, locates the .ht and any M solutions. 

In fact, the zero field case has only a 4 i t  solution, but the application of any field, 

positive or negative, creates M solutions, see Table 7.2. 

Insert ing t hese occupation d u e s  back into (7.37), enables the energy eigen- 

values of the chemisorbed H-Ti system to be obtained. Delineated in Fig. 7.5a 

(Fig. 7.5b) is the behaviour of the chernàsorption energy (7.43) (adatom charge 

t r a d e r  (7.25)) as the field strength varies. The W (M)variation is portrayed by 

the solid (broken) line in both figures. With no field, only the M solution exists, 
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Fig. 7.4: Self-consistency (adatom occupation numbet) plots are shown for H-Ti 

system with parameter values q = 1.73, ra = -2.27, and u = 3.00. 



Fig. 7.5: (a)Variation of H-Ti chemisorption energy with field strength. Solid 

(broken) curve represents M (M) solution. (b) Adatom charge transfer versas field 

Y trength for H-Ti. Solid (broken) line depicts 4 i f  (M) case. 

but M solutions appear immediately with the application of F .  The field brings 

two major efFects into play. First, it raises the Fermi level which, on its own, Iowers 

AXc- Second, it alters the adatom occupancy. 

For the M case, the field increases both (N-) and (Na-,) dong the diagonal, the 

latter raising the effective adatom state via (7.1) which, in turn, raises AXc. Under 

these competing efFects, A.#" remains essentially constant, as shown in Fig. 7.5a. 

More particularly, Xf is slightly more affected for F < 0.010, while the effect 

takes over for F > 0.010. 

We note that both plots show a smooth transition through the F = O point 

for the 4bf solutions, whereas a cusp appears there in the M Cumes, due to the 

asymmetry of the occupied levels in the presence of the field. States shifted above 

the band are above the FL and have only an indirect efEect on the energies of the 

occupied states. States shifked below the band are, however, Nled states and the 

field efFect is more pronounced when they exist. 

In both cases, the field stabilizes the system. Our hdings indicate that che- 



rnisorption seactions can be induced by the presence of a field on a system, which 

would otherwise remain in&. 

We next apply field-enhanced chemisorption theory to the system composed of 

hydrogen chemisorbing onto a 100-atom chromium snbstrate, which will admit fields 

of up to IF1 = 0.015. The conversion of experimental data to reduced notation is 

presented in Table 7.3. 

As with the H-Ti case, we use (PI.,-,) a3 an independent variable at specified 

F strengths to solve for (N-) and then locate the intersection with its own inverse 

(Fig. 7.6). These results are tabulated in Table 7.4 for both M and Af solutions. 

Exp t - 

Table 7.3: Experimental data [94] for chemisorbed H on Cr and corresponding 

6.10 eV -13.60 eV 12-9 eV 4-56 eV 3.75 eV 

P za Û Q 'I 

Reduced 

reduced parameters. 

1.525eV -2.96 4.23 4.56 eV 2.46 

Table 7.4: kk and M solutions (N,) and (Na-,) of the H-Cr system. 

a 



Fig. 7.6: Seif-consistency (adatom occupation number) plots are shown for H-Cr 
A 

system with parameter values rl = 2.46, z, = -2.96, and U = 4.23. 



Fig. 7.7: Variation of (a) H-Cr chemisorption energy and (b) charge t r d e r  with 

field strength. Solid (broken) m e  depicts 4W (M) solution. Point B locates the 

bifurcation threshold for M solutions. 

Unlike the H-Ti case, H-Cr does not develop M solutions until F > 0.005, where 

a bifurcation occurs, and none for negative fields. h par t idar ,  since the * ccurve 

for AX. is concave up (Fig. Wa), low fields will actually cause the chemisorption 

process to be slightly less favourable than at zero-field. Once the M solutions 

appear, increasing F will again resdt in enhanced chemisorption. 

In Fig. 7.7b, we see that while the .M. charge transfer behaves identically to 

that of H-Ti under changing field strength, the M curve does not. Indeed, while 

the charge transfer increases with F in the H-Ti case, the M resdt for H-Cr has a 

negative slope. 

In both systems, when Aq changes sign, the direction of charge transfèr is 

reversed. For Aq > O (Aq < O),  charge fiows to (fiom) the adatom fkom (to) the 

substrate. 



Chapter 8 

Molecular Elect ronics 

8.1 Zero-Field Mode1 

Several mechanisms for providing a rnolecular switch have been previoasly investi- 

gated [IOO]. AWam et d [100, 1011 studied the use of a hemiquinone molecule, 

which has two foms that can be controlled by application of a potential field, per- 

pendicular to the direction of m e n t ,  allowing the molecule to be switched fiom 

an acceptor to a donor state. 

Potember and his colleagues [IOO. 1021 have prepared crystab of tetracyanoquin- 

odimethane (TCNQ) derivatives complexed with metd ions wküch, under the d u -  

ence of high voltage, are converted to TCNQ and metallic atoms, switching from 

high to low resistivity. 

Much interest has been aroused in photosioitchts. Folloring biologicd examples, 

S hipman considered the molecules used in photos ynthesis [lO3], while Keszthelyi 

et al. examined Bacteriorhodopsin [104]. Carter proposed osing an organic chro- 

mophore [100, 1051. In the presence of light, the charges and double bonds in the 
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molecule are altered. 

Whichever method of switching is used, ne may model them all via the change in 

the electronic configuration of a single impnrity embedded in a conducting polymer. 

Using a TB Hamiltonian, and considering only NN effects, the one-dimensional 

system . . . AAABAAA . . . corresponds to an impurïty B inserted into a periodic 

host chah of A atoms. The elements of the conducting polymers, represented by 

Al have in reality many orbitah, bot for a qualitative view of the impnrity effects, 

a single-orbital approach is taken. A more detailed analysis of the system will 

be requked to determine the optimal chernical description of the impurity. In this 

model. there are two methods of altering the electronic configuration of an impurity 

in the chain. One is to aiter the site energy, the other is to change one of the bonds 

connecting the impurity to the diain. 

Such a system has been examhed with equal bonds between the atoms of the 

homogeneous chah by Sautet and Joachim [l] , and with altemathg semiconductor 

bonds by English and Davison [3], both using the scattering-mat& technique to 

determine the transmission coefficient through the impurity and the change in den- 

sity of states. MiJkovik et al. [106, 1071 considered the system with two impurities 

and the single-impurity system via the maay-neighbour approximation, using the 

Lippmann-Schwinger (LS) scattering equation in both cases. It is in the context of 

this latter theory that we shall proceed. 

We take the infmite chah Hamiltonian 

which has the well-known GF (cf. 5 4.4) 



If we decompose the eigeafiinctions of (8.1) with respect to the A0 basis fnnc- 

the coefficients are plane-wave solutions, & = eid, where we have chosen the sign 

of 19 to correspond to waves moving to the right. 

W e  modify (8.1) by introducing a Iocalized perturbation, V, well away fiom the 

ends (n + h o )  of the Chain, whence, the perturbed Harniltonian is 

with eigenfunctions, 

From these results, we c d  upon the LS equation (see Appendur F), 

which is equivalent to the Dyson equation, except it applies to the wavefunctions 

of the system (cf. (3.8)). Expanding the wavefunctions in (8.6) and multiplying on 

the left by (nl, we obtain 

which is the LS relation for the wavfiuiction coefEcients. 

In a generd scattering situation, incoming waves are transmitted or reflected 

according to the characteristics of the s ystem. Consider two independent plane 



Fig. 8.1: Scattering amplitudes of incoming and outgoing waves. a) General scat- 

tering relationships. b) Scattering due to incoming wave from left only. 

waves deik fkom the left and ved ih  from the right, incident upon some perturba- 

tion region. The incident waves are scattered into outgoing waves 8ëh and ceik, 
respectively (Fig. 8. la), which are related to the incident waves via 

where T is the transmission coefficient, r is the refledion coefficient fiom the Mt, 

and r' is the reflection coefficient from the right . In matrix notation, (8.8) becomes 

which defines the scattering matriz, S ( E ) .  

If we now consider a single incident wave f?om the left, Le., D = 0, (8.8) tells 

u s  C = rd and B = TA. Identifying these amplitudes (Fig. 8.lb) with the A0 

wavefunction coefncients in (8.3), we obtain 



Fig. 8.2: Model of molecular switch embedded in a lin- monatomic diain. 

where we have normalized the incident wave by setting A = 1, and replaced the 

plane waves with crystal Bloch waves by setting û = ka and z = na. 

Restricting the scattering potential to a region near the ongin, i.e., (2  1 Q lm) = O 

when either ILI > N or lnal > N for some finite N, we apply (8.2) to (8.7) as 

n + -oo, whereby 

Cornparhg (8.11) to (8.10), we find the reflection coefficient to be 

2 
r =  

2p S, e C eae ( I I  V lm) h. 
1.m 

Similady, taking n + o~ in (8.7) yields 

which, via (8.10), leads to the transmission coefficient, 

W e  mode1 a 

the atom at the 

molecular switch by parameterizhg the bond and site energies of 

ongin [l, 31 using the perturbation potential (Fig. 8.2) 
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where O = p / p 7  y = p'lp and 

where 
i(u - 1) iz, i ( a y  - 1) 

A =  B = -  C =  
2 s i d  sin 8 ' 2sin8 . 

To solve (8.17), we need the three coefficients c-1, q and cl, which we obtain 

by returning to (8.7) with (8.15) and (8.2). Setting n = -1, we fmd 

For n = O, we obtain 

while n = 1 yields 

Cornbining (8.19), (8.20) and (8.21) into a matrix equation, we have 

which yields solutions 



which we insert back into (8.17) to obtain 

- - 1 - 4AC sin2 û - 2i(A + C )  sin 9 
eie [ 2 i ( ~ ~  + C2) sin 0 - 2(A + C)] + 1 - B 

- - . . .  . 

1 A 
(22. + (cos8 +isinfl) [(o - 1)' + (ay  - 1)' +2(u - 1) +2(oy - l)]) 

where we have defined w = cd-. 
The transmission pmbability is extracted via 

T ( X )  = ls12 = 
4 1 

2 
[z, + x ( w 2  - 1)] ' 

(y+ 3 l +  w4(1 -X2) 

which is the same result obtained via the transfer-matrix method [l, 31. knplement- 

ing Azbel's energy-independent technique [108, 1091, we integrate (8.27) over the 

energy band, but weighted by the energy-derivative of the Femi-Dinie distribution, 

viz., 



where T is the absolate temperatare and is Boltzmann's constant. kitroducing 

the dimensionlws nduced temperature, ( = the derivative of (8.28) is 

Thus, the effective-transmission pro bability is 

We s h d  consider the temperature independent limit 1 + O, where (8.29) becomes 

a Dirac &hinction centered at the Fenni energy. Hence, (8.30) becomes 

8.2 Embedding Field-Enhanced Regions 

Instead of lùniting the perturbation region to a single atom, we now consider re- 

placing it with a finite chain fkm n = O to n = N, with site (bond) energies a' 

( P r ) ,  which is attached to the crystal with bond energies 6. The application of 

an applied field of gradient r, restricted to this portion of the chah, inhoduces a 

potential diffennce, 4 = NT, between the site energies of the crystal leads on either 

side of the field region. 

As in the chemisorption case, we must ensure that the field strength is such as 

to avoid ionization of the crystal. Again, we reqaire the testraint IM'l(2P) 1 < 2, 

which allows at least one state to remain deloeaüzed across the field region. In 

fact, for ideal transmission to be possible through the crystal, a state must remain 



delocalized aaoss the entire system. In particnlar, we must have an overlap between 

the allowed energy bands in the aystal leads, whence, (41 < 41B1. 

We define the energy in the right lead by 

where U = 0/(2P) ,  and effective wavenumber w via 

X' = COS W .  

The overlap between bands is, thedore, U - 1 < X < 1. 

Since we set the reduced-field strength relative to P, the argument of the BFs 

now becomes 

x = - q /F  = -qN/U, 

where I )  = /3'//3. 

To use the LS equation, we consider the tmperturbed system to consist of three 

isolated pieces, the left semi-infinite crystal lead, the h i t e  field-modified region, and 

the right semi-infinite lead. A right-moving Bloch wave is introduced at n = -W. 

Since the energy references in the h o  crystal leads are difî'erent, we must be careful 

with the normalization of the Bloch waves. The required condition is that the local 

probability clrwent must be constant throughout the chah 

Following Caroli e t  al. [110], we define the probabilitpcurnnt operator to be 

proportional to the projected difference between adjacent sites, namely, 

which has the expect ation value 



J,,-, = Ja2 - ei*) = -2i Jo2 sin 0, 

while for an outgoing wave, 4. = bek, in the right lead 

J,,, = ~ b *  (ey - eW) = -2iJb2sinw. 

An incoming Bloch wave, e, = oeid, in the Ieft Iead wil l  have a probability carrent 

(8.37) 

Requiring (8.37) and (8.38) to be equal leads to the ene7=gy-independent solution in 

which 

Thus, (8.10) can be rewritten as 

We now tnrn to the LS equation to obtain cn for the semi-infinite chains kom 

the infinite system by breaking the bond between n = -1 and n = O, i.e., we 

introduce 

Therefore, we find 

Rewriting these as 



we find solutions 

4 =O,  c:, = - 2 i J z ë ,  

whereby, (8 -42) yields, 

ei"B - eilni6 
2i sin ne 

O &-a, nI-1' c, = 
&a = { O ,  n 2 0- 

The GFs for the crystal leads are determined by deaving the infinite chain with 

the potential 

With the aid of (3.8), the GFs for the semi-infinite chains are given by 

ki the leR lead, where the energy is X = cos 8, we consider n, m 5 -1 and note 

that G" is zero whenever one of the indices is 

which we use to obtain 

outside the lead. Hence, we have 

eIm+w e'e 
e(-lYrn) = - + -e(-1, rn). 2ip sin 8 2% sin 8 

Solving (8.50) gives 

@(-il rn) = 8% ilni+ile ,id 1 

whieh in (8.49) results in 



IR partidar, on setting m = -1, ne have 
-id is - .-i(n+l)6 e e 

@(n-, -1) = - - p e - w  
2Q sin 8 

Likewise, the right-crystal lead will have X' = cos w, so, for n, m 2 N + 1, we 

where again any element of (7' wïth an index outside the lead is zero. Setting 

n = N + 1, (8.54) becomes 

e lm-N-llw 

@ ( N + l , m )  = - ew + 
2ip sin w 2i sin O 

@(N + 1 3 4 ,  

which leads to 

@ ( N + l , r n )  = p-le i (rn-N-i lw w e .  (8.56) 

On inserting (8.56) in (8.54), we arrive at 

$ln-NIw i[m-N-llw iw _ eiln-mlw e e 
c"(n+,rn+) = 

2@ sin w 3 (8.57) 

which for m = N + 1 becomes 
ei(n-N)w e iw .,_ e i(n-N-i)w 

GO(n+, N + 1) = = p-1 $n-N)w 
2@ sin w 

(8.58) 

Having the required components for the crystd leads, we attach them to the 

W t e  region, which we describe through its Greenian  GO^, by nsing the potential 

and the unperturbed GFs, 



The LS equation in the left lead, n < -1, is therefore 

where A = 6/p which, in p&idar, provides 

In the field-modified region, the LS equation (8.7) gives 

In the right lead, m > N + 1, we have 

which at m = N + 1 produces 

The transmission co&cient is obtained from (8.65) by equating it to (8.40), which 

leads to 

Inserting (8.63) in (8.62), we obtain the implicit eqnation 

which yields the solution 



Using (8.69) and (8.66) in (8.64) leads to 

which is again implicitly defined, so that we may write 

where 

D(û, W )  = [1 - A2pGW(0, 0)ei'] [1 - A2pG0,(N, ~ ) e ~ ]  

- A4ei(e iw)~~oN(~,  N)PGoN(N, O).  (8.72) 

Thus. the transmission coefficient (8 -67) becomes, 

whence, the transmission probability is 

7 = Ir12 = 4 sin 8 sin w~"IPGoN(N, O) I 2  
la@, 4 l2 

In terms of the reduced energy, (6.5), (8.32) and (8.33)show that 

where 

D(X) = [1 - A2flGo~(0,0)(X + i m ) ]  

x [i - YPGoN(N, N)(X + U + i dl- (X + u)')] 
- A4(X + <-)(x + lJ + id1 - (X + U)2)f lG~N(0,  N)flGoN(N, O). 

(8 .?6) 



Fig. 8.3: Band overlap regions for indicated potential difkrences. 

It now remains only to determine the GF dements of the field-modified region. 

Since we have altered the bond and site energies in the finite region, we must 

renormalize our parameters accordhg to P + $ = &. In particular, 

is now the effective energy parameter inside the field region. Along with x + x as 

defined in (8.34), equation (8.77) requires v -t p, where 

Wit h these conversions in mind, we modify the results of 5 5.2 to obtain the required 

G F  elements of the finite chin. 

Next, we consider the parameter efFects on the transmission probability (8.75). 

If the field-modi6ed region material is the same as the leads, ramping the potential 

difference, U, narrows the band-overlap region (Fig. 8.3). If we choose U = 1, 



Fig. 8.4: Transmission probability of embedded field-states in (XJ) space with 

U = 1 for a) identical materid, r = 0, 1) = 1, b) different material, z = -0.25, 

~7 = 0.75. 

the overlap region's width is haü that of the conduction bands, so that N/2 of 

the discrete states are embedded in the overlap region. Varying the interface bond 

strength, A, we see that as it inaeases, the separation between the states spreads, 

while the s t ates t hemselves broaden and increase in intensity until fidl transmission 

occurs at X = 1, after which they become narrower and &op in intensity, while 

continuing to separate (Fig. 8.4a). 

Moving on, we consider altering the matenal in the field-modified region. Ad- 

justing z will rigidly shift the embedded field-states behind the overlap window. 

Changing q modifies the band-widfh of the field region. For q = 0.75 and z = -0.25 

(Fig. 8.4b), we see that the states are shifted downward, leaving little transmission 

at the higher energies. The separation between field-states is narrowed and the 

states themselves are reduced for low interface bond enagies, but sharpened for 

X > 1. 



8.3 Field Effect on Molecular Switching 

In this section, we wish to investigate the possibility of securing control of the 

transmission probability by means of a single-site impurity inside the fidd-modified 

region. Since (8.75) and (8.76) reqaire ody the GFs involving the end sites for the 

region, here we only need to constract a finite chah with an embedded impurity in 

a hear potential. To do this, we attach finite chahs to either side of the impurity 

located at site M. Thus, the mpertnrbed GF is in three parts, Le., 

which we attach via the potential 

Using the Dyson equation (3.8), we have 

which requires us to find 

The on-site GF at the impurity is given by 

GoN(M, M )  = @'(M, M) [l f PGON(M - 1, M) + p'Gm(M + 1, M)] , (8.83) 

which uses 



and 

G w ( M  + 1, M) = p r @ ( M  + 1, M + ~ ) G o N ( M ,  M). (8.85) 

Inserthg (8.84) and (8.85) into (8.83) generates the implicit equation 

which, on rearranging, gives 

Returning to (8.81) and using (8.87), we obtain 

Similady, we have 

which, by (8.87), yields 



a) 
w = oas 

Fig. 8.5: Field effects on switching parameters for indicated values of the potential 

difference, a) y = 0.5 and 2. variable, b) z. = 0.25 and y variable. 

The cross-terms involving the end sites are generated by 

Finally, we use the parameters of the impurity (8.15) at site M to show that 

Along with the modiiied results of 5 5.2, (8.93) allows us to obtain the GF elements 

to insert into (8.75). 

Employing (8.31), we choose 2. and y as the candidate parametas for describing 

the space over which we wish to control the impurity [l, 31. We take the system 

shown in Fig. 8.4b with A = 0.75. Talong Xt = 0.25 and o = 0.8, we first set 

y = 0.5 and consider the aect  of ramping the field on the z, m e  (Fig. 8.5a). As 



U is increased, the transmission peak inaeases in height to a resonance at U = 0.25 

b dore decreasing again. 

Tuming to the case of z, = Xr = 0.25, we treat y as the snitching parameter 

(Fig. 8.5b). Here, the peak transmission probability is increased both in height and 

y location, as U is increased, doabling from U = O to U = 1. 



Chapter 9 

Conclusion 

9.1 Results and Discussion 

There has been considerable debate over the modehg of electrified solids. While 

numerical computation has gone far in resolving these controversies, we have been 

able to provide a greater understanding of the phenornenon by developing a rigorous 

analytical GF method to describe the application of a constant field to 1-D crystal 

TB models, resulting in exact solutions involving combinations of BFs. 

Access t O the finite, semi-infinite and infinite chahs has generated insight into 

the mechanisms by which characteristic energy-spectra properties appear as we 

traverse firom one type to another. We have also seen how the zero-field properties 

a ise  from those of a large field by passing tkough intermediate resdts. 

The breadth of application for this method has only been touched upon by 

the investigations chosen here. The discretkation of the en- band has major 

implications in the definition and location of surface states, due to the absence of 

traditional existence conditions, but, at the same tirne, introduces surface resonance 
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p henomenon. 

In looking at  field-enhanced chemisorption, ne have found that electrifjing the 

substrate may enhance the chemisorptkn process through the ereation of magnetic 

solutions, or weaken it , depending on the properties of the material. 

In ME, we have been able to embed a field-enhanced region into a conducting 

matMd and model the transmission properties through the system using a LS 

approadi. The transmission probability can be manipulated through the control of 

the single impurity-site paramet ers, thereby producing a molecdar switch. 

In all  three areas, the ability to ïnclude field-modified regions will expand the 

types of problems accessible to researchers. 

9.2 Future Directions 

The application of this method is restricted only by meeting the hypotheses of Pin- 

cherle's theorem, which allows us to consider more general systems than the simple 

models we have used here. The introduction of alternathg bonds gives rise to a 

model for semiconductors, allowing the field to perturb the bond energies gives rise 

to hypergeometric function solutions instead of BFs (451. 

In the surface states and chemisorption treatments, saeening dects  have been 

neglected. The reaction of the electron gas to the applied field d alter the elec- 

tronic configuration. 

The next step in developing a working ME circuit is to design atomic-level 

analogs to other macroscopic electronic devices, e.g., resistors, capacitors, inductors. 

The electronic properties of rnolecular capacitors can be investigated by embed- 

ding a short chah of dielectric materid in an polymeric molecular wire. The static 
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electronic structure can be obtained from the application of our GF approach. To 

properly andyze capacitance, however, ne must consider the charge btdd-ap and 

relaxation time dependence of the materid- 

By considering moledes based on a stacked benzene-ring structure embedded 

in a polymeric chah, a conceptual model for inductors can be deveioped. When 

current flows thongh this system, energy should be stored throngh the aeation of 

an applied field. To obtain the static electronic structure of such a dain under the 

influence of an applied field d require the present Green h c t i o n  approach to be 

implemented beyond one-dimension. The extension to two dimensions of Pendry's 

causal-surface GE' method [91] suggests the direction that such a generalization 

should take, 

Once the conceptual models for these ME devices have been analyzed, the elec- 

tronic structure of candidate designs can be investigated via scanning tunneling 

rniaoscopy. Results fkom such experiments will provide duable information on 

improvements to the theoretical rnodels. 



Appendix A 

Rydberg Atomic Units 

The one-dimensional time-independent Schr6dhger equation is given by 

where 4 (x) is the wavefunction for a partide of mass m, charge q and energy E 

d e c t e d  by a potential V(x). 

Often, as in the case of this thesis, the particle we are describing is an elec- 

tron, which has a rest mass m = m. 9.10956 x 10-*'g and a charge q = -e t: 

-4.80325 x 10-lOesu. In CGS anits,  where the p d t t i w  of fiee space of is not re- 

quired to determine the electrostatic field equations, we combine these characteristic 

electron values with Planck's constant, ti = hl(2n) a 1.05459 x 10-*'ergs, to obtain 

a relative length scale based on the Bohr radius r o  = K/(me2) n 5.29177 x cm, 

and a relative energy scale based on the Rydberg constant R, = mee4/2h2 

2.17991 x 10-lleig. 

If we convert our length scale to multiples of the Bohr radius, 



then, switching to the dimensionless length variable via $(z) r Jaoik(aoz) = 

J"oiE(x), we have 

Converting ou.  energy terms to multiples of Rydbergs, 

and 

(A. 1) becomes 

or. rewriting, 

where all the variables are now dimensiodess, lengths normalized to the Bohr ra- 

dius. and energies normalized to Rydbergs. 

Tuming to the application of a constant 

To obtain the potential in 

yields 

applied field, E, the electric potential 

Q(x) = -EX.  (A-8) 

Rydberg atomic units, the application of (A.5) to (A.8) 

so that 

which defines the field gradient, 7. 



Appendix B 

Creation and Annihilation 

Operators 

In a collection of F e m i  partides, each state, n, can either be empty or occupied, 

i.e.. N, E {O, 1) is the number of partides in the state n. If we order the states, 

the total wavehuiction can be labeled by the state occupancy [98], 

We wish to introdace aeation operators, cm,  with the properties that, if Nn = 0, 

operation wiU yield the wavefûnction with N, = 1 and, if N, = 1, operation gives 

zero, since we cannot create a particle in an occupied state. Hence, 

where the sign is detennined by the rider of occupied states below n, viz., 
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due to the necessity of reqaicing Fermi wavefimctions to be antisymmetnc. 

The conjagate operator, C, is the annihilation operator, produchg a wavefirnc- 

tion missing a particle in the nth state, if there was one, or z e t ~ ,  if not. 

From (B.2) and (BA), we can constrnct the number operator for the nth state, 

which retums the eigenvahe at state n, 

Nn INi7Nz, - -  - 7  N n 7  - - -) = N: IN15 N2,. . - 7  Na,. -) = Nn IN19Na,- --,Nn,-- a) 

(B-6) 

since N, is either O or 1. Note that (B.6) is an eigenvalue equation. Since the N, 

operator has only two possible eigenvalues, we can represent it as a 2 x 2 matrix, 

wit h the eigenvectors 

Hence, (B .2) becomes 

C IO),, = ( - 1 P  1% 7 d Il), = 0, 

so that 

(B. 10) 
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Thus, we must have 

which does indeed have the required properties, 

We now have enough information to derive the anticommutation d e s  for the cre- 

ation and annihilation operators. 

First, we consider operation on a single state. The four relevant equations are 

Next, we consider two states, rn < n. We have, 

since the operation of Ç, fùst rednces v, by 1, but @, leaves v,,, unchanged, hence, 
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whence, 

leads to 

{6m,@n)=0,  m < n .  (B.20) 

Choosing m > n in (B.15) through (B.20) yields the same results- Thus, we have 

for any ml n. 



Appendix C 

Summing Series of Matrices 

The series form for the elements of the Greenian GNfl given in (3.34) can be written 

as 

where the bond between mesh sites 1 and rn have been added at the (N + l)st 

iteration. 

We wish to consider the summation of the a b  elements of products of the h and 

g matrices given by (3.33). Since matrix addition is linear, the s u m  of a b  elements 

is the a b  element of the s u m  of the matrices, Le., 

which reduces the problem to considering the matrix series. 

Let us d e h e  the Wb partial sum to be the matrix SN, and then mnltiply on 



the right by gh, 

The clifference between these two equation is simply 

To proceed, we must address the final term in (CA). We reqaire Idet(gh)j < 1 in 

order for the right-hand side to remain 6inite as N -+ m. When this condition is 

satisfied. the product converges to O so, by multiplying on the right by (1 - gh)-', 

we find that, in the LMit N -+ o ~ ,  the series converges to 

Hence, the ab element of this ses& is exactly what appears in (3.34), 

Returning to the condition for convergence, we use (3.33) to expand the deter- 

minant into the CF and 

1 > ldet(gh)l = 



Since there WU be cases where one-of the mesh-sites being U e d  is not already 

part of the cluster, Le., GN (ml 1) = GN (1, m) = O, the condition in (C.7) indudes 

the limitation that 

[ G ~ ( l ~ ~ ) H d G ~ ( m , m ) ~ i r , [  c 1 (c-8) 

for convergence of the geometric series. 
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Matrix-Determinant Approach . 

The following derivation, based on communications wïth Dr. A.T. Amos, provides 

an alternant derivation of the Il? (3.50) for the sudace GF element. 

Using the LCAO wavefanctions as a basis, the sabspace containhg the connected 

sites between M and n allow us to write the the Schrdinger equation, Le., the 

inverse of the Greenian GM,*, as an n + 1 - M, n + 1 - M tri-diagonal mat* 

Thus, we need to invert M in order to obtain the Greenian, and so the GF elements 

123 
C 



are 

where the numerator is the à, j cofactor of M'. ln parti&, for i = j = n being 

the last row and column, (D.2) becomes, 

By artifiüally d e f h g  detMMa-, = 1 and detMMa-2 = 0, the determinants can 

be expanded dong the nth row to be 

since the ma& is tri-diagonal. 

Inserting (DA) into (D.3), we obtain 

1 

( E  - a,,) - p2GM,,-l(n - 1, n - 1) ' 
which reproduces the resdt in (3.50). 



Appendix E 

Crystal Orbital Surface States 

The properties of an N-atom crystal can be extracted fiom those of the infinite, 

periodic crystal which satisfies the Born-von-Karman boundary conditions (2.10). 

Consider a cyclic crystal of N identical sites (Fig. E.1). We s t a r t  with (6.2) and 

note that the A0 states are spatial translations of one another, i.e., 

where d(z)  is the wavefunction of an isolated atom centered at z = 0. 

Because (6.5) is independent of the s i p  of 8, and since the periodicity of the 

crystal makes the 8-intenral arbitrary, we need only consider the positive solution 

at this tirne. Thus, the coefficients (6.3) become 

Reca3ling t the Bloch-Floquet condition @A),  
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Fig. E.1: Cyclic representation of 1-dimensional infinite chah sati-g Born-von- 

Karman periodic boundary conditions. Breakhg single bonds results in N-atom 

finite chahs with surfaces. 
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and utilizing (6.2), (EX) and (E.2) to expand both sides of (E.3), ne have 

A.& / (z + a 1 d)  O(.' - no) dzf = ~e*e;& / (z 1 z') +(zf - ma) dz' 
m 

Putting m = n - 1, and seordering the second mm, ne find 

so that 

B = ka, 

indicating that O is the effective wuvenunzber of the aystal wavefunction. 

Applying the normalization condition to the wavefunction gives 

where we have used the orthonormality of the A 0  basis wavefimctions. This leads 

and so 

Thus, the wavefunction coefficients (E.2) for the cydic crystal are 
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Returaing to the structure of the cydic crystal, we eliminate the bond between 

the N and N + 1 atoms (Fig. E-i), which produces a finite chah starting at site 

n = 1 and ending at  n = N. The remsion relation for the internai sites rernahs 

as above, 

( E  - 4% = P(%+i + %-l), ~ = 2 , 3  ,..., N-1, (E.11) 

while the surface sites provide the boundary conditions 

which breaks the previous cyclie periodieity. The site enagies at the surfaces may 

be modified, since the surface atoms are bonded to only a single neighbour atom 

instead of two. To consider the efEects of a single surface at n = 1, where we set 

ai = a', we terminate the chah at n = N without mod-g the site energy there, 

which is equivalent to setting c ~ + ~  = 0. 

Without periodicity, we need to consider both solutions to (6.4). Ta.kir~g a h e a r  

combination of the two, the generd solution is given by 

At n = N + 1, the second boundary shows that 

so (E.13) becomes 

In reduced notation, (E.12) takes the form 

(2X - %)ci = c*. 
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Fig. E.2: Solutions to z = sin(N + 1)Blsi.n NO, showing N intercepts for Ir1 .< 

N / ( N  + 1) and N - 1 intercepts otherwise. 

With the aid of (6.5) and (E.15), eqnation (E.16) leads to the eigenvahe e p a -  

(E. 17) 

which defines the energy spectnuD of the finite q s t d .  

Graphically2 solutions to (E.17) are shown in Fig. E.2. A single solution for any 

z occurs behreen consecutive roots of sin NBy except pahaps in the fùst and last 

intervals, where both numerator and denominator become zero simultaneously at 

0 = O and 0 = a. We use L'hôpital's rule to evaluate (E.17) at these points, 

sin(N + I - - (N + 1) cos(N + 1)8 l+ 1/N, 0 = O ,  

sinNe e=op lV cos N8 ie=o.* = { 1 - 1  8 =n.  

(E. 18) 

Hence, solutions fail to exist in the first i n t d  when z > 1 + 1/N a d  in the 

last intenml when z < -1 - 1/N. The disappearance of a single solution when 
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1 z 1 > 1 + 1/N is related to the restriction placed on 0 in (6.5). The misshg solntion 

defines a surface state, which lies outside the energy band of the unperturbed 

crystal. Again, to access energies outside the band, we must d o w  8 to become 

cornplex. Inserthg (6.18) into (6.5), we obtain 

which mnst be real, so p # O requires 

or, withoat loss of generdity, places fl at either endpoint shown in Fig. E.2, i-e., 

Taking the first of these choices, we h d  that (6.5) becomes 

X = coshp, (E.22) 

which is stnctly above the energy band, and so defines a positive P-state. Since we 

are only considering the surface at n = 1, we let N + w in (E.18), whence, 

which gives us the ezistence condition for a P-state, viz., 

Applying our choice of B to (E.15), ne find that in the limit N + oo, 
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which exhibits exponentid decay away fiom the d a c e ,  Le., the wavehction is 

localized on the s d a c e  site, which we take as a denning property of a surface state. 

Conversely, if we choose 8 = n + ip, (6.5) yields 

X = - cosh p, (E.26) 

which is always below the band and indicates a negative N-state. The d a c e  

perturbation parameter is again obtained fiom (E.18), namely, 

z = lim (N + 1) cos(N + l)n cosh(N + l)p 
IV+- N cos NT cosh Np 

which leads to the existence condition for an N-state, 
x 

Likewise, the coefficients of the N-state are obtained fiom (E.15) in the limit 

N + oo, with the result that 

which again shows an exponentid decay aaay from the sudace, but has an oscilla- 

tory feature not present in the P-state case. 

These 1 s t  results have been obtained in the limit as N -t oo, which transforms 

the f i t e  chah into the semi-infinite one, descrïbed in f 4.3. In parti&, the 

energy spectnun becomes the continuons band -1 5 X 5 1, and it is with respect 

to this continuum that the existence conditions (E.24) and (E.28) indicate the 

presence of a dismete s d a c e  state. 



Appendix F 

Lippmann-Schwinger Equat ion 

We derive the Lippmann-Schwinger (LS) equation following the procedure given 

by Liboff [111]. First, we inhoduce the Heisenberg picture of Quantum Mechan- 

ics, which is equivalent to the usual Schr6dkge~ picture, the difference being that 

Heisenberg placed the tirne evolution with the operators of the system instead of 

the wavefunctions. 

Subject to a time-independent Hamiltonian, El!', the Schriidinger wavefunction, 

I$(t)) ,  develops via 

(t  ) ) = e-qt-')* ln l$ (to) ) , (F-1) 

so that on differentiating with respect to tirne, and mdtiplyhg by ifi, (F.1) becomes 

the Schriidinger equation 

The Heisenberg picture makes use of the unitary opaator applied in (F.1), 



to transform the SchrOdinger wavefanctions and operators. Even ifthe Hamiltonian 

is time-dependent, Le., (F.1) no longer holds, the Heisenberg wavefiinction can be 

obtained ikom the tirneindependent part of the Hamiltonian via 

Since the red t s  of quantum mechanics mnst remain undtered by the choice of 

formalism, we use the operator expectation value 

to obtain a Heisenberg operator 

from the equivalent Schriidinger opaator. 

We now introduce the interaction picture perturbation technique. To El!', we 

add a time-dependent perturbation, V ( t ) ,  with perturbation parameter A, Le., 

Since the Hamiltonian is now time-dependent, so alPo are the Heisenberg wavefune- 

tions. Differentiating (FA), we h d  



Integrating (F.8) fiom to to t and rearranging, we h d  

which can be iterated to give a A-perturbation series solution 

For the LS derivation, we begin with the unperturbed Hamiltonian, @', and its 

corresponding wavehctions 

A scattering perturbation, V, is introduced via 

where c -t O+,  thus giving the desired perturbed Hamihonian at t = 0, and the 

unperturbed Hamiltonian for t -t f W. Since we shall be using (F.9), which gives 

an exact A-solution, instead of approxbating with the series expansion, we set 

X = 1- 

The scattering wavehctions, which we wish to obtain, via., 

(F. 13) 

are extracted fiom the the-dependent wavefunctions of (F.12), namely, 

In the b i t  c -t O+, the t = O solutions can be considered eigenstates of the total 

H d t o n i a n ,  i.e., 

El$) = E 1$) (F.15) 
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IIansformùig into the Heisenberg pictare via (FA) and (F.6), we consider to -t 

f oo, where the Hamiltonian approaches the anperturbed one. Thus, at t = ta = 

h o ,  we make the connedion 

This choice of to also aUows us to set 

whence, 

Inserting (F.16) and (FM) into (F.9), we obtain 

for our choices of X and t o  - Using (F-6), (FAT), (F-14), (F.13) and (F.l5), equation 

(F. 19) becomes the desired LS result, Le., 

where 6 is the Greenian for the unperturbed Hamiltonian. 



Appendix G 

Maple Source Code 

AU plots were generated using the MAPLE V release 3 [Il21 symbolic computation 

software. 

G . l  Surface States 

> P:=0,02; 
> P:=C]; 
> M:=l; 
> !mdata si+2.in 

> read 'si+2.inC; 

> Digits:=iOO: 

> gc(0): 

> J:=(n,x)->BesselJ(n,x); 
> djd:=proc(n,r) 
> k:=O; 

> g:=O; 

> h:=O; 

> while g > -55 do 

> f :=(-rœ2/4) 'k*Psi(n+k+l) / (k! *GAHi¶A(n+k+i) ) ; 
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> k:=k+l; 

> h:=h+f ; 

> g : = evalf (log10 cabs (f /h) ) ) ; 
> od; 

> j :=JCn,x) *ln(r/2)-(x/2) 'a+h; 

> W C j ) ;  
> end: 
> dj:=(n,X,F)->djd(X/F-II-l,i/F); 
> dos:=Cn,X,F)->evalf (2*F*J(X/F-npl/F)/dj(n,XaF)); 
> den:=(n, X,F)->J(X/F-0-1 a 1/F) ; 

> zero:=proc(site,a.b,field) global P.Start,H,H; 

c:=b-a: 

Start :=M: 

R:=P: 

bins : =ceil (c/abs (field) : 

for a from Start to bins do 

A :=a+(n-1) *ab8 (field) : 
B : =a+n*abs (field) : 

da: =den(site ,A,field) : 

db:=den(site,B ,field) : 

if da*db <= O then 
d:=(A+B)/S: 

dd:=den(site,d,field): 

while B-A>lOœ (-50) do 

if da*dd <= O then 
B:=d: 

else 

A:=d: 

da:=dd: 

fi: 

d:=(A+0)/2: 

dd:=den(site,d,f ield) : 

od: 

E:=[op(H), [Cd,Ol, [d,dos(site,d,field)]]] : 

P:=H: 
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> fi: 

> PI:=n+l: 
> save M,P,'si+2.ioc; 

> print (n , bins) ; 
> od: 

> end: 

> zero(0,-2,2,F) : 

> save H,'si+2'; 

> !mdata si+2 
> quit; 

G .2 Chemisorption 

> N:=lOO; 

> F:=0.0125; 
> Z:=-2.96; 

> U:=4.23; 

> E t a ~ 2 . 4 6 ;  
> Left : =Z* (l+abs (FI ) ; 
> Right:=2.0; 
> FL:=61; 

> Fa:=O: 
> P:=~:M:=~:T:=O:V:=~: 

> !mdata 1+35. in 

> !mdata f+3S,in2 
> read 'f+3S.inC: 

> read 'f+35.in2': 
> Digits  :=lOO: 

> build:=proc(first,last,field) local  a,n;\ 
> global C,Nim,Den,DiffCrys,DiffAd; 
> aC-2J:=O:a[-i]:=i: 

> for n from O to last-first do 
> aCn3 :=collect (2*(x-(last-n) *f ield) *aCn-lJ-aCn-2] ,x) : 
> od: 
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> Num:=aClast-first-lk 

> Den: =a[last-f irst] : 
> G:=ittim/Den: 
> Dif f Crys : =ciif f (aclast-f Ust-23 Iaclast-f irst-13 ,XI : 

> DiffAd:=diff (aclast-f irst-11 /aClast-first] ,XI : 
> end: 

> bUildCl,N,F) : 
> den:=(eta,site,X)->sirbs (x=X,Den) : 

> dos : =(eta.X) ->subs ( X I I [ ,  1/(1-eta-2rDif f Crgs/2) ) : 

> zero:=proc(eta.site,a,b,field) global B,H,P,Fa.Start; 

c:=b-a: 

Start :=M: 

H:=P: 

Factor : =Fa: 

bins : =ceil(2Tactorrc/abs (field) ) : 

print ( S t a r t  , b i d  ; 

for n from Start to bins do 

A : =a+ (n-1) *ab8 (field) /2'Factort 

B : =a+n*abs (field) /2"Factor : 

da:=den(eta,site,A,field) : 

db :=den(eta, site ,B ,f ield) : 
if da*db <= O then 
d:=(A+B)/2: 

dd:=den(eta,site,d,f ield) : 

 hile B-A>1Od(-50) do 

if da*dd <= O then 
B:=d: 

else 

A:=d: 

da: =dd: 

fi: 

d:=(A+B)/2: 

dd:=den(eta,site,d,field) : 

od: 

H:=Cop(E), CCd,o3, [d,dos(eta,d)rn : 
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> P:=ti: 

> fi: 

> H:=lL+l: 

> save H,P,cf+35Anc; 

> print (n) ; 

> od: 

> end: 
> if T = O then 
> zero(1~0,Left.Right~F): 

> C:=H: 

> T:=l:V:=U: 

> Save T,C,V,cf+3Slin2c; 

> n:=i:P:=n: 

> Save U,P,  cf+3S.in'; 

> fi; 
> Ek : =sum(C [kJ [2] Cl] , k=1- .Fi.) ; 
> d e n : = ( e t a , s i t e . X ) - > s n b s ( x = X ~ 2 * ( X - s i t e ) ~ ) :  
> dos :=(eta,X) ->subs (FX, l/(l-eta"2rDiff Ad/2) : 

> occ:=proc~eta~site,coreng,a,b~field~fermi)\ 

> global K,L,T,V,Start2,M,P,C; 

> Start2:=T: 

> K:=V: 

> for n from Start2 to 26 do 

> zero(eta. site+coreng* ((n-1) /25) ,a. b ,field) : 
> K:= [op(K) . [(n-1) 125, sam(H[k] [21 c21 , k=i . .f enni)]] : 

> V:=K: 
> T:=n+l: 

> save T,C,VDCf+3S.in2'; 

> M:=l:P:=u : 

> save M,P, cf+3S-inc; 
> print (point=n) ; 

> od: 

> ~ : = a :  
> for a from 1 to 26 do 

> L :=Cop(L) , CKC27-d L2J ,KC27-d ~1111 : 



APPENDIX G- W L E  SOURCE CODE 

> end: 

> cor(1); 

> zero (Eta, Z+U*Seïf. Lef t , Right , F) : 
> En :=sitm(H [n] [2] ci] ,FI. .FL) ; 
> Delta:=S*{En-Ek) + E[FL+l] C23 Cl] - Z - W*Selfo2; 

> Q : =2*Self -1 ; 

> Save ~,E,K,t,~elf ,Ek,En,Delta,q,'f+3Sc; 

> imdata f+35 

> quit; 

G .3 Molecular Electronics 

> M:=5: 

> N:=lO: 

> Y:=1.2: 

> U:=O13: 

> 2:-0.25: 

> u:=O,7S: 
> s:=0.8: 
> #y:=O.S: 
> zs:=0.25: 
> Digits:=iOO: 
> build:=proc(first,last,field,bond,site)\ 
> local a,b,n,Numa,Nmb,Dena,Denb; global G00,GW 

> ,GON,CNO; 
> a[-2]:=O:a[-l]:=i:b[-2]:=0:b[-i]:=i: 
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> for n from O to last-first do 
> a[n] : =colleet (2+( (X-site) /bond-(last-n) +field) *&En-11 - 
> aLn-2J ,X): 
> b In] : =colleet (28 ( O[-site) /bond-(f irst+n) *field) *b [PI] - 
> b Cn-2J , X) : 
> od: 

> ~txmo:=a[last-f irst-11: 
> ~umb : =b [last-f irst-1 J : 
> Dena:=a[last-first]: 

> Denb: =b [last-f irst] : 

> GO0 : =Numa/Dena : 

> GNN : =Numb/Denb : 

> CON: =l/b[last-first] : 

> GNO :=i/a[last-f irst] : 

> end: 

> baild(M+l ,N ,U/(N*w) ,u,Z) : 

> Gnn:=GNN:Gmn:=GON:Gmm:=GOO:Gnm:=CNO: 

> build(0,M-i,U/(N*w) ,0,2) : 

> g00:=G00:gOm:=GON:gmm:=GNN:gmO:=GNO: 

> ~ 0 0  : =g00+s ̂2*g0m*gmO/ (2* (X-2s-M*U/N) -(s02*p+ 

> ŝ 2*y'2*Gmm)) : 

> GNN : =Gm+s'2*y'2*Gnm*Gm/ (2* (X-zs-K*U/N)-(s-2 

> *gmm+s*2*y^2*Gmm)): 
> COU:=s'2ry*g.0*~im/(2*(X-zs-H*U/N)-(s'2*gem+s 
> ^2*y^2*Gmrn) ) : 

> G N O : = S ' ~ * ~ * ~ ~ O * G ~ ~ / ( ~ * ( X - ~ S - H * U / N ) - ~ ~  

> -2*p'2*Cmm)) : 

> f :=X+I*sqrt (1-X-2) : 
> fl:=subs(lC=f-U,f) : 

> zet :=sqrt (1-X"2) : 
> zet 1 : =subs (X=X-O, zet : 

> ~~:=(1-Y'2/v*f*G00)*(1-V~2/~*f1*GNN)-Y'4/w~2*f*f1 
> *GON*GNO: 
> T: =S*sqrt (zet*zeti) *Yœ2/w*G0N/DD : 

> TT : =collect  ((abs (T) ) " 2 ,  X) (Heaviside (X-isid 
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