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Abstract 

Conventional construction of Jointed Plain Concrete Pavements (JPCP) in Canada consists of 

placing a round steel epoxy-coated dowel at the mid height of the pavement. Steel dowels reduce 

stepping at the joint to improve comfort and reduce the stress concentration on the support layer 

beneath the pavement. Most importantly they transfer load and are commonly referred to as load 

transfer devices. Problems with dowel bar deterioration, including corrosion causes the slab joint 

to lock and cause stress concentrations as the slab expands and or contracts and curls due to 

thermal and shrinkage straining occurring in the concrete. In this research, alternative joint load 

transfer devices are presented and compared to conventional steel dowels. Four device 

alternatives are developed and evaluated: a Glass Fibre Reinforced Polymer (GFRP) I-beam 

placed directly on the base material; GFRP tapered plates; a continuous horizontal V device; and 

a continuous horizontal pipe device both placed directly on the support layer. The two devices 

that are continuous run the length of the joint similar to a shear key.  

The GFRP tapered plate and I-beam, as well as conventional steel dowels, were analyzed in a 

wheel path sized three dimensional finite element model for wheel loading and static loading 

applied to either side of the joint. An experimental testing program was developed to test joint 

load transfer capabilities of each device when subjected to a static wheel load applied to either 

side of the joint. The GFRP tapered plates and I-beams were shown to transfer load based on the 

results from the wheel path finite element model and experimental testing program. The 

differential joint deflection, stress concentrations and plastic straining occurring in the concrete 

is not reduced with either the tapered plate or I-beam compared to a dowel under wheel loading.  

In addition, a similar plastic straining area identified in the finite element models were noticed as 

an area of damage in the experimental testing program.  

All of the devices developed are analyzed in a quarter slab three dimensional finite element 

model with shrinkage and thermal strains as well as wheel loading applied to the slab to simulate 

service loading. A detailed investigation into the stress distribution around the devices and the 

differential deflection at the joint through the service loading applied is presented in this paper. 

Similarly to the wheel path investigation the stress concentration in the tapered plate and I-beams 

are greater than conventional dowels and also have greater differential deflection occurring at the 

joint. Both the continuous Horizontal V and Horizontal Pipe device reduce stress and plastic 

straining in the concrete during the service load analysis compared to dowels. During daytime 

wheel loading the differential deflection in the joint is the lowest with no noticeable stepping 

occurring at the joint with the Horizontal V device; however is greater than conventional steel 

dowels under nighttime wheel load application. The differential deflection with the Horizontal 

Pipe during day and night straining and wheel loading is similar to conventional steel dowels.   
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1.0 Introduction 

1.1 Problem Statement 

Rigid pavements consist of a concrete slab placed either on base/subbase or directly on the 

subgrade. The stiff concrete slab disperses the wheel load to the granular base using beam action. 

Rigid pavements are commonly used for high volume/high load applications as well as areas 

where the subgrade is poor and a rigid pavement is more efficient than a flexible pavement. 

There are four main types of rigid pavements: Jointed Plain Concrete Pavement (JPCP); Jointed 

Reinforced Concrete Pavements (JRCP); Continuously Reinforced Concrete Pavements (CRCP); 

and prestressed/post-tensioned. In Canada, the most common type of rigid pavement used is 

JPCP because of the relatively low cost of installation compared to the other types as well as the 

thermal behaviour of concrete in the Canadian climate. Generally the pavement is constructed 

with joints at a maximum spacing of 4.5m (Transportation Association of Canada, 2013).  

JPCP can either include a mechanical device for joint load transfer or not. If a joint is included 

the concrete interlock at the joint is used to provide load transfer. Rigid pavements that were 

constructed without joint load transfer were shown to require rehabilitation earlier than those 

containing mechanical devices such as dowel bars.  

Ideally, a joint load transfer device in JPCP will allow the concrete to expand and contract during 

shrinkage and thermal cycles and transfer traffic loads across the joint. Thermal and shrinkage 

loading of the slab causes the concrete to expand and contract in three directions and also causes 

curling of the slab due to strain gradients that occur due to heat transfer through the slab for 

thermal strains and evaporation of water for shrinkage. Joint load transfer devices need to allow 

movement along the length of the pavement due to seasonal temperature changes causing 

expansion and contraction of the slab. Perpendicular to the joint the movements of the each slab 

section should be similar about the middle of the slab due to shrinkage and thermal straining and 

this movement should be restrained to avoid slight differential movement through straining 

cycles.  

Smooth round steel dowels are the most common joint load transfer device used in rigid 

pavements. Generally the dowels are inserted into the slab during paving using either a dowel bar 
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inserter (which is installed at the back of the paver) or placed on top of the base prior to paving 

in wire baskets. Perfectly aligned conventional steel dowels provide restraint vertically across the 

joint and perpendicular to the joint while allowing the expansion and contraction of the slabs at 

the joint location. Both of these types of installations lead to the possibility of misalignment of 

the dowel bars in the concrete. Levy (2010) and Leong (2006) both found when the dowel bars 

are skewed, the joint is not able to function properly as the misaligned dowel bar locks the joint 

(restrains the expansion and contraction along the length of the slab) causing joint 

distress/failure. High concentrations of stress at the dowel concrete interface may cause the 

concrete to fail around the dowel (Levy, 2010). The damaged concrete may affect the joint 

behaviour as the damaged concrete around the device is less stiff locally at the dowel which 

affects stepping (Porter et al., 2001) at the joint or can cause extensive damage to the slab itself 

(Prabhu et al., 2006). Horizontal and vertical misplacement of dowel bars does not cause as 

much concrete distress around the joint but affects the amount of load transferred across the joint 

(Levy, 2010).  

Steel is also susceptible to corrosion, although epoxy-coating is typically applied to avoid 

corrosion of the device. Corrosion of the bar reduces the load carrying capacity of the device 

which will affect the joint load transfer as the effective area of the device is reduced as the bar 

corrodes. Secondly, the corrosion causes a volumetric change to the dowel that increases the 

resistance of relative movement between the dowel and concrete (Cairns et al., 2007).  

Research into the complex nature of joints including the effects of misalignment, shrinkage, 

thermal cycles, and wheel loads is ongoing. It is possible to predict the effects of these variables 

using lab testing as well as analytical studies using computer analysis. The complex nature of the 

loading and distribution of loads through the slab, joints and base layers, make a 3D finite 

element analysis necessary to properly analyze the pavement.  

Dowel bars restrain movement vertically and perpendicular to the slab while allowing movement 

along the length of the slab as desired when they are perfectly aligned; however, dowel bars are 

prone to misalignment and premature distress and deterioration. There has been some research 

into the development of other alternatives that may increase the life of the joints including other 

materials, shapes and sizes for the devices. Developing a device to increase the life of the joint 

has focused mainly on device shape to decrease concrete stress levels and using alternative 
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materials to increase the life of the device itself. Alternative devices are required to reduce 

stresses, minimize the effects of misalignment (or probability of misalignment), and 

reduce/eliminate durability problems in the device itself.  

1.2 Research Scope and Objectives 

The overall objective of the current study is to develop and study alternatives to smooth round 

steel dowels to transfer loads in JPCP by evaluating the performance of dowels, identifying 

possible alternatives to dowels and comparing the alternatives to dowels using analytical and 

laboratory testing.  

The study is directed at development of an analytical model of the slab behaviour because it is 

not practical to test the slabs experimentally under service conditions. Experimental testing will 

be used to supplement the analytical data for device comparison and compare the actual 

behaviour of the devices. The objectives of the study are to: 

 Identify other alternatives that have already been implemented as joint load transfer 

devices and examine their behaviour; 

 Develop alternative joint load transfer devices that could improve on current devices; 

 Develop three-dimensional finite element model that can be used to compare the ability 

of the devices to transfer load under perfect alignment conditions; 

 Develop a three-dimensional finite element model to compare the viable devices 

subjected to service conditions including shrinkage, thermal and traffic loadings; 

 Compare the results of the analytical studies of joint load transfer devices to dowels; 

 Confirm results of analytical study comparison of the joint load transfer devices by 

testing the devices in an experimental setting; 

 Provide recommendation for future use.  

1.3 Research Methodology  

The research methodology that was used is presented in Figure 1-1. A literature review was 

completed to investigate existing load transfer devices, joint behavior and concrete pavement 

finite element models. The research gathered in the literature review was used as a basis to 

determine alternative designs and criteria for the load transfer devices. Based on previous finite 
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element models of concrete pavements investigated in the literature, material models for use in 

the finite element model were developed. The initial finite element model was generated for 

dowel bars and used to create the geometry for the wheel path model. Based on the development 

of the finite element model device alternatives were determined. Two different types of devices 

were developed which were continuous and discrete devices (defined in Chapter 3.0). The 

discrete devices were evaluated using finite element analysis in a wheel load model, then 

experimentally tested under wheel loading and finally analyzed under service loading conditions. 

The continuous devices were only analyzed using the finite element service load analysis.  

 

Figure 1-1 – Research Flow Chart 

1.4 Thesis Layout 

The thesis is organized as follows:  

 Chapter Two provides a review of the literature relating to the current state of practice of 

concrete pavements, concrete pavement distresses, dowel bar load transfer theory, 
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alternative load transfer devices that have been reported, and previous experimental 

testing of concrete pavement joint load transfer ability; 

 Chapter Three presents design criteria for alternative device design criteria and describes 

the device alternatives proposed and evaluation methods;  

 Chapter Four presents the three dimensional model development, including the material 

models/parameters used for the finite element analysis evaluation; 

 Chapter Five presents the results from the wheel path finite element model slab for the 

different alternatives; 

 Chapter Six presents the experimental testing program as well as the results from the 

experimental study; 

 Chapter Seven presents the results from the service load study comparison of the 

devices; 

 Chapter Eight presents the conclusions and recommendations from the current study.  
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2.0 Literature Review 

This chapter reviews the behaviour and problems associated with dowels bars and then details 

existing joint load transfer alternatives. The literature review is divided into four sections. The 

first section focuses on conventional steel dowel bar fundamentals and identifies features that 

can result in failure at the joint prior to the life of the pavement. The next two sections present 

alternatives to conventional steel dowel bars that have been used in restoration, slab on grade and 

paving applications for joint load transfer. Following the review of alternative dowel bars, a 

review of analysis and testing procedures for dowel bars is presented.   

2.1 Joint Load Transfer Current State of Practice and Problems 

2.1.1 Rigid Pavement Structure 

A rigid pavement consists of a concrete slab placed on a base and subbase layer which typically 

consists of an unbound layer. In Ontario, a treated (ie. either asphalt or cement) bound layer is 

also often used and is commonly referred to as an Open Graded Drainage Layer (OGDL) 

(Transportation Association of Canada, 2013). Concrete is placed in lane sections using a slip 

form paver. There are two types of joints in rigid pavements: longitudinal and transverse. The 

transverse joints are placed at 4.5m to accommodate strains and cracking due to daily and 

seasonal thermal expansion and contraction, as well as shrinkage. These joints are sawcut. 

Longitudinal joints are typically between lanes and use tie bars to prevent slabs from separating. 

Figure 2-1 presents the general arrangement of the pavement structure.  

 

Figure 2-1 – General pavement arrangement  
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Beneath the concrete layer there is a base and subbase layer. The base and subbase layers 

provide drainage, frost protection, and a level and desired grade for the slab. The base and 

subbase layers also provide further load spreading to the subgrade below (the load distributes out 

in two directions reducing the maximum bearing stress on the surface as the depth increases).   

2.1.2 Conventional Round Steel Dowel Bar Description 

Conventional dowel bars are round epoxy-coated steel smooth dowels placed perpendicular to 

the joint to provide load transfer. The spacing of the dowel bars depends on the loading and the 

thickness of the concrete slab. Load is transferred through shear force on the dowel bar from one 

side of the joint to the other.  The force is distributed to the concrete through bearing stress above 

and below the dowel bar on either side of the joint. Typical bar sizes used for dowels in concrete 

pavements are 30-35 mm diameter bars, and are spaced at 300 mm (Porter et al., 2001). Figure 

2-2 presents the layout of the dowel bars in JPCP. The dowel is placed at the mid depth of the 

slab and the joint is sawcut to a depth of one third the slab depth (Transportation Association of 

Canada, 2013).  

 

Figure 2-2 – Typical details for JPCP Dowel Bar Location (Transportation Association of 

Canada, 2013) 

2.1.3 Dowel Bar Joint Load Transfer Theory 

In order to design a new load transfer mechanism, a review of wheel load transfer theory was 

completed. The review will be used to form design equations to determine preliminary sizes of 

the new devices. This review will also help in understanding the distribution of load at the joint.  

A dowel bar is designed to transfer a portion of a wheel load from the loaded slab to an adjacent 

slab. Transferring load from one slab to another reduces the subgrade stresses at the joint 

interface and minimizes “stepping” (differential deflection of the adjacent sides of the joint) of 
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the slab as the wheel load crosses the joint. The following equations were presented by Porter et 

al., (2001) to estimate the load transfer in dowel bars. Theoretical modeling of deflection at the 

joint is based on the Timoshenko and Lessels beam on an elastic foundation (Timoshenko & 

Lessels, 1925) presented in Equation (2-1). 

  
   

   

   
       

 (2-1) 

 

Where:  

   
   

   

 
 = relative stiffness of the dowel bar encased in concrete (mm

-1
) 

    = deflection at the face of the joint 

  = Modulus of Dowel Support (N/mm
3
) 

 b  = dowel bar width (mm) 

 E = Modulus of elasticity of the dowel bar (MPa) 

 I = Moment of Inertia of the dowel bar (mm
4
) 

  = Load transferred through the dowel bar (N) 

 z = joint width (mm) 

Friberg (1938)simplified Equation (2-1) for a beam of semi-infinite length where deflection (  ) 

is described by Equation (2-2) (Porter et al., 2001). 

 
   

        

     
 

  (2-2) 

The total differential deflection of a joint ( ) or “stepping” consists of the deflection at the face 

of the joint, the slope, shear deflection and flexural deflection of the dowel bar (presented in 

Equation (2-3) and Figure 2-3.   
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Figure 2-3 – Differential Deflection at joint components (Porter et al., 2001) 

         
   

  
    

     

    
  (2-3) 

Where: 

   
     

  
 = Shear deflection 

  = form factor equal to 10/9 for solid circular sections and ellipses 

 A = cross-sectional area of the dowel bar (in
2
) 

 G = Shear Modulus (psi) 

For a small joint width it can be assumed that the flexural deflection and deflection due to the 

slope of the dowel bar can be assumed to be zero and Equation (2-3)simplifies to Equation(2-4) 

(Porter et al., 2001). 

                (2-4) 

The bearing stresses experienced by the concrete (  ) can be calculated based on the deflection 

at the joint face according to Equation (2-5) (Porter et al., 2001). 

           (2-5) 

The elasticity theory and simplified formulas presented above give an estimate for the 

differential deflection and concrete bearing stress at the joint interface. These simplified 

equations will be used to develop design options similar to dowels. A more rigorous approach 
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such as finite element modeling is required to investigate the local stress concentrations 

developed or the behaviour of the pavement under shrinkage and thermal strains.  

2.1.4 Dowel Bar Misalignment 

A review of dowel bar misalignment problems was completed in order to understand the 

problems associated with dowel bars and to identify which elements of the design of dowels 

should be improved upon in the current study.  

Dowel bar misalignment has caused problems in concrete pavements including problems with 

joint locking. Misaligned dowels restrain the joint from opening and the restraint causes high 

localized stresses. These high local stress concentrations cause damage to the concrete which 

will reduce the life of the joint. Damaged areas of concrete also produce lower stiffness which 

will affect the load transfer and stepping at a joint.  Dowel bars can be misaligned in two ways: a 

skew and a translational misalignment. A translational misalignment occurs when the entire 

dowel is offset from the central plane of the joint. Skew misalignments occur when the dowel bar 

axes are offset from the pavement axes. Both types of misalignment are presented in Figure 2-4.  

 

Figure 2-4 – Types of dowel bar misalignment 
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Dowel bars can be placed with a misalignment in a number of ways. Some of the factors that will 

affect the alignment of basket assemblies (where the dowels are placed in wire baskets on the 

base before paving) are: basket rigidity, placement of basket on base, concrete placement, and 

location of sawcut with respect to the dowel baskets. Factors that affect dowel bar misalignment 

when dowel bar inserters are used include: operation of the dowel bar inserter, vibration after 

placement, and location of sawcut relative to dowel location. The effect misalignment will have 

on a slab will also depend on straining in the slab which will depend on the climate, shrinkage in 

the concrete, and spacing of the joints as all of these will affect the amount of joint opening 

required.  

The misalignment of dowel bars in both translation and skew misalignment have an effect on the 

load transfer at the joint. Vertical translation horizontal and vertical skew can cause spalling at 

the joint. Horizontal and vertical skew misalignment can cause cracking of the concrete. 

Prabhu et al. (2006) presents the results from a two phase project that investigated the effects of 

skew misalignments on joint opening behaviour. The study focused on determining the force 

required to pull slabs apart with different magnitudes of skew misalignment. The first phase of 

the project included modeling misalignments using finite element analysis to determine the joint 

opening behaviour of joints with single and multiple dowel bars. Linear elastic material 

properties were used with contact interface elements used to model the dowel pavement 

interaction. A pseudo change in dowel temperature was used to develop the initial contact 

pressure between the dowel and the concrete pavement. The finite element models were used to 

develop the experimental procedures for the second phase of the report. The second phase of the 

project consisted of experimental testing and analysis of dowel bar misalignments, finite element 

development and validation of the localized stresses. Finite element analysis was completed 

using ABAQUS.  

The study used two analytical cases to compare to the experimental results. The first analytical 

model used the idealized material and pull out data and the second used measure material and 

friction coefficients. The study also investigated one, three and five dowel bar models.  

For the single aligned dowel bar,  the idealized and the measured analytical cases were almost 

identical because the perfectly aligned dowel does not develop large pressures at the contact 
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interface which will be affected by measured frictional values. The perfectly aligned case was 

found to only debond and no further damage occurred in the concrete in the analytical model. 

The experimental results were very similar to the analytical results.  

A vertically skewed dowel bar, out of skew by 1/18 of radius of the dowel bar, the restraint due 

to the skew caused compressive and tensile plastic strains but did not cause significant crushing 

or cracking. The analytical cases both were able to predict the results but a noticeable increase in 

accuracy with the measured values input was noted.      

The single horizontally skewed dowel bar model with a single dowel bar skewed 1/18 of a radius 

caused restraint that produced significant cracking and crushing of the concrete in both analytical 

models.  The results of the single bar analysis completed by Parabhu et al., (2007) suggest that 

horizontal skew is worse than vertical skew in terms of potential concrete distress.  

The two dowel bar model with perfect alignment did not experience damage just debonding 

similar to the single bar model (Prabhu et al., 2007). The experimental results did not compare as 

similarly as with the single bar model but still show similar behaviour.  The two analytical cases 

for the two bar misaligned model were bounding the experimental values. When both dowels are 

misaligned in the two bar investigation, plastic damage in compression and tension is predicted 

but no excessive damage (Prabhu et al., 2007).. With a single dowel bar misaligned in a two 

dowel bar arrangement plastic damage but not excessive plastic damage was predicted (Prabhu et 

al., 2007). Finally a specimen with alternative skews was compared, and this specimen was 

predicted to have excessive compressive and tensile damage occurring (Prabhu et al., 2007).  The 

vertically misaligned study of two bar models showed that non-uniform vertical skew is the 

worst type of vertical misalignment in terms of concrete damage (Prabhu et al., 2007).  

Prabhu et al., (2007) show that horizontally misaligned non-uniform skew alignment causes the 

most severe damage. All of the horizontal bars caused excessive compressive damage and tensile 

damage to the concrete adjacent the misaligned dowels. Horizontal and vertical misalignment for 

joint opening was shown in the current study to affect the damage occurring at the joint as it 

opens in that the larger joint opening required the more damage occurs. As the displacement 

increases if restraint to movement occurs the force/stress to restrain more movement will 
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increase which results in stress increase until failures occur locally which will allow some 

movement and cause damage and reduces stiffness in the concrete (Prabhu et al., 2007). 

Prabhu et al., (2007) predict the joint opening behaviour of concrete pavements using 3D finite-

element models. As the misalignment magnitude increases the material distress and damage 

occurred at smaller joint openings. The study also found that horizontal misalignment is 

generally more detrimental than vertical misalignments for concrete damage and the distribution 

for horizontal misalignment (uniform, non-uniform or alternate) has a small influence when 

compared to the magnitude of misalignment for pull out tests. 

Davids et al., (2007) completed a study of the horizontal misalignment of joints when the slab is 

modeled using a finite element model. The finite element analysis of the misaligned joints found 

that the amount of shear transferred across the joint did not vary significantly, but that the joint 

mislocation did increase the peak shears in the device.  

An analytical study on the influence of misalignment was completed by Levy (2010) 

investigating the various effects of different misalignments in dowel bars exposed to shrinkage, 

thermal loads, and wheel loads. The investigation found that when the dowels were misplaced 

vertically upward in the slab 25 mm, there was a large increase in the plastic strain in the 

concrete around the dowel. The dowel also attracted more load when it was misplaced vertically 

upwards in the slab. A vertically skewed bar was determined to initiate plastic strains more 

quickly in the concrete around the joint and increase the force in the bar. A vertically skewed bar 

will still transfer load at the joint and did not appear to affect the load transfer in the analytical 

study completed. The load transfer efficiency in the model was found to be better with a 

misaligned case which the author suggested was due to a mechanical advantage where the 

unloaded slab was pried upward as the load was applied (Levy, 2010).  

Leong et al., (2006) completed experimental testing and finite element analysis of dowel bar 

pull-out with various misalignments. The finite element model was completed using a three 

dimensional explicit analysis consisting of two slabs 200 mm thick, 900 mm wide and 1000 mm 

long connected by three dowels. Loads were applied using velocities to simulate the imposed 

displacement on the slab similar to opening caused by uniform slab expansion and contraction. 

Three different types of misalignment were investigated in the study completed by Leong et al., 
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(2006) which were a single misaligned bar (middle of the three bars), all three bars misaligned 

similarly, and oppositely misaligned bars. In the single misaligned dowel bar case, both 

horizontal and vertical misalignments up to 30 mm were investigated. The results showed that 

there was little difference between the estimated pull-out force for the vertical and horizontal 

misalignments. The pullout force required to open the joint 14 mm increased by approximately 1 

kN for a 5 mm increase in misalignment up to 20 mm. Between 20 and 25 mm an approximate 4 

kN increase occurred. With the single bar misaligned 25 mm the stress in the concrete reached 3 

MPa for the both horizontal and vertical misaligned cases.  The finite element model with three 

misaligned dowel bars suggested that with 5 mm increase in misalignment the pullout force 

required increased by 5kN. Three dowel bars misaligned caused an increase in pullout force of 

10 kN between 20 and 25 mm of misalignment. Misalignment of all three dowels by 25 mm 

caused stress concentrations that would suggest cracking occurring around the dowels. The 

opposite misalignment case consisted of misaligning the two outer dowels in one direction and 

the middle bar in the opposite direction. The opposite misalignment pullout investigation 

completed by Leong, et al., (2006) model predicted that cracking would occur at misalignment of 

25 mm. The pullout force required almost doubled in with opposite misalignment between 20 

mm and 25 mm. Leong, et al., (2006) concluded that with misalignments up to 20 mm cracking 

should not occur but at 25 mm or greater cracking will have occurred. The study completed by 

Leong, et al., (2006) did not take into account the effect of thermal or shrinkage gradients which 

may change the relationship between vertical and horizontal misalignments as well as reduce the 

allowable misalignment tolerance established as further restraint will be caused due to curling.  

Vertically misaligned skewed behaviour is investigated in the current study only in wheel load 

transfer analysis at the joint with the wheel path model with quasi-static reversed loading 

applied. The loading is later described in Chapter Five. 

2.1.5 Concrete Deterioration at Joints 

Bearing stress is developed at the interface between the dowel bar and the concrete. Concrete can 

become damaged if the bearing stress exceeds the maximum bearing stress limit of the material. 

Under repetitive high stress loadings, a void will begin to form at the interface between the 

concrete and dowel bar. The void will allow additional deflection that reduces the efficiency of 
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the dowel to transfer loads across the joint and puts additional load in the subgrade which can 

lead to differential settlement of the slabs (Porter et al., 2001). 

The most effective way to transfer load and avoid concrete deterioration is to ensure that there 

are no voids between the device and concrete in the vertical direction and no restraint from the 

device on the concrete in the horizontal direction. Since the horizontal sides of the device are not 

considered in transferring loads, it would be ideal to have the sides free from the concrete and the 

top and bottom of the device to be in constant contact with the device and be free of voids. The 

voids allow deflection to occur before the interface between the dowel and concrete become in 

contact (Schrader, 1991). 

Davids et al., (2007) used a computer simulation to determine the effects of voids that may 

develop around a dowel bar after concrete has deteriorated around the joint. The efficiency of the 

joint was influenced by varying the joint void conditions and it was found that a parabolic void 

of 0.2 mm around this location may reduce joint load transfer by as much as 73%.   

Joint voids were not investigated in the current study. Future research should consider the effect 

of voids on the performance of the devices proposed. The chance of forming voids with the 

device geometry is considered in the current study and the method of placement for the devices 

will be suggested based on avoiding the formation of voids based on the review of the literature 

completed.  

2.1.6 Field Performance of Conventional JPCP 

Early construction of JPCP did not include dowel bars or any other joint load transfer devices at 

the joint. JPCP that were constructed without load transfer devices and exposed to high truck 

volume experience stepping failures and joint problems, shortening the life of the pavement. A 

number of concrete pavements without load transfer devices have been rehabilitated to provide 

load transfer and reduce stepping. A review of JPCP case studies of slabs constructed with and 

without conventional dowels is completed in this section.  

On four repair sections that were originally constructed without load transfer devices Chen et al 

(2008) found the dowel bar retrofit application was found to improve the behaviour of the 
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pavement that previously did not have any load transfer devices installed. Each of the repair 

sections was investigated to determine how effective the repair was.   

A section of highway in Texas, Jefferson SH-73, included repairs using grouting under the slab 

to restore the base support and putting an overlay on the surface. The repairs that included dowel 

bars or were full depth repairs performed better than the ones without dowel bar retrofit. Sections 

that were retrofitted with dowel bars were found to only have minor reflective cracking. The 

areas that were not retrofitted with dowel bars experienced severe reflective cracking in the 

overlay. The load transfer was two to three times better at joints that were retrofitted with dowel 

bars (Chen et al., 2008).  

Another Texas highway, US59, was originally constructed without a subbase or dowel bars, and 

only 15 years after construction in 1990, the pavement already required rehabilitation. The 

original design was created using a slab thickening at the joint locations. In this design, the base 

was prepared with steps at the joint locations and a thicker 350 mm concrete layer was used at 

the joint locations compared to a 200 mm slab. Slab thickening at joint locations was not found 

to be an adequate way to avoid load transfer devices in jointed plain concrete pavements. 

Rehabilitation was completed on the section by inserting dowel bar sockets and grouting the 

dowels into place. On US59, some of the dowel bar retrofit was found to not provide a large 

improvement in faulting and rider quality shortly after being repaired. A core was taken to 

determine the possible reasons for the dowels not functioning, and a void in the grout around the 

dowel was found to be the problem for the dowel not functioning properly (Chen et al., 2008). 

The void would not be a problem in newly constructed pavements as small grout openings do not 

exist. The void does indicate the importance that alternative device designs proposed in this 

study should be able to be placed and not create voids in the concrete around the device as this 

problem has been shown to reduce the effectiveness of dowel bars.  

Interstate highway US69 was constructed without load transfer devices. The pavement load 

transfer efficiency was 33% (the author noted this may be artificially higher because the readings 

were taken in the winter) before rehabilitation was completed (Chen et al., 2008). The addition of 

dowel bars completed in the rehabilitation increased the load transfer efficiency by 

approximately 30% (Chen et al., 2008). 
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Deerfoot Trail in Calgary Alberta has an approximately 12 km long JPCP section that was 

constructed around 1980 (Falls, 2006). The JPCP transverse joints were skew sawn joints 

randomly cut at an average spacing of 4.9 m and was assumed to have smooth dowels at the 

transverse joints providing load transfer (Falls, 2006). The pavement has lasted beyond its 

service life in 2003 and was expected to last 14 years longer than the service life without major 

rehabilitation (Falls, 2006), showing that properly constructed concrete pavements with 

conventional dowels last as long as expected.  

A 5.5 km section of Highway 427 from QEW to the 401 Interchange in the city of Toronto was 

constructed in 1968 using JPCP with dowel bars. At the time of a study completed by Tighe 

(2005) the pavement was still performing well beyond the 30 year life of the pavement without 

major rehabilitation. Joint failures and stepping were both noted as major surface distresses that 

were observed on the section of concrete pavement (Tighe, 2005). This suggests that joint load 

transfer devices do function but are one of the first areas in the pavement to require rehabilitation 

and a need for an alternative device.   

Grant McConachie Way, a 4.4 km road near Vancouver, British Columbia, was constructed in 

1967 originally with load transfer devices and a continuous wire mesh mat (Falls, 2006). In 

1987, a distress survey for the road way found less than 0.1% of the road had high severity 

cracking or spalling occurring and 5% had corner breaks. A joint rehabilitation was completed in 

1987, and the pavement is still in good condition. (Falls, 2006) The road has sections with 

different traffic distribution including one that has more truck traffic, but there does not appear to 

be a difference in the performance of the sections. (Falls, 2006) 

The city of Winnipeg and province of Manitoba have used concrete pavements for decades, and 

pavements constructed before the 1970s had 9 m joint spacing typically without joint load 

transfer devices included (Shalaby, 2005). The past performance of concrete pavements in 

Winnipeg has led to changes in the design of JPCP used in Winnipeg. A study on Provincial 

Trunk Highway 75 in Manitoba investigated the behaviour of different sections of highway with 

and without dowels. The load transfer efficiency at the dowelled joints was found to be greater 

than at joints without dowels based on survey data for up to 11 years of service (Shalaby, 2005). 

Increased width of the lane also increased the load transfer efficiency of the joint (Shalaby, 

2005). The Kenaston Boulevard (Route 90) is a major link road in Winnipeg that was re-
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constructed in 1995 incorporating advances in joint design (Shalaby, 2005). Typical joint spacing 

in this section was a maximum spacing of 4 m and transverse smooth round dowels were 

included to provide load transfer. A survey of the road in 2002 showed that the road was still in 

good condition after seven years in service (Shalaby, 2005). This suggests that based on the 

experience in Winnipeg load transfer devices have been shown to improve the pavement life. 

2.2 New Construction Load Transfer Devices 

The following devices have been used or proposed as alternatives to dowel bars for use as load 

transfer devices in new concrete pavements. 

2.2.1 Elliptical Steel Dowels 

Elliptical steel dowels are placed with the larger ellipse dimension in the horizontal direction to 

increase the bearing area of the contact surface between the dowel and concrete used for wheel 

load transfer. The increased projected area of the top and bottom of the bar provide a larger 

bearing surface for the transfer of load from the dowel bar to the concrete, reducing the bearing 

stress in the concrete (Porter et al., 2001). 

Porter et al., (2001) completed tests using round and elliptical dowels and measured the bearing 

stresses in the concrete for both. Two sizes of round dowels and three elliptical dowels were 

compared. The tests found that the large elliptical dowels that had an 18 percent increase in 

cross-sectional area when compared to a 1-1/2” circular dowel had a 26 percent reduction in 

bearing stresses. The 1-1/2” dowel, which has a 44 percent increase in cross-sectional area 

compared to a 1-1/4” dowel only produced a 25 percent reduction in bearing stress. The medium 

sized elliptical dowels had approximately the same bearing stress in the concrete when compared 

to a 1-1/2” round dowel. The stiffness of the round dowels was higher when compared to the 

elliptical dowels causing a small variation in the deflection of the slabs.  

Elliptical steel dowels can reduce the bearing stresses on concrete. However they do not address 

the problems associated with dowel bar misalignment and deterioration of the dowel bar itself as 

they are still steel dowels. Due to the shape of elliptical steel dowels they also present a new 

misalignment problem associated with the non-symmetrical shape of the dowel and if they were 
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placed with the opposite axis bearing on the concrete an increase in bearing stress will be 

encountered at the dowel-concrete interface (Porter et al., 2006).  

2.2.2 Alternative Materials for Dowel 

GFRP dowels and stainless steel dowels have been used to eliminate the problems associated 

with joint locking caused by corrosion. The durability of GFRP in concrete is a concern but was 

out of the scope of this study.   

Porter and Pierson (2007) demonstrated that stainless steel dowels had lower differential 

deflection when compared to epoxy-coated steel dowels. Stainless steel has a lower stiffness than 

epoxy-coated steel but deflected less in the tests. This observation was attributed to softness of 

the epoxy coating. The stainless steel dowels were found to provide adequate load transfer 

compared to epoxy-coated steel dowels.   

Eddie et al. (2001) completed tests on two types of GFRP dowels and compared them to epoxy-

coated, steel dowels. The test program consisted of testing 12 slabs with two dowels placed in 

the slab. The slabs were tested on a crushed limestone base, as well as a weak support consisting 

of steel springs. The shear strengths of the dowels were also tested in double shear tests. The 

tests on the slabs included monotonic loading to failure and cyclic loading to 1 million cycles. 

After laboratory tests were completed, the GFRP dowels were implemented in a field application 

in the city of Winnipeg, Manitoba. The research concluded that 38 mm GFRP dowels could 

perform similar to 32 mm epoxy-coated steel dowels even though the GFRP dowels have lower 

shear strength. Under dynamic impact field testing the three GFRP dowels exhibited higher joint 

deflections. These conclusions do account for the long-term performance of GFRP dowels.  

Porter and Pierson (2007) found that GFRP dowels have a lower stiffness compared to steel 

dowels and that a GFRP dowel will have more joint deflection compared to steel dowels. The 

GFRP dowels were found to be adequate at transferring the load and keeping the stress 

concentrations below the allowable limits.   

Direct shear tests completed to determine the modulus of dowel support using Friberg‟s 

equations found lower values for elliptical GFRP dowels than steel. The lower modulus of dowel 

support was explained as being based on the material properties (Porter et al., 2006). Although 
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material properties of the dowel are included in the deflection at the face of the joint, the 

modulus of dowel support is still slightly dependent on the dowel properties as well as the shape.  

Based on the literature review completed, GFRP and stainless steel have been proposed and 

tested as alternative dowel bar materials. Research on GFRP and stainless steel applications have 

been limited to conventional dowel bars and elliptical dowel bars. GFRP extruded shapes were 

not considered as joint load transfer devices in previous research. It could be possible to apply 

different shapes and configurations of extruded GFRP shapes to address other issues associated 

with joint distress.  The design of alternatives using GFRP should take into account the 

composite material properties. There are two parts in the GFRP structure: a fibre and a polymer. 

The polymer and fibres are placed in layers and the fibres generally run in one direction, 

although not exclusively. The fibres in GFRP materials are stronger than the polymers and hence 

the strength and stiffness characteristics of GFRP materials in the two directions tend to vary 

depending on the arrangement of the fibres. The shear strength of GFRP materials is low in 

comparison to steel. GFRP composites are most effective in plane stress applications and 

changing the arrangement of fibres can alter the strength properties of the material (Qiao et al., 

1996).  

2.2.3 Dowel Bar Shape Alternatives 

In order to decrease the bearing stress in the concrete at the dowel-concrete interface and reduce 

joint locking due to misalignment, a number of shape alternatives have been used. A number of 

the joint load transfer devices alternatives presented in this Chapter have been used in industrial 

slab on grade applications as joint load transfer devices, but not in highway applications where 

the concrete slab is placed using a paver.   

Square dowels consist of square steel dowel bar to increase the bearings area of the device and 

hence reduce the concrete bearing stresses above and below the dowel (APCA, 2008). 

Rectangular dowels further increase the bearing area of the dowel-concrete interface. Both 

devices are effective at reducing the bearing stresses on the concrete but still have difficulties 

addressing the problems with dowel bar misalignment. Compressible material and high density 

plastic was attempted as a possible way to offset the problems associated with dowel bar 

misalignment with some success (APCA, 2008). 
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Acrylonitrile-butadiene styrene (ABS) plastic clips were attached to square and rectangular 

dowels to allow some horizontal movement parallel to the joint. Compressible material that 

allows the horizontal movements was contained within the ABS sleeve along the sides of the 

dowel, presented in Figure 2-5. 

 

Figure 2-5 – Rectangular dowel bar with ABS sleeve and compressible material cross section 

The compressible material at the sides of the dowel was used to allow the dowels to move within 

the ABS sleeve as depicted with the arrows in Figure 2-5. The ABS transfers the vertical load to 

the device. The ABS clips and dowels can be put into the slab using baskets similar to with 

round dowels (Schrader, 1991). The clip provides other advantages as noted by Schrader (1991), 

such as avoiding exposing the dowel to a corrosive environment since the ABS clip protects the 

dowel from dirt and contact with the concrete directly.  

It was noted by Parkes (2007) that although square and rectangular dowels with clips have an 

advantage compared to round dowels, they were not being used in industrial slab on grade 

applications or pavements. One of the reasons noted for the lack of usage of square dowels was 

the installed cost of square dowels is almost twice that of round dowels for slab on grade 

application due to the additional labour to install devices in the formwork. In a paving 

application the devices would not be placed in formwork and it is assumed that the additional 

cost of rectangular devices would be avoided.  
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Diamond plate dowels were created to increase the bearing area near the joint where majority of 

the load transfer occurs. In slab on grade construction, diamond plate dowels were capable of 

transferring the load with a larger spacing compared to conventional steel dowels due to the large 

bearing area at the joint. Diamond plate dowels allow the thermal joint openings to occur 

because the void around the diamond created during construction and after shrinkage strains 

have occurred in the concrete is larger than the device itself (APCA, 2008). An ABS clip similar 

to the one used with rectangular and square dowels can also be used to ensure a void exists 

around the diamond plate dowel. Typical applications of diamond dowels have been limited to 

thinner slabs as only certain sizes of diamond dowels exist. 

Fricks and Parkes (2002) noted that in constructing slabs on grade with diamond plate dowels it 

was more difficult to misalign the diamond plate dowels compared to round steel dowels. The 

ABS clip around the diamond plate dowels were easy to apply to the formwork and fewer repairs 

were required after completing the work in a formed application.   

Diamond dowels have been installed in slabs on grade using formwork and are installed on the 

formwork, not in baskets or using a dowel bar inserter. Misalignment problems with diamond 

plate dowels may be more prevalent using a different installation method since the saw cut could 

cause a misalignment problem and so could skew misalignments of the diamond plate dowel. 

A tapered plate dowel is larger at one end compared to the other end. The tapered effect of the 

device is intended to increase the bearing area at the joint and allow the concrete to shrink and 

create voids around the sides of the device which allow horizontal movement parallel to the joint. 

This type of device has been installed in baskets in paving applications (APCA, 2008). 

2.3 Retrofit Load Transfer Devices 

Slabs constructed without load transfer devices have been retrofitted to provide load transfer at 

the joint. The following devices are a number of different devices used in slab rehabilitation 

projects. Many of these devices were not found to transfer load effectively but are still reviewed 

as part of the current study to determine possible alternatives and comment on why the device 

does not function as expected. 
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2.3.1 Georgia Split Pipe Device 

The Georgia split pipe device consists of two halves of a 100mm diameter pipe that are epoxied 

to a concrete core hole on either side of the joint. Plates rest on the top and bottom of the pipe 

halves epoxied to the concrete and are attached with four bolts. The top and bottom plate along 

with the four bolts transfer the load across the joint to either half of the pipe. The epoxy bond 

then transfers the load to the concrete slab. Thermal movement occurs through the slippage of 

the top and bottom plates resting on the split pipes (Figure 2-6). 
 

 

Figure 2-6 - Georgia split pipe device (Gulden and Brown, 1985) 

Gulden and Brown (1985) found that the device did not adequately transfer load across the joint 

based on visual inspections of the installed devices in the field. Avoiding the use of an epoxy or 

concrete bond to the device by adding mechanical transfer of load could increase the load 

transfer ability of the device; however; due to the complex nature of constructing, and installing 

the device in conjunction with the poor results found in field application, no modifications are 

suggested to alter the device for use in new construction. 

2.3.2 Figure Eight Device 

The figure eight device is a cylindrical piece of metal with indents forming the shape of an eight. 

The figure eight device was epoxied inside a core hole and the epoxy was used to bond the 

device to the concrete. The force is transferred across the joint in the steel pipe itself. The 

transfer from the device to the concrete is through the bond of the epoxy. The indentations 
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forming the figure eight shape (aligned parallel to the joint) allow the thermal movements to 

occur (Figure 2-7).
 

 

Figure 2-7 - Figure Eight Device (Gulden & Brown, 1985) 

Gulden and Brown (1985) found the figure eight device failed to provide adequate joint load 

transfer based on maximum differential deflections between the loaded and unloaded slab 

corners. Reiter et al., (1988) also found that the figure eight device did not reduce faulting when 

compared to an unreinforced joint based on visual inspections and measured faulting.  

Similar to the Georgia Split Pipe Device the Figure Eight Device relied on an epoxy bond 

between the device and the concrete to provide load transfer. Alterations in new construction to 

make a mechanical load transfer between the device and the slab could be completed but due to 

the tight tolerances for placement and difficulty of installation in the field, no modifications are 

suggested to the figure eight device. 

2.3.3 V Load Transfer Device 

A V load transfer device consists of a steel plate bent into the shape of a „V‟ placed across a joint 

in two core holes (Figure 2-8). The tip of the V is aligned with the joint and urethane foam is 
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placed inside the „V‟. The bond between the steel plate and the concrete provides the joint load 

transfer and the urethane foam filled „V‟ shape allows thermal movements in the longitudinal 

direction of the slab (Reiter et al., 1988). 

Gulden and Brown (1985) found that V load transfer devices did not adequately transfer the load 

across the joint based on the maximum differential deflection of the slab corners. The V device 

does not appear to have adequate load transfer abilities and may have alignment problems similar 

to dowel bars and will not be investigated further in the current research. 

 

Figure 2-8 – V Load Transfer Device
 
(Gulden & Brown, 1985) 

2.3.4 Double V Load Transfer Device 

A double V load transfer device is similar to a V load transfer device but uses two pieces of steel 

bent into the shape of a „V‟ located back to back in one core and urethane foam between the steel 

plates (Figure 2-9) (Reiter et al., 1988). 
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Reiter et al., (1988) completed a restoration using double V load transfer devices and found that 

the device did not reduce the faulting across the joints. Reiter et al., (1988) observed that the  

double V device faild due to insufficient bond between the concrete and the device. 

Gulden and Brown (1985) found that most of the double V devices nstalled were capable of 

transferring the load across joints and reducing joint deflection, and did not restrict the horizontal 

movement of the slabs. They recommended in the study that four devices be installed per lane 

width (two located near each wheel path). 

Double V devices would be difficult to install in a new paving operation and would still have 

tight tolerances for alignment problems similar to dowels. The device also relies on concrete 

steel bond to transfer load, and does not provide mechanical transfer of the load across the joint. 

Due to the varying results found with double V devices and lack of advantages it is not 

recommended as an alternative to dowel bars for use in pavements.  

 

Figure 2-9– Double V Load Transfer Device (Gulden & Brown, 1985) 
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2.3.5 Miniature I-beam Load Transfer Device 

A miniature I-beam load transfer device was used in restoration applications and consists of 

placing miniature I-beams across the joint similar to a dowel bar to transfer loads. The I-beam 

transfers load across the joint and also allows thermal movements to occur along the length of 

the beam. 

Reiter et al., (1988) found that the miniature I-beam devices did not reduce faulting across the 

joint. None of the devices failed in the testing, although some of the backfill material had been 

dislodged. The I-beam application was completed in a restoration application and relied on the 

bond of new and old concrete to transfer load to the slabs as pockets were cut to place the 

devices at the joint. This device is similar to dowels and presents the similar problems associated 

with a dowel for misalignment, although it eliminates the vertical skew misalignment since the I-

beam can be placed directly on the base layer, eliminating the vertical skew and translation 

misalignment problems. If the device is placed in a new slab, the load transfer would not be 

based on the bonded surface between new and existing concrete which could increase the load 

transfer ability of the device.  

2.4 Summary of Alternative Devices 

Based on the review of the literature for alternative devices used in both new and existing JPCP, 

Table 2-1 presents a summary of the alternative new construction devices and perceived 

advantages and disadvantages of each. Modified tapered plate dowels and miniature I-beams will 

be investigated further in the current research based on the previous behavior of these devices 

and the perceived advantages and disadvantages.  

 

 

 

 

 



28 

 

Table 2-1 - Summary of Previous New Construction Alternative Joint Load Transfer Devices 

Device/Design Modification 

Description 
Advantages Disadvantages 

Elliptical Steel Dowels  Elliptical shape increases 

the bearing area at the joint 
 

 Introduces a new 

misalignment plane 

Elliptical GFRP Dowels  GFRP material will 

eliminate problems 

associated with steel 

corrosion 

Elliptical shape increases 

the bearing area at the joint 
 

 Introduces a new 

misalignment plane 

Long term durability of 

GFRP in concrete exposed 

to moisture 

Square Steel Dowels in an 

ABS Sleeve 
 Dowel is placed in an ABS 

Sleeve with a compressible 

material that allows dowel 

bar movement 

perpendicular to wheel 

load reducing 

misalignment effects 

 Problems with Vertical 

misalignment still exist 

Expensive 

Steel Diamond Plate Dowels 

 

Steel Tapered Plate Dowels 

 Increased area at face of 

joint decreases bearing 

stress 

 Decreased area away from 

joint reduces chance of 

stress concentration due to 

misalignment 
 

 Have not used in a paving 

application 

 Introduce a new 

misalignment plane 

Stainless Steel Dowels  Reduces differential 

deflection compared to 

epoxy dowels 
 

 Expensive 

2.5 Finite Element Modeling of Concrete Pavements 

Due to the complex nature of the loading, materials, and material interactions in concrete 

pavements, finite element analysis is often used to investigate various aspects of the behaviour of 

the pavement. Application specific finite element analysis programs have been developed to 

analyze pavement behaviour depending on the size, spacing, and type of dowel with varying 

loads and material properties as inputs. General purpose finite element programs have also been 

used to study the behaviour of concrete pavements and dowelled joints. This Chapter presents a 

review of 3D finite element models of concrete pavements.   
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Figure 2-10 - Summary of Previous Retrofit Alternative Joint Load Transfer Devices 

Device/Design Modification 

Description 
Advantages Disadvantages 

Georgia Split Pipe Device  Reduces effects of 

misalignment by allowing 

free movement of the slabs 

with nothing pultruding 

into the concrete adjacent 

to the joint or any piece 

continuous across the joint. 

 Does not provide 

mechanical load transfer 

and relies on epoxy or 

aggregate interlock to 

transfer load 

 Expensive complex device 

Figure Eight Device 

 

V Load Transfer Device 

 

Double V Load Transfer 

Device 

 Reduces effects of 

misalignment with nothing 

pultruding into the concrete 

adjacent to the joint.  

 Does not provide 

mechanical load transfer 

and relies on epoxy or 

aggregate interlock to 

transfer load 

Expansion plane requires 

alignment 

Load transfer device needs 

to extend and contract to 

allow slab movements 
 

Miniature I-beam Load 

Transfer Device 
 Eliminates vertical 

misalignment by being 

placed directly on base 

layer 

 Previous rehabilitation 

with steel I-beams was not 

successful; however this 

relied on a bonded surface 

between new and existing 

concrete surfaces 

 

2.6 Finite Element Modeling of Concrete Pavements 

Due to the complex nature of the loading, materials, and material interactions in concrete 

pavements, finite element analysis is often used to investigate various aspects of the behaviour of 

the pavement. Application specific finite element analysis programs have been developed to 

analyze pavement behaviour depending on the size, spacing, and type of dowel with varying 

loads and material properties as inputs. General purpose finite element programs have also been 

used to study the behaviour of concrete pavements and dowelled joints. This Chapter presents a 

review of 3D finite element models of concrete pavements.   
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2.6.1 Element Selection 

Finite element analysis is completed by dividing a large volume into small “elements” which are 

generally simple shapes such as triangles, squares, cubes, etc., depending on the nature of the 

problem. The element shapes are represented by a number of nodes that are connected using 

lines. Nodes are located at corners of the shape as well as other places of interest such as the 

middle of edges between corners or faces. The equations of the lines connecting the nodes, as 

well as the nodes themselves, are used to model shape geometry and locations at which 

calculations are completed. Generally, the fewer nodes and lower degree of line equations will 

lower the accuracy of the output.   

Davids, (2007) modeled the slab, as well as the base layers, using twenty node quadratic 

hexahedral elements. These are solid elements that have a node located at each corner of the 

element as well as at the mid-points. Shoukry et al., (2000), Levy (2010), and Prabhu et al., 

(2007) modeled the slab using eight node linear brick elements which are rectangular solid 

elements with nodes located at each corner. The 8-noded elements can be used in contact, non-

linear, and plastic analyses, making them ideal for modeling the slab and joint since contact 

exists between the concrete and the dowel as well as between the slab and the pavement base.   

2.6.2 Concrete Properties 

Concrete behaves quite differently in uniaxial compression and tension. Under low stress levels 

in compression and tension, the material behaviour is close to linear elastic. The compressive 

strength is much higher than the tensile strength of the material as well. Beyond the proportional 

limit concrete behaves nonlinearly and local concentrations of stress in a concrete pavement may 

cause non linear material behaviour in localized areas. It is important to capture the effects of 

such non-linearity near the joint and the effects on overall pavement behaviour. Using a linear 

elastic material model may be able to model the overall slab behaviour, but the local effects at 

the joint being studied will not be captured adequately. A brief discussion on the uniaxial 

behaviour of concrete under compressive and tensile loading is included in the literature review. 

Further discussion of the specific triaxial and three dimensional material model properties of 

concrete is included in the finite element model development (Chapter 4.0). 
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Suggested values for the concrete compressive properties are presented in detail by the CEB –

FIP Model Code (Comite Euro-International Du Beton, 1991). The code suggests different 

material properties based on the characteristic compressive strength of the concrete, defined as 

   , with tests taken after 28 days. The mean strength (   ) is assumed to be 8 MPa higher than 

the characteristic compressive strength. Moduli of elasticity are derived based on the 

compressive strengths as well. The tangent modulus of elasticity (     is defined in the CEB-FIP 

Model Code according to Equation (2-6).  

 
           

   

  
 

 

 
   

(2-6) 

Where: 

The modulus of elasticity for an elastic analysis suggested in the CEB-FIP Model code is a 

reduced modulus equal to 85% of the value calculated using Equation (2-6).    

The secant modulus is based on the assumed mean strength (8 MPa greater than the 

characteristic strength) and strain at the mean compressive strength (0.0022). Equation (2-7) 

presents the secant modulus according to the CEB-FIP Model Code.  

      
   

      
 (2-7) 

 

Table 2-2 presents the CEB-FIP Model Code suggested values for concrete based on a 30 MPa 

compressive strength and normal density concrete.  

The assumed limit of compression strain is given in Table 2-2 as suggested by CEB-FIP Model 

Code (30 MPa compressive strength assumed); however it has no significance in the material and 

is only used to limit the validity of Equation (2-8). Using the calculated compressive concrete 

properties in Table 2-2, equations are established to represent the stress-strain relationship of the 

concrete in two segments. The first equation for the concrete compressive strength is valid until a 

CEB-FIB Model code recommended limit of 0.0037 and is presented in Equation (2-8). 
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Table 2-2 –Compressive Concrete Properties suggested by CEB-FIP Model Code (30 MPa 

compressive strength assumed) 

Description  Value 

   , Compressive Strength  30 MPa 

     Mean Compressive Strength 38 MPa 

Eci (Tangent Modulus) 33550 MPa 

Ec  (0.85 Eci linear concrete material is used) 28520 MPa 

Ecl (Secant Modulus from origin to peak) 17500 MPa 

ε cl Assumed Strain at Max Mean Compressive Strength  0.0022 

        Limit of compressive strain 

 ν (Poisson's Ratio of Concrete) 0.1-0.2 

 

   

   

   

  

   
  

  

   
 
 

   
   

   
   

  

   

                                

(2-8) 

 

Equation (2-9) is used to represent the remainder of the compressive strength curve. Figure 2-11 

presents the compressive stress-strain curve for 30 MPa concrete using the assumptions given in 

the CEB-FIP Model Code 1990. 
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Figure 2-11 – Compressive Behaviour of Unreinforced Concrete based on CEB-FIP Model Code 

Under uniaxial compressive unloading the CEB-FIP Model Code suggests using the tangent 

modulus of elasticity until cracking has occurred.  

Based on the compressive strength properties of concrete, the CEB-FIP Model code predicts 

uniaxial tensile behaviour. The tensile behaviour can initially be represented using stress-strain 

relationships. After cracking occurs, an alternative method should be used. The strength of 

concrete in tension is much lower than compression. The minimum, mean and maximum tensile 

strengths are suggested according to Equations (2-10) to (2-12) respectively in the CEB-FIP 

Model Code.  
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Where: 
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In the elastic range for uniaxial tensile behaviour of concrete the CEB-FIP Model Code suggests 

using the initial compressive tangent modulus of elasticity presented in Equation (2-6). This 

relationship is assumed to be valid until 90% of the mean tensile strength of the concrete. After 

90% of the mean tensile strength of the concrete has been reached the relationship between 

concrete tensile stress and strain can be represented using Equation (2-13). Figure 2-12 presents 

the behaviour of 30 MPa concrete under uniaxial tensile loads. 

 

           
       

                   
              

(2-13) 

 

Figure 2-12 – Tensile stress-strain relationship of concrete to cracking (Comite Euro-

International Du Beton, 1991) 

The CEB-FIP Model code suggests using a bilinear stress-crack opening relationship for cracked 

sections. The stress-crack opening behaviour is based on the fracture energy of concrete, (  ), 

which is the energy required to propogate a tensile crack of unit area. The fracture energy of 

concrete can be estimated using Equation (2-14). The value     is the base value of fracture 

energy and dependent on the aggregate size (as does the fracture energy). The CEB-FIP Model 

Code suggests a value of 0.030 Nmm/mm
2 

for 16 mm maximum aggregate size and 0.058 

Nmm/mm
2
 for 32 mm maximum aggregate size.  
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                       (2-14) 

where: 

            

The stress crack opening behaviour of concrete under uniaxial tensile loading can be represented 

using Equations (2-15) and (2-16). Figure 2-13 presents the tensile stress and crack opening 

behaviour of 30 MPa cracked concrete using Equations (2-15) and (2-16).  

 
               

 

    
                        

(2-15) 

 

      
        

     
                           (2-16)  

where: 

    
  

    
        , crack opening for              

     
  

    
 is crack opening for       

w = is the crack opening (mm) 

    coefficent depending on maximum aggregate size, 7 for 16mm and 5 for 32mm  

 

Figure 2-13 – Tensile stress-crack relationship of cracked concrete (Comite Euro-International 

Du Beton, 1991) 

The minimum, mean and maximum tensile strengths, as well as the fracture energy and the 

tensile tangent modulus for 30 MPa concrete, are presented in Table 2-3.  
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Table 2-3 – Tensile Concrete Properties suggested by CEB-FIP Model Code (30 MPa 

compressive strength assumed) 

Description  Value 

           Minimum Tensile Strength 1.98 MPa 

      Mean Tensile Strength 2.91 MPa 

           Maximum Tensile Strength 3.85 MPa 

GF Fracture Energy required to propagate a tensile crack of unit area 0.095 N mm/mm
2 

Eci (Tangent Modulus) 33550 MPa 

 

As mentioned previously the strength of concrete in tension is much lower than the compressive 

strength and the initial compressive tangent modulus is used to relate tensile stress and strain 

which is the same as compressive stress-strain behaviour.  

The nonlinear behaviour of concrete in compression can be described in terms of an elastic 

region, a microcracking region where the material is nonlinear, and a localized failure region 

(Chen & Han, 2007). Under uniaxial loading, the concrete material is considered elastic until 

30% of the failure strength. At this level, microcracking between the mortar and the aggregates 

occurs and grows causing a nonlinear material response up to about 75% of the ultimate 

compressive strength. At this point, localized damage begins to occur as the cracks are no longer 

stable, a progressive failure of the material occurs. 

The nonlinear behaviour of concrete in tension can also be described as having the same three 

states: elastic, nonlinear and localized damage. The elastic stage occurs up to about 60% to 80% 

of the ultimate failure strength in tension. Under uniaxial tension loading, the microcracks begin 

propagate faster and the stable cracking phase is much shorter. The low tensile strength of the 

mortar is the reason for the brittle tensile behaviour of concrete (Chen & Han, 2007).  

The behaviour of concrete is also dependent on the rate at which loads are applied and the 

temperature of the material. For the purpose of the current study, the effects of the rate of loading 

and the temperature on material stress-strain response were not considered.  

Levy (2010) modeled the concrete using the concrete damaged plasticity model in ABAQUS. 

The model assumed 30 MPa concrete with an elastic modulus of 22 500 MPa, a Poisson‟s ratio 

of 0.18, and a coefficient of thermal expansion of 1.1E-005 per
 o 

C. The plastic properties that 
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were assumed for the concrete model were a based on ABAQUS recommended values (variables 

are explained in depth in Chapter 4.0). Prabhu et al., (2007) utilized the same model in ABAQUS 

as Levy (2010); however, the assumed compressive strength of the concrete was 24 MPa.  For 

modeling tensile stress crack opening behaviour Prabhu et al., (2007) used a fracture energy 

value of 0.056 Nmm/mm
2
 and Levy (2010) used a value of 0.18 N mm/mm

2
.  

2.6.3 Pavement Base and Foundation Properties 

The concrete pavement slab is supported by the pavement base and subbase layers and by the 

subgrade. The layers provide continuous support to the concrete slab, and can be modeled in a 

number of different ways. A review of other base, subbase and subgrade models for concrete 

pavements is included below to determine how to model these layers. The review was limited to 

existing models and does not include a detailed material investigation. The detailed material 

behaviour of the pavement base and subgrade below are not of specific interest in the current 

study; however, the material properties must be able to simulate the stress distribution through 

the pavement base layers to properly simulate the concrete slab response. The interaction 

between the base and concrete slab is discussed later in this Chapter.  

The model used by Davids (2007) assumed an asphalt treated base as a solid linear elastic 

material with a Young‟s Modulus of 3500 MPa, a Poisson‟s ratio of 0.2 and a density of 2000 

kg/m
3
. The vertical support to the base was assumed to be a dense liquid foundation with a 

modulus of subgrade reaction of 0.03 MPa/mm (Davids, 2007). 

Shoukry et al., (2000) modeled the base and subbase as linear elastic materials. The base layer 

was assumed to have a Young‟s Modulus of 3.2 MPa and the subbase was assumed to be 3.09 

MPa. The base layer has a Poisson‟s ratio of 0.40 and the subgrade is 0.45 in the model. The 

densities for the base and subgrade in this model are 2240 kg/m
3 

and 2080 kg/m
3 

respectively. 

These material models were back calculated based on tests conducted using falling weight 

defelctometer data from a section of highway in West Virginia.  

Levy (2010) modeled the base and subbase as isotropic materials. The base was modeled using a 

Young‟s Modulus of 207 MPa the subbase was had modulus of 103 MPa. Both of the materials 

were assumed to have a Poisson‟s ratio of 0.3 and density of 2100 kg/m
3
. 
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Repair projects were completed in Texas, and cores from the subbase and base material at 

various rehabilitation sites were gathered and tested. Eight cores were taken from SH73 and the 

subbase and subgrade moduli were found to be approximately 80.3 MPa and 55.3 MPa at service 

conditions, Chen and Han (Chen & Han, 2007) noted that ideal values would be 345 MPa and 

103 MPa. US59 in Texas did not have a subbase and consisted of a slab placed directly onto a 

subgrade. The subgrade was found to have a modulus ranging from 76 to 227 MPa with an 

average of 146 MPa.  

Based on the literature review completed of pavement base material properties and foundation 

support, it was concluded that a linear elastic material should be sufficient to model the 

behaviour of the slab and joint for the current study. The values for the modulus of elasticity 

varied from study to study as would be expected since the materials will vary based a number of 

factors. To assess the load transfer ability of a device it would be important to know how the slab 

behaves under a range of assumed base stiffnesses. More deflection of the base under the same 

loading (lower stiffness) will allow the slab to deflect more and increase the stress in the slabs.  

2.6.4 Steel Properties 

Shoukry (2000) model steel as a linear elastic material with a Young‟s Modulus of 205,000 MPa, 

a Poisson‟s ratio of 0.3 and a density of 7780 kg/m
3
. Levy (2010) uses a linear elastic isotropic 

material with a Young‟s Modulus of 200,000 MPa.  

2.6.5 Slab Dowel Interaction 

The interface between the slab and device is able to move relative to one another; however load 

is also transferred at this interface and both of these effects should be captured in modeling of the 

interface. A review of different alternatives for modeling the slab-dowel interface as well as the 

interaction and methods to determine the values at the interface was completed.  

Davids (2007) modeled the slab dowel interaction using a number of springs between the slab 

and the dowel with spring properties based on either the dowel support modulus or the dowel 

looseness. The dowel bars were modeled as flexural elements in the EverFE2.2 program. The 

interaction using springs does not consider the nonlinear behaviour of the interaction caused by 

slippage after dowel is moving. This approach would be efficient for modeling purposes and may 
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provide a more efficient model of the slab for design. It is difficult to determine the modulus of 

dowel support for nonconventional shapes and arrangements and the spring properties were 

based on these values. Alternatively modeling the interface using a contact surface with a 

frictional coefficient to account for the effects of slippage has also been used by others including 

Levy (2010).  

Pull out testing of dowels to determine the frictional properties at the dowel-concrete interface 

was completed by Shoukry et al., (2003). The tests were completed on prisms measuring 

approximately 250 mm long, 300 mm wide and 275 mm deep, with 32 mm and 37.5 mm dowels.  

To determine the frictional coefficient between the concrete and the dowel from tests, the normal 

force (        at the interface must be determined since the coefficient of friction is equal to 

Equation (2-17).  

                            
     

      
 (2-17) 

 

To determine the clamping force Shoukry et al., (2003) considered the prism to be a thick-walled 

axes-symmetrical cylinder with an internal radius of a (at the dowel interface), external radius b, 

(at the edge of the specimen) and an internal pressure, p. The prism was assumed to have an 

outer diameter of 250 mm. The assumed stress distribution in the cylinder is shown in Figure 

2-14. The equilibrium of radial (    and tangential (  ) stresses at radius r shown in Figure 2-14 

can be represented using Equation (2-18).   

    

  
 

     

  
   

(2-18) 

 

Figure 2-14 -   Radial stress distribution in an axes-symmetrical thick wall cylinder (Shoukry et 

al., 2003) 
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Calculating the pressure at the dowel concrete interface and multiplying it by the projected area 

was completed by Shoukry et al., (2003) and Equation (2-19) predicts the clamping force.  

           (2-19) 

 

Using the relationships presented, values were obtained for 32 and 37.5 mm dowel bars that were 

uncoated, coated with silicone, and coated with a Tectyl (605) coating by Shoukry et al., (2003) 

and Table 2-4 presents the various values obtained. Prabhu et al., (2007) noted that typically 

values assumed for a greased dowel would have a friction coefficient of 0.0 and ungreased dowel 

would have a coefficient of friction of 0.3.  

Table 2-4 – Experimental Dowel-Concrete Frictional Coefficients (Shoukry et al., 2003) 

  Friction Coefficient 

  
37.5mm 

Diameter 
32mm 

Diameter 

Uncoated dowel bar 0.3433 0.3837 

Silicone coated dowel bar 0.0820 0.0926 

Tectyl coated dowel bar 0.0986 0.0763 

 

Shoukry et al., (2003) created an analytical pull-out model to determine the effects of applying 

the different frictional values to the dowel bars. The contact surface between the slab and dowel 

was modeled assuming hard normal contact with coulomb friction. Using the measured 

coefficients of friction of 0.076 and 0.384 presented in Table 2-4, Shoukry et al., (2003). did not 

find a reduction in mid-slab stresses with the different coatings at the slab interface when curling 

and temperature change is applied; however, it was noted by Shoukry et al., (2003) that under 

other straining situations possible for the slabs the frictional value may have more effect (2003) 

and the assumed values).   

Levy (2010) and Prabhu et al., (2007) modeled the slab-dowel interface as a hard contact surface 

with the measured coefficients presented above in Table 2-4 and a shear stress limit of 2.1 MPa. 

The shear stress limit is the limit of the stress which the friction coefficient will be valid for and 

slipping will begin to occur (Shoukry et al., 2003).  There was nothing included to account for 

chemical bond which is generally considered to not affect the long term performance or service 

behaviour of the concrete slab since it will be broken during early age shrinkage.   
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2.6.6 Slab Base Interaction 

The slab and base will slide across each other under thermal and shrinkage movements occurring 

in the concrete. The interaction between the concrete slab and the base layer will affect the 

behaviour of the concrete under straining as friction will resist some free movement of the slab.  

A review of previous modeling methods for the slab base interaction is included below to 

determine an appropriate method to model this interaction for the current study.  

Davids et al., (2007) modeled the interaction between the slab and the supporting material using 

a contact surface. The interaction between the slab and the base horizontally (for shear transfer) 

is modeled using a 16 noded quadratic element that is assumed to have no thickness. The shear 

transfer is modeled as having a non-linear behaviour with a constant stiffness until a peak value 

at which time the bond is broken and deforms without stress transfer.  

Shoukry et al., (2000) modeled the slab base interaction using a coefficient of friction of 1.5 and 

the interaction allowed for the slab to lift off of the base. Shoukry et al., (2000) noted that the lift 

off will vary depending on the thermal gradient being applied, as well as the wheel load location 

and magnitude.  

Rufino et al., (2006) gathered data from Denver International Airport pavement that was 

constructed with strain gauges at the top and bottom of the concrete, as well as deflection gauges 

in the concrete and base layers. The separation between the slab and the base was compared as 

part of the research as well. The slab deflection comparisons to the base were compared to 

temperatures to determine how the slab behaved under different temperature differentials. At 

longitudinal tie joints, the temperature differential did not seem to have an effect on the 

deflection of the slab relative to the base as the two remained in contact. The author attributed 

this to the two surfaces staying in contact during daily thermal cycling at longitudinal tie joints. 

At the corners of slabs and at transverse joints, the negative temperature differential was found 

have greater separation between the slab and base layers. The data collected at the interior of the 

slab showed that positive temperature differential caused separation between the slab and the 

base layers. The greatest differential deflection between the base and slab layers was found under 

negative temperature gradients at the corners of the slabs.  The slab and base may not be in 

contact even under wheel load as presented by Rufino et al., (2006) and having a interaction 
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between the slab and base that allows separation will be important for analysis of alternative 

devices behaviour to thermal loading.   

Levy (2010) modeled the slab base interaction using a contact surface with a frictional 

coefficient of 0.965 and an initial elastic slip of 0.475 mm. The elastic slip is the elastic 

displacement that is assumed to occur between the slab and base before the slip occurs. The base 

and subbase layers were assumed to be tied to each other in the model used by Levy (2010).  

Based on the review completed, the surface between the slab and base should be modeled with a 

friction interaction between the pavement and base, the base and subbase layers can be tied as 

there is a decreased modulus of elasticity in the subbase layer but no distinct layer interaction.    

2.6.7 Thermal Strains 

Two different types of thermal strains are typical in a concrete pavement slab: thermal gradient 

strains and uniform thermal strains. Thermal gradient strains are due to daily temperature 

changes and cause curling of the slab. Uniform thermal strains occur due to seasonal temperature 

changes that cause the entire slab to expand or contract evenly. Slab curling caused by thermal 

stress gradients creates stress concentrations at the dowel bar locations (as the dowels act to 

restrain the slab from moving). The restraint and resulting stress concentrations caused by the 

dowels and alternatives is of interest for comparison of alternative joint load transfer designs. 

Upwards curling on the slab occurs at night when the top of the slab cools and contracts. During 

the daytime the top of the slab heats and causes downward curling. General upward and 

downward curling is presented in Figure 2-15. 

 

 Figure 2-15  - Downward and Upwards curling of the Slab 

Testing of rigid pavements completed by Sargand and Figueroa (2010) estimated linear gradients 

of temperature through the pavement based on a temperature reading taken at the top and bottom 
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of the slab and determined the different values of linear temperature gradient through the slab. 

The linear gradients ranged from about -0.054 to 0.065 
o
C/mm depending on the time of the day 

and year in early aged concrete. Sargand and Figueroa (2010) noted that the early age of the 

concrete means some hydration will still be occurring and an additional amount of heating will 

occur in the slab sections during this time.  

Siddique et al., (2005) collected thermal data for a slab section on Interstate 70 that was 

constructed in 2003.  The  pavement section was constructed of a 300 mm concrete slab placed 

on a 100 mm portland cement-treated base and 150 mm of lime treated subbase. Temperature 

information was collected for the slab at the top surface and 75 mm increments to the bottom 

surface of the slab. The daily temperature variation at the bottom of the slab (approximately 4
o
C) 

is lower than at the top of the slab where the temperature varies by about 18
o
C in the thermal 

data collected on Interstate 70 (Siddique et al., 2005). The slab section instrumented with thermal 

data on Interstate 70 had 5 m spacing between joints. To assess the curling of the slab, Siddique 

et al., (2005) used an aluminum frame placed on steel pins and an extensometer measured the top 

surface of the slab.  

Based on the data collected by Siddique et al., (2005) it can be seen that the middle of the slab to 

the outside of the slab increases and decreases causing upward curling of about 0.64 mm and 

downward of 0.13 mm. This upward and downward curling is not necessarily exact as the data is 

upward and downward curling from the first reference point at which point there could have 

been an upward or downward curling occurring at this reference point.   

Finite element modeling completed by Siddique et al., (2005) input the thermal gradient as a 

linear distribution. Altering the linear temperature distribution does not have a linear effect on 

upward or downward curling. The profiles are also different depending on whether the 

distribution is upward or downward due to the interaction with the ground and dowel bars at the 

joint. In order to determine the behaviour of the alternatives, a night and day thermal profile 

should be used to estimate the upward and downward curling.  

Levy (2010) input both day and night thermal profiles to estimate upwards and downwards slab 

curling. The equations used by Levy (2010) were based on thermal profiles gathered by Jeong 
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and Zollinger. Equations (2-20) and (2-21) present the daytime and nighttime temperature 

profiles used by Levy (2010).  

                             (2-20) 

   

                         (2-21) 

   

Based on the review of thermal profiles for concrete pavement slabs, it was decided to use the 

nonlinear thermal gradient reported by Levy (2010) for both upward and downward curling to 

investigate the effectiveness of the alternative joint load transfer devices when subject to thermal 

variations in the current study.    

2.6.8 Creep and Shrinkage Strains 

Concrete shrinkage is defined as the contraction of concrete under constant ambient temperatures 

through drying and hardening (MacGregor & Bartlett, 2000). The primary type of shrinkage is 

drying shrinkage, which is due to evaporation of the adsorbed water in the gel pores in the 

hydrated cement. Exposed exterior surfaces will shrink at a rate more quickly than the interior 

surfaces, causing tensile stress to develop at the exposed exterior surfaces. A concrete pavement 

slab is exposed at the top surface and is placed directly on the base layer below. For analytical 

modeling of shrinkage strains it is important to capture the effects of nonlinear shrinkage strain 

through the depth of the slab including the effects of exposure at the top and bottom of the 

concrete slab.    

Relative humidity, composition of the concrete, and the size of member will all affect the amount 

that concrete will shrink due to drying. Relative humidities below 40% will have the largest 

shrinkage strain. The drier air allows more adsorbed water to exit the concrete and hence more 

shrinkage strain. The shrinkage occurs in the cement paste component of the concrete not the 

aggregate; therefore, the shrinkage will depend on the volume of paste in a concrete compared to 

overall volume of concrete. Aggregate type affects the amount of shrinkage because the 

aggregates resist the shrinkage, and the aggregate modulus of elasticity will determine the 

resistance of the aggregates to volume changes. The water-cement ratio is related to the porosity 

of the hydrated cement and the amount of water present in the gel and capillary pores, and hence 

the amount of shrinkage occurring as the water exits the concrete. For larger members, the rate of 

evaporation from the interior portion of the concrete is reduced thereby reducing the overall 
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shrinkage. All of these factors will affect the shrinkage in a concrete pavement slab. Although 

reducing the shrinkage in concrete would be an effective way to reduce stress at the joint (caused 

by permanent shrinkage curling), it was not be investigated in detail in the current study because 

this study is focused on developing alternative devices that reduce restraint at the joint. The 

curling due to thermal effects would still assumed to occur and alternative devices would be 

beneficial even if the effects of shrinkage were reduced through control of the above factors.  

Testing of concrete specimens 300 x 300 x 150 mm with five surfaces sealed using wax was 

completed by Kim et al., (1998) to investigate the effects of shrinkage. The top 300 x 300 mm 

surface was not sealed to force water to flow out of the concrete in one direction. Strain gauges 

were installed at 20 mm, 50 mm, 80 mm , and 120 mm depths from the exposed surface in the 

study. The specimens were moist cured for 7 days and then held in a constant temperature of 

20   1o
C and a constant humidity of 68 2%. Strain measurements decreased as the depth from 

the exposed surface increased.  

Kim et al., (1998) presented strain data with depth for both 28 MPa and 44 MPa concrete 

mixtures with 65% and 40% water cement ratios, respectively. The data reported by Kim et al., 

(1998)  show that the strain profile due to shrinkage is nonlinear with respect to depth, and that 

an uneven shrinkage strain profile will exist. The shrinkage profile proposed by CEB-FIP 

Manual can also be observed to underestimate the strains at in the top half of the slab and 

overestimate the strains in the bottom half of the slab.  The nonlinear shrinkage strain gradient on 

the slab will cause a curling that should be captured in the shrinkage straining that is applied to 

the analytical model of the concrete slab.  

Based on the experimental results Kim et al., (1998) suggested the use of Equation (2-22)  to 

represent the shrinkage strain with respect to depth in a concrete slab.   

               (2-22) 

Where: 

  
 

  
   (Boltzmann Variable) 

     Regression coefficients 
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Based on Equation (2-22)Kim et al., (1998) found values of 353 x10
-6 

and -415.4 for a and b, 

respectively, for the 28 MPa mix, and 238 x10
-6 

and -426.1 for the 44 MPa mix with regression 

coefficients of 0.95 for both.  

Levy (2010) modeled the shrinkage strains in the concrete pavement based on the ACI 209 

recommended values. The values were calculated at three distinct depths, and a modified version 

of Equation (2-22) was used to define the shrinkage profile as shown in Equation (2-23).  

              (2-23) 

   

The shrinkage profile used by Levy (2010) also eliminates the time variable included in the Kim 

et al., (1998) shrinkage profile since it is shrinkage strain profile which was assumed to have 

almost occurred after a year. The constants used for Equation (2-22) by Levy (2010) were: 

a=24.55, b=0.4465, and   0.0269.  

Numerous researchers, including Davids et al., (2005) and Levy (2010), suggested that it would 

be possible to input shrinkage strains into a model by determining the temperature gradient that 

would result in the estimated shrinkage strains. This is an efficient way to input the strains from 

shrinkage into a computational model for a static analysis.   

2.6.9 Wheel Loading 

A pavement slab will encounter a number of different combinations of wheel loads which will 

vary in weight, tire rolling friction, arrangement of applied loads based on axle locations and the 

speed at which the traffic is moving. A wide range of wheel load applications could be applied to 

the slab in order to assess the behaviour of the slab under applied wheel loads. A review on 

existing wheel load models was completed to determine alternatives and variables that will affect 

the wheel loading on the slab. 

Shoukry et al., (2007) modeled a moving wheel load with a nonlinear explicit solver to model the 

wheel load. A moving load based on a tandem axle was used in the current study. The load was 

applied as a 160 kN tandem with the load applied at four locations to represent the moving load. 

In this model a frictional coefficient for the rolling wheel is 0.02 and the speed for the load was 

assumed to be 112 km/h.  
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Levy (2010) modeled the wheel load by applying a static load using a pressure on the top surface 

of the concrete slab over an area equal to the wheel. The wheel load was applied directly at the 

joint location on one side of the joint.  

The CAN/CSA S6-06–The Canadian Highway Bridge Design Code has a model truck that is 

used for the structural design of bridges. The highest wheel load on the truck is an 87.5 kN wheel 

load that is applied over an area of 250mmx 600mm. Increments of this load will be used to 

model the slab behaviour as it is the largest wheel load used in the Canadian Highway Bridge 

Design Code. 

2.7 Previous Laboratory Experiments 

In order to compare alternative device designs, it will be necessary to test the devices in an 

experimental setting. A review was completed of previous experiments to investigate alternatives  

used in the past to evaluate dowels and alternative devices.  In order to assess alternative designs 

an experimental testing program will be implemented. The experimental testing program will be 

focused on wheel load transfer and will not be used to investigate the thermal or shrinkage 

loading. The review of experimental testing arrangements used previously was limited to load 

transfer experimental test setups.  

Porter et al., (2001) used a modified AASHTO T253 direct shear test to test the load carrying 

capacity of elliptical GFRP dowels and conventional dowels. The test setup does not involve a 

granular base, nor does it use the spring reaction of the base layer. The test setup consists of three 

slabs segments  with the joints between the devices being equal (Figure 2-16).  

The AASHTO T253 tests eliminate the need for a complicated test frame by using simple statics 

to test the devices in direct shear. A load is applied to the middle slab and the deflections are 

measured. In the modified version of AASHTO T253 used by Porter et al., (2001) uses point 

loads applied 75mm from the joint on each slab. The original AASHTO T253 test used a 

uniform load along the middle beam which induced a bending moment into the center slab. The 

modification used by Porter et al., (2001) also involved clamping the ends of the two outside 

sections to resist rotation.  
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Figure 2-16 – AASHTO T253 and Modified AASHTO T253 Tests (Porter et al., 2006) 

Based on Timoshenko beam theory and Friberg‟s expression for elastic foundation theory on a 

semi-infinite length, the modulus of dowel support can be found. Using a plot of all the 

calculated Ko values for a specific load (2000 lb) and dowel shape, it is possible to estimate the 

modulus of dowel support for different designs.  

Porter et al., (2001) conducted Modified AASHTO T253 testing of dowel bars and alternative 

dowel bars and found the joint width to affect the modulus of dowel support using Friberg‟s 

dowel deflection calculations. The effects of the joint width were partially due to the rotation that 

occurred in the middle slab of the experiment that caused the slabs to come into contact in some 

of the experiments. When the slabs come into contact with one another, a force occurs between 

the two slabs causing friction between the slabs along the joint interface. The joints that were 
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3.125 mm and 12.7 mm had similar values for the modulus of dowel support using the modified 

T253 test (Porter et al., 2006).  

In order to estimate the amount of bearing stresses in the concrete and the stresses in the dowel 

bars, it is possible to instrument the dowels with strain gauges and use theory to calculate the 

stresses. Although this has been used in other research (Porter et al., 2006) it does not seem to be 

ideal for alternative devices because if the device differs in shape and behaviour significantly 

from a dowel bar the assumptions used to develop the equations may not be valid.  

Eddie et al., (2001) used two different experimental setups that were made to simulate joint load 

transfer at the joint on two different base materials. The purpose of the research was to compare 

alternative dowel designs, specifically oval GFRP dowels. One of the base support conditions 

consisted of a weak bed of springs with an equivalent spring stiffness of 3.6MN/m
3
. The second 

base was a stiff soil and was made of crushed limestone 300 mm thick placed in three equal lifts. 

Plate tests were used to determine the stiffness of the limestone material, and the average 

stiffness of the base was estimated to be 122 MN/m
2
. The dimensions of the slab were 610 mm x 

2040 mm and the experimental testing frame is presented in Figure 2-17. 

The 610mm slab width ensured that no load spreading occured as the load is applied over a 

600mm width. Preventing load spreading through the slab will ensure that the loads in the test 

are larger than the actual loads that would be encountered in service conditions as some 

horizontal load spreading along the joint would occur. Although this will not capture the actual 

behaviour of the pavement slab joint it will make it easier to isolate the effects of the devices 

without more complex load spreading and will estimate an upper-bound for the stress and 

damage in the concrete around the joint as well as for stepping of the devices. This is also a 

manageable size for lab testing as it can be easily implemented in a testing frame.   

The dowel bars and GFRP dowels were also tested and compared in a double shear test as well 

prior to slab testing. Epoxy-coated steel dowels were found to have an ultimate shear strength of 

570 MPa. Two different GFRP dowels were tested in the experimental program: Glasform and 

FiberDowels. The ultimate shear strengths found for Glasform and FiberDowels were 150 MPa 

and 107 MPa, respectively (Eddie et al., 2001).  
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Figure 2-17 – Testing Frame/Setup Used by Eddie et al., (2001) 

The first phase of the slab testing by Eddie et al., (2001) used the weak spring support layer and 

was intended to represent a worst case for base support that would be expected in the field. A 

single load was applied to failure during this phase of the test. The steel dowel test was stopped 

at a load of 114 kN excessive deformation had occurred.  Side sway of the springs was also 

noted during the testing. At a load of 100 kN, the steel dowels had about 16 mm of differential 

joint deflection. The FiberDowels were also loaded in the first phase to a load of 114kN before 

excessive deflection and side sway of the devices cause the test to be stopped. At 100 kN a 

differential deflection of about 12 mm was observed with the FiberDowels. Glassform dowels 

were tested to 135 kN before excessive deflection and side sway caused the test to be stopped. A 

differential deflection of about 8 mm was observed at a load of 105 kN. As the load was 

increased during the testing, the back end of the slab was noticed to lift off the base support 

layer.  

The second phase of testing by Eddie et al., (2001) used a stiffer crushed limestone base and 

applied loads to failure of the devices. The steel dowel device failed at a load of 350 kN beyond 

the end of dowel 400 mm from the joint on the loaded side of the slab and similarly on the 
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unloaded side at 500 kN.  The FiberDowel was sheared off at a load of 540 kN during this phase 

of testing. A second test of the FiberDowel behaved similarly to the steel dowel specimen where 

cracks occurred on either end of the dowel after locking of the joint occurred. The first test 

completed on the Glassform Dowel caused a crushing failure of the concrete beneath the location 

of the load plate at a load of 500 kN ,but the dowels were not damaged. The second Glassform 

Dowel tested by Eddie et al., (2001) had cracking occur on either side of the dowel (loaded end 

then unloaded end), and was followed by crushing in the loading zone at failure.  

The third phase of the testing completed by Eddie et al., (2001) involved cyclic loading of the 

slabs on the stiff limestone base. The load was cycled between 20kN and 130kN with monotonic 

tests to 130kN being taken at certain intervals (100, 1000, 10000, 100000, 300000, 600000, and 

1000000 cycles).  The steel dowels did not show signs of damage occurring to the concrete 

during the cyclic service load testing. As the cycles increased, the maximum displacement at the 

joint decreased and slab uplift at the ends of the slab became more consistent on either end of the 

slab. The FiberDowel was found to have similar cyclic loading results as the steel dowel, with 

the exception of a small crack occurring at the end of the test. Similarly the Glassform dowel 

also had very similar results to the steel dowel with no noticeable damage noted by Eddie et al., 

(2001).  

Based on the testing setup used by Eddie et al., (2001) it is possible to obtain valuable 

experimental behaviour information about the slab in a realistic setting. Their research showed 

that using a bed of springs can provide a consistent stiffness across the entire base of the slab and 

also collect information on the load distribution in the slab easily. However, obtaining springs 

that would behave similar to the actual stiffness of pavement structures would not be 

economical. Eddie et al. (2001) noted using such a low stiffness (approximately 3% of that 

expected in a pavement structure) can act as a lower bound support condition, and it can provide 

an effective way to compare the devices with a easily repeatable testing setup. The thin granular 

base can also be used to provide a stiff base support; however, it is less repeatable as the base 

needs to be prepared each time and the compaction may vary from test to test.  

Based on the review completed to adequately compare the device behaviour in a concrete 

pavement slab it would be important to have support layers and simulate a consistent support as a 

direct shear test will only capture the shear behaviour of the device itself. It is important when 
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comparing device alternatives to investigate the joint load transfer efficiency as well as the effect 

of based layers on the behaviour of the device. In this study a consistent base support will be 

provided in experimental testing to compare devices to capture more than the shear behaviour of 

the devices.  

2.8 Summary of Literature Review 

The review of the literature completed identified that load transfer devices are required in 

concrete pavements to avoid joint stepping and increase comfort. JPCP without load transfer 

devices have required rehabilitation prior to the service life of the pavement. Conventional load 

transfer at joints is provided using round steel dowels that reduce stepping but introduce stress 

concentrations adjacent the devices and introduce misalignment tolerances. Steel used in dowels 

corrodes in service causing further problems with joint locking. Due to the tight misalignment 

tolerances and material degradation alternative joint load transfer devices should be investigated.  

A review of previous devices investigated showed that other alternatives have been used in the 

past that have attempted to address dowel bar misalignment and corrosion problems. A number 

of rehabilitation projects included devices designed to avoid misalignment problems and allow 

free movement at the joint but without mechanical load transfer at the concrete device interface 

but were found to be unsuccessful at reducing stepping. GFRP materials have been investigated 

as substitutions for round dowels but do not address misalignment issues in conventional dowels. 

Misalignment problems have been addressed in industrial floor slabs using steel diamond and 

tapered plate dowels but have not been investigated using alternative materials to reduce 

corrosion. Steel I-beams were found to behave poorly in rehabilitation; however, relying on 

existing and new concrete bonded surfaces to transfer load. The use of I-beams, tapered plates 

and GFRP material substitutions will all be investigated in this study.  

Conventional dowel bar theory can be used to estimate the deflection and stress at the joint for 

wheel loading; however, involves multi-variable constants and  does not capture the effects of 

misalignment, shrinkage or thermal straining. Previous investigations have suggested the use of 

three dimensional finite element analysis to assess the behavior of a concrete slab with nonlinear 

material properties and contact surfaces.  Models have previously been developed successfully 

previously to assess the effects of shrinkage, thermal, and wheel loading on a JPCP with 
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traditional dowels. The models previously developed for conventional dowels will be used as a 

basis for the model development used to compare alternative designs investigated in this study.  

Investigations of alternative devices and conventional dowels have been completed in both field 

and experimental settings. Based on the review of the literature,  load transfer testing of 

conventional dowels and alternatives has been completed using static and cyclic wheel loading 

applied to one side of the slab or direct shear tests. A direct shear test does not replicate the load 

transfer occurring at the joint adequately as the effect constant base support is not captured. A 

static wheel load applied to one side of the joint provides more information about the behaviour 

of the joint as continuous support is provided; however, due to the nature of the load transfer 

stress reversals occur as the load is moved from one side of the joint to the other and will not be 

captured when the load is only applied one side of the joint.  
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3.0 Load Transfer Device Development 

Alternative joint load transfer device concepts were developed in this research program based on 

a review of literature and engineering materials and mechanics. This chapter presents the device 

criteria that were used to develop the device concepts, describes alternative device concepts 

proposed, presents preliminary sizing of devices and design calculations for devices, describes 

the method of further evaluation that was used on the devices and qualitatively describes the 

perceived benefits or drawbacks of the different concepts and compares them to dowels as well 

as one another. Based on a qualitative analysis of the devices, the most promising devices were 

chosen for further evaluation using finite element analysis for joint load transfer performance 

and behaviour under shrinkage and thermal loading.   

Several design approaches were considered to determine an alternative joint load transfer device. 

The first type of device is placed at discrete locations along the length of the joint and is aligned 

perpendicular to the joint (and parallel to traffic), similar to conventional dowels.  The first type 

of devices will be referred to as “Discrete Devices” for the remainder of this thesis. The second 

type of device is designed to extend the entire width of the joint, and has much different load 

transfer mechanics than conventional dowel bars. The second type of devices will be referred to 

as “Continuous Devices” for the remainder of this thesis. Discrete devices will be presented first 

followed by the continuous devices. 

3.1 General Device Criteria 

In order to determine alternative device designs, a set of device design criteria was developed. 

This section presents the general device design criteria used when developing alternative 

concepts. These general criteria focus on the function of the joint and purpose of the device 

itself. 

Ideally, a load transfer device would transfer half of the wheel load from one side of the joint to 

the other as the wheel crosses the joint to distribute the load to the base layer similarly to the 

remainder of the slab. High stress concentrations occur in the concrete slab and in the base layer 

below the joint at the discontinuity caused by the joint in the pavement slab. This will include 
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ensuring that the concrete around the device has tolerable stress concentrations that will not 

cause the concrete to crack and fail at these high stress locations under repetitive load 

application. The effects of cyclic loading on damaged concrete areas worsen the ability of the 

device to transfer load. Alternative device concepts should limit stress in the concrete to an 

acceptable range when transferring wheel loads to avoid extensive concrete damage (limits for 

plastic strain in concrete for finite element analysis is discussed later in Chapter 5.0). 

The load transfer ability of the devices is also measured by the amount of differential deflection 

or stepping that occurs at the joint. As a wheel crosses the joint location differential deflection at 

the slab causes rider discomfort. Alternative device concepts should limit the stepping at the joint 

when transferring wheel loads.  

Shrinkage strains on the slab cause large strain gradients on the slab as the concrete hardens. The 

shrinkage profile causes upward curling of the slab. As the shrinkage strains are applied to the 

slab, alternative device concepts should maintain acceptable limits of plastic strain in the 

concrete and not cause stepping in the slab at the joint.   

Temperature cycles experienced by the slab cause concrete to expand and contract based on the 

day-to-day and season-to-season variation. Also thermal strain gradients through the slab due to 

the differential temperatures at the top and bottom of the slab must be accommodated by the 

devices. The alternative device concepts must limit stepping due to thermal strain gradients 

causing slab curling, and should also limit concrete plastic strains to an acceptable limit when 

thermal strain gradients are applied to the slab. 

The method of placement and ease of construction will also be considered in development of the 

alternative device concepts. Alternative device concepts should alleviate misalignment 

conditions that could result in premature deterioration in an actual paving application. A general 

discussion of the misalignment tolerances and possible misalignments will be discussed for each 

of the devices.    

In summary, the criteria used to select the devices in this research were: load transfer efficiency, 

concrete plastic limits, concrete stress concentrations, qualitative analysis of construction method 

and tolerances, and maximum base reaction stress.  
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3.2 Discrete Devices 

Discrete devices are alternative device concepts that are assumed to behave similarly to dowel 

bars to transfer load at the slab. Generally, the devices are intended to improve on dowels with 

regards to possible restraint of joint movement.  A discussion of the device properties, including 

the benefits of the device for misalignment as well as cost and constructability, are presented in 

this Chapter. 

The proposed discrete devices were intended to combine previous steel dowel development and 

link it to other conventional round and elliptical dowel development using GFRP as an 

alternative to steel. Using the assumption that all the discrete devices will behave similarly to 

dowel bars, the proposed discrete devices were compared using the conventional dowel bar 

equations presented earlier (Section 2.1.2). The method of analysis using conventional dowel bar 

equations was adapted from the research on steel plate dowels by Walker et al., (1998). The 

detailed calculations for each device design can be found in APPENDIX A – Design 

Calculations for Discrete Devices using Dowel Bar .  

The design equations require material properties for the device for elastic and shear modulus. An 

elastic modulus of 200,000 MPa and shear modulus of 77,000 MPa were assumed for steel 

dowel bars. The elastic modulus for the GFRP was adopted from manufacturer‟s product 

literature as 19,310 MPa and a shear modulus of 3,100 MPa.  A range of modulus of dowel 

support values were used similarly to Walker et al., (1998) since these will vary depending on 

the behaviour of all the components below the device including the concrete-device interface and 

the base support provided below. Specific assumptions about the devices used in the calculations 

are justified in the following sections.  

A number of device concepts were considered, although only the devices that were deemed to be 

promising based on a qualitative analysis are presented herein. Further joint load transfer 

comparisons using a wheel path finite element model are presented in Chapter 5.0.  

3.2.1 GFRP I-beam 

GFRP I-beam load transfer device would use a GFRP I-beam placed across the joint on the base 

layer to provide joint load transfer as shown in Figure 3-1. The device would be placed prior to 
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concrete placement, and it would avoid the use of dowel baskets or inserters. Advantages of 

using this type of GFRP device would be ease of placement due to the light shape, and being 

able to place them directly on the base layers and avoid vertical skew and misplacement 

misalignments. Previous research on I-beam joint load transfer devices has been limited to joint 

restoration. Furthermore, GFRP devices have not been considered.  

 

 

Figure 3-1 - GFRP I-beam Device: General Arrangement 

The size of GFRP I-beams considered was limited by what was readily available. A 100 mm 

deep with 50 mm wide flanges with a section thickness of 6.4 mm (GFRP I 100x50x6.4) was 

selected and found to be comparable to conventional round dowels using conventional dowel bar 

equations. Three different spacings were assumed with the GFRP I-beam 300 mm, 600 mm and 

900 mm. Devices were compared against conventional round steel dowels at a 300 mm spacing 

for 25 mm, 32 mm, and 38 mm diameters.  Figure 3-2 and Figure 3-3 present the comparisons of 

the GFRP I-beam with the conventional dowels in terms of concrete bearing stress and 

differential joint deflection as a function of modulus of dowel support, Ko. These figures were 

generated using Equations (2-1) through (2-5). The entire section modulus of the GFRP I-beam 

was assumed as well as the entire cross sectional area of the device at the joint for moment and 

shear deflection calculations. Conventional dowel bar theory assumes the device is located at the 

mid-height of the slab, however, the GFRP I-beam is placed directly on the base and will be 
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offset from the mid-height of the slab. No alterations were made to the estimations due to the 

placement of the GFRP I-beam compared to slab mid-height.  

 

Figure 3-2 – GFRP I-beam 100x50x6.4 Development - Bearing Stress Predictions 

 

Figure 3-3 - GFRP I-beam 100x50x6.4 Development - Differential Joint Deflection Predictions 

The 100x50x6.4 GFRP I-beam at a 300 mm spacing is predicted to reduce the bearing stress at 

the joint by approximately 1 MPa in comparison to the 38 mm diameter steel dowel. The 

100x50x6.4 GFRP I-beam at a spacing of 600 mm behaves very similarly in bearing stress 



59 

 

predictions to a 32 mm dowel at 300 mm spacing. However, the predicted joint deflection is 

increased for the GFRP devices in comparison to the dowels. All of the differential deflection 

predictions are below 1 mm. Based on the predicted preliminary analysis of the 100x50x6.4 

GFRP I-beam, a spacing of 300 mm could behave similarly to steel dowels while also lowering 

the bearing stress. Although there is an increased differential deflection, it is assumed that some 

differential deflection is allowable and maintaining a differential deflection below 1mm was 

assumed to be satisfactory for preliminary analysis completed in this research only. A more in 

depth analysis of joint deflection will be completed in Chapter 5.0.   

Based on the preliminary analysis of the available GFRP I-beam a 100x50x6.4mm GFRP I-beam 

will be selected for further investigation. In an attempt to reduce the number of devices to reduce 

cost, a spacing of 600 mm was selected for modeling using joint load transfer analysis.  This 

section and spacing provide a reasonable compromise between reduced bearing stress and 

increased differential deflection.  

3.2.2 Tapered GFRP Plate dowels  

Steel plate dowels have been recently investigated as load transfer devices for paving 

applications where joints are sawcut and misalignment misplacement of the sawcut is a concern. 

The progression through different shapes of plate dowels for industrial floor slab applications has 

included square dowels, rectangular plate dowels, diamond plate dowels, and tapered plate 

dowels. Based on the previous progression toward the tapered plate dowel the similarities 

between the general layout of conventional steel dowels and the tapered plate dowel (as shown in 

Figure 3-4) tapered plate dowels using GFRP as an alternative material were selected for 

investigation.   

The assumed benefit of the GFRP tapered plate is that the general arrangement of the device 

allows the smaller end of the plate to release easily and not lock when misaligned to a greater 

tolerance than conventional round steel dowels. The reduced misalignment tolerance is the 

primary advantage in comparison to conventional steel dowels. The devices are still located at 

discrete locations and generally restrain the slab from shrinkage and thermal gradients that cause 

slab curling.  This restraint causes high stress in the concrete around the device causing cracking 

and failure near the joint.  
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 Figure 3-4 – GFRP Tapered Plate General Arrangement (Wheel Path Section Shown) 

Three different GFRP Tapered plate arrangements are presented in Figure 3-5 and Figure 3-6. 

The first section is 75 mm at the wider end of the dowel, tapered evenly from both sides to 25 

mm at the narrow end of the dowel. Two different plate thicknesses of 19 mm and 12.5 mm were 

used with this first section (GFRP Plate 75x25x12.5 and GFRP Plate 75x25x19mm. A spacing of 

300 mm was assumed for the plate dowels since they will behave similarly to conventional 

dowels and method of placement will be similar. A second, wider, GFRP I-beam was used at a 

600 mm spacing (GFRP Plate 125x75x12.5).  

 

Figure 3-5 - GFRP Tapered plate Development – Bearing Stress Predictions 
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Figure 3-6 – GFRP Tapered plate Development – Differential Joint Deflection Predictions 

All three sections proposed for Tapered plate dowels increase the assumed bearing stress in the 

concrete. The GFRP Plate 75x19x19 mm performed the best with the lowest bearing stress in the 

concrete. The GFRP thickness was not increased further to try and reduce the bearing stress 

further, as the reduction from 12.5 mm to 19 mm thickness reduced the predicted bearing stress 

by only 4MPa. Furthermore, plate thickness larger than 12.5 mm is not readily available.    

The GFRP plate dowels performed very similarly to conventional dowels in differential 

deflection across the joint. All of the arrangements of GFRP tapered plates limited differential 

deflection at the joint to less than 1 mm. Due to the availability of material for testing purposes, a 

GFRP Plate 75x25x12.5 mm was selected for further investigation since it performed similar to 

dowels and provided a reasonable compromise on material use while maintaining bearing and 

differential deflection limits.  

3.3 Continuous Devices 

Continuous devices were developed in an attempt to allow the joint to function in a more 

effective manner. The devices run the entire width of the slab and are placed on the base 

material. The use of a weaker material and the introduction of the discontinuity prior to the 

casting of the concrete are assumed to form a weak plane in the concrete in the same way that a 
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saw cut does, thus creating a location for a planned crack to form. Continuous devices are also 

aimed at reducing the stresses developed near the joint during shrinkage and thermal strain 

gradients causing curling, while allowing an efficient means of load transfer continuously across 

the length of the joint. The assumed load transfer at the joint is through concrete device bearing 

surfaces at the joint interface created by the device. It is assumed that these concepts will reduce 

tensile stress locations at the dowel interface as well as reduce the stress at the device concrete 

interface by increasing the area of joint load transfer. The general benefits and function of the 

devices are described in this Section.   

Although continuous joint devices are also designed with the thought that it could be possible to 

eliminate the need for saw cutting and is thought to be an advantage of the devices, this aspect 

will not be investigated in the current study.  

The development of the continuous devices considered several shapes. They are concept devices 

and were analyzed using the quarter slab model developed later in Chapter 7.0. The analysis was 

intended to show proof of concept with a service loading of shrinkage and thermal strains as well 

as wheel loading. Ultimate load transfer analysis was not completed due to time constraints.  

3.3.1 Continuous Horizontal V Device  

The continuous horizontal V device uses a V-shaped section placed along the entire length of the 

joint across the slab width. Load transfer is intended to occur across the crack by using the slab 

interlock provided by the formed slab edges on either side of the device as shown in Figure 3-7.  

 

Figure 3-7 – Horizontal V Device 

The angle of the V was chosen to avoid acute angles and to ensure that concrete placement 

should not be a problem. In order for the device to work, there must be adequate consolidation of 
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concrete around the joint and voids at the joint interface must be avoided. The device is intended 

to transfer load at the joint in a manner similar to the distribution assumed away from the joint, 

with the spread of load occurring at an angle of about 45 degrees through the slab. The plastic V 

shape is assumed to act as a point of weakness in the concrete and will be able to initiate the 

crack locations due to shrinkage. The concrete at the joint will be formed into a horizontal V, and 

will work similar to a shear key. As can be seen in Figure 3-7, the assumed load transfer when 

the load is on the right side of the joint is the bearing of the concrete on the device on the top leg 

of the horizontal V to the concrete beneath. When the load is on the left side of the joint, the load 

is transferred through the bottom leg of the horizontal V.   

In the first model, no crack was assumed above the device. When the shrinkage load was first 

applied, the strains above the device become high and close to the cracking limit in tension 

above the device. Modeling the slab without a crack was completed only to identify tensile stress 

concentrations during shrinkage to identify the most likely zones for cracking to occur and is 

presented in Figure 3-8. The Von Mises stress in the quarter slab model with a joint is presented 

later in Chapter 7.0.  

 

Figure 3-8 – Horizontal V Mises Stresses during Shrinkage step for crack formation  

The analysis completed on the model was to demonstrate the concept and to investigate the 

possibility of creating cracking above the device without the use of a sawcut. A single 

application of shrinkage was applied, and as the concrete strains became plastic above the device 

the analysis was stopped. The highest Von Mises stresses located above the joint ranged from 

about 2.4 MPa to 2.75 MPa tension which is in the range for tension cracking. It appears that 
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natural shrinkage would create cracking in the intended location, as presented in Figure 3-8. 

However, the natural cracking due to shrinkage may cause uneven cracking on the top surface, 

which may lead to damage to the surface of the concrete due to random cracking. Similar 

problems exist when sawcuts are made too late after the concrete has been placed and shrinkage 

cracks begin to form. Also, it appears that the cracking may occur on either side of the device 

from the high tensile zone above this area and extend away from the device face based on the 

high stress concentrations occurring away from the above the top of the device.  

The V shape and compressible material of the device will allow a natural keyed joint. The 

weaker compressible material in the device itself is planned to allow for the movement required 

to relieve curling strains due to thermal and shrinkage while still maintaining a constant load 

transfer surface. The device should also maintain an even surface across the top of the slab and 

reduce faulting during thermal and shrinkage strains.  

The continuous horizontal V device will be investigated further using the quarter slab model for 

shrinkage, thermal and wheel loading in Chapter 7.0.  

3.3.2 Continuous Italic L Device 

The continuous italic L device is similar to the horizontal V device, and consists of a 

compressible material, possibly plastic, that looks similar in shape to an italic L in that the 

vertical leg extends at a 60 degree angle from the base as shown in Figure 3-9. The angle was 

chosen to provide load transfer across the joint, but also to keep the size of the device down to 

ensure that concrete would be placed evenly and without voids around the device. At the bottom 

of the device, the first portion of the leg is still extended up from the bottom at 90
o
 to reduce 

possible cracking out of the corner of the device and to improve the ability to place and 

consolidate the concrete. The italic L device is intended to reduce the locking at the joint by 

planning a crack formation to allow a slip surface.  
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Figure 3-9 – Italic L Device 

The italic L device is assumed to create a crack that will extend off the end of the device to the 

top of the slab during the initial shrinkage of the slab. It would be able to transfer load similar to 

the V device by using the assumed load distribution through the slab to the base. Figure 3-9 

illustrates how the load is assumed to be transferred through the slab at the joint to the base layer. 

When the wheel is on the right hand side of the joint the load is assumed to follow the concrete 

along the inside of the device similar to the natural path through the slab. As the load passes to 

the other side of the device it is assumed that the concrete bearing on the device bears directly 

across the device to the concrete on the other side of the device.  

The slab was initially analyzed with a quarter slab model without a crack above the device. The 

concrete stress above the device was above the cracking strength of concrete in the location 

planned and high tensile stresses in the concrete were isolated near the joint location. It is 

difficult to determine if the crack would still form in this location. It was also determined that the 

device may cause too much restraint to curling, or may not adequately transfer load at the joint 

depending on different angles of the device leg. Higher angles are better at transferring load; 

however, they restrain the slab more and vice versa. The italic L device is not studied further in 

this research based on the preliminary review.  

3.3.3 Continuous Horizontal Pipe Device 

The continuous horizontal pipe device was proposed in an attempt to provide load transfer across 

the joint through a pipe set at the middle of the slab, as shown in Figure 3-10. The pipe is also 

assumed to provide less restraint to shrinkage strains (and also thermal strains) that cause curling 

of the slab, as either slab will be able to rotate about the device while still maintaining a level 

driving surface at the top of the slab. The pipe is a 150 mm in diameter, and is placed on a stand 
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that has legs that extend above and below the pipe to ensure a discontinuity and weakness in the 

slab to create a crack. The horizontal pipe device is also assumed to be a compressible material 

to allow for some movement. Depending on the maximum stress in the pipe portion of the device 

an alternative (stronger) material may be required for the pipe portion, but alternative materials 

will not be investigated in this study.    

 

Figure 3-10 – Horizontal Pipe Device 

 The device transfers load across the joint through the pipe and bears on the concrete on the other 

side of the joint. The load transfer is similar to the remainder of the slab as the device will bear 

on the concrete on either side of the joint. If the joint is not sawcut, the application of the 

shrinkage load produces tensile stress in the concrete above the device that exceed the cracking 

strength of the concrete. These high tensile zones where plastic damage was occurring were 

isolated to above the device suggesting cracking should occur above the device. The horizontal 

pipe device will be analyzed under service conditions with a joint extending from the top leg of 

the device in the concrete in Chapter 7.0 (assuming either a sawcut or natural cracking has 

occurred during shrinkage).  

3.3.4 Foundation Pipe Device 

The foundation pipe device consists of a pipe being placed with half the pipe above grade and 

half below grade at the joint location. Extending from the top of the pipe is a straight piece of 

plastic that would be used to create the crack location as can be seen in Figure 3-11. The pipe 

would be a 200 mm diameter ABS pipe section. The section also includes two pieces that extend 

up from the top of the device in order to provide a location for the crack to occur. Two pieces 

were chosen in the current study to provide also for a place to allow drainage at the joint to 

occur. Use of the device as drainage at the joint was not investigated in this study although it is 
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thought that reducing water ingress at the joint location could reduce subgrade failure which has 

shown to increase faulting and reduce load transfer efficiency at the joint. These benefits are not 

considered.  

 

Figure 3-11 – Foundation Pipe Device 

The pipe section was chosen to account for the effects of shrinkage and thermal gradients since it 

would allow a natural surface from which the slab could curl away and towards the device. The 

device itself is then intended to transfer the load through deeper to the subgrade at a larger area 

below. The faulting at the joint, however, is dependent in this case on the strength of the pipe 

device itself and the base material below as the device is not necessarily restrained from settling 

into the base material. Once the contact is lost between the opposite side of the joint and the 

device due to settling that may occur the device does not provide load transfer to the opposite 

side of the slab. Based on the rational analysis of the load transfer mechanism it was determined 

the device would not reduce faulting at the joint and would therefore not be a promising device 

and was not investigated further.  

3.4 Summary of Device Development 

Concept development and preliminary analysis of continuous and discrete joint load transfer 

devices were presented in this Chapter. Continuous devices generally run the full width of the 

joint whereas discrete devices are placed at discrete locations along the joint width.  
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The basis of design for the devices including the perceived advantages and disadvantages is 

presented in Table 3-1. 

Table 3-1 – Device Development Summary Comparison 

Device Description Perceived Advantages Perceived Disadvantages 

GFRP I-beam  Eliminates vertical 

misalignment by being 

placed directly on base 

material 

 Construction would be 

similar to conventional 

dowels and should be easy to 

implement 

 Introduces a new 

misalignment plane 

Still creates stress 

concentrations at device 

locations under load transfer 

GFRP Tapered Plate  Reduces horizontal 

misalignment tolerance with 

tapered shape 

Construction would be 

similar to conventional 

dowels and should be easy to 

implement 

GFRP Material reduces 

corrosion problems 

 Introduces a new 

misalignment plane 

 Creates stress concentrations 

at device locations under 

load transfer 

Continuous Horizontal V Device 

 Eliminates stress 

concentrations at the device 

concrete interface by 

providing a continuous load 

transfer surface 

 Eliminates horizontal 

misalignment by running 

continuously along the joint 

length 

 Could be used as a joint 

forming device 

 Eliminates vertical 

misalignment by being 

placed directly on the base 

material 

 Material would not corrode 

 

 May not provide as effective 

of load transfer as traditional 

dowels  

Cracking may occur adjacent 

to the device causing failure 

Continuous Italic L Device  Does not provide adequate 

load transfer when the load is 

on the leave side of the joint 

 Cracking may occur adjacent 

to the device causing failure 

Continuous Horizontal Pipe Device  May not provide as effective 

of load transfer as traditional 

dowels  

 Cracking may occur adjacent 

to the device causing failure 

Continuous Foundation Pipe Device  Does not provide adequate 

load transfer when the load is 

on the leave side of the joint 

 Cracking may occur adjacent 

to the device causing failure 
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The discrete devices that were proposed in this Chapter include the GFRP I-beam and GFRP 

tapered plate section. Both the GFRP I-beam and GFRP tapered plate sections were determined 

to be capable of transferring wheel load at the joint comparably well to dowels based on analysis 

using conventional dowel bar theory equations for joint deflection and concrete bearing stresses. 

Each of the GFRP I-beam and GFRP tapered plate dowels were investigated further in this study. 

The discrete devices are compared to conventional round steel dowels, in Chapter 5.0, using 

finite element analysis to investigate wheel load transfer on a wheel path model. In Chapter 6.0, 

discrete devices are compared to conventional round steel dowels using experimental testing on a 

wheel path model. Finally, in Chapter 7.0, the discrete devices are compared to conventional 

round steel dowel bars using quarter slab finite element models with service loading applied.  

The continuous devices that were proposed in this Section include the horizontal V device, the 

italic L device, horizontal pipe device, and foundation pipe device. Based on the rational analysis 

completed on the continuous devices, the horizontal V and horizontal pipe devices were 

investigated further. The continuous devices are analyzed and compared to conventional round 

steel dowels, in Chapter 7.0, using quarter slab finite element models with service loading 

applied.  
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4.0 Finite Element Model Development 

Finite element modeling of the pavement structure was used to investigate the behaviour of the 

joints and to compare the alternative load transfer devices. As discussed previously, two different 

model geometries were developed for the comparison of the devices. The finite element model is 

also a continuation of work previously completed at the University of Waterloo by both Leong, 

et al., (2006) Levy (2010), and various material and loading inputs were based on this model. 

The shrinkage and thermal strains and material inputs were reevaluated previously in the 

Literature Review (Chapter Two), and further details are provided in this Chapter.  

Four different model geometries were used in the finite analysis study: a wheel path model, and 

full slab, half-slab and quarter slab models. The wheel path model was used to investigate the 

joint load transfer of discrete devices as described in Chapter 5.0. During the development of the 

wheel path model, larger model geometries of a full and half slab were also used, and the global 

response of the joint was investigated with dowels to compare the effects of the size of slab 

section as well as boundary conditions in developing the wheel path model geometry. Detailed 

comparisons of the larger models to the wheel path model are described in Chapter 5.0.  The full 

and half slab models were used to investigate the joint load transfer of conventional dowels in 

more depth, and to study the effects of load transfer and restraint in other directions not captured 

in the wheel path model. These comparisons are also presented in Chapter 5.0.   

The second model used to compare the devices is a quarter slab model. The quarter slab model is 

an efficient model of full slab behaviour when subjected to shrinkage, thermal and wheel 

loading. The quarter slab model was used to investigate the service loading of all the devices 

(both continuous and discrete) that proved to be promising based on preliminary analysis. The 

loading on the quarter slab model consisted of shrinkage and thermal strain gradients, as well as 

wheel loading applied at the joint. The service load analysis using the quarter slab model is 

described in Chapter 7.0. 

The materials used in the study consist of subbase, base, concrete, steel, GFRP, as well as a 

compressible material that was assumed to be a plastic. The material properties, as well as the 

general load and strain application, are explained in this Chapter. Detailed geometries and 
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boundary conditions of the wheel path and quarter slab models are discussed in Chapter 5.0 and 

7.0. 

4.1 Material Properties 

The required material properties were based on the material models that are available in 

ABAQUS. Specific input values were chosen based on previous finite element modeling of 

pavements reported in the literature and performed at the University of Waterloo, as well as 

using the recommendations from the ABAQUS manual. 

4.1.1 Concrete 

Concrete is a brittle, anisotropic material that has different behaviour in compression and 

tension.  A nonlinear material model should be chosen to appropriately model the concrete slab. 

The nonlinear material model has to capture both the anisotropic as well as damage behaviour of 

concrete. A review of the uniaxial behaviour of concrete in tension and compression was 

completed in the Literature Review (Section 2.6.2) and will be used as a basis and comparison 

for inputs used in the concrete model. This section is aimed at describing the material model 

chosen and the material inputs based on the literature, research previously completed at the 

University of Waterloo (Levy, 2010) and the ABAQUS Manual (2008).  

ABAQUS contains three inelastic concrete models: concrete smeared cracking, cracking model 

for concrete, and concrete damaged plasticity model. All three models are intended primarily for 

the use with reinforced concrete, but can also be used with plain concrete structures. The 

concrete smeared cracking model is designed for monotonic straining at low confining pressures 

in ABAQUS/Standard, and defines cracking as the most important aspect of the behaviour. The 

cracking model for concrete is designed to model brittle discontinuities in a model, and is for use 

in ABAQUS/Explicit. The concrete damaged plasticity model assumes that the main two failure 

mechanisms in concrete are compressive crushing and tensile cracking (ABAQUS, 2008). The 

ABAQUS (2008) manual also notes that the concrete damaged plasticity model is capable of 

modeling concrete under cyclic loading. The concrete damaged plasticity model was chosen by 

Prabhu et al. (2007) and Levy (2010) to represent the concrete slab material behaviour.  
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ABAQUS represents the stress-strain relationship in the concrete damaged plasticity model using 

the original element stiffness matrix and the effective stress is defined in Equation (4-1). 

      
           (4-1) 

 

   is the effective stress 

  
   is the original element stiffness; 

  and    are the elastic and plastic strains respectively 

A single scalar degradation value is used to represent the damage in the concrete damaged 

plasticity model and the Cauchy stress is presented in Equation (4-2). The damage variable is 

used to represent the ratio of effective load carrying area (ABAQUS, 2008).  

           (4-2) 

 

Where: 

  is the Cauchy Stress; and 

      represents the ratio of effective load carrying area of the material or the overall area 

minus the damaged areas 

The damage variable, d, is based on the effective stress in the material as well as a set of 

hardening variables that are inputs to the material model. ABAQUS assumes the strain rate to be 

additive as shown in Equation (4-3).  

               (4-3) 

 

Where: 

    and     are the elastic and plastic strain rates respectively 

The hardening variables represent the damaged behaviour of the material in tension and 

compression (ABAQUS, 2008). The general equations for the hardening variables are presented 

in Equation (4-4).  
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                           (4-4) 

 

Where: 

    
  

 and    
  

 are the plastic equivalent strains in tension and compression respectively; 

Inputs for the behaviour of concrete in compression and tension are explained in detail first for 

the damage variables as well as inelastic stress-strain relationship before proceeding into a 

detailed  description of the three dimensional aspect. The hardening variables are related to the 

equivalent plastic strain in tension and compression which is used to relate the damage values 

input for compression and tension as explained below.  

The inputs used in the concrete damaged plasticity model for density, Young‟s Elastic Modulus, 

Poisson‟s Ratio and thermal expansion are presented in Table 4-1. The density is used to apply 

the self-weight loading on the concrete. Young‟s Elastic Modulus and Poisson‟s ratio are used to 

model the elastic range of the concrete and to formulate the original element stiffness matrix 

(  
  ). The thermal coefficient of expansion is used to apply straining functions due to thermal 

and shrinkage strains to the concrete.  

Table 4-1 – Concrete General Material Properties  

Description of Value Value 

Density 2.40E-09 tonne/mm3 

Young's Elastic Modulus (E0) 22576 N/mm2 
Poisson's Ratio 0.18 Unitless 

Coefficient of Thermal Expansion 1.10E-05 / oC 
 

Figure 4-1 presents the behaviour of concrete in uniaxial compression used by the ABAQUS 

concrete damaged plasticity model.  
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Figure 4-1 – Compressive stress-strain behaviour of Concrete used in ABAQUS (2008) 

The material initially behaves linear elastically with a modulus of elasticity of E0 until it reaches 

an elastic limit (   ). Strain hardening occurs between    and     in Figure 4-1 where the 

material requires further stress to increase the strain beyond the elastic limit (   ). After the 

material reaches the ultimate stress of     the material resistance reduces as plastic strains 

develop which is known as strain softening. As plastic straining occurs in concrete in 

compression crushing of the material occurs which reduces the stiffness of the damaged material. 

The reduced stiffness is shown in the unloading portion of Figure 4-1 and is represented using 

the damage value   , which is a scalar value used to reduce the stiffness of the material based on 

the inelastic strain reached (described later in this Chapter). The strain remaining in the material 

after unloading is the plastic strain in the material and the strain recovered upon unloading is the 

elastic strain (which are shown as   
  

and   
  in Figure 4-1).  

The elastic modulus was input as 22,500 N/mm
2
, based on the input used by Levy (2010), to 

model the elastic range of the concrete. To define the remainder of the compressive behaviour of 

the concrete, stress and corresponding inelastic strain values, presented in Table 4-2, were input. 

Both the elastic modulus and the and the inelastic strains are estimated based the Equations from 

the CEB-FIB-Model code presented previously in Equations (2-8) and (2-9). These values were 

established by fitting a curve for a typical 30 MPa concrete.   
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Table 4-2 – Concrete stress and inelastic strain 

Stress (MPa) Inelastic Strain 

21 0 
22.2 1.66E-05 
25.8 0.000107 

28.25 0.0002486 
29.6 0.000439 
30 0.0006712 

24.68 0.001157 
18.92 0.0016619 
13.95 0.0021321 
10.13 0.0025513 

7.36 0.0029241 
5.39 0.0032613 

3 0.003867 
1.09 0.004516 
0.04 0.009998 

0.002 0.02 
 

When the yield stress is reached there is no plastic strain in the concrete. Beyond the yield stress 

plastic strains begin to occur in uniaxial compression as can be noticed from the increase in the 

stress from 21 to 30 MPa as the plastic strain increases to 0.00067. Beyond this point the stress is 

reduced as the plastic straining continues to occur which is represented in Table 4-2 by the 

reduction in stress from 30 to 0.002 MPa while the strain increases from 0.00067 to 0.02.  

The final inputs needed to model the uniaxial compressive behaviour of the concrete are the 

damage characteristics. In order to define an amount of damage in compression, manual inputs 

were used that related the damage value (which reduces the elastic modulus by the damage value 

as a ratio of damaged area) to the amount of inelastic strain.  

The damage values assumed were based on the values presented in the ABAQUS verification 

manual (ABAQUS, 2008). Generally, as the compressive inelastic strain increases more damage 

occurs which results in less load carrying area due to crushed concrete in compression and 

results in reduced stiffness in the material as it is unloaded.   
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Table 4-3 – Concrete compressive damage associated with inelastic strain (ABAQUS, 2008) 

Damage value, dc Inelastic Strain 

0 0 
0.13 0.0004 
0.24 0.0008 
0.34 0.0012 
0.43 0.0016 
0.5 0.002 

0.57 0.0024 
0.71 0.0036 
0.82 0.005 
0.97 0.01 

 

The uniaxial tensile behaviour of the concrete used in the ABAQUS concrete damaged plasticity 

model is presented in Figure 4-2. The behaviour is linear elastic with the same modulus of 

elasticity used for compression (E0) until the yield stress is reached (   ). Microcracking occurs 

beyond this point and is represented by strain softening (where the plastic strains increase with a 

reduction in stress). Damage associated with the plastic straining is used to reduce the stiffness of 

the material during unloading as represented by variable   . The elastic strain is represented by 

  
  and the plastic strain is represented by   

  
in Figure 4-2.  

 

Figure 4-2 – Tensile stress-strain behaviour of Concrete used in ABAQUS (ABAQUS, 2008) 
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Tension stiffening must be defined properly to ensure that the model does not become unstable 

when local failures occur. The tension stiffening is based around the reduction in stress as plastic 

straining occurs in the material. If this reduction is too rapid, a sudden loss of stress will occur in 

the material locally, which will cause the model to be unstable. Tension stiffening can be either 

defined by a stress-strain relationship or a fracture energy criterion. In order to avoid potential 

complications in the plain concrete models and based on the ABAQUS Manual (ABAQUS, 

2008), suggestions fracture energy was selected to define tension stiffening.  

The fracture energy criterion used in the model is developed based on the Hillerborg fracture 

energy proposal in which a concrete material will crack under tension. The value GF is the 

fracture energy necessary to create a unit crack surface. The fracture energy can be either defined 

as a constant or using tabular data to represent the stress-displacement relationship. The fracture 

energy is presented in Figure 4-3.  

 

Figure 4-3 – Tensile fracture energy in concrete based on Hillerborg proposal (ABAQUS, 2008) 

In Figure 4-3, the horizontal axis is represented by ut which is the tensile crack displacement 

when the concrete reaches a stress of     and cracking begins. Energy is released depending on 

the crack opening length until the material has no strength left at a crack opening length of uto. 

This representation shown of the fracture energy constant is the area under the stress 

displacement relationship presented in Figure 4-3.  A constant value for fracture energy was used 

for the modeling of concrete in tension. A value of 0.1338 N/mm was used based on the value 

calculated previous in research completed at the University of Waterloo by Levy (2010), which 

is based on the CEB-FIP Model code approximation presented previously in Equation (2-14). 
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The tensile strength of concrete,    , was taken as 3 MPa based on the value used by Levy 

(2010).  

The finite element model associates a crack length based on characteristic length of a line across 

a first-order element. Since the model assumes this length based on element geometries, 

elements with high aspect ratios may have different results depending on the direction of 

cracking. Mesh refinement to ensure the aspect ratio does not impact on the non-linear concrete 

material is completed in the wheel load model section (Chapter 5.0) to investigate these effects 

and to determine approximate mesh geometries to be used in the quarter-slab models. 

Tensile damage is not included in the concrete model used. This means that upon reloading in 

tension, the concrete will not have a scalar decrease in the material stiffness model. Under cyclic 

loading the behaviour of the concrete will behave differently depending on the previous damage 

that has occurred. Stiffness recovery values are input for the compressive and tensile behaviour 

of concrete under reversed loading. The ABAQUS Manual (2008) suggests that when load is 

reversed from compression to tension, the micro cracking occurring during crushing of the 

concrete does not recover stiffness upon reversed loading. The opposite is true when the load is 

reversed from tension to compression. This is represented using a value of 1 for the stiffness 

recovery variable,   , and 0 for the stiffness recovery value,   . The uniaxial behaviour is 

depicted in Figure 4-4.  

The behaviour of the concrete in compression and tension has been explained above. In order to 

model the three dimensional behaviour of the material, a yield function that defines the failure 

plane in effective stress space is required. The concrete damage model in ABAQUS defines the 

amount of damage in the concrete as a function of the plastic strain rate and the effective stress. 

The effective stress is based on original element stiffness and the total strain minus the plastic 

strain. The damage variable in the model is used to represent a reduction in the amount of 

effective load carrying area due to the damaged areas. The damage variable can be applied to the 

effective stress to determine the Cauchy stress. The yield function in the concrete damaged 

plasticity model is defined based on the work of Lubliner et al. (1989) with the Lee and Fenves 

(1998) alterations to account for the differences in tension and compression, and is presented in 

Equation (4-5) (ABAQUS, 2008).  
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Figure 4-4 – Tension and Stiffness recovery under compressive and tensile loading in ABAQUS 

(2008) 

           
 

   
                                            

  
    

(4-5) 

 

Where: 

    
 

 
     

    
 

 
      

          

  
       

        
 

        
       

   

       
   

            

In the above Equation (4-5):   is known as the hydrostatic stress,    is the Mises equivalent 

effective stress,    is the deviatoric part of the effective stress tensor           is the maximum 
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eigenvalue of        is the equibiaxial compressive yield stress,     is the uniaxial yield stress,   

and  are material constants. In the function for β, the values     and     are the effective 

compressive and tensile cohesion stresses.  

In order for the plastic model to be applied in ABAQUS, the ratio         , which is the ratio of 

biaxial compressive strength to the uniaxial compressive strength of concrete, must be input. The 

average values of         for concrete as stated in the ABAQUS Theory manual range from 

1.10 to 1.16. This range will correspond to values of   from 0.08 to 0.12 (ABAQUS, 2008). The 

biaxial behaviour of Equation (4-5) for a typical concrete is presented in Figure 4-5.  

 

 

Figure 4-5 – Biaxial stress yield surface for concrete (ABAQUS, 2008) 

The yield surface in the model will be similar to the behaviour presented in Figure 4-5, with the 

concrete having additional strength in biaxial compression compared to axial compression.  

The variable,  , is a dimensionless material constant that is used in the model (Equation (4-5)) 

when the there is a state of triaxial compression (ABAQUS, 2008). The value for   is determined 



81 

 

by comparing the tensile and compressive meridians. The tensile meridian is defined as the stress 

states where                           and the compressive meridian is stress states                

            (         are the eigenvalues of the effective stress tensor).  The value for        is 

evaluated for the tensile and compressive meridians as                     and            

          as mentioned in the ABAQUS Manual (ABAQUS, 2008).  The yield conditions for 

        0 as stated in the ABAQUS manual are presented in Equation (4-6) and (4-7)for the 

compressive and tensile meridians.  

 
 
 

 
                         

(4-6) 

 

 

 
 
 

 
                         

 (4-7) 

 

ABAQUS (2008) introduces a constant value,                     that must be input by the user. 

The ABAQUS Manual suggests that a typical value for Kc for concrete is 2/3. Using Equations 

(4-6) and (4-7)  the value for Kc is presented in Equation (4-8). The suggested value for Kc from 

the ABAQUS manual gives a value of  of 3 using Equation (4-8).  

 
   

   

    
 

(4-8) 

 

The yield surface in the deviatric plane for Kc values of 1 and 2/3, as presented in the ABAQUS 

Manual (2008), is presented in Figure 4-6.  

Equations (4-9) and (4-10)present the yield conditions along the compressive and tensile 

meridians respectively for          0 from the ABAQUS Manual (2008).  

 
 
 

 
                         

(4-9) 

 

 
 
 

 
                         

(4-10) 
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Figure 4-6 – Yield Surface in the deviatric plane (ABAQUS, 2008) 

After establishing the yield surface, the flow potential is required to describe the plastic flow of 

the concrete. The concrete damaged plasticity model in ABAQUS (2008) assumes non-

associated potential flow given by Equation (4-11).   

 
       

      

   
 

(4-11) 

The flow potential in the concrete damaged plasticity model in ABAQUS (2008) is based on the 

Drucker-Prager hyperbolic function given in Equation (4-12). 

                           (4-12) 

Where:  

  is the eccentricity 

Ψ  is the dilation angle measured in the p-q plane at high confining pressure  

    is the hydrostatic pressure stress  

   is the Mises equivalent effective stress  

σtO is the uniaxial tensile stress at failure 
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The dilation angle is input to describe the flow potential. The value assumed by Levy (2010) and 

Prabhu et al. (2007) for the dilation angle was 15
o
. This value was also assumed for the concrete 

model in the current research.  

The eccentricity refers to the rate at which the function approaches the asymptote; as the value 

approaches zero, the potential becomes a straight line. A value of 0.1 was assumed for the 

eccentricity as recommended by the ABAQUS Manual (ABAQUS, 2008).  

The concrete damaged plasticity model also includes an option to include viscoplastic 

regularization in which stress states are able to go beyond the yield stress by introducing a 

viscoplastic strain rate tensor. This is used to help solutions converge faster with little effect on 

solutions. Viscoplastic regularization was not used in the concrete model implemented.  

The strain rate of the material under multiaxial loading in the concrete damaged plasticity model 

used in ABAQUS (2008) is represented using the maximum and minimum eigenvalues of the 

plastic strain rate tensor. Equation (4-13) represents the equivalent compressive and tensile 

plastic strain rates used for multiaxial loading. 

     
  

             
  

 

    
  

                  
  

 

(4-13) 

 

Where: 

       
       

 
   

       
 
   

;            

                  +      

The variable        is a stress weight factor that is equal to one if all the principal stresses are 

positive and equal to zero if they are negative. Equation (4-13) separates the compressive and 

tensile equivalent strain rates to use the inputs from compressive and tensile plastic strain rates 

described above. Finally, the damage in multiaxial loading also has to be established to relate the 

damage in a concrete material under multiaxial loading to the damage variables input for uniaxial 
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loading. Equation (4-14) presents the general damage variable used in the model for multiaxial 

loading.  

                       ,     ,     (4-14) 

Where: 

                     

                         

The values for   and   represent the stiffness recovery under reversed loadings, as described 

above. Values of      and      were assumed which are the default values used in 

ABAQUS (2008) for concrete. 

4.1.2 Steel Dowel Properties 

The steel material used for the dowel bar is assumed to be a linear-elastic isotropic material.   

Table 4-4 presents the steel material inputs. These material properties were based on the material 

properties used in previous research completed at the University of Waterloo by Levy (2010).  

The steel is modeled as being elastic assuming that the dowel bar does not yield. It is assumed 

that the weaker strength of the concrete and stress concentrations near the dowel will cause 

failure in the concrete before the dowel. Maximum Von Mises stresses in the dowel bar will be 

compared to the yield strength of the dowel taken as 420 MPa based on ASTM 615 Billet Grade 

60 steel. This was done for ease of modeling, since the study is focused more on the behaviour of 

the concrete around the device and overall pavement behaviour.   

Table 4-4 – Steel Material Properties 

Description Value 

Density 7.80E-09 tonne/mm3 

Young's Elastic Modulus 200000 N/mm2 
Poisson's Ratio 0.3 Unitless 

Coefficient of Thermal Expansion 1.20E-05 / oC 
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4.1.3 GFRP Properties 

Based on the review of the literature completed, ABAQUS simulations of pavements have used 

GFRP dowels, but have not considered GFRP pultruded shapes. The GFRP properties were 

assumed to be linear elastic and isotropic for ease of modelling and capturing the global response 

of the slab as well as focus on the concrete behaviour around the device. The elastic properties of 

the pultruded shapes were provided by the manufacturer. The values used in the model are given 

in Table 4-5. 

Table 4-5 – GFRP Material Properties (Fibergate Custom Structures, 2003) 

Description Value 

Density 1.94E-09 tonne/mm3 

Young's Elastic Modulus 19310 N/mm2 

Poisson's Ratio 0.161 Unitless 

Coefficient of Thermal Expansion 8.00E-06 / oC 

4.1.4 Continuous Joint Device Compressible Material Properties 

For the development of continuous joint devices, material properties were assumed for the 

devices. The material was generally assumed to be a hard plastic material with linear isotropic 

properties. Material inputs used in the continuous joint device material model are presented in 

Table 4-6.  

Table 4-6 – Continuous Joint Material Properties 

Description Value 

Density 1.06E-09 tonne/mm3 

Young's Elastic Modulus 2275 N/mm2 

Poisson's Ratio 0.15 Unitless 

Coefficient of Thermal Expansion 5.00E-05 / oC 

 

The continuous joint device elastic modulus, coefficient of thermal expansion and density were 

assumed based on general material properties for ABS plastics found on an online material 

database (Anon., n.d.). The Poisson‟s ratio assumed for the continuous joint device material is 
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similar to the GFRP material, and a value of 0.15 is used in the finite element analysis model. 

Further research into the Poisson‟s ratio for plastics completed after the analysis was completed 

found a typical value tends to be closer to 0.3 to 0.4 for ABS plastics. The Poisson‟s ratio for the 

plastic material was not adjusted as a part of the current study. If further research on the 

continuous joint devices is completed, a specific material should be chosen and more accurate 

material data should be used or a material with similar behaviour to that input should be sourced.  

4.2 Contact Modeling 

The contact between dowels and concrete, as well as the slab and base layers, have been shown 

in previous studies to affect the behaviour of the slab (See Sections 2.6.5 and 2.6.6). Slab to 

device interaction and base slab interaction properties assumed in the models are explained in 

this section.  

4.2.1 Slab Device Interaction  

A review of the behaviour between concrete and conventional steel dowels was provided in the 

Literature Review (Section 2.6.5). Generally, the tangential behaviour of the dowel-concrete 

interface can be modeled using a frictional coefficient as described by Prabhu et al. (2007). The 

range for the dowel frictional coefficients was from 0.076 to 0.384 depending on surface 

preparation based on testing completed by Shoukry (2000). Although information about the 

interaction between the GFRP pultruded shapes and concrete could not be obtained, the same 

frictional coefficients were applied to the contact surfaces using GFRP. Similarly the 

compressible material assumed for the continuous joint devices used the same interaction 

conditions at the interface of the device and the concrete slab. It is assumed that by using the 

same inputs, the surface was consistently modeled for all of the devices. Varying the coefficient 

of friction provides a general comparison at different frictional values to understand the effect of 

different frictional contact between the device and the slab.  

The slab and device interaction is modeled as a contact surface in ABAQUS using hard contact 

pressure definition between the two surfaces. The hard contact formulation is a rule used in 

ABAQUS to define the contact pressure, p,  at a point as a function of the penetration of the two 

surfaces, h. Equation (4-15) presents the general relationship assumed in the hard contact 

formulation (ABAQUS, 2008).  
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(4-15) 

 

The first line in Equation (4-15) is used when the two surfaces are not in contact and no pressure 

is applied at the point. The second line represents the situation when the surfaces come into 

contact and the pressure increases. Behaviour between the slab and device allows the two 

surfaces to separate after coming in contact as well.  

The tangential behaviour of the device is modeled using Coulomb frictional contact between the 

surfaces. Using the Coulomb Friction model at the contact surface allows for shear stress and slip 

at the interface to be modeled. The Coulomb friction model assumes no relative slip occurs 

between the surfaces if the equivalent shear stress on at the surface presented in Equation 

(4-16)is less than the critical stress presented in Equation (4-17) (ABAQUS, 2008).   

        
    

  (4-16) 

Where:  

   and   are the shear stresses on the surface; and 

   is the equivalent shear stress on the surface 

                    (4-17) 

Where: 

  is the frictional coefficient input to the model; and  

     is the shear stress limit put into the model 

Depending on the behaviour of the contact surface,     , can be included or not included in the 

model. This represents the maximum shear stress on the surface for which under any contact 

pressure slip will occur. For the interaction between the device and concrete, a value for      of 

2.1 MPa was used based on the work of Shoukry (2000). For the wheel path model, two 

frictional values of 0.3 and 0.1 were used to model the concrete device interface. Both frictional 

coefficient values are used in the wheel path model to investigate the effect of the frictional 

coefficient on the behaviour of the devices for steel-concrete and GFRP-concrete interaction. In 

the quarter slab analysis, a single value of 0.3 is used for the frictional coefficient.   
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As the shear stress exceeds the critical shear stress input using Equation (4-17), slip occurs. The 

friction between the device and the concrete is assumed to be isotropic in the finite element 

models where the slip and frictional stresses are in the same direction. The isotropic behaviour is 

expressed using the relationship in Equation (4-18) (ABAQUS, 2008).  

   

   
 

   
    

 
(4-18) 

Where: 

    is the slip rate in direction i; and 

     is the magnitude of slip velocity  

The magnitude of slip velocity used in Equation (4-18) is defined in ABAQUS (2008) using 

Equation (4-19).  

 
         

     
  

(4-19) 

 

To model no relative slip between the surfaces based on the above relationships, ABAQUS uses 

a stiff elastic behaviour from zero shear stress to the elastic slip value input. The elastic slip 

value,      , for the interaction between the devices and concrete was assumed to be 0.5% of the 

average contact element size based on the default value used in ABAQUS (2008).  The slip 

behaviour is represented using the relationship, shown in Figure 4-7.  

 

Figure 4-7 – Frictional Shear Stress vs. Slip Relationship for Sticking and Slipping Friction 

(ABAQUS, 2008) 
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In Figure 4-7, there are two different types of friction: slipping friction and sticking friction. The 

sticking friction corresponds to a stiffness,  , calculated according to Equation (4-20) 

(ABAQUS, 2008).    

   
     

     
 

(4-20) 

 

This function will change with different values of contact pressure when the value of       is less 

than the shear stress limit input (2.1 MPa).  When the shear stress at the surface exceeds the 

critical shear stress, slip occurs at the surface between the nodes. Equation (4-21) is used by 

ABAQUS (2008) in the contact model used to represent the change in slip on the contact surface 

during the time increment.  

       
      

      
   (4-21) 

 

Where:  

    is the change in slip in direction i 

  
   is the elastic slip at the end of the increment 

   
   is the elastic slip at the start of the increment 

   
   is the plastic slip occurring during the increment 

The shear stress on the contact surface is then defined using Equation (4-22) using the stiffness 

value, k, and the elastic slip at the end of the increment,    
  .  

       
   

     

     
  

   
(4-22) 

 

ABAQUS (2008) introduces an elastic predictor strain term presented in Equation (4-23). 

   
  

    
       (4-23) 
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Using Equation (4-24), the equivalent predictor strain is then represented using the two values 

for the elastic predictor strain term.  

 
   

  
    

   
   

   
 

(4-24) 

 

The slip increment is defined using Equation (4-25) in ABAQUS (2008) for the contact surface 

used for the dowel concrete interaction relating the slip to the shear stress on the surface.  

    
   

  

     
    

   
(4-25) 

 

Where the term     
   represents the change in equivalent slip which is equal to Equation (4-26) 

(ABAQUS, 2008).  

     
      

         (4-26) 

 

The shear stress is then represented using Equation (4-27) (ABAQUS, 2008).  

 
   

  
  

          
  

      
(4-27) 

 

The normalized slip direction is introduced into the equation using variable,   , and Equation      

(4-27)  becomes Equation (4-28) (ABAQUS, 2008).  

            (4-28) 

 

Where: 

   
  
  

    
    is the normalized slip direction 

Finally the slip formulation is linearized and the final form is presented in Equation (4-29) which 

is altered from the ABAQUS Manual (2008) for a constant frictional coefficient (one that does 

not change depending on slip rate as used in the interaction between the device and the slab).  
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       if               

              
     

   
            

  

   
     if             

(4-29) 

 

4.2.2 Slab Base Interaction  

The interaction between the slab and base layer is also modeled using hard normal contact that 

allows the surfaces to separate after coming in contact. Isotropic Coulomb friction is also used to 

model the tangential behaviour similarly to the contact described for the device slab interaction. 

A coefficient of friction of 0.965 and an elastic slip of 0.465 mm are used for the slab base 

interaction based on the work of Levy (2010).  No shear stress limit is included in the interaction 

between the slab and base layer. The first line of Equation (4-29)  is not used to describe the 

behaviour of the slab base interaction as          is always valid.  

4.3 Slab Support Descriptions 

4.3.1 Slab Support Used in the Wheel Path Model 

The wheel path model assumes a single 300 mm base layer with linear isotropic material 

properties based on a previous study completed by Shoukry et al. (2003), among others including 

Levy (2010). The bottom face of the 300 mm layer is assumed to be vertically restrained in the 

model by applying vertical restraint to the bottom surface nodes.  Base properties assumed for 

the wheel path model were also intended to reflect conditions in an experimental testing 

arrangement where a thin consistent base layer is more practical. A single base layer of with a 

linear elastic isotropic material with a modulus of elasticity of 100 MPa is assumed for the 

preliminary analysis. This single layer with a modulus of elasticity of 100 MPa serves as a 

consistent comparison of the devices. The Poisson‟s ratio is assumed to be 0.3. The density of 

the base layer used in the wheel path model is 2.10x10
-9 tonne/mm

3
. 

4.3.2 Base and Subbase Properties Used in the Full, Half and Quarter Slab Models 

A base and subbase layer are used in the full, half and quarter slab models to support the slab. 

The base layer is 125 mm thick and the subbase layer is 1200 mm thick. The bottom face nodes 

of the subbase are restrained against vertical movement. The subbase and base layers are tied to 

one another at the top of the subbase and the bottom of the base layer. The base and subbase 
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properties are modelled as linear isotropic materials. The base layer is modelled with an elastic 

modulus of 207 MPa and the subbase is 103 MPa. Both the base and subbase materials use a 

Poisson‟s ratio of 0.3 and a density of 2.10x10
-9

 tonne/mm
3 in the full, half and quarter slab 

models.  

4.4 Model Loading 

A general description of the load application used for the wheel, shrinkage and thermal strains is 

explained in this section.  

4.4.1 Gravity Loading 

The gravity loading is applied in the model by inputting the densities of each of the respective 

materials and applying a constant acceleration equal to the gravity constant. This is applied in the 

first loading step of the finite element analyses completed.  

4.4.2 Wheel Loading 

Static vertical wheel loading at the joint is investigated in the finite element analysis. The effects 

of tire friction and velocity of the wheel moving across the surface were not considered. Wheel 

loading is applied using a pressure on the top surface of the concrete slab over a foot print of 250 

mm x 600mm. The area of the wheel load was chosen based on the CL-625 truck dual tire 

footprint in the Canadian Highway Bridge Design Code. The design footprint for the dual truck 

tire also corresponds to the highest wheel loads on the CL-625 truck of 87.5 kN. Wheel loads are 

only applied on one side of the joint and directly at the edge of the slab in the wheel path(s). 

Further investigation into the effect of boundary conditions applied and the effects to the wheel 

load are explained later in the analysis sections.   

4.4.3 Shrinkage Strain  

The shrinkage loading is applied to the slab using an effective thermal loading (temperature 

gradient) necessary to obtain the desired unrestrained strain profile. The temperature function 

proposed by Levy (2010) and presented in Equation (4-30) is used. Equation (4-30) is based on a 

shrinkage strain that includes the limiting effect of creep, and varies over the depth of the slab to 

simulate a typical pavement slab shrinkage profile. The shrinkage strain profile is converted to 

an equivalent thermal strain profile based on the coefficient of thermal expansion of the concrete.  
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(4-30) 

Where: 

 y is the depth of  the slab 

The shrinkage strain profile applied to the model based on Equation (4-30) is presented in Figure 

4-8.  

 

Figure 4-8 – Shrinkage Strain Profile Applied to Slab 

4.4.4 Temperature Thermal Strain Gradients 

The temperature variations applied in the thermal analysis completed in the service load analysis  

are the same temperature distributions in the slab used by Levy (2010) and were adopted from 

another previous study (Shoukry, 2000). The thermal gradients were presented previously in the 

Literature review in Equations (2-20) and (2-21)for day and night respectively. The general slab 

gradient for day and nighttime thermal strains using Equations (2-20) and (2-21) and as applied 

in the service load analysis is presented in Figure 4-9. The thermal gradients used to represent 

the effects of daily temperature cycles were added to the thermal gradient used to simulate 

shrinkage strain (Section 4.4.3).  
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Figure 4-9 – Day and night thermal gradients applied to slab 

4.5 Finite Element Model Development - Summary 

The material properties, contact modeling, support conditions, and loading to be applied in a 

three dimensional finite element analysis were developed in this Section. The following aspects 

of the model were developed: 

 A nonlinear concrete material model was chosen from the predefined models in 

ABAQUS and inputs were discussed in detail.  

 Linear elastic material properties for the different devices were established and 

determined to be sufficient for overall joint behaviour but not to capture local effects and 

failures in the devices themselves.  

 Contact at the device concrete interface was determined to be modeled using Coulomb 

friction with a maximum shear stress limit.  

 Contact between the slab and base layer was also determined to be modeled using 

Coulomb friction and the inputs were described.  

 Linear Elastic material properties for the base and subbase layers were established. 

 Wheel loading, thermal and shrinkage strain gradients were established and presented to 

be applied in the service loading analysis.  
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5.0 Finite Element Load Transfer Study for Discrete Devices 

This section presents the finite element analysis results for the discrete devices under static wheel 

load application using the wheel path finite element analysis model.  

The finite element analysis results were used to evaluate the performance of the discrete devices 

using the ABAQUS wheel load model (geometry described later in this section) in terms of the 

following behaviour:  

 The differential deflection across the joint; 

 Localized failure in the concrete by comparing the plastic equivalent compressive strain 

(PEEQ) and plastic equivalent tensile strains (PEEQT) in the concrete; 

 The maximum stress in the base layer to identify the load transfer ability and stress 

distribution to the slab; and, 

 General discussion of the stresses developed in the concrete and how the device is 

functioning to transfer load. 

The development of the wheel load model included comparisons to larger scale models to 

investigate the effects of boundary conditions and length of slab. A comparison was also made 

between the effects of wheel load transfer at the joint in a full slab model and a wheel load model 

with and without dowels to understand the transfer and requirements for a device at the joint and 

to verify the adequacy of the wheel load model.    

The finite element analysis using the wheel load model for wheel load transfer investigation 

compared the devices at three load levels when a single static load was applied to the slab (as 

described in Section 4.4.2). A load level of half the maximum wheel load (43.75kN), which is 

close to the load level used for falling weight deflectometer (FWD) tests (and also the load level 

that joint efficiency ratios are based on), was considered as well as at the maximum wheel load 

and twice the maximum CL-625 truck wheel load (87.5kN and 175kN).    

The wheel load analysis consisted of first investigating each device in detail when subjected to a 

single wheel load. A mesh refinement study for each device was completed using the wheel load 

model with a single static load applied. After completing the mesh refinement study, a 

parametric study that consisted of changing the frictional coefficient from 0.1 to 0.3 was also 
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completed on each device to determine the effects of the device concrete interaction on device 

behaviour (for static wheel loading). Each device is also compared with a quasi-static reversed 

loading using increments of the static wheel load applied to either side of the joint was 

investigated with 100 MPa base and 0.1 frictional coefficient.  

5.1 Methods Used to Compare Load Transfer Performance of Devices 

Due to the complex nature of the behaviour of the joint, an investigation into the joint behaviour 

and comparison of the devices for load transfer ability will compare the analysis results in a 

number of different areas. The following presents the methods used to compare the devices.  

The load transfer ability is an important device characteristic since slabs that have not used 

dowels have shown signs of distress and require rehabilitation earlier in the life of the pavement 

than slabs with dowels. Also, for rider comfort and functionality of the pavement, the differential 

joint deflection needs to be minimized. Three measures of the joint deflection are presented for 

each device in the wheel path model. The first two measures are joint efficiency, calculated using 

Equation (5-1), and the Load Transfer Efficiency (LTE) presented in Equation (5-2). These 

measures have been used in previous studies to gauge the efficiency of the joint.  

 
                    

   

     
      

 

(5-1) 

 
       

  

  
      

 

(5-2) 

Where: 

    and   are the deflection of the unloaded and loaded side of the slab respectively  

The LTE and joint efficiency are usually based on the values from testing of the joints using the 

FWD. Sargand and Figueroa (Sargand & Figueroa, 2010) found ranges of LTE on pavements 

after they were constructed with various dowels to be 78 to 95%. The minimum joint efficiency 

calculated using Equation (5-1) for a slab with dowels should be 85% at approximately 40 kN 

based on data from a FWD test. A general comparison of the LTE and joint efficient in the wheel 

load transfer study to these was made, although the effects of slab length and boundary 
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conditions affect the LTE and joint efficiency results when compared to a full slab model (as 

shown later in this section).  

The third measure of performance based on joint deflection is the overall differential deflection 

based on the differential deflection at the edge of the model slab at either side of the joint. The 

point used for joint deflection will be the edge of the wheel path slab joints as presented in 

Figure 5-1. 

 

Figure 5-1 – Joint deflection reference nodes 

The concrete surrounding the devices is subject to significant localized stress as the load is 

concentrated around the dowel as it is transferred to the other side of the joint. High stress levels 

can lead to damage in the concrete slab in these areas which can lead to failure of the joint. 

Localized damage will occur in the concrete as noted by Levy (2010). The localized damage 

failure criteria used by Levy (2010) was adopted in the current study to define failure in 

compression using plastic equivalent compressive stresses (PEEQ). The main failure mechanism 

of concrete modeled in compression is compressive crushing of the concrete. The concrete 

crushing criteria used by Levy (2010) is based on the total uniaxial strain in compression 

reaching 0.005 at which point the PEEQ strain would be 0.00474. The tensile damage criterion 

for tensile cracking in concrete using equivalent plastic strain in tension (PEEQT) value of 0.003 

adopted from Prabhu et al. (2007) was used. The maximum plastic strains around the joint were 

compared for the different alternatives. The stress locations and the inelastic areas were also 

investigated to further quantify the damage occurring.  

The maximum stresses in each direction was also investigated to determine the device behaviour 

and to identify problematic areas and gain knowledge into alternative options for device design. 

This evaluation was mostly based on visual investigation of the stress profiles generated using 
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the analysis and using the peak stresses in the slab in each direction. The profiles of stresses 

distributions in the devices as well as the slab are presented and compared.  

5.2 Wheel Path Model Development 

As described previously, the wheel path model was developed to provide a computationally 

efficient evaluation of the discrete devices. The wheel path model also matches the geometry of 

the experimental specimens. During development of the wheel path model the analysis results 

were compared to results from a full slab and half slab model to validate the model and to 

determine the effects of slab length and boundary conditions. This section describes the 

development and validation of the wheel path model.   

5.2.1 Model Geometries 

The typical model geometry assumed by Levy (2010) was used for the models. The slab is 250 

mm thick, with a lane width of 3600 mm and a joint spacing of 4500 mm for all three models. 

The joint was modeled as a 10 mm gap between the adjacent concrete faces and no interaction 

between the slab faces is modeled. The slab was based on twelve dowel bars being placed along 

the lane width at a spacing of 300 mm with the corner dowels 150mm from the edge. The models 

without dowels included pockets in the concrete slab where the dowels would be placed. Model 

geometries and boundary conditions for each of the full, quarter and wheel path models are 

presented in Figure 5-2, Figure 5-3 and Figure 5-4, respectively.  

 

Figure 5-2 – Full Slab Model Geometry (12 dowels, 300 mm spacing) 
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Figure 5-3 – Half Slab Model Geometry (12 dowels, 300 mm spacing) 

 

Figure 5-4 – Wheel Path Model Geometry (2 dowels, 300 mm spacing) 

In Figure 5-2, Figure 5-3 and Figure 5-4 the shaded area on top of the slab presents the wheel 

loading applied to the slabs for the different models. In the full slab model, no restraint was 

placed on the unloaded edge of the slab that represents the adjacent transverse joint. In the half 

slab model, the face along the middle of the slab section was restrained from longitudinal 

movement perpendicular to the face. Loading at the edge of the slab with a boundary condition 

similar to that applied to the half slab model will model a wheel load at either end of the slab at 

the joint location as shown in Figure 5-5. 

 

Figure 5-5 – Loading and Boundary Condition Implications for Half Slab 
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The dimensions of the wheel path model were based on the width of one wheel path and on a 

previous lab testing setup adopted by Eddie et al. (2001). A slab length of 1.2 m in each direction 

from the joint was used for the wheel path model based on Eddie et al. (2001). The base layer 

was 300 mm. The model size was chosen to fit in a testing apparatus where multiple devices will 

be tested as discussed in Chapter 6.0 in more detail. 

5.2.2 Model Loading for Wheel Path Model Development  

The loading sequence applied to the full, half and wheel path models for wheel path model 

development was a gravity load followed by a single static wheel load to 200kN (the method of 

load application was described previously in Section 4.4.  

5.2.3 Slab Deflection Profile Comparisons between Full, Half and Wheel Path Models 

with Dowels 

In order to ensure that the smaller slab section of the wheel path model was behaving similarly to 

the full slab model, slab vertical deflection profiles of each model are compared in Figure 5-6 to 

Figure 5-9. These figures present the full, half and wheel path top of slab deflection profiles at 

20, 45 85 and 175 kN, respectively.  

 

Figure 5-6 – Deflection Comparison of Full/Half Slab Model to Wheel Path Model at 20kN 

Wheel Load 
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Figure 5-7 - Deflection Comparison of Full/Half Slab Model to Wheel Path Model at 45kN 

Wheel Load 

 

Figure 5-8 - Deflection Comparison of Full/Half Slab Model to Wheel Path Model 85kN Wheel 

Laod 

 

Figure 5-9 - Deflection Comparison of Full/Half Slab Model to Wheel Path Model 175kN Wheel 

Load 

After the application of the 20 kN point load, the deflection profiles of the half slab and the 

wheel path model are similar. The full length slab had less curvature than both of the half slab 

and wheel path model slabs, as the load was distributed further along the slab length. The 

differential deflection at the joint in all three models after 20 kN was very similar. The half slab 

model and the wheel path model both had increased curvature compared to the full length slab 

but had a similar differential deflection at this load level.  
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After 45 kN (approximately half of the design wheel load), the deflection of the wheel path 

model on the loaded side of the joint was the greatest but was similar to the other two models. 

On the loaded side of the joint in the full slab model, the deflection was greater than the half slab 

model. The additional deflection in the full slab model was assumed to occur because the half 

slab model was restrained along the length of the slab from movement which will help to restrain 

the slab from deflecting downward as it was required to elongate to enable the deflection to 

occur. The full slab model was only resisted by friction and allows more movement of the slab. 

The full slab model was less restrained than in an actual setting as an adjacent joint would add 

some restraint to the slab movement. The deflection on the unloaded side of the slabs at the 45 

kN load level were all similar. The slabs all deflected further as the wheel load level increased to 

85 kN similar results were observed at the 85kN load to that described for the 45 kN load level.  

As the load was increased to approximately 175 kN the deflection of the loaded side of the wheel 

path model increased considerably more than the half and full slab models. However, on the 

unloaded side of the wheel path model deflection was less than that for the full and half slab 

models. The comparison of the joint deflection using the wheel path model to the full and half 

slab models clearly showed higher differential deflection was estimated using the wheel path 

model, and larger curvatures occurring in the concrete slab at all of the load levels. Additional 

deflection of the base below the slab will also cause higher stress concentrations to be expected 

in the base layer when using the wheel path model. The deflection and joint stepping profiles are 

similar enough near the joint using each model to consider the loading and boundary conditions 

applied to the half and wheel path model to adequately compare the devices for transferring load. 

The half and full slab models have very similar deflection profiles and the effects of the line of 

symmetry (and creating a symmetric loading) compared to an unrestrained full length slab 

appear to be minimal on the overall curvature of the slab and stepping at the joint. 

The analysis shows the wheel path model is capable of predicting behaviour at the joint similar 

to a full slab model. A more detailed comparison of the deflection profiles as well as the stress in 

the slab is completed next section as part of an investigation into the load transfer with and 

without dowels for each of the different slab geometries.   
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5.2.4 Load Transfer Comparisons for the Wheel Path, Quarter and Full Slab Models with 

and without Dowels 

Conventional design of transverse joints used in concrete pavements consists of a sawcut being 

placed in the slab at the location of round steel dowels placed at the planned sawcut locations. 

Some low volume concrete parking lots and roads may be constructed without the use of dowels. 

Although highway pavements rarely use transverse joints without dowels, the model without 

dowels is presented to understand further the transfer of load at the joint with and without a 

dowel.   

In a slab without any dowels, it would be assumed that no load is transferred across the joint. In 

reality, cracking occurring at the joint still provides some load transfer through aggregate 

interlock; although, aggregate interlock was not considered in the current study. No dowels (or 

mechanical load transfer devices) provide the least amount of load transfer and have been shown 

to be unacceptable for differential deflection across the joint. Table 5-1 presents the joint 

performance comparison of the half slab models with dowels and without dowels to the wheel 

path models with and without dowels. The full slab model with dowels is also shown as the 

baseline condition. In the half slab model without dowels, the differential deflection across the 

joint at a load of 43.75 kN was 0.16 mm. The wheel path model, which had less load transfer 

along the length of the joint through the concrete slab (because the slab was loaded to the edges) 

as well as along the length of the slab (because the slab was not as long), had a larger differential 

deflection for the same load with a differential deflection at the joint of 0.37 mm. Similarly, in 

models with dowels the differential deflection increased from the half slab model to the wheel 

path model from 0.03 mm to 0.06 mm. In both cases (dowels and no dowels) the differential 

deflection across the slab in the wheel path model was higher than that predicted using the half 

and full slab models; the differential deflection predicted for the wheel path model was 

approximately double that for the half slab model. The differential deflection across the joint 

between the half slab model and full slab model was almost the same. At each load increment the 

differential deflection in the full slab model was less than that estimated using the half slab 

model. Based on the comparisons between the wheel path model and the half slab model, the 

wheel path model geometry used will have affects on the differential deflection at the joint and 

will generally predict higher differential deflection than what would be expected using a full slab 

model with more realistic boundary conditions for wheel load transfer.  
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Table 5-1 – Analytical Joint Performance Comparison for Dowelled and Undowelled Joints 

Using Full, Half and Wheel Path Models 

Model 
Load 
(kN) 

Vertical 
Deflection of 
Loaded Side 

(mm) 

Vertical 
Deflection of 

Unloaded 
Side LTE (%) 

Joint 
Efficiency 

(%) 

Differential 
Deflection 

(mm) 

Full Slab Model 
with Dowels 

43.75 -0.424 -0.394 93.0% 96.4% -0.03 

87.50 -0.629 -0.571 90.7% 95.1% -0.06 

175.00 -1.058 -0.927 87.7% 93.4% -0.13 

Half Slab Model 
with Dowels 

43.75 -0.414 -0.383 92.5% 96.1% -0.03 

87.50 -0.611 -0.549 89.9% 94.7% -0.06 

175.00 -1.019 -0.881 86.4% 92.7% -0.14 

Half Slab Model 
without Dowels 

43.75 -0.441 -0.284 64.4% 78.4% -0.16 

87.50 -0.737 -0.347 47.0% 64.0% -0.39 

175.00 -1.282 -0.462 36.0% 53.0% -0.82 

Wheel Path Model 
with Dowels  

43.75 -0.274 -0.216 78.7% 88.1% -0.06 

87.50 -0.514 -0.385 75.0% 85.7% -0.13 

175.00 -1.031 -0.720 69.8% 82.2% -0.31 

Wheel Path Model 
with Dowels  

43.75 -0.381 -0.010 2.7% 5.2% -0.37 

87.50 -0.809 -0.018 -2.2% -4.5% -0.83 

175.00 -1.594 -0.071 -4.5% -9.4% -1.67 

 

The joint efficiencies and LTE values computed for the slab with dowels meets the requirements 

previously presented. The value for the load transfer efficiency for the half slab model, 95%, is 

also on the high end of the range, which would make sense considering the slab has not been 

exposed to temperature and shrinkage straining and is modeled assuming perfect alignment. 

Curling due to temperature and shrinkage will also affect the measured values, and these factors 

are not considered in this portion of the analysis of the devices. The wheel path model has a 

value for LTE at the low end of the range (78%) suggested at a load of 43.75 kN while the joint 

efficiency is above the suggested minimum of 85% at 87.5kN. Although the values will be 

presented for joint efficiency and LTE for the remaining discrete device comparisons, the ranges 

established as being acceptable for an actual pavement will not be used since the wheel path 

model over estimates the differential deflection at the joint compared to a full slab.  

An investigation into the behaviour of the half slab model using dowels and no dowels will 

provide information into where stresses are developed in the concrete with the addition of the 
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dowels, as well as how this affects the concrete around the joint. Firstly, in order to understand 

the wheel load transfer behaviour along the joint in the half slab model with dowels, the normal 

stresses in the vertical direction on both sides of the joint in the concrete are shown in Figure 

5-10 and Figure 5-11. The stresses are given in MPa. A load of 200 kN was chosen to be able to 

capture more local failure occurring at the joint and provide consistent profiles for the stress and 

plastic straining figures presented as not as enough plastic straining was generally occurring at 

the 175 kN load level to provide plastic strain profiles.  

 

Figure 5-10 - Half Slab Model with Dowels Concrete Vertical Normal Stress Loaded Side at 200 

kN Wheel Load (MPa) 

 

Figure 5-11 - Half Slab Model with Dowels Concrete Vertical Normal Stress Unloaded Side at 

200 kN Wheel Load (MPa) 

As would be expected, the highest vertical stresses are concentrated directly under the loaded 

portion of the slab. A concentration of compressive stresses exists above the dowel on the loaded 

side and a similar concentration of compression stress is present below the dowel on the 

unloaded side. The location of the compression stress concentrations on opposite sides of the 

dowel will change depending on which side of the joint is loaded.  This observation is important 

when comparing the behaviour of the devices at different load levels for joint performance. 
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Although applying the load to one side of the joint will be able to predict an approximate failure 

load and the response of the pavement to that load, it will not take into account the damage 

occurring around the dowel on either side under the reversed cyclic loading caused when the 

wheel crosses to the other side of the joint. The maximum vertical compression stress in the 

concrete on the loaded side of the slab above the dowel is 14.9 MPa, and on the unloaded side 

the maximum vertical compressive stress below the dowel at the joint is 13.4 MPa.  

The normal stress conditions in the vertical direction for a longitudinal section through the joint 

are shown in Figure 5-12 and Figure 5-13 for the half slab model with and without dowels, 

respectively. The applied wheel load is 200 kN. The stresses are presented in MPa where 

negative values represent compression and positive stresses represent tension.   

 

Figure 5-12 – No Dowel Half Slab Model Concrete Vertical Normal Stress at 200 kN Wheel 

Load (MPa) 
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Figure 5-13 –Half Slab Model with Dowels Concrete Vertical Normal Stress at 200 kN Wheel 

Load (MPa) 

As the wheel load is applied to the slab without dowels, the load is distributed through the slab to 

the base layer below. Generally the stresses in the concrete in the slab without dowels are not 

approaching failure stresses at the 200 kN load level as presented in Figure 5-12. However, the 

differential deflection is very large as visible in the figure.  

The dowels cause concentrations of vertical stress in the concrete along the length of the dowel 

as presented in Figure 5-13. These stresses are approaching failure stresses near the dowel where 

very high normal stress is concentrated on either side of the joint at the dowel location. Stress 

concentrations along the length of the dowel are similar to that predicted using conventional 

dowel bar theory where a concentration of vertical stress in the concrete exists at the joint 

location as well as second and third vertical stress concentrations along the dowel length on each 

side of the joint (Figure 5-13). The tension stresses around the dowel are close to the uniaxial 

tensile strength of concrete and the vertical concrete stresses in compression are approaching the 

uniaxial failure strength of concrete at the 200kN load level. Observation of the stress 

concentrations around the dowels promted the concepts for the continuous devices in an attempt 

to eliminate localized load transfer stresses in the while still providing adequate load transfer 

across the joint.  
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No plastic straining occurs in the concrete when dowels are not included in either the half slab or 

the full slab models under a static 175kN wheel load.  Introducing the dowel creates 

concentrations of stress around the dowel causing the concrete to plastically deform around the 

joint as presented in Figure 5-14 which shows a longitudinal section of the PEEQ strains through 

a dowel directly beneath the wheel load in the half slab model (the dowel bar has been omitted 

for clarity).  

 

Figure 5-14 –Half Slab Dowel Model PEEQ Strain at 200kN Wheel Load  

The plastic strains due to concrete compressive damage occurs above the dowel on the loaded 

side of the joint and below the dowel on the unloaded side of the joint at the 200 kN load level. 

The plastic straining is isolated to the joint location and dowels near the wheel path at this load 

level. The concrete tensile plastic strains can be represented by the PEEQT strain and a section 

through the dowels directly beneath the load application at the 200kN load is shown in Figure 

5-15. 

The PEEQT strains are similar on both the loaded and loaded sides of the joint as the tensile zone 

and distribution of tensile stresses around the joint are similar on both sides of the joint. Based on 

the locations of the PEEQ and PEEQT zones when wheel loading is applied to one side of the 

joint, it will be important to apply the load to both sides of the joint to adequately assess the 

behaviour of the joint at a given load level as in service wheel loads will pass across the joint 

reversing the plastic straining zones presented. In developing a test to compare devices this 

reversed loading should be modeled to understand how the plastic zones occurring on either 
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sides of the joint will affect the overall behaviour of the joint as plastic straining causes damage 

and softening of the concrete which may affect load transfer and differential deflection at the 

joint. This will be investigated as a part of the finite element analysis for load transfer 

comparison of discrete devices in Section 5.6.3.  

 

Figure 5-15 –Half Slab Dowel Model PEEQT Strain at 200 kN Wheel Load 

The plastic strains in the half slab model are compared to the values obtained using the wheel 

slab model to determine how much more plastic straining is occurring around the dowel in the 

wheel slab model. The maximum plastic strain values were used for comparison and also to 

determine if failure was occurring in the slab. Table 5-2 presents the maximum concrete PEEQ 

and PEEQT for the wheel path, half, and full slab models with dowels and without dowels. 

In the models that contain steel dowels, the plastic straining that occurred at the joint in the 

wheel load model was generally greater than the plastic straining that occurred in the half slab 

model. The differences varied at some of the load levels. The half and full slab models had some 

differences between the plastic strains in tension and compression. In the half slab model and full 

slab models with dowels, the plastic strain in compression was quite similar at all three load 

levels. The PEEQ strains in the half slab model ranged from being 1.0 to approximately 1.08 

times the value obtained using the full slab model. Values obtained for maximum PEEQT were 

on the same order of magnitude in both the half slab and full slab models, but the values were not 

as consistent between the models. At the 43.75kN and 175kN load levels, the half slab model 

estimated the plastic strain in tension as being 1.26 and 1.72 times the values obtained using the 
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full slab model and by 0.48 times the value at the 87.5kN load level. It was assumed that the low 

magnitude of the plastic straining values obtained, the analysis being nonlinear, and using 

maximum values causes the inconsistency in the maximum plastic strains at the wheel load level.   

Table 5-2 – Analytical Concrete Plastic Strain Comparison for Dowelled and Undowelled Joints 

Using Full, Half and Wheel Path Models 

Model Load (kN) PEEQ PEEQT 

Full Slab Model 
with Dowels 

43.75 0.00018 0.00001 

87.50 0.00059 0.00026 

175.00 0.00205 0.00031 

Half Slab Model 
with Dowels 

43.75 0.00018 0.00001 

87.50 0.00064 0.00012 

175.00 0.00215 0.00052 

Wheel Path 
Model with 

Dowels 

43.75 0.00018 0.00005 

87.50 0.00089 0.00032 

175.00 0.00396 0.00074 

 

Comparing the values for PEEQ between the half slab model and the wheel path model, the 

wheel path model predicted larger values for the maximum PEEQ at each load level. The PEEQ 

values in the wheel path model are 1.02, 1.39 and 1.84 times the values obtained using the half 

slab model at each of the three load levels presented in Table 5-2 in increasing order. The values 

for PEEQT in the wheel path model are 4.51, 2.56, and 1.4 times the values obtained using the 

half slab model at the three load levels. All of the values obtained for PEEQ and PEEQT are 

below the values assumed for concrete failure (0.003 for PEEQT and 0.00474 for PEEQ) in the 

half slab, full slab, and wheel path models with dowels. Values for the models without dowels 

were not included in Table 5-2 since no plastic straining occurred. 



111 

 

 

Figure 5-16 –Vertical Normal Stress in Base/Subbase for the Half Slab Model without Dowels at 

200 kN Wheel Load (MPa) 

Figure 5-16 presents the vertical normal stresses in the base and subbase layers in the half slab 

model with no dowels. The normal stress was concentrated to one side of the base where the load 

was transferred in the model without dowels, as was expected, since there was no load transfer 

across the joint in the concrete slab. Generally, the stress was distributed through the base layers 

from the concentrated load point with the highest stress concentrated along the edge of the 

loaded side of the slab (as was expected since the highest deflection of the slab was occurring at 

this point). The maximum bearing stress in the half slab model without dowels was 600 kPa at a 

load of 200 kN.   

When the dowels were introduced across the joint in the concrete slab, the stress concentration in 

the base layers was reduced at the joint as the load was transferred across the slab to the other 

slab and through to the base layers over a larger area. Figure 5-17 shows the vertical stress 

distribution in the base layers in the half slab model with dowel bars.  
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Figure 5-17 –Vertical Normal Stress in Base/Subbase for the Half Slab Model with Dowels at 

200 kN Wheel Load (MPa) 

The model with dowels had a concentration of normal stress where the loaded side of the joint 

was pushing into the base material (as differential joint deflection was still occurring). Maximum 

vertical stress in the base layer in the half slab model at the edge of the loaded slab was reduced 

in to 310 kPa from 600 kPa. Reducing the stresses in the base layer will help maintain the 

support of the slab at the joint location, and under poor soil conditions would be required to limit 

the deflection of the concrete slab. The peak stress in the base layer for the wheel path, half and 

full slab models with dowels and without dowels are presented in Table 5-3 at different load 

levels.  

The wheel path model with dowels predicted higher vertical stresses in the base layer than the 

half slab model. The wheel path model estimated vertical stresses that were 1.78, 1.85, and 1.92 

times the values obtained using the half slab model at the wheel load levels of 43.75, 87.50 and 

175 kN, respectively. The reduced length of slab to distributed the force, as well as the reduced 

depth of base layer to deflect and allow for the vertical distribution of the stresses to the 

vertically restrained base were assumed to cause the increased stresses in the base layer of the 

wheel path model. The equivalent stiffness of the wheel path model base is also relatively higher 

than the base layers used in the half slab model. This increased stiffness was not done 

intentionally as the base layer in the wheel path model was based on a general base that could be 

used in the lab when an unknown assumed crushed granular layer similar to the crushed 

limestone layer used in the work of Eddie et al. (2001).  
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Table 5-3 – Subgrade Maximum Vertical Normal Stresses for the Full, Half, and Wheel Path 

Models with Dowels and Without Dowels 

Model Load (kN) 
Subgrade Vertical Normal Stress 

(kPa) 

Full Slab Model with Dowels 

43.75 -73 

87.50 -134 

175.00 -270 

Half Slab Model with Dowels 
43.75 -72 

87.50 -134 

175.00 -269 

Half Slab Model without 
Dowels 

43.75 -118 

87.50 -248 

175.00 -489 

Wheel Path Model with Dowels  
43.75 -128 

87.50 -248 

175.00 -516 

Wheel Path Model without 
Dowels 

43.75 -243 

87.50 -518 

175.00 -1021 

 

An investigation was also completed into the behaviour of the dowels for the half, full and wheel 

path models (containing dowels). The dowels had a vertical normal stress along the length of the 

dowel on either side of the joint, and also had bending stresses in produced by bending 

deformations of the dowel. At the joint, the dowel had a large concentration of shear stress as the 

load is transferred from one side of the joint to the other. A section of the vertical stress 

distribution in the dowel is presented in Figure 5-18. The longitudinal normal stress distribution 

along a longitudinal section through the dowel bar in the half slab model is presented in Figure 

5-19 at after a 200 kN wheel load is applied. The shear stress distribution through the dowel bar 

section at the joint location is presented in Figure 5-20.  
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Figure 5-18 – Half Slab Dowel Model Vertical Normal Stress in the Dowel at 200 kN Wheel 

Load (MPa) 

 

Figure 5-19 – Half Slab Dowel Model Longitudinal Normal Stress in the Dowel at 200 kN 

Wheel Load (MPa) 

 

Figure 5-20 – Half Slab Dowel Model Shear Stress in Dowel at Joint at 200 kN Wheel Load 

(MPa) 

Bearing of the concrete on the dowel at the joint caused high vertical normal stresses in the 

dowel on either side of the joint. On the loaded side of the joint, the stresses were concentrated 

on the top side of the dowel, while stress concentrations developed at the bottom of the dowel on 

the unloaded side. This is consistent with the stress concentrations observed in the concrete slab. 

The longitudinal normal stress distribution suggests the maximum moment in the bar was located 

on the loaded side of the slab under the load, with compression stresses at the top and tension at 

the bottom. A second large concentration of moment with compression at the bottom of the 

dowel was located near the joint on unloaded side of the slab as visible in Figure 5-19. The 

profile of the shear force at the dowel showed the shear transfer at the joint which appeared to be 
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similar to an assumed pure shear transfer at this location, meaning that the stress in a section in 

shear would have higher shear stresses concentrated at the neutral axis. In order to estimate the 

force transferred across the joint, the shear stresses in the dowel were averaged over the area and 

multiplied by a representative area to determine a shear force.  

Figure 5-21 presents the dowel shear force for the different dowels along the length of the joint 

of the half slab model to present the load sharing along the length of the joint not captured in the 

wheel path model. The dowels located directly under the wheel path and load applications take 

majority of the wheel load transferred.  Dowels located further from the load application have 

less shear transfer occurring at the joint location.  To determine the amount of force being 

transferred across the joint using the half slab model, the sum of the force transferred by all of 

the dowels is compared to the total load applied to the slab. In Figure 5-21, the highest shear 

force was transferred by the dowels directly below the wheel load application by four dowels 

with an approximate maximum force transferred of 12 kN each at the 200 kN wheel load. The 

four dowels directly adjacent the wheel load application area had the second highest shear force 

transfer and are represented in Figure 5-21 by the line with a maximum force of approximately 7 

kN at the 200 kN wheel load application. The maximum shear force decreases on the dowels 

moving further from the location of the wheel load application. 

 

Figure 5-21 – Half Slab model dowel Shear Force Transfer 
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The dowels transferred from 22 to 23% of the total wheel load through the dowels to the 

unloaded side of the slab for each load increment investigated in the half slab model. The wheel 

path model with only two dowels and no transverse load distribution also had a similar 

percentage of total load transfer across the joint ranging from 20% to 22%. In the wheel path 

model, both dowels transferred approximately the same amount of load (which is expected due 

to the symmetric arrangement of the dowels).  

A comparison of the maximum shear force in the dowel at the joint, the maximum Von Mises 

stress in the dowel and percentage of load transferred at each load level (using the shear stress in 

the dowel) for the wheel path, and half slab models with dowels is presented in Table 5-4.  

Table 5-4 – Half Slab and Wheel Path Transfer Model Dowel Bar Behaviour 

Model  
Wheel 

Load (kN) 
Von Mises 

Stress (MPa) 
Max Shear 

Transfer (kN) 
Percentage of Load 

Transferred 

Half Slab Model 
Dowels 

43.75 28.8 3.0 22.41% 

87.50 55.2 5.6 22.68% 

175.00 110.2 10.8 22.86% 

Wheel Path 
Model with 

Dowels 

43.75 46.1 5.1 22.47% 

87.50 92.3 9.6 22.06% 

175.00 200.6 18.3 20.96% 
 

In the wheel path model, the maximum shear transfer at the joint through the dowels was 

approximately 1.69 to 1.7 the peak vertical shear transferred in the half slab model. The 

maximum Von Mises stress in the dowel in the wheel path model was 1.60 to 1.82 the values 

obtained using the half slab model (as presented in Table 5-4).  

5.2.5 Wheel Path Model Development – Summary of Findings 

The adequacy of the wheel path model to represent load transfer behaviour was demonstrated by 

comparing predicted behaviour to that estimated by half slab and full slab models.  The wheel 

path model has been shown to predict the behaviour of the slab similarly to the half slab model 

through comparisons of the overall deflection at the joint and differential deflection occurring at 

the joint. Higher differential deflection is predicted using the wheel path model as less load 

transfer occurs along the length of the slab and for the same reason the slab curvature to due to 

applied wheel loading is greater. The wheel path model generally concentrates more of the load 
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over a smaller area (and through fewer devices when they are used). The smaller zone for stress 

distribution in the wheel path model causes increases in the maximum stresses in both the 

concrete and dowels.  

5.3 Dowel Wheel Path Model Mesh Refinement and Preliminary Analysis 

The wheel path model was regenerated using different meshes to investigate the mesh sensitivity 

in the results. Three different meshes were compared for the wheel path model with dowels. 

Table 5-5 presents the total number of elements for each model in the mesh sensitivity 

investigation.  Table 5-6 presents the comparison of the joint performance for the dowel bar 

models with the three different meshes.  

Table 5-5 – Dowel Wheel Path Model Mesh Comparisons 

Mesh description Number of Elements 

Coarse 34664 

Medium  42864 
Fine 74812 

Table 5-6 –Dowel Wheel Path Model Joint Deflection Mesh Refinement Comparison 

  

Wheel 
Load 
(kN) 

Vertical 
Deflection 

Loaded side 
(mm) 

Vertical 
Deflection 

Unloaded side 
(mm) LTE (%) 

Joint 
Effectiveness 

(%) 

Differential 
Deflection 

(mm) 

Coarse 
43.75 -0.273 -0.217 79.52% 88.59% -0.056 

87.50 -0.514 -0.384 74.74% 85.55% -0.130 

175.00 -1.045 -0.706 67.52% 80.61% -0.340 

Medium 
43.75 -0.274 -0.216 78.73% 88.10% -0.058 

87.50 -0.514 -0.385 74.96% 85.69% -0.129 

175.00 -1.031 -0.720 69.82% 82.23% -0.311 

Fine 
43.75 -0.273 -0.217 79.5% 88.6% -0.056 

87.50 -0.514 -0.385 74.9% 85.6% -0.129 

175.00 -1.054 -0.696 66.0% 79.5% -0.358 
 

The results in Table 5-6 show that there was some mesh sensitivity in the overall joint 

performance, but all three of the meshes predict the behaviour on the same order of magnitude. 

The difference between the joint performance for the different mesh geometries investigated may 

suggest that a mesh sensitivity existed due to the plastic straining occurring in the concrete. Both 

sides of the joint in all three models at the 43.75kN load level had a deflection on either side of 
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the joint being estimated within a thousandth of a millimeter. Similarly at the 87.50 kN load level 

the deflection either side of the joint were estimated within a thousandth of a millimeter. At 

175kN the deflection of the slab on the loaded side of the slab differed by 0.023 mm and the 

unloaded side differed by 0.024 mm for the coarse, medium and fine meshes used. This 

comparison suggested that the mesh geometry does not significantly affect the overall joint 

performance, although some sensitivity could be seen in the dowel models at high wheel load 

increments. 

The dowel bar equations presented in Section 2.1.3 that were used for device development were 

compared during the preliminary analysis of the different devices to determine validity of the 

equations when compared to the analysis results. Comparing the model results with the expected 

deflection of a dowel bar using the equations, the modulus of dowel support can be back 

calculated to approximately 2400 N/mm
3
, 1850 N/mm

3 
, 1250 N/mm

3 
for each of the 43.75, 87.5 

and 175 kN load increments. The modulus of dowel support was variable at different load levels 

for conventional models based on the analysis results.  

The maximum Von Mises stress in the dowel, the vertical shear transferred at the joint by the 

dowels and the maximum vertical stress in the subgrade are compared in Table 5-7 for the 

different model mesh geometries.  

Table 5-7 –Dowel Wheel Path Model Base and Dowel Stress/Force Comparison 

 

Wheel 
Load (kN) 

Subgrade Max 
Vertical Stress (kPa) 

Dowel Von Mises 
Max (MPa) 

Shear 
Transferred (kN) 

Coarse 
43.75 -139 48.9 10.3 

87.50 -275 95.8 19.3 

175.00 -591 209.4 36.9 

Medium 
43.75 -128 46.1 10.3 

87.50 -248 92.3 19.3 

175.00 -516 200.6 36.7 

Fine 
43.75 -146 47.1 11.8 

87.50 -283 92.7 22.2 

175.00 -594 200.6 41.6 
 

The shear transferred by the dowels is very similar between the coarse and medium meshes used; 

however, there was less shear transfer predicted using these models than in the finely meshed 



119 

 

model. The maximum Von Mises Stress was more similar between the medium and the finely 

meshed models, but there was a larger difference between those models and the coarsely meshed 

model. The subgrade maximum stress in each model was similar and no specific similarities 

appear between the model behaviour. Once again, the local response listed in Table 5-7 show 

some mesh sensitivity, although the results are generally comparable and were still on the same 

order of magnitude.  

The values for maximum plastic straining in the concrete were compared for the three mesh 

densities as presented in Table 5-8. The maximum plastic straining appears to have the most 

variability in results depending on the meshing chosen. It is suggested in the ABAQUS manual 

(ABAQUS, 2008) that there may be mesh sensitivity in the concrete damaged plasticity model 

when there are large areas of unreinforced concrete. Generally the values obtained using each 

mesh density for the dowel bar models are on the same order of magnitude for the different mesh 

geometries. The values obtained for PEEQ and PEEQT using the medium mesh density are the 

lowest. The values obtained for PEEQT vary more than the values obtained for PEEQ using the 

three different meshes. The values are still on the same order of magnitude at each load level.  

Table 5-8 –Dowel Wheel Path Model PEEQ and PEEQT Mesh Sensitivity 

 
Wheel Load (kN) PEEQ PEEQT 

Coarse 
43.75 0.00020 0.00034 

87.50 0.00081 0.00053 

175.00 0.00401 0.00140 

Medium 
43.75 0.00018 0.00005 

87.50 0.00089 0.00032 

175.00 0.00396 0.00074 

Fine 
43.75 0.00025 0.00019 

87.50 0.00094 0.00064 

175.00 0.00459 0.00160 

 

In summary of the mesh refinement study completed for the wheel path dowel bar models, the 

predicted deflection, stresses in the concrete and device, as well as plastic straining are on the 

same order of magnitude although some mesh sensitivity exists. The medium mesh was used for 

the remaining wheel path analysis completed and similar mesh densities were used for the half 

slab model based on this mesh refinement study.  
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5.4 GFRP I-beam Wheel Path Model Mesh Refinement and Preliminary Analysis 

The GFRP I-beam load transfer device was designed using conventional dowel bar theory, as 

described previously in Section 3.2.1. The performance of this device will be compared to dowel 

bar behaviour and theory. In modeling the GFRP I-beam in the wheel path model a single I-beam 

was modeled compared to the two dowels. 

Three different models for the GFRP I-beam device were generated with three different mesh 

geometries, and the results of each were compared. The number of elements in each of GFRP I-

beam model is presented in Table 5-9. 

Table 5-9 –GFRP I-beam Wheel Path Model Meshes 

Mesh description Number of Elements 

Coarse 62024 
Medium  73022 

Fine 149656 
 

The differential deflection across the joint at three distinct load increments (43.75, 87.5 and 175 

kN) are presented in Table 5-10 along with the LTE, and joint effectiveness.  

Table 5-10 – GFRP I-beam Wheel Path Model Joint Performance Comparison 

 

Wheel 
Load 
(kN) 

Vertical 
Deflection 

Loaded side 
(mm) 

Vertical 
Deflection 

Unloaded side 
(mm) 

LTE 
(%) 

Joint 
Effectiveness 

(%) 

Differential 
Deflection 

(mm) 

Coarse 
43.75 -0.332 -0.154 46.2 63.2 -0.178 

87.50 -0.627 -0.261 41.7 58.8 -0.365 

175.00 -1.288 -0.433 33.6 50.3 -0.855 

Medium 
43.75 -0.332 -0.153 46.3 63.3 -0.178 

87.50 -0.625 -0.262 42.0 59.1 -0.363 

175.00 -1.289 -0.430 33.3 50.0 -0.859 

Fine 
43.75 -0.297 -0.153 51.4 67.9 -0.144 

87.50 -0.557 -0.263 47.2 64.1 -0.294 

175.00 -1.143 -0.439 38.4 55.5 -0.704 
 

The joint effectiveness of the GFRP I-beam at the half wheel load level ranged from 63.2 to 

67.9%. The joint effectiveness and LTEs were below the suggested values; however, it was hard 
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to compare the ranges due to the difference in the behaviour of the half slab and wheel path 

models as previously presented. At the 43.75 kN load level, the deflection on the loaded side was 

0.035 mm different from the medium and coarse mesh to the fine mesh; however, on the 

unloaded side the difference was 0.001 mm. The modulus of dowel support is much less than the 

value calculated for the conventional dowel. Note that the GFRP I-beam had higher differential 

deflection than the dowel bar (See Table 5-6); however, the GFRP I-beam was capable of 

maintaining the differential deflection between the slabs to below 1 mm which was much better 

than a slab without dowels.  

Based on the differential deflection of the medium and coarsely meshed models the modulus of 

dowel support using conventional dowel bar theory at each of the three load increments was back 

calculated to be 375, 360 and 245 N/mm
3
 for each of the three load increments in increasing 

order of load magnitude. Modulus of dowel support at the given load levels varies based on the 

analysis completed and does not show any direct correlation to the values obtained when 

compared to dowel bars except that the values are decreasing with increasing load.  

To understand how the load is being transferred through the concrete at the joint a section of the 

vertical stresses in the concrete through the GFRP I-beam are shown in Figure 5-22. Similar to 

the dowels, the vertical stress distribution on the loaded and unloaded sides of the slab is 

different. In the GFRP I-beam model, two vertical compressive stress concentrations occur above 

both flanges on the loaded side. Since only the top flange on the unloaded side bears on concrete, 

the bottom flange does not apply a vertical compressive force to the slab since it bears directly 

on the base material. On the unloaded side, larger tensile vertical stress concentrations occur 

around the sides of the top flange of the device, as is shown in the section through the loaded 

side in Figure 5-22.  

To identify areas of damage in the concrete around the GFRP I-beam, a section of the PEEQ 

strains are presented in Figure 5-23. Similar to the vertical compressive strain concentrations 

observed for the dowels, the plastic straining in the concrete in GFRP I-beam model was limited 

to the joint location. Most of the damage occurred on either side of the top flange. On the loaded 

side, similar to a conventional dowel, above the top flange an area of compressive damage was 

occurring extending from the joint interface. Alternatively, on the unloaded side of the joint, 

compressive damage was occurring at the joint interface below the top flange. The only areas 
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that have PEEQT strains were a localized area extending out from the top flange on both sides of 

the joint (also similar to dowel bar behaviour). Although the damaged areas appeared to be local 

to the joint, the maximum values for plastic compressive strains were near the failure limit. The 

PEEQT profile in the concrete is not presented; however, local areas of damage were limited to 

the area immediately adjacent to the top flange of the device. 

 

Figure 5-22 – GFRP I-beam Wheel Path Model - Vertical Stress Distribution in Concrete at 200 

kN Wheel Load (MPa)  

 

Figure 5-23 – GFRP I-beam Wheel Path Model PEEQ at 200 kN Wheel Load (MPa)  

The PEEQ and PEEQT strains are similar in all three model mesh geometries, with the values for 

maximum PEEQ and PEEQT in the concrete presented in Table 5-11. All three of the models 

predict the failure of the concrete in both compression and tension to be occurring at the 175kN 

load level. The plastic strains in tension at the wheel load level (87.5 kN) are approaching the 

failure in tension for the coarse and medium meshed models. The values obtained for plastic 
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strains in tension and compression for the GFRP I-beam were larger than those predicted for the 

dowel bar model.  

Table 5-11 – GFRP I-beam Wheel Path Model PEEQ and PEEQT Maximum Values 

 
Wheel Load (kN) PEEQ PEEQT 

Coarse 
43.75 0.00011 0.00084 

87.50 0.00177 0.00315 

175.00 0.00704 0.01207 

Medium 
43.75 0.00011 0.00090 

87.50 0.00167 0.00315 

175.00 0.00743 0.01320 

Fine 
43.75 0.00018 0.00093 

87.50 0.00190 0.00297 

175.00 0.00818 0.01191 

To understand the load transfer to the base layer when the GFRP I-beam is set directly on the 

base, and to understand how well it transfers load at the joint to the base layer, a longitudinal 

section through the middle of the base layer is shown in Figure 5-24. The load was not 

transferred through to the base layer using a GFRP I-beam as well as observed for the dowels. 

There was evidence of the load being transferred from one side of the slab to the other; however, 

there was a higher concentration of stress located at the joint in the GFRP I-beam model. There 

was also a clear location where the stresses in the base layer were increased beneath the GFRP I-

beam in comparison to the behaviour for the dowel bar model.  

 

Figure 5-24 -   GFRP I-beam Wheel Path Model Vertical Stress Distribution in base layer at 200 

kN Wheel Load  (MPa) 
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The vertical and longitudinal normal stresses in the GFRP I-beam are shown in Figure 5-25 and 

Figure 5-26, respectively. The GFRP I-beam had vertical concentrations on either side of the 

joint and provided shear transfer across the joint as well as a bearing directly on the ground 

across its entire length. 

 

Figure 5-25 – GFRP I-beam Wheel Path Model Vertical Normal Stress in GFRP I-beam at 200 

kN Wheel Load (MPa) 

 

Figure 5-26 – GFRP I-beam Wheel Path Model Longitudinal Normal Stresses in GFRP I-beam 

at 200 kN Wheel Load (MPa) 

The vertical normal stresses in the GFRP I-beam were concentrated in the same locations as they 

were concentrated in the slab (as would be expected). These stresses were concentrated on either 

side of the joint at the edges of the slab. The vertical stresses in compression and tension ranged 

from about -79 to 84 MPa. The vertical stress distribution was not shown across the width of the 

flange. However, the vertical stresses were concentrated in the middle of the flange and were 

transferred through to the web.   
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Longitudinal normal stresses in the top flange near the joint in Figure 5-26 were in tension and 

compression with opposite sense on either side of the joint, indicating that the top flange was 

bending at the joint location in the top flange on either side of the joint. The behaviour and the 

deflected shape of the top flange are very similar to that of a conventional dowel bar at the joint 

location. The bottom flange shows bending behaviour on the loaded side of the slab; however, it 

does not show the same distinct bending as in the flange where bending with opposite sense 

occurs on either side of the joint. The relatively weak support provided by the base layer on the 

unloaded side of the slab compared to the support provided by the concrete to the top flange is 

assumed to cause this difference in behaviour. 

The vertical shear in the GFRP I-beam was estimated using the vertical shear stresses at the joint. 

Figure 5-27 shows the vertical shear distribution in the GFRP I-beam at a wheel load of 200 kN. 

The shear is mostly being transferred in the web which would be expected in the GFRP I-beam.  

 

Figure 5-27 – GFRP I-beam Wheel Path Model Vertical Shear Stress at Joint Location at 200 kN 

Wheel Load (MPa) 

A comparison of the maximum vertical base stress, I-beam Von Mises stress and estimated shear 

transferred by the GFRP I-beam is presented in Table 5-12 for the three different mesh 

geometries used.  
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Table 5-12 – GFRP I-beam Wheel Path Model Dowel and Base Stress/Force Comparison 

 

Wheel 
Load (kN) 

Subgrade Max 
Vertical Stress (kPa) 

GFRP I-beam 
Von Mises (MPa) 

Shear Transferred 
(kN) 

Coarse 
43.75 -191 45 8.6 

87.50 -367 84 16.1 

175.00 -770 167 28.5 

Medium 
43.75 -190 45 8.6 

87.50 -363 84 16.2 

175.00 -764 162 28.4 

Fine 
43.75 -216 41 10.0 

87.50 -415 79 18.5 

175.00 -873 155 30.7 
 

The maximum vertical stress predicted in the base with the GFRP I-beam was much greater than 

in the wheel path model with dowels; however, the GFRP I-beam had a lower maximum vertical 

stress in the base when compared to the slab without dowels. The maximum base vertical stress 

was different between the fine, medium and coarse models. The Von Mises Stresses in the GFRP 

I-beam were lower than in the steel dowel at all load levels. As the mesh was refined, the 

maximum Von Mises stress are generally reduced. The shear transferred by the I-beam was also 

similar in each mesh. The amount of shear transferred across the joint was lower than with the 

dowel bar models; however, it was transferring more than half the amount transferred by two 

dowels. 

Based on the preliminary analysis of the GFRP I-beam, it was determined that a further 

investigation into the behaviour of the GFRP I-beam be should completed. The size and spacing 

of the I-beam would have to be altered to behave similarly to the dowel; however due to 

availability of GFRP shapes and proposed testing arrangement, the same size and shape GFRP I-

beam and was selected for further testing based on the preliminary analysis. All three mesh 

geometries used predicted similar overall joint behaviour and the medium mesh was more 

refined near the top and bottom flanges than the coarse mesh but was more efficient than the fine 

mesh. Mesh geometry similar to the fine mesh was used for further finite element modeling 

completed.  
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5.5 GFRP Tapered plate Wheel Path Model Refinement and Preliminary Analysis 

The GFRP tapered plate dowel was designed based on conventional dowel bar theory. The wheel 

path model investigation will compare the behaviour to a conventional dowel, the behaviour of 

the device, concrete and subgrade, as well the overall joint performance.  

In order to assess the behaviour of the devices, three different meshes were generated for the 

tapered plate dowel. The number of elements in each of the three different mesh geometries used 

is presented in Table 5-13. Table 5-14 presents the joint performance comparison for the 

different meshes used for the GFRP Tapered plate wheel path models.  

Table 5-13 – GFRP Tapered Plate Wheel Path Model Meshes 

Mesh description Number of Elements 

Coarse 15936 
Medium  23632 

Fine 44070 
 

Table 5-14 – GFRP Tapered Plate Wheel Path Model Joint Performance 

 

Wheel 
Load (kN) 

Vertical 
Deflection Loaded 

side (mm) 

Vertical Deflection 
Unloaded side 

(mm) 
LTE 
(%) 

Joint 
Effectivenes

s (%) 

Differential 
Deflection 

(mm) 

Coarse 
43.75 -0.284 -0.213 75.2% 85.8% -0.070 

87.50 -0.511 -0.371 72.6% 84.2% -0.140 

175.00 -1.148 -0.545 47.5% 64.4% -0.603 

Mediu
m 

43.75 -0.309 -0.208 67.4% 80.5% -0.101 

87.50 -0.566 -0.330 58.4% 73.7% -0.236 

175.00 -1.220 -0.553 45.4% 62.4% -0.667 

Fine 
43.75 -0.295 -0.184 62.4% 76.9% -0.111 

87.50 -0.604 -0.332 54.9% 70.9% -0.272 

175.00 -1.241 -0.536 43.2% 60.3% -0.706 
 

The differential deflection at all load levels investigated was well below 1 mm. The maximum 

differential deflection measured at the joint using the fine model was estimated to be 0.706 mm. 

Joint effectiveness for the GFRP Tapered plate dowel ranged from about 85% to 60%. At low 

load levels, the joint effectiveness was very similar to the dowel bar. The joint effectiveness in a 

dowel at the half wheel load level was approximately 88%; however, at higher load levels, the 
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joint effectiveness was reduced in comparison to the steel dowel bar models where the joint 

effectiveness of the dowels at twice the wheel load was approximately 79.5%. The LTE of the 

GFRP Tapered plate dowel ranged from 43% to 75% for the three load ranges. At the lower load 

increments, the LTE differed more between the different model geometries than at the higher 

load increments. The LTE differed by 13% at the 43.75 kN load level and only by 4% at the 175 

kN load increment.  

Based on the dowel bar equations the modulus of dowel support at each of the three load 

increments is back calculated to be approximately 1000, 750 and 315 N/mm
3
 in increasing order 

of load application. The modulus of dowel support was reduced as the wheel load increased 

similar to both conventional dowels and the GFRP I-beam. Estimated values for the modulus of 

dowel support for the GFRP tapered plate were higher than the GFRP I-beam but lower than 

values estimated for conventional round steel dowels.  

 

Figure 5-28 – GFRP Tapered plate Wheel Path Model Vertical Stress Distribution in the concrete 

at 200 kN Wheel Load (MPa) 

The vertical normal stress distribution on both of the GFRP Tapered plates was similar to dowel 

bars in that distinct zones of vertical tensile and compressive stresses occurred on either side of 

the joint above and below the dowel. A zone of compressive stress was present on the loaded 

side of the joint above both of the tapered plates. This zone of compressive stress in the concrete 
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at the joint interface, on the loaded side of the joint, was larger with a higher maximum stress 

above the wider side of the tapered plate. On the other side of the joint, a similar local zone of 

compressive vertical normal stress occurred beneath the tapered plate. Beneath the wider end of 

the GFRP tapered plate, on the unloaded side, the compressive stress was greater than the 

narrower end of the tapered plate. The vertical normal tensile stresses that occurred around the 

dowel locations were larger near the wider ends of the GFRP tapered plate dowels.  

To assess the damage occurring around the GFRP tapered plate in the concrete, several sections 

through the slab showing the plastic strain around the plate dowels are presented in Figure 5-29 

and Figure 5-30. 

  

Figure 5-29 – GFRP Tapered plate Wheel Path Model Slab PEEQ at 200 kN Wheel Load 

 

Figure 5-30 – GFRP Tapered plate Wheel Path Model PEEQT at 200 kN Wheel Load 
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Plastic strain profiles in the concrete for the GFRP tapered plate were similar to conventional 

steel dowels where compressive plastic straining was occurring above the dowel on the loaded 

side and below the dowel on the unloaded side of the dowel. The compressive damage on the 

loaded side of the slab above the smaller tapered plate end was greater than the larger end of the 

plate dowel. Similarly, on the unloaded side of the slab the PEEQ strains were also greater on the 

smaller tapered plate width. Tensile plastic straining in the concrete occurred at the top face of 

the tapered plate on the loaded side of the slab and at the bottom face of the tapered plate on the 

unloaded side. The tensile straining was localized at the joint.   

The PEEQ and PEEQT values obtained using the different meshes for the tapered plate model 

are presented in Table 5-15. 

Table 5-15 – GFRP Tapered Plate Wheel Path Model PEEQ and PEEQT  

 
 Wheel Load (kN) PEEQ PEEQT 

Coarse 
43.75 0.00000 0.00004 

87.50 0.00002 0.00144 

175.00 0.00406 0.00849 

Medium 
43.75 0.00000 0.00036 

87.50 0.00025 0.00224 

175.00 0.00318 0.00778 

Fine 
43.75 0.00000 0.00159 

87.50 0.00031 0.00539 

175.00 0.00361 0.01715 

 

The tensile plastic strains in all the models were similar. At the 43.75 kN level, none of the 

meshes predicted plastic straining to occur in compression. The plastic strains at all the load 

levels were on the same magnitude between the different model mesh geometries in both 

compression and tension. The plastic straining in compression in all the models at all the load 

levels were below the assumed crushing failure plastic strain value of 0.00474. The tensile 

plastic strain was below the cracking failure strain assumed (0.003) for all of the models at the 

43.75 kN load level. The fine mesh predicted the plastic strain in tension at the edge of the 

tapered plate to exceed the failure strain assumed at the wheel load level (87.5 kN); however, the 

coarse and medium meshes did not predict that the plastic tensile strains exceed the assumed 
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cracking failure value. Although this was an assumed failure, it is noted that this was obtained 

with a fine mesh and that the zone was very localized.  

 

Figure 5-31 – GFRP Tapered plate Wheel Path Model Vertical Stress in the Base – 200 kN 

(MPa) 

The vertical normal stresses predicted in the base layer of the tapered plate wheel path model is 

presented in Figure 5-31 with a 200 kN wheel load applied. The vertical stress in the base layer 

was concentrated on the side of the wheel load application suggesting that the load was not being 

evenly transferred across the joint, as the stresses in the base layer were more concentrated than 

in the steel dowel bar model. However, the stress was reduced compared to an undowelled joint 

and there was some evidence of load transfer and reduced stress in the subgrade.  

 

Figure 5-32 – GFRP Tapered Plate Wheel Path Model Vertical Normal stress Distribution in the 

GFRP Tapered Plate at 200 kN Wheel Load (MPa) 
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Figure 5-33 – GFRP Tapered Plate Longitudinal Normal Stress Distribution in the GFRP 

Tapered Plate at 200 kN Wheel Load (MPa) 

Figure 5-32 and Figure 5-33 present the vertical and longitudinal normal stress in the GFRP 

tapered plate for the wheel path model with a 200 kN wheel load applied to the slab. The GFRP 

tapered plate behaved similarly to a conventional dowel at the joint location and across the joint. 

Bending stresses were concentrated in the device on either side of the joint as presented in Figure 

5-33. The sense of the bending stresses indicated a reversal in the sense of bending.  The vertical 

normal stress concentrations in compression and tension were also similar to the steel dowel with 

distinct zones at the joint location, and also spread along the length of the dowel in the vertical 

stress distribution. 

Table 5-16 – GFRP Tapered Plate Subgrade and Dowel Comparison 

 
Wheel Load (kN) 

Subgrade Max 
Vertical Stress (kPa) 

Dowel Von 
Mises (MPa) 

Shear Transferred 
(kN) 

Coarse 
43.75 -142 4 1 
87.50 -262 8 1 

175.00 -658 19 3 

Medium 
43.75 -162 5 1 
87.50 -323 10 2 

175.00 -709 23 6 

Fine 
43.75 -159 5 6 
87.50 -340 11 13 

175.00 -729 25 29 
 

A summary of the peak vertical stress in the base layer, dowel shear force transferred and the 

maximum Von Mises stress in the dowel are presented in Table 5-16. The maximum base 

vertical stress varied from 142 kPa to 162 kPa at the 43.75 kN wheel load for the three models, 
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with the maximum stress occurring with the medium mesh. At the 87.5 kN load level, the 

maximum subgrade reaction stress varied from 262 kPa to 340 kPa with the maximum subgrade 

stress occurring in the fine mesh model. At the 175 kN load level, the maximum subgrade 

reaction was 729 kPa and the minimum was 658 kPa with the coarse mesh having the lowest 

subgrade reaction. The medium and coarse meshes were very similar at the 43.75 kN load level 

although the medium mesh had a higher maximum subgrade stress. It appears that the predicted 

device behaviour was affected by the model meshing. The smaller thickness of the section and 

the fineness of the meshing used appeared to affect the results. The shear force calculated with 

the coarse and medium meshes were assumed to not be realistic and more mesh refinement 

would be required to properly assess the shear force transfer at the joint. The values for the 

maximum predicted base reaction were greater than conventional steel dowels; however, they 

were less than the GFRP I-beam.  

The maximum Von Mises stress in the dowel ranged from 4 to 5 MPa at the 43.75 kN load level, 

8 to 11 MPa at the 87.5 kN load level and 19 to 25 MPa at the 175 kN load level. These values 

were much lower than the values for the dowel and GFRP I-beam models. It was assumed that 

the reduced maximum Von Mises stress in the GFRP tapered plates was due to the mesh 

refinement in the plate not capturing the bending stresses in the plate properly. The values for the 

GFRP I-beam and dowel bars for device Von Mises stresses were approximately 160 MPa for 

the GFRP I-beam and 200 MPa for the dowel section. Similarly, the shear load transferred values 

were also calculated to be much lower using tapered plate dowels compared to the GFRP I-beam 

or conventional dowels. Using the finer mesh should help to ensure realistic behaviour is 

estimated. However, the low load transfer may also be a result of the lower relative stiffness of 

the tapered plate and increasing the thickness of the GFRP I-beam to increase the relative 

stiffness of the tapered plate could be completed to increase the force transfer in the device. 

Further modeling and analysis in the current study did not consider increasing the thickness of 

the tapered plate due to available materials for experimental testing. The fine mesh geometry is 

used for the remaining modeling of the tapered plate to capture this behaviour more effectively 

and in comparisons with the other device behaviour. 
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5.6 Load Transfer Comparison of Discrete Devices – Parametric Study 

The frictional coefficient used for the contact surface between the devices and concrete were 

chosen based on range of values for steel dowel and concrete interaction based on the work of 

Shoukry et al. (2003).The results for each of the discrete devices investigated with the following 

different model combinations are compared in this section: 

 Low Friction Static Load - dowel to concrete slab friction coefficient of 0.1, single static 

load (results used as basis for wheel load comparison presented above) 

 High Friction Static Load - dowel to concrete slab friction coefficient of 0.3, single static 

load 

 Quasi-Static Reversed Loading - dowel to concrete slab friction coefficient of 0.1, quasi-

static reversed loading with 43.75 kN load increments (Figure 5-44). 

The maximum base reaction, maximum dowel bar Von Mises stress, joint deflection and 

concrete plastic strains for each discrete device in an aligned condition will be compared for each 

of the different model combinations. A vertically misaligned dowel bar and apered plate will also 

be compared in under quasi-static reversed loading.  

5.6.1 Low Friction Comparison 

The mesh refinement study was completed using a 100 MPa base layer with a 0.1 dowel slab 

frictional coefficient for each of the model mesh refinement studies completed above. The graphs 

presented in this section are comparisons of the results from the model mesh geometry chosen. 

Figure 5-34 presets a comparison of the differential deflection at the joint for the tapered plate, 

GFRP I and dowel bar wheel path model with a friction coefficient of 0.1 and subjected to static 

loading. The GFRP I-beam allowed the most differential deflection at the joint, while the 

conventional dowel bar reduced the differential deflection at the joint more than the tapered plate 

or GFRP I-beam. At the load levels above 87.5 kN, the tapered plate and GFRP I-beam showed 

reduction in stiffness at the joint in comparison to the dowel bar, indicated by the increase in 

slope in the GFRP I and Tapered plate deflections shown in Figure 5-34.  
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Figure 5-34 - Low Friction Static Load Model - Differential Deflection Comparison 

 

Figure 5-35 presents the maximum Von Mises Stress in the devices for the Tapered plate, GFRP 

I and dowel model with a friction coefficient of 0.1 and a static wheel load application. The 

maximum Von Mises stress in the Tapered plate are much lower than the maximum stresses in 

the dowel and GFRP I-beam which is assumed to be due to the mesh geometry as mentioned 

previously (Section 5.5). The GFRP I-beam and conventional dowels have a similar maximum 

Von Mises stress occurring in the device. 

 

Figure 5-35 – Low Friction Static Load Model –Device Von Mises Stress Comparison 

The maximum stress in the base layer for each device is compared in Figure 5-36 for the low 

friction static load case.  The comparison between the maximum base stress is very similar to the 

behaviour for the differential deflection. Although the GFRP I-beam was resting directly on the 

base layer and it may be expected that some additional stress may occur here compared to the 
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conventional dowels, the results do not indicate a strong difference between the three devices. 

The behaviour of the tapered plate and GFRP I-beam were almost the same between with the 

conventional dowel bar model having a slower increase in maximum stress at load levels above 

87.5kN. 

 

Figure 5-36 – Low Friction Static Load Wheel Path Model - Maximum Subgrade Vertical Stress 

Discrete Device Comparison 

A comparison between the maximum PEEQ in the concrete slab for the tapered plate, GFRP I 

and dowel bar model is presented in Figure 5-37 for the low friction static load model. The 

maximum PEEQ in the concrete in the dowel bar model was higher than in the tapered plate. The 

GFRP I-beam produced the highest PEEQ in the concrete, and the PEEQ in the concrete 

increases rapidly at load levels above 87.5 kN for the GFRP I-beam in comparison to the tapered 

plate and conventional dowel bar models. The PEEQ in the concrete between the 87.5 and 175 

kN load levels for the dowel bar and Tapered plate dowels are very similar. This suggests that 

the Tapered plate dowel is causing approximately the same damage in the concrete at the joint as 

the dowel.   

Figure 5-38 presents the maximum PEEQT for the low friction static load model for each of the 

discrete devices in an aligned condition. Similar to the PEEQ, the GFRP I-beam caused the 

highest PEEQT in the concrete. Lower values of PEEQT in the concrete occurred with the 

tapered plate than the GFRP I-beam; however, the dowel bar produced the lowest PEEQT in the 

concrete. It is assumed that the concentrations of stress that occur at the sharp edges of the GFRP 

I-beam and Tapered plate dowel are causing the increase in the PEEQT in the concrete. Possibly 

using thicker sections with slightly rounded edges to reduce the concentration of stress and 
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cracks that occur from the corners of the devices could be done to reduce the PEEQT in the 

concrete with the GFRP I and Tapered plate sections.  

 

Figure 5-37 - Low Friction Static Load Wheel Path Model – Maximum Concrete PEEQ Discrete 

Device Comparison 

 

Figure 5-38 - Low Friction Static Load Wheel Path Model – Maximum Concrete PEEQT 

Discrete Device Comparison 

5.6.2 High Friction Static Load - Wheel Path Model Discrete Device Comparison 

The performance of each discrete device was also compared using an increased frictional 

coefficient of 0.3 at the contact surface between the device and the concrete slab. Figure 5-39 

presents the differential deflection occurring at the joint with a frictional coefficient at the 

concrete device interface of 0.3.  
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Figure 5-39 - High Friction Static Load Wheel Path Model - Differential Deflection Comparison 

The differential deflection occurring at the joint for the discrete devices under static loading did 

not appear to be affected by the frictional coefficient assumed at the device concrete interface. 

The relative comparisons between the differential deflection that occurred at the joint and the 

maximum deflection were similar to those presented previously in Figure 5-34 for each device. 

The frictional coefficient at the slab device interface did not appear to affect the behaviour 

perpendicular to the device which will govern the displacement of either side of the slab as well 

as the base support.  

Figure 5-40 presents the maximum Von Mises stress in the devices for wheel path model with a 

frictional coefficient of 0.3 between the device and the concrete.  Little change in the maximum 

Von Mises stress in the device occurred in all three discrete devices examined. No relative 

increase was observed for the GFRP I-beam, where as the dowel and tapered plate dowels both 

predict slightly higher maximum Von Mises stress with a frictional coefficient of 0.3 compared 

to 0.1.  The increase in Von Mises stress in the GFRP tapered plate section is the greatest. At the 

43.75 kN load, the maximum Von Mises stress is approximately 8 MPa where with a 0.1 

frictional coefficient the maximum stress is approximately 5 MPa. At the 87.5 kN and 175 kN 

loads the maximum Von Mises stress in the GFRP tapered plate using a 0.3 frictional coefficient 

are approximately 18 MPa and 40 MPa respectively whereas with a frictional coefficient of 0.1 

between the device and the concrete  values of approximately 10 and  23 MPa respectively. The 

large affect on the maximum Von Mises stress for the tapered plate is assumed to be due to the 

bending stress not being adequately captured due to the mesh geometry in the GFRP tapered 



139 

 

plate. The change in the friction coefficient at the device-concrete interface has a larger affect 

when the bending stresses are not adequately being captured in the device.  

 

Figure 5-40 - High Friction Static Load Wheel Path Model - Device Von Mises Stress 

Comparison 

Figure 5-41 presents the comparison of the maximum vertical stress in the base layer for the 

wheel path model comparison of the discrete devices using a frictional coefficient between the 

device and the concrete of 0.3 and a single static wheel load application applied to the slab. 

Increasing the frictional coefficient of between the device and the concrete appeared to have little 

effect on the maximum base reaction using the tapered plate and dowel bar models. However, an 

increase in the maximum base stress occurred for the GFRP I-beam. Using a 0.1 friction 

coefficient between the slab and device, the maximum base stress is 875 kPa and with a 

frictional coefficient of 0.3 the value increases to 1190 kPa. Increasing the friction coefficient 

between the device and the slab may have altered the relative slippage between the device and 

the slab causing the device to penetrate into the base layer. The general behaviour and 

comparison between the devices using either frictional coefficient (0.1 or 0.3) between the 

device and slab for maximum vertical stress in the base layer is the same.  
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Figure 5-41  - High Friction Static Load Wheel Path Model - Maximum Vertical Stress in the 

Base Comparison 

Figure 5-42 presents the maximum PEEQ in the concrete for the discrete devices with a 

frictional coefficient of 0.3 between the slab and the device. The general comparison between the 

different devices with a frictional coefficient of 0.3 compared to 0.1 was the same.  Highest 

PEEQ in the concrete were predicted with the GFRP I-beam while the conventional steel and 

GFRP tapered plate dowel predict very similar maximum PEEQ in the concrete. Generally, the 

PEEQ in the concrete at the joint interface were reduced with a higher frictional value. This 

behaviour is similar to that presented by Levy (2010) for conventional dowels. The effect of the 

contact between the slab and the device was more pronounced at the end of the dowel where the 

frictional contact was trying to restrain the device from moving. The plastic straining in the 

concrete at the back of the dowel has not been considered as the maximum plastic strains in the 

wheel path model were occurring at the near the joint.  

Figure 5-43 presents a comparison of the PEEQT in the concrete for the discrete devices using 

the wheel path model with a frictional coefficient of 0.3 and single static wheel load application. 

The results indicate that increasing the friction coefficient to 0.3 from 0.1 does not significantly 

affect PEEQT in concrete. The tapered plate experienced the highest PEEQT in concrete, while 

conventional steel dowels cause the lowest maximum PEEQT to occur in the concrete.  
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Figure 5-42- High Friction Static Load Wheel Path Model – Maximum Concrete PEEQ Strain 

Comparison 

 

Figure 5-43- High Friction Static Load Wheel Path Model – Maximum Concrete PEEQT 

Comparison 

Based on the review and comparison of the devices to an applied wheel load with two different 

frictional coefficients, the overall behaviour and comparison between the devices is not affected 

significantly by depending on the frictional coefficients for wheel load transfer. Results from the 

service load analysis may be affected more by altering the coefficient of friction; however, 

varying the effects will not be investigated as part of the current study due to the limited effect 

on wheel load transfer results and time constraints. 

5.6.3 Quasi-Static Reversed Load Wheel Path Model Discrete Device Comparison 

Finally the discrete devices were each modeled with a frictional coefficient of 0.1 between the 

device and the concrete and subjected to the quasi-static reversed loading history presented 

Figure 5-44. In Figure 5-44, the horizontal axis represents time; however, no scale was applied as 
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the material properties used and  loading applied did not include time as a variable. The quasi-

static reversed loading is aimed at capturing the effects of the plastic straining occurring in the 

concrete on either side of the joint and the effects of a load moving across the joint. This is also 

the loading that will be applied in the experimental work to investigate the effects of a moving 

load without actually applying a dynamic load due to the complexity of the testing apparatus 

required or computational effort in a model. A vertically misaligned tapered plate dowel and 

conventional steel dowel were also included to determine the effects of vertical misalignment on 

these devices. The vertical misalignment was taken as an angular displacement of 60 degrees in 

the vertical plane, and is denoted as V60 in the following figures. Since the GFRP I-beam was 

set directly on the base it is assumed that it will not become vertically misaligned, and thus 

vertical misalignment was not considered for the GFRP I-beam.  

 

Figure 5-44 – Quasi-Static Reversed Loading 

Figure 5-45 presents the differential joint deflection comparison for the discrete devices under 

quasi-static reversed loading. The conventional steel dowel maintained the lowest differential 

deflection throughout the course of the quasi-static loading applied. The tapered plate and the 

misaligned tapered plate dowels behaved similarly to the dowels and Figure 5-45 shows the 

differential deflection at the joint with a misaligned tapered plate dowel initially improved the 

joint load transfer on one side of the device and worse on the other. As the load was increased 
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and subsequent load applications were applied, the misaligned tapered plate does not appear to 

be more effective on one side than the other. The GFRP I-beam failed to converge after the 4
th

 

load application at 1.5 wheel load (131.25 kN); however, before that had more differential 

deflection than the Tapered plate or conventional dowel at the load increments below this level. 

The results for the misaligned dowel bar failed to converge after the 2
nd

 load application at twice 

the wheel load (175kN). The vertically misaligned conventional steel dowel predicts more 

differential deflection than a conventional dowel at each load level.  

 

 

Figure 5-45 - Quasi-static Reversed Load Wheel Path Model – Differential Deflection at the 

Joint Comparison 

Figure 5-46 and Figure 5-47 present the maximum Von Mises stress in the devices on either side 

of the joint for the quasi-static loading history.  

 

Figure 5-46 - Quasi-static Reversed Load Wheel Path Model - Maximum Von Mises Stress in 

Left Side of Device Comparison 
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Figure 5-47 - Quasi-static Reversed Load Wheel Path Model - Maximum Von Mises Stress in 

Right Side of Device Comparison 

The conventional dowel bar had the highest maximum Von Mises stress occur in the device, 

although all the stresses in the aligned dowel were below a failure level for all the load 

increments. The dowel bar was approaching its yield strength near the end of the load 

applications. Increased load levels caused larger increase in the maximum stress in the dowels 

through subsequent load applications at the same load for the GFRP I-beam and dowel bars. This 

may suggest that further damage and plastic straining is occurring in the concrete surrounding 

the device increasing the stress in the devices as the load is cycled. The misaligned dowel bar 

suddenly has an increase in maximum device Von Mises stress on both sides of the joint before 

the model fails to converge. It is assumed that this sudden increase may be due to increasing 

plastic strains and a local failure causing the model to be concrete to become unstable near the 

device increasing the load transferred to the base and dowel. The GFRP I maximum Von Mises 

stress are similar to the conventional dowel until the model fails to converge.  The GFRP I-beam 

maximum Von Mises stress fails to converge after the 4
th

 application of the 1.5 wheel load level 

(131.25 kN). 

Figure 5-48 and Figure 5-49  present the comparison of the maximum vertical stress in the base 

layer on either side of the joint for the quasi-static reversed loading.  
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Figure 5-48 – Quasi-static Reversed Load Wheel Path Model - Maximum Base Vertical Stress 

on Left Side of Joint Comparison 

 

Figure 5-49 - Quasi-static Reversed Load Wheel Path Model - Maximum Base Vertical Stress on 

Right Side of Joint Comparison 

The maximum vertical stress in the base layer for misaligned dowel bars increased rapidly on the 

right side of the joint prior to the model failing to converge. Vertical stress on the right side of 

the joint is very similar for all the remaining devices. The vertically misaligned dowel bar 

predicts the least maximum vertical stress in the base layer on the right side of the joint. The 

misalignment of the steel dowel may have caused the dowel to act as a lever pulling one side of 

the slab up as load is applied and hence reduce the maximum stress in the base layer. 

Conventional dowel bars predict the highest maximum vertical stress on the right side of the 

joint but are on the same order of magnitude and it is assumed that the increased load transfer 

occurring is causing the increased maximum vertical stress which should not be detrimental to 

slab performance. On the left side of the joint in Figure 5-48, the vertically misaligned GFRP 

Tapered plate dowel cause the highest vertical stress in the base layer. An aligned GFRP Tapered 
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plate dowel causes less maximum vertical stress than the conventional dowel but behaves 

similarly to a conventional dowel.  

Figure 5-50 presents the comparison of maximum PEEQ occurring in the concrete for the 

discrete devices evaluated using the wheel path model for quasi-static reversed loading.  The 

maximum PEEQ occurring in the concrete with the GFRP I-beam sharply increased prior to the 

model failing to converge which may show that failure was occurring in the concrete. The area 

was still localized and this may or may not represent a failure occurring, however, the model was 

not able to converge due to mesh refinement near the thin flanges of the GFRP I-beam. However, 

prior to the rapid increase the device passed the assumed failure in compression for PEEQ in the 

concrete at a value of 0.00474. All of the devices were below the failure in compression assumed 

at the wheel load level except the misaligned Tapered plate dowel. As the load levels were 

increased beyond the wheel load level the maximum PEEQ occurring in the concrete were above 

the failure value. PEEQ straining occurring in the tapered plate dowel was similar to the 

conventional steel dowel predicting slightly higher maximum PEEQ to occur in the concrete. 

Prior to the misaligned conventional dowel bar model failing to converge, the maximum PEEQ 

in the concrete increases to a similar level occurring in the misaligned tapered plate dowel. The 

vertically misaligned GFRP Tapered plate dowel does not appear to reduce the plastic straining 

occurring in the concrete under wheel loading. The failure level assumed for maximum PEEQ in 

the concrete occurs for the conventional dowel and GFRP Tapered plate dowel at twice the 

wheel load (175 kN). 

 

Figure 5-50 - Quasi-static Reversed Load Wheel Path Model - Maximum Concrete PEEQ Stress 

Comparison 
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Figure 5-51 presents a comparison of the maximum PEEQT occurring in the concrete for the 

discrete devices in the wheel load model under quasi-static reversed loading. The GFRP I-beam 

and both the misaligned tapered plate and aligned tapered plate dowel caused higher maximum 

PEEQT in the concrete to occur. This may have been due to the concentration of stress that 

occurred at the sharp edge of the device. The PEEQT occurring in the conventional steel dowel 

was much lower than the other devices. Misalignment of the dowel did not appear to affect the 

maximum PEEQT that occurred in the concrete for the conventional steel dowel; however it 

increases the maximum PEEQT in concrete when GFRP tapered plate dowels are used. 

Maximum PEEQT in the concrete at the device concrete interface for the tapered plate and 

GFRP I-beam exceed the failure level assumed at the wheel load level. The maximum PEEQT in 

the concrete was not increased at the wheel load level as the load was cycled which suggests that 

the devices were still functioning at the wheel load level although they had exceeded the failure 

for PEEQT assumed in the concrete.  

 

Figure 5-51 - Quasi-static Reversed Load Wheel Path Model – Maximum Concrete PEEQT 

Comparison 

5.7 Summary of Load Transfer Study for Discrete Devices 

The load transfer study for discrete devices and development of a wheel path model capable of 

comparing devices for load transfer provided insight into the behaviour of proposed load transfer 

devices, dowel bars, and overall slab behaviour under wheel loading.   

The following conclusions were made based on the aforementioned finite element load transfer 

study for the selected discrete devices: 
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 A wheel path model with a thinner base layer was capable of predicting behaviour similar 

to a full slab with the back edge of the slab restrained. The stress concentrations, 

differential deflection and plastic straining occurring in the wheel path model were 

greater than in a full slab model, and predictions using the wheel path models will hence 

be greater.  

 The assumption of symmetric boundary conditions on a quarter slab model when 

subjected to unsymmetrical wheel loading applied appeared to not significantly affect 

results.  

 Based on the results from the finite element load transfer study completed using the 

wheel path model, all of alternative devices appeared to be effective at transferring wheel 

load at the joint.  All of the devices reduced the maximum vertical stress in the base layer 

and differential deflection at the joint, when compared to no load transfer devices. The 

mechanical transfer provided at the joint reduced differential deflection across the joint.  

 Differential deflection predicted using conventional steel dowels was lower than both the 

FRP I-beam and FRP tapered plate devices.  

 The GFRP I-beam was the least effective at transferring load at the joint with highest 

plastic straining occurring in the concrete as well as the most differential deflection 

across the joint. The top flange of the GFRP I-beam provided most of the load transfer 

with the bottom flange being less effective which was assumed to occur because of the 

bottom flange rested directly on the base. Altering the size the FRP I-beam thickness or 

possibly creating an alternative shape with an increased upper flange thickness only could 

improve the efficiency of the device.  

 Increasing the thickness of the GFRP tapered plate could reduce the differential 

deflection at the joint by increasing the relative stiffness of the device closer to that of the 

conventional dowel used.    

 The presence of load transfer devices increased the maximum stress and plastic strain 

occurring in the concrete because the devices created high stress concentrations.  

 Conventional steel dowels had the lowest plastic straining occurring in the concrete for 

both tension and compression. It is assumed that the sharp corners at the bearing surfaces 

for GFRP tapered plates and I-beams created the higher concentrations of stress when 

compared to round dowel bars.  
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 Altering the frictional coefficient at the device-concrete interface did not alter the 

comparative behaviour of the devices under wheel loading.    

 Under quasi-static reverse loading the relative behaviour between the devices was similar 

to the behaviour observed from loading on only one side of the joint; however, as the 

load was repeated at maximum compressive concrete straining generally increased along 

with the differential deflection at the joint.  

 The mesh refinement study completed showed that the mesh densities investigated had 

little effect on the overall result, and similar mesh densities will be used for the remaining 

analysis. 

 Further mesh refinement in the tapered plate dowel could be completed to capture the 

shear and moment distribution more effectively, although global effects are captured in 

the current model. 
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6.0 Laboratory Testing of the Discrete Devices 

6.1 Laboratory Testing Objectives 

An experimental testing program was developed to supplement and verify general comparison of 

the discrete devices made using the wheel load model. The objectives of the experimental testing 

program were: 

 To compare the ability of the devices to transfer load versus conventional dowels 

 To gain knowledge on the placement and construction of the devices on a small scale 

 To examine the effect misalignment has on load transfer  

This section outlines the development of the experimental testing program as well as the 

experimental testing results for the discrete devices.  

6.2 Lab Testing Slab Geometry 

As described in the preliminary analysis section, the CL-625 design truck uses a wheel load 

application over a 600mm x 250mm area. The slab testing geometry selected was the same as the 

wheel path model geometry used for the computational load transfer analysis for discrete devices 

presented previously in Figure 5-4.  

The wheel experimental specimen consisted of a 2.4m long concrete pavement slab strip, 600 

mm wide and 250 mm thick. The pavement joint was located at mid-length of the slab strip. The 

slab specimen was placed on a simulated base layer (GeoFoam) as discussed below. The slab and 

base layer were placed in a 500 kN servo-hydraulic test frame for load testing, as shown in 

Figure 6-1. A structural steel frame was placed around the base layer to confine the base material 

(the base material is hidden by the steel frame in Figure 6-1).  A steel double-channel section, 

anchored to the structural floor slab, was used to provide vertical restraint to the back edges of 

the pavement slab strip consistent with the boundary conditions assumed in the wheel path 

computational model (see Figure 5-4). 
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Figure 6-1 – Lab Testing Setup 

For the base layer, as an alternative to using an actual base requiring a consistent compaction 

routine to provide consistent results from test to test and to save time in experimental testing, 

Geo-Foam was chosen for the base support. Geo-Foam is an expanded polystyrene product that 

comes in various densities to be used as a light-weight fill material. Geo-Foam comes in blocks 

of various sizes. The size of the Geo-Foam base used in experimental testing is a 305mm x 

609mm x 2438mm. GeoSpec Type 22 Geo foam from Plastifab was chosen as the material to be 

used in the lab and the material properties of the GeoSpec Type 22 Foam are given in Table 6-1. 

Table 6-1 – GeoSpec Type 22 Material Properties  

Description of value/test Value 

Compressive Resistance @ 1% Deformation using ASTM D 1621 50 kPa 
Compressive Resistance @ 5% Deformation using ASTM D 1621 115 kPa 

Flexural Strength using ASTM C 203 240 kPa 
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The compressive and flexural strengths of the GeoSpec Type 22 GeoFoam are much lower than 

the values that were assumed in the wheel path model for the base layer. The GeoSpec Type 22 

GeoFoam was chosen in the study because it was the most readily available GeoFoam. The 

weaker base support could be representative of a joint after it had been in use for years and some 

of the base support below the joint has eroded away as mentioned by Eddie et al., (2001).    

6.3 Lab Testing Loading 

The load transfer and the stress concentrations at the joint according to the finite element 

analysis of the discrete devices were used as a basis for the test. The wheel path model showed 

that the load should be alternated from one side of the joint to the other in order to reverse the 

compressive and tensile stress concentrations in the slab on both sides of the joint. A quasi-static 

reversed loading history similar to that presented in Figure 5-44 was used for the experimental 

testing program. Specific loading increments were determined based on finite element modeling 

of the dowel bar model with the base layer chosen for the experimental testing. Figure 6-2 

presents the quasi static revesered loading applied using the experimental testing program.  

 

Figure 6-2 - Quasi Static Reversed Loading Application for Experimental Testing 

6.3.1 Experimental Testing Loading Beam 

In order to apply alternating loads to both sides of the joint and working with a single-actuator 

test-frame a loading beam was implemented in the experimental testing arrangement as shown in 
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Figure 6-1. The actuator was aligned with the slab joint and attached to a loading beam that ran 

parallel to the concrete slab length extending beyond the length of the slab, as shown 

schematicalyl in Figure 6-3. To load the slab on either side of the joint a removable pivot was 

placed beneath the load beam on the slab on the right (or left) side of the joint and a second pivot 

was placed on the left (or right) pedestal to as supports to the loading beam. In the described 

arrangement the actuator load was between the supports and the loading beam acted as a simple 

beam with the support providing the wheel load desired. In order to obtain the actuator load and 

apply the proper wheel loading, static equilibrium of a simply supported beam with dimensions 

shown in Figure 6-3 was used to calculate the load levels at the point of application knowing the 

load required at the joint location. 

 

 

Figure 6-3 – Simple Beam Representation of the Lab Testing Setup  

6.3.2 Analysis to Determine Wheel Loading Increments 

To establish an estimated maximum load and initial load increments for the lab testing program, 

a computational model incorporating the Geo Foam layer in ABAQUS was used with the dowel 

bar model. The crushable foam material model available in ABAQUS was used to model the 
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GeoFoam layer. The model assumes that the cell wall buckling that occurs in crushable foam 

will behave as a plastic model. The model must be input with a linear isotropic material model. 

The yield surface assumed in the crushable foam material in ABAQUS is a Mises circle in the 

deviatoric stress plane and an ellipse in the p-q stress plane. The model was input using 

volumetric hardening where the point on the yield ellipse in the p-q plane that represents 

hydrostatic tension loading is fixed and the evolution of the yield surface is driven by the 

volumetric compacting plastic strain.  The other available input for hardening is isotropic 

hardening, in which the yield surface is centered at the origin in the p-q stress plane and evolves 

in a geometrically self-similar manner. The ABAQUS manual suggests that for mainly 

compressive loading the two will give similar results.  The yield surface of the foam for 

volumetric hardening model is defined using Equation (6-1) (ABAQUS, 2008).  

(6-1) 

                    

Where: 

  
 

 
        is the pressure stress 

   
 

 
     is the Mises stress 

        is the deviatoric stress 

    is the size of the (horizontal) p-axis of the yield ellipse 

      
     

 
 is the size of the (vertical) q-axis of the yield ellipse 

   
   is the shape factor of the yield ellipse that defines the relative magnitude  

of the axes 

   
     

 
 is the center of the yield ellipse on the p-axis 

   is the strength of the material in hydrostatic compression (always positive) 

   is the yield stress in hydrostatic tension 
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The yield surface and flow potential in the p-q stress plane as input using the above is 

represented in Figure 6-4 from the ABAQUS Manual (2008).  

 

Figure 6-4 – Yield surface and flow potential in the p-q stress plane (ABAQUS, 2008) 

The shape factor can be computed using the initial yield stress in uniaxial compression, yield 

stress in hydrostatic compression and the yield strength in hydrostatic tension using Equation 

(6-2):  

(6-2) 

  
  

             
        

    Where: 

   
  

 

  
    and      

  

  
  

In order to define the yield surface in ABAQUS the values of k and kt must be input. These 

values both depend on both the yield stress in hydrostatic tension and compression  based on the 

definitions given as part of Equation (6-2). A value for k of 1.1 was assumed based on the 

ABAQUS (2008) verification manual value and a second value of 0.8 was used to check the 

effects of changing the value for k on model results and to provide a range of solutions since the 
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value is unknown and time did not permit to determine a more realistic value for this parameter. 

The value for kt of 0.05, as suggested in the ABAQUS User‟s Manual, was assumed in the 

GeoFoam material used to establish experimental testing instrumentation and loading increments 

for the pilot test slab. 

The crushable foam material property in ABAQUS must be used in conjunction with linear 

elastic isotropic material properties.  A Poisson‟s ratio for rigid behaviour similar to concrete 

would be equal to a Poisson‟s ratio of close to 0.1 where a fluid material would be close to 0.5. 

Two Poisson‟s ratios were assumed (in the assumed range of Poisson‟s ratio in the foam) of 0.1 

and 0.3 for the GeoFoam base layer material model used in ABAQUS. Two values were 

assumed because little information on the value for the Poisson‟s ratio could be found for the 

foam and time to test did not permit as part of the current study. The initial yield of the crushable 

foam was assumed to be the 1 % deformation value given by the manufacturer. Using this as the 

first yield and an elastic response to this load level an elastic modulus of 5 MPa was assumed for 

the GeoFoam layer.  

The ABAQUS crushable foam material model also required definition of the plastic behaviour to 

uniaxial loading. Based on the 1% and the 5% deformation values, the plastic behaviour in 

uniaxial compression was input into the crushable foam material model assuming linear plastic 

deformation from the 1% to the 5% compressive test data given by Plastifab (Table 6-1). All of 

the additional straining occurring after the 1% deformation was assumed to be plastic 

deformation. An additional input for the uniaxial compressive behaviour of GeoFoam was input 

as an assumed 150 kPa stress and 10% deformation of which 9% was assumed to be plastic.  

Figure 6-5  depicts the compressive behaviour used for the GeoFoam base layer assumed to 

establish the loading increments and data acquisition system.   

Four different variations of the foam were modeled using the two different assumed Poisson‟s 

ratios and parameter k as outlined above. A single static wheel load was applied until the model 

failed to converge. Table 6-2 presents a summary of the results for the slab behaviour with the 

varying inputs for k and the Poisson‟s ratio for the GeoFoam layer.  
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Figure 6-5 – GeoFoam Compressive Stress-Strain Curve for input in ABAQUS 

Table 6-2 – Estimated Lab Behaviour of Dowels with Different Foam Material Properties 

Poisson'
s Ratio k 

Max 
Load 
(kN) 

Geo Foam 
Comp 
(kPa) PEEQ PEEQT 

Deflection 
1 

Deflection 
2 

Joint 
Efficiency 

0.1 0.8 83 122 0.0156 0.0012 -20.63 -19.85 98.07% 
0.3 0.8 98 142 0.0165 0.0014 -18.17 -17.36 97.71% 
0.1 1.1 85 134 0.0167 0.0012 -21.39 -20.57 98.04% 
0.3 1.1 95 142 0.0173 0.0014 -19.55 -18.70 97.78% 

 

The maximum load on the slabs from the four different arrangements ranged from about 82 kN 

to 99 kN until the models failed to converge. The maximum deflection at the joint is estimated to 

be 21.39 mm when the model fails to converge which was assumed to be the ultimate failure. 

The maximum deflection at the joint of 21.39 mm was used to establish the length of 

displacement transducers to be used on the pilot slab.  Based on the differential deflection, the 

joint is still able to function through the duration of the test even though there is less support 

provided by the base layer. 

To understand the behaviour of the foam layer, a section of the plastic strains along the length of 

the slab are shown in Figure 6-6 and the vertical plastic strains are shown in Figure 6-7.  
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Figure 6-6 – Longitudinal Plastic Strain in Geo Foam 

 

Figure 6-7 – Vertical Plastic Strain in Geo Foam 

The plastic straining profile for the Geo Foam presents permanent displacement occurring along 

the entire length of the Geo Foam base layer with the maximum plastic strains occurring at the 

middle of the foam where the joint is located. The plastic strains along the length of the foam 

indicate a crack occurring in the foam at the location of the joint. The slab is spreading the load 

to the foam along the entire length and is causing the foam to permanently deflect vertically.  

To ensure the Geo Foam will behave similarly to a stronger base and will not affect the response 

of the slab or the failure mechanisms in the slab, the strains in the concrete were investigated and 

compared to the preliminary analysis model using a 100 MPa elastic modulus for the base layer. 

The plastic strains in compression and tension in the concrete were localized to the same area 

around the dowel at the joint interface using the Geo Foam base assumed as the 100 MPa base 

layer. The values for the maximum PEEQT in the concrete were still below the failure criterion 

of 0.003; however, they were more than ten times the initial cracking strain. The PEEQ predicted 

by each model in the concrete were above the failure criterion assumed of 0.00474. Thus, it was 

concluded that the Geo Foam could be used to represent the base material in the experiments.  

Based on the results using the crushable foam as a base layer it was determined that for the initial 

lab test a load increment of 1/8 of the wheel load would be used since the estimated failure load 
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was approximately equal to a single wheel load. The increment of 1/8 of the wheel load would 

allow the behaviour of the device at various stages of damage and progression to be studied for 

device comparisons. The load was applied at a rate of 1.6 kN/s, selected to avoid dynamic effects 

in the slab and testing arrangement, as well as to maintain an efficient experimental testing time.  

6.4 Lab Testing Data Acquisition  

In order to investigate the behaviour of the devices and compare the behaviour of the devices 

slab deflection data was obtained during the test. It was determined that a comparison of the 

deflection profiles of the slabs would be the most effective way to compare the behaviour of the 

different devices. A deflection profile of the slab shows how the slab is functioning at 

transferring the load along its length to the base material and through the joint. Two 

displacement transducers were used on either side of the joint to determine the differential 

deflection across the joint. Six additional transducers were placed on the top side of the slab 

along its length. The layout of the displacement transducers on the slab is presented in Figure 

6-8.  

 

Figure 6-8 – Displacement Transducer Layout (Plan View) 

Displacement transducers 1 through 4 are mounted below an angle that is attached to the side of 

the slab at either side of the joint as shown in Figure 6-8. The load is applied first to the right side 

of the joint as shown which is associated with the odd numbered transducers. The other 

transducers are mounted above the top of the slab and measure the displacement directly off the 

top of the concrete slab. The transducers are visible in Figure 6-1.  
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6.5 Experimental Testing Program 

Similarly to the finite element wheel load analysis, the GFRP Tapered plate, the GFRP I-beam 

and steel dowel were all be tested in the lab under perfect conditions (i.e. no misalignment). The 

vertical skew misalignment of the devices was previously found to be the most detrimental in 

load transfer (Levy, 2010). Therefore, the devices that could be vertically misaligned, tapered 

plates and conventional dowels, were also tested in with a vertical misalignment of 60 mm. 

To establish the testing procedure and ensure the testing setup will work for a general device 

comparison, a slab specimen with two conventional steel dowels was cast and tested 28 days 

after the concrete was cast. This was used to verify the loading and ensure the displacement 

transducers would capture the behaviour of the slab. After the pilot test was completed, the 

testing program including casting five slabs, one for each test alignment described in one 

concrete placement was completed.   

6.6 Pilot Specimen Description and Test Results 

In order to establish load increments and to verify the test setup, a single slab with dowels was 

cast and tested. The single slab was cast with a formed joint that was 6.4 mm at 1/4 the slab 

depth and it was 12.5 mm at the top of the slab. The formed joint was removed after the slab was 

in place. The slab was tested after 28 days of curing.  The compressive strength of the concrete 

on the day of the test was 40.4 MPa and the tensile strength was 9.5 MPa using compressive and 

split cylinder tests.  

During the first four increments, no damage occurred and the formed joint did not form into a 

full depth crack. At approximately 60 kN, the slab cracked at the joint location on the first load 

application on the first side of the sixth load increment. For the remainder of the test no further 

cracking was visible. 

The crack extended from the bottom of the joint at an angle under the applied load on the side of 

the slab shown in Figure 6-9. On the other side of the slab the crack has less of an angle in the 

opposite direction towards the unloaded side. At the end of the test the crack opened to 

approximately 12 mm where visible. The test was stopped after a load 121 kN when the 

deflection transducers were out of range.   
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Figure 6-9 – Pilot Test Slab Crack Formation at 60 kN 

The slab deflection profiles at load levels of 43.75 kN, 65.625 kN and 87.5 kN were plotted as 

shown in Figure 6-10.  The deflection for the first and last load on each side is plotted at each 

load level to show the additional deflection that occurs through the cyclic loading.  

 

Figure 6-10 – Pilot Test Slab Deflection Profiles 

At the 43.75 kN load level, the slab response was very linear as the crack had not formed yet at 

the joint location to create a discontinuity in the slab. After the crack occurred, stepping at the 

joint began to occur. As the load was increased to 65.625 kN and cycled, the joint deflected 

more, however, by the 5
th

 cycle on the second side of the joint there was little further change 

occurring between load cycles. The deflection at the back ends of the slab were not plotted in the 

figure as the back displacement transducer was 200 mm from the ends. Based on Figure 6-10, the 

back end of the slab was rising slightly off the foam support behind the steel channel hold downs 

at the back end of the slab, which was noticed during the testing at both the 65.625 kN and 87.5 
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kN load levels. As the load was cycled at the 87.5 kN load level the slab deflected more as the 

load was cycled and as the load was switched from one side of the joint to the other. It was 

difficult to see distinct stepping across the joint from one side to the other as the load is reversed 

throughout the test.   

In order to investigate the joint behaviour during the test, the deflection across the joint was 

compared. Deflection transducers were placed on either side of the joint at each side of the slab 

as shown in Figure 6-8. To estimate deflection of either side of the joint the average deflection of 

the two displacement readings on either side of the joint were used. The deflection of either side 

of the joint, the Load Transfer Efficiency (LTE), differential deflection and joint effectiveness at 

different load levels are presented in Table 6-3. 

The differential deflection across the joint was below 1 mm for all of the load levels and cycles 

presented. At low load levels the differential deflection across the joint did not change as the 

load was switched from one side of the slab to other. The joint efficiency and LTE values were 

hence calculated as being greater than 100% because the deflection on the unloaded side of the 

slab was greater than the loaded side. It was difficult to explain why the loaded side of the slab 

had a lower deflection than the unloaded side. This could occur due to the nature of the crack 

that formed and the aggregate interlock. It could also have something to do with the plastic 

deformation that occurred in the Geo Foam layer. At the 5/4 wheel load level, the loaded side of 

the joint was greater than the unloaded side of the joint for all load applications.  At this higher 

load and deflection level, the crack that had formed was significantly widened and the effects of 

aggregate interlock at the joint would have been reduced. The prescribed limits for adequate joint 

performance for LTE and joint effectiveness for a slab were maintained throughout the test from 

the load transfer that occurs due to the dowel bar and the aggregate interlock.  
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Table 6-3 – Pilot Test Slab Joint Performance 

 

Load Level 

Side of 

Joint 

Loaded

Cycle 

Number

Average 

Deflection 

of Right 

Side (mm)

Average 

Deflection 

of Left Side 

(mm)

Differential 

Deflection 

(mm)

Joint 

Effectiveness 

(%) LTE (%)
1 -0.69 -0.70 0.01 100.9% 101.9%
2 -0.70 -0.72 0.02 101.4% 102.8%
3 -0.69 -0.71 0.02 101.3% 102.7%
4 -0.68 -0.71 0.03 101.8% 103.7%
5 -0.70 -0.72 0.02 101.3% 102.7%
1 -0.68 -0.71 0.03 97.5% 95.2%
2 -0.67 -0.71 0.03 97.5% 95.2%
3 -0.68 -0.71 0.03 97.8% 95.7%
4 -0.69 -0.72 0.03 98.0% 96.0%
5 -0.69 -0.72 0.03 97.9% 95.9%
1 -1.66 -1.70 0.03 100.9% 101.9%
2 -1.69 -1.71 0.03 100.8% 101.6%
3 -1.69 -1.73 0.04 101.1% 102.2%
4 -1.70 -1.74 0.04 101.1% 102.2%
5 -1.71 -1.74 0.03 101.0% 101.9%
1 -1.65 -1.74 0.09 97.4% 95.0%
2 -1.67 -1.75 0.08 97.5% 95.2%
3 -1.68 -1.76 0.08 97.5% 95.2%
4 -1.69 -1.78 0.09 97.4% 94.9%
5 -1.69 -1.78 0.09 97.3% 94.7%
1 -7.08 -7.30 0.23 101.6% 103.2%
2 -7.29 -7.52 0.23 101.6% 103.2%
3 -7.42 -7.65 0.23 101.5% 103.1%
4 -7.51 -7.74 0.23 101.5% 103.1%
5 -7.59 -7.82 0.24 101.5% 103.1%
1 -7.57 -7.96 0.40 97.5% 95.0%
2 -7.67 -8.09 0.42 97.4% 94.8%
3 -7.74 -8.17 0.43 97.3% 94.8%
4 -7.81 -8.24 0.43 97.3% 94.7%
5 -7.86 -8.30 0.44 97.3% 94.7%
1 -12.33 -12.76 0.43 101.7% 103.5%
2 -13.00 -13.43 0.43 101.6% 103.3%
3 -13.45 -13.90 0.45 101.6% 103.3%
4 -13.84 -14.30 0.45 101.6% 103.3%
5 -14.15 -14.61 0.45 101.6% 103.2%
1 -14.27 -15.00 0.73 97.5% 95.2%
2 -14.60 -15.36 0.76 97.5% 95.1%
3 -14.85 -15.62 0.76 97.5% 95.1%
4 -15.09 -15.87 0.78 97.5% 95.1%
5 -15.27 -16.07 0.79 97.5% 95.1%
1 -36.41 -36.35 -0.06 99.9% 99.8%
2 -39.91 -39.69 -0.22 99.7% 99.5%
3 -40.40 -40.15 -0.25 99.7% 99.4%
4 -40.54 -40.28 -0.25 99.7% 99.4%
5 -40.60 -40.34 -0.26 99.7% 99.4%
1 -43.67 -43.86 0.20 99.8% 99.6%
2 -46.16 -46.39 0.23 99.8% 99.5%
3 -48.22 -48.52 0.30 99.7% 99.4%
4 -49.88 -50.19 0.32 99.7% 99.4%
5 -50.20 -50.53 0.33 99.7% 99.3%
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In order to investigate the damage occurring in the system a plot of the load and deflection at the 

joint are plotted in Figure 6-11. As the load is cycled at low load levels before cracking, the 

response is very linear. At approximately 60kN the crack occurs and an increase in the deflection 

occurs and continues to increase as the load was cycled. At the 87.5 kN load level, as the load 

was cycled little additional deflection occured. As the load was cycled at load levels above 87.5 

kN average deflection at the joint continued to increase with each load application, which 

indicated that plastic damage was occurring at the load level.  When the load was increased to 

approximately 109 kN and 120 kN the first cycle showed plastic straining occurring as the load 

deflection curve flattened as the load was increased beyond the previous load increments. It is 

difficult to determine how much of the plastic deflection observed in the deflection profiles is 

from the concrete damage and from the Geo Foam damage as both will contribute to this type of 

behaviour.  

 

 

Figure 6-11 – Pilot Test Slab Load vs. Average Joint Deflection 

After the test was completed an investigation into the damage in the slab and Geo Foam layer 

was completed. First the slab was removed from the testing frame using steel strongback beams 
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with shims in place so that the shape of the slab was not altered. Figure 6-12 presents the crack at 

the bottom of the slab after the test was completed.   

  

Figure 6-12 – Lab Pilot Bottom of Slab Crack after test 

The observed crack tended to one side of the joint on one side of the slab and transitioned to the 

other at the other side of the slab. Most of the change occurred in the middle portion of the slab 

which is between the two dowels. In order to investigate the damage around the dowels, the slabs 

were pried apart. After prying the two slabs apart, one of the dowels remained in either side of 

the slab. The dowels were originally welded to the chairs and this weld was not broken during 

the test. The side of the dowel that was welded into the slab also corresponded to the side of the 

slab that the crack tended to be towards as shown in Figure 6-12. The Geo Foam layer also had a 

similar crack pattern to the bottom of the slab which extended through the layer from the top to 

the bottom of the Geo Foam layer. The final thickness of the Geo Foam in the middle at the 

crack was reduced  from 305 mm to 265 mm,  meaning approximately 40 mm of permanent 

deflection had occurred in the foam layer during the test at the joint location.  

After pulling the two slabs apart, cracking could be noticed extending out from the middle of the 

dowel where PEEQT strains were noticed in the previous finite element analysis. More cracking 

in the concrete on the side of the dowel that was not welded was noticed on both of the two 

dowels. As the slabs were being pried apart, sections of the concrete above the dowel came off. It 

was assumed that the prying action alone would not cause this type of failure to occur and that 

the cracks had initially formed during the test and extended during prying. For the remaining 

tests a more controlled method of separating the slabs was used with a hand hydraulic jack 
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(explained later). Figure 6-13, depicts the crack extending from the dowel. The crack shown in 

Figure 6-13 on the left extends from the dowel and was noticed before the section of concrete 

came off as shown in the right of Figure 6-13. Similar cracking extending from the dowel was 

also noticed at the other dowels as well as some minor cracking occurring above the dowel.   

 

  

Figure 6-13 – Pilot slab Cracking at dowel 

In order to assess the damage in the dowel, the concrete was chipped away at the using a jack 

hammer to remove the dowels and look at the final shape of the dowels. The concrete had to be 

chipped to remove the dowels because the dowels would not come off the chair where they were 

tack welded in place. Figure 6-14 shows the dowel bars after the test was completed. 

 

Figure 6-14 – Lab Pilot Dowels after test 
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It can be noticed in Figure 6-14 that some permanent deformation occurred in the middle of the 

bar at approximately the joint location. This suggests that the dowels yielded during the test at 

some point. However, yielding of the dowel did not cause the devices to stop transferring load 

and maintain the deflection across the joint throughout the test.  

Based on the results of the pilot slab test, the same size of slab, concrete strength, and Geo Foam 

layers were chosen for the remaining slabsas the test setup appeared to adequately asses the 

performance of the dowel and concrete. The dowels tested were capable of transferring the load 

throughout the test and still worked as the Geo Foam support layer was plastically damaged. In 

order to obtain results throughout the entire test the amount of stroke was increased on 

transducers 1 through 6.  

6.7 Alternative Joint Load Transfer Device Testing Program  

After completing the pilot specimen testing and investigation, five additional slab specimens 

were cast to assess the behaviour of the alternative joint load transfer devices.  The experiences 

from the pilot study were used to refine the specimen details and testing procedures for the 

additional slab specimens as follows: 

 Instead of the formed joint used in the pilot test, it was decided to use a saw-cut to create 

the joint in the additional specimens, consistent with procedures used in actual 

pavements.  The joint was cut using an electric concrete saw with a depth control jig and 

a wooden guide to ensure a straight cut.  The depth of the saw cut was set at ¼ of the slab 

thickness, or 62.5 mm.  The width of the saw cut was approximately 3mm. 

 The slab specimens were not reinforced, consistent with JPCP design.  Since the 

laboratory study is subjecting a slab strip to loads up to failure while supported on an 

intentionally substandard base material, it was decided to add external reinforcement to 

the slabs to ensure that cracking would be limited to the joint region.  Strengthening of 

the slabs is described in Section 6.7.1. 

 It was decided to pre-crack the slab joint prior to conducting the specified joint loading 

history described in Section 6.3.  This is more consistent with actual conditions where it 

is assumed that the joint would be cracked due to concrete shrinkage and thermal strains 
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at an early age, and thus the joint load transfer behaviour of the cracked joint is of 

interest.  The procedure for pre-cracking the joint is described in Section 6.7.2. 

6.7.1 Slab Strengthening 

After casting and removal from the formwork, the slab strip specimens were strengthened by 

adding external reinforcement to limit slab cracking to the joint region.  The slabs were 

strengthened using Sika Carbodur S512 carbon-fibre reinforced polymer (CFRP) strips.  The 

strips were installed longitudinally on the sides of the slab specimens, placed along the bottom 

edge of the slab side.  Two strips, each 1000 mm long, were applied on each side of the slab.  A 

gap between the two strips was left directly below the sawcut to ensure a weak plane existed 

below the sawcut joint location where the joint was expected to form by cracking.  The strips 

were extended close to the joint location to ensure that they were adequately developed at the 

critical section where the dowel bar ended. 

The Carbodur strips were installed following manufacturer‟s instructions.  The sides of the 

concrete slabs were roughened by grinding until the coarse aggregate was visible prior to 

installation of the strips.  Figure 6-15 shows a slab with the strips installed. 

The slab specimens were moved using steel strongback beams attached to the slab using bolted 

inserts installed in the slabs during casting.  In spite of this effort, several of the slabs 

experienced cracking away from the joint region prior to installation of the Carbodur strips.  

These cracks were repaired using epoxy injection prior to installation of the strips. 
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Figure 6-15 – Sika S512 Carbodur Strips attached 

6.7.2 Slab Pre-cracking 

Cracking in JPCP occurs in the due to shrinkage and thermal straining that causes upward 

curling (tension at the top fibre) and results in a crack initiating at the top surface.  As described 

previously, the remaining slab specimens were pre-cracked prior to subjecting them to the cyclic 

wheel loading history to allow the joint behaviour to be realistically assessed in a cracked 

condition.  In order to form the joint crack, the strengthened slab specimens were placed in the 

test frame on the GeoFoam and vertical loading was applied centered on the sawcut location.  

Although this load application produced tension at the bottom fibre rather than the top fibre, it 

was able to form the crack at the joint at relatively low load levels.  It should be noted that a 

controlled procedure to produce tension at the top fibre could not be achieved in a practical 

manner with the test frame used in this research.  

The arrangement in the test frame used to pre-crack the slab is shown in Figure 6-16.  A single 

100 mm wide plate was placed on neoprene pads centered on the sawcut location.  The test frame 

was then used to apply direct downwards vertical loading at the joint until the joint crack was 

formed.  Note that although the large spreader beam is visible in Figure 6-16, the ends of the 
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spreader beam were not supported at the pedestal locations so that a direct load (as opposed to 

offset load) was applied to the joint location. 

 

Figure 6-16 – Crack Initiation Setup 

6.8 Dowel Bar Slab Specimen Description and Results 

The control specimen for the laboratory study was a specimen with two dowel bars. The 

conventional round steel dowels used in the experimental testing investigation were epoxy-

coated 32 mm steel dowels complete with a dowel chair. Two ends of the dowels were tack 

welded to the chair at opposite ends. The chairs and dowels represent a typical setup used in the 

field. The dowels were set at mid height of the slab. A picture of the dowel arrangement placed 

in the slab centered on the sawcut is shown in Figure 6-17.The dowels were spaced laterally at 

300 mm and were placed 150 mm from each side of the slab.  
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Figure 6-17 – Aligned Dowel Bar  

The dowel bar specimen was subjected to the quasi-static reversed cyclic loading history as 

described in Section 6.3. The response of the specimen in terms of variation of average joint 

deflection is with load is presented in Figure 6-18.  Similar to the pilot test slab with dowels the 

deflection does not increase as the load is cycled below the wheel load level (87.5 kN). The 87.5 

kN wheel load increment was entered manually and was increased from the 3/4 wheel load 

increment to the 5/4 increment. This is noticed in Figure 6-18 as the load does not cycle at the 

87.5 kN load level. A large increase in deflection occurs at the joint from the 66 kN to 110 kN 

wheel load increment. As the load was cycled at loads above the wheel load level the average 

deflection at the joint increased with each load cycled. When the load was increased to the 131 

kN wheel load level the slab was determined to have failed on the first cycle as the average 

deflection at the joint increased and the slope of the load deflection plot flatted as plastic 

deformation was occurring. At the end extensive cracking was occurring at the joint but no 

visible concrete crushing or additional cracking could be noticed at the slab exteriors. The Geo 

Foam layer at this level is also failing and the test was stopped as the differential deflection of 

the slab was well beyond reasonable limits for serviceability. 
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Figure 6-18 – Dowel Bar Specimen: Average Joint Deflection vs. Load 

Figure 6-19  presents the differential deflection at the joint for the conventional round steel 

dowel test plotted against the load. The behaviour of the slab at load levels below the wheel load 

level (87.5 kN) showed that the differential deflection across the joint did not increase as the load 

was switched from the left to the right side of the slab. This portion of the test was represented 

by the dark section of Figure 6-19. The differential deflection on the first side of the slab loaded 

was consistently lower than the second side of the slab at the load levels below 87.5kN which is 

represented in Figure 6-19 as negative differential deflection. As the load was increased to 

110kN,  the differential deflection across the joint was consistent with the loading applied where 

the loaded side of the slab was lower than the unloaded side (which would be expected in a 

pavement setting). The maximum differential deflection that occurs is approximately 3 mm on 

the second side loaded at the 110kN  load increment.  
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Figure 6-19 – Dowel Bar Specimen: Differential Joint Deflection vs. Load 

 

The initial joint crack produced by pre-cracking is shown in the left-hand photograph of Figure 

6-20.  The crack widened over the course of the cyclic loading history, until it was noticeably 

wider as visible in the right-hand photograph in Figure 6-20. At the start of the test the crack was 

very narrow. Black points were added to the photo of the crack at the start of the test to highlight 

the crack location. After the test was completed the crack width increased to approximately 5 

mm at the slab base interface. Since the bending of the slab due to the simulated wheel load 

produces tension at the bottom of the slab, the crack did not widen significantly near the top of 

the joint, as visible in the right-hand photograph in Figure 6-20. 
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Figure 6-20 – Dowel Experimental Slab Joint Crack Comparison  

After the experiment was completed, the slab specimen was removed from the testing frame and 

the slabs were jacked apart as shown in Figure 6-21 to allow the damaged condition of the joint 

to be assessed further.  A small hydraulic cylinder bearing against steel plates anchored to the 

two slab halves was used to separate the specimen into two pieces. 

 

Figure 6-21 – Slab Jacking Arrangement to Separate Slab Halves 



175 

 

Figure 6-22 depicts the damaged condition of the concrete slab after the testing was completed.  

 

Figure 6-22 – Top Side of Slab Crack Extending from Joint 

A crack extends across the width of the slab approximately 100 mm from the joint location as 

shown in Figure 6-22. This crack then extends an angle to above half the slab depth at the joint 

interface as can be noticed in Figure 6-22. Figure 6-23 presents the crack presented in Figure 

6-22 extending between the dowels which suggest that the cracks start at the side of the dowel, 

consistent with the predicted PEEQT observed in the finite element investigation. On the side of 

the slab that was unloaded at the moment of failure, small cracks can be noticed extending from 

the dowel location in the bottom picture shown in Figure 6-23. Similar to the pilot test slab, the 

tack weld between the dowels and the chairs did not break during the testing.  
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Figure 6-23 – Dowel Bar Specimen: Slab Joint Face Showing Damage Extending from Dowels 

The failure in the slab appeared to occur in the concrete before the dowels failed which means 

that the dowels will provide additional load transfer after failure occurs in the concrete. This 

would also provide more warning before complete failure of load transfer at the device as 

concrete distress and large displacement would occur before the failure. The dowel also was able 

to limit the differential deflection even after concrete failure.  
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6.9 GFRP I-Beam Slab Specimen Description and Results 

A single standard 100 x 50 x 6.4 mm Dynaform  pultruded GFRP I-beam provided by Fibergrate 

Composite Structures used to investigate the GFRP I-beam configuration. The section was 

placed directly on the bottom of the form centered on both the length and width of the slab. The 

top flange of the section was below the mid-height of the slab, and was centered at 96.8 mm 

from the bottom of the slab.  Figure 6-24 presents the GFRP I-beam that was used in the test.  

 

Figure 6-24 – 100 mm x 50mm x 6.4 mm Dynaform GFRP I-beam 

The GFRP I-beam specimen was subjected to the cyclic loading history discussed in Section 6.3. 

The specimen response in terms of average deflection at the joint and load applied to the slab is 

presented in Figure 6-25. As the applied load was cycled below the wheel load level (87.5kN) 

very little additional differential deflection was measured. As the load was increased to the wheel 

load level, the average deflection at the joint increased as the load was cycled on the first side of 

the slab. After the load was switched to the opposite side at the wheel load level, the average 

deflection at the joint did not increase further as the load was cycled. At the 5/4 wheel load level, 
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a large increase in average deflection of approximately 20 mm at the joint occurred showing 

plastic damage as the slope of the load deflection curve flattened. As the load was cycled at the 

5/4 wheel load, the average deflection at the joint increased each cycle until failure occurred on 

the first load cycle application on the second side of the joint.   

 

Figure 6-25 - GFRP I-beam Specimen: Average Joint Deflection vs. Load 

Figure 6-26 presents the specimen response in terms of differential deflection at the joint versus 

the load applied. At applied load levels below the 3/4 wheel load level, there was little noticeable 

change in differential deflection as the load was switched from the first side of the joint to the 

second. At the 3/4 load level, the differential deflection of the joint was still within 1 mm on 

either side of the joint. When the load was increased to the wheel load level (87.5kN) on the first 

side of the joint, the differential deflection was below 1mm. As the load is switched to the 

second side of the slab the differential deflection increased to a maximum of approximately 2.25 

mm. The differential deflection for the GFRP I-beam specimen was higher than that measured 

for the dowel bar specimen at similar load levels. The GFRP I-beam still maintained the 

differential deflection occurring at the joint at the wheel load level. After the load was increased 

to the 5/4 wheel load level, the GFRP I-beam specimen appeared to become ineffective at 

maintaining the differential deflection, evidenced by a steady increase in the differential 
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deflection as the load was cycled until failure occurred. The differential deflection at failure was 

larger than 5mm.   

 

Figure 6-26 – GFRP I-Beam Specimen: Differential Joint Deflection vs. Load 

Figure 6-27 presents the joint crack progression through the test. The initial crack (formed by 

pre-cracking) was quite fine. There was no visible increase in crack width until the full wheel 

load level (87.5kN) was reached. At this point, the crack at the joint increasesd to approximately 

4 mm however little or no stepping was  noticed at the joint. At failure the joint opened to more 

than 10 mm and major stepping occurred, as visible in the right-hand photograph in Figure 6-27.  
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Figure 6-27 – GFRP I-Beam Specimen: Joint Crack Comparison 

The bottom view of the slab after the test is presented in Figure 6-28 and Figure 6-29 presents 

the Geo Foam base after removing the slab from the test frame.  

 

Figure 6-28 –GFRP I-Beam Specimen: GFRP I-Beam Penetration through Slab at Failure 
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Figure 6-29 –GFRP I-Beam Specimen: GFRP I-Beam Penetration into Geo Foam Layer 

The GFRP I-beam failed during the test and penetrated through the slab causing additional 

permanent deformation in the Geo Foam layer as visible in Figure 6-29. The finite element 

model (Chapter 5.0) also showed additional stress in the base layer beneath the device. Increased 

stresses in the base layer are not ideal as this may cause more deflection of the device and slab.   

Further investigation of the GFRP I-beam and concrete damage at failure is presented in Figure 

6-30.  

As expected based on the GFRP I-beam penetrating through the concrete slab, failure of the 

GFRP I-beam occurred. At the joint location, the top flange sheared off the remaining portion of 

the device which allowed the device to penetrate into the slab on the unloaded side as the device 

was loaded. The top flange also failed in shear at the joint location. The failure in the device is 

not ideal as a shear failure provides little warning and little strength after failure occurs (unlike 

the steel dowel bar). Increasing the thickness of the top flange would help reduce the chance of 

shear failure of the top flange. Based on the observed failure the section dimensions need to be 

increased, the spacing needs to be reduced, or both. A reduced spacing of 450 mm will be used 

in the service load finite element analysis (Chapter 7.0) in an attempt to improve the performance 

of the device.  
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Figure 6-30 –GFRP I-Beam Specimen: Joint and Device Condition at Failure 

6.10 GFRP Tapered Plate Specimen Description and Results 

The GFRP tapered plate dowels were 12.5 mm thick Dynaform plate cut to 75 mm at one end 

and 25 mm at the other. The plates were provided by and prepared by Fibergrate Composite 

Structures. The plates were installed similar to a dowel bar aligned in the middle of the slab at a 

height of 125 mm. The GFRP tapered plate was placed into a chair arrangement to set the height 

of the dowel. No attachment was provided between the two chairs so that only the plates cross 

the pavement joint. The GFRP tapered plates were spaced horizontally at 300 mm and were 

centered within the length and width of the slab specimen.  

Figure 6-31 presents the layout of the GFRP Tapered plate dowel with the thick ends alternating 

as described above. 
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Figure 6-31 – Aligned GFRP Tapered Plate Dowels and Chair Arrangment 

Unlike the standard dowel bar, the GFRP tapered plate was not fixed to the chairs. During 

placement of the concrete, the chairs were able to come apart and the devices had to be held in 

the chairs manually. Further consideration of the attachment of the GFRP tapered plates to the 

chairs is needed for practical concrete placement, particularly considering that in an actual 

paving setting a slip form paver is typically used with low or no slump concrete.  

The GFRP tapered plate dowel specimen was subjected to the cyclic loading history described in 

Section 6.3. The specimen response in terms of average joint deflection and load is presented in 

Figure 6-32. Average deflection at the joint for the GFRP tapered plate dowel was similar to the 

GFRP I-beam specimen where the average deflection at the joint did not appear to increase at the 

load levels below the wheel load level (87.5kN). At the wheel load level, the average deflection  

increased as the load was cycled; however the average deflection at the joint did  not  increase in 

the final cycles applied. When the load was increased to the 5/4 wheel load, a large increase in 

average deflection at the joint occurred (approximately 20mm), and as the load was cycled the 

average deflection continued to increase suggesting failure was occurring.  
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Figure 6-32 –GFRP Tapered Plate Dowel Specimen: Average Joint Deflection vs. Load 

Figure 6-33 presents the differential deflection occurring at the joint for the aligned GFRP 

tapered plate dowel specimen. Again, the general behaviour of the GFRP tapered plate dowel 

was similar to that for the GFRP I-beam specimen. At the wheel load level, the GFRP tapered 

plate dowel maintained the differential deflection on the first side of the joint below 1 mm and 

on the second side of the slab below 2 mm. The GFRP tapered plate dowel reduced the 

differential deflection occurring at the wheel load level when compared to the experimental 

results for the GFRP I-beam. Similar to the GFRP I-beam specimen, as the load was increased 

beyond the wheel load level to the 5/4 wheel load level the differential deflection at the joint 

increased rapidly as the load was cycled until the differential deflection was greater than 5 mm. 

Figure 6-34 presents the crack progression at the joint throughout the coarse of the experimental 

testing of the GFRP Tapered plate device specimen. The crack condition is shown at the start of 

the test, after the 87.5 kN load has been applied, and at the end of the test after failure.  



185 

 

 

Figure 6-33 - GFRP Tapered Plate Dowel Specimen: Differential Joint Deflection vs Load 

 

Figure 6-34 - GFRP Tapered Plate Dowel Specimen: Joint Crack Comparison 

The initial crack formed during pre-cracking extended fairly directly from the saw cut to the slab 

bottom. The crack did not increase significantly until the wheel load level (87.5kN) was reached, 

where the width was approximately 4 mm. After failure, there appeared to be some crushing of 

the concrete occurring at the joint due to the angular crack that formed during the test. Major 
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stepping was observed at the joint when failure occurred. The stepping was sudden, suggesting a 

shear failure of the device at failure of the joint.  

 

 

Figure 6-35 - Experimental GFRP Tapered plate Dowel Concrete Joint Faces 

The failed specimen condition after testing is shown in Figure 6-35. Cracking extending from the 

top of the GFRP tapered plate dowel is consistent with the PEEQT in the concrete predicted 

using the finite element model. The GFRP Tapered plate dowel has also failed at the joint 
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location with a shear failure. This is not an ideal failure mode, as the stepping at the joint occurs 

quickly after the shear failure of the device occurs. 

6.11 Misaligned GFRP Tapered Plate Dowel Specimen Description and Results 

The misaligned GFRP Tapered plate is similar to the aligned case except the chair on one side of 

the joint was raised by 30 mm and on the other end the chair was lowered by 30 mm. Increasing 

the height of the chairs on one side and lowering on the other side places the middle of the dowel 

at the joint location at the mid-depth of the slab and investigates the behaviour of a vertical skew 

misalignment. Similar to the aligned GFRP Tapered plate dowel, an attachment between the 

chair and the GFRP Tapered plate was not provided. During placement of the concrete the chairs 

were manually stabilized and further investigation into the placement and this stability would be 

required in order to construct the devices in an actual pavement setting. A dowel bar inserter 

would also be possible alternative. Figure 6-36 presents the vertically skew misaligned Tapered 

plate dowels used in the experimental testing program.  

 

Figure 6-36 – Misaligned GFRP Tapered plate Dowels 

The specimen was subjected to the cyclic loading history (Section 6.3), and the specimen 

response is presented in terms of the average deflection at the joint and the load applied to the 

slab in Figure 6-37. The vertically misaligned Tapered plate dowel had less average deflection 
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occurring at the joint location compared to the aligned Tapered plate dowel. At the wheel load 

level (87.5kN) the average deflection at the joint location did not increase significantly as the 

load was cycled, and at the 5/4 wheel load level the average deflection at the joint increased as 

the load was cycled although the was less than that observed for the aligned tapered plate dowel. 

The misaligned tapered plate dowel specimen failed at a load greater than the aligned tapered 

plate dowel. The increased failure load may be due to the nature of the GFRP material, where 

misalignment of the GFRP plate skews the principal directions of the plate material and the 

tensile strength of the device is used to reinforce the shear transfer at the joint.  

 

 

Figure 6-37 – Experimental Misaligned GFRP Tapered plate Average Joint Deflection vs. Load 

Figure 6-38 presents the average differential deflection at the joint versus applied load for the 

vertically skew misaligned GFRP Tapered plate dowel specimen.  
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Figure 6-38 – Misaligned Tapered Plate Dowel Specimen: Differential Joint Deflection vs Load 

The differential deflection at the joint was less than 1 mm for load cycles up to and including the 

wheel load level (87.5kN). At the 5/4 wheel load level, the differential deflection on the first side 

was between 1 mm and  -1 mm. When the second side of the joint was loaded at the 5/4 wheel 

load level, the differential deflection at the joint increased to between 2.5 mm to 4 mm. The 

differential deflection at the joint increased with each load cycle. As the load was increased 

beyond the 5/4 wheel load level, the differential deflection at the joint quickly increased as 

failure occurred.  

Figure 6-39 presents the crack progression at the joint for misaligned GFRP tapered plate dowel 

specimens. The picture on the left in Figure 6-39 presents the crack at the start of the test, where 

a small hairline crack exists from the sawcut generally straight down to the bottom of the slab. 

After the quasi-static loading was applied up to the wheel load level, the crack opened to 

approximately 5 mm at the bottom of the slab (where visible), and was beginning to come in 

contact at the top of the joint (as shown in the middle picture in Figure 6-39). Failure with the 

vertically misaligned GFRP Tapered plate dowel was less sudden than with the aligned GFRP 
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Tapered plate dowel; however, it was noticed in the picture on the right in Figure 6-39 that when 

the device failed (in shear), major stepping occurred at the joint.  

 

Figure 6-39 – Misaligned GFRP Tapered Plate Specimen: Joint Crack Comparison 

Figure 6-40 presents the joint and device after the completion of the experimental testing. The 

bottom two pictures in Figure 6-40 show either side of the joint. The photograph in the bottom 

left of Figure 6-40 is the low end of the misaligned GFRP tapered plate dowels, and the photo in 

the bottom right is the raised end of the GFRP Tapered plate dowel. The devices appear to have 

failed in a shear at the joint. A shear failure is not an ideal failure as it provides little warning as 

all strength is lost after the failure occurs.  In the top left of Figure 6-40, cracking can be noticed 

on the smaller lower end of the GFRP tapered plate. This cracking was extending from the sides 

of the GFRP tapered plate dowel similar to the plastic straining predicted by the finite element 

model causing failure, as well as with the aligned GFRP tapered plate dowel. The top right hand 

photo in Figure 6-40 presents the smaller end of the raised side of the GFRP tapered plate dowel, 

when damage is observed above the plate. The device has clearly failed, and the laminations in 

the GFRP material can be noticed to have lost contact with one another.  
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Figure 6-40 – Misaligned GFRP Tapered Plate Dowel Specimen: Joint and Device Condition at 

Failure 

After investigating the effects of a vertically misaligned GFRP tapered plate dowel to quasi-

static reversed loading in an experimental testing setup, the misalignment does not show any 

signs of degrading the load transfer behaviour compared to an aligned GFRP tapered plate 

dowel. The misalignment of the GFRP tapered plate increased the maximum load in the 

experimental testing program in comparison to the aligned GFRP tapered plate.   

6.12 Summary of Experimental Testing  

An experimental testing procedure and setup was developed to evaluate the wheel loading 

applied to a slab specimen configuration based on the wheel path model with static increments of 

the wheel load applied to either side of the slab. The testing arrangement was capable of testing 

the devices to failure and investigating the deflection at the joint to allow comparison of the 

behaviour between devices.  

Based on the experimental testing program, the following conclusions were made:  
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 The conventional steel dowel bar failed at the highest load level and also maintained joint 

deflection better than the GFRP I-beam and GFRP tapered plate dowel as predicted by 

the wheel path finite element modeling completed.  

 The GFRP I-beam supported a higher maximum load than the aligned GFRP tapered 

plate. Finite element modeling predicted failure with the GFRP I-beam at a lower load 

than the tapered plate dowel. The finite element modeling did not capture shear failures 

of the devices and the behaviour of the GFRP.  The material behaviour of the GFRP was 

also assumed to be isotropic which was not capable of modeling the shear behaviour of 

the devices at high stress levels.   

 The GFRP tapered plate failed at the lowest load because it has the lowest shear strength. 

 Misalignment of the GFRP tapered plate increased the maximum load transferred at the 

slab compared to the aligned GFRP tapered plate and had a higher maximum load 

capacity than the GFRP I-beam. The misalignment of the device also misaligns the 

orientation of the main fibres in the plate which are strong in tension but weak in shear. 

The alignment of the fibres increases the strength of the main shear plane.  

 The differential deflection at the joint is lower with the GFRP tapered plate at the wheel 

load level in the experimental testing compared to the misaligned GFRP tapered plate and 

GFRP I-beam. The finite element modeling also predicted similar behaviour suggesting 

that at higher load levels the finite element model does not capture the behaviour of the 

devices adequately.  

 The GFRP I-beam allowed the highest differential deflection to occur. Finite element 

modeling also predicted the differential deflection at the joint to be the largest for the 

GFRP I-beam.    

 The failure at the joint with conventional dowels allows warning and major stepping did 

not occur at the joint when the device failed.  

 The aligned GFRP tapered plate dowel failed in shear suddenly and major stepping 

occurred.   

 Misalignment of the GFRP tapered plate dowel did not change the failure of the device 

and still experienced a sudden shear failure with large stepping occurring.   
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 Failure in the GFRP I-beam gives some warning of failure and has post failure strength as 

the bottom portion of the GFRP I-beam is bearing on the Geo Foam layer below as a 

shear failure occurs between the top flange and web of the section.   

 Cracking failure occurred extending from the sides of the dowel bar similarly to the 

predicted locations of PEEQT that occurred in the finite element analysis.  

 Zones of cracking in the concrete extending from the top flange of the GFRP tapered 

plate section occurred similarly to the PEEQT that was predicted using the finite element 

model.  

 The GFRP I-beam had some very local cracking occurring near the top flange of the 

device; however, it appeared that the most of the failure was in the base layer and the 

device itself.  

 Based on the testing results and failure mechanisms observed, it would be important in 

device design to ensure that the shear failure of the devices does not occur. The sudden 

failure of the device in shear caused sudden stepping to occur at the slab. Slab support 

was poor at the joint which had an effect on the stepping that occurred; however, 

pumping at the joint could also cause poor support at the slab.  

 The damage locations observed in the experimental testing were similar to the locations 

predicted using the finite element analysis. 

 General predictions about behaviour of the joint in the experimental study is similar to 

the results predicted using finite element analysis. 

 Experimental testing captured the failure of the devices which was not captured in the 

finite element analysis. The material model used for the devices would need to be refined 

further to include nonlinear behaviour as well as anisotropic material properties to 

capture these effects but was not included in this study.  
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7.0 Service Load Finite Element Analysis 

7.1 Service Load Finite Element Analysis 

The alternative joint load transfer devices proposed in this research were categorized as discrete 

or continuous as described in Chapter 3.0.  The wheel load transfer behaviour of the discrete 

devices (steel dowel bars, GFRP I-beam, and GFRP plate dowels) up to failure of the device or 

concrete was investigated computationally and experimentally in Chapters 5.0 and 6.0, 

respectively.  The finite element analysis presented in this chapter examines the performance of 

the discrete devices and selected continuous devices (horizontal V device and horizontal pipe) 

under service load conditions consisting of the combined effects of concrete shrinkage, thermal 

loading and service wheel loading.  Details of the shrinkage, thermal and wheel loading were 

presented previously in Section 4.4.  The service loading history used in the finite element 

analysis is listed in Table 7-1. 

The loading history in Table 7-1 was determined based on the work completed by Levy (2010). 

Wheel load transfer of the slab at the two extremes for temperature gradient conditions was 

investigated under this sequence of loads. The wheel load was also applied to both sides of the 

slab since some of the devices are non-symmetric, and because the results from the wheel path 

analysis show that the reversed cyclic loading condition causes stress reversals and may affect 

the overall behaviour of the slab.  

This chapter begins by presenting the detailed model geometry including boundary conditions. 

Similar to the wheel path analysis, a detailed description of the results for each model will be 

presented separately, and then comparisons between the device behaviours will follow. The 

detailed descriptions of the results will focus on presenting the stress distributions through the 

thickness. Comparisons of the devices will be presented using graphs with the behaviour of each 

device presented through the loading history.   

In order to capture the effects of shrinkage and thermal gradients a quarter slab was chosen. To 

capture the behaviour of the devices three-dimensional thermal and shrinkage, straining needs to 

be investigated accounting for the full slab geometry. Applying restraint normal to the joint faces 
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on the quarter slab model captures the effects of the straining occurring in three dimensionally 

based on the full slab geometry using the smallest model.  

Table 7-1 - Service Loading History 

Load Type Description 

Gravity Gravity is applied to the entire model Section 4.4.1 

Shrinkage Strain Shrinkage applied to the concrete slabs 
Section 4.4.3 

(Figure 4-8) 

Three Day and Night 

Thermal Cycles 

Temperature day distribution applied to the slabs and devices 

Section 4.4.4 

(Figure 4-9) 

Temperature night distribution applied to the slabs and devices 

Temperature day distribution applied to the slabs and devices 

Temperature night distribution applied to the slabs and devices 

Temperature day distribution applied to the slabs and devices 

Temperature night distribution applied to the slabs and devices 

Thermal Day Profile 

(sustained) 
Temperature day distribution applied to the slabs and devices 

Section 4.4.4 

(Figure 4-9) 

Wheel Load 1 
87.5 kN wheel load and unload on one side of the joint in the 

wheel path 
Section 4.4.2 

Wheel Load 2 
87.5 kN wheel load and unload on the other side of the joint in 

the wheel path 

Thermal Night 

Profile (sustained) 
Temperature night distribution 

Section 4.4.4 

(Figure 4-9) 

Wheel Load 3 
87.5 kN wheel load and unload on one side of the joint in the 

wheel path 
Section 4.4.2 

Wheel Load 4 
87.5 kN wheel load and unload on the other side of the joint in 

the wheel path 

 

7.2 Quarter Slab model 

The quarter slab model consists of two quarter pavement slabs with a joint containing load 

transfer devices between them. The interior edges of the concrete slab are fixed from horizontal 
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displacement normal to the slab face to create a symmetric boundary condition.  Figure 7-1 

presents the location of the quarter slab model relative to the overall slab in plan view.  

 

Figure 7-1 – Quarter Slab Model Section of Pavement (Plan View) 

7.2.1 Quarter Slab Model Objectives 

The objectives of the quarter slab model are: 

 To create a model that is efficient computationally to apply shrinkage and temperature 

cycles to the slab for the different devices 

 To create a model to understand the stress distributions in the concrete due to thermal and 

shrinkage strains.  

 To understand how the device alternatives function under environmental loading and slab 

shrinkage strains 

7.2.2 Quarter Slab Model Geometry 

The quarter slab model geometry was aimed at being as small as possible while capturing the 

effects of the entire slab geometry. For the thermal and shrinkage strain gradients occurring in 

both longitudinal directions a quarter slab was chosen with movement restrained perpendicular to 

the faces on the two interior concrete edges simulating a symmetric boundary for the thermal and 
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shrinkage strains. Figure 7-2 presents the geometry of the quarter slab model used for the finite 

element service load analysis. The wheel path is centered 900 mm from the middle of the slab. 

Although the wheel load footprint is only presented on one side of the joint the wheel load was 

applied to the both side of the joint mirrored across the joint. Similarly the boundary conditions 

presented in Figure 7-2 are also mirrored across the joint on the other side of the slab as well.   

 

Figure 7-2 – Finite Element Analysis Quarter Slab Model Geometry (mm) 

7.3 Dowel Bar Model Service Load Finite Element Results 

A model with dowel bars spaced at 300 mm was created and served as the control model for the 

service load analysis. A detailed investigation of the behaviour of the dowel bar model subjected 

to the service loading history shown in Table 7-1 is presented herein.  

Figure 7-3 presents the deflection of the concrete at the top of the slab on either side of the joint 

for the dowel bar model with service loading applied. As the gravity loading was applied, the top 

of the slab on either side of the joint deflected evenly and together. The shrinkage straining 

caused the edges of the slab at the free end to deflect upward 2 mm as the slab curled. The 

daytime thermal gradient application reduces the upward curling compared to shrinkage; 

however, still an overall upward curling of the slab at the joint edges of 0.8 mm occurs. 

Nighttime thermal gradients increase the upward curling occurring at the edges of the joint to 2.9 

mm.  
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Figure 7-3 – Dowel Bar Model Top of Slab Deflection History 

During each strain application the two edges at the joint maintained consistent deflection with 

negligible differential deflection. As the load was applied to both sides of the joint with the 

daytime thermal gradient applied, the deflection at the slab edge was below the initial starting 

point at approximately an average deflection of -0.06 mm. The differential deflection at the joint 

was 0.125 mm. There did not appear to be any progression of further deflection occurring in the 

dowel bar model with service loading applied based on the thermal cycles and wheel load 

application applied as presented in Figure 7-3. 

Figure 7-4 presents the Von Mises stress distribution in the dowel after the shrinkage loading 

was applied to the slab. The distribution of the Von Mises stress shows the dowel bar bending 

upwards as the dowel is resisting the free edge of the slab from curling due to the shrinkage 

gradient. This upward curling of the slab is expected during shrinkage straining. The maximum 

stress in the top of the dowel bar is approximately 17.5 MPa. 
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Figure 7-4 – Dowel Bar Von Mises Stress Distribution after Shrinkage (MPa) 

The vertical stress distribution in the concrete at the joint around a dowel (with the dowel bar 

removed from the figure) is presented in Figure 7-5. The vertical stress in the concrete created 

tensile stress zones at the middle of the dowel on either side of the joint. This tensile stress 

concentration at the edge of the dowel occurred because the dowel does not curl. The 

straightness of the dowel bar relative to the curled slab caused a bearing force at the dowel 

concrete interface as the curling was restrained. The bearing of the dowel on the concrete pries 

the top and bottom of the slab apart at the sides of the dowels that caused tensile stress 

concentrations in this location. Maximum tensile stress at the dowel after shrinkage application 

was 2.48 MPa which is between the minimum and mean tensile strength for 30MPa concrete 

according to the CEB-FIP Manual (see Table 2-3). Compressive zones exist below the dowel in 

the concrete where the device was bearing on the concrete. The maximum compressive vertical 

stress at the dowel joint interface is 2.18 MPa.  Stress in the base and subbase layers were very 

small during shrinkage step when no wheel load had been applied. After the shrinkage step was 

applied, the thermal daytime gradient was applied. The Von Mises stress distribution in the 

dowel switched to a concentration in the bottom of the dowel that is increased to 20.4 MPa. The 

distribution of Von Mises stress in the dowel after the daytime thermal gradient was not shown 

as it was very similar to Figure 7-4 but with the stress concentration flipped.  
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Figure 7-5 – Concrete Vertical Stress Distribution after Shrinkage (MPa) 

The vertical stress distribution after the daytime thermal gradient was applied in the concrete is 

presented in Figure 7-6. A tensile vertical stress distribution exists in the concrete at the middle 

of the dowel at the joint location where the dowel is resisting the curling of the slab. Although a 

portion of these stresses will be due to differential expansion of the steel and concrete, the main 

portion was assumed to be due to the restraint of curling caused by the dowel. The maximum 

vertical tensile stress in the concrete was 2.85 MPa after the daytime thermal gradient was 

applied, which is nearing the mean tensile strength of 30 MPa concrete according to the CEB FIP 

Manual of 2.91 MPa. A small concentration of vertical compressive stress in the concrete can be 

noticed beneath the dowel similar to after the shrinkage step.  The compressive stress along the 

length of the dowel increased as the thermal daytime gradient was applied as well.  

 

 

Figure 7-6 - Concrete Vertical Stress Distribution after Daytime Thermal Gradient (MPa) 
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After applying a daytime thermal gradient, the thermal gradient was switched to a nighttime 

thermal gradient. The Von Mises stress in the dowel reversed and the Von Mises Stress was 

greatest at the top of the dowel bar (similar to after the shrinkage step) at the joint location. The 

maximum Von Mises stress in the dowel after the application of the nighttime thermal gradient 

was 23.1 MPa.  

Figure 7-7 presents the vertical stress distribution in the concrete after the nighttime thermal 

gradient was applied to the slab. Tensile stress concentration in the concrete at the middle of the 

dowel at the joint location still exists and the maximum vertical tensile stress was 2.91 MPa after 

the application of the nighttime thermal gradient. The tensile stress in the concrete has reached 

the mean tensile strength of concrete according to the CEB-FIP Model code. The maximum 

vertical compressive stress concentration below the dowel is 3 MPa which is well below 

allowable compressive stress limits for concrete. The thermal gradients were then re-applied to 

the model, and the results were similar to the first application of the thermal gradients. The 

daytime thermal gradient was then applied to the slab for a fourth time and the wheel load was 

applied to the slab. 

 

Figure 7-7 - Concrete Vertical Stress Distribution after Nighttime Thermal Gradient (MPa) 

Figure 7-8 presents the Von Mises stress distribution through a section of the dowel after the first 

wheel load is applied to the slab along with with a daytime thermal gradient. The maximum Von 

Mises stress in the dowel after the wheel load application during a daytime thermal gradient is 

22.9 MPa which is much less than the 92.3 MPa predicted using the wheel path model without 

shrinkage and thermal gradients applied. The upward curling occurring due to thermal and 
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shrinkage strains is in the opposite direction to wheel loading and hence the reduced Von Mises 

stress in the dowel when wheel loading with thermal and shrinkage straining applied to the slab 

would be expected to be lowered. Von Mises stress concentrations in the dowel are located at the 

top side of the of the loaded side of the dowel and across through the joint to the bottom of the 

dowel on the unloaded side of the slab. The distribution of stresses appears to be similar to when 

wheel loading is applied alone.  

 

Figure 7-8 – Dowel Bar Von Mises Stress Distribution after Wheel Load Application 1 (MPa) 

Vertical stress in the concrete after the wheel load application on the first side of the joint with a 

daytime thermal gradient applied to the model is presented in Figure 7-9. The maximum tensile 

vertical concrete stress at the joint interface was 2.81 MPa which is less than after the nighttime 

thermal gradient and is approaching the mean tensile failure strength of 2.91MPa. The zone of 

high tensile stress at the joint has increased with the application of the wheel load. Both the 

thermal gradient and wheel load cause high concentrations of tensile vertical stress in the 

concrete which causes an overall increase in maximum tensile stress in the cocnrete at the sides 

of the dowels. Compressive concentrations of stress above the dowel on the loaded side of the 

slab and below the dowel on the unloaded side of the slab exist. The maximum vertical 

compressive stress is 9.66 MPa above the dowel. A tensile zone exists above the dowel on the 

unloaded side and below the dowel on the loaded side of the slab as well as beyond the dowel 

extending from the end of the dowel.  
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Figure 7-9 - Concrete Vertical Stress Distribution after Wheel Load Application 1 (MPa) 

The vertical stress distribution in the base layers after the first wheel application is presented in 

Figure 7-10. The maximum stress at the joint interface was 127 kPa. The load was distributed 

through the slab to the other side beyond the device length where some additional stress 

concentration occurred. Maximum stresses under the unloaded side of the slab are lower than the 

loaded side in the base layers beneath the slab.   

 

Figure 7-10 – Base Layer Vertical Stress Distribution after Wheel Load Application 1 (kPa) 

After the second application of the wheel load to the slab (on the other side of the joint) the 

results presented for the first wheel application were reversed as would be expected. The results 

were generally the same and are not presented in detail herein. The third and fourth applications 

of the wheel load were applied on either side of the joint along with a nighttime thermal gradient 

applied to the slab. The third application of the wheel load had similar results to the fourth with 

concentrations from the wheel load transfer reversed, and only the fourth wheel load application 
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is presented.  Figure 7-11 presents the Von Mises stress distribution in the dowel bar after the 

application of the fourth wheel load.  

 

Figure 7-11 – Dowel Bar Von Mises Stress Distribution after Wheel Load Application 4 (MPa) 

The maximum Von Mises stresses occur across the joint with other concentrations extending 

from the top of the loaded side of the slab to the bottom of the dowel on the unloaded side of the 

joint. The maximum Von Mises stress in the dowel was 25.78MPa which is again lower than 

with the wheel path model but upward curling due to thermal gradients exists and the wheel 

loading is generally in the opposite direction. The maximum Von Mises stress is increased when 

compared to the daytime gradient which may be partially due to the increased upward curling 

that causes the slab to be out of contact with base and load transferred through to the base layer 

is reduced increasing the load transferred through the dowel.    

The vertical stress distribution in the concrete in a section through the dowel bar after the fourth 

application of the wheel load is presented in Figure 7-12. Vertical tensile stress concentrations 

exist at the joint location on both sides of the joint at mid dowel height. The maximum vertical 

tensile stress at this location is 2.8 MPa which is nearing the mean tensile strength of concrete 

and has exceeded the minimum tensile strength of concrete. Compressive vertical stresses at the 

top of the dowel on the loaded side and the bottom of the unloaded side exist in the concrete as 

well. The maximum compressive stress above the device on the loaded side is 13.1 MPa. Little 

tensile stress exists at the back of the dowels on the fourth wheel load application as the slab is 

curling upward and from thermal and shrinkage gradients while the wheel load is pushing the 

slab down.  
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Figure 7-12 - Concrete Vertical Stress Distribution after Wheel Load Application 4 (MPa) 

The vertical stress distribution in the base layers is presented in Figure 7-13. The maximum 

compressive stresses occur away from the wheel load as the slab was curled upward from the 

application of the nighttime thermal gradient. The maximum vertical stress in the base layer was 

reduced to 72 kPa during the nighttime.  

 

Figure 7-13 - Base Layer Vertical Stress Distribution after Wheel Load Application 4 (kPa) 

After the fourth application of the wheel load, the plastic straining in the concrete slab was 

investigated to determine the current state of the concrete. Figure 7-14 presents the plastic tensile 

straining in a section through the dowel after the fourth wheel load application. Minor tensile 

plastic straining existed in the top of the slab in line with the dowels which is captured in Figure 

7-14 at the top of corners of the slab section presented. Concentrations of the plastic tensile 

strains exist extending from the mid height of the dowel on either side of the slab. Compressive 

plastic straining has occurred on either side of the dowel below the device in the concrete as well 

(not shown as only local areas similar to wheel loading presented previously).  
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Figure 7-14 – Concrete Plastic Equivalent Strain (PEEQT) Distribution after Wheel  

Application 4  

Generally dowel bars are intended to transfer the load and maintain the deflection of either side 

of the slab under service loading. Shrinkage and thermal gradients on the slab with the geometry 

used is nearing concrete tensile cracking strength at the sides of the dowel bars causing some 

local damage to occur at device locations where high stress concentrations exist. Wheel loading 

increases the stress concentrations at the dowel compared to only thermal gradients and 

shrinkage loads being applied to the slab. Under shrinkage and thermal strain applications the 

plastic regions of the concrete are localized to the joint and excessive damage did not appear to 

occur. The service analysis shows that the thermal and shrinkage strains change the distribution 

of stresses in all of the device, concrete and base support layers below compared to wheel 

loading only being applied but similar stress distributions still exist.   

7.4 GFRP Tapered Plate Service Load Finite Element Results 

An aligned GFRP tapered plate dowel with the dimensions described in Section 3.2.2 was input 

in the quarter slab model. Five GFRP plate dowels were spaced at 300 mm, and the wide end of 

the tapered plate was alternated from device to device in the model. A detailed investigation of 

the stress distribution in the GFRP Tapered plate model under service loading is presented in this 

section.  

The deflection profile for the top of the slab at either side of the joint for GFRP tapered plate 

quarter slab model is presented in Figure 7-15 for the service loading history described in Table 
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7-1.  Figure 7-15 shows that the GFRP tapered plate dowel behaves similarly to steel dowels 

with the deflection on either side being essentially equal. The top of the slab after shrinkage 

gradient, thermal daytime and thermal nighttime temperature gradients was curled upwards 

approximately 1.5 , 0.6 , and 2.6 mm respectively. After the application of the first and second 

wheel load, the differential deflection of the two slabs was approximately 0.125 mm. There does 

not appear to be any degradation of the load transfer behaviour at the joint throughout the service 

loading application in Figure 7-15. As the wheel load was applied on the approach side of the 

slab with the nighttime temperature gradient the model failed to converge.    

 

Figure 7-15 – GFRP Tapered Plate Dowel Model: Top of Slab Deflection History   

Figure 7-16 presents the distribution of Von Mises stress in the GFRP tapered plate dowel after 

the shrinkage step was applied.  The maximum Von Mises stress in the GFRP tapered plate of 

9.9MPa occurs at the joint location. This stress is low compared to the GFRP failure strength in 

tension along the length of the device of 205 MPa; however, it is assumed that stress 

concentrations in the GFRP tapered plate dowel may be underestimated due to the mesh 
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refinement across the depth of the tapered plate. The distribution of stress in the GFRP tapered 

plate was very similar to the steel dowel (presented previously) after the shrinkage strain was 

applied to the slab.  

 

Figure 7-16 – GFRP Plate Dowel Von Mises Stress Distribution after Shrinkage (MPa) 

Figure 7-17 presents the distribution of vertical stress in the concrete for the GFRP tapered plate 

dowel model after the shrinkage strain is applied to the slabs. Vertical tensile stress 

concentrations existed in the concrete at the middle of the device height on either side of the joint 

in the GFRP tapered plate model similar to the steel dowel model. The maximum vertical tensile 

stress in the concrete was 2.27 MPa which is greater than the minimum cracking strength of 30 

MPa concrete but less than the mean cracking strength. Small concentrations of compressive 

vertical stress also exist beneath the GFRP tapered plate at the joint after the shrinkage strain is 

applied.  

 

Figure 7-17 – Concrete Vertical Stress Distribution after Shrinkage (MPa) 
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Figure 7-18 presents the Von Mises stress distribution in the GFRP tapered plate dowel after a 

daytime thermal gradient was applied to the slab. The thermal daytime thermal gradient caused a 

concentration in maximum Von Mises stress at the bottom of the device at the middle of the 

joint, as can be seen in Figure 7-18. The maximum Von Mises stress in the GFRP tapered plate 

after the application of the first thermal daytime thermal gradient was 14.4 MPa, much below 

GFRP failure strengths. The distribution was similar to the steel dowel after the thermal daytime 

gradient was applied except that the distribution at the joint appears to be off center with the  

concentration occurring towards the smaller end of the tapered plate.  

 

Figure 7-18 – GFRP Plate Dowel Von Mises Stress Distribution after Daytime Thermal Gradient 

(MPa) 

Figure 7-19 presents the vertical stress distribution in the concrete around the device after the 

daytime thermal gradient is applied to the slab. The maximum compressive stresses in the 

concrete were low as the thermal straining occurs. A concentration of tensile stress existed in the 

concrete at the middle of the GFRP tapered plate location at the interface. A large concentration 

of vertical stress occurred beyond the end of the larger side of the GFRP tapered plate. The 

maximum vertical tensile stress in the concrete after the daytime thermal gradient was applied 

occurred at the joint location on the smaller end of the GFRP tapered plate side The maximum 

stress at this location was between the minimum and mean cracking strengths for 30 MPa 

concrete at 2.56 MPa.  



210 

 

 

Figure 7-19 - Concrete Vertical Stress Distribution after Daytime Thermal Gradient (MPa) 

Figure 7-20 presents the Von Mises stress distribution in the GFRP tapered plate device after the 

nighttime thermal gradient was applied to the model. The maximum Von Mises stress in the 

GFRP tapered plate was 14.1 MP, and occurred at the top of the GFRP tapered plate after the 

nighttime thermal gradient was applied to the slab. The distribution of the Von Mises stress in 

the GFRP tapered plate dowel was very similar to the distribution with the steel dowel as well.  

 

Figure 7-20 – GFRP Plate Dowel Von Mises Stress Distribution after Nighttime Thermal 

Gradient (MPa) 

The vertical stress distribution in the concrete for the GFRP tapered plate model is presented in 

Figure 7-21 after the application of the nighttime thermal gradient. The maximum vertical 

stresses in the concrete occur at the middle of the GFRP tapered plate at the joint location. The 

maximum tensile vertical stress in the concrete at the joint location was 2.5 MPa, again between 

the mean and minimum concrete cracking strengths. A small concentration of compressive 

vertical stress occurs below the GFRP tapered plate at the device. Compressive vertical stress 

concentrations occurred above the device where the device was bearing on the concrete.  
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Figure 7-21 - Concrete Vertical Stress Distribution after Nighttime Thermal Gradient (MPa) 

The Von Mises stress distribution in the GFRP Tapered plate is presented in Figure 7-22. The 

maximum Von Mises stress distribution in the GFRP tapered plate was similar to the steel dowel 

after the first wheel load application with the concentrations occurring on the top of the device 

on the loaded side and the bottom of the device on the unloaded side. The maximum Von Mises 

Stress in the devices is 34.6 MPa.   

 

Figure 7-22 – GFRP Plate Dowel Von Mises Stress Distribution after Wheel Load Application 1 

(MPa) 

Vertical stress distribution in the concrete after the application of the first wheel load is presented 

in Figure 7-23. The maximum vertical stress in the concrete in tension occurred at the middle of 

the device height at the joint location. The vertical compressive stress in the concrete occurred 

beneath the applied load and in sections along the length of the GFRP tapered plate on the 

unloaded side of the dowel. The compressive stress concentration on the unloaded side of the 

slab below the GFRP plate dowel shows the load transfer. The behaviour of the GFRP tapered 

plate is similar to the dowel bar for load transfer.  
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Figure 7-23 - Concrete Vertical Stress Distribution after Wheel Load Application 1 (MPa) 

Figure 7-24 presents the vertical stress distribution in the base layer after the first wheel load 

application for the GFRP Tapered plate model. The maximum stress in the base layer is 

approximately 150 kPa along the edge of the loaded side of the slab where the load slab edge 

penetrates the most into the base layer.   

 

Figure 7-24 – Base Layer Vertical Stress Distribution after Wheel Load Application 1 (kPa) 

Since the GFRP tapered plate dowel is not symmetric about the plane of the joint, the reversed 

wheel loading where the load was applied to the opposite side of the joint was also investigated.  

Figure 7-25 presents the distribution of Von Mises stresses in the GFRP tapered plate dowel after 

the application of the second wheel load. The distribution of the stress was similar to the first 

side of the slab being loaded as the maximum Von Mises stress were concentrated near the joint 

at the top of the GFRP tapered plate on the loaded side of the joint and at the bottom on the 

unloaded side of the joint. The maximum Von Mises stress in the GFRP tapered plate with 

reversed loading applied was 32.71 MPa, which is still well below the tensile strength along the 

length of the device of 205 MPa. The maximum stress in the GFRP tapered plate when the load 
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was applied to the narrower end of the device was reduced slightly from when the load was 

applied to the wider side of the GFRP tapered plate. The increased bearing area on the loaded 

side of the slab with the wider portion of the tapered plate is assumed to attract more load 

transfer causing the increase in the device stresses.   

 

Figure 7-25 – GFRP Plate Dowel Von Mises Stress Distribution after Wheel Load Application 2 

(MPa) 

The vertical stress distribution in the concrete around the GFRP Tapered plate after the second 

wheel application is presented in Figure 7-26.  As the load was applied to the other side of the 

slab along with a daytime thermal gradient, tensile vertical stress zones occur in the concrete at 

mid height of the GFRP tapered plate. The maximum tensile stress was greater than the mean 

cracking strength for 30 MPa concrete in this zone at 2.99 MPa. Compressive stress maximums 

of approximately 6 MPa occurred near the joint above the GFRP tapered plate on the loaded side 

and below the device on the unloaded side. A second concentration of vertical stress also 

occurred beneath wheel load being applied and along the length of the GFRP tapered plate where 

load transfer was occurring. When the load was applied to the second side of the joint, the area 

with high vertical tensile stress near the joint was reduced from the first side of the joint 

presented in Figure 7-23. The larger bearing area of the dowel on the loaded side during the first 

wheel load application was assumed to attract more load that caused the increased stress in the 

surrounding concrete.  
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Figure 7-26 - Concrete Vertical Stress Distribution after Wheel Load Application 2 (MPa) 

The third wheel load application was applied with a nighttime thermal gradient that in 

combination with shrinkage straining caused the slab to curl upward at the joint and the as the 

wheel load was applied the slab was pushed back down. The distribution of the Von Mises 

Stresses in the GFRP Tapered plate dowel is presented in Figure 7-27.  The model failed to 

converge during the application of the load at a load of approximately 50 kN and results are 

presented for the device when the model failed to converge. 

 

Figure 7-27 – GFRP Plate Dowel Von Mises Stress Distribution at 50 kN during Wheel Load 

Application 3 (MPa) 

As the nighttime thermal gradient was applied to the slab, the bending of the slab was upward 

and opposite to that produced by the wheel loading. The maximum Von Mises stress in the 

GFRP tapered plate dowel was lower than the previous wheel load applications with a maximum 

of 23.1 MPa. The stress in the GFRP tapered plate dowel is still well below the maximum tensile 

strength of the device.  

The vertical stress distribution in the concrete around the device as the third wheel load was 

applied to the slab is presented in Figure 7-28. The vertical compressive stress on the loaded side 

of the slab at the top of the dowel shows that a smaller concentration of stress existed after the 
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third wheel application compared to the second and first which is assumed to be due to the lower 

load level when the model failed to converge. The maximum compressive vertical stress in the 

concrete after the third application of load is 6.5 MPa. The distribution of tensile stress for the 

third application is similar to that observed for the second application; however, the concentrated 

tensile stress at the GFRP tapered plate joint interface was reduced due to the reduced load when 

the model failed to converge. The maximum tensile and compressive stresses in the concrete do 

not suggest that the slab should be failing at this load level as the stresses are reduced compared 

to previous load applications when the model failed to converge at 50 kN wheel loading.   

 

Figure 7-28 - Concrete Vertical Stress Distribution at 50 kN durin Wheel Load Application 3 

(MPa) 

The GFRP tapered plate section appears to transfer load and behave similarly to conventional 

steel dowels. As the service loads are applied to the slab, there does not appear to be a benefit to 

the tapered shape of the device as the device still causes stress concentrations to occur in the 

concrete near the device during thermal and shrinkage gradient applications. The curling in the 

slab still causes the device to bend and cause stress concentrations around the device. Although 

the device is able to come out of one side of the pocket, the opposite side is locked and additional 

bearing forces exist here where the device is restrained. The results indicate the device is capable 

of behaving similarly to steel dowels. Based on the results it appears a thicker plate section 

would produce behaviour more similar to the 32 mm steel dowels.  

7.5 GFRP I-beam Service Load Finite Element Results 

A quarter slab model with three and a half GFRP I-beams spaced at 450 mm was analyzed with 

the service loading sequence described in Table 7-1, except the model failed to converge at 

approximately 74 kN wheel load during the third load application. Similar to the tapered plate 
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dowel and the conventional steel dowel, a detailed investigation of the stresses in the device and 

concrete around the device at each strain/load increment is presented in this Section.   

Figure 7-29 presents the top of slab deflection for either side of the joint for the GFRP I-beam 

quarter-slab model subjected to the service loading history shown in Table 7-1.  

 

Figure 7-29 – GFRP I-beam Model: Top of Slab Service Joint Deflection History 

The deflection of the GFRP I-beam model on either side of the joint is very similar to the 

conventional steel dowels and the GFRP plate dowels. The maximum curling deflection at the 

top of the slab was approximately 1.6 mm after the application of shrinkage. After the thermal 

daytime temperature gradient was applied the deflection at the top of the slab was reduced to 0.5 

mm of upward curling. The upward curling then increased to 2.5 mm after the application of the 

thermal nighttime gradient. After the wheel loads were applied along with the daytime gradient, 

the differential deflection is approximately 0.12 mm. There was not any noticeable degradation 

in the joint behaviour over the service loading history.  



217 

 

The distribution of Von Mises stress in the GFRP I-beam after the application of the shrinkage 

straining is presented in Figure 7-30. The maximum Von Mises stress in the top and bottom 

flanges of the GFRP I-beam after the shrinkage strains were applied was approximately 15 MPa 

which is much below the failure strength in tension along the length of the device of 205 MPa. 

The highest Von Mises stress concentration was centered on the joint in the top and bottom half 

of the device. There was larger concenetration of stress in the top portion of the GFRP I-beam as 

noticed in Figure 7-30. It is assumed that the additional stressing in the top portion of the GFRP 

I-beam is due to the slab restraining both faces of the top flange of the beam as the slab curls due 

to shrinkage, where the bottom flange is only restrained at the top where the concrete lifts away 

from the device.  

 

Figure 7-30 – Device Von Mises after Shrinkage Application (MPa) 

Figure 7-31 presents the distribution of vertical stress in the concrete after the application of 

shrinkage strains. A long narrow band of tensile vertical strains existed in the concrete along the 

opening of the top flange of the GFRP I-beam. Restraint to shrinkage in the GFRP I-beam is only 

provided at the top flange as the concrete is able to curl away from the bottom flange. As the 

concrete tries to curl upward the GFRP I-beam top flange bears on the concrete to restrain the 

curling at the joint location causing high tensile stress concentrations at the sides of the top 

flange. As previously noticed in the load transfer study, the top flange of the GFRP I-beam 

behaved similarly to a conventional dowel bar and the concentration of tensile vertical stress in 

the concrete suggests that as shrinkage is applied the top flange acts similar to a conventional 

dowel. The maximum tensile stress is 3 MPa which is higher than for conventional steel dowels 

and GFRP plate dowels for the shrinkage step and is greater than the mean tensile strength of 30 

MPa concrete. Compressive vertical stress concentrations exist on both sides of the joint below 

the top flange with a maximum compressive vertical stress after shrinkage of 8.8 MPa.  
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Figure 7-31 – Concrete Vertical Stress Distribution after Shrinkage Application (MPa) 

Figure 7-32 presents the Von Mises stress distribution in the GFRP I-beam after the daytime 

thermal gradient is applied to the model. The maximum Von Mises stress occurs in the bottom 

flange at the joint location. The increased stress in the bottom of the GFRP I-beam occurred 

because the daytime thermal gradient causes downward curling. The location of the device 

relative to the middle of the slab is assumed to increase the daytime thermal gradient behaviour 

in the device. The Von Mises stress distributed away from the highest stress gradually. The 

distribution of the Von Mises stress in the GFRP I-beam after the nighttime thermal gradient was 

not presented here as the distribution was similar to that observed after shrinkage, with the 

maximum Von Mises stress increased to 29.1 MPa after the nighttime thermal gradient was 

applied.   

 

Figure 7-32 – GFRP I-beam Von Mises Stress Distribution after Daytime Thermal Gradient 

(MPa) 

The vertical stress distribution in the concrete around the GFRP I-beam after the daytime thermal 

gradient is applied to the model is presented in Figure 7-33. As the daytime thermal gradient was 
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applied, the maximum vertical stress concentration at the middle of the top flange at the joint 

location was reduced in size and the maximum vertical stress in the concrete decreased to 

2.6MPa compared to the shrinkage step. The thermal gradient causes curling in the opposite 

direction to shrinkage with a similar deflection, hence, the stress concentrations are in the same 

location but reduced. A small amount of vertical tensile stress occurs between the flanges of the 

GFRP I-beam near the ends of the section. Compressive stress concentrations occur below the 

top flange at the joint with a maximum of 3 MPa.  

 

Figure 7-33 – Concrete Vertical Stress Distribution after Daytime Thermal Gradient (MPa) 

The distribution of vertical stress in the concrete around the GFRP I-beam after the application 

of the nighttime thermal gradient is presented in Figure 7-34. Tensile vertical stresses were 

concentrated at the top flange near the joint location with maximum tensile stresses of 3 MPa 

which is greater than the mean cracking strength of 30 MPa concrete. Vertical compressive stress 

concentrations exist in the concrete below the top flange of the device.   

 

Figure 7-34  - Concrete Vertical Stress Distribution after Nighttime Thermal Gradient (MPa) 
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Figure 7-35 presents the Von Mises stress distribution in the GFRP I-beam after the first 

application of the wheel load in the service load history (Table 7-1). A concentration of Von 

Mises stress in the GFRP I-beam occurred at the joint location in the web of the GFRP I-beam. 

Also, higher Von Mises stress occurred on the top of the GFRP I-beam on the loaded side of the 

slab and bottom of the unloaded side of the slab. The maximum Von Mises stress in web at the 

joint location was 35.6MPa which is much lower than the tensile strength of the device along the 

length of the device but is beyond the shear failure strength of 31 MPa.  

 

Figure 7-35 – GFRP I-beam Von Mises Stress Distribution after Wheel Load Application 1 

(MPa) 

The vertical stress distribution in the concrete after the first wheel application is presented in 

Figure 7-36. As expected from the wheel load transfer analysis, the top flange behaved similarly 

to the conventional steel dowel with concentrations of vertical compressive stress above the top 

flange on the loaded side of the device and below the top flange on the unloaded side of the joint. 

A third concentration of vertical compressive stress also was present on loaded side of the joint 

above the bottom flange. On the loaded side of the slab, wheel load directly bears on the bottom 

flange causing this stress concentration and a concentration of stress in the base layer is expected 

as well.  

 

Figure 7-36 - Concrete Vertical Stress Distribution after Wheel Load Application 1 (MPa) 
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Figure 7-37 presents the distribution of vertical stress in the base layers after the first application 

of the wheel load in the GFRP I-beam model. The GFRP I-beam increased the stress locally 

where the bottom flange of the GFRP I-beam is in contact with base layer. There was also a 

concentration of stress along the slab edge consistent with that observed for both the GFRP 

tapered plate and conventional dowels. The maximum vertical stress in the base layer was 214 

kPa, which was increased from the conventional dowel bar model. The bottom flange of the 

GFRP I-beam in direct contact with the base layer causes the increase in stress in the base layer 

because the base is providing support to the device directly instead of the concrete.   

 

Figure 7-37 – Base Layers Vertical Stress Distribution after Wheel Load Application 1 (kPa) 

The second wheel load application had similar stress distributions to those presented above with 

stress reversals due to the load being applied to the other side of the joint. The GFRP I model 

failed to converge during the third application of the wheel load. The plastic strain distribution in 

the concrete around the device before the model failed to converge is presented in Figure 7-38. 

Plastic compressive straining has occurred below the top flange of the GFRP I-beam as can be 

seen in Figure 7-38. Plastic tensile straining occurred at the edge of the GFRP I-beam flange. 

Plastic straining is limited with the GFRP I-beam to the areas immediately adjacent the joint. The 

local compressive plastic straining below the flange will cause a weakened support of the device 

and may cause minimal increased differential deflection due to the plastic straining that has 

occurred in the concrete bearing surface. Excessive compressive damage could cause a complete 

loss of support of the device below but it is expected that the tensile plastic strains at the edges of 

the top flanges will cause excessive cracking to occur which will result in the failure of the 

device. 
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Figure 7-38 – Plastic Straining in Concrete after Wheel Load Application 3 (MPa) 

Failure under service loading occurred for the GFRP I-beam due to excessive compressive and 

tensile plastic straining in the concrete. Although the GFRP I-beam was capable of transferring 

loads and maintaining the joint deflection, the size of the device used in the models does not 

appear to be adequate for wheel loading under service conditions. It could be possible to further 

reduce the spacing of the devices to 300 mm in order to reduce the maximum stress in the 

concrete at the top flanges and reduce concrete plastic straining. The flat thin top flange will still 

cause large stress concentrations at the edge of the devices adjacent the bearing surface even 

with a different spacing. Increasing the top flange or rounding the top flanges to reduce stress 

concentrations could be completed to reduce the plastic straining occurring in the concrete at this 

location.   

7.6 Horizontal V Service Load Finite Element Results 

The Horizontal V continuous load transfer device (see Section 3.3.1 for details) was analyzed in 

the quarter slab model with service loading history described in Table 7-1. A detailed 

investigation into the stress around the joint is presented in this section to determine the 

feasibility of implementing the Horizontal V device in pavement applications.  

The top of slab deflection on either side of the joint for the Horizontal V device model subjected 

to the service loading history is presented in Figure 7-39. The top of slab deflection during the 

shrinkage and thermal gradients varies slightly on either side of the joint for each load 

application. The average top of slab curling for shrinkage, daytime and nighttime strain gradients 

are 1.6, 0.125, and 2.25 mm respectively. During the simultaneous daytime thermal gradient and 
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wheel load application, the differential deflection at the joint is less than 0.06 mm; however 

under nighttime thermal gradient and wheel loading the differential deflection is greater than 0.5 

mm. The sliding of the slabs along the faces of the device allows shrinkage and thermal gradients 

to curl freely from the joint face and a gap forms at the joint. When the downward daytime 

thermal gradient is applied there is little or no gap at the device concrete interface allowing for a 

adequate load transfer to occur. During nighttime thermal gradient the upward curling and 

slipping at the joint concrete interface allows the slab and device to not be in contact and no load 

transfer occurs until the slab and device come in contact. There is also noticeable additional 

deflection on the nighttime wheel loading increments after the unloaded slab remains lower after 

the wheel application. The geometry of the device and slip surfaces at the joint are assumed to 

cause the differential deflection that is still present after the wheel loading is removed.  

 

Figure 7-39 – Horizontal V Top of Slab Deflection 

The Von Mises Stress distribution in the Horizontal V device after the application of the 

shrinkage strains is presented in Figure 7-40. The stress in the device was very low after 
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shrinkage straining was applied, with a maximum Von Mises stress of 0.69 MPa. This suggests 

that the device is not restraining the shrinkage from occurring. 

 

Figure 7-40 – Horizontal V Von Mises Stress Distribution after Shrinkage (MPa) 

Figure 7-41 presents the vertical stress in the concrete after the application of the shrinkage 

loading. The maximum vertical tensile stress concentration occurred at the top of the Horizontal 

V leg and concrete interface. This location would be expected as the slab tries to curl upward due 

to shrinkage straining the inside of the V shape bears on the device directly to the other side of 

the slab that cause the tensile splitting stress at the top of the V.   The maximum vertical tensile 

stress was 2.35 MPa, which is greater than the minimum tensile cracking strength of concrete of 

1.98 MPa. Tensile vertical stress in the concrete ranging from 0 to 0.6 MPa was present along 

both sides of the Horizontal V on either side of the slab. Compressive vertical stresses 

concentrations developed approximately 200 mm from the joint on either side of the joint beyond 

the device limits. The restraint of curling caused by the V shape causes the two compressive 

stresses on either side of the joint.  
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Figure 7-41 – Concrete Vertical Stress Distribution after Shrinkage (MPa) 

   

Figure 7-42 presents the Von Mises stress distribution in the Horizontal V device after the 

application of the thermal daytime gradient. The maximum Von Mises stress in the Horizontal V 

is 3 MPa. The daytime thermal gradient is causing the slabs to curl and the bottom Horizontal V 

leg has the highest stress concentration due to the curling occuring. The slab geometry on the 

right hand side of the device, shown in Figure 7-42, is assumed to cause the device to bend 

towards the right as the slab tries to curl upward and bears on the device.  

 

Figure 7-42 – Horizontal V Von Mises Stress Distribution after Daytime Thermal Gradient 

(MPa) 

Figure 7-43 presents the vertical stress distribution in the concrete at the Horizontal V joint with 

the daytime thermal gradient applied to the model.  Vertical compressive stress concentrations 
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occur inside the middle the V as well as below the bottom leg at the end of the bottom leg. 

Tensile vertical stress concentrations occur at the bottom of the V and at the top of the V above 

the V of the horizontal leg which can be seen in Figure 7-43. The maximum vertical tensile and 

compressive stresses in the concrete are 2.3MPa and 2.1 MPa respectively.  

 

Figure 7-43 - Concrete Vertical Stress Distribution after Daytime Thermal Gradient (MPa) 

The distribution of Von Mises Stress in the Horizontal V device  after the application of the 

nighttime thermal gradient is presented in Figure 7-44. The maximum Von Mises stress in the 

device was still relatively low at 2.4 MPa located near the bottom of the device. The nighttime 

thermal gradient caused the slabs to curl upwards, compressing the device at this location while 

the remainder of the device would be unloaded as the top portion of the joint opens and the 

concrete pulls away from the device and sawcut. 
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Figure 7-44 - Device Von Mises Stress Distribution after Nighttime Thermal Gradient (MPa) 

Figure 7-45 presents the distribution of vertical stress in the concrete around the device after the 

nighttime thermal gradient was applied to the slab. The general distribution was similar to the 

response presented in Figure 7-41 for shrinkage as the general upward curling action was similar. 

The maximum tensile vertical stress in the concrete was 2.15 MPa after the application of the 

nighttime thermal gradient, which is slightly greater than the minimum cracking strength for 30 

MPa concrete. 

 

Figure 7-45 - Concrete Vertical Stress Distribution after Nighttime Thermal Gradient (MPa) 

The Von Mises stress distribution in the Horizontal V device is presented after the first wheel 

load application in Figure 7-46. The maximum Von Mises stress in the Horizontal V device 



228 

 

remained low even after the first application of the wheel load with a maximum Von Mises stress 

of 3.79 MPa. The stress concentrated in the device around the corners of the device legs.   

 

Figure 7-46 – Horizontal V Von Mises Stress Distribution after Wheel Load Application 1 

(MPa) 

The vertical stress distribution in the concrete around the Horizontal V device after the first 

wheel load application is presented in Figure 7-47. Tensile vertical stress exists in the concrete at 

the bottom of the V on the opposite side of the load application. The maximum tensile stress is 

2.66 MPa at this location which is greater than the minimum cracking strength of 30 MPa and is 

approaching the mean cracking strength of 2.91 MPa. Maximum vertical compressive stress in 

the concrete is 2.47 MPa and is on the other side of the joint from the maximum tensile on the 

interior portion of the Horizontal V device.   

 

Figure 7-47 - Concrete Vertical Stress Distribution after Wheel Load Application 1 (MPa) 
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The distribution of the vertical stress in the base layers after the first wheel load application with 

the Horizontal V device is presented in Figure 7-48. The maximum vertical stress in the base 

layer was 186 kPa for the Horizontal V device after the first wheel load application, which is 

approximately 50% greater than that observed with conventional round steel dowel bars (Figure 

7-10). This suggests that the device is not transferring as much load as conventional steel dowels. 

The device is also bearing directly on the base material which lowers the spreading to the base 

material through the concrete at the joint that occurs with conventional steel dowels.  

 

Figure 7-48 – Base Layer Vertical Stress Distribution after Wheel Load Application 1 (kPa) 

Figure 7-49 presents the distribution of Von Mises Stress on the Horizontal V device after the 

second application of the wheel load. The maximum Von Mises stress in the Horizontal V device 

was 3.8 MPa. As expected, on the loaded side of the slab (on the right in Figure 7-49), the 

concrete above the top leg of the V bears on the device causing stress concentration in this leg of 

the device. The lower leg of the device does not have a bearing surface with the loaded side of 

the slab and hence little stress is concentrated in this flange during the wheel load application.  

 

Figure 7-49 – Horizontal V Von Mises Stress Distribution after Wheel Load Application 2 

(MPa) 
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Figure 7-50 presents the vertical stress distribution in the concrete after the second wheel load 

application was applied to the model. Vertical compressive stress concentration occurs under the 

applied wheel load and along the face of the joint. The Horizontal V surface causeed 

concentration of compressive vertical stress on the other side of the joint inside the middle of the 

V shape. The maximum tensile vertical stress in the concrete was 2.66 MPa and was 

concentrated on the unloaded side of the joint at the top of the top leg of the V shape as presented 

in Figure 7-50. The distribution of stress at either side of the point of the V shape was similar to 

when the load was applied to the other side of the slab; however, a tensile concentration occured 

at the top leg of the V on the unloaded side of the slab. There was also no clear compressive zone 

on the unloaded side of the joint beneath the bearing face of the V (see Figure 7-47). It appears 

that majority of the load transfer on the pointed side of the slab occurs directly at the point of the 

V shape, whereas on the indented side of the slab the transfer occurs across the top leg of the V 

shape.   

 

Figure 7-50 - Concrete Vertical Stress Distribution after Wheel Load Application 2 (MPa) 

The vertical stress distribution in the base layer after the second wheel load application for the 

Horizontal V device is presented in Figure 7-51. A similar distribution and maximum stress in 

the base layer occurs on after the second wheel load application as the first. The maximum stress 

in the base layer is 185.7 kPa after the second wheel load application. 
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Figure 7-51 - Base Layer Vertical Stress Distribution after Wheel Load Application 2 (kPa) 

Figure 7-52 presents the distribution of the Von Mises stress in the Horizontal V device after the 

third wheel load application along with the nighttime thermal gradient.   The maximum Von 

Mises stress in the Horizontal V device is 2.09 MPa at the bottom of the Horizontal V leg which 

is lower than predicted Von Mises maximums in the device for daytime thermal gradients and 

wheel loading. The rest of the Horizontal V device had very low Von Mises stress (less than .17 

MPa). The main portion of the device has a much lower stress distribution than when wheel 

loading was applied with daytime thermal gradients.  

 

 

Figure 7-52 – Horizontal V Von Mises Stress Distribution after Wheel Load Application (MPa) 

Figure 7-53 presents the vertical stress distribution in the concrete after the third wheel load 

application in the Horizontal V model. Compressive stress maximums of 1.02 MPa occurred on 

the unloaded side of the joint at the bottom leg of the Horizontal V concrete interface. This 

maximum vertical compressive, 1.02 MPa, is lower than when the load was applied to the same 

side of the joint with daytime thermal gradient, 2.47 MPa. Tensile vertical stresses in the 
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concrete developed on either side of the device during the third wheel load application. The 

maximum tensile vertical stress in the concrete was 2.09 MPa which is less than daytime thermal 

gradient applied simultaneously with the wheel load on the same side of the joint. Reduced 

maximum vertical concrete stresses in both tension and compression under wheel loading with 

the nighttime thermal gradient is expected as the slab edges curl away from the device and initial 

wheel loading counteracts this before contact is established at the bearing surface.   

 

Figure 7-53 - Concrete Vertical Stress Distribution after Wheel Load Application 3 (MPa) 

Figure 7-54 presents the vertical stress distribution in the base layer after the third application of 

the wheel load in the Horizontal V model. The vertical stress was reduced to a maximum of 

77.56 kPa as the thermal gradient before the wheel load curls the slab upward which is very 

similar to the maximum observed in the dowel bar model for nighttime thermal gradient and 

wheel load applied simultaneously, 71 kPa. 

 

Figure 7-54 - Base Layer Vertical Stress Distribution after Wheel Load Application 3 (kPa) 
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Figure 7-55 presents the distribution of the Von Mises stress in the Horizontal V device after the 

fourth wheel load application. A maximum stress of 1.42 MPa was concentrated on the top leg of 

the Horizontal V near the point of the V shape.  The Von Mises stresses in the remaining portion 

of the Horizontal V were relatively low. This stress concentration would be expected based on 

the wheel load transfer occurring mainly through the bottom leg of the V shape and the 

downward curling of the other side of the slab due to nighttime thermal gradient.  

 

Figure 7-55 – Horizontal V Von Mises Stress Distribution after Wheel Load Application 4 

(MPa) 

The vertical stress distribution in the concrete around the Horizontal V device is presented in 

Figure 7-56. A vertical tensile stress concentration was present at the top leg of the Horizontal V 

device on the unloaded similar to when the load was applied to the same side of the joint with a 

daytime thermal gradient was applied. A small concentration of compressive vertical stress 

developed in the concrete inside the V, as noticeable in Figure 7-56. This concentration of 

compressive stress was reduced under nighttime thermal gradient when compared to daytime 

thermal gradient. The compressive vertical stress distribution on either side of the joint was 

similar just beyond the load and joint location. 
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Figure 7-56 - Concrete Vertical Stress Distribution after Wheel Load Application 4 (MPa) 

Figure 7-57 presents the distribution of the vertical stress in the base layers of the Horizontal V 

device after the fourth application of the wheel load. The maximum stress was similar to the 

third application and so is the distribution. The maximum vertical stress away from the joint was 

78.5 kPa again similar to the maximum for dowel bar wheel loading and nighttime thermal 

gradient of 71 kPa.   

 

Figure 7-57 - Base Layer Vertical Stress Distribution after Wheel Load Application 4 (kPa) 

The horizontal V device geometry provides little restraint to shrinkage and thermal gradients 

while transferring load at the joint. The device allows small differential deflection to occur under 

thermal and shrinkage gradients as the adjacent slab edges curl upward and downward while 

spreading the load along the length of slab reducing the maximum stresses in the concrete at the 

device concrete interface for the service strain gradients assumed. Load transfer during daytime 

thermal gradients that cause a downward curling of the slab is effective with the Horizontal V 

device and little to no differential deflection occurring. Nighttime thermal gradient applied 

simultaneously with wheel loading caused an increase in the differential deflection at the joint 
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due to the device not restraining the slab from upward curling and allowing deflection of the 

loaded side of the slab to occur before the device engages. The maximum differential deflection 

was still maintained at a maximum of approximately 0.5 mm under nighttime thermal gradient 

and wheel loading. Plastic straining in the concrete was minimal in the Horizontal V device 

model after the application of the service loading history described in Table 7-1. Reducing the 

plastic straining in the concrete will reduce the damage in the concrete around the device and this 

may improve the long term differential deflection at the joint as less softening would occur in the 

concrete around the device. The continuous nature of the device and the reduced number of 

devices would eliminate possible misalignment problems. Further experimental testing of the 

wheel load transfer that would take into account local weaknesses in the concrete, the actual 

behaviour at a concrete-concrete joint interface and with a specific compressible material chosen 

should be completed on the Horizontal V device. 

7.7 Horizontal Pipe Service Load Finite Element Results 

The horizontal pipe device was modelled in the Quarter Slab Model described in Section 7.2.2 

with the service loading described in Table 7-1 applied to the model. A detailed investigation of 

the results around the joint for each loading step applied is presented in this Section.  

Figure 7-58 presents the comparison of the deflection on either side of the joint for the horizontal 

pipe device as the service loading steps are applied to the slab. From Figure 7-58, the maximum 

deflection on either side of the slab was similar throughout the application of the service loading 

history. The maximum upward curling deflection was 2.2 mm after shrinkage, 0.3 mm after 

daytime thermal, and 2.85 mm after nighttime thermal strain gradients were applied to the slab. 

The differential deflection was approximately 0.15 mm after thermal daytime wheel loading was 

applied and 0.25 mm after nighttime wheel loading was applied. The top of slab deflection was 

increasing with each wheel load as the loaded slab does not return to the unloaded position upon 

unloading.  
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Figure 7-58 – Horizontal Pipe Device Model: Top of Slab Deflection History 

The Von Mises stress distribution in the horizontal pipe device after the application of the 

shrinkage step is presented in Figure 7-59. The maximum Von Mises stress in the device is 0.84 

MPa. Von Mises stress concentrations exist at both of the vertical legs of the device.  

 

 

Figure 7-59 – Horizontal Pipe Device Von Mises Stress after Shrinkage Application (MPa) 
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Figure 7-60 presents the vertical stress distribution in the concrete around the Horizontal Pipe 

device after the shrinkage strain gradient was applied to the slab. Similar to the Horizontal V 

device, compressive vertical stress zones exist on either side of the device away from the joint as 

the curling edges of the slab bear on the device causing resulting compressive stress adjacent the 

device. At the joint location, next to the device, tensile vertical stress concentrations developed. 

The maximum tensile vertical stress in the concrete at this location is 2.55 MPa. This occurred 

because the top and bottom halves of the slab try to split away from each other where the slab 

was in contact with the device. The maximum stress tensile vertical stress is between the 

minimum and mean concrete cracking strength for 30 MPa concrete.  

 

Figure 7-60  - Concrete Vertical Stress Distribution after Shrinkage Application (MPa) 

Figure 7-61 presents the Von Mises stress distribution in the horizontal pipe device after the 

application of the daytime thermal gradient. The maximum Von Mises stress in the horizontal 

pipe device was 2.95 MPa in the bottom vertical leg of the device. The stress was concentrated at 

the top of the leg near the interface of the leg and the pipe portion of the device. A lower 

concentration of Von Mises stress occurred at the top of the top vertical leg as well.  
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Figure 7-61 – Device Von Mises after Daytime Thermal Gradient (MPa) 

Figure 7-62 presents the vertical stress distribution in the concrete around the Horizontal Pipe 

device after the daytime thermal gradient is applied to the model. The maximum tensile stress 

concentration in the concrete increases at the sides of the pipe section where the maximum 

vertical stress was 2.91 MPa, which is the suggested mean cracking strength of 30 MPa concrete. 

Compressive vertical stress zones occurred away from the device location similar to the other 

continuous joint device (horizontal V device). Compressive vertical stress was also occurring 

below the device in the concrete between the device and the base, as presented in Figure 7-62.  

 

Figure 7-62 - Concrete Vertical Stress Distribution after Daytime Thermal Gradient (MPa) 

Figure 7-63 presents the distribution of Von Mises stress in the Horizontal Pipe device after the 

nighttime thermal gradient was applied. The maximum Von Mises stress in the Horizontal Pipe 

device occurs at the bottom of the vertical leg of the device where the two slabs are curling 

upward due to the thermal nighttime and shrinkage straining applied. The maximum stress in the 

device is 3.31. The distribution is quite similar to the horizontal V device where little or no stress 

existed in the device except at the bottom under nighttime thermal gradient. This stress 



239 

 

distribution suggests that the slabs are curling upwards away from the device and possibly losing 

contact with the device. At the bottom of the device, the stress concentration occurred because of 

the curling of the slabs causing the device to compress locally as the slabs curled upwards.  

 

Figure 7-63 - Device Von Mises after Nighttime Thermal Gradient (MPa) 

Figure 7-64 presents the vertical stress distribution in the concrete around the horizontal pipe 

device after the application of the nighttime thermal gradient. The maximum tensile vertical 

stress at the sides of the pipe portion of the device is 2.43 MPa which is less than after the 

daytime thermal gradient. This maximum tensile stress in the concrete is above the minimum 

cracking strength for concrete but less than the mean cracking strength. Similar to the stress 

distributions observed after the shrinkage and daytime thermal gradients, compressive vertical 

stress zones exist away from the device on either side of the joint. Curling of the slab and relative 

rotation assumed about the primary axis of the pipe device caused the vertical stresses on either 

side of the device.  

 

Figure 7-64 - Concrete Vertical Stress Distribution after Nighttime Thermal Gradient (MPa) 
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The distribution of Von Mises stress in the Horizontal Pipe device after the first wheel load 

application is presented in Figure 7-65. The maximum Von Mises stress in the Horizontal Pipe 

device occurs at the top of the bottom vertical leg near the interface with the pipe portion of the 

device. The maximum stress is located on the unloaded side of the vertical leg. The loaded side 

of the slab slips relative to the device and attempts to push the device towards the unloaded side 

as it slides along the pipe shape. This sliding action on the loaded side of the slab and will cause 

a slight opposite reaction from the otherside of the joint resulting in this high concentration of 

stress. The maximum Von Mises stress was 4.01 MPa which is higher than for the horizontal V 

device but it will be possible to select a material that can sustain this stress. 

 

 

Figure 7-65 - Device Von Mises after Wheel Application 1 (MPa) 

The vertical stress distribution in the concrete around the horizontal pipe device after the first 

application of the wheel load is presented in Figure 7-66. The highest concentration of tensile 

vertical stress in the concrete occurred on the unloaded side of the slab at the side of the pipe 

device. The maximum tensile vertical stress was 2.84 MPa on the unloaded side of the joint, 

which is approaching the mean tensile cracking strength of concrete of 2.91 MPa. Compressive 

vertical stress concentrations occurred in the concrete beneath the pipe section of the device on 

the unloaded side of the joint as well. The vertical stress distribution on the unloaded side of the 

slab suggests load transfer was occurring at the joint. The maximum vertical compressive stress 

in the concrete beneath the device was 2.74 MPa.  
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Figure 7-66 - Concrete Vertical Stress Distribution after Wheel Application 1 (MPa) 

Figure 7-67 presents the vertical stress distribution in the base layers after the first application of 

the wheel load in the Quarter Slab horizontal pipe model. A vertical stress concentration 

occurred along the joint with a maximum vertical stress of 187 kPa. The maximum vertical stress 

is similar to the horizontal V device for the same load application and is greater than for 

conventional steel dowels. The vertical stress distributes gradually away from the loaded side of 

the slab. The concentration of vertical stress generally was located under the loaded side of the 

slab. This stress distribution suggests that the device is not as efficient as transferring loads at the 

joint as dowels.  

 

Figure 7-67 - Base Layers Vertical Stress Distribution after Wheel Load Application 1 (kPa) 

Figure 7-68 presents the Von Mises stress distribution in the horizontal pipe device after the 

second wheel load application. The maximum Von Mises stress in the device occurred on the 

unloaded side of the joint at the top of the bottom horizontal leg of the device similar to the first 

wheel load application. The maximum Von Mises stress in the horizontal pipe device was 3.57 

MPa after the second wheel load application which is lower than that observed for the first wheel 

load application. It is possible that minor damage occurring in the concrete between the steps 

could alter this maximum slightly as the behaviour would be expected to be symmetric.  



242 

 

 

Figure 7-68 - Device Von Mises after Wheel Application 2 (MPa) 

Figure 7-69 presents the vertical stress distribution in the concrete after the second application of 

the wheel load to the quarter slab Horizontal Pipe device model. After the application of the 

second wheel load, a tensile vertical stress concentration existed in the concrete on either side of 

the pipe portion of the device with a larger concentration occurring on the unloaded side of the 

joint. On the loaded side of the slab, the wheel load pushes the top half of the slab down and 

resists the two halves of the slab from splitting. On the unloaded side of the slab the wheel load 

pushes the bottom half of the slab and tries to split the two halves of the slab apart causing a 

higher maximum tensile stress at the side of the device in the concrete. Compressive vertical 

stress concentrations occur under the device on each side of the pipe portion of the device with 

the largest compressive stress occurring on the loaded side of the slab.  

 

Figure 7-69 - Concrete Vertical Stress Distribution after Wheel Application 2 (MPa) 

The distribution of the vertical stress in the base layers is presented after the second wheel load 

application in Figure 7-70. The maximum stress in the base layer after the second wheel load 

application was similar to that observed after the first application, with a maximum stress of 191 
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kPa occurring at the joint location. Similar to the first wheel load application, the concentration 

of vertical stress in the base was generally on the loaded side of the joint.  

 

 

Figure 7-70 - Base Layers Vertical Stress Distribution after Wheel Load Application 2 (kPa) 

Figure 7-71 presents the distribution of the Von Mises stress in the Horizontal Pipe device after 

the third wheel load application along with nighttime thermal gradient. The maximum Von 

Mises stress occurred on the loaded side of the device at the bottom of the bottom horizontal leg. 

The maximum Von Mises stress in the horizontal pipe device was 4.15 MPa. The upward curling 

from the nighttime thermal gradient and shrinkage cause the concentration of stress to occur at 

the bottom of the device and wheel loading will cause stress concentrations across the device as 

wheel load is transferred.  

 

Figure 7-71- Device Von Mises after Wheel Application 3 (MPa) 

Figure 7-72 presents the vertical stress in the concrete around the Horizontal Pipe device after 

the third application of the wheel load. After the application of the third wheel load, the 
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maximum tensile vertical stress in the concrete exists next to the pipe portion of the device on 

the unloaded side of the slab. This vertical tensile stress region extends almost the entire height 

of the device. The maximum vertical tensile stress located near the middle of the pipe portion is 

2.42 MPa. This maximum vertical tensile stress is between the minimum and mean cracking 

strengths for 30 MPa concrete.  

 

Figure 7-72 - Concrete Vertical Stress Distribution after Wheel Application 3 (MPa) 

The vertical stress distribution in the base layers after the third application of the wheel load is 

presented in Figure 7-73. The maximum stress occurred away from the joint location as the slab 

was curling upward from the thermal gradient and the wheel load is pushing the slab downward. 

The maximum stress in the base layer is 86 kPa less than for daytime thermal gradient applied 

simultaneously with wheel loading. This maximum stress in the base layer is greatest away from 

the slab edges with a small concentration that occurred near the joint as the slab was curled 

upward.  

 

Figure 7-73 - Base Layers Vertical Stress Distribution after Wheel Load Application 3 (kPa) 

The results after the fourth application of the wheel load for the Horizontal Pipe device were 

similar to the results after the third application with the exception of stress reversals due to the 
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wheel load being applied on the other side of the joint. Almost no plastic straining occurs 

throughout the application of the service loading in the concrete for the Horizontal Pipe device.  

The horizontal pipe device was capable of transferring load at the joint with little restraint to 

shrinkage and thermal gradients. Higher stresses occurred in the base layer at the edge of the slab 

with the horizontal pipe device model than with the conventional steel dowel model indicating 

that joint load transfer was not as efficient when wheel loading was applied. The horizontal pipe 

device reduced maximum stresses in the concrete and reduces plastic straining in comparison to 

conventional steel dowels. Reducing the maximum plastic stress in the concrete will decrease the 

degradation of load transfer that occurs at the joint due to plastic concrete damage. The 

continuous nature of the device and geometry will also eliminate a number of the misalignment 

problems that are associated with conventional steel dowels.  The horizontal pipe device wheel 

load transfer ability should be investigated in an experimental testing program. Shrinkage and 

thermal effects as well as the crack formation should be investigated in a field application to 

confirm the model results.  

7.8 Comparison of Service Load Finite Element Results 

The relative performance of the discrete and continuous devices when subjected to the service 

loading history (Table 7-1) is compared in this section.  Comparisons are made in terms of 

maximum compressive and tensile stresses in the concrete, maximum plastic strains in the 

concrete (PEEQ and PEEQT), maximum Von Mises stress in the devices, and maximum stresses 

in the base layer.  The maximum concrete stress data are shown for each of the three primary 

axis directions for the slab:  S11 refers to the axis parallel to the joint, S22 refers to the vertical 

axis, and S33 refers to the direction parallel to the traffic direction (perpendicular to the joint).  

The joint vertical deflection and differential deflections are also compared for the different 

devices. 

Average differential deflection at the joint for each device is presented in Figure 7-74 to compare 

the behaviour of the devices when service loading was applied to the models. The most 

deflection due to shrinkage occurred in the horizontal pipe device suggesting that it provides the 

least restraint to curling. Average upward deflection at the joint for the horizontal pipe was 

approximately 1.5 mm.  Conventional dowels restrained the upward curling more than the other 
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proposed devices by approximately 0.25 mm  and  average upward deflection at the joint for 

these devices was very similar after shrinkage. The dowel bar model had the highest predicted 

average deflection at the joint after the application of the thermal daytime gradient and the 

horizontal V device had the lowest upward deflection at the joint.  

The greatest relative downward deflection during the thermal gradient step (from the maximum 

average joint deflection at the end of the shrinkage step to the minimum joint deflection after the 

daytime thermal gradient step) occurred in the horizontal pipe device model. The relative 

deflection that occurred in the horizontal pipe device during the daytime thermal gradient was     

-1.83 mm. This suggests that the horizontal pipe device provides the least amount of restraint to 

daytime thermal gradients. The horizontal V device model predicted the next highest relative 

deflection at the joint during the daytime thermal gradient at -1.45 mm. The GFRP I-beam, 

dowel and GFRP tapered plate models predicted similar relative deflection during the daytime 

thermal gradient step of -1.08 mm, -1.01 mm, and -0.97 mm, respectively. The continuous 

devices appeared to provide the least restraint to daytime thermal gradients as expected based on 

the geometry of the devices. The FRP tapered plate device appeared to provide the most restraint 

to daytime thermal gradients.   

Relative deflection at the joint that occurred during the nighttime thermal gradient in the 

horizontal pipe device was the greatest similar to the shrinkage and daytime thermal gradient. 

The relative deflection at the joint during the first nighttime gradient in the horizontal pipe 

device was approximately 2.45 mm. The remaining devices all had approximately the same 

relative deflection occur during the nighttime thermal gradient step with values ranging from 

1.78 mm to 1.86 mm. This suggests that the restraint at the slab provided by the horizontal V to 

nighttime thermal gradients is similar to the discrete devices. The horizontal pipe device 

provided the least restraint to shrinkage and thermal daytime and nighttime gradients. Cycling of  

the thermal nighttime and daytime gradients did not appear to change the average joint deflection 

that occurred in any of the models.  

The horizontal V allowed the least amount of relative deflection at the joint to occur when 

daytime thermal gradients and wheel loading was applied simultaneously to the slab for wheel 

loading applied to either side of the slab. Relative deflection of -0.29 mm and -0.28 mm occurred 

for the first wheel load applications for the horizontal V device. The horizontal pipe device had 
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the second least relative deflection occur when wheel loading was applied along with daytime 

thermal gradients. The relative deflections that occurred at the joint during the first and second 

wheel load applications for the horizontal pipe device were -0.47 mm and -0.46 mm, 

respectively. There was little change in the relative deflection that occurred at the joint for the 

first and second wheel load applications for each of the horizontal V and horizontal pipe devices. 

All of the continuous devices had more noticeable change in relative deflection that occurred 

during the first and second wheel load applications. The dowel bar model predicted the most 

relative deflection occurring during the first and second wheel load applications of 0.86 mm and 

0.67 mm. The GFRP tapered plate had relative deflections of 0.68 mm and 0.59 mm occur 

during the application of the first and second wheel loads. The GFRP I-beam had relative 

deflections of 0.60 mm and 0.49 mm occur during the first and second wheel load applications 

with thermal daytime gradients applied simultaneously. The amount of relative deflection that 

occurred during the first and second wheel loads with daytime thermal gradients appear to be 

directly proportional to the amount of upward curling that occurred. This relationship makes 

sense as the horizontal V device had the least amount of upward deflection occur during the 

daytime thermal gradient and as the wheel loading was applied would have came into contact 

with the base layer first. It also appears that as more relative deflection occurred at the joint 

during the first wheel load more change in relative deflection occurred during the second 

applications of the wheel load, except the GFRP tapered plate had less change in relative 

deflection than the GFRP I-beam. This could suggest that more relative deflection at the slab was 

causing more damage to occur in the concrete and hence more change in the response as the load 

was applied to the other side of the slab.  

All the devices allowed more relative deflection to occur at the joint with nighttime thermal 

gradients applied simultaneously with wheel loading.  The GFRP I-beam allowed 1.74 mm 

relative deflection to occur during the third wheel load application before the model failed to 

converge at a loading of 74 kN and the GFRP tapered plate allowed 1.44 mm of relative 

deflection to occur before the model failed to converge at 49.6 kN. The horizontal pipe device 

had the most relative deflection occur at the joint with nighttime thermal gradients and wheel 

loading applied simultaneously. The first wheel load application with nighttime thermal 

gradients caused 2.24 mm of relative deflection to occur in the horizontal V device and reduced 

to 1.43 mm for the second wheel load application. The dowel bar had the second most relative 
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deflection occur at the joint during the third and fourth wheel load application of 2.03 mm and 

1.49 mm, respectively. The horizontal V device had the least relative deflection occur at the joint 

for the third wheel load of 1.71 mm. The relative deflection at the joint for the horizontal V 

device reduced to 1.28 mm for the fourth wheel load application. The amount of relative 

deflection at the joint under wheel loading was proportional to the amount of average upward 

curling that had occurred after the nighttime thermal gradient. This is a similar result to daytime 

curling and wheel loading. The relative deflection that occurred at the joint after the second 

wheel load for the horizontal V, horizontal pipe and dowel models varied more with more 

relative deflection as well. This could suggest that damage is occurring at the joint with the large 

amount of deflection occurring during the first wheel load and changes the behaviour of the 

device with subsequent wheel load applications.  

 

 

Figure 7-74 – Service Load Comparison of Average Deflection at the Joint  
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Figure 7-75 presents a comparison of the differential deflection that occurred at the joint all the 

devices. All the discrete devices had negligible differential deflection occur throughout the 

application of shrinkage and the thermal gradients. The discrete devices provide the most 

restraint to curling caused by both the shrinkage and thermal gradients at the joint and it makes 

sense that the differential deflection would be minimal with these devices. The horizontal V had 

the most differential deflection occur during the shrinkage step with a total differential deflection 

of -0.15 mm. The concave side of the V device deflects upward more as the top portion of the 

slab is not restrained by the other side of the joint and the pointed side of the V device further 

pries the slab upward as it curls upwards. The unsymmetrical geometry of the horizontal V 

device and low restraint to upward curling is assumed to cause this behaviour. With daytime 

thermal gradients applied to the horizontal V device, the device appears to begin to lock near the 

end of the curling gradient as the differential deflection of the slab reduces near the end of these 

steps, as can be noticed in Figure 7-75. The horizontal pipe device has minimal differential 

deflection occur during the shrinkage step and little change occurs through the thermal daytime 

and nighttime thermal gradient cycles with a differential deflection of approximately 0.02 mm. 

The symmetrical layout of the horizontal pipe device would suggest that no differential 

deflection should occur during the application of shrinkage and thermal gradients. It was 

assumed that either the difference in nonlinear behaviour in the concrete slabs or the behaviour 

of the slip surface at the rounded pipe portion of the device caused the small differential 

deflection to occur during thermal and shrinkage strain gradient application.  

The horizontal V device had the least amount of differential deflection occur when wheel loading 

and daytime thermal gradients were applied to the slab simultaneously. The horizontal V device 

had differential deflection of approximately 0.03 mm for the first two wheel load applications. 

The unsymmetrical geometry did not appear to affect the differential deflection with daytime 

thermal gradients and wheel loading applied to the slab for the horizontal V device. The 

remaining devices had similar differential deflection occur for the first two wheel load 

applications. The second lowest differential deflection at the joint for the first and second wheel 

load applications was conventional steel dowels, with values of 0.13 mm for both the first two 

wheel load applications. The pipe device had a differential deflection of 0.16 mm and 0.18 mm 

for the first two wheel load applications, respectively. The GFRP I-beam allowed the most 

differential deflection for the first wheel load application but had less differential deflection than 
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the pipe device after the second wheel load application. All the devices were capable of 

maintaining the differential deflection at the joint with wheel loading and daytime thermal 

gradients applied simultaneously but only the horizontal V device reduced the differential 

deflection occurring at the joint when compared to conventional steel dowels.  

Nighttime thermal gradients applied simultaneously with wheel loading had much different 

results than daytime thermal gradients with the horizontal V device having the most differential 

deflection occurring at the joint when wheel loading is applied. Differential deflection that 

occurred due to the upward curling as well as the possible loss of contact at the base-concrete 

interface was assumed to cause the increased differential deflection for the horizontal V model 

for the third and fourth wheel load applications. The differential deflection was 0.45 mm and 

0.51 mm for the horizontal V device. The horizontal pipe device had the second most differential 

deflection occur at the joint for the third and fourth wheel load applications. Conventional steel 

dowels had the least amount of differential deflection occur for nighttime thermal gradient and 

wheel loading applied simultaneously. The differential deflection at the joint for the dowel was 

similar for both nighttime and daytime thermal gradients applied simultaneously with wheel 

loading. Overall the average deflection at the joint throughout the service loading history was the 

lowest with conventional steel dowels. The horizontal V device providing significantly less 

differential deflection at the joint with daytime thermal gradients and wheel loading applied 

simultaneously is worth more investigation since majority of traffic would be experienced on a 

pavement during these conditions than nighttime thermal gradients. Depending on the anticipated 

traffic distribution this may provide more rider comfort for a larger percentage of the traffic. 

Furthermore, the load transfer efficiency and joint efficiency for the horizontal V device with 

nighttime thermal gradient and wheel loading applied simultaneously were 80.1% and 90.0% 

which are both within the limits suggested. This also means that the LTE and joint efficiency for 

all the devices were within suggested limits of 78% and 85%, respectively (previously presented 

in Section 5.0).  
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Figure 7-75 – Service Load Comparison of Differential Deflection at the Joint 

The maximum compressive (negative) S11 stress in the concrete (parallel to joint) at the device 

to concrete interface is compared in Figure 7-76 for each device and the maximum tensile 

(positive) S11 stress is compared in Figure 7-77.  The maximum compressive S11 stress in the 

two continuous devices was the lowest throughout the service loading sequence. The continuous 

devices should reduce the stress in this direction as these devices did not have any mechanical 

restraint  along the joint length. The horizontal V device had the lowest maximum compressive 

stress along the joint length. The GFRP tapered plate dowel and GFRP I-beam behaved similar 

to the conventional dowel bar until the wheel loading was applied when the maximum 

compressive S11 stress in the concrete increased rapidly in the GFRP devices. The maximum 

compressive S11 stress in the concrete at the device interface was lower for the GFRP I-beam 

than for the conventional dowel through the shrinkage and thermal gradients; however, as wheel 

loading was applied the maximum S11 compressive stress in the concrete increased rapidly. The 

maximum tensile S11 stress for all of the devices reaches 3 MPa which was the ultimate tensile 
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strength input to the concrete model used (explained previously in Section 4.1.1). The maximum 

stress being at 3 MPa means that cracking has occurred in the model. The mechanical restraint 

the devices cause to shrinkage as well the curling and restraint due to the slab geometry cause 

this cracking to occur when shrinkage was applied.  The only device that had a maximum tensile 

stress in the S11 direction in the concrete below 3 MPa during thermal gradient cycling was the 

horizontal pipe device; although, the concrete in the horizontal pipe device model reaches a 

maximum of 3 MPa after the wheel loading was applied.   

 

 

Figure 7-76 – Service Load Comparison of Maximum Concrete Compression Stress in S11 

Direction (Parallel to Joint)  
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Figure 7-77 – Service Load Comparison of Maximum Concrete Tensile Stress in S11 Direction 

(parallel to joint) 

The maximum compressive stress in the S22 (vertical) direction in the concrete at the device 

interface is compared for the different devices under service loading in Figure 7-78.  The 

maximum compressive stress in the S22 direction in the concrete at the concrete device interface 

was lowest for the horizontal V device throughout the analysis. The maximum compressive 

stress in the S22 direction with the horizontal pipe device was also similarly low. The continuous 

nature of the horizontal V and horizontal pipe devices increases the bearing area in the vertical 

direction for load transfer to occur and lower maximum compressive stresses in the concrete 

were expected with these devices. The maximum compressive stress in the S22 direction in the 

concrete with the GFRP I-beam was the highest. The GFRP I-beam was stiffer than the steel 

dowel and as shrinkage was applied to the slab the upward curling of the slab causes the devices 

to bend. The higher stiffness of the GFRP I-beam requires high force to bend the device to match 
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the profile of the slab. Increased force transfer required at the device caused the high stress 

concentration even though device was lower in the slab where less bending is required in the 

device under shrinkage gradients. The GFRP tapered plate dowel behaved similar to steel 

dowels; although the maximum compression stress in the S22 direction is lower for the GFRP 

dowels during the wheel load applications.  

 

Figure 7-78 – Service Load Comparison of Maximum Concrete Compression Stress in S22 

(Vertical) Direction 

The maximum tensile stress in the concrete in the S22 (vertical) direction at the joint for the 

various devices is presented in Figure 7-79. The maximum tensile stress in the horizontal V 

device was the lowest through the service loading sequence. The continuous nature of the 

horizontal V device has a larger bearing area for load transfer that reduces stress concentrations. 

The geometry of the device also allows the upward curling to occur at the slip surface between 
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the concrete and device interface. Less restraint to upward curling in the device reduced the 

amount of splitting occurring in the slab. The horizontal pipe device has the second lowest 

maximum tensile stress in the S22 direction at the joint under wheel loading. The horizontal pipe 

device restrained upward curling more than the horizontal V device and vertical tensile stresses 

occurred at the sides of the pipe device. The maximum tensile stress in the S22 direction in the 

concrete with the GFRP I-beam varied the most due to the relative stiffness of the device. The 

maximum tensile stress in the S22 direction in the concrete with the GFRP Tapered plate is 

highest during the wheel loading sequence.  High tensile vertical stresses were concentrated at 

the top edge of the tapered plate dowel. The maximum tensile stresses in the vertical direction 

for all the devices were below the ultimate concrete tensile cracking strength of 3 MPa. The 

maximum tensile stresses were all above the minimum concrete cracking strength for 30 MPa 

concrete.  

 

Figure 7-79 - Service Load Comparison of Maximum Concrete Tensile Stress in S22 (Vertical) 

Direction 
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Figure 7-80 presents a comparison of the maximum compressive stress in the S33 direction 

(perpendicular to the joint) in the concrete at the joint interface for all the devices. The GFRP 

tapered plate created the highest compressive stress concentrations in the S33 direction. The 

GFRP tapered plate section bears on concrete perpendicular to joint due to the geometry of the 

device as curling occurs and causes the tapered plate to move relative to the concrete causing the 

increased compressive stress in the longitudinal direction. With daytime thermal gradients 

applied the maximum compressive stress in the S33 direction in the horizontal V was the largest. 

This suggests that the concrete on either side of the joint was bearing on the device and the 

geometry of the device caused high compressive stresses perpendicular to the joint. Similarly, 

the horizontal pipe device geometry caused bearing perpendicular to the joint when the slab 

curled. The maximum compressive stress in the S33 direction in the concrete at the joint 

interface in the GFRP I-beam quickly increased as the wheel load is applied and before the 

model fails to converge. High normal force at the device concrete interface and large frictional 

area of the device cause the increase in compressive stress due to increased frictional force at the 

concrete device interface. The maximum compressive stress in the S33 direction for the dowel, 

horizontal pipe, and horizontal V were all in the similar range and were below compressive 

failure strengths.  
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Figure 7-80 Service Load Comparison of Maximum Concrete Compressive Stress in S33 

(perpendicular to joint) Direction 

Figure 7-81 presents the maximum tensile stress in the concrete at the device interfaces in the 

S33 direction (perpendicular to the joint). All of the maximum tensile stress concentrations in the 

concrete at the device interface are near 3 MPa, the ultimate tensile strength of the concrete. The 

Horizontal Pipe and Horizontal V are the only devices that have maximum tensile stresses below  

noticeably below 3 MPa. The geometry of both the continuous devices reduced the length of 

mechanical restraint caused due to curling that causes tensile stress perpendicular to the joint. 

Low frictional restraint against relative movement at the device slab interface also caused the 

reduction in maximum tensile stresses perpendicular to the joint.  
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Figure 7-81 - Service Load Comparison of Concrete Maximum Tensile Stress in S33 

(perpendicular to joint) Direction 

The maximum plastic equivalent compression strain (PEEQ) in the concrete near the device is 

compared for the device with service loading applied in Figure 7-82. The maximum PEEQ in the 

concrete for the horizontal V and horizontal Pipe devices remain very low compared to the other 

devices. The continuous nature of the devices spread load transfer surfaces and eliminate local 

stress concentrations causing compressive damage in the slab that is the maximum under wheel 

loading as expected. The horizontal pipe and horizontal V device geometries also appear to 

reduce the amount of restraint to thermal and shrinkage gradients reducing the maximum 

compressive stresses causing plastic straining. The GFRP I-beam caused high PEEQ to occur in 

the concrete at the device as the wheel loads were applied. The stiffness of the GFRP I-beam and 

relatively small bearing area was assumed to cause the increase in compressive straining 
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occurring in the concrete. The maximum PEEQ in the concrete was highest for the GFRP tapered 

plate under the shrinkage and thermal gradients. This suggests that the GFRP tapered plate 

dowels cause the most restraint to shrinkage and thermal strain gradients.  As wheel loading was 

applied the GFRP tapered plate has lower maximum PEEQ than the conventional dowel. 

Tapered plates had the highest bearing area to stiffness ratio, which could have attributed to the 

reduced compressive straining occurring under wheel loading. There was also a large amount of 

equivalent tensile plastic strain that occurred in the GFRP tapered plate under wheel load that 

may have reduced the compressive plastic straining at the joint. The cracking at the sides of the 

device occurred before the plastic compressive straining occurred in the concrete under wheel 

loading and these cracks formed releasing energy as the slab was able to deflect further and 

compressive plastic straining remained low. Conventional dowels had increased compressive 

damage occur under wheel loading but the reversed loading on the slabs did not increase the 

compressive damage occurring suggesting that the failure remains local.  

 

Figure 7-82 – Service Load Comparison of Maximum Concrete PEEQ 
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Figure 7-83 presents a comparison of the maximum plastic tensile equivalent tensile strain 

(PEEQT) in the concrete at the device interface as the service loads are applied to the models. 

The maximum PEEQT in the concrete for the GFRP tapered plate and the GFRP I-beam were 

well beyond the failure level assumed for significant cracking to occur. The devices both have 

large bearing areas with a sharp edge where tensile stress concentrations occurred. The 

concentrated tensile zone at the edges top of the top flange of the GFRP I-beam and GFRP 

tapered plate dowel caused tensile plastic straining to occur under wheel loading.  The maximum 

PEEQT in the concrete for the dowel, Horizontal V and Horizontal Pipe devices are all below the 

failure level and are very similar.  The rounded edges of the dowel bar reduced the tensile stress 

concentration adjacent the bearing area reducing the plastic tensile strain in the concrete. The 

horizontal V and horizontal pipe device both had increased bearing areas for load transfer to 

occur reducing tensile stress concentrations in the concrete and hence the plastic straining that 

occurred in the slab.  

 

Figure 7-83 – Service Load Comparison of Maximum Concrete PEEQT 



261 

 

A comparison of the maximum Von Mises stresses in the devices through the service load 

analysis is presented in Figure 7-84. The lowest maximum Von Mises stress occurs in the 

horizontal pipe device and the Horizontal V device. The devices being continuous spread the 

load transfer for wheel load and reduce restraint causing Von Mises stress in the devices. The 

GFRP tapered plate and the GFRP I-beam were similar to the conventional dowel until wheel 

load was transferred when they increase to a larger maximum Von Mises stress in the device. 

Under wheel loading the GFRP I-beam top flange provides most of the restraint and the local 

effects cause the GFRP I-beam Von Mises stress to increase. Tensile plastic straining in the 

concrete will also cause more load transfer through the device and increase the maximum Von 

Mises stress in the device until an ultimate failure of the device occurs (not captured in the model 

as linear elastic material properties were used for all the devices). The reduced stress in the 

GFRP tapered plate under the final wheel load is prior to failure and may be reduced also due to 

the decreased loading at failure.  
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Figure 7-84 – Service Load Comparison of Maximum Device Von Mises Stress  

The maximum vertical stress in the subbase occurred during the combined daytime thermal 

gradient and wheel loading as the slab was curling downward as the top of the slab is heated and 

then the wheel load curls the slab edge further downward. Table 7-2 presents the maximum 

vertical stress in the base layer during the wheel application on both the approach and leave sides 

of the slab during the daytime thermal gradient.  The maximum vertical stress in the base layer 

occurred in the GFRP I-beam model at 221 kPa. This occurred because the end of the GFRP I-

beam directly bearing on the base layer is cantilevered out of the loaded slab. The higher vertical 

base stress in horizontal V and pipe device may suggest that less load transfer was occurring. 

Less upward curling of the slabs during shrinkage and thermal gradients also occurred in the 

horizontal pipe and horizontal V models before the application of the wheel load meaning the 

slab comes into direct contact with the base layer at a lower wheel load. All of the maximum 
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vertical stresses are reasonable for the base layer and should not cause failure. The maximum 

vertical stresses in the base layer appear to be low enough that they will not cause failure. A 

detailed investigation into the complex behaviour of the base was not completed.  

Table 7-2 - Service Wheel Load Maximum Base Layer Vertical Stress Comparison 

 

The maximum stress in the base layer for each of the devices does not vary significantly between 

the approach and leave side of the slabs. The GFRP I-beam varied the most with a difference of 

7 kPa. Conventional dowel bars reduce the maximum stress in the base layer the most under 

daytime wheel loading at a maximum of approximately 130 kPa. The GFRP Tapered plate 

behaves the second best with maximum vertical stresses of approximately 150 kPa. The 

maximum stress in the base layer for both the Horizontal V and the Pipe device is around 190 

kPa. The GFRP I-beam has the highest maximum vertical stress in the base layer at 

approximately 220 kPa. Higher vertical stress concentrations in the base layer may cause more 

permanent deflection in the base layer at the slab edge causing more deflection at the joint 

similar to what was observed in the geo-foam base layer during experimental testing. The 

permanent deflection of the soil at the joint could also cause poorer support at the base layer for 

repetitive wheel load cycles. The nonlinear behaviour of the base layer was not captured in the 

model and cyclic wheel loading may cause permanent deflection in the base near the joint.  

Using a nonlinear material model could determine the effects of the high vertical base stress 

more adequately to assess the importance of the maximum stresses in the base layer.  

7.9 Summary of Service Finite Element Analysis  

After applying service loading similar to the loading that the slabs would encounter in service, 

generally the behaviour of the GFRP I-beam and GFRP tapered plate dowels perform poorer 

than conventional steel dowels. The horizontal V and the horizontal pipe device both behave 

similarly, with similar concrete stress distributions and peak stresses. The maximum stress 

Day Temperature Distribution 

and Wheel Approach (kPa)

Day Temperature Distribution 

and Wheel Leave (kPa)

Dowel -127 -130

FRP Tapered Plate -150 -153

FRP I -214 -221

Horizontal Vee Device -186 -186

Pipe Device -187 -191
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concentrations as well as plastic straining occurring in the concrete were reduced in the 

horizontal V and horizontal pipe devices compared to conventional dowels.  

The following are conclusions made based on the service load finite element analysis:  

 The horizontal pipe device provided the least restraint to shrinkage curling of the slab and 

the highest deflection occurred at the joint. 

 The horizontal V device provided the least restraint to daytime thermal gradients  causing 

curling of the slab since the most relative downward deflection occurred in the horizontal 

V device. 

 The conventional dowel, GFRP I-beam and GFRP tapered plate dowels all provide 

similar restraint to shrinkage, daytime and night thermal gradients and had similar joint 

deflections throughout. 

 Differential deflection at the joint after shrinkage and thermal gradients only occurred in 

the horizontal pipe and horizontal V device. The devices restrained the curling less which 

reduced stress concentrations in the concrete; however, the free movement also allowed 

differential deflection to occur at the joint. The differential deflection during thermal and 

shrinkage in the horizontal V and horizontal pipe device is within limits.  

 The horizontal V had the lowest differential deflection after the application of wheel load 

and daytime thermal gradient simultaneously on both sides of the slab.  

 The horizontal V had the most differential deflection occur at the joint with nighttime 

thermal gradient and wheel loading applied to the slab.  

 The horizontal pipe device had more differential deflection occur at the joint than 

conventional steel dowels with both daytime and nighttime thermal gradients applied 

simultaneously with wheel loads. The differential deflection at the joint for the horizontal 

pipe device with daytime thermal gradients was the greatest. The differential deflection at 

the joint for the horizontal pipe device was greater under nighttime thermal gradients than 

daytime thermal gradients. 

 The differential deflection at the joint for all the models throughout the service loading 

history was below the maximum suggested values. 
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 The GFRP I-beam and GFRP tapered plates caused higher maximum stress 

concentrations in the concrete around the device when compared to the conventional steel 

dowels in almost all directions. 

 The sharp edges of the GFRP I-beam and GFRP tapered plates cause high tensile stress 

concentrations at the edges of the devices that cause cracking in the concrete.  

 The maximum vertical stress in the base layer occurred in the GFRP I-beams with wheel 

loading and daytime thermal gradients applied to the slab simultaneously. The horizontal 

V and horizontal pipe devices had similar maximum vertical stress occur in the base layer 

but were greater than conventional steel dowels. This increased vertical stress in the base 

layer may cause permanent deformation in the base layer and affect the overall behaviour 

of the joint.  

Based on the service analysis the GFRP tapered plate and GFRP I-beams do not perform better 

than conventional dowels. Increasing the size of the devices or reducing the spacing could be 

attempted to reduce stress concentrations and improve the load transfer capability of the devices. 

The spacing of the GFRP I-beams could also be decreased further; however, the author does not 

see any value in this as the relative stiffness to bearing area of the device already causes high 

concentrations of stress in the concrete resulting in failure and altering the spacing would not 

affect this. The bearing surfaces of the devices could also be rounded to reduce the concentration 

of tensile stress at the edges of the devices. The tapered plate geometry does not appear to 

provide any reduction in stress in the concrete under shrinkage and thermal gradients. A more 

detailed service investigation of the devices including misalignment should be completed to 

determine if the devices do provide advantages when compared to conventional dowels with 

misalignment, since the devices appear to provide no net benefit when compared to aligned 

conventional dowels and the material already makes the devices cost-prohibitive but this was not 

considered as part of this research.  

Both the horizontal V and horizontal pipe device were capable of transferring load at the joint 

and reduced concentrations of stress in the concrete when compared to conventional steel 

dowels. Greater differential joint deflection under nighttime thermal gradients and wheel loading 

occurred for both devices when compared to conventional steel dowels. The horizontal V device 

had allowed less differential deflection at the joint compared to conventional dowels. Based on 
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the results from the service load analysis further investigation of the horizontal V and horizontal 

pipe devices would be suggested. Comparing the devices to misaligned dowels to further assess 

the benefits of the devices would be suggested as well as experimental testing of the device to 

confirm the model results. Full-scale testing to determine the effects of shrinkage and thermal 

gradients would also be suggested. A further investigation could also be completed to determine 

if the distribution of traffic on a typical highway would suggest that the lower differential during 

the daytime provided by the horizontal V would outweigh the poor nighttime differential 

deflection under wheel loading.  
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8.0 Conclusions and Recommendations  

This section presents the summary of the research completed followed by conclusions and 

recommendations based on the research completed.  

A comprehensive study of alternative joint load transfer devices was completed. Two different 

styles of devices were developed: discrete load transfer devices and continuous joint load 

transfer devices. Two alternative discrete devices were developed and evaluated, described as a 

GFRP I-beam device placed directly on the pavement base and tapered GFRP plate dowels. Two 

continuous joint devices were developed and evaluated described as the horizontal V and 

horizontal pipe devices. The continuous devices extend over the full width of the joint, and are 

intended to behave similarly to a shear keyed joint.  

The discrete devices and conventional dowels were analyzed in a wheel path sized, three-

dimensional finite element model for wheel loading and quasi-static reversed wheel loading. The 

effects of friction between the devices and the concrete under static wheel loading were also 

investigated. Under quasi-static reversed cyclic loading, the effects of vertical skew 

misalignment in the GFRP tapered plate and dowel were investigated. An experimental testing 

program was developed to test the discrete devices and conventional steel dowels to assess load 

transfer behaviour. Testing arrangement included quasi-static reversed cyclic wheel loading 

applied to either side of the joint.   

The continuous devices, discrete devices and conventional steel dowels were also analyzed in a 

quarter-slab, three-dimensional finite element model with shrinkage and thermal strains, as well 

as wheel loading applied to the slab to simulate service conditions.  

8.1 Conclusions 

8.1.1 Discrete Device Finite Element Wheel Path Investigation 

The following conclusions were made based on the wheel path finite element analysis 

completed: 

 A wheel path model with a thinner base layer was capable of predicting behaviour similar 

to a full slab with the back edge of the slab restrained; however, the stress concentrations, 
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differential deflection and plastic straining occurring in the wheel path model were 

greater than in a full slab model but were on the same order of magnitude.  

 Based on the results from the finite element load transfer study completed using the 

wheel path model, all of alternative devices appeared to be effective at transferring wheel 

load at the joint.  All of the devices reduced the maximum vertical stress in the base layer 

and differential deflection at the joint, when compared to no load transfer devices. The 

mechanical transfer provided at the joint reduced differential deflection across the joint.  

 Differential deflection predicted using conventional steel dowels was the lower than both 

the FRP I-beam and FRP tapered plate devices.  

 The GFRP I-beam was the least effective at transferring load at the joint with highest 

plastic straining occurring in the concrete as well as the most differential deflection 

across the joint. The top flange of the GFRP I-beam provided most of the load transfer 

with the bottom flange being less effective which was assumed to occur because of the 

bottom flange bearing directly on the base. Altering the size the FRP I-beam thickness or 

possibly creating an alternative shape with an increased upper flange thickness only could 

improve the efficiency of the device.  

 Increasing the thickness of the GFRP tapered plate could be completed to reduce the 

differential deflection at the joint by increasing the relative stiffness of the device to be 

closer to that of conventional steel dowels.    

 Conventional steel dowels had the lowest plastic straining occurring in the concrete for 

both tension and compression. It is assumed that the sharp corners at the bearing surfaces 

for GFRP tapered plates and I-beams created the higher concentrations of stress when 

compared to round dowel bars.  

8.1.2 Discrete Device Experimental Testing 

The following conclusions were made based on the experimental testing program completed: 

 All of the devices were observed to provide load transfer under quasi-static reversed 

wheel loading  in experimental testing 

 The conventional steel dowel bar failed at the highest load level and also maintained joint 

differential deflection better than the GFRP I-beam and GFRP tapered plate dowel as 

predicted by the wheel path finite element modeling completed.  
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 The GFRP I-beam supported a higher maximum load than the aligned GFRP tapered 

plate. Finite element modeling predicted failure with the GFRP I-beam at a lower load 

than the tapered plate dowel.  

 Misalignment of the GFRP tapered plate increased the maximum load capacity compared 

to the aligned GFRP tapered plate and GFRP I-beam. The inclined orientation of the 

misaligned tapered plate causes that the longitudinal fibres within the GFRP to be more 

efficient in resisting the vertical shear loading at the joint.  This effect was not captured in 

the finite element model due to isotropic material property assumptions.  

 The differential deflection at the joint was lower with the GFRP tapered plate at the 

wheel load level in the experimental testing compared to the misaligned GFRP tapered 

plate and GFRP I-beam. The finite element modeling also predicted similar behaviour.  

 Generally, the areas of damage observed and comparative differential deflection in the 

experimental testing were in agreement with the zones of plastic straining in the finite 

element model.  

 Based on the testing results and failure mechanisms observed, it would be important in 

device design to ensure that the shear failure of the devices does not occur. The sudden 

failure of the device in shear caused sudden stepping to occur at the slab with poor 

support in the base for the GFRP devices.  

8.1.3 Quarter Slab Service Load Finite Element Analysis of Discrete Devices 

The following conclusions were made based on the quarter-slab service load finite element 

analysis completed:  

 The horizontal pipe device provided the least restraint to shrinkage curling of the slab 

which resulted in the highest joint deflection in comparison to the other devices. 

 The horizontal V device provided the least restraint to daytime thermal gradients causing 

curling of the slab which resulted in the largest relative downward deflection in 

comparison to the other devices. 

 The conventional dowel, GFRP I-beam and GFRP tapered plate dowels all provide 

similar restraint to shrinkage, daytime and night thermal gradients and had similar joint 

deflections throughout. 
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 The horizontal V had the lowest differential deflection after the application of wheel load 

and daytime thermal gradient simultaneously on both sides of the slab.  

 The horizontal V had the most differential deflection occur at the joint with nighttime 

thermal gradient and wheel loading applied to the slab.  

 The horizontal pipe device had more differential deflection occur at the joint than 

conventional steel dowels with both daytime and nighttime thermal gradients applied 

simultaneously with wheel loads. The differential deflection at the joint for the horizontal 

pipe device with daytime thermal gradients was the greatest. The differential deflection at 

the joint for the horizontal pipe device was greater under nighttime thermal gradients than 

daytime thermal gradients. 

 All the devices were capable of maintaining the differential deflection throughout the 

service loading history applied. 

 The GFRP I-beam and GFRP tapered plates caused higher maximum stress 

concentrations in the concrete around the device in almost all directions when compared 

to the conventional steel dowels. 

 The sharp edges of the GFRP I-beam and GFRP tapered plates cause high tensile stress 

concentrations at the edges of the devices that cause cracking in the concrete.  

 The maximum vertical stress in the base layer occurred in the GFRP I-beams with wheel 

loading and daytime thermal gradients applied to the slab simultaneously. The horizontal 

V and horizontal pipe devices had similar maximum vertical stress occur in the base layer 

but were greater than conventional steel dowels. This increased vertical stress in the base 

layer may cause permanent deformation in the base layer and affect the overall behaviour 

of the joint. 

8.2 Recommendations 

Based on the research completed, the following recommendations would be made for the discrete 

devices: 

 Increasing the size of the GFRP I-beam and tapered plate dowel and reducing the device 

spacing should be investigated to determine whether performance can be made similar to 

steel dowels.   
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 Further research on inclining the GFRP tapered plate could also be completed based on 

the wheel load experimental investigation completed, as the device had a higher load 

capacity compared to the aligned GFRP tapered plate.  

 The effects of misalignment on the GFRP tapered plate dowel and GFRP I-beam should 

be compared to misaligned dowels to determine if the devices provide benefit when 

misalignment is considered.  

Based on the research completed the following recommendations would be made for the 

continuous devices developed: 

 Based on the results from the service load analysis a material for the horizontal V and 

horizontal pipe device should be chosen to provide the stiffness assumed and strength 

required.  

 The horizontal V and horizontal pipe devices should be tested using experiment testing 

arrangement developed to assess the load transfer ability of the devices and general 

constructability.  

 A full scale test section would be suggested for the horizontal V and horizontal pipe 

device if the devices perform well in the wheel load experimental testing.  

 Misalignment of the horizontal V and horizontal pipe should be modeled to determine the 

effects of misalignment  

 The possibility of using the horizontal pipe device as drainage should be investigated to 

determine if it would be advantageous and possible.  
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APPENDIX A – Design Calculations for Discrete Devices using 

Dowel Bar Equations 
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GFRP TAPERED PLATE 
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