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Abstract:  

Removal of CO2 directly from anthropogenic sources (capture) and its disposal in geological 

formations can take place for medium-term time periods (storage), or it can be permanent 

(sequestration), with the CO2 eventually becoming dissolved in the aqueous phase.  The latter 

is the main subject of this dissertation.  

Carbon dioxide sequestration covers a wide range of strategies and alternatives. The main 

objective of CO2 sequestration alternatives is secure disposal of carbon in large amounts and 

for a lengthy time scale (typically 1000 years).  Injection of CO2 into subsurface formations is 

generally considered as the main option for CO2 sequestration. Geological sequestration 

through injection covers a broad variety of target formations: disposal in depleted oil and gas 

reservoirs, trapping in oil reservoirs, replacing CH4 in coal bed methane recovery processes, 

trapping in deep aquifers, and salt cavern placement are the major CCS alternatives in 

geologic formations. 

In this thesis, hydrogeologic interaction between the injectant (CO2) and the host fluid (saline 

water) during injection is the main subject of the project. Because of the density and viscosity 

contrast of displacing and displaced fluids, the pattern of saturation progression is 

complicated. A set of semi-analytical solutions is developed for quick estimation of the 

position of isosats (contours of saturation) during primary injection in homogenous cases 

with simple geometry. All of the mathematical solutions are developed based on two 

assumptions; incompressible fluids and rocks and vertical equilibrium (capillary-gravity 

condition) for geometries with large aspect ratio (L >> H).  

First, a series of analytical solutions for primary drainage for a set of linear relative 

permeability functions is developed. The first analytical solution is based on the assumption 

of locally linearized Leverett-J functions, and by using the method of characteristics, a 
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formulation for the isosats’ geometry is obtained. A semi-analytical solution is then proposed 

for calculation of the position of isosats with linearized relative permeability functions and 

arbitrary capillary-saturation correlation. The analytical solution is extended to incorporate a 

specific form of nonlinearity of the relative permeability function. Nonlinear relative 

permeability functions are also incorporated in another semi-analytical solution, and the 

positions of the isosats for any arbitrary Leverett-J function and relative permeability 

functions are developed. Sequential gas-saline injection is also modeled in that chapter.   

For approximate verification of the analytical solutions, a FEM numerical model is developed 

and the results of the analytical solutions are compared with the numerical solutions. These 

new analytical solutions provide powerful tools for prediction of saturation distribution 

during injection in vertical and horizontal wells, as well as for carrying out stochastic 

assessments (Monte Carlo simulations) and parametric weight assessment.  The domain of 

applications of the new solutions go far beyond the limited question of CO2 sequestration: 

they can be used for injection of any less viscous fluid into a reservoir, whether the fluid is 

lighter or denser than the host fluid (gas injection, water-alternating gas injection, water 

injection into viscous oil reservoirs, solvent injection). 
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1. Introduction 

1.1 CO2 sequestration:   

Anthropogenic carbon dioxide (CO2) emissions have resulted in a considerable increase of 

atmospheric carbon dioxide concentration. The major consequence of this abrupt increase is 

enhancement of the atmospheric greenhouse effect, which consequently leads to an increase 

in atmospheric temperature. Because of inherent complexity involved with mechanisms of 

climate change, there is no definite and accepted explanation for the coupling of the carbon 

cycle and atmospheric temperature, but there is a general agreement that industrial and 

personal CO2 emissions are the major source of global warming, and mitigating action is 

considered by many to be an urgent need. 

If the world economies, population and level of technology grow as have been predicted, and 

also if we include the probable development of cleaner technologies and more efficient 

energy policies, the concentration of CO2 will be eventually reach five times what it is now; 

the concentration may double before 2100 (1). This means that the total accumulation of CO2 

emission from fossil fuel combustion in the next 100 years could be more than 9,000 Gt (1). 

According to the United Nations Framework Convention on Climate Change, total CO2 

emissions should not exceed 2,600 to 4,600 Gt (1) in order to avoid serious (albeit ill-

defined) climate change effects. To decrease significantly the amount of CO2 emitted, the 

way energy is produced and consumed should change appreciably.  

Global warming happens as a consequence of an increasing concentration of green-house 

gases in the atmosphere, and CO2 emissions apparently have the most significant 

contribution. Carbon dioxide emission may become one of the major constraints on 

recoverable fossil energy consumption in the future, and Carbon Separation and 

Sequestration (CCS) is an immediate and potentially viable answer to the problem. It seems 
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CO2 sequestration could become a powerful solution as it is capable of reducing the amount 

of anthropogenic CO2 emissions to the atmosphere, which was the gist of the commitments 

undertaken in the Kyoto Protocol signed in 1990 (2).  

Carbon Separation and Sequestration is a candidate method to reduce Green House Gases 

(GHG) effects and stabilize the CO2 concentration in the atmosphere. CCS targets the CO2 

from flue gases and other point sources, generally the gaseous products of fossil fuel 

combustion (usually coal). Capturing the CO2 component in a reasonably pure form, 

compression and transportation of the CO2, and finally depositing it in a secure subsurface 

formation, are the general parts of various CCS systems. 

Each of the aspects of CCS technology must be evaluated from technical, economical and 

environmental points of views. The fate of the injected gaseous mixture in different temporal 

scales is the major issue of this technical investigation.  
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Fig ‎1-1 Different stages of CCS technology, from capture to injection (Dooley 2006) 

1.2 Capture: 

 Separation of CO2 from amongst the different components of flue gases and compression of 

the purified CO2 is called capture. The technology exists and is applied in several coal and 

natural power plants. The produced CO2 has different industrial uses and it is considered as 

an international commodity, but nowhere near the scale required for any impact on climate 

change.  

Capture of CO2 is considered as the most expensive part of CCS technology, and purification 

of carbon dioxide is usually done only at a small scale. Capture technologies must be 

improved considerably to provide the required amount of pure CO2 at a reasonable cost for 

massive sequestration. This part of CCS technology will remain an attractive and rich area of 

future research for methods that could drive down the cost of capture. 

1.3  Transport:  

Transportation of purified CO2 to injection sites is necessary for CCS, and currently little 

infrastructure exists for this purpose. One of the advantages of CCS technology is generally 
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close distances between concentrated CO2 sources and favorable geological formations for 

sequestration. This fact decreases the transportation length considerably, resulting in 

significant reduction of operation and maintenance costs. (Fig 1.2) 

  

 

Fig ‎1-2 distribution of major sources of CO2 emission and Oil and gas basins (IEA GHG) 

1.4 Injection in deep geological formations:  

Injection in deep geological formations is considered to be the most viable method for 

massive sequestration of CO2. Technology for deep injection of gaseous or supercritical 

components exists in oil and gas industries, although optimization of injection processes by 

help of horizontal wells, pulsing and smart injection are still considered as subjects for future 

research.   

Several different types of geologic formations are considered as potential candidates for 

sequestration of CO2, including saline aquifers, depleted oil and gas reservoirs, and deep 

unmineable coal seams. Another application of CCS could be to use CO2 injection as an EOR 
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(Enhanced Oil Recovery) agent to increase oil recovery from old fields.  Coal bed methane 

replacement and recovery is also another possibility for CO2 use in coal deposits (3).  

Each geologic formation has its inherent capacity, as well as its physical and geographical 

advantages and disadvantages. An ideal formation for CO2 sequestration is a permeable 

formation with high porosity overlain and sealed by impermeable cap rock to prevent any 

leakage and escape of the disposed CO2 (in gaseous, supercritical or dissolved form). Volume 

of reservoir, integrity of cap rock and permeability of the target sediment are considered as 

the major parameters in the evaluation of formations for injection, and secondary parameters 

such as depth, thickness, dip and other properties are also important. 

Although the contributions of different parts of CCS technology to the final cost depends on 

many factors and may change with developments, their ratios are roughly similar from one 

approach to another at the present time, and the most significant portion of the costs is 

allocated to separation. Purification of flue gas to the required degree to easily generate a 

supercritical fluid phase has the largest direct influence on the price of pure CO2. After 

separation, carbon dioxide is usually compressed to above its supercritical pressure (pSC = 

7.39 MPa @ 31.1°C). The density of supercritical CO2 at the supercritical point (0.469 g/cm
3
) 

is much higher than the density in its gaseous state, but still much lower than the density of 

the pore fluid in the target host strata (1.05 to 1.2 g/cm
3
 for deep saline aquifers).  

1.5 Scope of the dissertation:  

The approach in this dissertation emphasizes the interfacial interaction of gaseous mixtures 

(e.g. pure CO2, or CO2-enriched flue gas) in saline aqueous liquids for different 

characteristics of the aquifer, different relative permeability relationships, and different 

characteristics of the Leverett-J function. These topics have not been sufficiently discussed in 

the literature to allow them to be fully understood in an integrated (coupled) context for CO2 

sequestration. Reasonable modeling of solubility trapping of the gaseous mixture at high 
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pressures and temperatures requires a compositional simulator equipped with a realistic EOS 

(Equation of State for the gas or gas mixtures). The onset of natural convection is a 

significant factor in determining the rate of the mixing process, and there are different 

theories describing the initiation of natural convection in liquid-saturated formations (4), (5). 

The rate of mixing after the onset of density-driven circulation is also a matter of discussion 

(6). One of the major problems with natural convection is its characteristic time scale, which 

is too long for any experimental measurement. That makes the verification of the theoretical 

analysis of natural convection impossible.  

Many analytical and numerical solutions are available for simulation of different stages of 

geologic sequestration of CO2, and a brief review will be presented in the background 

section. Because of complexity of processes from different aspects, both numerical and 

analytical solutions are applicable for the prediction of the fate of injected CO2 in subsurface 

formations. Numerical approaches provide a more flexible model for compositional 

simulations; however, analytical solutions function better in scaled computations and stability 

analysis, for quick assessments, and for stochastic evaluation and parametric weight 

determination.  

This dissertation will focus on the mathematical simulation of gravitational segregation 

(override in the case of CO2 injection) and evolution of the capillary transition zone. The term 

“gas” is employed throughout; it refers in this thesis to the buoyant phase.  

This technical field is extended and complicated, and specification of objectives is important. 

The following section describes the physical processes during and after injection, and it 

should be noted that they are interactive and simultaneous. The final target of the injection 

process is a complete and secure mixing of the injected gaseous mixture for an extended time 

(e.g. 1000 yr). Each of the processes has its contribution in its own effective timescale. 
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1.6 Components and outline of the study  

The dissertation is organized as follows: Chapter two reviews the relevant literature on 

geological disposal of CO2. The Chapter includes the relevant background study of coupled 

physical phenomena of CO2 injection in porous media, categorized in three sections: fluid 

dynamics, thermodynamics and mass transfer. After the background study, another section 

reviews the CO2 injection literature, focusing on the gravity-free and gravity drainage 

(injection) literature. 

1.6.1 Semi analytical solutions for linearized relative permeability functions 

In Chapters 3 and 4, a series of analytical solution is presented for prediction of the position 

of isosats (surfaces of equal saturation in a 2-phase fluid system). First a semi-analytical 

solution is proposed using a linearized Leverett-J function for determining the location of the 

interface of the transition zone. Afterwards a series of fitting functions are used to 

approximate the saturation distribution for arbitrary Leverett J functions.  

In Chapter 4, a generalized version of the conservation equation is introduced, and the 

structure of the saturation transition waves is developed for gravity drainage. Afterwards, by 

forcing the position of isosats to honour the conservation equation, it is shown that the 

equation can be reduced to a 1-D steady-state case.  The solution must also be extended to 

non-linear relative permeability relationships, which are more realistic. 

1.6.2 Semi analytical solutions for non-linear relative permeability functions 

Chapter 5 introduces two analytical and semi-analytical solutions for primary drainage in the 

case of nonlinear relative permeability functions. The analytical solution is only applicable 

for specific but important cases of nonlinearity, and in this case the dimensionality of the 

problem is mathematically reducible to 1-D. For generality, a semi-analytical solution is 

developed using fitting function approximations to estimate the saturation distribution and the 
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position of isosats. Secondary imbibition is also modeled in Chapter 5, using front tracking 

methods.  

1.6.3 Numerical model 

To verify or compare the results of the analytical or semi-analytical solutions, a high 

resolution FEM model is developed for immiscible two phase flow with fluid density 

contrast. The numerical discretization is straightforward, and to stabilize the saturation, an 

upwind weighting method is used. This method is presented in Appendix A.  
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2  Background and literature review 

2.1 Introduction: 

During and after injection, there are a number of physical phenomena of interest that will take 

place in the subsurface. These processes are interactive (coupled) and from a mathematical 

point of view they are highly nonlinear.  In order to give a clear understanding of the 

phenomena, the relevant physical description has been narrowed down to consider each as a 

separate process. 

Gravitational override and viscous displacement of saline water: during and after 

injection of a gas (or a lighter liquid or super-critical phase) from a horizontal or vertical 

well, the gas is less dense than the host liquid; because of the buoyancy effect, the gaseous 

plume rises vertically and disperses laterally. The eventual configuration of the gas and the 

liquid pore fluid after great time is as a thin gas cap on the top of the permeable reservoir if 

none of the gas entered solution (Fig (2.1)). 

 

Fig ‎2-1 Schematic motion of gaseous plume and viscous fluid resulting from a density difference (Riaz 2008) 

Evolution of capillary transition zone: During injection of an immiscible non-wetting 

phase, a non-wetting front invades the pores of the porous medium and drains much of the 

wetting phase. However, a gas entry pressure is required for invasion of a pore to overcome 

the capillary forces generated at the interface of the phases.  This gas entry pressure is 
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different for different pores, and the specific value of gas entry pressure in a single pore 

depends on the size of the pore, the wetting state of the rock (generally wet by the saline host 

water), and the interfacial tension between the phases.  Because of this variability at the pore 

scale, the drainage front does not remain stable and a transition zone evolves (7), a processes 

called capillary fingering. Because of the substantially lower viscosity of the injected gas 

compared to the host saline fluid associated with the buoyancy effect, viscous fingering also 

develops, and a two-phase transition zone evolves and grows with respect to time. This will 

be discussed in detail in this thesis.  

 Evolution of the gas cap: The eventual configuration of a low density immiscible gas/liquid 

pore fluid is the generation of a thin gas/liquid cap on the top of reservoir.   

 Capillary trail: A limited portion of the CO2 is trapped in the trail of the mobile CO2 front. 

In this formation, residual gas remains behind as discontinuous bodies of gas, and the 

equilibrium between buoyancy and capillary forces stabilizes the configuration (Fig (2.2)) 

once the viscous driving forces dissipate. 

 

 

Fig ‎2-2 Evolution of gas cap and residual trapping zone (Riaz 2006) 
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Dissolution: Because of local thermodynamic equilibrium across the two sides of the phases’ 

interface, there will be an imposed concentration of different components on the liquid side 

of the boundary. The imposed concentration gradient triggers a mass transfer from the 

gaseous to the aqueous phase: the CO2 becomes dissolved in the water, eventually reaching 

an equilibrium level, perhaps at the maximum saturation value for the conditions. Within the 

saline water phase, CO2 in dissolved state can diffuse outward in the direction of the 

concentration gradient (non-advectively driven diffusive mixing is an extremely slow process 

in porous media). 

Natural convection: after partial mixing of CO2 and the host saline water, the CO2-rich 

saline aqueous phase becomes denser than the original saline aqueous phase, and when the 

density difference becomes sufficient over an appropriate length, gravitational instability 

ensues, and dense fingers move downward, with less dense fingers of the saline water moving 

upward. This phenomenon is called natural (density-driven) convection and it tends to 

accelerate mixing by increasing the surface area, ameliorating the rate of mass transfer into 

the saline water, and bring new aqueous phase material into contact with the overlying CO2 

phase.    

Several of these physical phenomena happen simultaneously, and they are coupled. These 

processes have different time scales, and their time scales are closely dependent on the 

characteristics of the reservoir and the constitutive relationships that govern flux processes in 

the specific porous medium.  In particular, important aspects include the porosity and 

absolute permeability of the formation, the relative permeability and the Leverett-J functions 

of the media, as well as the injection specifications (rate, T, composition) and the phase state 

behavior and dissolution behavior of the fluids. Time scale seems to be the most important 

factor in CCS technology, and is closely related to the rate of injection that can be achieved 

and the characteristics of the porous medium.  CCS technology will be practical if it is 
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capable of secure disposal of millions of tonnes of CO2 in a reasonable time period, but if the 

formation fails to accommodate a reasonable amount of CO2 in a requisite time, the CCS 

system will not be efficient.  

These processes are complicated and rigorous mathematical simulation of them is 

accordingly complex as well. It should be noted here that in such a complex system, 

developing of analytical solutions requires that the effects of many second-order phenomena 

be neglected, including the heat effect (heat of mixing and heat of expansion of injected gas) 

and geochemical effects (e.g. altering pH and potential dissolution or precipitation of 

minerals). Furthermore, to make the problem tractable in this research project, factors such as 

anisotropy and heterogeneity of formations, etc., are ignored or simplified.   

This research will be dedicated to mathematical modeling of innovative injection methods, 

with special emphasis on those that lead to accelerated solubility trapping (solubility trapping 

is inherently more secure than supercritical fluid placement). These topics include gaseous 

mixture injection (e.g. enriched flue gas instead of purified CO2), natural convection 

prediction and rate of mixing during the dynamic circulation within the host saline aquifer.  

2.2 Problem Statement: 

It is apparent that physical modeling of each component of the process is complicated, and 

extends into different branches of computational physics.  Hydrodynamics of liquid and gas 

in a subsurface porous media (5), (4), thermodynamics of dissolution, and mixing of the 

gaseous components in a host liquid and its interaction with regional fluid flow have been the 

subject of several investigations (8).   

Because of the buoyancy effect, the less dense injectant eventually migrates to the top of the 

aquifer. After evolution of the gas cap on top of the aquifer, even if it is overlain by cap rock 

formations, the interface is not stationary: dissolution continues and convection is initiated. 
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Natural convection is considered as an important part of the mixing process, simply because 

it accelerates the mixing process. The mechanism for natural convection is simple; small 

amounts of CO2 dissolve into the saline aqueous phase and increasing concentration of CO2 

changes the density of the liquid. If this density difference exceeds a certain limit, 

gravitational instability occurs (9), (5). The mechanism is similar to density-driven instability 

of an impulsively heated lower boundary of a stationary fluid (10), such as the convective 

flux observed in a pot of water being heated. 

Immobile CO2 trapping in a capillary trail is another method of sequestration. Residual 

micro-trapping is considered to be capable of isolating the gaseous mixture for geologic 

timescales, based on equilibrium between the buoyancy forces and capillary forces. This area 

is interesting for research and will likely remain an area of intense CCS research for the 

future.  

Injection of a gaseous mixture (CO2 and N2) instead of pure CO2 and simulation of the rates 

of components' mass transfer is another objective of this research. The EOS for real gas 

behavior at high pressures and high temperatures and its solubility in the saline aqueous 

phase should be studied as well. 

The onset of natural convection because of induced density gradients is another important 

subject that should be studied. Both linear and nonlinear stability analyses based on a variety 

of analytical and numerical methods exist for internal and external gravitational instability. 

The density gradient limit that triggers the instability and the rate of mixing after onset of the 

instability for different boundary conditions are also objectives for detailed study.  

Generally a multiphase multicomponent model for simulation of gaseous injection in saline 

aquifers is required for better understanding and predicting. The model should be capable of 

modeling fluid flow and thermodynamics of dissolution and diffusion. Numerical modeling 



04 
 

of some of these processes is expensive (time-consuming), therefore analytical and semi-

analytical models are very important as well (11).  Such models can allow rapid examination 

of simple cases, integration into higher-order models (as kernel functions for example), and 

development of a good conceptual appreciation of the physical processes. The analytical 

solutions have important practical applications.  First, they can be used for partial verification 

of numerical formulations for this class of problems.  Second, because a solution at any time 

is obtained instantly, they are useful for a “quick look” at different scenarios.  Third, because 

there is no time-stepping involved, the solutions can be used for long time period estimations 

where numerical dispersion may arise in numerical formulations.  Fourth, these solutions may 

be used in probabilistic evaluations (e.g. Monte Carlo simulations) and risk analyses which 

might involve thousands of realizations, an impractical task with numerical simulators.  

Finally, this solution may be used as the basis for other mathematical or numerical 

developments where additional physical aspects are added (e.g. dissolution, capillarity…) or 

non-linearities introduced, either analytically or semi-analytically.  Practical applications of 

solutions such as these presented herein include injection of gas, light hydrocarbon liquids, or 

supercritical CO2 into saline aquifers, and even the injection of low viscosity dense phases 

such as water into an oil reservoir or chlorinated hydrocarbon leakage into an aquifer.   

2.3 Trapping mechanisms: 

As introduced above, there are several physical trapping mechanisms, and each of them 

functions in a characteristic time scale and provides a different level of security. CO2 can be 

disposed in depleted oil and gas reservoir by stratigraphic and structural trapping 

mechanisms, in oil reservoirs and aqueous formations by solubility trapping, in unmineable 

coal beds by adsorption trapping, and in salt cavern by simple immobilization (12). 
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Fig ‎2-3 Different alternatives for CO2 sequestration (Flett 2004) 

Fig (2.4) represents a comparison between contributions of different physical mechanisms in 

total trapping. It is apparent that the least secure method, structural and stratigraphic trapping 

of supercritical CO2, has the greatest potential contribution in the short term. Conversely, as 

the level of security goes higher for different mechanisms with longer effective time scales, 

the engineering potential of these processes is less clear.  The following is a brief introduction 

to the different trapping mechanisms and their advantages and disadvantages. 

 

Fig ‎2-4 Contribution of trapping mechanism (Benson 2008) 
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2.3.1 Structural trapping mechanism:  

The injected CO2 both in supercritical and gaseous form has a significant lower density than 

the host saline liquid. Because of the buoyancy effect, gaseous or supercritical CO2 plumes 

can migrate upward directly or laterally up-dip. Trapping of CO2 under an impermeable layer 

that is geometrically sealed (e.g. an anticline) or fault sealed is called structural trapping. This 

trapping could be in a closed non-migrating system or one may also envision an open but 

very slowly migrating system (hydrodynamic trapping) (13). 

 

Fig ‎2-5 Structural trapping mechanism (Dooley 2006) 

Advantages of this trapping mechanism are its large contribution at small time scales. Cap 

rock integrity is very critical in this mechanism, and this factor should be considered 

carefully. The mechanism of cap rock closure is based on its high capillary force due to the 

fine porous structure of the rock (small diameter pore throats).   
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Fig ‎2-6 Sealing mechanism of cap rock (Plug and Bruining 2007) 

The generated pressure in the subsurface may control the capacity of the structural trapping 

mechanism.  In the other words if the pressure exceeds the cap rock capacity, leakage will 

take place and the sealing mechanism fails to isolate the stored fluid. This is a major 

constraint for the mechanism, and limits the storage capacity and injection rate. If the CO2 is 

stored as a supercritical fluid under typical conditions (ρ = 0.6 – 0.8 g/cm
3
), there is the 

additional problem of miscibility of water and CO2, therefore the integrity of a capillary seal 

is further drawn into question over long time scales.  

2.3.2 Residual (capillary) trapping mechanism: 

A separated fraction of CO2 distributed through the porous medium in a stable configuration 

comprises another trapping mechanism. Because of separated fractions of gaseous mixture, 

there is no significant permanent excess pore pressure being generated as a result of injection 

(11). Therefore the capacity of this mechanism is not limited by the integrity of the cap rock 

with respect to buoyancy forces. 
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Fig ‎2-7 Capillary trapping (Dooley 2006) 

Residual trapping is considered as an effective trapping mechanism, but thorough 

understanding of the physical mechanism demands pore scale investigations of media 

because of possible anisotropy and nonhomogenity. Long term geochemical effects, 

wettablity alteration and natural groundwater flow can connect the separated fractions and 

mobilize them if their connected height becomes great enough so that the buoyancy forces 

exceed the capillary forces. Perhaps the greatest issue is the limits on volume stored that can 

be achieved by capillary residual trapping in the gaseous form; it is not likely to be of 

sufficient magnitude. 

2.3.3 Solubility trapping mechanism: 

Dissolution of CO2 into in-place saline water or hydrocarbon liquids is supposed to be the 

most secure trapping mechanism other than precipitation of a solid, CO2-rich mineral phase 

(11). Dissolved CO2 becomes isolated, immobile and non-reactive for a long period of time 

and there is no rise of pressure as the result of dissolution happening in the formation. The 

main problem with this trapping mechanism is its slow rate to achieve a fully CO2-saturated 

liquid, and the limited capacity of the mechanism in terms of volume stored (~8% by mass 

CO2 can dissolve into water at 15 MPa and 40°C).  

Careful investigation of solubility-based mixing of gaseous mixtures and pore fluid requires a 

comprehensive knowledge of fluid flow hydrodynamics including dispersion and convection 

(6), thermodynamics of dissolution and diffusion (8) and finally possible geomechanical 
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effects. The main concepts are presented briefly in the following section. This main target of 

this project is clarification, scale estimation, simulation and generally feasibility assessment 

of this trapping mechanism in a porous formation. 

2.3.4 Mineralization:  

Geochemical binding of CO2 to the rock is considered the most secure trapping method, 

although this method is not considered effective in most of the investigations because of the 

lengthy time-scale (14).  

Beside the aforementioned trapping mechanisms, there are other alternatives like hydration 

(12), temporary disposal (storage) of CO2 in salt caverns (15), ocean sequestration (16), etc. 

In the two following sections, the required basis for these two processes is introduced, 

including the assumptions involved, the temporal and spatial scale issues, the approach to 

formulation, and solution strategies.  

2.4 Background Study: 

2.4.1 Fluid Mechanics: 

Examining the principles of fluid flow in porous media, including single phase and 

multiphase flow, mass and heat transfer, and so on, it is apparent that typical treatments do 

not have the scientific depth that is required for the applications to be considered. Based on 

the application and nature of the physical phenomena, certain assumptions suffice for some 

cases but not for others. Spatial and temporal scales are used for single- and double-

continuum treatments, and scales depend on the mean velocity, the pressure gradient, the 

permeability, and also the field representative length (Table 2.1). 

There are three different scales for description of fluid flow in a porous medium; the 

molecular scale (scale at which the molecular diffusion is occurring), the pore scale (wherein 

continuum equations are valid), and finally the Darcy scale (hundreds to thousands of pores 
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forming a representative elementary volume – REV – within which Darcy's law is valid) (17). 

One might also consider a megascale where effects of heterogeneity, anisotropy, and 

geological stratification are introduced. 

Table ‎2-1 Different temporal and spatial scales for porous media (Kaviany 1999) 

 

However, in most of the approaches, when averaged macro formulation of molecular mass 

transfer is sufficient, only pore and Darcy scales are studied. There are many approaches 

towards the modeling of dispersion and fluid flow in porous media for both one phase and 

multiphase cases.  

Here, we are limited to creeping flow with negligible effect of inertial force (no dynamic 

effects). For low Reynolds numbers, Darcy's law is considered as a base for the other 

formulations in one and two phases, and also for coupling of flow problems with 

geomechanics issues. In contrast to other governing physical equations like the conservation 

equations (mass, momentum, energy), Darcy's law is empirical and it is not considered 

necessary to invoke any strong physical proof of its validity.  This is because the valid scale 

of the dimensions for Darcy's law (Darcy scale) is much larger than the scale at which 
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continuum mechanics is valid (the pore scale), and up-scaling is not easy due to unstructured 

and irregular pores (hence the REV concept).  

The main concept of upscaling is developing a mathematical scheme which is capable of 

capturing the physics at the fine scale and providing some simple governing equation for 

large scale description of the spatial domain. These mathematical methods are usually based 

on some assumptions which simplify the physics of porous media, and it is important that 

these assumptions be shown to be robust for the processes considered. 

The scientific literature is rich in articles on mathematical up-scaling from the pore to the 

macro scale, and most of them are based on mathematical averaging in random or periodic 

media. Ene and Sanchez-Palencia used the theory of homogenization for seepage flow in 

rigid porous media (18). They assumed the macro scale domain as a series of identical 

periodic cells of grain and fluid in a micro scale and used an asymptotic approximation for 

micro-scale continuum-based momentum conservation and derived macro-scale permeability 

coefficients. This method was used by Mei and Lee for derivation of permeability and 

dispersivity of a solute in a periodic porous medium (19).  

The theory of homogenization for two phase flow has been used for multiphase flow but to a 

much less degree than the theories that were considered in the previous configuration (20). 

Defining a cell problem in micro scale appears not to be tractable for spatial variations of 

saturations, and up-scaling based on cell formulations are not considered to be physically 

applicable to this case. 

2.4.1.1 Multiphase flow: 

Seepage phenomena involving multiphase fluids within a framework of continuum 

mechanics is based on the local averages of variables. The scale of averaging should not be 



22 
 

much larger than the pore scale but not less than it either (21). Similarly, the results of the 

continuum-based simulations are not contrasted in scale smaller than pore scale.  

The principal descriptive parameters of two-phase immiscible fluids in porous media are 

usually saturations and velocities of each fluid, but pressure-based approaches are possible 

(22). These characteristic approaches are equivalent, based on one-to-one mapping of 

saturation, capillary pressure and relative permeabilities (23). 

Velocity of the fluids is a vector characteristic equal to the averaged velocity of the phase in 

the particular spatial coordination. Based on the continuum mechanics approach, the velocity 

field and saturation field are continuous inside one phase domain. The boundaries between 

phases are combination of several curved segment areas with radii of curvature comparable to 

the characteristic pore diameter. The curved interfaces stabilized by surface tension lead to a 

jump in the pressure across the interface, which is described by the capillary phenomena 

equation given by the Laplace formula:  
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Here, R1 and R2 are the mean curvature of the interface and α is the interfacial tension. R1 and 

R2 are on the order of   
   

 
  

, where k is the permeability and m is the porosity of the 

porous formation (21). For instance in a sandstone with typical permeability of 0.1 µm
2
 and 

porosity of 0.1 - 0.2, characteristic pore size diameter is 5-10 µm. Interfacial tension for water 

and carbon dioxide is 27 mN/m (24)(25). Consequently, the capillary pressure at the 

boundary is on order of tens of kPa. This significant capillary pressure becomes very 

important in residual trapping and will be discussed later. 
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Fig ‎2-8 Capillary configuration (Kaviany 1999) 

Capillary pressure can be measured from a core sample, and it depends on the interfacial 

tension between the wetting and non-wetting phases and the wettablity (contact angle) of the 

mineral phases. In order to write the capillary pressure only as a function of saturation and 

contact angle, and ignore the effect of random structure of pore channels, the Leverett 

function is proposed in Eq (2.2) (21). This formulation is based on an analogy of randomly 

shaped capillaries with circular cylindrical shapes. 
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For a mobile continuous phase, pressure is defined as the average of its value in a 

Representative Elementary Volume (REV).   

Water-rich and gas-rich zones are separated by a transition area, and the length of this 

transition area may vary from the pore scale (abrupt interface) to hundreds of meters (26). 
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2.4.1.1.1 Hydrostatic equilibrium of two phase flow: 

In the static condition, there is no inertial effect and all the phases are in mechanical 

equilibrium. For two fluids with different densities, gravitational and capillary forces are 

present and must enter the general statement of equilibrium. The vertical gradient of each 

fluid's pressure is equal to the unit weight of the fluid, and consequently the gradient of 

capillary pressure is equal to the difference of the densities of the phases. 
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There are many correlations between capillary pressure and relative saturation in the 

literature, extending from unsaturated soils work to oil-water production applications in the 

petroleum industry. Schematically, the variation of saturation versus capillary pressure is 

shown in Figure (2.10). There are two important parameters in the figure; the first is the 

residual saturation, and the second is the different drainage and imbibition fluid retention 

curves. The residual saturation is the saturation of the immobile fractions of the wetting phase 

in the pore space, and is also called irreducible saturation. This saturation occurs at an infinite 

capillary pressure for the wetting phase and at a zero capillary pressure for the non-wetting 

phase.  This value is critical for estimation of residual trapping mechanism capacity in CO2 

sequestration, quantification of the volume of immobile oil ganglia in reservoirs subjected to 

water flooding, and in remediation analyses for contaminant removal from underground 

water aquifers. 

Similar to Figure (2.11), the effect of hysteresis is important in the water retention curve, and 

it represents different curves for drainage (dewatering) and imbibition (increasing water 
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saturation). This subject will be discussed in the next section. Vertical equilibrium is a key 

assumption in the developed solutions for primary drainage problems, and it has been 

justified several times.  

 

 

Fig ‎2-9 Capillary and saturation correlation (Kaviany 1999) 

2.4.1.1.2   Motion of two-phase flow in porous media: 

A quasi-static assumption is usually made for physical interpretation of saturation variation 

and flow in multiphase porous media; this involves only slow pushing aside of a displacing 

fluid with no inertial effects. Static equilibrium is assumed to be valid, and this assumption 

for rapid variation of saturation is not reasonable (21). Effects of inertial and drag forces are 

usually ignored in this assumption, but the dominant forces, which are viscous, gravitational 

and capillary forces, are all considered. 

The effect of saturation hysteresis on relative permeability is similarly described, and it has a 

different path for imbibition and drainage. The slight differences are explained by the 

existence of this hysteresis which arises because of inherent geometrical complexities of the 
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pore structure. One of the pore scale complexities is variation of pore channel diameter in a 

capillary “channel”, combined with the fact that imbibition occurs as displacement of a 

contiguous wetting phase.  However, during drainage, a trail of immobile fractions of the 

wetting phase is left behind. Therefore in a capillary pressure relationship, the saturation of 

the wetting phase after drainage is higher than it is after imbibition (21).  

Fig (2.10) presents the variation of relative permeability versus saturation. Table (2.2) is a 

collection of correlations between saturation and relative permeabilities. Rigorous calculation 

of relative permeabilities through the process is important, especially in gravity drainage or 

gravitational override of a gaseous plume.  

 

Fig ‎2-10 relative permeability versus saturation  (Kaviany 1999) 

There are several instability mechanisms involved in multiphase flow, especially when the 

wetting and non-wetting phases are much different in density and viscosity. Significant 

difference in viscosities causes evolution of viscous fingering, and channeling also occurs as 

a consequence of heterogeneity and anisotropy. Consequently, the actual distribution of 

saturation will be totally different from that predicted the Darcy equations alone (27). 
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Rigorous modeling of viscous fingering, gravitational segregation, channeling, formation of 

isolated ganglia and other instabilities requires a pore-scale approach to capture small-scale 

perturbations and local propagation of instabilities.  

Table ‎2-1 Different correlations for relative permeabilities 

Porous Media Correlation 

Sandstone and lime stone (oil water) (23) Krl=S
4
  ,       Krg=(1-S

2
)(1-S

2
) 

Nonconsolidated sand (well sorted) (28) Krl=S
3
,         Krg=(1-S)

3 

Nonconsolidated sand (poorly sorted) (29) Krl=S
3.5

,         Krg=(1-S
2
)(1-S

1.5
) 

Cemented sandstone, limestone, rocks (28) Krl=S
4
  ,       Krg=(1-S

2
)(1-S

2
) 

Sandstone, oil-water (30) Krl=S
3
,         Krg=1-1.11S 

Soil-water-gas (31) 

Krl=(1-Sr-Srg-S)
1/2

{(1-S
1/m

)
m
-[(1-(1-Sr-Srg-

S)
1/m

]
m
}

2
 

Parameter m comes from experiments 

Consolidated sandstone (Saline-CO2) (32) 

Krl=Se
α
,     Krg=β(1-Se)

α 

Parameters α and β come from experiments 

 

2.4.1.1.3 Mathematical formulation of multiphase flow: 

In this section, we introduce the governing formulation of laminar two-phase fluid flow in 

porous media. The most straightforward form of the governing equation is parabolic. The 

main unknowns are pressures of the wetting and non-wetting phases. Saturation of wetting 

phase and relative permeabilities are considered functions of capillary pressure 
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Sw is the reverse correlation between capillary pressure and saturation, which exists only if 

saturation decreases with capillary pressure monotonically, which can be the case for a 

monotonic injection process (i.e. no reversal in flow direction).  
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In these relationships, q is mass flow (volume flow), krn is relative permeability of the 

nonwetting phase, and µ is viscosity. Mass conservation for both phases is expressed as 
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Equations are the base equations of the method called the "simultaneous solution method" in 

the petroleum literature. The equations are coupled and nonlinear and reduce to zero capillary 

pressure for single-phase flow.  

 Equations in parabolic form can be written based on different unknowns (33), but the most 

simple one is the classical Muskat equation for multiphase flow (34), if the two phases are 

considered incompressible and with zero capillary pressure. 
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A hyperbolic form of flow equation is more applicable in CO2 sequestration application 

because it is well-suited to the Riemann equation formulation (35). This form of equation was 

first used by Fayers and Sheldon (36), and if one neglects the effect of capillary pressure, this 

equation reduces to the equation from Buckley-Leverett theory (37). If we assume the fluids 

are incompressible, which is reasonable for deep injection of CO2 (little Δp and ΔT), one can 

write 
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Here, un and uw are volumetric velocities of fluid phases, and qn and qw are volumetric 

sources of wetting and non-wetting phases. 
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The symbol λ is called the mobility of phase l, and ut is the total flow. Water velocity can 

then be written as 
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If Eq (2.14) is substituted into Eq (2.16), one can obtain 
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Where fn and fw are the fractional flows of wetting and non-wetting phases. 
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Eq (2.16) is still a parabolic representation of two-phase porous media flow, but if any 

variation of capillary pressure is neglected, the equation becomes a hyperbolic type equation.  

Application of injection of a gaseous mixture into a saline aquifer is reduced to two important 

one-dimensional flows. The gravity-driven vertical rise of a gaseous plume, associated with 

the downward viscous movement of the host saline water, is reduced to a case of 1D 

multiphase countercurrent flow. This application is important for estimation of gravitational 

override time scaling. 
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By substituting equation Eq. (2.11) in Eq. (2.9) 
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And by substituting the Leverett equation for capillary pressure  
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The equation has two terms on the right side, a capillary term and a gravitational term. Silin 

et al. (35) proposed asymptotic analytical solutions for different scales of   
  

  
     .  

If  
  

  
         the flow can be characterized by Ryzhike's self-similar solution (38). This 

represents an abrupt change in saturation, for instance flow of a gaseous plume against 

impermeable cap rock. The second case is   
  

  
          which is the case where both capillary 

and gravitational force are important, which suits the case of thick and permeable aquifers. 

Finally for the case of a negligible saturation gradient,  
  

  
        , the equation reduces to 

the Buckley-Leverett approximation. 
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This turns out to be similar to the Riemann equation with shock and rarefaction waves. The 

other important application of a 1D assumption is lateral dispersion of injected CO2 in a 

confined reservoir. This type of formulation has been addressed in several investigations, and 

the solutions are based on the assumption that all flux is horizontal, so the sets of equation 

reduce to a 1D equation. 
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Fig ‎2-8 Lateral dispersion of CO2 during injection process  (Nordabotten, Celia and Bachu 2005)  

In this equation, V(t) is the total volume of injected CO2 which is a function of time, B is the 

zone thickness, and λn and λw are mobility coefficients for the wetting and non-wetting fluids. 

After injection of CO2 there are two transient propagations which start simultaneously, first 

pressure propagation and second, displacement of the CO2 front. The first one is propagation 

of the outer boundary condition for pressure distribution, and the second one is leakage 

velocity of the CO2 front away from the injection well. It has been shown that both of the 

propagation processes are proportional to    . (39) 

2.4.2 Drainage-Injection process with application of CO2 injection: 

Theoretical solutions for multiphase flow problems in the presence of viscosity and density 

contrasts have been a subject of much research for many decades. The specific application 

that is interesting for this thesis is the CO2 injection process, and the physical process can be 

simulated by injection of a light non-wetting fluid into a single-phase saturated medium, 

where the non-wetting phase is  (CO2) and the aqueous wetting phase (saline water) fluids 

are partially soluble but immiscible (40). This physical phenomenon is called primary 

drainage. Here, mathematical treatments for the primary drainage process are presented in the 

two major categories; gravity-free drainage and gravity drainage (41).  
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In the special case when wetting and non-wetting fluids have equal densities and vertical 

gravity head is zero (i.e. velocities are only horizontal) the drainage process can be (42) 

modeled by a 1D flow equation. This problem is called the gravity-free drainage process and 

possible application of such equations are EOR methods using injection of a solvent with 

densities close to oil density (e.g. water flooding), or attempts to water-flood heated heavy oil 

where the densities are almost equal. In the Eq (2.21), the generalized formulation of gravity 

free drainage was presented.  

However, when the displacing and the displaced fluids have a significant density difference, 

gravity forces becomes important and must be coupled with the viscous forces. The 

combination of the effective forces results in a complicated saturation distribution. Gravity 

drainage is defined as vertical displacement of the wetting phase by the non-wetting phase of 

different density. There are numerous applications for gravity drainage applications including 

air sparging (42), acid gas injection (43), CO2 sequestration, geothermal energy extraction 

and a number of different oil recovery schemes such as steam-assisted gravity drainage, 

vapor-assisted gravity drainage, and water flooding of conventional oil of lower density in a 

partially oil-wet reservoir.   

The governing equations for saturation conservation in a homogeneous porous medium are 

well established (44). By rearranging the equations, they can be decoupled into two equations 

for saturation and pressure where the equation for the saturation distribution is convective-

diffusive, but the convective component is generally dominant. The convective term comes 

from the velocity of the fluid imposed by the rate of injection, and the diffusion coefficient is 

then proportional to the capillary pressure. By assuming a small capillary number, the 

saturation equation is reduced to a hyperbolic (convective) equation ((21)). Several analytical 

solutions of the governing equations for symmetric geometries and linearized conditions have 

been published (45), (46)(47)(48).  
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2.4.2.1 Gravity free injection: 

As discussed in the introduction section, influence of the capillary term can be significant or 

negligible, depending on the Leverett-J function. In gravity-free conditions, when there is no 

density contrast, inclusion of capillary pressure makes the sharp front diffused, and a 

continuous but steep function represents the saturation distribution versus radius. This 

problem has been treated by Hussain et al (48), Norbotten (49), Barenblatt (41) and others.  

By ignoring the capillary term, the equation is reduced to a strictly hyperbolic one, and 

possible analytical solutions are continuous or discontinuous functions, or a combination of 

them (41). The type of solution depends on the initial saturation, the fractional flow function, 

and the distant (farfield) boundary condition. In primary drainage of water-wet formations 

such as saturated sandstones, the saturation profile is a combination of shock and rarefaction 

waves; more specifically, the saturation profile is a shock wave representing a step jump in 

saturation followed by a rarefaction wave which describes a zone of continuous saturation 

variation.  

In a primary drainage process, a continuous rarefaction wave evolves because of the faster 

penetration of the larger saturations; i.e., the fractional flow function is partly convex. 

Conversely, a concave fractional flow function always creates a shock wave. By plotting a 

tangent line to the fractional flow function that passes through (S,F(S))=(1,1), the far right 

boundary condition, the extent of the shock wave is obtained. Labeling the saturation at the 

tangent point Sc, the interval of the shock wave is        ((41),(50)). If one assumes that the 

residual water saturation behind the shock wave is smaller than Sc, the saturation front profile 

is not continuous, Fig (2.13). In this case, a sharp interface assumption will be justified, but if 

the residual saturation is smaller than Sc, a continuous trail of saturation variation appears and 

grows over time. This condition has been associated with a strongly water-wet condition 

(51);(3), and the saturation profile is a continuous function that trails a discontinuous front. In 
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the second case, the saturation distribution of the injected gas is totally different from widely 

accepted assumptions.   

At a smaller scale, through inclusion of the capillary force, even in the presence of a shock 

wave the variation of saturation is not discontinuous. Evolution of the capillary fringe makes 

the discontinuous transition into a steep but continuous transition function (41);(49). 

Inclusion of the capillary fringe has been addressed previously (52), (49), but to our 

knowledge the continuous saturation profile behind the shock wave has not been treated 

rigorously.  

The degree of non-linearity of the relative permeability functions is proportional to the value 

of Sc, and for a lower degree of nonlinearity, the value of Sc approaches 1. The extreme 

condition arises when the relative permeability functions are assumed to be linear; in that 

case Sc is equal to 1. In other words, for a set of linear relative permeability curves there is no 

shock wave and the saturation profile is a fully continuous rarefaction wave between S = 0 

and S =1. A linear relative permeability assumption is generally a poor approximation for 

porous formations with significant capillary pressure effects, but for fractures or very coarse-

grained strata, they are reasonably realistic (32). 

 

Parameters in these relative permeability functions are determined by interpolation of 

laboratory measurements. For a primary drainage process, according to core analysis of 

Ellerslie sandstone, the best fit is often chosen as α    and β      (32). The suggested 

formulations for the capillary pressure in the literature are generally discontinuous, but this 
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work is addressing primary drainage only with no hysteretic cycles of saturation (i.e. no 

cyclic injection and production).  

 

 

Fig ‎2-9 Second-order relative permeability function  

2.4.2.2  Gravity Drainage:  

The effect of gravity and the different hydrostatic pressure (gravity head) distributions of 

columns of fluids of different density complicate the pattern of saturation progression during 

injection. Injection of a gas (or a lighter supercritical fluid or a solvent) into a water-saturated 

formation is called “primary drainage” (53), and the density contrast generates a vertical 

capillary pressure effect. The vertical part (function of z) of capillary pressure is assumed to 

be constant and equal to  γ  γ
 

 γ
 
, an assumption stipulated from the vertical 

equilibrium assumption of fluids and the condition of negligible vertical velocity (which is 

realistic for large-scale rapid injection into tabular flat-lying reservoirs). The vertical 

equilibrium assumption has been discussed and justified several times (51), (40). The vertical 

part (function of z) of the capillary pressure associated with a radial capillary pressure 

calculated as the vertically averaged saturation leads to wedge-shaped contours of equal 

saturation (isosats). Lateral progression of the non-wetting phase saturation is faster on the 

top compared to the bottom because of the lower initial pore pressure of the host fluid on the 
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top of the aquifer (the different hydrostatic pressure distributions). Formulation of the 

positions of the isosats is necessary for two-dimensional analytical solutions for the saturation 

in the transition zone. Combining the radial and the vertical part of capillary pressure, a 

global functional for the capillary function is obtained and stipulation of the capillary 

pressure contours, which are equivalent to the saturation contours, then becomes possible. 

 

Fig ‎2-10 Case 1 is the strongly wet formation with minimal transition zone; in Case 2 the transition zone grows over 

time. 

. 

Post injection spreading of the injected CO2 under the assumptions of sharp interface and 

vertical equilibrium has been studied by Hesse et al. (54) and a series of self-similar solution 

are developed. Early time drainage of the light nonwetting is proportional to t
1/2

 when the 

injectate fills the thickness of the aquifer. This is called early time self similar solution and 

has been solved by Hupert et al. (55).  

After substantial time, the gravity driven component of velocity increases and the gaseous 

plume becomes a thin layer of gas spreading underneath the cap rock. Late time propagation 

of is still self similar and proportional to t
1/3

 (54).  

In a confined horizontal tabular formation, the injectant invades the pore space and pushes 

the host wetting liquid away from the injection zone. In an unconfined configuration, the flow 
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of ambient fluid is negligible as the less-dense fluid can rise in a largely unconstrained 

manner. In the first case, the ratio of viscosities is a key parameter in estimating the size of 

the transition zone. Nordbotten et al. (39), (49), (56) derived an analytical solution assuming 

a sharp interface between the host liquid and the trailing completely drained zone and the 

total gas content at any radius is lumped only at the top of the aquifer. Juanes et al. [(57)] 

extended this solution to a secondary imbibition process and estimated the magnitude of the 

residual trapping mechanism for the host fluid. Sloping aquifers (inclined geometries) and the 

effect of a capillary fringe were studied in later works (58), (21). In most of these works, the 

effect of permeability and the type of relative permeability function chosen are not discussed. 

For instance, in (57) the intrinsic permeability of the formation is not mentioned, nor in (39). 

Although the residual saturation in the fully drained zone is incorporated in the solution 

procedure, the appropriate type of relative permeability functions does not enter the solutions. 

Similar approach for gaseous propagation in a half space geometry is also presented by Lyle 

et al. (59). 

Gravity flow in porous media has been the subject of many studies. Huppert and Wood 

(1995) derived an analytical solution for gravity flow in sloping aquifers by assuming flux of 

a continuous plume with a density different than the host fluid density. The ratio of the plume 

depth over the aquifer thickness (
 

 
) is stated as the unknown of the problem for the steady-

state condition (55). Golding et al. extended the same methodology and derived a similarity 

solution and included the effect of the capillary fringe in their analytical solution (60). The 

fundamental assumption for both these solutions is that the aquifer is unconfined       

and therefore the viscosity of the host fluid (generally taken to be water) is not important. 

Nordbotten et al. (56),(61) derived an axisymmetric analytical solution for gravity override 

including an inclined geometry, and later also included the capillary fringe effect (49),(58). 
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They also included the effect of a viscosity contrast and relaxed the assumption of aquifer 

confinement.  

Gasda et al. (62),(63) used the concept of vertical capillary/gravity equilibrium; by assuming 

pseudo-linear relative permeability functions, the governing equations reduced to a 1D 

horizontal set of equations. The effect of solubility trapping of CO2 was also included. Juanes 

et al. (57) used a similar problem statement and derived the shape of the gaseous plume over 

time, eventually including cases of sloping aquifers and capillary trapping in their published 

work (64). Numerical modeling of CO2 sequestration has been studies extensively as well, 

but time scale of the process makes the numerical analysis very expensive (65)(66). 

The approaches of these authors are all similar.  First, an interface is assumed that separates 

the pore space into a fully drained zone and an intact water zone; this is analogous to 

progression of a shock wave (a leading discontinuous front) where the zone behind the shock 

wave is completely stripped of mobile water and the saturation is everywhere equal to the 

residual saturation. This approximates only the case of strongly water-wet formations where, 

by inclusion of a capillary pressure, a transition zone with an abrupt variation of saturation 

will appear. Second, this interface configuration is applied to the mass conservation equation 

for an incompressible injectant, and analytical solutions for the interface position are thus 

derived.   

In the absence of capillary forces, the transition becomes small enough to be assumed as a 

sharp interface. This is proved by Nordbotten et al. (58) using a large scale capillary pressure 

approach. From physical point of view, vertical equilibrium condition is only the case when 

the capillary force is equal to the buoyancy forces. In the other words, theoretically negligible 

capillary pressure and vertical equilibrium assumptions are not consistent.  



41 
 

The main postulate in these works is the assumption of a discontinuous (shock) drainage front 

that serves as a discrete border between the intact host liquid and the less dense phase in the 

completely drained zone, and the total absence of a transition zone of varying saturations. 

The discontinuous saturation transition is also known as the Rankine-Hugoniot jump 

condition (67), (50).  Similar to Fig (2.13), if a discontinuous saturation transition (i.e. a 

shock wave) is dominant, the sharp interface assumption is a reasonable approximation, and 

this may be an acceptable postulate if the viscosity of the injectant is substantially greater 

than that of the host liquid. But, as shown in Fig (1b), depending on the relative permeability 

functions and the residual water saturation (Sr), the profile of drainage can range from a 

continuous transition to a combination of a continuous transition and a discontinuous jump 

Fig (2.13), or even an approximately sharp jump. It is apparent and indeed observed in all 

real cases where the injectant viscosity is substantially lower than that of the host wetting 

liquid, development and evolution of a continuous transition zone (i.e. a rarefaction wave) 

takes place (21).  

The continuous transition of saturation behind the shock wave is important from different 

point of views. The growing extended transition zone provides a huge surface contact area 

between the host fluid and the injectant. This accelerates diffusively-dominated chemical 

interactions such as dissolution of the injectant into the host liquid, vaporization of water and 

precipitation of salt, and mineral interactions with fluids such as stripping of the adsorbed 

water from the surfaces of silicate minerals or the dissolution of carbonates in the presence of 

weak carbonic acid under pressure. Additionally, if one ignores the existence of the 

continuous trail of saturation, the effect of relative permeability functions is not even 

considered in the breakthrough of the gas, yet, the set of applied relative permeability 

functions has a significant effect on the saturation distribution.  
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Analytical treatment of the transition zone is complicated and little has been achieved for 

realistic conditions. For one-dimensional and cylindrical geometries, the Buckley-Leverett 

solution was developed (68)(41)(69). However, this solution can be extended to any arbitrary 

shape of isosat, and by forcing the shape of isosat to the general mass conservation equation, 

a hyperbolic governing equation can be recovered. This is explained in the following section.  

2.4.3 Mass transfer: 

Mass transfer mechanisms in CO2 sequestration are important from two points of view, to 

provide an estimation of the rate of mixing (time scaling), and to calculate an ultimate 

capacity of the saline aquifer for disposal of CO2 in its dissolved form. Diffusion coefficients 

for a multicomponent system are reported based on experimental measurements, and also the 

formulations have been presented based on irreversible thermodynamics (26)(70) and kinetic 

theory (71)(72).  

In this case, a rigorous physical model is required for modeling the mass transfer of 

components through different phases. Multicomponent diffusion results from the gradient of 

concentration, the pressure (because of capillary pressure) and the temperature (thermal 

diffusion). If the field is supposed to be stagnant (no significant phase velocities), all the mass 

transfer is considered to be diffusive. However, there are several sources of motion in the 

bulk liquid. 

Gravitational override is a faster phenomenon compared to diffusion of CO2 from the 

interface, and this provides a CO2-free interface for the gas-rich domain. Consequently the 

mass transfer because of diffusion increases appreciably. The other source of bulk flow 

velocity is natural convection resulting from induced density gradients. The latter 

phenomenon is also expected to accelerate mixing processes significantly (9). 
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Diffusive and advective fluxes exist throughout all domains in the porous medium, both in 

liquid-rich and in gas-rich regions. Although the molecular diffusion coefficient in liquid is 

much larger than in a gas mixture, because of the higher molar density of liquid, the rate of 

diffusive mass transfer in both is of the same order of magnitude (73). 

Molecular diffusion is a slow process, and therefore it is not feasible (in a practical sense) to 

rely on the process for mixing of the injected gas and the host liquid, but the onset of natural 

convection, density-driven motion, and other induced velocity fields (e.g. thermal convection 

effects) could provide significantly better environments for the mixing process. 

As has been discussed previously, multicomponent diffusion can be described based on two 

models, the first of which is based on molecular kinetics. In order to clarify the molecular 

diffusion from the kinetics point of view, each molecule is considered as an individual 

particle. The particles are in continuous motion, and the mean free path (MFP) of the particle 

represents the concentration of the molecules. In multicomponent systems, particle collisions 

could be between a pair of unlike molecules, a pair of similar type molecules and finally 

between molecules and the porous wall.  

The Stefan-Maxwell equation describes the momentum transfer of particles when the 

collision between unlike molecules is dominant. Based on the different velocities of 

molecules of the different chemical components, the concentration gradient is 
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In this equation, i and j represent the chemical components and Dij represents the binary 

diffusion coefficient. In the absence of a global pressure gradient, the Stefan-Maxwell 

formula is valid (71). 
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If the MFP of molecules is much larger than mean pore diameter, the frictional force between 

molecules and solid matrix becomes important. This phenomenon is called the Knudsen 

effect (72)
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Here, Di
k
 represents the MFP of molecules and average pore diameter of the media.  Finally, 

the effect of momentum transfer results from intra-molecular viscous friction forces and is 

dominant in systems with pore diameters larger than the MFP. 
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Bo is a variable representing the porous medium and µ is the viscosity of the i
th

 component. If 

all the mentioned effects are present in the process, the total mass flux will be  
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The first term represents the advective component of mass transfer and the second term is the 

diffusive component of mass transfer.  

From a totally different point of view, diffusion of mass components is a phenomenon arising 

from nonequilibrium conditions for two components, and this nonequilibrium condition could 

arise because of gradients of concentration, temperature and pressure. There are several 

approaches towards multicomponent diffusion found in the literature (70) (26), and most of 

them derive the diffusion coefficients based on entropy production.  
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Irreversible thermodynamics approaches to diffusive mass flux are formalized in the 

following manner  
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This expression includes all molecular, pressure and thermal diffusion terms.  

A mixing process is a combination of a diffusion dominated part and a convective flux 

dominated part, and their ratio is called the Sherwood number. Sherwood number (Sh) is the 

ratio of convective mass transfer coeficient to diffusive mass transfer coefficient, and 

modified Sherwood number is  total mixing (advective plus diffusive) to the mixing achieved 

by pure diffusion alone (74) (4). As discussed before, the mixing process may start from pure 

diffusion, and after the onset of natural convection from the generation of density differences, 

the mixing process becomes convectively dominated.  
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Fig ‎2-11 a) Diffusive and convective mechanisms' contribution for mixing b) Sherwood number versus time 

(Hassanizadeh, The Effect of Natural Flow of Aquifers and associated dispersion on the onset of buoyancy-driven 

convection in a standard porous media 2009) 

 

2.4.3.1 Multiphase system:  

Interfacial mass transfer flux is proportional to the surface contact area in the two phase zone, 

and surface contact area is a pore-scale quantity and is randomly distributed in the pore 

structure. To present the mass flux using macro scale quantities, different strategies can be 

taken. One is local thermodynamic equilibrium and the other is kinetic description based on 

some (linear) relationship. In the local thermodynamic equilibrium approach it is assumed 

that equilibrium concentration is reached everywhere in averaging volume. In the case of 

primary drainage, this approach assumes that in a two phase point (saturation is not equal to 

one), the concentration of the injectant component in the wetting phase is reached its 

equilibrium concentration.  This assumption is physical only when the rate of the mass 

transfer is much faster than rate of phase partitioning, for instance fast mass transfer or slow 

drainage-imbibition rate. However if large flow velocity occurs, such as during air sparging 

or CO2 injection, the local thermodynamic assumption results in an incorrect answer (74). 
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Fig ‎2-15 Mass transfer process (evaporation, dissolution, condensation) imply transfer of component cross the fluid-

fluid interface (Niessner 2011) 

Conversely, the kinetic mass transfer approach presents the mass transfer flux as proportional 

to the difference of equilibrium and actual concentration. Large differences in the actual and 

equilibrium concentrations results in fast mass transfer. In the case that the actual 

concentration is equal to the equilibrium concentration, the mass flux is zero. This special 

case is the thermodynamic equilibrium case, and local equilibrium is used in most 

commercial mathematical simulators (75) (74).  
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In Eq (2.46), k represents the kinetic mass transfer, and it can be quantified based on different 

excremental data.     
  is the equilibrium concentration component β in phase κ and   

  is the 

actual concentration of component β in phase κ. Commonly it is related to the modified 

Sherwood number as 
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Where Dm is the molecular diffusion coefficient of phase κ and d50 is the mean size of grains. 

Sherwood number is related to Reynold’s number and non-wetting saturation.  
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Where p, q and r are fitting parameters.  

The kinetic approach provides more realistic mathematical basis for simulation of mass 

transfer in multiphase zone, but the kinetic coefficient for mass transfer is the challenge. Most 

of the kinetic mass transfer coefficients are estimated based on Sherwood number, and other 

thermodynamic state variables (e.g. temperature, pressure and composition) are not correlated 

to the mass transfer coefficient.  

The equilibrium based approach usually overestimates the mixing rate (dissolution, 

vaporization,…) and since the local equilibrium is assumed for each grid or element (in 

numerical method), the meshing should be adoptive to the rate of mass transfer. 
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3 Prediction of Interface position in a linear relative permeability system 

3.1 Introduction: 

We now will extend considerably the physical conditions for such solutions to more closely 

represent real behavior in porous media where a continuous transition zone is always 

generated if a lower viscosity phase is injected. Specifically, the transition zone of continuous 

saturation distribution in the presence of gravity in a tabular confined horizontal porous 

formation is studied. There are two important constitutive equations which are influential on 

the saturation distribution: relative permeability functions and the Leverett-J function. Also, 

inclusion of density contrast changes the saturation distribution drastically. First we assume 

the relative permeabilities are linear as that is the simplest possible case, and only focus on 

the influence of different Leverett-J functions.  

In gravity-free conditions, by assuming linear relative permeability functions, the fractional 

flow function will be strictly concave and the transition zone is thus completely continuous. 

In gravity-drainage, linear relative permeabilities provide a continuous transition zone, but 

the size of the transition zone tends to zero for negligible capillary pressures. Here, an 

analytical solution is proposed for set of linear relative permeabilities for an arbitrary 

Leverett-J function. The important contribution of the analytical solution is the quantitative 

influence of the gas-entry capillary pressure on the size of the transition zone. Linear relative 

permeability assumptions are not physical for most practical cases, and that will be relaxed in 

the next chapter.  

The assumptions of the analytical framework are 

 Negligible buoyancy-driven (vertical) movement of the lighter fluid, i.e., radially (e.g. 

horizontal) dominant velocity of water and the lighter injectant. This assumption is 

discussed under the name of capillary/gravity condition or vertical equilibrium in 

various publications (40),(76),(51), and is addressed later.  
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 The fluids and the rock are incompressible (a robust assumption if constant pressure 

injection is used). 

 The fluids are immiscible.  

Families of isosats for three different but important injection geometries will be developed.  

To verify the analytical results, a 2D numerical model was written, and analytical results 

thereby compared with numerical solutions. The numerical discretization is explained in 

chapter four.    

 

Fig ‎3-1 Schematic configuration of isosats for axisymmetric vertical source injection into a tabular aquifer 

3.2 Vertical Equilibrium: 

For a vertically confined, flat-lying and laterally infinite tabular aquifer, vertical equilibrium 

is the generally accepted assumption (76),(56). For the special case of gravity override of the 

injectant, the validity of this assumption is shown in several works (51),(40). 

It is assumed that saturation progression is driven only by the imposed injection source and 

that velocity is therefore horizontal. Of course, this is correct only if the buoyancy-driven flux 

is negligible compared to pressure-driven flux and if the vertical pressure distribution remains 

hydrostatic, but these are reasonable assumptions for most realistic forced injection cases. 

The mass conservation for the incompressible system is  
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In Eq.(3.1), the bar indicates that the variable is vectorial. Because the horizontal length of 

the domain L is much larger than its height,   

)2.3(1 
L

H

Consequently          and vertical velocity is indeed far smaller than radial velocity (40).  

3.3 Third order polynomial Leverett-J function: 

In simple gravity-free geometries such as one-dimensional flow, centrally symmetric two-

dimensional radial flow, or spherically symmetric flux, isosat positions are trivially known. 

However, in realistic applications like the vertical fully penetrating line source, the horizontal 

well much longer than thickness of the aquifer, or injection in the presence of non-negligible 

gravity forces, the isosat positions are complex and change with time. A capillarity-based 

approach will be introduced for the inclusion of the gravity force in the case where relative 

permeability functions are assumed to be linear.  

Assuming negligible vertical velocity, the pressure has radial and gravitational parts 

expressed as 
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And therefore, for the capillary pressure 

)5.3()( CzrpP cc  

 Eq (3.5) is the analytical expression of capillary pressure decomposed into two parts: the first 

term - pc (r) - is only a function of r, and the second term  - Δγz - is only a function of z.  

These are referred to as the radial and vertical components of the capillary pressure. Eq (3.5) 
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is valid for any value of r and z and even in the single phase wetting zone where the gas is not 

present. It seems ambiguous to define a pressure for a phase in the zone that the phase does 

not exist, but it should be noted that capillary pressure that is defined here is not the precise 

physical expression of the capillary pressure, but is an analytical formulation that correlates 

pressures to saturation (e.g.            .   

In numerical schemes, the relationship is reversed, and saturation is correlated to capillary 

pressure, and in a more detailed description, the gaseous pressure is only defined in the two-

phase zone when the gas content is non-zero (e.g.         . Hence, in the approach that is 

taken in this work, the correlation is defined to be similar to physical concept of capillary 

pressure in the two-phase zone, but in the single phase zone (S=1), it is assumed that the 

pressure in the non-wetting phase is zero. This results in a negative capillary pressure that is 

less than the gas entry capillary pressure.  Hence, in this formulation, a function is stipulated 

that gives the saturation for a capillary pressure larger than the gas entry pressure, and a 

saturation equal to one for any capillary pressure less than the gas entry pressure. This 

approach is also used by many others (49), (58) and (60).  

Pc is the global capillary pressure function and pc is the radial part of Pc. By averaging over 

the aquifer thickness        
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C and D are constants in this equation, and by introducing the J-Leverett function 
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Here,  j(S) is a nonlinear function, therefore the averaged value of Pc is not a linear function 

of   . By linearization of the capillary function, the relationship between the vertically 

averaged capillary pressure and the vertically averaged saturation is obtained. A single linear 

approximation for the Leverett-J function for the entire range of saturation eliminates the 

variation in the slope of the curve and consequently leads to excessive error for realistic 

cases.   

In order to find an appropriate formulation for correlation of saturation and capillary pressure, 

a third-order polynomial interpolation function is chosen.  Most existing interpolation 

functions are discontinuous (23), and only fit to saturation values close to the residual 

saturation. In Fig. (3.2), the measured lab results of Pc versus Sw for the primary drainage 

(upper curve) and secondary imbibition (lower curve) at 8 bars and 28°C for injection of CO2 

with the rate of 0.5 ml/h is presented.  

 

Fig ‎3-2 A third-order polynomial interpolation of Leverett-J function based on the data from (Plug and Bruining 

2007) 

The interpolation function for the primary drainage part is a third-order polynomial function.  
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In Eq. (3.8), Pcm and S1 are the parameters of the capillary curve, indicating the maximum 

and the inflection point of the curve, and Se is effective saturation 
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where Sr is the residual saturation. The main advantage of this formulation over Corey's 

capillary function is the continuity of the function. This allows the use of Taylor series 

expansion and a truncation method to derive the linearized approximation of the Leverett-J 

function. This method is used to approximate the vertically averaged value of the capillary 

pressure.   

A third-order interpolation function fits reasonably well, but nonlinearity of the function 

makes the averaging operation impossible, so a local linearization method is used. By using 

the Taylor expansion around different values of saturation, the linearization error is 

minimized. The linearized approximation of Eq. (3.12) around       is  
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3.3.1  Vertical well: 

By employing a linear relative permeability relationship and averaging over the entire height 

of the aquifer, the two-dimensional problem is reduced to a one-dimensional problem.  
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If the vertically averaged capillary pressure term is negligibly small, as can be proven by 

normalization, the classic Buckley-Leverett equation can be recovered.  
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And by multiplying with the fractional flow function one obtains 
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Taking the divergence of both sides gives 

)17.3(

~

2

)
~

(

t

S
e

r

QSF e
r

oe






















 

Which can be written as 
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Using the linear relative permeabilities approximation, the fractional flow function is 
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By substituting equation (3.19) in (3.18) and simplifying, the following solution is obtained:   
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Equation (3.20) is the analytical solution for vertically averaged saturation over the height of 

the aquifer in the absence of a capillary term. This solution is similar to (39), and if a sharp 

interface separating the gas and the liquid is assumed, the solution is exactly equivalent to 

that of (39), and (64) when the buoyancy effect is neglected. Also, by employing linear 

relative permeability functions in (77), Eq. (18) is recovered. 

Using Eqs. (3.20) and (3.13),    around      is 
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And the functional for        
   will be 
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The constant C is only a function of S
*
.  From Eq. (3.22), the analytical expression for an 

isosat is 
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The value of η is different for different values of S, and consequently the exact position of an 

isosat cannot be determined with the available information; however, the position of the onset 

contour of saturation can be determined from the boundary condition, and the value of η 

specified.  
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The value of η is still a function of t. In the next part, the position of the isosat from the 

analytical solution is compared with numerical results. Details of the numerical model are 

provided in Chapter 4. 

Table ‎3-1 Characteristics of injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability, in an axisymmetric geometry. 

Qo  
  

 
    

  

  

 Sr K (m
2
) φ 

0.0015 19.3 0.1 10
-14 

0.1 
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Fig ‎3-3 Numerical results for saturation progression for an axisymmetric geometry. Different colors represent an 

extended interfacial zone for the primary drainage process, and the fastest progression of gas belongs to the largest 

saturation. 

Table ‎3-2 Characteristics of injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability in axisymmetric geometry. 

Qo(volumetric) (m
3
/t) P(base) K(m2) m = 

  

  
 φ Sr Pcm(Pa) T(°c) 

0.0015  10 MPa 10
-14 

19.3 0.1 0.25 2×10
5 

50
°
C 
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Fig ‎3-4 A comparison between numerical and analytical results of saturation contours for different times, continuous 

lines are the numerical solutions.  All of the demonstrated contours corresponds to Se=1, which is the outer boundary 

of the transition zone at different times. 

Table ‎3-3 Characteristics of fluids and formation 

Q (mass 

rate) 

  

   
 

Q (volumetric rate) 

  

  
 

P base 

(Mpa) 

  

    

 
K 

m
2
 

Pcm 

   

T 

C° 

             10 19.3 10
-13 

      50
 

 

 

 

 

1.15 days 
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Fig ‎3-5 Snapshots of saturation distribution at different times, res area represents completely drained zone, blue area 

represents intact water and light blue represents transition zone 

3.3.1.1 Discussion: 

Numerical results are always a benchmark for any approximated solution. Fig. (3.4) provides 

a reasonable comparison between analytical and numerical solution, but as is apparent in the 

figure the agreement between these two is modest. The analytical solution predicts the 

11.57 days 

115.7 days 

1157 days (3.2 year) 
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maximum breakthrough of the gaseous plume precisely, but the position of the isosat is not 

consistent with the numerical solution.  

Another deficiency of the analytical scheme is that the Leverett-J function is constrained to a 

specific type of formulation. Third-order polynomial approximations are only adaptable to 

specific Pc-S data, and that decreases the precision of the analytical solution. Other sources of 

error come from the vertical equilibrium assumption which is not correct in all conditions.  

Although the analytical scheme does not provide an excellent approximation of the position 

of isosats, the maximum breakthrough of the plume is calculated reasonably well. In the case 

of leakage from natural faults or abandoned wells, maximum breakthrough of the gaseous 

plume is important. Another mathematical scheme is presented later in this chapter that is 

based on more realistic assumptions.  

 

Fig ‎3-6 Schematic configuration of low-density phase injection from a horizontal well into a tabular confined porous 

formation. A) Early time injection when the plume has not reached the top and the bottom boundary; isosats are egg-

shaped instead of circular because of gravity effects.  B) Late time injection, long after the plume has 

reached the top and bottom boundaries. 

3.3.2 Horizontal Well: 

During injection into a horizontal well (L >> B), the less-dense phase first invades the pore 

space close to the well, and as the result of gravity, the radial progression of isosats is not 

centrally symmetric (Fig. 3.6-a); the isosats move faster upward and slower downward, 

 (a)  (b) 
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giving an egg shape to each isosat.  The effective forces are viscous forces coming from the 

injection source and buoyancy coming from the density difference.  

The geometry of the early-time problem approximates a 2-D point injection into an 

unbounded porous medium.  The self-similar isosats are egg-shaped and centered on the 

injection well before the phase of different density reaches the impermeable boundaries.  

Although simulation of this early-time period may have little practical importance except in 

cases of extremely thick reservoirs, the results demonstrate the general capability of this 

approach.  

After some time, depending on injection rate and system properties, the aquifer height B is 

reached by the light phase, and flux then gradually becomes dominated by laterally 

symmetric horizontal flow.  Once this transition is completed during intermediate time, late-

time linear flow dominates (Fig. 3.6-b) and thereafter the isosat distribution is similar to the 

lateral spreading case solved in previous section, with the difference being plane flux vs. 

axisymmetric spreading.  In general, late time lateral spreading is likely to dominate 

horizontal well injection behavior in most real cases Fig. (Fig. 3.6-b) until the invaded zone 

distance becomes a large fraction of the well length.   

3.3.2.1  Early-time point source injection: 

Based on the assumption of negligible buoyancy driven flow, it is assumed that the gaseous 

and liquid velocities are both 2D radial in nature. This is analogous to the horizontal velocity 

of gas and liquid assumption in the lateral spreading case. One may rewrite the generalized 

Darcy's law in polar coordinates centered at the point source of injection as 

 

  )29.3()cos()sin(

)28.3()cos()sin(









eePu

eePu

rnnnnn

rwwwww




 

Velocities become radial only if the vertical pressure distribution is fully hydrostatic.  
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Substituting equations (3.28) and (3.29) in equations (3.30) and (3.31) and noting that Pw and 

Pn are radially distributed, one may obtain  
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Note that although the direction of flux of both fluids is radial, their magnitudes are both 

functions of global saturation and therefore a function of r and θ. By averaging over θ, the 

equation reduces to 
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Herein,        
 

  
   

 

  
       , averaged velocities and saturations are only radial, and it 

is possible to reduce the set of the equations to a single hyperbolic equation.  
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By using linear relative permeability functions, the value of averaged saturation can be 

obtained as 
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Eq. (3.39) is similar to Eq. (3.20) because the averaged radial distribution of saturation is 

always similar.  The radial term of the capillary solution is obtained based on the locally 

linearized Leverett-J function assumption, similar to Eq. (3.21) 
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By adding the gravitational part, the global capillary pressure function can be obtained. The 

global saturation in (r,θ) space can be obtained by substituting Eq. (3.39) into Eq. (3.40):  
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The value of C comes from applying the boundary condition; by implementing the maximum 

and minimum boundary condition to the saturation contours, this value of C is obtained: 
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Based on the information in Eq. (3.41), the position of the isosat S = 1 can now be 

determined. 

Table ‎3-4 Characteristics of injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability in point source geometry. 

Q(mass rate)  
  

   
  Q(volumetric rate)   

  

  
  

Pbase (MPa)   

    

 
φ K (m

2
) Pcm (Pa) T (C°) 

               15  10.3 0.1 10
-15         50

 

 



64 
 

 

 

Fig ‎3-7 A comparison between analytical (right) and numerical (left) solutions for early-time injection.  Numerical 

results are from TOUGH2 ECO2N  (Pruess K 2007) , and although the compressibility is non-zero in their numerical 

model, the generated pressure in the well zone is not very different from hydrostatic pressure, and therefore 

the effect of compressibility is not significant. 

3.3.2.1.1 Discussion:  

Fig (3.7) presents a comparison between analytical and numerical results for the position of 

isosats during injection from a horizontal well when the density of injectant is lower than the 

host fluid. Elliptical shape of isosats is a result of density head. There is a reasonable 

qualitative agreement between the numerical and analytical solutions, but significant 

difference exists in parts of the curves. Sources of error for the analytical scheme are 

linearization of the Leverett-J function, neglecting the capillary term and the vertical 

equilibrium assumption.  
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This analytical solution has limited physical applications due to the generally small thickness 

of the aquifer (40-100 m) with respect to a typical well length (2 km). In the other words, the 

thickness of the aquifer is filled with gas in a short time after injection, and after that the 

drainage process will be only lateral. Lateral spreading of injected nonwetting in the plane 

flow geometry will be discussed next. 

3.3.2.2  Late-time 2D point source injection: 

After a relatively short time in the well life, the vertical space between the impermeable 

boundaries near the horizontal wellbore is filled with injected gas. Once the transition period 

is largely passed, shown in Fig (3.6-b) from numerical model results, the flow regime 

approaches linearly lateral plane flow.    
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Based on the vertical velocity assumption, the vertical pressure distribution is hydrostatic. 
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By averaging over the height of the aquifer, these functions reduce to 
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And, multiplying by the fractional flow function, the set of equations becomes 
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As before, by using a linear relative permeability function, Eq. (3.51) is solved as 
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And, similar to the procedure in the previous section 
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By assuming a locally linearized J-Leverett function, the global capillary pressure is  
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Based on the information in Eq (3.55), the positions of the isosat S = 1 is determined.  
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Table ‎3-5 Characteristics of injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability in plane flow geometry. 

Qo  
  

 
    

  

  

 Sr K (m
2
) φ 

3x10
-5

 19.3 0.1 10
-14 

0.1 

 

 

Fig ‎3-8 Numerical results for late-time primary drainage from horizontal well injection  

Table ‎3-6 Characteristics of injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability in plane flow geometry. 

Q(volumetric rate)  
  

  
  

Pbase  (MPa)   

    

 
φ K (m

2
) Pcm (Pa) Sr T (C°) 

       10 19.3 0.1 10
-14       0.25 50
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Fig ‎3-9 A comparison between numerical and analytical solutions for late time injection from a horizontal well.  

Numerical results (solid lines) come from a self-developed FEM model where compressibility is assumed to be zero. 

 

Table ‎3-7 Characteristics of fluids and formation 

Q (mass 

rate) 

  

   
 

Q (volumetric rate) 

 
  

  
 

P base 

(Mpa) 

  

    

 
K 

m
2
 

Pcm 

   

T 

C° 

                    15 10.3 10
-13

 
 

       50 
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Fig ‎3-10 A comparison between analytical (top) and numerical (bottom) solutions for early-time injection.  Numerical 

results are from TOUGH2 ECO2N (Pruess K 2007) , and although the compressibility is non-zero in their numerical 

model, the generated pressure in the well zone is not very different from hydrostatic pressure, and therefore 

the effect of compressibility is not significant. 

3.3.2.2.1 Conclusion and Discussion: 

In this part an analytical framework is presented for the position of isosats for a non-wetting 

injectant of a density different from that of the wetting phase which originally saturated the 

homogeneous porous medium.   Previous analytic solutions were not capable of including the 

transitional zone for the injectant (0 < S < 1).  To achieve this solution, assumptions are made 

that are similar to those made by others (linear approximations for relative permeability, 

small capillary number…).  The new solution gives the location of any isosat at any time in a 

direct manner. 

Although numerical models provide a reasonable approximation for the saturation 

distribution and are more flexible for different boundary conditions and geometries, they 

cannot provide a rapid and reasonable approximation for long time periods. In stochastic 

analysis, many realizations must be computed, and rapid estimates of the system state at long 
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times are needed, hence numerical models become expensive and time-consuming, even if 

the number of elements (nodes) is modest.  The new analytical solutions provide immediate 

solutions for the isosat distribution for any time, and can therefore be easily incorporated into 

stochastic assessments.    

The analytical solutions also provide a qualitative assessment of the results of commercial 

numerical models which generally function as a “black box”, and allow comparison to the 

results of different numerical models.  Parametric assessment is also facilitated, in that the 

new analytical solutions can quickly provide an assessment of the sensitivity of the solution 

to the set of physical parameters (density, viscosity, permeability, porosity…) used in the 

equations.  For instance, the importance of relative permeability functions or viscosity ratios 

can be readily obtained, and it is apparent that this is a challenging task for a numerical 

model, particularly for late-time assessment.  

This analytical model provides a good approximation for the fastest breakthrough time of the 

injected gas during a primary drainage process. Based on the analytical solution, formulation 

of different isosats is provided but the exact solution of the isosats is not known.  This issue 

will be addressed elsewhere.    

The agreements between analytical and numerical results are better in the plane flow 

geometry, partly because the analytical results in the second case are linear instead of being 

curved. The main deficiency of this method is that the analytical scheme is limited to only 

one type of Leverett-J function.  

Progression of gravity-drainage front in the plane flow geometry is much faster than 

axisymmetric case, and that results in a much faster growth of the transition zone compared 

to the axisymmetric case.  This has important practical applications for potential acceleration 

of CO2 dissolution into the aqueous phase.  
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3.4 Arbitrary Leverett-J function: 

To make the assumption of the analytical solutions more robust, another analytical scheme is 

developed here. This method uses the Buckley-Leveret solution for primary drainage as an 

approximation of the vertically averaged saturation. A fitting function was used to correlate 

vertically averaged saturation with saturation on the top of the aquifer and, by the help of the 

vertical equilibrium assumption, the saturation distribution is obtained. Assuming negligible 

vertical velocity, the pressure has radial and gravitational parts expressed as 
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And therefore, for the capillary pressure 
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Eq. (3.59) represents the distribution of capillary pressure in the domain, and it is 

decomposed into radial and vertical parts. The vertical part of the capillary pressure is linear 

because of the hydrostatic pressure distribution of multiphase flow.  
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Fig ‎3-11 Relative permeability functions and Leverett-J function versus the effective saturation. 

Here, A is gas entry capillary pressure and b is the maximum mobility of gas flow. Saturation 

at the top of the aquifer is not known, but a good approximation of the vertically averaged 

saturation can be obtained from the Buckley-Leverett equation. The capillary term is 

neglected in the hyperbolic equation, and that makes it impossible to introduce the boundary 

condition effects at the injector interface. However, it is shown in Fig. (3.13) that the solution 

of the hyperbolic equation is a good approximation of the precise solution of the convective-

diffusive equation.  

To obtain the saturation distribution on top of the aquifer, a fitting function with one degree 

of freedom is used. A pseudo-analytical function is assumed to present the correlation 

between vertically averaged saturation       and saturation on the top of the aquifer   
   

 . In 

the rest of the formulation, S represents the effective saturation and the subscript is dropped.    
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Fig ‎3-12 Fitting functions for correlation between average saturation and the saturation on the top of the aquifer. 

Different values of m provide a wide range of curvatures to approximate the correlation between Stop and Save. 

There is no physical basis for Eq. (3.61), and any monotonically increasing fitting function 

with similar values at the boundaries can be used. In the other words, Eq. (3.61) represents an 

approximated relationship between vertically averaged saturation and the saturation on top of 

the aquifer. The value of m gives different curvatures to the formulation, but in all cases the 

formulation remains monotonically increasing and its values for (S=0 and S=1) are fixed. By 

substituting Eq. (3.61) in the mass conservation equation, different values of m result in 

different errors, and the minimum error case is obtained from the best fitted approximation. 

This simple mathematical approach provides a reasonably precise approximation for 

calculation of the fate of the injectant. Capillary pressure on the top of aquifer is obtained by   
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And by assuming hydrostatic capillary pressure distribution in the vertical direction 
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Eq. (3.63) is a global capillary pressure function, but the parameter m should be optimized for 

minimal error. The position of isosats can be derived from Eq. (3.63), and the position of 

isosat S=1 represents the outer boundary of the transition zone, and allows the breakthrough 

time of the gas to be estimated for that distance. The position of the interface of the transition 

zone is called b (from the bottom of the aquifer) and is equivalent to 
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And by averaging the saturation in vertical dimension 
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To simplify the formulation, it is more convenient to define a new parameter similar to Eq. 

(3.65). 
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Interestingly, an analytical integration of Eq. (3.65) is available   
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Eventually, by substituting Eq. (3.64) and Eq. (3.68) in Eq(3.69), the value of m can be 

optimized 
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The value of     can be obtained by lowering the dimension of the problem. By employing a 

linear relative permeability relationship and averaging over the entire height of the aquifer, 

the two-dimensional problem is reduced to a one-dimensional problem.  

By using the formulation obtained for the value of vertically averaged saturation in an 

axisymmetric geometry from the previous section 

 

     

 

)70.3(

1
1

1111

1

1

1
0

~
2
































r

o

r

o

r

o

r

o

r

o

S

tmQ
r

S

tmQ
r

Sm

tQ

sr

tmQ

mm

m

Sm

tQ
r

S







 



76 
 

And for plane flow geometry 
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Table ‎3-8 Characteristics of primary injection of less viscous, less dense injectant into a water-wet saturated zone, linear 

relative permeability functions with Sr=0.3 are chosen.   

Qo(volumetric) 

(m
2
/sec) 

P(base) (MPa) K (m2) m = 
  

  
 φ Sr Pcm(Pa) t 

(year) 

0.00009 15 10
-14 

19.3 0.3 0.3 5×10
5 

1 

 

 

Fig ‎3-13 A comparison between analytical and numerical results using a fitting function approach for a set of linear 

relative permeabilities for an axisymmetric geometry. Right-hand figures represent the saturation contour of S=1 

and the left ones are the vertically averaged saturation. 

Table ‎3-9 Characteristics of primary injection of less viscous, less dense injectant into a water-wet saturated zone, 

linear relative permeability functions in plane flow conditions 

Qo(volumetric) 

(m
2
/sec) 

P(base) (MPa) K(m
2
) m = 

  

  
 φ Sr Pcm(Pa) t 

(year) 

5x10
-4

 10 10
-14 

19.3 0.3 0.3 1×10
5 

1 
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Fig ‎3-14 A comparison between analytical and numerical results using the fitting function approach for a set of linear 

relative permeabilities for a plane flow geometry. Right-hand figures represent the saturation contour of S=1 and the 

left-hand ones are the vertically averaged saturation. 

Table ‎3-10 Characteristics of primary injection of less viscous, less dense injectant into a water-wet saturated zone, 

linear relative permeability functions. 

Qo(volumetric) 

(m
2
/sec) 

P(base) (MPa) K(m2) m = 
  

  
 φ Sr T (year) 

0.0009 10 10
-14 

19.3 0.3 0.3 5 

 

 

Fig ‎3-15 saturation distribution snap shots for different values of gas entry capillary pressure.  For a low value of gas 

entry pressure, the size of the transition zone approaches zero for small values of A. 
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3.4.1 Discussion and Conclusion:  

In the second analytical approach, a series of analytical fitting function makes it possible to 

use different Leverett-J functions. For simplicity, a simple Corey Leverett-J function is 

chosen here, though others could be used  

)72.3(1 SAPc

   

This analytical result provides better agreement with the numerical solution, and also 

provides a quick and powerful tool to incorporate the effect of the Leverett-J function and the 

value of gas entry capillary pressure to calculate the size of the transition zone. It is clear 

from Fig. (3.15) that a small capillary pressure (large grain size) results in a sharp interface. 

In other words, the sharp interface assumption that has been used several times in the 

literature is only valid when the capillary pressure is small enough.  

Similar to the first approach, the agreement between analytical and numerical results in plane 

flow conditions is better than in axisymmetric flow. Also, the effect of capillary pressure in 

the Buckley-Leverett function is neglected, and that results in discrepancies in the average 

saturation results. (Right-hand figures in Fig. (3.13) and Fig. (3.14)) Values of vertically 

averaged saturation for axisymmetric and plane flow geometries are obtained from a 

hyperbolic equation, and the capillary term is neglected. Approximating the primary drainage 

formulation with a single hyperbolic equation causes error in the values of saturation 

especially in the zone close to the boundary (close to the injector).  

Linear relative permeability values lead to a poor representation of the physically correct 

properties of the displacement and fingering phenomena. Another analytical method is 

developed that incorporates the nonlinearity of the relative permeability functions and it will 

be discussed in Chapter 4. 
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Engineering applications of the derived analytical and semi-analytical tools are better 

estimation of fate of the injected gas during and after injection, developing a quantitative 

prediction tool for simulation of gaseous rich zone position and effect of different aquifer’s 

characteristics on the shape of the plume. Most important contribution of the solutions here is 

formulating the effect of capillary gas entry pressure on the size of transition zone. Larger 

transition zone provides faster dissolution of gas in saline.  Parametric analysis of gaseous 

progression during injection is another interesting application of the developed model.  
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4 Method of characteristics for primary gravity drainage  

4.1  Introduction: 

Each geologic formation has an intrinsic volumetric storage capacity (volume × porosity) and 

may possess singular advantages or deficiencies for disposal or sequestration, depending on 

geological context, the physical nature of the formation and bounding strata, geographical 

location, and so on.  An ideal formation for CO2 sequestration is a permeable stratum with 

high and fully interconnected porosity, overlain and perhaps laterally bounded by 

impermeable and non-reactive rock to prevent escape in pure or dissolved forms. Such seals 

might be salt, non-fractured anhydrite, and even shale if there are no chemical interactions 

with the minerals in the shale or shrinkage caused by replacement of the water phase by 

supercritical CO2.  Reservoir capacity, cap rock quality, and target stratum permeability are 

considered to be the major parameters in evaluation of formations for injection. Factors such 

as depth, thickness, dip, heterogeneity and other properties also play important roles in target 

selection (78). 

The analytical basis of the governing equation for flow used here is the generalized Darcy’s 

law, a continuum-based constitutive law (44) linking pressure gradient, rock and fluid 

properties, and flow velocities. In the generalized Darcy’s equation, the distributions of 

saturation and pressure in two-phase fluid flow are linked to phenomenological relations 

including relative permeability functions and Leverett-J functions, as well as the intrinsic 

properties of the fluids and rock (mainly permeabilities, viscosities, densities, 

compressibilities and accessible porosity). By substitution of the constitutive relations into 

the statement of mass conservation of fluids, the governing equations based on the primary 

unknowns may be derived.  
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Numerical methods provide approximate solutions for the set of governing equations, and 

they are flexible enough to permit accommodation of different properties, boundary 

conditions and geometries. However, analytical solutions for simple geometries and 

linearized cases have great value for quick estimation of the results at very long times, for 

verification of numerical models, and for simple inverse solutions. In stochastic analyses 

involving parametric variability, such as a Monte Carlo simulation for a long period of 

injection for example, it becomes necessary to execute the calculations many times, and even 

a simple numerical model with time-stepping may display inordinately lengthy execution 

times in such cases. An analytical solution that almost instantaneously gives results at any 

stipulated time may be a key aspect of such simulations, and might also be combined with 

mathematical models that can account for aspects of spatial heterogeneity impossible to 

address analytically.  Finally, we note that in an analytical model, meaningful qualitative and 

quantitative insight into the formulation and different possible mechanisms is straightforward 

and uncomplicated.  

Analytical treatment of the transition zone is complicated and little has been achieved for 

realistic conditions. For one-dimensional and cylindrical geometries, the Buckley-Leverett 

solution was developed (37)(21)(77) by assuming a negligibly small capillary term. 

Neglecting the capillary term in gravity drainage process may be unrealistic in many cases 

and diminishes the size of the transition zone. However, this solution can be extended to any 

arbitrary shape of isosat, and by forcing the shape of isosat to the general mass conservation 

equation, a hyperbolic governing equation can be recovered and characteristics of the 

saturation distribution in the case of significant capillary pressure are obtained.  

A precise analytical formulation of isosat positions is complicated if not impossible for 

strongly non-linear cases, but if the relative permeabilities are taken to be linear, an 

approximation is possible. Linear relative permeability functions is an over-simplification 
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and may not suit many real physical problems, but for coarse-grained or intensely fractured 

media (where fracture flow dominates), capillary effects are small, and a linear set of relative 

permeability functions is a reasonable approximation. Linearization of the Leverett-J function 

results in excessive error, but by using a local linearization scheme, the error is minimized, 

and then a discretized analytical method can be applied to transform the non-linear governing 

equation into a series of linear equations in small intervals of saturation. It turns out that in 

cases of massive CO2 sequestration, excellent reservoir conditions usually conform to modest 

or low capillarity effects (high permeability), therefore these approximations are robust in 

such cases. Nevertheless, it is contingent upon the user of the new solutions developed here 

to assure that the assumptions are appropriate for specific cases.   

First, a generalized formulation for mass conservation of two incompressible and immiscible 

fluids in a homogeneous porous medium is derived. This is based on the analytical 

formulation of isosats, and the obtained formulation of isosats from in Chapter 3 when a 

third-order polynomial Leverett-J function is assumed to be the case, is forced to obey mass 

conservation. Consequently, the equation is reduced to a one-dimensional hyperbolic PDE. 

The isosats are time-dependent, and thus the transient term of the mass conservation 

equations vanishes and the equation is transformed to a one-dimensional boundary-value 

problem for which the single boundary condition comes from the position of the outset isosat. 

The analytical results of the equation are compared to the numerical model. The local 

linearization of the Leverett-J function and the numerical discretization of the governing 

equations are explained in Chapter 3 and Appendix A respectively. 

4.2  Formulation: 

To derive the governing equations for propagation of a saturation front from an arbitrary 

injection source, a mass conservation equation over an isosat is written. If λw and λn are the 

wetting and nonwetting mobilities, γn and γw are the specific weights of wetting and 
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nonwetting fluids, uw and un are the Darcian velocities of wetting and nonwetting phases, and 

Qo is the injection rate per meter of perforation for a continuously perforated wellbore, then   

By rewriting the general mass conservation equation that is independent from geometry and 

by introducing Qo as the volumetric source injection and   
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Eq. (4.3) is based on an assumption of constant formation porosity and fluid densities. 

Generally, gas and supercritical liquids are not incompressible, but since pressure and 

temperature remain approximately constant during injection, the compressive volume change 

is not significant and an incompressible assumption is reasonable. By introducing P as 
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If Г is chosen as an isosat, the fluid mobilities remain constant over Г, which makes it 

possible to bring them out of the integral, although at this point the positions of the isosat 
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curves are not yet determined, though we assume them to be static and of arbitrary shape. By 

introducing fractional phase flow 
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And, substituting Eq. (4.6) into Eq. (4.7), we obtain  
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AR stands for the area of the isosat (Г) around the injection well, if the isosat Г be closed 

curve, and the last term in Eq. (4.11) vanishes so that 
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It should be considered that closed isosats are only the case for free space (no-boundary 

condition geometry). In the interesting case of semi-infinite space, Eq (4.12) is not applicable 

and the last term of Eq (4.11) cannot be neglected.  By the help of the divergence theorem 
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Similarly to the mass conservation relationship for the wetting phase (Eq. 4.3), it is possible 

to rewrite Eq. (4.13) as 
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And in a general way 
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Normalization: 

By normalizing Eq (4.15) similar to 
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By using normalized variables 
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And value of capillary term is equal to  
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Dimensionless numbers, ε1 and ε2 indicate the ratio of buoyancy force and viscous forces and 

capillary and capillary force and viscous force respectively.  

For typical values of Kx=10
-13

 (m
2
), Ky=10

-14
 (m

2
), Qo=10

-1
 (m

2
/sec), μn=10

-5
(Pa.sec), 

Δγ=3000 (N/m
3
), Ф=0.1 and α cos(θ)=10

-2
 (N/m) then ε1=0.01 and ε2=3×10

-4
 L. It has been 

widely accepted that ε2 is small enough for typical range of injection and reservoir 
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characteristics. But interestingly ε1 depends on L, and ε1 is not an intensive parameter. In the 

other words, importance of buoyancy force can be different depends on the characteristic 

length. Characteristic length of the buoyancy force for aquifer in vertical thickness, and that 

is generally small. But for very thick aquifers or leakage problem when the plum has already 

escaped from the sealing formation (cap rock), the buoyancy force is the importance drive 

and dominant mechanism. Vertical equilibrium is not applicable for this important case. By 

skipping the capillary term , Eq (18) turns into 
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In this discussion, equations are stated in their intrinsic dimensions and they are not 

normalized. Eq. (4.19) is a first-order hyperbolic differential equation in three dimensions. It 

is the generalized form of the Buckley-Leverett equation, and by the help of method of 

characteristics the solution is obtainable. Also in the aquifer scale, value of ε2 is small and the 

buoyancy term can be neglected. It appears not to be possible to solve Eq. (4.19) in its current 

form.  

During injection, an evolving network of isosats and flowsats is generated. Contours of 

saturation represent the isosat positions which evolve as a family of non-intersecting curves. 

This will be proved for a homogeneous porous medium with linear relative permeability and 

locally linearized Leverett J-function. The gradient of the saturation represents the normal 

velocity of the flux of the initial saturating phase, and we call this a flowsat, defined as the 

curve with maximum saturation variation with distance, and therefore normal to the isosats.  

Flowsats are integral curves of saturation flux, not the gaseous or saline phase velocity; 

therefore they are different from streamlines. In a general case, it is possible to define the 
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isosat and flowsat families, η and ξ, which stand for curves, by transforming an axisymmetric 

geometry to a curvilinear orthogonal coordinate system with the orthogonal bases as 

)22.4(

)21.4(

)20.4(
















h
e

h
e

h
e










  

Here, η, ξ and θ in an axisymmetric geometry or η, ξ and z in a plane flow direction are 

surfaces with constant scalar value. Rewriting Eq. (4.19) in this coordinate system gives 
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 ξ  η      θ are the scale factors of different dimensions and we can define the area of a 

general isosat surrounding the injection region through double integration 
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For axisymmetric radial injection from a vertical fully penetrating line source,      

  η ξ , which is independent of θ, so it comes out of the integral, but the other spatial variable 

ξ remains.  By choosing a narrow range for ξ and cancelling terms, Eq. (4.24) is 

approximated as 
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For plane-flow geometry, by substituting Eq. (4.25) in Eq. (4.23)
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In an axisymmetric geometry, it is possible to prove that the first term of Eq. (4.30) is much 

smaller than the second one and it is thus possible to neglect the first term (see Chapter 5). By 

skipping the first term, Eq. (4.30) becomes similar to the classic Buckley-Leverett equation 

(37), but with a different spatial similarity variable. The positions of the isosats and integral 

curves are not trivially stipulated, but in the next section, we show how the position of the 

isosats can be obtained analytically. For linear relative permeability functions (e.g. strictly 

convex fractional flow function), Eq. (4.30) is solved as 
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Eq. (4.32) is the self-similar solution for the governing hyperbolic equation, Eq. (4.32), in the 

case of convexity of the fractional flow function. For a one-dimensional geometry,   η    

and the Buckley-Leverett relationship for a linear set of relative permeability functions is 

recovered. For a cylindrical geometry,   η      (77)(21), and for a spherical symmetric 

geometry   η      (21) (where c is a constant). Derivation of Eq. (4.32) is the 

mathematical proof of the discontinuity of saturation profile close to the value of Sc. Using 

the mathematical presentation of the isosats’ formulations from Chapter 3 and substituting 

them into Eq. (4.32), an analytical solution is possible.  
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Nonlinearity of the relative permeability must be treated by some other means, but for a 

linear set of relative permeability functions, it is possible to assume     η   .  

4.2.1  Axisymmetric Geometry: 

Using the derived analytical formulation from Chapter 3, the position of isosats for vertical 

penetrating well injection into a tabular flat aquifer is derived as (see chapter 3) 
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Eq. (4.36) provides a time-dependent basis for Eq. (4.29); in other words, the value of 

saturation is only a function of η, and η itself is a function of r,z,  and t. Consequently  
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Fig ‎4-1 a: Saturation flow network in axisymmetric geometry; blue curves are isosats, red lines are flowsats, and    
    

  

 
    and   

  

     
   

 

 
.  3) b: Saturation flow network in plane flow geometry; blue curves are isosats, red lines are 

flowsats, and   
    

  

  
    and   

  
 
 

     
   

 

 
 

With the help of Eq. (4.39), Eq. (4.29) reduces to a steady-state equation in (η-ξ) space.  
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This simplifies the problem because the analytical solution for Eq. (4.40), a first-order 

differential, is simple. The external boundary condition for Eq. (4.40) is derived in Chapter 3 

and first by integrating Eq. (4.40), then by applying the boundary condition, the value of the 

integration constant is stipulated, and the solution of S for each value of η is derived.  
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The boundary condition for Eq. (4.40) comes from  
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and by imposing this, C is derived as 
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And, by using further straightforward simplifications, Eq. (4.43) becomes 
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Eq. (4.44) is an algebraic equation and the solution is direct. The value of η1 for the 

axisymmetric geometry is constant and the relationship between S and η can be obtained 

accordingly. Eq. (4.44) can be adapted for any saturation.  The value of η for each saturation 

is derived and the result thus provides an analytical relation between η and S.  Eq. (4.43) can 

be derived from a simpler method, through applying direct mass conservation in a differential 

interval of η. According to Fig (4.2), the amount of water that goes into the gray zone must 

also come out because the saturation inside the gray area is constant, and the water content of 

the zone is also constant.   

In Fig (4.2) the gray zone is the infinitesimal zone between  η
 
 η

 
  and by writing mass 

conservation for this area Eq. (4.41) is recovered. Because the saturation inside the zone is 

constant over time, the water content variation is zero, therefore the mass conservation is 

reduced to 
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Fig ‎4-2 Mass conservation applied to an infinitesimal zone between two isosats, the saturation remains constant 

because the coordinate system is moving. 

And by substitution of Eq (4.24) in Eq (4.45), and transforming the coordinate system from 

(x,y,z)  to (η,ξ,θ), it becomes   

 

Eq (4.46) is equivalent to Eq. (4.43).  

4.2.2  Discretized Analytical Solution:  

Es* is a function of saturation, and consequently Eq. (4.36) is not the collection of non-

intersecting family of curves. In order to define Eq. (4.43) in the new coordinate system, the 

basis of the coordinate system should be independent of S*.  

The coordinate system is defined based on two parameters, S* and t and the coordinate 

system is named H(S*,t) with bases of  
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Superscript indicates the value of saturation that the coordinate system (or Es*) is based on, 

and subscript is the value of η corresponding to the saturation. The value η
     in         can 

be written as η
  
      

 , specifying the isosat of S*. By perturbing the value of S from S* to S*-

∆S, the value of η
     Δ 

      
 is derived from Eq. (4.43). By having the isosat of η

       
 at t in 

       , the maximum radius is readily obtained.  Now the global coordinate system is 

transformed to             and the value of η
   Δ 

    Δ    
 is obtained based on the assumption of 

          Δ  
  

          Δ  
   Δ  (Fig (4.3)). In a similar manner, this procedure can be repeated 

for          and so on so that the positions of isosats for other saturations are obtained. 

This progressive scheme for treatment of nonlinearity of the coefficient matrix is reported in 

the literature (22), and now it is applied to the coordinate system so that the isosat position 

and the coordinate system are simultaneously updated.      

There are several sources of error, starting from the vertical equilibrium assumption that 

approximates the shape of isosat, to Eq. (4.24), and finally the discretization scheme. 

However, the analytical solution captures the trend of the isosat variations, and the positions 

of contours of different saturations at different times are rapidly obtainable. This scheme 

therefore provides a fast and robust method for quantification of the position of isosats for a 

linear set of relative permeability functions.  
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Fig ‎4-3 Schematic presentation of different isosats in different coordinate system. 

4.3  Analytical and numerical results: 

In order to compare analytical and numerical results, a simple axisymmetric injection model 

is developed here. The isosats for different saturations are derived and compared with the 

analytical results. The agreement is reasonable in Fig (4.4-a) and Fig (4.4-b), and also in Fig. 

(4.4-c), although the numerical result shows a fluctuation which comes from the convective 

instability of the model. In the numerical method, an upstream weighting function has (79) 

been used to stabilize the result. By applying an artificially large capillary pressure to the 

numerical method, or other stabilizing schemes like Upwind Petrov-Galerkin methods, the 

numerical stability of the results improves but accuracy is thereby reduced.   

Fig. (4.5) contains snapshots of different saturation contours at different times in an 

axisymmetric geometry. Expansion of the saturation contour in time is apparent, which is 

equivalent to the faster progression of the higher saturation isosats, which is essentially the 

expansion of the transition zone. Characteristics of the aquifer and fluids are in Table 4.1. 
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Table ‎4-1 Properties of reservoir and injection for numerical model of primary drainage in axisymmetric condition 

Qo (m
3
/s) P(base) MPa K (m

2
) 

n

wm



  φ Sr Pcm (Pa) T (°C) 

0.0015  10  10
-14 

 19.3 0.1 0 1×10
5
 50 

 

 

                                                                                                                       

 

 

Fig (4.4-a) 

Fig (4.4-b) 
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Fig ‎4-4 Comparison of analytical and numerical results of saturation distribution at different times.  Capillary 

pressure has been included to maintain numerical stability 

 

Fig ‎4-5 Isosat progression for different injection times; snapshots of saturation distribution at four different times. 

4.4 Nonlinear relative permeability: 

An analytical position for isosats (η) has been derived only for systems with linear relative 

permeability functions.  For nonlinear relative permeability systems, considered to be more 

practical cases, the position of isosats is not known. Therefore, the applicability of the 

solution in its current form is limited.  
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Here, another possibility is presented that makes the solution more general and adoptable for 

cases involving nonlinear relative permeabilities. Examining Eq (4.19), one may note that 

there are five variables (r, z, t, AR, S). By introducing the maximum radius of the injected 

plume in each elevation (z) and time (t) as another variable here, rm (z,t), the number of 

variables are increased to six.  It should be considered that rm is the radius of the gas-water 

interface (i.e., the isosat corresponding to S=1) for any elevation and time.  Consequently, rm 

is a function of z and t. Now, AR can be directly written as a function of rm; 
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Therefore, rm provides a similarity variable that is a function of z and t, and AR is a function 

of rm. Consequently, the number of variables is reduced to 4, including (rm, r, t, s). Using the 

Buckingham Pi theorem, the number of variables is n = 4 and number of fundamental 

dimensions is m = 2 ([L] , [T]). It is possible to define two (n-m=2) dimensionless numbers 

that are functions of each other. Introducing  

S
r

r

m

 21   

And introducing a relationship  
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And noting that an isosat can be directly defined as  
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The position of isosats and flowsats can be obtained as
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 Eq (4.51) provides a reasonable formulation for the position of isosats and flowsats. If rm is 

known, by using Eq (4.43), the position of an isosat for any value of saturation for an 

arbitrary relative permeability function is obtained. A derivation of rm for nonlinear relative 

permeabilities and arbitrary Leverett-J functions will be discussed in greater detail in the next 

chapter. 

 

4.5 Conclusions: 

An approximate solution for the position of the isosaturation contours (isosats) has been 

developed and verified for the case of an immiscible phase of different density being injected 

into a porous medium that is saturated and wet by another fluid phase of higher viscosity.  

This solution represents an important advance in the class of Buckley-Leverett problems 

because now the development and evolution of the transition zone of saturations can be 

explored in an analytical manner for several simple geometries (e.g. axisymmetric vertical 

well injection and late-time long horizontal well injection).  This will allow “quick-look” 

assessments of various geological cases, partial verification of numerical schemes (providing 

the assumptions are honored, such as phase incompressibility), and stochastic analysis of 

parametric variations (although not spatially non-homogeneous distributions of properties).   

A major engineering application of the analytical solution developed here is quantifying the 

dimensionless number to estimate the contribution of different effective forces for different 

geometries and characteristics. Understanding the physical behavior in different conditions 

and formations is an important part of the problem, and these aspects of relative importance 

of different processes are far more easily obtained by using first-order dimensionless numbers 
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than by laborious repeated mathematical modeling.  Formulating of the position of different 

isosats may not be as important as simulation of the position of the interface, but still 

provides a thorough understanding of behavior of the transition zone, and can lead to better 

estimates of the rate of dissolution of the CO2 into the saline water phase.  

The following assumptions were made in developing the solution, and the reader is counseled 

to assure that the solution is not mis-applied by using it in conditions for which it is not 

appropriate (e.g. highly non-linear relative permeability functions, high capillary entry 

pressures, strong heterogeneity…): 

 The relative permeabilities of the two phases are reasonably approximated by straight 

lines. 

 The fluids are treated as incompressible because the solution is for approximately 

constant pressure injection. 

 Vertical pressure distribution is hydrostatic and dominant flow is horizontal 
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5 Prediction of interface position during primary drainage and secondary 

imbibition in nonlinear relative permeability system 

5.1 Introduction: 

During continuous injection of a lighter immiscible phase, viscosity and density contrasts 

lead to growth of a saturation transition zone as well as gravity override of the injectate.  In 

Chapter 2 and Chapter 3, the position and formulation of the isosats (contours of saturation) 

were semi-analytically quantified based on assumptions of immiscibility, vertical equilibrium 

and incompressibility of the host liquid and injectate.  These assumptions have been widely 

accepted by others and form the basis of previous works addressing this class of problems in 

analytic or semi-analytic terms.  A linear set of relative permeability functions was also 

assumed, but this tends to oversimplify the problem, making solutions applicable only to 

specific types of formations where capillary pressure during injection is very small.  Herein, 

solutions are developed to accommodate any arbitrary set of relative permeability functions.  

The effect of relative permeability non-linearity is not negligible and if the continuous trail 

behind the shock is incorporated correctly, and the evolution of the two-phase zone between 

the drained and intact zones requires significant capillary pressure, the degree of nonlinearity 

becomes important.  To show this, in Fig. (5.1) different degrees of nonlinearity are applied 

to a numerical solution, and the saturation distributions indeed are quite different.  In these 

examples, residual saturation for the primary drainage process is considered to be zero to 

better illustrate the difference in the saturation progression. 
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Fig ‎5-1 Typical relative permeability functions for primary drainage process are approximated as krw=Se
a and                   

krn=β (1-Se)
a, and different values of a represents different degrees of nonlinearity. Saturation progression has been 

shown for β=1 and α=1-4. 

 

Fig ‎5-2 Numerical results of saturation progression at different times and profile of different values of S at different 

depths 
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In this approach, a semi-analytical solution is developed to quantify the position of the shock 

waves for different degrees of nonlinearity (values of a), and since only primary drainage is 

of interest in this article, a typical formulation for relative permeability functions suits 

reasonably well.   

The effect of gravity and the different hydrostatic pressure (gravity head) distributions of 

columns of fluids of different density complicate the pattern of saturation progression during 

injection. Injection of a gas (or a lighter supercritical fluid or a solvent) into a water-saturated 

formation is called “primary drainage”, and the density contrast generates a vertical capillary 

pressure effect. The vertical part of capillary pressure is assumed to be constant and equal to 

 γ  γ
w

 γ
n
, an assumption stipulated from the vertical equilibrium assumption of fluids 

and the condition of negligible vertical velocity (which is realistic for large-scale rapid 

injection into tabular flat-lying reservoirs). The vertical equilibrium assumption has been 

discussed and justified several times (62),(80). The vertical part of the capillary pressure 

associated with a radial capillary pressure calculated as the vertically averaged saturation 

leads to wedge-shaped contours of equal saturation (isosats). Lateral progression of the non-

wetting phase saturation is faster on the top compared to the bottom because of the lower 

initial pore pressure of the host fluid on the top of the aquifer arising from the different 

hydrostatic pressure distributions. Formulation of the positions of the isosats is necessary for 

two-dimensional analytical solutions for the saturation in the transition zone. Combining the 

radial and the vertical parts of capillary pressure, a global functional for the capillary function 

is obtained and stipulation of the capillary pressure contours, which are equivalent to the 

saturation contours, then becomes possible. 

In a confined horizontal tabular formation, the injectant invades the pore space and pushes 

the host wetting liquid away from the injection zone. In this case, the ratio of viscosities is a 
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key parameter in estimating the size of the transition zone. Nordbotten et al. (61),(56),(52) 

derived an analytical solution assuming a sharp interface between the host liquid and the 

trailing completely drained zone and the total gas content at any radius is lumped only at the 

top of the aquifer. Juanes et al. (57) extended this solution to a secondary imbibition process 

and estimated the magnitude of the residual trapping mechanism for the host fluid. Sloping 

aquifers (inclined geometries) and the effect of a capillary fringe were studied in later works 

(52),(49). Although the residual saturation in the fully drained zone is incorporated in the 

solution procedure, because of the sharp interface assumption the influence of relative 

permeability functions are totally neglected. 

5.2 Formulation: 

 Lemma І: In an axisymmetric geometry, the structure and domain of the saturation transition 

waves (shock or rarefaction) in the presence of gravity is similar to gravity-free condition, but 

the spatial amplitude of the waves is scaled differently.  

Proof: Although the proposition sounds trivial, and has been mentioned in the literature (e.g. 

(41)), a rigorous proof apparently has not been provided. Here a generalized mass 

conservation equation is stipulated, using the basic generalized Darcy’s law, to derive the 

hyperbolic equation for mass conservation for any arbitrary isosat (contour of constant 

saturation).  By using simple isosat curves like a flat line or a cylinder, the classic Buckley-

Leverett equation for 1D and cylindrical flow is recovered. Starting from Eq (4.27) of 

Chapter 4 
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As stated above, the precise expressions for η and ξ are not determined, but if one assumes 

that their formulation can be developed as a perturbation of the base case with linear relative 
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permeability functions, scaling of Eq. (5.1) is possible. For a linear set of relative 

permeability functions, η  α 
A

r
 Bz  and ξ    

r3

3A
  (see Chapter 3), consequently  
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Because the first term of Eq. (5.1) is much smaller than the second term, it is possible to 

ignore it and rewrite Eq. (5.1) as 
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Eq. (5.4) is a hyperbolic equation and the F(S) function determines the structure of the 

saturation transition waves which is identical to the gravity-free case. The spatial similarity 

variable is different and imposes different spatial amplitude to the transition waves, but as 

stated in Lemma 1, the domain of the waves is similar.  

The similarity solution can be defined as 
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A direct solution of Eq. (5.4) is not possible because an analytical form for Λ is not available.  

Based on the expected behavior of the solution and dimensions of variables, a separation of 

variables is proposed as 
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Here, rm is the maximum breakthrough of the injectate plume, which is a function of z and t.  

Π is the similarity variable for Eq. (5.7) and it is not known here, but the exact expression of 

Π for gravity-free conditions is well-known as (69),(41). 
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For the case of nonlinear relative permeability relationships, generalized forms Chapter 4 
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In the case of injection of a less viscous fluid into a saturated water wet-formation, a 

combination of a continuous trail (rarefaction wave) that follows a faster shock wave is 

always generated, Fig (5.1).  The size of this continuous transition zone grows over time, 

eventually resulting in a huge transition zone. The nature of the rarefaction wave behind the 

shock wave is important for many practical reasons because it specifies the distribution of 

saturation at different times.  

Fig (5.3) shows the location of the shock wave for axisymmetric injection into a water-wet 

saturated tabular reservoir with a vertically penetrating well at the left, and r >> B so that flux 

is almost entirely horizontal.  To the upper left of the shock front, the water saturation is 0.6, 

to the right of the shock front it is 1.0.   The residual saturation is taken to be Sr = 0.2, and the 
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lower part of the figure shows the distribution of saturation along two different horizontal 

surface defined by the intersection of the radius of 250 and 1000 m respectively with the 

shock wave front.  The transition zone is the curved line (rarefaction wave), the shock wave 

is the jump in saturation, and beyond that, the injectant has yet to penetrate.   

 

Fig ‎5-3 Schematic saturation distribution for nonlinear relative permeability function, position of isosat S=Sc is 

equivalent to the shockwave.  
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5.3 Analytical solution: 

Starting from typical constitutive formulation primary drainage 
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Assuming a=b=2 and c=1. These values are consistent to core data provided in (32). In this 

simple but important case, analytical solution for saturation distribution with inclusion of 

nonlinearity of relative permeability functions and Leverett-J function can be computed 

without numerical discretization, if the capillary-diffusive term is neglected.   
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And by assuming vertical hydrostatic pressure distribution 
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Its possible obtain the position of the interface, that represents the position of capillary 

pressure equivalent to Pc =A.  

   
  )18.5(1)(

1
1

11

1









































r
top
e

r

r

r

rtop
e

r

SSQ
S

A
S

S

S
S

S

A
b



By imposing the boundary conditions
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Saturation can be readily obtained from Eq (5.14) 
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For simplicity, we introduce two new terms here, 
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Now it possible to calculate the mobilities and vertically averaged saturation 
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and by substitution of Eq (5.26) in Eq (5.12) 
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Expanded formulation for the capillary term is not derived here, as it will be proved that the 

capillary term is negligibly small. By averaging the flow equations
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And by substitution of Eq (5.29) and Eq (5.30) in Eq (5.33) and Eq (5.34), the analytical 

integration is possible. To eliminate the pressure, fractional flow function can be introduced 

as 
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Using the incompressibility of the two fluids, it is possible to write the equations as 
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In the basin scale, only for very small spatial scale of injection or very large Leverett-J 

functions the capillary pressure term will be comparable to the convective and accumulation 

terms, otherwise capillary term can be dropped and hyperbolic equation becomes a good 

approximation for the diffusive convective equation.  This has been proved in many 

references (see (41), (77)).  

 Eq (5.38) is an advection diffusion equation, and it is solvable by any standard numerical 

method.  It is possible to neglect the second term on the right hand side and use the 

hyperbolic asymptotic limit as an approximation. Eq (5.38) is reduced to a hyperbolic 

equation as 
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Eq (5.43) is a Cauchy-Riemann equation, and its analytical solution is possible (50) (67). 

Position of isosats (b) is calculated from Eq (5.18) and that incorporates capillary effect and 

nonlinearity of relative permeability functions.  

This should be clarified here that the negligible capillary term in Eq (5.38) is not necessarily 

equivalent to small capillary forces. In the other words, small capillary force always 

diminishes the capillary term, but there is a possibility of negligibly small capillary term in 

Eq (5.38) when the capillary force is significant. That clarifies the existence of transition zone 

(capillary fringe) when the conservation equation is strictly hyperbolic. 
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From Eq (5.45) and Eq (5.43),  
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And from Eq (5.23) and Eq (5.24) 
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By subsisting Eq (5.52) in Eq (5.43), 
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Eq (5.55) is a classic Cauchy-Riemann equation, and depending on  
’
 the nature of the 

solution is different. As it is apparent from Fig (5.4),  
’
 is not increasing and therefore the 

results is a combination of shock and rarefaction wave. This is equivalent to Eq (4.16) 

(chapter 4). 
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For B=30 (m), β=0.5, Δγ =3000 (N), A=5×10
5
, Sr=0.3, φ=0.3 and M=19.3 result of the Eq 

(5.56) is S
*
=0.58. Value of S

*
 is the saturation of shock wave, and it is not consistent to the 

numerical results. The mathematical derivations are straight forward, but all are based on the 

vertical equilibrium assumption. This method has been used by Nordbotten and Dahle (58) 

for injection time scale and by Golding et al. (60) for post injection process. But in the both 

of the aforementioned, the results were not compared to analytical solutions. The sources of 
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the error here come from capillary-gravity assumption, which is not physical for two phase 

zone.  

 

Fig ‎5-4 (a) calculated values of vertically averages saturation versus the saturation on the top of the aquifer (b) 

calculated vertically averaged relative permeability function from Eq (5.46) and Eq (5.47) (continuous line) and 

relative permeabilities from Eq (5.12) (discontinuous lines) (c) Hyperbolic function versus saturation in the 

top (d) Hyperbolic function versus vertically averaged saturation (continuous lines) and from relative 

permeabilities Eq (5.46) and Eq (5.47) (discontinuous lines). 

 

Table ‎5-1 Parameters and characteristics of equivalent fractional function 

a Eq (5.12) b Eq (5.12) c Eq (5.13) Δγ (N) M A (Pa) 

2 0.5 1 3000 19.3 5×10
5 
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Fig ‎5-5 (a) Hyperbolic function and S*, saturation on the tip of shock wave (b) characteristics for shock and 

rarefaction. 

Analytical solution of Eq (5.55) is straight forward. Because of the convexity of the 

hyperbolic function close to S=0, the transition stars with rarefaction wave, and before the 

inflection point, the solution transforms to a shock wave. Using Rankine-Hugoniot jump 

condition the velocity of shock wave should be equal to the velocity of rarefaction waves of 

the closest ray of saturation. 

 

Fig ‎5-6 (a) position of the interface at t=108 (sec) for three different values of A (air entry pressure) (b) position of 

interface for A=5x105 (Pa) for three different times 
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Analytical solution of Eq (5.55) is straight forward, but requires an intensive integration to 

derive the functions F and H (see (58)). That should also be considered that the simplest 

possible relative permeability and Leverett-J functions are deployed here. If a more complex 

relative permeability function be deployed, analytical solution of Eq (5.55) becomes more 

complicated. Here a semi analytical solution is proposed to derive a reasonable 

approximation of the problem.   

5.4  Semi analytical solution: 

For an arbitrary relative permeability function, the critical saturation value Sc delineates the 

position and amplitude of the frontal shock. Behind the frontal shock, a continuous 

rarefaction wave exists and expands through time. In this part of the chapter, a vertically 

averaged flow rate is calculated above the shock front.  By averaging the nonlinear functions 

through the vertical domain, an approximate formulation based on the averaged saturation is 

obtained. The advantage of the linear relative permeability functions is that by averaging the 

flow rate over the thickness of the aquifer, the flow rate can be written directly based on the 

vertically averaged saturation, allowing one to reduce the problem from a 2D to a 1D 

equation (which is a type of 1D Cauchy-Riemann equation), and then invoke classic solutions 

for this 1D hyperbolic equation.  However, as shown by the mathematical modeling results in 

Fig 1, this oversimplifies the problem and leads to large deviations from a realistic solution in 

almost all cases. Similarly to Fig (5.7) below (dotted lines), two different linear 

approximations have been suggested for the set of linear relative permeabilities: one is a line 

that connects the beginning and end of the relative permeability function, and the other is the 

tangent line at S = Sc.   

An averaging process can be used only if there is a continuous distribution of saturations 

behind the shock wave in the transition zone, and the relative permeability functions must 

also be continuously differentiable.  The linearization of the relative permeability functions 
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introduced here only approximates the amplitude of the rarefaction wave (the continuous part 

of the saturation transition).  
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Averaging the velocity over the continuous thickness [b,B] gives b the height of the shock 

wave and B the thickness of the reservoir.  
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Because in the zone of continuous saturation transition (above the shock front in Fig (5.5) the 

functions are differentiable, it is possible to expand the relative permeability function around 

the vertically averaged saturation. Using a Taylor series at S = Sc, a linear approximation can 

be made  
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Keeping the first and the second terms of Eq. (5.60) provides a reasonable approximation for 

the relative permeability function, the second term of Eq. (5.60) vanishes and the averaged 

velocity is reduced to 

  )61.5(,
~~

// rPSu nwnuw 

 



009 
 

 

Fig ‎5-7 Linear approximation for relative permeability functions, fractional flow functions and derivations of 

fractional flow functions. Two different linear approximations are used, one is the tangent line that passes through 

Se=Sc and the second is the line that connects relative permeability for Se=0 to Se=1. Large differences are noted. 

Fig (5.7) shows a reasonable linearized approximation for the set of relative permeability 

functions, and it is important to note that the linearized relative permeability functions are 

close enough to the real fractional flow function in the rarefaction part of the saturation curve 

to be realistic. As suggested before, a single line approximation for the entire range of 

saturation behind the shock wave usually leads to excessive error, which makes a general 

assumption of pseudo-linearity impractical, especially for the amplitude of the shock wave    

S ϵ [Sc, 1].  

5.4.1 Generalized mass conservation: 

In order to write the conservation equation and to include the continuous trail of saturation 

behind the shock wave, the height of the shock wave and the average saturation above the 

shock waves are considered as the unknowns here. Using linearized relative permeability 

functions, the velocity of the water in the transition zone above the shock wave is formulated 

as (Fig 5.7) 
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If b is height of the shock wave, the total injected flow from the well at any radius is 
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Eq. (5.73) is a hyperbolic equation, but there are two unknowns, b and S .  The explicit 

relationship between these two is not known, but based on global mass conservation in 

steady-state injection rate conditions (constant Qo), one may write 
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Fig ‎5-8 Schematic saturation distribution for horizontal velocity bellow and above of the shockwave 

 

 

Lemma ІІ: There is a monotonic one-to-one relationship between S  and b.  

Proof: Based on dimensional analysis, it is possible to write the following relationship: 
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Here, P(S) is an unknown function that is different for different geometries and 
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characteristics and rm is the maximum radius of breakthrough of the overriding immiscible 

phase.  It is clear that P(S) is a monotonically increasing function, and also  
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And consequently 
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Based on Eq. (5.78), it is proven that saturation decreases monotonically with z.  Now, by 

defining the vertically averaged value for S in any arbitrary radius as 
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And by mapping S(r,z) from z   b B  to zeq   0 1 , Eq. (5.79) can be simplified to  
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Consequently, for r1 < r2 
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In Eq (5.85), φ 0  0 and φ 1    and φ,z < 0, consequently 
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Eq. (5.86) is the mathematical proof that S  has a monotonically increasing relationship with r, 

and b has a monotonically increasing relationship with r, therefore S  and b are related in a 

monotonically increasing manner. 
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Two points are known along the monotonically increasing correlation between b and S :  
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5.4.2 Mathematical Solution:  

An exact analytical solution for Eqs. (5.73) and (5.74) is not possible because the relationship 

between b and S  is not explicit. But, by using known information about the b S   relationship 

developed above, an assumed correlation may be chosen and parameters can be modified 

iteratively. First, a exponential approximation for the correlation between b and S  is assumed, 

the two points on b S   are known from Eqs. (5.88) and (5.89), and the value of m is unknown 
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Fig ‎5-9 fitting functions for correlation between average saturation and the saturation on the top of the aquifer. 

Different values of m provide a wide range of curvatures to approximate the correlation between Stop and Save. 
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Eq (5.93) provides a relationship between S  and b with one degree of freedom. Eqs. (5.73) 

and Eq. (5.74) are sufficient for derivation of S  and consequently b, and the value of can be 

corrected iteratively. As a first estimation, an arbitrary value within the  Sr Sc  interval is 
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taken, and S  is calculated for any value of r. By substituting the derived values for S  into Eq. 

(5.74), a second better estimation for m is obtained, and the process continued until the 

chosen convergence criterion is met.  Fig (5.10) is a flow chart showing the solution method.  

 

 

 

Figures (5.11) to (5.13) show the progress of the shock and rarefaction waves for a 30 m high 

reservoir using non-linear permeability functions.  The smooth light lines are the results from 

this new development, and the darker lines represent results from the finite element model 

developed for this case.  A reasonable agreement is seen, and the semi-analytic solution is 

preferred because, for the conditions and limitations described herein, it is considered to be 

fairly precise.  

Fig ‎5- -01 Semi-analytical procedure for solution of Eq (5.73) and Eq (5.74). Value of ε 
represents a limit for convergence of the scheme. 
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Table ‎5-2 Characteristics of primary injection of less viscous, less dense injectant into a water-wet saturated zone 

Qo   
  

   
  

φ Sr m a Pc (air entry 

Pressure) (Pa) 

0.0027 0.3 0.3 19.3 2 5×10
5
 

 

 

Fig ‎5-11 comparison between analytical and numerical solution for the position of interface for nonlinear case 

      

Table ‎5-3 Characteristics of primary injection of less viscous, less dense injectant into a water-wet saturated zone 

Qo   
  

   
  φ Sr m a Pc (air entry 

Pressure) Pa 

0.0027 0.3 0.3 19.3 1.5 5×10
5
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Fig ‎5-12 comparison between analytical and numerical solution for the position of interface for nonlinear case 

    

 

Fig ‎5-13 comparison between analytical and numerical solution for the position of interface for nonlinear case 

 



028 
 

 

Fig ‎5-14 Effect of nonlinearity of saturation progression is presented as the position of shock wave for different values 

of a. 

Table ‎5-4 Characteristics and parameters of injection problem 

Qo   
  

   
  

φ Sr m a t (year) 

0.001 0.3 0.3 19.3 1.5 1 

 

Fig ‎5--‎5 -51 Comparison of analytical, numerical and semi analytical solution for the interface position for different 

values of gas entry pressure. The agreement is reasonable, and the semi analytical solution is easily adoptable for any 

degree of nonlinearity 

5.5 Up scaled averaged mass conservation: 

The theory is a combination of the analytical solution proposed by Juanes et al. (64) (81) and 

the one was proposed by Nordbotten and Dahle (58) or the analytical solution in section (5.3) 

that incorporates the effect of large scale capillary driven transition zone. Starting from Eq 

(5.33) and Eq (5.34) 
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And by introducing fractional flow function 
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And by writing the mass conservation for wetting phase and neglecting the capillary term 
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 f  is the inverse of Eq (5.28), and analytical presentation of f 
‘  

is complicated. But numerical 

calculation of f 
‘  

is trivial. By substituting Eq (5.98) in Eq (5.97) 
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Eq (5.99) is Π is the fractional flow function based on the vertically averaged saturation.  
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Fig ‎5-16 (a) Derivative of fractional flow function versus vertically averaged saturation for different Δγ, for Δγ=100 

(N) the F’ becomes similar to gravity-free case (b) Comparison of fractional flow function for a set of linear relative 

permeability function and the calculated fractional flow function for different values of A. Small values of A converge 

to linear relative permeability case, because small capillary force results in sharp interface between saline and CO2. 

Eq (5.99) is the up scaled fractional flow function for geometries with large aspect ratio. By 

using 1D problem instead of 2D, the calculation of saturation distribution is easier.   

Eq (5.99) is valuable because it reduces the dimension of the problem and is the correct 

vertically averaged conservation of mass that is not based on the sharp interface assumption 

similar to the previous works (63), (76), (81), (39). Eq (5.96) is for the second degree of 

nonlinearity and with the same procedure it is possible to calculate equivalent 1D fractional 

flow function for other degrees of freedom.

  
5.6  Cyclic Injection: 

In the most of the practical applications, cyclic injection of water and gas (Water Alteration 

Gas) is important. For special cases of CO2 sequestration, sequential injection of water and 

gas enhances surface contact between injectant (CO2) and host liquid (saline) and that 

provides faster dissolution of gas. In this section, analytical solution for the set of nonlinear 

relative permeabilities is extended to include the sequential injection of CO2-Sline. 
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Numerical simulation of cyclic injection is expensive and requires heavy computation and 

mesh adaptation, and any analytical approximation has a great value.  

Gaseous injectant from the injector drains the porous media and invades the pores. By 

injecting saline after injection of gas, the invaded pores imbibe and the injected saline 

recaptures the invaded pores. In the case of significant capillary effect, the transition zone 

grows, and cyclic injection of water accelerates the mixing process. In previous section, 

gravity-primary drainage was reduces to a classic Buckley-Leverett equation, and in this 

chapter the solution is extended to cyclic reinjection of saline. Additional to enhancement of 

solubility trapping, after reinjection of saline, a trail of gas remain in its residual saturation. 

This has been extensively studied by Juanes et al. (81), Hesse et al. (54) and other researchers 

in the field.
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And Eq (5.99) can be rewrite as  
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Saturation distribution at the end of drainage process is initial condition of imbibition 

process. Front tracking methods should be used for solution of the secondary imbibition, and 

the interaction of imbibition wave to the drainage wave. Similar problem was solved by 

Juanes et al.(81) for strictly convex fractional flow function assuming a sharp interface and 

segregated phases. According to Fig (5.16-b), strictly convex fractional flow function is an 

asymptotic limit for small capillary forces. In case of significant capillary forces and diffused 
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interface, the fractional flow function cannot be strictly convex and has an inflection point. 

That condition provides a rarefaction wave chasing a faster shock wave. Because of the 

constant boundary condition at the far end (S=1), domain of the shock wave remain constant. 

In Fig (5.16-a) the saturation of the shock wave is equal to Sc. 

Assuming the injection of CO2 is stopped suddenly and water is injected from the same 

injector. It is easily practical, by switching the injectant from a single well. Fractional flow 

function remains similar, but the position of saturation transition will be reverse. Contrasting 

to (81), partial concavity of the fractional flow provides different possibilities for the wave’s 

structure. In the other words, the imbibition front is not necessarily a single shock wave and 

there could be rarefaction trail follow the imbibition front. Domain of the shock wave 

saturation is obtained in Fig (5.16-a), and it is equal to Sw. 

Mechanism of secondary imbibition is dominantly a shock wave, and that makes the 

imbibition front faster. Consequently the water front recaptures the drained zone much faster. 

Theoretically there are two possibilities for saturation transition during distribution process, 

but it will be proved that only one is relevant for physical parameters of aquifer and rate of 

injection. It is possible to define different stages for cyclic injection. 

Primary Drainage: This process is similar to the problem that was discussed in the previous 

chapters and first part of this chapter. If the equivalent fractional flow function be applied for 

the gravity-drainage process, there will be rarefaction zone that follows a faster shock front. 

The completely drained zone is equivalent to the slowest ray of the rarefaction wave. 

Chasing Process: The process starts after injection of water, and the structure of the 

saturation transition wave is a large shock wave that may be followed by a rarefaction wave. 
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The process is faster than the drainage process, and when the shock front reaches to the 

slowest rarefaction ray and the imbibition front starts to recaptures the transition zone, the 

process completes. 

Interaction Process: The imbibition wave interacts with drainage wave. A simplified 

problem is solved in (57), when the imbibition is a single shock and drainage is a rarefaction 

wave. Here, a generalized solution is proposed that incorporates arbitrary structure of 

transition waves. A detailed approach is also suggested for p-system (dynamics of an inviscid 

, non heat conducting gas) is proposed in (50) that is readily adoptable to the multiphase 

system. Because of the larger velocity of the imbibition front the injected wetting phase 

recapture the drained zone. When the drained zone is totally recaptured, this stage is 

terminated.  

Secondary Drainage: After completion of the previous stage and when the total drained area 

is recaptured by saline, the media becomes similar to intact water saturated zone. Drainage 

process can be repeated arbitrarily. Mathematically this process is similar to the primary 

drainage process, but the relative permeabilities and Leverett-J function can be different and 

hysteresis effect should be considered. 

5.6.1 Formulations:  

Starting from Eq (5.102), the drainages front velocities is calculated as   
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Fig ‎5-17 Equivalent fractional flow function and derivative of fractional flow function from Eq (5.45) 
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Solution of Eq (5.103) is straight forward; 
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And the length of the completely drained zone (S=0) from Eq (5.104) 
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After injection of saline, the leading front is a shock and the domain of the shock is [0,Sw]. 

From Rankine-Hugoniot condition, velocity of wave is obtained. 
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https://www.google.ca/search?hl=en&spell=1&q=Rankine-Hugoniot&sa=X&ei=vc-mUInvFMnkyQHisIGoBw&ved=0CB8QvwUoAA
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And by defining tc as the time that leading shock reaches to the L length of the drained zone) 

and impinges the transition zone. 
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L
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After the imbibition front reaches to the transition zone, the imbibition front interacts with the 

drainage wave (Interaction stage). Fractional flow function is not strictly convex, and there is 

possibility for evolution of a rarefaction wave. To find the saturation distribution in the 

interaction stage, we assume the existence of a rarefaction wave before the shock front and 

another rarefaction wave after the shock wave. Labeling the saturations on the upstream and 

downstream (i.e. left side and right side) of the shock front as Su and Sd, and duration of 

gaseous injection and water injection as T and t. In discontinuous front the governing 

equations are continuity of the upstream and the downstream; 
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Eq (5.110) and Eq (5.111) provide two independent equations for calculation of Su and Sd at 

different times.  
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And by separation of variables  
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Numerical integration of Eq (5.116) is possible. Initial condition of Eq (5.116) comes from 

t=tc, when the Su=Sw and Sd=0. The closing equation Eq (5.110) is 
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An iterative numerical scheme readily can be used for calculation of Su and Sd. Not 

surprisingly, the continuity equations are not satisfied for any values of Su and consequently 

the rarefaction does not exist. It simplifies the problem drastically, and a correlation between 

Sd (downstream saturation) and t (saline injection) can easily obtain with a fixed upper limit 

of integration.  



037 
 

 

)118.5(ln

)(
11

)(

0

1 















































Tt

Tt

s
s

ds

SS

Q

dss

c

dS

s

rgrw

w 









 

This is equivalent to solution in (64).  

 

Fig ‎5-18 Snapshots of primary drainage and secondary imbibition, the black line represents gaseous interface and the 

blue line is saline front 

5.7 Conclusions: 

A semi-analytic solution has been developed for the location of the shock wave and 

saturation contours for non-linear permeability functions during injection of an immiscible 

fluid of different viscosity and density into a liquid-saturated tabular reservoir.  The reservoir 

is isotropic and homogeneous, laterally extensive, and the grains are wet with the initial 

saturatant.   

To achieve a solution, the following assumptions were made: incompressible fluids, constant 

density and viscosity, fluid immiscibility and non-reactivity.   
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Non-linearity was introduced by first proving that the relationship between the height of the 

shock wave and the mean saturation is a smooth, monotonic function, and by knowing the 

two end points of this relationship.  Then, a predictor-corrector scheme is used to converge to 

an appropriate relationship which gives the location of the shock wave for the non-linear 

relative permeability case.  The solution is limited to relative permeability curves (and 

transition zone saturations) that are continuous and monotonic, with a degree of nonlinearity 

less than exponent 3, and it is intended for use in primary drainage cases, such as the 

continuous injection of supercritical CO2 into a saline aquifer for sequestration, water-

flooding an oil-wet reservoir, gas injection into an oil-saturated reservoir, and related 

problems.   

The incorporation of nonlinearity that has been achieved in these solutions, combined with 

the appreciation that the other assumptions are physically realistic for wide ranges of 

conditions, increases the practical importance of the developed solutions, and makes them 

applicable to real formations under real conditions.  Hence, the solutions can be developed 

into useful engineering tools to be used at all times during sequestration activities, as well as 

being applied to other reservoir drainage and displacement processes involving immiscible 

fluids of different density.  These analytical solutions are adaptable to a wide range of real 

geometries and characteristics, and provide a good approximation of saturation distribution at 

different times. Moreover, the cyclic injection of CO2-water is a complicated process and the 

developed analytical solution can more easily capture the physics of the problem and propose 

an excellent approximation.  Because the solution gives the result directly for any time, 

laborious time-stepping and numerical dispersion can be avoided in getting a “quick look” 

assessment before introducing a more complicated approach based on mathematical 

modeling. Clearly, issues such as heterogeneity and spatially varying properties must be 
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handled by mathematical modeling, but this modeling can be combined with the solutions 

herein to give better understanding of the engineering constraints. 
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6  Conclusion 

The main contribution of this thesis is physical simulation of the extended interfacial zone 

generated during injection of a lower-viscosity and different density fluid into a reservoir that 

is saturated and wet with another fluid. An example of an application of the new analytical 

and semi-analytical formulations is the injection of supercritical CO2 into a water-wet tabular 

reservoir to achieve sequestration.  

The analytical solutions presented in Chapters 3 to 5 relax the sharp interface assumption that 

has been a major restrictive assumption in most analytical works. A sharp interface is only 

valid when the capillary force is small, and that assumption simplifies the problem of primary 

drainage, but greatly restricts the applicability of such solutions. Drainage progression can be 

driven by injection, natural flow or gravity segregation in dipping geometries. In this thesis, 

only injection has been considered as the force driving lateral spreading, but the equations 

can be easily transformed to natural flow and gravity-driven flow cases, or a combination of 

driving forces.  

The effect of the capillary fringe (transition zone) has been widely discussed in the literature, 

but adequate mathematical solutions for the extended interfacial zone have not been 

provided. Starting from the simplest possible relative permeability function, a linear 

assumption, the size of the transition zone was calculated in Chapters 3 and 4.  However, a 

linear relative permeability function is a poor description of porous media, and is only valid 

when the capillary forces are small enough to be neglected (e.g. coarse-grained or fractured 

material), but it provides interesting possibilities for intuitive analytical solutions. Linear 

relative permeability assumptions have been used to demonstrate the qualitative interfacial 

interaction during drainage and imbibition (see(41)). Chapter 3 proposes two different 

methods for estimation of the position and nature of the transition zone, allowing its size to 

be calculated. It is shown that large capillary numbers lead to a larger transition zone. 
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Moreover, the size of the capillary zone grows in time and has a direct relation with the ratio 

of mobilities (or ratio of the viscosities) of the two fluids.  

The effect of non-linear relative permeabilities has been widely neglected in the literature that 

deals with analytical or semi-analytical flow equations. Not only are most of the analytical 

solutions based on the sharp interface assumption,  the few that attempt to incorporate the 

capillary fringe effect do not correctly incorporate realistic relative permeability functions. 

For instance in (58), the existence of a significant capillary force is considered equivalent to 

the diffused interface (continuous interface).  In Chapter 4 (Eq (4.26)) and Chapter 5 (lemma 

1) it has been proven (and verified numerically - Fig (5.1)) that even in the presence of large 

capillary forces appropriate relative permeability functions can provide a sharp interface.  

Chapter 4 proposes a generalized conservation equation, and the classic Buckley-Leverett 

equation for gravity-free 1D, cylindrical or spherical geometries are special cases of Eq 

(4.26) when the shape of isosats are considered to be flat surface, cylinders or spheres 

respectively.   

Chapter 5 proposes two different methods for prediction of the interface position and the 

average saturation in the case of nonlinear relative permeabilities and an arbitrary Leverett-J 

function. The first analytical solution is an extension of existing one  by Nordbotten and 

Dahle (58) and Golding et al. (60), but with the introduction of non-linear relative 

permeabilities. Analytical integration is time consuming and it is only possible when the 

degrees of nonlinearity (a in Eq (5.12)) are expressed with an integer (2, 3…).  In most 

relative permeability functions calibrated from samples, the degree of nonlinearity is not 

expressed with an integer. For instance in (82), the degree of nonlinearity (exponent a) would 

be equal to 2.7 if the parameters in Eq (5.12) are determined from the published data. It is 

apparent that the analytical solution is not easily adaptable with non-integral degrees of 
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nonlinearity. Another semi-analytical solution is also presented in Chapter 5 that incorporates 

a variety of Leverett-J functions and degrees of nonlinearity including non-integer values for 

exponent a.  

Chapter 5 also presents an upscaled fractional flow function for the extended interface, 

gravity drainage problem. By using this new fractional flow function, it becomes possible to 

model secondary imbibition, secondary drainage,  and so on, opening the possibility for semi-

analytical modeling of injection processes that involve cyclic fluid injection, such as CO2 

injection for a month, followed by water injection for three months, and so on.  Alternating 

fluid injection technologies already are used (water-alternating-gas), and such approaches 

hold promise for optimization of secure CO2 sequestration approaches that enhance 

dissolution into the aqueous phase and residual trapping.   

It should be emphasized that the new developments herein, which greatly extend the range of 

analytical and semi-analytical solutions in the class of problems related to injection of 

immiscible fluids of different density, are widely applicable to technologies such as enhanced 

oil recovery by gravity drainage, gas, solvent or water injection, air sparging for cleaning 

contaminated aquifers, and so on.  

6.1 Recommendations for future research: 

Mathematical simulation of multiphase flow remains in a somewhat naïve state, and better 

understanding of the physics of fluid flow will continue to benefit from more rigorous 

laboratory and field studies. Some of the more interesting subjects for future research 

(83)(84) are identified here   

Vertically dynamic injection: In most analytical and numerical analysis, the capillary 

gravity condition is a basic assumption. It has been widely accepted intuitively, and justified 

mathematically, but vertical equilibrium is only acceptable if the geometry provides a large 
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aspect ratio. In other words, only if the thickness of the aquifer is much smaller than its 

length. Vertical equilibrium is therefore only valid for specific reservoir geometry and 

characteristics and it remains unsuitable for more complex  geometry. 

Effect of mixing, dissolution and vaporization, salt precipitation: A gaseous fluid such as 

CO2 is partially soluble in the aqueous phase, and the dissolution process is simultaneous 

with the injection process. Saline water also vaporizes, and the precipitation of salt is possible 

from the evaporating residual water content as CO2 injection continues. Mass transfer from 

the injected gas to the saline water and and the reverse can be calculated based on equilibrium 

thermodynamics (85) or kinetic mass transfer (75). Mixing of gaseous or super critical phases 

with aqueous phases is an interesting subject for future studies; for example, direct co-

injection of supercritical CO2 and produced formation water into a reservoir is of interest to 

enhanced oil recovery schemes as well as to sequestration approaches. 

Effect of compressibility of fluids and the poroelasticity of the granular medium: A 

major assumptions in this work and similar works is incompressibility of fluids and the rock, 

justified because of the small pressure variations that would take place during constant 

pressure injection of CO2. Also, a negligible temperature variation is always assumed. These 

assumptions are only valid for specific scenarios of injection, but for massive injection or 

cyclic injection, pressure and temperature variation become major issues. Pressure build-up 

has been widely studied (86) in a manner similar to the case of single phase immiscible 

injection, but the interfacial effect, the solubility effect and the geomechanical effects (stress 

redistribution and poroelastic effects) have not been fully incorporated in a rigorously 

coupled manner.   
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Appendix A: 

In order to develop a numerical tool to verify the results of the analytical solution, a standard 

finite element method is applied. The need for a new numerical tool arose because of startling 

differences noted among various commercial and research numerical models.  In 

conventional reservoir simulators, changing the properties of the component is not trivial and 

the source code is generally inaccessible.  The assumption of incompressibility of the two 

fluids also has a significant effect on the results, and this assumption should be incorporated 

into the bench mark numerical model. Finally, the mechanical properties of the fluids should 

be independent of the composition and the ambient temperature to make the analytical 

solution and numerical model consistent. Hence, a decision was made to develop a finite 

element model using an IMPES scheme  to give more relevant numerical results.  (33) 

The numerical scheme is straightforward; detailed descriptions of the method are available in 

many text books(33) (87).  An up-stream weighting scheme is used as it provides reasonable 

stability to the convective equation. The governing equations are a set of two parabolic non-

linear equations, and the unknown vector of the set of equations consists of the heads of the 

two phases of different density.   
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Here, qw and qn are the rate of injection or production from the point sources, δ is the delta 

Dirac function and (ro,zo) is the position of the point sources. The last equation presented is 

another constitutive equation.  
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Eqs (A3) to (A4) are the governing equations for immiscible and incompressible fluids. By 

introducing heads for wetting and non-wetting fluids as 
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the set of equations is transformed to   
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Relative permeability functions and Leverett-J functions are the constitutive relationships, by 

setting the trial function and interpolation functions as a linear isoparametric shape function 

for triangular elements, the set of governing equations is transformed to 
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K and M are stiffness and mass tensors, and q is the source vector. Using finite element 

discretization, the tensors are defined as 
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Qw/n is the rate of source and sink, and  is the symbol of dyadic multiplication. It is apparent 

that the nature of the saturation equation is dominantly convective, and to restore the stability 

of the results, a localized up-stream scheme is applied. Assuming the mobility tensors are 

positive definite and there are no off-diagonal components of the mobility tensor, and also 

assuming that the heterogeneity of the formation is coaxial with horizontal and vertical 

directions, one can write the mobility tensor in the local coordinate system as
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The same scheme is adaptable for 1D and axisymmetric 

geometries. Despite the fully implicit scheme, the IMPES method is conditionally stable, but 

the time step size should be smaller than a particular limit(87). This constraint makes the 

Fig (A1): Typical triangular element in the local 

coordinate system 
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method slower, but in an IMPES scheme the set of algebraic equation is linear after 

numerical discretization.  

 

 

 

 

 

 

 


