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Abstract 
 

 

Although it is not difficult to observe the healing of induced wounds in animal embryos, mapping the 

forces that drive lesion closure has proved challenging. Laser microsurgery, Atomic Force Microscopy 

(AFM) and other techniques can provide local information at fixed times, but all are invasive and some 

disrupt further development. Video Force Microscopy (VFM) has been able to map driving forces during 

ventral furrow formation in Drosophila (fruit fly), but challenges arose when it was applied under the 

assumption that the only driving forces are intracellular pressures and forces (including purse string action) 

along cell edges. Other possible forces of relevance include far-field stresses and in-plane cellular 

contractions. Mapping the forces that drive wound closure is an important problem, and so far it has 

remained unsolved. 

 

To investigate the process of dorsal closure, this study used a cell-based finite element (FE) model to 

identify the mechanical signatures of a wide variety of possible driving forces. Geometric parameters 

were developed to characterize the associated cell shapes and tissue motions and to quantitatively 

compare FE simulations with each other and with experimental data. It was discovered that edge tensions 

and pressures were not sufficient to drive wound healing. Wound healing can only be achieved when far-

field boundary motions, edge tensions and apical area tensions act together. 

 

This thesis shows that a suitable FE model can provide information about the forces that drive wound 

healing, and its simulations take us one step closer to understanding the mechanics of wound healing. It 

also contributes to our general understanding of the forces that drive morphogenetic movements and 

ultimately helps us to better understand cell-based processes important for human quality of life. 
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Chapter 1   

Introduction 
 

 

 

One of the most fascinating phenomena in nature is the ability of biological systems to heal and recover 

from injuries that range from the cellular to skeletal scale. The ability to heal is crucial to survival. In an 

epithelial injury, the cells surrounding the wound undergo significant changes and rearrangements so as to 

reseal the damaged area. Much research has been done during the last several decades to understand the 

morphogenetic movements of the wound healing processes in different animals and insects (Brock et al., 

1996; Galko & Krasnow, 2004; Hutson et al., 2003; Jacinto & Martin, 2001; Kiehart et al., 2000; Ramet 

et al., 2002; Wang et al., 2009; Wood et al., 2002). However, identifying the forces that drive lesion 

closure has proved to be a challenge.  

 

For many years, researchers have been trying to map the forces that drive morphogenetic movements 

such as wound healing and embryogenesis. Although progress has been made, biological tissues are 

fragile and the forces generated are of the order of micro- or pico-Newtons, and physical measurements 

are difficult to make.  

 

One technique that can be used to determine the forces that drive wound healing involves ablating 

parts of one or more cells using a laser micro-scalpel (Hutson et al., 2003; Kiehart et al., 2000). Laser 

microsurgery has been refined over many years to the point where a single cell, membrane, or even a 

single cytoskeletal component can be ablated in a controlled manner. The Hutson group from Vanderbilt 

University in Tennessee, who is one of our collaborators, uses this technique to study morphogenetic 

movements in Drosophila (fruit fly) embryos and the experimental data presented here are from his lab. 

Although advancements were made in understanding morphogenetic movements through this technique, 

it has a number of drawbacks. When a laser insertion is made, it causes significant damage to the cells. 

The biological system is changed, and so stress from recoil information can be obtained only at a single 

location and instant in time. Despite the drawback to this technique, measurements acquired using this 

technique in conjunction with biological morphology studies have led researches to identify a number of 

possible driving forces responsible for wound healing including actomyosin cables, lamellipodia, area 

contractions, and purse string tensions (Jacinto & Martin, 2001; Martin & Lewis, 1992; Ramet et al., 2002; 

Wood et al., 2002).  

 

An important question to ask regarding this problem is: “Why is it important to be able to map these 

forces?” A good answer is that it will provide a deeper understanding of how tissues move and rearrange. 

At a fundamental level, it offers the possibility to manipulate motion through controlling the driving 

forces at its source. Whether the motion is mechanical or chemically induced, having the ability to control 

the driving factors will allow the manipulation of cell movements for experimental or therapeutic ends. 
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Likewise, through genetic engineering, certain genes may be enhanced or suppressed to control the cell 

structures and proteins that contribute to morphogenetic movements. In the case of embryogenesis, there 

are many birth defects that arise from incomplete or incorrect morphogenetic movements. Common birth 

defects such as spina bifida and cleft palate arise from incomplete morphogenetic movements. For 

example, the failure in the closure of the neural tube will result in spina bifida. This birth defect could be 

prevented if the driving forces that cause the neural tube to close functioned normally (Brodland et al., 

2010a; Stark, 1977). A better understanding of the forces that drive wound healing, in particular, could 

help improve the recovery of patients suffering from injuries by shortening recovery time and preventing 

scarring. Thus, information about driving forces could advance the biomedical industry and enhance 

patient quality of life.  

 

Mapping the forces of morphogenetic movement was an unsolved problem until a biomechanical 

research group at the University of Waterloo under the supervision of Professor Wayne Brodland 

developed a technique called Video Force Microscopy (VFM) (Cranston, 2009), the first technique able 

to map the forces that drive morphogenetic movements, VFM is a computational method that uses 

engineering principles, Finite Element Modeling (FEM) and inverse methods. It is common in FEM to 

consider the force as an in input and the displacement as an output. In contrast, VFM uses the 

displacement history as its input and calculates the driving forces responsible for the observed motions as 

the output. Here in our lab, cell-based Finite Element (FE) models have been developed and are used to 

track changes in motion, thereby computing the edge tensions and pressures in the cells that induce shape 

changes and rearrangements of cells (Brodland, 2002; Brodland et al., 2007). This technique not only 

overcomes the drawbacks of the laser insertion technique, but also advances the way morphogenetic 

movements are studied. VFM was used to map the forces that drive ventral furrow formation in 

Drosophila melanogaster embryos (Brodland et al., 2010b; Conte et al., 2012).  

 

When a version of VFM in which edge tensions and pressures alone were assumed to act was first 

applied to wound healing, the edge tensions and pressures results were not convincing. Could other 

mechanical forces be at work? The objective of this study is to determine the driving forces responsible 

for wound healing in Drosophila embryos during the dorsal closure stage through finite element modeling. 

A wide range of possible driving forces will be considered and mechanical and geometric tools used to 

assess the computational results. 
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Chapter 2  

Background 
 

 

 

This chapter provides background information on the biology of wound healing and morphogenesis in 

Drosophila embryos. It also provides background information relevant to the modeling of biological cells, 

including forward modeling and simulations, inversion techniques, and biological experiments.  

 

 

 

2.1 Wound Healing 
 

 

2.1.1 Uncovering the Secrets of Wound Healing 
 

For many years, researchers have been trying to answer the question, “How does wound healing occur?” 

and that question has remained largely unanswered. When a wound is introduced, cells rearrange and 

reduce the wound hole until it is completely sealed. Young infants are prone to recover from a wound 

much faster and in completion than full grown adults (Redd et al., 2004). Continual research in the 

therapeutic work has been progressing to improve healing for patients recovering from injuries. There are 

many theories suggesting how cells rearrange and wound healing may occur but it has clearly been a 

challenge to pin point its driving forces and how this process occurs (Brodland, 2002; Harris, 1976; Redd 

et al., 2004). One of the challenges is the lack of experimental techniques for studying lesion closure. In 

many cases, studies are conducted on insects and small mammals, and they may not necessarily reflect the 

morphogenetic response of humans. Although there are many challenges, researchers have managed to 

advance our understanding in wound healing and morphogenetic movements (Hutson et al., 2003; Jacinto 

& Martin, 2001; Kiehart et al., 2000; Wood et al., 2002).  

 

 

2.1.2 Wound Healing and the Drosophila Embryo 
 

Drosophila (fruit fly) embryos are widely used for studying wound healing and morphogenetic 

movements (Belacortu & Paricio, 2011; Galko & Krasnow, 2004). A Drosophila has a short cycle time 

from the formation of an egg to becoming a full grown fruit fly and is easily accessible as it grows. Dorsal 

closure, an important process in embryo development, has been an excellent model for studying healing 

and cell movements. Dorsal closure can be considered the last process in morphogenetic development in a 

Drosophila embryo (Campos-Ortéga & Hartenstein, 1997). During this process, the epidermal cells 
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overlap the amnioserosa cells until the two leading edges meet. Figure 2.1 shows the 3 step process of 

dorsal closure.  

 

 
Figure 2.1 – Drosophila embryo. The figure on the left shows the process 

through which dorsal closure occurs. The figure on the right illustrates a typical 

cross section. Image courtesy of Dr Martinez-Arias, Cambridge, UK. (Kiehart et al., 

2000) 

 

Intensive studies have been conducted to understand the biomechanics of dorsal closure. One of the 

most common techniques used to study this phenomenon, besides genetic perturbations, was through the 

use of micro laser surgery. Micro laser surgery has been refined over many years to the point where a 

single cell, membrane, or even a single cytoskeletal component can be ablated in a controlled manner. By 

ablating a cell edge, the stress at that location may be acquired through relating material properties and 

recoiling of neighboring cells.  

 

Using this technique, it was shown that there are four major biological processes that may be 

responsible for dorsal closure and are shown in Figure 2.2 (Hutson et al., 2003; Kiehart et al., 2000; 

Peralta et al., 2008).  

1. Contractile force of the actomyosin-rich purse string 

2. Contractile force of the cortical actomyosin networks of the amnioserosa cells 

3. Resistant forces that arise from stretching of the lateral epidermis 

4. Zipping at each canthus 

 

A 

A 

Section A-A 

Dorsal 

Ventral 

Yolk 

Ventral Epidermis 

Lateral Epidermis 

Leading Edge of the 

Lateral Epidermis 

Amnioserosa 
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Figure 2.2 – Forces acting on a Drosophila embryo 

 

While other forces contribute to dorsal closure, the stretching of the lateral epidermis resists dorsal 

closure and is counter balanced with isotropic tensions acting on the amnioserosa. Laser perturbations 

introduce only a small delay in the closing process of the amnioserosa while the presence of amnioserosa 

is crucial in closure and zipping of the epidermis (Hutson et al., 2003; Scuderi & Letsou, 2005). 

 

Although Drosophila embryos are an excellent model for analyzing wound healing, traditional laser 

ablation techniques have been shown to have challenges of their own. Traditional laser micro surgery 

cause significant damage to the cells and provide stress data at a single location and instance in time. 

Despite the drawbacks of micro laser surgery technique, studies have shown that lesion closure may still 

be achieved through actin cable and dynamic protrusions (Anon et al., 2012; Wood et al., 2002).  

 

Jacinto et al. (2002) use micro laser ablation techniques to study the wound healing process in 

Drosophila embryos during dorsal closure. They noted that wound closure is achieved by changes in cell 

shape and rearrangements while actin cable and dynamic protrusions are the driving forces (Jacinto et al., 

2002). Previous study have shown that the protein GTPases Rho is responsible for the formation of actin 

cable and Cdc42 is responsible for the formation of filopodia (Wood et al., 2002). Through genetic 

perturbations of GTPases Rho and Cdc42, it was suggested that at the wound sight, actin cable formed 

around the perimeter of the wound to act as a purse string, causing the hole to close in. Rho mutant 

embryos were not able to assemble actin cable at the site of the wound, but were still able to close the 

wound, suggesting that purse string contraction was not the only driving force in wound closure. When 

Cdc42 was modulated, wound closure was still achieved however, it took twice as long and the hole was 

not fully repaired. The modulation of Cdc42 suggested that dynamic filopodial/lamellipodial protrusions 

were responsible to knitting the wound while other factors could have been responsible for lesion closure 

(Jacinto et al., 2002). 

 

Interestingly enough, lesion closure was achieved with modulating either actin cable or dynamic 

protrusion, but there still remained a possibility that neither may have been the driving force to which 

wound closure was achieved. Whether the conclusions obtained through various experiments may be 

correct, there is an emerging need for studying wound closure using non-traditional techniques to provide 

a different perspective and insight to this problem. Furthermore, understanding these changes in shape 

and healing abilities during embryogenesis is significant into providing insight to healthy and normal 

embryonic development.  
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2.2 Tissue Mechanics Modeling and Experimentation 
 

 

The use of computer modeling has been increasing, especially in the bioengineering field. In the past, 

computer aided design (CAD) and computer simulations have been carried out on mechanical systems 

and materials but in recent years, researchers have been utilizing computer modeling and simulations in 

the bioengineering field. Many discoveries made in cell mechanics and morphogenesis would not have 

possible without the use of computer technology (Brodland et al., 2010a; Brodland et al., 2010b; Chen & 

Brodland, 2008). Before we apply modeling techniques to embryonic development and wound healing, 

cell modeling and existing models will be introduced.  

 

 

2.2.1 The Anatomy of a Cell 
 

A cell can be considered to be the fundamental building block in all biological beings. There are many 

different components that form the cell. Figure 2.3 is an example of a cell model showing a few of its 

main parts. The cell membrane is a flexible bilayer composed primarily of phospholipids. At the surface 

of the cell membrane, there are various molecules that control transportation through the membrane while 

other molecules are responsible for cell adhesion. The cell’s membrane is known to be under tension.  

 

 
Figure 2.3 – Cell structure and components 

 

Inside the membrane, are the cytoplasm and cytoskeleton, where the cytoplasm is a clear gel 

containing various proteins and the cytoskeleton gives structure to the cells (Ethier & Simmons, 2007). 

The cytoskeleton is composed of microfilaments, intermediate filaments and microtubules (Cowin & 
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Doty, 2006). Microfilaments are flexible and relatively strong, which give structural integrity to the cell 

while resisting buckling, and are composed of actin. Intermediate filaments are protein fibers that brace 

the microfilaments and microtubules, giving mechanical strength and also supporting organelles within 

the cell. The largest cytoskeleton structures are microtubules, which are hollow cylindrical tubes that aid 

in the transportation of nutrients and play a key role in mitosis (cell division). At the core of the cell is the 

nucleus. The nucleus contains DNA, RNA, and chromosomes and it controls cell activity by regulating 

gene expression.  

 

 

2.2.2 Quantification of Cell Properties 
 

There are many reasons to why it is necessary to understand the mechanical properties of the cells. 

Designing biocompatible materials, modeling biological tissues, tissue engineering and many other 

applications, all depend on understanding the mechanical behavior of cells and tissue. However, taking 

measurements on cells is not an easy task because the forces generated are of the order of micro- or pico-

Newtons. Despite the difficulty of the protocol, researchers have managed to develop techniques to obtain 

the mechanical properties of cells.  

 
One of the techniques used to measure cell properties is micropipette aspiration (Ethier & Simmons, 

2007; Mitchison & Swann, 1954). This is one of the first devices used to measure mechanical properties 

of cells. A glass pipette is placed on the surface of the tissue and a negative pressure is created, allowing 

the cell to bulge into the glass pipette as shown in Figure 2.4. From the deformed geometry of the cell, the 

mechanical properties of the cell can be obtained based on the applied pressure. Laplace’s Law can also 

be used to relate the pressure, membrane curvature and tension by Eq. (2.1), where γ is the surface tension, 

ΔP is the pressure gradient and ρ is the radius of curvature (Morris & Homann, 2001).  

 

2







P
            (2.1) 

 

 
Figure 2.4 – Micropipette aspiration (Cranston, 2009) 

 

In addition to the cell edge tensions, the adhesive strength of the cell can be measured using a second 

pipette. As the first pipette holds the cell in place the second pipette is used to pull them apart.  
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Atomic force microscopy (AFM) is another method used to obtain cell properties. In this method, a 

flexible beam with a probe attached to its tip is used to deform the surface of the cell. Using a laser, the 

position of the beam is determined and by approximating the beam as a linear spring, the force is 

calculated using Eq. (2.2), where E is the stiffness of the cell, α is the half-angle of the conical probe tip, 

F is the applied force, δ is the displacement, and ν is the Poisson’s ratio (Ethier & Simmons, 2007).  

 

 






tan

1

2

2

2

E

F 
            (2.2) 

 

Another method used for measuring properties of cell is optical tweezers. Optical tweezers use a pair 

of laser beams to manipulate a bead that is manually inserted inside the cell. Through the exploitation of 

the photons’ momentum, the bead can be displaced in a controlled manner. Beads may also be 

manipulated using magnetism rather than laser beams. In either case, the force on the bead is calculated 

using empirical calibration because it cannot be calculated directly. By using Eq. (2.3), the bead is 

calibrated in a known medium and the forces are calculated using Stoke’s Law, where F is the drag force, 

μ is the fluid viscosity, r is the radius of the bead, and v is the velocity (Dai et al., 1997).  

 

rvF 6            (2.3) 

 

In most cases, the cell of interest needs to be in isolation to conduct these tests due to the nature of the 

test devices and method protocol. These tests are not only invasive, but would be difficult to conduct on 

biological tissues that are in a dynamic environment such as morphogenesis or wound healing. Although 

it may be difficult to use these methods for our purpose and study, the results obtained from these 

experiments are essential to tissue modeling and finite element models that exist today.     

 

 

2.2.3 Tissue Rearrangement and Differentiation  
 

Biological cells have the ability to rearrange and differentiate during embryonic development, 

morphogenetic processes, cell sorting, and wound healing. Although chemical or genetics may trigger the 

outcome of the cells’ movement, studies have shown that cell sorting and differentiation are essentially 

mechanical (Arrkas, 1994; Beloussov, 1998; Cowin & Doty, 2006; Nuri Akkaş, 1994).  

 

Wilson (1907) was the first person to observe cell sorting in multicellular organisms (Arrkas, 1994). 

In the case of embryonic vertebrates, it was determined that cells dissociated and mixed randomly, 

suggesting that cells themselves produced the driving force necessary to differentiate and rearrange 

(Wilson, 1907). Later on, morphogenetic experiments were conducted with different types of cells by 

Townes and Holtfreter (1955). They observed that the grouping of cells tended to have the same final 

configuration despite different starting configurations (Townes & Holtfreter, 1955). They suggested that 

cell engulfment, invagination and sorting had the same or similar driving mechanism (Arrkas, 1994). 

Besides the scientist mentioned previously, extensive research has been conducted in cell sorting and 

differentiation and all evidence suggest that it is a self driven and mechanical in nature (Steinberg, 1962; 

Steinberg, 1970).  
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There have been two hypotheses to describe how cellular self-rearrangements are driven: the 

Streingerg's Differential Adhesion Hypothesis (DAH) and Brodland's Differential Interfacial Tension 

Hypothesis (DITH) (Brodland, 2002; Harris, 1976). DAH suggests that cell sorting behaves like 

immiscible liquids. In other words, depending on the adhesion molecular force, cells will engulf or be 

engulfed by cells that have different adhesion molecular forces (Steinberg, 1970). However, the DAH 

theory has been deemed unviable in recent years. The DITH is an alternate theory that suggests that cell 

self-rearrangements are driven by differences in interfacial tensions (Arrkas, 1994; Brodland, 2002; 

Harris, 1976). The interfacial tensions are the consequence of membrane contraction, actin forces and 

adhesion systems.  

 

If cells are in equilibrium, the interfacial tensions will determine the geometry of the triple junctions. 

In a perfectly annealed cell patch, the triple junction of three cells will form 120 degrees angle with one 

another if all boundaries carry the same effective tension. Studies have suggested that the principle stress 

direction is correlated with cell geometry (Beloussov, 1998; Goodwin & Trainor, 1985; Hutson et al., 

2009; Hutson et al., 2009; Odell et al., 1981; Steinberg, 1978; Thompson, 1942). When analyzing tissue 

mechanics, many three dimensional (3D) problems can be simplified into a two dimensional (2D) 

problem because generally speaking, tissues are composed of planar aggregates and 2D models have been 

shown to be sufficient for these problems (Brodland et al., 2006).  

 

 

 

2.3 Finite Element Modeling 
 

 

As the research field of tissue modeling and testing advanced, mathematical models of cell behavior using 

a one dimensional (1D) equivalent mechanical circuit were developed. The 1D cell models were based on 

viscoelastic material comprised of Maxwell, Kelvin and Maxwell-Kelvin models (Ethier & Simmons, 

2007). These models were later used in conjunction with the DITH to develop 2D cell models. Other 

models include tensegrity cell structure, lattice, and cellular automata model which were essential to the 

development of the finite element (FE) models of cells and tissues (Coughlin & Stamenovic, 1997; Ingber, 

1993; Ingber, 1997). Computational models of cells were developed as early as 1981 by Odell et al. In 

more recent years, Davidson et al. (1995) developed a FE model to simulate the gastrulation process in 

sea urchin. Through finite element modeling and experiments, Davidson was able to test the feasibility of 

several potential driving mechanisms (Davidson et al., 1999). In 2006, a cell-based constitutive model 

was developed by Brodland et al. which related tissue deformations, in-plane stresses, topological 

evolution of cellular fabric, mitosis, and cell rearrangement. This was the first of its kind for studying 

embryonic development using finite element modeling. Other finite element models were developed by 

Brodland et al. and provided a new avenue in studying morphogenesis and embryonic development 

(Brodland & Chen, 2000; Brodland et al., 2007; Chen & Brodland, 2008; Clausi & Brodland, 1993; 

Hutson et al., 2008).  
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2.3.1 Finite Element Model 
 

A finite element model, called Simba, was used as the basis of our finite element analysis. Simba is a 

custom written C++ simulator developed in our lab over the last 20 years. Similar to other finite element 

analysis software, an input geometry is read by the code and the algorithm calculates resulting 

displacements from the applied forces, mechanical properties, and constraints over a series of successive 

time steps. The details of the finite element model and analysis are explained in the following subsections. 

Figure 2.5 shows an example of a 2D finite element model of a collection of biological cells. The cells 

appear as contiguous polygons which are assumed to be connected with each other at their vertices or 

nodes. Their mechanical properties derive from their in-plane areas and their edges.  

 

 
Figure 2.5 – Cell 2D finite element model 

 

 

Nodes: 

 

In a 2D model each node has two degrees of freedom (DOF), with displacement in the x- and y-directions, 

only. In most cases, nodes form a double or triple junction, where two or three cells meet. However, it is 

possible for a node to form a quad junction which commonly occurs during cell neighbor changes. These 

neighbor changes are frequent events and have an important role in morphogenesis and cell 

rearrangement. A neighbor change occurs in three major steps, as demonstrated in Figure 2.6. Two cells, 

labeled B and D, begin with a short horizontal contacting edge. As this edge shortens to zero length and a 

new vertical edge forms, cells B and D become separated and cells A and C come into contact. Although 

neighbor exchanges are a common occurrence in most tissues, they are rare in the amnioserosa during 

dorsal closure.  

 

 

Node 

Edge 

Element 
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Figure 2.6 – Neighbour change (Cranston, 2009) 

 

 

Edges: 

 

Edges are straight line segments that represent the interface between adjacent cells or a cell and the 

surrounding medium, and they always connect two nodes. According to the DITH, a net tension force acts 

along each edge, a force which arises from various sub-cellular components. The net force that arises 

from intra-cellular forces can be represented as 
AB



 
for an edge that is between cell A and B. Figure 2.7 

depicts the structural components that contribute to the net interfacial tension in Eq. (2.4) (Brodland & 

Chen, 2000).  

 

Other

AB

Adh

AB

Mem

B

Mem

A

Cyto

B

Cyto

AAB
FFFFFF        (2.4) 

 

 
Figure 2.7 – Contribution to interfacial tensions (Cranston, 2009)  

 

 The term Cyto

A
F  represents the forces that arise from the cytoplasm and its embedded intermediate 

filaments. The term Mem

A
F  represents the membrane tension acting along the particular interface and also 

includes the tensions arising from the cortical actin layer (CAL). Forces from cell adhesion molecules 

(CAM) are represented by Adh

A
F  and they lower the interfacial tension. Other forces, which have not been 

mentioned above, may contribute to the net interfacial tensions acting along the cell edge and is 

represented by Other

A
F . 
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Elements: 

 

The cytoplasm in biological cells can be modeled as a massless, viscous, incompressible fluid since strain 

rates are typically in the order of 10
-6

/s during tissue remodeling (Clausi & Brodland, 1993; Hutson et al., 

2009). This allows the cells to be modeled as a viscous material using dashpots. Dashpots are models that 

resist motion where its resulting forces are dependent on the velocity. There are three different vicous 

models available in the Cell2D element class, viscous triangles, radial/circumferential dashpots, and 

orthogonal dashpots (Figure 2.8).  

 

 
Figure 2.8 – (a) The components in cells. (b) A viscous triangle viscous model. (c) 

Radial and circumferential dashpot model. (d) Orthogonal dashpot model. 

(Brodland et al., 2007)  

 

The viscous triangle model breaks a cell into multiple triangular elements with a center point. The 

radial/circumferential dashpot model has dashpots along the radial and circumferential direction. The 

orthogonal dashpot model allows each dashpot to be connected to one node and a common ground. Figure 

2.8 (d) only displays the dashpots along the major axis for clarity whereas in the model, there are dashpots 

along the major and minor axis of the cell. A comparative study was conducted to analyze the different 

approaches to model cells and the orthogonal dashpot was deemed more viable (Brodland et al., 2007). 

As a result, the orthogonal dashpot model will be used for our study with the stiffness of the dashpot 

defined by Eq. (2.5) (Brodland et al., 2007). 

 

nA

hBg

A




4
            (2.5) 

 

where g is the form factor = 0.682,  is the  viscosity, n is the number of nodes in cell, h is the cell 

thickness, A and B are the major and minor (length) axes of the cells, respectively. 
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2.3.2 FE Model Solution 
 

An object in motion can be governed by a general dynamics equation as shown in Eq. (2.6), where the 

first term accounts for the inertia forces, the second term accounts for the viscous forces, and the third 

term accounts for the elastic forces. In the case of morphogenesis and embryo development, the inertia 

forces may be ignored because the scale and accelerations are small. As a result, the general equation of 

motion can be reduced to a first order equation. In the case of biological cells, cells have a viscous 

behavior rather than an elastic behavior and this allows the elastic forces to be neglected. Thus, the 

general equation of motion is reduced to Eq. (2.7), where C is the damping matrix, Δt is the time 

increment, u is the displacement, and F is the equivalent joint force vector.  

 

FfffKuuCuM
kcm
          (2.6) 
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 (2.7) 

 

The nodal displacements are solved for a given increment of time from the simplified equation of the 

general equation of motion. The problem is geometrically nonlinear and is solved incrementally. The 

resulting solution gives vectors of nodal displacements and Lagrange multiplier values for each time step.  

 

 
Figure 2.9 – The differential tension finite element model (Cranston, 2009) 
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2.4 VFM Inverse Approach  
 

 

In traditional finite element modeling, the driving forces are applied and the model outputs the 

displacements. Here, we use an inverse formulation in which driving forces are determined from tissue 

displacements. The first generation of this inverse technique was developed by P. Graham Cranston in 

2009 as part of his thesis (Cranston, 2009). This software package was called Scar.   

 

 

2.4.1 Inverting the FE Model  
 

In forward FE methods, Eq. (2.7) is used to solve for the nodal displacements. However, in VFM, Eq. 

(2.7) is first solved for the forces at each node and then for the edge tensions and pressures, as described 

below. In any FE model, boundary conditions and constraints must be specified. Without proper 

constraints and conditions, the system will not be statically determinant (Lay, 2003). In the model 

demonstrated in Figure 2.10, the cell patch is constrained by a pin joint at one node and a spring joint at 

another. The pin joint constrains two DOF while the spring, assigned a low stiffness, adds a third. Nodal 

forces are assumed to arise only from viscous forces, pressures and cell edge tensions.  

 

 
Figure 2.10 – Constraining the input model for inversion (Cranston, 2009) 

 

With the system well constrained, the nodal forces can be calculated using Eq. (2.7). The resulting 

nodal forces can be decomposed to forces generated from subcellular structures through the geometric 

matrix, a matrix that relates nodal forces to subcellular forces based on the cell’s structure.  

 

 

Force Generators: 

 

Some of the subcellular forces acting on a typical cell are shown in Figure 2.11. There are two forces that 

contribute to nodal forces, edge tensions and pressure forces. It is assumed that all edges are under tension 

K<<1 
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and is the case for node 26. The edge tensions surrounding node 26 are shown in red and it is assumed 

that the tensions differ in magnitude.  

 

 
Figure 2.11 – Translation of forces acting on nodes (Cranston, 2009) 

 

The nodal force contribution from the cell pressure is shown along edges 12 and 13. The pressure 

load acts normal to the surface and is modeled as a distributed load. The pressure load can arise from in-

plane loads generated along the apical and basal membranes and volume constancy of the cell. The 

intracellular pressure is represented as a negative load. The distributed pressure load can be represented as 

two point load, equal in magnitude, acting on both ends perpendicular to the edge. The magnitude of these 

forces can be calculated from Eq. (2.8), where P is the pressure and l is the length of the edge. 

 

2

Pl
P R            (2.8) 

 

 

Assembling the Geometric Matrix: 

 

Equivalent joint loads are calculated using Eq. (2.9), where G is a geometric matrix, F is a vector of nodal 

forces, and T is a vector of unknown tensions and pressures. Details of the equations are given below, but 

briefly, the first term relates edge tensions to nodal forces and the second term relates pressures to nodal 

forces.  
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Tensions: 

 

The geometric matrix GT relates the edge tension TT to the forces exerted at the nodes on which they 

impinge. For a given edge (of length l), the componential forms of Δx and Δy for the x and y components 

of the edge are used, respectively. Figure 2.12 and Eq. (2.11) demonstrates how the edge tension 

geometric matrix is assembled from the associated components (direction cosines). For details, see 

Cranston (2009).  

 

  
Figure 2.12 – Development of edge tension geometric matrix (Cranston, 2009) 
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(2.11) 

 

The rows of GT correspond to the degree of freedom (DOF) of the model and the columns to the 

edge tensions. In the example above, Node 26 corresponds to the 53
rd

 and 54
th
 DOF and the matrix shows 

how edge tension 
33

T
T  contributes to the calculated forces.  

 

 

Pressures: 

 

The geometric matrix GP relates the pressure in a cell to the forces exerted at its perimeter nodes. For 

each side, the effect is equivalent to a distributed load normal to the edge. To represent the force in 

Cartesian coordinates, binormal vectors are employed as shown in Figure 2.13. 
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Figure 2.13 – Development of pressure geometric matrix (Cranston, 2009) 

 

Two vectors are defined where vector c  extends from the node to the center of the cell, and vector e  

extends along the edge on which the pressure is acting. By taking the cross product of the two vectors in 

Eq. (2.12), a new vector n (normal to the cell plane) is defined. Taking the second cross product with 

vector e  and vector n  in Eq. (2.13), vector 'R  pointing perpendicular to the cell edge is created. Vector 

'R  is then scaled to give R , such that the resultant force on the node is RP  determined from Eq. (2.8). 

The resulting R  is determined from Eq. (2.14), where l is the length of the edge the pressure is being 

applied. 

 

 cen              (2.12) 

neR '             (2.13) 
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The resultant vector R  is defined in 
3

 , having 3 components x, y, and z. However, the two 

dimensional nature of the problem allows the z-component to always be zero; while the x and y 

components are incorporated in the GP geometric matrix. Equation 2.15 demonstrates the placement of 

these components for Cell 3 at Node 11 from Figure 2.11. The 
3,23

P
G  has two terms, Rx

(12)
 and Rx

(13)
 where 

the symbol Rx refers to the x component of vector R  and includes the contribution of the distributed 

pressure from edge 12 and 13.  
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Solution: 

 

With the tension and pressure geometric matrix assembled, the unknown edge tensions and pressures in 

the system of equations can be solved by equating Eq. (2.7) and Eq. (2.9). Generally speaking, a system 

of equations can either be underdetermined, overdetermined, or hold a unique solution. If a system is 

underdetermined, it will have an infinite number of solutions whereas, an overdetermined system will 

have no unique solution. A patch of cells surrounded by medium generally has more equations than 

unknowns and tends to be an overdetermined system.  

 

There are many different methods to find an approximate solution for an overdetermined system. The 

most common method is known as the least square method and it determines the solution with the lowest 

residual (RMS) error r.  A suitable set of equations is formed by premultiplying the left and right side of 

Eq. (2.17) by GT (Nash, 1990). 

 

FGTr             (2.16) 

FGGTG
TT

               (2.17) 

 

 

2.4.2 Applying VFM to Synthetic Data 
 

Extensive tests and simulations were conducted to verify the inversion algorithm. Many synthetic patches 

of cells were generated using Simba’s 2D Voronoi Generator and these were run in the standard forward 

direction so that the time course was obtained. The data from this forward model was then used as the 

input for the Scar algorithm, so it could calculate the edge tensions and pressures through the 

mathematical algorithm described in the previous section. Different configuration and load experiments 

were conducted and the inversion algorithm was able to accurately depict the driving forces. 

 

 

2.4.3 VFM on Live Data for Ventral Furrow Formation  
 

Ventral furrow formation (see Figure 2.14) is an important morphogenetic process in Drosophila, and it 

occurs over a period of approximately twenty minutes. This process is relatively simple and well 

understood by researchers although a lack of quantitative and numerical analysis still exists (Leptin, 

1999). VFM, however, allowed the edge tensions and pressures that drive this process to be mapped.  
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Figure 2.14 – Ventral furrow invagination (Brodland et al., 2010b) 

 

The first step in conducting VFM on experimental data is to collect images of the embryo at regular 

intervals during the development process. The cell edges are made visible through florescent markers 

(Kaltschmidt et al., 2002). A sample of a typical image with florescent-dyed embryo is shown in Figure 

2.15. Individual cells are then demarcated using the watershed technique (Beucher & Meyer, 1992).  

 

 
Figure 2.15 – Sample image of a florescent dyed embryo. a) The whole 

Drosophila embryo dyed in florescent markers. b) Image capturing a section of the 

embryo. The upper half of the image shows the amnioserosa cells and the bottom 

half of the image shows the epidermis cells. (Kaltschmidt et al., 2002) 

 

The cellularized images were then digitized and used as input for VFM. VFM showed that a strong 

tension acted along the apical surface of the dorsal-most cells, while the inside surface of the upper cells 

(the ectoderm) was also under tension. Figure 2.16 shows the tensions as a function of angular position 

and time. The edge tensions yielded a parabolic profile as a function of angular position where the 

maximum edge tension occurred at the base of the cross section or the angular position of zero degrees 

(Brodland et al., 2010b; Conte et al., 2012).  

 

a) b) 
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Figure 2.16 – VFM results of ventral furrow invagination (Brodland et al., 2010b) 

 

This study was able to demonstrate the potential of using VFM to study embryogenesis. Mutant 

phenotype embryos were also studied. Bnt was used to test the contribution of surrounding forces, arm 

was used to determine the role of cell-cell adhesion, and cta/t48 was used to test the contribution of apical 

constriction. The potential of VFM as a tool to study morphogenetic problem was well demonstrated and 

was of great interest to analyze other morphogenetic processes (Conte et al., 2012).  

 

 

2.4.5 VFM Applied to Wound Healing 
 

Wound healing in Drosophila embryos is another well known morphogenetic process. When a wound is 

introduced, the surrounding cells undergo significant movements and shape changes as the healing 

progresses. Figure 2.17 is a sample of one of many wound healing experiments conducted in Professor 

Hutson’s lab, where a laser point wound was initiated and the healing progress was captured using a 

confocal microscope.  

 

 
Figure 2.17 – Point wound experimental data healing process  

t≈40s                      t≈160s                       t≈370s                     t≈630s                      t≈870s 

 

 

 

 t≈50s 
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The Figure 2.17 shows a sample of 5 frames out of the 50 frames that were collected. For this 

particular experiment, the healing process was captured over a time duration of 840 seconds. The 

obtained images were digitized and transformed into a FE file configured for VFM, shown in Figure 2.18.  

 

 
Figure 2.18 – Digitized point wound experimental data healing process 

 

 When VFM was applied, the inversion results were difficult to interpret. This raised the questions 

about why VFM worked for ventral furrow formation but not wound healing. Perhaps wound healing is 

driven by more than just edge tensions and pressures. A primary goal of this thesis is to addresses this 

important issue.  

 

 

  

t≈40s                         t≈160s                       t≈370s                      t≈630s                    t≈870s 

 

 

 

 t≈50s 

 

 



22 

 

Chapter 3  

Methods 
 

 

 

This chapter describes the development of quantitative measures that can be used to characterize the 

geometries of cells near a wound so that the results of simulations can be compared with each other and 

with experimental data. Experimental data were obtained from our collaborator, Prof. Hutson. 

 

 

 

3.1 Data Requisition and Configuration for Forward 

Simulation 
 

 

The dorsal closure stage of development is of high interest to many research groups as a model for 

morphogenetic changes as well as healing. Different types of wound shapes can be introduced to the cell 

patch as shown in Figure 3.1. 

    

 
Figure 3.1 – Different wound ablation experiments. Point wound, C-wound, 

line wound and circular wounds are shown from left to right, respectively. 

 

Time-laps movies from each kind of wound were digitized and converted to a Cell2D FE Simba file 

using a watershed algorithm developed in our lab by PhD candidate, Ahmad Ehsandar. Dashpots were 

used to model the viscosity of the cytoplasm in the cells. The visible cells were enclosed in a rectangular 

box and the gap between the cell patch and the box (see Figure 3.2) filled with additional model cells. The 

rectangular shape of the enclosure facilitates application of far-field stresses and constraints.  
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Figure 3.2 – The digitization process  

 

Prior to introducing a wound to the patch, the forces in the amnioserosa cells are under equilibrium. 

Because the far-field stresses and apical tensions are in balance, creating a wound upsets the balance of 

the forces. The wound expansion at the time of ablation is known as the recoil phenomena and is shown 

in Figure 3.3 (Hutson et al., 2009). For purposes of this study, the starting geometry is two to three frames 

after ablation of the cells because the wound expands (recoils) for approximately 30 seconds before 

healing begins. The healing process may take 30 times longer. 

 

 
Figure 3.3 – The recoil phenomenon of point wound 

 

 

 

3.2 Development of Quantitative Measures 
 

 

Here, we develop a set of quantitative measures to describe the geometric characteristics of the cells in a 

patch. The quantitative measures are nondimensional so that they are independent of image scale. To 

better identify and classify cells, we introduce the following terms: 
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Wound  

The “wound cell” is one or more physical cells that have been severely damaged as a result of the laser 

incision. They can no longer contain pressure. At any moment, the wound area is nondimensionalized to 

its initial area.  

 

Ring 1  

The cells directly bordering the wound cell are labeled as ring 1 cells. This group of cells changes 

significantly in shape and size throughout the healing process. Their combined area is 

nondimensionalized against their initial area.  

 

Ring 2  

Ring 2 cells border ring 1 cells and they are also prone to significant changes. The area of the ring 2 cells 

are nondimensionalized to their initial area.  

 

Light  

As shown in Figure 3.2 and 3.4, the cells artificially created to form a rectangular enclosure around the 

cell patch are labeled as light (as opposed to dark) cells. These cells are not of interest from an analysis 

standpoint but they play an important role in transmitting any external forces and constraints applied at 

the boundaries into the cell patch.  

 

Normal 

Cells which are three cells or more away from the wound are labeled as normal cells. These cells are 

monitored to capture any changes that occur in the patch further away from the location of laser incision.  

 

 
Figure 3.4 – Point wound cell type identifications 

 

Having defined a number of cell types, we next develop a set of geometric parameters to allow 

quantitative comparison between simulations and experiments.  
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3.2.1 Volume and Area 
 

Although the amnioserosa cells are 3D, they can be simplified into 2D because they form planar 

aggregates (Brodland et al., 2007). Area changes are important to wound healing, as shown in Figure 3.5. 

It is not clear whether cell volume is lost or whether cell height changes to accommodate the area change.  

 

 
Figure 3.5 – Area change 

 

 

3.2.2 Circularity 
 

The first shape measure is called circularity and it characterizes how closely a cell shape resembles a 

circle. Circularity is defined as the ratio where A and P are the area and perimeter of the cell, respectively. 

Perfectly round cells will have a circularity of one, whereas cells which deviate from a circle will have a 

value closer to zero (see Figure 3.6).  

 

2

4

P

A
yCircularit


          (3.1) 

 

 
Figure 3.6 – a) Circular shaped cell that yields a high circularity value. b) 

Jagged shaped cell yields a low circularity value. c) Oval shaped cell yields a low 

circularity value.  

b) circularity ≈ 0.60 c) circularity ≈ 0.82 a) circularity ≈ 0.95 
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Circularity is likely associated with relative cell pressure since as the pressure inside a cell increases, 

it has a tendency to round up in shape. In contrast, an unpressurized cell is more likely to have a lower 

circularity. The circularity of a hexagonal cell is 6/3  ≈ 0.91 and values for some other representative 

geometries are shown in Figure 3.6. 

 

 

3.2.3 Wedgeness 
 

Cells bordering the wound often develop a distinctive elongated wedge shape (similar to the shape of a 

pie slice) where the cells points toward the center of the wound as shown in Figure 3.7. To characterize 

this type of geometry, we define a wedgeness parameter where E1 is the length of the edge bordering the 

wound, E2 is the opposite edge length parallel to E1, and PL is the perpendicular length between edges 

E1 and E2. These quantities are demonstrated in Figure 3.8. 

 

)/11)(2/11( PLEEEWedgeness 
 .       

(3.2) 

 

 
Figure 3.7 – Cells become wedged shaped as healing proceeds 

 

 
Figure 3.8 – Demonstration of wedgeness parameters on a cell 

E1 

E2 

PL 

E2 

PL 

E1 
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The first term, (1 – E1/E2), quantifies the ratio of the two lengths of the wound edge and the opposite 

edge parallel to the wound, whereas the second term, (1 – E1/PL), captures how long the cell is wedged. 

Rectangular shaped cells will yield a wedgeness value close to zero and pie shaped cells will yield a value 

closer to one (Figure 3.8).  

 

 

3.2.4 Isoangularity 
 

Isoangularity characterizes the ratios of the angles at a triple junction. The triple junction angles of an 

annealed cell patch with identical edge tensions tend uniformly toward an angle of 120 degrees. 

Introducing a variation in magnitude on one edge will form a force imbalance and cause all the junction 

angles to change. Figure 3.9 demonstrates how the angles at a junction will vary when a non-uniform 

tension is introduced. The mathematical definition of the isoangularity parameter is defined by Eq. (3.3). 

 

 
Figure 3.9 – Isoangularity of cells 

 





2

minmax


I            (3.3) 

 

where θmax is the largest and θmin is the smallest angle at a triple junction. For isometric junctions, the 

isoangularity will tend to zero (See Figure 3.10).  

 

 
Figure 3.10 – Example of isoangularity  

 
 

b) isoangularity ≈ 0.25 c) isoangularity ≈ 0.21 a) isoangularity ≈ 0 
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3.2.5 Crinularity 
 

The Cell2D model has the ability to accommodate multiple nodal points along individual cell edges. Cell 

interfaces may appear straight or crinkled depending on the net effects of forces that are present in it. 

Edges that carry a high tension will tend to be straight. Crinularity characterizes the severity of how 

crinkled or wrinkled the cell edge is by taking the sum of all angular excursions θi along the path of the 

edge (Figure 3.11).  
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(3.4) 

 

 
Figure 3.11 – Cell Crinularity 

 

 

 

3.3 Development of Constraints and Conditions 
 

  

In forward FE modeling, applying the appropriate forces and constraints are crucial to the outcome of the 

analysis. In this section, the constraints and boundary conditions used are defined.  

 

 

3.3.1 Constraining the Patch 
 

The cell patch must have 3 constraints that is able to prevent all 3 types of planar free body motions. In a 

typical model, the starting geometry is enclosed in a rectangular box (see §3.1), and throughout the 

analysis, the cell patch is constrained to maintain a rectangle enclosure. While the bottom left corner is 

restricted from translation motion, the left edge of the patch is restricted from horizontal motion, and the 

bottom edge of the patch is restricted from vertical motion (Figure 3.12). In this way, the patch is 

constrained from translation and rotation 

 

θ1 
θ3 

θ2 
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Figure 3.12 – Constraining the cell patch 

 

 

3.3.2 Wound Cell  
 

Following ablation, the wound cell is exposed to the medium and is assumed to carry zero pressure. It is 

also assumed to have zero viscosity. 

 

 

3.3.3 Volume Constraint and Pressure 
 

In the model, cell volume can be specified in two ways – a volume constraint and an elastic volume 

dependent on pressure. When a cell undergoes deformation, the volume constraint restricts the 

deformation so that the volume remains constant. The volume constraint is specified in the element 

control section in the finite element file. 

 
 

ECCell1Nrml       PlaneStrain       0       0       1       VolumeConstraint       -1 

 

 

Volume pressure is different from a volume constraint, because its volume can change according to 

its internal pressure. When a volume pressure is specified for a cell, it can carry a pressure and is given by 

Eq. (3.5). 
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Cell Patch 
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 where V0 is the initial volume and V is the current volume. The volume pressure coefficient is also 

specified in the element control section in the finite element file. In the example shown, the magnitude of 

the volume pressure is 10dyne/pixel
2
.  

 
 

ECCell1       PlaneStrain       0       0       1       VolumePressure       10 

 

 

 

3.3.4 Velocity Boundary Condition 
 

The velocity boundary condition moves the boundary of a patch at a specified velocity. Experimental data 

shows the leading edges of the amnioserosa closing at a constant speed during dorsal closure and wound 

healing, as shown in Figure 3.13 (Hutson et al., 2003).  

 

 
Figure 3.13 – Displacement of the leading edges in amnioserosa (Hutson et al., 2003) 

 

The velocity boundary condition is applied by specifying a node, at the top right corner of the patch, 

to move at a certain velocity. 

 
 

6 Corner 26 VX -0.0435 VY -0.021 
 

 

Since the cell patch is constrained to remain a rectangular shape, specifying a velocity boundary 

condition to the corner node will force the top and right edge to move, respectively, as shown in Figure 

3.14. 
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Figure 3.14 – Cell patch with velocity boundary condition 

 

 

3.3.5 Cell-to-Cell Permeability 
 

The cell-to-cell permeability constant specifies how fluid can flow from one cell to its neighbor when a 

pressure gradient exists (Spring & Ericson, 1982). A cell with a high pressure will lose fluid to its 

neighboring low pressure cells if the membrane permeability is not zero. The total volume of all the cells 

will remain constant. The amount of fluid that can transfer through a cell membrane depends on the 

pressure gradient, edge length, thickness and incremental time step, which is given by Eq. (3.6). 

Increasing the permeability has the same effect as increasing the number of channels in a cell. Figure 3.15 

demonstrates responses across membranes with high and low permeability constants.  

 

)()()()( typermeabilicellincrementtimethicknesslengthRateExchangeFluid 
 

  (3.6) 

 

 
Figure 3.15 – Cell-to-cell permeability shown on cell edge 
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The cell-to-cell permeability is implemented in the element control section in the finite element file 

by specifying the permeability value for its corresponding interface between cell types, organized in a 

matrix form. The first matrix specifies the interfacial tensions (units are in dyne) and the second matrix 

specifies the permeability between the cell interfaces.  

 

 
Normal Wound Light Ring1 Ring2 Medium 

0.1 0.1 0.1 0.1 0.1 0 

 0.1 0.1 0.1 0.1 0 

  0.1 0.1 0.1 0 

   0.1 0.1 0 

    0.1 0 

     0 

 

Permeability      

0.14 0.14 0.0 0.14 0.14 0 

 0.14 0.0 0.14 0.14 0 

  0.0 0.0 0.0 0 

   0.14 0.14 0 

    0.14 0 

     0 
 

 

In the example above, all the cells have a permeability value of 0.14, except for cell interfaces 

between light cells and the medium.  

 

 

3.3.6 Apical Permeability 
 

The apical permeability is similar to the cell-to-cell permeability, and it accommodates channels for the 

fluid to flow out through the apical surface of the cell into the adjacent medium. Figure 3.16 demonstrates 

the cell-to-cell and apical permeability for a given cell.  

 

 
Figure 3.16 – Graphical depiction of apical and cell-to-cell permeability (Brodland et al., 2010b) 

Cell-to-Cell Permeability 

Apical Permeability 
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3.4 Development of Forces 
 

 

There are a number of driving forces that contribute to the movement of cells during embryogenesis and 

wound healing. In this section, different type of forces that contributes to the movement of cells during 

the wound healing process are identified.  

 

 

3.4.1 Far-Field Stress 
 

The far-field stress is applied to the patch in a way similar to the displacement boundary condition (Figure 

3.17). By applying a force (reaction) to the corner node, the force is transmitted to the edge of the cell 

patch.  

 

 
6 Corner 26 RX 32 2.0 RY 15 1.5 

 

 

In the example, a load of 2.0dyne/pixel
2
 is applied along the edge between node 26 and 32, while a 

load of 1.5dyne/pixel
2
 is applied along the edge between node 26 and 15. Since the entire cell patch is 

constrained to form a rectangle (see §3.3.1), applying a force to the corner node (node 26) will distribute 

the load along the entire edge of their respective x and y directions. 

 

 
Figure 3.17 – Cell patch with far-field stress 
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3.4.2 Nodal-Based Local Area Contraction  
 

In Drosophila embryos, the amnioserosa cells undergo contraction during dorsal closure. Although it has 

been a challenge to understand why and how cells contract, progress has been made in mapping the actin 

that generates the contractile forces (Jacinto et al., 2002; Kaltschmidt et al., 2002). The amnioserosa cells 

typically undergo four cycles of contraction during the time frame used in our analyses (see Figure 3.18).  

 

 
Figure 3.18 – Cell area profile during contraction 

 

The nodal-based area contraction models the contraction in a cell, defined by 5 parameters that 

govern the contraction: contraction rate, strength, strength variation, duration, and duration variation. The 

contraction in a cell is initiated by including the contraction command and its parameters in the simulation 

control section in the finite element file and it must be used with the volume pressure condition. 

 

 
Contraction     0.6     1     0.5     80     10 

 
 

In the example above, the contraction rate = 0.6%, strength =1dyne, strength variation = 0.5dyne, 

duration = 80sec, and duration variation = 10sec. The rate of contraction measures the percentage of cells 

that are under contraction, where a value of one indicates all cells are under contraction and a value of 

zero indicates no cells are under contraction. The contraction is modeled by creating center node, which is 

randomly placed at half a radius range given by Eq. (3.7, 3.8, & 3.9), and is demonstrated in Figure 3.19.  
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Figure 3.19 – Nodal-based local area contraction  

 

Once the center node is defined, a radial tension is applied from the center node to all the nodes 

surrounding the cell. The tension depends on the specified strength and its duration, according to Eq. 

(3.10). The length in the equation refers to the distance between the center node and the corresponding 

node in the cell. The strength varies as a sinusoidal function of time, according to Eq. (3.11). However, 

only the positive value of the sinusoidal function is used.  
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StrengthTensionRadial 
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TimeStart
StrengthTotalStrength sin        (3.11) 

 

 

3.4.3 Pressure-Based Local Area Contraction  
 

The pressure-based area contraction is implemented differently in comparison to the nodal-based area 

contraction. The nodal-based area contraction has the ability to contract non-uniformly, where the shape 

of the cell changes as it contracts. The pressure-based contraction does not change the shape of the cell as 

it contracts. The pressure-based contraction has a similar affect to scaling the size of the cell as shown in 

Figure 3.20.  
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Figure 3.20 – Pressure-based local area contraction 

 

The use of volume pressure instead of a volume constraint allows a contracted cell to expand. 

Otherwise, a contracted cell will have no means to return to its initial size. A high-volume pressure will 

resist the contraction, resulting in a low-area decrease during contraction, and vice versa. Hence, the 

volume pressure should be adjusted appropriately to resemble the experimental data.   

 

 

3.4.4 Edge-to-Edge Interfacial Tensions 
 

The Differential Interfacial Tension Hypothesis (DITH) is used to model the interfacial tension of cells 

(Brodland, 2002). The interfacial tension between two cells (arbitrarily identified as A and B) can be 

represented as a combination of forces acting in the cells, illustrated by Eq. (3.12) and Figure 3.21 

(Brodland, 2002).  
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Figure 3.21 – Contribution to interfacial tensions (Cranston, 2009)  
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The magnitude of the interfacial edge tension can be specified according to the cell type. The 

magnitude of the interfacial tension is controlled by specifying its corresponding values in a matrix form 

in the element control section in the finite element file.  

 
 

Normal Wound Light Ring1 Ring2 Medium 

0.1 0.1 0.1 0.1 0.1 0.0 

 0.1 0.1 0.1 0.1 0.0 

  0.1 0.1 0.1 0.0 

   0.1 0.1 0.0 

    0.1 0.0 

     0.0 
 

 

In the example above, all the cells bordering the medium have an interfacial tension of 0.0dyne and 

all other interfaces have a tension of 0.1dyne. The use of a matrix to specify interfacial tensions gives 

flexibility and control over the simulation.  

 

 

3.4.5 Apical Tension 
 

The apical tension is an area tension acting normal to the edges of the amnioserosa cells. It is equivalent 

to a negative pressure acting on a cell. The apical tension is applied to the cells in the simulation by 

specifying the desired tension value in the element control section in the finite element file. 

 

 

ECCell1     PlaneStrain     0     0     1     VolumeConstraint     -1     ApicalPermeability     0.0024     ApicalTension     0.12 

 

 
The apical tension must be used in conjunction with apical permeability and volume constraint 

conditions. The apical tension and permeability values can be specified for each cell type, giving 

flexibility and control over the simulation. 

 

 

 

3.5 Configuration and Analysis File 
 

 

3.5.1 Node Block 
 

The node block in the finite element file is where the nodal points, x and y coordinates, are defined. The 

nodes form the grid or the mesh of the system. Nodes define the perimeters of the cells and are points 

where the mathematical equations are computed (refer to §2.3.1). Increasing the number of nodes will 
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better capture the geometry, but will increase the computational resource required for the mathematical 

calculations. Figure 3.22 demonstrates how increasing the number of nodes can better capture a cell’s 

geometry. The file is structured so that it can be in the same format as the output file from any time step. 

Thus, any output file can be used as an input file for a successive series of steps. This feature is useful for 

scenarios where configuration or analysis parameters are changed manually. 

 

 
Figure 3.22 – Nodal points used to capture cell geometry 

 

The finite element files are configured such that the first column lists the node identifier, the second 

and third column lists the x and y coordinates of the node, respectively. The fourth and fifth column lists 

the original x and y coordinates of the node. Following the nodal coordinates are a list of associated edges, 

where “-1” are space fillers. The following is a sample of the node block in the finite element file: 

 

 

BEGIN_NODES 

5 276 -74 276 -74 Edge 12 13 410 -1 

6 225 -82 225 -82 Edge 20 229 411 -1 

⁞   ⁞   ⁞   ⁞   ⁞    ⁞   ⁞   ⁞   ⁞  ⁞ 

138 63 -386 63 -386 Edge 193 198 199 -1 
 

 
 

3.5.2 Edge Block 
 

An edge forms the boundary between two elements and is also the direction along which the interfacial 

tension acts. In the finite element file, the first column lists the edge identifier, while the subsequent two 

columns list the associated nodes that form the edge. The fourth and fifth columns list the cells that the 

edge is bordering. The subsequent columns describe the edge’s age, color and orientation, where the 

default values are used. Age is used for time-varying features relevant to mitotic daughter cells and 

sinusoidally-contracting amnioserosa cells, and it has a value of zero in most initial-start files. The cell 

identifier of “10000001” refers to the medium, and it is an indication that the edge is bordering the 

medium. The following is a sample of the edge block in the finite element file: 
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BEGIN_EDGES 

12 156 5 10 90 Age 0 Color (255,0,0) Orientation 0 

13 5 14 10 91 Age 0 Color (255,0,0) Orientation 0 

  ⁞   ⁞   ⁞   ⁞   ⁞     ⁞             ⁞            ⁞ 

451 327 300 80 10000001 Age 0 Color (255,0,0) Orientation 0 
 

 

 

3.5.3 Material Block 
 

The material block in the finite element file defines the material types. There are a number of materials 

commonly used in finite element analysis, such as elastic, viscous, viscoelastic and truss material. The 

first column of the material block defines the type of material that is used, where viscous material (VI) is 

used for cell elements. Following the type of material is the value of the viscosity and Poisson’s ratio. The 

following is a sample of the material block in the finite element file: 

 
 

BEGIN_MATERIALS 

VI1 1 0 

VI2 0.1 0 

 
 

The same material type can be specified multiple times by varying the index number followed by the 

material type. In the example above, there are two viscous materials defined, where “VI1” has a viscosity 

of one and “VI2” has a viscosity of zero.  

 

 

3.5.4 Element Block 
 

The element type is what gives character to a cell and its properties. Different cell element models were 

introduced in §2.3.1. In the element block, the first column lists the cell identifier. Following the cell 

identifier is the type of cell that is used. In Simba, there are different classes of cell element models, such 

as Brick, Cell, Cell2D, Cell3D and Truss elements. However, the Cell2D element model is used for our 

study. The third column references the material properties used for that cell. Following the material 

property is the element control block. The column carrying the parenthesis defines the colour of the cell 

for drawing purposes, and the following column identifies the cell type, described previously in §3.2. The 

columns following the cell type are the thickness and growth factor of the element, which are 1pixel and 

zero, respectively, throughout the study. The subsequent columns provide the cell’s area and age. The 

second row of the element identifier provides the edges enclosing the cell, and is listed in the counter 

clockwise direction. The following is a sample of the element block in the finite element file: 
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BEGIN_ELEMENTS 

10 Cell2D VI1 ECCell1Nrml (10,10,10) Normal 1 0 InitialArea 0 Area 0 Age 0 

 Edges 13 230 231 24 39 224 225 12 

 
 

 

3.5.5 Element Control Block 
 

The element control block in the finite element file specifies the majority of the controls and constraints. 

The element control block is divided into three main sections, where the last two sections are used to 

control the interfacial tension and permeability. The following is a sample of the element control block in 

the finite element file: 

 
  

BEGIN_ELEMENT_CONTROLS 

ECCell1Nrml    PlaneStrain    0    0    1    VolumeConstraint    -1    ApicalPermeability    0    ApicalTension    0 

Normal Wound Light Ring1 Ring2 Medium 

0.01 0.01 0.01 0.01 0.01 0 

 
0.01 0.01 0.1 0.01 0 

  
0.01 0.01 0.01 0 

   
0.01 0.01 0 

    
0.01 0 

     
0 

Permeability 
     

1.0 1.0 0.0 1.0 1.0 0 

 
1.0 0.0 1.0 1.0 0 

  
0.0 0.0 0.0 0 

   
1.0 1.0 0 

    
1.0 0 

     
0 

ECCell2Wnd    PlaneStrain    0    0    1    EdgeProperties    ECCell1Nrml 

 

 

In section I, the name of the element control and its planar state of analysis is defined. There are two 

types of plane state, plane stress and plane strain. For stress and strain analysis, the use of plane stress or 

strain condition can simplify a 3D problem into a 2D problem. The plane stress condition refers to the 

state where the normal and shear stresses are zero to the plane of interest (ie, σz=τxz=τyz=0). As a result, 

the 3D stress tensor can be simplified to yield Eq. (3.13 & 3.14) (Logan, 2011).  
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The plane strain condition refers to the state where the normal and its shear strains are zero to the x-y 

plane (ie, εz, ϒxz, ϒyz), where tensor D is defined by Eq. (3.15).  
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The in-plane deformations in the amnioserosa cells are significantly higher than deformations in the 

thickness direction. Therefore, the plane strain condition is used for the purpose of our study.  

 

The columns following the plane state condition are parameters used in controlling neighbour 

changes in cells (refer to §2.3.1). The neighbour change controls are not used since it is a rare occurrence 

in the amnioserosa cells.  

 

There are two types of cell volume conditions, volume constraint and volume pressure. In the 

example above, a volume constraint condition followed by the volume restoration constant is used. The 

volume restoration constant of “-1” is used for disabling the volume restoration control, and is not to be 

used for our study. To apply a volume pressure, the “VolumeConstraint” is replaced with 

“VolumePressure” and the “-1” is replaced with the magnitude of the pressure. Following the cell volume 

conditions are the apical tension and permeability descriptors. In the example above, the “ECCell2Wnd” 

is used for defining the element properties of the wound cell. Since the wound cell is an unconstrained 

medium, its volume condition was omitted. The application of interfacial tensions and permeability are 

referenced through declaring “EdgeProperties ECCell1Nrml”; it prevents redundancy in rewriting the 

matrix that controls the interfacial tensions and permeability.  

 

 

3.5.6 Boundary Condition Block 
 

The boundary condition block can be divided into four main sections. The first section ensures that patch 

is constrained to three DOF in different directions. In the first section, the first column indicates the 

boundary condition identifier, followed by the location and the node that is constrained. The subsequent 

columns describe the type of motion permitted. The “DX” and “DY” indicates the displacement in the x 

and y direction, respectively. To fix the bottom left corner of the patch, a displacement value of zero was 

assigned to “DX” and “DY”. In the second boundary condition, the use of “NY” allows movement along 

the y-axis. Similarly, the third boundary condition constrains movement in the y-direction, while allowing 

movement along the x-axis.  

 

The second section in the boundary condition block controls neighbor changes, but is not used for our 

study. The third section controls the velocity boundary condition (refer to §3.3.4). Through the 

implementation of “VX” and “VY”, the velocity can be specified. Similarly, the far-field stress can be 
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applied by replacing “VX” and “VY” with “RX” and “RY” in addition to its respective far-field stress 

magnitudes. The last section (EdgeBottom, EdgeLeft, EdgeRight, and EdgeTop) constrains the patch to 

maintain a rectangular boundary. The following is an example of the boundary condition block in the 

finite element file: 

 
  

BEGIN_BOUNDARY_CONDITIONS 

1 Corner 300 DX 0 DY 0 

  2 Corner 318 DX 0 NY 

   3 Corner 304 NX DY 0 

   4 Function 0 1 312 0 -1 318 0 

5 Function 1 0 304 -1 0 312 0 

6 Corner 312 VX -0.0435 VY -0.021 

  EdgeBottom EdgeN 300 301 302 303 304 

   EdgeLeft EdgeN 318 319 320 321 322 323 324 325 326 327 300 

 EdgeRight EdgeN 304 305 306 307 308 309 310 311 312 

  EdgeTop EdgeN 312 313 314 315 316 317 318 

       
 

 

 

3.5.7 Control and Output Block 
 

The control block in the finite element file defines the global parameters in the forward simulation. There 

are a number of controls that require specification, such as the simulation duration, time increment, data 

requisition rates and outputs. The simulation duration is governed by the number of steps and the size of 

the step. The step size controls the period between one time step and the next. The total time of the 

simulation is the product of the number of steps and step size. The active step and active time keeps track 

of the current step and time for each finite element file.  

 

Unlike other force applications, the local area contraction developed in §3.4.2 and §3.4.3 are 

implemented in the control block by specifying the “Contraction” followed by its control parameters. The 

contraction can be specified according to different cell types by including “SpecifyOnlyForCellType” 

followed by a list of cell types.  

 

The output variables are specified in the control block. By specifying a list of variables in 

“OutputVariables”, the variable will be reported in the “BEGIN_OUTPUT_VARIABLES” section in the 

finite element file. There are a number of output variables, such as GeometricParameters, Area, Pressure, 

AvgPressure, NumCells and many other variables. The variables are also logged in a “.csv” file. The 

following is an example of the control and output block in the finite element file: 

 

 
 
 
 

IV: Rectangle  

       constraint 

I: Patch   

   constraint 

II: Neighbor  

     changing 

III: BC 
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BEGIN_CONTROLS 

StartingTime 0 

NumberSteps 1000 

StepSize 1 

ActiveStep 0 

ActiveTime 0 

OutputEvery 5 

OutputEveryData 5 

ConstraintReduction 1 1 2 1 0.800000011920929 

BlowUp 1000 

Solver UmfPack 

StiffnessReduction 0 

Contraction     0.2     2     0     1.8     0     SpecifyOnlyForCellType   Normal   Ring1   Ring2 

KtoA Traditional 

RandomSeed 777 

OutputVariables 

ScreenOutput 

 

BEGIN_OUTPUT_VARIABLES 

 
 

The above sections define the finite element code that will be used to investigate the wound healing 

process in Drosophila embryos. 
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Chapter 4  

Results and Discussions 
 

 

 

In this Chapter we use the finite element engine described earlier to investigate the forces that drive 

healing of a range of wound geometries including wounds having a variety of different initial geometries.  

 

 

 

4.1 Edge Tensions as a Driving Force 
 

 

There is strong evidence that interfacial tensions play a significant role in morphogenetic processes, such 

as sorting, neurulation (Brodland & Chen, 2000; Brodland, 2002). For this reason, the nature of motions 

driven by interfacial tensions will be examined in this section to see if they match those that occur in the 

wound healing process.  

 

 

4.1.1 Experimental Data Results 
 

The point wound experimental data was analyzed and the healing process is shown in Figure 4.1. The 

healing process occurred over a time period of approximately 850 seconds and varied slightly from one 

experiment to the next.  In all cases similar significant cell movements and changes in shape occurred as 

healing progressed.  

 

 
Figure 4.1 – Experimental data of point wound healing process 

 

 

t≈40s                      t≈160s                       t≈370s                     t≈630s                      t≈870s 

 

 

 

 t≈50s 
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The width of the entire patch narrowed while its length remained relatively constant, resulting in the 

overall area of the patch decreasing. Narrowing occurs whether or not a wound exists. The wound cell 

had a non-circular geometry, the ring 1 cells tended to have a wedged geometry and the ring 2 cells 

elongated towards the wound. These characteristics can be quantified using the measures defined in 

Chapter 3 and are shown in Figure 4.2.  

 

 
Figure 4.2 – Geometric parameters for point wound experimental data 

 

Table 4.1 summarizes the parametric results, showing their initial and final values along with the 

percent change.   

 

Table 4.1 – Geometric parameter results for point wound 

Parametric Measure Initial Final Percent Change [%] 

Circularity Average 0.7834 0.7913 1.0 

Wedgeness Average 0.1922 0.6041 214.3 

Isoangularity Average 0.9692 0.9830 1.4 

Crinularity Average 0.1683 0.1508 -10.4 

Wound Area 1.000 0.1052 -89.5 

Ring 1 Area 1.000 0.8094 -19.1 

Ring 2 Area 1.000 0.9897 -1.0 

Wound Circularity 0.8992 0.6725 -25.2 

Wound Crinularity 0.1430 0.1708 19.4 

 

 

4.1.2 Edge Tension Applied to All Edges 
 

To understand how interfacial tensions contributed to the morphogenetic movements, edge tension of 

0.5dyne were applied to a model patch of cells. For the simulation, a volume constant was applied to all of 

the cells, except for the wound cell. The forward simulation was conducted until equilibrium was reached 

and is shown in Figure 4.3. The time course of the geometric parameters is shown in Figure 4.4. 
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Figure 4.3 – Forward simulation of steady state with applied edge tensions 

 

Most of the parametric measures reflected the experimental data measures with minor variations. The 

wound area and circularity decreased and the wedgeness increased, similar to the experimental data. 

Although the final values were not in agreement, their overall increasing and decreasing trends were 

similar. There were several differences when comparing the experimental data to the model simulation. 

One observation was that the shape of the cells tended to be circular. Also, Figure 4.4 showed a slight 

increase in the average isoangularity as the patch was annealed. The cell edges in the experimental data 

were crinkled in comparison to the annealed patch and this suggests that there were small or negligible 

edge tensions throughout the cell patch.  

 

 
Figure 4.4 – Geometric parameters for a model tissue driven by edge tensions 

 

Another distinction between the model patch and the experimental data was the difference in the 

individual cell sizes and the overall size of the patch. In the experimental data, there was a decreasing 

trend in the area of the cells. This suggested that the cells were losing volume. Despite the differences 

observed between the experimental and synthetic data, there were also similarities in terms of their 

parametric measures (see Table 4.2).  
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Table 4.2 – Geometric parameter comparison between experimental data and forward simulation (§4.1.2) 

Parametric Measure 
Steady State Experimental Data 

Initial Final Percent Change [%] Percent Change [%] 

Circularity Average 0.7834 0.8231 5.1 1.0 

Wedgeness Average 0.1922 0.5537 188.1 214.3 

Isoangularity Average 0.9692 0.9770 0.8 1.4 

Crinularity Average 0.1683 0.0763 -54.7 -10.4 

Wound Area 1.000 0.1776 -82.2 -89.5 

Ring 1 Area 1.000 1.0008 0.1 -19.1 

Ring 2 Area 1.000 0.9999 0.0 -1.0 

Wound Circularity 0.8992 0.7098 -21.1 -25.2 

Wound Crinularity 0.1430 0.2582 80.5 19.4 

 

Although the majority of the parametric measures were similar to the experimental data, there were 

noticeable discrepancies in the average crinularity, wound crinularity and the area of ring 1 cells. This 

suggests there were other forces present throughout the cell patch or that the edge tensions varied from 

one cell to another.  

 

 

4.1.3 Purse String around Wound Cell 
 

Studies have suggested that an actin purse string forms along the perimeter of the wound, producing high 

tonus forces and causing the wound to close. A forward simulation was conducted with the wound cell 

having a tonus force of 0.06dyne, and this situation was conducted for 850 seconds and is shown in 

Figure 4.5. 

 

 
Figure 4.5 – Purse string around the wound cell 

 

 
 
 
 

t=0s t=400s t=850s 
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Lesion closure was greater when a purse string was applied around the wound. However, the cell 

sizes were noticeably smaller in the experimental data, suggesting that there was a lack of volume loss in 

the simulation. Despite having the same final wound area as the experimental data, the shape of the 

wound was circular in the simulation. There were also distinctions in the parametric measures as shown in 

Figure 4.6.  

 

 
Figure 4.6 – Geometric parameters for a model tissue driven by a purse string 

around the wound cell 

 

Towards the end of the simulation, the wound crinularity spiked. As the wound cell closed, the nodes 

overlapped and passed another node, which significantly increased the crinularity of the cell. This 

occurrence is not realistic, but is a numerical artifact. When observing the overall trend of the wound 

crinularity, the curve yielded a parabolic profile. Based on the Eq. (3.4), the crinularity of the cell 

increased as it deformed away from a straight line.  

 

Applying a purse string around the wound closed the hole while increasing the wedgeness of ring 1 

cells at a steady pace, similar to the experimental data. The data suggest that purse string contraction is a 

plausible driving force for lesion closure.  

 

 

4.1.4 Purse String around Wound with Cell-to-Cell Permeability  
 

We hypothesized that cell permeability might account for the differences between the model and 

experimental findings. In this study, the majority of the parameter results were similar to those in §4.1.3, 

however, the area profile for ring 1 cells was different compared to the experimental data. The area of 

ring 1 cells in the experimental data decreased as closure progressed. A simulation was conducted with 

cell-to-cell permeability set to a value of 10, except for the light (outside edge) cells. The simulation and 

the parametric measure results are shown in Figure 4.7 and Figure 4.8, respectively.  

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 200 400 600 800 

Tiime [sec] 

CircularityAvg 

WedgenessAvg 

IsoAngularityAvg 

CrinularityAvg 

WoundArea 

Ring1Area 

Ring2Area 

WoundCircularity 

WoundCrinularity 



49 

 

 
Figure 4.7 – Purse string around the wound cell with cell-to-cell permeability 

 

 
 Figure 4.8 – Geometric parameters for a model tissue driven by a purse string 

around the wound cell with cell-to-cell permeability 

 

The forward simulation results were similar to the simulation conducted in §4.1.3. The ring 1 cells 

lost very little fluid as a result of having cell-to-cell permeability, suggesting a purse string around the 

wound is not sufficient for ring 1 cells to lose their volume. To determine whether edge tensions alone 

can be used to reduce the volume in cells, a forward simulation with interfacial tensions throughout ring 1 

cells was conducted. A purse string of 0.09dyne was applied to the wound cell, while the interfacial 

tension between ring 1 to ring 2 cells and ring 1 to ring 1 cells had an edge tension of 0.05dyne. The 

forward simulation and parametric results are shown in Figure 4.9 and Figure 4.10, respectively. 
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Figure 4.9 – Using edge tensions to simulate volume loss in ring 1 cells 

 

 
 Figure 4.10 – Geometric parameters for a model tissue driven by edge tensions 

to simulate volume loss in ring 1 cells 

 

Although the area of ring 1 cells decreased, the shape of the cells was different from the experimental 

data. The ring 1 cells were round in the simulation, whereas cells in the experimental data were 

noncircular. In the forward simulation, the ring 1 cells decreased in area, while ring 2 cells increased in 

area. Increasing the tonus force throughout ring 1 cells increased the pressure of the ring 1 cells, and 

created a pressure gradient between neighbouring cells. Consequently, the pressure difference forced the 

fluid to transfer from ring 1 cells to its neighbouring cells, wound cell and ring 2 cells. This suggests that 

other forces were responsible for decreasing the area of the cells and interfacial tensions alone do not 

produce wound healing. However, a purse string around the wound may still generate important driving 

forces.  
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4.2 Local Area Contractions as a Driving Force 
 

 

In Chapter 3, two different types of cell contraction models were developed, the nodal-based and the 

pressure-based. In this section, both contraction models will be investigated.  

 

 

4.2.1 Nodal-Based Contraction Parameter Determination 
 

As the individual cells underwent contraction, cells that were closer to the wound lost more volume as 

healing progressed. Figure 4.11 depicts this process. 

  

 
 Figure 4.11 – a) Areas of a few ring 1 cells versus time. A decrease in area can 

be observed as healing progresses. b) Areas of a few ring 2 cells versus time. A very 

small decrease in area compared to ring 1 cells can be observed as healing 

progresses. 

 

The cells underwent approximately four contraction cycles over the duration of the healing process. 

Having obtained the experimental data parameters, a forward simulation was conducted using the nodal-

based contraction and a volume pressure of 10dyne/pixel
2
. The contraction parameters were tuned to 

match the experimental data, giving contraction rate, strength and duration values of 0.6%, 0.15dyne and 

180sec, respectively. Figure 4.12 shows an example of cells undergoing contraction.  

 

 
Figure 4.12 – Three samples of cell area undergoing nodal-based contraction  
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The contraction cycle and magnitude of cell in the simulation resembled the experimental data. 

However, cell contraction was not sufficient to drive the cells to lose their volume. There were also 

variations when comparing the forward simulation and experimental data. Figure 4.13 shows the cell 

patch at 500 seconds into the simulation.  

 

 
Figure 4.13 – Nodal-based contraction simulation 

 

The cell shapes were distorted when the nodal-based contraction model was used. Since the wound 

cell did not have any resisting force or pressure, the cells bordering the wound were vulnerable to 

deformation. In addition, the cells became circular during the contraction and retained their circular shape 

even after the contraction was completed.  

  

 

4.2.2 Nodal-Based Contraction as a Driving Force  
 

To determine whether the nodal-based local area contraction could cause the wound cell to close, a 

forward simulation was conducted with cell contraction as the only driving force. The forward simulation 

and parametric results are shown in Figure 4.14 and Figure 4.15, respectively.   

 

 
Figure 4.14 – Nodal-based contraction as a driving force simulation 
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Figure 4.15 – Geometric parameters for a model tissue driven by nodal-based contraction 

 

 In the simulation, the circularity of the wound decreased, while the wound crinularity increased 

drastically. This suggested that a purse string around the wound was required for the wound to maintain 

its circular geometry. Further simulations indicated that the use of cell-to-cell permeability had no effects 

on the volume loss in ring 1 cells. The area changes in cells were dominated by pressure rather than the 

cell-to-cell permeability. In addition, the wedgeness of ring 1 cells did not increase because the 

contraction forced the cells to roundup, preventing the cells from forming a wedged shape. Overall, the 

nodal-based contraction model did not yield similar results to the experimental data. 

 

 

4.2.3 Nodal-Based Contraction with Edge Tensions 
 

The forward simulation conducted in §4.2.2 demonstrated that wound closure could not be achieved using 

only nodal-based contractions. Although the area of the wound cell decreased, it did not match the 

experimental data. Thus, the nodal-based contraction was used in conjunction with edge tensions to 

simulate wound closure.  

 

A forward simulation was conducted with a purse string around the wound in addition to the cell 

contractions. The simulation demonstrated that wound closure can be accomplished while increasing the 

wedgeness of the cells. Unfortunately, other parametric measures were not reflective of the experimental 

data, such as the wound shape and the area of ring 1 cells. To reduce the area of ring 1 cells, an interfacial 

tension was applied throughout ring 1 cells. While the area of ring 1 cells was reduced, it was not 

reflective of the experimental data. The simulation and parametric results are shown in Figure 4.16 and 

Figure 4.17, respectfully.  
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Figure 4.16 – Nodal-based contraction with edge tensions 

 

  
Figure 4.17 – Geometric parameters for a model tissue driven by nodal-based 

contraction and edge tensions 

 

In §4.1.4, a similar study was conducted without the presence of contractions. When comparing the 

magnitude of the edge tensions required to achieving the same area for wound cell and ring 1 cells, only 

half was required for the patch that had nodal-based cell contractions. This suggested that the nodal-based 

contraction model encouraged lesion closure, allowing a smaller purse string to accomplish wound 

closure. Although most of the parametric measures were in agreement with the experimental data, the 

final configuration of the cells was not reflective of the experimental data. The cell contractions and edge 

tensions were not sufficient to capture the wound healing phenomena. Based on the simulations 

conducted thus far, the nodal-based cell contraction is deemed an unviable model; the shape of the cells 

was noticeably affected by the contraction and did not reflect the experimental data.  
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4.2.4 Pressure-Based Contraction Parameter Determination  
 

Through an iterative process, pressure-based contraction control parameters resembling the experimental 

data were obtained. The contraction rate, strength and duration were determined to be 0.1%, 

0.01dyne/pixel
2
 and 150sec, respectively. Figure 4.18 shows an example of cells undergoing pressure-

based area contractions.  

 

  
Figure 4.18 – Three samples of cell area undergoing pressure-based contraction 

 

The area profile of the pressure-based contractions was similar to the nodal-based contraction results. 

The pressure-based contraction was not able to decrease the area of the cells, but proved robust in 

maintaining their shapes. Figure 4.19 shows the simulation results.  

 

 
Figure 4.19 – Pressure-based contraction simulation 

 

When comparing the simulation to the experimental data, the pressure-based contraction yielded 

similar results in terms of their cell shapes. The wound cell was able to maintain its distinctive shape 

while the surrounding cells contracted.  
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4.2.5 Pressure-Based Contraction as a Driving Force 
 

The pressure-based local area contraction model proved to be more reliable in conducting forward 

simulations. The parametric measures of the pressure-based contraction simulation are shown in Figure 

4.20. 

 

  
 Figure 4.20 – Geometric parameters for a model tissue driven by pressure-

based contraction. The parametric measures are not affected by local contractions. 

 

The pressured based contraction simulation was unable to drive wound closure. In fact, there were 

little changes to the parametric measure results. The cells that were in contraction oscillated while 

maintaining a steady average value. When the pressure-based contraction was biased towards different 

cell types, it was still difficult to achieve lesion closure. The simulation and parametric results, causing 

ring 1 cells to contract, are shown in Figure 4.21 and 4.22, respectively.  

 

 
Figure 4.21 – Pressure-based contraction simulation 
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Figure 4.22 – Geometric parameters for a model tissue driven by a biased 

pressure-based contraction 

 

Despite causing ring 1 cells to contract, the wound was not able to close. When analyzing the 

parametric results, the area of ring 1 cells reduced at the start of the simulation; once the pressure was 

stabilized, the contraction progressed. Other parametric measures did not change, but rather remained 

constant or in oscillation.  

 

 

4.2.6 Pressure-Based Contraction with Edge Tensions 
 

The pressure-based contraction was used in conjunction with a purse string around the wound to simulate 

lesion closure. A tonus force of 0.055dyne was applied around the wound and the simulation result is 

shown in Figure 4.23.  

 

 
Figure 4.23 – Pressure-based contraction with edge tensions 
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The final configuration of the cell patch yielded results slightly different from the experimental data 

but proved to be the most comparable simulation thus far (see Table 4.3). The main difference between 

the forward simulation and the experimental data was that the experimental data held a distinctive “U” 

shaped wound whereas the forward simulation had an oval shaped wound. The parametric measure results 

are shown in Figure 4.24.  

 

 
 Figure 4.24 – Geometric parameters for a model tissue driven by pressure-

based contraction and edge tensions 

 

Table 4.3 – Geometric parameter comparison between experimental data and forward simulation (§4.2.6) 

Parametric Measure 
Simulation Experimental Data 

Initial Final Percent Change [%] Percent Change [%] 

Circularity Average 0.7834 0.7598 -3.1 1.0 

Wedgeness Average 0.1922 0.6155 220.2 214.3 

Isoangularity Average 0.9692 0.9748 0.6 1.4 

Crinularity Average 0.1683 0.1953 16.0 -10.4 

Wound Area 1.000 0.1238 -87.6 -89.5 

Ring 1 Area 1.000 0.9400 -6.0 -19.1 

Ring 2 Area 1.000 0.9386 -6.1 -1.0 

Wound Circularity 0.8992 0.8381 -6.8 -25.2 

Wound Crinularity 0.1430 0.2831 98.0 19.4 

 
The final value of the wedgeness and wound cell area were in close proximity with the experimental 

data, but there were differences in the slope curvatures. In the experimental data, the wound area and 

wedgeness leveled out towards the end of the healing process whereas the forward simulation showed a 

constant rate of change. This suggested that the patch was reaching equilibrium, or the forces were 

changing throughout the healing process. In attempt to model the decreasing trend in area of ring 1 cells, 

simulations were conducted having permeable cells and interfacial tensions throughout ring 1 cells. 

Unfortunately, the simulation results were similar to the nodal-based contraction, conducted in §4.2.3; it 

was difficult to reduce the area of ring 1 cells through edge tensions and permeability.  
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4.3 Far-Field Stress (FFS) as a Driving Force 
 

 

Laser ablation experiments have suggested that the entire amnioserosa is under tension during the healing 

process. In this section, we add far-field stresses (FFS) as potential driving forces. 

 

 

4.3.1 FFS as a Driving Force 
 

The effect of the far-field stress was simulated by applying tensile stresses along the rectangular boundary 

of the patch. A far-field stress of 0.001dyne/pixel
2
 in the x and y direction was applied and the simulation 

and parametric results are shown in Figure 4.25 and Figure 4.26, respectively.  

 

 
Figure 4.25 – FFS simulation  

 

 
Figure 4.26 – Geometric parameters for a model tissue driven by FFS 
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Applying a far-field stress expanded the wound, since the wound was unconstrained in its volume. 

When the simulation was compared to the experimental data, the simulation captured the early stages 

(right after the point of ablation) of the recoiling phenomena and did not contribute to the healing process. 

In fact, it increased the wound area, confirming studies suggesting that it acts as a resisting force. To 

achieve wound closure, the far-field stress has to be overcome by other forces responsible for driving 

lesion closure.  

 

 

4.3.2 FFS with Edge Tensions 
 

A forward simulation was conducted with a purse string around the wound, while the far-field stress acted 

against wound closure. The purse string around the wound had to be large enough to overcome the far-

field stress. A purse string force of 0.09dyne was applied to the wound cell and the simulation was 

conducted for 850 seconds. The simulation and parametric measure results are shown in Figure 4.27 and 

Figure 4.28, respectively.  

 

 
Figure 4.27 – Far-field stress with purse string 

 

 
Figure 4.28 – Geometric parameters for a model tissue driven by FFS and a purse string 
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Despite the presence of a far-field stress, the wound was able to close, which was similar to the 

experimental data. However, other parametric measures, such as wound circularity, ring 1 area and ring 2 

area differed from the experimental data. The purse string around the wound was strong and caused the 

wound cell to round up. The far-field is present in the amnioserosa throughout the healing process; other 

forces would be required to decrease the wound circularity, ring 1 area and ring 2 area.  

 
 
 

4.4 Velocity Boundary Condition (BC) as a Driving Force 
 

 

4.4.1 Velocity Boundary Condition (BC)  
 

A forward simulation was conducted to determine the contribution of native dorsal closure to wound 

healing. A velocity of 0.034 and 0.0068pixel/sec was applied to the boundary for the x and y component, 

respectively, while other forces and constraints, such as edge tension, permeability and contraction were 

not applied to the patch. Figure 4.29 shows the simulation results. 

 

 
Figure 4.29 – Velocity BC simulation  

 

The simulation showed that the native dorsal closure was able to drive wound closure. Although the 

area of the wound decreased, other parametric measures, shown in Figure 4.30, were not in agreement 

with the experimental data.  
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Figure 4.30 – Geometric parameters for a model tissue driven by velocity BC  

 

The forward simulation was setup to run for 850 seconds, but wound closure was achieved at 400 

seconds into the simulation. In the experimental data, the cells were losing sufficient amount of fluid, 

which allowed the wound to decrease over the duration of 850 seconds. Hence, other forces and 

constraints would be required to prolong the closure of the wound. Although there were differences in the 

simulation to the experimental data, the native dorsal closure of the amnioserosa cells proved to be 

sufficient in driving wound closure. 

  

 

4.4.2 Velocity Boundary Condition (BC) with Edge Tensions 
 

To more closely mimic dorsal closure, a simulation was conducted with permeable cells and a purse 

string around the wound. A tonus force of 0.03dyne was applied around the wound to reduce the 

crinularity of the wound, while a cell-to-cell permeability of 10 was applied to all the cells. Figure 4.31 

shows the simulation results. 

 

 
Figure 4.31 – Velocity BC with edge tensions at 560 seconds 
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The forward simulation was able to run longer with the presence of a purse string around the wound 

cell, in addition to the cells being permeable. When comparing the parametric measures, shown in Figure 

4.32, the characteristics of the wound and the area of ring 1 cells did not match the experimental data.  

 

 
Figure 4.32 – Geometric parameters for a model tissue driven by velocity BC and edge tensions  

 

Although the area of ring 1 cells decreased, an additional 15% reduction is required to resemble the 

experimental data. It was becoming evident that other forces were responsible for the cells to lose their 

volume. The velocity boundary condition required more than edge tensions and permeability to resemble 

the experimental data. 

 

 

4.4.3 Velocity Boundary Condition (BC) with Edge Tensions and 

Contractions 
 

Previous cell contraction simulations demonstrated the nodal-based contraction as an unviable contraction 

model. As a result, a simulation was conducted using the pressure-based contraction with the velocity 

boundary condition. Through an iterative approach, lesion closure resembling the experimental data was 

simulated. The simulation ran for 850 seconds and is shown in Figure 4.33. The following control 

parameters were used for the simulation: 

 

Edge tension around wound = 0.045dyne 

Volume Pressure = 10dyne/pixel2 

Velocity BC in x = 0.034pixel/sec 

Velocity BC in y = 0.0068pixel/sec 

Contraction Rate = 0.1% 

Contraction Strength =0.01dyne/pixel2 

Contraction Duration = 150sec 
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Figure 4.33 –Velocity BC with edge tensions and pressure-based contraction 

 

The simulation yielded similar results to §4.2.6, where the pressure-based contractions were used in 

conjunction with edge tensions. The velocity boundary condition had a minor effect on the parametric 

measures, shown in Figure 4.34. Comparing the wound circularity and crinularity between the 

simulations revealed that the overall trends were similar despite the small differences in the deformed 

shape of the wound cell. 

 

  
 Figure 4.34 – Geometric parameters for a model tissue driven by velocity BC, 

edge tensions and pressure-based contraction 

 

In both cases, the area loss in ring 1 cells was not sufficient enough to match the experimental data. 

The inability to lose fluid in ring 1 cells suggests that there were other forces that played an integral part 

in the healing process.  
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4.5 Apical Tension as a Driving Force 
 

 

The increase in wound size increases the force imbalance between the apical tension and far-field stress. 

As a result, the amnioserosa cells that are exposed to larger wounds tend to show a higher loss in area. 

The reduction of the area is less severe in the case of a point wound in comparison to a bigger wound, 

such as a circular or line wound. Figure 4.35 shows the initial and final geometry of a point wound and 

circular wound.  

 

 
 Figure 4.35 – a) The first frame of the Point Wound experimental data. b) The 

last frame of the Point Wound experimental data. c) The first frame of Circular 

Wound 1 experimental data. d) The last frame of the Circular Wound 1 

experimental data.  

 

Comparing the two experiments revealed that ring 1 cells reduced in their area more severely for the 

circular wound. In addition, a noticeable amount of fluid was lost in ring 2 cells for the circular wound. 

Through digitizing the images, the area profiles of point and circular wounds were obtained and are 

shown in Figure 4.36.  

 

 
 Figure 4.36 – a) Area profiles for Point Wound experimental data. b) Area 

profiles for Circular Wound 1 experimental data. 
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The circular wound took a longer time to heal than the point wound, and a higher loss in volume was 

observed in ring 1 and ring 2 cells in the circular wound. Hence, the Circular Wound 1 experiment was 

used for conducting apical force analysis. 

 

 

4.5.1 Experimental Data Results and Apical Tension Parameter 

Determination 
 

As the area of ring 1 and ring 2 cells decreased, the cells maintained its characteristic shapes (see Figure 

4.35, c) and d)). The application of apical tension force requires an apical permeability constant to allow 

the area of the cells to decrease. Without the use apical permeability, the volume constraint on the cells 

prevents the cells from losing their volume. The parametric results for Circular Wound 1 experiment are 

shown in Figure 4.37. 

 

 
Figure 4.37 – Geometric parameters for Circular Wound 1 experimental data 

 

The parametric measures were obtained over the duration of 400 seconds. Comparing the results 

between the point wound and circular wound experiment, shown in Table 4.1 and 4.4, respectively, 

revealed that the circular wound experiment had a larger area loss for ring 1 and ring 2 cells.  

 

Table 4.4 – Geometric parameter results for Circular Wound 1 

Parametric Measure Initial Final Percent Change 

Circularity Average 0.7595 0.7740 1.9 

Wedgeness Average 0.0543 0.1012 86.4 

Isoangularity Average 0.9862 0.9784 -0.8 

Crinularity Average 0.0945 0.0843 -10.8 

Wound Area 1.000 0.5417 -45.8 

Ring 1 Area 1.000 0.6075 -39.3 

Ring 2 Area 1.000 0.9197 -8.0 

Wound Circularity 0.9015 0.9342 3.6 

Wound Crinularity 0.3612 0.2081 -42.4 
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The wedgeness of ring 1 cells for the circular wound experiment had a moderate increase compared 

to the point wound experiment. Likewise, the circularity of the wound only increased by 3.6 percent for 

the circular wound, while it decreased by 25.2 percent for the point wound. Other parametric measures 

did not show a significant change.  

 
Through an iterative process, the apical tension and permeability that yielded the same volume loss 

for ring 2 cells were obtained. The simulation was conducted for 400 seconds with an apical tension and 

permeability of 0.1dyna/pixel
2
 and 0.0024, respectively. The simulation and parametric measure results 

are shown in Figure 4.38 and Figure 4.39, respectively. 

 

 
Figure 4.38 – Apical tension simulation 

 

 
Figure 4.39 – Geometric parameters for a model tissue driven by apical tension 

 

The simulation showed that the area of the entire patch was easily reduced using an apical tension. 

While reducing the area of the cells, its effect on other parametric measures was minimal. However, the 

apical tension did not prove to be a driving force for wound closure.  
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In the experimental data, the area of ring 1 cells decreased less than ring 2 cells, with losses being 

approximately 40% and 10% of their initial area, respectively. To achieve the same percentage area loss, 

the apical tension for ring 1 cells was required to be five times higher than ring 2 cells. Previous 

simulations demonstrated that the area of ring 1 cells could also be reduced by allowing cells to permeate 

fluid to neighbouring cells (refer to §4.1.4). To determine whether biasing the apical tension according to 

different cell types could drive wound closure, the apical tension in ring 1 cells was increased by five 

times. Unfortunately, the wound decreased by only three percent, suggesting that the apical tension was 

not a driving force, but rather a contributing factor to the attributes of the cell patch. Figure 4.40 shows 

the parametric results when ring 1 cells were biased towards having a higher area tension.  

 

 
Figure 4.40 – Geometric parameters for a model tissue driven by apical tension. 

Ring 1 cells had an apical tension that was five times higher than ring 2 cells 

 

   

4.5.2 Apical Tension with Edge Tensions and Native Dorsal Closure 
 

Previous simulations suggested that the wound is able to close by applying a purse string around the 

wound or using native dorsal closure. Hence, a simulation was conducted with having a uniform apical 

tension in addition to a purse string around the wound using permeable cells. The simulation is shown in 

Figure 4.41 and the parametric measure results are shown in Figure 4.42. The forward simulation was 

conducted with the following parameters: 

 

Edge tension around wound = 0.15dyne 

Cell-to-Cell Permeability = 0.44 

Apical Tension = 0.1dyne/pixel2 

Apical Permeability = 0.0024 
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Figure 4.41 – Apical tension with purse string around the wound 

 

 
Figure 4.42 – Geometric parameters for a model tissue driven by apical tension 

and a purse string around the wound 

 

The overall outcome of the simulation was similar to the experimental data. The main difference was 

in the wound crinularity, where it initially decreased, then increased; this was a recursive trend for cells 

rounding up (refer to §4.1.3). The combined effects of cell-to-cell and apical permeability allowed ring 1 

cells to lose more volume than ring 2 cells. Although it was possible to lose more volume by applying a 

higher apical tension, an isotropic apical tension was used in conjunction with cell-to-cell permeability. 

 

Knowing that the native dorsal closure was another possible driving force to wound healing, a 

simulation was conducted using native dorsal closure and apical tension. A forward simulation was 

conducted with a velocity boundary condition of -0.075 and -0.095pixel/sec for the x and y component, 

respectively. The simulation is shown in Figure 4.43 and the parameters measures are shown in Figure 

4.44.  

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 100 200 300 400 

Time [sec] 

CircularityAvg 

WedgenessAvg 

IsoAngularityAvg 

CrinularityAvg 

WoundArea 

Ring1Area 

Ring2Area 

WoundCircularity 

WoundCrinularity 

t=400s t=0s t=200s 



70 

 

 
Figure 4.43 – Apical tension with native dorsal closure 

 

 
Figure 4.44 – Geometric parameters for a model tissue driven by apical tension 

and native dorsal closure 

 

The results were similar to the previous simulation while the main differences were observed in the 

wound circularity and crinularity. The use of native dorsal closure prolonged the crinularity profile of the 

wound, decreasing half way into the simulation and then increasing. When comparing the simulation to 

the experimental data, the characteristics of the wound cell and the cell wedgeness were different (Figure 

4.44 and Figure 4.37).  

 

When a purse string was applied around the wound in addition to having native dorsal closure, a 

collaborative contribution to the parametric measures from both forces was observed. The purse string 

around the wound increased the circularity of the wound cell, while the velocity boundary condition 

reduced the crinularity of the wound. The parametric measures of the simulation are shown in Figure 4.45. 
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Figure 4.45 – Geometric parameters for a model tissue driven by apical tension, 

native dorsal closure and a purse string around the wound 

 

There were differences in the rate the wound and ring 1 areas decreased, but observing the overall 

trend of the simulation with image sequences revealed similarities to the experimental data (Figure 4.37).  

 

 

4.5.3 Apical Tension with Contractions  
 

The simulation conducted with an apical tension and a purse string around the wound yielded similar 

results to the experimental data but was not able to capture the characteristics at a local level. To better 

capture the global and local behavior of the wound healing process, a forward simulation was conducted 

with the pressure-based local area contractions. The simulation was conducted for 400 seconds and the 

patch and parametric measure results are shown in Figure 4.46 and Figure 4.47, respectively. The 

following control parameters were used for the forward simulation: 

 

Edge tension around wound = 0.75dyne 

Volume Pressure = 10dyne/pixel2 

Apical Tension = 0.1 dyne/pixel2 

Velocity BC in x = 0.075pixel/sec 

Velocity BC in y = 0.095pixel/sec 

Contraction Rate = 0.05% 

Contraction Strength = 0.5dyne/pixel2 

Contraction Duration = 100sec 
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Figure 4.46 – Apical tension with native dorsal closure, edge tensions, and 

pressure-based contraction 

 

 
Figure 4.47 – Geometric parameters for a model tissue driven by apical tension, 

native dorsal closure, edge tensions, and pressure-based contraction 

 

It was difficult to achieve results resembling the experimental data. Applying a purse string around 

the wound increased the circularity and crinularity of the wound. In addition, the ring 1 and ring 2 area 

profiles were not reflective of the experimental data because their loss in volume was minimal. Although 

the cells were permeable, the volume pressure of the cells had a dominant effect on the overall size of the 

cells, suggesting that the cells are reducible by increasing the apical tension. A simulation was conducted 

with an apical tension of 0.35 and 0.1dyne/pixel
2
 for ring 1 and ring 2 cells, respectively, resulting in the 

final area of the ring 1 and ring 2 cells to be similar to the experimental data. The simulation is shown in 

Figure 4.48. 
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Figure 4.48 – High apical tension with native dorsal closure, edge tensions, and 

pressure-based local area contraction 

 

The final configuration of the patch closely reflected the experimental data. Although the wound 

shape was circular, all other shapes in the patch were similar to the experimental data. Unfortunately, the 

parametric measures shown in Figure 4.49 did not resemble the experimental data. 

 

 
Figure 4.49 – Geometric parameters for a model tissue driven by high apical 

tension, native dorsal closure, edge tensions, and pressure-based contraction 

 

Despite the final values of the parametric results being reflective of the experimental data, the process 

in which lesion closure was achieved was different. The area of the cells for the wound, ring 1 and ring 2 

spiked to their respective values during the first few seconds of the simulation. Likewise, other parametric 

measures that depended on the area changes of cells spiked during the first few seconds into the 

simulation. The spikes in the parametric curves were a result of an anisotropic apical tension applied to 

the cell patch. This suggests that the apical tensions were increasing gradually as healing progressed.  
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4.5.4 Varying Apical Tension 
 

The apical tension played an integral part to wound closure and it was by far the most effective way to 

reduce the area of the cells that were further away from the wound. Generally speaking, the leading edges 

of the patch moved at a constant pace (see Figure 3.13). However, for a given time frame, there were 

deviations from the linear fitted curve. Likewise, a pixilated analysis of the patch revealed that the 

boundary of the patch moved at an inconstant pace. Two points near the boundary of the patch for the 

Circular Wound 1 experiment were tracked and the displacement time history is shown in Figure 4.50.  

 

 
Figure 4.50 – Circular Wound 1 boundary displacement over time 

 

The simulation was partitioned into two sections with 150sec being the reference point. A forward 

simulation was conducted with the velocity boundary condition of the patch being accurate to the 

experimental data. Through an iterative process, the control parameters were refined to reflect the 

experimental data, and the parameters used for the simulations are summarized in Table 4.5 and the 

parametric measure results are shown in Figure 4.51. 

 

Table 4.5 – Parameters used for two step Circular Wound 1 simulation 

Forces and Constraints 
Time [sec] 

0 to 150 150 to 400 

Edge Tension in Patch [dyne] 0.01 0.01 

Purse String around Wound [dyne] 0.0 0.03 

Cell-to-Cell Permeability 0.14 0.14 

Apical Tension [dyne/pixel2] 0.32 0.14 

Apical Permeability 0.0024 0.0024 

Velocity Boundary Condition – VX [pixel/sec] -0.26 -0.08 

Velocity Boundary Condition – VY [pixel/sec] -0.19 -0.1 
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Figure 4.51 – Geometric parameters for a model tissue driven by varying apical tensions 

 

Conducting the forward simulation in two stages captured the parametric measures more accurately 

than previous simulations. The characteristics of the wound cell resembled the experimental data, and 

although the final value of the wedgeness and the area of ring 2 cells were slightly lower than in the 

experimental data, the overall trend was reflective of the experimental data. Between the two steps, the 

velocity of the boundaries, apical tensions and purse string surrounding the wound were changed. The 

simulation demonstrated how a varying apical tension better reflected the experimental data. All things 

considered, the results conducted thus far indicated that the apical tension, native dorsal closure and purse 

string around the wound were the driving forces to wound healing.  

 

 

 

4.6 Other Wound Healing Experiments 
 

 

Section 4.5 showed that three main factors contributed to lesion closure: boundary motion, apical tension, 

and purse string tension. If these driving forces were reflective of the live experiments, perhaps it would 

be possible to replicate other types of wound healing experiments. In this section, three additional wound 

healing experiments were studied: Circular Wound 2, Line Wound 1 and Line Wound 2.  

 

 

4.6.1 Circular Wound 2  
 

The Circular Wound 2 experiment was similar to the Circular Wound 1 experiment. A circular shaped 

wound was initiated in the amnioserosa cells during the dorsal closure stage of embryo development. The 

wound cell was reduced and a significant amount of cell movements and shape changes were observed 
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during the healing progress, as shown in Figure 4.52. Through digitizing the image sequence, the 

parametric measures were obtained and are shown in Figure 4.53 for the duration of the process analyzed.  

 

 
Figure 4.52 – Circular Wound 2 experiment  

 

 
Figure 4.53 – Geometric parameters for Circular Wound 2 experimental data 

 

The parametric measures showed that the area profile of the wound, ring 1 and ring 2 were not 

decreasing at a constant linear rate, suggesting that the apical tension was varying throughout the healing 

process. A closer analysis of the experimental data revealed the boundaries of the patch closing in at a 

constant pace. Through adjusting the magnitude of the apical tension, it was possible to obtain parametric 

results similar to the experimental data. Table 4.6 summarizes the control parameters used for the 

simulation and the parametric measure results are shown in Figure 4.54. 
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Table 4.6 – Parameters used for Circular Wound 2 simulation 

Forces and Constraints 
Time [sec] 

0 to 200 200 to 1200 

Edge Tension in Patch [dyne] 0.01 0.01 

Purse String around Wound [dyne] 0.0 0.0 

Cell-to-Cell Permeability 0.14 0.14 

Apical Tension [dyne/pixel2] 0.13 0.108 

Apical Permeability 0.0024 0.0024 

Velocity Boundary Condition – VX [pixel/sec] -0.072 -0.072 

Velocity Boundary Condition – VY [pixel/sec] -0.045 -0.045 

 

 
Figure 4.54 – Geometric parameters for a Circular Wound 2 model tissue 

driven by varying apical tensions and native dorsal closure 

 

Through only adjusting the magnitude of the apical tension, it was possible to obtain results that 

reflected the experimental data. The Circular Wound 2 forward simulation demonstrated that an apical 

tension and native dorsal closure was sufficient to drive lesion closure.  

 

 

4.6.2 Line Wound 1 
 

The Line Wound 1 experiment was similar to the circular wound experiment in terms of the size of their 

wound. However, the shape of the wound was long and applied over a length of three to four cells. The 

initial and final configuration of the healing process is shown in Figure 4.55 and the parametric measures 

of the experimental data are shown in Figure 4.56.  
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Figure 4.55 – Line Wound 1 experimental data experiment 

 

 
Figure 4.56 – Geometric parameters for Line Wound 1 experimental data  

 

The parametric measures revealed that the area profile of ring 1 and ring 2 cells decreased at a similar 

pace. In addition, the wedgeness of the cells increased more than the circular wound experiments, 

suggesting that there may be a higher purse string around the wound. Analyzing the borders of the patch 

showed that the boundaries did not close in at a constant pace (see Figure 4.57). 

 

 
Figure 4.57 – Line Wound 1 boundary displacement over time 
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A vast range of forward simulations were conducted to determine the driving forces that were able to 

resemble the experimental data. Table 4.7 summarizes the control parameters used for the simulation and 

the parametric measure results are shown in Figure 4.58. 

 

Table 4.7 – Parameters used for Line Wound 1 simulation 

Forces and Constraints 
Time [sec] 

0 to 200 200 to 750 

Edge Tension in Patch [dyne] 0.01 0.01 

Purse String around Wound [dyne] 0.03 0.03 

Cell-to-Cell Permeability 0.051 0.051 

Apical Tension [dyne/pixel2] 0.31 0.11 

Apical Permeability 0.0035 0.0035 

Velocity Boundary Condition – VX [pixel/sec] -0.23 -0.092 

Velocity Boundary Condition – VY [pixel/sec] -0.16 -0.072 

 

 
Figure 4.58 – Geometric parameters for a Line Wound 1 model tissue driven by 

varying apical tensions, native dorsal closure and a purse string around the wound 

 

When an apical tension, native dorsal closure and a purse string around the wound were used as 

driving forces, the simulation closely reflected the experimental data. As expected, a purse string around 

the wound was required to increase the wedgeness of the cells, while the apical tensions and closing 

boundary conditions were important for modeling the slope of the parametric measures.  

 

 

4.6.3 Line Wound 2 
 

The Line Wound 2 experiment initiated wounds in four cells in a linear form. The initial and final 

configuration of the healing process is shown in Figure 4.59 and the parametric measure results of the 

experimental data are shown in Figure 4.60.  

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 100 200 300 400 500 600 700 

Time [sec] 

CircularityAvg 

WedgenessAvg 

IsoAngularityAvg 

CrinularityAvg 

WoundArea 

Ring1Area 

Ring2Area 

WoundCircularity 

WoundCrinularity 



80 

 

 
Figure 4.59 – Line Wound 2 experimental data experiment 

 

 
Figure 4.60 – Geometric parameters for Line Wound 2 experimental data 

 

The ring 2 cells lost a small amount of volume during the healing process, suggesting that the 

gradient between the far-field stress and apical tension may have been small. The wedgeness was not a 

reliable quantitative measure for comparing results. Further analysis revealed that one of the cell edges 

was very short in length, resulting from a digitization error. Consequently, the calculation of the 

wedgeness, based on Eq. (3.2) was highly sensitive to the ratio of the edge lengths. In the simulation, a 

constant velocity boundary condition was used, based on the analysis conducted on the patch boundaries. 

Table 4.8 summarizes the control parameters used for the simulation and the parametric measure results 

are shown in Figure 4.61. 

 

Table 4.8 – Parameters used for Line Wound 2 simulation 

Forces and Constraints 
Time [sec] 

0 to 200 200 to 750 

Edge Tension in Patch [dyne] 0.01 0.01 

Purse String around Wound [dyne] 0 0 

Cell-to-Cell Permeability 0.06 0.06 

Apical Tension [dyne/pixel2] 0.34 0.27 
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Figure 4.61 – Geometric parameters for a Line Wound 2 model tissue driven by 

varying apical tensions and native dorsal closure 

 

When the velocity boundary condition and apical tensions were used as driving forces, the simulation 

resembled the experimental data results. The wedgeness of the cells showed little change in the 

experimental data, not requiring a purse string around the wound for the simulation.  

 

When considering the simulations conducted in this chapter, the result revealed that there were three 

main driving forces responsible for wound healing: far-field boundary motion, apical tension, and purse 

string tension around the wound. Although a purse string was not required for simulating Circular Wound 

2 and Line Wound 2 experiments, other simulations showed that the presence of a purse string was an 

integral part of capturing the characteristics of the healing process. Furthermore, the simulation result 

suggests that the apical tensions were changing, rather than remaining constant, throughout the healing 

process.  

 

 

 

4.7 Summary  
 

 

In summary, the simulations demonstrated that interfacial tensions had a tendency to roundup the cells. 

Observing the individual cell edges of the experimental data revealed cells having jagged edges, 

suggesting that the edge tensions were less than in our initial models. When a high purse string was 

applied around the wound, the wound was able to close (see §4.1.3). Applying a purse string around the 

wound forced the wound to become circular and it increased the wedgeness of the cells bordering the 

wound. The ring 1 cells in the experimental data had a wedged shape; hence, a purse string around the 

wound was deemed a viable driving force. 
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Two different contraction models were developed and implemented to evaluate their contribution to 

wound healing (see §4.2). The nodal-based contraction model proved to be an unreliable model. It caused 

the shape of the cells to change in irregular ways, whereas the pressure-based contraction model yielded 

results resembling the experimental data. As part of the contraction model, the volume pressure constraint 

was used to allow the cells to expand after they contracted. Consequently, the volume pressure prevented 

the cells from losing their volume, despite the use of cell-to-cell permeability; the volume changes in cells 

were dominated by pressure rather than the cell-to-cell permeability. The simulations showed that the 

pressure-based cell contraction was not a driving force, but rather, contributed to the attributes of the cells’ 

behavior (see §4.2.5).  

 
Simulated stretching of the lateral epidermis confirmed that it resists dorsal closure and wound 

healing (see §4.3.1). Ablation experiments revealed that the far-field stress existed throughout the healing 

process. Despite the resisting presence of the far-field stress, wound healing could be accomplished by 

applying a sufficiently high purse string around the wound (see §4.3.2). For an applied far-field stress of 

0.001dyne/pixel
2
, the purse string around the wound had to be increased by 50% to achieve the same 

amount of wound closure as compared to a scenario without a far-field stress. Although it is possible to 

achieve lesion closure through applying a higher purse string around the wound, the wound cell rounded 

up and insufficient volume was lost in ring 1 cells.  

 

Driving the edges of the patch proved to be more than sufficient to drive lesion closure (see §4.4). It 

yielded results similar to when a purse string was applied around the wound cell, except the wound shape 

was jagged. The wound cell also had jagged edges in the experimental data. Although the native dorsal 

closure was sufficient to drive wound closure, it was difficult to initiate fluid loss for ring 1 cells. 

However, the characteristics of the wound were achievable through proper balancing of the edge motions 

and a purse string around the wound.  

 

Apical tension was not able to drive wound closure, but played a key role in the volume loss in cells 

(see §4.5). The Circular Wound 1 experimental data indicated a higher loss in volume for ring 1 cells than 

ring 2 cells. Cell-to-cell permeability may be used, or apical tensions may be increased, to induce fluid 

loss in cells. In either case, simulation results demonstrated that both means of fluid loss for ring 1 cells 

did not affect other parametric measures.  

 

When the apical tension model was used with native dorsal closure and a purse string, it was possible 

to approximately replicate all parametric measures obtained from the experimental data (see §4.5.2). A 

closer examination of the experimental data revealed that the boundary closed in at an inconsistent pace. 

As a result, decomposing the simulation into two sections helped achieve results that were closely 

reflective of the experimental data (see §4.5.4). Analyzing other wound healing experiments by sections 

resulted in parametric measures closely resembling the experimental data. In all the simulations, the use 

of far-field motions, apical tension and purse string were sufficient to achieve lesion closure (see §4.6).  

 

Table 4.9 and Table 4.10 summarizes the parameters that gave the best fits to the various experiments. 

It is clear that the parameters varied somewhat from one test to another within the same type of wound 
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and that they varied to about the same degree from one wound type to another. This suggests that the 

observed variability may be largely due to animal-to-animal differences and not to systematic differences 

associated with wound type or data fitting. 

 

Table 4.9 – Summary of parameters used for simulation (early time steps) 

Wound Experiment: Point Circular 1 Circular 2 Line 1 Line 2 

Time [sec]: 0 to 200 0 to 150 0 to 200 0 to 200 0 to 200 

F
o

rc
es

 a
n

d
  

C
o

n
st

ra
in

ts
 

Edge Tension in Patch [dyne] 0 0.01 0.01 0.01 0.01 

Purse String around Wound [dyne] 0.03 0 0 0.03 0 

Cell-to-Cell Permeability 10 0.14 0.14 0.051 0.06 

Apical Tension [dyne/pixel2] 0 0.32 0.13 0.31 0.34 

Apical Permeability 0 0.0024 0.0024 0.0035 0.0002 

Velocity Boundary Condition – VX 

[pixel/sec] 
-0.034 -0.26 -0.072 -0.23 -0.035 

Velocity Boundary Condition – VY 

[pixel/sec] 
-0.0068 -0.19 -0.045 -0.16 -0.015 

 

Table 4.10 – Summary of parameters used for simulation (later time steps) 

Wound Experiment: Point Circular 1 Circular 2 Line 1 Line 2 

Time [sec]: 200 to 850 150 to 400 200 to 400 200 to 750 200 to 750 

F
o

rc
es

 a
n

d
  

C
o

n
st

ra
in

ts
 

Edge Tension in Patch [dyne] 0 0.01 0.01 0.01 0.01 

Purse String around Wound [dyne] 0.03 0.03 0 0.03 0 

Cell-to-Cell Permeability 10 0.14 0.14 0.051 0.06 

Apical Tension [dyne/pixel2] 0 0.14 0.108 0.11 0.27 

Apical Permeability 0 0.0024 0.0024 0.0035 0.0002 

Velocity Boundary Condition – VX 

[pixel/sec] 
-0.034 -0.08 -0.072 -0.092 -0.035 

Velocity Boundary Condition – VY 

[pixel/sec] 
-0.0068 -0.1 -0.045 -0.072 -0.015 

 

These findings also explain why VFM calculations based on the assumption that wound healing was 

driven exclusively by edge forces and intracellular pressures did not give convincing results. Indeed, it is 

reassuring that VFM did not produce good results when it was missing far-field stresses (or corresponding 

boundary motions) and apical tensions, drivers that these simulations indicate are crucial to wound 

closure.  
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Chapter 5  

Conclusions and Recommendations 
 

 

This study has shown the following: 

 

1) It was possible to use cell-level models to investigate the mechanics of wound healing. 

2) Of the five parametric measures developed to characterize cells, area, wedgeness and crinularity 

provided the best discrimination when different sets of driving forces were active. Circularity and 

isoangularity might be useful for comparing two individual cells, but ensemble averages changed 

little.  

3) Interfacial tensions and intracellular pressures by themselves were not able to match the motions 

and parameters of experiments. This is the apparent reason that initial attempts to apply VFM 

failed. 

4) When area tensions and far-field stresses act in combination with interfacial tensions, good 

agreement can be obtained. 

5) The combinations of driving forces required to match multiple experiments of the same type 

show some variability. 

6) A similar degree of variability was found between wounds having point, circle and line 

geometries. 

 

One recommendation for future work is to obtain measures of the material properties of cells so that 

results can be reported in dimensional form. Another recommendation is to obtain better quality images 

and digitize the entire period of the healing process. The digitized images capture the early portions of the 

healing process, while the later portions were difficult to digitize due to the quality of the images. Being 

able to obtain the later portions of the healing process may provide insights into the contribution of the 

purse string formation and protrusions of any filopodia or lamellipodia. In addition, it would be beneficial 

to model the entire amnioserosa and perhaps its surrounding tissue. 

 

Finally, it would be interesting to apply a version of VFM that assumed all of the kinds of driving 

forces identified here as being important. Would it be able to correctly determine the forces present in 

these tissues? If it could, it would be a highly valuable tool for mapping the forces that drive wound 

closure and other related morphogenetic movements.  

 
Forward and inverse techniques for modeling morphogenetic movements possess much potential. 

They are not necessarily limited to a particular problem, but in principle could provide insights into many 

kinds of morphogenetic movements and thereby ultimately contribute to medicine and human quality of 

life.   
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